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Abstract

Rationale: Asthma is prospectively associated with age-related
chronic diseases and mortality, suggesting the hypothesis that
asthmamay relate to a general, multisystemphenotype of accelerated
aging.

Objectives: To test whether chronic asthma is associated with
a proposed biomarker of accelerated aging, leukocyte telomere
length.

Methods: Asthma was ascertained prospectively in the Dunedin
Multidisciplinary Health and Development Study cohort (n = 1,037)
at nine in-person assessments spanning ages 9–38 years.
Leukocyte telomere length was measured at ages 26 and 38 years.
Asthma was classified as life-course-persistent, childhood-onset
not meeting criteria for persistence, and adolescent/adult-onset.
We tested associations between asthma and leukocyte telomere
length using regression models. We tested for confounding of
asthma-leukocyte telomere length associations using covariate
adjustment. We tested serum C-reactive protein and white

blood cell counts as potential mediators of asthma-leukocyte
telomere length associations.

Measurements and Main Results: Study members with life-
course-persistent asthma had shorter leukocyte telomere length
as compared with sex- and age-matched peers with no reported
asthma. In contrast, leukocyte telomere length in study members
with childhood-onset and adolescent/adult-onset asthma was not
different from leukocyte telomere length in peers with no reported
asthma. Adjustment for life histories of obesity and smoking did not
change results. Study members with life-course-persistent asthma
had elevated blood eosinophil counts. Blood eosinophil count
mediated 29% of the life-course-persistent asthma-leukocyte
telomere length association.

Conclusions: Life-course-persistent asthma is related to a proposed
biomarker of accelerated aging, possibly via systemic eosinophilic
inflammation. Life histories of asthma can inform studies of aging.

Keywords: asthma; telomere; aging; longitudinal; developmental
phenotype

Asthma is a common, chronic syndrome
responsible for substantial health and
economic burden in children, adults, and

increasingly, older adults (1–3). In
adulthood, asthma is characterized by
significant comorbidity with other chronic

conditions (4); is prospectively associated
with risk for developing chronic obstructive
pulmonary disease (5–7), cardiovascular
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disease (8–10), and cancer (11–13); and
substantially increases risk for early
mortality (14, 15). These observations
suggest the hypothesis that asthma may
relate to a general, multisystem phenotype
of accelerated aging. Here we test the
relationship between persistent asthma and
one aging indicator, telomere length.

Leading molecular theories of aging
identify telomere length as a potential
biomarker of cellular aging and as
a hypothesized mechanism in the aging
process (16, 17). Telomeres are protective
caps at the ends of chromosomes that erode
with each cell division and thus provide
a “biologic clock” tracking cellular aging. In
animal studies, early life telomere length is
predictive of lifespan (18). In vitro studies
show a link between telomere shortening
and cellular senescence leading to growth
arrest (19). In humans, there are reports
that shorter leukocyte telomere length is
associated with increased morbidity and
early mortality (20) and leukocyte telomere
length has been proposed as a measure
of decline in physiologic integrity across
multiple systems (16). Although telomeres
remain a controversial biomarker of the
aging process (21), leukocyte telomere
length provides a useful outcome to test the
hypothesis that asthma is associated with
accelerated aging for two reasons. First,
individual differences in telomere length
have been observed early in adult life (22),
after individuals have developed asthma
but before age-related diseases onset. This
allows the isolation of chronic asthma as
a correlate of telomere erosion independent

of associated comorbidities. Second,
chronic asthma is known to affect
airway structure and function (23–25).
Measurement of telomeres in blood
leukocytes allows for a test of asthma’s
physiologic correlates outside the lung.

Asthma is a developmentally
heterogeneous syndrome. Although asthma
symptoms often manifest first early in
childhood, asthma can commence at any
age. The course of asthma is similarly
variable, with some cases characterized by
full or intermittent remission and others by
life-course persistence of symptoms. Sir
William Osler is quoted as referring to
“asthmatics panting into old age,” but
asthma may also be associated with
reduced life expectancy (14, 15). The
extent to which timing of onset and
course of asthma are related to aging
processes is uncertain. Previous studies
of asthma and aging have focused on
samples of individuals ascertained in late
adulthood. Prospective life-course studies
are needed that can distinguish asthma
cases based on timing of onset and
persistence of disease (26).

In adulthood, asthma may develop
secondary to other health problems,
including smoking and obesity (27, 28).
To disentangle asthma from aging-related
features of these other health problems,
data are needed that observe the onset and
course of asthma from childhood and that
can account for potential confounding
conditions that confer risk for asthma
and accelerated aging.

If asthma is associated with shorter
telomere length, this will raise the question
of how the relationship comes about. Is
it that short telomeres at the beginning of
life create vulnerability to asthma? Or
does asthma causes damage at the cellular
level, resulting in shorter telomeres? In
either case, asthma would be involved
in aging, although implications for
intervention might differ. The key initial
step approached by this paper is to test
for the asthma-telomere association and
to describe the features of the asthma
phenotype involved.

