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1 Introduction

The purpose of this paper is to show that some results concerning solutions of the Navier-Stokes systems
can be proven by purely elementary methods. In two-dimensions with periodic boundary conditions, the
Navier-Stokes system has the form

∂u1

∂t
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2
= ν∆u1 −

∂p

∂x1
+ f1(x1, x2, t) , (1)

∂u2

∂t
+ u1

∂u2

∂x1
+ u2

∂u2

∂x2
= ν∆u2 −

∂p

∂x2
+ f2(x1, x2, t) ,

∂u1

∂x1
+

∂u2

∂x2
= 0 .

Here ν is the viscosity, p is the pressure, and f1, f2 are the components of an external forcing which may
be time-dependent. As our setting is periodic, the functions u1, u2, ∇p, f1, and f2 are all periodic in x. For
simplicity, we take the period to be one.

The first existence and uniqueness theorems for weak solutions of (1) were proven by Leray ([Ler34])
in whole plane R

2. Later these results were extended by E. Hopf (see [Hop51]). In 1962, Ladyzenskaya
proved existence and uniqueness results for strong solutions for general two-dimensional domains [Lad69].
V. Yudovich, C. Foias, R. Teman, P. Constantin, and others developed strong methods which provided deep
insights into the dynamics described by (1) (see [Yud89, Tem79, Tem95, CF88]).

The purpose of this paper is to present elementary proofs of three theorems. These theorems imply
the existence and uniqueness of smooth solutions of (1) and shed some additional light on the dissipative
character of the dynamics. We will also discuss what our techniques can give in the three-dimensional setting.

In two-dimensions, it is useful to consider the vorticity ω(x1, x2, t) = ∂u1(x1,x2,t)
∂x2

− ∂u2(x1,x2,t)
∂x1

. The
equation governing ω has the form ( see [CM93, DG95] )

∂ω

∂t
+ u1

∂ω

∂x1
+ u2

∂ω

∂x2
= ν∆ω + g(x1, x2, t) (2)

where g(x1, x2, t) = ∂f1(x1,x2,t)
∂x2

− ∂f2(x1,x2,t)
∂x1

. We will need g(x1, x2) to posses a modicum of spatial smooth-
ness; this will be made precise shortly.

In our two-dimensional setting, the systems (1) and (2) are equivalent. Expanding ω in Fourier series
where ω(x1, x2, t) =

∑

k∈Z2 ωk(t)e2πi(x,k) with x = (x1, x2), we can write a coupled ODE-system for the
modes ωk(t) (see [DG95]).

dωk

dt
+ 2πi

∑

l1+l2=k

ωl1ωl2

(k, l⊥2 )

(l2, l2)
= −4π2ν|k|2ωk + gk(t) (3)
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where k ∈ Z
2, |k| =

√

k2
1 + k2

2 , l⊥ = (l(1), l(2))⊥ = (−l(2), l(1)), and gk(t) are the spatial Fourier modes of
the function g(x, t). Since ω is real, we know ω−k = ω̄k. Furthermore, we always assume that ω0 = 0. The
system (3) is the Galerkin system corresponding to (2). A finite dimensional approximation of this Galerkin
system can be associated to any finite subset Z of Z

2 by setting ωk(t) = 0 for all k outside of Z. In the
following, we will implicitly assume that Z is centrally-symmetric, that is if k ∈ Z then −k ∈ Z.

In fact, we will study a slightly more general version of (2) where the Laplacian is replaced by the operator
|∇|α with α > 1. This leads to a version of (3) which we index by the choice of α and by the finite index set
Z, Z ⊂ Z

2, indicating which modes are included in the Galerkin approximation. In short, we consider the
finite dimensional ODE system

dωk

dt
+ 2πi

∑

l1+l2=k
l1,l2∈Z

ωl1ωl2

(k, l⊥2 )

(l2, l2)
= −4π2ν|k|αωk + gk . (3α

Z)

We now state the assumptions on the coefficients gk(t) to be used at various times during our discussion.

Assumption 1. The forcing f(x, t) = (f1(x, t), f2(x, t)) is such that g∗ = supt∈[0,∞)|g(·, t)|L2 < ∞.

Assumption 2. For some r, there exists a constant G(r) > 0 such that

sup
t∈[0,∞)

|gk(t)| ≤ G(r)

|k|r−α+ǫ

for some ǫ > 0 and all k ∈ Z
2\0. The constant α is the same as in (3α

Z).

Assumption 3. For some r and γ > 0, there exists a constant G(r, γ) > 0 such that

sup
t∈[0,∞)

|gk(t)| ≤ G(r, γ)

|k|r−α+ǫ
e−γ|k|1+δ

for some δ > 0, ǫ > 0, and all k ∈ Z
2\0. Again, the constant α is the same as in (3α

Z).

Observe that assumption 3 implies assumption 2. Critical to our discussion is that for (3α
Z) we have the

so-called enstrophy estimate. Namely, if E(0) =
∫

ω2(x1, x2, 0)dx1dx2 =
∑

k|ωk(0)|2 < ∞ then one can find
E∗ depending only on E(0), ν, supt∈[0,∞)|g(·, t)|L2 , and α such that E(t) =

∫

ω2(x1, x2, t)dx1dx2 ≤ E∗ for all
solutions to (3α

Z). It is important to note that E∗ is independent of the set Z which defines the Galerkin
approximation. This enstrophy estimate holds if the forcing satisfies assumption 1 (see e.g. [CF88, DG95,
Tem79]).

Now we are ready to formulate our theorems.

Theorem 1. Assume the forcing satisfies assumption 1 and 2 for some r > 1 and G(r) > 0. If for some
D1 < ∞

|ωk(0)| ≤ D1

|k|r

then one can find a D′
1 < ∞, depending only on D1, ν, g∗, and G, such that any solution to (3α

Z) with these
initial conditions satisfies

|ωk(t)| ≤ D′
1

|k|r

for all t > 0. In particular, D′
1 is independent of the set Z defining the Galerkin approximation.

