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Abstract

We investigate the propagation of random fluctuations through biochemical networks in which
the concentrations of species are large enough so that the unperturbed problem is well-described by
ordinary differential equation. We characterize the behavior of variance as fluctuations propagate
down chains, study the effect of side chains and feedback loops, and investigate the asymptotic
behavior as one rate constant gets large. We also describe how the ideas can be applied to the study
of methionine metabolism.
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1 Introduction.

There are two different natural contexts in which stochastic dynamics arises in the study of bio-
chemical reaction networks. In the first, the stochastic chemical dynamics arises from the ran-
domness inherent in the formation and breaking of chemical bonds. This “intrinsic stochasticity”
is particularly relevant when the numbers of molecules are small such as in gene transcription
and small gene regulatory networks where the mean concentrations no longer faithfully model the
chemical dynamics. There is a large literature in this field beginning with [4], including [12], [8],
and recently exemplified by [7][13]. In this setting, one typically assumes that the reaction system
is described by a Poisson process that models individual discrete chemical reactions. One then de-
rives a partial differential equation for the time evolution of concentration densities. As all species
have their own intrinsic stochasticity, this partial differential equation is parabolic with a uniformly
elliptic generator.

In the second context, which is our focus here, one wants to investigate the response of a large
biochemical system to external excitation. It is natural and theoretically useful to consider stochas-
tic excitations and to study the emergent properties of the network as the random fluctuations
propagate through the system. Here the randomness is a tool used to study the out-of-equilibrium
dynamics of the biochemical system. In this setting, we assume that the concentrations are large
enough so that the unperturbed dynamics is faithfully modeled by ordinary differential equations.
Typically, one in interested in perturbing a single (or small number of) input(s) with white noise.
Hence, the perturbed problem becomes a stochastic differential equation with a hypoelliptic gen-
erator.

The central biological goal driving our work is to understand the behavior of biochemical
systems in cells, whichin vivo are exceptionally large and complicated. A metabolite can be the
substrate for many different enzymes and participate in apparently unrelated reactions. Individual
reactions usually have nonlinear kinetics catalyzed by enzymes that are themselves inhibited or
excited by products or distant substrates in the network. Cells and tissues differ because the genes
that code for certain enzymes have tissue specific expression patterns and biochemical substrates
themselves also influence gene expression. Further, each cell’s environment, its inputs and outputs,
and its internal state (e.g. stage of cell cycle) are not constant but vary in time. This continual
variation affects both the concentrations of substrates and the expression of genes that catalyze
particular reactions. Thus, the gene-biochemical networkshould not be viewed as a fixed object
but as one that is continuously changing.

For each signal, either external or internal, that causes a particular cell to dramatically change
its operation, there are two natural questions. First, how does the gene-biochemical network re-
spond to accomplish the change? Second, how does the networkenable the cell to maintain home-
ostasis in all its other operations despite the change? One would like to understand the structural
and kinetic principles that allow the network to accomplishboth tasks simultaneously. We take
two distinct approaches to this biological goal. First, we study how fluctuations propagate through
relatively simple systems. We are interested in discovering how different network geometries mag-
nify or suppress fluctuations since this may give clues to whybiochemical networks look the way
they do. Secondly, we apply fluctuations toin silico representations of specific biological net-
works. By observing how fluctuations propagate we can identify reactions or subsystems that are
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buffered against such fluctuations, i.e. are homeostatic. Then, throughin silico experimentation
(e.g. removing particular reactions), we can take the system apart piece by piece to discover the
regulatory mechanisms that give rise to the homeostasis.

In this paper, we develop fluctuation theory for chemical reaction systems for which each com-
plex (in Feinberg’s terminology, [5]) consists of a single chemical species and the kinetics are mass
action. Thus the corresponding differential equations arelinear, so we refer to such networks as
linear SSC (single species complexes) networks. Because ofthe linearity, the technical difficulties
involved in studying the associated stochastic processes are minimized. Thus, linear SSC systems
are an excellent arena for investigating the effects of network geometry on the propagation, mag-
nification, and suppression of fluctuations. The principlesdiscovered then become the natural goal
for generalization to nonlinear settings [2].

To see the kinds of questions we want to ask, consider a simplechain with a side branch. The
chemical species areX1, . . . , Xn, Xs; the corresponding concentrations are denoted byx1, . . . , xn, xs.

✲ X1

❄

✻

✲I + σdB(t)

ks,2 L

k1
X2

Xs

✲k2 k3
X3

✲ · · · Xn
✲kn

.

The chain has a constant inputI, which is perturbed by some random process, in this case, white
noise. If the input is fluctuating, then each of the concentrations will fluctuate as will the fluxes,
kixi. Suppose the side chain is absent. Then, will the variationsof the fluxes increase, decrease,
or stay the same as we move down the chain? Does the answer depend on the rate constantski? If
the side chain is present, does it affect the variances of thefluxes on the chain? If so, what is the
effect of the size ofL.

The chemical reaction diagram corresponds to set of differential equations for the concentra-
tions and, similarly, the diagram with stochastic forcing corresponds to a system of stochastic
differential equations (SDEs):

dx1 = (I − k1x1)dt + σdB(t)

ẋ2 = k1x1 − Lx2 − k2x2 + ks,2xs

ẋ3 = k2x2 − k3x3

...

These SDEs in turn give rise to a stochastic process on the state spaceRn+1. We prove that this
stochastic process has a unique stationary measure. Intuitively, this means that at large times the
joint distribution of values of the concentrations becomesindependent of the initial condition and
independent of time. That is, the statistics converge to an equilibrium distribution. The variances of
the concentrations referred to above are the variances of the marginal distributions of this measure.
We prove the existence of the stationary measure for linear SSC systems in Section 2.2. In Section 3
we study the propagation of fluctuations in chains. In Section 4 we study the effects of side reaction
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systems, and feedback loops. In Section 5 we ask what happensto variances in the asymptotic limit
as one of the rate constants goes to∞, corresponding to a very fast reaction. In Section 6 we show
how to use the fluctuation theory ideas to investigate methionine metabolism.

