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Summary:  We all experience a host of common life stressors such as the death of a family 

member, medical illness, and financial uncertainty.  While most of us are resilient to such 

stressors, continuing to function normally, for a subset of individuals, experiencing these 

stressors increases the likelihood of developing treatment-resistant, chronic psychological 

problems, including depression and anxiety.  It is thus paramount to identify predictive markers 

of risk, particularly those reflecting fundamental biological processes that can be targets for 

intervention and prevention.  Using data from a longitudinal study of 340 healthy young adults, 

we demonstrate that individual differences in threat-related amygdala reactivity predict 

psychological vulnerability to life stress occurring as much as 1 to 4 years later.  These results 

highlight a readily assayed biomarker, threat-related amygdala reactivity, which predicts 
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psychological vulnerability to commonly experienced stressors and represents a discrete target 

for intervention and prevention. 

Highlights: 

 Amygdala reactivity interacts with stress to predict internalizing symptoms. 

 Amygdala reactivity predicted symptoms as much as 1 to 4 years after scanning. 

eTOC Blurb: Swartz et al. find that individual differences in a readily assayed neural biomarker, 

threat-related amygdala reactivity, predict psychological vulnerability to common life stressors 

as much as 1 to 4 years later. 

 

Introduction 

Exposure to stressful life events is a robust risk factor for the development of treatment-resistant, 

chronic psychological problems including major depression and anxiety disorders (Faravelli, 

1985; Galea et al., 2002; Kendler et al., 1999).  However, whereas most individuals experience 

stressful life events at some point, the lifetime prevalence for major depression and anxiety 

disorders is 17% and 29%, respectively (Kessler et al., 2005), indicating that only a subset of 

individuals experiencing life events will ultimately develop psychopathology.  The ability to 

prospectively identify which individuals are at greatest risk represents a critical gap in our ability 

to effectively intervene and prevent the emergence of disabling psychological problems.  

Focusing such efforts on biological processes involved in stress reactivity and regulation is 

particularly important as they represent not only predictive markers of risk but also discrete 

targets for intervention and prevention.   

 Amygdala reactivity to threat is a prime candidate biomarker for psychological risk to 

common stressors given its critical roles in threat detection, stress reactivity, and memory for 
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negative information (Herman and Cullinan, 1997; Kim et al., 2003; Murty et al., 2010; Pessoa 

and Ungerleider, 2004). Thus, relatively greater amygdala reactivity to common stressors could 

lead to an altered stress response and biased appraisal and memory of stressful events, all of 

which are core symptoms and features of depression and anxiety disorders (Burke et al., 2005; 

Espejo et al., 2012; Fales et al., 2008; Hamilton and Gotlib, 2008).  Not surprisingly, heightened 

threat-related amygdala reactivity is consistently observed in patients with depression and 

anxiety (Etkin and Wager, 2007; Groenewold et al., 2013).  However, cross-sectional research in 

patients cannot determine whether heightened amygdala reactivity is a premorbid vulnerability 

present before the development of symptoms, or whether this neural phenotype is a secondary 

correlate that emerges as a downstream consequence of the onset of symptoms.  Prospective 

research is required to address this limitation and test whether amygdala reactivity predicts 

internalizing symptoms at a future point in time, controlling for baseline symptom levels.   

Adolescents at heightened risk for the development of depression and anxiety through a 

positive family history for these disorders evidence heightened amygdala reactivity to threat 

(Joormann et al., 2012; Monk et al., 2008; Swartz et al., in press), suggesting that this neural 

biomarker can be observed before the onset of disorder.  It remains to be determined, however, 

whether such heightened amygdala reactivity predicts the development of internalizing 

symptoms following the experience of stress in the future.  Indeed, only two studies with small 

samples have examined such a prospective association, with both finding that relatively 

increased amygdala reactivity measured before the experience of a major traumatic event (i.e., 

warzone combat (Admon et al., 2009) or a terrorist attack (McLaughlin et al., 2014)) predicted 

greater subsequent posttraumatic stress disorder symptoms.  While these findings suggest that 

threat-related amygdala reactivity may represent a predictive biomarker of psychological 
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vulnerability to extreme and rare forms of trauma, we do not know if threat-related amygdala 

reactivity has similar predictive utility in the broader population who experience milder forms of 

common stressful life events. 