We tested associations between
asthma and leukocyte telomere length
using prospective data from a population-
representative birth cohort followed
over their first four decades of life, in
whom development of asthma has been
prospectively ascertained by follow-up at
nine assessments at 2- to 6-year intervals

from ages 9 to 38 years (29, 30). We
measured mean relative leukocyte
telomere length in genetic samples
obtained at age 26 and again at age
38 years. We tested how the timing of
asthma onset and asthma persistence
related to telomere length, hypothesizing
that the most chronic form of asthma
would show the strongest relation to
telomere measures. To determine
whether associations between asthma
and telomere length were attributable to
factors that could cause asthma and shorter
telomeres in leukocytes, we applied
statistical adjustments for histories of
obesity and smoking. Finally, we examined
how the relationship between asthma
and telomere length might be related to
inflammation, measured in peripheral
blood, the same tissue from which
telomeres were assayed.

Methods

Sample
We used data frommembers of the Dunedin
Multidisciplinary Health and Development
Study, a longitudinal investigation of
health and behavior in a complete
(unselected) birth cohort. Study members
(1,037; 91% of eligible births; 52% male)
were all individuals born between April
1972, and March 1973, in Dunedin,
New Zealand, who were eligible for the
longitudinal study on the basis of residence
in the province at age 3 years and
who participated in the first follow-up
assessment at age 3 years. The cohort
represents the full range of socioeconomic
status in the general population of New
Zealand’s South Island and is mainly
white (31). Assessments were done at
birth and ages 3, 5, 7, 9, 11, 13, 15, 18, 21,
26, 32, and, most recently, 38 years, when
961 (95%) of the 1,007 surviving study
members took part. At each assessment
wave, study members are brought to the
Dunedin research unit for a full day of
interviews and examinations. The Otago
Ethics Committee approved each phase
of the study and informed consent was
obtained.

Measures

Mean relative leukocyte telomere length.
Leukocyte DNA was extracted from blood
using standard procedures (32, 33). Age-26

At a Glance Commentary

Scientific Knowledge on the
Subject: Asthma is increasingly
recognized as a disease of aging. A
possible link between asthma and
aging is leukocyte telomere length,
a proposed biomarker of cellular
aging.

What This Study Adds to the
Field: Childhood-onset asthma
that persists through midlife is related
to shorter leukocyte telomere length,
possibly via systemic eosinophilic
inflammation. As of midlife, adolescent/
adult-onset asthma was not associated
with shorter leukocyte telomere length.
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and age-38 DNA was stored at 2808C
until assayed, to prevent degradation of the
samples. All DNA samples were assayed
for leukocyte telomere length at the
same time, independently of asthma
diagnosis. Study members who never
developed asthma and study members
with different courses of asthma were
randomly distributed across different
plates. All operations were performed by
a laboratory technician masked to asthma
status. Leukocyte telomere length was
measured using a validated quantitative
polymerase chain reaction method (34),
as previously described (35), which
determines mean telomere length across
all chromosomes for all cells sampled.
The method involves two quantitative
polymerase chain reactions for each subject,
one for a single-copy gene (S) and the
other in the telomeric repeat region (T).
All DNA samples were run in triplicate for
telomere and single-copy reactions at ages
26 and 38 (i.e., 12 reactions per study
member).

Measurement artifacts (e.g., differences
in plate conditions) may lead to spurious
results when comparing leukocyte telomere
length measured on the same individual
at different ages. To eliminate such artifacts,
we assayed DNA triplicates from the
same individual, from ages 26 and 38, on
the same plate. The average coefficient of
variation for the triplicate Ct values was
0.81% for the telomere (T) and 0.48% for
the single-copy gene (S), indicating high
precision. Leukocyte telomere length, as
measured by T/S ratio, was normally
distributed (Kolomogorov-Smirnov tests
of normality), with a skew of 0.90 and
kurtosis 1.59 at age 26, and a skew of 0.48
and kurtosis 0.38 at age 38. T/S ratio was
transformed to have mean = 0, SD = 1
within age for all analyses (T/S ratio
Z-score). Telomere measurements were
made in 883 study members of European
ancestry who consented to phlebotomy.
These individuals formed the analysis
sample.

Asthma. We constructed developmental
phenotypes of asthma from prospective data
collected at nine in-person assessments
spanning ages 9–38 years, as previously
described (29, 30). Detailed asthma
assessments were introduced at age 9 years.
At each assessment, study members with
a reported diagnosis of asthma and at least
one of (1) recurrent wheeze, (2) asthma
attack, or (3) asthma medication use in the

past year were classified as having current
asthma. By age 38 years, 34% of the cohort
(n = 352 of 1,037 cohort members; 306 of 883
with telomere data) had been diagnosed with
asthma. Asthma persistence was measured as
the number of assessments at which study
members met criteria for current asthma.

