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Executive Summary 

The assessment of power system reliability under increasing penetration of wind power 

requires long-term wind data that is not available or does not exist and hence must be 

simulated. In this research, autoregressive models (AR) ranging from 1st order to 12th order 

and Markov-switching autoregressive models (MS-AR) ranging from MS(2)-AR(2) to MS(5)-

AR(5) are used for simulation of wind speed data that has the same stochastic 

characteristics as a 10-minutes simulated wind speed time-series provided by NREL for 

years 2004 and 2005. Simulation results are compared between models, across different 

seasons, and different data lengths.  

The report has six sections: introduction, research objective, theoretical framework, 

methodologies, results, and conclusion. The first section provides background information. It 

starts with current status of wind energy in the US and around the world, and then provides 

an overview of previous research on wind simulation models studied in this project. The 

second section covers the research objective of this project and general introduction of the 

structure and content of this report. 

The third section covers the theoretical framework. AR model, MS-AR model and relevant 

concepts are introduced in this section. To explain how the models work and clearly describe 

the characteristics of models, examples are given to help clarify the simulation mechanism of 

each model.  

The fourth section provides information on methodologies. Firstly, data source, 

characteristics and processing methods are covered. Then methodologies on how 

simulations are generated are discussed. 



The fifth and sixth sections focus on the results and conclusions of this project. In the fifth 

section, we start by introducing the metrics of model performance, then results and 

observations are discussed in the rest part of the section. In the end, conclusions are drawn 

in the sixth section. 

The comparison results can be summarized as follows: 

 The Markov Chain component in MS-AR models further improves the ACF 

performance as well as the performance in terms of PDF.  

 Increasing number of state in the Markov Chain can significantly improve the 

performance of MS-AR models.  

 MS-AR models are more tolerant to input data, which is a result of their distributional 

versatility.  

 Although MS-AR models are better than AR models in many ways, we cannot deny 

that AR models are more efficient as their simplicity and time saving characteristic 

can to some extent offset less perfect performance. 

__________________________________________________________________________ 

1. Introduction  

Wind energy is considered one of the most promising and fastest growing alternative energy 

resources in the electric power system due to its competitive cost, clean generating process and 

non-exhaustible nature. The growing concern on the climate and environmental problems leads to 

rapid growth in wind in recent years in order to reduce GHG emissions all around the world. 

“The Chinese market posted a 25% growth in 2013; the Brazilian industry is set to install nearly 

4 GW in 2014; Mexico has set that country on course for a ~2GW/year market for the next 10 

years” [1]. Within the United States, according to the American Wind Energy Association 



(AWEA), “U.S. wind energy provides enough electricity to power the equivalent of over 18 

million homes. Iowa and South Dakota produced more than 25% of their electricity from wind in 

2013, with a total of nine states above 12% and 17 states at more than 5%. Wind energy provided 

10.6% of the electricity in 2014 on the main power system in Texas, ERCOT, and that figure is 

expected to reach 15-20% by 2017” [2]. The Clean Power Plan proposed by EPA, which aims at 

reducing carbon emission from the power sector by 30% from 2005 levels by 2030, together with 

the Renewable Portfolio Standard (RPS), which places an obligation on electric suppliers to 

increase production of energy from renewable resources, jointly motivate higher demand for 

renewable energy. “Most of this renewable energy will come from wind as other renewable 

resources are not suitable for bulk power generation” [3].  

 

Fig. 1. U.S. wind energy share of electricity generation during 2013, by state.  

However, the fact that wind power penetration will continue to increase triggers rising concerns 

over the reliability of the electric power system. Wind power is not dispatch-able and exhibits 

both time-variability and uncertainty.  Being non dispatch-able, wind power can only contribute 

to meet electrical demand when the wind is blowing. Time-variability makes wind power 

incapable of generating stable electricity to the power grid to meet base electrical load.  Finally, 

uncertainty in wind power production means that it is necessary to schedule conventional 



resources as power generation reserves to offset any deviations in actual wind production from its 

forecast.    

The assessment of the impacts that increased generation capacity of wind power will have on the 

reliability of power systems requires long term simulations of system operations.  Because long-

term, high-resolution time series of wind power are not available, researchers often use synthetic 

time series.  

There is a bulk of research on time series wind speed simulation models, owing to their ability to 

preserve the chronological variability and stochastic nature of the wind [4]. Two of the most 

commonly used wind speed simulation models are Monte Carlo Markov Chain (MCMC) models 

and linear Auto-Regressive (AR) models. 

