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Abstract

We consider a simple model for the fluctuating hydrodynamicsof a flexi-
ble polymer in dilute solution, demonstrating geometric ergodicity for a pair
of particles that interact with each other through a nonlinear spring poten-
tial while being advected by a stochastic Stokes fluid velocity field. This is
a generalization of previous models which have used linear spring forces as
well as white-in-time fluid velocity fields.

We follow previous work combining control theoretic arguments, Lya-
punov functions, and hypo-elliptic diffusion theory to prove exponential con-
vergence via a Harris chain argument. In addition we allow the possibility
of excluding certain “bad” sets in phase space in which the assumptions are
violated but from which the system leaves with a controllable probability.
This allows for the treatment of singular drifts, such as those derived from
the Lennard-Jones potential, which is a novel feature of this work.

1 Introduction

The study of polymer stretching in random fluids has been identified as a first
step in the much larger project of modeling and understanding drag reduction in
polymer solutions [Che00] and theoretical focus has been brought on the dynamics
of simple dumbbell models [LMV02], [CMV05], [AV05]. Of particular interest is
the experimentally observed phenomenon called the coiled state / stretched state
phase transition [GCS05]. Mathematically this transitionhas been characterized
by seeking models which admit solutions that are ergodic foronly certain regions

∗Department of Mathematics, Duke University, Durham, NC.
†Department of Mathematics, University of Florida, Gainesville, FL.
‡Department of Statistics, Harvard University, Cambridge,MA.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DukeSpace

https://core.ac.uk/display/37750654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0902.4496v3


of parameter space [CMV05]. In this paper we address the topic of how to prove
ergodicity for a wide range of models that generalize preceding work.

Let X1(t) andX2(t) denote the respective positions inR2 of two polymer
“beads” connected by a “spring” at timet. Depending on the scale of interest,
these beads may be thought of as consecutive segments (consisting of something
like 50 monomers) in a polymer chain [DE86,Ö96], or as the ends of a full poly-
mer chain [BHAC77, CMV05, AV05]. Having made this caveat, the canonical
Langevin model for two spherical particles in a passive polymer system is given by

mẌi = −∇Xi
Φ(X1 −X2) + ζ(u(Xi(t), t)− Ẋi(t)) + κẆ (t) (1)

for i = 1, 2. The massm is considered to be vanishingly small and so the inertial
term,mẌi, will be ignored. On the right hand side, the first term is the restorative
force exerted on the beads due to the potential energy of the polymer’s current con-
figuration. The functionΦ denotes the configuration potential for the two beads.
The second term is an expression for the drag force exerted bya time-dependent
fluid velocity fieldu with friction coefficientζ := 6πaη. This follows from the
Stokes drag law for a spherical particle of radiusa in a fluid with viscosityη. The
final term is the force due to thermal fluctuations in the fluid whereW (t) is a stan-
dard Brownian motion. The diffusive constantκ is often taken to beκ =

√
2kBTζ,

wherekB is the Boltzmann constant andT is the temperature of the system in
Kelvin, in accordance with the fluctuation-dissipation theorem [CMV05].

The goal of the present work is to achieve rigorous results about the ergodicity
of theconnectorprocess

R(t) :=
1

2
(X1(t)−X2(t))

in bothκ = 0 andκ 6= 0 regimes with nonlinear spring interaction in the presence
of a spatially and temporally correlated incompressible fluid velocity field.

In the simplest possible setting, one ignores the fluid and assumes a Hookean
(quadratic) spring potentialΦ. In this case, equation (1) is a simplification of the
classical Rouse model [DE86]. For the choice ofΦ(r) = γ

2 |r|2 the particle dynam-
ics satisfy the system of SDE

dX1(t) = γ [X2(t)−X1(t)] dt+ κdW1(t)

dX2(t) = γ [X1(t)−X2(t)] dt+ κdW2(t)

whereW1 andW2 are independent standard Brownian motions. The dynamics of
the connectorR(t) are given by

dR(t) = −2γR(t) +
κ√
2
dW (t).
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whereW = 1√
2
(W1−W2) is a standard Brownian motion. We see that each of the

connector components is an Ornstein-Uhlenbeck process which therefore has the

unique invariant measureRi(t) ∼ N
(

0, κ
2

8γ

)

. This exactly solvable model does

not yield physical results, so one must adopt nonlinear models for either or both of
the spring potential and fluid forces.

Significant theoretical advances exist for the dynamics of asingle tracer par-
ticle convected by a wide variety of fluid models [MK99]. One popular fluid
model for non-interacting two-point motions [BCH07] [MWD+05] as well as for
Hookean bead-spring systems [Che00, LMV02, CMV05] is a time-dependent ran-
dom field satisfying the statistics of the Kraichnan-Batchelor ensemble [Bat59]
[Kra68]. Such a fluid is still statistically white in time, but is colored in space.

In the case whereκ = 0 with non-interacting beads, the spatial correlations
in the convecting fluid velocity field allow for concentration and aggregation phe-
nomena [SS02b] [MWD+05] [BCH07]. This happens because when the two beads
are very close together, the fluid forces on the respective beads are so strongly cor-
related there is no force encouraging separation.

The presence of a diffusive term withκ 6= 0 prevents such aggregation and
the long term behavior of the connector depends on so-calledWeissenberg number
Wi = ζ/2γ = κ2/4kBTγ [CMV05]. It is shown that when Wi< 1 the con-
nectorR will have a non-trivial stationary distribution, dubbed the “coiled” state.
For Wi > 1, the connector does not have a stationary distribution and is called
“stretched.” The authors express interest in the case wherethe fluid is not assumed
to be white-in-time.

In this work we use the incompressible stochastic Stokes equations to generate
a fluid that is colored in space and time (see Section 1.2). In the Hookean spring
case (among other potentials with no repulsive force between the beads) withκ =
0, this model leads to degenerate dynamics (Proposition A.1). However, in a more
general setting with a nonlinear spring potential that includes a repulsive force,
we show that dynamics are nondegenerate, although the coiled / stretched state
dichotomy discussed in [CMV05] is not present. We find thatR(t) is ergodic
regardless of the physical parameters (Theorem 2.1).

The method used here to establish ergodicity builds on the Harris Chain theory
developed in [Har56, Has80, Num84]. It is particularly indebted to the uniform
ergodic results in weighted norms developed in [MT93a, MT93b]. The argument
follows the path outlined in [MS02, MSH02] for unique ergodicity of degenerate
diffusions, but requires some nontrivial extensions to deal with the multiplicative
nature of the noise and to permit the type of singular vector fields that arise as
natural choices for the spring potentialΦ. We build a framework around a general
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ergodic result from [HM11] and then develop the needed analysis to apply this
framework.

Mathematically, as in [MSH02, MS02], this paper combines control theory
with techniques from the theory of hypoelliptic diffusionsto invoke results in the
spirit of [MT93a, MT93b]. Ergodicity is obtained by provinga minorization con-
dition on a class of “small sets” (see [MT93a, MT93b]) while simultaneously es-
tablishing a matching Lyapunov function. However, our problem has a number of
difficulties which prevent the application of the results [MSH02] directly. A central
issue that needs to be addressed is that the spring potential, and hence the drift term,
is permitted to have a singularity (Assumption 1). Therefore the natural candidates
for “small sets” are not compact. This difficulty is overcomeby splitting the small
sets into “good” and “bad” sets. On the compact “good” set, defined in Eq. (27),
we demonstrate uniform controllability as in [MSH02, MS02]. On the bad set,
one cannot obtain uniform control; however, the deterministic dynamics move the
system into the good set in finite time so that geometric ergodicity still holds (Sec-
tion 2.2). Allowing the spring potential to be singular extends the applicability of
the theory to many interesting, physically important potentials such as the Lennard-
Jones potential. Related ideas have been also recently beenused to prove ergodic
and homogenization results in different settings (see [Bub09, HP08]).

1.1 Structure of paper and overview of results

We will conclude Section 1 by proposing the model, leaving the proof of global
existence and uniqueness to the Appendix. It is important topoint out that without
a repulsive force between the beads, this model is degenerate. As an example, we
consider in Proposition A.1 a pair of particular choices – including the Hookean
spring model – for the spring potential that do not introducea repulsive force be-
tween the beads. We find that the distance between the beadsR(t) almost surely
tends to0 as t → ∞ if the spring constantγ is sufficiently strong relative to a
quantity that depends on the typical spatial gradients in the random forcing.

In Section 2, we quote an abstract result from the classical ergodic theory litera-
ture. The quoted result requires proving a minorization condition and the existence
of a Lyapunov function. Section 2.1 contains a general prescription for how to
deduce the minorization condition from the existence of a continuous transition
density and a weak form of topological irreducibility for the Markov process. In
Section 2.2 the needed topological irreducibility is proven via a control theoretic
argument. In Section 2.3 we invoke Hörmander’s “sum of squares” theorem to
prove that the associated hypoelliptic diffusion has a smooth transition density.
Section A.4 contains the calculations establishing the existence of a Lyapunov
function and Section 2.4 contains a number of generalizations and implications
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of the preceding results. The appendix contains the derivation of the model used.

