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Abstract

We consider a simple model for the fluctuating hydrodynarmiesflexi-
ble polymer in dilute solution, demonstrating geometrigogticity for a pair
of particles that interact with each other through a nomiimepring poten-
tial while being advected by a stochastic Stokes fluid véjdeeld. This is
a generalization of previous models which have used lingang forces as
well as white-in-time fluid velocity fields.

We follow previous work combining control theoretic argumt® Lya-
punov functions, and hypo-elliptic diffusion theory to pecexponential con-
vergence via a Harris chain argument. In addition we allogvgbssibility
of excluding certain “bad” sets in phase space in which tiseaptions are
violated but from which the system leaves with a controkaptobability.
This allows for the treatment of singular drifts, such assthderived from
the Lennard-Jones potential, which is a novel feature sfthuirk.

1 Introduction

The study of polymer stretching in random fluids has beentifieth as a first
step in the much larger project of modeling and understandiag reduction in
polymer solutions [Che00] and theoretical focus has beeundtit on the dynamics
of simple dumbbell models [LMV02] [CMV05]/ [AV05]. Of padular interest is
the experimentally observed phenomenon called the coibdd $ stretched state
phase transition [GCS05]. Mathematically this transiti@s been characterized
by seeking models which admit solutions that are ergodiofdy certain regions
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of parameter space [CMV05]. In this paper we address the wihow to prove
ergodicity for a wide range of models that generalize prxgedork.

Let X;(¢) and X»(t) denote the respective positions it of two polymer
“beads” connected by a “spring” at tinte Depending on the scale of interest,
these beads may be thought of as consecutive segmentssfoansif something
like 50 monomers) in a polymer chain [DE8B96], or as the ends of a full poly-
mer chain [BHAC77| CMVO05, AV05]. Having made this caveate ttanonical
Langevin model for two spherical particles in a passive gy system is given by

mX; = —Vx,®(X; — Xo) + C(u(Xi(t),t) — Xy(t)) + kW (t) 1)

fori = 1,2. The massn is considered to be vanishingly small and so the inertial
term,mXZ-, will be ignored. On the right hand side, the first term is thstorative
force exerted on the beads due to the potential energy ofillgenpr’s current con-
figuration. The functiond denotes the configuration potential for the two beads.
The second term is an expression for the drag force exertedtinye-dependent
fluid velocity field v with friction coefficient( := 6wan. This follows from the
Stokes drag law for a spherical particle of radiuis a fluid with viscosityn. The
final term is the force due to thermal fluctuations in the flultewe V' (¢) is a stan-
dard Brownian motion. The diffusive constants often taken to be = \/2kgT¢,
where kg is the Boltzmann constant arid is the temperature of the system in
Kelvin, in accordance with the fluctuation-dissipationateam [CMVO05].

The goal of the present work is to achieve rigorous resulbsitiiie ergodicity
of theconnectorprocess

R(1) = 2 (X (1) — Xa(0)

in bothx = 0 andx # 0 regimes with nonlinear spring interaction in the presence
of a spatially and temporally correlated incompressibla figlocity field.

In the simplest possible setting, one ignores the fluid asdrass a Hookean
(quadratic) spring potentiab. In this case, equatiohl(1) is a simplification of the
classical Rouse modé[[DEB6]. For the choicebf) = 3 |r|? the particle dynam-
ics satisfy the system of SDE

dX1(t) = v [Xo(t) — X1(t)] dt + kdWi(2)
dXo(t) = [X1(t) — Xo(t)] dt + £ dWa(2)

wherel; andW, are independent standard Brownian motions. The dynamics of
the connectoiz(¢) are given by

dR(t) = —2vR(t) + %dW(t).
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wherelV = %(Wl — W») is a standard Brownian motion. We see that each of the
connector components is an Ornstein-Uhlenbeck processhvitwerefore has the
unique invariant measurg’(t) ~ N (0, g) . This exactly solvable model does

not yield physical results, so one must adopt nonlinear tsdde either or both of
the spring potential and fluid forces.

Significant theoretical advances exist for the dynamics sihgle tracer par-
ticle convected by a wide variety of fluid models [MK99]. Oneppilar fluid
model for non-interacting two-point motioris [BCHO7] [MWD5] as well as for
Hookean bead-spring systemns [Che00, LMM02, CMVO05] is a tifapendent ran-
dom field satisfying the statistics of the Kraichnan-Batch@&nsemble[[Bat59]
[Kra68]. Such a fluid is still statistically white in time, bis colored in space.

In the case where = 0 with non-interacting beads, the spatial correlations
in the convecting fluid velocity field allow for concentratiand aggregation phe-
nomena[SS02b] [MWDO05] [BCHO7]. This happens because when the two beads
are very close together, the fluid forces on the respectigdsare so strongly cor-
related there is no force encouraging separation.

The presence of a diffusive term with # 0 prevents such aggregation and
the long term behavior of the connector depends on so-célEidsenberg number
Wi = (/2y = x?/4kpT~ [CMVO5]. It is shown that when Wi< 1 the con-
nector R will have a non-trivial stationary distribution, dubbedetftoiled” state.
For Wi > 1, the connector does not have a stationary distribution arghlied
“stretched.” The authors express interest in the case wheriuid is not assumed
to be white-in-time.

In this work we use the incompressible stochastic Stokeatems to generate
a fluid that is colored in space and time (see Se¢tioh 1.2)hdrHookean spring
case (among other potentials with no repulsive force batilee beads) with =
0, this model leads to degenerate dynamics (Propositioh Aldyvever, in a more
general setting with a nonlinear spring potential thatudek a repulsive force,
we show that dynamics are nondegenerate, although theddofizetched state
dichotomy discussed in [CMV05] is not present. We find ti4t) is ergodic
regardless of the physical parameters (Thedrein 2.1).

The method used here to establish ergodicity builds on tmedHahain theory
developed in[[Har56, HasB0, Nunmi84]. It is particularly ibted to the uniform
ergodic results in weighted norms developed_ in [MT93a, M3]93 he argument
follows the path outlined i [MS02, MSHO2] for unique ergcith of degenerate
diffusions, but requires some nontrivial extensions td eeéth the multiplicative
nature of the noise and to permit the type of singular vectiddi that arise as
natural choices for the spring potential We build a framework around a general



ergodic result from[[HM11] and then develop the needed @l apply this
framework.

Mathematically, as in[([MSHO02, MS02], this paper combinestu theory
with technigues from the theory of hypoelliptic diffusiottsinvoke results in the
spirit of [MT93a,/MT93b]. Ergodicity is obtained by provirgminorization con-
dition on a class of “small sets” (see [MT93a, MT93b]) whilmsltaneously es-
tablishing a matching Lyapunov function. However, our fpeat has a number of
difficulties which prevent the application of the results3M02] directly. A central
issue that needs to be addressed is that the spring potentithence the drift term,
is permitted to have a singularity (Assumptidn 1). Therefilve natural candidates
for “small sets” are not compact. This difficulty is overcolmesplitting the small
sets into “good” and “bad” sets. On the compact “good” sefingéd in Eq. [27),
we demonstrate uniform controllability as in [MSH02, MS02ZDn the bad set,
one cannot obtain uniform control; however, the deterritidynamics move the
system into the good set in finite time so that geometric aojigdstill holds (Sec-
tion[2.2). Allowing the spring potential to be singular exds the applicability of
the theory to many interesting, physically important ptda such as the Lennard-
Jones potential. Related ideas have been also recentlyusedrto prove ergodic
and homogenization results in different settings (see (BlBIP08]).

1.1 Structure of paper and overview of results

We will conclude Section 1 by proposing the model, leaving pinoof of global
existence and uniqueness to the Appendix. It is importapotot out that without
a repulsive force between the beads, this model is degengkatan example, we
consider in Proposition_Al1 a pair of particular choices eliding the Hookean
spring model — for the spring potential that do not introdaaepulsive force be-
tween the beads. We find that the distance between the igagslmost surely
tends to0 ast — oo if the spring constanty is sufficiently strong relative to a
quantity that depends on the typical spatial gradientserraimdom forcing.

