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SENSITIVITY TO SWITCHING RATES IN STOCHASTICALLY

SWITCHED ODES

SEAN D. LAWLEY, JONATHAN C. MATTINGLY, AND MICHAEL C. REED

Abstract. We consider a stochastic process driven by a linear ordinary dif-

ferential equation whose right-hand side switches at exponential times between
a collection of different matrices. We construct planar examples that switch
between two matrices where the individual matrices and the average of the
two matrices are all Hurwitz (all eigenvalues have strictly negative real part),
but nonetheless the process goes to infinity at large time for certain values of
the switching rate. We further construct examples in higher dimensions where
again the two individual matrices and their averages are all Hurwitz, but the
process has arbitrarily many transitions between going to zero and going to
infinity at large time as the switching rate varies. In order to construct these
examples, we first prove in general that if each of the individual matrices is
Hurwitz, then the process goes to zero at large time for sufficiently slow switch-
ing rate and if the average matrix is Hurwitz, then the process goes to zero at
large time for sufficiently fast switching rate. We also give simple conditions
that ensure the process goes to zero at large time for all switching rates.

keywords. Ergodicity, piecewise deterministic Markov process, switched dynam-
ical systems, hybrid switching system, planar switched systems, linear differential
equations.

AMS subject classifications. 60J75, 93E15, 37H15, 34F05, 34D23.

1. Introduction

We consider the stochastic process (Xt)t≥0∈R
d whereXt solves Ẋt=AItXt with

It a Markov process on a finite set E and {Ai}i∈E a set of d×d real matrices. The
stability of this system when the switching process It is deterministic has been
extensively studied in the past decade. See [11] for a review of the deterministic
case.

In [5], the authors study the stochastic problem in the plane with It a Markov
process and E= {0,1}. The authors assume both A0 and A1 are Hurwitz (all
eigenvalues have strictly negative real part) and prove the surprising result that
||Xt|| may converge to 0 or +∞ as t→∞ depending on the switching rate as
long as an average matrix Ā=λA0+(1−λ)A1 has a positive eigenvalue for some
λ∈ (0,1).

In this paper, we show that the assumption that the average matrix has a pos-
itive eigenvalue is not necessary to ensure a blowup. Specifically, we construct
examples in the plane where A0, A1, and Ā=λA0+(1−λ)A1 are all Hurwitz, but
||Xt||→+∞ almost surely as t→∞ for certain values of the switching rate. This
is significant for the general study of switching processes because it shows that
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the dynamics of the switching process can be very different from both the indi-
vidual dynamics (in this case, the Ai’s) and the averaged dynamics (in this case,
Ā). These planar examples are also interesting because they have multiple phase
transitions between ||Xt|| going to 0 and going to +∞ at large time as the switching
rate varies. Furthermore, we construct examples in higher dimensions that have
arbitrarily many such phase transitions.

Recently researchers have devoted considerable attention to randomly switched
systems and we now comment on our work in this broader context. [6], [3], [4],
and [1] all study invariant measures for such processes. Our work shows that
the existence of such invariant measures may depend in a complicated way on the
switching rates. In [7], [8], and [2], the authors provide conditions under which their
randomly switched systems behave according to the individual systems for slow
switching and according to the averaged system for fast switching. We prove that
our system also obeys this principle in Theorems 2.4 and 2.5. However, we show in
Example 3.1 that the transition between the slow and fast switching regimes can be
quite complicated. Furthermore, Example 3.4 shows that it can be as complicated
as we want.

As background for these surprising results, we first prove sufficient conditions
to ensure stability for all switching rates in Section 2. Furthermore we also show
in Section 2 that the individual matrices determine the stability for slow switching
and that the average matrix determines the stability for fast switching. In Section
3 we use these theorems to construct examples that show “medium” switching can
induce blowups even when the individual matrices and the average matrix are all
Hurwitz.

