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Abstract

Estuaries interfacing with the land, atmosphere and open oceans can be influenced

in a variety of ways by anthropogenic activities. Centuries of overexploitation, habi-

tat transformation, and pollution have degraded estuarine ecological health. Key

concerns of public and environmental managers of estuaries include water quality,

particularly the enrichment of nutrients, increased chlorophyll a concentrations, in-

creased hypoxia/anoxia, and increased Harmful Algal Blooms (HABs). One reason

for the increased nitrogen loading over the past two decades is the proliferation of

concentrated animal feeding operations (CAFOs) in coastal areas. This dissertation

documents a study of estuarine eutrophication modeling, including modeling of ma-

jor source of nitrogen in the watershed, the use of the Bayesian Networks (BNs)

for modeling eutrophication dynamics in an estuary, a documentation of potential

problems of using BNs, and a continuous BN model for addressing these problems.

Environmental models have emerged as great tools to transform data into use-

ful information for managers and policy makers. Environmental models contain

uncertainty due to natural ecosystems variability, current knowledge of environmen-

tal processes, modeling structure, computational restrictions, and problems with

data/observations due to measurement error or missingness. Many methodologies

capable of quantifying uncertainty have been developed in the scientific literature.

Examples of such methods are BNs, which utilize conditional probability tables to

describe the relationships among variables. This doctoral dissertation demonstrates
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how BNs, as probabilistic models, can be used to model eutrophication in estuarine

ecosystems and to explore the effects of plausible future climatic and nutrient pollu-

tion management scenarios on water quality indicators. The results show interaction

among various predictors and their impact on ecosystem health. The synergistic

effects between nutrient concentrations and climate variability caution future man-

agement actions.

BNs have several distinct strengths such as the ability to update knowledge based

on Bayes’ theorem, modularity, accommodation of various knowledge sources and

data types, suitability to both data-rich and data-poor systems, and incorporation

of uncertainty. Further, BNs’ graphical representation facilitates communicating

models and results with environmental managers and decision-makers. However,

BNs have certain drawbacks as well. For example, they can only handle continuous

variables under severe restrictions (1- Each continuous variable be assigned a (linear)

conditional Normal distribution; 2- No discrete variable have continuous parents).

The solution, thus far, to address this constraint has been discretizing variables. I

designed an experiment to evaluate and compare the impact of common discretization

methods on BNs. The results indicate that the choice of discretization method

severely impacts the model results; however, I was unable to provide any criteria to

select an optimal discretization method.

Finally, I propose a continuous variable Bayesian Network methodology and

demonstrate its application for water quality modeling in estuarine ecosystems. The

proposed method retains advantageous characteristics of BNs, while it avoids the

drawbacks of discretization by specifying the relationships among the nodes using

statistical and conditional probability models. The Bayesian nature of the proposed

model enables prompt investigation of observed patterns, as new conditions unfold.

The network structure presents the underlying ecological ecosystem processes and

provides a basis for science communication. I demonstrate model development and
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temporal updating using the New River Estuary, NC data set and spatial updating

using the Neuse River Estuary, NC data set.
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Introduction

Human population growth, particularly in the world’s coastal regions, resulted in

adverse changes in many coastal aquatic ecosystems, largely due to anthropogenic

activities such as land use alterations, fertilizer use, industrial activity, and climatic

perturbations. As population growth will likely continue in the future, a better under-

standing of the mechanisms of biogeochemical cycling in these vulnerable ecosystems

is critical to evaluate and quantify the ecological consequences of current and pre-

dicted changes in climate and land use. Among coastal aquatic ecosystems, estuaries

are unique systems to address questions of climate and land use change interactions.

The close proximity to population centers makes estuaries particularly susceptible to

adverse effects of anthropogenic activities that exacerbate nutrient loading and eu-

trophication. Furthermore, climate change due to increased greenhouse gas emissions

can also influence the response of coastal aquatic ecosystems to the stress directly

related to human activities. Models play a critical role in quantifying how environ-

mental changes affect estuarine ecosystems’ ecological health and water quality.

Environmental models can be categorized into deterministic and probabilistic

models. Deterministic models ignore parameter variability. Therefore, a particu-
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lar model input always produces the same output. Probabilistic models contain

the inherent uncertainty in the environmental processes; a particular model input

would produce a range of outputs- a probability distribution, due to the quantified

model randomness. Mechanistic biogeochemical models have been used extensively

in aquatic ecosystems research and are still a common research tool. Reliable pre-

dictions of system behavior is achieved when processes are adequately described

mathematically. The fundamental assumption is that such mathematical formula-

tion captures the dominant dynamics of the system, which is often difficult in com-

plex ecological ecosystems. In terms of performance, mechanistic biogeochemical

models for aquatic ecosystems perform well in predicting temperature and dissolved

oxygen, moderately in prediction of limiting nutrients and phytoplankton, and rela-

tively poorly for bacteria and zooplankton dynamics (Arhonditsis et al., 2004). The

mechanics of eutrophication is so complex that it might be impossible to describe the

system in sufficient detail mathematically; hence, probabilistic models might be more

appropriate due to quantification of uncertainty when the processes of the ecosystem

are unknown.