Based on age at onset and persistence,
study members with asthma were
categorized into three groups. First, we
identified cases with onset in childhood and
persistence in childhood through midlife.
Specifically, this “life-course-persistent”
asthma group was defined as having
current asthma at two or more assessments
up to puberty (age 13 yr) and at three or
more assessments thereafter (by age 38 yr,
n = 102; 97 with telomere data) (29). Of the
life-course-persistent group, half (n = 51)
met criteria for current asthma at all their
adult assessments. Of the remainder, 23
met criteria for current asthma at five adult
assessments, 15 at four assessments, and 13
at three assessments. Study members with
asthma who did not meet life-course-
persistence criteria were divided into
a group with asthma onset in childhood
who did not meet criteria for persistence,
the childhood-onset group (n = 108; 86
with telomere data), and a group with
asthma onset after age 13 years, hereafter
the adolescent/adult-onset group (n = 139;
120 with telomere data).

Potential confounders. Review of
published literature identified three
potential confounders of associations
between asthma and leukocyte telomere
length: (1) socioeconomic disadvantage, (2)
obesity, and (3) cigarette smoking (28,
36–42). We measured cohort members’
socioeconomic status as defined from the
occupation of their parents when they were
children (43). Obesity was measured from
anthropometric data at ages 5, 7, 9, 11, 13,
15, 18, 21, 26, 32, and 38 years. Obesity
was defined at ages 5–15 as body mass
index exceeding the 90th percentile of the
sex-specific US Centers for Disease Control
and Prevention reference distribution and
thereafter as body mass index of 30 or
greater (44). At each adult follow-up,
we calculated the cumulative number of
assessments at which a cohort member
had been obese, hereafter “life-course
cumulative obesity.” Smoking history
was assessed during clinical interviews
from age 15 onward. These data were
used to measure cumulative cigarette
consumption in pack-years (a pack-year

represents the number of cigarettes
consumed during a year spent smoking
20 cigarettes per d) (45).

Inflammation. The Dunedin study
took measures of inflammation from
peripheral blood at the age-26, -32, and
-38 assessments. High-sensitivity assays of
C-reactive protein (hsCRP) were conducted
at the age-32 and -38 assessments on a
Hitachi 917 analyzer (Roche Diagnostics,
GmbH, Mannheim, Germany) using a
particle-enhanced immunoturbidimetric
assay. hsCRP values were log-transformed
for analysis. White blood cell (WBC)
counts were measured at ages 26, 32, and
38 years (including counts of neutrophils,
lymphocytes, monocytes, eosinophils,
and basophils) on a fully automated
hematology analyzer (Sysmex Corporation,
Kobe, Japan). All WBC counts were
measured as 3109/L and log-transformed
for analysis.

Analyses of WBC counts focused on
eosinophil and neutrophil counts because
these are associated with asthmatic
inflammation in lung (46, 47). Peripheral
blood eosinophil and neutrophil levels
have been questioned as indicators of
active airway inflammation, but these
cell counts are elevated in patients with
asthma (48, 49). Eosinophils are implicated
in the pathogenesis of many age-related
diseases (50); and eosinophils secrete
substances that cause oxidative stress
(51) and inhibit telomerase activity (52),
processes linked with shorter leukocyte
telomere length (53, 54). Peripheral
blood neutrophil levels are elevated in
chronic obstructive pulmonary disease
(55), which is linked with short
telomeres (56). Analyses of other WBC
counts are presented for purposes of
comparison.

Analysis
We analyzed the continuous measure of
leukocyte telomere length using regression
models. Because telomere length was
measured at two adult assessments
(when study members were aged 26 and
38 yr), we analyzed data as one longitudinal
panel including repeated observations of
individuals. These analyses treated each
telomere length assessment as an outcome.
Generalized estimating equations were
used to account for the nonindependence
of repeated observations (57). We also
conducted a change analysis in which
telomere length at age 38 was the
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outcome and telomere length at age 26
was included as a covariate. An asthma
coefficient from this model indexes
the difference in telomere change in
asthma cases as compared with cases
without asthma.

Asthma phenotypes were defined
according to the age at which telomere
length was assessed. For example, a
cohort member first identified with
asthma at age 32 years would be counted
as an adolescent/adult-onset asthma case
for analysis predicting age-38 telomere
length, but doing so was not appropriate
for analysis predicting age-26 telomere
length. Similarly, asthma persistence was
defined as the number of assessments
at which the individual met criteria for
current asthma up to the particular age
of telomere assessment. We included
chronologic age and sex as model covariates
because asthma prevalence and persistence
change over time and vary between men
and women (29, 30). We also included as
a covariate a product term for the age-sex
interaction. We included this covariate
first because females more commonly onset
with asthma in adulthood as compared with
males (who more commonly onset with
asthma in childhood) (58) and this is also
true in the Dunedin cohort (29); and
second because some studies report sex
differences in telomere-length change
over time (59).