We conclude this introduction by defining notation. Let E= {0,1, . . .,n−1} and
let {Ai}i∈E be a set of d×d real matrices. For a given switching rate r> 0, let
(It)t≥0 be an irreducible continuous time Markov process with state space E and
generator rQ. Under these assumptions, the Markov process on E with generator
rQ has a unique invariant probability measure which we denote by π. Furthermore,
π is the unique probability vector satisfying πQ=0.

Define (Xt)t≥0 to be the solution of

Xt=X0+

∫ t

0

AIsXsds, (t≥ 0).(1.1)

Then (Xt,It)t≥0 is a Markov process on R
d×E. Unless otherwise noted, assume

throughout that the distribution of the initial condition (X0,I0) is some given prob-
ability measure on R

d×E satisfying E||X0||<∞. Define the average matrix

Ā=
∑

i∈E

Aiπi.

The following description of our process will be useful. Let ξ1,ξ2, . . . denote the
succession of states visited by It, τ1,τ2, . . . the holding times in each state, N(t) the

number of switches before t, and at= t−
∑N(t)

k=1 τk the time since the last switch.
Observe that we can write Xt as

Xt=exp(AξN(t)+1
at)exp(AξN(t)

τN(t)). . .exp(Aξ1τ1)X0.(1.2)
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2. Basic stability theorems

Theorem 2.1 (normal case). If Ai is normal and Hurwitz for each i∈E, then
||Xt||→0 monotonically as t→∞ almost surely.

Proof. Since each Ai is normal and Hurwitz, there exists a γ> 0 so that for each
Ai and for every t> 0,

||exp(Ait)||≤ e−γt< 1.

Therefore

||Xt||= ||exp(AξN(t)+1
at)exp(AξN(t)

τN(t)). . .exp(Aξ1τ1)X0||

≤ ||exp(AξN(t)+1
at)||

(

N(t)
∏

k=1

||exp(Aξkτk)||
)

||X0||

≤ e−γt||X0||→0 as t→∞.

To see that the convergence is monotonic, let 0≤ s≤ t and replace X0 by Xs in the
calculation above. �

Theorem 2.2 (commuting case). Assume {Ai}i∈E is a commuting family of ma-
trices. If Ā is Hurwitz, then ||Xt||→0 as t→∞ almost surely.

Proof. Since Ā is Hurwitz, there exist positive β and γ so that for each t≥ 0

||exp(Āt)||≤βe−γt.

For each t> 0, define

Ct=
1

t

(

N(t)
∑

k=1

Aξkτk+AξN(t)+1
at

)

=
∑

i∈E

Ai
1

t

∫ t

0

1Is=ids.

Now since {Ai}i∈E is a commuting family of matrices, Equation (1.2) becomes

||Xt||= ||exp
(

N(t)
∑

k=1

Aξkτk+AξN(t)+1
at

)

X0||= ||exp(Ctt)X0||

= ||exp
(

Āt
)

exp
(

(Ct− Ā)t
)

X0||≤βe−γte||Ct−Ā||t||X0||,

Since Q is irreducible, Ct→ Ā almost surely as t→∞ since 1
t

∫ t

0 1Is=ids→πi almost
surely as t→∞ (see [12], page 126). Thus, ||Xt||→0 almost surely as t→∞. �

Remark 2.3. If {Ai}i∈E is a commuting family of matrices and each Ai is Hurwitz,
then Ā is Hurwitz. This is an immediate consequence of the fact that eigenvalues
“add” - in some order - for commuting matrices.

Theorem 2.4 (slow switching). Assume Ai is Hurwitz for each i∈E. Then there
exists a constant a> 0 so that if r<a, then ||Xt||→0 as t→∞ almost surely.

Proof. Since each Ai is Hurwitz, there exist β> 1 and γ> 0 so that for each Ai and
each t≥ 0

||exp(Ait)||≤βe−γt.
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Therefore from Equation (1.2), we have that

||Xt||≤ ||exp(AξN(t)+1
at)||

(

N(t)
∏

k=1

||exp(Aξkτk)||
)

||X0||

≤βN(t)+1e−γt||X0||=exp

(

(N(t)+1

t
logβ−γ

)

t

)

||X0||.

