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STOCHASTIC SWITCHING IN INFINITE DIMENSIONS WITH

APPLICATIONS TO RANDOM PARABOLIC PDES

SEAN D. LAWLEY, JONATHAN C. MATTINGLY, AND MICHAEL C. REED

Abstract. We consider parabolic PDEs with randomly switching boundary
conditions. In order to analyze these random PDEs, we consider more general
stochastic hybrid systems and prove convergence to, and properties of, a sta-
tionary distribution. Applying these general results to the heat equation with
randomly switching boundary conditions, we find explicit formulae for various
statistics of the solution and obtain almost sure results about its regularity and
structure. These results are of particular interest for biological applications as
well as for their significant departure from behavior seen in PDEs forced by
disparate Gaussian noise. Our general results also have applications to other
types of stochastic hybrid systems, such as ODEs with randomly switching
right-hand sides.

keywords. Random PDEs, hybrid dynamical systems, switched dynamical sys-
tems, piecewise deterministic Markov process, ergodicity.

AMS subject classifications. 35R60, 37H99, 46N20, 60H15, 92C30

1. Introduction

The primary motivation for this paper is to study parabolic partial differential
equations (PDEs) with randomly switching boundary conditions. More precisely,
given an elliptic differential operator, L, on a domain D ⊂ R

d, we want to study the
stochastic process u(t, x) that solves ∂tu = Lu in D subject to boundary conditions
that switch at random times between two given boundary conditions.

This type of random PDE is an example of a stochastic hybrid system. The
word “hybrid” is used because these stochastic processes involve both continuous
dynamics and discrete events. In this example, the continuous dynamics are the
different boundary value problems corresponding to the different boundary condi-
tions for the given PDE, and the discrete events are when the boundary condition
switches.

In general, a stochastic hybrid system is a continuous-time stochastic process
with two components: a continuous component (Xt)t≥0 and a jump component
(Jt)t≥0. The jump component, Jt, is a jump process on a finite set, and for each
element of its state space we assign some continuous dynamics to Xt. In between
jumps of Jt, the component Xt evolves according to the dynamics associated with
the current state of Jt. When Jt jumps, the component Xt switches to following
the dynamics associated with the new state of Jt.

An ordinary differential equation (ODE) with a switching right-hand side is
the type of stochastic hybrid system that is most commonly used in applications.
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Such ODE switching systems have been used extensively in applied areas such as
control theory, computer science, and engineering (for example, [42], [8], [3], and
[28]). More recently, these systems have been used in diverse areas of biology
(for example, molecular biology [10], [34], [9], ecology [43], and epidemiology [20]).
Furthermore, such ODE switching systems have also recently been the subject of
much mathematical study ([26], [12], [6], [5], [2], [21], [22], and [4]).

Comparatively, stochastic hybrid systems stemming from PDEs have received
little attention. While deterministic PDEs coupled to random boundary conditions
have been studied, the random boundary conditions have typically been assumed to
involve some Gaussian noise forcing ([1], [17], [38], [37], and [15]). The randomness
enters our PDE system in a fundamentally different way than in Stochastic PDEs
which are driven by additive space-time white noise (or even spatially smoother
Gaussian fields). There the fine scales are often asymptotically independent of each
other [32, 33]. Here, there is a single piece of randomness which dictates the fine
structure and hence the fine scales, though not asymptotically deterministic, are
asymptotically perfectly correlated. (See Proposition 6 for more details.)

We were led to study such random PDEs by various biological applications. One
application is to insect respiration. Essentially all insects breathe via a network
of tubes that allow oxygen and carbon dioxide to diffuse to and from their cells
[40]. Air enters and exits this network through valves (called spiracles) in the
exoskeleton, which regulate air flow by opening and closing. Surprisingly, spiracles
open and close quite irregularly in time, and insect physiologists have proposed
at least five hypotheses to explain this behavior [11]. In order to address these
competing hypotheses, physiologists would like to understand how much cellular
oxygen uptake decreases as a result of the spiracles closing. To answer this question,
we model the oxygen concentration in one of the respiratory tubes. As diffusion
is the primary mechanism for oxygen movement in the tubes ([29]), the oxygen
concentration satisfies the heat equation and the opening and closing of the spiracle
corresponds to a randomly switching boundary condition. Our analysis of this
model has some surprising implications for this physiological application.

Our paper is organized as follows. In Section 2, we consider more general sto-
chastic hybrid systems from the viewpoint of iterated random functions (see [16] or
[24, 25] for a review of iterated random functions). Assuming that the continuous
dynamics are contracting on average, we prove convergence to a stationary distri-
bution and describe the structure and properties of this distribution. In Section 3,
we apply these general results to the random PDE problems described above. We
show that the mean of the process satisfies the PDE and that the mean of the
stationary distribution satisfies the time homogeneous version of the PDE. Then in
Section 4, we apply our results from Sections 2 and 3 to the one-dimensional heat
equation with randomly switching boundary conditions. We find explicit formulae
for various statistics of the solution and obtain almost sure results about its regu-
larity and structure. There, we also show that our general results have applications
to other types of stochastic hybrid systems, such as ODEs with randomly switching
right-hand sides. Finally, we end Section 4 by explaining that our results can be
applied to the question in insect physiology mentioned above.

We conclude this introduction by giving two examples that motivated our study.
We return to these examples in Section 4. Consider the heat equation on the
interval [0, L] with an absorbing boundary condition at 0 and a randomly switching
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boundary condition at L. Let the switching be controlled by a Markov jump process,
Jt, on {0, 1} with r0 and r1 the respective rates for leaving states 0 and 1. In the
following two examples, we consider different possible boundary conditions at L.

Example 1. Suppose the boundary condition at L switches between an inhomo-
geneous Dirichlet condition and a Neumann no flux condition. More precisely,
consider the stochastic process u(t, x) ∈ L2[0, L] that solves

∂tu = D∆u in (0, L)

u(0, t) = 0 and Jtux(L, t) + (1− Jt)(u(L, t)− b) = 0.

We show in Section 4.1 that as t → ∞, the process u(t, x) converges in distribu-
tion to an L2[0, L]-valued random variable whose expectation is a linear function.

Letting γ = L
√

(r0 + r1)/D and ρ = r0/r1, we will show that the slope of this
function is

(

1 +
ρ

γ
tanh(γ)

)−1
b

L
.

Example 2. Suppose the boundary condition at L switches between an inhomoge-
neous Dirichlet condition and a homogeneous Dirichlet condition. More precisely,
consider the stochastic process u(t, x) ∈ L2[0, L] that solves

∂tu = D∆u in (0, L)

u(0, t) = 0 and Jtu(L, t) + (1− Jt)(u(L, t)− b) = 0.

We show in Section 4.2 that as t → ∞, the process u(t, x) converges in distribu-
tion to an L2[0, L]-valued random variable whose expectation is a linear function.
Letting p = r0/(r0 + r1), we will show that the slope of this function is

(1− p)
b

L
.

The expectations for Examples 1 and 2 are quite different. In Example 2, the
expectation is the solution to the time homogenous PDE with boundary condi-
tions given by the average of the two possible boundary conditions. We will see
in Section 4.2 that this simple result holds because the process switches between
boundary conditions of the same type and the corresponding semigroups commute.
Moreover, because the boundary conditions are the same type we will be able to
compute individual and joint statistics of the Fourier coefficients of the stationary
solution and show that this solution almost surely has a very specific structure and
regularity.

In both examples, the expectation is a linear function with slope given by b/L
multiplied by a factor less than one. While in Example 2 this factor is simply the
proportion of time the boundary condition is inhomogeneous, the factor in Exam-
ple 1 is an unexpected expression involving the hyperbolic tangent. Furthermore,
while the factor in Example 1 still depends on the proportion of time the boundary
condition is inhomogeneous, it also depends on how often the boundary conditions
switch. Observe that if we keep this proportion fixed by fixing the ratio r0/r1,
and take the frequency of switches small by letting r0 + r1 go to 0, then the slope
for Example 1 approaches the same slope as in the Example 2. And if we keep
the ratio r0/r1 fixed, but let the r0 + r1 go to infinity, then the slope for Exam-
ple 1 approaches b/L. Some biological implications of this result are discussed in
Section 4.3.
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2. Abstract setting

We first consider stochastic hybrid systems in a separable Banach space X .
Under certain contractivity assumptions, we prove that the process converges in
distribution at large time and we show that the limiting distribution satisfies certain
invariance properties. Although applicable to a range of stochastic hybrid systems,
the contents of this section will prove particularly useful when we consider PDEs
with randomly switching boundary conditions in Sections 3 and 4.

2.1. Discrete-time process. We first define the set Ω of all possible switching
environments and equip it with a probability measure P and associated expectation
E. Let µ0 and µ1 be two probability distributions on the positive real line. Define
each switching environment, ω ∈ Ω, as the sequence ω = (ω1, ω2, . . . ), where each
ωk is a pair of non-negative real numbers, (τk0 , τ

k
1 ), drawn from µ0 × µ1. We take

P to be the infinite product measure generated by µ0 × µ1. To summarize some
notation

ω = (ω1, ω2, ω3, . . . ) =
(

(τ10 , τ
1
1 ), (τ

2
0 , τ

2
1 ), (τ

3
0 , τ

3
1 ), . . .

)

∈ Ω.(1)

For each t ≥ 0, let Φ0
t (x) and Φ1

t (x) be two mappings from a separable Banach
space X to itself. Make the following assumptions on Φi

t for each i ∈ {0, 1}, t ≥ 0,
x, y ∈ X , and with τi an independent draw from µi.

(a) Φ0
t (x) = x = Φ1

t (x) if t = 0
(b) t 7→ Φi

t(x) ∈ X is continuous
(c) E|Φi

τi(x)| < ∞
(d) |Φi

t(x) − Φi
t(y)| ≤ Ki(t)|x − y| for some Ki(t)

(e) EK0(τ1)EK1(τ1) < 1

For each ω ∈ Ω, x ∈ X , and natural number k, define the compositions

Gk
ω(x) := Φ1

τk

1

◦ Φ0
τk

0

(x) and F k
ω (x) := Φ0

τk

0

◦ Φ1
τk

1

(x).

