
Coset Coding to Extend the Lifetime of Non-Volatile Memory 

by 

Adam Jacobvitz 

Department of Electrical and Computer Engineering 

Duke University 
 

Date:_______________________ 

Approved: 

___________________________ 

Daniel Sorin, Supervisor 

___________________________ 

Robert Calderbank 

___________________________ 

Jeff Chase 

___________________________ 

Andrew Hilton 

___________________________ 

Benjamin Lee 

Dissertation submitted in partial fulfillment of 

the requirements for the degree of Doctor 

of Philosophy in the Department of 

Electrical and Computer Engineering in the Graduate School 

of Duke University 

 

2014 
 

 

 



ABSTRACT 

Coset Coding to Extend the Lifetime of Non-Volatile Memory 

by 

Adam Jacobvitz 

Department of Electrical and Computer Engineering 

Duke University 
 

Date:_______________________ 

Approved: 

___________________________ 

Daniel Sorin, Supervisor 

___________________________ 

Robert Calderbank 

___________________________ 

Jeff Chase 

___________________________ 

Andrew Hilton 

___________________________ 

Benjamin Lee 

An abstract of a dissertation submitted in partial 

fulfillment of the requirements for the degree 

of Doctor of Philosophy in the Department of 

Electrical and Computer Engineering in the Graduate School of 

Duke University 

 

2014 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Adam Jacobvitz 

2014 

  



iv 

 

  

Abstract 

Modern computing systems are increasingly integrating both Phase Change Memory (PCM) and 

Flash memory technologies into computer systems being developed today, yet the lifetime of 

these technologies is limited by the number of times cells are written. Due to their limited 

lifetime, PCM and Flash may wear-out before other parts of the system. The objective of this 

dissertation is to increase the lifetime of memory locations composed of either PCM or Flash 

cells using coset coding.  

For PCM, we extend memory lifetime by using coset coding to reduce the number of bit-flips per 

write compared to un-coded writes. Flash program/erase operation cycle degrades page 

lifetime; we extend the lifetime of Flash memory cells by using coset coding to re-program a 

page multiple times without erasing. We then show how coset coding can be integrated into 

Flash solid state drives. 

We ran simulations to evaluate the effectiveness of using coset coding to extend PCM and Flash 

lifetime. We simulated writes to PCM and found that in our simulations coset coding can be 

used to increase PCM lifetime by up to 3x over writing un-coded data directly to the memory 

location. We extended the lifetime of Flash using coset coding to re-write pages without an 

intervening erase and were able to re-write a single Flash page using coset coding more times 

than when writing un-coded data or using prior coding work for the same area overhead. We 

also found in our simulations that using coset coding in a Flash SSD results in higher lifetime for 

a given area overhead compared to un-coded writes. 
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1. Introduction 

Memory is used to store data in computing systems. Memory is organized into fixed sized 

locations composed of memory cells—hardware elements that store one or more bits. For 

example, Dynamic Random-Access Memory (DRAM) [59] cells consist of a single transistor. 

Some new next-generation memory technologies produced to replace and/or augment existing 

memory technologies have cells that are write-limited, i.e., they fail after a certain number of 

writes. When a single memory cell fails in a memory location, the entire memory location 

becomes unusable
1
. This dissertation introduces methods to increase the lifetime of memory 

locations composed of write-limited memory cells. 

In this introduction, we introduce a number of memory technologies and indicate which 

memories are write-limited.  Section 1.1 lists the different memory technologies, their status, 

and whether they are write-limited. Section 1.2 presents the goals and contributions of this 

dissertation. Section 1.3 presents how this dissertation is organized and the contributions of 

each chapter. 

1.1 Memory	Technologies	

Modern computing systems incorporate many different memory technologies. Table 1 lists 

memory technologies currently in-use and next-generation memory technologies that are being 

developed for new computing systems. Unshaded rows are memories used in current 

production systems, and shaded rows are memories either in development or in the process of 

being integrated into production systems. Table 1 also lists which memory technologies are 

write-limited and which memory technologies are in mass production. In this dissertation, we 

                                                           
1
 Techniques have been developed to tolerate failed cells in a memory location [25][54] 
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focus on improving the lifetime of memory locations composed of Phase Change Memory (PCM) 

cells and Flash cells. Both PCM and Flash are write-limited and are being mass-produced. Flash is 

currently in the process of being integrated into new and existing computing systems ranging 

from cell phones [62] to large scale datacenters [5] and super-computers [57]. PCM has started 

to enter mass production, but has not yet been integrated into new and existing computing 

systems.  

 

1.2 Goals	and	Contributions	

This dissertation introduces methods to extend lifetime of memory locations composed of 

write-limited memory cells. We focus on extending the lifetime of memory locations composed 

of either PCM cells or Flash cells, both of which are write-limited. We propose methods to 

extend the lifetime of memory locations with either PCM or Flash cells by incorporating coding 

techniques during the write process.  

Table 1: Memory Technology Properties 

Memory Technology Write-Limited Mass Produced Highest Level 

Used 

SRAM No Yes Cache 

Memristors [54] Yes No Cache 

eDRAM [19] No Yes Cache 

DRAM No Yes Main Memory 

PCM [68] Yes Limited Main Memory 

STT-RAM [29] No No Main Memory 

ReRAM [5]  Yes No Main Memory 

FeRAM [7] No No Main Memory 

RRAM [73] No No Main Memory 

Flash [44] Yes Yes Secondary Storage 

Hard Drives No Yes Secondary Storage 

Optical  No Yes Archival Storage 

Tape No Yes Archival Storage 
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This dissertation makes three main contributions: 

• We extend the lifetime of write-limited memories by modifying a coding technique used 

in digital communications to shape the signals input to a Gaussian channel. We apply 

this technique to memory composed of both Flash and PCM cells respectively. 

• We develop enhancements to our method that extend lifetime and allow writes even 

when the stored value of a subset of the memory cells cannot be changed. 

• We provide implementations of an encoder and a decoder of our coding technique for 

both PCM and Flash. 

1.3 Outline	

This dissertation has five chapters including the introduction (Chapter 1). Chapter 2 provides 

background on the coding technique we use. Chapter 3 discusses how we extend the lifetime of 

memory locations composed of PCM cells using coding. Chapter 4 discusses how we extend the 

lifetime of memory locations composed of Flash cells using coding. Chapter 5 concludes the 

dissertation and provides insight into future research directions.   
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2. Coset Coding 

This section introduces coset coding [18][19] and our use of it to create a technique to extend 

the lifetime of memory locations composed of PCM (Chapter 3) and Flash memory cells (Chapter 

4). Current memory writing techniques have a one-to-one map between a given dataword (the 

data the host wants to write) and a given codeword (the data that is written). In contrast, coset 

coding has a one-to-many map between a dataword and a set of codewords. Each codeword in 

the set can be mapped back to the dataword. Coset coding enables the selection of a 

representative codeword to write from a number of possibilities. We use the flexibility of the 

coset coding technique to write many possible codewords to minimize wear on a given memory 

location. 

Coset coding was first introduced in the context of communications [11][18][19] to reduce 

average transmitted signal power in voiceband modems. When used in voiceband modems, all 

vectors in a given coset represent the same information and the vector sent over the 

communication line is chosen to minimize signal power. 

The following sections provide background information on the different mechanisms we used in 

our implementation of coset coding. Section 2.1 introduces coset coding terminology. Section 

2.2 discusses the steps required to read and write to memory. Sections 2.3 and 2.4 discuss how 

we implemented the steps. 

2.1 Coset	Code	Terminology	

We use the following coset coding terminology throughout our discussion. Coset coding is based 

on the creation of cosets—sets with special properties we use to represent a single dataword 
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with multiple codewords. A codeword inside a coset that represents the coset is a coset 

representative. Encoding is the process of mapping from a dataword to the corresponding coset 

label (the coset representative that has a one-to-one mapping with the dataword). Decoding is 

the process of mapping from a coset representative back to the corresponding dataword. 

Encoding occurs during the write process, and decoding occurs during the read process.  

2.2 Coset	Coding	Encoding	and	Decoding	Steps	

This section presents the steps we used in our coset coding technique to encode using coset 

coding for writing codewords to memory and to decode using coset coding for reading 

codewords from memory. We implemented coset codes both without error correction (for 

PCM) and with error correction (for Flash). Section 2.2.1 discusses the process for encoding. This 

process is the same for coset coding both with and without error correction. Section 2.2.2 

discusses the processes for decoding both with and without error correction, respectively. 

2.2.1 Encoding Steps 

The coset coding encode process consists of mapping from a dataword to the coset 

representative that, when written, has the least impact on memory location lifetime. The coset 

coding encode process consists of the two steps as illustrated in Figure 1. The first step is 

mapping from a dataword to a coset. The second step is selecting the coset representative to 

write. A coset contains multiple write options all of which represent the original dataword. After 

encoding, we write the selected coset representative to memory. We present our 

implementation of step 1 and step 2, respectively, in Sections 2.3 and 2.4. 
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2.2.2 Decoding Steps 

Figure 2 shows the coset code decoding process. The top of the figure shows how we decode 

coset codes without error correction (a single step process). The bottom of the figure shows 

how we decode coset codes with error correction (a two-step process). To decode, we map 

from the read-out coset representative back to the corresponding dataword by correcting any 

errors in the coset representative and then mapping back to the corresponding dataword.  

 

 

Figure 1: Coset Code Encoding Process 

 

Figure 2: Coset Coding Decoding Process Both Without (top) and With (bottom) Error 

Correction 
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2.3 Mapping	Between	Dataword	and	Coset	

In this dissertation, we use matrices to map between datawords and cosets. We describe how 

we create coset coding matrices in general in Section 2.3.1 and how to construct coset coding 

matrices that can also perform error correction in Section 2.3.2.  

2.3.1 Coset Code Matrix Construction 

Table 2 lists the three matrices we used and their function in the coset code encoding and 

decoding processes. We named each matrix based on the matrix’s function. We first create the 

Zero Coset Generator Matrix (Z) that we used to generate the zero coset representatives (the 

zero coset is defined as the coset that maps to the all zero dataword [17]) (Section 2.3.1.1). 

From Z, we are able to create the Decoder Matrix (H), which is used to map from the read-out 

coset representative to the corresponding dataword, and the Coset Label Generator Matrix (H
#
), 

which maps between the dataword and the coset label (Section 2.3.1.2).  

 

Figure 3 shows the location of each matrix in the encoding and decoding processes. Each step is 

labeled in italics and underlined, and each matrix is shown in white text on a black background. 

Table 2: Matrices Used as Part of Our Coset Coding Encoding/Decoding Implementation 

Process Matrix is Used Matrices Purpose 

Encoding 

Zero Coset Generator Matrix (Z) To generate the zero 

coset representatives 

Coset Label Generator Matrix 

(H
#
) 

To map from the 

dataword to the coset 

label  

Decoding 

Decoder Matrix (H) To map from the read-

out coset representative 

to the corresponding 

dataword. 
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Both the “Dataword to Coset” and “Coset Representative to Dataword” steps consist of the H
#
 

and H matrices, respectively; and the “Select Coset Representative to Write” step uses Z.  

 

2.3.1.1 The Zero Coset Generator Matrix (Z) 

In our experiments, we obtained the zero coset generator matrix (Z) from binary block and 

convolutional codes that have been shown to be well suited for coset coding [18]. All the other 

matrices in a given coset code (listed in Table 2) can be generated from the Z matrix. We 

evaluated coset coding for PCM using the Reed-Muller [52] and repetition binary block codes. 

We evaluated coset coding for Flash using convolutional codes [38].  

We use the zero coset as part of our processes for searching for the best coset representative to 

write from the input dataword coset. We discuss how we use the zero coset with exhaustive 

search in Section 2.4.3 and with Viterbi search in Section 2.4.4.  

  

Figure 3: Coset Coding Encode and Decode Processes 
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2.3.1.2 The Decoder Matrix (H) and Coset Label Generator Matrix (H#) 

We used Z to generate the decoder matrix (H). H maps from a coset representative back to a 

dataword as part of the decoding process. Generating H requires meeting the following 

conditions:  

 

The process of creating H is specific to the code used. For example, we evaluated extending the 

lifetime of PCM using Reed-Muller codes as coset codes. We generated H for a Reed-Muller 

coding using the method presented in Lin and Costello Jr. [38] as this H generation method 

ensured meeting both conditions 1 and 2. For the repetition code, we decoded using the 

method presented in Cho et al. [14]. 

To create H
#
 and meet condition 3 for H (H

#
H = I), we generated H

# 
from H by taking the left 

pseudo-inverse [44] of H over GF(2). 

2.3.2 Error Correcting Coset Code (ECCC) Matrix Construction 

The process we use for building ECCC matrices builds on the process used to create coset code 

matrices as discussed in Section 2.3.1. ECCC matrices are still used to perform coset coding but 

they produce coset reprsentatives that can be checked for errors. To check for errors, an ECCC 

Condition 1: ZH
T
 = 0, where 0 is the matrix of all zeroes, and where “T” is the transpose 

operator [45]. This condition ensures that all coset representatives in a given coset will 

map back to the same dataword. 

Condition 2: All rows of H must be linearly independent [75] over GF(2) [66]. For 

mathematical operations with coset codes, we use GF(2), a mathematical structure 

where values are calculated modulo 2. This condition ensures that all coset 

representatives multiplied by H will produce a unique dataword. 

Condition 3: H
#
H = I, where “I” is the identity matrix [67]. This condition ensures that 

the dataword mapped to the coset representative during encoding is the same 

dataword that is recovered during decoding. 
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incorporates an error correcting code (ECC). Previously developed ECCs include Hamming codes 

[25]. 

Figure 4 shows the ECCC encoding and decoding process. Each step in each respective process is 

labeled in italics and underlined. Each matrix is shown in white text on a black background. The 

ECCC encoding step is identical to the non-error correcting coset encoding process shown in 

Figure 3, where H
#
 converts the dataword into a coset, and Z generates zero coset 

representatives that are used as part of the coset representative selection process (described in 

Section 2.4). We add a fourth Parity Check Matrix (H’) in the decoding process to check a coset 

representative produced by an ECCC matrix for errors and to provide repair information. During 

decoding, H’ checks the coset representative for errors, the decoder corrects as many errors as 

possible, and H converts the coset representative to the corresponding dataword. 

 

ECCC matrices meet the requirements of both an ECC and a coset code. A single matrix can fit 

the requirements of multiple codes. Since both Z and H
#
 the requirements of a coset code and of 

 

Figure 4: ECCC Encoding and Decoding Proceses 
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an ECC, coset representatives generated from them are also ECC codewords that can be checked 

for errors. Section 2.3.2.1 discusses the requirements for the ECC matrices. Section 2.3.2.2 

discusses how we created Z, H
#
 and H so that they meet the requirements of both the ECC we 

used and the coset code we used. 

2.3.2.1 ECC Matrices 

The ECCs we used are defined by three matrices: the generator matrix (G), the ECC Decoder 

Matrix (G
#
), and the parity check matrix (H’) [38]. Figure 5 shows how each matrix is used during 

the ECC encoding/decoding processes. The ECC encoding/decoding process differs from the 

ECCC encoding/decoding process (shown for illustrative purposes only in Figure 5). During the 

encoding process, G maps the dataword to the corresponding ECC codeword that is then written 

to memory. During the two-step decode process, the parity check matrix (H’) checks the read-

out ECC codeword for errors, corrects them, and G
#
 is then used to convert the corrected ECC 

codeword back into the corresponding dataword. 

 

 

Figure 5: Encoding/Decoding ECC 
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2.3.2.2 Z (Zero Coset Generator Matrix), H# (Coset Generator Label Matrix), 

and H (Decoder Matrix) for Error Correction 

This section presents our construction of the ECCC matrices that do not have an ECC. These 

matrices are Z (Zero Coset Generator Matrix), H
#
 (Coset Generator Label Matrix), and H 

(Decoder Matrix). 

Generating the Zero Coset Generator Matrix (Z) and the Coset Label Generator Matrix (H
#
).       

G is the combination of Z and H
#
. If Z and H

#
 combine to form G then all coset representatives 

are also ECC codewords. Combining Z and H
#
 to form G requires meeting the following two 

conditions in addition to those listed in Section 2.3.2.1: 

 

Requirements for the Generator Matrix (G).  In Chapter 4, we use a Hamming code as our 

ECC. Creating a Hamming ECC G matrix requires that two conditions are met [42]: 

Condition 1. All rows in G are linearly independent over GF(2).  

