
Nucleolar Organization, Ribosomal DNA Array Stability,
and Acrocentric Chromosome Integrity Are Linked to
Telomere Function
Kaitlin M. Stimpson1,2, Lori L. Sullivan1, Molly E. Kuo2, Beth A. Sullivan1,2,3*

1 Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America, 2 Institute for Genome Sciences

& Policy, Duke University, Durham, North Carolina, United States of America, 3 Division of Human Genetics, Duke University, Durham, North Carolina, United States of

America

Abstract

The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes
(rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus.
Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random
acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome
sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus
and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal
changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and
chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage
and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense,
and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they
become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity
of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at
chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region,
specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian
translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA
damage and repair.

Citation: Stimpson KM, Sullivan LL, Kuo ME, Sullivan BA (2014) Nucleolar Organization, Ribosomal DNA Array Stability, and Acrocentric Chromosome Integrity Are
Linked to Telomere Function. PLoS ONE 9(3): e92432. doi:10.1371/journal.pone.0092432

Editor: Mary Bryk, Texas A&M University, United States of America

Received October 18, 2013; Accepted February 21, 2014; Published March 24, 2014

Copyright: � 2014 Stimpson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH grants F31 AG034749 (to KMS) and R01 GM098500 (to BAS) and March of Dimes Research Grant 6-FY10-294 (to BAS).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: beth.sullivan@duke.edu

Introduction

Human telomeres are tandem double-stranded TTAGGG

repeats located at the termini of chromosomes where the

assembled protein complex acts as a protective cap, preventing

degradation of the telomere repeats, end-to-end fusions, and

recognition of single-stranded and double-stranded ends as

damaged DNA [1]. Dysfunctional telomeres activate DNA

damage checkpoints, trigger repair/recombination machinery,

and produce genomic rearrangements as a result of fusion events

[2]. TRF2 (TTAGGG repeat binding factor 2) is a key member of

the telomere protein complex, binding double-stranded DNA at

telomeres, and facilitating topological changes in the telomeric

DNA and T-loop assembly [3–5]. TRF2 provides a protective

capping function at the telomere, suppressing DNA damage

recognition and non-homologous end joining [3,4,6–8].

Disrupting telomere function by expressing the mutant telomere

protein TRF2DBDM (hereafter called dnTRF2) induces formation

of de novo dicentric human chromosomes [9,10]. We previously

showed that chromosome fusions occur non-randomly after short-

term dnTRF2 expression (36 hours), with nearly 80% occurring

between the short arms of the Homo sapiens acrocentric chromo-

somes 13, 14, 15, 21, and 22 (HSA13, HSA14, HSA15, HSA21,

HSA22) [9]. When they form naturally in humans, acrocentric

fusions are called Robertsonian translocations and represent the

most common human chromosomal rearrangement (1 in 1000 live

births) [11]. The reversible telomere disruption assay models a

prevalent structural human chromosome abnormality, and pro-

vides a system to probe the molecular basis for formation and

stability of acrocentric fusions.

The mechanism driving Robertsonian translocation formation

is thought to depend on genomic organization of acrocentric

chromosomes. All 10 acrocentric short arms share several highly

similar or identical blocks of repetitive DNA, including satellite III

(sat III) and beta satellite [12,13]. In addition, approximately 400

copies of the 43 kb ribosomal DNA (rDNA) cassette are

distributed among the acrocentric short arms, existing as clusters

called nucleolus organizing regions (NORs) [14]. The nucleolus is

assembled around the ribosomal RNA genes (NORs) each cell

cycle. Its main function is to produce ribosome subunits. After exit

from mitosis, numerous mini-nucleoli are formed around actively

transcribing NORs [14–16]. The mini-nucleoli fuse to form larger
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nucleoli [17–19], thereby bringing the NORs of multiple

acrocentrics into close proximity [20–22]. The transcription factor

UBF binds to rDNA arrays and sequesters NORs - and thus, the

acrocentric chromosomes - to common nuclear subdomains [23–

25]. Acrocentric fusions are proposed to occur via incomplete

homologous or non-homologous recombination between short

arm repeats or through repair of short arm DNA damage that is

corrected using a similar short arm DNA sequence on a nearby

non-homologous acrocentric.

The nucleolus harbors a diverse set of proteins [26], suggesting

that it functions in roles beyond ribosome biogenesis. With a

dynamic and diverse protein pool, nucleoli may also be a focal

point for organizing or amplifying the stress response. Nucleolar

architecture and rDNA transcription change in response to

cellular stresses such as DNA damage, viral infection, and

temperature variation [27]. Here we describe a dramatic change

in nucleolar morphology and acrocentric short arm DNA

organization that occurs when telomere function is disrupted.

Our results suggest that one response is a change in nucleolar

structure and under-condensation of NORs punctuated by UBF

protein bridges that physically tether acrocentric short arms and

promote acrocentric fusion.

Materials and Methods

Cell culture
The human HT1080 cell line derivative called HTC75T19

(T19) expresses a truncated allele of TRF2 (dnTRF2) under the

control of a tetracycline/doxycycline-sensitive promoter [10].

HT1080 cells, 293T cells, and the T19 clonal cell line were

cultured in minimum essential medium alpha (Invitrogen)

supplemented with 10% FBS (HyClone and Cellgro) and

antibiotics (Invitrogen). The T19 cell line media also contained

5 mM glucose and 100 ng/mL doxycycline hyclate (Fluka). T19

dox-inducible cells were induced by washing 3 times in phosphate

buffered saline (PBS) before incubation in tetracycline/doxycy-

cline free media. Cells were incubated with 33 mg/mL zeocin

(Invitrogen) for 36 hours before metaphase chromosomes were

isolated. For Actinomycin D treatments, T19 cells were treated

with 50 ng/mL (Sigma) for 30 minutes, 3 hours, or 4 hours before

RNA isolation or 5FU treatment. T19 cells growing on chamber

slides were treated with 1 mM 5FU (Sigma) for 30 minutes.

Nucleolar isolation
Nucleoli were isolated from HT1080, uninduced T19, and 30-

or 32-hour induced T19 cells using a previously described method

[28] subsequently modified by the Lamond lab [29]. Briefly, ,108

cells were harvested, washed with cold PBS, resuspended in 5–

7 mL of buffer (10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl,

0.5 mM dithiothreitol), and dounce homogenized on ice (tight

pestle) until nuclei were released. Nuclei were gently pelleted,

resuspended in 3 mL of Sucrose 1 (0.25 M sucrose, 10 mM

MgCl2), and layered over Sucrose 2 (0.35 M sucrose, 0.5 mM

MgCl2) before centrifugation at 14306g for 5 minutes. The pellet

was resuspended in 3 mL Sucrose 2 before sonication with a

Misonix Microson XL 2000 sonicator at power 10 with 5 second

bursts on ice until nuclei were broken open and nucleoli were

distinct. The sonicated solution was layered over 3 mL Sucrose 3

(0.88 M sucrose, 0.5 mM MgCl2) and centrifuged at 28006g for

10 minutes before resuspension in Sucrose 2.

