
 

i

v 

 

 

Biomechanics of Coupled Motion in the Cervical Spine During Simulated Whiplash in 

Patients with Pre-existing Cervical or Lumbar Spinal Fusion: A Finite Element Study 

by 

Haoming Huang 

Department of Biomedical Engineering 

Duke University 

 

Date:_______________________ 

Approved: 

 

___________________________ 

Roger Nightingale, Supervisor 

 

___________________________ 

Elizabeth Bucholz 

 

___________________________ 

Zbigniew Kabala 

 

___________________________ 

 

 

___________________________ 

 

 

 

Thesis submitted in partial fulfillment of the requirements  

for the degree of Master of Science in the  

Department of Biomedical Engineering in the  

Graduate School of Duke University 

 

2014 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DukeSpace

https://core.ac.uk/display/37750584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

ABSTRACT 

Biomechanics of Coupled Motion in the Cervical Spine During Simulated Whiplash in 

Patients with Pre-existing Cervical or Lumbar Spinal Fusion: A Finite Element Study 

by 

Haoming Huang 

Department of Biomedical Engineering 

Duke University 

 

Date:_______________________ 

Approved: 

 

___________________________ 

Roger Nightingale, Supervisor 

 

___________________________ 

Elizabeth Bucholz 

 

___________________________ 

Zbigniew Kabala 

 

___________________________ 

 

 

___________________________ 

 

 

 

An abstract of a thesis submitted in partial fulfillment of the requirements  

for the degree of Master of Science in the  

Department of Biomedical Engineering in the  

Graduate School of Duke University 

 

2014 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Haoming Huang 

2014 

 



 

 

iv 

Abstract 

It is well understood that loss of motion following spinal fusion increases strain 

in the adjacent motion segments. However, it is unclear if to date, studies on cervical 

spine biomechanics can be affected by the role of coupled motions in the lumbar spine.  

Accordingly, we investigated the biomechanics of the cervical spine following cervical 

fusion and lumbar fusion during simulated whiplash. 

A validated whole-human finite element model was used to investigate whiplash 

injury. The cervical spine before and after spinal fusion was subjected to simulated 

whiplash exposure in accordance with Euro NCAP testing guidelines, and the strains in 

the anterior longitudinal ligaments of the adjacent motion segments were computed.  

In the models of cervical arthrodesis, peak ALL strains were higher in the motion 

segments adjacent to the level of fusion, and strains directly increased with longer 

fusions. The mean strain increase in the motion segment immediately adjacent to the site 

of fusion from C2-C3 through C5-C6 was 26.1% and 50.8% following single- and two-

level cervical fusion (p=0.03). On average, peak strains experienced in a lumbar-fused 

spine were 1.0% less than those seen in a healthy spine (p=0.61).   The C3-C4 motion 

segment had disproportionately high increases in strain following cervical fusion.  The 

C6-C7 motion segment experienced high absolute strain under all tested conditions but 

the increase in strain following fusion was very small.  This study provides support for 
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both the hypothesis that adjacent segment disease is associated with post-arthrodesis 

biomechanical influences and the hypothesis that adjacent segment disease is a result of 

natural history, and inherent structures at risk.  
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1. Background 

1.1 Significance 

The objective of this thesis is to evaluate the biomechanics of the cervical spine 

following cervical and lumbar fusion in whiplash scenarios. Chapter 2 contains a 

manuscript titled “Biomechanics of Coupled Motion in the Cervical Spine During 

Simulated Whiplash in Patients with Pre-existing Cervical or Lumbar Spinal Fusion: A 

Finite Element Study” written for publication by H. Huang with co-authors R.W. 

Nightingale and A.C. Dang. With guidance and input from R.W. Nightingale and A.C. 

Dang, the study was designed and completed by H. Huang.  

Chapter 1 provides an introduction to the relevant terms necessary to 

understand the discussions presented in the manuscript. 

1.2 Relevant Terms 

1.2.1 Spine Anatomy and Physiology 

Henceforth, the standard anatomical directional terms shown in Figure 1 will be 

used to precisely communicate information about the human body and its constituent 

parts.  
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Figure 1: Standard Anatomical Directional References.1 

The spine is generally described using four regions: the cervical, thoracic, 

lumbar, and sacral spine (Figure 2). The cervical spine (or neck) consists of 7 vertebral 

bodies (pieces of bone) named C1 to C7, with C1 as most superior and C7 as most 

inferior. Each adjacent body is separated by a layer of cartilage called an intervertebral 

disc. The boney features provide structure, protection, and a medium for calcium-

exchange, while the cartilaginous components act as shock absorbers to prevent bone-

on-bone contact. As with all bone in the human body, each vertebra consists of two 

parts: cortical (also known as compact) and trabecular (also known as cancellous or 
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spongy) bone. Cortical bone is the dense outer shell of bone, and trabecular bone is the 

porous interior of bone.  

