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Morphological characteristics of urban water bodies: mechanisms
of change and implications for ecosystem function
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Abstract. The size, shape, and connectivity of water bodies (lakes, ponds, and wetlands)
can have important effects on ecological communities and ecosystem processes, but how these
characteristics are influenced by land use and land cover change over broad spatial scales is
not known. Intensive alteration of water bodies during urban development, including
construction, burial, drainage, and reshaping, may select for certain morphometric
characteristics and influence the types of water bodies present in cities. We used a database
of over one million water bodies in 100 cities across the conterminous United States to
compare the size distributions, connectivity (as intersection with surface flow lines), and shape
(as measured by shoreline development factor) of water bodies in different land cover classes.
Water bodies in all urban land covers were dominated by lakes and ponds, while reservoirs
and wetlands comprised only a small fraction of the sample. In urban land covers, as
compared to surrounding undeveloped land, water body size distributions converged on
moderate sizes, shapes toward less tortuous shorelines, and the number and area of water
bodies that intersected surface flow lines (i.e., streams and rivers) decreased. Potential
mechanisms responsible for changing the characteristics of urban water bodies include:
preferential removal, physical reshaping or addition of water bodies, and selection of locations
for development. The relative contributions of each mechanism likely change as cities grow.
The larger size and reduced surface connectivity of urban water bodies may affect the role of
internal dynamics and sensitivity to catchment processes. More broadly, these results illustrate
the complex nature of urban watersheds and highlight the need to develop a conceptual
framework for urban water bodies.
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INTRODUCTION

Urban land cover has quadrupled over the last 50

years and covers ;24 million ha of land in the United

States (Lubowski et al. 2006). Given the increase in

urban land cover globally (Schneider et al. 2009, United

Nations 2011), and the importance of water body

morphology to aquatic ecosystems processes, under-

standing how the characteristics of water bodies in cities

differ from those in undeveloped landscapes is an

essential foundation for developing the ecological theory

of urban aquatic systems, managing urban watersheds,

and understanding the effects of urbanization on

broader-scale processes.

The ‘‘urban stream syndrome’’ provides a general

conceptual framework that integrates the numerous

effects of watershed development and channel alteration

on streams (Walsh et al. 2005). Urbanization alters flow

regimes primarily by introducing impervious surface to

the watershed, which leads to changes in channel

morphology; activities taking place on those surfaces

also generate a suite of chemical and biotic repercussions

including altered hydrologic and metabolic regimes,

nutrient enrichment, and reduced biodiversity (Paul and

Meyer 2001, Meyer et al. 2005, Walsh et al. 2005, Steele

et al. 2010). While most efforts have focused on the

effects of urbanization at the scale of individual stream

reaches (see Meyer and Wallace 2001), some recent

studies have more explicitly addressed the landscape-

scale consequences of urbanization for watersheds and

aquatic systems. For example, several recent studies

have documented changes in stream channel density in

individual urban areas (Elmore and Kaushal 2008, Roy

et al. 2009) and across large numbers of cities (Steele et

al. 2014). Other recent efforts have incorporated

engineered infrastructure (such as storm water drainage

ditches, pipe networks, buried streams) into our

understanding of the flow paths of developed watersheds

(Kaushal and Belt 2012, Somers et al. 2013). However,

relatively few studies have addressed changes to other

components of urban flow networks (e.g., lakes, ponds,

wetlands, reservoirs; hereafter ‘‘water bodies’’), which

can mediate the movement of water, energy, and

nutrients across watershed surfaces and between

above- and belowground pools (Cole et al. 2007,

Downing et al. 2008) and influence dispersal of both

benthic and pelagic organisms throughout watersheds
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(Havel et al. 2002, Shurin et al. 2009). There is no

analogous conceptual framework for urban water

bodies (i.e., an ‘‘urban pond syndrome’’). As such, the

inattention to these aquatic systems in urban environ-

ments limits our ability to assess the hydrologic,

biogeochemical, and ecological characteristics of urban-

ized watersheds at broad spatial scales.

As is true of urban streams, the limited number of

studies on urban water bodies has primarily addressed

change at the scale of individual ecosystems. For

example, the loss and disturbance of urban wetlands

and riparian zones have received significant attention as

urban development alters hydrologic regimes and

increases pollutants that impair the biogeochemical

and ecosystem functions of wetlands (Groffman et al.

2002, Kentula et al. 2004, Stander and Ehrenfeld 2009,

McKinney et al. 2011, Jiang et al. 2012, Sun et al. 2012).

Research on urban lakes, ponds, and storm water

detention ponds has addressed issues such as eutrophi-

cation, pollution, sedimentation, and shifts in biotic

communities (Birch and McCaskie 1999, Lindstrom

2001, Leavitt et al. 2006, Novotny et al. 2008, Effler et

al. 2010, Schagerl et al. 2010, Van Metre and Mahler

2010, Hamer and Parris 2011, Meter et al. 2011, Van

Metre 2012). Changes may be mediated by morpholog-

ical characteristics of water bodies (e.g., size, shape, and

type), as well as broader, landscape-scale characteristics

of lake districts and flow networks (e.g., water body

density and connectivity (Oertli et al. 2002, Williams

2004, Céréghino et al. 2007, Downing 2010).