In Sectiorl 2, we quote an abstract result from the classigabéc theory litera-
ture. The quoted result requires proving a minorizatiorddn and the existence
of a Lyapunov function. Sectidn 2.1 contains a general pigsm for how to
deduce the minorization condition from the existence of @atinaous transition
density and a weak form of topological irreducibility forettMarkov process. In
Section Z2.P the needed topological irreducibility is prowea a control theoretic
argument. In Sectioh 2.3 we invoke Hormander's “sum of seglatheorem to
prove that the associated hypoelliptic diffusion has a gsmaé@nsition density.
Section[A.4 contains the calculations establishing theterce of a Lyapunov
function and Sectioh 2.4 contains a number of generaliaatend implications



of the preceding results. The appendix contains the desivaf the model used.

Before preceding, we note that among the class of models omope, the
closest to that of Celani, et. al. [CMVD5] is the canonicah@avin Equation[{1)
where the spring potential is quadratic, the masis still 0, but the coefficient of
the Brownian motion is nonzerae: = \/2kgTC. Our generalization is the replace-
ment of the Kraichnan-ensemble with a finite-dimensionasiea of the stochastic
Stokes equations. In this > 0 setting, the dynamics wheiR| is small become
greatly simplified. Indeed, when the force separating tfabeue to the fluid ve-
locity becomes negligible, the remaining terms constiauteOrnstein-Uhlenbeck
process. By standard ergodic properties of such procegsgsickly leaves any
small neighborhood of the origin with probability 1. Fordarvalues ofR|, the
guadratic spring potential dominates and the Lyapunovtfonccalculation we
present in Sectiop_Al4 still holds. Since the diffusion ikpét, existence of a
continuous transition density follows trivially, and aligaments in the derivation
of the stochastié-ball controllability still apply, and thus the ergodic trem we
present in this work holds faR(t).

This stands in contrast to the results [in [CMVO05] where it aagued that
there exists a range of parameters where no stationarybdi#bn exists. Fur-
thermore, in light of the results we present here, it is neacko us how to con-
struct a model with colored-in-space-and-time fluid velpfield that supports the
“stretched” and “coiled” regimes cited in the physics kteerre. Unfortunately, we
cannot comment directly on the model presented in [CMVO0Sar approach is
highly dependent on the ability to express the dynamics imdeof a system of
SDEs.

1.2 Definition of the model

In the overdamped, highly viscous regime, it is reasonablaeglect the non-
linear term in Navier-Stokes equations. Following [OR8BMIS02], [MSHOZ]

and [SS02a], we consider the bead-spring system advectesl rajmdom field
u : R? x R — R? satisfying the incompressible time-dependent stoch&stikes
equations. Following [Wal86], [DZ92]. [Dal99] and [McKD@je stochastic PDE

Owu(z,t) — vAu(z,t) + Vp(z,t) = F(dz,dt), V-u(z,t)=0 (2

is well defined under the following conditions. For techhisianplicity in the er-
godicity arguments to come, we takeo be spatially periodic with periofl which
is presumed to be very large. We take the space-time fo€in®? x R — R? to
be a white-in-time, spatially periodic and colored-insp&aussian process satis-



fying
E[F(z,t)] =0, E[Fl(x, t)F(y, s)] = (t ANs)2kpTvoI'(z—y) (3)

whereT is the spatial covariance functiom, is the viscosity of the fluidi A s
denotes the minimum afand s, the component indicesandj arei, j € {1,2}
andd;; is a Kronecker delta function. As is shown in Appendix A, weyntake
the definition of the noise to be

ey

kEZ2\0

F(z,t) cos (Ak - ) B (t) +sin (\k - 2) BE(t))or,  (4)

where we have introduced the inverse length saate2r/L and theBj, are inde-
pendent standard 2Brownian motions. The coefficients, are related to the spa-
tial correlation functiorl” through the Fourier relatioh(z) = %Ekep\{o}cos (MK
z)o?.

This relation is possible becauEds a covariance function, and therefore pos-
itive definite. By Bochner’'s Theorent, is realizable as the Fourier inverse trans-
form of a positive real valued measure called #pectralmeasure. Often one
defines the correlation structure on the spectral domainclaaty of exposition,
we take the set of modes with nonzerg denotedC 72 \ (0,0) to be finite but
containing at least three linearly independent vectors.ugéeV = || to denote
the number of active modes.

As is discussed in the Appendix, Sectioh A, we can expressifhamics of
the eigenmodes in terms of the family of independent 1-dsimeral Ornstein-
Uhlenbeck processes(t) := {Zx(t) }rex respectively satisfying

dZ(t) = =NV |k|?Zy(t)dt + \/2Bv Aoy, AWy (t) (5)

where 3 = kpT/4n? and {W}.}rex is a family of iid standard 1-dimensional
Brownian motions. For each, we take the initial conditior;(0) to be chosen
from its respective stationary distribution, namély(0) ~ N (0, o3 /|k[?) .

Our goal will be to rigorously analyze the long-term behawbthe connector
processRk whose dynamics we will study via an approximate system wisicle-
rived in the Appendix, Sectidn]A. This entails writing; and X in terms of the
configuration vecto?(¢) and the “center of mass” proce8$(t). As is discussed
in that development, we sét/(¢t) = 0 to substantially simplify subsequent calcu-
lations. We argue that this assumption can be removed andlttad the relevant
results hold for the original system.



We now define our model faR(t). Given the familyZ(t) defined by/[(b), let
R : R — R? satisfy the time-inhomogeneous ODE
d k+

2 R(t) = ~Ve(R()) + > sin(Ak - R(t)) WZk(z:) (6)
ke

where for a given vectat = (kq, ko) we denotek := (—ko, k1). The configura-
tion potential® : R? — R is discussed below in Assumptibh 1. The last term of
(€) summarizes the influence of the fluid on the separationd®i the beads. We
will write this in terms of the multiplication of the x N Stokes matrixS(r) by
the vectorz = (z1,... zn),

i
S(r)z = Z sin(Ak-7) %zk . (7)
ex i
We discuss the existence and uniqueness of the QDE (6) inndpdA.3 and will
think of the solutionR with initial conditionr in terms of the mapping

R:=V(ry, Z) (8)

where¥ : R? x C([0, ), RY) — C([0, 00), R?) is the solution of the ODE given
in ().

As mentioned earlier, the choice of quadratic potenftatorresponds to a
Hookean spring model. There are a number of canonical chdarenonlinear
spring potentials (see [BHACY7] Table 10.1-1) but of panac interest to us
are potentials which only allow for a finite maximum extemsif the polymer.
One common choice is known as tfipite extensible nonlinear elasti&ENE)
[BHAC77,[AV05,[Thi03] potential:

72’I’L(l"E 1

The parametep,,., > 0 is the maximal extension of the chain. However, be-
cause there is no repulsive force in the potential, we fintd shistems with these
potentials have degenerate dynamics (Propoditioh A.1hdsequel, we place the
following assumptions on the spring potential.

Assumption 1. Let0 < py,q: < oo be given and define
D := {r € R? such thatlr| < paz }-

We assume that the spring potential: D — R satisfies®(0) = 0 and each of
the following conditions.



(i) Radial symmetryFor some continuously differentiable function (0, pa.) —
R, , we have

O(r) = ¢(|r]). (10)

(i) Locally Lipschitz gradient.For any compact regior’ C D \ {0}, there
exists a constant’ > 0 such that for allry, ro € K,

V@ (r1) = VO(rg)| < Clry — 7.

(i) Compact level setsFor everyp > 0, the set{r € Ds.t.®(r) < p}is
compact.

(iv) Growth condition.The potential satisfie‘s‘ lim ®(r) = oo and there ex-
T|—=Pmazx
ists ay > 0 and apy < pmaz Such that for al- € D with |r| € (po, Prmaz)

IVO(r)|* > v®(r). (11)

(v) Repulsive force at the origirThere existsy, > 0 andey > 0 such that for
all r € D\ {0} with |r| < ¢

—Vo(r)-r =10 (12)

Remarkl.Ll Itisin this context that we choose the length of the peribgiaf the
forcing fluid. We takel > 4py.

We have in mind potentials that consist of standard choide=wihe beads are
separated by large distances, but that have a singularitgrat For example, the
above assumptions include the families of functions

1 1

O(r) = —|r|*
(r) zq\r! e

and (I)(T) = (IDFENE(T) + (13)

alr|*’

whereq is a positive constant. The choiee= 12 corresponds to a Lennard-Jones
singularity at zero. One can check that the Growth Condifighis satisfied for
such potentials if and only if > 1.