Although each vertebral body and intervertebral disc varies slightly in geometry, 

this model of alternating bone and cartilage is continuous throughout the thoracic and 

lumbar spine. The thoracic and lumbar spine consist of 12 and 5 vertebral bodies named 

T1—T12 and L1—L5, respectively. The sacral spine is unique in that it has 5 fused 

vertebral bodies named S1—S5. More commonly however, these fused bodies are 

referred to as a single unit: the sacrum. The coccyx (tailbone) is adjacent and 

immediately inferior to the sacrum, but should not be confused with S5. 

 

Figure 2: (A) Regions of the spine. (B) Enlargement of the cervical spine.2 
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In addition to bone and cartilage, several ligaments run down the length of the 

spine (Figure 3). These ligaments have functions such as providing spinal column 

stability during rest and normal movement, and limiting excessive motion caused by 

external circumstances such as car collisions. The anterior longitudinal ligament (ALL) 

and posterior longitudinal ligament (PLL) are two of the major spinal ligaments and 

limit extension and flexion, respectively. The ALL runs immediately anterior to the 

spine and the PLL runs immediately posterior to the spine. Both longitudinal ligaments 

run along the length of the spine from C2 to the sacrum. 

 

Figure 3: Spine ligaments.3  

1.2.2 Clinical Terms 

Spondylosis is a broad term that describes any patient who has both spinal 

degeneration and pain. Two of the most common areas of degeneration are in the facet 
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joints and intervertebral discs. If the degeneration is in the facet joints, the cause is likely 

osteoarthritis. If the degeneration is in the intervertebral discs, the cause is likely 

degenerative disc disease. The pain is typically a result of the compression of emerging 

spinal cord nerve roots when the gap between adjacent bodies narrows. 

Our study focused on investigating the biomechanics of the cervical spine, and 

thus we are primarily interested in the causes of cervical spondylosis. Cervical 

spondylosis is generally attributed to an age-related degeneration of the discs. 

Spinal fusion (also known as spinal arthrodesis or spondylodesis), is a surgical 

technique that fuses adjacent vertebrae by grafting supplementary bone tissue. 

Depending on the severity of spondylosis, one or more sets of vertebrae may be fused. 

For example, a single-level fusion such as C2—C3 fusion refers to surgically connecting 

the C2 and C3 vertebral bodies together. Likewise, a two-level C2—C4 fusion joins the 

C2, C3, and C4 bodies together.  

There are several trade-offs with spinal arthrodesis. With each fusion, there is a 

trade-off between increased spinal stability and decreased spinal motion. This effect is 

particularly significant in the neck, because C2 acts as the primary axis for head rotation. 

For most of the spine, fusion results in restricted anterior-posterior movement. 

However, if C2 is ever fused, the loss of motion is amplified as the rotational degrees of 

freedom are limited as well. A second example of a trade-off of arthrodesis is adjacent 

segment disease. Adjacent segment disease refers to the deterioration of spinal levels 
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adjacent to the site of a previous fusion. It is unclear whether the complication is caused 

by undue stress placed on segments neighboring the fused spine, by natural spine aging, 

or by other reasons.   

In the manuscript, we are interested in the effects of whiplash on strains in the 

cervical spine in patients who have previously undergone arthrodesis. Whiplash refers 

to a sudden neck flexion or extension (forward or rearward bending, respectively) that is 

particularly common in low-velocity (16 km/h) rear-impact vehicle collisions.  

1.2.3 Computer Modeling Terms  

The FEM (finite element method) is a numerical method that approximates 

solutions to systems of partial differential equations. The technique can efficiently solve 

extremely complex systems by discretizing large systems into smaller constituent pieces. 

Each piece is called an element, and 3 or more nodes define each element depending on 

the element type.  

Benefits of FEM include accuracy, versatility, and reproducibility. The accuracy 

of the model can be easily improved by changing the mesh density (the number of 

elements that span a given area). Each increase in mesh density provides a more 

accurate estimate of the continuous solution at the expense of CPU runtime. Figure 4 

shows an example of a mesh with higher density at the bottom left. The general idea is 

to use finer meshes for the parts of the model that are most critical to the analysis, and to 

use wider meshes for the remaining parts to minimize CPU runtime. The exceptions to 
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this rule will not be discussed in this thesis. In addition to high accuracy, FEM is 

versatile enough to be applied to nearly any application because each element can be 

defined uniquely in both section and material properties. Two commonly used section 

types include shell and solid elements. Two common material parameters include the 

Young’s modulus and Poisson’s ratio, just as examples. Lastly, a key benefit of using any 

mathematical model is that the results are consistently reproducible. Once a model has 

been validated, variables can be changed ad infinitum for the systematic testing of 

hypotheses.  