To examine whether relatively increased threat-related amygdala reactivity prospectively 

predicts psychological vulnerability to common life stressors, we used functional magnetic 

resonance imaging (fMRI) to assess baseline threat-related amygdala reactivity in 753 

participants aged 18-22 years old, all of whom were free of current depression or anxiety 

disorders.  We chose a sample of young adults as this developmental stage marks the beginning 

of a peak period of risk for the emergence of a number of internalizing disorders, including 

major depression, panic disorder, generalized anxiety disorder, and posttraumatic stress disorder 

(Kessler et al., 2005).  A widely utilized and well-established face matching paradigm was used 

to robustly elicit threat-related amygdala reactivity (Nikolova et al., 2014; Prather et al., 2013). 

At the time of scanning, participants reported the number of stressful life events they had 

experienced in the prior year, as well as their experience of childhood trauma and their current 

levels of depression and anxiety symptoms.  We used these baseline measures as covariates in all 

analyses to test whether amygdala reactivity prospectively predicts future psychological 

problems as a function of stress above and beyond participants’ reported symptoms and stress 

levels at baseline. 

  After successful completion of the baseline protocol including fMRI, all participants 

were subsequently contacted by e-mail every 3 months and invited to complete a short online 

assessment of their current mood and experience of stressful life events since their last 

assessment.  At baseline and each follow-up, participants were given a checklist (Clements and 

Turpin, 1996) of stressful life events commonly experienced by students (e.g., death of a very 
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good friend, major car accident, parent losing a job) and were asked to indicate which events had 

occurred since the last assessment as well as the impact of that event.  We calculated the sum of 

all impact scores for each event reported; thus, higher scores can reflect both a greater number of 

events as well as more severe events.  Symptoms of depression and anxiety were reported at 

baseline and each follow-up assessment (Watson et al., 1995). 

Results 

Amygdala reactivity to threat 

Functional MRI results were first examined in SPM8 to ensure that the task elicited predicted 

activation in the amygdala (Figure 1A). As expected, the contrast of fearful and angry faces > 

shapes was associated with bilateral amygdala reactivity: left amygdala, t(810)=28.7, p<.001 

FWE-corrected, peak coordinates (x,y,z): (-22, -6, -18), and right amygdala, t(810)=32.5, p<.001 

corrected, (28, -4, 20). A mean parameter estimate reflecting amygdala reactivity as a function of 

our task (i.e., fearful and angry facial expressions vs. shapes) was extracted for each participant 

and entered into regression models in MPlus v7. 

Model A: Using amygdala reactivity to predict internalizing symptoms as a function of recent 

stress  

To test our hypothesis that baseline threat-related amygdala reactivity predicts 

psychological vulnerability to the subsequent experience of common life stressors at any point in 

the future, we first created a model (Model A; Figure 1B) using the largest sample of participants 

that completed an online assessment at any time post-scanning.  For participants that completed 

multiple assessments, we selected data from the most recent assessment available.  Follow-up 

assessments were available from a total of 340 participants, and were collected approximately 1 

year post-scanning (M=468 days, Min-Max=90-1402).  Model A was significant (Table S1; 
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p<.001), with the interaction between amygdala reactivity and life stress reported post-scanning 

predicting the severity of symptoms (B=2.01, SE=.7, t(339)=3.08, p=.002).  Specifically, 

individuals with relatively heightened amygdala reactivity at baseline who also reported 

experiencing greater life stress subsequent to scanning had significantly greater symptoms at 

follow-up (Figure 1C and Figure S1). Exploratory whole-brain results are reported in Table S2. 

Model B: Long-term predictive utility of amygdala reactivity 

While Model A confirmed our hypothesis that amygdala reactivity represents a predictive 

biomarker of psychological vulnerability to common life stressors, this model included 

participants who completed post-scanning assessments in relatively close proximity to the scan 

(e.g., 3 months).  To determine the long-term predictive utility of threat-related amygdala 

reactivity, we next analyzed data from only those participants who completed an online 

assessment at least one year post-scanning (Model B; Figure 2A).  For this model, 192 

participants were included who completed their assessment on average 2 years post-baseline 

(M=683 days, Min-Max=365-1402).  Model B was significant (Table S3; p<.001), with the 

interaction between amygdala reactivity and life stress predicting symptom severity following 

stress occurring approximately 2 years later (B=1.75, SE=.8, t(191)=2.33, p=.02).  Again, 

participants with relatively heightened amygdala reactivity at baseline who experienced 

relatively high life stress post-scanning reported the greatest symptoms (Figure 2B and Figure 

S2).  