2 Ergodicity

In order to state our main result, we must set some notatienX) = (R(t), Z(t))
satisfy the system given bi/(5) arid (6). It follows from Prsition[A.3 that the
processX (t) is Markov and well-defined on the state space

X:={(r,z) eDxR"}.
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For a bounded, measurable functipn: X — R, we define the action of the
Markov semigroupP; by

(Pep) (@) = Eg[p(X(2))] -

To measure convergence to equilibrium, we introduce tHeviilhg weighted
norm on such functiong relative to a given Lyapunov functiori : X — [0, o0),

|o(2)]
=Sup ——— .
ol = S T v
We note that the Markov semigrodpy can be extended to act on all functiops
bounded pointwise above By. Henceforth, we will use

V(z) = ¢(®(r)) + 1]zl (14)

as the Lyapunov function for the Markov proce¥$t), wherey) : R — R is the
function
0, 0<zr<a

clz—a)e V@0 z>q ’ (15)

v = {
where we sett = ¢(pg). The constanp is as in Equation[(11) of Assumption
[, and the constantsandr are set by an argument in Sectlon JA.4. The essential
properties ofy are recorded in Sectign A.2.

The main result of this article is the following statemenbatbthe geometric
ergodicity of the Markov procesX, which in turn implies the connector process
R converges to its unique non-trivial stationary distribatin exponential time.

Theorem 2.1. Suppose that the set of active modess finite, but contains at
least three pairwise linearly independent vectors, andHet spring potentiakb
satisfy Assumptio] 1. Then there exists a unique non-tiiwariant measurer
and constants” > 0 and A > 0 so that for all measurable : X — R with
ol < oo, we have

1Pep — moll < Ce g
whereryp = [ pdr.

Let us introduce a family of weightefi®*°-norms that depend on a scale pa-
rameter > 0. For a measurable: X — R define

— sup 1P
A Sece)



Observe thaf - [|; = || - || and any two norms in this family are equivalent. Define
the corresponding dual metric on probability measures:

ps(in, z) = sup / () (dr) — / (@) ia(d)

eillellp<1

for two probability measurg, 12 probability measures oK. Note thatpg is the
usual total variation norm fg8 = 0. Theoreni 2.1l follows from classical results in
[MT934d] and [MT93b] adapted to our setting:

Theorem 2.2. Suppose that the Lyapunov functitn X — [0, c0) has compact
level sets witHim, _,gx V (z) = oo and that for someé > 0, ¢; > 0 and¢y €
(0,1), it satisfies

(PV)(z) < oV (z) + 1 (16)

for all z € X. (Here, the boundary séiX includes the point at infinity in un-
bounded directions.) Furthermore suppose there existsoagtility measure/
and constanty € (0, 1) such that
inf P(z, - ) > av(-) 17)
zeC
withC := {z € X: V(z) < K} for someK > 2¢; /(1 — ¢p).
Then there exists amy € (0,1) and3 > 0 so that

pa(P{ 11, P piz) < oo pa(pin, piz)
for any two probability measurgs; and i on X.

We begin by fixing the saf which should be thought of as the “center” of
the state space. At the end of the proof of Lemima 2.3 we seleatue p, <
(po, Pmaz) Which is used to definé:

€= {r € X: V(z) < ¥(6(ps))}. (18)

Recall that the Lyapunov functioW is defined by[(14) withp andv defined by
(10) and [(1b), respectively. As is established by the falhghemma,V satisfies
the inequality [(I6). We defer the somewhat standard prodhisflemma to the
appendix, Section Al4.

Lemma 2.3(Lyapunov function) Fix the values of the constantsc and p,,q. SO
that they satisfy the constraints imposed by the ineqealff4), and letV'(x) be
defined as in(14). Then for anyt > 1 there exist constantg := ¢(¢) € (0,1)
andc; := ¢1(t) > 0 such that{16) holds. Moreover we have(¢(p)) > 12_‘3;0 as
required for the definitior{18) of C by Theoren 212.
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The remainder of Sectidd 2 is concerned with constructingrenzing mea-
sure, as required by condition {17). The main result is Psitiom [2.4. Its proof
follows from the topological irreducibility of the transh semigroup established
in Propositiori 2,10 and the “local smoothing” property mdin Proposition 2.11.
The local smoothing property follows from hypoellipticibf the generator of the
Markov processX and a version of Hormander's sum of squares theorem (cf.
[Hor85,[Str08]).

2.1 Conditions for measure-theoretic irreducibility

In this section we use a very weak form of topological irrédility to prove the
measure-theoretic minorization and irreducibility reqdiin [17).

Proposition 2.4. Suppose there exists af € C such that the following two con-
ditions hold. Then there exists a constant (0, 1), atimet > 1 and a probability
measure- such that{I7) holds.

() Uniformly Accessible Neighborhood Conditiokor anyd > 0 there exists
a constant- > 0 and a positive functiony : (0,00) — (0, c0) such that

;relfc’ Pr(x, Bs(z4)) > ap(r’) (19)

forall v’ > r.

(i) Continuous Density ConditiorThere exists am > 0 and an open sep C C
with z,. € O, such that for any: € O and measurablel C O one has

Ps(waA) = /Aps(x7y)dy
with ps(z, y) jointly continuous in(z,y) for z,y € O and ps(z«,y«) > 0

for somey, € O.

Proof. By the continuity assumption gn there exist$ > 0 so thatBs(x. ), Bs(y«) C
O and

1
inf inf  ps(x,y) > =ps(Ts,ys) > 0.
peinf i (@,y) 2 5ps(@e, 9

We define the minorizing probability measwey v(A) = AM(A N Bs(y+))/A(Bs(ys))
where) is Lebesgue measure adds any measurable set. With thisve also fix
r = r(d) according to the Uniformly Accessible Neighborhood Coindit(i).
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Now, pickt > 1+r+s and definex(t) = 2 (1Aps(2, y«) oo (t—s)A(Bs(ys))),
whereqy is the function given in[(119). Then for any measurable4eindz, € C
we have

Pt(xo,A):// Pi—s(xg, dz)Ps(z, dy)
A R2+N

2/ (/ Pt_s(wo,dw)> ps(z,y)dy
ANBs(y«) \V Bs(zx)
1
> [ aolt = 9)gplee ey 2 altn(d),
ANBs (yx)

which proves the claim.

2.2 Topological irreducibility

This section is devoted to proving the Uniformly Accessikitighborhood Condi-
tion (i) stated in Proposition 2.4. This argument consiéfirst proving that under
the spring potential conditions listed in Assumptidn 1, $getem has non-trivial
long-term behavior. Unlike the Hookean spring case whezrdwio particles come
together ag — oo almost surely (Propositidn_A.1), in the non-linear (witipué
sion) spring case we can show that two particles arbitrafidge together have a
positive probability of separating in an explicitly definfxite time (Lemma_2.5).
Given this separation property, we employ a control arguneishow the noise
has a positive probability of directing the system to a neaghood of a specified
reference point, € C (Lemmag 2.6 and 2.10).

2.2.1 A particle separation lemma

Lemma 2.5. Let M > m > 0 be given, supposéR(0), Z(0)) = (ro,20) €
D x RY, and define

Te(r0,20) == 1nf{t > 0: |R(t)| > eand|Z(t)| < M}.

Then there exists an € (0, ¢g] wheree is defined in Assumptidd 1 and ane
(0,1) such thatr, satisfies

inf b P{r(ro,z0) < 1} > 20
{z0:|z0|<m} {ro:0<|ro|<e} {7e(r0,20) } (20)

Proof. The essence of the argument is that if the noise stays miatmall for
sufficiently long, then the repulsive force will dominate th-dynamics and force
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the particles away from each other. Without loss of gengrdlr the remainder
of this proof we assume that the initial conditiony, zo) satisfiesry < ¢; and
|20 < m.

We denote the event that the magnitude of the noise staysrateds/(), :=
{ supseo,1 12(t)| < M} and claim there exists ane (0, €] anda > 0 such that
P{Q.} > aandP{7. < 1|9} = 1 and therefore

P{re <1} >P{r. <1|Q.} - P{Q2}>1-a.
We first prove that there exists an> 0 such that

inf P{Q,} > a. (21)

zo:|z0|<m

Indeed, the noise vectdf(t) = (Z1(t), Z2(t), ..., Zn(t)) can be written

t
Z(t) = e Mz + / e M=) Baw (s) (22)
0
whereA is a diagonal matrix whose entri€s$, }.cx are given by);, := \2v|k|?
andB is a diagonal matrix whose entri¢sy } .cxc are given by/28v\oy.