The hydrography of cities also provides an opportu-

nity to explore the broad-scale mechanisms shaping

urban development. Recently, we have shown that the

abundance of surface water (as measured by area or

numerical density of water bodies) in urban lands

converges across large geographic regions (Steele et al.

2014). In many cities, surface water is less abundant (by

number or area of features) than in the surrounding

undeveloped land; however, cities located in drier

landscapes tend to have abundances relatively greater

than their surrounding undeveloped land (Steele et al.

2014). These patterns may reflect two broad types of

processes: initial location of cities in regions with specific

hydrographic characteristics, and alteration of surface

water features during urban development by processes

such as impoundment, excavation, drainage, and in-

filling. A limited number of case studies from large cities

suggest that alteration has a major role in the

development of urban hydrography (Elmore and Kau-

shal 2008, Roach et al. 2008, Roy et al. 2009, Larson and

Grimm 2011), but whether these examples reflect a

general dominance of alteration over site selection

remains unclear.

The size and shape of water bodies has a broad range

of effects on their hydrologic and geochemical conditions

and their ecological and biogeochemical functions.

Ponds, relative to larger water bodies, have been observed

to have a higher number and richness of macroinverte-

brate and plant species (Davies et al. 2007, De Bie et al.

2007). Other studies observed a low, positive impact of
areal size on phytoplankton and fish (Søndergaard et al.

2005, Stomp et al. 2011). Other characteristics influenced
by lake size include zooplankton community structure

(Dodson et al. 2005, 2008) and bird diversity (Newbrey et
al. 2005), and processes like fish parasite growth
(Marcogliese and Cone 1991) and bird roosting site

selection (Alvo et al. 1988). Ratios of shoreline to surface
area, a fundamental descriptor of the shape of lakes,

influence the number of fish species (Eadie and Keast
1984) and their patterns of movement (Woolnough et al.

2009), as well as the diversity of pisciverous birds
(Newbrey et al. 2005). At the landscape scale, the density

and distribution of water bodies influences the relative
abundance of aquatically and aerially dispersed species

(Dunham and Rieman 1999).
Small water bodies also differ from larger (and more

intensively studied) lakes in terms of physical and
biogeochemical conditions and processes (Downing

2010). For example, smaller lakes tend to be low in
dissolved inorganic carbon and oxygen, but high in

dissolved organic matter and dissolved CO2 (Crisman et
al. 1998, Kelly et al. 2001, Hanson et al. 2007, Goodman

et al. 2011). Consequently, lake size has been observed
to impact methane production (Michmerhuizen et al.
1996, Bastviken et al. 2004) and CO2 efflux (Cole et al.

2007, Hanson et al. 2007). Areal rates of organic carbon
sequestration are potentially an order of magnitude

higher in small lakes (Dean and Gorham 1998, Stallard
1998, Downing et al. 2008, Downing 2010). Likewise,

lake size also influences regional and global N budgets,
as small lakes retain double the amount of nitrogen

globally than large lakes and are sinks for N via
denitrification (Harrison et al. 2008). The size distribu-

tion of water bodies is thus an important component in
calculating regional to continental scale biogeochemical

fluxes (Cole et al. 2007, Harrison et al. 2008).
Water body characteristics such as size, shape, and

connectivity have implications for the inference of
mechanisms that generate surface water patterns, for

landscape scale ecological and biogeochemical process-
es, and for interactions between urban water bodies and

their watersheds. The purpose of this study is to
determine if and how these characteristics differ between

urban landscapes and less-developed lands. To address
this, we compared the morphological characteristics of
over one million water bodies in urban and undeveloped

land cover classes from 100 cities across the contermi-
nous United States. Specifically, we evaluated the

different types of water bodies, distribution of water
body sizes, the tortuosity of the shorelines, and the

connectivity of water bodies to streams and rivers.

MATERIALS AND METHODS

City selection and land cover

We selected 100 cities with a defined metropolitan

statistical area from the continental United States. The
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United States Office of Management and Budget defines

a metropolitan statistical area by an urban core with

population of at least 50 000, and the associated

counties with a high degree of social and economic

integration (as measured by commuting to work) with

the urban core (Census Bureau 2012). To ensure a

representative sampling, cities were categorized by

population (three groups) and by their designated

ecological regions as established by the National

Ecological Observatory Network (NEON; Fig. 1). These

ecological regions are based on vegetation, landforms,

climate, and ecosystem performance (NEON 2010). The

number of metropolitan statistical areas selected from

each ecological region was weighted based on the

proportion present. Metropolitan statistical areas were

hand selected to be representative of the population and

geographically distributed across an ecological region.