Immunofluorescence – nuclei
HT1080 and T19 cells were seeded on Fisher SuperFrost/Plus

slides. 5FU treated cells were briefly extracted with PBS+0.2%

Tween 20 before fixation. Cells were fixed with 4% PFA in PBS

for 10 minutes and permeabilized in PBS+0.1–0.25% Tween 20

for 30 minutes to 1 hour. Slides were incubated at 4uC overnight

in blocking buffer with antibodies at dilutions listed below.

Immunofluorescence - metaphase chromosomes
Spreads were prepared as previously described [30]. Briefly,

confluent cells were incubated with 0.05 mg/mL colcemid (Gibco/

Invitrogen) for 1 hour and swelled in hypotonic buffer (1:1:1 v/v/v

75 mM KCl: 0.8% Na citrate: H2O) for 10 minutes. The cell

concentration for extended or elongated chromosomes was

3.56104 cells/mL. Swelled cells were subject to centrifugation

onto slides using a Shandon Cytospin 4. Chromosomes were fixed

in 4% PFA in PBS and extracted in PBS+0.1% Tween 20 before

incubation with antibody solution overnight at 4uC. For RNase A/

H treatments, slides were treated with 100 mg/mL RNase A and

RNase H (NEB) at 37uC for 20 minutes prior to incubation with

antibody solution.

Immunofluorescence - isolated nucleoli
Nucleoli suspended in Sucrose 2 were spread across slides and

fixed with 4% PFA in PBS for 10 minutes, rinsed in PBS, and

incubated with antibodies overnight at 4uC.

Antibodies used
Antibodies included fibrillarin 1:1000 (Abcam ab18380 or

ab5821), CENP-A 1:500 (Abcam 13939 or Upstate 07-574), TRF2

1:200 (Imgenex IMG-124A or Novus NB110-57130), Ki67

antigen 1:500 (Novocastra Laboratories Ltd.), H2AX-p 1:300

(Millipore 05-636 or Abcam ab2893), ATM-p Ser1981 1:250 (Cell

Signaling 5883), Chk2-p Thr68 1:250 (Cell Signaling 2661),

SMC2 1:300 (Cell Signaling 5394), SMC4 1:300 (Cell Signaling

5547), goat polyclonal to DDDDK (FLAG) tag 1:500 (Abcam

ab1257), UBF 1:150 (Santa Cruz H-300), and anti-BrdU 1:400

(Sigma clone BU-33). Primary antibodies were detected using anti-

mouse, anti-rabbit, or anti-goat secondary antibodies conjugated

to Alexa Fluor 488, 594, 647 (Molecular Probes), FITC, Cy3, or

Cy5 (Jackson Immunoresearch, Inc.).

Fixed chromosome and nuclei isolation
Confluent cells were harvested according to standard methods

with hypotonic buffer (1:1:1 v/v/v 75 mM KCl: 0.8% Na citrate:

H2O), fixed (3:1 v/v methanol: acetic acid), and dropped onto

clean glass microscope slides.

Probe preparation
pTRS-47 (sat III) and pTRS-63 (sat III) plasmids were

generously provided by Professor Andy Choo (Melbourne,

Australia). The beta satellite repeats were detected using the pb4

plasmid [31]. The plasmids for 18 s rDNA, 13/21 alpha satellite,

and 14/22 alpha satellite were constructed from previously

described PCR primers using the TOPO TA Cloning Kit

(Invitrogen) and One Shot TOP10 Competent Cells according

to manufacturer’s specifications [32–34]. A cosmid containing the

43 kb rDNA repeat was used as a probe for the entire rDNA

region (a kind gift of Brian McStay, NUI, Galway). Plasmids and

cosmids were labeled with biotin-16-dUTP, digoxygenin-11-

dUTP (Roche), Molecular Probes ChromaTide Alexa Fluor 488-

5-dUTP or Alexa Fluor 568-5-dUTP (Invitrogen) by nick-

translation according to Molecular Probes. Whole chromosome

paints were made using isolated DNA from the Human/Rodent

Somatic Cell Hybrids Mapping Panel #2 (Coriell). Chromosome

specific DNA was amplified using degenerate-oligonucleotide-
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primed PCR (DOP-PCR) and labeled with biotin-16-dUTP or

digoxygenin-11-dUTP. Telomere repeats were detected with

FITC-conjugated Peptide Nucleic Acid (PNA) probe (C3TA2)3
(Biosynthesis). CENP-B box sequences were detected with a

biotin-labeled Peptide Nucleic Acid (PNA) probe.

Fluorescence in situ hybridization (FISH)
FISH and immunostaining-FISH were performed as previously

described [30]. Probes used recognized beta satellite (pb4) [12],

satellite III (pTRS-47 and pTRS-63) [35], and rDNA/NORs

(PAC probe RP5-1174A5) (CHORI BAC/PAC Resource). All

probes were labeled with biotin-16-dUTP or AlexaFluor-dUTP by

nick translation. Methanol:acetic acid fixed nuclei and chromo-

somes were denatured in 70% formamide/2X SSC pH 7 at 70uC
for 1 minute. Probe was denatured at the same temperature for 8–

10 minutes in hybridization mixture. PFA fixed nuclei, metaphase

chromosomes, and nucleoli were co-denatured with probe on a

hot plate at 80uC for 2–3 minutes. The hybridization solution

consisted of 50–70% formamide, 2X SSC, 1% Tween 20, and

10% dextran sulfate. Probe was hybridized to DNA under a sealed

coverslip overnight in a humidified chamber at 37uC. Slides were

washed in 50–70% formamide/2X SSC at 25–42uC followed by

washes in 2X SSC at 25–37uC. Probe was detected by 2 hour

incubation at room temperature with Cy3-, Cy5-, or Alexa Fluor

488-conjugated anti-digoxin or avidin secondary antibodies

(Jackson ImmunoResearch and Molecular Probes) and washed

in PBS+0.1% Tween 20 before mounting in Vectashield (Vector

Labs, Burlingame, CA) containing 2 mg/mL DAPI.

RNA FISH
T19 cells were seeded on Fisher SuperFrost/Plus slides, washed

with PBS, incubated with 100 mg/ml RNase A for 10 minutes,

incubated with PBS+0.2% TritonX for 1 minute, fixed in 4% PFA

in PBS for 10 minutes, and permeabilized in PBS+0.5% TritonX

for 5 minutes. Slides were incubated in 20% glycerol for 20

minutes before submersion in liquid nitrogen for 30 seconds.