Model C: Prospective assessment of stressful life events 

A limitation of our previous models is that we used concurrent reports of life stress and 

internalizing symptoms from the most recent assessment available.  Participants experiencing 

greater negative affect at the time of assessment may be biased toward indicating greater severity 
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of recent life stress.  Therefore, we created a final model (Model C, Figure 3A) in which life 

stress was assessed prospective to the reporting of symptoms.  To equate participants in terms of 

when stressful life events and symptoms were measured, we obtained symptoms from 

assessments completed approximately 1 year post-scanning.  We then computed the mean life 

stress score for all assessments completed prior to this, yielding a prospective set of variables 

including threat-related amygdala reactivity at baseline, life stress that occurred post-scanning, 

and symptoms approximately 1 year post-scanning.  Data from 99 participants were available for 

this analysis.  The moderation Model C was significant (Table S3; p<.001), indicating a 

significant interaction between threat-related amygdala reactivity and subsequent life stress in 

predicting internalizing symptoms 1 year later (B=5.56, SE=1.9, t(98)=2.96, p=.003).  As in our 

previous models, individuals with relatively heightened amygdala reactivity who experienced 

greater life stress post-scanning reported greater internalizing symptoms 1 year later (Figure 3B 

and Figure S3).  The interaction between amygdala reactivity and life stress explained an 

additional 5% of the variance in symptoms, above and beyond all covariates, including 

symptoms reported at baseline.   

Discussion 

Using data from a large longitudinal study of healthy young adults, we provide novel evidence 

for the utility of threat-related amygdala reactivity - assessed with fMRI - as a predictive 

biomarker of risk for broad psychological vulnerability to commonly experienced stressful life 

events.  Our neural risk biomarker predicted vulnerability consistent with a diathesis-stress 

model in both the short- and long-term as well as independently of negative reporting biases.  

Critically, we did not find a main effect of amygdala reactivity in predicting future internalizing 
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symptoms, indicating that this neural biomarker predicts greater symptoms only within the 

context of experiencing relatively high life stress. 

 Remarkably, amygdala reactivity measured at one time point significantly predicted 

internalizing symptoms, above and beyond baseline symptoms, as much as 1 to 4 years into the 

future, indicating possible utility of this neural phenotype for prediction of long-term 

internalizing outcomes.  However, it is important to note that the interaction between amygdala 

reactivity and stress only explained an additional 1-5% of the variance in symptoms, with the 

long-term model (Model B) evidencing the weakest effect.  There are several methodological 

limitations of the current study that may have led us to underestimate the size of this effect.  

First, participants were not guaranteed payment for completing follow-up online assessments but 

entered into a larger gift card raffle.  Thus, missing data may have biased our results.  Second, 

life stress was assessed through a self-report checklist rather than through a more objective 

approach such as a calendar interview.  Third, our non-clinical sample of undergraduate students 

was generally low-risk and the associated range and variability in internalizing symptoms 

truncated in comparison to clinical or high-risk samples.  We anticipate that future research 

addressing these limitations may find larger effect sizes than those reported in the present study.  

Nevertheless, these results underscore the need to identify additional biomarkers, whether neural 

or genetic, that can explain additional variance in addition to or in interaction with that accounted 

for by threat-related amygdala reactivity. 