It follows from (22) that

t
1Z(t)] <m+ Z G_Akt/ e)‘ksbdek(s)
0

kek

Since My (t) := fot e b, dWy(s) is a continuous martingale with quadratic vari-
ation (My, M), = bi(e**! —1)/2);, then for anyt > 0, M, (t) has the same
distribution asV ({ My, My),) whereW is a standard Brownian motion. It follows
that

t

Q= IP’{ sup |e_)‘kt/ e)‘kdek(sﬂ < M —m} > IP{ sup |[W(t)] < M —m}

t€[0,1] 0 N te[0,ts] N
wheret;, = b2(e?* — 1)/2). Since a Brownian motion will stay within a pre-
scribed tube over an arbitrarily long finite interval withgitore probability, we
have thatw;, > 0. Because there are only finitely many modes and they are mu-
tually independent, we have{€2.} > [, ox > 0. To conclude the proof of
the claim [21), it remains only to note that this lower bound#{(2,} does not
depend on the initial conditior, as long asz| < m.

We now show that there exists an> 0 so that

P{r. € [0,1]|Q.} = 1. (23)
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Let ¢y and~y, be the positive constants frofn {12) of Assumpfion 1. We fix

— e~ (NM)?/vo
€:= eo/\\/(1 (eNM)2 ") (24)

and definer, := inf{t > 0 : |R(t)| > ¢}. Conditioned on the evefil,, we have
T. = o, and so to provd (23) it suffices to shew< 1 on ..

Recall the ODEL({6) defining? and the notatiort for the Stokes matrix, see
(@). For anyt € [0, o] and for anyy > 0 we have the differential inequality

a1

1
7 2|R| V®(R)-R+ (S(R)Z)-R >~ —vY|S(R)Z| _419|R|

where we have applied the inequalify (12) from Assumplibo the first term
and the polarization inequality - y > —(J|z|> + ﬁ\y[z) to the second term.
FurthermordS(R)Z| < ||S(R)||#|Z]| where|| - | ¢ is the matrix Frobenius norm.
The contribution of each column (respectively associatedn eigenmodée) of
the Stokes matrix to its Frobenius norm is exaeily?(\k - R). It follows that
|IS(R)||lr < N. Hence for all € [0, 0],

d1 2 1 2 2 2

- > - — .
ZSIR@P >~ RO + (0 — IN?Z()?)
Restricting to the everf?, and fixingy = ~o/2(N M)?, we have

d 9 (NM)? 9
— >~ 7 .
GIROP = = R+

For anyt € [0, 1], integrating the preceding estimate @npyields

tAoe
[R(t A ge)[? > e U7 VD 0 g 2 4 o / ¢ [(tAs)—s(N M2 /0 g
0

2
_ 0 (1 o—(the)(NM)? /0
> 1 .
= (NM)? ( ¢ >

We want to show that o2, 0. < 1 with probability one. Suppose that > 1.
Then the last estimate implies that
IR(LA 6> = [R(D)? > (NM)72(1 — e (NM)*/70) > 2

and hencer, < 1. We conclude the claind (23), which completes the proof. [
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2.2.2 Topological irreducibility via control

By Assumptiori L, the spring potenti@ has a (possibly non-unique) global min-
imum 7., Which satisfiesr,in| < po wherepy was the constant from Assump-
tion[d. We choose a global minimum closest to the origin ambtieit byr,. Since
the global minimum of the noise norm| is achieved at the origin,. = 0, we set
the global reference point

Ty = (74,0) (25)

which is a minimum of the Lyapunov function.

We wish to use theZ process to drive th& process to the reference point
r«. However, due to the possible singularity at the origin (dssumptior 1) the
differential equation[{6) for? may have unbounded coefficients which presents
a genuine difficulty in applying control theoretic argungentVe therefore will
designate a region of bad contrd, within the centelC (see [(18)), as well as a
compact region of good contrd.

In Lemmal2.b we demonstrated that tReprocess has a positive probability
of escaping from a neighborhood of 0 in unit time. kete the constant derived
from applying LemmaZ215 withn = ¢ (¢(p4)) andM = m/,/n, wheren is given
in (54). Sincen < 1/2 we haveM > m > 0 as required by the hypothesis of
Lemmd2.5. We define the set of “bad” pointLily

B={(rz) €C:|r|<e}. (26)

Next, we define the set of “good” poingsto be

G =G, xG.:={(r2) € X:lrl € [ py] e <w(o(o))/n} - (@7)

Note thatC C G U B.
We now use a controllability argument to establish the weaknfof uniform
topological irreducibility ong given (for the set’) in Eq. (19).

Lemma 2.6 (Topological irreducibility on the “good” s&f). Letz, € C be as
given in(29). Then for any > 0 there existg; > 0 so that for anyt, > t; there
existsay > 0 such that

inf inf Py(z, Bs(x)) > aq. (28)
te(t1,tz] TEG
The proof of the above lemma relies on the following threeeokstions, whose
proofs are deferred to the appendix. In what follows, far/ C R — R", define
the sup-norm

[floo 1= sup | £(t)] -
tel
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The first observation is that there is a bounded determengintrol Z that
accomplishes the task of moving its associated connétterV (r, Z) (recall the
definition in Equation[(8)) from the initial position, to the reference point, at
timet = 1.

Fact 2.7. (Existence of a deterministic controlBpr any initial position7y € G,.,
the setR C C*°([0, 1]; G,) defined by

dR
dt loo

R = {R . R(0) = 7o, R(1) =1,

<5p} (29)

is non-empty. Furthermore, there exists/@h > 0, which does not depend @y,
such that for anyk € R, there exists a continuous € C([0, 1]; RY) such that

R:\I’(To,Z) and |Z|oo < M.

Next we notice that the maf, Z) — ¥(r, Z) is continuous whem belongs
to the good seg. For Z € C([0,T];RY) and constantd/,~, ., > 0, define the
set

Z(Z,M,7,6,) == {Z |2t - Z(0) < M 45, Y€ [0,T] } (30)

Fact 2.8. (Continuity of the map¥.) Fix any7y € G,, Mz, ' > 0 and 4, €
(0, €1 /2) wheree is from (28). Suppose that € C([0, T]; RY) satisfies Z |, <
M,. Then there exist constan{s> 0, o > 0 andd, > 0 such that

W(ro, Z) = W(Fo, Z)|oc < 6,
for all (ro, Z) € {gr A{r:|r— 7ol < 50}} x Z(Z, Ma,7,9.).

Finally, we observe that OU processes stay in a tubular beigiood with
positive probability.

Fact 2.9. (Approximation by OU processesllet a setZ = Z(Z,M,~,4.) be
given. Then there existspa>> 0 such that

ing P..{Ze€Z}>p

20€Yz
whereZ = (Zy,..., Zy) is the solution taB) with Z(0) = z.

With these observations we now prove Lenima 2.6.
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Proof of Lemm&2]6Fix an initial conditionzy = (rg,29) € G andd > 0. The
argument proceeds in two steps. First we construct a boutetedministic control
Z that accomplishes the task of moving its associated coonétt= ¥ (rg, Z)
from the initial positionr to the reference point, at timet = 1. Any instance of
the noiseZ that approximateg sufficiently well, as in the definition of above,
will have an associated connectBr= ¥ (rq, Z) that has a terminal positioR(1)
nearr,. Demonstrating that such an event has positive probalslityt sufficient
to prove [(28). This is becausg(1) may not be close t&, = 0. Therefore
in the second step of the proof we show that, conditioned cness during the
time intervalt € [0, 1], the noise has a positive probability of entering a small
neighborhood of the origin rapidly enough so that the cotorgarocess does not
move far fromr,.