Control slides were then treated with 100 mg/mL RNase A for

1 hour at 37u and RNase H (NEB) for 10 minutes. All slides were

lightly denatured at 70uC in 40% formamide/2X SSC for 45

seconds, dehydrated in an ethanol series, and hybridized with

probe in 50% formamide hybridization buffer (2–3 ng probe/mL

buffer) for at least 1 hour. Washes were performed at 37uC in 50%

formamide/2X SSC for 15 minutes and in 2X SSC for 10

minutes. 18S probes were direct labeled (IDT) as described [36].

Knockdown of TRF2 by short hairpin RNA expression
293T cells were used to make retrovirus derived from pSUPER-

Retro-puro empty vector and pSUPER-Retro-puro vector con-

taining small hairpin RNA for TRF2 (kind gift of Chris Counter,

Duke University). 293T cells were transfected with the retroviral

and packaging plasmid using FuGene 6 (Roche). Filtered media

containing the retrovirus along with 5 mg/mL Polybrene (Milli-

pore) were added to HT1080 cells for infection. Infected HT1080

cells were selected with 1 mg/mL Puromycin (MP Biomedical) and

polyclonal populations were collected at 11 and 15 days for

immunoblot and immunofluorescence.

Immunoblot
Cell pellet samples were lysed and boiled for 5–10 minutes with

XT or Laemelli Sample Buffer (Bio Rad) with reducing agent.

UV-treated cells were collected 2 hours after UV irradiation

(20 J/m2) and immediately lysed and boiled. Kaleidoscope protein

markers (Bio Rad) were used as standards. Samples were loaded

onto a 4–12% Tris-HCl polyacrylamide gel (Bio Rad) or 4–12%

Criterion XT Bis-Tris gel (Bio Rad) and transferred to a

polyvinylidene fluoride membrane (Millipore). The membranes

were incubated with rabbit polyclonal TRF2 antibody 1:1000

(Novus NB110-57130), Chk2-p Thr68 1:500 (Cell Signaling 2661),

mouse monoclonal to fibrillarin 1:750 (Abcam ab18380), H2AX-p

1:1000 (Cell Signaling 9718), or beta actin 1:2000 (Abcam ab6276)

in blocking buffer. The membrane was incubated with the species-

specific horseradish peroxidase-conjugated secondary antibody

1:5000 (Abcam anti-mouse ab6829 or anti-rabbit ab6902) and

visualized using an ECL system.

Chromatin immunoprecipitation
ChIP assays with the MAGnify Chromatin Immunoprecipita-

tion System (Invitrogen) were performed according to manufac-

turer’s protocol. Confluent cells were crosslinked in 1% formal-

dehyde for 10 minutes, sheared to 100–700 base pair fragments

with a Misonix Microson XL 2000 at power level 10 repeating a 5

seconds on/5 seconds off cycle 30–35 times on ice. Invitrogen

Dynabeads were incubated with the following antibodies for 1–

2 hours at 4uC: 1 mL IgG rabbit (Invitrogen), 2 mL UBF (Santa

Cruz 9131), 4–5 mL TRF2 (Novus NB110-57130), 2 mL

H3K4me2 (Abcam ab7766), and 1.5 mL H3K9me3 (Abcam

ab8898). 150,000 cells were used in each immunoprecipitation

(IP) and incubated with the antibody/Dynabeads for 2–3 hours at

4uC. Beads were washed, chromatin reverse crosslinked, and DNA

eluted according to the MAGnify ChIP protocol. ChIPs were

repeated at least 3 times for each modification.

PCR
Eluted IP DNA was amplified for semi-quantitative PCR using

a Bio-Rad myCycler or S1000 Thermal Cycler. Primer sequences

included: rDNA primers u18S, 18S, and intergenic spacer (IGS)

corresponding to H1, H4, and H18 respectively [37], beta satellite

distal [38], and degenerate alpha satellite [39]. Two microliters of

IP DNA was used in each 15 mL PCR reaction in duplicate.

Amplification products were run on a 1.5% agarose gel. Band

intensity was quantified using ImageJ software (http://rsb.info.nih.

gov/). Relative enrichments of histone modifications or chromatin

binding proteins were calculated as described using the following

formula: [(IP2Mock)/(Input2Mock)]Query/[(IP2Mock)/(Input2

Mock)]Control site/Normalizer [40].

qRT-PCR
cDNA was collected from uninduced T19 control, 12-, 24-, 48-,

and 72-hour dnTRF2-expressing cells, serum starved cells, and

cells treated with Actinomycin D for 30 minutes and 3 hours.

cDNA was isolated using Qiagen’s FastLane Cell cDNA kit (Cat.

215011). One confluent T25 flask per sample was used and the

manufacturer’s protocol was followed. qRT-PCRs were performed

using Qiagen’s QuantiFast SYBR Green PCR kit (Cat 204052) for

GAPDH (primers: 59-CTCATGACCACAGTCCATGCC-39, 59-

GCCATCCACAGTCTTCTGGGT-39) [41], 45S pre-ribosomal

RNA (primers: 59-CTCCGTTATGGTAGCGCTGC-39, 59-GC-

GGAACCCTCGCTTCTC-39), and 28S ribosomal RNA (primers:

59-CGACGACCCATTCGAACGTCT-39, 59-CTCTCCGGAA-

TCGAACCCTGA-39) [42]. Each primer pair was optimized (e.g.

performing standard dilute and melt curve analyses) using

HT1080 cDNA prior to performing qRT-PCR on the samples.

Each sample was performed in triplicate within the respective run.

Ct values (triplicates) were averaged and the SEM was calculated.

Fold change was calculated using the following formulas:

DCt = target Ct - endogenous Ct (i.e. GAPDH)

DDCt = DCt sample - DCt Calibrator (i.e. T19 control)
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Fold Change (Relative Expression) = 2DDCt

Microscopy
Images were acquired on an inverted Olympus IX-71 attached

to the Deltavision RT or Core imaging system (Applied Imaging,

Inc) and Photometrics CoolSNAP HQ CCD camera. All

objectives used were oil objectives from Olympus and included:

406 (UAPO 1.35 NA) and 606 (PLAN-APO, 1.40 NA) for

metaphase chromosomes, and 606 or 1006 (PLAN APO 1.40

NA) for isolated nucleoli and nuclei. Images were acquired using

Deltavision SoftWoRx Resolve 3D capture program and collected

as a stack of 0.1–0.5 micrometer increments in the z-axis. Images

consisted of 1–20 sections (0.5–5 micrometers), depending on the

fixation technique. Images were deconvolved using the conserva-

tive algorithm with 10 iterations, and stacked images were viewed

by quick projection. Projections were converted to Adobe

Photoshop for viewing and analysis.