Condition 2. All columns in G are different 

Requirements for the ECC Decoder Matrix (G
#
). G

#
 is the pseudo-inverse of G over GF(2) 

[28]. 

Generating the Parity Check Matrix (H’). A Hamming parity check matrix H’ requires that 

GH’
T 

= 0, where “T” is the transpose operator [45]. We used a Hamming code for ECC in 

Chapter 4 and used the method presented in Lin and Costello Jr. [42] to generate H’. 

Condition 1.  The number of columns in H
#
, Z and G must be the same. If the number 

of columns were different, then G, H
#
, and Z would produce different length 

codewords. For Z to be within G, the generated codeword length of both matrices 

and the number of columns of both matrices must be the same. 

Condition 2.  H
#
 and Z vertically concatenated must form G.  
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In our experiments, we selected Z from a previously developed coset code that has 

requirements compatible with G. We used a Z where all columns differ to ensure that all 

columns in G differ (Since Z and H
#
 are vertically concatenated, all of the columns in G by 

definition are different). We generated H
#
 based on the requirements listed in Section 2.3.1.2 

and the requirements for G. We made the number of columns in H
#
 the same as Z to satisfy 

Condition 1 for H
#
. To satisfy condition 2, we randomly generated linearly independent rows for 

H
#
 over GF(2) until Z and H

#
 had sufficient rows to form G.  

Generating the Decoder Matrix (H). Since coset representatives are also ECC codewords, the 

ECC Decoder Matrix (G
#
) is the same as H. To generate the decoder matrix H, we took the 

pseudo-inverse of G over GF(2) [44]. Since both Z and H
#
 combine to form G, and H

#
 produces a 

coset representative, then H as the pseudo-inverse of G produces the corresponding dataword. 

ECCC matrices can be used solely for error correction as presented in Section 2.3.2.1. Figure 6 

shows the ECC encode/decode processes using the ECCC matrices. The ECC matrix names are 

shown in black text and the ECCC matrices are shown in white text on a black background. The 

generator matrix G is composed of H
#
 and Z. Any dataword multiplied by the combination of 

these two matrices produces a coset representative that is also an ECC codeword. H’ is used to 

check the ECC codeword/coset representative for errors. Finally, G
#
 (a.k.a H)

 
is used to decode 

the ECC codeword/coset representative back into the corrected dataword. 
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2.4 Selecting	a	Coset	Representative	to	Write	from	a	Coset	

The coset rep selector selects a coset representative from a coset to write as part of the coset 

code encoding process. Figure 7 shows the location in the encoding process of the coset rep 

selector. Given a coset label and the previously written coset representative, the coset rep 

selector picks a coset representative from the dataword coset—the coset that represents the 

dataword—to write to memory.  

 

The coset rep selector requires the following four pieces of information: 1) the zero coset, 2) the 

translate coset—a coset that provides information on how writing the given coset will change a 

the value in a given memory location (Section 2.4.1); 3) a metric function—a function that 

 
 

Figure 6: ECC Encoding/Decoding Process with ECCC Matrices 

 

Figure 7: Coset Rep Selector Highlighted in the Coset Coding Encoding/Decoding Process 
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provides a lexicographic ordering to a set (Section 2.4.2); and 4) a search function—an algorithm 

for applying a metric function (Section 2.4.3, exhaustive search and Section 2.4.4, the Viterbi 

algorithm). The search function determines how the coset rep selector uses each of the four 

components listed above to find a coset representative to write.  

2.4.1 Translate Coset 

This section discusses the translate coset and its part in the coset code encoding process. A 

translate coset represents how writing a given coset will change the value in a given memory 

location. The coset rep selector uses the translate coset to select a coset representative to write.  

Figure 8 shows the different types of data needed to form a translate coset. Forming a given 

translate coset requires both the dataword coset and the previously written coset 

representative. The coset representatives in this example come from the extended Hamming 

(8,4) coset code (shown for illustrative purposes only in Figure 8). The three vectors in the 

memory box in the figure have been written to Flash memory in addresses “A”, “B” and “C”. The 

right side of the figure shows the dataword coset to be written.  

 

 

Figure 8: Example Setup for Forming a Translate Coset 
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Creating a translate coset consists of XORing the coset representatives in the dataword coset 

with the previously written coset representative. Figure 9 shows the formation of a translate 

coset representative. The encoder XORs the previously written data (01111111) and a coset 

representative from the dataword coset (11111111) to produce the translate coset 

representative 10000000. For translate coset representatives, a “1” indicates a bit will be flipped 

during the write while a “0” indicates a bit will not be flipped. For example, writing the dataword 

coset representative corresponding to the translate coset representative 10000000 will flip the 

1
st

 bit from the left. Performing this operation for all of the dataword coset representatives 

forms the translate coset. 

 

2.4.2 The Metric Function 

A metric function assigns a single numerical value to a coset representative. These values are 

used to order representatives within a coset.  An exemplary metric function is counting the 

number of 1s in a coset representative. For example, if we had the following coset 

representatives, {0000,0001,0010,0011}, applying this metric function results in metric values 

{0,1,1,2}. If we wanted to pick coset representatives with the lowest metric value to write, we 

would pick 0000 because it has metric value 0. Other metric functions have been proposed in 

prior work [16].  

 

Figure 9: Formation of a Translate Coset Representative 
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2.4.3 Exhaustive Search 

Exhaustive search consists of enumerating—finding all of the elements in a given set—each 

coset and then choosing the best coset representative. Figure 10 shows the four steps in an 

exhaustive search-based coset rep selector which are also listed below: 

 

 

 

 

Step 1: Enumerate the Zero Coset (Figure 11). We first enumerate the coset representatives in 

the zero coset. To obtain the zero coset, we multiply all possible inputs by G. The results of 

these multiplications are the zero coset representatives. 

1. Enumerating the zero coset; 

2. Finding a translate coset representative; 

3. Enumerating the translate coset; and 

4. Using a metric function to select a coset representative. 

 

Figure 10: Exhaustive Search-Based Coset Rep Selector 
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Step 2: Find a Translate Coset Representative (Figure 12). We find coset representative in the 

translate coset by XORing the coset label and the previously written data.  

 

Step 3: Enumerate the Translate Coset (Figure 13). We enumerate the translate coset using the 

dataword coset by XORing the coset representatives in the zero coset with a translate coset 

representative. This process produces all the translate coset representatives. 

 

Figure 11: Enumerating the Zero Coset  

 

Figure 12: Finding a Translate Coset Representative 
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Step 4: Use a Metric Function to Select a Coset Representative. We use a metric function on 

the translate coset to find the coset representative to write in the dataword coset. Exhaustive 

search applies the metric function to translate coset representatives to generate a 

corresponding metric value for each representative. These metrics are then used to select a 

translate coset representative. 

2.4.4 The Viterbi Algorithm 

As an alternative to exhaustive search, we can design the coset rep selector using the Viterbi 

algorithm (Viterbi) [20]. Viterbi is well suited for searching cosets with a large number of coset 

representatives such as with the codes presented in Chapter 4. For large coset sizes, Viterbi 

requires less power and less area than exhaustive search. For small coset sizes, exhaustive 

search may be preferable due to its lower base overheads.  

Figure 14 shows how we can use Viterbi as part of the coset rep selector. Inputs and outputs are 

shown in bold, and components that are built into the coset rep selector are shown with white 

boxes with black text. The two inputs to the coset rep selector are used to form the translate 

coset representative. The metric function, translate coset representative, and zero coset are fed 

 

Figure 13: Enumerating the Translate Coset 
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into the Viterbi algorithm which produces a zero coset representative. To convert back to a 

dataword coset representative the zero coset representative is first XORed with the translate 

coset representative and then XORed with the previously written coset representative to 

produce the selected dataword coset representative. 

 

Viterbi has two conditions that exhaustive search does not have. The metric function for Viterbi 

must produce non-negative numbers and the zero coset must be representable as a finite state 

machine (FSM). These conditions allow Viterbi to use dynamic programming to calculate the 

path metrics inductively. We designed our metric functions when using Viterbi so that the 

produced metric values are non-negative. Both binary convolutional codes and binary block 

codes [38] have a zero coset that can be represented as an FSM. 

  

 

Figure 14: Viterbi-Based Coset Rep Selector 



21 

 

  

3. Extending the Lifetime of Phase Change Memory 

This chapter presents our application of coset coding to extend the lifetime of memory locations 

composed of PCM cells. We apply the coset coding technique presented in Chapter 2 to extend 

PCM memory lifetime by flipping fewer bits per write compared to writing un-coded datawords.  

Flipping fewer bits results in writing less and thus extends lifetime of PCM memory.  

Section 3.1 provides background on PCM. Section 3.2 discusses the PCM failure modes. Section 

3.3 discusses other work on extending the lifetime PCM. Sections 3.4 and 3.5 introduce FlipMin, 

our proposed application of coset coding to extend the lifetime of memory locations composed 

of PCM cells, and provides an evaluation of how well FlipMin reduces the number of bit flips per 

write. Section 3.6 presents exemplary hardware implementations of a FlipMin encoder and 

decoder. Section 3.7 presents the area, energy, and latency costs from using our hardware 

implementations of a FlipMin encoder and decoder. Sections 3.8 and 3.9 discuss how we setup 

our experiments and present the results of our evaluation of FlipMin for both random and 

program inputs. Section 3.10 concludes the chapter. 

 

This chapter makes the following contributions: 

• Shows how to use coset coding to extend the lifetime of PCM memory by minimizing 

bit flips per write, 

• Presents a method for synergistically combining FlipMin with the ability to tolerate 

erasures, 

• Presents and evaluates exemplary hardware implementations of both a FlipMin 

encoder and decoder, and 

• Presents an evaluation of how well FlipMin extends the lifetime of memory locations 

composed of PCM cells for both random and program inputs. 
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3.1 Background	

PCM is an emerging memory technology that is poised to either replace or complement Flash 

memory in computing systems. PCM has faster program/erase times than Flash as well as 

greater endurance. A PCM cell has three parts: an electrode on top that is used to sense the cell 

level; the PCM chalcogenide material that changes state; and a heater to change the state of the 

material. A PCM cell stores a single bit using two states, each of which has a different resistance.  

A PCM cell has a low-resistance and a high resistance state. Figure 15 depicts both resistance 

states of a given PCM cell. The left side of the figure shows the low-resistance state of a PCM cell 

and the right side of the figure shows the high-resistance state of a PCM cell. To write a PCM 

cell, a heater melts part of the chalcogenide material and cools it at a given rate. A current is 

then passed through the cell to read the resistance value. When cooled at a fast rate, the 

chalcogenide turns amorphous and has a high resistance.  When cooled at a slower rate, the 

chalcogenide turns crystalline and has a low resistance. When the resistance of a PCM cell is low 

(i.e., the chalcogenide is mostly crystalline), one bit value is read out; when the resistance of a 

PCM cell is high (i.e., the chalcogenide is mostly amorphous), the other bit value is read out. 

 

 

Figure 15: PCM Cell in Low and High Resistance States 
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Although PCM holds promise as an emerging non-volatile storage technology, it is a write limited 

memory, i.e., repeatedly writing to PCM cell eventually results in the cell unable to change state. 

3.2 Failure	Modes	

PCM cells have been shown to exhibit two different failure modes [60] due to repeated writes: 

the observed failure modes are stuck in low resistance (i.e., closed) and stuck in high resistance 

(i.e., open). A PCM stuck-at closed failure is due to elemental segregation in the chalcogenide 

material. A PCM stuck-at open failure is due to voids between the chalcogenide material and the 

electrode. A PCM cell that cannot change resistances cannot change value and is referred to as a 

“stuck-at” cell. A stuck-at PCM cell can be read but cannot be written.  

Stuck-at closed and stuck-at open PCM failure modes result from repeated cycling between 

states. A PCM cell can change state a fixed number of times before failing. We extend the 

lifetime of the memory location by reducing the number of PCM cells that change states per 

write compared to writing un-coded data directly. 

3.3 Related	Work	

We group existing schemes for extending the lifetime of memory locations composed of PCM 

cell into four categories. We list prior schemes in Table 3; shaded schemes in the table represent 

those that we will not quantitatively compare against in this chapter. With respect to the non-

shaded schemes in the table, Section 3.3.1 discusses schemes that use bit flip reduction (BFR). 

Section 3.3.2 discusses schemes that use error correction based techniques. Section 3.3.3 

discusses the technique of adding additional memory cells. Section 3.3.4 discusses wear-leveling 

techniques. 
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3.3.1 Postponing Wear-out: BFR 

One can extend the lifetime of memory locations composed of PCM cells by writing a codeword 

that flips fewer bits per write compared to writing an un-coded dataword. All else being equal, 

flipping fewer bits when writing to a memory location results in that location lasting for a 

greater number of writes. To the best of our knowledge, the only prior work in this area is Flip-

N-Write [14]. At each write, Flip-N-Write chooses to write either the dataword or its inverse, 

depending on which requires fewer bit flips. Flip-N-Write adds a single bit per location to 

indicate whether the data is inverted or not. Flip-N-Write is coset coding with the repetition 

code with a metric function that minimizes bit flips. In this dissertation, we explore the 

repetition code and other coset codes for reducing the number of bit flips per write to postpone 

wear-out of a memory location composed of PCM cells. 

Table 3: PCM lifetime extension schemes.  We quantitatively compare to un-shaded rows. 

Approach Scheme Instantiation Granularity Overhead Why No Quant. 

Comparison 

bit flip reduction Flip-N-Write (FnW) [16] FnW per-byte 8 bits 1 bit=12.5%  

  FnW per-word 64 bits 1 bit=1.56% subsumed by FnW 

per-byte 

 Coset Coding discussed in paper 64 bits tunable  

error/erasure  ECC Hamming (72,64) 64 bits 8 bits=12.5%  

Correction ECP [60] ECP6 block ~ 512 bits 61 bits=11.9%  

  ECP12 block ~ 512 bits 121 bits=23.6%  

  ECP-ideal block ~ 512 bits 0  

 Pay-As-You-Go [55]  entire memory tunable subsumed by ECP-

ideal 

 SAFER [62] SAFER8 block ~ 512 bits 22 bits=4% subsumed by ECP-

ideal 

  SAFER32 block ~ 512 bits 55 bits=10.7% subsumed by ECP-

ideal 

 RDIS [46] RDIS3 block ~ 512 bits see † subsumed by ECP-

ideal 

 FREE-P [71]  block ~ 512 bits 64 bits=12.5% requires OS support 

 DRM [31]  page ~4KB see ǂ requires OS support 

adding memory 

cells 

DoubleMem  64 bits 64 bits*=100%  

 † Overhead is listed as 18%, but RDIS does not account for overheads to track erasures. 

  ǂ  12.5% to track erasures plus 100% for paired pages plus a single 1KB “ready table” 

 * Actual overhead is greater than 64 bits due to extra state bits to track which copy of the location is being used. 
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A non-coding method for minimizing bit flips is to combine multiple writes in a buffer composed 

of memory that is not write-limited [37] before writing to a memory location composed of PCM 

cells. Write coalescing is a useful technique that is orthogonal to all prior work and to our work. 

3.3.2 Tolerating Wear-out: Error Correction 

One can extend the lifetime of memory locations composed of PCM cells by tolerating bit errors 

after wear-out occurs. Tolerating wear-out is effective when a minority of memory cells at some 

location granularity (e.g., byte, line, etc.) fail far earlier than average making the entire location 

unusable. Example schemes include ECC and some techniques developed for PCM 

[27][40][49][56][63]. One prominent scheme is Error Correcting Pointers (ECP) [54]. The ECP 

scheme tolerates errors in known bit positions (i.e., erasures) in memory locations by 

maintaining pointers to these bit positions and adding bits to be used as replacements.  For 

example, ECP6 operates at a 512-bit location granularity, and it keeps six 9-bit pointers 

(log2(512) = 9) and 6 replacement bits for tolerating up to 6 erasures in the 512-bit location. 

There has been a large amount of work that extends and optimizes ECP, including Pay-As-You-

Go [49], SAFER [56], and RDIS [40].  We both compare to and combine our coset coding based 

scheme with ECP with the intent of extending the lifetime of memory locations composed of 

PCM cells. 

3.3.3 Adding Memory Cells  

One can extend the lifetime of memory locations composed of PCM cells by adding more 

memory cells and using these memory cells for purposes of extending memory location lifetime 

rather than increasing memory capacity. For example, if a memory location is logically 64-bits, 

we can use 128 physical bits in a scheme we call DoubleMem.  With DoubleMem, initially the 
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first 64 bits of the physical location are used to store data. When the first 64-bit physical 

location fails, the second 64-bit physical location is used to store data. There has been research 

into more sophisticated methods for adding memory cells to improve lifetime, including 

Waterfall codes and hypercells [36], but they all share the same idea. These techniques are 

complementary to our work. 

