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Yet another look at Harris’ ergodic theorem
for Markov chains

Martin Hairer and Jonathan C. Mattingly

The aim of this note is to present an elementary proof of a variation of Harris’
ergodic theorem of Markov chains. This theorem, dating backto the fifties [Har56] es-
sentially states that a Markov chain is uniquely ergodic if it admits a “small” set (in a
technical sense to be made precise below) which is visited infinitely often. This gives
an extension of the ideas of Doeblin to the unbounded state space setting. Often this is
established by finding a Lyapunov function with “small” level sets [Has80, MT93]. If
the Lyapunov function is strong enough, one has a spectral gap in a weighted supremum
norm [MT92, MT93]. In particular, its transition probabilities converge exponentially fast
towards the unique invariant measure, and the constant in front of the exponential rate is
controlled by the Lyapunov function [MT93].

Traditional proofs of this result rely on the decompositionof the Markov chain into
excursions away from the small set and a careful analysis of the exponential tail of the
length of these excursions [Num84, Cha89, MT92, MT93]. There have been other vari-
ations which have made use of Poisson equations or worked at getting explicit constants
[KM05, DMR04, DMLM03]. The present proof is very direct, andrelies instead on intro-
ducing a family of equivalent weighted norms indexed by a parameterβ and to make an
appropriate choice of this parameter that allows to combinein a very elementary way the
two ingredients (existence of a Lyapunov function and irreducibility) that are crucial in
obtaining a spectral gap. Use of a weighted total-variationnorm has been important since
[MT92].

The original motivation of this proof was the authors’ work on spectral gaps in
Wasserstein metrics. The proof presented in this note is a version of our reasoning in
the total variation setting which we used to guide the calculations in [HM08]. While we
initially produced it for this purpose, we hope that it will be of interest in its own right.

1. Setting and main result

Throughout this note, we fix a measurable spaceX and a Markov transition kernelP(x, ·)
on X. We will use the notationP for the operators defined as usual on both the set of
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bounded measurable functions and the set of measures of finite mass by

(

Pϕ
)

(x) =

∫

X

ϕ(y)P(x, dy) ,
(

Pµ
)

(A) =

∫

X

P(x, A)µ(dx) .

Hence we are usingP both to denote the action on functions and its duel action on mea-
sure. Note thatP extends trivially to measurable functionsϕ : X → [0, +∞]. We first
assume thatP satisfies the following geometric drift condition:

Assumption1. There exists a functionV : X → [0,∞) and constantsK ≥ 0 and
γ ∈ (0, 1) such that

(PV )(x) ≤ γV (x) + K , (1)

for all x ∈ X.

Remark1.1. One could allowV to also take the value+∞. However, since we do not
assume any particular structure onX, this case can immediately be reduced to the present
case by replacingX by {x : V (x) < ∞}.

Assumption 1 ensures that the dynamics enters the “center” of the state space reg-
ularly with tight control on the length of the excursions from the center. We now assume
that a sufficiently large level set ofV is sufficiently “nice” in the sense that we have a
uniform “minorization” condition reminiscent of Doeblin’s condition, but localized to the
interior of the level set.

Assumption2. There exists a constantα ∈ (0, 1) and a probability measureν so that

inf
x∈C

P(x, · ) ≥ αν( · ) ,

with C = {x ∈ X : V (x) ≤ R} for someR > 2K/(1 − γ) whereK andγ are the
constants from Assumption 1.

In order to state the version Harris’ theorem under consideration, we introduce the
following weighted supremum norm:

‖ϕ‖ = sup
x

|ϕ(x)|

1 + V (x)
. (2)

With this notation at hand, one has:

Theorem 1.2. If Assumptions 1 and 2 hold, thenP admits a unique invariant measure
µ⋆. Furthermore, there exist constantsC > 0 andγ ∈ (0, 1) such that the bound

‖Pnϕ − µ⋆(ϕ)‖ ≤ Cγn‖ϕ − µ⋆(ϕ)‖

holds for every measurable functionϕ : X → R such that‖ϕ‖ < ∞.

While this result is well-known, the proofs found in the literature are often quite
involved and rely on careful estimates of the return times tosmall sets, combined with a
clever application of Kendall’s lemma. See for example [MT93, Section 15].

The aim of this note is to provide a very short and elementary proof of Theorem 1.2
based on a simple trick. Instead of working directly with (2), we define a whole family of
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weighted supremum norms depending on a scale parameterβ > 0 that are all equivalent
to the original norm (2):

‖ϕ‖β = sup
x

|ϕ(x)|

1 + βV (x)
.