An existence and uniqueness theorem for (3) follows from theorem 1 by now standard considerations
(see [CF88, DG95, Tem79]). We briefly recall the general line of the argument. By the Sobolev embedding
theorem, the Galerkin approximations are trapped in a compact subset of L2 of the 2-torus. This guarantees
the existence of a limit point which can be shown to satisfy (3). Using the the regularity inherited from the
Galerkin approximations, one then shows that there is a unique solution to (3). Gallavotti [Gal96] contains
a similar proof of a similar statement.
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Theorem 2. Assume that assumption 3 holds for some r > 1, γ > 0, and G(r, γ) > 0. If the initial
conditions satisfy

|ωk(0)| ≤ D2

|k|r e−γ2|k|

for some D2 < ∞ and γ2 > 0, then one can find a D′
2 < ∞ and a γ′

2 > 0, depending only on D2, γ, r, ν,
g∗, G, such that any solution to (3α

Z) starting from these initial conditions satisfies

|ωk(t)| ≤ D′
2

|k|r e−γ′
2|k|

for all t > 0. In particular, the constants D′
2 and γ′ are independent of the set Z defining the Galerkin

approximation.

Theorem 2 shows that equation (2) preserves the class of real analytic functions on the 2-torus.

Theorem 3. Assume that assumption 3 holds for some r > 1, γ > 0, and G(r, γ) > 0. If the initial
conditions satisfy

|ωk(0)| ≤ D3

|k|r

then for any t0 > 0, one can find a D′
3 > 0 and a γ′

3 > 0 such that any solution to (3α
Z) with these initial

conditions satisfies

|ωk(t0)| ≤
D′

3

|k|r e−γ′
3|k| .

As before, the constant D′
3 is independent of the set Z defining the Galerkin approximation.

Theorem 3 shows that if the initial conditions ω(x, 0) for (2) are smooth enough then, the solution ω(x, t0)
is real analytic for arbitrarily small time t0, . Then according to theorem 2, it remains with in this class for
all t > t0. Statements close to these were proven in the works by C. Foias and R. Temam [FT89], C. Doering
and E. Titi [DT95] and H. Kreiss [Kre88]. Theorem 1 is proven in §2 and theorems 2 and 3 are proven in §3.

The proofs of all of the theorems in this paper share a common structure. We consider the system of
coupled ODEs for the Fourier coefficients. Then we construct a subset Ω of the phase space (the set of
possible configurations of the Fourier modes) so that all points in Ω possess the desired decay properties.
In addition, Ω is constructed so that it contains the initial data in its interior. Then we endeavor to show
that the dynamics never cause the sequence of Fourier modes to leave the subset Ω. How this is done can
be understood geometrically. It amounts to showing that the vector field on the boundary of Ω points into
the interior of Ω. If this is true, then the solution can never escape Ω.

2 Proof of Theorem 1

Fixing an arbitrary Galerkin approximation corresponding to the modes in some finite subset Z of Z
2, we

write the real version of (3). As we already mentioned, we assume ω0 = 0 and, because the velocity is real,

we also have ω−k = ω̄k. Setting ωk = ω
(1)
k + iω

(2)
k , we separate the equations for ω

(1)
k and ω

(2)
k obtaining

dω
(1)
k

dt
=2π

∑

l1+l2=k
l1,l2∈Z

[

ω
(1)
l1

ω
(2)
l2

+ ω
(2)
l1

ω
(1)
l2

] (k, l⊥2 )

(l2, l2)
− 4πν|k|αω

(1)
k + g

(1)
k (4)

dω
(2)
k

dt
= − 2π

∑

l1+l2=k
l1,l2∈Z

[

ω
(1)
l1

ω
(1)
l2

+ ω
(2)
l1

ω
(2)
l2

] (k, l⊥2 )

(l2, l2)
− 4πν|k|αω

(2)
k + g

(2)
k

3



where gk = g
(1)
k + ig

(2)
k .

It follows from the enstrophy estimate that
∑

k

[

(

w
(1)
k (t)

)2
+
(

w
(2)
k (t)

)2
]

≤ E∗ and thus |w(1)
k (t)| ≤

√
E∗

and |w(2)
k (t)| ≤

√
E∗ for all k ∈ Z

2 and t > 0. Hence, for any K0 > 0, we can find a D′
1 = D′

1(K0) such that

for any t ≥ 0 |w(1)
k (t)|, |w(2)

k (t)| <
D

′
1

|k|r for all k ∈ Z
2 with |k| ≤ K0. We also require D′

1 to be greater than

G so later estimates will arrange themselves nicely. Recall that G(r) was the constant from assumption 2.
Since G is given and only K0 is ours to vary, we will suppress the dependence of D′

1 on G.
Now consider the subset

Ω1(K0) =

{

(ω
(1)
k , ω

(2)
k )k∈Z2 : |ω(j)

k | ≤ D′
1(K0)

|k|r for all j ∈ {1, 2}, k ∈ Z
2\0
}

of (R2)Z
2

. Its boundary is the subset

∂Ω1(K0) =







(ω
(1)
k , ω

(2)
k )k∈Z2 :

|ω(j)
k | ≤ D′

1

|k|r for all j ∈ {1, 2}, k ∈ Z
2\0

and equality holds for some k̄ and ̄ .







.

We shall also need the subset of this boundary

∂Ω1(K0) =







(ω
(1)
k , ω

(2)
k )k∈Z2 :

|ω(j)
k | ≤ D′

1

|k|r for all j ∈ {1, 2}, k ∈ Z
2\0

and equality for some k̄ and ̄ with |k̄| > K0.







.

Showing that the trajectories of our system remain inside of Ω1 is equivalent to the statement of the

theorem. Recall that using the enstrophy estimate, we picked a D′
1(K0) such that if |k| ≤ K0 then |w(1)

k (t)|
and |w(2)

k (t)| were bounded by
D

′
1

|k|r for all t ∈ [0,∞). Thus, the only remaining way for a trajectory to leave

Ω1(K0), is through the section of the boundary ∂Ω1(K
0) introduced above. Our basic idea is to show that

if K0 is greater than a specific Kcrit, then the vector field on ∂Ω1(K
0) points inward. In other words, the

dynamics of (4) can never move the system configuration through ∂Ω1(K0). In still different words, Ω1 is a
trapping region. Since the initial data begins in Ω1, proving this picture would prove the theorem.