Image analyses
Digital images were captured using an epifluorescence micro-

scope with no signal reaching pixel saturation. Using IPLab/

iVision, pseudo-colored three-color (RGB) images were separated

into individual wavelengths for the blue (457 nm), green (488 nm),

and red (568 nm) channels. Pearson coefficient values were

obtained by using the SoftWoRx co-localization tool. Degree of

co-localization of the signals from two wavelengths (TRF2 and

SMC4) was visualized on a scatterplot of pixel intensities. The

relative amount of SMC4 on metaphase chromosomes was

quantitiated using a custom IPLab/iVision (BioVision Technolo-

gies) script that measures arbitrary fluorescence intensities along

the length of a chromosome. The region of interest (ROI) was

defined by manually tracing a chromatid and arbitrary fluores-

cence values along the ROI were plotted for each wavelength as a

contiguous line plot. For each chromosome immunostained for

SMC4 and hybridized with an rDNA FISH probe, a line was

manually drawn along the chromatid from the end of the p arm (0

on x-axis of resulting graph), through the NOR (rDNA) and

centromere, to the telomere of the q arm (,150+ on x-axis of the

resulting graph). Graphical presentation of the percentage of

chromosomes exhibiting specific patterns of SMC4 localization at

rDNA was achieved using Kaleidagraph. Categories were defined

as: ‘‘co-localization’’ (rDNA and condensin peaks coincided or

nearly overlapped), ‘‘partial co-localization’’ (,50% of the

condensin peak overlapped with the rDNA peak), or ‘‘no co-

localization’’ (rDNA peak fell between condensin peaks or in a

region comparable to the low signals across the chromosome). The

frequency of UBF/rDNA connections was determined by

collecting all measurable metaphases on at least two slides from

two independent cell collections and cytospin experiments.

Statistics
For comparisons between the proportions of abnormal and

normal nuclei and FISH signals in Figures S1–S3, contingency

tables were used and, if applicable, correction for multiple testing

using the Marascuilo procedure was applied (http://www.

stattools.net/Multiprop_Pgm.php) and verified with Bonferroni’s

correction. Student’s t-test was used for analyses of control and

dnTRF2 ChIP enrichments, control and dnTRF2 nucleoli

immunofluorescence intensity, control and dnTRF2 Pearson

coefficients, and qRT-PCR data.

Results

We previously showed that transient telomere disruption caused

by expression of inducible, dominant-negative mutant allele of the

telomere protein TRF2 (dnTRF2) for 36–48 hours perturbs the

nucleolus and produces acrocentric fusions [9,10]. The prior study

focused on dicentric formation and fate and centromere function.

The molecular basis for nucleolar disruption or acrocentric

sensitivity to telomere dysfunction induced by dnTRF2 was not

explored. Here, we sought to address this issue, specifically

focusing on the temporal events leading to nucleolar disruption

and non-random acrocentric chromosome fusion. To verify that

our observations were not restricted to the dnTRF2 system, we

used additional approaches to cripple telomeres and verify effects

on nucleolar morphology and acrocentric stability.

First, TRF2 was depleted by expression of a retroviral short

hairpin RNAi construct. At both 10 days and 2 weeks of shTRF2

expression, Western blotting and immunostaining showed that

TRF2 had been largely depleted (Figure 1A, Figure S1A, B). The

nucleolus also showed a disordered appearance matching what

was previously observed in dnTRF2 cells (Figure S1A, S1C) [9].

An elevated number of acrocentric fusions were observed

compared to control cells (Figure 1B). The number of acrocentric

fusions increased the longer that shTRF2 was expressed.

Figure 1. Non-random acrocentric fusion when telomeres are
disrupted by various approaches. (A) Immunoblot of HT1080
whole cell lysates selected for empty vector or shTRF2 retroviral vector
for 11 or 15 days with puromycin. Blot shows TRF2 protein as a doublet
and -actin as a loading control. (B) Acrocentric fusions are non-
randomly induced in HT1080 cells expressing a retroviral shTRF2
construct for 10 days and 3 weeks. In addition, treatment of cells with
the double-strand break inducer zeocin also results in high numbers of
acrocentric fusions. asterisk (*) in graph legend denotes observations
from dnTRF2 expression previously reported in [9].
doi:10.1371/journal.pone.0092432.g001

Telomere Function and Acrocentric Stability

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e92432

http://www.stattools.net/Multiprop_Pgm.php
http://www.stattools.net/Multiprop_Pgm.php


In the second approach, we treated cells with zeocin, a DNA-

damaging agent that induces double-strand breaks throughout the

genome, including at telomeres [43]. After zeocin treatment for

36 hours, nearly 65% of cells contained acrocentric fusions

(Figure 1B). This frequency was similar to that observed for

acrocentric fusions induced by dnTRF2 (Figure 1B) [9]. These

experiments supported our previous findings that human acro-

centric chromosomes are hypersensitive to telomere disruption

and DNA damage. They also suggested that non-random

acrocentric fusion is one consequence of telomere damage and is

not restricted to the dnTRF2 assay.

Altered nucleolar structure is coincident with dnTRF2
expression

All three strategies (TRF2 knockdown, zeocin treatment, and

dnTRF expression) produced nucleolar and chromosome defects,

but the dnTRF2 system provided the most controllable method for

generating the highest number of acrocentric fusions and altered

nucleoli. It was used in subsequent experiments. We established

that both nucleolar organization, denoted by fibrillarin, Ki-67, and

B23 immunostaining, appears abnormal after 36–40 hours of

dnTRF2 expression [9] (Figure 2A, Figure S2). We wished to

determine which occurred first: nucleolar disassembly or acrocen-

tric short arm instability. To establish detailed timing of these

events, T19 (dnTRF2) cells were induced and monitored at

intervals over a 36 hour period followed by fibrillarin immuno-

staining (Figure 2B). By 9 hours, 35% (12/34) of nuclei exhibited

abnormal fibrillarin staining. Abnormal staining was determined

visually in that compact nucleoli appeared unraveled, occupying

an increased area of the nucleus (compare control nucleoli in

Figure 2A with Figure 2B). From 12 hours on, the abnormal

morphology increased, peaking in 70% of cells (19/27) by

24 hours (Figure 2C). The abnormal nucleolar phenotype was

not due simply to effects of the dominant-negative protein, since

nucleoli were similarly disrupted when TRF2 was knocked down

using a short hairpin RNAi construct (Figure S1A, S1C).