(2.3)

Next we claim that we have the following almost sure convergence as K→∞

1

K

K
∑

k=1

τk →
(

r
∑

i∈E

πiqi

)−1

,(2.4)

where qi is the ith diagonal entry of Q. To see this, let sij denote the duration of

the jth visit of the process It to state i∈E and let Vi(K) :=
∑K

k=11ξk=i denote the
number of visits to i before the Kth jump of the process It. Then

1

K

K
∑

k=1

τk =
∑

i∈E

1

K

Vi(K)
∑

j=1

sij =
∑

i∈E

Vi(K)

K

1

Vi(K)

Vi(K)
∑

j=1

sij.

For each i∈E, Vi(K)
K → qiπi/(

∑

k∈E qkπk) almost surely as K→∞ since Q is ir-

reducible. And by the strong law of large numbers, 1
Vi(K)

∑Vi(K)
j=1 sij →

1
rqi

almost

surely as K→∞. Therefore, Equation (2.4) is verified.

By the definition of N(t) we have that
∑N(t)

k=1 τk ≤ t≤
∑N(t)+1

k=1 τk. Therefore

∑N(t)
k=1 τk
N(t)

≤
t

N(t)
≤

∑N(t)+1
k=1 τk
N(t)+1

N(t)+1

N(t)
.(2.5)

Since each τk is almost surely finite, N(t)→∞ almost surely as t→∞. It then
follows from combining Equations (2.4) and (2.5) that

N(t)

t
→ r

∑

i∈E

πiqi almost surely as t→∞.

So if r<γ(2logβ
∑

i∈E πiqi)
−1, then ||Xt||→0 almost surely as t→∞ by Equation

(2.3). �

Theorem 2.5 (fast switching). Assume Ā is Hurwitz. Then there exists a constant
b> 0 so that if r>b, then ||Xt||→0 as t→∞ almost surely.

The proof relies on the following lemma. Let Eν denote the expectation with re-
spect to the measure of the process (It)t≥0 with I0 distributed according to ν. Since
we will consider processes with different switching rates, let us momentarily make

the dependence on the switching rate explicit by letting (I
(r)
t )t≥0 be the Markov

process on E with generator rQ and define (X
(r)
t )t≥0 with respect to (I

(r)
t )t≥0 as

before. Define S
(r)
t to be the operator that maps X0 to X

(r)
t . Observe that S

(r)
t is

a function of (I
(r)
s )0≤s≤t.

Lemma 2.6. For every probability measure ν on E and for every t> 0,

Eν ||S
(r)
t ||→ ||exp(Āt)|| as r→∞.
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Proof. Define {ξ1i }
∞
i=1, {τ

1
i }

∞
i=1, {N

1(t)}t≥0, and {a1t}t≥0 as before but now with

respect to {I
(1)
t }t≥0. Let the distribution of I0 be a given probability measure ν on

E and for λ> 0 define

S̃λ
t =exp

(

AT
ξ11

τ11
λ

)

exp
(

AT
ξ12

τ12
λ

)

. . .exp
(

AT
ξ
N1(λt)

τN1(λt)

λ

)

exp
(

AT
ξ
N1(λt)+1

a1λt
λ

)

where we denote the transpose of a matrix B by BT . Observe that if r=λ, then

S̃λ
t has been defined so that (S̃λ

t )
T and S

(r)
t are equal in distribution.

By [10], S̃λ
t → exp(ĀT t) almost surely in the strong operator topology as λ→∞.

Since R
d is finite-dimensional, we actually have that the convergence holds in the

uniform operator topology. Since ||B||= ||BT || for every matrix B, it follows that

||S̃λ
t ||→ ||exp(Āt)|| almost surely as λ→∞.

Since ||S̃λ
t ||≤ exp(maxi ||Ai||t) for every λ> 0, the bounded convergence theorem

gives

E||S̃λ
t ||→ ||exp(Āt)|| as λ→∞.

