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Abstract

We investigate the propagation of random fluctuations thindaiochemical networks in which
the concentrations of species are large enough so that ffeegturbed problem is well-described by
ordinary differential equation. We characterize the b&ranf variance as fluctuations propagate
down chains, study the effect of side chains and feedbagbsloand investigate the asymptotic

behavior as one rate constant gets large. We also describinbadeas can be applied to the study
of methionine metabolism.



1 Introduction.

There are two different natural contexts in which stocltagyinamics arises in the study of bio-
chemical reaction networks. In the first, the stochastiorgbal dynamics arises from the ran-
domness inherent in the formation and breaking of chemigatlb. This “intrinsic stochasticity”
is particularly relevant when the numbers of molecules amallssuch as in gene transcription
and small gene regulatory networks where the mean contiensano longer faithfully model the
chemical dynamics. There is a large literature in this fie@dibning with [4], including[[12],18],
and recently exemplified by ][71[13]. In this setting, oneitglly assumes that the reaction system
is described by a Poisson process that models individuetdeteschemical reactions. One then de-
rives a partial differential equation for the time evolutiof concentration densities. As all species
have their own intrinsic stochasticity, this partial difatial equation is parabolic with a uniformly
elliptic generator.

In the second context, which is our focus here, one wants/&stigate the response of a large
biochemical system to external excitation. It is natural treoretically useful to consider stochas-
tic excitations and to study the emergent properties of #tevork as the random fluctuations
propagate through the system. Here the randomness is asewto study the out-of-equilibrium
dynamics of the biochemical system. In this setting, we mgsthat the concentrations are large
enough so that the unperturbed dynamics is faithfully mediely ordinary differential equations.
Typically, one in interested in perturbing a single (or dmaimber of) input(s) with white noise.
Hence, the perturbed problem becomes a stochastic differequation with a hypoelliptic gen-
erator.

The central biological goal driving our work is to understathe behavior of biochemical
systems in cells, whicn vivo are exceptionally large and complicated. A metabolite cathle
substrate for many different enzymes and participate imegpyly unrelated reactions. Individual
reactions usually have nonlinear kinetics catalyzed bymes that are themselves inhibited or
excited by products or distant substrates in the networks @ed tissues differ because the genes
that code for certain enzymes have tissue specific exprepsitterns and biochemical substrates
themselves also influence gene expression. Further, elisleogironment, its inputs and outputs,
and its internal state (e.g. stage of cell cycle) are nottemidut vary in time. This continual
variation affects both the concentrations of substratestha expression of genes that catalyze
particular reactions. Thus, the gene-biochemical netwsbiduld not be viewed as a fixed object
but as one that is continuously changing.

For each signal, either external or internal, that causestecplar cell to dramatically change
its operation, there are two natural questions. First, hoesdhe gene-biochemical network re-
spond to accomplish the change? Second, how does the nednalle the cell to maintain home-
ostasis in all its other operations despite the change? @uéike to understand the structural
and kinetic principles that allow the network to accomplith tasks simultaneously. We take
two distinct approaches to this biological goal. First, wedy how fluctuations propagate through
relatively simple systems. We are interested in discoggrow different network geometries mag-
nify or suppress fluctuations since this may give clues to ibghemical networks look the way
they do. Secondly, we apply fluctuationsitosilico representations of specific biological net-
works. By observing how fluctuations propagate we can ifiergiactions or subsystems that are
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buffered against such fluctuations, i.e. are homeostatienTthroughn silico experimentation
(e.g. removing particular reactions), we can take the systpart piece by piece to discover the
regulatory mechanisms that give rise to the homeostasis.

In this paper, we develop fluctuation theory for chemicattiea systems for which each com-
plex (in Feinberg’s terminology, [5]) consists of a singheemical species and the kinetics are mass
action. Thus the corresponding differential equationsliaear, so we refer to such networks as
linear SSC (single species complexes) networks. Becaube tihearity, the technical difficulties
involved in studying the associated stochastic processasimimized. Thus, linear SSC systems
are an excellent arena for investigating the effects of agtwyeometry on the propagation, mag-
nification, and suppression of fluctuations. The principlissovered then become the natural goal
for generalization to nonlinear settin@s [2].

To see the kinds of questions we want to ask, consider a sichli@ with a side branch. The
chemical species arg,, . . ., X,,, X,; the corresponding concentrations are denotedby. . , z,,, =,.

I+ O'dB(t) Xl ]{51 X2 ]{fg X3 ]{33 e X k’n

P

X

The chain has a constant inpytwhich is perturbed by some random process, in this caseewhi
noise. If the input is fluctuating, then each of the conceiaina will fluctuate as will the fluxes,
k;x;. Suppose the side chain is absent. Then, will the variatbhise fluxes increase, decrease,
or stay the same as we move down the chain? Does the answeddapthe rate constantg? If
the side chain is present, does it affect the variances dfukes on the chain? If so, what is the
effect of the size of..