Despite its numerous advantages, FEM does have its downfalls. One primary 

downfall is that the accuracy of the model is largely dictated by the materials selected 

for each part (group of similar elements). This material-dependent accuracy is 

particularly important when modeling human tissue because biological tissues often 

behave in extremely complex manners that are not easily described via traditional 

engineering material definitions. As a consequence of the inherent complexity of tissues, 

FEM can only act as an approximation of the system, with accuracy as a function of how 

well the tissues are represented.   
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Figure 4: A mesh is comprised of elements and nodes.4 

In our study, we simulated a rear-impact vehicle collision by loading a validated 

whole-human FEM model. We quantified the differences in cervical spine ALL strain in 

a healthy spine versus a fused spine, in realistic whiplash scenarios. Figure 5 shows the 

geometry of the cervical spine in the FEM model that was used. The ALL segments were 

represented as shell elements and are highlighted; the mesh outline was removed for 

easier viewing. The numbered nodes on each ALL segment were used to measure the 

strain. Strain was defined as the change in distance between each pair of nodes, divided 

by the original distance. 
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Figure 5: A finite element model of the cervical spine. The five highlighted 

parts represent the ALL segments corresponding to the C1 (top) through C5 (bottom) 

vertebrae. The mesh has been hidden for viewing purposes. 
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2. Effects of Fusions on Strains in the ALL in Whiplash 
Exposures 

2.1 Introduction 

Whiplash injuries, caused by a sudden or unexpected neck flexion or extension, 

are the most frequently reported injury in low-velocity rear-impact vehicle collisions 

today.5 The economic impact related to whiplash injury is estimated to be as high as $3.9 

billion annually in the United States, or more than $29 billion when litigation costs are 

considered.6 Some of the challenges of whiplash are the associated secondary gain that 

may confound injury6, associated non-organic signs of disability6, and the difficulty of 

establishing consistent MRI findings for diagnosis.7  Nonetheless, large defined 

population studies have shown that the incidence of patients presenting to the hospital 

with whiplash related complaints may increase even when a concomitant decrease in 

insurance claims is observed.8 Additionally, the overall body of literature provides 

evidence supporting a lesion-based model of whiplash injury.9 Injury to the anterior 

longitudinal ligament (ALL) appears to be a marker to severe whiplash injuries in both 

cadaveric studies10 and post-mortem studies.11,12  

The majority of studies on whiplash have focused on patients with no pre-

existing cervical spine disease. Cervical spine arthrodesis is a common procedure with 

over 1.1 million estimated patients undergoing the procedure over an 8 year period in 

the United States alone.13  The effects of cervical arthrodesis on the adjacent motion 

segments above and below the level of fusion still remain a point of debate.  It is clear 
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that there is increased strain in the soft tissue and vertebrae in adjacent motion segments 

due to compensation for the new loss of flexibility.14,15  However, motion sparing 

procedures such as cervical disc arthroplasty have failed to show decreased rates of 

adjacent segment disease, at least for single level surgery.16   

We have previously quantified the biomechanical effects of an 8g whiplash 

following cervical arthrodesis on adjacent segment strains seen in the ALL using a 

validated finite element (FE) model.15 To better understand both adjacent segment 

biomechanics and cervical spine biomechanics, we sought to study the potential coupled 

motions between the cervical and lumbar spine and also addressed two limitations from 

our prior work.  

In our original study, the impact scenario selected was based upon whole 

cadaver experiments performed by Mertz17 in 1967 and whole cervical spine model 

experiments performed by Ivancic18 in 2004 reflecting an 8g peak acceleration.  Though 

those historical impact pulses provided a method for validation and assessment of 

failure, newer data is available that reflects more realistic real-world, rear-impact 

collisions.5 We sought to study cervical spine biomechanics after spinal fusion using the 

low-speed acceleration pulses described by the European New Car Assessment 

Programme (Euro NCAP). Other popular testing organizations, including the US 

National Highway Traffic Safety Administration (NHTSA) and the private Insurance 

Institute for Highway Safety (IIHS), do not have rear-impact whiplash standards in their 
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testing. Additionally, our prior study used a simplified FE model of the whole cervical 

spine and did not capture the additional effects caused by coupled motions from the 

lumbar spine, nor the effects created by the interaction between the model and the 

driver’s seat. Advances in computational resources have allowed us to address these 

limitations and test the hypothesis that there would be significant differences in ALL 

strains between our prior methodology and simulations implementing a realistic seat 

and torso interaction. 

 We sought to provide quantitative data on the potential effects of adjacent 

segment strains following cervical and lumbar arthrodesis as well as gain an increased 

understanding of the biomechanics of the post-operative cervical spine with fused 

segments during a realistic whiplash scenario.  We hypothesized that lumbar 

arthrodesis would not significantly affect the cervical strains seen in whiplash due to the 

relatively long distance between the cervical and lumbar spines. 

2.2 Materials and Methods 

2.2.1 Finite Element Model Overview  

THUMS (Total Human Model for Safety [Occupant Model v1.61, Toyota Central 

Research & Development Labs, Nagakute, Japan]), a 3-dimensional FE model of a 75 kg, 

175 cm tall, 35-year-old male seated in a driving position, was used as the baseline for 

our whiplash simulations. THUMS incorporates roughly 91,200 total elements, 7,000 of 

which represent the cervical spine, and 15,500 of which for the remaining thoracic and 
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lumbar spine. The spongy and cortical bone of the vertebral bodies were modeled as 

rigid solid and shell entities, respectively. The intervertebral discs were modeled using a 

combination of solid (pulposus and annulus) and seatbelt (lamellae) elements with 

isotropic material and section properties. The ALL, posterior longitudinal ligament 