Notably, a range of previously identified risk factors for depression and anxiety disorders 

are all associated with relatively increased amygdala reactivity to threat (Bogdan et al., 2012; 

Swartz et al., in press; Nikolova et al., 2014; White et al., 2012), and our biomarker is consistent 

with specific pathways of increased risk, including exaggerated hypothalamic-pituitary-adrenal 
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axis stress responsiveness and cognitive biases.  Although our follow-up assessments did not 

allow for direct mapping of threat-related amygdala reactivity onto formal clinical diagnosis, the 

increased stress-related symptoms of depression and anxiety predicted by amygdala reactivity 

have been directly associated with dysfunction (Bredemeier et al., 2010; Buckby et al., 2007), 

and relatively increased amygdala reactivity is consistently observed in patients with clinical 

depression and anxiety disorders (Etkin and Wager, 2007; Groenewold et al., 2013).  Thus, 

threat-related amygdala reactivity represents a predictive neural biomarker through which a 

range of risk factors may create a common diathesis for psychological vulnerability to the 

experience of common life stressors in the general population.  As such, relatively increased 

threat-related amygdala reactivity further represents a discrete biological mechanism that can be 

targeted in the development of novel strategies for more effective prevention of otherwise 

chronic and treatment-resistant psychiatric disorders.  The amygdala, of course, represents only 

one node of an extended corticolimbic circuit supporting emotion processing and stress 

responsiveness.  Other circuit nodes include the hypothalamus, brainstem, insula, hippocampal 

formation, and prefrontal cortex.  Future research using paradigms designed to target these other 

circuit nodes as well as their dynamic interactions may further illuminate biological pathways 

through which individual differences in stress responsiveness may eventually manifest as 

disorder. 

 

Experimental Procedures 

Participants 

Young adult college students were recruited as part of the Duke Neurogenetics Study.  All 

procedures were approved by the Duke University Medical Center and participants provided 
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informed consent before participating in the study.  Participants were included in the present 

sample if they met the following criteria: 1) free of medical diagnoses of cancer, stroke, diabetes, 

chronic kidney or liver disease, or lifetime history of psychotic symptoms; 2) no use of 

psychotropic, glucocorticoid, or hypolipidemic medication; 3) no conditions affecting cerebral 

blood flow and metabolism (e.g., hypertension); and 4) met quality control criteria for functional 

MRI scanning. Moreover, due to our interest in predicting internalizing symptoms post-scanning, 

we excluded any participants with a current mood, anxiety, or eating disorder diagnosis at the 

time of scanning, based on the electronic Mini International Neuropsychiatric Interview 

(Sheehan et al., 1998).  A covariate was included in all analyses to control for participants with a 

non-internalizing diagnosis (e.g., substance abuse) or with a past internalizing diagnosis. A total 

of 811 participants met inclusion criteria for the imaging data (see Supplemental Experimental 

Procedures for quality control criteria), 57 were excluded for current psychopathology, and 1 

participant was missing data, leaving 753 participants (57% female) ranging in age from 18 to 22 

available for analyses (Table 1). 

 

Measures: Baseline Assessments 

 

Functional MRI 

Participants performed a face matching task that has been to shown to elicit robust amygdala 

reactivity across a range of studies and samples, including the present sample (Nikolova et al., 

2014; Prather et al., 2013). The current paradigm consisted of four blocks of face matching 

interleaved with five blocks of a shape-matching sensorimotor control task. During face-

matching blocks, participants viewed a trio of faces and selected one of two faces (on bottom) 

matching a target face (on top).  Each face block contained one of the following expressions: 
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fearful, angry, surprised, and neutral.  Each trial in the face-matching blocks lasted for 4 seconds 

with a variable interstimulus interval (ISI) of 2 to 6 seconds (M=4 seconds), for a total block 

length of 48 seconds. In the control blocks, each of the six shape trios was presented for 4 

seconds with a fixed ISI of 2 seconds, for a total block length of 36 seconds. Total task time was 

390 seconds.  Details regarding fMRI acquisition are reported in the Supplemental Experimental 

Procedures. 

 

Covariates 

Because we were interested in predicting the future development of internalizing symptoms, we 

controlled for internalizing symptoms at baseline using the Mood and Anxiety Symptoms 

Questionnaire (MASQ) Short Form (Watson et al., 1995). Scores across all subscales (general 

distress/depression, general distress/anxiety, anxious arousal, and anhedonia) were summed to 

create a measure of total internalizing symptoms.  Likewise, because we were interested in the 

effect of life stress occurring post-scanning, we controlled for life stress reported at baseline.  To 

assess life stress, participants were administered the Life Events Scale for Students (LESS; 

Clements and Turpin, 1996), to measure the number of life events that occurred in the past 12 

months. Participants also rated the impact that the life event had on them on a 1 to 4 scale 

(4=severe impact). The impact score for each event reported was summed to yield a LESS total 

impact score; higher values indicate both greater number and severity of life events. Additional 

covariates are described in the Supplement. 