Before preceding, we note that among the class of models we propose, the
closest to that of Celani, et. al. [CMV05] is the canonical Langevin Equation (1)
where the spring potential is quadratic, the massm is still 0, but the coefficient of
the Brownian motion is nonzero:κ =

√
2kBTζ. Our generalization is the replace-

ment of the Kraichnan-ensemble with a finite-dimensional version of the stochastic
Stokes equations. In thisκ > 0 setting, the dynamics when|R| is small become
greatly simplified. Indeed, when the force separating the beads due to the fluid ve-
locity becomes negligible, the remaining terms constitutean Ornstein-Uhlenbeck
process. By standard ergodic properties of such processes,R quickly leaves any
small neighborhood of the origin with probability 1. For large values of|R|, the
quadratic spring potential dominates and the Lyapunov function calculation we
present in Section A.4 still holds. Since the diffusion is elliptic, existence of a
continuous transition density follows trivially, and all arguments in the derivation
of the stochasticδ-ball controllability still apply, and thus the ergodic theorem we
present in this work holds forR(t).

This stands in contrast to the results in [CMV05] where it wasargued that
there exists a range of parameters where no stationary distribution exists. Fur-
thermore, in light of the results we present here, it is not clear to us how to con-
struct a model with colored-in-space-and-time fluid velocity field that supports the
“stretched” and “coiled” regimes cited in the physics literature. Unfortunately, we
cannot comment directly on the model presented in [CMV05], as our approach is
highly dependent on the ability to express the dynamics in terms of a system of
SDEs.

1.2 Definition of the model

In the overdamped, highly viscous regime, it is reasonable to neglect the non-
linear term in Navier-Stokes equations. Following [OR89],[MS02], [MSH02]
and [SS02a], we consider the bead-spring system advected bya random field
u : R2 × R → R

2 satisfying the incompressible time-dependent stochasticStokes
equations. Following [Wal86], [DZ92], [Dal99] and [McK06]the stochastic PDE

∂tu(x, t)− ν∆u(x, t) +∇p(x, t) = F (dx, dt), ∇ · u(x, t) = 0 (2)

is well defined under the following conditions. For technical simplicity in the er-
godicity arguments to come, we takeu to be spatially periodic with periodLwhich
is presumed to be very large. We take the space-time forcingF : R2 ×R → R

2 to
be a white-in-time, spatially periodic and colored-in-space Gaussian process satis-
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fying

E[F (x, t)] = 0, E
[

F i(x, t)F j(y, s)
]

= (t ∧ s) 2kBTνδijΓ(x− y) (3)

whereΓ is the spatial covariance function,ν is the viscosity of the fluid,t ∧ s
denotes the minimum oft ands, the component indicesi andj arei, j ∈ {1, 2}
andδij is a Kronecker delta function. As is shown in Appendix A, we may take
the definition of the noise to be

F (x, t) =

√
2kBTν

L

∑

k∈Z2\0

(

cos
(

λk · x
)

B1
k(t) + sin

(

λk · x
)

B2
k(t)

)

σk (4)

where we have introduced the inverse length scaleλ = 2π/L and theBi
k are inde-

pendent standard 2-d Brownian motions. The coefficientsσk are related to the spa-
tial correlation functionΓ through the Fourier relationΓ(x) = 2

L2

∑

k∈Z2\{0}cos
(

λk·
x
)

σ2k.
This relation is possible becauseΓ is a covariance function, and therefore pos-

itive definite. By Bochner’s Theorem,Γ is realizable as the Fourier inverse trans-
form of a positive real valued measure called thespectralmeasure. Often one
defines the correlation structure on the spectral domain. For clarity of exposition,
we take the set of modes with nonzeroσk, denotedK ⊂ Z

2 \ (0, 0) to be finite but
containing at least three linearly independent vectors. WeuseN = |K| to denote
the number of active modes.

As is discussed in the Appendix, Section A, we can express thedynamics of
the eigenmodes in terms of the family of independent 1-dimensional Ornstein-
Uhlenbeck processesZ(t) := {Zk(t)}k∈K respectively satisfying

dZk(t) = −λ2ν|k|2Zk(t)dt+
√

2βνλσk dWk(t) (5)

whereβ = kBT/4π
2 and {Wk}k∈K is a family of iid standard 1-dimensional

Brownian motions. For eachk, we take the initial conditionZk(0) to be chosen
from its respective stationary distribution, namelyZk(0) ∼ N

(

0, βσ2k/|k|2
)

.
Our goal will be to rigorously analyze the long-term behavior of the connector

processR whose dynamics we will study via an approximate system whichis de-
rived in the Appendix, Section A. This entails writingX1 andX2 in terms of the
configuration vectorR(t) and the “center of mass” processM(t). As is discussed
in that development, we setM(t) = 0 to substantially simplify subsequent calcu-
lations. We argue that this assumption can be removed and that all of the relevant
results hold for the original system.

6



We now define our model forR(t). Given the familyZ(t) defined by (5), let
R : R → R

2 satisfy the time-inhomogeneous ODE

d

dt
R(t) = −∇Φ(R(t)) +

∑

k∈K
sin(λk · R(t)) k

⊥

|k|Zk(t) (6)

where for a given vectork = (k1, k2) we denotek⊥ := (−k2, k1). The configura-
tion potentialΦ : R2 → R is discussed below in Assumption 1. The last term of
(6) summarizes the influence of the fluid on the separation between the beads. We
will write this in terms of the multiplication of the2 × N Stokes matrixS(r) by
the vectorz = (z1, . . . zN ),

S(r)z :=
∑

k∈K
sin(λk · r) k

⊥

|k| zk . (7)

We discuss the existence and uniqueness of the ODE (6) in Appendix A.3 and will
think of the solutionR with initial conditionr0 in terms of the mapping

R := Ψ(r0, Z) (8)

whereΨ : R2×C([0,∞),RN ) → C([0,∞),R2) is the solution of the ODE given
in (6).

As mentioned earlier, the choice of quadratic potentialΦ corresponds to a
Hookean spring model. There are a number of canonical choices for nonlinear
spring potentials (see [BHAC77] Table 10.1-1) but of particular interest to us
are potentials which only allow for a finite maximum extension of the polymer.
One common choice is known as thefinite extensible nonlinear elastic(FENE)
[BHAC77, AV05, Thi03] potential:

ΦFENE(r) =
γρ2max

2
ln

(

1

1− |r|2/ρ2max

)

. (9)

The parameterρmax > 0 is the maximal extension of the chain. However, be-
cause there is no repulsive force in the potential, we find that systems with these
potentials have degenerate dynamics (Proposition A.1). Inthe sequel, we place the
following assumptions on the spring potential.

Assumption 1. Let0 < ρmax ≤ ∞ be given and define

D := {r ∈ R
2 such that|r| ≤ ρmax}.

We assume that the spring potentialΦ : D → R+ satisfiesΦ(0) = 0 and each of
the following conditions.
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(i) Radial symmetry.For some continuously differentiable functionφ : (0, ρmax) →
R+, we have

Φ(r) = φ(|r|). (10)

(ii) Locally Lipschitz gradient.For any compact regionK ⊂ D \ {0}, there
exists a constantC > 0 such that for allr1, r2 ∈ K,

|∇Φ(r1)−∇Φ(r2)| ≤ C|r1 − r2|.

(iii) Compact level sets.For everyρ ≥ 0, the set{r ∈ D s.t.Φ(r) ≤ ρ} is
compact.

(iv) Growth condition.The potential satisfies lim
|r|→ρmax

Φ(r) = ∞ and there ex-

ists aγ > 0 and aρ0 < ρmax such that for allr ∈ D with |r| ∈ (ρ0, ρmax)

|∇Φ(r)|2 ≥ γΦ(r). (11)

(v) Repulsive force at the origin.There existsγ0 > 0 and ǫ0 > 0 such that for
all r ∈ D \ {0} with |r| ≤ ǫ0

−∇Φ(r) · r ≥ γ0. (12)

Remark1.1. It is in this context that we choose the length of the periodicity of the
forcing fluid. We takeL≫ 4ρ0.

We have in mind potentials that consist of standard choices when the beads are
separated by large distances, but that have a singularity atzero. For example, the
above assumptions include the families of functions

Φ(r) =
1

2q
|r|2q + 1

α|r|α , and Φ(r) = ΦFENE(r) +
1

α|r|α . (13)

whereα is a positive constant. The choiceα = 12 corresponds to a Lennard-Jones
singularity at zero. One can check that the Growth Condition(iv) is satisfied for
such potentials if and only ifq ≥ 1.

2 Ergodicity

In order to state our main result, we must set some notation. LetX(t) = (R(t), Z(t))
satisfy the system given by (5) and (6). It follows from Proposition A.3 that the
processX(t) is Markov and well-defined on the state space

X :=
{

(r, z) ∈ D ×R
N
}

.
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For a bounded, measurable functionϕ : X → R, we define the action of the
Markov semigroupPt by

(Ptϕ)(x) = Ex[ϕ(X(t))] .

To measure convergence to equilibrium, we introduce the following weighted
norm on such functionsϕ relative to a given Lyapunov functionV : X → [0,∞),

‖ϕ‖ := sup
x∈X

|ϕ(x)|
1 + V (x)

.

We note that the Markov semigroupPt can be extended to act on all functionsϕ
bounded pointwise above byV . Henceforth, we will use

V (x) := ψ(Φ(r)) + η|z|2 (14)

as the Lyapunov function for the Markov processX(t), whereψ : R → R is the
function

ψ(x) :=

{

0, 0 ≤ x ≤ a

c (x− a) e−1/(x−a)2 , x > a
, (15)

where we seta = φ(ρ0). The constantρ0 is as in Equation (11) of Assumption
1, and the constantsc andη are set by an argument in Section A.4. The essential
properties ofψ are recorded in Section A.2.

The main result of this article is the following statement about the geometric
ergodicity of the Markov processX, which in turn implies the connector process
R converges to its unique non-trivial stationary distribution in exponential time.