To make these statements precise, we set some notatiofi/;Lled the constant
from Fact2.¥ andn/,/n be the radius of theV-sphereG.. We defineM; =
(m/\/n)+ M. For a given tolerance,., which is setimmediately before Equation
(35), we define the event

Q= {|R(1)_T*| <o, |Z(t)| < My+1; Vte [071]} (31)

It is important to note thad/, does not depend on the choicedpf
Takingt; := 2 and assumingR(1) — r.| < ¢, is sufficiently small, we can
show that for any, > 2, the event

Qo= { |R(t) —ri| < 6/2,|Z(t)| <8/2; Vte[2,t)]} (32)
has positive probability. The structure of the proof is #iere summarized by:

inf ]Pt(xo,B(s(UC* > Pro{Q2} > P {Q2 |} Py {1} > pop1 (33)

te(2,t2
for somep; > 0 andp, > 0 that are independent of the [nitial conditiep € G.
We begin by showingnf, cg P, {21} > pi. Let R be a smooth path in
R which was defined in(29). By FaCct 2.7 there exists a boundéerméistic

control Z such thatk = ¥(rq, Z) over the intervat € [0, 1]. The initial value of
the control,Z(0), satisfies

120 — Z(0)| < |20] + |Z(0)| < (m//7) + My

where we recall thain/, /7 is the radius ofG.. In order to apply Fadi 218 we set
M, = (m/\/7) + My andT = 1 while noting thatR(0) = ro. Then for a given
o, > 0, there exist positive constantg andd, ; such that if an instancg of the
noise satisfies

|Z(t) — Z(t)| < Mae "t 46,4, Vt € [0,1] (34)
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then the corresponding connector proc&ss Y (ry, Z) satisfies
|R(t) — R(t)| < 6,, YVt € [0,1].
From Facf2.D, it follows that
p1 = IP’ZO{Z NZ(4) — Z(t)] < Mae™ "t + 6,4, Yt € [0, 1]} >0

andp; does not depend on or ry. We note that by virtue of the proof of FactP.8
9.1 can be chosen to be less than or equal to 1. Sefiing- M, + 1 we have
shown thainf, cg Py, {21} > p1.

Next we prove thainf, cg P, {22 | 1} > 0. As mentioned earlier we must
show that ensuing at time = 1, it is possible to rapidly bring the noise near
the origin without significantly perturbing. To this end, we extend the previous
deterministic controlZ to include the definitionZ(t) = 0 for all t € [1,%]. We
also extend the definition of the associated connector $dtha ¥ (rg, Z) is now
well-defined over the full interval € [0, ¢,]. By hypothesis(1) = r, is a global
minimum of the spring potential and therefore the contblieocess experiences
zero forcing from both the controlled noise and the springptial. It follows that
R(t) = r.forallt € [1,ts].

We seek to apply Fa¢t 2.8 again to show tliatemains close ta, for all
t € [1,t2]. Even thoughZ(1) is not necessarily close to the control initial value
Z(1) = 0, conditioned orf);, |Z(1)| < M, + 1. At this point, we fix the value
of 4, > 0 given in the definition of2,. By Fact 2.8, there exist positive constants
d.2 € (0,1/2), v > 0 andé, > 0 such that if the connector process satisfies
|R(1) — r«| < 4., and if an instance of the noise satisfies

1Z(t)] < (My+1)e 2070 45,5 Vit € [1,t), (35)

we have|R(t) — r.| < 6/2, Vt € [1,t2]. Conditioning on(2; and using the
Markov property of the system to shift time values apprdpha Facf{ 2.9 ensures
that the noise satisfiels (35) with probability > 0.

It remains to require thd¥Z(¢)| < §/2 for all ¢t € [2,t3]. From [35), it suffices
to find ays > 2 sufficiently large thaexp(—v3(t — 1)) + 6,2 < §/2 for all
t € [2,t2]. Indeed, this is the case if we chooge> In (% — 5Z,2)_1 and we are
done. O

In order to complete the proof of the Uniformly Accessibladidorhood Con-
dition of Lemmd 2.4 we need to extend Lemimd 2.6 to apply tadlbi conditions
in C. To do this, we need the particle separation property fromme[2.5.
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Lemma 2.10(Topological irreducibility orC). Given as > 0, there exists & > 0
so that for anyt > ¢/ there is anaj > 0 with

inf Py (w0, Bs(74)) > o)

xroeC
Proof. Sett| = t1+1 wheret; is the constant from Lemnia 2.6 andtet=inf{¢ >
0 : (R(t),Z(t)) € G}. Now for anyt > ¢} and fixedz, € B we have

Py(xo, Bs(,)) > (IP’IO{Xt € Bs(z,)|r < 1}) (PIO{T < 1})

> (it it Pis(@, Bs(a.))) (Pag{r < 1}) = aiPuy{r < 1}
whereq; is from Lemmd2.6. Finally, we take thef over all initial conditions
ro € B. Applying Lemmd 2.6 withn = ¢ (¢(p4)) andM = m/,/5, we conclude
there exists am > 0 such that

i «)) = oq i el T S 1p 2 :
mloliéfBPt(wo,B(;(w ) > o ml()%%]P) AT <1} > a1 >0

Settinge} = awr; completes the proof. O

2.3 Measure Theoretic Irreducibility via Hormander’s Condition

Lemma 2.11(Absolute continuity of the transition density)et{ X () = (R(t), Z(t)) }+>0
be a Markov process with transition kern@}(z, U). Then for anyt > 0, there
exists a smooth functign (x, y), such that

Py, U) = /U pila.y)dy

for everyU € %(C), wherep,(x, y) is jointly continuous inz,y) € C x C.

Remark2.12 In fact, the system has a density for @il y) € X x X. However,
due to the periodicity of our forcing, proving this would e an additional small
argument. Since we do not need this fact, we refrain.

Proof. The claim follows from a now classical theorem of Hormanahich states
that if a diffusion on an open manifold satisfies a certaireltgic condition then
Ly =0y — LandLs = 0, — L* are both hypoelliptic i whereL is the generator
of the diffusion X (¢) and £* is its adjoint. A combination of 1td6’s formula and
the fact that we have shown that the singularities of thentiateare unattainable
demonstrates thdt;u = 0 and Lyu = 0 have distribution-valued solutions. Hy-
poellipticity of the operators ensures first that theseritistion-valued solutions
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are in fact smooth functions. Furthermore, hypoellipficginplies the existence
of fundamental solution, which in turn yields continuity fine second variable
throughout the center of the space

The fact that the density is jointly continuous follows aftelittle more work.
The argument is laid out in its entirety f®”" valued diffusions in Section 7.4
of [StrO8]. In particular, see Theorem 7.4.3 and TheorenR0.4Essentially, the
same proofs follow in our setting since we have shown theesyst a well defined
diffusion on the manifoldX with distribution-valued solution. Hypoellipticity and
the properties which follow are local statements, and thegestill apply. The
needed results in the general setting, as opposBd't@an be found in Chapter 22
of [H6r85], noting in particular Theorem 22.2.1. Howevtre presentation in
[Str08] is closer to the exact statements we need.

We now turn to the explicit calculations needed to show thHattnder’s con-
dition is satisfied. We recast the system of equatibhs (5)Y@nas

dX(t) = A(X(t)) dt + BdW (¢)

whereA(z) € RN and B € RGN *(2+N) with

A (—V:I)/\(;Z |—IL_|§Z(T)Z> . B= (8 g) |

whereB is an N x N diagonal matrix with diagonal entrieg23v\oy,. In this
notation, the generatat of the diffusion is given in terms of a test functignby

(£¢)(x) = (A~ V)p(a) + 3 3 (Be - V)e(x)
kel

where By, is the column ofB associated with the mode directiéne .
For two vector fieldsA, B let[A, B] := AB— BA denote their the commutator
or Lie bracket. In our simplified setting whek. is a constant vector-field one has

[A(X), By] = - A(x) = (Si““k ' RV%)

8zk —)\2I/|k7|2 €L
wheree;, is the is the unit basis vector iRY = RIXI associated to the mode
directionk € K. Moreover all the iterated Lie brackets 8 and A(x) are0.
Thus to satisfy the Hormander’s condition at the painit is required that

spar{Bk, [A(z),By] : k € IC} = R2V,
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The set{[A(x), Bi]}rex Will spanR2TV if and only if the set{sin(k - )kt }rex
spansR? since the sefe;, : £ € K} spansR”. We recall that by assumptiofa
contains at least three pairwise independent vectors whickabelk, ko, andks.
One may note that due to the periodicity of the forciagy(\k - ) = 0 for all
r € LZ2. Taking L > p? will ensure that all of these points lie outsidefThus
restricting tox € C at least two of- - k; are nonzero and the lemma is proved

2.4 Ergodicity of generalizations

In the derivation of the model equations (5) ahd (6) we imddase simplifying
assumption that the center of mak&t) := 1(Xi(¢) + Xo(t)) is held at zero
(see Appendix). This greatly simplified the presentatiod did not affect the
conclusion that the bead-spring system has an ergodic ctmngrocessR(t).