3.3.4 Wear-leveling 

One can extend the lifetime of memory locations composed of PCM cells by evenly wearing 

memory cells in a memory module. There are two kinds of wear-leveling: intra-location wear-

leveling and inter-location wear-leveling.  Intra-location wear-level schemes level out the wear 

in a given location uniformly (e.g., by remapping logical bit positions) [33][64]).  These schemes 

require state to track the current bit position mappings for each location and sophisticated 

heuristics to decide when and how to remap bit positions.  Inter-location wear leveling schemes 

seek to avoid writing to some locations more frequently than others.  These schemes 

[33][50][51][55][64] avoid these situations by dynamically mapping from logical locations to 

physical locations in ways that are similar to but simpler than virtual memory translations from 

virtual pages to physical pages.  This work is complementary to our work.  

3.4 FlipMin	

This section presents FlipMin, our coset coding based technique for extending the lifetime of 

memory locations composed of PCM cells. FlipMin extends the lifetime of memory locations 

composed of PCM cells by writing coset representatives that flip fewer bits than writing 

datawords directly. Section 3.4.1 discusses our assumptions when developing FlipMin for PCM. 

Section 3.4.2 discusses how FlipMin selects a coset representative to write to a memory 
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location. Section 3.4.3 discusses how to use FlipMin to write to memory locations with stuck-at 

PCM cells.  

3.4.1 System Model Assumptions 

We assumed when designing FlipMin for PCM cells that we can 1) write both transitions 0-to-1 

and 1-to-0 with equal cost (a formal model for this is known as the Write Efficient Memory 

(WEM) model [3]), and 2) read a memory location before writing to it (a requirement of using 

the translate coset method for determining which coset representative to write as discussed in 

Section 2.4.1).  Both these assumptions about PCM have been made in prior work  [9][14]. 

3.4.2 FlipMin Coset Representative Selection 

The coset representative selection process begins with the dataword and ends with the coset 

representative that is written to memory. Section 3.4.2.1 lists each of the steps and provides a 

description of the actions taken during each step. Section 3.4.2.2 presents an example of 

FlipMin coset representative selection using a repetition coset code. 

3.4.2.1 Steps 

In this section we present three steps, illustrated in Figure 16 and described below, that 

describe how FlipMin selects a coset representative to write that maximizes BFR.   

Step 1: Generate the Coset Label. The coset label (defined in Section 2.1) uniquely identifies the 

coset corresponding to the dataword. The dataword is multiplied by H
#
 (defined in Section 

2.3.1.2) to generate the coset label. 

Step 2: Generate the Translate Coset. FlipMin selects a coset representative to write based on 

information from the translate coset (discussed in Section 2.4.1). A translate coset 
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representative is first generated by XORing the previously written coset representative and the 

coset label. The entire translate coset is then enumerated using the zero coset. The coset 

representatives in the translate coset indicate which cells will flip when writing each coset 

representative in the dataword coset. 

Step 3: Generate the Coset Representative that is Written to Memory. To generate the coset 

representative that will be written to memory, the translate coset leader—the coset 

representative with the fewest number of 1s—is determined using exhaustive search (described 

in Section 2.4.3). We then use the translate coset leader to find the coset representative that 

will flip the fewest number of bits and XOR the translate coset leader with the previously written 

coset representative to produce a coset representative in the dataword coset. When written, 

this coset representative will flip the fewest number of bits of all the coset representatives in 

the dataword coset. 

 

 

Figure 16: Selecting the Preferred Coset Rep to Write Using FlipMin 
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Whether or not writing a coset representative using FlipMin results in a BFR depends on the 

coset code that is used. We use the FlipMin metric function with coset codes that have coset 

representatives in each coset with an equal or lower weight than the corresponding un-coded 

dataword. Selecting coset representative to write using FlipMin from one of these coset code 

results in a bit flip reduction when compared to writing the un-coded dataword directly.  

3.4.2.2 Example 

In this section, we provide an example illustrating the FlipMin coset representative selection 

process using the repetition code shown in Table 4. This repetition code has two coset 

representatives per dataword. For example, the coset representatives for 01 are 010 and 101.  

 

Figure 17 shows each of the three steps to FlipMin coset representative selection using a 

repetition code. For this example, the previously written data Is 111 and the dataword is 01. 

Step 1 consists of converting from the dataword (01) to the coset label (010). For the repetition 

code, we simply append a “0”. In Step 2, the coset label (010) is converted into a translate coset 

representative (101) by XORing it with the previously written data (111). The other translate 

coset representative (010) in the translate coset is then generated by flipping all of the bits in 

the first translate coset representative (101). In Step 3, the translate coset representative with 

Table 4: 2-Bit to 3-Bit Repetition Coset Code 

Dataword Coset Representative 1 Coset Representative 2 

00 000 111 

01 010 101 

10 100 011 

11 110 001 
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the fewest number of 1s (010) is selected by the coset rep selector and XORed with the 

previously written data (111) to produce the coset representative to write to memory (101). 

 

3.4.3 Coset Erasure Matching (CEM) 

In addition to reducing bit flips, FlipMin tolerates stuck-at cells, i.e., FlipMin allows for writes to 

a PCM memory location with stuck-at cells; we call the FlipMin process to write to memory 

locations with stuck-at memory cells coset erasure matching (CEM). CEM tolerates stuck-at PCM 

cells by selecting a coset representative to write that matches the values of the stuck-at PCM 

cells in a given memory location. CEM first reads out a fault mask (a vector that indicating which 

bits are stuck-at) that corresponds to a given memory location and then uses the memory 

location fault mask to determine which bits cannot change when selecting a coset 

representative to write.  

 

Figure 17: FlipMin Coset Representative Selection Process with the Repetition Coset Code 

in Table 4 
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The following example as illustrated in Figure 18 demonstrates the CEM write process when one 

or more stuck-at PCM cells are present in a memory location. The figure contains an example 

translate coset along with a fault mask, defined as a vector where a “1” indicates a memory cell 

that cannot be changed. The fault mask here has a “1” in the third position from the left so this 

memory cell cannot change value during a write. The translate coset for this code is shown on 

the figure below the fault mask vector with the values in black with white text indicating 

translate coset representatives that cannot be written and values in white with black text 

indicating translate coset representatives that can be written. In the figure, for example, the 

coset representative 11101110 cannot be written because it would flip the third bit, while the 

coset representative 00010001 can be written since it would not flip the third bit. Even though a 

bit value cannot be changed, a valid coset representative can still be written when using CEM. 

 

3.5 FlipMin	BFR	Evaluation	

We ran experiments to measure bit-flip reduction properties of coset codes with FlipMin. We 

analyzed FlipMin with the following coset codes: Parity(72,64) (equivalent to a previously 

developed scheme known as Flip-N-Write [14]), two Reed-Muller [52] codes FM-RM(1,3), and a 

 

Figure 18: Coset Erasure Matching Example 
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truncated version of RM(1,7) (FM-RM(1,7)T). For each coset code, we used the dual of the code 

listed (i.e., FM-RM(1,3) is the dual of RM(1,3)). Section 3.5.1 presents our methodology for 

determining the BFR of each code, and Section 3.5.2 presents our results. 

3.5.1 Methodology 

To simulate the average BFR, we used an in-house numerical tool that writes to a 64B cache line. 

We ran simulations for each of the three coset codes until the BFR converged to a constant 

value, and calculated the BFR for each coset code with FlipMin using the following equation: 

��� = 1 −	 #	�	
	��	�
		�	��	��	�
#	�	
	��	�
		�	������� 

3.5.2 Results 

We found that for our simulations the BFR of FM-RM(1,3) and FM-RM(1,7)T is higher than that 

of FM-Parity(72,64). Table 5 presents the BFR for FM-Parity(72,64), FM-RM(1,3), and FM-

RM(1,7)T. We found that the BFR for FM-RM(1,3), FM-RM(1,7)T, and FM-Parity(72,64) codes is 

31.2%, 24.5%, and 15.8%, respectively. 

 

The BFR of FM-RM(1,3) is higher than that of FM-RM(1,7)T because of the covering radius—the 

maximum number of bits a vector can be different from the coset representatives in the zero 

coset. The smaller the covering radius for a given codeword length, the larger the BFR [7][10]. 

Table 5: Bit Flip Reduction 

Coset Code Bit Flip Reduction 

FM-Parity(72,64) 15.8% 

FM-RM(1,7)T 24.5% 

FM-RM(1,3) 31.2% 
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Shorter Reed-Muller codes have a smaller covering radius than longer Reed-Muller codes.  Since 

shorter Reed-Muller codes have a smaller covering radius, they have a higher BFR than longer 

Reed-Muller codes. The smaller covering radius of FM-RM(1,3) results in a 31.2% BFR as 

compared to 24.5% for FM-RM(1,7)T.  

3.6 Implementation	

We preset an exemplary hardware implementation of a FlipMin encoder and decoder that 

consists of an encoder for translating from input to coset representative and a decoder for 

translating from a coset representative back to a dataword.  Section 3.6.1 describes the system 

model and where FlipMin can be implemented in a computer memory hierarchy; Section 3.6.2 

presents a hardware implementation of a FlipMin encoder; and Section 3.6.3 presents a 

hardware implementation of a FlipMin decoder. 

3.6.1 System Model 

A hardware implementation of FlipMin can be integrated into any of the existing hardware units 

on a PCM daughter board. Ideally, any implementation of FlipMin is physically located as close 

to the PCM cells as possible since FlipMin requires a read before a write. Figure 19 shows one 

location a hardware implementation of FlipMin can be integrated into an existing computer 

memory system. In this figure, PCM is attached to a processor as its main memory in the form of 

a DIMM (possibly similar to [4]) that has PCM chips on both sides of a daughter board. If a chip 

were present to coordinate activities between the PCM chips and provide inter-location wear-

leveling as illustrated by “Chip Ctrl” in Figure 19, a hardware implementation of FlipMin could be 

integrated into this chip; alternatively, we could integrate FlipMin into the write controller 

located inside the PCM chips.   
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3.6.2 Encoder 

This section presents the hardware for a FlipMin encoder. First, we list the different encoding 

steps. Then, for each step, we present our hardware implementation.  

 

Step 1: Generate a coset label from a dataword (Figure 20). To generate the coset label from a 

dataword, we multiply the dataword by H
#
 (defined in Section 2.3.1.2) over GF(2). Figure 20 

depicts a hardware block diagram for implementing GF(2) matrix multiplication. We define the 

dataword to be k bits long and we define the coset label to be n bits long. Since we are doing a 
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Figure 19: Example PCM Implementation that Integrates FlipMin into PCM Chips 

The Encoding Steps for our Hardware Implementation of FlipMin:  

1. Generate the coset label (defined previously in Section 2.5.2.1 as a coset 

representative inside a coset that uniquely identifies the coset) from a dataword 

2. Generate a translate coset representative 

3. Generate the translate coset 

4. Find the minimum weight element in the translate coset 

5. Compute the coset representative to write from the minimum weight element in the 

translate coset. 
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matrix multiply over GF(2), we do not use the standard addition and multiplication operations; 

rather, we add using XOR gates and multiply using AND gates.  

 

Two hardware units are used per column to perform matrix multiply over GF(2): a unit for the 

multiplication and a unit for the addition. The multiplication unit consists of a bit mask—a unit 

that selects bits from a given coset representative. The bits selected correspond to the 1s in the 

corresponding column of the coset representative generator matrix. For example, if the matrix 

column has the value 101, only the first and final bits of the input dataword would be selected. 

The addition unit consists of a k bit XOR gate. The different bits selected by the bit mask are 

XORed together to produce a bit in the coset label. The bits from the different columns are 

concatenated to form the coset label. 

Step 2: Generate the translate coset label (Figure 21). Generating the translate coset label 

consists of a single XOR operation between the previously written data and the data to write. 

 

Figure 20: Hardware Block Diagram for Coset Label Generation 
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Step 3: Generate the translate coset (Figure 22). To obtain the translate coset, we XOR the 

translate coset label with the zero coset stored in a ROM. Generating the translate coset 

requires a single XOR operation per coset representative in the coset. The resulting vectors are 

the coset representatives of the translate coset.  

 

Step 4: Find the minimum weight translate coset representative (Figure 23). To find the 

translate coset representative with the fewest 1s, we input all coset representatives in the 

translate coset into the “Find Minimum Weight Rep” module. We implemented the “Find 

Minimum Weight Rep” module using the implementation of exhaustive search described in 

Section 2.4.3.  

 

Figure 21: Generating the Translate Coset Label 

 

Figure 22: Generating the Translate Coset 
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Step 5: Compute the coset representative to write from the minimum weight translate coset 

representative (Figure 24). The final step is finding and writing the coset representative in the 

original coset corresponding to the selected translate coset representative. We XOR the 

translate coset representative with the previously written data to produce the coset 

representative in the original coset.  This coset representative is then written to the memory 

location. 

 

3.6.3 Decoder 

Decoding FlipMin consists of a GF(2) matrix multiply. An example decoder hardware 

implementation is depicted in Figure 25. The process for the GF(2) matrix multiply is the same as 

in Figure 20 except that the generator matrix of the code is used, the input is of length n, and 

 

Figure 23: Coset Metric Calculation and Selection Logic 

 

Figure 24: Determining the Coset Rep to Write from the Translate Coset Leader and 

Previously Written Coset Representative 
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the output is of length k. The output of this matrix multiply is the dataword that was originally 

encoded using FlipMIn. 

 

3.7 Hardware	Costs	

We determined the costs of using our exemplary hardware implementations of the FlipMin 

encoder and decoder for a set of coset codes. We compared the costs of our FlipMin encoder 

and decoder hardware designs to a PCM chip data sheet [41]. The PCM chip in this data sheet 

has 16-bit I/O width, so we multiplied the area and power costs from the data sheet by 4. 

Section 3.7.1 lists the different coset codes for which we designed FlipMin encoders and 

decoders; Section 3.7.2 presents the process we used to determine costs; Section 3.7.3 presents 

the costs of the encoder; and Section 3.7.4 presents the costs of the decoder. 

3.7.1 Coset Codes Evaluated 

We evaluated the hardware implementation of FlipMin example encoders and decoders for a 

set of Reed-Muller codes [52] and a parity code. Other codes could be used as well provided 

that the code divides up a space into cosets. Table 6 lists the duals of the different Reed-Muller 

 

Figure 25.  Hardware Block Diagram for Decoding 
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and parity codes used for FlipMin for which we designed encoders and decoders. When we refer 

to these codes, we will be referring to the dual.  

We designed our coset coding encoder and decoder to be the size of a standard word in a 

computing system (64-bits). For codes that accept inputs smaller than 64-bits, we divide the 

dataword into sub-vectors and encode each sub-vector independently. The coset codes we 

implemented a hardware encoder and a hardware decoder for are listed in Table 6. For the FM-

Parity(72,64) and the FM-RM(1,7)T (truncated RM(1,7)) coset code, 1.125x PCM cells are 

required to store data compared to un-coded datawords written directly. For the FM-RM(1,3) 

coset code, 2x PCM cells are required to store data compared to writing un-coded datawords 

directly. 

 

3.7.2 Process Used to Evaluate Hardware Costs 

We used tools from the Synopsys suite of programs to determine the costs of our exemplary 

hardware implementations of a FlipMin encoder and decoder. First, we used Synopsys Design 

Compiler (DC) to synthesize from RTL to a gate-level netlist using gates from the Nangate 45nm 

semi-custom library [46].  Second, we used Synopsys VCS with 1,000 randomly generated inputs 

to determine the switching activity factor for the wires in the design. Third, we used Synopsys IC 

Table 6: FlipMin with Different Block Codes 

Coset Code Storage Overhead  

(per 64-bit Dataword) 

Comments 

FM-Parity(72,64) 8/64=0.125x Performed on 8-bit sub-vector 

FM-RM(1,7)T 8/64=0.125x  

FM-RM(1,3) 64/64=1x Performed on 4-bit sub-vector 
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to layout and floor plan the design. Finally, we used Synopsys Design Compiler topological mode 

to determine the area, latency, and energy costs. 