(PLL), and other ligaments including the ligamentum flavum, ligamentum nuchae, and 

intertransverse ligament were represented using 2-dimensional shell elements, assigned 

with varying unique material properties. Only the deep layers of the ALL and PLL were 

modeled. All solid and shell elements in the cervical spine were defined as isotropic, 

linear elastic materials. Muscles were represented using Hill-type muscle models each 

comprised of two non-linear spring elements, a contractile element, and a viscous 

damper to address muscle viscoelasticity. Muscles and ligaments were allowed to react 

freely to applied loads, but no active muscle and ligament forces were incorporated into 

the model. The THUMS model has been previously validated as a computational tool to 

quantify both local and global spine kinematics.15,19  

All FE calculations were run using single-precision LS-DYNA R701 64-bit 

(Livermore Software Technology Corp., Livermore, CA) on a Microsoft Windows 

workstation (Core i5-3570k “Ivy Bridge”, Intel Corp., Santa Clara, CA; Z77 Extreme4 

ATX, ASRock Inc. Taipei, Taiwan; BLS8G3D1609DS1S00, Micron Technology Inc., Boise, 

ID; Radeon HD7870 GHz Edition 2GB, Sapphire Technology Limited, Hong Kong, 

China). LS-PrePost 3.2 64-bit (Livermore Software Technology Corp., Livermore, CA), 
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Excel 2013 (Microsoft Corp., Redmond, WA), and MATLAB 7.12.0.635 64-bit 

(MathWorks Inc., Natick, MA) were used to pre-process, post-process, and analyze the 

data. GraphPad 6.0 (GraphPad Software, La Jolla, CA) was used for statistical analysis. 

Unpaired two-way Student t-tests were used to compare change in adjacent segment 

ALL strain following different cervical arthrodesis procedures.  Paired two-way Student 

t-tests were used to compare ALL strain and change in ALL strain in specific motion 

segments following different modeling conditions. A two-way analysis-of-variance 

(ANOVA) with Tukey post-test was used to compare change in cervical ALL strain 

following different thoracolumbar arthrodesis procedures. 

2.2.2 Virtual Surgery Overview  

All cervical and lumbar fusions were assumed to be complete and fully healed. 

This was simulated by rigidly constraining the cortical and spongy elements of adjacent 

vertebral bodies to one another. Instrumentation was not simulated in our model. 

Single-level cervical arthrodesis was modeled by constraining C2-C3, C3-C4, C4-

C5, C5-C6, and C6-C7. Two-level cervical arthrodesis was assumed contiguous and 

modeled by constraining C2-C4, C3-C5, C4-C6, and C5-C7. ALL strains were evaluated 

at the neighboring adjacent motion segments one- and two-levels away from the cervical 

fusion site. For instance, in the C4-C5 fusion case, the segments one-level away were 

defined as ALL segments C3-C4 and C5-C6. The segments two-levels away are defined 

as ALL segments C2-C3 and C6-C7. 
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THUMS assumes that the entire sacral spine is fused and does not incorporate 

separate elements to differentiate S1 through S5. As such, L5-S1 arthrodesis was 

modeled by constraining L5 to the sacrum. L2-L5 arthrodesis was modeled by 

constraining L2-L3, L3-L4, and L4-L5. L2-S1 arthrodesis was modeled by constraining 

L2-L3, L3-L4, L4-L5, and L5-sacrum. Lastly, T9-S1 arthrodesis was modeled by 

constraining T9-T10, T10-T11, T11-T12, T12-L1, L1-L2, L2-L3, L3-L4, L4-L5, and L5-

sacrum. Lumbar fusion was performed without alteration of the sagittal alignment of 

the model. Strains for the lumbar test cases were evaluated at ALL segments C2-C3, C3-

C4, C4-C5, C5-C6, and C6-C7.   

2.2.3 Loading Conditions  

Whiplash exposures were simulated by applying a 16 km/h ∆V, 10g peak 

acceleration, 92 ms duration, triangular-shaped load curve to the model. This curve, 

defined and used by Euro NCAP as well as the International Insurance Whiplash 

Prevention Group (IIWPG), is representative of whiplash-inducing accidents.5,20  Loads 

were applied to the model in two different ways: “T1 Acceleration” and “Seat 

Interaction”. 

T1 Acceleration Model: In the first set of simulations, all nodes at or below the T1 

vertebrae in the FE model were treated as a rigid body and loaded with the above 

described Euro NCAP pulse in the posterior to anterior x-direction. The load was 

removed after it had run the full 92 ms duration and the model was allowed to continue 
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its inertial movement until the termination of the simulation at 300 ms. Data was 

outputted at 2.5 ms time intervals throughout the length of the simulation. This 

simulates the cervical spine and head in isolation and the contribution of the coupled 

motions of the lumbar spine are not considered. 

Seat Interaction Model: In the second set of simulations, a seat and floor were 

added using rigid 4-by-4 element shells via LS-PrePost to the baseline THUMS model. 