The chemical reaction diagram corresponds to set of diftexkeequations for the concentra-
tions and, similarly, the diagram with stochastic forcirmresponds to a system of stochastic
differential equations (SDES):

dl’l = (I — k:lxl)dt + O'dB(t)
j,’g = /{31.7}1 — L.TQ — ]{72.7}2 + kS’Q.IS

T3 = koxo — kg3

These SDEs in turn give rise to a stochastic process on ttesggaceR™ . We prove that this
stochastic process has a unique stationary measure.iMalyithis means that at large times the
joint distribution of values of the concentrations beconmelependent of the initial condition and
independent of time. That is, the statistics converge tajaribrium distribution. The variances of
the concentrations referred to above are the varianceg oh#nginal distributions of this measure.
We prove the existence of the stationary measure for linB@rs§/stems in Section 2.2. In Section 3
we study the propagation of fluctuations in chains. In Sectioe study the effects of side reaction



systems, and feedback loops. In Section 5 we ask what happessances in the asymptotic limit
as one of the rate constants goesdocorresponding to a very fast reaction. In Section 6 we show
how to use the fluctuation theory ideas to investigate maetheometabolism.

It is important to note that our, goals, methods and resvétsldferent from those in classical
biochemical control theory [11[[3[.[9].121]. In that they one takes a system at a fixed steady
state, makes a small perturbation in a parameter (perhapgat), and allows the system to relax
to a new steady state. By comparing the new value of a var{@bdencentration or flux) to the
old value, one computes the percentage change of the v@apablunit percentage change in the
parameter. Technically, one is computing a partial dekieat This kind of sensitivity analysis
gives good information about local, linearized behaviaarrtée initial steady state. By contrast,
we are concerned with responses to large scale fluctuationputs. Technically, this means com-
puting properties of the distribution of each concentrato flux from properties of the stationary
measure.

It is true that the classical biochemical control theory bamade “stochastic” in the following
way. Suppose that the system has inpaind is at steady-state. Consider the same system with
input 7 4+ n, wheren is a random variable drawn from some density. For epale let the system
relax to steady state and measure the valuef some concentration or flux.is a random variable
and comparing it's variance to the variance)@fives information about how muche steady state
value of v changes ag changes. However, this modified biochemical control thedtgn gives
completely different answers from the fluctuation theowt thie are developing and the differences
are biologically significant. Consider the chain (withdw side chain) in the example above. If the
inputis’ + n, then, at steady state, the flixz,, must equal + n, soVar(k,x,) = Var(n); thus
the variance remains constant down the chain. By contrastyilvsee below that in our fluctuation
theory, under a variety of reasonable assumptions, thatat@nces of the fluxedecreaseas one
proceeds down the chain. This result is interesting fronoéogical point of view because it says
that one way to stabilize the flux out of a chain (i.e. smaliaraee) is to have many intervening
biochemical steps between the input and the output.

2 SSC networks and the stationary measure

In this section we introduce the class of chemical reacty@tesns that we will study and prove
the existence of a stationary measure.

2.1 SSC systems with mass actions kinetics

Throughout we use the terminology introduced by Horn, Jackand Feinberd [101[5]. Let: be
the number of chemical species. We shall study chemicaliozesystems such that each complex
contains a single chemical species and refer to such syste8SC networksin the sequel, we
use only the statements in Lemma 2.3.

Lemma 2.1 (Deficiency of SSC networks)An SSC network has deficiency zero.



Proof. Suppose the network has a single linkage class arttidehote the stoichiometric subspace.
Choose any reaction in the network; — X,. Here we have two complexes and one reaction
vector inS. Thus, if there are no other complexes, we are done. Bechesdidgram has one
linkage class, if there are other complexes, then there bmisine, call itX,, with an arrow to

or from eitherX; or X;. This adds one complex and one dimensio® teinceX,, is not a linear
combination ofX; and.X;. Continuing in this manner until we have exhausted all thaglexes,
we see that the number of complexes is one greaterdhafS}. Since there is one linkage class
the deficiency of the network is zero. The case where ther@is than one linkage class follows
easily because the reaction vectors in different linkagesgs are orthogonal. O

We will concentrate on SSC networks containing the zero dexthat have one linkage class.

Lemma 2.2 (Dimension ofS). In an SSC system containing the zero complex with one linkage
class,dim{S} = m.

Proof. Since the network contains the zero complex, the numbermptexes;n, is one greater
than the number of species, If s = dim{S}, then, by Lemm&2ll) =n—s—1=m — s, SO
s=m. [

We assume mass action kinetics so the differential equagomerning the system are linear:
x(t) = Az(t) + I, (1)

whereA € R™*™ andzx(t), I € R™. The matrixA is the matrix of rate constants for the system
and the vectof represents any constant flow into the species of the systemtfre zero complex.
Thus the components dfare non-negative. We denote the open positive orthant atbsure by
RZ, andRZ,, respectively.

Lemma 2.3. If a linear SSC system is weakly reversible and containséh®eamplex, then

(a) The differential equation@ll) have a unique equilibrium which is globally asymptotically
stable and contained iRZ,,.

(b) The eigenvalues of the matrix of rate constadtshave strictly negative real parts.
(c) Forall vectorsv € RY;, we haveetv - e; > 0.
Proof. Part (a) is a special case of the zero deficiency thedrem [b¢eS! is the Jacobian at the

equilibrium point, (b) follows from (a) and linearity. (cplds becaus&Y, is invariant under the
flow of the differential equation. 0J



2.2 The Stationary Measure.

Consider the following weakly reversible SSC system witlsgection kinetics, input vectdr and
matrix of rate constantd perturbed by a mean zero, finite variance stationary sttich@®cess

§(t):

{ B(t) = Ax(t) + I + £(t), ()

z(0) = o .