We also define the associated dual metricρβ on probability measures given by

ρβ(µ1, µ2) = sup
ϕ:‖ϕ‖β≤1

∫

X

ϕ(x)
(

µ1 − µ2

)

(dx) . (3)

It is well-known thatρβ is nothing but a weighted total variation distance:

ρβ(µ1, µ2) =

∫

X

(

1 + βV (x)
)

|µ1 − µ2|(dx) .

With these notations, our main result is:

Theorem 1.3. If Assumptions 1 and 2 hold, then there existsᾱ ∈ (0, 1) andβ > 0 so that

ρβ(Pµ1,Pµ2) ≤ ᾱρβ(µ1, µ2)

for any probability measureµ1 andµ2 onX. In particular, for anyα0 ∈ (0, α) andγ0 ∈
(γ+2K/R, 1) one can chooseβ = α0/K andᾱ = (1−(α−α0))∨(2+Rβγ0)/(2+Rβ).

Remark1.4. The interest of this result lies in the fact that it is possible to tuneβ in such a
way thatP is a strict contraction for the distanceρβ . In general, this doesnot imply that
P is a contraction forρ1, say, even though the equivalence of the norms‖ · ‖β does of
course imply that there existsn > 0 such thatPn is such a contraction.

2. Alternative formulation of metric ρβ

We now introduce an alternative definition of the weighted total variation normρβ. We
begin by defining a metricdβ between points inX by

dβ(x, y) =

{

0 x = y

2 + βV (x) + βV (y) x 6= y

Though sightly odd looking, the reader can readily verify that sinceV ≥ 0, dβ indeed
satisfies the axioms of a metric. This metric in turn induces aLipschitz seminorm on
measurable functions and a metric on probability measures defined respectively by

|||ϕ|||β = sup
x 6=y

|ϕ(x) − ϕ(y)|

dβ(x, y)
,

dβ(µ1, µ2) = sup
ϕ:|||ϕ|||β≤1

∫

ϕ(x)
(

µ1 − µ2

)

(dx) .

It turns out that these norms are almost identical to the onesfrom the previous section.
More precisely, one has:

Lemma 2.1. One has the identity|||ϕ|||β = infc∈R ‖ϕ + c‖β. In particular,dβ = ρβ .
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Proof. It is obvious that|||ϕ|||β ≤ ‖ϕ‖β and therefore|||ϕ|||β ≤ infc∈R ‖ϕ + c‖β, so it
remains to show the reverse inequality.

Given anyϕ with |||ϕ|||β ≤ 1, we setc = infx
(

1 + βV (x)−ϕ(x)
)

. Observe that for
anyx andy, ϕ(x) ≤ |ϕ(y)| + |ϕ(x) − ϕ(y)| ≤ |ϕ(y)| + 2 + βV (x) + βV (y). Hence
1 + βV (x) − ϕ(x) ≥ −1 − βV (y) − |ϕ(y)|. Since there exists at least one point with
V (y) < ∞ we see thatc is bounded from below and hence|c| < ∞.

Observe now that

ϕ(x) + c ≤ ϕ(x) + 1 + βV (x) − ϕ(x) = 1 + βV (x) ,

and

ϕ(x) + c = inf
y

ϕ(x) + 1 + βV (y) − ϕ(y)

≥ inf
y

1 + βV (y) − |||ϕ|||β · dβ(x, y) ≥ −(1 + βV (x)) ,

so that|ϕ(x) + c| ≤ 1 + βV (x) as required.
It follows that the sets{ϕ : ‖ϕ‖β ≤ 1} and{ϕ : |||ϕ|||β ≤ 1} only differ by additive

constants, so that one has indeeddβ = ρβ . �

Remark2.2. Note that of coursedβ = ρβ only for probability measures, or at least
positive measures of equal mass. Otherwise,dβ is +∞ in general, whileρβ need not be.

3. Proof of main theorem

Theorem 3.1. If Assumptions 1 and 2 hold there exists anᾱ ∈ (0, 1) andβ > 0 such that

|||Pϕ|||β ≤ ᾱ|||ϕ|||β .

Actually, settingγ0 = γ + 2K/R < 1, for anyα0 ∈ (0, α) one can chooseβ = α0/K
andᾱ = (1 − α + α0) ∨ (2 + Rβγ0)/(2 + Rβ).