A great deal of effort has been expended to combine statistics and simple causal

relationships to build water quality models with accurate uncertainty assessment

since Beck (1987) highlighted the significance of uncertainty analysis in water qual-

ity modelling. An example of such recent developments is the application of Bayesian

Networks (BNs) in environmental modeling. BNs are probabilistic graphical models,

probabilistic models with a graphical representation of the conditional dependence

between variables, suitable for uncertain and complex domains such as environmen-

tal ecosystems. BNs have several distinct strengths. The main strength of BNs lies

in their knowledge updatability based on the Bayes’ theorem. This is an advantage

in the context of adaptive management of ecosystems. The BNs modularity enables

integrating multiple system components or aspects of problem (e.g., science network
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and management network in Johnson et al. (2010)). The modularity is beneficial in

environmental modeling due to the complexity of natural ecosystems and the asso-

ciated decision-making processes. BNs can accommodate various knowledge sources

and data types (e.g., expert knowledge, previous data from the same system or other

similar systems), with transparent definition of prior knowledge. Another advantage

of BNs over other modeling approaches is suitability to both data-rich and data-

poor systems. Environmental ecosystems often lack quality data associated with a

new problem under investigation. Therefore, accommodating minimal data in con-

junction with expert knowledge is a methodological advantage. The model can be

developed with minimal data and, as more information becomes available, the model

can be updated. Environmental modeling cannot be implemented without incorpo-

rating uncertainty, as it aims to explore complex ecosystems and provide support

for management of natural resources. BNs explicitly represent uncertainty by con-

ditional probability distributions for each node and the uncertainty is propagated

through the model and presented in final results. These advantages of BNs resulted

in an exponential rise in the application of BNs in ecological and environmental

sciences over the last decade.

BNs also accommodate adaptive management framework well by their updata-

bility. Adaptive management is a continuous process of decision making, where

decisions are periodically revised as outcomes of management actions are observed

under uncertain conditions of the ecosystem (Walters and Hilborn, 1978). The key

concept in adaptive management is iterative learning. The requirements of iterative

learning are (1) observing the ecosystem to gauge the impact of policies and man-

agement actions continuously; (2) communicating the ecosystem’s status with policy

makers and managers; (3) updating the management actions and recommendations.

BNs meet such requirements (Walters, 1997). They also provide a straightforward

ability to assimilate new information by using a Bayesian approach. In long-term
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monitoring programs, new data become available every day/week/month. It would

be greatly beneficial for managers/policy makers to update the model in time in-

tervals depending on the frequency of sampling and the temporal resolution of the

problem. Here, the posterior distribution calculated in the previous model run step

would be considered an updated prior distribution. An updated posterior distribu-

tion can then be computed via Bayes’ theorem using new data. Based on the updated

posterior, the effectiveness of previous policies/strategies can be evaluated and new

recommendations can be provided accordingly. While BNs are useful modeling tools,

they have certain drawbacks such as discretization and acyclicity.

The Neuse River Estuary, North Carolina, is a shallow estuary with a history

of eutrophication, HABs, and fish kill. The adoption of the Neuse Rules by the

North Carolina Environmental Management Commission in 1998 expressed a regional

concern over nitrogen loading in North Carolina’s Neuse River Basin. One reason

for the increased nitrogen loading over the past two decades is the proliferation of

swine concentrated animal feeding operations (CAFOs) in the region. The synthesis

in chapter 2 tracks the fate of the annual nitrogen input through food (37.1 ˘ 3.9 Gg

N{yr) to swine CAFOs within the Neuse River Basin. I conducted a comprehensive

literature review to assess the relative impact of nitrogen fates in swine CAFOs, and

combined them into a nitrogen budget for the Neuse River Basin. I also characterized

the uncertainty in the major nitrogen fates by using Monte Carlo simulation methods.

I shofd that the most significant losses of nitrogen are through lagoon denitrification

(34.6% ˘ 7.7%), hog assimilation (29.9% ˘ 3.2%), and ammonia volatilization to

the atmosphere (18.3% ˘ 5.6%). Our results also indicate that ,at most, 15% ˘ 9%

of the nitrogen export from the Neuse River Basin (6.86 Gg N{year) could be due

to swine lagoon seepage and 7% ˘ 4% is due to sprayfield leaching.

I utilize a BN approach in Chapter 3 to intuitively present and quantify our

current understanding of the complex physical, chemical, and biological processes
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that lead to eutrophication in an estuarine ecosystem (New River Estuary, North

Carolina, USA). The model is further used to explore the effects of plausible future

climatic and nutrient pollution management scenarios on water quality indicators.