Since ||S̃λ
t || and ||Sr

t || are equal in distribution, the proof is complete. �

Proof of Theorem 2.5. Since Ā is Hurwitz, there exist positive numbers β and γ so
that for every t≥ 0

||exp(Āt)||≤βe−γt.

Thus we can choose T > 0 so that ||exp(ĀT )||< 1
4 . By Lemma 2.6 there exists a b> 0

so that if r>b, then Ei||S
(r)
T ||< 1

2 for each i∈E, where Ei denotes the expectation
with respect to the measure of the process (It)t≥0 with initial measure P(I0= i)=1.

Let r>b and define the process {Mn}
∞
n=0 and the filtration {Fn}

∞
n=0 by

Mn= ||XnT || and Fn=σ((Xt,It) : 0≤ t≤nT ).

We claim that Mn is a supermartingale with respect to Fn. It’s immediate that
Mn∈Fn and E|Mn|≤ eΛnT <∞ for Λ :=maxi∈E ||Ai||. For 0≤ s≤ t, define S(s,t) to
be the operator that maps Xs to Xt. We now check the supermartingale property.

E[Mn+1|Fn]≤E[||S(nT,(n+1)T )|| ||XnT |||Fn]

=MnE[||S(nT,(n+1)T )|||Fn]

=MnEInT
||S(nT,(n+1)T )||

≤
1

2
Mn.

Taking the expectation of the above inequality and iterating yields EMn≤
1
2nEM0.

Therefore Mn converges in L1 to 0 since Mn≥ 0. Also since Mn≥ 0, the martingale
convergence theorem implies that Mn must converge almost surely. Therefore Mn

converges almost surely to 0.
To conclude that ||Xt||→0 almost surely, we need to control ||Xt|| at times

between multiples of T . This is easily obtained since ||Xt|| cannot grow faster than
eΛt. Let ω∈Ω be such that Mn(ω)→0 and let ǫ> 0. There exists N =N(ω,ǫ) so
that for all n≥N ,

||Mn(ω)||<e−ΛT ǫ.



6 SEAN D. LAWLEY, JONATHAN C. MATTINGLY, AND MICHAEL C. REED

Thus for all t≥NT ,

||Xt(ω)||≤ ||(S(t−T ⌊t/T ⌋,t)XT⌊t/T⌋)(ω)||≤ eΛTM⌊t/T⌋(ω)<ǫ.

Since this set of ω’s has probability one, the proof is complete. �

Example 2.7. Assume E= {0,1} and Q=
(

−1 1
1 −1

)

. Define

A0=

(

1 4
0 −2

)

A1=

(

−2 0
0 1

)

.

Then A0 and A1 each have a positive eigenvalue, but Ā= 1
2 (A0+A1) is Hurwitz.

So despite the fact that each individual matrix is unstable, Theorem 2.5 guarantees
that ||Xt||→0 almost surely as t→∞ for sufficiently fast switching rate.

3. Medium switching can be complicated

We will now construct a switching example with two matrices, A0 and A1, that
is surprising for the following two reasons. First, the individual matrices A0 and
A1 and the average Ā= 1

2 (A0+A1) are all Hurwitz, but ||Xt|| will still blow up at
large time for certain values of the switching rate. In [5], the authors show that
||Xt|| can blow up if the two individual matrices A0 and A1 are Hurwitz as long
as the average matrix has a positive eigenvalue. Thus our result shows that this
assumption on the average matrix is not necessary.

Second, the asymptotic behavior of the following example has multiple “phase
transitions” as the switching rate varies. That is, the process goes to zero at large
time for both slow and fast switching, but blows up for medium switching.

We also remark that we can choose the negative real part of all the eigenvalues
of A0, A1, and Ā to have arbitrarily large absolute value.

Example 3.1. Assume P(X0=0)=0 and let E= {0,1} and Q=
(

−1 1
1 −1

)

. We will

show the existence of matrices A0,A1∈R
2×2 and positive numbers a<b, so that

(1) A0, A1 are each Hurwitz.
(2) Ā= 1

2 (A0+A1) is Hurwitz.
(3) If r /∈ (a,b), then ||Xt||→0 almost surely as t→∞.
(4) ||Xt||→∞ almost surely as t→∞ for some value of r∈ (a,b).