From this definition and the stationarityg(ft) one easily sees théi (2) generates a time-homogeneous
Markov process.

Theorem 2.4. The process*(t) = z*(t, &) defined by

t t
x*(t,€) :/ A=) T ds—l—/ eAt=s)¢, ds (3)

is a stationary solution t@). Furthermore given any initial conditiamy, if (¢, x¢, £) is a solution
to equation) thenx (¢, o, £) converges ta* (¢, £) ast — oo in that

Ela(t, 20,€) — 2" (LE)? — 0 as t— oo

Proof. Observe that for any, 7 € R,

t+1 t+1
z(t+71) = / AT ds + / A=) (5) ds

t t
= / AT ds +/ AIe(s + 1) ds
This can be written succinctly as
(0r27)(t,€) = x*(t, 0-¢) (4)

where the shift; is defined by(6; f)(s) = f(t + s) for all s,¢ € R and functionsf onRR. Hence
foranyt, <--- <t,,

(2" (T +t1,8), - 2" (T + 0, 8)) = (¢ (11, 0:6), - -+, 2" (tn, 0:€)) .

Since¢ is a stationary process, the distribution of the right haidé s independent of which
proves that:* is stationary. Clearly;*(t, ) is a solution in that:(t, *(0, ), &) = x*(¢, ).

We now turn to convergence. It follows from Lemma 2.3(b) tihatre are constants M > 0
such thaf|e?|| < Me=2! for all t > 0. Subtracting the solution of (2),

t t
z(t, zo, &) = ety +/ AT ds +/ eAt=s)¢, ds, (5)
0 0

7



from x*(t), squaring, and taking expected values gives,

2 2

0 0
E|x(t, xo, ) —x*(t,§)|2 §3||6At||2|x0|2+3E'/ A=) s +3E‘/ eA(t_s)SSds

— 00

3M2|IJ?

a2

0 0
+3E</“|w“*ﬁmw)(/’|w“*@maﬁm)

ML o, | BM
—€
O[2

§3M2 |I0|26_2at + e—20¢t

§3M2|x0|26_2o‘t + + —6_2°‘tVar(§).

a2

Thus,E|z(t, zo, &) — 2*(t,€)]> -0 as t— oco. O

Remark. If one takes expectations on both sides of equation (5), eas snmediately that the
model is consistent in the mean, that is, the mean of the ghexdiuyproblem is equal to the solution
of the unperturbed problem.

If instead of random perturbations given by the vectowe had allowed the system to be
perturbed by independent white noise processes, we atrikie ollowing system of 1td stochastic
differential equations:

{dx(t) = (Az(t) + 1) dt + SdB(t), )

z(0) = 9,

whereX € R™*? and B(t) is standarg-dimensional Brownian motion. The following theorem is
proved in the same manner as Theokem 2.4.

Theorem 2.5. The process*(t) = z*(t, B) defined by

t t
x*(t, B) :/ eAlt=s)T d8+/ eAINdB(s) (7)

[e.e] — o0

is a stationary solution t@d). Furthermore given any,, if z(t, zo, B) is a solution to equation
@) thenz(t, zo, B) converges ta*(t, B) ast — oo in that

E|z(t, 20, B) — 2*(t,B)]* =0 as t—oo.

Proof. The proof is identical to that of TheordmP.4, except thattiésometry is used to control
the expected value of the square of the It0 integral term. O

Sincex*(t) is stationary, the distribution af*(¢) is independent of and invariant under the
dynamics of [R) (or[{6)). More precisely, defining the measurd) = P(z*(0) € A) for all
measurablel C R™, we see that

mmzjﬁww%oemmww
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Furthermore,u. characterizes the longtime behavior of the solution in that distribution of
x(t, o, &) converges tqu ast — oo. This follows fromE|xz(t, o, &) — 2*(t,£)]? — 0 and the
fact thatu(A) = P(z*(t) € A) for all £.

Thus . contains information about the average, long-term behafidluxes and concentra-
tions. It will be i, therefore, which we shall probe in order to gain an undedstey of how differ-
ent graphical structures and asymptotic limits of biocheinieaction systems increase, decrease,
and otherwise modify the exogenous fluctuations of biochahreaction systems. Throughout
the rest of this paper, it is understood that each mean carvagiis computed with respect to this
stationary measure.

2.3 A General Bound

We can now prove a simple general bound for the variance adheentration of any species in
an SSC system in terms of the variance of the input fluctustigve assume that the fluctuations,
&, are one-dimensional, stationary, mean zero, and finitavee. By taking the expected value
in equation[(B) and using that has mean zero one sees that

t
m; = [/ eAt=9)e, . e; ds (8)

is the mean of thé" species.

Theorem 2.6. Letz*(¢) be the stationary solution of an SSC system with one idpt, a single
species X1, that is perturbed by a stationary stochastic proc&sswith finite variance and mean

zero. Then for each
m.

Var(z}) < (%)2 Var(§).