3.7.3 Encoder Costs 

We found the cost of adding a FlipMin encoder to a PCM chip to be negligible. Table 7 lists the 

simulation latency, energy, and area costs for our implementations of FlipMin encoders for the 

codes listed in Table 6. According to our PCM datasheet [41], the write time for our PCM chip is 

60-120us. The maximum delay for encoding using the RM coset codes is 12.86ns, or 0.021% of 

the PCM chip write latency. The worst case energy consumption for the encoder is 63.4 pJ. The 

typical idle current of 4 PCM devices is about 320µA and the minimum rail voltage is 1.7V, so the 

minimum idle power is approximately 544µW. If a block is encoded every 60µS, our largest 

encoder would take 1.06µW which represents 0.19% of the idle power of the PCM chip. The 

worst case area cost for encoding is 48,344 µm
2
, which we believe to be negligible given the 

typical size of a PCM chip and a DIMM. 

 

3.7.4 Decoder Costs 

We found the cost of adding a FlipMin decoder to a PCM chip to be negligible. Table 8 lists the 

simulation latency, energy, and area costs for our implementations of FlipMin decoders for the 

codes listed in Table 6. From the same PCM datasheet used for the encoding evaluation, the 

read time is 115ns + 25ns per 16-bit entry. This is over an order of magnitude greater than our 

Table 7: Coset Coding Encoder Costs 

Coset Code Delay (ns) Avg Energy (pJ) Max Energy (pJ) Area (µm
2
) 

FM-RM(1,3) 4.09 8.4 10.1 1,160 

FM-RM(1,7)T 12.86 56.1 63.4 48,344 

FM-Parity(72,64) 0.84 0.4 0.6 503 
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worst case decode delay of 0.59ns. The worst case decode energy is 0.4 pJ which if the chip is 

read at a rate of 60µS, our largest decoder would take 6.67nW (0.001% the idle power of the 

PCM chip). The worst case area cost for the decoder was 344µm
2
 which is significantly less than 

the encoder size and we believe to be negligible compared to the PCM chip and DIMM size.  

 

3.8 Experimental	Methodology	

This section presents our experimental methodology to determine how well FlipMin extends the 

lifetime of memory locations composed of PCM cells. We used the coset codes listed in Section 

3.7.1 for our evaluation of FlipMin. Section 3.8.1 lists different techniques against we compared, 

and Section 3.8.2 discusses how we modeled wear-out of PCM cells.  

3.8.1 Techniques Compared Against 

We evaluated and compared the approaches listed in Table 9 for extending the lifetime of 

memory locations composed of PCM cells. We performed our experiments using an in-house 

simulator. The storage overhead is the additional percentage of memory cells needed to 

implement the scheme (e.g., implementing ECP6 requires 11.9% additional overhead). For our 

comparison, the three shaded schemes in Table 9 had similar storage overheads so we did not 

normalize them. BFR indicates the bit-flip reduction of each scheme. Erasure correction denotes 

the number of stuck-at bits each scheme can tolerate.  

Table 8: Coset Coding Decoder Costs 

Coset Code Delay (ns) Avg Energy (pJ) Max Energy (pJ) Area (µm
2
) 

FM-RM(1,3) 0.38 0.3 0.3 344 

FM-RM(1,7)T 0.59 0.3 0.4 221 

FM-Parity(72,64) 0.12 0.1 0.2 141 
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We compared FlipMin to the following schemes: 

 

 

3.8.2 Modeling Wear-Out  

This section describes how we set up our experiments to evaluate the lifetime gains from using 

FlipMin compared to prior work.  

We considered a memory location unusable after the number of unusable PCM cells in the 

location exceeded a given threshold. We used the same threshold for all schemes to fairly 

• Bit-Flip Reduction Schemes: FM-Parity(72,64) on a per-byte granularity (equivalent 

to Flip-N-Write [16])  

• Error/Erasure Tolerance Schemes: Hamming(71,64) and several variants of ECP [60]. 

• Hybrids: We combined FlipMin with both ECP and CEM and compared it to 

combinations of bit-flip reduction schemes (Flip-N-Write and FlipMin) and erasure 

tolerance schemes (ECP). 

• Additional Memory Locations: We looked at a technique we call DoubleMem—using 

two memory locations to store a single memory locations worth of data. 

Table 9: Schemes to Extend Memory Lifetime 

Scheme Storage Overhead BFR Erasure Correction 

ECC-Hamming(71,64) 10.9% 0% 8 bits 

ECP6 11.9% 0% 6 bits 

ECP12 19.7% 0% 12 bits 

ECP12-ideal 0% 0% 12 bits 

FM-Parity(72,64) 12.5% 15.8% 0 bits 

FM-Parity(72,64)+ECP6 25.6% 15.8% 6 bits 

FM-RM(1,7)T 12.5% 24.5% 0 bits 

FM-RM(1,7)T+ECP6 25.6% 24.5% 6 bits 

FM-RM(1,7)T+CEM 24.4% 24.5% 6 bits 

FM-RM(1,3) 100% 31.2% 0 bits 

DoubleMem 100% 0% 0 bits 
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compare different schemes. For our experiments, we set this threshold to 0.9N where N is the 

number of memory locations at time 0 for the highest overhead scheme.  

We sized each memory location to be the size of a cache block (64B). If a given cache block 

failed, we assumed that it could not use bits from other blocks. We also assumed that a 

mechanism such as FREE-P [63] could be used to remap failed blocks.  

At time zero, we assumed PCM cells could be written, and over time, PCM cells wear out and 

become un-writable. We modeled PCM cell lifetime using a Gaussian distribution as in prior 

work [54]. We set the mean PCM cell lifetime to 10
8 

based on published data [41][65]. Changing 

the mean lifetime of PCM cells did not change our results; rather, it changed the absolute 

lifetime numbers. As with prior work [54], we modeled variability in PCM cell lifetimes by 

changing the coefficient of variation (CV) of the PCM cell lifetime distribution. The higher the CV, 

the more dispersed the distribution. We set the CV to 0.05 to model PCM cell lifetimes with low 

manufacturing tolerances, and CV to 0.2 to model PCM cell lifetimes with high manufacturing 

tolerances. 

3.9 Results	

We ran simulations to determine how effectively FlipMin extends the lifetime of memory 

locations of PCM cells compared to prior schemes. Sections 3.9.1 and 3.9.2 present our 

simulation results for random and benchmark inputs, respectively. 

3.9.1 Random Input Results 

We experimentally evaluated FlipMin to determine how well it extends memory lifetime and to 

compare it to prior work. The number of cache lines still usable after a given number of writes is 
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the metric we use to evaluate the effectiveness of each memory location lifetime extension 

scheme.  

Each line and table graph presented in this section has the same format. The x-axis is the 

number of writes performed and the y-axis is the number of cache lines usable after a given 

number of writes. The number of usable cache lines at a given number of writes is normalized to 

FM-RM(1,3) which has 100% overhead. We state that a memory location has failed when 0.9N 

(the number of FM-RM(1,3) memory locations at time zero) locations remain. Each table 

presented in this section lists the number of writes before 0.9N and the percent improvement 

over our baseline runs. 

FlipMin compared to prior BFR schemes. We compared the lifetime gains of FlipMin with Reed-

Muller codes to a previously developed scheme Flip-N-Write [14] (equivalent to FM-

Parity(72,64)).  

FM-RM(1,7)T has higher memory location lifetime gains compared to FM-Parity(72,64) for 

random inputs at a CV of 0.05. Figure 26 shows the results for the BFR schemes with memory 

cell lifetime CV of 0.05.  Table 10 lists results for a CV of 0.05. FM-RM(1,7)T has a lifetime gain of 

46% while FM-Parity(72,64) has a lifetime gain of 12%. FM-RM(1,3) extends the lifetime of PCM 

longer than both FM-Parity(72,64) and FM-RM(1,7) with a lifetime gain of 178%. 
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At a CV of 0.2, the FM-RM schemes have a higher memory location lifetime gain than FM-

Parity(72,64). Figure 27 shows these schemes with a memory cell lifetime distribution CV of 0.2. 

Table 11 lists the results of our comparison. FM-RM(1,7)T has a lifetime gain over baseline of 

41% compared to FM-Parity(72,64)’s gain of 23%. FM-RM(1,3) has a lifetime gain of 82%.  

 

Figure 26.  BFR Schemes (CV 0.05) 

Table 10: BFR schemes compared (CV 0.05) 

Scheme 

CV 0.05 

Writes Before 0.9N Percent Improvement 

Over Baseline 

Baseline 1.70e8 0% 

FM-Parity(72,64) 1.91e8 12% 

FM-RM(1,7)T 2.49e8 46% 

FM-RM(1,3) 4.72e8 178% 
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FlipMin compared to stuck-at tolerance schemes. Since stuck-at tolerance also can extend the 

lifetime of PCM, we compared FlipMin to the following four stuck-at tolerance schemes: one 

ECC scheme (Hamming(72,64)) and three ECP [53] schemes (ECP6, ECP12, and ECP12-Ideal).  

For a CV of 0.05, using FlipMin results in higher lifetime gains than stuck-at tolerance. Figure 28 

shows the stuck-at tolerance schemes compared to FlipMin for a CV for 0.05, and Table 12 lists 

the results. FlipMin extends PCM lifetime by 46% while stuck-at tolerance schemes ECC and ECP 

the cache line lifetime by only 3% and 6%, respectively, for the same overhead.  

 

Figure 27. BFR Schemes (CV 0.2) 

Table 11: BFR schemes compared (CV 0.2) 

Scheme 

CV 0.2 

Writes Before 

0.9N 

Percent Improvement 

Over Baseline 

Baseline 8.20e7 0% 

FM-Parity(72,64) 1.01e8 23% 

FM-RM(1,7)T 1.16e8 41% 

FM-RM(1,3) 1.49e8 82% 
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For a CV of 0.2, stuck-at tolerance schemes show higher lifetime improvements while FlipMin 

shows lower lifetime improvements compared to a CV of 0.05. Figure 29 shows the same 

schemes for a CV of 0.2, and Table 13 presents the number of writes before 0.9N as well as the 

percent improvement over the baseline for each scheme. The lifetime gains of FM-RM(1,7)T are 

 

Figure 28. Stuck-at Tolerance Compared to FlipMin (CV 0.05) 

Table 12: FlipMin compared to error/stuck-at tolerance schemes (CV 0.05) 

Scheme 

CV 0.05 

Writes Before 

0.9N 

Percent Improvement 

Over Baseline 

Baseline 1.70e8 0% 

ECC-Hamming(71,64) 1.75e8 3% 

ECP6 1.78e8 5% 

ECP12 1.80e8 6% 

ECP12-ideal 1.80e8 6% 

FM-RM(1,7)T 2.49e8 46% 
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41% at a CV of 0.2 from 46% at a CV of 0.05. A CV of 0.2 increases ECC lifetime improvement to 

23% and ECP12-ideal lifetime improvement to 48% from 6%. 

 

 

Stuck-at tolerance is more important for higher CV values because the weakest cell in a memory 

location with a higher CV is weaker than in a lower CV. For example, given a memory location 

 

Figure 29. Stuck-at Tolerance Compared to FlipMin (CV 0.2) 

Table 13. FlipMin compared to error/stuck-at tolerance schemes (CV 0.2) 

Scheme 

CV 0.2 

Writes Before 

0.9N 

Percent Improvement 

Over Baseline 

Baseline 8.20e7 0% 

ECC-Hamming(71,64) 1.01e8 23% 

ECP6 1.11e8 35% 

ECP12 1.20e8 46% 

ECP12-ideal 1.21e8 48% 

FM-RM(1,7)T 1.16e8 41% 
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with a CV of 0.05 and a mean cell lifetime of 1e8, the weakest cell lifetime is, for the average of 

100,000 different seed values, 85,354,250 bit flips. For a CV of 0.2 the weakest cell lifetime is 

41,417,000 bit flips, almost half as many as a CV of 0.05. For random inputs, the lifetime of the 

weakest cell limits the lifetime of the location. Stuck-at tolerance removes the lifetime limiting 

effects of the bottom n cells on lifetime by providing n replacement cells. Stuck-at tolerance is 

superior to coset coding when the lifetime gains from replacing the n weakest cells exceeds that 

of the coset coding gains. We can also combine both techniques to gain the lifetime extension 

gains of coset coding and the weak-cell tolerance of stuck-at tolerance schemes. 

Combining stuck-at tolerance with FlipMin. To assess the effectiveness of combining stuck-at 

tolerance with FlipMin, we evaluated the lifetime gains for a set of schemes combining stuck at 

tolerance with FlipMin (FM-Parity(72,64)+ECP6, FM-RM(1,7)+ECP6, FM-RM(1,7)T+CEM) and a 

scheme that solely performs stuck-at tolerance (ECP12-ideal) with the same area overhead. We 

evaluated these schemes to determine how well stuck-at tolerance alone does compared to 

FlipMin combined with stuck-at tolerance at extending memory location lifetime. 

We found that for the schemes listed above, FM-RM(1,7)T combined with either ECP6 or CEM 

had the highest lifetime extension at a CV of 0.05. Figure 30 shows results for the schemes listed 

above for a CV of 0.05. Table 14 presents results for writes before 0.9N and percent 

improvement over baseline. FM-Parity(72,64)+ECP6 has a lower lifetime gain than FM-

RM(1,7)T+CEM and FM-RM(1,7)T+ECP6 alone. FM-RM(1,7)T combined with a stuck-at tolerance 

scheme had a lifetime extension of 53% while FM-Parity(72,64) has a lifetime extension of only 

19%. ECP12-ideal did the worst at only 6%. This shows how FlipMin combined with stuck-at 

tolerance is more effective than stuck-at tolerance alone for the same area overhead. 
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We found that of the schemes listed in Table 14, FM-RM(1,7)T combined with stuck-at tolerance 

has the highest lifetime extension at a CV of 0.2. Figure 31 lists these schemes compared at a CV 

of 0.2. Table 15 lists the writes before 0.9 and percent improvement over baseline. FM-

Parity(72,64) again has a lower lifetime extension of 71% while FM-RM(1,7)T combined with 

either ECP6 or CEM has a lifetime extension of 95%. ECP12-ideal does better with a lifetime 

 

Figure 30. FlipMin Combined With Stuck-at Tolerance (CV 0.05) 

Table 14: BFR + stuck-at tolerance compared to error/stuck-at tolerance alone (CV 0.05) 

Scheme 

CV 0.05 

Writes Before 

0.9N 

Percent Improvement 

Over Baseline 

Baseline 1.70e8 0% 

ECP12-ideal 1.80e8 6% 

FM-Parity(72,64) + ECP6 2.02e8 19% 

FM-RM(1,7)T + ECP6 2.60e8 53% 

FM-RM(1,7)T + CEM 2.60e8 53% 
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extension of 48%, but is still less than FM-Parity(72,64) or FM-RM(1,7)T when combined with 

stuck-at tolerance. At a CV of 0.2, FlipMin is still superior to stuck-at tolerance alone. 

 

 

FM-RM(1,3) compared to DoubleMen. Although the prior schemes improve the lifetime of 

PCM, they may not provide lifetime gains required for a specific target usage. For these cases, 

 

Figure 31. FlipMin Combined with Stuck-at Tolerance (CV 0.2) 

Table 15. BFR + stuck-at tolerance compared to error/stuck-at tolerance alone (CV 0.2) 

Scheme 

CV 0.2 

Writes Before 

0.9N 

Percent Improvement 

Over Baseline 

Baseline 8.20e7 0% 

ECP12-ideal 1.21e8 48% 

FM-Parity(72,64) + ECP6 1.40e8 71% 

FM-RM(1,7)T + ECP6 1.60e8 95% 

FM-RM(1,7)T + CEM 1.60e8 95% 
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FM-RM(1,3) provides substantial lifetime gains at the cost of 100% area overhead (as shown in 

Table 9). To provide a fair comparison, we compared FM-RM(1,3) to an un-coded scheme that 

uses the same area overhead as FM-RM(1,3): DoubleMem (described in Section 3.8.1) . We gave 

DoubleMem an unrealistic advantage by ignoring the overheads require to track which location 

was being used.  

We compared the lifetime gains for both DoubleMem and FM-RM(1,3) and found that FM-

RM(1,3) performed better than DoubleMem for the same overhead at a CV of 0.05. Figure 32 

shows DoubleMem and FM-RM(1,3) for a CV of 0.05 and Table 16 lists results. At a CV of 0.05 

FM-RM(1,3) extended the lifetime of PCM by 178%, while DoubleMem gave a gain of only 95%. 