It is important to note that our, goals, methods and results are different from those in classical
biochemical control theory [11],[3],[9],[21]. In that theory one takes a system at a fixed steady
state, makes a small perturbation in a parameter (perhaps aninput), and allows the system to relax
to a new steady state. By comparing the new value of a variable(a concentration or flux) to the
old value, one computes the percentage change of the variable per unit percentage change in the
parameter. Technically, one is computing a partial derivative. This kind of sensitivity analysis
gives good information about local, linearized behavior near the initial steady state. By contrast,
we are concerned with responses to large scale fluctuations in inputs. Technically, this means com-
puting properties of the distribution of each concentration or flux from properties of the stationary
measure.

It is true that the classical biochemical control theory canbe made “stochastic” in the following
way. Suppose that the system has inputI and is at steady-state. Consider the same system with
input I + η, whereη is a random variable drawn from some density. For eachη we let the system
relax to steady state and measure the value,v, of some concentration or flux.v is a random variable
and comparing it’s variance to the variance ofη gives information about how muchthe steady state
value of v changes asη changes. However, this modified biochemical control theoryoften gives
completely different answers from the fluctuation theory that we are developing and the differences
are biologically significant. Consider the chain (without the side chain) in the example above. If the
input isI + η, then, at steady state, the fluxknxn must equalI + η, soV ar(knxn) = V ar(η); thus
the variance remains constant down the chain. By contrast, we will see below that in our fluctuation
theory, under a variety of reasonable assumptions, that thevariances of the fluxesdecreaseas one
proceeds down the chain. This result is interesting from a biological point of view because it says
that one way to stabilize the flux out of a chain (i.e. small variance) is to have many intervening
biochemical steps between the input and the output.

2 SSC networks and the stationary measure

In this section we introduce the class of chemical reaction systems that we will study and prove
the existence of a stationary measure.

2.1 SSC systems with mass actions kinetics

Throughout we use the terminology introduced by Horn, Jackson, and Feinberg [10][5]. Letm be
the number of chemical species. We shall study chemical reaction systems such that each complex
contains a single chemical species and refer to such systemsasSSC networks. In the sequel, we
use only the statements in Lemma 2.3.

Lemma 2.1 (Deficiency of SSC networks).An SSC network has deficiency zero.
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Proof. Suppose the network has a single linkage class and letS denote the stoichiometric subspace.
Choose any reaction in the network,Xi → Xj . Here we have two complexes and one reaction
vector inS. Thus, if there are no other complexes, we are done. Because the diagram has one
linkage class, if there are other complexes, then there mustbe one, call itXk, with an arrow to
or from eitherXi or Xj. This adds one complex and one dimension toS sinceXk is not a linear
combination ofXi andXj. Continuing in this manner until we have exhausted all the complexes,
we see that the number of complexes is one greater thandim{S}. Since there is one linkage class
the deficiency of the network is zero. The case where there is more than one linkage class follows
easily because the reaction vectors in different linkage classes are orthogonal.

We will concentrate on SSC networks containing the zero complex that have one linkage class.

Lemma 2.2 (Dimension ofS). In an SSC system containing the zero complex with one linkage
class,dim{S} = m.

Proof. Since the network contains the zero complex, the number of complexes,n, is one greater
than the number of species,m. If s = dim{S}, then, by Lemma 2.1,0 = n − s − 1 = m − s, so
s = m.

We assume mass action kinetics so the differential equations governing the system are linear:

ẋ(t) = Ax(t) + I, (1)

whereA ∈ R
m×m andx(t), I ∈ R

m. The matrixA is the matrix of rate constants for the system
and the vectorI represents any constant flow into the species of the system from the zero complex.
Thus the components ofI are non-negative. We denote the open positive orthant and its closure by
R

m
>0 andR

m
≥0, respectively.

Lemma 2.3. If a linear SSC system is weakly reversible and contains the zero complex, then

(a) The differential equations(1) have a unique equilibrium which is globally asymptotically
stable and contained inRm

>0.

(b) The eigenvalues of the matrix of rate constants,A, have strictly negative real parts.

(c) For all vectorsv ∈ R
m
≥0, we haveeAtv · ej ≥ 0.

Proof. Part (a) is a special case of the zero deficiency theorem [5]. SinceA is the Jacobian at the
equilibrium point, (b) follows from (a) and linearity. (c) holds becauseRm

≥0 is invariant under the
flow of the differential equation.
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2.2 The Stationary Measure.

Consider the following weakly reversible SSC system with mass action kinetics, input vectorI, and
matrix of rate constantsA perturbed by a mean zero, finite variance stationary stochastic process
ξ(t):

{

ẋ(t) = Ax(t) + I + ξ(t) ,

x(0) = x0 .
(2)

From this definition and the stationarity ofξ(t) one easily sees that (2) generates a time-homogeneous
Markov process.

Theorem 2.4.The processx∗(t) = x∗(t, ξ) defined by

x∗(t, ξ) =

∫ t

−∞

eA(t−s)I ds +

∫ t

−∞

eA(t−s)ξs ds (3)

is a stationary solution to(2). Furthermore given any initial conditionx0, if x(t, x0, ξ) is a solution
to equation(2) thenx(t, x0, ξ) converges tox∗(t, ξ) ast → ∞ in that

E|x(t, x0, ξ) − x∗(t, ξ)|2 → 0 as t → ∞ .