For positive α and c, we define

A0=

(

−α c
0 −α

)

A1=

(

−α 0
−c −α

)

.

Observe that A0 and A1 each have −α< 0 as their only eigenvalue. The two eigen-
values of Ā= 1

2 (A0+A1) are −α± ic/2. Thus A0, A1, and Ā are each Hurwitz. By
Theorems 2.4 and 2.5, ||Xt||→0 as t→∞ almost surely for sufficiently large r and
for sufficiently small r. We will show that ||Xt||→+∞ as t→∞ almost surely for
some intermediate values of r.

We use polar coordinates to study the large time behavior of ||Xt||. Our tech-
nique follows [5] in this setting and the well known utility of the polar representation
when studying Lyapunov exponents (especially in two-dimensions) which dates back
to at least [9]. Define the radial process Rt := ||Xt|| and define the angular process
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Ut as the point on the unit circle S1 given by Xt/Rt. A short calculation shows
that between jumps Rt and Ut satisfy

Ṙt=Rt〈AItUt,Ut〉(3.6)

U̇t=AItUt−〈AItUt,Ut〉Ut.(3.7)

The advantage of this decomposition is that the evolution of the angular process
doesn’t depend on the radial process. Therefore (Ut,It) is a Markov process on
S1×{0,1}.

Lemma 3.2. If we identify θ∈R with (cosθ,sinθ)∈S1, then the unique invariant
measure of the angular process Ut is given by

µ(dθ,i)=pi(θ;r/c)1[0,2π](θ)dθ

where for any parameter λ> 0, the functions p0 and p1 satisfy

pi(θ;λ)=p1−i(θ+π/2;λ)=pi(θ+π;λ) for θ∈R,(3.8)

and p0(θ;λ)<p1(θ;λ) for θ∈ (−
π

2
,0).(3.9)

Proof. Define the process Θt∈R to be the lift of Ut∈S1 from the circle to its
covering space R. That is to say Θt is the unique process so that Ut=(cosΘt,sinΘt),
Θt is continuous in t, and Θ0∈ [0,2π). It follows from Equation (3.7) and plugging
in our values for A0 and A1 that between jumps Θt satisfies

Θ̇t=−c[Itcos
2(Θt)+(1−It)sin

2(Θt)]≤ 0.

Since mini∈{0,1}−c[icos2(θ)+(1− i)sin2(θ)]≤−c/2< 0 for all θ∈R, it follows that
Θt→−∞ as t→∞ almost surely. Since Θt is continuous, we conclude that the
Markov process (Ut,It) is recurrent and irreducible and must have a unique invariant
measure.

If we identify θ∈R with (cosθ,sinθ)∈S1, then the adjoint of generator of the
Markov process (Ut,It) is

(L∗q)(θ,i)=∂θ
(

c
[

(1− i)sin2(θ)+ icos2(θ)
]

q(θ,i)
)

+r(q(θ,1− i)−q(θ,i)).

For θ∈ (−π
2 ,0) and λ> 0, define

H(θ;λ)=exp(−2λcot(2θ))

∫ 0

θ

exp(2λcot(2y))sec2(y)dy

p0(θ;λ)=C csc2(θ)λH(θ)

p1(θ;λ)=C sec2(θ)[1−λH(θ)] .

where

C(λ)=

[

4

∫ 0

−π

2

sec2(x)+(csc2(x)−sec2(x))λH(x)dx

]−1

.

Define H(0;λ)=0=p0(0;λ) and p1(0;λ)=C(λ). Extend p1 and p0 to be defined
on the rest of the real line by Equation (3.8). It is easy to check that these three
functions are well-defined.

Writing pi(θ;λ) as p(θ,i;λ), it is easy to check that L∗p(θ,i;λ)=0 for all θ∈R

and for i= {0,1}. Thus, the measure µ defined in the statement of the lemma is
the unique invariant measure for (Ut,It).