 

Measures: Post-scanning assessments 

Participants were re-contacted post-scanning to complete follow-up assessments online every 3 
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months.  Successful completers were entered into a raffle for one $50 Amazon gift card for each 

round of follow-up assessments.  The same questions from the LESS were used to assess 

stressful life events in the post-scanning questionnaires; however, for these assessments 

participants were asked to report if any life events had occurred since their last assessment.  

Participants also completed the MASQ Short Form during these post-scanning assessments.  In 

accordance with our first model (Model A), we selected the most recent assessment available for 

all participants, and obtained the life stress total impact score from the LESS and total 

internalizing symptoms from the MASQ at this most recent assessment.  For Model B, we took a 

similar approach, except that we limited this model to those participants who had completed an 

assessment at least 1 year post-scanning.  In accordance with our final model (Model C), we 

selected MASQ symptom scores from questionnaires completed approximately 1 year post-

scanning (the inclusion range was set to 365-455 days post-scanning, to take into account the fact 

that participants may not have completed the assessment exactly 365 days post-scanning). We 

then computed the mean of the LESS impact score from each assessment completed before that 

(Figure 3A).  Extra care was taken in quality control procedures for these assessments, given that 

they were administered online. Specifically, individual item responses were examined for any 

obvious patterns of false reporting (e.g., a participant indicates a yes for every stressful life event 

on the LESS).  Attrition analyses are reported in the Supplemental Experimental Procedures.    

 

Analyses 

Functional MRI 

 

Functional MRI data were processed in SPM8 using the standard pre-processing stream used in 

previously published research from the Duke Neurogenetics Study. Further details on the 
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procedure and quality control criteria are reported in the Supplemental Experimental Procedures.  

We hypothesized that results would be specific to threatening facial expressions (fearful and 

angry), thus the main contrast analyzed was fearful and angry faces > shapes. To examine the 

specificity of effects to negative expressions, we also ran analyses with parameter estimates for 

amygdala reactivity to neutral faces > shapes as a control condition, reported in the Supplemental 

Data.  To obtain estimates of amygdala reactivity for each condition, we first identified 

functional clusters within the amygdala (defined structurally with the Automated Anatomical 

Labeling atlas) activated at p<.05 family-wise error (FWE) corrected within the region of interest 

for each condition in SPM8.  Then, we extracted parameter estimates for the left and right 

amygdala for each condition.  This procedure has been used in prior published research from the 

Duke Neurogenetics Study (Nikolova et al., 2012; Nikolova et al., 2014).  Because left and right 

amygdala reactivity for our contrast of interest (fearful and angry faces>shapes) was highly 

correlated (r=.78, p<.001), we averaged across hemispheres to obtain one mean parameter 

estimate of amygdala reactivity and reduce the number of comparisons performed. 

 

Moderation model 

Our hypothesis was that the association between amygdala reactivity and internalizing symptoms 

would be moderated by the amount of life stress experienced post-scanning.  After parameter 

estimates of amygdala reactivity were extracted in SPM8, all subsequent analyses to test this 

proposed moderation model were performed in MPlus version 7.  Thus, for Models A-C, MASQ 

total scores from the follow-up assessment were entered as the dependent variable, and extracted 

parameter estimates of amygdala reactivity, the total life stress impact score from follow-up, and 

the interaction between these were entered as predictors. The following were included as 
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covariates: age at the most recent assessment, gender, childhood trauma total scores, LESS total 

impact scores from the baseline assessment, MASQ total scores at baseline, the psychopathology 

covariate, days between scanning and completing the follow-up questionnaire, and (for Model C 

only) the number of assessments contributing to the mean LESS total impact score.  Predictors 

were mean-centered.  Because symptoms at Time 2 were moderately skewed, MLR estimation 

was specified to estimate standard errors robust to non-normality. 