 

 

Figure 32. FM-RM(1,3) Compared to DoubleMem (CV 0.05) 
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At the higher CV of 0.2, there are smaller percent improvements for both DoubleMem and FM-

RM(1,3), but FM-RM(1,3) is still better than DoubleMem at extending memory location lifetime. 

Figure 33 and Table 17 show results for a memory lifetime CV of 0.2. FM-RM(1,3) has a lifetime 

gain of 82% and DoubleMem has a lifetime gain of 56%.  

 

Table 16: FM-RM(1,3) Compared to DoubleMem (CV 0.05) 

Scheme 

CV 0.05 

Writes Before 0.9N Percent Improvement Over 

Baseline 

Baseline 1.70e8 0% 

DoubleMem 3.31e8 95% 

FM-RM(1,3) 4.72e8 178% 

 

 

Figure 33. FM-RM(1,3) Compared to DoubleMem (CV 0.2) 



54 

 

  

 

 

3.9.2 Benchmark Results 

We evaluated memory location lifetime extension for a suite of benchmarks that write to PCM 

to assess how well FlipMin extends lifetime when PCM is used as part of the memory sub-

system in a computing system.  Section 3.9.2.1 presents the methodology we used to evaluate 

benchmark inputs, and Section 3.9.2.2 presents our results. 

3.9.2.1 Methodology 

We assessed the effectiveness of the lifetime extension schemes listed in Table 9 for the 

following Hadoop benchmarks that come with the Apache Hadoop distribution [24]. We used 

the Gem5 simulator [8] to produce memory traces that we fed into an in-house simulator. Table 

18 lists the parameter we used with the Gem5 simulator.  We simulated a single in-order core 

with L1D and L1I caches and a single L2 cache. In terms of memory, our system was configured 

to have 128MB of memory and 2GB of swap. 

 

Table 17. FM-RM(1,3) Compared to DoubleMem (CV 0.2) 

Scheme 

CV 0.2 

Writes Before 

0.9N 

Percent Improvement 

Over Baseline 

Baseline 8.20e7 0% 

DoubleMem 1.28e8 56% 

FM-RM(1,3) 1.49e8 82% 

 

Table 18: System Configuration 

CPU X86-64 in-order core at 2.0GHz 

L1 D-Cache 64kB, 2-way associative, 64B Line Size 

L1 I-Cache 32kB, 2-way associative, 64B Line Size 

L2 Cache 2MB, 8-way associative, 64B Line Size 

Memory 128MB, 2GB Swap 
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To obtain a large number of writes to a large number of lines in a reasonable amount of time, 

we produced traces of writes to each line and then projected these traces onto a single target 

page of memory with lines numbered 1 to B. This projection was performed by mapping line X 

to line X mod B. The trace of writes to the target page first line became the concatenation of the 

traces for lines 1, B+1, 2B+1, and so forth. 

3.9.2.2 Results 

We evaluated the lifetime of memory locations using benchmark inputs for PCM cell lifetime 

distributions of CV of 0.05 and 0.2.  

CV of 0.05 Results. Figure 34 shows our results for benchmark inputs at a CV of 0.05. We plot 

the lifetime gain over the baseline. We determined that the memory location failed after 0.9N 

memory locations remained. FM-RM(1,7)T  and FM-RM(1,7)T + stuck-at tolerance extend the 

lifetime of PCM by 20.25% and 64% respectively. Stuck-at tolerance alone had little impact on 

memory location lifetime and in some cases decreased the lifetime of a memory location with 

benchmark inputs at a CV of 0.05 On average, Hamming(71,64) decreased the lifetime of the 

memory location by 5.33%. ECP6 provided a lifetime increase of only 9.18% as compared to 

32.37% for FM-RM(1,7)T at the same overhead. 
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CV of 0.2 Results.  Figure 35 shows our results for benchmark inputs with a CV of 0.2. The 

lifetime gains of the FlipMin + stuck-at tolerance schemes were on average higher for a CV of 0.2 

(~60%) than with a CV of 0.05 (~30%). FM-RM(1,7)T and stuck-at tolerance combined are on par 

with RM(1,3) with an average lifetime improvement of about 60% at a CV of 0.2. FM-RM(1,7)T 

alone does slightly worse on average with a 20.25% lifetime gain compared to 22.27% at a CV of 

0.05. Stuck-at tolerance schemes do better at a CV of 0.2 than a CV of 0.05 with benchmark 

inputs. 

 

 

       Figure 34. Lifetime extension schemes compared using Hadoop inputs. CV 0.05 
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3.10 Conclusion	

We have shown that coset coding enables us to optimize writing memory structures. In 

particular, we have shown how to use coset coding to avoid wear-out—by reducing bit flips—

and to tolerate the bits that eventually wear out. We have not exhausted the possible coset 

coding techniques that we can use – there are many more possible codes and metrics that we 

hope to explore in future work.   

 

 

Figure 35. Lifetime extension schemes compared using Hadoop inputs. CV 0.2 
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4. Extending the Lifetime of NAND Flash Memory 

This chapter presents our coset code design and implementation to increase the lifetime of 

memory locations composed of NAND Flash cells. Flash is used in multiple products sold today 

such as memory cards [66], cell phones [67], and solid state drives (SSDs) [1]. One drawback of 

current Flash-based systems is that Flash cells become unable to change state after a certain 

number of writes. In this chapter, we present our coset coding technique to increase the 

number of Flash writes before failure and evaluate the effectiveness of coset coding in 

extending the lifetime of a single memory location. We also provide and evaluate a modified 

SSD design that incorporates coset coding during normal drive operation without requiring 

modifications to the host-drive interface. 

This chapter presents our coset coding design, simulation results applying our coset coding 

technique to Flash, and our design/implementation of coset coding for Flash SSDs. Sections 4.1,  

4.2, and 4.3 provide background on Flash, present related work, and present our design of coset 

coding for Flash. Section 4.4 discusses a system-level technique (stuck-at cell pointers [SCPs]) 

that we developed for use with coset coding to enhance its effectiveness. Section 4.5 presents 

our coset coding evaluation results. Using coset coding in a device that incorporates Flash chips 

can require changes to how the device operates on the Flash chips. An example of a class of 

devices that would require modifications to use coset coding is Flash SSDs sold today. Sections 

4.6 and 4.7 present our modifications to an existing SSD design along with our simulation results 

for using coset coding to extend the lifetime of a Flash SSD. Section 4.8 concludes the chapter. 
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4.1 Flash	Background	

Flash cells become unable to change state after changing states a given number of times. Each 

new generation of Flash cells has supported fewer cell state changes than previous generations. 

Future generations of Flash cells are projected to support even fewer state changes before 

becoming unusable [22]. Sections 4.1.1 and 4.1.2 provide an overview of the organization of 

Flash cells in chips sold today and how data are stored in Flash cells. Section 4.1.3 discusses 

error correcting codes (ECCs) which are required when using Flash chips. Section 4.1.4 discusses 

how we extend the lifetime of memory locations using coset coding. 

4.1.1 Flash Organization 

As discussed in Chapter 3, memory locations with PCM cells can be changed to any value at the 

bit granularity; in contrast, memory locations with NAND Flash cells are read/written at the page 

granularity. Writing a page of Flash cells uses the program operation. After a Flash page is 

This chapter makes the following contributions: 

• We demonstrate how to use coset coding to extend the lifetime of memory locations 

composed of Flash cells; 

• We present two different metric functions designed for use with coset coding to 

extend the lifetime of Flash;  

• We introduce stuck-at-cell pointers (SCPs), a scheme based on error correcting 

pointers (ECPs) [60] to futher extend the lifetime of memory locations composed of 

Flash cells when used with coset coding; and 

• We present a design for implementing coset coding in a Flash SSD. 
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programmed and before a given cell can be re-written, all cells in a page must be erased (reset 

to a pre-defined level). Erases are performed at the block granularity (a block is defined as a unit 

composed of multiple pages, typically on the order of 64 pages (i.e., 256KB for a 4KB page) [45]). 

A program/erase (P/E) cycle consists of programming all of the pages in a block and then erasing 

the same block. Flash cells wear out due to P/E cycles and are eventually unable to change value 

[43].  

4.1.2 Storing Data in Flash Cells 

During a write, digital values (one or more bits) are converted into an amount of charge (an 

analog value) which is then stored in a Flash cell. Flipping a bit more times before an erase will 

result in more programs before an erase. The number of times a given bit can change value 

before an erase is required depends on how each digital value is mapped to an amount of 

charge. 

The number of states in a Flash cell depends on the number of charge levels (discrete amounts 

of charge) assigned to the cell. The design of the Flash cell write controller determines the 

number of charge levels in a given Flash cell. Cells begin at level 0. During a write, the write 

controller increments the Flash cell an arbitrary number of levels using the program operation. 

During an erase, the write controller decrements the Flash cell back to level 0 using the erase 

operation.  

Charge levels in a Flash cell can be mapped to any binary value. Figure 36 depicts two example 

mappings between a 4-level Flash cell and four different binary values. In the first mapping 

(Mapping 1), the cell stores two bits. In the second mapping (Mapping 2), the cell stores only a 

single bit. For example, with Mapping 1, L0 represents the value “00” while with Mapping 2, L0 
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represents the value “0”. In both mappings, the cell level is the same and only the interpretation 

of the cell level when read out changes. 

 

Mappings with 2-bits per cells are currently used in Flash chips sold today as they offer the 

highest possible density of bit storage per Flash cell. Mapping 2 (a.k.a. Waterfall coding [36]) 

stores only a single bit per cell resulting in lower storage density. For example, Waterfall coding 

has half the storage density of Mapping 1 for a 4-level cell. The advantage of using Waterfall 

coding compared to Mapping 1 is that Waterfall coding has a higher ratio of re-programs to area 

overhead compared to Mapping 1. As explained in Section 4.5, Waterfall coding combined with 

coset coding is more area efficient at extending the lifetime of memory locations composed of 

Flash cells than Mapping 1 combined with coset coding.  

We use f to denote the number of times a bit is guaranteed to be able to be flipped before the 

block the cell is in must be erased. In Figure 36, the bits in Mapping 1 have an f = 1, since each 

bit is guaranteed to only be able to flip once. The left bit flips between L1 and L2, and the right 

bit flips between any two levels. The right bit could flip up to 3 times if the left bit does not flip, 

but it is only guaranteed to be able to flip once before an erase (so f = 1). Waterfall coded bits 

 

Figure 36: Example Mapping Between Cell Levels and Bits 
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for a 4-level cell each have f = 3 because each bit is guaranteed to be able to flip three times 

without an erase.  

We can create bits where f > 1 from bits where f = 1 by combining multiple f = 1 bits into a single 

f > 1 logical bit. This is useful as Flash chips manufactured today have f = 1. Constructing logical 

bits in this way reduces storage density. For example, three f = 1 can hold 3 bits worth of data, 

but only 1 bit of data when used as a f = 3 bit. This trade-off can be worthwhile when writing un-

coded data or combined with coset coding. High f bits allow for a more efficient implementation 

of coset coding with the trade-off of reducing storage density. Future SSDs have been proposed 

to support high f high cells using Waterfall coding [30] as it is more efficient at implementing bits 

with f > 1 than creating logical cells. 

4.1.3 Flash SSDs and ECC 

Devices that use Flash memory must provide a mechanism for tolerating errors in data stored in 

Flash cells [39]. Current Flash research shows that Flash cells require the ability to correct at 

least one error per 1024 cells [6]. The same research concluded that stronger error correction 

will most likely be required in the future.   

Our technique provides both error correction and endurance benefits by incorporating an ECC 

into a coset code. Section 2.3.2 discussed how to create and use an error correcting coset code 

(ECCC). The key idea in an ECCC is to ensure that cosets consist solely of ECC codewords.   

There are two considerations when choosing the specific ECC to use with coset coding.  First, the 

choice of ECC determines how many errors can be corrected (e.g., SECDED) and how much 

storage overhead is required for error correction.  Correcting more errors requires more storage 

overhead. Second, the ECC must be compatible with the code used for coset generation (Section 
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2.3.2).  In the results presented in this chapter, we use a Hamming code as our ECC (which is 

compatible with the convolutional coset codes we evaluate [28]).  

4.1.4 Wear-out Mechanism 

Flash cells wear out due to P/E cycles. The objective in this chapter is to delay cell wear-out by 

re-programming memory locations composed of Flash cells without first erasing the memory 

location [30]. Re-programming pages without an intervening erase reduces the number of 

erases required for a given number of programs. The calculations in this section assume uniform 

random inputs where a write to any given cell is independent of the other cells and has the 

same write distribution as the other cells. This is the case in many modern SSDs due to the use 

of a scrambler [12]. 

Using current methods to write to Flash without coset coding, the probability of successfully re-

programming one cell (PSROC) is high. PSROC is calculated using Equation (1), the ratio of the 

number of allowed transitions to the number of possible transitions:    

 

Table 19 lists the possible two-write combinations for a given Flash memory.  There are four 

possible write combinations with the probability of each two-write combination calculated 

assuming uniform random inputs and two possible values (“0” or “1”). For random inputs, each 

two-write combination has a 25% chance of occurring. Of the four possible two-write 

combinations when re-programming Flash, only 1-to-0 is not allowed. Using Equation (1), 

P���� =	Number	of	Allowed	Transitions
Number	of	Possible	Transitions (1) 
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P���� = ,
- or 75%, i.e., there are three allowed transitions of four possible transitions for re-

programming a cell once.  

 

In contrast to PSROC for a single rewrite (75%), PSROP without an erase operation is very small for 

un-coded data written to a 4KB page, the standard page size used in Flash chips produced today 

[42]. PSROP is calculated by multiplying together PRSOC for all memory cells in a page (Equation 

(2)): 

 

Using Equation (2), we calculate the PSROP for successfully writing twice to a 4KB page is 

(0.75)
32,768

 (a very small number). Coset coding increases PSROP by providing multiple coset 

representatives to represent a single dataword and searching for the best coset representative 

to write using a metric function as discussed in Chapter 2.  

4.2 Related	Work	

There has been prior work on both extending the lifetime of a single Flash memory location and 

extending the lifetime of Flash SSDs. Section 4.2.1 presents prior work on extending the lifetime 

of a single memory location. Section 4.2.2 presents prior work on system-level techniques for 

extending the lifetime of Flash SSDs. 

Table 19: Random Data Input Two-Write Probabilities For a Single Cell 

Write 1 Write 2 Allowed? Probability 

0 0 Yes 25% 

0 1 Yes 25% 

1 0 No 25% 

1 1 Yes 25% 

 

P���. 	= P����/.012	�342	35	63789	 (2) 
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4.2.1 Flash Location Lifetime Extension Prior Work 

This section summarizes prior work on mitigating and tolerating the effects of Flash wear-out 

that is comparable to our work. Coset coding allows for re-writing of a page multiple times 

before an erase is required. Coding techniques that enable multiple writes to a page before 

having to erase are known as “multi-write codes” or “rewriting codes.” We use coset coding as a 

multi-write code. In this section, we discuss previously developed multi-write codes. 

Previously developed multi-write codes share the same high-level feature of coset coding of 

mapping a dataword to multiple possible codewords. Enumerative coding [29] maps a dataword 

to a set of codewords using the lexicographical ordering of the codewords (e.g., a dataword 

maps to all codewords with a given number of “1s”). 

 A linear write-once-memory (WOM) code [15] decodes a codeword by taking its modulus which 

permits multiple codeword representations of the same dataword. (For example, if the modulus 

is 7, then codewords 3 and 10 both represent the dataword 3).  

Floating codes [30] are algorithms for mapping k-bits of information onto n q-level cells. Floating 

codes guarantee t-bit rewrites for each set of n-bits. Many different floating codes have been 

proposed in prior literature [13][30][31][34].  An illustrative floating code configuration is 

k=2,n=4,q=2. This code maps two bits of information onto four Flash cells. With this 

configuration, a floating code by Jiang et al. [30] guarantees three re-programs of the 2-bits in 

any sequence of writes. Table 20 shows two possible 3-write sequences. Bit sequence 1 has an 

invalid Flash transition between writes 2 and 3. The right-most bit flips from 1->0 without an 

intervening erase. Jiang et al.’s floating code allows this transition by mapping the data onto the 

Flash cells so that only 0->1 transitions are performed even though the data itself has a 1->0 
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transition but still reading out the correct sequence. The second sequence flips only the right-

most bit; again, this would not be possible with un-coded Flash. Jiang et al.’s floating code 

allows this sequence of writes. 

 

What distinguishes our version of coset coding from prior multi-write codes is the ease of coset 

coding to implement and its quantitative superiority at achieving multiple writes per erase. 