Figure 2. Timing of nucleolar protein disruption with increasing dnTRF2 expression. (A) Immunostaining of 3D-preserved whole nuclei
with nucleolar protein fibrillarin (green) and Ki-67 (red) in control and 45 hour dnTRF2 nuclei show that nucleolar morphologies changes with
increased dnTRF2 expression and telomere dysfunction. (B) Induced T19 (dnTRF2-expressing) cells were analyzed at intervals over a 24-hour period
using immunofluorescence with antibodies specific to fibrillarin and FLAG (to detect FLAG-tagged dnTRF2 protein - red). Nucleolar changed from a
normal spherical shape to less condensed structures resembling nucleolar necklaces. (C) Quantitation of the percent of nuclei showing visibly
abnormal nucleolar staining over the timecourse. Abnormal morphology (decondensed, unraveled) of nucleoli (light grey) increased as dnTRF2 was
expressed for longer periods. The number of nuclei examined at each timepoint is indicated at the top of each stacked bar. After dnTRF2 expression
for 24 hours, there was a statistically significant increase (asterisk) in the proportion of abnormal nucleoli compared to control cells. Scale bars equal 5
micrometers, hr = hour.
doi:10.1371/journal.pone.0092432.g002
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Acrocentric short arm DNA reorganization during dnTRF2
expression

Progression of acrocentric short arm DNA disruption was

visualized using fluorescence in situ hybridization (FISH) with

DNA probes that recognized each of the distinct repetitive arrays

(rDNA, beta satellite, satellite III, and alpha satellite DNA) on the

acrocentric short arms (Figure 3, Figure S3). Starting at 24 hours

after dnTRF2 expression, rDNA FISH signals appeared more

scattered throughout the nucleus, contrasting with the punctate

clustered, and bright foci observed in control cells (Figure 3, Figure

S3D). By 36 hours, the punctate FISH signals were smaller and

dotted ‘‘tracks’’ of FISH signal were apparent. By three days, the

concentrated rDNA FISH signals were less apparent and more

diffuse in appearance. Satellite III FISH signals also became

dispersed in the presence of dnTRF2 (Figure S3B and S3D).

Centromeres, detected using an alpha satellite DNA probe, and

beta satellite DNA located on the proximal short arm remained

relatively punctate in both control and dnTRF2 nuclei (Figure

S3A, S3C). Acrocentric short arm DNA instability occurred

shortly after nucleolar changes (36 hours versus 24 hours). These

results suggest that acrocentric short arm structure, and particu-

larly the block of rDNA, is directly or indirectly linked to normal

telomere function.

DNA damage and localization of damage- and repair-
associated proteins at acrocentric short arms

Unprotected telomeres activate a DNA damage response at

chromosome ends. Markers of DNA damage were previously

observed both at telomeres and at acrocentric short arms when

dnTRF2 was expressed for 48 hours [9]. This timepoint coincided

with the appearance of acrocentric fusions, suggesting to us that

damage within the short arm was an underlying cause of

chromosome fusion in the dnTRF2 assay. We then monitored

timing of DNA damage relative to nucleolar disruption and

chromosome fusion at distinct intervals after dnTRF2 induction

(Figure 4). Western blotting showed a clear increase in dnTRF2

expression between 12 and 48 hours (Figure 4A). Levels of histone

H2AX phosphorylated at Serine 139 (H2AX-p), a marker for

DNA damage, remained steady until they increased at 72 hours

(Figure 4A, 4B). Chk2 phosphorylated Threonine 68 (Chk2-p), a

protein kinase that mediates the DNA damage response and

protects genome integrity by promoting apoptosis, was detected at

24 hours, and increased as dnTRF2 was expressed for 48–

72 hours (Figure 4C). Immunostaining corroborated the increase

in H2AX-p and/or Chk2-p associated with isolated nucleoli

(Figure S4) or nucleoli in intact nuclei (Figure S5) after 24–

48 hours of dnTRF2 expression. These results suggest that in the

presence of dnTRF2, nucleolar damage precedes the classical

DNA damage response and subsequent fusion at acrocentric short

arms.

Figure 3. dnTRF2 expression correlates with rDNA repeat array dispersion. The rDNA arrays are located on the short arms of the 5 pairs of
acrocentric chromosomes. FISH on RNase-treated nuclei hybridized with an rDNA (green) PAC probe showed that rDNA, normally appearing as
multiple punctate foci in the nucleus, becomes more diffuse with increased dnTRF2 expression. The T19 (dnTRF2) cell line contains ,18 acrocentric
chromosomes. Multiple short arms normally converge in the nucleus, so each foci can contain more than rDNA regions from more than one
acrocentric chromosome. With increased dnTRF2 expression and telomere dysfunction, the bright foci were reduced, instead appearing as dotted or
beaded tracks of fluorescent signals stretching throughout the nucleus. Pseudo-colored and gray-scale single channel images for rDNA are shown
below the merged images. Scale bars equal 5 micrometers.
doi:10.1371/journal.pone.0092432.g003
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dnTRF2 reduces acrocentric and nucleolar enrichment of
condensins

The change in acrocentric short arm morphology suggested

alteration of chromosome compaction or condensation. Depletion

of condensin has been shown to result in gamma H2AX (H2AX-p)

enrichment at centromeres, subtelomeric regions, and rDNA

repeats [44]. In dnTRF2 cells, combined immunostaining and

FISH on metaphase chromosomes showed that condensin

appeared decreased at rDNA or shifted from rDNA onto

neighboring repeats (Figure 5). Both SMC2 (not shown) and

SMC4 were enriched at nucleoli in control cells, co-localizing with

TRF2 (Figure S6A and S6B) and telomeric DNA (not shown). In

dnTRF2 expressing cells, less SMC4 and TRF2 were associated

with nucleoli (Figure S6C-E). These findings suggest that dnTRF2

results in altered amounts and/or locations of structural proteins

on acrocentric short arms.

Chromatin composition at acrocentric short arms is
largely unchanged by dnTRF2

We considered that the abnormal acrocentric short arm

morphology that occurred when dnTRF2 and dysfunctional

telomeres were present might be linked to chromatin changes.

Using chromatin immunoprecipitation (ChIP), we did not detect

statistically significant changes in either H3K4me2 (euchromatin)

or H3K9me3 (heterochromatin) enrichment at either beta satellite

and rDNA regions in control cells and 30-hour dnTRF2

inductions (Figure 6A and 6B). The rDNA transcription factor

UBF (upstream binding factor) was also comparably enriched at

rDNA (Figure 6C). However, endogenous TRF2 was depleted at

three different sites within the rDNA region in dnTRF2 cells -

upstream of the 18S region, in the 18S tract, and in the intergenic

spacer (IGS) (Figure 6D). These results indicate that in addition to

telomeric sequences, TRF2 is also located at rDNA and that

dnTRF2 displaces it from acrocentric short arms.