Indeed the fluid velocity term with nonzerd (¢) is given by Eq.[(411):

%[u(xl (t),t) — u(Xa(t), t)]

1
=3 [cos(Ak - M) Zy, — sin(Ak - M)Yy] sin(\k - R)%
ke

where the{Y} } are a second set of OU-processes defined exactly ds/ihie

Because thd/ terms appear inside of cosines and sines, there is no neift sign
icant contribution to the Lyapunov function calculationorkhe Hormander con-
dition, the additional terms in the coefficients of the ndisoduce more “dead
spots” in the forcing, but still one needs orflyur pairwise linearly independent
vectorsk; in the mode sek’ to ensure that at least two of the vectors

{ [cos(Ak; - M) — sin(Ak; - M)]sin(Ak; - R)ki}

are nonzero. This guarantees the existence of a contintenustion density and it
remains to show thé&ball controllability as in Lemma 216. While the calculatits
more involved, the principle of identifying the region ofabcontrolG, where the
coefficients of theR-differential equation are uniform, still applies. Funtmore,
since the differential equation fak is linear in the{Y;} and{Z;}, we may still
solve for stochastic control explicitly in terms of the desdi pathl” as long as the
new Stokes matrix is non-degenerate. Again, this is guaeahby the hypothesis
that/C contains at least four pairwise linearly independent wscto
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A Derivation of the model

In the overdamped, highly viscous regime, it is reasonableeglect the nonlinear
term in Navier-Stokes equations [OR89]. Followihg [Walg8iZ92], [Dal99] and
[McKO06] we have the stochastic PDE given in Section 1,[Eq. 2,

ou(z,t) — vAu(z,t) + Vp(x,t) = F(dz,dt), V -u(z,dt) =0

with periodic boundary conditions on the rectanfflel] x [0, L] whereL is pre-
sumed to be very large. For this development (see also [$5@Baassume that
the space-time forcing is a mean zero complex-valued Gaugsbcess with co-
variance

E[Fo‘(ac, 1 FP(y, s)} = (t A 8)2kpTvoasT(x — y)

wherea, 8 € {1,2} andd,g is a Kronecker delta function. It follows that
V2kgTv -
_ - Z e)\zk mO_kB

kezZ2\0

F(x,t) k(1)

where{ By} is a collection of complex-valued 2-d Brownian motions anel to-
efficientso;, are related to the spatial correlation functibrthrough the Fourier
relationT'(z) = 7 3°; <72\ 0y ¢ “}. In order to construct a real-valued noise

of the form [4), one can set_,, = o}, andB_;, = B, and for allk.
To compute the Fourier transform of the SPDE, we note thatrtresform of
the noise is given by

4 AT ~
/[OL]2 e_’\“l‘t'mF(ﬂc,t)d:l::/[OL]2 e_’\lk'rTBy Z e By(t)dx

JEZ2\0
_ V2kpTv Z O‘ij(t)/ e~ Nilk=5)x 1.
L& [0, L2
= /2kgTvL Y 0;B;(t)6; = \/2kpTv Loy, Bi(t).
JEZ2A\0
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The SPDE transforms into the infinite dimensional system
dig (t) + N2 vk, (t) + Nikpr(t) = /2kpTvLoypdBy(t), (36)
ik - g (t) = 0. (37)

For the sake of completing the formal argument, supposehtontoment that the
forcing term is smooth with derivativg. By taking the dot product o with the
terms of equatiorf (36), the first two terms vanish — via incasgibility condition
(37) — leaving the identity

Ni|k|*p(t) = \/2kpTvLogk - f(t). (38)
Substituting back intd (36) and gatheririgt) terms on the right-hand side yields

iy, (t) + N2v|k[2ay(t) = \/2kpTvLoy (f(t) _k f(t)k). (39)

|[?
The projection on the right hand side has two standard reptasons:
k- f ko k fkt
——=k=(I—- = k
Fo gt = U ) = Tt

wherekt := (‘k’f?). Applying Duhamel’s principle and assuming initial conalit
is taken from the stationary distribution, we have the fellg representation for
solutions to the fluid mode equations

t ko k
an(t) = e XV (0) + \/2kpTvoyL / e NIk (=) (I— ‘ 2’2 >dBk(t)
0
ko k
= <I— W)Ck(t)

where we defin€;, to be the appropriate complex valued 2-d Ornstein-Uhlekbec
process,

dC(t) = —N2v|k|?Ce(t)dt + \/2kpTvLodBy(t)
with ¢x(0) normally distributed according to the respective statipmistributions
for eachk. We therefore have the solution for the fluid velocity field,

1 Aik-z k®k 1 Nikw Ch BT
kEZ2\0 keZ2\0

1 Gkt
L2 [k

After defining&y, =
drive the dynamics

, we have the complex valueddlOU processes that

472 |k|?
o

V2kgTvoy,

dék(t) = i

& (t)dt + AWy, (1)
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Imposing the condition that we require real-valued sohgjcafter Fourier inver-
sion we have the following trigonometric expansion fod &ochastic Stokes
il
u(z,t) = Z (cos(Ak - 2)Yy +sin(Ak - z)Zy) % (40)
kezZ\0 | |
where theY;, andZ;, are the real and imaginary partséofespectively.
In this paper, we study the dynamics of the two beads in noooatdinates:
M(t) = 5(X1(t) + Xa(t)) and R(t) = 5(X1(t) — Xa(1)),

SM(E) = S[u(X3(0),1) + u(Xa(0), 1)
%R(t) = —Vo(R(t)) + %[U(Xl(t), t) —u(Xa(t),t)].

In light of equation[(R), we may write the radial process amelioise together as
a Markovian system of SDE with two degenerate directionsoréter to write the
system in this form, we first record the identity

(X1 (1), 1) — u(Xa (1), 1) (41)

2 m
= [cos(Mk - M(t))z,(t) — sin(Ak - M (t))yy(t)] sin(Ak - R(t))m.
kek
For the majority of the paper, we used the simplificatidrit) = 0 for all ¢. This
does not have any effect on the ergodic results as is distusSectiori 2.4, but it
does significantly streamline the presentation. Altogetveehave the definition of
the dynamics given in Section 1, EQl (6).

A.1 Degeneracy when there is no repulsive force

Putting aside existence and uniqueness for a moment, we angkik calcula-
tion that reveals a degeneracy for the bead-spring modelamMitookean or FENE
spring potential with truncated stochastic Stokes forcgmely, under mild con-
ditions, when the two beads come close together, the fluigkcitgl vectors they
respectively see will become so correlated, the beads aitknseparate.

Proposition A.1 (Degeneracy of the non-repulsive caskgt R and the family
{Z} }rex satisfy the system of differential equatiofs and (6). Let the spring
potential be given byp(r) = |r|* or ®(r) = ®rene(r) as defined byd). Then
there exists ay so that ify > vy then

lim R(t) =0

t—o0

almost surely.
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Proof. We first note that for al satisfying|r| € (0, pmaz)
Yl
‘T’ /pmax

It follows that both the Hookean and FENE potential cases,pitocess R(t)|?
satisfies the following pathwise ODE bound,

VOreng(r) - 7 > lr[*.

d - . k- R(t)

£|R(t)|2 = —2VO(R(t)) - R(t) + 2]§Csm()\k - R(t)) TZk(t)
< ~IROP + 20 Y [k RO R()]

kel
< =29[R(t)[* + 2A|R(®) || Z() 1
where(|Z(t)[1 := X perc [FIIZk ().

This differential inequality implies

ROP < RO exp |2 +23 [ 12)has] (42)

Recall that in its stationary distribution, the law of edﬁt(t) is normal with mean
zero and variancgo? /|k|? and thereforé[| Z || = - ﬁf' By the Law of Large

Numbers
hm / | Z(s)|ds = \/ m (43)
almost surely and so

1t 2
tim ¢ [1Z)has = £ o

keK
almost surely. Since we are only considering a finite numbenaxles, the above

sum is finite. Therefore, iy > o = )\\/¥Ek ok, then|R(t)|> — 0 almost
surely ag — oc.
U

A.2 A note on the mollifier function

Recall the mollifier function) that appeared in the Lyapunov functiénl(14) and in
the global estimate in the existence and uniqueness PtigpiAi3,

0, 0<z<a,

¢(m)::{ c(z—a)exp (=), = >a.
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wherea = ®(pp). Sincelim,_,q z%e~1/7* = 0 for anya € R, it follows that for
anyn € N, then-th derivative of satisfieslim,_,, ¢ (z) = 0. Thereforey
and all of its derivatives are continuous for alk R . Furthermore, we have the
following proposition.