The MCMC method is dependent on the past state of the observation and a transition probability 

matrix between the states. This method is widely applied to the generation of synthetic wind 

speed time series as it can capture the stochastic nature of wind. It is concluded in [5] that a 

second-order Markov chain model can slightly improve the wind speed behavior relative to a 

first-order Markov model. However, in application for time resolutions of less than an hour 

MCMC often fails to replicate the autocorrelation function (ACF) and probability density 

function (PDF) of the original time series [6, 7]. Limitations regarding the accuracy of this 

method, such as the imperfect replication of ACF and PDF, are caused by the intrinsic nature of 

the Markov process [5]. In order to improve the performance of the model in terms of ACF and 

PDF, it is suggested to separately apply a MCMC model to monthly data to include the seasonal and 

monthly variation of wind [6, 8]. The multi-regime MCMC models, which divide the dataset into 

different sub-regime data according to their diurnal and seasonal patterns and fits MCMC models 

to each sub-regime, generate better results than general MCMC models. For example, in  [6], the 

2nd order or higher multi-regime models with a percentile-based discretization of the state-space 

improved ACF replication and the representation of diurnal and seasonal patterns. However, the 

performance of PDF and ramp distribution does not improve significantly.  



The AR model is dependent on past observations and a random term. The use of linear AR models to 

analyze empirical time series has a long history. These models are widely used for the prediction of 

economic trends, signal processing, and natural phenomenon. In [9], different AR models are 

applied to subsets of data with different day types to include hourly, daily, seasonal and diurnal 

patterns in the wind time series. This improves the performance of ACF replication. When compared 

to MCMC models, AR models perfectly replicate the ACF; however, they do not produce 

satisfactory results in terms of PDF replication [10].  Moreover, AR models should be applied to 

stationary series. Since the nature of wind time series is a non-stationary, non-Gaussian, random 

process [4], it is necessary to transform the data before applying AR models to wind time series.  

This Master’s Project seeks to explore the potential benefits of using Markov-Switching Auto-

Regressive (MS-AR) methods for the generation of synthetic time series of wind power 

accounting for both the stochastic nature and time dependency of wind power.  To this effect an 

MS-AR model is developed.  MS-AR models integrate both MCMC and AR methods into one. 

This is a generalization of Hidden Markov Chain (HMM) and AR models that includes different 

AR models to represents the evolution of the process at different periods of time and switch the 

AR models following a transition probability controlled by an HMM [11].  

In [11], the advantages and limitations of MS-AR models for wind power are summarized. The 

MS-AR models have the ability to include statistical properties of data with diverse time scales. 

Moreover, due to their distributional stochasticity, data pre-processing is no longer necessary. 

However, the models fail to simulate the lowest part of the distribution and sometimes generate 

negative wind speed values.  

 



2. Research Objective and Structure 

As each of the methods introduced above has its advantages and limitations, we should be careful 

with choosing the appropriate method for wind time series simulation. For the reason that wind 

data varies significantly at different locations, the best simulation method and the use of 

parameters for different wind sites will be different. As a result, it is important to compare the 

performance of each method using the same wind time series (i.e. corresponding to the same time 

period and same location). The objective of this master’s project is to provide a comprehensive 

comparison of performance of the three methods introduced above using wind time series data 

from NREL to see if the comparison results correspond with those of previous work that used 

wind data from other parts of the world.  

Models are introduced in details in Section 3. Results and observations will be discussed in 

Section 4. Then in Section 5, conclusion will be drawn and further concerns will be discussed.  

 

3. Theoretical Framework 

3.1. Autoregressive Model 

An AR process is a time series process where the value of a series at a time period is a function 

of its values at previous time periods plus an error term. This process is characterized by a 

parameter, p, which is the order of the function. An AR (p) model can be defined as: 

𝑦𝑡 = 𝑎0 + ∑ 𝑎𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 + ε𝑡        (1) 

where 𝑦𝑡represents the output value at time t, 𝑎1, 𝑎2, 𝑎3 … , 𝑎𝑝 are the parameters of the model, 𝑎0 

is the constant, and ε𝑡 is an error term (independently and identically distributed as random draw 

from a normal distribution).  

For example, assume the relationship between wind speed and its previous value follows a first-

order autoregressive process, AR(1), which means that the current wind speed is a function of its 



value at a lag of one time period. In this case, 𝑦𝑡 represents the wind speed at current time period, 

t, then 𝑦𝑡 can be calculated using the following equation:  

𝑦𝑡 =  𝑎0 + 𝑎1𝑦𝑡−1 + ε𝑡         (2) 

That is, 𝑦𝑡 is a function of some portion of 𝑦𝑡−1 plus an error term. This nature of the relationship 

can also be expressed as follows： 

(1 − 𝜑1𝐿)𝑦𝑡 = 𝑐 + ε𝑡         (3) 

where 𝜑1 is the portion of the wind speed at time t-1 carried over to the wind speed at time t. L is 

the lag operator: L𝑦𝑡 = 𝑦𝑡−1. More than one period of time lag can be expressed using the powers 

of the lag operator: 𝐿2𝑦𝑡 = 𝑦𝑡−2 

If, however, the current wind speed is jointly determined by wind speed at previous time intervals, 

𝑦𝑡 would be represented by: 

𝑦𝑡 =  𝑎0 + 𝑎1𝑦𝑡−1 + 𝑎2𝑦𝑡−2 + ε𝑡        (4) 

Or 

(1 − 𝜑1𝐿 + 𝜑2𝐿2)𝑦𝑡 = 𝑐 + ε𝑡        (5) 

This relationship is a second-order autoregressive relationship, designated as AR (2). 