Proof. Using Lemma 2.3(c) and the Cauchy-Schwarz inequality gives
t 2
Var(ai(0) =& ([ 6o o)
! A(t—s) 1/2 /0 A(t—s) 1/2 ’
=E & (e ey - ei) (e e - ei) ds

t t

< E (/ §§eA(t_S)61 e ds) (/ eAt=9)e, ¢ ds)
—00 t 2—00

= Var(§) </ eM=e, e, ds)

= <%>2 Var(§).

The strictness of the inequality follows becaygsés not a constant. O
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This simple result is all that we need in this paper. An analsgproof works in the more
general case where there are inputs to more than one sprediasyanumber of the inputs undergo
independent fluctuations.

3 Chains
In this section we consider non-reversible chains with naasisn kinetics:
I kl k2 km—2 km—l km (9)
o — X5 — X5 — - — X, — X, — 0

Theoren 2 allows us to see that variances of the fluxes attétionary solution decrease as one
proceeds down the chain.

Theorem 3.1. Let the input,/, of a non-reversible chain with mass action kinetics be yréed
by a stationary stochastic process, with finite variance and mean zero. Let(t) denote the
stationary solution for the chain. Then, for &IV ar(k;xf) < Var(§) and

Var(kipqizl,) < Var(kal). (10)

Proof. From the remark following Theorem 2.4, we know that the mean of = (t) is the equi-
librium value ofx; for the unperturbed problem. For the chain this implies that= ki so the
boundVar(k;z}) < Var(§) follows immediately from Theorein 2.6. To pro\el10) notet e
input to X, is

kai(t) = I + (ki) — 1)

and kx5 (t) — I is a stationary stochastic process of mean zero and finitane. Thus, by

TheoreniZB,
Var(kexsy) < Var(kai —1) = Var(kay) .

The input toX is kex5(t), So repeating this argument down the chain prolés (10). O

Note that the variances of the fluxes are strictly decreaasngne moves down the chain even
though the means of the fluxes remain unchanged (i.e., equdl tThe next natural question
is how much do the variances decrease down the chain? Thiettha answered without more
detailed information abou}. To investigate it, we will perturb the inputby white noisegdB(t),
which will allow us to use the Itd calculus.

Theorem 3.2. Let z*(¢) be the stationary solution of the linear chaf@) where the input is per-
turbed by white noise. We assume that the rate constanse distinct. Then

Va?"(.’lfi) = 0'2 Z prp”«m, (11)
j T

j=1 r=1
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where

i—1 7 . .
po = { (k) [ (st~ k) 25 12
0 1<
Proof. The matrix of rate constantd, is given by
[ -k 0 ... 0
ki —ky ... 0
A=
I Y AR

Let P = {p;;}. A straightforward calculation shows that tli column of P is the eigenvector
of A corresponding to eigenvaluek;. Thus,D = P~'AP is diagonal. In additionp takes the
vector(1,1,---,1)" to the vector(1, 0, - - - ,0)”. Using these facts, the formul@d (7) fet(¢), and
the 1td Isometry,

t 2
Var(z}) = o’E (/ eAt=s)e, . eist)

— 00

t
= g2 / (PeD(t_s)P_lel . ei)2 ds

—0o0

2

. 1
=0 / PePt=) | o e | ds
o 1
o1 (t—s) 2

t
=0 / P : ce; | ds
—o0 e—km(t—s)

, 2
t K3

202/ Zpije_kj(t_s)> ds
j=1

7 K3

' 1
=0’ Zpijpirm-
j T

j=1 r=1

O

We assumed that thig’s were distinct so that the explicit formulas above makesserit can
be shown that the variances of the concentrations are emntsfunctions of the rate constants.
This fact, together with the bound given thy110) allows usdodude that formulg{11) has finite
limits as various subsets of tiigs become identical.

We can use the explicit formulE&{]11) to answer several nbturastions:
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Example 3.3. (Magnitude of decreaseTheoren 31l shows that variances of fluxes are strictly
decreasing as one moves down a chain. To investigate how tineiglkdecrease, consider the chain
@) wherem = 2 and the input is perturbed by white noise. Usihg (11) we satithr(k z7) =

o2k1 *\ _ _o?kiko
5+ andVar(kyry) = 5t Tiey- Thus,

Var(kers) ko
Var(kyat)  ky +ky

This simple example shows that the ratio of successiveveggcan be any number between zero
and one.

Example 3.4. (Long chains)Assume that; = k for some fixedk > 0 and alli. Taking the limit
of () is difficult. Instead, since all the are equal, an induction proof shows that

i—1 t
(1) =t o [ (= syl B (s)
Z; 2 0<i 1) S e s).

Using the Itd Isometry, it follows that

,2(2i—2)1'1

Vary(z}) = o Ti=1ek

and using Stirling’s formula

E o1
2 —3/2
o NN +O@™) .

Thus the variances decrease to zero in a regular fashidroif e rate constants are the same.

Var(kx}) ~

Example 3.5. (A small rate constantSuppose that one rate constant,in a chain is very small.
Using the explicit formulal{dl1), one can easily compute that

1
Var(kx;) ~ 0251@ +O(k?), ask; — 0,
1
Var(kjx}) ~ 0251{:@ +O(k?), ask; — 0, forj > i.

Notice that the small rate constant has the effect of sigmfly decreasing the variances of titte
and all subsequent fluxes while the means of the fluxes renmaimamged. Therefore a small rate
constant is not “rate limiting” but instead is “variance itig.”