8 SEAN D. LAWLEY, JONATHAN C. MATTINGLY, AND MICHAEL C. REED

We now check that p0 and p1 satisfy Equation (3.9). Let λ> 0 and observe that
for θ∈ (−π

2 ,0), writing 1=sin2(y)csc2(y) in the integrand gives

H(θ;λ)=exp(−2λcot(2θ))

∫ 0

θ

exp(2λcot(2y))sec2(y)sin2(y)csc2(y)dy

< exp(−2λcot(2θ))sin2(θ)

∫ 0

θ

exp(2λcot(2y))sec2(y)csc2(y)dy

=
1

λ
sin2(θ),

(3.10)

since sin2(θ) is strictly decreasing on (−π
2 ,0) and

d

dy
[exp(2λcot(2y))]=−λexp(2λcot(2y))sec2(y)csc2(y).

Observe also that for θ∈ (−π
2 ,0)

H ′(θ;λ)=λH(θ;λ)(sec2(θ)+csc2(θ))−sec2(θ)=
1

C
(p0(θ;λ)−p1(θ;λ)).(3.11)

Combining Equations (3.10) and (3.11), we have that for θ∈ (−π
2 ,0)

1

C
(p0(θ;λ)−p1(θ;λ))< 0.

Thus Equation (3.9) holds. �

Lemma 3.3. For λ> 0, define

G(λ) :=

∫ 2π

0

(p0(θ;λ)−p1(θ;λ))cos(θ)sin(θ)dθ.

Then G(λ)> 0 and

• If G
(

r
c

)

> α
c , then ||Xt||→∞ as t→∞ almost surely.

• If G
(

r
c

)

< α
c , then ||Xt||→0 as t→∞ almost surely.

Proof. By Equations (3.8) and (3.9) in the statement of Lemma 3.2, we have that
(p0(θ;λ)−p1(θ;λ))cos(θ)sin(θ)> 0 for all θ and thus G(λ)> 0.

Now by Equation (3.6), we have that

1

t
log

(

Rt

R0

)

=
1

t

∫ t

0

〈AIsUs,Us〉ds.

Identify θ∈R with eθ := (cosθ,sinθ)∈S1. It follows from Lemma 3.2 and Birkhoff’s
ergodic theorem that there exists a set A∈S1 with µ(A)=1 so that if U0∈A, then

1

t
log

(

Rt

R0

)

→

∫

〈Aieθ,eθ〉µ(dθ,i) almost surely as t→∞.(3.12)

Define TA := inf{t≥ 0 :Ut∈A} and observe that for any U0∈S1, we have that TA<
∞ almost surely since Ut is recurrent. Since TA is a stopping time, we have that
the convergence in Equation (3.12) actually holds for every U0∈S1.
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Plugging in our choice of A0 and A1 and the definition of µ yields
∫

〈Aieθ,eθ〉µ(dθ,i)=

∫ 2π

0

〈A0eθ,eθ〉p0(θ;r/c)dθ+

∫ 2π

0

〈A1eθ,eθ〉p1(θ;r/c)dθ

= c

∫ 2π

0

(p0(θ;r/c)−p1(θ;r/c))cos(θ)sin(θ)dθ−α

= cG
(r

c

)

−α.

Hence if G
(

r
c

)

> α
c , then limt→∞

1
t log

(

Rt

R0

)

> 0 almost surely and thus ||Xt||→∞

as t→∞ almost surely. Similarly if G
(

r
c

)

< α
c , then ||Xt||→0 as t→∞ almost

surely. �

Since G
(

r
c

)

> 0 for every pair of positive numbers r and c, it is immediate that
we can choose r, c, and α so that ||Xt||→∞ as t→∞ almost surely.

3.1. Many transitions between stable and unstable. The following example
shows that there exist two matrices such that as the switching rate varies from zero
to infinity, the asymptotic behavior of the system will switch between converging
to zero and converging to infinity at least any prespecified number of times.