Cities located on the border between two regions were

classified as the region with the majority of land area.

To characterize the land cover, we calculated the

majority land cover for each census block group within

the metropolitan statistical area using the 2006 National

Land Cover Data (NLCD) and ArcGIS (v10) (Fry et al.

2011). The Zonal Statistics function was used to

calculate the number of cells for the cover type within

each census block group and determine the majority

land cover. Water is a coverage category in the NLCD,

and for a small number of census block groups in some

cities, water was calculated as the majority land cover.

The majority non-water land cover was assigned to these

census block groups by hand, based on the NLCD of the

surrounding census block groups. The NLCD classes

were grouped into five categories: urban open area

(NLCD¼ 21), urban low intensity (NLCD¼ 22), urban

medium intensity (NLCD ¼ 23), urban high intensity

(NLCD ¼ 24), agriculture (NLCD ¼ 81, 82), and

‘‘undeveloped’’ (all remaining NLCD). NLCD catego-

ries are based on the percentage of impervious surface

area and the land use. Urban open area land cover

includes parks, golf courses, and other spaces that are

developed (i.e., the natural vegetation removed/altered),

but not necessarily built up. Low-intensity land cover

included residential single-family homes and other low-

density development. Medium-intensity development

includes multi-family residential development and some

business districts. High-intensity development includes

industrial and other highly developed areas. The

undeveloped category includes regions designated as

forest, scrub, or desert, depending on the region and

climate. We recognized that this designation does not

necessarily mean the region exists in an unaltered state,

but provides the most reasonable comparison for how

urbanization has changed water bodies.

Water body classification

Data on surface water features in each metropolitan

statistical area were acquired from the National

Hydrography Dataset (NHD) (USGS 2012). Features

included water bodies (i.e., lakes/ponds, reservoirs,

swamps/marshes) and surface flow lines. The national

coverage of high-resolution data was produced at a

maximum scale of 1:24 000. We recognized that the

number of missing stream channels may be as high as

78% at this scale (Roy et al. 2009, Benstead and Leigh

2012). There is no known estimate of missing water

bodies (lakes, ponds, reservoirs, and wetlands), but the

quality of coverage is assumed to be satisfactory for

water bodies as small as 0.001 km2 (McDonald et al.

2012). We are aware of no evidence that water body

errors of omission are greater in urban compared to

rural landscapes.

FIG. 1. Map of the conterminous United States with the 100 selected metropolitan statistical areas (MSA) categorized by
population.
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The hydrography data layers were intersected with the

land cover layer to determine the type, number, area,

and length of water features within each land cover

category. Water bodies that crossed the boundary of two

land cover categories were divided. However, the

number of water bodies that were bisected was small

compared to the total number of water bodies in each

metropolitan statistical area. For the undeveloped land,

we used the NHD feature point data to locate all of the

water bodies with dams in the undeveloped land class

(though not all impoundments are included in this

estimate). Because these water bodies are obviously not

naturally occurring, the impounded water bodies were

not included in the undeveloped land class.

Data analysis

Water bodies were characterized by calculating

metrics described below for size, shape, connectivity to

surface flow lines, as well as the water body type/

function based on NHD designations (Feature Codes).

NHD classifies water bodies into numerous categories

that were consolidated into (1) perennial lakes and

ponds, (2) intermittent/ephemeral water bodies, (3)

perennial swamps and marshes, (4) reservoirs for water

storage, and (5) reservoirs for other functions (for

example, wastewater treatment ponds). NHD defines a

reservoir as a ‘‘constructed basin,’’ which includes water

bodies such as waste water treatment and aquiculture

ponds. Reservoirs, under the NHD definition, are

differentiated from water bodies formed by impound-

ments which still have predominantly natural shorelines.

The latter are still categorized as lakes/ponds despite

being ‘‘man-made’’ and commonly called reservoirs.

To characterize the size of water bodies within land

cover classes, we compared the parameters of the

frequency distribution of water body sizes following the

methods of Downing et al. (2006) and Seekell and Pace

(2011). The frequency of water body sizes generally

follows a distribution similar to the Pareto distribution,

with very large numbers of small water bodies and few

very large water bodies (Fig. 2A). When both the area (A)

and number of water bodies equal to or greater than size

A (nA) are log10 transformed, the ideal Pareto distribution

is linear (Fig. 2B). Fitting a linear regression model to the

log-transformed distribution provides two parameters

with which different distributions can be compared: the

slope (bsize), and the coefficient of correlation r2 (Fig.

2C). The bsize is always negative and describes the relative

proportions of small to large water bodies; the more

negative (i.e., steeper) the slope, the greater the relative

proportion of small to large water bodies. The r2 of the

regression provides a measure of how closely the

distribution of water body sizes conforms to the Pareto

distribution; the closer r2 is to 1, the better the fit (Seekell

and Pace 2011, Seekell et al. 2013).