Proof. Observe that for anyt, τ ∈ R,

x∗(t + τ) =

∫ t+τ

−∞

eA(t+τ−s)I ds +

∫ t+τ

−∞

eA(t+τ−s)ξ(s) ds

=

∫ t

−∞

eA(t−s)I ds +

∫ t

−∞

eA(t−s)ξ(s + τ) ds .

This can be written succinctly as

(θτx
∗)(t, ξ) = x∗(t, θτξ) (4)

where the shiftθt is defined by(θtf)(s) = f(t + s) for all s, t ∈ R and functionsf on R. Hence
for anyt1 ≤ · · · ≤ tn,

(

x∗(τ + t1, ξ), · · · , x∗(τ + tn, ξ)
)

=
(

x∗(t1, θτξ), · · · , x∗(tn, θτξ)
)

.

Sinceξ is a stationary process, the distribution of the right hand side is independent ofτ which
proves thatx∗ is stationary. Clearly,x∗(t, ξ) is a solution in thatx(t, x∗(0, ξ), ξ) = x∗(t, ξ).

We now turn to convergence. It follows from Lemma 2.3(b) thatthere are constantsα, M > 0
such that‖eAt‖ < Me−αt for all t > 0. Subtracting the solution of (2),

x(t, x0, ξ) = eAtx0 +

∫ t

0

eA(t−s)I ds +

∫ t

0

eA(t−s)ξs ds, (5)
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from x∗(t), squaring, and taking expected values gives,

E|x(t, x0, ξ) − x∗(t, ξ)|2 ≤3‖eAt‖2|x0|2 + 3E

∣

∣

∣

∣

∫ 0

−∞

eA(t−s)Ids

∣

∣

∣

∣

2

+ 3E

∣

∣

∣

∣

∫ 0

−∞

eA(t−s)ξsds

∣

∣

∣

∣

2

≤3M2|x0|2e−2αt +
3M2|I|2

α2
e−2αt

+ 3E

(
∫ 0

−∞

‖eA(t−s)‖ds

)(
∫ 0

−∞

‖eA(t−s)‖|ξs|2ds

)

≤3M2|x0|2e−2αt +
3M2|I|2

α2
e−2αt +

3M2

α2
e−2αtV ar(ξ).

Thus,E|x(t, x0, ξ) − x∗(t, ξ)|2 → 0 as t → ∞ .

Remark. If one takes expectations on both sides of equation (5), one sees immediately that the
model is consistent in the mean, that is, the mean of the perturbed problem is equal to the solution
of the unperturbed problem.

If instead of random perturbations given by the vectorξt we had allowed the system to be
perturbed by independent white noise processes, we arrive at the following system of Itô stochastic
differential equations:

{

dx(t) = (Ax(t) + I) dt + ΣdB(t) ,

x(0) = x0 ,
(6)

whereΣ ∈ R
m×p andB(t) is standardp-dimensional Brownian motion. The following theorem is

proved in the same manner as Theorem 2.4.

Theorem 2.5.The processx∗(t) = x∗(t, B) defined by

x∗(t, B) =

∫ t

−∞

eA(t−s)I ds +

∫ t

−∞

eA(t−s)ΣdB(s) (7)

is a stationary solution to(6). Furthermore given anyx0, if x(t, x0, B) is a solution to equation
(6) thenx(t, x0, B) converges tox∗(t, B) ast → ∞ in that

E|x(t, x0, B) − x∗(t, B)|2 → 0 as t → ∞ .

Proof. The proof is identical to that of Theorem 2.4, except that theItô Isometry is used to control
the expected value of the square of the Itô integral term.

Sincex∗(t) is stationary, the distribution ofx∗(t) is independent oft and invariant under the
dynamics of (2) (or (6)). More precisely, defining the measure µ(A) = P(x∗(0) ∈ A) for all
measurableA ⊂ R

m, we see that

µ(A) =

∫

P(x(t, y, ξ) ∈ A)µ(dy) .

8



Furthermore,µ characterizes the longtime behavior of the solution in thatthe distribution of
x(t, x0, ξ) converges toµ as t → ∞. This follows fromE|x(t, x0, ξ) − x∗(t, ξ)|2 → 0 and the
fact thatµ(A) = P(x∗(t) ∈ A) for all t.

Thusµ contains information about the average, long-term behavior of fluxes and concentra-
tions. It will beµ, therefore, which we shall probe in order to gain an understanding of how differ-
ent graphical structures and asymptotic limits of biochemical reaction systems increase, decrease,
and otherwise modify the exogenous fluctuations of biochemical reaction systems. Throughout
the rest of this paper, it is understood that each mean or variance is computed with respect to this
stationary measure.

2.3 A General Bound

We can now prove a simple general bound for the variance of theconcentration of any species in
an SSC system in terms of the variance of the input fluctuations. We assume that the fluctuations,
ξt, are one-dimensional, stationary, mean zero, and finite variance. By taking the expected value
in equation (3) and using thatξt has mean zero one sees that

mi = I

∫ t

−∞

eA(t−s)e1 · ei ds (8)

is the mean of theith species.

Theorem 2.6. Let x∗(t) be the stationary solution of an SSC system with one input,I, to a single
species,X1, that is perturbed by a stationary stochastic process,ξt, with finite variance and mean
zero. Then for eachi,

V ar(x∗
i ) <

(mi

I

)2

V ar(ξ).

Proof. Using Lemma 2.3(c) and the Cauchy-Schwarz inequality gives

V ar(x∗
i (t)) = E

(
∫ t

−∞

ξse
A(t−s)e1 · ei ds

)2

= E

(
∫ t

−∞

ξs

(

eA(t−s)e1 · ei

)1/2 (
eA(t−s)e1 · ei

)1/2
ds

)2

< E

(
∫ t

−∞

ξ2
se

A(t−s)e1 · ei ds

)(
∫ t

−∞

eA(t−s)e1 · ei ds

)

= V ar(ξ)

(
∫ t

−∞

eA(t−s)e1 · ei ds

)2

=
(mi

I

)2

V ar(ξ).