The BN, through visualization of the network’s structure, facilitates communication

with managers/stakeholders who might not be experts in the underlying scientific

disciplines. Moreover, the developed structure of the BN is transferable to other

comparable estuaries. The BN’s nodes are discretized using a new approach called

moment matching method. The conditional probability tables of the variables are

driven by a large dataset (four years). The results show interaction among vari-

ous predictors and their impact on water quality indicators. The synergistic effects

caution future management actions. This chapter provides a sufficient context for

understanding the development process of the BNs and motivating the fourth chap-

ter.

I witnessed the advantages and challenges of BNs through developing a BN for

water quality modeling. In Chapter 4, I address the question of whether the choice

of the discretization method impacts the final results of a BN. The fourth chapter of

this doctoral dissertation presents the results of an experiment to compare different

approaches of discretization during the development of BNs. BNs can only handle

continuous variables under severe restrictions. The solution, thus far, to address this

constraint has been discretizing variables. I designed an experiment to evaluate and

compare the impact of common discretization methods on the final BN. The results

indicate that the choice of discretization method severely impacts the model results.

However, such an optimal method is inevitably case-specific. The conclusion of this

chapter is extendable to other fields where BNs are applied. In the final chapter I

focus on developing a continuous BN model.

The work presented in the final chapter is an attempt to address the problems of

discretization. I propose a continuous variable BN methodology and demonstrate its
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application in water quality modeling in estuarine ecosystems. The importance of

uncertainty analysis, adaptive management, and science communication in ecological

modeling gave rise to the application of BNs in the environmental sciences. Although

BNs have gained popularity in recent years, their main restriction, discretization, has

not yet been addressed. I propose a method that retains certain characteristics of

BNs, while it avoids the drawbacks of discretization by specifying the relationships

among the nodes using statistical and conditional probability models. The Bayesian

nature of the proposed model enables prompt investigation of observed patterns,

as new conditions unfold. The network structure presents the underlying ecological

ecosystem processes and provides a basis for science communication. I demonstrate

model development and temporal updating using the New River Estuary, NC data

set and spatial updating using the Neuse River Estuary, NC data set. The proposed

methodology in the final chapter is applicable to other contexts where BNs are often

implemented.
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2

Environmental Impacts of Swine Confined Animal
Feeding Operations (CAFOs) on Atmospheric and
Aquatic Resources within North Carolina’s Neuse

River Basin

2.1 Introduction

North Carolina has witnessed a large growth in commercial swine operations since

the 1990s. In fact, North Carolina’s hog inventory increased over 400% between

1987 (2.5 million hogs) and 2007 (10.1 million hogs) (USDA, 1992, 2007), while the

corresponding increase in human population across roughly the same 20-year period

(1990-2010) was only 44% (Census, 2010). Despite this staggering increase in hog

inventory, the number of farms possessing hogs actually decreased by 59% between

1987 (6921 farms) and 2007 (2836 farms) (USDA, 1992, 2007). Consequently, the

proportion of farms with more than 5000 hogs increased from just under 1% in

1987 to over 20% in 2007 (USDA, 1992, 2007). Thus, the dramatic rise in North

Carolina’s hog inventory has been attributed to the intensification of Concentrated

Animal Feeding Operations (CAFOs), farms which stock animals at high density and
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apply factory-like techniques to animal production.

The growth in swine CAFOs over the last two decades has primarily been concen-

trated in southeast North Carolina. Three major river basins in the state, the Neuse

River Basin, Tar-Pamlico River Basin, and Cape Fear River Basin, contain roughly

80% of North Carolina’s hog inventory (USDA, 2007). These rivers and the coastal

estuaries to which they flow have been impacted by increased nutrient loading over

the last 20 years. During the 1990s, the Neuse River estuary in particular exhib-

ited symptoms of coastal eutrophication, including harmful algal blooms and fish

kill (Burkholder et al., 1992; Paerl et al., 1998). Such observations precipitated the

development of the Neuse Rules, promulgated by the North Carolina Environmental

Management Commission in 1998 (15A NCAC 2B 1998). The Neuse Rules include

a comprehensive nutrient reduction strategy that combines stormwater and agricul-

tural best management practices with riparian buffer requirements. CAFOs following

approved Nutrient Management Plans (NMPs), which document each CAFO’s waste

management protocols, are exempt from these rules. The US Environmental Protec-

tion Agency (EPA) also requires all CAFOs to prepare state-approved NMPs to be

considered non-discharge operators under the National Pollutant Discharge Elimina-

tion System (NPDES) regulations (73 FR 70418 2008). These plans are, therefore,

important regulatory instruments that act to protect human and ecological health.