We tested how associations between
asthma and telomere length were related
to inflammation using generalized
estimating equation models and the
structural equations described by Baron
and Kenny (60) and the methods described
by Preacher and colleagues (61, 62).

All biomarker values (leukocyte
telomere T/S ratio, hsCRP level, and WBC
counts) were standardized for analyses to
have mean = 0, SD = 1. Figure 1 and
Table 1, which present data showing
asthma-telomere length associations, report
telomere length in T/S ratio units. All
analyses were conducted using Stata 13.0
(StataCorp, College Station, TX) (63).

Results

We first tested whether study members who
had developed asthma (of any phenotype)
manifested shorter leukocyte telomeres at
ages 26 and 38 years as compared with
their same-aged peers who had not

developed asthma. Study members
with ever-diagnosed asthma had shorter
telomeres as compared with those in the
nonasthma control group, but the result
was on the margin of statistical significance
(B = 20.12; P = 0.050). We next tested the
hypothesis that telomere length would be
shorter among specifically those cohort
members with lifelong chronic asthma
(as opposed to all cohort members with
asthma). Only cohort members with
life-course-persistent asthma had shorter
telomere length across age-26 and -38
assessments (B = 20.31; P , 0.001). In
contrast, there were no differences in
telomere length between childhood-onset
cases not meeting criteria for persistence
and control subjects (B = 0.09; P = 0.343)
and between adolescent/adult-onset
cases and control subjects (B = 20.12;
P = 0.122). Figure 1 shows average
telomere length at ages 26 and 38 years
within groups defined by course of
asthma.

The developmental phenotypes of
asthma that we analyzed describe different
patterns of asthma (timing of onset and
course of persistence) across the first
four decades of life. Because these are
descriptive groupings of cases rather
than diagnostic categories, we conducted
sensitivity analyses. First, we tested whether
the persistence of asthma (number of

assessments with current asthma)
was associated with shorter leukocyte
telomere length. Among asthma cases
with onset by age 13 years (n = 186),
increasing asthma persistence predicted
shorter telomere length (B = 20.05;
P = 0.020), consistent with our analysis of
childhood-onset and life-course-persistent
asthma groups. Among asthma cases
with onset after age 13 years (n = 120),
there was no association between asthma
persistence and telomere length (B = 0.04;
P = 0.426). This result suggests that
a truly persistent course of asthma across
childhood is important to asthma-telomere
associations. Second, some of the 97
study members who were classified as
life-course-persistent asthma cases did
not meet criteria for current asthma at
every assessment during adult follow-up
(ages 15–38). Restricting the life-course-
persistent group to only those cases
who always met current asthma criteria
did not change results (for the group
always meeting current asthma criteria,
B = 20.34, P = 0.001; for all other
life-course-persistent cases, B = 20.30,
P = 0.009). Hence, childhood-onset asthma
cases with a generally persistent course of
disease in adulthood but who sometimes
presented with no past-year asthma
symptoms also manifested shorter
telomeres.
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Figure 1. Leukocyte telomere length in cohort members with childhood-onset asthma, adolescent/
adult-onset asthma, and life-course-persistent asthma at ages 26 and 38 years. Bar graph
average leukocyte telomere length (in T/S ratio units) within groups defined by course of asthma
(childhood-onset, n = 86; adolescent/adult-onset, n = 120; and life-course-persistent, n = 97).
Error bars show 95% confidence intervals. The dashed lines show average leukocyte telomere length
in cohort members with no history of asthma. For further information, see Table 1.
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To test for confounding of the
association between life-course-persistent
asthma and leukocyte telomere length, we
reestimated the association between life-
course-persistent asthma and telomere
length excluding individuals who grew up
in low socioeconomic status households
(B = 20.33; P , 0.001), who had ever been
obese (B = 20.35; P , 0.001), and who
had ever smoked (B = 20.32; P = 0.027).
In addition, we repeated regression analyses
in the full sample adding statistical
adjustment for childhood socioeconomic
status, life-course cumulative obesity,
and smoking pack-years. Adjustment
for these variables did not change the
association between life-course-persistent
asthma and telomere length (B = 20.31;
P , 0.001 in adjusted models).

To test whether life-course-persistent
asthma cases were experiencing more rapid
telomere erosion between ages 26 and
38 years as compared with cohort members
without asthma, we fitted a change model:
we regressed age-38 telomere length on
life-course-persistent asthma status and
telomere length at age 26 years. Change
in telomere length over this 12-year period
was similar in the life-course-persistent
asthma cases and in cohort members
without asthma (B = 0.05; P = 0.568),
suggesting that the asthma-telomere
association had emerged before age
26, our initial telomere measurement.