Proposition A.2. There exists a constant > 0 such that
P(x) < ay(z) <o(x) +C (44)
for all z € R, . Furthermore,||¢)/||oo < oo

Proof. This is trivially true for allz € [0, a], sincey(z) = ¢/ (x) = 0 for all z in
this range. For: > a, we compute thati’(z) = ¢(x)+r(x) where the remainder
term is given byr(z) = ¢ (a + 2z(z — a)~?) exp(—(z — a)~2). This remainder
term is always positive, is continuous for all> « and satisfied$im,_,, r(x) = 0
andlim,_,~, 7(z) = a. It follows that there exists & > 0 for all > a we have
0 < r(z) < C. The inequalities(44) follow. O

A.3 Existence, uniqueness of the bead-spring model

We confirm the global existence and uniqueness of the beauyspodel proposed
by Equations[(5) and{6). Since we assume [Kat= N € N throughout the main
part of this paper, we retain that assumption here.

Proposition A.3. Suppose that the spring potentialsatisfies Assumptidd 1. Let
{Zk(t) : t > 0}rex be a solution to the family of SDHS) with initial conditions
Z1(0) = z;, € Rforall £ € K. Then, almost surely, there exists a unique global
solution to the 2-dimensional ODE

d k+

S R(t) = —VO(R() + > sin(Ak - R(t)) mZk(t) (45)
kel

with the initial conditionR(0) = o € D\ {0}.

Proof. Lete > 0 be given and define the stopping stopping time= inf{¢t > 0 :
|R(t)| < eory(®(R(t))) > e~} wherey is the function defined in the previous
section. We will first prove there exists a unique stoppedtsm R(t A 7.) to (45).
Subsequently we show thaip{r.} = oo almost surely.

We rewrite [45) in terms of the Stokes matrix defined[By (7),

%R(t) — —VO(R(t)) + S(R()Z(?). (46)
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In order to apply the standard Picard-Lindeldf Theorere fee example, [Hal69]),
we think of the vecto (t) = (Zy(t), Z1(t), ..., Zn(t)) as atime-inhomogeneous
coefficient. To prove that there exists a unique local sotuto (45%) it is sufficient
to show that the function¥' ®(r) and.S(r)Z(t) are continuous iD x R4 \ {0 x
R, } and locally Lipschitz in the variable. By Assumptior 1L, this condition is
satisfied byV®(r). For the last term i (46), given an instanceZfwe have

1S(r)Z(t) = S(ra) Z(#)| < Y |sin(Ak - 1) — sin(Ak - r3)|| Zi ()]
ke
< Alr =72l Z(1) 1

where we recal|| Z(t)||1 := > ,cx |k||Zk(t)]. The functionS(r)Z(t) is continu-
ous int almost surely sincéS(r)Z(t1) — S(r)Z(t2)| < ||S(r)||r|Z(t1) — Z(t2)|
and the vector OU process(t) is continuous almost surely.

We now show that the process cannot blow uptgQ.. in finite time. To this
end we consider the proceg$®(R(t))) which is constant inside a radius of size
po but then grows to infinity with the potential function g8| tends top, ... By
showingy(®(R(t))) is bounded above by a 1-d linear ODE, this suffices to show
global existence and uniqueness. For a given instance oidise 7 (¢), we have

%w(q’(R(t))) =/ (®(R(1)) (~IVO(R(1))]* + VO(R(?)) - [S(R(t)Z(2)])

For given values € R? andz € RY we bound the Stokes forcing term by applying
Young's inequality followed by the matrix form of Cauchy{®earz:

1 1 1 1
V() - (5(1)2) < TR+ SISCI:l? < VO + LIS
1 9 1o 9
<z — .
< 2|V<I>(7‘)| + 2N 2]

The inequality||S(r)||r < N is given in the proof of Lemmia_2.5.

To estimate the first term of the mollified ODE, we consider weses: (i)
Ir| < po and (i) |r| > po. In case (i)' (®(r)) = 0 and the entire term disappears.
Trivially, —/(®(r))|V®(r)]2 = 0 = —y2p(®(r)).

For case (ii), we employ the spring potential assumptior) (hat for some
v > 0if |r| > po then|V®(r)|?> > v®(r). Furthermore, by Propositidn A.2, the
mollifier ¢ satisfies)’(®(r))®(r) > ¢ (®(r)). We obtain

—¢(@(1))|[VE(r)]* < = (2(r) @ (r) < —71b(2(r)). (47)

Altogether, we have the differential inequality
d Y N2 / 2
7 V(@R®))) < — 59 (®(R(1)) + —-[[¥]l|Z ()] (48)
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DefineY (t) to be the solution to the linear ODE

d Y N2 ’ 2
EY(t) = —§Y(t) + 7”1/1 loo|Z(2)]

with Y(0) = ¢(®(R(0)). By definition,(®(R(t)) < Y (¢). By virtue of the fact
that the forcing term is positive (¢t) > 0 for all ¢ and, definingry; = inf{t >

0 :Y(t) > M}, standard properties of linear ODEs and global existendaeof
N-dimensional Ornstein-Uhlenbeck imply thatp,,., 727 = oc.

We now show thakup,..,7. = oo almost surely by demonstrating that the
R-dynamics do not hit zero in finite time. The idea here is tbatie connecter
process to hit zero, the noise must blow up in finite time ainsl ithnot possible
since our noise is bounded on any finite time interval. IndégdAssumption i1,
there existsy > 0 such that—V®(r) - r > 79 > 0 for all » with |r| < ep.
SupposeR(T) = 0 for someT € R,. From the above discussion and Equation
@5) it follows that % | R(¢)|? is almost surely continuous. Thy|R(t)[* < 0in
a subinterval of the séf” — ¢, T'] for somed > 0. Without loss of generality, we
may assume thdi?(t)| < e for [I' — 6, T]. Let M := sup;cip_sp |Z(#)]1. In
this regime, we have

d B , k+ - R(t)
E\R(lt)\? = —2V®(R(t)) - R(t) + 2 I;Csm(m -R(t)) TZk(t)
> 299 — 2\ Z |k - R(t)||k+ - R(t)| ‘Zflf‘t)’ > 290 — 2AMN|R(t)[%.

kek
However, the right-hand side is positive whét{t)|> < ~vo/(AM N), contradicting

the hypothesis thaf | 2(t)|> < 0in a subinterval ofT — 4, 7] when|R(t)| is small
enough. Therefore the origin is unattainable in finite time. O

A.4 The Lyapunov function

The proof for the Lyapunov estimate, Lemmal2.3, proceedgasignto the proof

of the upper bound in the Existence and Uniqueness Propogki3. The only

differences arise from the need to treat it@) andZ (¢) dynamics simultaneously.
For the sake of easy reference, we recall the definition of_jlag@unov function

V(r,z) = (®(r)) +n|z|> wherey is defined in Section Al2 anglis to be defined
in the following proof.

Proof of Lemma@a 2|3 The generatot for the Markov procesX (t) := (R(t), Z(t))
is given by

5 o2
L= (=VO(r) + 5()2) - V, + 022 ( Y Ik + ﬁa,%ﬁ)
kek k
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It suffices to find arw > 0 andb > 0 such that
LV (z) < —aV(x)+b. (49)

From [49), using Ito’s formula and Gronwall’s inequalityeocan show thgtP, V') (z) <
e~V (z) + b/a. Thus we havey = e~ with ¢; = b/a. The restriction on the
constantgcy, ¢1, p+) from Theoreni 22 (in light of of the definition @fin Equa-
tion[18) translates to the following constraint Gn b, p. ):

1 —a
b < 5a(d(p4))(1 — ™). (50)
Applying L to the Lyapunov functiorV yields:

LV (r,2) = ¢'(2(r)) (=[VO(r)]* + (S(r)2) - V(7))

+ 2N A2 Z (= k|*2¢ + Bot) -
kek

In bounding the Stokes forcing term we must make a slighthyér estimate than
the one used in the proof of Proposition A.3. We apply Youmggsjuality (with
5 € (0,1) to be chosen below) followed by the matrix form of Cauchy\8atz
and the inequality|S(r)||» < N which is given in the proof of Lemnia 2.5:

(S(r)2) - V() < L1802 + 3V < LoN|=] + 5]V a(r)?