The strictness of the inequality follows becauseξt is not a constant.
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This simple result is all that we need in this paper. An analogous proof works in the more
general case where there are inputs to more than one species and any number of the inputs undergo
independent fluctuations.

3 Chains

In this section we consider non-reversible chains with massaction kinetics:

I k1 k2 km−2 km−1 km

0 −→ X1 −→ X2 −→ · · · −→ Xm−1 −→ Xm −→ 0.
(9)

Theorem 2.6 allows us to see that variances of the fluxes of thestationary solution decrease as one
proceeds down the chain.

Theorem 3.1. Let the input,I, of a non-reversible chain with mass action kinetics be perturbed
by a stationary stochastic process,ξt, with finite variance and mean zero. Letx∗(t) denote the
stationary solution for the chain. Then, for alli, V ar(kix

∗
i ) < V ar(ξ) and

V ar(ki+1x
∗
i+1) < V ar(kix

∗
i ). (10)

Proof. From the remark following Theorem 2.4, we know that the mean,mi, of x∗
i (t) is the equi-

librium value ofxi for the unperturbed problem. For the chain this implies thatmi = I
ki

, so the
boundV ar(kix

∗
i ) < V ar(ξ) follows immediately from Theorem 2.6. To prove (10) note that the

input toX2 is
k1x

∗
1(t) = I + (k1x

∗
1(t) − I)

and k1x
∗
1(t) − I is a stationary stochastic process of mean zero and finite variance. Thus, by

Theorem 2.6,
V ar(k2x

∗
2) < V ar(k1x

∗
1 − I) = V ar(k1x

∗
1) .

The input toX3 is k2x
∗
2(t), so repeating this argument down the chain proves (10).

Note that the variances of the fluxes are strictly decreasingas one moves down the chain even
though the means of the fluxes remain unchanged (i.e., equal to I). The next natural question
is how much do the variances decrease down the chain? This cannot be answered without more
detailed information aboutξt. To investigate it, we will perturb the inputI by white noise,σdB(t),
which will allow us to use the Itô calculus.

Theorem 3.2. Let x∗(t) be the stationary solution of the linear chain(9) where the input is per-
turbed by white noise. We assume that the rate constants,ki, are distinct. Then

V ar(x∗
i ) = σ2

i
∑

j=1

i
∑

r=1

pijpir
1

kj + kr
, (11)

10



where

pij =

{ (

∏i−1
n=1 kn

)/(

∏i
n=1,l 6=j(kn − kj)

)

i ≥ j

0 i < j
. (12)

Proof. The matrix of rate constants,A, is given by

A =















−k1 0 . . . 0

k1 −k2 . . . 0

...
...

. . .
...

0 . . . km−1 −km















.

Let P = {pij}. A straightforward calculation shows that thejth column ofP is the eigenvector
of A corresponding to eigenvalue−kj. Thus,D = P−1AP is diagonal. In addition,P takes the
vector(1, 1, · · · , 1)T to the vector(1, 0, · · · , 0)T . Using these facts, the formula (7) forx∗(t), and
the Itô Isometry,

V ar(x∗
i ) = σ2

E

(
∫ t

−∞

eA(t−s)e1 · eidBs

)2

= σ2

∫ t

−∞

(

PeD(t−s)P−1e1 · ei

)2
ds

= σ2

∫ t

−∞






PeD(t−s)







1
...
1






· ei







2

ds

= σ2

∫ t

−∞






P







e−k1(t−s)

...
e−km(t−s)






· ei







2

ds

= σ2

∫ t

−∞

(

i
∑

j=1

pije
−kj(t−s)

)2

ds

= σ2
i
∑

j=1

i
∑

r=1

pijpir
1

kj + kr

.

We assumed that theki’s were distinct so that the explicit formulas above make sense. It can
be shown that the variances of the concentrations are continuous functions of the rate constants.
This fact, together with the bound given by (10) allows us to conclude that formula (11) has finite
limits as various subsets of theki’s become identical.

We can use the explicit formula (11) to answer several natural questions:
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Example 3.3. (Magnitude of decrease)Theorem 3.1 shows that variances of fluxes are strictly
decreasing as one moves down a chain. To investigate how muchthey decrease, consider the chain
(9) wherem = 2 and the input is perturbed by white noise. Using (11) we see that V ar(k1x

∗
1) =

σ2k1

2
andV ar(k2x

∗
2) = σ2k1k2

2(k1+k2)
. Thus,

V ar(k2x
∗
2)

V ar(k1x∗
1)

=
k2

k1 + k2
.

This simple example shows that the ratio of successive variances can be any number between zero
and one.

Example 3.4. (Long chains)Assume thatki = k for some fixedk > 0 and alli. Taking the limit
of (11) is difficult. Instead, since all theki are equal, an induction proof shows that

x∗
i (t) =

I

k
+ σ

ki−1

(i − 1)!

∫ t

−∞

(t − s)i−1e−k(t−s)dB(s).

Using the Itô Isometry, it follows that

V ar∞(x∗
i ) = σ2 2(2i− 2)!

4i(i − 1)!2
1

k
,

and using Stirling’s formula

V ar(kx∗
i ) ∼ σ2 k

2
√

π

1√
i

+ O(i−3/2) .

Thus the variances decrease to zero in a regular fashion if all of the rate constants are the same.