Example 3.6. (A large rate constantSuppose that one rate constant,in a chain is very large.
Again, using[(Tll), one can compute that

Var(kx}) — Var(k,_1x;_,), ask; — oo.
Furthermore, for alj > 1,

Var(k;jz}) — Var(k;i;), ask; — oo,
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I -+ O'dB(t) ]{31 ]{52 ki—l ki—i—l
X1 X X

wherez; is from the process arising from the following system:

This shows that in the asymptotic limit whekge — oo one can replace the original chain by
the chain with the substraf€; removed. Here we implicitly use the fact that since the kassdre
linear and hence the concentrations are Gaussian thetistatise determined by the means and
variances.

4 Side Reaction Systems and Feedback Loops.

A side reaction systemn a chain is any SSC system that gets its input from a spegitgeahain
and has output that flows back into the same species; seeeHEdlLibelow.

I+ £(t) ¥ ky

1 X2 -
kQHkg

Side Reaction System

Figure 4.1: A side reaction on a linear chain

Note that there must be a species within the side reactidersywhose output flows t&; with
some rate constantz. DefineY to be that species. The SDE governing the behaviar, of) is

then given by

If z, is the solution to the above system when there is no sideioeagystem (i.ek, = k3 = 0),
then J
%@(t) =1- ]ﬁjl(t) + 5(75) (14)
Theorem 4.1 (Side reactions lower variance)Let z; andz; be the first components of the sta-
tionary solutions td[I3) and (I4), respectively, wherg(¢) is a finite variance, mean zero, random
process or white noise. Then,

Var(kizy) < Var(kzy).

Proof. We give the proof in the case whef&) = odB(t) is white noise; the proof in the general
case is similar but more complicatéd [1]. Lét) = E(kyx,(t) — I)? andz(t) = E(ky 21 (t) — 1)?,
wherez;(t) andz,(t) are solutions of{{(13) and{IL4). By theoréml2(3) and z(¢) converge to
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Var(kixy) andVar(k,27), respectively. We will prove the theorem by comparing tHéedential
equations satisfied by(¢) andz(¢).
By using Kolmogorov’'s backward equatidn [18], we see #af satisfies

F(t) = =2k 2(t) + kio®. (15)
Therefore,Var(k,3%) = ky0*/2 becausé/ar(k,77}) is the equilibrium value of{15). Similarly,
z(t) satisfies
2 (t) = —2k12(t) + k30 + 2k E (ki (t) — ) (ksy(t) — ko (1)),
and so, by Theorefn 2.5,

]{510'2 1

Var(kz)) = ——+ §E(/€1x’{ — I)(ksy* — kox}).

Thus, to complete the proof we need only show th@t, =7 — I)(ksy* — kox}) < 0. The remark

following Theorem 2.4 implies thatz} = I/k; andEksy* = Ekox}. Therefore Eksy* = "%I,

and .
E(kizt — I)(ksy* — koa) = k—:E (kywihsy* — K223%) .

By TheoreniZB E (ksy*)* < E (koat)?, SO
1 1
[E (ks iksy™)| < (E k3277)* (E k3y™)*
< E k227>
Thus,E(kix} — I)(ksy* — ke2}) < 0, as desired. O

A feedback loon a chain is an SSC system together with an input from oneespen the
chain,X,,, and an output to an earlier speciég, see Figur&4]2.

I+ k Fp— kn
& X, LI . X,
fl(t)\ ,/C
Subsystem

Figure 4.2: A chain with a feedback loop

Theorem 4.2. Let z(t) be the vector of species concentrations for the clfjrand letx(t) be
the vector of species concentrations for the chain withifeeld loop (FiguréZ12), wherg(t) is a
finite variance, mean zero, random process or white noisen;Th

Var(ky,x;) < Var(k,z)).
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Proof. Let {V;} be the substrates arigl be the matrix of rate constants of the SSC subsystem in
Figure[4.2. We suppose the} is the species which gives input #6, with rate constant. Then
the input toX; from the feedback loop is

t
fi(t) = aePv(0) - e; + ac/ P, (s) - e ds,
0

which depends explicitly only om,,. If we let R(t) = k,,_1z,_1(t) then the differential equation
for x,,(t) is &, (t) = R(t) — cxn(t) — knw,(t).

I+& % ky kpn—1 ky

1 —— e n

Subsystem Y: Y, e Y
fi(t) k1 ko

Figure 4.3: A chain with a side reaction system

Consider the chain with side reaction system given in Figlife where the subsystem is
the same as in Figuie_4.2 and the fluxYfpcomes fromV; with rate constant.. Let Q(t) =
kn_12,1(t) and P(t) = k,_1y,_1(t) be the inputs toX,, in Figure[43B. Since the input to the Y-
chain isf;(t) and the rate constants for the two chains are the s&ti¢,~ Q(¢) + P(t) because
the differential equations are linear. Thus, the diffel@rgquation governing,,(¢) in Figure[4.2
is the same as the differential equation governin(y) in Figure[4.3B. Since the system in Figure
M3 is a chain with a side reaction system, the result follivaus TheoreniZ]1. O

5 One large rate constant in a general SSC system

We now consider a general weakly reversible SSC system mpiltiand characterize the effect of
a large rate constant.