Proof. Fix a test functionϕ with |||ϕ|||β ≤ 1. By Lemma 2.1, we can assume without loss
of generality that one also has‖ϕ‖β ≤ 1. The claim then follows if we can exhibit̄α < 1
so that

|Pϕ(x) − Pϕ(y)| ≤ ᾱdβ(x, y) .

If x = y, the claim is true. Henceforth we assumex 6= y. We begin by assuming
thatx andy are such that

V (x) + V (y) ≥ R . (4)

Fixing γ0 as in the statement of the theorem, for anyβ > 0 we setγ1 = (2+βRγ0)/(2+
βR). Observe that forβ ∈ (0, 1) andR > 0, one hasγ1 ∈ (γ0, 1). With these choices,
we have from (1) and (2) the bound

|Pϕ(x) − Pϕ(y)| ≤ 2 + βPV (x) + βPV (y)

≤ 2 + βγV (x) + βγV (y) + 2βK

≤ 2 + βγ0V (x) + βγ0V (y)

≤ 2γ1 + βγ1V (x) + βγ1V (y) = γ1dβ(x, y) .
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The third line follows from our choice ofγ0 and the fact that by (4) we know that2K ≤
(γ0−γ)(V (x)+V (y)). The last line follows from the fact that2(1−γ1) = βR(γ1−γ0) ≤
β(γ1 − γ0)(V (x) + V (y)) given our choice ofγ1. We emphasise that up to nowβ could
be any positive number; only the precise value ofγ1 depends on it (and gets “worse” for
small values ofβ). The second part of the proof will determine a choice ofβ > 0.

Now consider the case ofx andy such thatV (x) + V (y) ≤ R and hencex, y ∈ C.
For suchx andy we define the Markov transitioñP by P̃(x, · ) = 1

1−α
P(x, · ) −

α
1−α

ν( · ). Now we havePϕ(x) = (1 − α)P̃ϕ(x) + α
∫

ϕdν andPϕ(y) = (1 −

α)P̃ϕ(y)+ α
∫

ϕdν. Subtracting the second of these expressions from the first and using
that sinceV is a non-negative functioñPV (x) ≤ 1

1−α
PV (x) produces

|Pϕ(x) − Pϕ(y)| = (1 − α)
∣

∣P̃ϕ(x) − P̃ϕ(y)
∣

∣

≤ (1 − α)2 + (1 − α)β(P̃V (x) + P̃V (y))

≤ (1 − α)2 + β(PV (x) + PV (y))

≤ (1 − α)2 + γβV (x) + γβV (y) + 2βK .

Hence fixingβ = α0/K for anyα0 ∈ (0, α) and setting andγ2 = (1 − (α − α0)) ∨ γ ∈
(0, 1) produces

|Pϕ(x) − Pϕ(y)| ≤ 2(1 − (α − α0)) + γβV (x) + γβV (y)

≤ γ2dβ(x, y) .

Settingᾱ = γ1 ∨ γ2 and recalling thatγ1 ≥ γ concludes the proof. �

Theorem 1.3 now follows as a corollary sincedβ = ρβ anddβ is the norm dual
to ||| · |||β . In order to conclude that Theorem 1.2 holds, it only remainsto show that our
assumptions imply that an invariant measureµ⋆ actually exists and that the integral ofV
with respect toµ⋆ is finite.

3.1. Existence of an invariant measure

We have already shown that Assumptions 1 and 2 allow to prove that for someβ > 0,
P is a strict contraction in the weighted total variation metric ρβ defined by (3). We now
show that the same assumptions are also sufficient to ensure the existence of an invariant
measure:

Theorem 3.2. If Assumptions 1 and 2 hold then there exists a probability measureµ∞ on
X such that

∫

V dµ∞ < ∞ and which is invariant in thatPµ∞ = µ∞.

Proof. Fixing anyx ∈ X, for n ∈ N defineµn = Pnδx. By Theorem 1.3, we know that
for someᾱ ∈ (0, 1) and someβ > 0,

ρβ(µn+1, µn) ≤ αnρβ(µ1, δx) .

Hence,µn is a Cauchy sequence. Sinceρβ is complete for the space of probability mea-
sures integratingV (because the total variation distance is complete for the space of mea-
sures with finite mass) there exists a probability measureµ∞ so thatρβ(µn, µ∞) → 0 as
n → ∞. Since this implies thatµn → µ∞ in total variation andP is always a contraction
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in the total variation distance, it follows thatPµ∞ = lim Pµn = lim µn+1 = µ∞ as
required. �

3.2. A slightly different set of assumptions

Many results in the theory of Harris chains results are proved under a slightly different set
of assumptions. The Lyapunov function condition in Assumption 1 is replaced with the
following:

Assumption3. There exists a functionV : X → [1,∞) and constantsb ≥ 0, γ̃ ∈ (0, 1)
and a subsetS ⊂ X such that

(PV )(x) ≤ γ̃V (x) + b1S(x) , (5)

for all x ∈ X.