The seat was defined as two separate parts: a seat back and a seat bottom. The seat angle 

was fit to the curvature of our validated FE model, and in accordance with the angles 

described in SAE J826 H-point manikins fitted with a Head Restraint Measuring Device 

and the Euro NCAP whiplash testing protocol.21,22 

Initially, the seat and floor were fixed in all 6 degrees of freedom (x-, y-, z- 

translational and x-, y-, z- rotational) and positioned 1 mm below the THUMS model. 

Gravity was then applied for 3 seconds to relax the THUMS model into the seat in 

preparation for the ensuing whiplash exposure. Whiplash was again simulated as 

described above. Data was outputted every 2.5 ms. The FE model with the added seat 

and floor is shown in Figure 6. 
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Figure 6: The validated FE model with a rigid seat and floor shown using a 

semi-transparent filter. 

2.3 Results 

Representative snapshot images of the whiplash simulation are in Figure 7. 

Figure 8 compares the differences in resultant head acceleration between the T1 

Acceleration Model and the Seat Interaction model. The T1 Acceleration Model showed 

a 10g increase and 8 ms phase delay in peak head acceleration.  
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Figure 7: Snapshots of the T1 Acceleration Model and the Seat Interaction 

Model. At 0 ms in the T1 Acceleration Model, a 16 kilometer per hour pulse with a 10g 

peak acceleration is applied, leftward, to all dummy nodes at or below the T1 

vertebrae. By 75 ms, the majority of the load has been applied. By 265 ms, all of the 

load has been applied and the dummy is moving forward at a constant velocity. At 0 

ms in the Seat Interaction Model, the same pulse is applied leftward to the rigid seat. 

At 75 ms, the seat is slightly past mid-impact with the dummy. By 265 ms, the impact 

is complete resulting in the dummy separating from the seat.   
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Figure 8: Comparison of resultant head accelerations in two models loaded 

using the same Euro NCAP pulse. The T1 Acceleration Model experienced a 7.2g peak 

head acceleration at 70 ms. The Seat Interaction Model experienced a 17.5g peak head 

acceleration at 78 ms. A 5-point averaging filter was applied to the Seat Interaction 

Model curve to smooth out short-term fluctuations. 

 T1 Acceleration Model: An increase in ALL strain was seen for all fusion 

conditions. (Table 1).  ALL strain in the baseline model ranged from 0.081 to 0.304, 

increasing from cranial to caudal levels.  With the exception of C6-C7, ALL strain 

increased at all levels and ranged from 0.085 to 0.309. The C6-C7 motion segment 

experienced the smallest increase in strain of 0.58±0.78% (mean±SD) and seemed 

relatively unaffected, even by adjacent level fusion. The C3-C4 segment saw the greatest 

change of 47% following C4-C5 fusion.  In the motion segments from C3-C6, the greatest 

increase in strain was seen with a single level fusion at the level immediately below the 
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site of fusion.  That is, C3-C4 ALL strain was greater following C4-C5 fusion as opposed 

to C2-C3 fusion and C4-C5 ALL strain was greater following C5-C6 fusion as opposed to 

C3-C4 fusion. Following two-level cervical fusion, ALL strain ranged from 0.099 to 

0.322.  At individual motion segments, the C6-C7 motion segment saw the least change 

in strain of 2.5±3.0% while again, C3-C4 saw the greatest increases in strain of 

79.1±38.1%. When analyzed in aggregate, the change in adjacent segment strain was 

23.0±13.9% for single-level fusion and 49.8±33.1% for two-level fusion (p = 0.056).  If C6-

C7 is removed from the statistical analysis, the change in adjacent segment strain in C2 

through C6 was 26.0±11.8% for single level fusion and 58.6±28.1% for two-level fusion (p 

= 0.019). 
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Table 1: Peak strain of the anterior longitudinal ligament (ALL) increased 

following spinal fusion.  The ALL at C3-C4 following C4-C5 fusion and C4-C6 fusion 

had the greatest change in strain for single- and two-level fusion, respectively. 

Although absolute strain was highest as C6-C7, this level experienced the least 

amount of change following fusion.  The difference in adjacent segment strain in C2-

C3 to C5-C6 between single- and two-level fusion was significant (p = 0.019). 

 

Seat Interaction Model.  An increase in ALL strain was seen under all conditions. 

(Table 2).  ALL strain ranged from 0.106 to 0.382 in our model, increasing from cranial to 

caudal levels.  Following single-level fusion, ALL strain ranged from 0.116 to 0.398. At 

individual motion segments, the C6-C7 motion segment experienced the least change in 

strain of 1.51±1.87% following all tested single-level fusion conditions while C3-C4 saw 

the greatest change of 42.8% following C4-C5 fusion.  In the motion segments from C2-

C5, the greatest increase in strain was seen with a single level fusion at the level 

immediately below the site of fusion. Following two-level cervical fusion, ALL strain 

ranged from 0.132 to 0.399.  At individual motion segments, C6-C7 motion segment saw 
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the least change in strain of 3.3±1.7% while again, C3-C4 saw the greatest increases in 

strain of 71.3±15.1%. When analyzed in aggregate, the change in adjacent segment strain 

following single level fusion was 23.4±13.8% and it was 43.1±27.4% following two-level 

fusion (p = 0.10). If C6-C7 is removed from the statistical analysis, the change in adjacent 

segment strain in C2-C3 through C5-C6 following single level fusion was 26.1±12.3% 

and it was 50.8±22.2% following two-level fusion (p = 0.03). 