 

 

  



NEURAL BIOMARKER OF VULNERABILITY TO STRESS                                                 15 

 

Author Contributions 

ARH designed this study; JRS conducted the statistical analyses and drafted the manuscript; 

ARK and SRR collected data; ARK assisted with data analysis; JRS and ARH edited the final 

manuscript; all authors approved the final manuscript.   

Acknowledgments 

The Duke Neurogenetics Study is supported by Duke University and NIH grant DA033369.  

ARH is supported by NIH grants DA033369 and DA031579.  JRS is supported by a Postdoctoral 

Fellowship provided by the National Institute of Child Health and Human Development through 

the Center for Developmental Science grant T32-HD07376 and by NIH grant P30DA023026. No 

authors have a conflict of interest to report. 

  



NEURAL BIOMARKER OF VULNERABILITY TO STRESS                                                 16 

 

References 

 

Admon, R., Lubin, G., Stern, O., Rosenberg, K., Sela, L., Ben-Ami, H., and Hendler, T. (2009). 

Human vulnerability to stress depends on amygdala's predisposition and hippocampal 

plasticity. PNAS 106, 14120-14125. 

Bogdan, R., Williamson, D.E., and Hariri, A.R. (2012). Mineralocorticoid receptor iso/val 

(rs5522) genotype moderates the association between previous childhood emotional 

neglect and amygdala reactivity. Am. J. Psychiatry 169. 

Bredemeier, K., Spielberg, J.M., Silton, R.L., Berenabum, H., Heller, W., and Miller, G.A. 

(2010). Screening for depressive disorders using the Mood and Anxiety Symptoms 

Questionnaire Anhedonic Depression scale: A receiver-operating characteristic analysis. 

Psychol. Assess. 22, 702-710. 

Buckby, J.A., Yung, A.R., Cosgrave, E.M., and Cotton, S.M. (2007). Distinguishing between 

anxiety and depression using the Mood and Anxiety Symptoms Questionnaire (MASQ). 

Br. J. Clin. Psychol. 46, 235-239. 

Burke, H.M., Davis, M.C., Otte, C., and Mohr, D.C. (2005). Depression and cortisol responses to 

psychological stress: A meta-analysis. Psychoneuroendocrinology 30, 846-856. 

Clements, K., and Turpin, G. (1996). The life events scale for students: Validation for use with 

British samples. Pers. Individ. Dif. 20, 747-751. 

Espejo, E.P., Hammen, C., and Brennan, P.A. (2012). Elevated appraisals of the negative impact 

of naturally occurring life events: A risk factor for depressive and anxiety disorders. J. 

Abnorm. Child Psychol. 40, 303-315. 



NEURAL BIOMARKER OF VULNERABILITY TO STRESS                                                 17 

 

Etkin, A., and Wager, T.D. (2007). Functional neuroimaging of anxiety: A meta-analysis of 

emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. 

Psychiatry 164, 1476-1488. 

Fales, C.L., Barch, D.M., Rundle, M.M., Mintun, M.A., Snyder, A.Z., Cohen, J.D., Matthews, J., 

and Sheline, Y.I. (2008). Altered emotional interference processing in affective and 

cognitive-control brain circuitry in major depression. Biol. Psychiatry 63, 377-384. 

Faravelli, C. (1985). Life events preceding the onset of panic disorder. Journal of affective 

disorders 9, 103-105. 

Galea, S., Ahern, J., Resnick, H., Kilpatrick, D., Bucuvalas, M., Gold, J., and Vlahov, D. (2002). 

Psychological sequelae of the September 11 terrorist attacks in New York City. N. Engl. 

J. Med. 346, 982-987. 

Groenewold, N.A., Opmeer, E.M., de Jonge, P., Aleman, A., and Costafreda, S.G. (2013). 

Emotional valence modulates brain functional abnormalities in depression: Evidence 

from a meta-analysis of fMRI studies. Neurosci. and Biobehav. Rev. 37, 152-163. 

Hamilton, J.P., and Gotlib, I.H. (2008). Neural substrates of increased memory sensitivity for 

negative stimuli in major depression. Biol. Psychiatry 63, 1155-1162. 

Herman, J.P., and Cullinan, W.E. (1997). Neurocircuitry of stress: Central control of the 

hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 20, 78-84. 