Theorem 2.1. Suppose that the set of active modesK is finite, but contains at
least three pairwise linearly independent vectors, and letthe spring potentialΦ
satisfy Assumption 1. Then there exists a unique non-trivial invariant measureπ
and constantsC > 0 and λ > 0 so that for all measurableϕ : X → R with
‖ϕ‖ <∞, we have

‖Ptϕ− πϕ‖ ≤ Ce−λt‖ϕ‖

whereπϕ =
∫

ϕdπ.

Let us introduce a family of weightedL∞-norms that depend on a scale pa-
rameterβ > 0. For a measurableϕ : X → R define

‖ϕ‖β := sup
x∈X

|ϕ(x)|
1 + βV (x)

.

9



Observe that‖ · ‖1 = ‖ · ‖ and any two norms in this family are equivalent. Define
the corresponding dual metric on probability measures:

ρβ(µ1, µ2) = sup
ϕ:‖ϕ‖β≤1

∫

ϕ(x)µ1(dx)−
∫

ϕ(x)µ2(dx)

for two probability measureµ1, µ2 probability measures onX. Note thatρβ is the
usual total variation norm forβ = 0. Theorem 2.1 follows from classical results in
[MT93a] and [MT93b] adapted to our setting:

Theorem 2.2. Suppose that the Lyapunov functionV : X → [0,∞) has compact
level sets withlimx→∂X V (x) = ∞ and that for somet > 0, c1 > 0 and c0 ∈
(0, 1), it satisfies

(PtV )(x) ≤ c0V (x) + c1 (16)

for all x ∈ X. (Here, the boundary set∂X includes the point at infinity in un-
bounded directions.) Furthermore suppose there exists a probability measureν
and constantα ∈ (0, 1) such that

inf
x∈C

Pt(x, · ) ≥ αν( · ) (17)

with C := {x ∈ X : V (x) ≤ K} for someK ≥ 2c1/(1− c0).
Then there exists anα0 ∈ (0, 1) andβ > 0 so that

ρβ(P∗
t µ1,P∗

t µ2) ≤ α0 ρβ(µ1, µ2)

for any two probability measuresµ1 andµ2 onX.

We begin by fixing the setC which should be thought of as the “center” of
the state space. At the end of the proof of Lemma 2.3 we select avalueρ+ ∈
(ρ0, ρmax) which is used to defineC:

C := {x ∈ X : V (x) ≤ ψ(φ(ρ+))}. (18)

Recall that the Lyapunov functionV is defined by (14) withφ andψ defined by
(10) and (15), respectively. As is established by the following lemma,V satisfies
the inequality (16). We defer the somewhat standard proof ofthis lemma to the
appendix, Section A.4.

Lemma 2.3(Lyapunov function). Fix the values of the constantsη, c andρmax so
that they satisfy the constraints imposed by the inequalities (54), and letV (x) be
defined as in(14). Then for anyt ≥ 1 there exist constantsc0 := c0(t) ∈ (0, 1)
andc1 := c1(t) ≥ 0 such that(16)holds. Moreover we haveψ(φ(ρ+)) ≥ 2c1

1−c0 as
required for the definition(18)of C by Theorem 2.2.
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The remainder of Section 2 is concerned with constructing a minorizing mea-
sure, as required by condition (17). The main result is Proposition 2.4. Its proof
follows from the topological irreducibility of the transition semigroup established
in Proposition 2.10 and the “local smoothing” property proved in Proposition 2.11.
The local smoothing property follows from hypoellipticityof the generator of the
Markov processX and a version of Hörmander’s sum of squares theorem (cf.
[Hör85, Str08]).

2.1 Conditions for measure-theoretic irreducibility

In this section we use a very weak form of topological irreducibility to prove the
measure-theoretic minorization and irreducibility required in (17).

Proposition 2.4. Suppose there exists anx∗ ∈ C such that the following two con-
ditions hold. Then there exists a constantα ∈ (0, 1), a timet ≥ 1 and a probability
measureν such that(17)holds.

(i) Uniformly Accessible Neighborhood Condition:For anyδ > 0 there exists
a constantr > 0 and a positive functionα0 : (0,∞) → (0,∞) such that

inf
x∈C

Pr′(x,Bδ(x∗)) ≥ α0(r
′) (19)

for all r′ > r.

(ii) Continuous Density Condition:There exists ans > 0 and an open setO ⊂ C
with x∗ ∈ O, such that for anyx ∈ O and measurableA ⊂ O one has

Ps(x,A) =
∫

A
ps(x, y)dy

with ps(x, y) jointly continuous in(x, y) for x, y ∈ O andps(x∗, y∗) > 0
for somey∗ ∈ O.

Proof. By the continuity assumption onps there existsδ > 0 so thatBδ(x∗), Bδ(y∗) ⊂
O and

inf
x∈Bδ(x∗)

inf
y∈Bδ(y∗)

ps(x, y) ≥
1

2
ps(x∗, y∗) > 0 .

We define the minorizing probability measureν byν(A) = λ(A ∩Bδ(y∗))/λ(Bδ(y∗))
whereλ is Lebesgue measure andA is any measurable set. With thisδ we also fix
r = r(δ) according to the Uniformly Accessible Neighborhood Condition (i).
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Now, pickt ≥ 1+r+s and defineα(t) = 1
2(1∧ps(x∗, y∗)α0(t−s)λ(Bδ(y∗))),

whereα0 is the function given in (19). Then for any measurable setA andx0 ∈ C
we have

Pt(x0, A) =
∫

A

∫

R2+N

Pt−s(x0, dx)Ps(x, dy)

≥
∫

A∩Bδ(y∗)

(

∫

Bδ(x∗)
Pt−s(x0, dx)

)

ps(x, y)dy

≥
∫

A∩Bδ(y∗)
α0(t− s)

1

2
ps(x∗, y∗)dy ≥ α(t)ν(A) ,

which proves the claim.

2.2 Topological irreducibility

This section is devoted to proving the Uniformly AccessibleNeighborhood Condi-
tion (i) stated in Proposition 2.4. This argument consists of first proving that under
the spring potential conditions listed in Assumption 1, thesystem has non-trivial
long-term behavior. Unlike the Hookean spring case where the two particles come
together ast → ∞ almost surely (Proposition A.1), in the non-linear (with repul-
sion) spring case we can show that two particles arbitrarilyclose together have a
positive probability of separating in an explicitly definedfinite time (Lemma 2.5).
Given this separation property, we employ a control argument to show the noise
has a positive probability of directing the system to a neighborhood of a specified
reference pointx∗ ∈ C (Lemmas 2.6 and 2.10).

2.2.1 A particle separation lemma

Lemma 2.5. Let M > m > 0 be given, suppose(R(0), Z(0)) = (r0, z0) ∈
D × R

N , and define

τǫ(r0, z0) := inf{t ≥ 0 : |R(t)| ≥ ǫ and |Z(t)| < M}.

Then there exists anǫ ∈ (0, ǫ0] whereǫ0 is defined in Assumption 1 and anα ∈
(0, 1) such thatτǫ satisfies

inf
{z0:|z0|<m}

inf
{r0:0<|r0|≤ǫ}

P{τǫ(r0, z0) ≤ 1} ≥ α. (20)

Proof. The essence of the argument is that if the noise stays relatively small for
sufficiently long, then the repulsive force will dominate theR-dynamics and force
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the particles away from each other. Without loss of generality, for the remainder
of this proof we assume that the initial condition(r0, z0) satisfiesr0 ≤ ǫ0 and
|z0| ≤ m.

We denote the event that the magnitude of the noise stays moderate byΩz :=
{

supt∈[0,1] |Z(t)| < M
}

and claim there exists anǫ ∈ (0, ǫ0] andα > 0 such that
P{Ωz} ≥ α andP{τǫ ≤ 1 |Ωz} = 1 and therefore

P{τǫ ≤ 1} ≥ P{τǫ ≤ 1 |Ωz} · P{Ωz} ≥ 1 · α.

We first prove that there exists anα > 0 such that

inf
z0:|z0|≤m

P{Ωz} ≥ α. (21)

Indeed, the noise vectorZ(t) = (Z1(t), Z2(t), . . . , ZN (t)) can be written

Z(t) = e−Λtz0 +

∫ t

0
e−Λ(t−s)BdW (s) (22)

whereΛ is a diagonal matrix whose entries{λk}k∈K are given byλk := λ2ν|k|2
andB is a diagonal matrix whose entries{bk}k∈K are given by

√
2βνλσk.

It follows from (22) that

|Z(t)| ≤ m+
∑

k∈K

∣

∣

∣

∣

e−λkt
∫ t

0
eλksbkdWk(s)

∣

∣

∣

∣

.

SinceMk(t) :=
∫ t
0 e

λksbkdWk(s) is a continuous martingale with quadratic vari-
ation 〈Mk,Mk〉t = b2k(e

2λkt − 1)/2λk, then for anyt > 0, Mk(t) has the same
distribution asW̃ (〈Mk,Mk〉t) whereW̃ is a standard Brownian motion. It follows
that

αk := P

{

sup
t∈[0,1]

∣

∣e−λkt
∫ t

0
eλksdWk(s)

∣

∣ ≤ M −m

N

}

≥ P

{

sup
t∈[0,tk ]

|W̃ (t)| ≤ M −m

N

}

wheretk = b2k(e
2λk − 1)/2λk. Since a Brownian motion will stay within a pre-

scribed tube over an arbitrarily long finite interval with positive probability, we
have thatαk > 0. Because there are only finitely many modes and they are mu-
tually independent, we haveP{Ωz} ≥ ∏

k∈K αk > 0. To conclude the proof of
the claim (21), it remains only to note that this lower bound for P{Ωz} does not
depend on the initial conditionz0 as long as|z0| ≤ m.