Table 2: Peak strain of the anterior longitudinal ligament (ALL) increased 

following spinal fusion. The ALL at C3-C4 following C4-C5 fusion and C4-C6 fusion 

had the greatest change in strain for single- and two-level fusion, respectively. 

Absolute strain was generally higher in the Seat Interaction Model compared to the 

T1 Acceleration Model. Although absolute strain was highest as C6-C7, this level 

experienced the least amount of change following fusion. The difference in adjacent 

segment strain in C2-C3 to C5-C6 between single- and two-level fusion was 

significant (p = 0.03). 

 

Lumbar fusion had no meaningful impact in cervical spine strain with an 

average change of -1.0±4.1% strain (Table 3).  No apparent pattern could be recognized 
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when evaluating a single level lumbar fusion to a complete thoracolumbar fusion (p = 

0.61). 

Table 3: Lumbar fusion had minimal impact in cervical spine strain and 

change in strain.  The average change for all tested conditions was -1.0% strain (4.1% 

SD). There was no difference in change when comparing a single level lumbar fusion 

at L5-S1 to a thoracolumbar fusion from T9-S1 (p = 0.61). 

ALL 

Segment 

Baseline L5-S1 

Fusion 

L2-L5 

Fusion 

L2-S1 

Fusion 

T9-S1 

Fusion 

C2-C3 0.106 

 

0.107 

(0.9%) 

0.107 

(0.9%) 

0.106 

(0.0%) 

0.111 

(4.7%) 

C3-C4 0.145 0.137 

(-5.5%) 

0.134 

(-7.6%) 

0.135 

(-6.9%) 

0.136 

(-6.2%) 

C4-C5 0.202 0.203 

(0.5%) 

0.202 

(0.0%) 

0.203 

(0.5%) 

0.179 

(-11.4%) 

C5-C6 0.209 0.215 

(2.9%) 

0.212 

(1.4%) 

0.214 

(2.4%) 

0.209 

(0.0%) 

C6-C7 0.382 0.382 

(0.0%) 

0.384 

(0.5%) 

0.385 

(0.8%) 

0.385 

(0.8%) 

 

Comparisons between models: Modeling the whole human with seat interaction 

generated an average of a 23.0% increase in ALL strain (9.5% SD single level fusion; 8.3% 

SD two level fusion; both p < 0.0001).  However, when comparing change in strain 

following single-level fusion, adding the seat interaction did not result in a significant 

difference (–0.5±7.5%; p = 0.76 and –0.2±10.1%; p = 0.48). The CPU runtime ranged from 4 

to 7 hours per simulation. The runtime varied with two factors: CPU load and the 

number of cores used per simulation. 
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2.4 Discussion 

A validated complete human FE model was updated to investigate the effects of 

cervical and lumbar fusions on peak ALL strains seen in the neck under a realistic 

whiplash impact pulse with the addition of a rigid car seat and floor. The model that 

included a seat interaction resulted in a significant 23% increase in the ALL strains, 

which indicates that the seat interaction is important in injury prediction. However, 

there was no significant difference in the way the models assessed the changes in ALL 

strain with fusion, suggesting that the more computationally efficient T1 Acceleration 

Model may be adequate to quantify these effects. 

 Increase in ALL strain was seen following all cervical spine procedures and 

statistically significant increases in ALL strain between one- and two-level fusions were 

seen in both the T1 Acceleration Model and Seat Interaction Model (p = 0.019 and p = 

0.03, respectively) when analyzing the motion segments between C2-C6.  C6-C7 showed 

relatively high levels of ALL strain under all tested conditions including the baseline, 

non-operative condition. Our strain of 0.3 in the baseline model was close to the 

tolerance of the ALL according to Yoganandan23, but well below the 0.8 from the 

dynamic tests of Bass.24  The addition of a seat back increased specific values of ALL 

strain by 23.0% (p < 0.0001). However, the percent change in ALL strain following 

surgery remained consistent for all conditions (p = 0.76 for single-level and p = 0.48 for 

two-level fusion). This reconfirms that our model is robust in its assessment in change of 
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tissue level adjacent segment ALL strain following cervical fusion under a broad range 

of conditions.  We believe that the increased strain in the whole-human test condition 

was likely a result of the additional shorter impulse delivered to the neck due to the 

decoupling of the body from the seat and the vertical acceleration component from 

straightening of the compliant lumbar and thoracic spines. Additionally, the presence of 

soft-tissue interactions surrounding the muscle elements may have further contributed 

to the larger strains to the cervical spine. Lumbar fusion had no meaningful effect on 

cervical strain (-1.0% change, p = 0.61). 

 Several interesting clinical conclusions can be made from this data. 