To show that the vector field points inward, fix a point on ∂Ω1(K0). For definiteness, consider the case

when ω
(1)

k̄
=

D
′
1

|k̄|r
for some k̄ with |k̄| > K0, |ω(1)

k′ | ≤ D
′
1

|k′|r for all k′ ∈ Z\0 with k′ 6= k̄, and |ω(2)
k | ≤ D

′
1

|k|r for

all k ∈ Z
2\0. The other cases, namely where ω

(1)

k̄
= − D

′
1

|k̄|2
or ω

(2)

k̄
= ± D

′
1

|k̄|2
, are handled in the same manner.

We have to show that,

2π

∣

∣

∣

∣

∣

∣

∑

l1+l2=k̄

[

ω
(1)
l1

ω
(1)
l2

+ ω
(2)
l1

ω
(2)
l2

] (k̄, l⊥2 )

(l2, l2)

∣

∣

∣

∣

∣

∣

+
∣

∣

∣
g
(2)

k̄

∣

∣

∣
< 4πν|k̄|α

∣

∣

∣
ω

(2)

k̄

∣

∣

∣
. (5)

We shall see that the restriction that |k̄| ≥ K0 > Kcrit does not depend on D1 only on E.
Consider the following three sums which together bound the first abolute value on the left-hand side of

(5):

Σ1 =
∑

l1+l2=k̄

|l2|≤| k̄
2 |

∣

∣

∣

[

ω
(1)
l1

ω
(1)
l2

+ ω
(2)
l1

ω
(2)
l2

]∣

∣

∣

∣

∣

∣

∣

(k̄, l⊥2 )

(l2, l2)

∣

∣

∣

∣

Σ2 =
∑

l1+l2=k̄

| k̄
2 |<|l2|≤2|k̄|

∣

∣

∣

[

ω
(1)
l1

ω
(1)
l2

+ ω
(2)
l1

ω
(2)
l2

]∣

∣

∣

∣

∣

∣

∣

(k̄, l⊥2 )

(l2, l2)

∣

∣

∣

∣

Σ3 =
∑

l1+l2=k̄
|l2|>2|k̄|

∣

∣

∣

[

ω
(1)
l1

ω
(1)
l2

+ ω
(2)
l1

ω
(2)
l2

]∣

∣

∣

∣

∣

∣

∣

(k̄, l⊥2 )

(l2, l2)

∣

∣

∣

∣

4



We treat each sum separately. For Σ1, using the Cauchy-Schwartz inequality and the inequalities
∣

∣

∣

(k̄,l⊥2 )
(l2,l2)

∣

∣

∣
≤ |k̄|

|l2|
,

|l1| ≥ |k̄|
2 , and |ω(1)

l1
| ≤ 2rD′

1
1

|k̄|r
, |ω(2)

l1
| ≤ 2rD′

1
1

|k̄|r
produces

|Σ1| ≤ 2r D′
1

|k̄|r |k̄|
∑

|l2|≥| k̄
2 |

[

|ω(1)
l2

| + |ω(2)
l2

|
] 1

|l2|

≤ 2r D′
1|k̄|
|k̄|r

(

√

∑

|ω(1)
l2

|2 +
√

∑

|ω(2)
l2

|2
)

√

√

√

√

∑

|l2|≤| k̄
2 |

1

|l2|2

≤ 2r+1(const)
(√

E∗
)

|k̄|
(

√

ln |k̄|
)(

D′
1

|k̄|r
)

. (6)

The (const) in the final line is from the inequality

∑

|l2|≤| k̄
2 |

1

|l2|2
≤ (const)2 ln |k̄| .

To estimate Σ2, we use the inequalities
∣

∣

∣

(k,l⊥2 )
(l2,l2)

∣

∣

∣
≤ 2, |ω(1)

l2
| ≤ 2r D

′
1

|k̄|r
, and |ω(2)

l2
| ≤ 2r D

′
1

|k̄|r
obtaining

|Σ2| ≤ 2r+1 D′
1

|k̄|r
∑

|l1|≤3|k̄|

[

|ω(1)
l1

| + |ω(2)
l1

|
]

≤ 2r+1 D′
1

|k̄|r





√

∑

|l1|≤3|k̄|

|ω(1)
l1

|2 +

√

∑

|l1|≤3|k̄|

|ω(2)
l1

|2


 (6|k̄| + 1)

≤ 2r+2E(6|k̄| + 1)
D′

1

|k̄|r . (7)

The factor (6|k̄|+1) arises as an estimate of the square root of the number of lattice points l1 ∈ Z
2 for which

|l1| ≤ 3|k̄|.
In estimating Σ3, we use

∣

∣

∣

(k̄,l⊥2 )
(l2,l2)

∣

∣

∣
≤
∣

∣

∣

k̄
l2

∣

∣

∣
producing

|Σ3| ≤ |k̄|
∑

l1+l2=k̄
|l2|≥2|k̄|

[

|ω(1)
l1

||ω(2)
l2

| + |ω(2)
l1

||ω(1)
l2

|
] 1

|l2|

≤ |k̄|





(

∑

|l1|≥k̄

(ω
(1)
l1

)2

)
1
2
(

∑

|l2|≥2k̄

(ω
(2)
l2

)2

|l2|2

)
1
2

+

(

∑

|l1|≥k̄

(ω
(2)
l1

)2

)
1
2
(

∑

|l2|≥2k̄

|ω(1)
l2

|2
|l2|

)
1
2





≤ 2
√

E∗|k̄|D′
1

(

∑

|l2|≥2|k̄|

1

|l2|2(r+1)

)
1
2 ≤ 2

√
E∗(const)|k̄| D

′
1

|k̄|r (8)

where (const) is defined by the inequality

∑

|l2|≥2|k̄|

1

|l2|2(r+1)
≤ (const)2

1

|k̄|2r
.