We now show that there exists anǫ > 0 so that

P{τǫ ∈ [0, 1]|Ωz} = 1. (23)
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Let ǫ0 andγ0 be the positive constants from (12) of Assumption 1. We fix

ǫ := ǫ0 ∧
√

(1− e−(NM)2/γ0)

(NM)2
(24)

and defineσǫ := inf{t ≥ 0 : |R(t)| ≥ ǫ}. Conditioned on the eventΩz, we have
τǫ = σǫ, and so to prove (23) it suffices to showσǫ ≤ 1 onΩz.

Recall the ODE (6) definingR and the notationS for the Stokes matrix, see
(7). For anyt ∈ [0, σǫ] and for anyϑ > 0 we have the differential inequality

d

dt

1

2
|R|2 = −∇Φ(R) ·R+ (S(R)Z) ·R ≥ γ0 − ϑ|S(R)Z|2 − 1

4ϑ
|R|2

where we have applied the inequality (12) from Assumption 1 to the first term
and the polarization inequalityx · y ≥ −(ϑ|x|2 + 1

4ϑ |y|2) to the second term.
Furthermore|S(R)Z| ≤ ‖S(R)‖F |Z| where‖ · ‖F is the matrix Frobenius norm.
The contribution of each column (respectively associated to an eigenmodek) of
the Stokes matrix to its Frobenius norm is exactlysin2(λk · R). It follows that
‖S(R)‖F ≤ N . Hence for allt ∈ [0, σǫ],

d

dt

1

2
|R(t)|2 ≥ − 1

4ϑ
|R(t)|2 + (γ0 − ϑN2|Z(t)|2).

Restricting to the eventΩz and fixingϑ = γ0/2(NM)2, we have

d

dt
|R(t)|2 ≥ −(NM)2

γ0
|R(t)|2 + γ0.

For anyt ∈ [0, 1], integrating the preceding estimate onΩz yields

|R(t ∧ σǫ)|2 ≥ e−(t∧σǫ)(NM)2/γ0 |r0|2 + γ0

∫ t∧σǫ

0
e−[(t∧σǫ)−s](NM)2/γ0ds

≥ γ20
(NM)2

(

1− e−(t∧σǫ)(NM)2/γ0
)

.

We want to show that onΩz, σǫ ≤ 1 with probability one. Suppose thatσǫ > 1.
Then the last estimate implies that

|R(1 ∧ σǫ)|2 = |R(1)|2 ≥ (NM)−2(1− e−(NM)2/γ0) ≥ ǫ2

and henceσǫ ≤ 1. We conclude the claim (23), which completes the proof.
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2.2.2 Topological irreducibility via control

By Assumption 1, the spring potentialΦ has a (possibly non-unique) global min-
imum rmin, which satisfies|rmin| ≤ ρ0 whereρ0 was the constant from Assump-
tion 1. We choose a global minimum closest to the origin and denote it byr∗. Since
the global minimum of the noise norm| · | is achieved at the origin,z∗ = 0, we set
the global reference point

x∗ := (r∗, 0) (25)

which is a minimum of the Lyapunov functionV .
We wish to use theZ process to drive theR process to the reference point

r∗. However, due to the possible singularity at the origin (seeAssumption 1) the
differential equation (6) forR may have unbounded coefficients which presents
a genuine difficulty in applying control theoretic arguments. We therefore will
designate a region of bad control,B, within the centerC (see (18)), as well as a
compact region of good control,G.

In Lemma 2.5 we demonstrated that theR process has a positive probability
of escaping from a neighborhood of 0 in unit time. Letǫ1 be the constant derived
from applying Lemma 2.5 withm = ψ(φ(ρ+)) andM = m/

√
η, whereη is given

in (54). Sinceη ≤ 1/2 we haveM > m > 0 as required by the hypothesis of
Lemma 2.5. We define the set of “bad” points inC by

B =
{

(r, z) ∈ C : |r| < ǫ1
}

. (26)

Next, we define the set of “good” pointsG to be

G = Gr × Gz :=
{

(r, z) ∈ X : |r| ∈
[

ǫ1, ρ+
]

, |z|2 ≤ ψ(φ(ρ+))/η
}

. (27)

Note thatC ⊂ G ∪ B.
We now use a controllability argument to establish the weak form of uniform

topological irreducibility onG given (for the setC) in Eq. (19).

Lemma 2.6 (Topological irreducibility on the “good” setG). Let x∗ ∈ C be as
given in(25). Then for anyδ > 0 there existst1 > 0 so that for anyt2 > t1 there
existsα1 > 0 such that

inf
t∈[t1,t2]

inf
x∈G

Pt(x,Bδ(x∗)) ≥ α1. (28)

The proof of the above lemma relies on the following three observations, whose
proofs are deferred to the appendix. In what follows, forf : I ⊂ R 7→ R

n, define
the sup-norm

|f |∞ := sup
t∈I

|f(t)| .

15



The first observation is that there is a bounded deterministic control Z̃ that
accomplishes the task of moving its associated connectorR̃ = Ψ(r0, Z̃) (recall the
definition in Equation (8)) from the initial positionr0 to the reference pointr∗ at
time t = 1.

Fact 2.7. (Existence of a deterministic control.)For any initial positionr̃0 ∈ Gr,
the setR ⊂ C∞([0, 1];Gr) defined by

R :=
{

R̃ : R̃(0) = r̃0, R̃(1) = r∗,
∣

∣

∣

dR̃

dt

∣

∣

∣

∞
≤ 5ρ+

}

(29)

is non-empty. Furthermore, there exists anM1 > 0, which does not depend oñr0,
such that for anỹR ∈ R, there exists a continuous̃Z ∈ C([0, 1];RN ) such that

R̃ = Ψ(r0, Z̃) and |Z̃|∞ ≤M1 .

Next we notice that the map(r, Z) 7→ Ψ(r, Z) is continuous whenr belongs
to the good setG. For Z̃ ∈ C([0, T ];RN ) and constantsM,γ, δz > 0, define the
set

Z(Z̃,M, γ, δz) :=
{

Z : |Z(t)− Z̃(t)| ≤Me−γt + δz ∀ t ∈ [0, T ]
}

. (30)

Fact 2.8. (Continuity of the mapΨ.) Fix any r̃0 ∈ Gr, M2, T > 0 and δr ∈
(0, ǫ1/2) whereǫ1 is from (26). Suppose that̃Z ∈ C([0, T ];RN ) satisfies|Z̃|∞ ≤
M2. Then there exist constantsγ > 0, δ0 > 0 andδz > 0 such that

|Ψ(r0, Z)−Ψ(r̃0, Z̃)|∞ ≤ δr

for all (r0, Z) ∈
{

Gr ∩ {r : |r − r̃0| ≤ δ0}
}

×Z(Z̃,M2, γ, δz).

Finally, we observe that OU processes stay in a tubular neighborhood with
positive probability.

Fact 2.9. (Approximation by OU processes.)Let a setZ = Z(Z̃,M, γ, δz) be
given. Then there exists ap > 0 such that

inf
z0∈Gz

Pz0

{

Z ∈ Z
}

≥ p

whereZ = (Z1, . . . , ZN ) is the solution to(5) withZ(0) = z0.

With these observations we now prove Lemma 2.6.
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Proof of Lemma 2.6.Fix an initial conditionx0 = (r0, z0) ∈ G andδ > 0. The
argument proceeds in two steps. First we construct a boundeddeterministic control
Z̃ that accomplishes the task of moving its associated connector R̃ = Ψ(r0, Z̃)
from the initial positionr0 to the reference pointr∗ at timet = 1. Any instance of
the noiseZ that approximates̃Z sufficiently well, as in the definition ofZ above,
will have an associated connectorR = Ψ(r0, Z) that has a terminal positionR(1)
nearr∗. Demonstrating that such an event has positive probabilityis not sufficient
to prove (28). This is becauseZ(1) may not be close toZ∗ = 0. Therefore
in the second step of the proof we show that, conditioned on success during the
time interval t ∈ [0, 1], the noise has a positive probability of entering a small
neighborhood of the origin rapidly enough so that the connector process does not
move far fromr∗.

To make these statements precise, we set some notation. LetM1 be the constant
from Fact 2.7 andm/

√
η be the radius of theN -sphereGz. We defineM2 =

(m/
√
η)+M1. For a given tolerance,δr, which is set immediately before Equation

(35), we define the event

Ω1 := {|R(1) − r∗| ≤ δr, |Z(t)| ≤M2 + 1; ∀ t ∈ [0, 1]} . (31)

It is important to note thatM2 does not depend on the choice ofδr.
Taking t1 := 2 and assuming|R(1) − r∗| < δr is sufficiently small, we can

show that for anyt2 > 2, the event

Ω2 :=
{

|R(t)− r∗| < δ/2, |Z(t)| < δ/2; ∀ t ∈ [2, t2]
}

(32)

has positive probability. The structure of the proof is therefore summarized by:

inf
t∈[2,t2]

Pt(x0, Bδ(x∗)) ≥ Px0

{

Ω2

}

≥ Px0

{

Ω2 |Ω1

}

Px0

{

Ω1

}

≥ p2p1 (33)

for somep1 > 0 andp2 > 0 that are independent of the initial conditionx0 ∈ G.
We begin by showinginfx0∈G Px0{Ω1} ≥ p1. Let R̃ be a smooth path in

R which was defined in (29). By Fact 2.7 there exists a bounded deterministic
control Z̃ such thatR̃ = Ψ(r0, Z̃) over the intervalt ∈ [0, 1]. The initial value of
the control,Z̃(0), satisfies

|z0 − Z̃(0)| ≤ |z0|+ |Z̃(0)| ≤ (m/
√
η) +M1

where we recall thatm/
√
η is the radius ofGz. In order to apply Fact 2.8 we set

M2 = (m/
√
η) +M1 andT = 1 while noting thatR̃(0) = r0. Then for a given

δr > 0, there exist positive constantsγ1 andδz,1 such that if an instanceZ of the
noise satisfies

|Z(t)− Z̃(t)| ≤M2e
−γ1t + δz,1, ∀ t ∈ [0, 1] (34)
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then the corresponding connector processR = Ψ(r0, Z) satisfies

|R(t)− R̃(t)| ≤ δr, ∀ t ∈ [0, 1].