AR models require that input data must be stationary.  A stationary time series is one whose 

statistical properties such as mean, variance, autocorrelation, etc. are all constant over time[12], 

which provide reliable predictor when we try to estimate future behavior.   

Different tests can be used to assess the stationarity of a time series.  The Augmented Dickey-

Fuller (ADF) test is a test for unit root in a time series. It consists of model tests for trend 

stationary, drift and autoregressive. In an ADF test, the null hypothesis of a unit root is assessed 

using the following model: 

𝑦𝑡 =  c + 𝛿𝑡 + 𝜙𝑦𝑡−1 + 𝛽1∆𝑦𝑡−1 + ⋯ + 𝛽𝑝∆𝑦𝑡−𝑝 + ε𝑡  

where ∆ is the differencing operator, ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1, p is the number of lagged difference terms.  



The unit root null hypothesis is: 𝐻0: 𝜙 = 1. The alternative hypothesis is: 𝐻𝑎: 𝜙 < 1. The model 

with 𝛿 = 0 has no trend component, and the model with c = 0 and 𝛿 = 0 has no drift or trend. 

Result of h=1 indicates rejection of null hypothesis of a unit root in favor of alternative 

hypothesis. However, if the test fails to reject the null hypothesis (h=0), it fails to reject the 

possibility of a unit root[13]. 

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test is a test for stationarity. It provides a 

straightforward test for null hypothesis of trend stationary against the alternative hypothesis of a 

unit root. It assumes the following model: 

𝑦𝑡 =  𝑐𝑡 + 𝛿𝑡 + 𝑢𝑡  

𝑐𝑡 =  𝑐𝑡−1 + ε𝑡 

where 𝑢𝑡 is a stationary process and ε𝑡 is an error term that is independently and identically 

distributed as random draw from a normal distribution with mean of 0 (m=0) and variance (𝜎2). 

The null hypothesis of the KPSS test is: 𝐻0: 𝜎2 = 0, indicating stationarity. The alternative 

hypothesis is: 𝐻𝑎: 𝜎2 > 0. If the test fails to reject the null hypothesis of trend stationarity, it fails 

to reject the trend stationarity[14]. KPSS test is a good complement test for ADF test. 

 

3.2. Markov Switching Autoregressive Model 

3.2.1. Markov Chain 

The Markov Chain referred to in this document is a discrete-time, discrete state Markov process. 

It is a system with a series of random variables (states) that transient through one another in a 

stochastic manner. This process is characterized by a transition probability matrix, which 

represents the probability of transitioning from one state to another. For example, assume 

different ranges of wind speed were assigned to 3 groups: Low, Medium and High. Low state 

represents wind speed between 0-10 m/s, Medium state represents wind speed between 11-20 m/s, 

and High represents wind speed between 21-30 m/s. Further assume that at time t, wind speed falls 



in the range of Low wind state. However, as wind is stochastic, wind speed may switch to Medium 

or High at the next time interval, t+1. It is also possible that wind speed remains in Low. As a result, 

a transition probability matrix is needed to express the statistical probability of transition from one 

state to another at time lag. Fig. 2 can help illustrate this process: 

 

Fig. 2.Three-state Markov chain process 

The following table summarizes all the probabilities in the graph above.   

Table 1 Transition Probability Table 

 Low Medium High 

Low 0.90 0.08 0.02 

Medium 0.05 0.85 0.1 

High 0.01 0.12 0.87 

The process illustrated above is a first-order Markov chain, i.e. the transition from one state to the 

next state is independent of previous states, and the next state depends only on the current state 

regardless of how the system proceeded to current state.  

To express this process in a statistical way, we firstly define the series of states in a Markov chain 

as 𝑆1, 𝑆2, 𝑆3 …. Assuming the total number of state is N, then the conditional probability of moving to 

𝑠𝑗 at time t+1, given current state of 𝑠𝑖 at time t could be denoted as: 

P(𝑆𝑡+1 = 𝑠𝑗|𝑆𝑡 = 𝑠𝑖), 1 ≤ i, j ≤ N        (6) 

 

 

 

 

 

 

 Low Medium  High 

0.90 

0.08 

0.05 

0.02 

0.85 

0.12 

0.01 

0.1 

0.87 



For a first-order Markov chain, the transition process is independent of previous states, so we 

also have: 

P(𝑆𝑡+1 = 𝑠𝑗|𝑆𝑡 = 𝑠𝑖) = P(𝑆𝑡+1 = 𝑠𝑗|𝑆1 = 𝑠1, 𝑆2 = 𝑠2, 𝑆3 = 𝑠3 … 𝑆𝑡 = 𝑠𝑖)   (7) 

Generally, with an nth order Markov chain, we have: 

P(𝑆𝑡+1 = 𝑠𝑗|𝑆𝑡 … 𝑆𝑡−𝑛) = P(𝑆𝑡+1 = 𝑠𝑗|𝑆1, 𝑆2, 𝑆3 … 𝑆𝑡)     (8) 

Let’s continue with the previous example. As the current wind speed is within the range of group 1, 

we have 𝑆𝑡 = 𝑠1. According to Table 1, the conditional probability of moving from 𝑆𝑡 = 𝑠1 to 

𝑆𝑡+1 = 𝑠2 is: 

𝑃12(𝑆𝑡+1 = 𝑠2|𝑆𝑡 = 𝑠1) = 0.08         

All the probabilities in the transition matrix can be denoted in this way.  