Clearly Assumption 3 implies Assumption 1 withK = b. The question is whether
Assumption 2 holds with that choice ofK and withC defined as in Assumption 2. If it
does then our main theorem holds. However, Assumption 3 is most naturally paired with
the following modified version of Assumption 2.

Assumption4. There exists a constantα̃ ∈ (0, 1] and a probability measurẽν so that the
lower bound

inf
x∈S

P(x, · ) ≥ α̃ν̃( · )

holds. Here, the setS is the same as in Assumption 3.

It is relatively clear that Assumptions 1 and 2 together imply Assumptions 3 and 4.
In particular, if one picks āγ ∈ (γ, 1) sufficiently close to one, thenR ≥ K/(γ̄ − γ) and
settingS = {x : V (x) ≤ K} we see that the desired implication holds.

Remark3.3. In general, one cannot hope for Assumptions 4 and 3 to imply Assumptions 1
and 2 and hence the existence of a spectral gap without any further assumptions. A trivial
example is given byX = {0, 1} with the (deterministic) transition probabilitiesP(x, ·) =
δ1−x. This Markov operator has spectrum{−1, 1} and has therefore no spectral gap. On
the other hand, Assumptions 4 and 3 are satisfied withα̃ = 1, γ̃ = 1/2, andb = 3/2 if
one makes for example the choiceS = {0}, ν̃ = δ1, andV (x) = 1 + x.

In spite of the preceding remark, we are now going to show thatAssumptions 4
and 3 are essentially equivalent to Assumptions 1 and 2 from the previous section. More
precisely, forN > 0, define the “averaged” Markov operator

Q =
1

N + 1

N
∑

k=0

Pk .

Then we have:

Theorem 3.4. If P satisfies Assumptions 4 and 3, then there exists a choice ofN such
thatQ satisfies Assumptions 1 and 2.
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Proof. Fix some arbitraryR with R > 2b/(1 − γ̃). Our aim is to show that we can find
N > 0, a probability measureν and a constantα > 0 such thatQ(x, ·) ≥ αν(·) for every
x with V (x) ≤ R.

Iterating (5), we find that one has the bound

1 ≤ Pn+1V ≤ γ̃n+1V + b

n
∑

k=0

γ̃kPn−k
1S , (6)

so that, on the setSn = {x : V (x) ≤ γ̃−n−1/2}, one has the lower bound

inf
x∈Sn

n
∑

k=0

γ̃kPn−k(x, S) ≥
1

2b
. (7)

In particular this implies that for everyx ∈ X, there existsn such thatPn(x, S) > 0.
Combining this with our two assumptions shows that

∫

V (x)ν̃(dx) = C < ∞ so that,
integrating (6) with respect tõν, we obtain

1 ≤ Cγ̃n+1 + b

n
∑

k=0

γ̃k
(

Pn−kν̃
)

(S) .

Choosingn sufficiently large then implies the existence of someℓ > 0 such that
(

Pℓ−1ν̃
)

(S) >

0. Combining this with Assumption 3 shows that there existsα̂ > 0 such thatPℓν̃ ≥ α̂ν̃.
Setting nowν = 1

ℓ

∑ℓ−1

k=0
Pkν̃, it follows that one has the bound

Pν =
1

ℓ

ℓ−1
∑

k=1

Pkν̃ +
1

ℓ
Pℓν̃ ≥

1

ℓ

ℓ−1
∑

k=1

Pkν̃ +
α̂

ℓ
ν̃ ≥ α̂ν .

In particular, this implies that for everym ≥ 1 there exists a constantαm such that the
lower bound

inf
x∈S

m+ℓ
∑

k=m

Pk(x, ·) ≥ αmν(·) (8)

holds. Let nown be sufficiently large such that̃γ−n−1/2 ≥ R and setN = n + 1 + ℓ.
Combining (7) and (8) then yields the desired result. �

Remark3.5. Keeping track of the constants appearing in the proof of the previous result,
we see that one can choose for example any integerN such that

N > 1 + log
( 2b

1 − γ̃

∫

V (x) ν̃(dx)
)

/ log γ̃ .
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