Finally, we investigated how the
association between life-course-persistent
asthma and shorter leukocyte telomere
length was related to indicators of
inflammation in peripheral blood. Cohort
members with life-course-persistent asthma
exhibited elevated blood eosinophils as
compared with cohort members without
asthma (B = 0.96; P , 0.001). Blood hsCRP
and other WBC levels in cohort members
with life-course-persistent asthma were
similar to those in cohort members who
had not developed asthma. Figure 2 shows

differences in peripheral blood levels of
hsCRP, and WBC counts in childhood-onset,
adolescent/adult-onset, and life-course-
persistent asthma cases as compared
with individuals who had not developed
asthma by the time of assessment. Higher
levels of blood eosinophils were associated
with shorter telomere length (B = 20.10;
P , 0.001). After partialing out variance
attributable to eosinophils, life-course-
persistent asthma remained associated with
telomere length, although the effect was
attenuated (B = 20.24; P = 0.005). The
structural model indicated that blood
eosinophil count accounted for 29%
(95% confidence interval, 15–61%) of the
association between life-course-persistent
asthma and telomere length. Details for
structural models are presented in the
online supplement.

Discussion

In this study, we found evidence for
association between chronic asthma and
shorter leukocyte telomere length in
adulthood. Shorter telomeres were found
in those with life-course-persistent asthma,
but not in childhood-onset or adolescent/
adult-onset asthma. Sensitivity analyses
confirmed that the association between
asthma and shorter telomere length was
present only in cases with persistent asthma
during childhood and adulthood. This result
suggests a mechanism that accumulates
throughout development. Shorter telomeres
among cohort members with life-course-
persistent asthma were not caused by
differences in life history of obesity or
smoking and were not accounted for by
childhood socioeconomic position. Life-
course-persistent asthma did not predict
a more rapid rate of telomere change
between ages 26 and 38 years. One
interpretation of this result is that that
whatever process links chronic asthma and

telomere length has already occurred by
young adulthood. Alternatively, we may not
have detected change in telomere length
within the life-course-persistent asthma
group because of right-hand censoring
(our follow-up ends at age 38 yr). Finally,
our data are agnostic as to the causal
direction of the asthma-telomere
association. However, whatever the causal
direction of the association, systemic
eosinophilic inflammation seems to be
involved. Specifically, increased levels of
circulating eosinophils accounted for just
under one-third of the association between
chronic asthma and telomere length.

The pathogenesis of many age-related
diseases involves eosinophils (50), which
secrete substances that cause oxidative
stress (51) and inhibit telomerase activity
(52) (processes linked with shorter
leukocyte telomere length [53, 54]). If
eosinophilic inflammation causes short
telomere length during early stages of
innate immune development, short
telomeres should be characteristic of
eosinophilic disorders of childhood. If
the process requires chronic exposure,
short telomere length may not be observed
until later in life.

We acknowledge limitations. First, left
censoring of telomere measurements means
our study cannot establish the causal
ordering of chronic asthma and shorter
leukocyte telomeres. Future studies with
measurements of telomeres beginning early
in childhood can help to clarify whether
short telomeres precede asthma onset or if
the onset and persistence of asthma shortens
telomeres. Second, right censoring of all
measurements leaves open the possibility
that cases of chronic asthma will come
to have telomeres of similar length to
asthma-free individuals, or that other
groups (e.g., adult-onset asthma cases)
will experience more rapid telomere erosion
and come to resemble the life-course-
persistent cases. Continued follow-up

Table 1. Leukocyte Telomere Length by Asthma Category

Age 26 yr Age 38 yr
No

Reported
Asthma

Childhood-
Onset

Adolescent/
Adult-Onset

Life-Course-
Persistent

No
Reported
Asthma

Childhood-
Onset

Adolescent/
Adult-Onset

Life-Course-
Persistent

Mean 1.21 1.22 1.13 1.06 1.05 1.11 1.04 0.97
95% Confidence
interval

1.17–1.24 1.14–1.30 1.06–1.20 0.99–1.13 1.03–1.08 1.04–1.18 0.99–1.09 0.91–1.03
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of this cohort and further research in other
cohorts that track the natural history of
adult asthma are needed. Studies including
follow-up into the second half of the
life course can examine how comorbid
health conditions and medications affect
asthma-telomere associations and the role
of asthma and short telomere length in
age-related decline in lung function. From
our analysis, asthma seems to relate to
shorter telomere length only in cases
characterized by onset in childhood and a
persistent course, because shorter telomeres
were not observed in childhood-onset
cases without persistence and telomere

length was not related to the persistence
of asthma among those with onset in
adolescence or adulthood.

Third, our cohort was from a single
country and was primarily of European
descent. Replication in other populations
and in other countries is needed. Finally,
although our analyses implicate systemic
eosinophilic inflammation in the association
between asthma and telomere length,
we lack cell-type–specific measures of
telomere length. If short telomere length
confers refractory inflammation, it is
important to know whether this is a cell-
autonomous phenotype. Determining

whether short telomeres are characteristic
of all component cell types within
leukocytes could inform understanding of
mechanism. We also lack measures of
inflammation from sputum or airway
biopsies. Lower levels of human telomerase
reverse transcriptase expression in
submucosa of bronchial biopsies of patients
with asthma have been reported (64).
Research is needed to characterize mechanisms
linking asthma and telomere length.