dnTRF2, NOR morphology, and acrocentric chromosome
fusion

Loss of TRF2 at rDNA may not alter chromatin enrichment at

rDNA arrays but could affect rDNA transcription. However, using

5FU (5-Fluorouracil) incorporation, quantitative reverse transcrip-

tase PCR (qRT-PCR) or RNA FISH, we did not detect notable

differences in overall rDNA transcription between control and

dnTRF2-expressing cells (Figure S7). Overall, rDNA transcription

did not appear to be decreased or increased by dnTRF2

expression. However, during each cell cycle, only a few of the

ten human rDNA arrays are transcriptionally active. These active

arrays are associated with UBF and RNA polymerase I

transcriptional machinery. UBF sequesters rDNA regions within

the nucleus and primes rDNA for binding by the transcriptional

machinery [24]. We asked if the presence of UBF at individual

rDNA arrays sensitized or protected acrocentric chromosomes

from dnTRF2-induced damage and fusion. UBF binding at

specific acrocentric chromosomes was visualized using immuno-

fluorescence-FISH (IF-FISH) that, unlike ChIP, allowed each

acrocentric to be examined individually. UBF was present at

rDNA on HSA13, HSA14 and HSA22 in both control and

dnTRF2 cells (Figure 7A), but HSA21 lacked UBF in all cells

analyzed. This finding was particularly relevant because we

observed that HSA21 was involved in fewer dnTRF2-induced

acrocentric fusions [9] (Figure 7B), and suggested the UBF could

be a key factor in acrocentric interactions. FISH with a

centromere probe recognizing the shared alpha satellite DNA

sequence present on HSA13 and HSA21 showed an average of 7

fluorescent signals at nucleoli (Figure 7C). The T19 line has four

copies of HSA13 and three copies of HSA21. These results suggest

that even though HSA21 lacks UBF, it is associated, at least within

the centromere and short arm, with the nucleolus.

Upon closer inspection of individual acrocentrics in dnTRF2

cells, we observed chromosomal connections that stretched

Figure 4. DNA damage markers appear with increased dnTRF2 expression. (A) Immunoblot for TRF2, -actin (loading control), and H2AX-p
on whole cell lysates from UV-treated (,20 J/m2), uninduced/0-hour, 12-hour, 24-hour, 48-hour, and 72-hour dnTRF2-expressing cells. (B) Graphical
representation of protein levels measured by arbitrary fluorescence units normalized to -actin showing increased dnTRF2 protein levels with longer
induction periods up to 48 hours. H2AX-p levels increased by 72 hours. (C) Immunoblot for Chk2-p and -actin showing appearance of
phosphorylated Chk2 kinase after 24 hours of dnTRF2 expression.
doi:10.1371/journal.pone.0092432.g004

Telomere Function and Acrocentric Stability

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e92432



between acrocentric chromosomes, such as HSA13, HSA14, and

HSA22. They originated at rDNA arrays and were detected with

UBF immunostaining and rDNA FISH (Figure 7D and 7E).

Control HT1080 cells lacking the dnTRF2 construct, as well as

uninduced T19 lines, exhibited very few UBF/rDNA inter-

acrocentric connections (Figure 7D). The composition of these

chromosomal bridges appeared to be both DNA and protein.

They did not appear to contain RNA, since they remained

between acrocentrics, even after treatment of cells with RNase A

and RNase H (Figure 7C). Since chromosome ends are

destabilized in the dnTRF2 assay and eventually lead to end-

fusions [10], it was possible that the bridges contained DNA

originating from the telomere through the rDNA. However, FISH

with a telomere probe showed that telomeric DNA appeared as

fluorescent dots at chromosome ends and was not present in the

bridges between the acrocentrics (Figure 7F). These results

indicate that acrocentric short arms are physically linked to one

another via UBF-coated rDNA bridges that persist and are more

numerous in the presence of dnTRF2.

Discussion

The nucleolus is crucial to cell proliferation, with a primary role

in processing and assembling ribosomes. Beyond this fundamental

role, further investigations have revealed a more dynamic

character – with a diversity of proteins passing in and out of the

nucleolus [27,45]. It is currently unclear what controls or drives

chromosomal and protein movement in and out of the nucleolus

during the cell cycle and/or in response to stress. Here we have

shown that TRF2, a central component of the proteinaceous

structure at the telomere, plays an extra-telomeric role in nucleolar

and acrocentric NOR stability.

TRF2 was previously shown to localize with nucleoli and UBF

in a cell cycle dependent manner [46]. Other telomere-associated

proteins have been observed in the nucleolus, including TRF1,

WRN helicase, Dyskerin, and BLM helicase [47–50]. Our ChIP

experiments have supported an association between TRF2 and

rDNA that is lost upon dnTRF2 expression. The presence of

endogenous TRF2 at rDNA is likely due to protein-protein

interactions with rDNA-associated proteins, since TRF2 has a

specific affinity for double stranded TTAGGG repeats [3].

Figure 5. Condensin localization decreases on acrocentric short arms in the presence of dnTRF2. Combined immunostaining-FISH for (A)
SMC4 (green) and rDNA (red) on metaphase chromosomes from control and 36 hour dnTRF2-expressing cells. (B) The amount of SMC4 was
quantitated by measuring arbitrary fluorescence along the length of the chromosomes and plotting signal intensity as a line plot. A line begins at the
p arm (0 on x-axis) and extends to the telomere of the q arm (,150+ on x-axis). (C) The extent of rDNA and SMC4 co-localization at chromatids of
metaphase chromosomes is presented in graphical format. The number of individuals chromatids examined is indicated at the top of each bar. A
significant reduction in SMC4 co-localization at rDNA was observed on metaphase chromatids from cells expressing dnTRF2 for 36 hours. Scale bars
in (A) are 15 micrometers.
doi:10.1371/journal.pone.0092432.g005
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Nevertheless, TRF2 can bind to DNA junctions, like replication

forks or Holliday junctions that lack telomeric sequence, and at

non-telomeric double-stranded breaks [51,52]. Our results support

a novel association of TRF2 at the rDNA array, but it remains

unclear if TRF2 interacts directly with the nucleolar DNA or

through associations with other nucleolar or chromosomal

proteins. ChIP-sequencing data has identified TRF2 at non-

telomeric sites and in proximity to genes, as well as at interstitial

telomere repeats, strengthening the argument for extra-telomeric

roles for TRF2 [53,54]. Our data suggest that there are

interactions between TRF2 and UBF and/or condensin compo-

nents that regulate NOR morphology and acrocentric short arm

stability. Future biochemical studies with robust antibodies will be

important for establishing protein-protein interactions that are

disrupted by mutant TRF2.

Loss of TRF2 function through either dnTRF2 expression or

RNAi knockdown, or disruption of telomere function by zeocin-

induced DNA damage, resulted in drastic changes to nucleolar

structure. There is wide variation in nucleolar response to stress

and DNA damage, although it is generally considered the hub for

directing the stress response [27]. For example, in response to

cellular UV exposure, the nucleolus segments into nucleolar caps

[55]. In our studies, the nucleolus was sensitive to even low levels

of dnTRF2 expression as early as 12 hours after induction, as

exhibited by nucleolar fragmentation and necklace formation.