For each ω ∈ Ω, x ∈ X , and natural number n > 0, we define the forward maps ϕn

and γn, and the backward maps ϕ−n and γ−n by the following compositions of G
and F :

ϕn
ω(x) = Gn

ω ◦ · · · ◦G1
ω(x) and γn

ω(x) = Fn
ω ◦ · · · ◦ F 1

ω(x),

ϕ−n
ω (x) = G1

ω ◦ · · · ◦Gn
ω(x) and γ−n

ω (x) = F 1
ω ◦ · · · ◦ Fn

ω (x).
(2)

To make our notation complete, we define ϕ0(x) = x = γ0(x).

Remark 1. The maps ϕn and γn are iterated random functions, (see [16] for a re-
view). Assumptions (d) and (e) above ensure that Gk and F k are contracting on
average. Thus, {ϕn}n≥0 and {γn}n≥0 are Markov chains with invariant probability
distributions given by the distributions of the almost sure limits of ϕ−n and γ−n as
n → ∞, respectively. Moreover, the distributions of the Markov chains ϕn and γn

converge at a geometric rate to these invariant distributions. These results are im-
mediately attained by applying theorems in, for example, [16, 25, 18]. Nonetheless,
we prove the following proposition to make our results more self-contained.

Proposition 1. Define

Y1(ω) := lim
n→∞

ϕ−n
ω (x) and Y0(ω) := lim

n→∞
γ−n
ω (x).(3)

These limits exist almost surely and are independent of x ∈ X.
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Remark 2. A random set which attracts all initial data started at “−∞” and is
forward-invariant under the dynamics is called a random pullback attractor [25,
14, 13, 31]. When that attractor consists of a single point almost surely then it is
called a random point attractor. In this case, the single point can be viewed as a
random variable. Random variables such as these are often called random pullback
attractors, or “pullbacks” for short, because they take an initial condition x and
pull it back to the infinite past [13, 36, 30]. Since when the random attractor is
a single point one can associate to each realization of random “forcing” a single
attracting solution which gives the asymptotic behavior, this is also ofter referred
to as the “one force, one solution” paradigm[39, 30, 31].

Proof. We will show that the sequence ϕ−n(x) is almost surely Cauchy. Let x1, x2 ∈
X and n ≥ m. Using the triangle inequality repeatedly, we obtain

|ϕ−n(x1)− ϕ−m(x2)| ≤
n
∑

i=m+1

|G1 ◦ · · · ◦Gi(x1)−G1 ◦ · · · ◦Gi−1(x2)|

≤
n
∑

i=m+1

|Gi(x1)− x2|
( i−1
∏

j=1

K0(τ
j
0 )K1(τ

j
1 )

)

.

Observe that

E

n
∑

i=m+1

|Gi(x1)− x2|
( i−1
∏

j=1

K0(τ
j
0 )K1(τ

j
1 )

)

= E|G1(x1)− x2|
n
∑

i=m+1

(EK0(τ0)EK1(τ1))
i−1 ≤ E|G1(x1)− x2|

1− EK0(τ0)EK1(τ1)
< ∞,

since EK0(τ0)EK1(τ1) < 1 by assumption, where τ0 and τ1 are independent draws
from µ0 and µ1. Thus,

∑∞
i=1 |G1◦· · ·◦Gi(x1)−G1◦· · ·◦Gi−1(x2)| converges almost

surely. Therefore ϕ−n(x1) is almost surely Cauchy and thus Y1 exists almost surely.
Since x1 and x2 were arbitrary, Y1 is independent of the x used in its definition.
The proof for Y0 is similar. �

The random variables Y1 and Y0 satisfy the following invariance properties.

Proposition 2. Let τ0 and τ1 be independent draws from µ0 and µ1. Then

Y0 =d Φ0
τ0(Y1) and Y1 =d Φ1

τ1(Y0)(4)

where =d denotes equal in distribution.

Proof. Let y ∈ X and observe that for any n ∈ N, we have that

γ−n(y) =d Φ0
τ0

(

ϕn−1(Φ1
τ1(y))

)

.

Taking the limit as n → ∞ yields

lim
n→∞

γ−n(y) =d lim
n→∞

Φ0
τ0

(

ϕn−1(Φ1
τ1(y))

)

= Φ0
τ0

(

lim
n→∞

ϕn−1(Φ1
τ1(y))

)

(5)

since Φ0
t (x) is continuous in x for each t. Recalling that the definitions of Y0 and Y1

in Equation (3) are independent of x by Proposition 1, we have that Equation (5)
becomes Y0 =d Φ0

τ0(Y1). The proof that Y1 =d Φ1
τ1(Y0) is similar. �

Proposition 3. Suppose there exists a nonempty set S ⊂ X so that for all t ≥ 0,
Φi

t : S → S for i = 0 and 1. Then Y0 and Y1 are in the closure, S̄, almost surely.
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Proof. If x ∈ S, then ϕ−n(x) ∈ S almost surely for all n ≥ 0 by assumption. Thus,
limn→∞ ϕ−n(x) = Y1 ∈ S̄ almost surely. But by Proposition 1, the random variable
Y1 is independent of the initial x used in its definition, so Y1 ∈ S̄ almost surely.
The proof for Y0 is similar. �

2.2. Continuous-time process. To define the continuous time process, we need
more notation. Much of the following notation is standard in renewal theory. For
each ω ∈ Ω and natural number n, define

Sn :=

n
∑

k=1

τk0 + τk1

with S0 := 0. Define S′
n+1 := Sn + τn+1

0 for n ≥ 0. Observe that S′
n < Sn <

S′
n+1 < Sn+1. Define

Nt := max{n ≥ 0 : Sn ≤ t}.
We also define the state process Jt for t ≥ 0 by

Jt :=

{

0 SNt
≤ t < S′

Nt+1

1 S′
Nt+1 ≤ t.

(6)

Finally, for t ≥ 0, define the elapsed time since the last switch, often called the age
process, by

at := Jt(t− S′
Nt+1) + (1− Jt)(t− SNt

).

We are now ready to define our continuous-time X-valued process. For u0 ∈ X ,
ω ∈ Ω, and t ≥ 0, define

u(t, ω) = JtΦ
1
at

◦ Φ0

τ
Nt+1

0

(ϕNt(u0)) + (1− Jt)Φ
0
at
(ϕNt(u0)).(7)

2.3. Convergence in distribution to mixture of pullbacks. In this section
we will find the limiting distribution of u(t) as t → ∞. In order to describe this
limiting distribution, we will need to define three more random variables. Define
a0 and a1 to be two random variables with the following cumulative distribution
functions:

P(a0 ≤ x) =
Emin(τ0, x)

Eτ0
and P(a1 ≤ x) =

Emin(τ1, x)

Eτ1
.

We will see in Lemma 1 that the distributions of a0 and a1 can be thought of
as the limiting distributions of the age process conditioned on either Jt = 0 or
1. Let ξ be a Bernoulli random variable with parameter p := (Eτ1)/(Eτ0 + Eτ1),
the probability that Jt = 1 at large time. Assume a0, a1, and ξ are all chosen to
be mutually independent and independent of (τk0 , τ

k
1 ) for every k. Recall that a

measure µ on the real line is said to be arithmetic if there exist a d > 0 so that
µ({0, d, 2d, . . .}) = 1.

Theorem 1. Suppose Φ0
t and Φ1

t satisfy assumptions (a)-(e) of Section 2.1. Let
u(t) be defined as in Equation (7), and a0, a1, and ξ as in the above paragraph. If
the switching time distributions, µ0 and µ1, are non-arithmetic, then we have the
following convergence in distribution as t → ∞.

u(t) →d ū := ξΦ1
a1(Y0) + (1 − ξ)Φ0

a0(Y1) as t → ∞.
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If the switching time distributions, µ0 and µ1, are exponential, then we have
the following corollary that follows immediately from Proposition 2 and Theorem 1
since the age of a Poisson process is exponentially distributed.

Corollary 1. Suppose the switching time distributions, µ0 and µ1, are exponential
with respective rate parameters r0 and r1. If ξ is Bernoulli with parameter r0/(r0+
r1), then we have the following convergence in distribution as t → ∞.

u(t) →d ū := ξY1 + (1 − ξ)Y0 as t → ∞.

Proof of Theorem 1. In light of Proposition 2, it is enough to prove that u(t)
converges in distribution to Φ1

a1◦Φ0
τ0(Y1)+(1−ξ)Φ0

a0 (Y1), where τ0 is an independent
draw from µ0. We will show that for any A, B, and C Borel subsets of R and D a
Borel subset of X , we have that

(8) P(at ∈ A, Jtτ
Nt+1
0 ∈ B, Jt ∈ C,ϕNt(u0) ∈ D)

→ P(ξa1 + (1− ξ)a0 ∈ A, ξτ0 ∈ B, ξ ∈ C, Y1 ∈ D) as t → ∞.

Once this convergence is shown, the conclusion of the theorem quickly follows.
To see this, assume the convergence in Equation (8) holds. Define the (R3 ×X)-

valued random variable Yt := (at, Jtτ
Nt+1
0 , Jt, ϕ

Nt(u0)). Since X is assumed to be
separable, the product R3×X is separable and thus we can apply Theorem 2.8 in [7]
to obtain that Yt converges in distribution to (ξa1 +(1− ξ)a0, ξτ0, ξ, Y1) as t → ∞.
Define the function g : R3 ×X → X by g(a, t, j, y) = jΦ1

a ◦ Φ0
t (y) + (1 − j)Φ0

t (y)

and observe that u(t) = g(at, τ
Nt+1

0 , Jt, ϕ
Nt) and ū = g(a1, τ0, ξ, Y ). Since g is

continuous, the conclusion of the theorem follows from the continuous mapping
theorem (see, for example, Theorem 3.2.4 in [19]). Therefore, it remains only to
show the convergence in Equation (8).

In what follows, we will make extensive use of indicator functions. For ease of
reading, we will often denote the indicator 1A = 1A(ω) by {A} = {A}(ω).

For each t ≥ 0, define Ft to be the σ-algebra generated by SNt
and {(τk0 , τk1 )}∞k=Nt+1.