Our study constitutes an incremental
advance in research on asthma and aging.
To our knowledge, only two previous studies
have tested associations between asthma
and leukocyte telomere length (64, 65).
As with previous studies, we find an
association between asthma and shorter
leukocyte telomere length. Our findings
from a large, population-based birth
cohort followed over four decades indicate
that the link between asthma and telomere
length is most pronounced in individuals
with a childhood-onset, persistent course
of asthma. Furthermore, the link between
this phenotype of life-course-persistent
asthma and telomere length is related
to elevated systemic eosinophilic
inflammation.

An implication of these findings is
that life histories of asthma can inform
studies of aging. First, studies of asthma
and telomere length in particular, and of
asthma and aging more generally, should
seek to distinguish asthma cases on the
basis of course of disease (early onset and
subsequent persistence). Second, because
asthma often begins early in life and
persistent asthma is associated with poor
health outcomes in aging, future studies
investigating telomere-length correlations
with specific age-related disease (e.g.,
chronic obstructive pulmonary disease [56])
should consider participants’ life histories
of asthma. Finally, although asthma has
traditionally been studied as a disease of
childhood, studies of adult asthma and
studies linking asthma with multimorbidity
in later life have highlighted asthma as
a disease of aging. Future studies of
the aging process may benefit from
information about participants’ histories
of asthma. n
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Figure 2. Serum levels of C-reactive protein and counts of eosinophils, neutrophils, monocytes,
lymphocytes, and basophils at ages 26, 32, and 38 years among cohort members with childhood-
onset asthma, adolescent/adult-onset asthma, and life-course-persistent asthma. Biomarker levels
are graphed in terms of standard deviations from cohort means (z scores). High-sensitivity assays
of C-reactive protein were conducted at the age 32 and 38 assessments only. Only eosinophils
differed in the life-course-persistent asthma group as compared with individuals with no reported
asthma (B = 0.96; P , 0.001). This difference was statistically significant after correcting for multiple
testing (Bonferronni corrected, P , 0.001). A box plot illustrating eosinophil data in more detail is
included in the online supplement.
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Chronic Asthma and Leukocyte Telomere Length 

Is Chronic Asthma Associated with Shorter Leukocyte Telomere Length at Midlife? 

Supplemental Material 

Mediation Analysis  

We tested mediation using a system of 3 equations: 

1. Telomere Length  = 1 + ʏAsthma + ɻX + ɸ1 

2. Mediator = 2 + ɲAsthma + ɻX + ɸ2 

3. Telomere Length  = 3 + ʏ͛Asthma + ɴMediator + ɻX + ɸ3

The total effect of asthma on telomere length was estimated as ʏ. The indirect effect of asthma 

mediated through eosinophil count was estimated as the product of coefficients ɲ and ɴ͘1 

Percentile-based confidence intervals for estimates were calculated using the bootstrap 

method.
2
 Estimates of the total, indirect, and direct effects are reported in Supplemental Table 

1.  

 



Chronic Asthma and Leukocyte Telomere Length 

Supplemental Table 1. Total, indirect, and direct effect estimates from models testing 
mediation of associations between life-course-persistent asthma and leukocyte telomere 
length at ages 26 and 38 years by blood eosinophil count. Total effect estimates reflect the 

association between life-course-persistent asthma and telomere length. Indirect effect 

estimates reflect the portion of this total effect overlapping the association of blood eosinophil 

count with telomere length. Direct effects reflect the residual association between life-course-

persistent asthma and telomere length that was independent of blood eosinophil count. 

Percentile-based 95% Confidence Intervals (CIs) were estimated from 1,000 bootstrap 

repetitions. 

Exposure:   Life-Course-Persistent Asthma 

Outcome:    Leukocyte Telomere Length 

Third Variable:  Blood Eosinophil Count 

Estimate Percentile-Based 95% CI 
Total Effect -0.32 -0.49 , -0.15 

Indirect Effect -0.09 -0.15 , -0.05 

Direct Effect -0.24 -0.41 , -0.07 

% of Association Accounted 

for by Eosinophil Count 29% 0.15 , 0.61 
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Supplemental Figure 1. Box Plot of Eosinophil Count Z-Score by Age and Asthma Category. 
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the parenchymal and airway disease in COPD with much more
clarity. Advancements in phenotyping in conjunction with genetics
have provided better understanding about the genetic susceptibility
in COPD. The fact that several of the GWAS results for lung
function and COPD susceptibility are also associated with distinct
emphysema patterns is encouraging, whereas the question of
whether these loci are associated with COPD or emphysema
remains unanswered. Methods for quantification of local
emphysema and airway disease patterns are also evolving. This
will provide more opportunities to integrate these phenotypes
with genetics and genomics for systems biology analyses and
determination of molecular phenotypes in COPD. Localization of
emphysema on treatment outcomes is also emerging. A large
multicenter study comparing lung volume reduction surgery
with medical treatment has shown that patients with upper lobe
emphysema and low exercise capacity who received the surgery had
a greater survival rate than similar patients who received medical
therapy (15). In a recent randomized control trial evaluating the
efficacy of a g selective retinoid agonist in the treatment of
emphysema, placebo patients with lower lung emphysema
deteriorated faster than those with predominantly upper lobe disease.
In addition, patients with lower lung emphysema appeared to
respond better to the treatment (16). Adding more granularity using
LHE and other regional emphysema measurements will definitely
help advance this field. This makes us wonder, is COPD like the
GOLDen rule of real estate . . . location, location, location? n