Floating codes require a complex lookup process to perform both reads and writes. Linear WOM 

codes require calculations using integers as well as a very large modulo operation, both of which 

can be expensive to implement in hardware. Implementing coset coding requires only XOR 

operations and Viterbi search (for which many hardware designs have been proposed [32]).  

Enumerative codes only guarantee a single page re-write. Coset codes can re-write a given page 

multiple times. 

4.2.2 Flash SSD Lifetime Extension Prior Work 

There are a number of system-level techniques that are orthogonal and complementary to our 

work that can be used to extend SSD lifetime. We discuss our modifications to incorporate coset 

coding into an SSD in Section 4.6. Write buffering [26] consists of adding a write buffer in front 

of the SSD to coalesce multiple writes to the same datum and thus reduce the number of writes 

to the SSD itself. Deduplication [23] reduces the number pages that need to be written to the 

Table 20: Floating Code Write Sequences 

Write Bit Sequence 1 Bit Sequence 2 

Initial 00 00 

1 01 01 

2 11 00 

3 10 01 
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SSD by storing data that is identical across multiple addresses only once. Reads to any of these 

addresses are performed from the same page. 

4.3 Coset	Code	Design	

We designed an ECCC to extend the lifetime of Flash. As discussed in Chapter 2, designing an 

ECCC consists of three parts: selecting the coset code, selecting the ECC, and determining how 

to select a coset representative to write.  

This section discusses the coding aspects of this design. We use a convolutional code [38] as our 

coset code and a Hamming code [25] at the 1024-bit granularity as our ECC. We used the 

Viterbi-based coset rep selector discussed in Section 2.4.4 to search a given coset for a coset 

representative to write. Convolutional codes are easily searched by the Viterbi algorithm which 

makes the the combination of a convolutional coset code and a Viterbi-based coset rep selector 

well suited for coset coding. Section 4.3.1 presents the metric functions we used with coset 

coding to extend the lifetime of memory locations. Section 4.3.2 presents the write and read 

processes we developed for using coset coding with memory locations composed of Flash cells. 

4.3.1 Metric Functions 

We developed two metric functions to extend the lifetime of Flash memory for use with our 

Viterbi-based coset rep selector (Section 2.4.4). Sections 4.3.1.1, 4.3.1.2, and 4.3.1.3 present, 

respectively, the difference pieces of information used in the metric functions, a metric function 

previously used for PCM memory modified to work with Viterbi, and the metric function we 

designed specifically for Flash. 
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4.3.1.1 Flash Write and Cell Information Used in Our Metric Functions 

Table 21 lists the information we used in our metric functions. We calculate the metric for a 

given coset representative one bit at a time. The index of the bit for which the metric is being 

calculated is indicated using the symbol 	. We consider the following four pieces of information 

when constructing the metric functions: the coset label (ci), the zero coset elements (Ze,i), the 

number of writes done to a given Flash cell (wi), and the number of times a bit can change value 

(flip) without an erase to the memory location (f).  

 

The coset representatives in the zero coset are defined by the coset code that is used. As shown 

in Table 21, we use the symbol e to denote the index of the coset representative in the zero 

coset.  

We used two pieces of information on the cells themselves in our metric functions: the number 

of writes to each cell, and the number of times each bit can flip (f). The number of writes to a 

given Flash cell is obtained by performing a read before a write. The information on f is hard-

wired into the encoder during manufacture time. 

Table 21: Information Used in the Metric Functions 

Notation Description 

	 Bit index  

�: Coset label bit i 
� Coset representative index 

;<,: Zero coset element e bit i 
>: Number of writes performed to Flash cell i since last erase 

? Number of times a given bit can change value without an erase  

 



69 

 

  

4.3.1.2 Metric Function BFR 

Metric Function Bit Flip Reduction (BFR) reduces the number of cells that flip for each write; we 

used this metric function with PCM in Chapter 3 and then modified it to work with our Viterbi-

based coset rep selector (Section 2.4.4) and an ECCC for Flash. BFR extends the number of re-

programs to a given Flash page by reducing the impact of writing a coset representative 

compared to the un-coded dataword it represents. In the context of PCM, reducing the impact 

of a write consists of reducing the number of cells that flip per write. In the context of Flash, 

reducing the number of bit flips increases the likelihood of being able to re-write the page. We 

use BFR to reduce the number of cell flips per write compared to writing the corresponding un-

coded dataword to maximize the number of page re-writes. 

Metric Function BFR consists of the sum of @A�: , ;<,:B functions as shown in Equation (3). The 

input to each @A�:, ;<,:B function is the coset label and the bits of the zero coset 

representative(s) that are being searched. The sum of these delta functions assigns the lowest 

metric to the coset representative with the fewest number of “1s”. When used with the 

translate coset, the selected coset representative will require the fewest bit flips to write. 

 

4.3.1.3 Metric Function BFR+SCI+WL 

Metric Function BFR+SCI+WL is the metric function we developed specifically for re-

programming pages of Flash memory without an intervening erase. This metric function uses 

Metric = 	E@A�:, ;<,:B
F

:GH
 

@A�:, ;<,:B = I1, �: ≠ ;<,:
0, �: = ;<,:  

(3) 
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three different techniques to maximize page re-writes: BFR, stuck-at cell interpolation (SCI), and 

wear-leveling (WL). We first discuss SCI and WL and then describe how Metric Function 

BFR+SCI+WL implements all three techniques. 

SCI allows for additional page re-programs even when a subset of the bits in the page cannot 

change. After programming a page one or more times, cells become stuck-at and are no longer 

able to change value without an erase to the page. Since there are multiple options to choose 

from in a coset, we can select a coset representative to write that incorporates values of bits 

that no longer can change without an erase (stuck-at bits). SCI is the process of incorporating 

previous cell information from stuck-at bits into a new write.  

WL is the process of selecting coset representatives so that the wear due to writes is evenly 

spread across a given page. Spreading out wear prevents writes from clustering in a given group 

of cells and reduces the rate at which any cell becomes stuck.  We perform WL by preferring to 

write bits that have not been written over those that have been written. WL is the same as SCI 

when a written bit is also a stuck-at bit (i.e., when f = 1) but differs when f  > 1.  

There are trade-offs between WL and BFR. Maximizing WL may result in reduced BFR and vice 

versa. For example, writing each single cell in the page results in ideal WL, but no BFR. 

Alternatively, the highest possible BFR may result from writing only the first five cells, resulting 

in changes to each cell on every write (flipping the minimum number of bits).  There is high BFR 

in this scenario but poor WL. We considered this trade-off when designing the most effective 

metric functions for Flash. 

Metric Function BFR+SCI+WL, shown in Equation (4), uses both SCI and WL in addition to BFR to 

select a coset representative to write to memory. Metric Function BFR+SCI+WL uses the number 
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of previous writes to memory L>M to perform both SCI and WL. SCI is performed by checking if 

>: = ?. If >: = ?, the cell cannot be re-written and	we assign an infinite metric value “∞” to the 

cell.	An infinite metric value prevents the search algorithm from selecting an un-writable coset 

representative unless there are no writable coset representatives left. WL is performed by 

reading the number of writes done previously to each cell and adding it to the metric for the 

coset representative. We select the coset representative with the lowest metric so a higher 

number of writes adds a higher value to the coset representative metric, making the coset 

representative metric less likely to be chosen. The addition of the “+ 1” to >: ensures that when 

a coset representative is selected, cells that have been written to are less likely to be written 

than cells that have not previously been written to. Without the “+1”, both a cell that has not 

been written to and a cell that will not be written to both have a metric value of “0”. With the 

“+1”, a cell that has not been written to previously has a metric value of “1”, and not writing a 

cell has a metric value of “0”.  

 

4.3.2 Write and Read Processes 

Figure 37 and Figure 38 compare the write and read processes of the method currently in use 

(labeled as “standard write/read” on the figures) in Flash chips to the technique using coset 

coding (labeled as “coset coding write/read”). In these figures, elements of the read/write 

Metric = 	E@A�:, ;<,:BLQ: + 1M
F

:GH
 

Q: = I∞, >: = ?
>:, >: < ? 

(4) 
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process for the current method are depicted in white boxes with black text, and coset coding 

elements are shown using black boxes with white text. 

Figure 37 depicts both the standard and coset coding write processes. The standard write 

process has only one stage (“ECC Gen”) before writing to memory that consists of generating 

the ECC codeword from the un-coded dataword and then writing the ECC codeword to disk. 

Writing with coset coding consists of four steps. After generating an ECC codeword from the 

dataword, the coset coding encoder produces a coset representative to write (discussed in 

Section 2.4). SCPs are then generated following the coset coding encode (technique discussed in 

subsequent Section 4.4). During SCP generation, cells are checked to assess whether any cells 

will be written beyond the maximum number of levels. If a cell is going to be written to too high 

of a level, it is replaced with an SCP. Future reads and writes will use the SCP instead of the 

original cell until the page is erased. Finally, data is stored to the cell using Waterfall coding. If 

the cell has two levels, there is no difference between what is stored now and what is stored 

using Waterfall coding. For cells with more levels, Waterfall coding stores only a single bit 

instead of multiple bits per cell. 

 

 

Figure 37: Coset Coding Write Process Compared to Write Process Used Today 
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Part of the coset coding write process requires searching the coset for the best coset 

representative to write.  Our PCM coset sizes were relatively small allowing exhaustive search to 

provide a relatively fast method for searching the coset. For Flash, we opted to use the Viterbi 

search technique described in Section 2.4.4 since we used codes where the number of coset 

representatives is higher (the largest number of coset representatives we had for our PCM 

experiments was 256 in contrast to Flash where our experiments had 2
512

 coset 

representatives). For large cosets, Viterbi-based coset representative selection has lower 

hardware costs and faster search times than exhaustive search. 

Figure 38 depicts both the standard and coset coding read processes. The standard read process 

has only one stage (“ECC Check”) before reading out from memory. The standard read process 

first checks the read data for errors and then sends the data to the host. Reading with coset 

coding consists of three steps. First, the analog voltage levels are converted into binary values 

by reading each value modulo 2. Second, the read unit replaces values marked with an SCP 

pointer with SCP values. Finally, the coset coding read process checks the read data for errors 

and converts a coset coded representative (decodes) back into an un-coded dataword. 

 

 

Figure 38: Coset Coding Read Process Compared to Standard Read Process Used Today 
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4.4 Stuck-At	Cell	Pointers	(SCPs)	

SCPs is a technique we developed that is similar to Error Correcting Pointers (ECPs) [54] to gain 

more writes from before an erase is required by providing replacement cells for a page. SCPs, 

illustrated in Figure 39, have two parts: an un-coded value used to indicate the location of the 

replaced Flash cell(s), and one or more replacement Flash cells. Each set of SCPs is stored with 

its corresponding page. SCPs replace the bit-value(s) of a given cell with bit value(s) of the 

replaced cell. Replaced bit values must be located consecutively in the Flash page for a given 

SCP. For example, 100 1-bit SCPs can be used to replace 100 randomly located 1-bit cells in a 

page. 100 2-bit SCPs can be used to replace 200 Flash cells, located in pairs of 2 in the page. 

 

The area overhead of a SCP is log(n) + C, where n is the number of cells in a given page, and C is 

the number of replaced cells per SCP. Log(n) memory cells are used to store the value that 

points at the replacement cell. C cells are used as replacement cells for the stuck-at cells.  

4.5 Flash	Memory	Location	Lifetime	Extension	Evaluation	

This section presents our experimental results for re-programming Flash pages using coset 

coding with random inputs and compares our results to related work. Section 4.5.1 presents the 

 

Figure 39: Stuck-At Cell Pointers 
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experimental methodology we used to obtain results. Section 4.5.2 lists the techniques we 

compared against, and Section 4.5.3 presents our results. 

4.5.1 Evaluation Methodology 

We performed coset coding experiments using parameters summarized in Table 22 for each 

metric function evaluated using a custom in-house simulator. We ran 100,000 different random 

inputs each with a distinct seed to simulate a distribution of writes to a 4KB page. We added ECC 

capabilities to our coset code by embedding a 128-state rate ½ convolutional coset code inside a 

Hamming code as described in Section 2.3.2. Each simulation run wrote to a single page and 

ended when the page was no longer able to be re-programmed. 

 

4.5.2 Techniques Compared 

Table 23 lists the different techniques we compared in our evaluation of Flash multi-write codes. 

All evaluated techniques require the same number of Flash cells. We compared our coset coding 

technique with our two metric functions to uncoded writes and two prior work schemes: 

enumerative codes [29] and floating codes [30], both of which are described in Section 4.2.  

Table 22: Experiment Setup 

Simulator In-House 

Inputs Random 

Un-coded Page Size 4,096 Bytes 

Error Correction Hamming Code 

Code Type Convolutional 

Code Rate ½ 

Number of States 128 

Coded Page Size 8,448 Bytes 
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For the uncoded write scheme, each cell is paired with a spare cell after the original cell is 

written the spare is used so that all schemes evaluated have the same area overhead. 

Therefore, the f value for bits with un-coded writes is double that of the other schemes (i.e., at f 

= 2, the bits for un-coded writes are f = 4).  

We did not evaluate previously developed coding schemes where the writing scheme is a 

function of the number of writes. One example of a class of write-dependent coding schemes 

are concatenated WOM codes [35]. As with coset coding, a system implementation of 

concatenated WOM codes require that the number of writes to a given Flash cell or block of 

Flash cells be available at the encoder. For coset coding, this information is read from the Flash 

cell state whereas concatenated WOM codes cannot obtain this information from the previously 

written data. Using concatenated WOM coding requires recording the number of writes to a 

given Flash cell or block of Flash cells separately, resulting in a significant expansion of memory 

overhead. This cost is not considered in [35] and storing this information would obviate any 

gains from using the scheme. For these reasons, we have not included the performance of 

concatenated WOM coding in our evaluation. 

Table 23: Page Re-Writing Techniques We Compared 

Page Re-Writing Technique 

Uncoded with Spare Cells 

Coset Coding – Metric Function BFR 

Coset Coding – Metric Function BFR+SCI+WL 

Enumerative Coding 

Floating Coding 
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Of the schemes we compared against, only our design of coset coding and 2x cells are designed 

to incorporate ECC. To the best of our knowledge, previously developed ECC techniques are not 

compatible with floating codes or enumerative coding. Writing to Flash requires error correction 

to protect against error causing phenomenon during Flash cell operation [6][21]. Since Flash 

requires error correction and neither floating or enumerative codes have an existing mechanism 

for correcting errors, new error correction techniques would need to be developed to use 

floating and enumerative codes with Flash.  

4.5.3 Results 

This section presents our lifetime extension evaluation of page re-writing schemes for a single 

page. We first provide our results and an analysis of each re-writing scheme without SCPs, and 

then provide results and analysis of each re-writing scheme when 100 SCPs are used. 

Figure 40 presents results comparing the re-program gains of un-coded writes and floating 

codes (a previously developed technique described in Section 4.2.1) to coset coding with both 

Metric Function BFR and Metric Function BFR+SCI+WL. The x-axis has the number of cell levels. 

The y-axis has the number of page re-programs. We do not plot enumerative coding (another 

previously developed scheme described in Section 4.2.1) as enumerative coding is designed only 

for f = 1. Enumerative coding allows a single re-write of a given Flash page regardless of input. 
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f = 1. We analyzed f = 1 separately from f > 1 as bits stored in cells manufactured today all have f 

= 1.  We discuss below how coset coding with Metric Function BFR performed compared to prior 

work and present how well coset coding with Metric Function BFR+SCI+WL performed against 

prior work.  

Coset coding with Metric Function BFR+SCI+WL resulted in a mean of 3 page re-programs before 

an erase was required. In comparison, enumerative coding provides 2 page-rewrites and floating 

codes only allow a single write to the page. Coset coding has a gain of 1.5x (3/2) over 

enumerative coding and a gain of 3x (3/1) over floating codes. Coset coding is superior to both 

enumerative and floating codes when f = 1 are used. 

Metric Function BFR applied to Flash has lower lifetime than 2x cells with only a single page 

write. Metric Function BFR treats both the 0-to-1 and 1-to-0 transitions equally when 

determining which coset representative to write. PCM allows both transitions during the write 

 

Figure 40: Single Page Re-Write Count for Random Data Writes Using Re-Write Schemes 
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process.  When re-programming a page of Flash cells, changing the cell value from 0 to 1 is 

allowed, but changing the cell value from 1 to 0 is not allowed. We found that when re-writing 

the page using Metric Function BFR with f = 1, a coset representative was selected to be written 

that required on average 1.4% of the cells in the memory location to perform a 1-to-0 transition. 