Such fragmentation mimicked the nucleolar morphology that has

been described when RNA polymerase II is inhibited [56]. In our

studies of dnTRF2 expression, nucleolar dysmorphology preceded

the appearance of acrocentric and telomeric DNA damage

denoted by H2AX-p. It also occurred prior to chromosome

fusion. Whether nucleolar reorganization in this context is an early

stress indicator that reflects NOR sensitivity or is simply a response

to limited damage detection at some telomeres remains to be

determined. TRF2 at telomeres represses the activation of the

ATM kinase pathway, thereby preventing the cell from recogniz-

ing telomeres as broken DNA strands [7]. Thus, TRF2 might

initiate or influence the DNA damage response pathway via the

nucleolus.

The NOR is key to nucleoli formation that is induced by the

binding of UBF to rDNA arrays. This is followed by sequestration

of NORs, and consequently NOR-bearing chromosomes, to

subdomains of the nucleus. The overall morphology of the NOR

is distinctive during mitosis as the region is ten-fold less compact,

giving the acrocentric short arm what only appears to be a

constricted appearance [57]. UBF drives this process, as well as

recruiting transcriptional machinery to transcribe the ribosomal

Figure 6. Disruption of TRF2 association, but not open or closed chromatin, at rDNA in the presence of dnTRF2. Chromatin from
control/uninduced T19 cells and 30 hour dnTRF2-expressing cells was crosslinked with 1% PFA, sonicated to 100–700 bp, and immunoprecipitated
with indicated antibodies: (A) H3K4me2, (B) H3K9me3, (C) UBF, and (D) TRF2. Each bar shows relative enrichment as percentage of input by ChIP-PCR.
Actin and alpha satellite are control regions. alpha sat = alpha satellite (centromere), -sat = distal beta satellite (located telomeric of rDNA), u18S =
upstream of 18S rDNA region, 18S = 18S rDNA region, IGS = intergenic spacer region in rDNA repeat. Error bars show standard error of the mean. (*)
indicates significant difference (p,0.001) between control and dnTRF2 ChIP enrichment.
doi:10.1371/journal.pone.0092432.g006
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Figure 7. Connections between certain acrocentric short arms during metaphase. (A) Immunostaining-FISH on metaphase chromosomes
from T19 control (dnTRF2 uninduced) and T19 dnTRF2 induced (36 hours) cells for UBF (green) and acrocentric alpha satellite DNA (red, alpha satellite
13/21 or alpha satellite 14/22) shows absence of UBF on HSA21. UBF was associated with the short arms of HSA13, HSA14, and HSA22. Scale bars
equal 15 micrometers. (B) It was notable that HSA21 did not show UBF immunostaining since this chromosome was involved in the least number of
acrocentric fusions when dnTRF2 was transiently expressed for 36 hours. (C) The T19 cells contained an average of 4 copies of HSA13 and 3 copies of
HSA21. Isolated nucleoli were hybridized with a FISH probe (green) recognizing the identical alpha satellite sequence that defines the centromeres of
HSA13 and HSA21. Nucleoli had an average of 7 FISH signals, suggesting that all copies of HSA13 and HSA21 within the cells were associated with
nucleoli. (D) Immunostaining-FISH on metaphase chromosomes revealed the presence and increased persistence of UBF (green) and rDNA (red)
within the connections/bridges between acrocentric short arms in dnTRF2-expressing cells. Scale bars equal 15 micrometers. (E) Quantitation of
acrocentric bridges/associations. HT1080 control and T19 uninduced control showed fewer UBF mediated acrocentric associations compared to
dnTRF2 induced (36 hour) cells. Numbers at the top of each bar represent the total number of metaphases analyzed. Statistical significance (p values
less than 0.05) was determined by a Chi square test for a 262 contingency table. (F) Immunostaining for UBF (red) and FISH with a PNA-TEL probe
(Green) demonstrated that connections between acrocentrics in dnTRF-expressing cells did not include telomeric DNA.
doi:10.1371/journal.pone.0092432.g007
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genes [24]. Human cells contain an overabundance of rDNA

repeats, and only some NORs are transcriptionally active.

Changes in nucleolar architecture detected by FISH may be

attributed to alterations in the organization, chromatin compac-

tion, and DNA-DNA interactions within the rDNA. In support of

a chromatin-remodeling model, we observed nucleolar co-

localization of TRF2 and SMC4, a subunit of the condensin

complex. In yeast, condensin is required for rDNA segregation

and stability following starvation or rapamycin treatment [58,59].

A recent investigation in human cells showed H2AX-p localization

to rDNA repeats following SMC2 knockdown [44]. Without

adequate condensin recruitment or maintainence in times of

cellular stress, this repetitive and highly transcribed region

becomes unstable.

It is particularly notable that UBF did not disappear from

rDNA arrays in the presence of dnTRF2. UBF is an important

mediator of rDNA transcription dynamics as well as NOR

morphology. UBF recruits RNA polymerase I transcriptional

machinery to ribosomal genes through protein-protein interac-

tions, but these factors dwell for only seconds on the rDNA. UBF

binding to NORs, even those that are transcriptionally inert,

induces distinctive undercondensed, open chromatin morphology

[60]. Considering that UBF creates and maintains the under-

condensed state of NORs, the change in acrocentric short arm

compaction during dnTRF2 expression may be due relocation of

condensin from specific regions of the short arm and/or the

nucleolus. The non-random acrocentric fusions that occur when

dnTRF2 is expressed most likely represent repair of DNA damage

that arises as the short arms that are physically linked by UBF

become more stretched. About half of induced acrocentric fusions

are not telomere-telomere fusions and in fact lack one or more

additional repetitive sequences immediately adjacent to telomeres

[9]. These previous findings, combined with our observations here

that acrocentric short arms are tethered to each other, suggest that

repair leading to acrocentric fusions occurs by NHEJ between

closely located chromosomes. As telomere damage persists in the

presence of dnTRF2, other chromosome fusions eventually occur.

These subsequent fusions probably involve chromosomes that are

closely located in the nucleus but are not physically connected like

the acrocentrics. This model is strengthened by our observation

that HSA21 lacked UBF binding and eventually became involved

in fusions that occurred days after acrocentric short arms that were

tethered by rDNA and UBF connections had already fused [9].

Here we report that several approaches used to disrupt telomere

function all result in increased fusions between human acrocentric

chromosome and indicating that acrocentric short arms, in

particular the rDNA, are especially prone to instability following

telomere disruption. Our findings reveal a novel and unexpected

relationship between TRF2 protein function at the nucleolus and

NOR stability, potentially mediated through UBF and other

chromosomal structural proteins. These studies also suggest that

acrocentric chromosomes reside in defined nuclear domains that

prime them for their non-random interactions. This has significant

implications for understanding formation of recurrent chromo-

some rearrangements, like Robertsonian translocations, that are

associated with birth defects and cancer. These results provide a

framework for future studies exploring in more detail the protein-

protein and protein-DNA connections that link acrocentric short

arms to one another and to the nucleolus. Such findings could lead

to more sensitive methods to capture, or prevent, formation of

specific acrocentric chromosome fusions in humans.