Author disclosures are available with the text of this article at
www.atsjournals.org.
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New Asthma Biomarkers: Shorter Telomeres, Longer Disease?

Asthma is a disease characterized by large variability in its natural
history and clinical course. Patients can experience clinical
manifestations that go from mild, sporadic wheezing episodes to
life-threatening attacks, and anything in between. Once the disease

has occurred, the clinical course can follow any combination of
persistence, remission, and relapse, with a substantial and hardly
predictable interpatient variability. This difficulty in predicting
the natural history of asthma and, for that matter, the individual
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response to treatment and tertiary prevention is partly related
to our limited understanding of the molecular mechanisms that
underlie the disease and its sequelae.

In this framework, biomarker research holds the promise—or
at least the potential—to provide, on one side, new insights into
the molecules and pathways that drive the disease processes
and, on the other, to improve our ability to predict individual
outcomes, persistence of disease, and, in turn, to “personalize”
intervention strategies.

In this issue of the Journal, Belsky and colleagues (pp. 384–
391) provide an additional contribution to the field by using
longitudinal data from the Dunedin birth cohort to investigate
the potential role of a newly proposed biomarker of persistent
asthma: leukocyte telomere length (1). Telomeres are repetitive DNA
sequences located at chromosomal ends that are critical for the
maintenance of genomic integrity. Their progressive shortening with
cell divisions leads to cellular senescence and apoptotic death and, as
such, reduced telomere length has been proposed as a general
marker of aging and linked to morbidity and mortality in several
degenerative and age-related diseases (2, 3).

Two recent cross-sectional studies (4, 5) have first reported
that leukocyte telomere length may also be shorter in subjects
with asthma as compared with healthy control subjects and
correlate inversely with disease severity. These previous findings
are now confirmed and expanded by the study by Belsky and
colleagues (1) in at least three ways. First—and most importantly—
in this study the association between short telomere length
and asthma is investigated within a longitudinal study design.
Participants were followed from 9 to 38 years of age, and
leukocyte telomere length at ages 26 and 38 years was found to
be shorter in the group of subjects who had persistent asthma
from childhood into adult age but not among subjects who had
childhood asthma that remitted in adulthood or among those who
only had adult-onset asthma. These findings suggest one of two
possible scenarios: either an accelerated “molecular clock”—which
may be influenced by genetic factors and/or early developmental
processes—predisposes to an early-onset, chronic form of the
disease; or the persistence of active symptoms from childhood
into adult life and their related inflammatory processes lead to
significant telomere shortening. However, telomere shortening
between ages 26 and 38 years was not accelerated in any of the
asthma groups as compared with subjects with no asthma.
Therefore, the telomere length deficits associated with childhood
asthma that persists into adulthood are likely to be established
by early adult life, if not in childhood already. No telomere
length assessments were available from earlier ages in the Dunedin
study, and the conundrum of whether short telomere length
precedes or is rather a consequence of persistent asthma will
need to be addressed in future studies. By assessing telomere length
and asthma phenotypes from the early stages of life and, in turn,
linking them to disease outcomes in adulthood, these studies
will also contribute to establishing whether leukocyte telomere
length can provide any useful information to identify, ahead of
time, children with asthma who will go on to have persistent
disease as adults.

A second important strength of the study by Belsky and
colleagues (1) is the use of a population-based birth cohort with
a remarkably low attrition rate. This study design allowed the
authors to compare leukocyte telomere length between disease

groups within the same age intervals (i.e., at 26 and 38 yr)
and, therefore, to minimize the risk of potential confounding
by age differences across asthma phenotypes. This issue had
not been systematically addressed by previous research in the
field and is particularly relevant in light of the established
strong relation of aging to telomere length (6, 7). However, the
price to be paid for the methodological strengths of this type of
cohort study is that molecular investigations usually need to
rely on biospecimens that are easy to collect and the least
burdensome for participants (i.e., almost invariably blood samples).
This was also the case for the Dunedin study. Thus, whether the
association between short telomere length of leukocytes and
chronic asthma that was found in this study also applies to (or may
even be stronger for) other cell types remains to be determined.
Previous studies support a direct correlation between telomere
length measured in leukocytes and in samples from the lungs,
skeletal muscle, skin, subcutaneous fat, and saliva (7–9). However,
the strength of this correlation and its relevance in asthma for
cells that may be directly involved with disease processes in the
airways are unknown. Of note, in patients with chronic obstructive
pulmonary disease (COPD), telomere length has been shown to
be reduced both in leukocytes and other cells from lung tissue,
including alveolar type II and endothelial cells (10). Answering this
question in asthma will contribute to elucidating whether the
role of telomere shortening in this disease is mediated by
mechanisms that are shared across different tissues and whether
this biomarker may have any value in molecular phenotyping.