Theorem 5.1. Suppose that independent white noise processes perturinghés to a weakly
reversible SSC system with substrates. Lef, be a particular substrate and suppose that the
rate constantL for one flux out ofX, to another complex (possibly the zero complex) is large.
Then,

Var(z) ~ O (%) asL — oo. (16)
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Proof. We will assume that one of the perturbed inputs goes dirgotl{,. The proof of the
general case is similar. The stochastic differential eéqnajoverninge,(t) is given by

dzo(t (C + Z ciwi(t) — (L + K),(t )) dt + odB(t) , (17)

whereL + K > 0 is equal to the sum of all the rate constants for reactionsrigaX,, C' > 0 is
the input flow toX, from the zero complexg > 0, andc; > 0 is the rate constant associated with
the reactionX; — X,. Solving [IT) forz in terms of ther; and using the 1td Isometry, one can
easily bound/ar(x}),

. I} cVar(z})
Vartl) < g L L

for some constant. To complete the proof we will show th&tar(z}) < O(L).

Let A be the matrix of rate constants for the SSC system. Usingptineuia [T) for the station-
ary solution and the Ito Isometry, one easily calculates:

¢
Var(z}) = 02/ (e . ;)2 ds, (18)

for some vectoe. By LemmdZ.B(b) we know that the real parts of the eigenadiiel, {\;}, are
strictly negative; let = inf {|\;|}. There exist positive constantand}/ so that for alt —s > 0,
we have||eAt=9) || < ce=t=5), Using this inequality in[18), we have

Var(z}) <7

In Appendix A we prove thak > O(1/L), soVar(z}) < O(L), which concludes the proof. [

Example 6.1 (A side chain with a large rate constantYo illustrate the theorem, we consider the
linear chain with a side reaction given in the diagram in titeolduction. As the rate constant
becomes large, Theordmb.1 tells us that (23) < O(1/L). Therefore the flux out oK, down
the chain has variandéar(kex%) < O(1/L). By Theoreni:Zlb,

Var(kx}) < Var(kexy) < O(1/L) foralli> 2.
Thus, for alli > 2, the means of the fluxes remain equal tavhile the variances of the fluxes go
to zero asl, — .
6 Application to Methionine Metabolism.

The actual biochemical systems involved in cell metabohsenmuch more complicated and more
difficult to analyze than the single species systems coresidi@ the previous sections. Consider,
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for example the diagram in Figure 6.1 that shows the meth®wicle and part of the folate

cycle. Firstly, most reactions have two or more substratesnaany enzymes are inhibited by the
products of the reactions they catalyze. Thus, the kinaticde highly nonlinear. Secondly, many

reactions are catalyzed by two different enzymes that hemedifferent properties. Thirdly, some

substrates inhibit or activate distant enzymes in the i@adiagram (red arrows in the diagram).
These long-range interactions make it virtually imposstblintuit the emergent properties of the
network by tracing influences from point to point.

METin .

N
o THF methionine

P MAT-I|

(Folaté cycle) DNA

glycine

v
5,10-CH, THF

NADPH
-

betaine
NAD! P‘/

A 4

N

4

DNMT

sarcosine
DNA-CH,

4
w
>
EE

5mTHF homocysteine |«
SAHH

adenosine H.0

Ceas )

cystathionine

Figure 6.1. Methionine Metabolism. Substrates of the methionine cycle and (part of) the folgte c
cle are shown in green and red rectangles, respectivelyymmacronyms are in ellipses. Long-range
interactions are shown by red curves with the arrow indigatictivation and the bars indicating inhibi-
tion. SAM, s-adenosyl-methionine, activates CBS and ithiBHMT and MTHFR, while 5SmTHF, 5-
methyltetrahydrofolate, inhibits GNMT.

Epidemiological evidence correlates changes in folateraathionine metabolism to serious
human health consequences (cancer, heart disease, dmpressl there are several important
public health issues involved in folate supplementationwagently practiced in the United States
and Canada. Thus, this part of cell metabolism has been fjleetalf numerous experimental
studies and several modeling studied [14][20][16][19)[Tur purpose here is simply to illustrate
how fluctuation analysis can be used to understand such aleosystem.

The velocities of the individual reactions in the methianaycle [17] are typically highly non-
linear functions that depend on the concentrations of ségebstrates. For example, the velocity
of the GNMT reactionVn 7, depends ov ANM, onSAH because of product inhibition, and on
5mT H F because of a long-range interaction. Because of the coitypbd the nonlinearities,
a rigorous mathematical analysis of this system is beyon@otimathematical techniques. Even
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proving the existence and uniqueness of a stationary measar delicate issue. Nevertheless,
we have investigated this question by numerical computdtiche case where the methionine
input (M ETin) is an Ornstein-Uhlenbeck process with mean 480hr and standard deviation
30 (variance = 900). We found that the joint distributiontud substrates does indeed stabilize as
time gets large, and thus for each concentration or flux, X¢arecompute the ratio