For general form, the transition probability matrix can be presented as follows:  

A = [

𝑎11 ⋯ 𝑎1𝑗

⋮ ⋱ ⋮
𝑎𝑖1 ⋯ 𝑎𝑖𝑗

] , 𝑎𝑖𝑗 ≥ 0, 1 ≤ i, j ≤ N       (9) 

where 𝑎𝑖𝑗 is the conditional probability of moving from state i, or 𝑠𝑖, to state j, or 𝑠𝑗, and N is the 

total number of states. Note that the sum of probability in each row must be equal to 1. 

Higher order Markov chains remember more previous states when transitioning form a current state 

to then next and can generally lead to more accurate models and simulation results. 

3.2.2. Hidden Markov Model 

In a Hidden Markov Model (HMM), the system also follows the Markov process described above. 

The characteristic that distinguishes an HMM from a general Markov chain is that the states in 

HMM are unobservable.  

In other words, in the previous example, the different ranges of wind speed observed are not the 

real sequence of states that build up the Markov chain. Instead, the range of wind speed is 

determined by the weather. In this case, different weather types are the hidden states in a Markov 

chain that finally determine the observable states (ranges of wind speed observed). For further 



illustration, two more components are added: the observable state at time t (i.e. the wind speed), 

denoted as 𝑂𝑡, and another matrix that represents the transition probability from hidden states to 

observable states (i.e. transition probability from weather type to wind speed).  

Assume there are a total number of 3 types of weather: sunny (1), cloudy (2), and rainy (3). Then 

the conditional probability of moving from sunny weather (type 1) to cloudy weather (type 2) 

should be: 

P(𝑆𝑡+1 = 𝑠2|𝑆𝑡 = 𝑠1) = 𝑎12         

The conditional probability of observing wind speed (𝑂𝑡) within the range of group 1 at time t 

given the weather is sunny can be expressed as: 

𝑃(𝑂𝑡 = 𝑜1|𝑆𝑡 = 𝑠1) = 𝑏11          

The conditional probability of observing wind speed within the range of group 2 at time t+1given 

the weather is cloudy can be expressed as: 

P(𝑂𝑡+1 = 𝑜1|𝑆𝑡+1 = 𝑠2) = 𝑏21         

Then, the probability transition matrix between hidden and observable states can be presented as:  

𝐵 = [

𝑏11 ⋯ 𝑏1𝑘

⋮ ⋱ ⋮
𝑏𝑗1 ⋯ 𝑏𝑗𝑘

] , 𝑏𝑖𝑗 ≥ 0, 1 ≤ j ≤ N, 1 ≤ k ≤ M     (10) 

where 𝑏𝑗𝑘 is the conditional probability of getting an observable output (wind speed) of 𝑜𝑘 given 

the state (weather type) at the same time interval is 𝑠𝑗. N is the total number of hidden states (i.e. 

weather types) and M is the total number of observable states (wind speed ranges). 

With the two transition probability matrixes, we can calculate the probability of certain event.  

Assume the transition probability matrix between different weather types is: 

A =
0.93 0.06 0.01
0.07 0.89 0.04
0.02 0.07 0.91

 

and the transition probability matrix between weather type (hidden state) and wind speed range 

(observable state, classified in the previous example) is:  



B =
0.78 0.20 0.02
0.10 0.70 0.20
0.05 0.20 0.75

 

Fig. 3 illustrates this process: 

 

Fig. 3.Hidden Markov Model 

Assume further that the length of the time series is 2 time intervals, the initial state 𝑆0 = 𝑠1. What 

is the probability of the process ending at 𝑆2 = 𝑠3 and a series of wind speed output of 𝑂1 =

𝑜3, 𝑂2 = 𝑜1? 