Since 1-to-0 transitions were required, these coset representatives could not be written to the 

memory location without first erasing the page.  

We found that not all the cells in the page were stuck-at after coset coding was unable to re-

program the page, suggesting that there may be more effective metric functions. Figure 41 

shows the number of writes to each cell when the page was unable to be re-written. Each bin of 

cells (i.e., cells with zero writes) was generated taking the average of 10,000 runs each with a 

distinct seed value. The number of writes to each Flash cell is on the x-axis, and the percentage 

of the Flash cells in the page that each bin contains is on the y-axis. For this metric function, 44% 

of cells could still be written, so there may be more possible page re-programs with a different 

metric function. Exploring improved metric functions for bits with f = 1 to increase page re-

programs is a topic for future work. 

 

 

Figure 41: Cell Wear Distribution Before Erase Using Metric Function BFR+SCI+WL With f = 1 
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f > 1. Metric Function BFR+SCI+WL achieves a 2.4x gain in re-programs at f = 2 and a 3.3x gain in 

re-programs at f = 8 over using 2x Flash cells. Metric Function BFR+SCI+WL achieves between a 

3x and 3.4x gain over floating codes. Floating codes perform about the same as 2x cells with this 

given range of f values. With higher values of f, floating codes do show gains. With f = 23, 

floating codes provide 52-62 page re-programs compared to only 46 with 2x cells. Metric 

Fucntion BFR+SCI+WL has a lifetime gain between 3x and 5.7x higher than Metric Function BFR. 

Figure 42 compares the re-programming gains of coset coding to 2x cells and floating codes 

when using SCPs. We do not plot enumerative coding as enumerative coding only guarantees 

two writes to a Flash page and does not benefit from SCPs. The x-axis has the f value for the bits 

in the page. The y-axis has the number of page re-programs.  

We evaluated both coset coding and floating codes with 100 SCPs per page. These SCPs allow 

for a few more writes before having to erase a page. Figure 42 shows the results from these 

experiments. For coset coding, we used Metric Function BFR+SCI+WL. We do not show Metric 

Function BFR as we have demonstrated that Metric Function BFR+SCI+WL provides more page 

re-writes than Metric Function BFR at the same f. We did not evaluate enumerative coding with 

SCPs as enumerative coding is fixed at a single re-program. We also did not use SCPs for 2x cells 

as 100 SCPs are insufficient to improve the number of Flash re-programs. 
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Coset coding does better than both 2x cells and floating codes when combined with 100 SCPs. 

Floating codes with SCPs perform worse with for bits with f = 1, but do the same or better than 

2x Flash cells for a larger number of cell levels. Coset coding re-program gains over un-coded 

writes and floating codes increase with the number of levels in the Flash cells. Coset coding with 

100 SCPs has lifetime gains between 2x and 3.4x over un-coded, and 2.66x and 4x over floating 

codes with 100 SCPs. Coset coding will have the highest lifetime gains of the three schemes 

presented here when used in an SSD. 

4.6 Flash	SSD	Implementation	Design	

We incorporated coset coding into a previously designed model of a SSD Flash Translation Layer 

(FTL) [2], a program that mediates the interactions between host commands and Flash cells. 

Figure 42: Single Page Re-Write Count for Random Data Writes Using Re-Write Schemes + 

100 SCPs 
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Hard drives are being augmented and/or replaced by Flash SSDs as Flash SSDs are faster, more 

reliable, and use less power. In the following sections, we present the following proposed coset 

coding modifications to implement coset coding in the modules that are part of a typical FTL 

design:  

 

4.6.1 Map Table 

We modified the map table to store the metadata required to decode our coset encoded data. A 

map table in an SSD stores mappings from the addresses sent by the host to the physical page 

locations on the drive. To decode written data, the coset code decoder requires the start state 

of the convolutional code [38] used as a coset code. The number of bits in the start state 

depends upon the convolutional code that is used. Our coset encode/decode method requires 

storing the start state at the encode/decode granularity which in our experiments is 501 un-

coded bits and 1024 coded bits.  For our experiments, we used a convolutional code with a 

constraint length of 7 [32]. For a 4KB page, we have 66 independent encode/decodes. Storing 

the start states for all 66 encodes takes 462-bits or 0.6% of the coded page size (calculated as 

{number of independent encode/decodes}*{constraint length} = 66*7 = 462). Theoretically, we 

can reduce the number of start states required to record data down to a single start state. 

Storing only one start state would reduce the start state storage overhead to 0.01% of the 

1) map table that stores mappings from the input block numbers to the physical page 

locations on the drive (Section 4.6.1); 

2) garbage collector that controls the erasing of Flash blocks (Section 4.6.2); and 

3) write controller performs writes to pages in a solid state drive (Section 4.6.3). 
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coded page size. Reducing the number of start states required to be stored to decode data is 

future work. 

Table 24 shows the three fields in a coset code enabled SSD map table entry: the logical block 

address (LBA), the physical page number (PPN), and start state. The LBA (first field) is the 

number indicating the memory location on which the host operates. The PPN (second field) is 

the physical page number (PPN) that uniquely identifies the physical page where the SSD stores 

data. The LBA and PPN fields are also present in SSDs manufactured today. The start state (third 

field, described above) is a binary value generated during the coset coding write process and 

used during the read process (7 bits for our experiments).  

 

The FTL accesses the map table during reads and writes to the SSD by the host. SSDs sold today 

use the map table to translate between the LBA and the PPN. A write command consists of the 

host sending an LBA to the SSD along with the data to write. Internally, the SSD stores data in a 

location indicated by the PPN of the page. After the piece of data is written, the PPN where the 

piece of data is stored is recorded along with the LBA in the map table. With coset coding, the 

start state is also stored. A read command consists of the host sending an LBA to the SSD. The 

map table is used to locate the PPN where the data at the LBA is stored then the data is read 

and returned the host. With coset coding, the start state is read during the read command and 

used to decode the read-out data before sending it back to the host. 

Table 24: Fields in a Map Table Entry 

LBA PPN Start State 
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4.6.2 Garbage Collector 

In this section, we describe how we modified the garbage collector to support coset coding. We 

present both the design of a standard FTL garbage collector and our modifications to support 

coset coding. 

Standard FTL garbage collector. Figure 43 shows the cycle that blocks go through in a standard 

garbage collector. Each block is classified as either Clean (no pages have been written since the 

block was last erased), Active (currently being used for writes), or Sealed (holds data and cannot 

be written).  Each page is classified as either Clean (unwritten), Valid (holds the current value of 

a datum), or Stale (holds an old value for a datum that was subsequently re-programmed).  Each 

write presented to the SSD is written to a Clean page in the Active block so that the page 

becomes Valid.   

Initially in an SSD, a Clean block is selected to become Active. Data from write commands sent 

by the host to the SSD are then stored in the Active block in what is termed “out-of-place” 

writing. If there was a previously written data, the page with that data becomes Stale.  When 

every page in a block is written (either Valid or Stale), the block is marked as Sealed and can no 

longer be written. At this point, the SSD selects a Clean block to be the new Active block. To 

make a block Clean, the block is erased. Blocks are erased when the size of the free pool drops 

below a pre-defined threshold. When a block is erased, it and all the pages in the block are 

marked as Clean.  
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Coset coding modified FTL garbage collector. We modified the garbage collector so that it does 

not automatically erase a block when transitioning a block from Sealed to Clean. Instead, the 

block is only erased when a given fraction of the pages in the block have failed to be re-

programmed by the write controller. Below this threshold, the FTL eraselessly cleans the block, 

i.e., the FTL marks the block as Clean without altering the contents of the block. The FTL can 

eraselessly clean a block instead of the erasing the block because coset coding allows for 

multiple re-writes of a page without erasing the page first. Eraselessly cleaning a block does not 

require page moves or an erase of the block. We maximize eraseless cleans and minimize full 

cleans of a block to minimize write amplification and maximize block lifetime. We present and 

discuss write amplification for our experiments using both standard and coset coded writes in 

Section 4.7.3. 

Figure 44 shows the garbage collection process when using coset coding in an SSD. Two of the 

transitions are the same as a standard SSD. Blocks are marked as Active from Clean when 

selected to be written to by the drive controller. Once all pages in the block are written to, the 

block transitions from Active to Sealed.  

 

Figure 43: Standard Garbage Collection 
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We modified the process of transitioning from Sealed to Clean to use coset coding to re-write 

pages without an intervening erase. An un-writeable page threshold is used to determine 

whether the block is erased or eraselessly cleaned. Above the threshold the block is erased, 

below the threshold the block is eraselessly cleaned. The lower the un-rewritable page 

threshold, the fewer times a block is eraselessly cleaned before being fully cleaned. The higher 

the un-rewritable page threshold, the less capacity the block holds and the write controller has a 

higher likelihood of having to spend longer to find a page to write. After a block is completely 

erased, all pages became writable again. 

 

Because eraselessly cleaning blocks does not reclaim un-writable pages, a fraction of the pages 

in a block can be un-writeable resulting in lower capacity of a SSD until these pages are erased. 

When designing a coset code enabled SSD, the SSD must have the minimum advertised capacity 

at all times to ensure data are written successfully to the Flash. We designed the process shown 

on Figure 45 to meet this requirement.  

 

Figure 44: Coset Coding Garbage Collection 
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After writing to a page, we check if the drive capacity is below the advertised capacity. If the 

drive capacity is below the advertised capacity after a write to a page, the garbage collector 

erases blocks until the drive is equal to or greater than the advertised drive capacity and the 

free pool is back to its maximum size. During this erase process, the garbage collector selects 

blocks to erase that maximize the number of Sealed pages per erase (versus minimizing the 

number of Valid pages per erase which is what it does when refilling the free pool normally).  

 

To reduce write amplification (wear due to internal page moves for a write operation), we do 

not move Valid pages when eraselessly cleaning a block. Instead, Valid pages are kept in the 

block. The only exception is if a block contains only used pages (Sealed or Valid).  In this case, 

the block selected to be cleaned is fully erased. If the best block selected to erase has only used 

pages (i.e., Valid or Sealed), it is necessary to reclaim those pages. Eraseless cleans do not 

reclaim Sealed pages or move out Valid pages. Rather, if it is necessary to reclaim Valid and 

Sealed pages, the garbage collector fully erases the block. Fully erasing the block moves all Valid 

data out of the block resulting in all pages in the block reclaimed. 

 

Figure 45: Ensuring Sufficient Blocks are Available in the Drive 
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4.6.3 Write Controller 

A traditional SSD write does not require circuitry to retry after a failed write because the block is 

erased before being written; when using coset coding, a block is not erased before re-

programming and write failure can occur. To address these failures, coset coding requires 

adding circuitry to attempt writing data until a successful write occurs.  The following compares 

standard SSD writes to a write controller that uses coset coding. 

Standard SSD writes. As shown in Figure 46, a standard SSD writes to pages left-to-right top-to-

bottom across a block. In this example, all pages are either written all zeroes or all ones. As 

discussed previously, Flash cannot execute a 1-to-0 transition for a given Flash cell during a 

program operation. The figure depicts four page writes to a block in sequence 1,1,0,1. Since the 

block is erased before the sequence of writes, all four writes succeed. Writes proceed in the 

following order: the first write is to the upper left page, then the upper right, then the lower 

left, and finally the lower right.  

 

Coset enabled FTL. We modified the write controller to tolerate failed writes and mark a page 

when it is no longer writable. After failed write, the write controller then retries writing to Flash 

 

Figure 46: Standard Write Process 
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until the write succeeds. Figure 47 depicts the write process for a coset coding enabled drive. 

Since the block is not erased before each write, there is “stale” data in the block (depicted in the 

figure in light grey). Writing new data (1,1,0) consists of over-writing stale data as shown in 

sequence across the block from left, to upper right, and to bottom. Since the first two page 

write transitions are 0-to-1 the first two page writes are successful. The third page write 

requires a 1-to-0 transition. Since this transition is not allowed, the third write fails. The un-

writeable page is marked as Sealed and the same write is attempted on the lower-right page. 

Since writing the lower-right requires a 0-to-0 transition, and a 0-to-0 transition can be written 

without an erase, the write is allowed and the page of data is written. Once the lower-right page 

is written, the block is marked as Sealed and a new block is selected to be written to for future 

writes. 

 

4.7 Flash	SSD	Implementation	Evaluation	

This section presents our evaluation of the system level effects when using coset coding in an 

SSD. Section 4.7.1 presents the methodology we used to evaluate coset coding in the context of 

 

Figure 47: Coset Coding Write Process 
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SSDs. Section 4.7.2 discusses over-provisioning, a technique for increasing drive lifetime by 

adding additional blocks to a drive. Section 4.7.3 presents our results.  

4.7.1 Methodology 

Our experimental methodology consisted of selecting a suite of benchmarks to run, selecting a 

simulator and configuring it to emulate writing data to a Flash SSD, sizing the number blocks for 

each simulation, simulating data written, determining the timeframe for each simulation, and 

the metric we use to evaluate the results. 

Benchmark Selection. We used the MSR Cambridge [47] set of benchmarks as inputs to 

simulate a variety of SSD write patterns.  Table 25 lists the different benchmarks used as well as 

the function of the server from which each benchmark was generated. These functions 

represent possible workloads in which a Flash SSD that might be used. For each benchmark, we 

simulated the disk activity of the first volume of 12 of the workload types. 

 

Simulator Selection/Configuration. We used an in-house functional simulator based on DiskSim 

to evaluate the system level effects of coset coding. Table 26 presents a summary of the 

simulator configuration. We configured the simulator to mimic a standard Flash SSD. We sized 

the drive to have a number of blocks in the drive based on the benchmark run (see Table 27). 

 Table 25: Benchmark Information 

Server Function Server Function 

usr Home directories src2 Source control 

proj Project directories stg Web staging 

prn Print server ts Terminal server 

hm HW monitoring web Web/SQL server 

rsrch Research projects mds Median server 

prxy Firewall/web proxy wdev Test web server 
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We took the parameters for the number of pages per block and the size of each page from a 

Micron NAND Flash datasheet [42]. Each Flash block contains 256 pages and each page is 4KB. 

Blocks are cleaned when the number of clean blocks in the system drops below 5% and blocks 

are cleaned until 15% of the drive is free again. Our garbage collector randomly selects a block 

to clean from the set of blocks with the fewest active pages. 

 

Simulating Data Written. We emulated data writes in our system simulation. We assumed all 

data that are written are random due to the use of a scrambler [12] and generated a distribution 

of the number of possible page re-writes to a given page by running page-level simulations as 

described in Section 4.5 for each bit f value. We simulated at least 100,000 random data page 

re-programs for each simulation and used the distribution of page re-programs in the system 

simulator to determine how many re-programs each page could sustain.  

Timeframe for each Simulation. We ran each benchmark for writes over a three-year period. 

Each benchmark contains input representative of a week of disk activity. We assumed that the 

disk activity from week to week was the same. To simulate three years of activity, we simulated 

the same week of disk activity from a given benchmark until three years of disk activity had 

passed. After the simulator completed three years of writes, we took the maximum number of 

Table 26: Simulator Parameters 

Parameter Value 

Number of Blocks Based on Benchmark (See Below) 

Pages Per Block 256 

Un-coded Page Size 4,096 Bytes 

Coded Page Size 8,448 Bytes 

Free Pool Size 5% (Min) 15% (Max) of Drive 

Garbage Collection Random Selection from the Set of Blocks with the Fewest Active Pages 
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erases to the blocks in the drive as the lifetime required of all the blocks to sustain this many 

writes.  

Table 27 lists the different benchmarks grouped by data size. We sized the drive differently for 

each benchmark grouping. The largest drive size was prn, then proj and hm together, and finally 

the remainder of the benchmarks.  

 

Lifetime Metric. Our lifetime metric is the number of erases each cell must support at a given 

area overhead for the drive to last three years. To calculate this metric, we recorded the number 

of erases to each block during the operation of the drive. After three years of writes had 

occurred, we took the maximum number of erases to all blocks as the required number of 

erases that all cells must support. 