Modern reports of adjacent segment disease have indicated that C4-C5 and C6-C7 are 

the two levels most affected by adjacent segment disease, potentially reflecting changes 

in technique.25  Additionally, plate distance from the vertebral endplate has also been 

shown to affect adjacent segment ossification.26  Our data shows that C6-C7 experiences 

the highest strain at baseline and that single-level cervical fusion did not appear to have 

meaningful difference in biomechanical strain. In contrast, C3-C4, which under normal 

conditions experiences lower ALL strain under these conditions and is infrequently a 

treated motion segment in isolation, experienced the largest increases in cervical ALL 

strain following arthrodesis in comparison to the other motion segments. Thus our data 

is in agreement with the current theory that adjacent segment disease reflects both the 

natural history of cervical spondylosis (C6-C7) as well as biomechanical factors (C3-C4). 
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It would be worthwhile in the future to re-evaluate data from cervical disc arthroplasty, 

which has yet to demonstrate decreased adjacent segment disease, with this in mind. 

Perhaps, motion sparing surgery at C4-C5 will have advantages over fusion when 

considering adjacent disease at C3-C4.  

 Second, lumbar fusion does not appear to have any meaningful impact in 

the cervical spine during whiplash. This supports our hypothesis. A claim that neck 

symptoms have been exacerbated by prior lumbar fusion in the absence of sagittal 

imbalance is not supported by the data generated in this study. 

Complete ALL failure has been documented to occur at threshold strains 

between 0.426 and 0.47623, with partial injury occurring at strains above 0.222.18 Our 

results suggest partial injury during whiplash to the ALL at the C6-C7 level for a patient 

with a normal, unfused spine. Patients who have undergone fusion appear to have an 

increased risk of injury. In the majority of our simulations, one or more ALL segments 

would have reached partial failure thresholds following surgery. Thus it would be 

prudent to consider the relative risks and benefits of motion sparing alternatives for 

patients needing cervical spine operations.  

Several limitations exist for future consideration but do not affect the conclusions 

drawn above. In real-world vehicle collisions, muscles and ligaments contract either in 

anticipation or as an instantaneous response to the impact. These could either exacerbate 

of alleviate these strains depending on the subject dependent muscle activations.27,28  
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Differences in strain were identified between our T1 Acceleration and Seat Interaction 

conditions. Though a realistic whiplash impulse was used, our data cannot be applied 

directly in a forensic situation as our seat is rigid and based on the geometry in the SAE 

J826 standard.  Our seat did not include a head rest or incorporate the whiplash 

prevention and mitigation technologies currently found in most vehicles. A final 

limitation is that the etiology of whiplash syndrome may involve the facet capsules.29,30  

Unfortunately, the capsules are not modeled with sufficient fidelity in v1.61 of the 

THUMS model for a confident strain analysis. However, these limitations do not change 

the points made in this study. 
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3. Effects of Pulse Shape on Strains in the ALL 

3.1 Introduction 

To further support the validity of the methods employed in the above study, we 

sought to justify the triangular-shaped Euro NCAP pulse used in our model. We 

hypothesized that pulse shape does not affect cervical spine ALL strain given a fixed ∆V 

and fixed time interval when the pulse is applied directly to the nodes at or below the T1 

vertebrae. However, when the same pulse is applied to the vehicle seat and indirectly 

transferred to the body, we hypothesized that there would be differences in the resulting 

ALL strain. 

3.2 Materials and Methods 

The same baseline total-human FE model used in chapter 2 was employed to 

simulate three new loading conditions: T1 acceleration frontal impact, T1 acceleration 

rear impact, and seat interaction. Strains were evaluated in a healthy, unfused spine at 

ALL segments C2-C3, C3-C4, C4-C5, C5-C6, and C6-C7.   

T1 Acceleration Frontal Impact Model: For this loading condition, all nodes at or 

below the T1 vertebrae in the FE model were treated as a rigid body and loaded using 

four uniquely shaped acceleration pulses with identical ∆V’s of 4.44 m/s and time 

intervals of 0.09 s (Figure 10). Frontal impact was simulated by accelerating the nodes in 

the anterior to posterior x-direction. The load was removed after it had run the full 92 

ms duration and the body was allowed to continue its inertial movement until the 
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termination of the simulation at 300 ms. Data was outputted at 2.5 ms time intervals 

throughout the length of the simulation.  

 

Figure 9: Different pulse shapes with the same ∆V of 4.44 m/s and same load 

interval of 92 ms. 

T1 Acceleration Rear Impact Model: The T1 acceleration rear impact setup 

mimicked the frontal impact setup aside from one difference. Rear impact was simulated 

by accelerating the nodes at or below the T1 vertebrae in the posterior to anterior x-

direction.  

Seat Interaction Model: For the third loading condition, a seat and floor were 

added using rigid 4-by-4 element shells via LS-PrePost to the baseline THUMS model. 

The seat was defined as two separate parts: a seat back and a seat bottom. The seat angle 

was fit to the curvature of our validated FE model, and in accordance with the angles 
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described in SAE J826 H-point manikins fitted with a Head Restraint Measuring Device 

and the Euro NCAP whiplash testing protocol.21,22 

Initially, the seat and floor were fixed in all 6 degrees of freedom (x-, y-, z- 

translational and x-, y-, z- rotational) and positioned 1 mm below the THUMS model. 