Last but not least, it is worth noting that in the study by
Belsky and colleagues (1) both persistent asthma and shorter
telomere length were found to be associated with elevated blood
eosinophils, suggesting that blood eosinophilia may be involved in
the link between the two. This finding holds particular interest
because eosinophilia has been shown to characterize the
subgroup of subjects with asthma who are at increased risk of
developing persistent airflow limitation (11), the hallmark of
COPD. Indeed, severity and persistence of asthma—two disease
characteristics associated with shorter telomere length (1, 4)—have
been consistently linked to worse disease outcomes in terms of
lung function deficits. For example, in this same cohort, individuals
who had persistent wheezing symptoms between age 9 and 26 years
also had the lowest levels of the ratio between FEV1 and FVC
throughout that age range (12). It is therefore tempting to speculate
that accelerated aging processes that are reflected by telomere
shortening may increase the risk of patients with persistent asthma
to develop COPD and, in turn, an overlap syndrome that carries
an elevated morbidity and mortality burden (13). Although this
scenario is in line with the previously established relation of
short telomere length to lung function deficits in asthma (5)
and to risk, morbidity, and mortality in COPD (3, 14, 15), at
the present time it remains an untested hypothesis.

Indeed, as evidence for the relation of leukocyte telomere length
to asthma has begun to build up, many of the above questions
will need to be tested before the robustness and possible clinical
implications of this association can be established and before some,
undoubtedly needed, light can be shed on its nature and implicated
mechanisms. n

Author disclosures are available with the text of this article at
www.atsjournals.org.
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The Child Is Father of the Man?

Establishing the origins of diseases such as asthma is one of the most
important goals of research today.

Asthma affects hundreds of millions of people worldwide. It is
the most frequent disease in childhood for which parents visit their
doctors, yet the origins of asthma are still mainly unclear. In past
decades, epidemiologic studies have provided better insights into the
etiology of asthma and provided several risk factors that can
contribute to this airway disease. Both developmental risk factors in
utero and in early childhood, such as environmental tobacco smoke
exposure, and genetic factors contribute to disease development,
and these risk factors may interact (1).

Early childhood risk factors in the first years of life are especially
important during the time of rapid lung development and growth.
During that period, all children are exposed to viruses that are
inhaled in the respiratory tract and that can affect epithelial cells,
underlying tissues, and the immune system. As a consequence,
many respiratory wheezing episodes occur in that time of life after
an early-life lower respiratory illness (LRI). It has been shown that
these LRIs, especially when induced by respiratory syncytial virus
(RSV), can be followed by asthma-like symptoms (2), and later on,
by a physician diagnosis of asthma with additional lung function
measurements in childhood (3), a risk that tends to diminish
toward adolescence (4, 5). This risk is especially increased in children
with severe RSV-LRI who needed hospitalization in early life (6).

Gern and Busse distinguished two nonexclusive relationships
between RSV-LRI and wheezing (7). They postulated that RSV
bronchiolitis, as can occur after RSV infection, may interfere with

normal lung development or immune maturation. This then leads
to recurrent episodes of wheezing. Alternatively, RSV infection
might constitute the first stimulus for wheezing in children who
are predisposed to wheeze by genetic susceptibility or preexisting
abnormal lung function at birth (7). However, observational studies
cannot determine whether RSV infection is the cause of recurrent
wheeze or the first indication of preexistent pulmonary vulnerability
in preterm infants. Therefore, a prospective study was designed by
Blanken and colleagues (8). A double-blind study with palivizumab,
an RSV immunoprophylactic agent, during the RSV season showed
that active treatment resulted in a significant reduction in wheezing
days during the first year of life in preterm children, a finding that
remained present even after the end of treatment. These findings
implicate RSV infection as an important causal mechanism of
recurrent wheeze during the first year of life in such infants. It
remains to be determined whether these protective effects on wheeze
are also present in term infants at risk for the development of
asthma; a study to investigate this was recently recommended (9).

Of interest, wheezing episodes after an RSV-LRI have been
shown to reduce by adolescence, suggesting this is a childhood risk
only (3–6). This also would suggest that RSV-LRI is not an asthma
risk but, instead, a wheezing risk in the first decade of life. In this
issue of the Journal, Voraphani and colleagues (pp. 392–398) showed
that this is indeed the case; that is, objectified RSV-LRI in children
of the Tucson birth cohort followed up to 29 years of age did not
relate to an increased risk for asthma at that age when RSV-LRI
had taken place in the first years of life (10). However, the authors
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