We examined the shape of lakes using the shoreline

development factor (SDF), a commonly used measure of

tortuosity. SDF calculates an index of irregular shape by

comparing each lake to a perfect circle based on its area

and perimeter length

SDF ¼ shape length=ð2 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 3 shape area

p
Þ:

The SDF approaches 1 as the shape becomes closer to

a perfect circle, and increases as the tortuosity of the

shoreline increases. Using a similar evaluation as water

body size, we calculated both the median SDF for each

city and the slope of the log-log transformed SDF

frequency distribution to evaluate changes in water body

shape with land cover.

The connectivity of water bodies to surface flow lines

(i.e., streams and rivers) was measured by intersecting

the water body with the flow lines buffered with a 10 m

radius to account for minor variation in the position of

flow lines that occur at the 1:24 000 resolution.

Connectivity was then calculated as a percentage of

FIG. 2. Example of the calculation of the size frequency distribution parameters. (A) The number of water bodies with area
greater than area A (nA) follows a distribution similar to the Pareto distribution. Note the break in the y-axis. (B) Log transforming
both the number of water bodies and the area linearizes the distribution. (C) Fitting a linear regression model to the log-
transformed frequency distribution provides a measure of the relative distribution of small to large water bodies (slope, b1) and an
estimate of how well the distribution conforms to the ideal Pareto distribution (adjusted r2).
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water bodies connected to flow lines in each land cover

and size class.

We compared the size, shape, and connectivity of land

cover classes with a univariate analysis of variance and

Tukey’s post hoc mean comparison. Cities were also

divided into three groups to evaluate differences across

precipitation regimes and population sizes. IBM SPSS

v20 (IBM SPSS 2011) was used for all statistical

procedures.

RESULTS

Land cover

The total land area included in this study was 991 274

km2, which is ;11% of the land area in the contiguous

United States. The footprint of the metropolitan statis-

tical areas ranged from 1537 to 48 332 km2, with a

median of 7803 km2. Land cover composition, as

computed by the majority census block group method,

varied across the metropolitan statistical areas, but the

undeveloped land frequently comprised the largest

percentage, with 70 metropolitan statistical areas having

50% or greater undeveloped land cover (Fig. 3A). Only a

few metropolitan statistical areas (n ¼ 3) had no census

block groups whose majority cover was undeveloped

land; all nonurban land in these cities was categorized as

agriculture. The agricultural land cover in the metropol-

itan statistical areas ranged from 0% to 98%, with a

median of 24%. Urban land cover comprised the smallest

percentage of land area, ranging from 40% to ,1%, with

49 cities having an urban area of 250 km2 or less.

The proportion of urban land classes (open area and

low, medium, and high intensity) also varied among the

100 cities (Fig. 3B). Low-intensity urban land had the

largest coverage in most cities, with a median coverage

of 48% of the urban land; 81 cities had at least 30% of

the urban land area in this class. Urban open-area land

cover was the next most prevalent land cover, with a

median coverage of 28% of the urban land area.

Medium- and high-intensity land covers were generally

smaller components of the urban matrix across all 100

cities, with medians of 10% and 2%, respectively.

However, their coverages ranged from 0% to 69% and

0% to 37% of the urban land area among cities. Of the

PLATE 1. Some of the studied lakes and ponds in the metropolitan statistical areas (MSAs) selected in the United States: (upper
left) Phoenix, Arizona; (upper right) Raleigh, North Carolina; (lower left) Minneapolis, Minnesota; and (lower right) Miami,
Florida. Aerial imagery courtesy of the USDA FSA.
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100 cities, 12 cities had no medium-intensity and 43 had

no high-intensity urban land cover. If those cities are

removed from the calculation, the median land cover

increases to 12% and 4.6% for medium- and high-

intensity land covers, respectively.

Water body classes

Lakes and ponds were the dominant type of water

body in all land cover and city size classes (Fig. 4A–C;

note y-axis is on a logarithmic scale). Water bodies in

small cities (250 000 people or fewer) were almost

FIG. 3. The composition of land cover in 100 metropolitan statistical areas (MSA) in the United States. (A) Percentage of
undeveloped, agriculture, and urban land cover in each MSA. (B) Proportion of urban open area, low-intensity, and medium þ
high-intensity land cover in the urban land of each city.
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exclusively lakes and ponds. Wetlands (swamps and

marshes) were the next largest group in the undeveloped

land cover. In large cities (population .1 million

people), low-intensity land cover had a similar propor-

tion of swamps and marshes as was observed in

undeveloped land; smaller coverages were observed in

the open-area land cover. Medium cities had much

smaller areas of wetlands than did large cities, and small

cities had essentially none. For all city sizes, wetlands

were sparse in medium- and high-intensity land covers.