B Variancé X)
~ Variancé M ETin)’

which tells us how muchX varies compared to the variance of the input. Table 1 shows th
values ofr for two substrates and two fluxes in the case where all the-tange interactions
are present (regulated) and the case where the long-rateyadfion are absent (unregulated).
Methionine is quite stable in both cases but is more stabtharregulated caseS AM is much
less stable than methionine, which agrees with what is sgperimmentally. Notice that in the
unregulated case, the variances\@fy,,~ andVp i are similar, but in the regulated case the
variance ofV; v doubles and the variance &%y, becomes exceptionally small. There are
good biological reasons why one would want the DNA methglatiate to be stabilized against
fluctuations in methionine input. Thus, fluctuation anayiows that this stabilization is achieved
by the long-range interactions. We have also computed tluesarr in all the intermediate cases
where some but not all of the long-range interaction aregoesnd this has enabled us to quantify
each of their effects and propose an evolutionary sceri@rip [

Table 1. Values of r
Methionine r
regulated | .064
unregulated .082
SAM r
regulated | .22
unregulated 1.23

Vanur r
regulated | .15

unregulated 0.079

VoNur r
regulated | 0.007
unregulated 0.09

In liver cells the reaction from methionine KAM is catalyzed by two isoforms of the same
enzyme M AT—I andM AT—I 11, that have very different properties |15l AT—I is inhibited by
SAM andM AT-I11 is activated by5S AM, and it has been proposed that it is this unusual combi-
nation that stabilizes the methionine concentration. $ottes, we recomputedafter eliminating
the M AT—I11 reaction and raising thg,,,., of the M AT—I reaction so that it carried the same
flux previously carried by both. The values in Table 2 showobasively that, indeed, the presence
of the M AT—I11 reaction somewhat destabiliz8si M but greatly increases the stability of the
methionine concentration.
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Table 2. Values of r
Methionine r
with MAT—III | 0.06
noMAT—-III |0.16

SAM r
with MAT—II1 | 0.22
noMAT—-III |0.17

7 Discussion.

In Sections 2-5, we developed the theory of propagation ofifltions for the special case of linear
SSC networks and proved theorems relating variances toonetstructure. Variances decrease
down a chain and the presence of side reactions and feedbag &lways lowers the variances
further down the chain. These results are very general irthleg hold independent of the choice
of rate constants. It is tempting to speculate that biochahsystems evolved to be as complicated
as they are partly because of the homeostasis of exit fluxeswad by having many intermediate
steps. We also showed how the large size of a single rateardredfects variances. It is known
that most of these results generalize to non-linear SSCanksmavith restrictions on the nature of
the nonlinearityl[2]. It remains to be seen whether they gdiee to networks in which complexes
contain more than one species. In these highly non-lineategts, a fundamental mathematical
issue is the proof of the existence of a stationary measure.

A reasonable concern with the idealized models in Sectiehg?that, under the influence
of the fluctuations, the concentrations can become negdiyenodifying the forcing processes
appropriately this could have been avoided. However, tlosldvcomplicate the analysis and
prevent us from obtaining explicit formulae and straightfard bounds. Since our goal with these
idealized models is to build intuition and develop generai@ples, we have purposely avoided
complicating the analysis.

In Section 6 we showed how the ideas of fluctuation theorydctal used to investigate a
network of biological interest, the methionine cycle. Iréasonable to ask whether methionine
input actually fluctuates randomly and if so what are the ertigs of the fluctuations. There
are really two answers. The input to the methionine poolverlicells is certainly continually
varying. There are large deviations on the time scale of$idapending on the times and content
of meals. Methionine is always being used for protein sysithand is being made available by
protein catabolism, two processes that are themselveabkarand not always in balance. The
methionine available for input to the methionine cycle soaffected by the use of methionine in
other metabolic reactions. Finally, all these processesfiected by the time-varying regulation
of the genes that code for the various enzymes. Thus, theafiswer is that we don’t know
how methionine input varies but it certainly fluctuates vatandard deviations of the order of 30-
50 uM/hr on the time scale of hours and with smaller standardadmns on the time scales of
minutes and seconds. The second answer is that it doesnérmafke are using the fluctuations in
methionine input as a probe of the dynamical properties®ttfstem away from equilibrium. Of
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course, we need to be sure that the properties we find do nehdem the detailed properties of
the noise.

For simplicity of exposition, we have discussed the spexaak where a single input to a bio-
chemical system is varied. The same ideas can be used tdusgdluctuations in a concentration,
a flux, or in several places, and then study how the fluctuatwapagate throughout the system.
Understanding the consequences of fluctuations in kinetiampeters is also important because
kinetic parameters depend on enzyme concentrations aed ptbperties that are variable and
themselves dependent on time-varying genetic regulafioalyzing this case requires some tech-
nical extensions of this work.

In the Introduction we referred to “intrinsic stochast€iin contrast to the external stochastic
forcing that we consider. It would be interesting to considedels with both forms of stochastic-
ity, and indeed both surely arise in gene networks. In getvearks that are coupled to biochemical
networks, the intrinsic stochasticity at the gene and gegelation level can be viewed as external
stochastic forcing to the biochemical level. Thereforahtigpes of questions and analyses will be
necessary to gain full understanding of real biologicaoeks.