Example 3.5. (A small rate constant)Suppose that one rate constant,ki, in a chain is very small.
Using the explicit formula (11), one can easily compute that

V ar(kix
∗
i ) ∼ σ21

2
ki + O(k2

i ), aski → 0,

V ar(kjx
∗
j ) ∼ σ21

2
ki + O(k2

i ), aski → 0, for j > i.

Notice that the small rate constant has the effect of significantly decreasing the variances of theith
and all subsequent fluxes while the means of the fluxes remain unchanged. Therefore a small rate
constant is not “rate limiting” but instead is “variance limiting.”

Example 3.6. (A large rate constant)Suppose that one rate constant,ki, in a chain is very large.
Again, using (11), one can compute that

V ar(kix
∗
i ) → V ar(ki−1x

∗
i−1), aski → ∞.

Furthermore, for allj > i,

V ar(kjx
∗
j ) → V ar(kjx̃

∗
j ), aski → ∞,

12



I + σdB(t)
✲

k1

X̃1
✲ X̃2

✲
k2

· · ·
ki−1

X̃i−1
✲ X̃i+1

✲
ki+1

· · ·

wherex̃j is from the process arising from the following system:
This shows that in the asymptotic limit whereki → ∞ one can replace the original chain by

the chain with the substrateXi removed. Here we implicitly use the fact that since the kinetics are
linear and hence the concentrations are Gaussian the statistics are determined by the means and
variances.

4 Side Reaction Systems and Feedback Loops.

A side reaction systemon a chain is any SSC system that gets its input from a species on the chain
and has output that flows back into the same species; see Figure 4.1 below.

0
I + ξ(t)

✲

❄
✻k2 k3

k1
X1

Side Reaction System

✲ X2
✲

Figure 4.1: A side reaction on a linear chain

Note that there must be a species within the side reaction system whose output flows toX1 with
some rate constant,k3. DefineY to be that species. The SDE governing the behavior ofx1(t) is
then given by

d

dt
x1(t) = I − k1x1(t) − k2x1(t) + k3y(t) + ξ(t). (13)

If x̃1 is the solution to the above system when there is no side reaction system (i.e.k2 = k3 = 0),
then

d

dt
x̃1(t) = I − k1x̃1(t) + ξ(t). (14)

Theorem 4.1 (Side reactions lower variance).Let x∗
1 and x̃∗

1 be the first components of the sta-
tionary solutions to(13)and (14), respectively, whereξ(t) is a finite variance, mean zero, random
process or white noise. Then,

V ar(k1x
∗
1) < V ar(k1x̃

∗
1).

Proof. We give the proof in the case whereξ(t) = σdB(t) is white noise; the proof in the general
case is similar but more complicated [1]. Letz(t) = E(k1x1(t)− I)2 andz̃(t) = E(k1x̃1(t)− I)2,
wherex1(t) and x̃1(t) are solutions of (13) and (14). By theorem 2.5z(t) and z̃(t) converge to
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V ar(k1x
∗
1) andV ar(k1x̃

∗
1), respectively. We will prove the theorem by comparing the differential

equations satisfied byz(t) andz̃(t).
By using Kolmogorov’s backward equation [18], we see thatz̃(t) satisfies

z̃′(t) = −2k1z̃(t) + k2
1σ

2. (15)

Therefore,V ar(k1x̃
∗
1) = k1σ

2/2 becauseV ar(k1x̃
∗
1) is the equilibrium value of (15). Similarly,

z(t) satisfies

z′(t) = −2k1z(t) + k2
1σ

2 + 2k1E(k1x1(t) − I)(k3y(t) − k2x1(t)),

and so, by Theorem 2.5,

V ar(k1x
∗
1) =

k1σ
2

2
+

1

2
E(k1x

∗
1 − I)(k3y

∗ − k2x
∗
1).

Thus, to complete the proof we need only show thatE(k1x
∗
1 − I)(k3y

∗ − k2x
∗
1) < 0. The remark

following Theorem 2.4 implies thatEx∗
1 = I/k1 andEk3y

∗ = Ek2x
∗
1. Therefore,Ek3y

∗ = k2I
k1

,
and

E(k1x
∗
1 − I)(k3y

∗ − k2x
∗
1) =

k1

k2
E
(

k2x
∗
1k3y

∗ − k2
2x

∗
1
2
)

.

By Theorem 2.6 E (k3y
∗)2 < E (k2x

∗
1)

2, so

|E (k2x
∗
1k3y

∗)| ≤
(

E k2
2x

∗
1
2
)

1

2

(

E k2
3y

∗2
)

1

2

< E k2
2x

∗
1
2.

Thus,E(k1x
∗
1 − I)(k3y

∗ − k2x
∗
1) < 0, as desired.

A feedback loopon a chain is an SSC system together with an input from one species on the
chain,Xn, and an output to an earlier species,X1; see Figure 4.2.

0
I + ξt✲

k1
X1

Subsystem

✲ Xn
✲....... ✲

kn−1 kn

�
��✠❅

❅❅■
cf1(t)

Figure 4.2: A chain with a feedback loop

Theorem 4.2. Let x̃(t) be the vector of species concentrations for the chain(9) and letx(t) be
the vector of species concentrations for the chain with feedback loop (Figure 4.2), whereξ(t) is a
finite variance, mean zero, random process or white noise. Then,

V ar(knx
∗
n) < V ar(knx̃

∗
n).
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Proof. Let {Vi} be the substrates andB be the matrix of rate constants of the SSC subsystem in
Figure 4.2. We suppose thatVj is the species which gives input toX1 with rate constantα. Then
the input toX1 from the feedback loop is

f1(t) = αeBtv(0) · ej + αc

∫ t

0

eB(t−s)xn(s) · ej ds,

which depends explicitly only onxn. If we let R(t) = kn−1xn−1(t) then the differential equation
for xn(t) is ẋn(t) = R(t) − cxn(t) − knxn(t).