Gravity was then applied for 3 seconds to relax the THUMS model into the seat. The 

acceleration pulse was applied to both the seat and the floor in the posterior to anterior 

x-direction. Data was outputted every 2.5 ms.  

3.3 Results 

Tables 4 and 5 show the strains in the cervical spine ALL segments following a 

simulated T1 acceleration frontal impact and rear impact, respectively. In the frontal 

impact model, peak ALL strains ranged from 0.041 to 0.239. In the rear impact model, 

peak ALL strains ranged from 0.040 to 0.226. For both loading directions, strain did not 

vary at the C2-C3 level, and the greatest increase in strain (1.0%) was seen at the C6-C7 

level.  
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Table 4: A comparison of ALL strains in the T1 Acceleration Frontal Impact 

model loaded with four differently shaped acceleration pulses. 

ALL 

Segment 

Black Blue Green Purple 

C2-C3 0.041 0.041 0.041 0.041 

C3-C4 0.086 0.085 0.084 0.085 

C4-C5 0.105 0.104 0.103 0.104 

C5-C6 0.131 0.130 0.129 0.130 

C6-C7 0.239 0.236 0.234 0.236 
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Table 5: A comparison of ALL strains in the T1 Acceleration Rear Impact 

model loaded with four differently shaped acceleration pulses. 

ALL 

Segment 

Black Blue Green Purple 

C2-C3 0.040 0.040 0.040 0.040 

C3-C4 0.060 0.059 0.059 0.059 

C4-C5 0.094 0.092 0.094 0.092 

C5-C6 0.092 0.091 0.091 0.091 

C6-C7 0.226 0.223 0.223 0.223 

 

Table 6 shows the strains in the ALL following a simulated rear impact in the 

Seat Interaction model. Peak ALL strains ranged from 0.087 to 0.392. In general, the blue 

profile realized the lowest strains at each cervical level, followed by the purple and 

green profiles, respectively. The black pulse realized the highest strains at each cervical 

level. The greatest difference in strain (28.7%) was observed at the C2-C3 level between 

the blue and black pulses. The CPU runtime ranged from 4 to 7 hours per simulation. 

The runtime varied with two factors: CPU load and the number of cores used per 

simulation. 
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Table 6: A comparison of ALL strains in the Seat Interaction model loaded 

with four differently shaped acceleration pulses.  

ALL 

Segment 

Black Blue Green Purple 

C2-C3 0.112 0.087 0.106 0.101 

C3-C4 0.152 0.123 0.138 0.132 

C4-C5 0.206 0.167 0.197 0.181 

C5-C6 0.212 0.168 0.212 0.198 

C6-C7 0.392 0.344 0.376 0.356 

 

3.4 Discussion 

A complete human FE model was used to quantify the effects of pulse shape on 

strains in the ALL. In both T1 Acceleration models, the greatest difference in strain 

between any pair of identical ALL segments was 1.0%. This result supports our first 

hypothesis, suggesting that pulse shape has a negligible effect on strains in the ALL 

given a fixed ∆V and fixed time interval when the load is applied directly to the body.  

However, the different curve contours produced significantly different strains at 

each ALL level when a vehicle seat was introduced to the FE model. This difference in 

strains supports our second hypothesis, and validates our use of the unique Euro NCAP 
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pulse in Chapter 2. In FE models built to simulate real-world vehicle impacts, the pulse 

shape contributes significantly to the resulting strains felt in the neck. The distinct 

profile of the employed Euro NCAP curve captures intricacies within the model that 

cannot be replicated by a simple square or triangular wave with the same ∆V and load 

time. 
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4. Conclusion 

This thesis quantifies the effects of whiplash neck injury in scenarios wherein the 

occupant has previously undergone cervical or lumbar arthrodesis.  

Three key points were drawn from the results in Chapter 2. In the models of 

cervical arthrodesis, peak ALL strains were found to be higher in the motion segments 

adjacent to the level of fusion compared to a healthy spine, and strains directly increased 

with longer fusions. C3-C4 appeared to be the motion segment at greatest biomechanical 

risk for adjacent segment strain following arthrodesis while C6-C7 showed high strain 

levels with little change following arthrodesis.  Lumbar surgery had no statistical or 

clinically meaningful effect on the ALL strains in the cervical spine.  

Two key points were observed from the results in Chapter 3. In the T1 

Acceleration models, pulse shapes with identical ∆V’s and load intervals produced 

nearly identical strains in the ALL. In the Seat Interaction model, the same pulse shapes 

outputted significantly different strains in the ALL.  

Several limitations exist for future investigation but do not affect the conclusions 

drawn in this computational study. First, an expanded analysis may seek to address the 

roles of muscle and ligament contraction either in anticipation or as an instantaneous 

response to impact. Second, the current seat is represented as rigid and neither includes 

a head rest nor incorporate the whiplash prevention and mitigation technologies 

currently found in most vehicles. Third, the etiology of whiplash syndrome may involve 
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the facet capsules. However, the capsules are not modeled with sufficiently in v1.61 of 

the THUMS model for a confident strain analysis. These limitations do not change the 

conclusions made in this computational study. 
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