Adding (6), (7), and (8) together, we obtain the needed bound on the right hand side of (5):

5



2π
∑

l1+l+2=k̄

|ω(1)
l1

||ω(2)
l2

| + |ω(2)
l1

||ω(1)
l2

| ≤
[

2r+1(const)
√

E∗|k̄|
√

ln |k̄| + 2r+2E∗(6|k̄| + 1)

+ 2
√

E∗(const)|k|
]

D′
1

|k̄|r

≤ 2r+2E∗(const)|k̄|
√

ln |k̄| D
′
1

|k̄|r (9)

where (const) is a new constant.
By assumption 2 and our requirement that the D′

1 be greater than G (the constant from assumption 2),

we know that |gk| ≤ D
′
1

|k|r−α+ǫ . Thus, inequality (5) will be satisfied if

[

2r+2E∗(const)
|k̄|
√

ln |k̄|
|k̄|α +

1

|k̄|ǫ

]

D′
1

|k̄|r−α
≤ 4πν

D′
1

|k̄|r−α
. (10)

From this we see that for all α > 1, there exists Kcrit so that if |k̄| ≥ Kcrit then (10) holds. Also notice that
Kcrit is independent of our choice of D′

1 except for the condition that D′
1 > G. Thus we can find Kcrit first

and then fix K0 which determines D′
1.

3 Proofs of Theorems 2 and 3

We begin by stating the central estimate on which both theorems rely. It requires estimates similar in spirit
to the previous theorem and will be proven at the end of the section. We present a d-dimensional version of
the lemma because it will be useful in the discussions of the 3-dimensional setting in the next section.

Lemma 1. Let {ak} and {bk} be two sequences with k ∈ Z
d. If for some r > d − 1 and some C > 0

|ak| ≤
C

|k|r |bk| ≤
C

|k|r

then for all k ∈ Z
d

∑

l1+l2=k

l1,l2∈Z
d

|al1 | |bl2 |
|k|
|l2|

≤ (const)

(

2r|k| + 2r+1(6|k| + 1)
d
2 +

1

2
|k|d−1−r

)

C2

|k|r

where the constant depends only on r and not on k.

We now turn to the proof of theorem 2.

Proof of theorem 2. If |ω(1)
k (0)| ≤ D2

|k|r e−γ2|k|, |ω(2)
k (0)| ≤ D2

|k|r e−γ2|k| then surely |ω(1)
k |, |ω(2)

k | ≤ D2

|k|r . There-

fore by theorem 1, one can find a constant D̄2 such that |ω(1)
k (t)|, |ω(2)

k (t)| ≤ D̄2

|k|r for all k ∈ Z
2\{0}. Let

us set D′
2 = max(2D̄2, G) where G is the constant from assumption 3. The numerical factor 2 is somewhat

arbitrary. We could chose any factor greater than 1; we take 2 for simplicity.
Choose K0 ≥ 0 and consider the set

Ω2(K0) =

{

(ω
(1)
k , ω

(2)
k )k∈Z2\{0} : |ω(1)

k | ≤ D′
2

|k|r e−γ′
2|k|, |ω(2)

k | ≤ D′
2

|k|r e−γ′
2|k|

}

The value of γ′
2 = γ′

2(K0) is chosen in such a way that the inequalities |ω(i)
k (t)| ≤ D̄2

|k|r given by theorem 1

imply that |ω(i)
k (t)| ≤ D

′
2

|k|r e−γ′
2|k| for all k, |k| ≤ K0, and that for |k| ≥ K0, e−γ′

2|k| ≥ e−γ|k|1+δ

. Here γ and δ

are the constants from assumption 3.

6



As in the proof of theorem 1, we shall show that for sufficiently large K0 the vector field corresponding

to (5) is directed inside Ω2(K0) along the part of the boundary ∂Ω2(K0) where |ω(i)
k | ≤ D

′
2

|k|r e−γ′
2|k| for all

k ∈ Z
2\{0} with |k| ≥ K0 and for at least one of these, say k̄, we have equality. It will be shown that our

restriction from below on K0, needed to ensure the vector field points inward, will not depend on γ′
2. This

will yield the stated result.

As in theorem 1, consider for definiteness the case where ω
(1)

k̄
=

D
′
2

|k̄|2
e−γ′

2|k̄|. The other cases are handled

in the same manner. As before, we have to show that the vector field points inward. This would be assured
if

2π

∣

∣

∣

∣

∣

∣

∑

l1+l2=k̄

[ω
(1)
l1

ω
(2)
l2

+ ω
(2)
l2

ω
(1)
l2

]
(k̄, l⊥2 )

(l2, l2)

∣

∣

∣

∣

∣

∣

+ |gk̄| < 4π2|k̄|α D′
2

|k̄|r e−γ′
2|k̄| . (11)

This time we do not use the enstrophy estimate as previously. Instead, we use the estimates |ω(1)
l1

| ≤
D

′
2

|l1|r
e−γ′

2|l1| and |ω(2)
l1

| ≤ D
′
2

|l2|r
e−γ′

2[|l2| .

Let us put v
(j)
k = eγ′

2|k|ω
(j)
k , j = 1, 2, k ∈ Z

2\0. In terms of v, (11) becomes

2π

∣

∣

∣

∣

∣

∣

∑

l1+l2=k̄

[v
(1)
l1

v
(2)
l2

+ v
(2)
l2

v
(1)
l2

]
e−γ′

2|l1|−γ′
2|l2|

e−γ′
2|k̄|

(k̄, l⊥2 )

(l2, l2)

∣

∣

∣

∣

∣

∣

+ |gk̄|eγ′
2|k̄| < 4π2|k̄|α D′

2

|k̄|r . (12)

First notice that e−γ′
2|l1|e−γ′

2|l2|

e
−γ′

2|k̄|
≤ 1 so it may be neglected. Second notice that for v

(j)
k , we have the estimate

|v(j)
k | ≤ D

′
2

|k|r for k ∈ Z
2\0. Lastly, we know that | (k̄,l⊥2 )

(l2,l2)
| ≤ |k|

|l2|
. These estimates allow us to apply lemma 1,

producing

2π
∣

∣

∣

∑

[

v
(1)
l1

v
(2)
l2

+ v
(2)
l2

v
(1)
l2

]e−γ′
2|l1|−γ′

2|l2|

e−γ′
2|k̄|

(k̄, l⊥2 )

(l2, l2)

∣

∣

∣
(13)

≤ 2π const
(

2r+1|k̄| + 2r+2(6|k̄| + 1) + |k̄|1−r
)

D′
2

D′
2

|k̄|r .