0
I + ξt✲

k1
X1

✲ Xn
✲....... ✲

kn−1 kn

�
�

�
�

�
��✠

c

Subsystem ✲

f1(t)
Y1

✲

k1

Y2
✲

k2

· · · Yn−1

❅
❅

❅
❅

❅
❅

❅
❅■

kn−1

Figure 4.3: A chain with a side reaction system

Consider the chain with side reaction system given in Figure4.3 where the subsystem is
the same as in Figure 4.2 and the flux toY1 comes fromVj with rate constantα. Let Q(t) =
kn−1xn−1(t) andP (t) = kn−1yn−1(t) be the inputs toXn in Figure 4.3. Since the input to the Y-
chain isf1(t) and the rate constants for the two chains are the same,R(t) = Q(t) + P (t) because
the differential equations are linear. Thus, the differential equation governingxn(t) in Figure 4.2
is the same as the differential equation governingxn(t) in Figure 4.3. Since the system in Figure
4.3 is a chain with a side reaction system, the result followsfrom Theorem 4.1.

5 One large rate constant in a general SSC system

We now consider a general weakly reversible SSC system with input and characterize the effect of
a large rate constant.

Theorem 5.1. Suppose that independent white noise processes perturb theinputs to a weakly
reversible SSC system withm substrates. LetXa be a particular substrate and suppose that the
rate constantL for one flux out ofXa to another complex (possibly the zero complex) is large.
Then,

V ar(x∗
a) ∼ O

(

1

L

)

asL → ∞. (16)
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Proof. We will assume that one of the perturbed inputs goes directlyto Xa. The proof of the
general case is similar. The stochastic differential equation governingxa(t) is given by

dxa(t) =

(

C +

m
∑

i=1

cixi(t) − (L + K)xa(t)

)

dt + σdB(t) , (17)

whereL + K > 0 is equal to the sum of all the rate constants for reactions leaving Xa, C > 0 is
the input flow toXa from the zero complex,σ > 0, andci ≥ 0 is the rate constant associated with
the reactionXi → Xa. Solving (17) forx∗

a in terms of thex∗
i and using the Itô Isometry, one can

easily boundV ar(x∗
a),

V ar(x∗
a) ≤ β

2(L + K)
+ β

m
∑

i=1

c2
i V ar(x∗

i )

(L + K)2
,

for some constantβ. To complete the proof we will show thatV ar(x∗
i ) ≤ O(L).

Let A be the matrix of rate constants for the SSC system. Using the formula (7) for the station-
ary solution and the Ito Isometry, one easily calculates:

V ar(x∗
i ) = σ2

∫ t

−∞

(eA(t−s)e · ei)
2 ds, (18)

for some vectore. By Lemma 2.3(b) we know that the real parts of the eigenvalues ofA, {λi}, are
strictly negative; letλ = inf {|λi|}. There exist positive constantsc andM so that for allt−s > 0,
we have‖eA(t−s)‖ ≤ ce−Mλ(t−s). Using this inequality in (18), we have

V ar(x∗
i ) ≤

σ2c2|e|
2M

1

λ
.

In Appendix A we prove thatλ ≥ O(1/L), soV ar(x∗
i ) ≤ O(L), which concludes the proof.

Example 6.1 (A side chain with a large rate constant)To illustrate the theorem, we consider the
linear chain with a side reaction given in the diagram in the Introduction. As the rate constantL
becomes large, Theorem 5.1 tells us thatV ar(x∗

2) ≤ O(1/L). Therefore the flux out ofX2 down
the chain has varianceV ar(k2x

∗
2) ≤ O(1/L). By Theorem 2.6,

V ar(kix
∗
i ) ≤ V ar(k2x

∗
2) ≤ O(1/L) for all i ≥ 2.

Thus, for alli ≥ 2, the means of the fluxes remain equal toI, while the variances of the fluxes go
to zero asL → ∞.

6 Application to Methionine Metabolism.

The actual biochemical systems involved in cell metabolismare much more complicated and more
difficult to analyze than the single species systems considered in the previous sections. Consider,
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for example the diagram in Figure 6.1 that shows the methionine cycle and part of the folate
cycle. Firstly, most reactions have two or more substrates and many enzymes are inhibited by the
products of the reactions they catalyze. Thus, the kineticswill be highly nonlinear. Secondly, many
reactions are catalyzed by two different enzymes that have very different properties. Thirdly, some
substrates inhibit or activate distant enzymes in the reaction diagram (red arrows in the diagram).
These long-range interactions make it virtually impossible to intuit the emergent properties of the
network by tracing influences from point to point.

Figure 6.1. Methionine Metabolism. Substrates of the methionine cycle and (part of) the folate cy-
cle are shown in green and red rectangles, respectively. Enzyme acronyms are in ellipses. Long-range
interactions are shown by red curves with the arrow indicating activation and the bars indicating inhibi-
tion. SAM, s-adenosyl-methionine, activates CBS and inhibits BHMT and MTHFR, while 5mTHF, 5-
methyltetrahydrofolate, inhibits GNMT.

Epidemiological evidence correlates changes in folate andmethionine metabolism to serious
human health consequences (cancer, heart disease, depression) and there are several important
public health issues involved in folate supplementation ascurrently practiced in the United States
and Canada. Thus, this part of cell metabolism has been the object of numerous experimental
studies and several modeling studies [14][20][16][19][17]. Our purpose here is simply to illustrate
how fluctuation analysis can be used to understand such a complex system.