Example 3.4. Assume P(X0=0)=0 and let E= {0,1} and Q=
(

−1 1
1 −1

)

. We will

show that for any positive integer k, there exist matrices A0,A1∈R
2k×2k and posi-

tive numbers a1<b1<a2<b2< · · ·<ak<bk so that

(1) A0, A1 are each Hurwitz.
(2) Ā= 1

2 (A0+A1) is Hurwitz.

(3) If r /∈
⋃k

i=1(ai,bi), then ||Xt||→0 almost surely as t→∞.
(4) For every i∈{1, . . .,k}, ||Xt||→∞ almost surely as t→∞ for some value

of r∈ (ai,bi).

Let k be a given positive integer and define the two block diagonal matrices
A0,A1∈R

2k×2k by

A0=











A1
0 0 · · · 0
0 A2

0 · · · 0
...

...
. . .

...
0 0 · · · Ak

0











A1=











A1
1 0 · · · 0
0 A2

1 · · · 0
...

...
. . .

...
0 0 · · · Ak

1











(3.13)

where

Ai
0=

(

−αi ci
0 −αi

)

Ai
1=

(

−αi 0
−ci −αi

)

(3.14)

for some positive numbers {ci}
k
i=1 and {αi}

k
i=1. It’s immediate that A0, A1, and Ā

are all Hurwitz.
Let Xt denote the R

2k-valued process corresponding to (3.13) and X
(i)
t the R

2-
valued process corresponding to (3.14) for each i∈{1, . . .,k}. Since the ODEs for

X(i) and X(j) are not coupled for i 6= j, we have that Xt=(X
1)
t , . . . ,X

(k)
t ) when

viewed as an (R2)k-valued process. In particular, one has

||Xt||
2=

k
∑

i=1

||X
(i)
t ||2.



10 SEAN D. LAWLEY, JONATHAN C. MATTINGLY, AND MICHAEL C. REED

Thus ||Xt||→0 if and only if ||X
(i)
t ||→0 for every i∈{1, . . .,k}. Furthermore if

||X
(i)
t ||→∞ for some i∈{1, . . .,k}, then ||Xt||→∞.
The proof proceeds by choosing the parameters αi and ci as in Example 3.1 so

that X(i) is unstable for switching rates r in an interval (ai,bi) but stable out side
of the interval. By arranging so that the collection of intervals {(aj ,bj) : j=1, . . .,k}
are disjoint we will succeed at constructing the desired matrices A0 and A1.

More explicitly, it follows from Lemma 3.3 and Theorems 2.4 and 2.5 that we
can choose r1, c1, α1, and a1<b1 so that

G

(

r1
c1

)

>
α1

c1
and G

(

r

c1

)

<
α1

c1
if r /∈ (a1,b1).

Choose N > b1
a1

and for i∈{2, . . .,k} define

ai=
a1

N i−1
, bi=

b1
N i−1

, αi=
α1

N i−1
, ci=

c1
N i−1

, ri=
r1

N i−1
.

To see that our intervals (ai,bi) don’t overlap, observe that ai<bi for each i and

bi=
b1

N i−1
<

Na1
N i−1

=ai−1.

Next observe that if r /∈ (ai,bi), then rN i−1 /∈ (a1,b1) and therefore

G

(

r

ci

)

=G

(

rN i−1

c1

)

<
α1

c1
.

Thus, ||X
(i)
t ||→0 almost surely as t→∞ if r /∈ (ai,bi).

Finally observe that ri∈ (ai,bi) and

G

(

ri
ci

)

=G

(

r1
c1

)

>
α1

c1
=

αi

ci
.

Thus, ||X
(i)
t ||→∞ almost surely as t→∞ if the switching rate is ri∈ (ai,bi).

4. Conclusions

Stochastically switched linear ODEs are one of the simplest examples of stochas-
tically switched systems. However despite their simplicity, we have shown that
their behavior can be quite rich. First, the large time behavior can depend on
the switching rate in a very delicate way. Second, this large time behavior can be
very different from the large time behavior of both the individual systems and the
average system.
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