We can easily find out that there are only 3 possible paths: 

𝑃𝑎𝑡ℎ 1: 𝑠1 → 𝑠1 → 𝑠3 

𝑃𝑎𝑡ℎ 2: 𝑠1 → 𝑠2 → 𝑠3 

𝑃𝑎𝑡ℎ 3: 𝑠1 → 𝑠3 → 𝑠3 

Then the probability of each of the paths can be calculated as follows: 

𝑃1 = P(𝑆1 = 𝑠1|𝑆0 = 𝑠1) ∗ P(𝑂1 = 𝑜3|𝑆1 = 𝑠1) ∗ P(𝑆2 = 𝑠3|𝑆1 = 𝑠1) ∗ P(𝑂2 = 𝑜1|𝑆2 = 𝑠3)

= 𝑎11 ∗ 𝑏13 ∗ 𝑎13 ∗ 𝑏31 = 0.93 ∗ 0.02 ∗ 0.01 ∗ 0.05 = 0.000009 

𝑃2 = P(𝑆1 = 𝑠2|𝑆0 = 𝑠1) ∗ P(𝑂1 = 𝑜3|𝑆1 = 𝑠2) ∗ P(𝑆2 = 𝑠3|𝑆1 = 𝑠2) ∗ P(𝑂2 = 𝑜1|𝑆2 = 𝑠3)

= 𝑎12 ∗ 𝑏23 ∗ 𝑎23 ∗ 𝑏31 = 0.06 ∗ 0.20 ∗ 0.04 ∗ 0.05 = 0.000024 
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𝑃3 = P(𝑆1 = 𝑠3|𝑆0 = 𝑠1) ∗ P(𝑂1 = 𝑜3|𝑆1 = 𝑠3) ∗ P(𝑆2 = 𝑠3|𝑆1 = 𝑠3) ∗ P(𝑂2 = 𝑜1|𝑆2 = 𝑠3)

= 𝑎13 ∗ 𝑏33 ∗ 𝑎33 ∗ 𝑏31 = 0.01 ∗ 0.75 ∗ 0.91 ∗ 0.05 = 0.000341 

As a result, the probability of this event is P = 𝑃1 + 𝑃2 + 𝑃3 = 0.000374 

Note that there are three underlying assumptions for HMM: 

Assumption 1: the Markov process underlies the HMM follows a first-order Markov chain. This 

relationship can be presented using equation (7). 

 

Assumption 2: the transition of state is independent of time, i.e. the relationship of transition 

probability at different time interval meets the following equations: 

𝑃(𝑆𝑡+1 = 𝑠𝑗|𝑆𝑡+1 = 𝑠𝑖) = 𝑃(𝑆𝑡 = 𝑠𝑗|𝑆𝑡 = 𝑠𝑗)      (11) 

𝑃(𝑂𝑡+1 = 𝑜𝑘|𝑆𝑡+1 = 𝑠𝑗) = 𝑃(𝑂𝑡 = 𝑜𝑘|𝑆𝑡 = 𝑠𝑗)       (12) 

where k is the number of observable states. 

 

Assumption 3: the observable state at time t is only dependent on the hidden state at  time t 

indicating a relationship in equation (13): 

P(𝑂𝑡 = 𝑜𝑘|𝑆𝑡 = 𝑠𝑖) = P(𝑂𝑡 = 𝑜𝑡|𝑂1 = 𝑜1, 𝑂2 = 𝑜2 … 𝑂𝑡−1 = 𝑜𝑘−1; 𝑆1 = 𝑠1, 𝑆2 = 𝑠2 … 𝑆𝑡 = 𝑠𝑖)  (13) 

3.2.3. Markov-Switching Autoregressive Model 

A MS-AR process, as is mentioned in section 1, is a generalization of Hidden Markov Model 

(HMM) and AR models. This process is characterized by two components: 𝑆𝑡 and 𝑌𝑡.   𝑌𝑡   

represents the observable states at time t and  𝑆𝑡 represents the hidden state at time t. Here we 

assume that the hidden weather type follows a first order Markov Chain process. As a result, a 

MS(m)-AR(p) model, which means that the model includes an autoregressive process with an 

order of p and Markov chain process with m states, can then be interpreted as below: 

The conditional distribution of 𝑆𝑡 is a 1st order, m states Markov chain process. The value of 𝑆𝑡 

depends on the values of 𝑆𝑡−1.  



The distribution of  𝑌𝑡  conditional on 𝑆𝑡 is a pth order autoregressive process. The value of 

 𝑌𝑡  depends on the values of  𝑌𝑡−1, 𝑌𝑡−2, 𝑌𝑡−3 … 𝑌𝑡−𝑝 and 𝑆𝑡. So  𝑌𝑡 can be expressed as: 

 𝑌𝑡 = 𝑎0
𝑆𝑡 + ∑ 𝑎𝑖

𝑆𝑡𝑌𝑡−𝑖
𝑝
𝑖=1 + 𝛿𝑆𝑡ε𝑡        (14) 

where 𝑎1
𝑆𝑡 , 𝑎2

𝑆𝑡 , 𝑎3
𝑆𝑡 … 𝑎𝑡−𝑝

𝑆𝑡  are the coefficients of the autoregressive process given the state of 𝑆𝑡. 

𝑎0
𝑆𝑡  is a constant given the state of  𝑆𝑡, ε𝑡  is a sequence of error terms and 𝛿𝑆𝑡 is the standard 

deviation of the error sequence given the state of 𝑆𝑡. We can see that this equation is in a similar 

form of equation (1) 

For example, In an MS (m)-AR (0) model, there are m states in the Markov Chain and the 

observable states only depend on the hidden state at the same interval, which is equivalent to an 

HMM.   