From this estimate, we see that if

2π(const)
(

2r+1|k̄| + 2r+2(6|k̄| + 1) + 2|k̄|1−r
)

D′
2 +

G

D′
2

e−γ|k̄|1+δ

e−γ′
2|k̄|

|k̄|α−ǫ < 4π2ν|k̄|α (14)

then we have established (12), which was our goal. Notice that we chose D′
2 ≥ G and γ′

2 such that e−γ|k̄|1+δ

e
−γ′

2
|k̄|

≤ 1

for all k with |k| ≥ K0. Since α > 1 by picking K0 large enough, we can force (14) to hold. This is the
criteria which sets the level of Kcrit. The proof of theorem 2 is concluded.

We now present the proof of theorem 3. Its structure is very similar to the previous proof and also employs
lemma 1 but uses a slightly different change of variable.

Proof of theorem 3. Let D′
1 be the constant given by theorem 1, that is such that |ωk(t)| ≤ D

′
1

|k|2 for all

k ∈ Z
2\0 and all t. Let us put v

(j)
k = ω

(j)
k eγ3t|k|, j = 1, 2 where the constant γ3 will be determined later.

The evolution of the v
(1)
k (t) are described by the following ODEs

dv
(1)
k (t)

dt
=γ3|k|v(1)

k (t) − 4π2ν|k|αv
(1)
k (t) + g

(1)
k eγ3t|k| (15)

− 2π
∑

l1+l2=k

[

v
(1)
l1

(t)v
(2)
l2

(t) + v
(2)
l1

(t)v
(1)
l2

(t)
] e−γ3t|l1|e−γ3t|l2|

e−γ3t|k|

(k, l⊥2 )

(l2, l2)
.
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The analogous equations describe the evolution of the v
(2)
k (t).

The methods of the previous section can be applied to this coupled system. We fix a time t0 > 0 and an
arbitrary positive constant γ0. For t = 0, we have the inequalities

|v(1)
k (0)| ≤ D3

|k|r |v(2)
k (0)| ≤ D3

|k|r

for all k. In light of the definition of vk(t), theorem 3 would be proven if we show that

|v(1)
k (t0)| ≤

D′
3

|k|r |v(2)
k (t0)| ≤

D′
3

|k|r (16)

for some appropriate D′
3.

As in the proof of theorem 3, we put D′
3 = max(2D′

1, G) where G is again the constant from assumption
3. For any fixed K0, we can find a γ3 so that the following three conditions hold. First, the inequalities

|ω(j)
k (t)| ≤ D

′
1

|k|r , imply |v(j)
k (t)| ≤ D

′
3

|k|r for j = 1, 2, t ∈ [0, t0], and |k| ≤ K0. Second, so eγ3t|k| ≤ eγ|k|1+δ

for

k ∈ Z
2 with |k| ≥ K0 and t ∈ [0, t0]. In this condition the constants γ and δ are again from assumption 3.

Third, we can always assume that γ3 ≤ γ0. (This last assumption is to simplify the exposition and is not
really needed as γ3 decreases as we increase K0.)

Now consider the set

Ω3(K0) =

{

(

v
(1)
k , v

(2)
k

)

k∈Z2\0
with |v(j)

k | ≤ D′
3

|k|r for j = 1, 2 and |k| > K0

}

.

Again we will show that if K0 is greater than some Kcrit, the vector field along the boundary of Ω3(K0)

points inward. The calculation parallels that in theorem 2. For definiteness, we assume that v
(1)

k̄
(t) =

D
′
3

|k̄|r

for some k̄ with |k̄| > K0 and that the inequality bounds which define Ω3 hold for all other k. The other
cases proceed analogously.

We wish to show that the vector field points inward. Since γ3 ≤ γ0, from (15), we see that it is sufficient
to show that for t ∈ [0, t0]

(4π2ν|k̄|α − γ0|k̄|)v(1)

k̄
> 2π

∣

∣

∣

∣

∣

∣

∑

l1+l2=k̄

[

v
(1)
l1

(t)v
(2)
l2

(t) + v
(2)
l1

(t)v
(1)
l2

(t)
] (k, l⊥2 )

(l2, l2)

∣

∣

∣

∣

∣

∣

+ |g(1)

k̄
|eγ3t|k̄| . (17)

Here, as before, we have neglected the factor e−γ3t|l1|e−γ3t|l2|

e−γ3t|k| as it is always less than 1. After applying the

inequalities G ≤ D′
3, eγ3t|k| ≤ eγ|k|1+δ

and lemma 1, we see that (17) holds if

4π2ν > γ0
|k̄|
|k̄|α + (const)D′

3

[

2r+1 |k̄|
|k̄|α + 2r+2 7|k̄|

|k̄|α +
|k̄|1−r

|k̄|α
]

+
G

D′
3

1

|k̄|α . (18)

Because α > 1 and r > 2, by making k̄ large enough we can force (18) to hold. This shows that the solution to
any Galerkin approximation stays in Ω3 until the time t0 and thus (16) holds and the proof is complete.

Proof of Lemma 1: As in the proof of theorem 1, we estimate separately three sums.

Σ1 =
∑

|l2|≤|k
2 |

l1+l2=k

|al1 | |bl2 |
|k|
|l2|

Σ2 =
∑

| k
2 |<|l2|≤2|k|

l1+l2=k

|al1 | |bl2 |
|k|
|l2|

Σ3 =
∑

|l2|>2|k|
l1+l2=k

|al1 | |bl2 |
|k|
|l2|

8



Since in Σ1, the norm of |l1| ≥ | k̄2 |, we can write

Σ1 ≤
∑

|l2|≤|k
2 |

|al1 ||bl2 |
|k|
|l2|

≤ 2r (C)
2

|k|r |k|
∑

|l2|≤| k
2 |

1

|l2|r+1
≤ 2r(const)|k| C2

|k|r (19)

where the constant is defined by the inequality

∑

l2∈Zd\0

1

|l2|r+1
≤ const .