Since at, τ
Nt+1
0 , and Jt are measurable with respect to Ft, the tower property of

conditional expectation and the triangle inequality give
∣

∣

∣
E{at ∈ A, Jtτ

Nt+1
0 ∈ B, Jt ∈ C,ϕNt ∈ D}

− E{ξa1 + (1− ξ)a0 ∈ A, ξτ0 ∈ B, ξ ∈ C, Y1 ∈ D}
∣

∣

∣

≤
∣

∣

∣
E

[

{at ∈ A, Jtτ
Nt+1
0 ∈ B, Jt ∈ C}E[{ϕNt ∈ D}|Ft]

]

− E

[

{at ∈ A, Jtτ
Nt+1
0 ∈ B, Jt ∈ C}E[{Y1 ∈ D}]

] ∣

∣

∣

+
∣

∣

∣
E

[

{at ∈ A, Jtτ
Nt+1
0 ∈ B, Jt ∈ C}E[{Y1 ∈ D}]

]

− E{ξa1 + (1 − ξ)a0 ∈ A, ξτ0 ∈ B, ξ ∈ C}{Y1 ∈ D}
∣

∣

∣
.

By Lemma 6, we have that E
[

{ϕNt ∈ D}|Ft

]

→ E [{Y1 ∈ D}] almost surely as
t → ∞. Therefore, the first term goes to 0 by the dominated convergence theorem.
Since Y1 is independent of ξ, a1, a0, and τ0, the second term is bounded above by

∣

∣E{at ∈ A, Jtτ
Nt+1
0 ∈ B, Jt ∈ C} − E{ξa1 + (1− ξ)a0 ∈ A, ξτ0 ∈ B, ξ ∈ C}

∣

∣.(9)
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To show that (9) goes to 0 as t → ∞, we consider the four possible cases for the
inclusion of 0 and 1 in C. If both 0 and 1 are not in C, then (9) is 0 for all t ≥ 0
since Jt and ξ are each almost surely 0 or 1.

Suppose 0 ∈ C and 1 /∈ C. Then the indicator function in the first term of
(9) is only non-zero if Jt = 0. Hence, we can replace {Jt ∈ C} by (1 − Jt) and

{JtτNt+1
0 ∈ B} by {0 ∈ B}. Similarly, in the second term we replace {ξ ∈ C} by

(1 − ξ), {ξτ0 ∈ B} by {0 ∈ B}, and {ξa1 + (1 − ξ)a0 ∈ A} by {a0 ∈ A}. Thus (9)
becomes

(9) = |E{at ∈ A, 0 ∈ B}(1− Jt)− E{a0 ∈ A, 0 ∈ B}(1− ξ)|
≤ |E{at ∈ A}(1− Jt)− E{a0 ∈ A}(1− ξ)|.

By Lemma 1, this term goes to 0 as t → ∞.
Suppose 1 ∈ C and 0 /∈ C. Then the indicator function in the first term of (9) is

only non-zero if Jt = 1. Thus after performing similar replacements to those above,
(9) becomes

(9) = |E{at ∈ A, τNt+1
0 ∈ B}Jt − E{a1 ∈ A, τ0 ∈ B}ξ|.

Define F ′
t to be the σ-algebra generated by S′

Nt+1, τ
Nt+1
1 , and {(τk0 , τk1 )}∞k=Nt+2.

Observe that Jt and at are both measurable with respect to F ′
t. Therefore, by the

tower property of conditional expectation and the triangle inequality we have that

|E{at ∈ A, τNt+1
0 ∈ B}Jt − E{a1 ∈ A, τ0 ∈ B}ξ|

≤ |E
[

{at ∈ A}JtE
[

{τNt+1
0 ∈ B}|F ′

t

]]

− E [{at ∈ A}JtE [{τ0 ∈ B}]] |
+ |E[{at ∈ A}JtE[{τ0 ∈ B}]]− E{a1 ∈ A, τ0 ∈ B}ξ|.

Lemma 7 gives us that JtE[{τNt+1
0 ∈ B}|F ′

t] = JtE[{τ10 ∈ B}|F ′
t] almost surely

and Lemma 8 gives that E[{τ10 ∈ B}|F ′
t] → E[{τ0 ∈ B}] almost surely as t → ∞.

Therefore, the first term goes to 0 as t → ∞ by the dominated convergence theorem.
Finally since τ0 is independent of ξ and a1, we have the following bound on the
second term

|E[{at ∈ A}JtE[{τ0 ∈ B}]]− E{a1 ∈ A, τ0 ∈ B}ξ| ≤ |E{at ∈ A}Jt − E{a1 ∈ A}ξ|

This goes to 0 as t → ∞ by Lemma 1.
Finally, if both 0 ∈ C and 1 ∈ C, then (9) becomes

(9) =|E{at ∈ A, Jtτ
Nt+1
0 ∈ B} − E{ξa1 + (1 − ξ)a0 ∈ A, ξτ0 ∈ B}|

≤|E{at ∈ A, τNt+1
0 ∈ B}Jt − E{a1 ∈ A, τ0 ∈ B}ξ|

+ |E{at ∈ A, 0 ∈ B}(1− Jt)− E{a0 ∈ A, 0 ∈ B}(1− ξ)|.

We’ve already shown that each of these terms go to zero as t → ∞, so the proof is
complete. �

2.4. The Lemmas. We now state and prove all of the lemmas that are needed for
Theorem 1. This first lemma calculates the limiting distribution of the age process.
It can be interpreted as first flipping a coin to determine if Jt is 0 or 1, and then
choosing from the limiting distribution of the age conditioned on Jt.
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Lemma 1. We have that at →d ξa1 + (1− ξ)a0 as t → ∞. In particular, for any
x ≥ 0 with A := (−∞, x], we have that as t → ∞

|E{at ∈ A}Jt − E{a1 ∈ A}ξ|+ |E{at ∈ A}(1− Jt)− E{a0 ∈ A}(1− ξ)| → 0.

Proof. Let x ≥ 0 and define A := (−∞, x]. Observe the following bound

|E{at ∈ A} − E{ξa1 + (1− ξ)a0 ∈ A}|
≤ |E{at ∈ A}Jt − E{a1 ∈ A}ξ|+ |E{at ∈ A}(1− Jt)− E{a0 ∈ A}(1− ξ)|.

We will show that the first term goes to zero. The second term goes to zero by an
analogous argument.

For our given x ≥ 0, consider the alternating renewal process that is said to be
“on” when 0 ≤ t−S′

Nt+1 ≤ x and “off” otherwise. Formally, we define the “on/off”
state process

bt =

{

1 if 0 ≤ t− S′
Nt+1 ≤ x

0 otherwise.

Observe that the lengths of time that the process is “on” are {min(τk1 , x)}∞k=1. Sim-

ilarly, the lengths of time that the process is “off” are τ10 and {τk0 +(τk−1
1 −x)+}∞k=2,

where as usual (y)+ is equal to y if y ≥ 0 and 0 otherwise. Since the distribution

of min(τk1 , x) + τk0 + (τk−1
1 − x)+ is nonarithmetic, and since E[min(τk1 , x) + τk0 +

(τk−1
1 − x)+] < ∞, we can apply Theorem 3.4.4 in [35] to obtain

lim
t→∞

P(bt = 1) =
Emin(τ1, x)

E[min(τk1 , x) + τk0 + (τk−1
1 − x)+]

.(10)

Informally, this intuitive result states that the probability that the alternating re-
newal process is “on” at large time is just the expected length of an “on” bout
divided by the sum of the expected lengths of an “off” bout and an “on” bout.
Since E[min(τk1 , x) + τk0 + (τk−1

1 − x)+] = Eτ0 + Eτ1 and since the distribution of
a1 is chosen so that Eτ1P(a

1 ≤ x) = Emin(τ1, x), Equation (10) simplifies to

lim
t→∞

P(bt = 1) =
Eτ1P(a

1 ≤ x)

Eτ0 + Eτ1
.

Therefore

E[{at ≤ x}Jt] = P(at ≤ x, Jt = 1) = P(0 ≤ t− SNt+1 ≤ x)

= P(bt = 1) −−−→
t→∞

Eτ1P(a
1 ≤ x)

Eτ0 + Eτ1
= E[{a1 ≤ x}ξ].

The last equality holds because ξ and a1 are independent and Eξ = Eτ1/(Eτ0+Eτ1).
The analogous argument shows that |E{at ∈ A}(1−Jt)−E{a0 ∈ A}(1− ξ)| → 0

as t → ∞ and the proof is complete. �

The next three lemmas are general results that are all relatively standard. We
return to lemmas specific to our problem in Lemma 5.

Lemma 2. Suppose Xt → X∞ a.s. as t → ∞ and Xt ≤ B a.s. where B is a
random variable satisfying EB < ∞. If Ft ⊂ Fs for 0 ≤ s ≤ t, and F∞ := ∩t≥0Ft,
then

E[Xt|Ft] → E[X∞|F∞] almost surely as t → ∞.
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Proof. We first show the convergence for an X = Xt independent of t. Let X be
any integrable random variable and for t ≤ 0 define

Mt := E [X |F−t] .

We claim that {Mt}−∞
t=0 is a backwards martingale. For s ≤ t ≤ 0 we have that

F−s ⊂ F−t and therefore by the tower property of conditional expectation,

E[Mt|F−s] = E [E [X |F−t] |F−s] = E [X |F−s] = Ms.

Since by definition of conditional expectation Mt ∈ F−t, and since Mt ≤ B almost
surely where EB < ∞, we have that Mt is indeed a backwards martingale. By the
backwards martingale convergence theorem, M−∞ := limt→−∞ Mt exists almost
surely and in L1(Ω).

We claim that M−∞ = E [X |F∞]. Since for t ≤ T ≤ 0 we have that Mt ∈ F−t ⊂
F−T , it follows that M−∞ ∈ F−T . Since T ≤ 0 was arbitrary, M−∞ ∈ F∞.

Let A ∈ F∞. Then

|EM−t1A − EM−∞1A| ≤ E|M−t1A −M−∞1A| ≤ E|M−t −M−∞| → 0 as t → ∞
since M−t → M−∞ in L1(Ω). But,

EM−t1A = E[E [X |Ft] 1A] = E[E [X1A|Ft]] = EX1A.