For an MS (2)-AR (1) model, there are two states in the Markov Chain and the output 

observation at time t, 𝑌𝑡 is determined by both the hidden state at the same time period and the 

output observation at time t-1, 𝑌𝑡−1. This relationship can be expressed using the equation similar 

to equation (2): 

 𝑌𝑡 = 𝑎0
𝑆𝑡 + 𝑎1

𝑆𝑡𝑌𝑡−1 + 𝛿𝑆𝑡ε𝑡        (15) 

The stream graph in Fig. 4 illustrates this process: 

 

Fig. 4.MS (1)-AR (1) process 
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4. Method 

4.1. Data 

The wind speed data used in this research were obtained from NREL at 80 meters, with 

resolution of 10 minutes, from 2004 to 2005. The site chosen is in the middle part of Texas 

(Latitude: 35.77, Longitude: -100.94). The reason for choosing wind speed data instead if wind 

power output in this research is that wind speed data is not affected by transmission constraints or 

power system operator decisions and can reflect the nature relationship between weather type and 

wind speed. As MS-AR model introduced a latent variable that represents weather type, using 

wind speed data is more appropriate. 

For comparison purposes, the two-year data are blocked by season (eight seasonal groups). In 

total, ten input groups are created (Table 2).  

Table 2 Input groups 

One-year Groups 

2004  2005  

Seasonal Groups 

04 Spring 05 Spring 

04 Summer 05 Summer 

04 Fall 05 Fall 

04 Winter 05 Winter 

 

4.2. Data pre-processing 

As most of the wind time series data are non-stationary, data pre-processing may be necessary. 

According to the Augmented Dickey-Fuller test, which has a null hypothesis of unit root, for all 

data groups, the null hypothesis is rejected in favor of alternative hypothesis (trend stationary, 

autoregressive, and autoregressive plus drift). The KPSS test shows that for all data groups, null 



hypothesis of stationarity is rejected. The results from the two tests indicate that data pre-

processing is necessary. 

Common data transformations are: power transformation, logarithm transformation, root square 

transformation, etc. According to previous study on hourly wind speeds [15], the diurnal non-

stationarity in hourly wind speed data can be removed by the following transformation:  

1. Power transformation is applied to adjust for non-Gaussian distribution of the series. 

𝑦𝑡
′ = (𝑦𝑡) 𝑚          (16) 

2. The hourly expected wind speeds are subtracted from the results of power transformation. The 

differences are then divided by the hourly standard deviations. 

𝑦𝑡
∗ = [𝑦𝑡

′ − 𝜇𝑡]/𝜎𝑡          (17) 

𝜇𝑡 represents the hourly expected wind speeds, 𝜎𝑡 represents the hourly standard deviations. 

After the simulation, the data can then be transformed back again.  

According to the Box-Jenkins Method, non-stationary series can achieve stationarity by 

successively differencing the data. First and second order difference can be expressed as follows: 

First order differencing: 

𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−1           (18) 

Second order differencing: 

𝑦𝑡
′′ = 𝑦𝑡

′ − 𝑦𝑡−1
′           (19) 

For AR model, data differencing is applied to all data groups. The first-order differenced data are 

then used as inputs to the models. Fig.5 shows the original wind speed data. Clear trends, drift 

and random walk can be identified from the series. Fig.6 shows the data after the first order 

differentiation. Note that the non-stationary components (i.e. trend, drift and random walk) are 

removed from the series. For the MS-AR model, the pre-processing of the data is generally not 

necessary due to the stochastic nature of the MS-AR model; however, initial transformation on 

the data may improve the performance of the model in terms of the negative simulated wind 



speed [11]. As a result, data with and without transformation are both needed for fitting MS-AR 

model. Differences in modeling results will be discussed in section 5.  

 

Fig. 5. Original wind speed data 

 

 Fig. 6. Wind speed data after 1st order differencing 

4.3. Simulation 

In this study different models with various number of parameters are fitted to the input data. For 
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fitting model, 100 simulations are generated for each AR model. For MS-AR model, 16 MS-AR 

models ranging from MS(2)-AR(2) to MS(5)-AR(5) are fitted to each data group. 100 simulations 

are then generated for each MS-AR models. 

5. Results and Discussion 

5.1. Metrics of Model Performance 

The performance of the models is measured by the average root mean square error (RMSE) of 

autocorrelation function (ACF), probability density function (PDF), and ramp distribution. This is 

calculated by taking the average value of RMSEs of 100 simulations for each model. Lower value 

of average RMSE indicates better model performance.  