Appendix A

We derive the bound used in TheorEml 5.1. There are two caseb mded consideration:

1. The flux out ofX, with rate constani. goes to another species. This case is handled in
Theorem A.1 below.

2. The flux out ofX, with rate constantk leaves the system. The proof of the result in this case
is similar to the proof of the theorem below and so the detagsomitted.

Theorem A.1Let A = {a;;} be ann x n matrix with the following properties:
(1) Foreachi, a; < 0 and|a;| > Z;.;i laji|.

(2) a11 = —L 4 a1 andag; = L + any for somen;; < 0 andas; € R.

(3) ForeveryL > 0, the real parts of the eigenvalues 4fare all strictly negative.

Denote the eigenvalues dfby {\;} and letA = inf {|Re()\;)|}. Then

A>O0O(1/L), asL — .

Proof. Let B = %A. The eigenvalues of are{%ei . e; is an eigenvalue ofi}. We will use
the characteristic polynomials of and B to show that the magnitude of the real parts of the
eigenvalues oB are no smaller tha®(1/L?), which implies our result.

Becausd. only appears in the first column ef, all O(1) terms of B occur in the first column.
Expanding the determinant d# by cofactor expansion along the first column then shows that
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det(B) must be of orde©(1/L") or O(1/L""). Similarly, the cofactors of3 must be of order
O(1/L™Y) or O(1/L"2). Therefore, computing the inverse Bf (which exists by assumption
(3) above) by cofactors, we see that the possible order oétiées of 3-! are1, L, and L?.
Therefore||B~|| < O(L?).

One may viewB as al/L matrix perturbation of the matri’ = {c;;}, wherec;; = —1,
ca1 = 1, and¢;; = 0 for all other entries. Therefore, each eigenvalpeof B is an analytic
functions of1/L:

1 1 1
= — — O —= 19
p=pot otz <L3), (19)
wherep, is —1 or 0. If po = —1 there is nothing to prove; so we assume= 0. If p; = p, =0

thenp = O(1/L3). However, this would imply thaD(1/p) = O(L?). Sincel/p is an eigenvalue
of B~1, this would contradict the norm bound fBr*, above. Thug; andp, can not both be zero.
It remains to be shown that the leading order term in equdfi@h can not be purely imaginary.
We will do this through asymptotic matching.

Consider two different formulations for the charactedgtolynomial ofA, p4(x):

pa(z) = det(xl, — A) (20)
= 12" 4+ Lu(x) + v(x) (21)
=" + an_len_l + co,n_lx”_l 4+t chLx2 + 0072x2

(22)
+ Cl,lLSL’ + Cp1x + CLQL + €0,0,

whereu(z) andv(z) are polynomials of degree — 1 that are independent @f, andc; ; € R for
i=1,2andj = 1,..n — 1 (i gives the power of. and; gives the power of: for the terme;; L'z7).

We note that we can not have, = ¢y, = 0, for then there would be a zero eigenvalue, which
would contradict assumption (3).

To show that the leading order term in equatiod (19) is noelgumaginary we will consider
two casesp; = 0 andp; # 0. We begin by supposing = 0 andp, # 0. Thenp = O(1/L?) and
there is a solution td{22) which 8 (1/L). Puttingz = ps/L into (23) and setting the equation
equal to zero gives us:

2 2
O <%) + Clin + 6052'02 +Crip2 + Cozpz +c10L + cop = 0.
Matching like terms inL tells us thatc; o = 0, ¢ # 0, andc; 1 # 0. Solving for p, gives us
p2 = —cop/c11 € R. Thereforep, has a nonzero real part.

We now suppose that # 0. Because finding af(1/L) solution to equatioriL.(19) is equivalent
to finding anO(1) solution to [21),p; must satisfyu(p;) = 0. Let D(x) = zI, — A. Then
u(z) = D(x)11 + D(x)q91, WhereD(z),; is thei, j cofactor of D(z). D(z)1; and D(z), differ
only in the first row, so we may combine the determinants byiragthe first two rows. We
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conclude that

—G92 — Q12 + T —a13 — G3 —A14 — G4 —Q1p — Q2

—aszo —azz + —a34 —agzy

u(z) = —Qy42 —ay3 —Q44 + T —Qy4p
—0ap2 —0an3 —Ap4g —Ann +

Solvingu(z) = 0 for non-zero solutions is therefore equivalent to findirgnlon-zero eigenvalues

of the matrix

Q2o + Q12 Q13 + Q23 Q14 + Q24 Q1p + Q2p
as2 a33 a34 a3n,
A= 42 Q43 (77) Qqn
| ap2 an3 An4 Ann |

By assumption (1), the diagonal entriesfire non-positive and have magnitudes that are greater
than or equal to the sums of the magnitudes of all the othengten that column. Therefore,
Gershgorin’s Theorem says that the non-zero eigenvaluds afid hence the non-zero solutions
of u(x) = 0, have strictly negative real part. Thuge¢(p;) # 0. This completes the proof. O

If the flux out of X, with rate constanL leaves the system, the only change in the statement of
the above theorem is tha, is independent of.. The proof is identical except thatz) = D(x);
and so we no longer have to add two determinants togethemify «(z).
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