Therefore EX1A = EM−∞1A, and so we conclude that M−∞ = E [X |F∞].
We now show the convergence for the case where Xt depends on t. Let T ≥ 0

and define BT := sup{|Xt −Xs| : t, s > T }. BT ≤ 2B, so BT is integrable. Thus,

lim sup
t→∞

E [|Xt −X∞|Ft] ≤ lim
t→∞

E [BT |Ft] = E [BT |F∞]

By assumption, BT → 0 a.s. as T → ∞ so by Jensen’s inequality

|E [Xt|Ft]− E [X∞|Ft] | ≤ E [|Xt −X∞‖Ft] → 0.

Therefore,

|E [Xt|Ft]− E [X∞|F∞] | ≤ |E [Xt|Ft]− E [X∞|Ft] |+ |E [X∞|Ft]− E [X∞|F∞] |.
We’ve just shown that the first term goes to 0, and we’ve shown that the second
term goes to 0 since X∞ doesn’t depend on t, so the proof is complete. �

Lemma 3. If Xn → X∞ a.s. as n → ∞ and Nt → ∞ a.s. as t → ∞, then

XNt
→ X∞ a.s. as t → ∞.

Proof. Let A := {Xn 9 X∞} and B := {Nt 9 ∞}. Then
P(XNt

9 X∞) ≤ P(A ∪B) ≤ P(A) + P(B) = 0. �

We now give some standard definitions. Let (Ω,F , P ) be a probability space. A
measurable map π : Ω → Ω is said to be measure preserving if P(π−1A) = P(A)
for all A ∈ F . Let π be a given measure preserving map. A set A ∈ F is said
to be π-invariant if π−1A = A, where two sets are considered to be equal if
their symmetric difference has probability 0. A random variable X is said to be
π-invariant if X = X ◦ π almost surely.

Lemma 4. Let π : Ω → Ω be a measure preserving map. If X is π-invariant, then
so is every set in its σ-algebra.

Proof. See, for example, [19] Exercise 7.1.1. �
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Lemma 5. For each t ≥ 0 define Ft to be the σ-algebra generated by SNt
and

{(τk0 , τk1 )}∞k=Nt+1. If D is a Borel set of X, then for each t ≥ 0

E
[

{ϕNt ∈ D}|Ft

]

= E
[

{ϕ−Nt ∈ D}|Ft

]

a.s.

Remark 3. To see why this lemma should be true, observe that (a) the random
variables ϕNt and ϕ−Nt are equal after a re-ordering of the first Nt-many ωk’s and
that (b) the random variables generating Ft don’t depend on the order of the first
Nt-many ωk’s.

Proof. Fix a t ≥ 0 and let A ∈ Ft. By the definition of conditional expectation, we
have that

∫

Ω

E
[

{ϕNt ∈ D}|Ft

]

(ω){A}(ω) dP =

∫

Ω

{ϕNt ∈ D}(ω){A}(ω) dP.

Define σt : Ω → Ω to be the permutation that inverts the order of the first Nt-
many ωk’s. That is, (σt(ω))k = ωNt−k+1 for k ∈ {1, . . . , Nt} and (σt(ω))k = ωk for
k > Nt. Observe that Nt(ω) = Nt(σt(ω)) and thus ϕNt(ω) = ϕ−Nt(σt(ω)). Also,

SNt
and {(τk0 , τk1 )}∞k=Nt+1 are σt-invariant, so A is σt-invariant by Lemma 4. Thus

∫

Ω

{ϕNt ∈ D}(ω){A}(ω) dP =

∫

Ω

{ϕ−Nt ∈ D}(σt(ω)){A}(σt(ω)) dP.

Since σt is measure preserving and by the definition of conditional expectation,
∫

Ω

{ϕ−Nt ∈ D}(σt(ω)){A}(σt(ω)) dP =

∫

Ω

{ϕ−Nt ∈ D}(ω){A}(ω) dP

=

∫

Ω

E
[

{ϕ−Nt ∈ D}|Ft

]

(ω){A}(ω) dP.

Putting this all together,
∫

Ω

E[{ϕNt ∈ D}|Ft]{A} dP =

∫

Ω

E[{ϕ−Nt ∈ D}|Ft]{A} dP.

Since A was an arbitrary element of Ft, the proof is complete. �

Recall that the random variable Y1 is defined by Y1 := limn→∞ ϕ−n(x), and is
independent of the choice of x ∈ X , by Proposition 1.

Lemma 6. For each t ≥ 0 define Ft to be the σ-algebra generated by SNt
and

{(τk0 , τk1 )}∞k=Nt+1. If D is a Borel set of X, then with probability one

E
[

{ϕ−Nt ∈ D}|Ft

]

→ E{Y1 ∈ D} as t → ∞(11)

and E
[

{ϕNt ∈ D}|Ft

]

→ E{Y1 ∈ D} as t → ∞(12)

Proof. In light of Lemma 5, it suffices to show the convergence in Equation (11).
Since ϕ−n → Y1 almost surely as n → ∞ and since Nt → ∞ almost surely as

t → ∞, we have that ϕ−Nt → Y1 almost surely by Lemma 3. Define F∞ := ∩t≥0Ft

and observe that Ft ⊂ Fs for t ≥ s ≥ 0. Thus, by Lemma 2,

E
[

{ϕ−Nt ∈ D}|Ft

]

→ E [{Y1 ∈ D}|F∞] almost surely as t → ∞.

To complete the proof, we will show that for every A ∈ F∞, P(A) = 0 or 1. To
show this, we will show that F∞ is contained in the exchangeable σ-algebra and



12 SEAN D. LAWLEY, JONATHAN C. MATTINGLY, AND MICHAEL C. REED

then apply the Hewitt-Savage zero-one law. Let n ∈ N, A ∈ F∞, and πn be an
arbitrary permutation of ω1, . . . , ωn. Define πt : Ω → Ω by

πt(ω) =

{

πn(ω) Nt ≥ n

ω Nt < n.

Since SNt
and {(τk0 , τk1 )}∞k=Nt+1 are πt-invariant, then A is πt-invariant by Lemma 4

as A ∈ F∞ ⊂ Ft. Therefore

P(A∆π−1
n A,Nt ≥ n) = P(A∆π−1

t A,Nt ≥ n) ≤ P(A∆π−1
t A) = 0.

Hence

P(A∆π−1
n A) = P(A∆π−1

n A,Nt ≥ n) + P(A∆π−1
n A,Nt < n)

≤ P(A∆π−1
n A,Nt < n) ≤ P(Nt < n).

Since t was arbitrary, and because P(Nt < n) → 0 as t → ∞ since Nt → ∞
almost surely, we conclude that P(A∆π−1

n A) = 0. Since πn was an arbitrary finite
permutation, we conclude that F∞ is contained in the exchangeable σ-algebra. By
the Hewitt-Savage zero-one law, F∞ only contains events that have probability 0 or
1. Thus, {Y1 ∈ D} is trivially independent of F∞ and therefore E [{Y1 ∈ D}|F∞] =
E{Y1 ∈ D}. �

Lemma 7. For each t ≥ 0, define F ′
t to be the σ-algebra generated by S′

Nt+1,

τNt+1
1 , and {(τk0 , τk1 )}∞k=Nt+2. Then

JtE
[

{τNt+1
0 ∈ B}|F ′

t

]

= JtE
[

{τ10 ∈ B}|F ′
t

]

almost surely.

Remark 4. Recall that Jt is either 0 if SNt
≤ t < S′

Nt+1 or 1 if S′
Nt+1 ≤ t. Hence,

this Lemma states that E
[

{τNt+1
0 ∈ B}|F ′

t

]

= E
[

{τ10 ∈ B}|F ′
t

]

if Jt = 1.

Remark 5. The proof of this Lemma is very similar to the proof of Lemma 5.

Proof. If ω is such that Jt = 0, then the equality is trivially satisfied. Let A ∈ F ′
t.

Since {ω ∈ Ω : Jt(ω) = 1} ∈ F ′
t, we have by the definition of conditional expectation

that
∫

Ω

E

[

{τNt+1
0 ∈ B}|F ′

t

]

{A, Jt = 1} dP =

∫

Ω

{τNt+1
0 ∈ B}(ω){A, Jt = 1}(ω) dP.

Define σt : Ω → Ω by

(σt(ω))k =











(τNt+1
0 , τ11 ) if k = 1 and Jt = 1

(τ10 , τ
Nt+1
1 ) if k = Nt + 1 and Jt = 1

ωk otherwise.

That is, σt switches τ
1
0 and τNt+1

0 if Jt = 1 and otherwise does nothing. Since S′
Nt+1,

τNt+1
1 , and {(τk0 , τk1 )}∞k=Nt+2 are all σt-invariant, we have that A is σt-invariant by
Lemma 4. Also observe that {Jt = 1} is σt-invariant. Thus
∫

Ω

{τNt+1
0 ∈ B}(ω){A, Jt = 1}(ω) dP =

∫

Ω

{τ10 ∈ B}(σt(ω)){A, Jt = 1}(σt(ω)) dP.
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Since σt is measure preserving, and by the definition of conditional expectation, we
have that
∫

Ω

{τ10 ∈ B}(σt(ω)){A, Jt = 1}(σt(ω)) dP =

∫

Ω

{τ10 ∈ B}(ω){A, Jt = 1}(ω) dP

=

∫

Ω

E
[

{τ10 ∈ B}|F ′
t

]

{A, Jt = 1} dP.

Putting all this together,
∫

Ω

E[{τNt+1
0 ∈ B}|F ′

t]{A, Jt = 1} dP =

∫

Ω

E[{τ10 ∈ B}|F ′
t]{A, Jt = 1} dP.

This implies that E[{τNt+1
0 ∈ B}|F ′

t] = E[{τ10 ∈ B}|F ′
t] almost surely on

{Jt = 1}. To see this, let ǫ > 0 define Λ := {ω ∈ Ω : E[{τNt+1
0 ∈ B}|F ′

t]−E[{τ10 ∈
B}|F ′

t] ≥ ǫ}. This set is in F ′
t, so by the above calculation we have that

0 =

∫

Λ∩{Jt=1}

E[{τNt+1
0 ∈ B}|F ′

t]− E[{τ10 ∈ B}|F ′
t] dP ≥ ǫP(Λ ∩ {Jt = 1}).