Table 27: Benchmarks Grouped By Data Footprint Size 

Large Drive Med. Drive Small Drive 

Drive Size 12.39GB Drive Size 1.65GB Drive Size 0.72GB 

Benchmark 
Data Size 

(GB) 
Benchmark 

Data Size 

(GB) 
Benchmark 

Data Size 

(GB) 

prn 12.39 proj 1.65 web 0.72 

  hm 1.63 prxy 0.71 

    usr 0.65 

    ts 0.54 

    src2 0.50 

    stg 0.39 

    wdev 0.34 

    Mds 0.33 

    rsrch 0.29 

 



93 

 

  

4.7.2 Over-Provisioning 

We used over-provisioning in conjunction with coset coding in our evaluation in to extend the 

lifetime of a SSD. Over-provisioning increases lifetime of a Flash SSD by adding more blocks in 

the drive than are externally visible to the user. Increasing the amount of over-provisioning 

consists of adding Flash cells without providing any additional capacity to the end-user. These 

extra blocks enable an SSD to perform more efficiently, tolerate failed blocks, and extend the 

lifetime of the SSD.  

4.7.3 Results 

The following presents our results that compare lifetime required when using SSDs for two 

different Flash cell types in production currently (2LCs and 4LCs). We compare writing methods 

used with a SSD produced today with our coset coding enhanced SSD writing methods in terms 

of lifetime required for a given amount of area overhead. We measure required lifetime in 

terms of the number of erases required from cells in the drive for a given amount of storage. 

Section 4.7.3.1 presents results for 2LCs, and Section 4.7.3.2 presents results for 4LCs.  

4.7.3.1 2LCs 

We evaluated four schemes listed in Table 28 on 2LC Flash cells to determine the effectiveness 

of each scheme in extending the lifetime of a SSD. All schemes were given a 

Hamming(1024,1013) [25] code for error correction. Each scheme is defined by three different 

parameters. For each scheme a tuple is given that identifies the scheme in the graphs below. 

The first parameter is the page re-write code. Since we showed that coset coding with Metric 

Function BFR+SCI+WL is better than prior work in terms of re-write gains, we only evaluated our 

coset coding page re-write scheme with this metric function. The second parameter is how bits 
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are stored in the cell. For 2LCs, bits were stored either using the physical mapping used in Flash 

chips sold today or using logical LCs constructed using the method discussed in Section 4.1.2. 

Un-coded (U) and 1F both use the physical mapping, L3F uses Logical 4LCs, and FS sweeps this 

parameter. The third parameter is the amount of over-provisioning. U, 1F, and L3F all sweep this 

parameter while FS has it fixed at 7% [68].   

 

We evaluate lifetime extension for the schemes listed in Table 28 using two types of graphs. The 

first graph represents our lifetime metric (discussed in Section 4.7.1) where a lower number of 

required erases corresponds to longer drive lifetime. The second graph depicts how many erases 

each block must support for a given amount of drive storage to achieve three years of drive 

lifetime. This graph evaluates lifetime extension among the four schemes by graphing the 

storage multiplier (x-axis) against the number of erases each cell is required to support (y-axis).  

For the storage multiplier, a 1x storage multiplier equates to the drive having the advertised 

storage to the user, a 2x multiplier equates to the drive having twice the advertised storage, and 

so forth.   

Figure 48 shows our lifetime extention graphs using 2LCs. Our lifetime extension graphs have y-

axis ranges grouped into two categories in order to make it easier to distinguish between the 

different write methods plotted. Table 29 lists the benchmarks in each group. All benchmarks 

Table 28: 2LC Schemes Evaluated 

Abbrev Page Re-Write 

Code 

Bit Mapping Over-

Provisioning 

Tuple 

U Un-coded Physical (f = 1) Sweep Uncoded:Phys:Sweep 

1F Rate ½ Conv Code Physical (f = 1) Sweep Coset_R(1/2):Phys:Sweep 

L3F Rate ½ Conv Code Logical 4LC (f = 3) Sweep Coset_R(1/2):L4LC:Sweep 

FS Rate ½ Conv Code Sweep 7% Coset_R(1/2):Sweep:7% 
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have a y-axis minimum of 10 erases required per block.  prn, mds, rsrch, src1, src2, stg, ts, usr, 

and wdev have a y-axis maximum of 10,000 erases required per block; and hm, web, proj, and 

prxy has a y-axis maximum of 100,000 erases required per block. 
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Figure 48: Required Number of Erases Per Cell (2LCs) 
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Table 29: Lifetime Graphs Y-Axis Min and Max Values (Erases Required Per Block) 

Benchmarks Y-Axis Min Y-Axis Max 

prn,mds,rsrch,src1,src2,stg,ts,usr,wdev 10 10,000 

hm,web, proj,prxy 10 100,000 
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Figure 49 depicts for 2LCs the measured write amplification in the drive among the four 

schemes as the average number of page moves per erase by graphing the storage multiplier (x-

axis) against the average number of page moves per erase operation (y-axis). As discussed in 

Section 4.6.2, our version of coset coding reduces write-amplification but does not always 

eliminate write amplification. Write amplification occurs due to pages that need to be moved 

out of blocks when the blocks are erased.  
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Figure 49: Average Number of Page Moves Per Erase (2LCs) 
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1F being 33.93 page moves per erase higher than that of U, there are more writes for 1F than U 

even though the number of writes performed by the host is the same for both. Since 1F has 

more writes, it also has more erases than U even though 1F requires fewer erases for a given 

number of writes. Once sufficient storage is provided for write amplification to decrease to 30.3 

page moves per erase for 1F, 1F has a lower required erase count than U. L3F requires fewer 

erases per cell than U due to a combination of the high number of page re-writes (16.19) and 

low write amplification (maximum of 24.7 page moves per erase). L3F requires between 151 and 

156 fewer erases per cell than U. FS only reduces write amplification from 28.8 at 4.41 overhead 

to 22.45 at 8.83 overhead. Even with this high write amplification, FS still requires fewer erases 

per cell as than U. FS requires 537 erases per cell at 4.41 overhead, while U requires 602 erases 

per cell at 4.43 overhead. 

mds benchmark. Since write amplification is close to zero, 1F requires between 111 and 332 

fewer erases per cell than U. Both L3F and FS also require fewer erases per cell than U as well 

due to the high number of page re-writes (on average 16.19 for L3F; see Figure 48 for FS) and 

the fact that there is no write amplification. FS performs on par with L3F with a range of 180-241 

erases required per cell lower than U for L3F and 198-276 lower than U for FS
1
. 

4.7.3.2 4LCs 

Table 30 lists the different evaluated schemes. Figure 50 and Figure 51 show the lifetime 

extension and write amplification for each scheme respectively. As with 2LCs, each scheme has 

three parameters as well as the tuple label used on the graphs. U and 1F are the same schemes 

                                                           
1
 Due to the discrete nature of our data points, the area overhead for each data point for FS and U 

respectively are not the same. We calculated the difference in erases required per cell between FS and U 

±0.05 storage overhead (i.e., one difference was calculated with at 8.82 storage required for FS and 8.87 

storage required for U). 
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used for 2LCs as listed in Table 28 but with their area overheads adjusted for 4LCs. W uses 

Waterfall coding (discussed in Section 4.1.2) to store un-coded bit values. We used Waterfall 

coding to allow a given 4LC to store a single f = 3 bit. Both 3FR½ and 3FR¼ use Waterfall coding to 

store coset coded bit values.  

 

For our 4LC analysis below, we evaluate lifetime extension for two coset coding schemes (1F and 

3FR½) and the U and W schemes by graphing the storage multiplier (x-axis) against the number of 

erases each cell is required to support (y-axis) as well as the write amplification for the hm and 

prxy benchmarks. As with 2LCs, we selected these benchmarks to depict two types of behavior 

of the different write schemes relative to each other. We present results using the same two 

types of graphs as our 2LC analysis (required number of erases per cell for the prxy benchmark 

and the write amplification). 

Table 30: 4LC Schemes Evaluated 

Abbrev Writing Code Bit Mapping Over- 

Provisioning 

Tuple 

U Un-coded Physical (f = 1) Sweep Uncoded:Phys:Sweep 

W Un-coded Waterfall (f = 3) Sweep Coset_R(1/2):Water:Sweep 

1F Rate ½ Conv Code Physical (f = 1) Sweep Coset_R(1/2):Phys:Sweep 

3FR½  Rate ½ Conv Code Waterfall (f = 3) Sweep Coset_R(1/2):Water:Sweep 

3FR¼  Rate ¼ Conv Code Waterfall (f = 3) Sweep Coset_R(1/4):Water:Sweep 
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Figure 50: Required Number of Erases Per Cell (4LCs) 
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Figure 51: Average Number of Page Moves Per Erase (4LCs) 

We will discuss results from two benchmarks, hm and prxy, that exhibit representative behavior 

of the benchmarks evaluated. 

hm benchmark. The results for 1F and U are identical with 2LCs and 4LCs since in both cases bits 

have f = 1 and the relative overheads are the same. W and 1F perform similarly in terms of 

lifetime gain because both can perform approximately three page writes before requiring an 

erase. 3FR½ performs better than the other schemes but has the highest minimum required 

overhead of 4.41. 3FR½ requires between 197 and 357 fewer erases per cell than U. 3FR¼ requires 

fewer erases than 1F, W and U at the same area overhead, but more than 3FR½. 3FR¼ has a 

minimum storage multiplier 1.47 lower than 3FR½. 
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prxy benchmark. 3FR½ performs the best in terms of lifetime gain of the schemes evaluated for 

prxy. 3FR½ requires between 1,771 and 3,216 fewer erases than U. As with hm, W and 1F 

perform similarly in terms of lifetime gain for the evaluated benchmarks. Both schemes have 

about three re-programs before erase, and both schemes use the same mechanism for reducing 

write amplification. Both W and 1F are almost identical – the largest difference in the required 

number of erases is 297 at 6.19 storage overhead. 1F has between 817 and 3,128 fewer erases 

required per cell than U.  W requires 748 to 3,012 fewer erases than U. 3FR¼ does better than 1F 

with 673 to 1567 fewer erases required for the same overhead, but worse than 3FR½,  with 243 to 

429. 

3FR½ erase required range is 1,771-3,216 lower than U for 4LCs compared to 1,394-1,599 lower 

than U using L3F with 2LCs. This is due to the higher efficiency of using Waterfall coding 

compared to logical cells. 3FR½ requires three 2LCs since each bit stored in a 2LC is only f = 1. 

Each 4LC can store two f = 1 or one f = 3, a loss of one cell instead of two cells. Since 3FR½ on 

4LCs is more efficient than L3F on 2LCs, the overhead for 3FR½ is lower at a given amount of 

over-provisioning than that of L3F, resulting in a higher difference in erases per cell required 

between 3FR½ and U than L3F and U. 

4.8 Conclusion	

Flash SSDs are quite attractive as replacing hard drives for enterprise use, but their limited 

lifetimes are a potential obstacle.  In this chapter, we have shown how to apply theoretical work 

in coding theory to extend the lifetime of Flash SSDs.  Furthermore, we show that the use of 

coset coding can help to mitigate or even eliminate the write amplification that causes excess 
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wear to the underlying Flash cells in an SSD.  Implementing coset coding requires only modest 

changes to SSDs currently in production, and these changes are isolated to the SSD controller.   
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5. Conclusions 

Coset coding is a more efficient method of extending memory lifetime than writing uncoded 

data and adding redundant memory cells for both PCM and Flash. This dissertation presented 

coset coding-based techniques to extend the lifetime of PCM and Flash and provided examples 

of implementations for both memory types. Unlike current methods used to write PCM and 

Flash memory that only allow for a 1-to-1 mapping between a dataword and a set of codewords, 

our proposed coset coding writing technique allows writing a representative codeword from a 

number of possibilities. We use this flexibility to minimize wear due to writes to a given memory 

location and to extend the lifetime of memory locations composed of write-limited memory 

cells. 

PCM. Our coset coding technique extends the lifetime of memory locations composed of PCM 

cells by reducing the number of bits that flip per write. The fewer bits that flip per write the 

more times we can write to the same memory location. We also presented a technique that 

allows writes to the memory location even after a subset of bits cannot change value, provided 

example hardware implementations of our coset code encoder and decoder, and evaluated 

hardware performance in terms of area, energy, and delay costs. The energy and delay costs for 

the encoder and decoder are under 0.2% for our PCM datasheet and we believe the area 

overheads to be negligible. 

NAND Flash cells. We increased lifetime of memory locations composed of NAND Flash cells by 

using coset coding to re-write pages so that we reduce the number of times a page needs to be 

erased for a set number of writes. To re-write pages, we developed a metric function to use 

with coset coding that uses three different techniques (BFR, WL, and SCI) to maximize the 
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likelihood after a given write that the next write to the page will be successful. We evaluated 

our technique against previously developed work for re-writing pages and found that we 

achieved between 1.5x and 3.3x more page re-writes than uncoded. To further increase the 

efficiency of coset coding at re-writing pages, we used SCPs (a technique based on ECPs) to 

replace a few cells in a page that can no longer be re-written. Coset coding with the 

experimental setup from Section 4.5.1 has lifetime gains between 2x and 3.4x over un-coded 

with 100 SCPs compared to 1.5x to 3.3x without SCPs for f values ranging from 1 to 8. 

Integrating coset coding into Flash SSDs. We showed how to integrate coset coding into an FTL 

that can be used in Flash SSDs. Our implementation requires neither a significant number of 

changes to the existing SSD infrastructure nor changes to the external host interface. We 

modified the map table, garbage collector, and write controller of a previously developed SSD 

model to allow for eraselessly cleaning blocks and demonstrated in simulations that using coset 

coding increases the lifetime of both 2LC and 4LC SSD write schemes as compared with writing 

uncoded data. 

Future work. Areas for future research include refining methods (e.g., coset code selection, 

search algorithms, and system integration) to optimally construct cosets and pick what to write 

using coset coding; work on applying coset coding to other areas of non-volatile memory design 

such as using coset coding as a scrambler or for security purposes; and layering multiple codes 

for optimal coset code design. 

Coset code selection. We demonstrated that our methods compared well against current 

techniques, but we did not evaluate whether the the coset codes we used are optimal. Future 

research could evaluate new coset codes and/or using other existing codes to increase memory 
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location lifetime.  Future research might also evaluate using coset codes with less area overhead 

than the code that we used. We give results for a coset code with 100% area overhead; 

however, other codes exist that can be used for coset coding that have lower area overhead.  

Lower area overhead means fewer coset representatives per coset and therefore may result in 

lower lifetime gains. 

Metric functions.  We used a metric function that incorporated BFR, SCI, and WL to re-write 

pages. For f = 1, we found that 44% of cells were not written to when a coset representative to 

re-write the page could not be found. Improved metric functions may allow for more re-writes 

of the page. We can also design metric functions to optimize lifetime in other ways such as using 

the lifetime of each individual cell and adaptively writing with the goal that all cells in the page 

fail simulateously. 

System integration. There is also work to do on the system issues of coset coding integration 

such as analyzing write-retry rates, reducing metadata storage overheads, and ensuring 

compatibility with FTL-less drives that use a Flash filesystem. SSD FTLs are used to allow SSDs to 

be used as a drop-in replacement for hard drives. Future SSDs and other Flash systems will use 

industry standard protocols for Flash access such as NVMe [48] or specialized protocols such as 

DC Express [58]. These protocols do not abstract away the underlying Flash memory as does an 

FTL. Exposing Flash to the operating systems may allow more efficient Flash management than 

what is used currently by FTLs. Exposing Flash to the operating system also creates new issues 

for integrating coset coding such as increased write-retry latency. Future SSDs that do not have 

an FTL may require a different implementation of coset coding than the one we proposed to 

mitigate the effects of these issues.  
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New applications. Coset coding can be used to enhance non-volatile memory in other ways than 

just improving endurance. For example, coset coding could be used as a replacement for a 

scrambler. One such adaptation has been proposed [61] but has yet to be refined and 

evaluated. Another possible use for coset coding is to improve security. We designed metric 

functions to select repersentatives to write that maximize lifetime; instead, we could design a 

metric function to select coset representatives that prevent write attacks designed to wear-out 

a subset of cells.  

Layering codes. In this dissertation, we proposed using coset coding with either Waterfall coding 

or logical cells to increase the number of cell levels. However, other codes could be used to 

increase the number of times a bit can be flipped. For example, the floating code technique 

discussed in Section 4.2.1 could be combined with coset coding to create bit with high f values. 

Future Flash technology nodes will require advanced coding techniques such as coset coding to 

deal with endurance and other physical issues to allow for the endurance required for use in 

computing systems. As Flash memory shrinks, its endurance also decreases. While our version of 

coset coding may be improved and optimized, we have shown it to be effective method to 

increase the lifetime of non-volatile memories compared to prior work and writing uncoded 

data.  
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