From Fact 2.9, it follows that

p1 := Pz0

{

Z : |Z(t)− Z̃(t)| ≤M2e
−γ1t + δz,1, ∀ t ∈ [0, 1]

}

> 0

andp1 does not depend onz0 or r0. We note that by virtue of the proof of Fact 2.8
δz,1 can be chosen to be less than or equal to 1. SettingM = M2 + 1 we have
shown thatinfx0∈G Px0{Ω1} ≥ p1.

Next we prove thatinfx0∈G Px0{Ω2 | Ω1} > 0. As mentioned earlier we must
show that ensuing at timet = 1, it is possible to rapidly bring the noise near
the origin without significantly perturbingR. To this end, we extend the previous
deterministic controlZ̃ to include the definitioñZ(t) = 0 for all t ∈ [1, t2]. We
also extend the definition of the associated connector so that R̃ = Ψ(r0, Z̃) is now
well-defined over the full intervalt ∈ [0, t2]. By hypothesis,̃R(1) = r∗ is a global
minimum of the spring potential and therefore the controlled process experiences
zero forcing from both the controlled noise and the spring potential. It follows that
R̃(t) = r∗ for all t ∈ [1, t2].

We seek to apply Fact 2.8 again to show thatR remains close tor∗ for all
t ∈ [1, t2]. Even thoughZ(1) is not necessarily close to the control initial value
Z̃(1) = 0, conditioned onΩ1, |Z(1)| ≤ M2 + 1. At this point, we fix the value
of δr > 0 given in the definition ofΩ1. By Fact 2.8, there exist positive constants
δz,2 ∈ (0, 1/2), γ2 > 0 andδr > 0 such that if the connector process satisfies
|R(1) − r∗| ≤ δr, and if an instance of the noise satisfies

|Z(t)| ≤ (M2 + 1)e−γ2(t−1) + δz,2, ∀ t ∈ [1, t2], (35)

we have|R(t) − r∗| ≤ δ/2, ∀ t ∈ [1, t2]. Conditioning onΩ1 and using the
Markov property of the system to shift time values appropriately, Fact 2.9 ensures
that the noise satisfies (35) with probabilityp2 > 0.

It remains to require that|Z(t)| < δ/2 for all t ∈ [2, t2]. From (35), it suffices
to find aγ3 ≥ γ2 sufficiently large thatexp(−γ3(t − 1)) + δz,2 ≤ δ/2 for all

t ∈ [2, t2]. Indeed, this is the case if we chooseγ3 ≥ ln
(

δ
2 − δz,2

)−1
and we are

done.

In order to complete the proof of the Uniformly Accessible Neighborhood Con-
dition of Lemma 2.4 we need to extend Lemma 2.6 to apply to all initial conditions
in C. To do this, we need the particle separation property from Lemma 2.5.
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Lemma 2.10(Topological irreducibility onC). Given aδ > 0, there exists at′1 > 0
so that for anyt ≥ t′1 there is anα′

1 > 0 with

inf
x0∈C

Pt(x0, Bδ(x∗)) ≥ α′
1

Proof. Sett′1 = t1+1wheret1 is the constant from Lemma 2.6 and letτ := inf{t >
0 : (R(t), Z(t)) ∈ G}. Now for anyt ≥ t′1 and fixedx0 ∈ B we have

Pt(x0, Bδ(x∗)) ≥
(

Px0{Xt ∈ Bδ(x∗)|τ ≤ 1}
)(

Px0{τ ≤ 1}
)

≥
(

inf
x∈G

inf
s∈[0,1]

Pt−s(x,Bδ(x∗))
)(

Px0{τ ≤ 1}
)

≥ α1Px0{τ ≤ 1}

whereα1 is from Lemma 2.6. Finally, we take theinf over all initial conditions
x0 ∈ B. Applying Lemma 2.5 withm = ψ(φ(ρ+)) andM = m/

√
η, we conclude

there exists anα > 0 such that

inf
x0∈B

Pt(x0, Bδ(x∗)) ≥ α1 inf
x0∈B

Px0{τ ≤ 1} ≥ α1α > 0.

Settingα′
1 = αα1 completes the proof.

2.3 Measure Theoretic Irreducibility via H örmander’s Condition

Lemma 2.11(Absolute continuity of the transition density). Let{X(t) = (R(t), Z(t))}t≥0

be a Markov process with transition kernelPt(x,U). Then for anyt > 0, there
exists a smooth functionpt(x, y), such that

Pt(x,U) =

∫

U
pt(x, y)dy

for everyU ∈ B(C), wherept(x, y) is jointly continuous in(x, y) ∈ C × C.

Remark2.12. In fact, the system has a density for all(x, y) ∈ X × X. However,
due to the periodicity of our forcing, proving this would require an additional small
argument. Since we do not need this fact, we refrain.

Proof. The claim follows from a now classical theorem of Hörmanderwhich states
that if a diffusion on an open manifold satisfies a certain algebraic condition then
L1 = ∂t−L andL2 = ∂t−L∗ are both hypoelliptic inC whereL is the generator
of the diffusionX(t) andL∗ is its adjoint. A combination of Itô’s formula and
the fact that we have shown that the singularities of the potential are unattainable
demonstrates thatL1u = 0 andL2u = 0 have distribution-valued solutions. Hy-
poellipticity of the operators ensures first that these distribution-valued solutions
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are in fact smooth functions. Furthermore, hypoellipticity implies the existence
of fundamental solution, which in turn yields continuity inthe second variable
throughout the center of the spaceC.

The fact that the density is jointly continuous follows after a little more work.
The argument is laid out in its entirety forRN valued diffusions in Section 7.4
of [Str08]. In particular, see Theorem 7.4.3 and Theorem 7.4.20. Essentially, the
same proofs follow in our setting since we have shown the system is a well defined
diffusion on the manifoldX with distribution-valued solution. Hypoellipticity and
the properties which follow are local statements, and therefore still apply. The
needed results in the general setting, as opposed toR

N , can be found in Chapter 22
of [Hör85], noting in particular Theorem 22.2.1. However,the presentation in
[Str08] is closer to the exact statements we need.

We now turn to the explicit calculations needed to show that Hörmander’s con-
dition is satisfied. We recast the system of equations (5) and(6) as

dX(t) = A(X(t)) dt +BdW (t)

whereA(x) ∈ R
2+N andB ∈ R

(2+N)×(2+N) with

A(x) =

(

−∇Φ(r) + S(r)z
−λ2ν|k|2Z

)

, B =

(

0 0

0 B̃

)

.

whereB̃ is anN × N diagonal matrix with diagonal entries
√
2βνλσk. In this

notation, the generatorL of the diffusion is given in terms of a test functionϕ by

(Lϕ)(x) = (A · ∇)ϕ(x) +
1

2

∑

k∈K
(Bk · ∇)2ϕ(x)

whereBk is the column ofB associated with the mode directionk ∈ K.
For two vector fieldsA,B let [A,B] := AB−BA denote their the commutator

or Lie bracket. In our simplified setting whereBk is a constant vector-field one has

[A(X), Bk ] =
∂

∂zk
A(X) =

(

sin(λk · R)k⊥|k|
−λ2ν|k|2 ek

)

whereek is the is the unit basis vector inRN = R
|K| associated to the mode

directionk ∈ K. Moreover all the iterated Lie brackets ofBk andA(x) are0.
Thus to satisfy the Hörmander’s condition at the pointx, it is required that

span
{

Bk, [A(x), Bk ] : k ∈ K
}

= R
2+N .
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The set{[A(x), Bk ]}k∈K will spanR2+N if and only if the set{sin(k · r)k⊥}k∈K
spansR2 since the set{ek : k ∈ K} spansRN . We recall that by assumptionK
contains at least three pairwise independent vectors whichwe labelk1, k2, andk3.
One may note that due to the periodicity of the forcing,sin(λk · r) = 0 for all
r ∈ LZ2. TakingL≫ ρ20 will ensure that all of these points lie outside ofC. Thus
restricting tox ∈ C at least two ofr · ki are nonzero and the lemma is proved.