ACF, PDF and ramp distribution are very important attributes of data. ACF represents the 

correlation of values at different time periods in a series. It is expressed as a standardization of 

the autocovariance function (ACV), which shows the covariance in a series between one 

observation and another observation in the same series k lags away[16]. ACF can be calculated 

using the formulas below: 

𝐴𝐶𝑉(𝑘) = ∑ (𝑦𝑡 − 𝜇𝑡
𝑛−𝑘
𝑡=1 )(𝑦𝑡−𝑘 − 𝜇𝑡−𝑘)/(𝑛 − 𝑘)       (20) 

𝐴𝐶𝐹(𝑘) =
𝐴𝐶𝑉(𝑘)

𝜎𝑡𝜎𝑡−𝑘
          (21) 

If 𝑦𝑡 is a stationary process, then the mean 𝜇 and variance 𝜎2are time independent, which gives 

us: 

𝐴𝐶𝐹(𝑘) =
𝐸[(𝑦𝑡−𝜇)(𝑦𝑡−𝑘−𝜇)]

𝜎2         (22) 

PDF describes the relative likelihood for a variable to take on given value. Ramp distribution 

represents changes in the value of the series from a time period to next time period. The 

performance of a simulation model will be based on how well it replicates these data attributes.  

 



5.2. Autoregressive Models 

 

Fig. 7. Simulation result of AR model 

Fig.7 shows one of the simulation results of the AR model. The green line represents the 

simulated data. As can be seen, the simulated series is centered at 0 with an obvious regressive 

pattern. In general, the autoregressive model has the ability to replicate the regressive pattern of 

the input series. It performs very well in terms of ACF, but not as good in terms of PDF.  

 

Fig. 8. Average RMSEs of AR models in terms of ACF 

Fig. 8 shows the results for RMSEs in terms of ACF. For 04spring, 04summer, 04winter and 

2004 groups, the 1st order AR model performs best. For 04fall group, the third order AR model 

performs best (average RMSE of 0.057). However, this value is not significantly smaller than 
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that of a 1st order AR model (average RMSE of 0.062). Increasing order of model does not 

necessarily improve the performance of the model.  

  

Fig. 9. Average RMSEs of AR models in terms of PDF 

According to Fig. 9 the average RMSEs of PDF vary a lot with different orders. It is difficult to 

identify a best model or a trend in the improvement of the model performance.  

However, according to Bayesian Information Criterion (BIC), the best model that can be applied 

to all data groups is 1st order AR model. BIC is a model selection criterion and model with the 

lowest BIC value is selected. When fitting models, it is possible to increase the number of 

parameters to increase the likelihood of the model. This, however, may result in over-fitting. An 

over-fitted model will not be able to estimate future behavior in an appropriate way. BIC solves 

this problem by heavily penalizing the models with higher complexity given the same 

performance. In the end, the model with the lowest BIC value should be selected.  

It is worth noting that average RMSEs of 04winter group are particularly higher than that of other 

groups. The reason may be related to the stationarity of input data. According to [16], there are 

two types of stationarity, weak stationarity and strong stationarity. A weakly stationary series is a 

series whose mean and variance are constant over time. The autocovariance only depends on the 

number of time lags. However, a strongly stationary series is a series that meets the requirement 

of weak stationarity, and is also normally distributed. Further analysis shows that after first order 
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differencing, the non-stationary components are removed from the data; however, the series is 

not normally distributed. For other groups, the series after first order differencing follows normal 

distribution. Results can be seen in Table 3. As AR model is very sensitive to input data, weak 

stationarity may lead to inaccurate simulation. As a result, the average RMSE between simulated 

data and input data is greater for 04winter data group. 2005 data groups show the same results.  

 

Table 3 Result of normal distribution test: h value of 0 indicates normal distribution, h value of 1 indicates rejection of 

normal distribution. 

Data groups 04spring 04summer 04fall 04winter 2004 

H value 0 0 0 1 0 

Data groups 05spring 05summer 05fall 05winter 2005 

H value 0 0 0 1 0 

 

5.3. Markov-Switching Autoregressive Models 

Fig.11 shows the simulated wind speed time series using the MS-AR model. The simulated series 

(red) also shows a regressive pattern but has more jumps and better captures the characteristics of 

the input data. 

 

Fig. 10. Simulation result of MS-AR model 
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5.3.1. Differenced data 

Fig.11 and Fig.12 show the results of MS-AR model in terms of ACF and PDF respectively. The 

average RMSEs in terms of both ACF and PDF decrease with increasing number of states in the 

Markov Chain, indicating that the model performance increases with increasing number of states 

in the Markov Chain.  