Water storage and other functional reservoirs were

found in all four urban intensity classes in large cities,

but increased in proportion relative to other types of

water bodies with development intensity. In medium-

sized cities, these functional water bodies were only

found in the open and low intensity. These types of

water bodies were exceedingly rare in all urban land

cover classes of small cities.

Water body size and shape

As the intensity of urban land cover increased, the

relative proportion of small water bodies decreased. The

slope of the size distribution (bsize) of urban water bodies

was significantly less negative (shallower) than bsize of

FIG. 4. The median proportion of total area covered by surface water of each classification type (perennial lakes and ponds
[Lakes/ponds], wetlands, reservoirs, water storage [Res. W.S.] and other [Res. other], intermittent water bodies [Intermittent]) in
different land covers varies as a function of city size. Land covers range from undeveloped to open area urban, through low-,
medium-, and high-intensity development. Whiskers represent the 75% quartile. Note logarithmic scale on y-axes.
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water bodies in the undeveloped land cover, indicating a

shift in the distribution toward larger water bodies (Fig.

5A). This shift increased with development intensity, so

that the medium- and high-intensity urban land covers

had the greatest increase in the distribution of water body

sizes.

The fit of the data to the Pareto distribution, as

measured by the r2 of the log-linear regression, also

decreased with development intensity (Fig. 5B). The size

distribution of water bodies in the undeveloped land had

the best fit, while the high-intensity urban land cover

had the poorest fit to the Pareto distribution. Although

the r2 could quantitatively estimate deviation of the

ideal distribution, it cannot estimate the nature of the

deviation. Visual observation of the median undevel-

oped and urban distributions indicated that the distri-

butions were roughly parallel except for the smallest

water bodies (,0.5 ha), where the shape of the urban

distribution deviated from that of the undeveloped

distribution (Fig. 5C). This suggests that differences in

size distributions reflect underrepresentation of the

smallest water bodies in urban landscapes.

Water body shape, as measured by the SDF, was

marginally influenced by land cover. The median SDF

indicated a significant increase in the shoreline-to-area

ratio in the urban low-, medium-, and high-intensity

land cover classes, meaning that urban water bodies are

likely to be longer and tortuous compared to the

undeveloped land (Fig. 6A). The variation in median

SDF across cities increased at medium- and high-

intensity urban land covers. In contrast, the slope of

the SDF frequency distribution was significantly lower

in high-intensity urban land cover than undeveloped

land, indicating that the distribution was shifting to

‘‘rounder’’ water bodies in these land covers (Fig. 6B).

Water body connectivity

Significantly fewer water bodies in the urban land

covers were connected to surface flow lines (i.e., streams

and rivers) compared to water bodies in undeveloped

land. The median connected water body area fell from

83% in the undeveloped land cover to 18% in the high-

intensity urban land cover (Fig. 7). The median number

of connected water bodies fell from 40% in the

undeveloped land to 10% in the high-intensity urban

land cover. In the undeveloped land cover, precipitation

regime did not affect the proportion of water bodies

connected to surface flow lines; however, in urban land

covers, greater reductions in connectivity were observed

in dry regions (Fig. 7). Although the percentage of water

bodies connected to surface flow lines increased as the

size of water bodies increased, small water bodies (,0.01

km2) in urban land covers were more likely to be

FIG. 5. Size distributions of lakes in urban and undeveloped land indicate preferential absence of small water bodies in urban
land. (A) The slope and (B) adjusted r2 of the size frequency distribution (Betasize) of the six land cover categories (undeveloped,
urban open area, low-intensity urban, medium-intensity urban, and high-intensity urban) indicates that the bias in size distributions
toward large water bodies increases with urban development. For the box plots, the center line is the median (Q2); the bottom and
top of the box are the 25th and 95th percentiles, respectively; whiskers are the 10th and 90th percentiles; the black dots are the 5th
and 95th percentiles. Capital letters within the boxes indicate significant differences at P , 0.05. (C) In the log of abundance (nA) vs.
log (area) plot for undeveloped and urban land classes, the points represent the median abundance across all cities in that size class,
and bars represent 6SD. While all sizes of water bodies are less abundant in urban land, the gap in abundance is greater for small
than for large water bodies.

July 2014 1077CHARACTERISTICS OF URBAN WATER BODIES



disconnected from flow lines than similar-sized water

bodies in the undeveloped land covers (Fig. 8).

DISCUSSION

Urban water bodies differed from water bodies in

undeveloped land in all measured characteristics: type

composition, size, shape, and connectivity to surface

flow lines. Although there is substantial variability

across the 100 cities we surveyed, the greatest differences

were consistently observed in the most intensely

developed urban land. In addition, within a land cover

class the differences in water body characteristics were

not related to the population of cities, except for the

composition of water body types. Low-intensity urban

land cover in small, medium, and large cities, for

example, had the same effect on water body size, shape,

and connectivity. The differences between the charac-

teristics of urban and undeveloped water bodies provide

insights into how urbanization changes water bodies and

landscape-scale hydrographic structure; these differenc-

es also have implications for biogeochemistry and

ecosystem function.