2.4 Ergodicity of generalizations

In the derivation of the model equations (5) and (6) we imposed the simplifying
assumption that the center of massM(t) := 1

2(X1(t) + X2(t)) is held at zero
(see Appendix). This greatly simplified the presentation and did not affect the
conclusion that the bead-spring system has an ergodic connector processR(t).
Indeed the fluid velocity term with nonzeroM(t) is given by Eq. (41):

1

2
[u(X1(t), t)− u(X2(t), t)]

=
∑

k∈K
[cos(λk ·M)Zk − sin(λk ·M)Yk] sin(λk ·R)

k⊥

|k|

where the{Yk} are a second set of OU-processes defined exactly as the{Zk}.
Because theM terms appear inside of cosines and sines, there is no new signif-

icant contribution to the Lyapunov function calculation. For the Hörmander con-
dition, the additional terms in the coefficients of the noiseintroduce more “dead
spots” in the forcing, but still one needs onlyfour pairwise linearly independent
vectorski in the mode setK to ensure that at least two of the vectors

{

[cos(λki ·M)− sin(λki ·M)] sin(λki · R)k⊥i
}

are nonzero. This guarantees the existence of a continuous transition density and it
remains to show theδ-ball controllability as in Lemma 2.6. While the calculation is
more involved, the principle of identifying the region of good controlG, where the
coefficients of theR-differential equation are uniform, still applies. Furthermore,
since the differential equation forR is linear in the{Yk} and{Zk}, we may still
solve for stochastic control explicitly in terms of the desired pathΓ as long as the
new Stokes matrix is non-degenerate. Again, this is guaranteed by the hypothesis
thatK contains at least four pairwise linearly independent vectors.
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A Derivation of the model

In the overdamped, highly viscous regime, it is reasonable to neglect the nonlinear
term in Navier-Stokes equations [OR89]. Following [Wal86], [DZ92], [Dal99] and
[McK06] we have the stochastic PDE given in Section 1, Eq. 2,

∂tu(x, t)− ν∆u(x, t) +∇p(x, t) = F (dx, dt), ∇ · u(x, dt) = 0

with periodic boundary conditions on the rectangle[0, L] × [0, L] whereL is pre-
sumed to be very large. For this development (see also [SS02a]) we assume that
the space-time forcing is a mean zero complex-valued Gaussian process with co-
variance

E

[

Fα(x, t)F β(y, s)
]

= (t ∧ s)2kBTνδαβΓ(x− y)

whereα, β ∈ {1, 2} andδαβ is a Kronecker delta function. It follows that

F (x, t) =

√
2kBTν

L

∑

k∈Z2\0
eλik·xσkBk(t)

where{Bk} is a collection of complex-valued 2-d Brownian motions and the co-
efficientsσk are related to the spatial correlation functionΓ through the Fourier
relationΓ(x) = 2

L2

∑

k∈Z2\{0} e
λik·xσ2k. In order to construct a real-valued noise

of the form (4), one can setσ−k = σk andB−k = Bk and for allk.
To compute the Fourier transform of the SPDE, we note that thetransform of

the noise is given by
∫

[0,L]2
e−λik·xF (x, t)dx =

∫

[0,L]2
e−λik·x

√
2kBTν

L

∑

j∈Z2\0
eλij·xσjBj(t)dx

=

√
2kBTν

L

∑

j∈Z2\0
σjBj(t)

∫

[0,L]2
e−λi(k−j)·xdx

=
√

2kBTνL
∑

j∈Z2\0
σjBj(t)δkj =

√

2kBTν LσkBk(t).
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The SPDE transforms into the infinite dimensional system

dûk(t) + λ2ν|k|2ûk(t) + λikp̂k(t) =
√

2kBTνLσkdBk(t), (36)

λik · ûk(t) = 0. (37)

For the sake of completing the formal argument, suppose for the moment that the
forcing term is smooth with derivativef . By taking the dot product ofk with the
terms of equation (36), the first two terms vanish – via incompressibility condition
(37) – leaving the identity

λi|k|2p̂k(t) =
√

2kBTνLσkk · f(t). (38)

Substituting back into (36) and gatheringf(t) terms on the right-hand side yields

dûk(t) + λ2ν|k|2ûk(t) =
√

2kBTνLσk

(

f(t)− k · f(t)
|k|2 k

)

. (39)

The projection on the right hand side has two standard representations:

f − k · f
|f |2 k =

(

I − k ⊗ k

|k|2
)

f =
f · k⊥
|k|2 k⊥,

wherek⊥ :=
(−k2
k1

)

. Applying Duhamel’s principle and assuming initial condition
is taken from the stationary distribution, we have the following representation for
solutions to the fluid mode equations

ûk(t) = e−λ
2ν|k|2tûk(0) +

√

2kBTνσkL

∫ t

0
e−λ

2ν|k|2(t−s)
(

I − k ⊗ k

|k|2
)

dBk(t)

=
(

I − k ⊗ k

|k|2
)

ζk(t)

where we defineζk to be the appropriate complex valued 2-d Ornstein-Uhlenbeck
process,

dζk(t) = −λ2ν|k|2ζk(t)dt+
√

2kBTνLσkdBk(t)

with ζk(0) normally distributed according to the respective stationary distributions
for eachk. We therefore have the solution for the fluid velocity field,

u(x, t) =
1

L2

∑

k∈Z2\0
eλik·x

(

I − k ⊗ k

|k|2
)

ζk =
1

L2

∑

k∈Z2\0
eλik·x

ζk · k⊥
|k|2 k⊥.

After definingξk := 1
L2

ζk·k⊥
|k| , we have the complex valued 1-d OU processes that

drive the dynamics

dξk(t) = −4π2ν|k|2
L2

ξk(t)dt+

√
2kBTνσk
L

dWk(t)
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Imposing the condition that we require real-valued solutions, after Fourier inver-
sion we have the following trigonometric expansion for 2-d stochastic Stokes

u(x, t) =
∑

k∈Z2\0
(cos(λk · x)Yk + sin(λk · x)Zk)

k⊥

|k| . (40)

where theYk andZk are the real and imaginary parts ofξ respectively.
In this paper, we study the dynamics of the two beads in normalcoordinates:

M(t) = 1
2(X1(t) +X2(t)) andR(t) = 1

2(X1(t)−X2(t)),

d

dt
M(t) =

1

2
[u(X1(t), t) + u(X2(t), t)]

d

dt
R(t) = −∇Φ(R(t)) +

1

2
[u(X1(t), t)− u(X2(t), t)].

In light of equation (2), we may write the radial process and the noise together as
a Markovian system of SDE with two degenerate directions. Inorder to write the
system in this form, we first record the identity

1

2
[u(X1(t), t) − u(X2(t), t)] (41)

=
∑

k∈K
[cos(λk ·M(t))zk(t)− sin(λk ·M(t))yk(t)] sin(λk · R(t))

k⊥

|k| .

For the majority of the paper, we used the simplificationM(t) = 0 for all t. This
does not have any effect on the ergodic results as is discussed in Section 2.4, but it
does significantly streamline the presentation. Altogether we have the definition of
the dynamics given in Section 1, Eq. (6).

A.1 Degeneracy when there is no repulsive force

Putting aside existence and uniqueness for a moment, we makea quick calcula-
tion that reveals a degeneracy for the bead-spring model with a Hookean or FENE
spring potential with truncated stochastic Stokes forcing. Namely, under mild con-
ditions, when the two beads come close together, the fluid velocity vectors they
respectively see will become so correlated, the beads will never separate.

Proposition A.1 (Degeneracy of the non-repulsive case). Let R and the family
{Zk}k∈K satisfy the system of differential equations(5) and (6). Let the spring
potential be given byΦ(r) = γ

2 |r|2 or Φ(r) = ΦFENE(r) as defined by(9). Then
there exists aγ0 so that ifγ > γ0 then

lim
t→∞

R(t) = 0

almost surely.

24



Proof. We first note that for allr satisfying|r| ∈ (0, ρmax)

∇ΦFENE(r) · r =
γ|r|2

1− |r|2/ρ2max
≥ γ|r|2.

It follows that both the Hookean and FENE potential cases, the process|R(t)|2
satisfies the following pathwise ODE bound,

d

dt
|R(t)|2 = −2∇Φ(R(t)) · R(t) + 2

∑

k∈K
sin(λk ·R(t)) k

⊥ · R(t)
|k| Zk(t)

≤ −2γ|R(t)|2 + 2λ
∑

k∈K
|k · R(t)||k⊥ ·R(t)| |Zk(t)||k|

≤ −2γ|R(t)|2 + 2λ|R(t)|2‖Z(t)‖1
where‖Z(t)‖1 :=

∑

k∈K |k||Zk(t)|.
This differential inequality implies

|R(t)|2 ≤ |R(0)| exp
[

−2γt+ 2λ

∫ t

0
‖Z(s)‖1ds

]

. (42)

Recall that in its stationary distribution, the law of eachZk(t) is normal with mean

zero and varianceβσ2k/|k|2 and thereforeE[|Zk|] =
√

2β
π
σk
|k| . By the Law of Large

Numbers

lim
t→∞

1

t

∫ t

0
|Zk(s)|ds =

√

2β

π

σk
|k| (43)

almost surely and so

lim
t→∞

1

t

∫ t

0
‖Z(s)‖1ds =

√

2β

π

∑

k∈K
σk

almost surely. Since we are only considering a finite number of modes, the above

sum is finite. Therefore, ifγ > γ0 := λ
√

2β
π

∑

k σk, then |R(t)|2 → 0 almost
surely ast→ ∞.

A.2 A note on the mollifier function ψ

Recall the mollifier functionψ that appeared in the Lyapunov function (14) and in
the global estimate in the existence and uniqueness Proposition A.3,

ψ(x) :=

{

0, 0 ≤ x ≤ a,
c (x− a) exp

( −1
(x−a)2

)

, x > a.
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wherea = Φ(ρ0). Sincelimx→0 x
αe−1/x2 = 0 for anyα ∈ R, it follows that for

anyn ∈ N, then-th derivative ofψ satisfieslimx→a ψ
(n)(x) = 0. Thereforeψ

and all of its derivatives are continuous for allx ∈ R+. Furthermore, we have the
following proposition.