The velocities of the individual reactions in the methionine cycle [17] are typically highly non-
linear functions that depend on the concentrations of several substrates. For example, the velocity
of the GNMT reaction,VGNMT , depends onSAM , onSAH because of product inhibition, and on
5mTHF because of a long-range interaction. Because of the complexity and the nonlinearities,
a rigorous mathematical analysis of this system is beyond current mathematical techniques. Even
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proving the existence and uniqueness of a stationary measure is a delicate issue. Nevertheless,
we have investigated this question by numerical computation in the case where the methionine
input (METin) is an Ornstein-Uhlenbeck process with mean 100µM/hr and standard deviation
30 (variance = 900). We found that the joint distribution of the substrates does indeed stabilize as
time gets large, and thus for each concentration or flux, X, wecan compute the ratio

r =
Variance(X)

Variance(METin)
,

which tells us how muchX varies compared to the variance of the input. Table 1 shows the
values ofr for two substrates and two fluxes in the case where all the long-range interactions
are present (regulated) and the case where the long-range interaction are absent (unregulated).
Methionine is quite stable in both cases but is more stable inthe regulated case.SAM is much
less stable than methionine, which agrees with what is seen experimentally. Notice that in the
unregulated case, the variances ofVGNMT andVDNMT are similar, but in the regulated case the
variance ofVGNMT doubles and the variance ofVDNMT becomes exceptionally small. There are
good biological reasons why one would want the DNA methylation rate to be stabilized against
fluctuations in methionine input. Thus, fluctuation analysis shows that this stabilization is achieved
by the long-range interactions. We have also computed the values orr in all the intermediate cases
where some but not all of the long-range interaction are present and this has enabled us to quantify
each of their effects and propose an evolutionary scenario [17].

Table 1. Values of r
Methionine r
regulated .064

unregulated .082

SAM r
regulated .22

unregulated 1.23

VGNMT r
regulated .15

unregulated 0.079

VDNMT r
regulated 0.007

unregulated 0.09

In liver cells the reaction from methionine toSAM is catalyzed by two isoforms of the same
enzyme,MAT−I andMAT−III, that have very different properties [15].MAT−I is inhibited by
SAM andMAT−III is activated bySAM , and it has been proposed that it is this unusual combi-
nation that stabilizes the methionine concentration. To test this, we recomputedr after eliminating
theMAT−III reaction and raising theVmax of theMAT−I reaction so that it carried the same
flux previously carried by both. The values in Table 2 show conclusively that, indeed, the presence
of theMAT−III reaction somewhat destabilizesSAM but greatly increases the stability of the
methionine concentration.
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Table 2. Values of r
Methionine r

with MAT−III 0.06
noMAT−III 0.16

SAM r
with MAT−III 0.22
noMAT−III 0.17

7 Discussion.

In Sections 2-5, we developed the theory of propagation of fluctuations for the special case of linear
SSC networks and proved theorems relating variances to network structure. Variances decrease
down a chain and the presence of side reactions and feedback loops always lowers the variances
further down the chain. These results are very general in that they hold independent of the choice
of rate constants. It is tempting to speculate that biochemical systems evolved to be as complicated
as they are partly because of the homeostasis of exit fluxes achieved by having many intermediate
steps. We also showed how the large size of a single rate constant affects variances. It is known
that most of these results generalize to non-linear SSC networks with restrictions on the nature of
the nonlinearity [2]. It remains to be seen whether they generalize to networks in which complexes
contain more than one species. In these highly non-linear contexts, a fundamental mathematical
issue is the proof of the existence of a stationary measure.

A reasonable concern with the idealized models in Sections 2-5 is that, under the influence
of the fluctuations, the concentrations can become negative. By modifying the forcing processes
appropriately this could have been avoided. However, this would complicate the analysis and
prevent us from obtaining explicit formulae and straightforward bounds. Since our goal with these
idealized models is to build intuition and develop general principles, we have purposely avoided
complicating the analysis.

In Section 6 we showed how the ideas of fluctuation theory could be used to investigate a
network of biological interest, the methionine cycle. It isreasonable to ask whether methionine
input actually fluctuates randomly and if so what are the properties of the fluctuations. There
are really two answers. The input to the methionine pool in liver cells is certainly continually
varying. There are large deviations on the time scale of hours depending on the times and content
of meals. Methionine is always being used for protein synthesis and is being made available by
protein catabolism, two processes that are themselves variable and not always in balance. The
methionine available for input to the methionine cycle is also affected by the use of methionine in
other metabolic reactions. Finally, all these processes are affected by the time-varying regulation
of the genes that code for the various enzymes. Thus, the firstanswer is that we don’t know
how methionine input varies but it certainly fluctuates withstandard deviations of the order of 30-
50 µM/hr on the time scale of hours and with smaller standard deviations on the time scales of
minutes and seconds. The second answer is that it doesn’t matter. We are using the fluctuations in
methionine input as a probe of the dynamical properties of the system away from equilibrium. Of
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course, we need to be sure that the properties we find do not depend on the detailed properties of
the noise.

For simplicity of exposition, we have discussed the specialcase where a single input to a bio-
chemical system is varied. The same ideas can be used to introduce fluctuations in a concentration,
a flux, or in several places, and then study how the fluctuations propagate throughout the system.
Understanding the consequences of fluctuations in kinetic parameters is also important because
kinetic parameters depend on enzyme concentrations and other properties that are variable and
themselves dependent on time-varying genetic regulation.Analyzing this case requires some tech-
nical extensions of this work.

In the Introduction we referred to “intrinsic stochasticity” in contrast to the external stochastic
forcing that we consider. It would be interesting to consider models with both forms of stochastic-
ity, and indeed both surely arise in gene networks. In gene networks that are coupled to biochemical
networks, the intrinsic stochasticity at the gene and gene regulation level can be viewed as external
stochastic forcing to the biochemical level. Therefore, both types of questions and analyses will be
necessary to gain full understanding of real biological networks.