Mechanisms leading to hydrographic differences

Water bodies in urban land covers tend to be of more

moderate size and less connected than those in

undeveloped land. The differences in the size distribu-

tions suggest that the smallest water bodies (,0.5 ha) are

the most affected by urbanization. These changes occur

concurrently with changes in areal water body coverage

FIG. 6. Shapes of urban lakes. (A) The median shoreline development factor (SDF) of water bodies in land cover classes of the
100 cities, and (B) the slope of the frequency distribution (BetaSDF) of the SDF for each land cover. See Fig. 5 caption for
identification of box plots. Capital letters denote significant differences at P , 0.05. (C) Examples of water body shape in four
classes: irregular spheroid, impounded, simplified, and novel. The SDF is noted next to each example.
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FIG. 7. Connectivity of urban water bodies. The percentage of water body area that intersects surface flow lines in the land
cover classes is shown. Groups are further divided into three precipitation groups: wet (.1100 mm), mesic (700–1100 mm), and dry
(,700 mm). See Fig. 5 caption for identification of box plots. The black dots represent each datum above the 90th or below the
10th percentile. Capital letters above the bars designate significant differences (P , 0.05) between wet, mesic, and dry connectivity
within a land cover class.

FIG. 8. The percentage of water bodies connected to flow lines (streams, rivers, channels) in each size class. The median
percentage of connected natural water bodies of the 100 metropolitan statistical areas (gray circles) is represented in all four panels.
The median percentage of connected water bodies in the urban open area, and urban low-, medium-, and high-intensity land covers
are represented by black triangles. The gray area (natural) and black bars (urban) represent the first (Q1) and third (Q3) quartiles.
Note the logarithmic scale on the x-axis.
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(Du et al. 2010, Larson and Grimm 2011, Steele et al.

2014).

The extent to which urban water bodies reflect prior

agricultural development is unknown; however, the size,

shape, and connectivity of water bodies in the agricul-

tural land of this study display opposite trends, with

smaller and rounder water features (M. K. Steele,

unpublished data). An agricultural legacy effect may be

more prominent in the hinterland of cities in certain

regions. However, because urbanization and agriculture

display opposing trends in water body size distributions,

it seems unlikely that agricultural legacies are a major

mechanism shaping urban water bodies. Potential

mechanisms responsible for changing the size distribu-

tion of urban water bodies include: preferential removal,

physical reshaping or addition of water bodies that meet

aesthetic or functional preferences, and selection of

locations for development with water bodies of certain

morphological properties.

The preferential drainage or removal of small water

bodies from cities likely contributes to changes in water

body size distributions. Studies have documented the

intentional removal or loss of water features from urban

landscapes, and evidence from studies on stream burial

in cities indicates these practices preferentially remove

small headwater streams (Trimble 2003, Elmore and

Kaushal 2008, Roy et al. 2009, Du et al. 2010). Our data

also indicate that the smallest water bodies are the most

affected by urbanization; however, a case study from

Wuhan, China, found that nearly all water bodies were

altered during urbanization, including the fragmentation

of large water bodies (Du et al. 2010). Plausibly, an

urban water body must be of moderate size before (a) its

recreational or aesthetic value equals that of the

alternative land uses, or (b) the cost of draining it

exceeds the value of the alternative use. Alternatively or

in addition, local and regional policies may be prefer-

entially preserving the largest features in the landscape.

The addition of water bodies by construction and the

reshaping of existing water bodies may also contribute

to the differences in size distributions. Cities with

naturally minimal surface water abundance tend to

add water bodies to the urban landscape (Larson and

Grimm 2011, Steele et al. 2014). A study of water bodies

in Phoenix, Arizona, USA, identified artificial lakes in

the metropolitan region and reported that their mean

area ranged from 0.6 to 0.9 ha (Larson and Grimm

2011), just larger than the �0.5-ha size range our data

suggest is underrepresented. Artificially constructed and

impounded lakes and ponds embody human preferences

regarding water bodies and the methods used to

construct them (see Plate 1).

Specific alterations (construction, impounding) usual-

ly result in characteristic changes to the shape of water

bodies. For example, impounded streams and rivers

have the classic dendritic shape, with elongated tendrils

and a single linear edge, and simplified water body

shapes are associated with urban activities (Hwang et al.

2007). Hwang et al. (2007) observed that urban land

cover simplified the shape of reservoirs, and that the

simplification of the shoreline also correlated with

decreases in oxygen demand and phosphorus concen-

trations. Shape may provide a useful signature of the

type and extent of alteration in cities. Using the

frequency distribution of shoreline development factor

as a shape metric detected some differences in the shape

of water bodies in high-density land cover (rounder

water bodies). Like all general shape metrics, however,

SDF had limited capacity to quantify the wide variety of

shapes that we observed (Fig. 6C). Visual observations

indicate the majority of water bodies in all land cover

classes were irregular spheroids, but certain shapes were

associated with human alteration. The impounded

dendritic shape was also observed in all land covers.