Proposition A.2. There exists a constantC > 0 such that

ψ(x) ≤ xψ′(x) ≤ ψ(x) + C (44)

for all x ∈ R+. Furthermore,‖ψ′‖∞ <∞

Proof. This is trivially true for allx ∈ [0, a], sinceψ(x) = xψ′(x) = 0 for all x in
this range. Forx > a, we compute thatxψ′(x) = ψ(x)+r(x) where the remainder
term is given byr(x) = c

(

a+ 2x(x− a)−2
)

exp
(

−(x− a)−2
)

. This remainder
term is always positive, is continuous for allx > a and satisfieslimx→a r(x) = 0
andlimx→∞ r(x) = a. It follows that there exists aC > 0 for all x ≥ a we have
0 ≤ r(x) ≤ C. The inequalities (44) follow.

A.3 Existence, uniqueness of the bead-spring model

We confirm the global existence and uniqueness of the bead-spring model proposed
by Equations (5) and (6). Since we assume that|K| = N ∈ N throughout the main
part of this paper, we retain that assumption here.

Proposition A.3. Suppose that the spring potentialΦ satisfies Assumption 1. Let
{Zk(t) : t ≥ 0}k∈K be a solution to the family of SDEs(5) with initial conditions
Zk(0) = zk ∈ R for all k ∈ K. Then, almost surely, there exists a unique global
solution to the 2-dimensional ODE

d

dt
R(t) = −∇Φ(R(t)) +

∑

k∈K
sin(λk · R(t)) k

⊥

|k|Zk(t) (45)

with the initial conditionR(0) = r0 ∈ D \ {0}.

Proof. Let ǫ > 0 be given and define the stopping stopping timeτǫ := inf{t > 0 :
|R(t)| < ǫ orψ(Φ(R(t))) > ǫ−1} whereψ is the function defined in the previous
section. We will first prove there exists a unique stopped solutionR(t∧ τǫ) to (45).
Subsequently we show thatsup{τǫ} = ∞ almost surely.

We rewrite (45) in terms of the Stokes matrix defined by (7),

d

dt
R(t) = −∇Φ(R(t)) + S(R(t))Z(t). (46)
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In order to apply the standard Picard-Lindelöf Theorem (see for example, [Hal69]),
we think of the vectorZ(t) = (Z0(t), Z1(t), . . . , ZN (t)) as a time-inhomogeneous
coefficient. To prove that there exists a unique local solution to (45) it is sufficient
to show that the functions∇Φ(r) andS(r)Z(t) are continuous inD × R+ \ {0×
R+} and locally Lipschitz in the variabler. By Assumption 1, this condition is
satisfied by∇Φ(r). For the last term in (46), given an instance ofZ, we have

|S(r1)Z(t)− S(r2)Z(t)| ≤
∑

k∈K
| sin(λk · r1)− sin(λk · r2)||Zk(t)|

≤ λ|r1 − r2|‖Z(t)‖1
where we recall‖Z(t)‖1 :=

∑

k∈K |k||Zk(t)|. The functionS(r)Z(t) is continu-
ous int almost surely since|S(r)Z(t1)− S(r)Z(t2)| ≤ ‖S(r)‖F |Z(t1)− Z(t2)|
and the vector OU processZ(t) is continuous almost surely.

We now show that the process cannot blow up toρmax in finite time. To this
end we consider the processψ(Φ(R(t))) which is constant inside a radius of size
ρ0 but then grows to infinity with the potential function as|R| tends toρmax. By
showingψ(Φ(R(t))) is bounded above by a 1-d linear ODE, this suffices to show
global existence and uniqueness. For a given instance of thenoiseZ(t), we have

d

dt
ψ(Φ(R(t))) = ψ′(Φ(R(t)))

(

−|∇Φ(R(t))|2 +∇Φ(R(t)) · [S(R(t))Z(t)]
)

For given valuesr ∈ R
2 andz ∈ R

N we bound the Stokes forcing term by applying
Young’s inequality followed by the matrix form of Cauchy-Schwarz:

∇Φ(r) · (S(r)z) ≤ 1

2
|∇Φ(r)|2 + 1

2
|S(r)z|2 ≤ 1

2
|∇Φ(r)|2 + 1

2
‖S(r)‖2F |z|2

≤ 1

2
|∇Φ(r)|2 + 1

2
N2|z|2.

The inequality‖S(r)‖F ≤ N is given in the proof of Lemma 2.5.
To estimate the first term of the mollified ODE, we consider twocases: (i)

|r| ≤ ρ0 and (ii) |r| > ρ0. In case (i),ψ′(Φ(r)) = 0 and the entire term disappears.
Trivially, −ψ′(Φ(r))|∇Φ(r)|2 = 0 = −γψ(Φ(r)).

For case (ii), we employ the spring potential assumption (11) that for some
γ > 0 if |r| > ρ0 then|∇Φ(r)|2 ≥ γΦ(r). Furthermore, by Proposition A.2, the
mollifier ψ satisfiesψ′(Φ(r))Φ(r) ≥ ψ(Φ(r)). We obtain

−ψ′(Φ(r))|∇Φ(r)|2 ≤ −γψ′(Φ(r))Φ(r) ≤ −γψ(Φ(r)). (47)

Altogether, we have the differential inequality

d

dt
ψ(Φ(R(t))) ≤ −γ

2
ψ(Φ(R(t))) +

N2

2
‖ψ′‖∞|Z(t)|2 (48)
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DefineY (t) to be the solution to the linear ODE

d

dt
Y (t) = −γ

2
Y (t) +

N2

2
‖ψ′‖∞|Z(t)|2

with Y (0) = ψ(Φ(R(0)). By definition,ψ(Φ(R(t)) ≤ Y (t). By virtue of the fact
that the forcing term is positive,Y (t) > 0 for all t and, definingτM = inf{t >
0 : Y (t) > M}, standard properties of linear ODEs and global existence ofthe
N -dimensional Ornstein-Uhlenbeck imply thatsupM>0 τM = ∞.

We now show thatsupǫ>0 τǫ = ∞ almost surely by demonstrating that the
R-dynamics do not hit zero in finite time. The idea here is that for the connecter
process to hit zero, the noise must blow up in finite time and this is not possible
since our noise is bounded on any finite time interval. Indeed, by Assumption 1,
there existsǫ0 > 0 such that−∇Φ(r) · r ≥ γ0 > 0 for all r with |r| < ǫ0.
SupposeR(T ) = 0 for someT ∈ R+. From the above discussion and Equation
(45) it follows that ddt |R(t)|2 is almost surely continuous. Thusddt |R(t)|2 < 0 in
a subinterval of the set[T − δ, T ] for someδ > 0. Without loss of generality, we
may assume that|R(t)| < ǫ0 for [T − δ, T ]. LetM := supt∈[T−δ,T ] ‖Z(t)‖1. In
this regime, we have

d

dt
|R(t)|2 = −2∇Φ(R(t)) · R(t) + 2

∑

k∈K
sin(λk ·R(t)) k

⊥ ·R(t)
|k| Zk(t)

≥ 2γ0 − 2λ
∑

k∈K
|k ·R(t)||k⊥ · R(t)| |Zk(t)||k| ≥ 2γ0 − 2λMN |R(t)|2.

However, the right-hand side is positive when|R(t)|2 ≤ γ0/(λMN), contradicting
the hypothesis thatddt |R(t)|2 < 0 in a subinterval of[T−δ, T ] when|R(t)| is small
enough. Therefore the origin is unattainable in finite time.

A.4 The Lyapunov function

The proof for the Lyapunov estimate, Lemma 2.3, proceeds similarly to the proof
of the upper bound in the Existence and Uniqueness Proposition A.3. The only
differences arise from the need to treat theR(t) andZ(t) dynamics simultaneously.
For the sake of easy reference, we recall the definition of theLyapunov function
V (r, z) = ψ(Φ(r))+η|z|2 whereψ is defined in Section A.2 andη is to be defined
in the following proof.

Proof of Lemma 2.3.The generatorL for the Markov processX(t) := (R(t), Z(t))
is given by

L := (−∇Φ(r) + S(r)z) · ∇r + νλ2
(

∑

k∈K
−|k|2zk

∂

∂zk
+ βσ2k

∂2

∂z2k

)
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It suffices to find ana > 0 andb > 0 such that

LV (x) ≤ −aV (x) + b. (49)

From (49), using Ito’s formula and Gronwall’s inequality one can show that(PtV )(x) ≤
e−atV (x) + b/a. Thus we havec0 = e−at with c1 = b/a. The restriction on the
constants(c0, c1, ρ+) from Theorem 2.2 (in light of of the definition ofC in Equa-
tion 18) translates to the following constraint on(a, b, ρ+):

b <
1

2
aψ(φ(ρ+))(1 − e−at). (50)

Applying L to the Lyapunov functionV yields:

LV (r, z) = ψ′(Φ(r))
(

−|∇Φ(r)|2 + (S(r)z) · ∇Φ(r)
)

+ 2ηνλ2
∑

k∈K

(

−|k|2z2k + βσ2k
)

.

In bounding the Stokes forcing term we must make a slightly sharper estimate than
the one used in the proof of Proposition A.3. We apply Young’sinequality (with
δ ∈ (0, 1) to be chosen below) followed by the matrix form of Cauchy-Schwarz
and the inequality‖S(r)‖F ≤ N which is given in the proof of Lemma 2.5:

(S(r)z) · ∇Φ(r) ≤ 1

4δ
|S(r)z|2 + δ|∇Φ(r)|2 ≤ 1

4δ
N2|z|2 + δ|∇Φ(r)|2.

Denotingk̂ := mink∈K{|k|} and‖σ‖20 =
∑

k∈K σ
2
k, after collecting terms we have

LV (x) ≤ −(1− δ)ψ′(Φ(r))|∇Φ(r)|2 + 2ηνλ2β‖σ‖20 (51)

+ (N2ψ′(Φ(r))/4δ − 2ηνλ2k̂2)|z|2.