Joormann, J., Cooney, R.E., Henry, M.L., and Gotlib, I.H. (2012). Neural correlates of automatic 

mood regulation in girls at high risk for depression. J. Abnorm. Psychol. 121, 61-72. 

Kendler, K.S., Karkowski, L.M., and Prescott, C.A. (1999). Causal relationship between stressful 

life events and the onset of major depression. Am. J. Psychiatry 156, 837-841. 



NEURAL BIOMARKER OF VULNERABILITY TO STRESS                                                 18 

 

Kessler, R.C., Berglund, P., Demler, O., Jin, R., Merikangas, K.R., and Walters, E.E. (2005). 

Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National 

Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593-602. 

Kim, H., Somerville, L.H., Johnstone, T., Alexander, A.L., and Whalen, P.J. (2003). Inverse 

amygdala and medial prefrontal cortex responses to suprised faces. NeuroReport 14, 

2317-2322. 

McLaughlin, K.A., Busso, D.S., Duys, A., Green, J.G., Alves, S., Way, M., and Sheridan, M.A. 

(2014). Amygdala response to negative stimuli predicts PTSD symptom onset following 

a terrorist attack. Depress. Anxiety. Advance online publication. doi: 10.1002/da.22284 

Monk, C.S., Klein, R.G., Telzer, E.H., Schroth, E.A., Mannuzza, S., Moulton III, J.L., Guardino, 

M., Masten, C.L., McClure-Tone, E.B., Fromm, S.J., et al. (2008). Amygdala and 

nucleus accumbens activation to emotional facial expressions in children and adolescents 

at risk for major depression. Am. J. Psychiatry 165, 90-98. 

Murty, V.P., Ritchey, M., Adcock, R.A., and LaBar, K.S. (2010). FMRI studies of successful 

emotional memory encoding: A quantitative meta-analysis. Neuropsychologia 48, 3459-

3469. 

Nikolova, Y.S., Bogdan, R., Brigidi, B.D., and Hariri, A.R. (2012). Ventral striatum reactivity to 

reward and recent life stress interact to predict positive affect. Biol. Psychiatry 72, 157-

163. 

Nikolova, Y.S., Koenen, K.C., Galea, S., Wang, C., Seney, M.L., Sibille, E., Williamson, D.E., 

and Hariri, A.R. (2014). Beyond genotype: Serotonin transporter epigenetic modification 

predicts human brain function. Nat. Neurosci. 17, 1153-5.  



NEURAL BIOMARKER OF VULNERABILITY TO STRESS                                                 19 

 

Pessoa, L., and Ungerleider, L.G. (2004). Neuroimaging studies of attention and the processing 

of emotion-laden stimuli. Prog. Brain Res. 144, 171-182. 

Prather, A.A., Bogdan, R., and Hariri, A.R. (2013). Impact of sleep quality on amygdala 

reactivity,  negative affect, and perceived stress. Psychosom. Med. 75, 350-8. 

Sheehan, D.V., Lecrubier, Y., Sheehan, K.H., Amorim, P., Janavs, J., Weiller, E., Hergueta, T., 

Baker, R., and Dunbar, G.C. (1998). The Mini-International Neuropsychiatric Interview 

(M.I.N.I.): The development and validation of a structured diagnostic psychiatric 

interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59, 22-33. 

Swartz, J.R., Williamson, D.E., and Hariri, A.R. (in press). Developmental change in amygdala 

reactivity during adolescence: Effects of family history for depression and stressful life 

events. Am. J. Psychiatry. doi: 10.1176/appi.ajp.2014.14020195. 

Watson, D., Clark, L.A., Weber, K., Assenheimer, J.S., Strauss, M.E., and McCormick, R.A. 

(1995). Testing a tripartite model: II. Exploring the symptom structure of anxiety and 

depression in student, adult, and patient samples. J. Abnorm. Psychol. 104, 15-25. 

White, M.G., Bogdan, R., Fisher, P.M., Munoz, K.E., Williamson, D.E., and Hariri, A.R. (2012). 

FKBP5 and emotional neglect interact to predict individual differences in amygdala 

reactivity. Genes, Brain and Behav. 11, 869-878. 