So P(Λ ∩ {Jt = 1}) = 0. The same argument with Λ′ := {ω ∈ Ω : E[{τ10 ∈
B}|F ′

t] − E[{τNt+1
0 ∈ B}|F ′

t] ≥ ǫ} completes the proof of the claim. Therefore,

JtE[{τNt+1
0 ∈ B}|F ′

t] = JtE[{τ10 ∈ B}|F ′
t] almost surely. �

Lemma 8. For each t ≥ 0, define F ′
t to be the σ-algebra generated by S′

Nt+1,

τNt+1
1 , and {(τk0 , τk1 )}∞k=Nt+2. Then

E
[

{τ10 ∈ B}|F ′
t

]

→ E{τ0 ∈ B} almost surely as t → ∞.

Remark 6. The proof of this Lemma is very similar to the proof of Lemma 6.

Proof. Define F ′
∞ := ∩t≥0F ′

t and observe that F ′
s ⊃ F ′

t for 0 ≤ s ≤ t. Thus, by
Lemma 2

E
[

{τ10 ∈ B}|F ′
t

]

→ E
[

{τ10 ∈ B}|F ′
∞

]

almost surely.

We claim that for each A ∈ F ′
∞, P(A) = 0 or 1. To show this, we will show

that F ′
∞ is contained in the exchangeable σ-algebra and then apply the Hewitt-

Savage zero-one law. Let n ∈ N, A ∈ F ′
∞, and πn be an arbitrary permutation of

(τ10 , τ
1
1 ), . . . , (τ

n
0 , τ

n
1 ).

Define πt : Ω → Ω by

πt(ω) =

{

πn(ω) Nt ≥ n

ω Nt < n.

Since S′
Nt+1, τ

Nt+1
1 , and {(τk0 , τk1 )}∞k=Nt+2 are πt-invariant, then A is πt-invariant

by Lemma 4 as A ∈ F ′
∞ ⊂ F ′

t. Therefore

P(A∆π−1
n A,Nt ≥ n) = P(A∆π−1

t A,Nt ≥ n) ≤ P(A∆π−1
t A) = 0.

Hence

P(A∆π−1
n A) = P(A∆π−1

n A,Nt ≥ n) + P(A∆π−1
n A,Nt < n)

≤ P(A∆π−1
n A,Nt < n) ≤ P(Nt < n).

Since t was arbitrary, we conclude that P(A∆π−1
n A) = 0 because P(Nt < n +

1) → 0 as t → ∞ since Nt → ∞ almost surely. Since πn was an arbitrary finite
permutation, we conclude that F ′

∞ is contained in the exchangeable σ-algebra. By
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the Hewitt-Savage zero-one law, F ′
∞ contains only events that have probability 0

or 1. Thus, {τ10 ∈ C} is trivially independent of F ′
∞ and so we conclude that

E
[

{τ10 ∈ C}|F ′
∞

]

= E{τ10 ∈ C} = E{τ0 ∈ C}. �

3. PDEs with randomly switching boundary conditions

We now use our results from Section 2 to study parabolic PDEs with randomly
switching boundary conditions. Our results apply to a range of specific problems,
so in Section 3.1 we explain how to cast a problem in our framework. In Section 3.2
we collect assumptions and in Section 3.3 we prove theorems about the mean of the
process.

3.1. General setup. Our results can be applied to the following type of random
PDE. Suppose we are given a strongly elliptic, symmetric, second order differential
operator L on a domain D ⊂ R

d with smooth coefficients which do not depend on
t. Assume the domain D is bounded with a smooth boundary. We consider the
stochastic process u(t, x) that solves

∂tu = Lu in D(13)

subject to boundary conditions that switch at random times between two given
boundary conditions, (a) and (b). We allow (a) and (b) to be different types; for
example, one can be Dirichlet and the other Neumann. For the sake of presentation,
we assume (a) are homogenous, but our analysis is easily modified to include the
case where (a) are inhomogenous.

We formulate this problem in the setting of Section 2 as alternating flows on the
Hilbert space L2(D). We define

Au := Lu if u ∈ D(A) and Bu := Lu if u ∈ D(B)

where D(A) is chosen so that A generates the contraction C0-semigroup that maps
an initial condition to the solution of Equation (13) at time t subject to bound-
ary conditions (a), and D(B) is chosen so that B generates the contraction C0-
semigroup that maps an initial condition to the solution of Equation (13) at time
t subject to the homogenous version of boundary conditions (b). We then choose
h(t) : [0,∞) → D(L) to satisfy ∂th = Lh with boundary conditions (b) and initial
condition h(0) = 0. Then the H-valued process defined in Equation (7) in Section 2
with Φ1

t (f) = eAtf and Φ0
t (f) = eBtf + h(t) corresponds to this random PDE.

3.2. Assumptions. We now formalize the setup from Section 3.1. Let H be a real
separable Hilbert space with inner product 〈·, ·〉 and let A and B be two self-adjoint
operators on H , one with strictly negative spectrum and one with non-positive
spectrum. Hence, A and B generate contraction C0-semigroups, which we denote
respectively by eAt and eBt. Assume A = B on D(A) ∩D(B) 6= ∅. Assume there
exists a continuous function h(t) : [0,∞) → H satisfying h(0) = 0 and d

dt〈φ, h(t)〉 =
〈Bφ, h(t)〉 for all φ ∈ D(A) ∩ D(B). Recalling notation from Section 2.1, let the
switching time distributions, µ0 and µ1, be continuous distributions on the positive
real line.

Let u(t, ω) be the H-valued process defined in Equation (7) in Section 2.2 with

Φ1
t (f) = eAtf and Φ0

t (f) = eBtf + h(t).

It’s easy to check that Φ1
t and Φ0

t satisfy assumptions (a)-(e) from Section 2.1.
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Assume there exists a deterministic M = M(u0) so that with probability one,

‖u(t)‖ ≤ M for each t ≥ 0, where ‖x‖ :=
√

〈x, x〉.
For every 0 < s ≤ t, define η(s, t) to be the random variable that gives the

number of switches that occur on the interval (s, t). Formally, we define η(s, t) by
taking the supremum over partitions σ of the interval (s, t), s = σ0 < σ1 < · · · <
σk < σk+1 = t,

η(s, t)(ω) := sup
σ

k
∑

i=0

|Jσi+1
(ω)− Jσi

(ω)|,(14)

where Jt is as in Equation (6). Assume that µ0 and µ1 are such that for every
t > 0, we have that as s → 0,

P (η(t, t+ s) = 1) = O(s) and P (η(t, t+ s) ≥ 2) = o(s).

3.3. The mean satisfies the PDE. In what follows, fix φ ∈ D(A)∩D(B), which
will serve as our test function. The following theorem states that the mean of our
process satisfies the weak form of the PDE.

Theorem 2. For each φ ∈ D(A) ∩D(B) and t > 0, we have that

d

dt
〈φ,Eu(t)〉 = 〈Aφ,Eu(t)〉.

To prove this theorem, we need a few lemmas. Our first lemma states that each
realization our stochastic process satisfies the weak form of the PDE away from
switching times.

Lemma 9. Let ω0 ∈ Ω be given. If t0 > 0 is such that t0 6= Sk(ω0) and t0 6= S′
k(ω0)

for every k, then for all t in some neighborhood of t0,

d

dt
〈φ, u(t, ω0)〉 = 〈Aφ, u(t, ω0)〉.

Proof. By the definition of u(t, ω) and the assumption that A and B are self-
adjoint, we can write the inner product of φ and u as

〈φ, u(t)〉 = 〈φ, eAatu(S′
Nt+1)〉Jt + 〈φ, eBatu(SNt

) + h(at)〉(1 − Jt)

= 〈eAatφ, u(S′
Nt+1)〉Jt + 〈eBatφ, u(SNt

)〉(1 − Jt) + 〈φ, h(at)〉(1 − Jt).

We now calculate d
dte

Aatφ and d
dte

Batφ where d
dt means the limit in H of the

difference quotients. Since t0 is such that t0 6= Sk(ω0) and t0 6= S′
k(ω0) for all

k, there exists a neighborhood J(ω0) = J of t0 so that no switches occur in J .
Therefore SNt

, S′
Nt+1, and Jt are constant on J . And since eAt is a C0-semigroup

and φ ∈ D(A), we have that for all t ∈ J

d

dt
eAatφ =

d

dt
eA(t−S′

Nt+1)φ =
d

dt
eAte−AS′

Nt+1φ = AeAte−AS′

Nt+1φ = AeAatφ.

Similarly, d
dte

Batφ = BeBatφ. Since strongly convergent sequences in H are weakly
convergent, and again since SNt

, S′
Nt+1, and Jt are constant on J , we have that for

all t ∈ J

d

dt
〈φ, u(t)〉 = 〈AeAatφ, u(S′

Nt+1)〉Jt +
(

〈BeBatφ, u(SNt
)〉+ d

dt
〈φ, h(at)〉

)

(1− Jt).
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Since A and B are self-adjoint, A = B onD(A)∩D(B), and d
dt 〈φ, h(t)〉 = (Bφ, h(t)),

we conclude that for all t ∈ J ,

d

dt
〈φ, u(t)〉 = 〈Aφ, eAatu(S′

Nt+1)〉Jt + 〈Bφ, eBatu(SNt
) + h(at)〉(1 − Jt)

= 〈Aφ, u(t)〉Jt + 〈Bφ, u(t)〉(1 − Jt) = 〈Aφ, u(t)〉. �

The next lemma states that our process satisfies a weak continuity condition.

Lemma 10. For every ǫ > 0 and t > 0, there exists a δ(ǫ, t) > 0 so that if
|t− s| < δ(ǫ, t), then

|〈φ, u(t, ω)− u(s, ω)〉1η(s,t)=1| < ǫ a.s.