Supporting Information

Figure S1 Nucleolar changes occur upon TRF2 RNAi
knockdown. (A) Immunostaining for TRF2 (green) and

fibrillarin (red) of HT1080 nuclei from cells transfected with

empty vector (control) and shRNA directed against TRF2. Cells

were selected for short hairpin constructs with puromycin for ,1

week before immunostaining. TRF2 and fibrillarin immunostain-

ing in knockdown cells showed that much of TRF2 had been

depleted, although some residual remained. Fibrillarin staining

showed the disruption (unraveled appearance) of the nucleolus

that mirrored the change in morphology caused by dnTRF2. (B)

Quantitation of TRF2 immunostaining in control and TRF2

knockdown cells showed that the intensity of detectable TRF2

decreased significantly when TRF2 was depleted. (C) Quantitation

of the percentage of nucleoli that showed altered morphology,

specifically loss of punctate staining and unraveled, necklace

appearance. This staining was comparable to that seen with

dnTRF2 expression (see Figure 2).

(TIF)

Figure S2 Nucleolar changes associated with prolonged
dnTRF2 expression. Immunostaining of the nucleolus and

dnTRF2 (FLAG) after dnTRF2 expression for 36–45 hours. (A)

Fibrillarin (green) staining in control cells was localized into more

compact structures but appeared more scattered within the

nucleus after prolonged dnTRF2 expression. (B) Combined

fibrillarin (green), B23 (red), and dnTRF2 (FLAG - blue)

immunostaining revealed notable morphological changes in the

nucleoli in the presence of dnTRF2. Single channel gray-scale

images are shown to emphasize immunostaining for specific

proteins. Scale bars are 5 microns.

(TIF)

Figure S3 Acrocentric short arm repeat morphology
after dnTRF2 expression. FISH on whole nuclei from control

(T19 uninduced) and T19 dnTRF2-expressing cells induced for

24 hours and 3 days. Single channel images for each FISH probe

are shown under the merged DAPI-FISH probe image. (A) FISH

for -satellite DNA (red) showed that FISH signals were more

scattered throughout the nucleus but stayed relatively punctate

after dnTRF2 expression for up to 3 days. (B) FISH for sat III

acrocentric short arm repeat (green) showed a slight, though not

significant, increase in dispersion with dnTRF2 expression. (C)

FISH for centromeric alpha satellite using a CENP-B box PNA

probe (green). FISH signals did not show any detectable changes

between control and dnTRF2 cells. (D) Quantitation of short arm

DNA morphology in multiple time increments (12-hour, 24-hour,

36-hour dnTRF2 inductions) illustrates that with persistent

dnTRF2 expression, normally punctate FISH signals (grey bars)

decreased while the percentage of nuclei exhibiting abnormal

FISH signals for 18S rDNA (red bars), complete rDNA array

(orange bars), and satellite III (green bars) increase. The number of

nuclei evaluated at each time point is indicated at the bottom of

each bar. Significance is illustrated by p-values between control

and dnTRF2-expression time points.

(TIF)

Figure S4 Markers of DNA damage are associated with
isolated nucleoli in dnTRF2-expressing cells. Immuno-

staining of isolated nucleoli, identified with fibrillarin antibodies

(red), from control and dnTRF2-induced cells showed increased

association of DNA damage markers (A) H2AX-p (green), (C)

Chk2-p (green), and (E) ATM-p (green). (B, D, F) The total

fluorescence intensity/integrated density of antibody signals for

the DNA damage markers against mean fibrillarin signal intensity
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was measured on individual nucleoli and plotted in box plots.

Statistically significant differences (p,0.05) were calculated using a

Student t-test.

(TIF)

Figure S5 DNA damage in whole nuclei accumulates at
nucleoli in the presence of dnTRF2. Immunostaining and

FISH on three-dimensionally preserved nuclei from control and

dnTRF2-expressing cells showed an increase in the association of

gamma H2AX (red) at nucleoli after 48 hour dnTRF expression.

Fibrillarin (green) was used to identify nucleoli. Pearson Coefficient

of Correlation was used to quantitate the amount of co-localization

between fibrillarin and gamma H2AX. The average coefficient was

higher (0.38) for dnTRF2-expressing cells compared to controls

(0.23), suggesting more association of DNA damage at nucleoli.

(TIF)

Figure S6 Condensin localization at isolated nucleoli
decreases with dnTRF2 expression. (A) The condensin

subunit SMC4 (green) localizes in a punctate pattern at isolated

nucleoli marked by immunostaining with fibrillarin (FIB). (B)

SMC4 (green) shows some co-localization with TRF2 (red). Scale

bars in all panels throughout the figure are 5 micrometers. (C)

Extent of SMC4 (green) and TRF2 (red) co-localization in control

cells indicated with a plot showing the Pearson coefficient of

correlation. Higher coefficients (approaching 1) denote a greater

degree of overlap with SMC4 (AFU = arbitrary fluorescence unit).

(D) Decreased co-localization of TRF2 with SMC4 after 30 hours

of dnTRF2 expression is indicated by a lower coefficient. (E)

Pearson coefficient of correlation (SMC4 x TRF2) was measured

for multiple control nucleoli (grey) and dnTRF2 30-hour nucleoli

(black). The scatterplot shows a significant decrease in overlap with

dnTRF2 expression.

(TIF)

Figure S7 Global rDNA transcription is unchanged
during nucleolar disruption. (A) Ongoing transcription in

nuclei was visualized by detecting 5FU (green) incorporation into

nascent RNA after 30 minutes of 5FU incubation. 5FU signal

mainly localized to nucleoli and tracked with the unraveling

fibrillarin (red). Uninduced control cells are in the top row,

followed by 24-hour, 48-hour, and 72-hour dnTRF2-expressing

cells. The bottom two rows show cells treated with Actinomycin D

(ActD), an inhibitor of RNA transcription. Scale bars equal 5

micrometers. (B) qRT-PCR analysis was carried out for 45S pre-

ribosomal RNA (blue) and 28S ribosomal RNA (green) transcript

levels in control, 12-hour, 24-hour, 48-hour, and 72-hour

dnTRF2-expressing cells, as well as serum starved (ss), 30 minute

ActD, and 3 hour ActD-treated cells. Results are presented as fold

change in transcription (based on Ct values) from T19 (uninduced)

control cells. (C) 18S RNA FISH signals (green) co-localize with

fibrillarin (red) in nuclei from control and T19 cells expressing

dnTRF2 for 3 days. Scale bars equal 30 micrometers.

(TIF)
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