 

 

 

  



NEURAL BIOMARKER OF VULNERABILITY TO STRESS                                                 20 

 

Figure and Table Legends 

Fig. 1. Model A: All participants completing a post-scanning assessment (n=340). (A) 

Participants underwent a baseline fMRI scan to measure threat-related amygdala reactivity.  The 

main effect of task (fearful and angry faces>shapes) elicited bilateral amygdala reactivity 

(thresholded at p<.05 corrected). (B) Participants were invited to complete an online assessment 

every 3 months post-scanning.  The green boxes indicate the baseline scanning assessment and 

the blue boxes indicate online assessments.  For Model A, life stress at Time 2 (as measured by 

the Life Events Scale for Students) and internalizing symptoms at Time 2 (as measured by the 

Mood and Anxiety Symptom Questionnaire) were taken from the most recent assessment 

completed by each participant, as indicated by the red boxes.  (C) Depressive and anxiety 

symptoms at Time 2 are plotted as a function of the parameter estimates of threat-related 

amygdala reactivity and life stress post-scanning (groups divided into terciles).  Dotted lines 

indicate 95% confidence bands.  Internalizing symptoms were predicted by a significant 

interaction between amygdala reactivity and life stress experienced post-scanning, B=2.01, 

SE=.7, t(339)=3.08, p=.002.  See also Table S1 and Figure S1. 

 

Fig. 2. Model B: All participants completing an assessment at least 1-year post-scanning 

(n=192). (A) For Model B, we selected data from all participants who completed a follow-up 

assessment at least 1 year post-scanning. (B) Internalizing symptoms at Time 2 as a function of 

amygdala reactivity and life stress experienced post-scanning.  Internalizing symptoms were 

predicted by a significant interaction between amygdala reactivity and life stress experienced 

post-scanning, B=1.75, SE=.8, t(191)=2.33, p=.02. See also Table S3 and Figure S2. 
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Fig. 3. Model C: Predicting symptoms reported approximately 1 year post-scanning from 

amygdala reactivity at baseline and life stress reported between the scanning session and 1 

year post-scanning (n=99).  (A) For Model C, to obtain a prospective assessment of life stress, 

we selected depression and anxiety symptoms from the assessment completed approximately 1 

year post-scanning (range: 365-455 days) and a mean stress score from all assessments 

completed before then.  (B) Internalizing symptoms at Time 2 as a function of amygdala 

reactivity and life stress experienced post-scanning (groups created by median split).  

Internalizing symptoms were predicted by a significant interaction between amygdala reactivity 

and life stress experienced post-scanning, B=5.56, SE=1.9, t(98)=2.96, p=.003. See also Table 

S3 and Figure S3. 

 

Table 1. Participant characteristics. Childhood trauma=Total of all subscales of the Childhood 

Trauma Questionnaire; Stressful life events=Total impact score for all life events reported on the 

Life Events Scale for Students; Internalizing symptoms=Total of all subscales on the Mood and 

Anxiety Symptoms Questionnaire; SD=standard deviation. 
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Table 1 Participant Characteristics 

 Mean SD Min Max 

Baseline (n=753) 

Age (years) 19.6 1.2 18 22 

Childhood trauma 33.2 7.9 25 75 

Stressful life events Time 1 10.1 8.2 0 66 

Internalizing symptoms Time 1 110.7 25.4 61 230 

Time 2 Scores: Model A (n=340) 

Age (years) 20.8 1.5 18 26 

Stressful life events Time 2  4.3 5.3 0 34 

Internalizing symptoms Time 2 110.7 26.4 65 214 

Days between imaging and assessment 467.6 326.7 90 1402 

Time 2 Scores: Model B (n=192) 

Age (years) 21.4 1.4 19 26 

Stressful life events Time 2 5.4 6.2 0 34 

Internalizing symptoms Time 2 111.6 27.2 65 211 

Days between imaging and assessment 683.0 278.6 365 1402 

Time 2 Scores: Model C (n=99) 

Age (years) 20.5 1.1 19 23 

Stressful life events Time 2 3.3 4.2 0 27.7 

Internalizing symptoms Time 2 109.9 29.2 65 230 

Days between imaging and assessment 397.3 39.2 365 455 
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Figure 1 
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Figure 2 
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Figure 3 

 

 