Simplified shapes were primarily observed within urban

land cover and were characterized by a reduction of

irregularity of the basic shape and a reduction in

tortuosity and irregularity of the shoreline. Novel shapes

were rarest, and most frequently observed in the open-

area and low-intensity land covers of large cities such as

Miami, Houston, and Phoenix. Cities like Miami,

Houston, and Phoenix are located in regions at the very

wet and very dry extremes of the hydrographic gradient,

requiring substantial infrastructure to drain water from

or add water to the landscape (Larson and Grimm

2011).

Water features have certainly influenced the location

and growth of cities throughout the history of urban

development, as many major cities are located along

rivers, coastlines, or the shores of large lakes (Parkman

1983, Cronon 1992). At a smaller scale, we hypothesize

that hydrographic features also influence the decision to

develop certain areas within cities. Applying this concept

to water body characteristics, we suggest that locations

with fewer, larger water bodies may be more conducive

to development than areas with numerous, small water

bodies, and therefore contribute to the bias in the

distribution of water body sizes toward larger areas.

Alternatively, the preference for locating cities in

regional lowland and on flatter land, such as that found

in floodplain terraces, also may select for a certain

character of water bodies.

The role of these three mechanisms (preferential

removal, addition/reshaping, development location) in

shaping hydrographic characteristics likely depends on

the initial hydrographic conditions and the size and age

of cities. To evaluate the effects of urbanization on such

a broad scale, it was necessary to substitute space for

time, and we recognize our ability to infer a temporal

change from spatial differences is limited. However,

different city sizes provide one lens through which to

understand how the mechanisms shaping hydrography

of cities may change with time. Small cities, we assume,

are more representative of an initial footprint of cities,

while large cities have certainly expanded beyond the

initial boundaries of the settlement. This assumption

M. K. STEELE AND J. B. HEFFERNAN1080 Ecological Applications
Vol. 24, No. 5



allows us to draw some inference about trajectories of

change with urban expansion.

The smallest cities had the greatest differences in the

distribution of different types of water bodies (i.e., lakes/

ponds, wetlands, etc.) compared to the undeveloped

land. Large cities, by comparison, had a type compo-

sition that was more similar to its undeveloped

counterpart. The lack of wetlands or intermittent water

bodies in small cities indicates that either (a) the city was

located such that wetlands were avoided, or (b) all

wetlands were removed from the city. Because more

suitable land is less expensive to develop, we propose

that the most desirable areas would be developed before

those that needed extensive hydrologic alteration. A

similar location selection process may occur as large

cities have expanded outward from the original settle-

ment, but eventually the hydrographic features are likely

to become an impediment. We hypothesize that the

smaller water bodies are removed and moderate and

large water bodies become incorporated into the

landscape of the city. Location might be more important

at initial stages of development, but selective removal

would become more important as a city grows. For cities

in arid regions, which may be disproportionately sited

near water bodies, addition would become a more

important mechanism as city area increases. In sum,

though population size did not affect the differences in

water body characteristics, it may affect which mecha-

nisms are acting over time.

Population size also increases the relative proportion

of high and medium land covers. Water body size,

shape, and connectivity in the medium- and high-

intensity urban land covers had the greatest differences

from the undeveloped land cover. However, these land

covers made up the smallest percentages of most cities.

Therefore, urbanization’s most acute impacts on water

characteristics are likely observed in a relatively small

area of land. The ex-urban and sub-urban expansion of

recent decades converted large areas to open and low-

intensity land cover (Lubowski et al. 2006). Conse-

quently, though differences in water body form may be

smaller in open areas and low-intensity land cover, the

collective impact of smaller changes across a greater area

may have greater importance than the acute impact of

the medium and high land covers.

Size, shape, and connectivity: implications for ecosystem

function

The morphological changes in urban water bodies

may have consequences for conditions in surrounding

terrestrial environments and macroscale biogeochem-

ical cycling. Among other effects, urban water bodies

mediate local microclimates (Sun and Chen 2012, Sun

et al. 2012). Sun and Chen (2012) found that small

water bodies cooled the surrounding landscape more

efficiently than large water bodies per unit area,

although larger water bodies were associated with

greater cooling intensities. In addition, they found that

more compactly shaped water bodies (i.e., more square

or round) intensified the cooling effect (Sun and Chen

2012). The reincorporation of small water bodies may

present an opportunity to mitigate the urban heat

island and simultaneously influence biogeochemical

cycling on a regional level. Depending on the waste

treatment system, urban watersheds export 3–90% of

the nitrogen inputs to the watershed (Bernhardt et al.