 

Fig. 11. Average RMSEs of MS-AR models in terms of ACF 

 

Fig. 12. Average RMSEs of MS-AR models in terms of PDF 
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5.3.2. Original data 

Original 04spring data are also used as input to MS-AR model. Results show obvious 

improvement in terms of ACF, PDF and ramp distribution with increasing number of state in the 

Markov Chain and the increasing order in autoregressive component (Table 4). However, there 

are some limitations in using original data in this research. Firstly, as is mentioned previously, 

although no data pre-processing is required for MS-AR model, using the original series directly 

as input data leads to simulation results that include negative wind-speed values which are 

meaningless. Secondly, as MS-AR model works by switching between states in the Markov 

Chain and autoregressive components using two transition probability matrixes, it requires large 

amount of computation. Large, non-stationary data with increasing number of parameters in the 

model will make more difficult model convergence. As the model used in this research is a 

simple version model, increasing model complexity may result in parameters’ estimation from 

very limited data, which may in turn lead reduce model performance.  Also, it will significantly 

increase the computation time. Moreover, models that have more than 5 states in the Markov 

Chain and autoregressive component higher than 5th order are not able to generate meaningful 

results. Thirdly, for models with less than 4 states and 4 th order, the results of ACF and ramp 

distribution are comparable to that of AR model. The performance of MS-AR model in terms of 

ACF and ramp distribution is better than that of AR model (Table 4 & 5). However, the results of 

PDF of MS-AR model and AR model are in different order of magnitude, which may result from 

different distribution or different order of magnitude of input data.  

Table 4 Average RMSEs of MS-AR models in terms of ACF, PDF, and ramp distribution with 04spring original data 

as input 

RMSE ACF 
  

  Order 2 3 4 

State 2 0.0390 0.0248 0.0278 

3 0.0267 0.0186 0.0231 

4 0.0148 0.0125 0.0220 

RMSE PDF 
  



State Order 2 3 4 

2 0.0222 0.0187 0.0253 

3 0.0140 0.0113 0.0155 

4 0.0137 0.0104 0.0125 

RMSE Ramp 
  

  Order 2 3 4 

State 2 0.8772 0.8856 0.8733 

3 0.8635 0.8539 0.8625 

4 0.8565 0.8427 0.8218 

 

Table 5 Average RMSEs of AR models in terms of ACF, PDF, and ramp distribution with o4spring differenced data 

as input 

04 Spring   

RMSE ACF 0.058 

RMSE PDF 0.007 

RMSE Ramp 0.870 

 

5.4. Comparison of AR and MS-AR Models 

For comparison purposes, the difference between average RMSEs of AR model and that of MS-

AR model in terms of ACF and PDF are calculated and plotted. Fig.13 shows the results of 

difference in ACF. The difference values are all positive, indicating that the average RMSEs of 

AR model are greater than that of MS-AR model. This means that MS-AR model outperforms 

AR model in terms of ACF. Moreover, the difference increases with increasing number of state in 

the Markov Chain. As can be seen in Fig.14, the difference in PDF shows the same increasing 

trend. However, when there are only two states in the Markov Chain, some difference values are 

negative. Groups with the negative values are 04summer, 04fall and 2004 groups. As is 

mentioned earlier, the performance of AR model significantly varies with the input data quality. 

The negative values are the result of better performance of AR model with these groups. All 

difference values become positive as the number of state in the Markov Chain increases from 2 to 

3. As the number of state continues to increase, the difference becomes greater. Moreover, as 

Markov Chain with 2 states is rarely used for simulation in real life, we can conclude that 

generally the performance of MS-AR model can also outperform AR model in terms of PDF.  



 

Fig. 13. Difference between Average RMSEs of MS-AR models in terms of ACF 

 

Fig. 14. Difference between Average RMSEs of MS-AR models in terms of PDF 
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model’s distributional versatility, achieving strict stationarity or stationarity in general is not 

necessary. This finally leads to the greater difference value for 04winter group.  

6. Conclusions 

This master’s project investigates the performance of two wind simulation models, AR model and 

MS-AR model, using wind speed data from NREL. From this application we can draw the 

following conclusions: 

1. MS-AR models outperform AR models in terms of both ACF and PDF. AR models are 

known to be able to perfectly replicate ACF, but perform not as good in terms of PDF. The 

Markov Chain component in MS-AR models further improves the ACF performance as well 

as the performance in terms of PDF.  

2. In this research, the effect of increasing model order in the autoregressive component in MS-

AR models is unclear. However, the increasing number of state in the Markov Chain can 

significantly improve the performance of MS-AR models.  

3. MS-AR models are more tolerant to input data, which is a result of their distributional 

versatility. Although all input data groups are 1st order differenced in this research because of 

comparison purpose and some model limitation, in general no data pre-processing is needed. 

However, for wind simulation specifically, negative simulated data caused by not 

transforming the original data may be problematic.  

4. Although MS-AR models are better than AR models in many ways, we cannot deny that AR 

models are more efficient as their simplicity and time saving characteristic can to some extent 

offsets less perfect performance.  

5. According to the results of ramp distribution, the average RMSEs of AR model are lower 

than that of MS-AR models in terms of ramp distribution, which leads to negative difference 

values. However, the difference is decreasing with increasing number of state in the Markov 



Chain and the difference values are close to zero with 4 states in the model. It is probable that 

with more state in the Markov Chain, MS-AR models will finally outperform AR models. In 

this research, however, MS-AR models with more than 5 states in the Markov Chain are not 

used because of the limitations of time and the simple version model. As a result, ramp 

distribution is not discussed here. 
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