For this sum to be finite, we need r + 1 > d. For Σ2 we have |k|
|l2|

≤ 2 and hence

Σ2 ≤ 2
∑

|k
2 |<|l2|≤2|k|

C2

|l1|r|l2|r
≤ 2r+2(C)2

|k̄|r
∑

|l1|≤3|k|

1

|l1|r

≤ 2r+2(C)2

|k̄|r
(

∑

|l1|≤3|k|

1

|l1|2r

)
1
2
(

∑

|l1|≤3|k|

1
)

1
2 ≤ 2r+1(const)

C2(6|k| + 1)

|k|r . (20)

Here the constant is the absolute constant defined by

∑

l1∈Zd\0

1

|l1|2r
≤ const .

For this sum to be finite, we need 2r > d. For Σ3 we have |k|
|l2|

≤ 1
2 . Hence, we can write

Σ3 ≤ 1

2

∑

|l2|≥2|k̄|

C2

|l1|r|l2|r+1
≤ C2

2

(

∑

|l1|>|k|

l1∈Z
d\0

1

|l1|2r

)
1
2
(

∑

|l2|≥2|k|

l2∈Z
d\0

1

|l2|2r+2

)
1
2

≤ (const)
|k|d−1−r

2

C2

|k|r . (21)

Collecting together (19),(20),(21), we obtain the lemma.

4 The three-dimensional setting

This paper is mainly concerned with presenting an elementary proof of existence and uniqueness results
in the two-dimensional setting. However, these techniques can also be used to gain some insight into the
three-dimensional setting. On the three torus, the Navier-Stokes equations take the form

∂ui

∂t
+

∑

j=1,2,3

uj

∂ui

∂xj

= ν∆uj −
∂p

∂xi

+ fi i = 1, 2, 3

∑

i=1,2,3

∂ui

∂xi

= 0 (22)

where ν > 0 is again the viscosity, p is the pressure, and the fi are the components of the external, time-
dependent forcing. As before, we introduce the vorticity ω(x, t) = (ω1(x, t), ω2(x, t), ω3(x, t)) = (∂u2

∂x3
−

∂u3

∂x2
, ∂u3

∂x1
− ∂u1

∂x3
, ∂u1

∂x2
− ∂u2

∂x1
). The vorticity obeys the equation

∂ωi

∂t
+
∑

j

uj

∂ωi

∂xj

=
∑

j

ωj

∂ui

∂xj

+ ν∆ωi + gi i = 1, 2, 3 (23)
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where the gi are the components of curlf . Moving to Fourier space where

u(x, t) =
∑

k∈Z3

uk(t)e2πi(k,x) and ω(x, t) =
∑

k∈Z3

ωk(t)e2πi(k,x) ,

we obtain

dωk(t)

dt
= −2πi

∑

l1+l2=k

[

(

ul1(t), l2
)

ωl2(t) −
(

ωl1(t), l2
)

ul2(t)
]

− 4π2ν|k|2ωk(t) + gk(t) . (24)

Here the gk(t) are the Fourier components of the forcing g(x, t). In addition, we can replace the Laplacian
with the more general differential operator |∇|α with α > 1.

The incompressibility condition implies that

uk(t) ⊥ k (25)

for all k ∈ Z
3. Similarly, it follows that ωk(t) ⊥ k, ωk(t) ⊥ uk(t), and |ωk(t)| = |k||uk(t)|. Hence, (k, uk, ωk)

is a right-handed orthogonal (but not orthonormal) frame.
Since (ul1(t), l1) = (ωl1(t), l1) = 0, we can rewrite (24) as

dωk(t)

dt
= −2πi

∑

l1+l2=k

[

(

ul1(t), k
)

ωl2(t) −
(

ωl1(t), k
)

ul2(t)
]

− 4π2ν|k|αωk(t) + gk(t) . (26)

As before, we begin by restricting our attention to a finite subset Z ⊂ Z
3. The finite-dimensional Galerkin

system corresponding to Z is

dωk(t)

dt
= −2πi

∑

l1+l2=k
l1,l2∈Z

[

(

ul1(t), k
)

ωl2(t) −
(

ωl1(t), k
)

ul2(t)
]

− 4π2ν|k|αωk(t) + gk(t) . (26α
Z)

Furthermore, to simplify the arguments, we assume that the forcing g(x, t) is a trigonometric polynomial
which implies that all but a finite number of the gk are identically zero. We will always analyze wave numbers
above the band which is directly forced; hence, we may neglect the gk. This is only for convenience. The
forcing can be included in the same way as it was in the two-dimensional setting.

Our development is based upon the basic energy estimate (see [CF88, DG95, Tem79]). It states that
given any initial data such that

∑

k∈Z3 |uk(0)|2 = E0 < ∞ then there exists a constant E∗ depending only
on E0, ν, supt |g(·, t)|L2 such that for any finite-dimensional Galerkin approximation, defined by Z ⊂ Z

3, we
have

∑

k∈Z
|uk(t)|2 < E∗ for all t > 0.

When α = 2, the system (26α
Z) corresponds to the Navier-Stokes equations. Unfortunately, we are unable

to prove the theorems in this setting analogous to theorems 1, 2, and 3 when α = 2. However, if we increase
α, we can.

Theorem 4. Consider the system (26α
Z) with an α > 2.5 and satisfying assumption 2. If the initial data

{ωk(0)} are such that

|ωk(0)| ≤ D4

|k|r

for all k ∈ Z
3 with r > 1.5 then there exists a constant D′

4, independent of Z, so that

|ωk(t)| ≤ D′
4

|k|r

for all k ∈ Z
3 and t ≥ 0.
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Theorem 5. Consider the system (26α
Z) with an α > 2.5 and satisfying assumption 3. If the initial data

{ωk(0)} are such that

|ωk(0)| ≤ D5

|k|r e−γ5|k|

for all k ∈ Z
3 with r > 2 then there exists constants D′

5 < ∞ and γ′
5 > 0, both independent of Z, so that

|ωk(t)| ≤ D′
5

|k|r e−γ′
5|k|

for all k ∈ Z
3 and t ≥ 0.

Theorem 6. Consider the system (26α
Z
) with an α > 2.5 and satisfying assumption 3. If the initial data

{ωk(0)} are such that

|ωk(0)| ≤ D6

|k|r

for all k ∈ Z
3 with r > 2 then for any t0 > 0 there exists constants D′

6 < ∞ and γ′
6 > 0, both independent

of Z, so that

|ωk(t0)| ≤
D′

6

|k|r e−γ′
6|k|

for all k ∈ Z
3.