2008). Increased inputs and the decoupling of urban

riparian zones (Groffman et al. 2002) and other

terrestrial routes for retention and removal of nitrogen

puts added pressure on the within-flow network to

remove N. Small water bodies are more efficient

processors, with higher rates of retention and seques-

tration of carbon and nitrogen (Dean and Gorham

1998, Groffman et al. 2002, Downing et al. 2008,

Harrison et al. 2008). The decrease in connectivity to

the greater watershed and the loss of the smallest water

bodies together may have substantial implications for

both the terrestrial environment and regional and

global nutrient and carbon cycling.

Small water bodies in urban landscapes are less

likely to be connected to streams than in minimally

developed landscapes, and patterns of connectivity

between lakes and streams reflected an interaction

between land use intensity and climate. Case studies

also find a reduction in the connectivity of urban water

bodies to surface water networks (Cao 2005, Du et al.

2010). These patterns are also consistent with the

substantial loss of small urban streams (Elmore and

Kaushal 2008, Roy et al. 2009). It is important,

however, to reiterate that the flow line data used here

to measure connectivity does not include very small,

intermittent, and ephemeral streams and those trans-

formed into stormwater drains. Therefore, while we

believe, and case studies support, that the decreased

connectivity of urban water bodies is a real phenom-

enon, the lack of high-resolution data at large scales

and underrepresentation of human-built surface flow-

paths increases the uncertainty of the exact values and

should be interpreted cautiously. Urban water bodies

may be more connected to their watersheds through

pipes, storm drains, and constructed channels not

accounted for by our characterization of flow lines. As

suggested with urban streams (Kaushal and Belt 2012,

Somers et al. 2013), storm water outlets, pipes, buried

streams, and other built infrastructure should be

considered when evaluating the interactions between

urban water bodies and the catchments that supply

them. Likewise, we are unable to measure the

hydrologic connectivity of water bodies to shallow

water tables using these data, but the lining associated

with constructed urban water bodies to prevent

leaching of water into the ground water would further

reduce the connectivity to the greater watershed.

Further investigation of connectivity between streams,

water bodies, and gray infrastructure is needed given
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the critical role of landscape connectivity for local- and

regional-scale processes.

The potential decrease in connectivity of these water

bodies to surface flow represents a substantial change

in the nature and possibility of interaction between

these water bodies and their surrounding watersheds.

Lakes in watersheds with low transport capacity of

water and nutrients are more reliant on in-lake

processes and nearby land cover changes (Fraterrigo

and Downing 2008). Though watershed size generally

increases with the size of the water body (N~oges 2009),
the sensitivity to watershed processes changes, and

large water bodies are more dependent on internal

processes and dynamics (Genkai-Kato and Carpenter

2005). A recent study of stormwater retention ponds

found the role of internal processes was substantial in

carbon cycling (Williams et al. 2013). Together, a lack

of connectivity to flow lines and the relative increase in

sizes suggest that urban water bodies may be decou-

pled from watersheds at some time scales, with internal

and local terrestrial processes playing a larger role in

functional dynamics.

A variety of studies suggest that the individual

characteristics and landscape-scale spatial structure of

water bodies influence the population and community

dynamics of aquatic ecosystems. For example, the

distribution of macrophytes in southern Swedish lakes

depends on both lake characteristics (size, elevation) and

connectivity to upstream lakes via stream networks

(Dahlgren and Ehrlen 2005). Similarly, spread of

nonnative Daphnia in Missouri (United States) lakes

depends on between-lake distances within landscapes

(Havel et al. 2002). The consequences of connectivity for

community composition depend on life history strategies

(Beisner et al. 2006), and spatial constraints differ in

isolated and connected aquatic environments (Shurin et

al. 2009). The alteration of water body density, size, and

shape in urban landscapes is thus likely to affect

ecological communities irrespective of other changes

associated with urban development.

Conclusions: toward an urban pond syndrome?

This analysis of over one million water bodies

indicates urban water bodies collectively have a different

morphology than water bodies in undeveloped land-

scapes. Size, shape, and connectivity were increasingly

different as the urban development intensified, resulting

in an underrepresentation of small water bodies and a

greater abundance of disconnected features. City size, as

measured by the population, did not affect the observed

trends indicating that a similar water body form is found

across cities, but did have type compositions that varied

across the size classes. While urban water bodies

undoubtedly differ from those in undeveloped lands

because of the effects of surrounding land use, their

dynamics at some temporal scales may be less coupled to

those of the uplands because of greater size, altered

shape, and reduced surface connectivity. A complete

conceptualization of the structure and function of urban

water bodies (‘‘urban pond syndrome’’) will require a

better understanding of how biogeochemical and

ecological processes respond to the characteristic size,

shape, connectivity, and type of urban water bodies, as

well as a range of surrounding land development

intensities. Better understanding of the interactions

among these characteristics is needed for better man-

agement of the complex urban hydrosphere that

encompasses streams, rivers, water bodies, and ground-

water, as well as the built hydrosystem.
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