Proof. Let s and t be given and let ρ be the minimum of s and t. Observe that
if there are no switches between s and t and Jρ = 0, then

|〈φ, u(t, ω)− u(s, ω)〉| =
∣

∣

∣
〈φ, [eA|t−s| − I]u(ρ, ω)〉

∣

∣

∣
≤ ‖eA|t−s|φ− φ‖M,

since A is self-adjoint and ‖u(t)‖ ≤ M a.s. by assumption. Similarly, suppose there
are no switches between s and t and Jρ = 1. If M2 = maxξ≤2t ‖h(ξ)‖ and |t−s| < t,
then we have by the mean value theorem
∣

∣〈φ, u(t, ω)− u(s, ω)〉
∣

∣ ≤
∣

∣〈φ, [eB|t−s| − I][u(ρ, ω)− h(aρ)]〉
∣

∣+
∣

∣〈φ, h(at)− h(as)〉
∣

∣

≤
∣

∣〈[eB|t−s| − I]φ, u(ρ, ω)− h(aρ)〉
∣

∣+ |t− s|max
ξ≤2t

d

dt

∣

∣〈φ, h(ξ)〉
∣

∣

≤ ‖eB|t−s|φ− φ‖
(

M +M2

)

+ |t− s|‖Bφ‖M2

Since eAt and eBt are both C0-semigroups, we can choose a 0 < δ(ǫ, t) < t so
that if |t− s| < δ(ǫ, t), then

max{‖eA|t−s|φ− φ‖, ‖eB|t−s|φ− φ‖, |t− s|} <
ǫ

M +M2 + ‖Bφ‖M2
.

Let ω ∈ Ω be given and assume |t − s| < δ(ǫ, t). If ω is such that η(s, t)(ω) 6= 1,
then the result is immediate. Suppose η(s, t)(ω) = 1. If σ denotes the switching
time between s and t, then

|〈φ, u(t, ω)− u(s, ω)〉| ≤
∣

∣〈φ, u(t, ω)− u(σ, ω)〉
∣

∣+
∣

∣〈φ, u(σ, ω) − u(s, ω)〉
∣

∣ < 3ǫ. �

Proof of Theorem 2. We seek to differentiate E〈φ, u(t)〉 with respect to t. Define

f(t, ω) = 〈φ, u(t, ω)〉.
Let hn → 0 as n → ∞. For a given t0 > 0, define the difference quotient

gn(ω) :=
1

hn
(f(t0 + hn, ω)− f(t0, ω))

= gn(ω)1η(t0+hn,t0)=0 + gn(ω)1η(t0+hn,t0)=1 + gn(ω)1η(t0+hn,t0)≥2

= (1) + (2) + (3),

where η is defined in Equation (14). We will handle each of these terms differently.
We first consider (1). Assume ω is such that t0 is not a switching time. By

Lemma 9,

1

hn
(f(t0 + hn, ω)− f(t0, ω)) →

d

dt
f(t0, ω) = 〈Aφ, u(t0)〉 as n → ∞.
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Also observe that for such an ω, we have that 1η(t0+hn,t0)=0(ω) = 1 for n sufficiently
large. Since µ0 and µ1 are continuous distributions, this set of ω’s has probability
1, and thus

(1) =
1

hn
(f(t0 + hn, ω)− f(t0, ω)) 1η(t0+hn,t0)=0 → 〈Aφ, u(t0)〉 a.s. as n → ∞.

We now apply the bounded convergence theorem to (1). Let n and ω be given. If
η(t0 + hn, t0)(ω) 6= 0, then |(1)| = 0, trivially. If η(t0 + hn, t0)(ω) = 0, then f(t, ω)
is differentiable in t for all t ∈ (t0, t0 + hn). Therefore we can employ the mean
value theorem to obtain

∣

∣

∣

∣

1

hn
(f(t0 + hn, ω)− f(t0, ω))

∣

∣

∣

∣

≤ sup
t∈(t0,t0+hn)

∣

∣

∣

∣

d

dt
f(t, ω)

∣

∣

∣

∣

= sup
t∈(t0,t0+hn)

|〈Aφ, u(t, ω)〉| ≤ ‖Aφ‖M,

since ‖u(t)‖ ≤ M by assumption. Thus |(1)| ≤ ‖Aφ‖M almost surely and so by
the bounded convergence theorem, E(1) → E〈Aφ, u(t0)〉 as n → ∞.

To complete the proof, we need only show that (2) and (3) both tend to 0 in
mean as n → ∞. We first work on (2). Observe that

E|(2)| = E

∣

∣

∣

∣

1

hn
(f(t0 + hn, ω)− f(t0, ω)) 1η(t0+hn,t0)=1

∣

∣

∣

∣

≤ 1

hn
ess supω

∣

∣(f(t0 + hn, ω)− f(t0, ω))1η(t0+hn,t0)=1

∣

∣E
(

1η(t0+hn,t0)=1

)

.

It follows from Lemma 10 that ess supω
∣

∣(f(t0 + hn, ω)− f(t0, ω))1η(t0+hn,t0)=1

∣

∣ →
0 as n → ∞. Since by assumption P (η(t0 + hn, t0) = 1) = O(hn), we conclude that
E|(2)| → 0 as n → ∞.

Finally, we consider (3). By the assumption that ‖u(t)‖ ≤ M ,

E|(3)| = E

∣

∣

∣

∣

1

hn
(f(t0 + hn, ω)− f(t0, ω)) 1η(t0+hn,t0)≥2

∣

∣

∣

∣

≤ 2‖φ‖M
hn

P (η(t0 + hn, t0) ≥ 2) .

By assumption, P (η(t0 + hn, t0) ≥ 2) = o(hn), and hence E|(3)| → 0 as n → ∞.
Therefore

E〈φ, u(t0 + hn)〉 − E〈φ, u(t0)〉
hn

= Egn → E〈Aφ, u(t0)〉 as n → ∞.

Since hn was an arbitrary sequence tending to 0 and t0 was an arbitrary positive
number, we conclude that d

dtE〈φ, u(t)〉 = E〈Aφ, u(t)〉 for all t > 0.
Since taking the inner product against φ or Aφ are both bounded linear operators

on H , we can exchange expectation with inner product to obtain

d

dt
〈φ,Eu(t)〉 = d

dt
E〈φ, u(t)〉 = E〈Aφ, u(t)〉 = 〈Aφ,Eu(t)〉. �

We now show that the mean at large time satisfies the homogeneous PDE.

Theorem 3. Let φ ∈ D(A) ∩ D(B). Then Eu(t) → Eū weakly in H as t → ∞,
where ū is as in Theorem 1. Furthermore, Eū satisfies

〈Aφ,Eū〉 = 0.
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Remark 7. We will often assume the differential operator and the domain to be
sufficiently regular so that this theorem implies Eū is a C∞ function satisfying the
PDE pointwise.

Proof. Since the switching time distributions, µ0 and µ1, are assumed to be con-
tinuous distributions, they are non-arithmetic. Hence, by Theorem 1, Eg(u(t)) →
Eg(ū(t)) as t → ∞ for every continuous and bounded g : H → R. For any η ∈ H ,
the function (η, ·) : H → R is continuous and since by assumption, ‖u(t)‖ ≤ M
a.s., it follows that

E〈η, u(t)〉 → E〈η, ū〉 as t → ∞.(15)

Since taking the inner product against η is a bounded linear operator on H , we can
exchange expectation with inner product in Equation (15) above. Hence, Eu(t) →
Eū weakly in H as t → ∞.

Of course it follows that in particular

〈φ,Eu(t)〉 → 〈φ,Eū〉 and 〈Aφ,Eu(t)〉 → 〈Aφ,Eū〉 as t → ∞.

By Theorem 2, d
dt〈φ,Eu(t)〉 = 〈Aφ,Eu(t)〉. Thus, 〈φ,Eu(t)〉 and d

dt〈φ,Eu(t)〉 both
converge as t → ∞ and so we conclude that d

dt 〈φ,Eu(t)〉 must actually converge to
0. Hence, 〈Aφ,Eū〉 = 0. �

4. Examples

In this section we apply our results from Sections 2 and 3 to the heat equation
on the interval [0, L]. We impose an absorbing Dirichlet boundary condition at
x = 0 and a stochastically switching boundary condition at x = L. In Example 1,
we consider switching between a Dirichlet and a Neumann boundary condition at
x = L. In Example 2, we consider switching between two Dirichlet boundary
conditions at x = L.

4.1. Example 1: Dirichlet/Neumann switching. Consider the stochastic pro-
cess that solves

∂tu = D∆u in (0, L)(16)

and at exponentially distributed times switches between the boundary conditions
{

u(0, t) = 0

ux(L, t) = 0
and

{

u(0, t) = 0

u(L, t) = b > 0.

To cast this problem in the setting of previous sections, we set our Hilbert space
to be L2[0, L] and define the operators

Au := ∆u if u ∈ D(A) :=

{

φ ∈ H2(0, L) :
∂φ

∂n
(L) = 0 = φ(0)

}

Bu := ∆u if u ∈ D(B) := H1
0 (0, L) ∩H2(0, L).

We set c = b
Lx ∈ L2[0, L] and let our switching time distributions, µ0 and µ1, be

exponential with respective rate parameters r0 and r1. Let u(t, ω) be the H-valued
process defined in Equation (7) with

Φ1
t (f) = eAtf and Φ0

t (f) = eBt(f − c) + c.(17)

We are interested in studying the large time distribution of u(t). By Corollary 1,
we have that u(t) converges in distribution as t → ∞ to the L2[0, L]-valued random
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variable ū defined in the statement of the corollary. By the definitions of Y0 and
Y1 in Equation (3), it is immediate that ū is almost surely smooth, and using
Proposition 3, it follows that ū(x) ≤ b

Lx almost surely for each x ∈ [0, L]. In this
section, we will find the expectation of ū.

Proposition 4. The function Eū is affine with slope
(

1 +
ρ

γ
tanh(γ)

)−1
b

L
(18)

where γ = L
√

(r0 + r1)/D and ρ = r0/r1.

To prove this proposition, we will use the results from both Sections 2 and 3. It
is immediate that all of the assumptions in Section 3.2 are satisfied, except for one;
we need to check that there exists a deterministic M so that ‖u(t)‖ ≤ M almost
surely for all t ≥ 0. We show that and more in the following lemma.