Denotingk := mingex{|k|} and|jo |2 = > rex 04, after collecting terms we have

LV (z) < —(1 =8¢/ (®(r)|[Ve(r)]* + 2qvA°B| oI5 (51)
+ (N2 (®(r)) /46 — 2quA2E?)| 2|2

We estimate the first term as in the proof of Proposition A Bation 47— (1—
8)Y'(®(r)|Ve(r)[? < —(1 — 8)y(®(r)) for all r € R2,

Regardless of the value of we require that the coefficient of|? in (GI)
satisfy the constrainv2y/(®(r)) /46 — 2nvA%k? < —ny(1 — §), which is true for
all n satisfying

2 /(.
. 1Ol
wA2k2 — (1 —0) 40
By choosing thé close to 1, we can ensure that the denominator is positive. Ap
plying these estimates, Equatiénl(51) becomes

(52)

LV < —(1 =01V + 2wA?B|o 3.
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Our final restriction involves the constant terms given iru&gpn [50), with
a = (1 —8)yandb = 2nvA23| o ||3. We obtain the constraint

(1= 9)y6(6(p4)) (1 — e=0-9)

<
7= wA2Bo|2

(53)

Sincet > 1 itis enough to have < (1_6)71#(21(/&;%)&01[%87(HM)' Combining [57)
and [53), we need to finglsuch that

N2y () lloo

(1= ) (d(ps))(L — e~ 1-0)
45(20X2k2 — ~(1 — 6)) '

wA2B|o|l3

<n< (54)

At this point, all parameters have been fixed except for theoehof the constant

¢ in the definition ofy, and the choice op,. By choosingc to be sufficiently
small, we can diminish|¢’||.. enough that the left hand side is less thaf.
Subsequently we observe that regardless of the valuglof, ... ¥(p) = oo
and so we can chooge. in such a way that the right-hand side is arbitrarily large.
For simplicity, we pick it so that the right-hand side is 1/2. O

B Topological Irreducibility

Proof of Fac{2.¥ .Any two pointsry andr, in G, can be connected by a path
consisting of two parts;y — |r«|ro/|r0] — 7+, @ line segment (connecting to
|r«|70/|70|) @and then a circular arc (connecting.| ro/|ro| to 7). The length of
the linear segment is less thamnand the length of the circular arc will be less than
wpo. Qualitatively speaking, by smoothing out the corner, eéhexists a smooth
curve fromrq to r, with arclength less thafl + 7)po. It follows that there exists
a parametrizatiorz of such a curve, and furthermore, tRedefined by Equation
(29) in the statement of Fdct 2.7 in non-empty.

Given thisR, we consider the linear (i#f) system

G R(t) = ~VB(R(D) + S(R)Z()

for everyt € [0, 1]. There exists a unique minimal norm solution

Z(t) = S"(RW) (VO(RE) + %R(t))

whereST := §*(55*)~!is the Moore-Penrose pseudoinverse [BIG80] ahds
the transpose a$. We claim that” is continuous and therefore bounded over the
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intervalt € [0, 1]. Indeed, by hypothesis, boW¥i®(2) and 4 R are continuous, so
we only must show tha$T(R(-)) is continuous.

As a finite sum of sinesS is a continuous function oR?. It follows that both
S* and SS* are continuous as well, an@S*)~! is continuous in any domain
in which its determinant satisfigslet(S(r)S*(r))| > 0 for all » in the domain.
BecauseSS* is a2 x 2 matrix

« S92 S1- Sy >
SS* =
( S1 -85 ]52]2

whereS; and S, are the first and second rows 8frespectively, the determinant
simplifies todet(S(r)) = |S1(r)|?S2(r)[*(1 — cos?(6(r))) wheref is the angle
between the vectorS; andS;. Noting thatf is a continuous function af while
recalling that eact$;(r) is continuous and thag, is compact, it suffices to show
that thatS;(r) and Sz(r) are linearly independent for all € Gr. Because the
row space and column space of a matrix have the same dimenkisrreduces
to showing the column rank of(r) is two. This follows immediately from the
hypothesis that the active mode vector/Sefontains at least three pairwise linearly
independent vectors, which we label, k¥, and k3. Among the three columns
{sin(Ak; - r)kj};’?zl at most one of the sine coefficients is zero, leaving at least
two linearly independent columns.

We conclude that the contrdl(-) is well-defined, continuous and has a mag-
nitude which is bounded above by

|Z(t)] < My = sup ST P (IV2(r)] +5p4)

forall t € [0, 1]. O

Proof of Fac{2.8.Let the constants, € (0,¢;/2), T > 0 andM> > 0 be given.
SupposeZ € C([0,T],RY) is a deterministic control withZ |, < M, such that
R = (7, Z) satisfiesk(t) € G, forall t € [0, T].

We will show that there exist positive constantsyy, andé, such that iflrg —
ol < dpandZ(\) € Z(Z, My,~,d.), then

sup |R(t) — R(t)| <6, (55)
te[0,7]

To this end, defindd (¢) := R(t) — R(t). ThenH satisfies the integral equation

H(t) = H(0)+ /O V& (R(s))—V®(R(s))ds+ /O S(R(s))Z(s)—S(R(s))Z(s)ds
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As functions of R, both V® and S are locally Lipschitz. LeG" C R? be the
annulus centered at the origin with inner radiyg2 and outer radiugg + €1 /2.
Although the deterministic control is defined so thiastays inG,., instances of a
the actual connector procegsmay wander slightly out of the good region. It is
with respect to this enlarged set that we take the local higsconstantsig > 0
and\g > 0 such that for al, 7 € GT,

Ve (r) = Vo) < Aalr =7, [[S(r) = S(F)llF < Aslr — 7.

Observing thatS(r)z — S(7)z| < Ag|r —7||z| + ||S(7)||r|z — z| for all r, 7 € G;F
yields

[H(t)] < |H(0)|+/O (Ao + As|Z(s)[)|H (s)|ds + ; IS(R()IFIZ(s) — Z(s)|ds.

By virtue of the assumption théf € Z(Z, Ms, v, d.), defined in[(3D) the second
integral satisfies the bound

/us Dl|Z(s) = Z()lds < sup [0 HF/ Mae™ 4 8,ds,

regr

and so after simplifying we havé/ ()| < fo B|H (s)|ds + g(t) wheref = \¢ +
(2Ms + 6.)A\s andg(t) = 6o + sup,eg [|S(r)||r (X2 + 6.t). Using the integral
form of Gronwall's Inequality yield$H (t)| < g(t) + [ g(s)Be’t—*)ds. After
substituting in the values @fand and integrating, we see that for ale [0, 77,

My 0
< _ Z ()\<1>+M2>\3)T
[H(t)| < [5o+5;ggus< e (22 o ) e

Takingdy andd, sufficiently small while takingy sufficiently large yieldd(35). O

Proof of Fac{Z.9.Let the constanty > 0, 6, > 0 andM > 0 be given, along
with Z e C([0,T);R"N) satisfying |Z|., < M. As in the proof of Lemma
[2.3 the noise vectoZ(t) = (Z1(t), Za2(t),...,Zn(t)) can be writtenZ(t) =
e~ Mzo+ [ e~ 2=5) BdW (s) whereA is a diagonal matrix whose entriésy }nexc
are given by\, := \?v|k|? and B is a diagonal matrix whose entrigé; } . are
given by+/28v\oy,.

Again V|ew the stochastic integral as a time change of a Biamwmotion. As
before My (t f eAkadek( ) is a continuous martingale with quadratic vari-
ation (Mk,Mk> = b2 (2! — 1)/2);, we observe that for any> 0, M (¢) has
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the same distribution a8 ((M,, M;,);) WhgreW is a standard Brownian motion.
For any continuous curvé with T'(0) = 0, 7 > 0 andé > 0

IP’{ sup [W(t) —I(t)| < 5} > B
te[0,T]

for somep > 0 (see[Dur96] for example). Since we have assumed there &re on
a finite number of active modes, and the modes are indeperfectt2.9 follows

immediately from the union bound. O
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