We estimate the first term as in the proof of Proposition A.3 equation 47,−(1−
δ)ψ′(Φ(r))|∇Φ(r)|2 ≤ −(1− δ)γψ(Φ(r)) for all r ∈ R

2.
Regardless of the value ofr, we require that the coefficient of|z|2 in (51)

satisfy the constraintN2ψ′(Φ(r))/4δ− 2ηνλ2k̂2 ≤ −ηγ(1− δ), which is true for
all η satisfying

η ≥ N2

2νλ2k̂2 − γ(1− δ)

‖ψ′(·)‖∞.
4δ

(52)

By choosing theδ close to 1, we can ensure that the denominator is positive. Ap-
plying these estimates, Equation (51) becomes

LV ≤ −(1− δ)γV + 2ηνλ2β‖σ‖20.
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Our final restriction involves the constant terms given in Equation (50), with
a = (1− δ)γ andb = 2ηνλ2β‖σ‖20. We obtain the constraint

η ≤ (1− δ)γψ(φ(ρ+))(1 − e−(1−δ)γt)

4νλ2β‖σ‖20
. (53)

Sincet ≥ 1 it is enough to haveη ≤ (1−δ)γψ(φ(ρ+))(1−e−(1−δ)γ )
4νλ2β‖σ‖20

. Combining (52)

and (53), we need to findη such that

N2‖ψ′(·)‖∞
4δ(2νλ2k̂2 − γ(1− δ))

≤ η ≤ (1− δ)γψ(φ(ρ+))(1 − e−(1−δ)γ)

4νλ2β‖σ‖20
. (54)

At this point, all parameters have been fixed except for the choice of the constant
c in the definition ofψ, and the choice ofρ+. By choosingc to be sufficiently
small, we can diminish‖ψ′‖∞ enough that the left hand side is less than1/4.
Subsequently we observe that regardless of the value ofc, limρ→ρmax ψ(ρ) = ∞
and so we can chooseρ+ in such a way that the right-hand side is arbitrarily large.
For simplicity, we pick it so that the right-hand side is 1/2.

B Topological Irreducibility

Proof of Fact 2.7 .Any two pointsr0 and r∗ in Gr can be connected by a path
consisting of two parts,r0 → |r∗|r0/|r0| → r∗, a line segment (connectingr0 to
|r∗| r0/|r0|) and then a circular arc (connecting|r∗| r0/|r0| to r∗). The length of
the linear segment is less thanρ0 and the length of the circular arc will be less than
πρ0. Qualitatively speaking, by smoothing out the corner, there exists a smooth
curve fromr0 to r∗ with arclength less than(1 + π)ρ0. It follows that there exists
a parametrizatioñR of such a curve, and furthermore, theR defined by Equation
(29) in the statement of Fact 2.7 in non-empty.

Given thisR̃, we consider the linear (iñZ) system

d

dt
R̃(t) = −∇Φ(R̃(t)) + S(R̃(t))Z̃(t)

for everyt ∈ [0, 1]. There exists a unique minimal norm solution

Z̃(t) = S†(R̃(t))
(

∇Φ(R̃(t)) +
d

dt
R̃(t)

)

whereS† := S∗(SS∗)−1 is the Moore-Penrose pseudoinverse [BIG80] andS∗ is
the transpose ofS. We claim thatZ̃ is continuous and therefore bounded over the
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intervalt ∈ [0, 1]. Indeed, by hypothesis, both∇Φ(R̃) and d
dtR̃ are continuous, so

we only must show thatS†(R̃(·)) is continuous.
As a finite sum of sines,S is a continuous function onR2. It follows that both

S∗ andSS∗ are continuous as well, and(SS∗)−1 is continuous in any domain
in which its determinant satisfies|det(S(r)S∗(r))| > 0 for all r in the domain.
BecauseSS∗ is a2× 2 matrix

SS∗ =

(

|S1|2 S1 · S2
S1 · S2 |S2|2

)

whereS1 andS2 are the first and second rows ofS respectively, the determinant
simplifies todet(S(r)) = |S1(r)|2|S2(r)|2

(

1 − cos2(θ(r))
)

whereθ is the angle
between the vectorsS1 andS2. Noting thatθ is a continuous function ofr while
recalling that eachSi(r) is continuous and thatGr is compact, it suffices to show
that thatS1(r) andS2(r) are linearly independent for allr ∈ GR. Because the
row space and column space of a matrix have the same dimension, this reduces
to showing the column rank ofS(r) is two. This follows immediately from the
hypothesis that the active mode vector setK contains at least three pairwise linearly
independent vectors, which we labelk1, k2 and k3. Among the three columns
{sin(λkj · r)k⊥j }3j=1 at most one of the sine coefficients is zero, leaving at least
two linearly independent columns.

We conclude that the control̃Z(·) is well-defined, continuous and has a mag-
nitude which is bounded above by

|Z̃(t)| ≤M1 := sup
r∈Gr

‖S†(r)‖F (|∇Φ(r)|+ 5ρ+)

for all t ∈ [0, 1].

Proof of Fact 2.8.Let the constantsδr ∈ (0, ǫ1/2), T > 0 andM2 > 0 be given.
SupposeZ̃ ∈ C([0, T ],RN ) is a deterministic control with|Z|∞ ≤ M2 such that
R̃ = Ψ(r̃0, Z̃) satisfiesR̃(t) ∈ Gr for all t ∈ [0, T ].

We will show that there exist positive constantsγ, δ0, andδz such that if|r0 −
r̃0| ≤ δ0 andZ(·) ∈ Z(Z̃,M2, γ, δz), then

sup
t∈[0,T ]

|R(t)− R̃(t)| ≤ δr. (55)

To this end, defineH(t) := R(t)− R̃(t). ThenH satisfies the integral equation

H(t) = H(0)+

∫ t

0
∇Φ(R(s))−∇Φ(R̃(s))ds+

∫ t

0
S(R(s))Z(s)−S(R̃(s))Z̃(s)ds
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As functions ofR, both∇Φ andS are locally Lipschitz. LetG+
r ⊂ R

2 be the
annulus centered at the origin with inner radiusǫ1/2 and outer radiusρ0 + ǫ1/2.
Although the deterministic control is defined so thatR̃ stays inGr, instances of a
the actual connector processR may wander slightly out of the good region. It is
with respect to this enlarged set that we take the local Lipschitz constants,λΦ > 0
andλS > 0 such that for allr, r̃ ∈ G+,

|∇Φ(r)−∇Φ(r̃)| ≤ λΦ|r − r̃|, ‖S(r)− S(r̃)‖F ≤ λS |r − r̃|.

Observing that|S(r)z−S(r̃)z̃| ≤ λS |r− r̃||z|+ ‖S(r̃)‖F |z− z̃| for all r, r̃ ∈ G+
r

yields

|H(t)| ≤ |H(0)|+
∫ t

0
(λΦ + λS |Z(s)|)|H(s)|ds +

∫ t

0
‖S(R̃(s))‖F |Z(s)− Z̃(s)|ds.

By virtue of the assumption thatZ ∈ Z(Z̃,M2, γ, δz), defined in (30) the second
integral satisfies the bound

∫ t

0
‖S(R̃(s))‖F |Z(s)− Z̃(s)|ds ≤ sup

r∈Gr

‖S(r)‖F
∫ t

0
M2e

−γs + δzds,

and so after simplifying we have|H(t)| ≤
∫ t
0 β|H(s)|ds + g(t) whereβ = λΦ +

(2M2 + δz)λS andg(t) = δ0 + supr∈G ‖S(r)‖F
(

M2
γ + δzt

)

. Using the integral

form of Gronwall’s Inequality yields|H(t)| ≤ g(t) +
∫ t
0 g(s)βe

β(t−s)ds. After
substituting in the values ofg andβ and integrating, we see that for allt ∈ [0, T ],

|H(t)| ≤
[

δ0 + sup
r∈Gr

‖S(r)‖F
(M2

γ
+

δz
λΦ +M2λS

)]

e(λΦ+M2λS)T

Takingδ0 andδz sufficiently small while takingγ sufficiently large yields (55).

Proof of Fact 2.9.Let the constantsγ > 0, δz > 0 andM > 0 be given, along
with Z̃ ∈ C([0, T ];RN ) satisfying |Z̃|∞ < M . As in the proof of Lemma
2.5 the noise vectorZ(t) = (Z1(t), Z2(t), . . . , ZN (t)) can be writtenZ(t) =
e−Λtz0+

∫ t
0 e

−Λ(t−s)BdW (s) whereΛ is a diagonal matrix whose entries{λk}k∈K
are given byλk := λ2ν|k|2 andB is a diagonal matrix whose entries{bk}k∈K are
given by

√
2βνλσk.

Again view the stochastic integral as a time change of a Brownian motion. As
beforeMk(t) :=

∫ t
0 e

λksbkdWk(s) is a continuous martingale with quadratic vari-
ation 〈Mk,Mk〉t = b2k(e

2λkt − 1)/2λk , we observe that for anyt > 0, Mk(t) has
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the same distribution as̃W (〈Mk,Mk〉t) whereW̃ is a standard Brownian motion.
For any continuous curveΓ with Γ(0) = 0, T̃ > 0 andδ > 0

P

{

sup
t∈[0,T̃ ]

|W̃ (t)− Γ(t)| ≤ δ
}

> p̃

for somep̃ > 0 (see [Dur96] for example). Since we have assumed there are only
a finite number of active modes, and the modes are independent, Fact 2.9 follows
immediately from the union bound.
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