Lemma 11. Under the assumptions of the current section, we have that

‖u(t)‖ ≤ L
(

max{‖u0‖∞, b}
)2

,

where ‖ · ‖∞ denotes the L∞[0, L] norm. Furthermore,

‖Y1‖∞ ≤ b and ‖Y0‖∞ ≤ b almost surely.

Proof. First note that ‖c‖∞ = ‖ b
Lx‖∞ = b. If f ∈ L2[0, L], then by the maximum

principle, we have that for any t ≥ 0

‖eAtf‖∞ ≤ ‖f‖∞ and ‖eBt(f − c) + c‖∞ ≤ max{b, ‖f‖∞}.(19)

Hence, max{‖u(t)‖∞, b} is non-increasing in t and so the bound on ‖u(t)‖ is proven.
Since S := {f ∈ L2[0, L] : ‖f‖∞ ≤ b} is a closed set in L2[0, L], Equation (19)

and Proposition 3 give the desired bounds on ‖Y1‖∞ and ‖Y0‖∞. �

As in Corollary 1, let ū have the limiting distribution of u(t) as t → ∞. Then by
Theorem 3, we have that Eū ∈ L2[0, L] satisfies 〈∆φ,Eū〉 = 0 for each φ ∈ C∞

0 (0, L).
By the regularity of ∆ on [0, L], it follows that Eū is the affine function

(Eū)(x) = sx+ d

for some s, d ∈ R. By Corollary 1 of Section 2, we have that

sx+ d = pEY1 + (1− p)EY0(20)

where p = r0/(r0 + r1). We will use Equation (20) to determine s and d. While
both Y0 and Y1 are almost surely smooth functions, EY0 and EY1 are a priori only
elements of L2[0, L]. It can be shown that EY0 and EY1 are smooth functions, but
we will instead take limits of test functions to avoid evaluating EY0 and EY1 at
specific points in [0, L].

Let {φn}∞n=1 be such that φn ∈ C∞
0 (0, L) and ‖φn‖L1 = 1 for each n and

lim
n→∞

〈φn, f〉 = f(0)

for each f ∈ C[0, L]. Since the inner product with φn is a bounded linear trans-
formation in L2[0, L], we can interchange expectation with inner product in Equa-
tion (20) to obtain

d = lim
n→∞

[〈φn, pEY1 + (1 − p)EY0〉] = lim
n→∞

[pE〈φn, Y1〉+ (1− p)E〈φn, Y0〉] .(21)
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We want to exchange the limit with the expectations. To do this, first observe
that Y1(x) and Y0(x) are each almost surely continuous functions of x ∈ [0, L] with
Y0(0) = 0 = Y1(0) almost surely. Thus,

lim
n→∞

〈φn, Y0〉 = 0 and lim
n→∞

〈φn, Y1〉 = 0 almost surely.

Using Lemma 11 and the assumption that ‖φn‖L1 = 1 for each n, we have that

|〈φn, Y0〉| ≤ b and |〈φn, Y1〉| ≤ b almost surely.

So we apply the bounded convergence theorem to Equation (21) to obtain

d = pE lim
n→∞

〈φn, Y1〉+ (1 − p)E lim
n→∞

〈φn, Y0〉 = 0.

We now find the slope s of Eū. Denote the orthonormal eigenbasis of A by
{ak}∞k=1 and corresponding eigenvalues by {−αk}∞k=1. Since

∑n
k=1〈ak,EY1〉ak con-

verges to EY1 in L2[0, L] as n → ∞, we have that for any φ ∈ C∞
0 (0, L)

〈φ, sx〉 = 〈φ, pEY1〉+ (1− p)〈φ,EY0〉 = p
〈

φ,

∞
∑

k=1

〈ak,EY1〉ak
〉

+ (1− p)〈φ,EY0〉.

(22)

We will need the following lemma which is an immediate corollary of Proposi-
tion 2.

Lemma 12. Under the assumptions of Section 4.1, we have that for each k ∈ N

E[e−αkτ1 ]〈ak,EY0〉 = 〈ak,EY1〉.

Combining this lemma with sx = pEY1+(1−p)EY0 and rearranging terms yields

〈ak,EY1〉 = E[e−αkτ1 ]
s〈ak, x〉

pE[e−αkτ1 ] + (1− p)
.

Plugging this into Equation (22) gives

〈φ, sx〉 = p
〈

φ ,

∞
∑

k=1

E[e−αkτ1 ]
s〈ak, x〉

pE[e−αkτ1 ] + (1 − p)
ak

〉

+ (1− p)〈φ,EY0〉

Solving for s, we find that

s = (1− p)〈φ,EY0〉
(

〈φ, x〉 − p
〈

φ ,

∞
∑

k=1

E[e−αkτ1 ]
〈ak, x〉

pE[e−αkτ1 ] + (1 − p)
ak

〉)−1

(23)

Let {φn}∞n=1 ∈ C∞
0 (0, L) be such that ‖φn‖L1 = 1 for each n and limn→∞〈φn, f〉 =

f(L) for each f ∈ C[0, L]. Observe that limn→∞〈φn, x〉 = L and using Lemma 11
and the same argument as above, we have that

lim
n→∞

〈φn,EY0〉 = b.

Now, we want to show that

(24) lim
n→∞

〈

φn ,

∞
∑

k=1

E[e−αkτ1 ]〈ak, x〉
pE[e−αkτ1 ] + (1 − p)

ak

〉

=

∞
∑

k=1

E[e−αkτ1 ]〈ak, x〉
pE[e−αkτ1 ] + (1− p)

ak(L).



STOCHASTIC SWITCHING AND RANDOM PDES 21

To do this, we need to show that
∑∞

k=1
E[e−α

k
τ1 ]〈ak,x〉

pE[e−α
k
τ1 ]+(1−p)

ak(x) converges uniformly

in x. Note that for each k

ak(x) =

√

2

L
sin

(

(2k − 1)πx

2L

)

and αk =
D(2k − 1)2π2

4L2
.

Hence, E[e−αkτ1 ] ≤ 1 and pEe−αkτ1 + (1− p) ≥ 1− p. Furthermore,

‖ak‖∞ ≤
√

2

L
and 〈ak, x〉 =

4
√
2L3/2

π2

(−1)k+1

(2k − 1)2
.

So for any N ∈ N
∥

∥

∥

∥

∥

∞
∑

k=N

E[e−αkτ1 ]〈ak, x〉
pE[e−αkτ1 ] + (1− p)

ak(x)

∥

∥

∥

∥

∥

∞

≤
∞
∑

k=N

|〈ak, x〉|
1− p

‖ak(x)‖∞

=
∞
∑

k=N

16L

(1− p)π2(2k − 1)2
→ 0 as N → ∞.

Hence Equation (24) is verified, and thus by Equation (23) we have that

s =
(1− p)b

L− p
∑∞

k=1 E[e
−αkτ1 ] 〈ak,x〉

pEe−α
k
τ1+(1−p)

ak(L)
.

Using the assumptions on τ0, τ1, αk, and ak, and using a series simplification
formula found in Mathematica ([41]), this becomes

s =

(

1 +
ρ

γ
tanh(γ)

)−1
b

L

where γ = L
√

(r0 + r1)/D and ρ = r0/r1. This expectation is much different than
the expectation we obtain when switching between boundary conditions of the same
type in the next example below.

4.2. Example 2: Dirichlet/Dirichlet switching. Consider the stochastic pro-
cess that solves

∂tu = D∆u in (0, L)(25)

and at exponentially distributed times switches between the boundary conditions
{

u(0, t) = 0

u(L, t) = 0
and

{

u(0, t) = 0

u(L, t) = b > 0.

To cast this problem in the setting of previous sections, we set our Hilbert space
to be L2[0, L] and define the operator

Bu := ∆u if u ∈ D(B) := H1
0 (0, L) ∩H2(0, L).

We set c = b
Lx ∈ L2[0, L]. Let our switching time distributions, µ0 and µ1, be

exponential with respective rate parameters r0 and r1. Let u(t, ω) be the H-valued
process defined in Equation (7) with

Φ1
t (f) = eBtf and Φ0

t (f) = eBt(f − c) + c.(26)

We are interested in studying the large time distribution of u(t). As in Exam-
ple 1, we can use Corollary 1 to obtain that u(t) converges in distribution as t → ∞
to some L2[0, L]-valued random variable ū defined in the statement of the corollary,
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and use Proposition 3 to obtain that ū(x) ≤ b
Lx almost surely for each x ∈ [0, L].

And as in Example 1, we can use Theorem 3 to find the expectation of ū. However,
since this problem switches between boundary conditions of the same type, we will
be able to obtain much more information about ū.

Switching between two boundary conditions of the same type is significantly
simpler than switching between boundary conditions of different types. This is
because the two solution operators that we use when switching between boundary
conditions of the same type both employ the same semigroup and thus the same
orthonormal eigenbasis. Hence, we only need to consider the projections of the
stochastic process in this one basis. In this example, the orthonormal eigenbasis
and corresponding eigenvalues for B are for k ∈ N

bk =

√

2

L
sin

(

kπ

L
x

)

and − βk = −D(kπ/L)2.(27)

Observe that for each k, the Fourier coefficient uk(t) := 〈bk, u(t)〉 ∈ R is the
solution to a one-dimensional ODE with a randomly switching right-hand side.
Specifically, if Jt is the jump process defined in Equation (6), then in between
jumps of Jt the process uk(t) satisfies

d

dt
uk = −Jtβkuk − (1− Jt)βk(uk − ck),

where ck := 〈bk, c〉 =
(−1)k+1b

√
2L

kπ
.(28)

We can use previous results on one-dimensional ODEs with randomly switching
right-hand sides (see [23] or [8]) to determine the marginal distributions of the
Fourier coefficients of the stationary ū. For each k, the marginal distributions of
the Fourier coefficients of Y0 and Y1 are given by

〈bk, Y0〉
ck

∼ Beta

(

r1
βk

+ 1,
r0
βk

)

and
〈bk, Y1〉

ck
∼ Beta

(

r1
βk

,
r0
βk

+ 1

)

.(29)

Combining this with Corollary 1 gives the marginal distributions of the Fourier
coefficients of ū.