Of these three theorems, we will only give the proof of the first. The second two will be the consequence
of two more general theorems given below. They apply to all α > 1.5 but require the additional assumption
that the enstrophy of all Galerkin approximations, starting from a given set of initial data, remains uniformly
bounded in time. This is not known in general. However, when α > 2.5, theorem 4 implies this bound.
Hence, the two theorems below apply to (26α

Z) when α > 2.5 without any assumption on E(t). In light of
theorem 4, theorem 7 and 8 respectively yield theorem 5 and 6 when α > 2.5.

Theorem 7. Let {uk(t)} be a solution to (26α
Z) with α > 1.5 such that

∑

Z3 |ωk(t)|2 < E∗ < ∞ for all t > 0.

If |ωk(0)| ≤ D7

|k|r for some D7 < ∞ and r > 2 then for any t1 > 0 there exists a γ7 > 0 and D′
7 < ∞ such

that

|ωk(t1)| ≤
D′

7

|k|r e−γ7|k| .

Theorem 8. Let {uk(t)} be a solution to (26α
Z) with α > 1.5 such that

∑

Z3 |ωk(t)|2 < E∗ < ∞ for all t > 0.

If for some D8 < ∞, γ8 > 0, and r > 2, |ωk(0)| ≤ D8

|k|r e−γ8|k| then there exists a γ′
8 > 0 and D′

8 < ∞ such

that for all t > 0

|ωk(t)| ≤ D′
8

|k|r e−γ′
8|k| .

The above two theorems apply to (26α
Z) for α > 1.5. In particular, this means that they cover the

standard Navier-Stokes equation which corresponds to α = 2. (One can lower the restriction on α to α > 1
at the cost of raising the restriction on r to r > 3. Similarly, one lowers the restriction on r to r > 1.5 at
the cost of making α > 2.5.)

In proving these two theorems, it was necessary to assume that
∑

Z3 |ωk(t)|2 remained uniformly bounded
in time. Without such an assumption, we are forced to consider only α which do not correspond to the Navier-
Stokes equation. Notice that theorem 4 implies that

∑

k∈Z3 |ωk(t)|2 < const < ∞ for all t > 0 and hence
theorems 7 and 8 apply showing that the solution is analytic after t = 0.
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In proving the above results, it is again convenient to split the system (26α
Z) into the equations for the

real and imaginary parts of {uk}k and {ωk}k. Letting uk(t) = u
(1)
k (t) + iu

(2)
k (t), ωk(t) = ω

(1)
k (t) + iω

(2)
k (t),

and gk(t) = g
(1)
k (t) + ig

(2)
k (t); we obtain

dω
(1)
k (t)

dt
=2π

∑

l1+l2=k
l1,l2∈Z

[

(

u
(1)
l1

(t), k
)

ω
(2)
l2

(t) +
(

u
(2)
l1

(t), k
)

ω
(1)
l2

(t) −
(

ω
(2)
l1

(t), k
)

u
(1)
l2

(t) −
(

ω
(1)
l1

(t), k
)

u
(2)
l2

(t)
]

− 4π2ν|k|αω
(1)
k (t) + g

(1)
k (t) (26α

Z

(1))

dω
(2)
k (t)

dt
= − 2π

∑

l1+l2=k
l1,l2∈Z

[

(

u
(1)
l1

(t), k
)

ω
(1)
l2

(t) −
(

u
(2)
l1

(t), k
)

ω
(2)
l2

(t) −
(

ω
(1)
l1

(t), k
)

u
(1)
l2

(t) +
(

ω
(2)
l1

(t), k
)

u
(2)
l2

(t)
]

+ g
(2)
k (t) − 4π2ν|k|αω

(2)
k (t) (26α

Z

(2))

Proof of Theorem 4. By the energy estimate, we know that |u(j)
k (t)| ≤

√
E∗ for all t ≥ 0 and j = 1, 2. Hence,

|ω(j)
k (t)| ≤ |k|

√
E∗. Fixing a K0, set D′

4(K0) = K0D4. With this choice, |ω(j)
k (t)| ≤ D′

4(K0) for all t ≥ 0,
j = 1, 2, and k ∈ Z

3 with |k| ≤ K0. As before, consider the set

Ω4(K0) =

{

(ω
(1)
k , ω

(2)
k )k∈Z3 : |ω(1)

k | ≤ D′
4(K0)

|k|r , |ω(2)
k | ≤ D′

4(K0)

|k|r for all k, |k| > K0

}

.

We have to show that if K0 is taken to be sufficiently large, the vector field points inward along ∂Ω4.

We pick a point on the boundary. For definiteness, we will again consider the case when ω
(1)

k̄
=

D
′
4

|k̄|r
and

ω
(2)

k̄
≤ D

′
4

|k̄|r
for some k̄ with |k̄| ≥ K0 and ω

(j)
k ≤ D

′
4

|k|r for all other k with k 6= k̄. The theorem will be proven

if we can show that there exists a Kcrit, independent of D′
4, so that if |k̄| ≥ K0 > Kcrit then

∣

∣

∣
2π

∑

l1+l2=k̄
l1,l2∈Z

[

(

u
(1)
l1

(t), k̄
)

ω
(2)
l2

(t) +
(

u
(2)
l1

(t), k̄
)

ω
(1)
l2

(t) −
(

ω
(2)
l1

(t), k̄
)

u
(1)
l2

(t) −
(

ω
(1)
l1

(t), k̄
)

u
(2)
l2

(t)
]∣

∣

∣
< 4π2ν|k̄|αω

(1)

k̄
(t) .

Other boundary points have the same structure so we will only show the details of the calculation for this
case.