Appendix A

We derive the bound used in Theorem 5.1. There are two cases which need consideration:

1. The flux out ofXa with rate constantL goes to another species. This case is handled in
Theorem A.1 below.

2. The flux out ofXa with rate constantL leaves the system. The proof of the result in this case
is similar to the proof of the theorem below and so the detailsare omitted.

Theorem A.1LetA = {aij} be ann × n matrix with the following properties:

(1) For eachi, aii < 0 and|aii| ≥
∑n

j 6=i |aji|.

(2) a11 = −L + α11 anda21 = L + α21 for someα11 < 0 andα21 ∈ R.

(3) For everyL > 0, the real parts of the eigenvalues ofA are all strictly negative.

Denote the eigenvalues ofA by{λi} and letλ = inf {|Re(λi)|}. Then

λ ≥ O(1/L), asL → ∞.

Proof. Let B = 1
L
A. The eigenvalues ofB are{ 1

L
ei : ei is an eigenvalue ofA}. We will use

the characteristic polynomials ofA andB to show that the magnitude of the real parts of the
eigenvalues ofB are no smaller thanO(1/L2), which implies our result.

BecauseL only appears in the first column ofA, all O(1) terms ofB occur in the first column.
Expanding the determinant ofB by cofactor expansion along the first column then shows that
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det(B) must be of orderO(1/Ln) or O(1/Ln−1). Similarly, the cofactors ofB must be of order
O(1/Ln−1) or O(1/Ln−2). Therefore, computing the inverse ofB (which exists by assumption
(3) above) by cofactors, we see that the possible order of theentries ofB−1 are1, L, andL2.
Therefore,‖B−1‖ ≤ O(L2).

One may viewB as a1/L matrix perturbation of the matrixC = {cij}, wherec11 = −1,
c21 = 1, andcij = 0 for all other entries. Therefore, each eigenvalue,ρ, of B is an analytic
functions of1/L:

ρ = ρ0 +
1

L
ρ1 +

1

L2
ρ2 + O

(

1

L3

)

, (19)

whereρ0 is −1 or 0. If ρ0 = −1 there is nothing to prove; so we assumeρ0 = 0. If ρ1 = ρ2 = 0
thenρ = O(1/L3). However, this would imply thatO(1/ρ) = O(L3). Since1/ρ is an eigenvalue
of B−1, this would contradict the norm bound forB−1, above. Thusρ1 andρ2 can not both be zero.
It remains to be shown that the leading order term in equation(19) can not be purely imaginary.
We will do this through asymptotic matching.

Consider two different formulations for the characteristic polynomial ofA, pA(x):

pA(x) = det(xIn − A) (20)

= xn + Lu(x) + v(x) (21)

= xn + c1,n−1Lxn−1 + c0,n−1x
n−1 + · · ·+ c1,2Lx2 + c0,2x

2

+ c1,1Lx + c0,1x + c1,0L + c0,0,
(22)

whereu(x) andv(x) are polynomials of degreen − 1 that are independent ofL, andci,j ∈ R for
i = 1, 2 andj = 1, ..n− 1 (i gives the power ofL andj gives the power ofx for the termcijL

ixj).
We note that we can not havec1,0 = c0,0 = 0, for then there would be a zero eigenvalue, which
would contradict assumption (3).

To show that the leading order term in equation (19) is not purely imaginary we will consider
two cases:ρ1 = 0 andρ1 6= 0. We begin by supposingρ1 = 0 andρ2 6= 0. Thenρ = O(1/L2) and
there is a solution to (22) which isO (1/L). Puttingx = ρ2/L into (22) and setting the equation
equal to zero gives us:

O

(

1

L3

)

+
c1,2ρ

2
2

L
+

c0,2ρ
2
2

L2
+ c1,1ρ2 +

c0,1ρ2

L
+ c1,0L + c0,0 = 0.

Matching like terms inL tells us thatc1,0 = 0, c0,0 6= 0, andc1,1 6= 0. Solving forρ2 gives us
ρ2 = −c0,0/c1,1 ∈ R. Therefore,ρ2 has a nonzero real part.

We now suppose thatρ1 6= 0. Because finding anO(1/L) solution to equation (19) is equivalent
to finding anO(1) solution to (21),ρ1 must satisfyu(ρ1) = 0. Let D(x) = xIn − A. Then
u(x) = D(x)11 + D(x)21, whereD(x)ij is thei, jth cofactor ofD(x). D(x)11 andD(x)21 differ
only in the first row, so we may combine the determinants by adding the first two rows. We
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conclude that

u(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−a22 − a12 + x −a13 − a23 −a14 − a24 · · · −a1n − a2n

−a32 −a33 + x −a34 · · · −a3n

−a42 −a43 −a44 + x · · · −a4n
...

...
. . .

...
−an2 −an3 −an4 · · · −ann + x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Solvingu(x) = 0 for non-zero solutions is therefore equivalent to finding the non-zero eigenvalues
of the matrix

Ã =















a22 + a12 a13 + a23 a14 + a24 · · · a1n + a2n

a32 a33 a34 · · · a3n

a42 a43 a44 · · · a4n
...

...
. . .

...
an2 an3 an4 · · · ann















.

By assumption (1), the diagonal entries ofÃ are non-positive and have magnitudes that are greater
than or equal to the sums of the magnitudes of all the other terms in that column. Therefore,
Gershgorin’s Theorem says that the non-zero eigenvalues ofÃ, and hence the non-zero solutions
of u(x) = 0, have strictly negative real part. Thus,Re(ρ1) 6= 0. This completes the proof.

If the flux out ofXa with rate constantL leaves the system, the only change in the statement of
the above theorem is thata21 is independent ofL. The proof is identical except thatu(x) = D(x)11

and so we no longer have to add two determinants together to simplify u(x).
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