From Equation (29) and Corollary 1, we obtain

Eū = (1− p)
b

L
x,(30)

where p = r0/(r0+r1). Thus, the expectation of the process at large time is merely
the solution to the time homogeneous PDE with boundary conditions given by the
average of the two boundary conditions that the process switches between.

To further illustrate the usefulness of Equation (29), we calculate the L2-variance
of ū. It follows from Equation (30) that

E‖ū− Eū‖2 = E‖ū‖2 − L

3
b2(1− p)2.(31)

Now by Corollary 1, we have that E‖ū‖2 = pE‖Y1‖2 + (1 − p)E‖Y0‖2. Combining
this with Equation (29) we obtain

E‖ū‖2 =
∞
∑

k=1

r1(r1 + βk)

(r0 + r1)(r0 + r1 + βk)
c2k.(32)
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After plugging in our values for βk, bk and ck in Equation (32), using a series sim-
plification formula found in Mathematica ([41]), and combining with Equation (31),
we obtain the L2-variance

E‖ū− Eū‖2 = b2Dr1r0(γ coth(γ)− 1)

L(r0 + r1)3
,

where γ = L
√

r0 + r1/D.
While Equation (29) is useful, knowing the marginal distributions of the indi-

vidual Fourier coefficients of Y0 or Y1 is of course not enough to find their joint
distributions, and the one-dimensional ODE methods used to obtain Equation (29)
do not give information about these joint distributions. We can, however, use our
machinery developed in Section 2 to study these joint distributions.

First, we can use Corollary 1 and Proposition 2 to obtain joint statistics of the
components of ū. To illustrate, we will calculate E〈Y0, bn〉〈Y0, bm〉. Proposition 2
gives

E〈Y0, bn〉〈Y0, bm〉 = E〈eBτ0(eBτ1Y0 − c) + c, bn〉〈eBτ0(eBτ1Y0 − c) + c, bm〉,
where τ0 and τ1 are independent exponential random variables with rates r0 and r1.
After recalling some basic facts about exponential random variables and making
some algebraic manipulations, we obtain that E〈Y0, bn〉〈Y0, bm〉 is equal to
(βm + βn + r1)((βm + βn)(βm + r1)(βn + r1) + (2βmβn + (βm + βn)r1)r0)

(βm + βn)(βm + r1 + r0)(βn + r1 + r0)(βm + βn + r1 + r0)
cmcn.

From this, we can readily compute the covariance of 〈Y0, bn〉 and 〈Y0, bm〉. Other
joint statistics of the Fourier coefficients of Y0 and Y1 (and hence ū by Corollary 1)
are found in analogous ways.

Next, we can use Proposition 3 to show that ū almost surely has a very specific
structure.

Proposition 5. Let bk be as in Equation (27), ck as in Equation (28), ū be as in
Corollary 1, and ūk := 〈bk, ū〉. Then for k < n and for almost all ω ∈ Ω

(

ūk(ω)

ck

)(n/k)2

≤ ūn(ω)

cn
≤ 1−

(

1− ūk(ω)

ck

)(n/k)2

.

Proof. For each k, n ∈ N, let Rk,n be the closed planar region enclosed by the
following two planar curves:

{Pk,n(e
−Btc) : t ≥ 0} and {Pk,n(c− e−Btc) : t ≥ 0}.

Define Sk,n ⊂ L2[0, L] by

Sk,n = {f ∈ L2[0, L] : Pk,n(f) ∈ Rk,n}.
It is straightforward to check that Sk,n is invariant under Φ0

t and Φ1
t defined in

Equation (??) for each k, n ∈ N. Hence, ∩k,nSk,n is invariant under Φ0
t and Φ1

t and
we have by Proposition 3 that Y0 and Y1 (and hence ū by Corollary 1) are almost
surely contained in ∩k,nSk,n.

For k < n, observe that Rk,n can be written as

Rk,n =

{

(x, y) ∈ R
2 : 0 ≤ x

ck
≤ 1 and

( x

ck

)(n/k)2

≤ y

cn
≤ 1−

(

1− x

ck

)(n/k)2
}

.

The desired result follows. �
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Furthermore, we have the following regularity result on ū. Notice that it implies
that as we move to finer and finer spatial scales by take k → ∞, there is asymp-
totically only one piece of randomness which determines the fine scale structure
asymptotically.

Proposition 6. Let r < 1/2, bk be as in Equation (27), ck as in Equation (28),
Y k
0 := 〈bk, Y0〉, and Y k

1 := 〈bk, Y1〉. Then for each ω ∈ Ω, there exists an M(ω) so
that

1− M(ω)

kr
≤Y k

0 (ω)

ck
≤ 1 +

M(ω)

kr
and − M(ω)

kr
≤ Y k

1 (ω)

ck
≤ M(ω)

kr
.

Proof. For each k, define

Ak :=
{

ω ∈ Ω :
∣

∣

∣

Y k
0 (ω)

ck
− E

Y k
0

ck

∣

∣

∣
>

1

kr

}

.

By Chebyshev’s inequality and Equation (29), we have that

P(Ak) ≤
Var(Y k

0 )

c2k
k2r =

βkr0(βk + r1)

(βk + r0 + r1)2(2βk + r0 + r1)
k2r ∼ k2(r−1) as k → ∞.

Thus if r < 1/2, then
∑∞

k=1 P(Ak) < ∞ and we conclude by the Borel-Cantelli
Lemma that P(Ak infinitely often) = 0. Hence, for almost all ω ∈ Ω, we can choose
an M(ω) so that for all k,

r1 + βk

r0 + r1 + βk
− M(ω)

kr
≤ Y k

0 (ω)

ck
≤ r1 + βk

r0 + r1 + βk
+

M(ω)

kr
.

A similar argument shows that for almost all ω ∈ Ω, we can choose an M(ω) so
that for all k,

r1
r0 + r1 + βk

− M(ω)

kr
≤Y k

1 (ω)

ck
≤ r1

r0 + r1 + βk
+

M(ω)

kr

Since βk ∼ k2 as k → ∞, the desired results follows. �

We can iterate this proposition to obtain the following result which shows that
Y k
0 and Y k

1 depend essentially on only one switching time for large k. Note that
we could continue to iterate this proposition to obtain similar bounds. Recall the
definition of each ω ∈ Ω in Equation (1).

Corollary 2. Let r < 1/2, bk be as in Equation (27), ck as in Equation (28), Y k
0 :=

〈bk, Y0〉, and Y k
1 := 〈bk, Y1〉. Then for each ω ∈ Ω, there exists an M0(ω) depending

only on {(τk+1
0 , τk1 )}k≥1 and an an M1(ω) depending only on {(τk0 , τk+1

1 )}k≥1 such
that

1− e−βkτ
1
0

(M0(ω)

kr
+ 1

)

≤Y k
0 (ω)

ck
≤ 1 + e−βkτ

1
0

(M0(ω)

kr
− 1

)

e−βkτ
1
1

(

1− M1(ω)

kr

)

≤Y k
1 (ω)

ck
≤ e−βkτ

1
1

(

1 +
M1(ω)

kr

)

Proof. Let ω be given. Define σ : ω → ω by

σ(ω) =
(

(τ20 , τ
1
1 ), (τ

3
0 , τ

2
1 ), (τ

4
0 , τ

3
1 ), . . .

)

.

Then by the definition of Y k
0 and Y k

1 , we have that

Y k
0 (ω)

ck
= 1 + e−βkτ

1
0

(Y k
1 (σ(ω))

ck
− 1

)
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By Proposition 6, there exists an M(σ(ω)) so that

−M(σ(ω))

kr
≤ Y k

1 (σ(ω))

ck
≤ M(σ(ω))

kr
.

Thus,

1− e−βkτ
1
0

(M(σ(ω))

kr
+ 1

)

≤ Y k
0 (ω)

ck
≤ 1 + e−βkτ

1
0

(M(σ(ω))

kr
− 1

)

.

The bounds on Y k
1 are proved in a similar way. �

4.3. Application to insect physiology. Essentially all insects breathe via a net-
work of tubes that allows oxygen and carbon dioxide to diffuse to and from their
cells [40]. Air enters and exits this network through valve-like holes (called spira-
cles) in the exoskeleton. These spiracles regulate air flow by opening and closing.
Surprisingly, spiracles have three distinct phases of activity, each typically lasting
for hours. There is a completely closed phase, a completely open phase, and a
flutter phase in which the spiracles rapidly open and close [27].

Insect physiologists have proposed at least five major hypotheses to explain the
purpose of this behavior [11]. In order to address these competing hypotheses,
physiologists would like to understand how much cellular oxygen uptake decreases
as a result of the spiracles closing.

To answer this question, we consider the following model. We represent a tube by
the interval [0, L] and model the oxygen concentration at a point x ∈ [0, L] at time t
by the function u(x, t). As diffusion is the primary mechanism for oxygen movement
in the tubes (see [29]), the function u satisfies the heat equation with some diffusion
coefficient D. We impose an absorbing boundary condition at the left endpoint of
the interval to represent cellular oxygen absorption where the tube meets the insect
tissue. The right endpoint represents the spiracle, and since the spiracle opens and
closes, the boundary condition here switches between a no flux boundary condition,
ux(L, t) = 0 (spiracle closed) and a Dirichlet boundary condition, u(L, t) = b > 0
(spiracle open). We suppose that the spiracle switches from open to closed and
from closed to open with exponential rates r0 and r1 respectively.

Then, the oxygen concentration u(x, t) is the same process described above in
Secion 4.1. Using the results from that section, if we let ρ = r0/r1 and γ =

L
√

(r0 + r1)/D, then the expected oxygen flux to the cells at large time is given
by

(

1 +
ρ

γ
tanh(γ)

)−1
bD

L
.

This formula is noteworthy because it shows that the cellular oxygen uptake not
only depends on the average proportion of time the spiracle is open, but it also
depends on the overall rate of opening and closing. In particular, note that if we
keep the ratio ρ fixed, but let γ become large, then the oxygen uptake approaches
bD
L . In biological terms, this implies that the insect can have its spiracles open an
arbitrarily small proportion of time, and yet receive essentially just as much oxygen
as if its spiracles were always open if it opens and closes with a sufficiently high
frequency.
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