We need to estimate the summation. The total sum is made of smaller sums which are dominated by

sums of the form
∑

l1+l2=k̄ |u
(a)
l1

||ω(b)
l2

||k| with a, b ∈ {1, 2}. As before, we split this sum into three parts:

Σ1 =
∑

|l1|≤| k̄
2 |

|u(a)
l1

||ω(b)
l2

||k|

Σ2 =
∑

| k̄
2 |<|l1|≤2|k̄|

|u(a)
l1

||ω(b)
l2

||k|

Σ3 =
∑

2|k̄|<|l1|

|u(a)
l1

||ω(b)
l2

||k|

In Σ1, |l2| ≥ | k̄2 | and hence

Σ1 ≤ D′
4

|k̄|r 2r|k̄|
(

∑

|l1|≤| k̄
2 |

|u(a)
l1

|2
)

1
2
(

∑

|l1|≤| k̄
2 |

1

)
1
2

≤ D′
4

|k̄|r 2r(const)
√

E∗|k̄| 52
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The constant is defined by
(

∑

|l1|≤| k̄
2 |

1
)

≤ (const)
2|k̄|3 .

For Σ2, we know that |l2| ≤ 3|k̄| and |u(a)
l1

| ≤ D
′
4

|l1|r+1 which gives

Σ2 ≤ D′
4

|k̄|r 2r 2

|k| |k|
∑

|l2|≤3|k̄|

|ω(b)
l2

| ≤ D′
4

|k̄|r 2r+1
∑

|l2|≤3|k̄|

|l2||u(a)
l2

|

≤ D′
4

|k̄|r 2r+13|k̄|
(

∑

|l2|≤3|k̄|

|u(a)
l1

|2
)

1
2
(

∑

|l2|≤3|k̄|

1

)
1
2

≤ D′
4

|k̄|r 2r+13(const)
√

E∗|k̄| 52 .

Here the constant is the analogue of the constant in the estimation of Σ1. For Σ3, we know that |l2| ≥ |k̄|
and thus

Σ3 ≤ |k̄|
(

∑

|l1|≥2|k̄|

|ul1 |2
)

1
2
(

∑

|l2|≥|k̄|

|ωl2 |2
)

1
2

≤ |k̄|D′
4

√
E∗

(

∑

|l2|≥|k̄|

1

|l2|2r

)
1
2

≤ |k̄|D′
4

√
E∗

(const)

|k̄|r− 3
2

≤ D′
4

|k̄|r (const)
√

E∗|k̄| 52 .

Collecting the three estimates together we see that there is a constant, depending only on r, so that

∑

l1+l2=k̄

|u(a)
l1

||ω(b)
l2

||k| ≤ (const)
D′

4

|k̄|r
√

E∗|k̄| 52 . (27)

Using this estimate, we see that the condition in (4) will hold if

8π(const)
√

E∗|k̄| 52 D′
4

|k̄|r < 4π2ν|k̄|α D′
8

|k̄|r .

Since α > 5
2 , this will hold for all k̄ sufficiently large; this sets the level of Kcrit. Notice that it does not

depend on D′
8 as was required.

Proof of Theorem 7. The proof of this theorem is similar to the proof of theorem 3. From the assumptions,

we know that |ωk(t)| ≤
√
∑

Z3 |ωl(t)|2 <
√

E∗ for all t > 0. We set a
(j)
k (t) = u

(j)
k eγ7t|k| and b

(j)
k (t) = ω

(j)
k eγ7t|k|

for j = 1, 2, where γ7 is a constant we will set later.
Set D′

7 = 2 max(
√

E∗, D7). Fixing a K0, choose γ7(K0) so that for all t ∈ [0, t1], j ∈ {1, 2}, and k

with |k| ≤ K0, one has |b(j)
k (t)| ≤ D

′
7

|k|r . Notice that by the assumption on the initial conditions, we have

|b(j)
k (0)| ≤ D

′
7

|k|r for all k. Consider the set,

Ω7(K0) =

{

(

b
(1)
k , b

(2)
k

)

k∈Z2\0
with |b(j)

k | ≤ D′
7

|k|r for j = 1, 2 and |k| > K0

}

.

As before we will show that, if K0 is chosen large enough, a point starting in Ω7 cannot leave Ω7 because
the vector field along ∂Ω7 is pointing inward.

We pick a boundary point. For simplicity, we pick the point where b
(1)

k̄
=

D
′
7

|k|r and all other variables

satisfy the inequalities defining Ω7. In terms of the new variables, the relevant equation of motion reads

db
(1)
k (t)

dt
= (γ7|k| − 4π2ν|k|α)b

(1)
k (t) − 2π

∑

l1+l2=k
l1,l2∈Z

[

(

a
(1)
l1

(t), k
)

b
(2)
l2

(t)

+
(

a
(2)
l1

(t), k
)

b
(1)
l2

(t) −
(

b
(2)
l1

(t), k
)

a
(1)
l2

(t) −
(

b
(1)
l1

(t), k
)

a
(2)
l2

(t)
]e−γ7t|l1|e−γ7t|l2|

e−γ7t|k|
.
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Since |a(j)
k (t)| =

|b
(j)
k

(t)|

|k| , to insure that the vector field points inward it is sufficient to show that

2π
∑

|b(1)
l1

||b(2)
l2

| |k̄||l1|
+ |b(2)

l1
||b(1)

l2
| |k̄||l1|

+ |b(2)
l1

||b(1)
l2

| |k̄||l2|
+ |b(1)

l1
||b(2)

l2
| |k̄||l2|

< (4π2ν|k̄|α − γ7|k̄|)
D′

7

|k̄|r .

Each of the terms in the above sum can be estimated with the aid of lemma 1. This transforms the previous
condition into

8π(const)

(

2r|k̄| + 2r+1(6|k̄| + 1)
3
2 +

1

2
|k̄|2−r

)

(D′
7)

2

|k̄|r < (4π2ν|k̄|α − γ7|k̄|)
D′

7

|k̄|r .

By picking K0 large enough, we can force this condition to hold. The fact that γ7 depends on K0 is not a
problem since it decreases as K0 increases.

This establishes that the vector field points inward along the boundary of Ω7 for all times in the interval
[0, t1]. Thus at time t1, the trajectory is still in Ω7. By returning to the original variables, we have the
desired estimate at time t1.

Proof of Theorem 8. The proof of this theorem begins as the above theorem and then proceeds as the proof

of theorem 2. We change variables to a
(j)
k (t) = u

(j)
k eγ8|k| and b

(j)
k (t) = ω

(j)
k eγ8|k|. We use the assumption

on
√
∑

Z3 |ωl(t)|2 to control the lower modes. Then we use the estimates from lemma 1 to control the
nonlinearity. We omit the details.
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