Treatment technologies within CAFOs have been designed to reduce the envi-

ronmental impact from the increased nutrient influx necessary to support large-scale

animal farming. While treatment techniques vary, most facilities treat animal waste

in anaerobic lagoons (Reddi, 2005) where a combination of physicochemical and

biological processes release volatile nitrogen gases into the air and consolidate ni-

trogen into lagoon sediments. Further treatment is afforded by applying the lagoon

slurry as a crop fertilizer to agricultural fields. Traditionally, most nitrogen losses

in these treatment systems have been attributed to ammonia volatilization (Hatfield

8



et al., 1998; Reddi, 2005). These additional atmospheric inputs create significant

regional air quality (Aneja et al., 2006) and water quality (Burkholder et al., 1992)

concerns, due chiefly to odorous ammonia plumes and increased atmospheric deposi-

tion. Thus, significant efforts have focused on developing accurate ammonia emission

factors (e.g., kg NH3 ´N{kg hog{yr) to quantify the impact of concentrated swine

farming on regional air resources (Doorn et al., 2002b,a; Arogo et al., 2003).

Some investigators have debated whether ammonia volatilization represents the

primary nitrogen loss from anaerobic lagoons, and therefore eschew the use of uni-

versal emission factors. The anoxic conditions observed in treatment lagoons have

traditionally been thought to preclude nitrogen gas loss through classical nitrifica-

tion/denitrification pathways (Reddi, 2005). Harper et al. (2000, 2004), however,

reported significant dinitrogen gas fluxes (range: 11 - 86 kg N2{hectare{day), which

the authors interpreted as evidence of lagoon denitrification. Despite the anoxic con-

ditions found in the lagoon, wind driven surficial oxygen transport at wind speeds

characteristic of the farms studied by Harper et al. (2000), has been shown to provide

sufficient oxygenation for nitrification (Ro et al., 2008). Significant denitrification

enzymes, however, have not been observed in the water column (Hunt et al., 2010),

suggesting that alternative biochemical pathways may be responsible for the observed

dinitrogen fluxes. Nonetheless, lagoon dinitrogen fluxes, regardless of their source,

may be a significant loss of nitrogen from CAFOs.

Despite the requirements that CAFOs within the Neuse River basin follow state-

approved NMPs, evidence indicates that both air quality (Aneja et al., 2006) and

water quality (Burkholder et al., 2007) remain threatened. In addition to atmospheric

ammonia deposition, seepage from aging lagoon liners and overapplication of lagoon

slurry continue to threaten regional waterbodies (Paerl, 1997; Ribaudo et al., 2003;

Burkholder et al., 2007). I contend that calculations made in NMPs disregard both

the variability in measured values and the uncertainty in published reference values,
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resulting in unwarranted confidence that air and water resources are being adequately

protected. Consequently, a literature synthesis quantifying the fates of the annual

nitrogen input to swine CAFOs within North Carolina’s Neuse River Basin will help

ascertain the extent of these threats. Specifically, my goal is to create a nitrogen

budget to track the fate of annual nitrogen input through feed for all swine CAFOs

within the Neuse River Basin. I will use a mass-balance approach, conserving mass

by accounting for nitrogen entering and leaving CAFOs, that quantifies all nitrogen

sinks and their uncertainties. I will constrain fluxes which the literature has been

unable to precisely quantify (e.g., lagoon denitrification) by assessing other sinks

more accurately. Furthermore, I plan to use background atmospheric deposition data

and nitrogen export from the Neuse River basin to establish the relative importance

of these sinks to the watershed nitrogen budget.

2.2 Methods

I employed a mass-balance approach that quantified all nitrogen sinks and their

uncertainties to create a nitrogen budget that tracks the fate of the annual nitrogen

input for all swine CAFOs within the Neuse River Basin. The Neuse River Basin

drains 14590 km2 of land within 23 counties in eastern North Carolina. 533 hog

farms requiring nutrient treatment are in operation in the basin (Figure 2.1).

Three main systems comprise most swine CAFOs: the confinement housing,

the anaerobic lagoon, and the sprayfield. Nitrogen enters swine CAFOs primar-

ily through feed intake in the confinement housing, and is exported by several sinks

across the three compartments. Within the confinement housing nitrogen is lost to

ammonia volatilization, hog assimilation, and export to the anaerobic lagoon. The

major nitrogen sinks to the atmosphere from the lagoon are ammonia volatilization

and denitrification. Other export terms include sludge accumulation and lagoon

liner seepage, with the remainder applied to crops in the sprayfield compartment.
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Figure 2.1: Swine CAFOs in the Neuse River Basin.

After nitrogen is applied in the sprayfield, it is available for plant uptake. Losses to

the atmosphere include ammonia volatilization and denitrification. Other sprayfield

export terms include microbial immobilization, soil nitrogen storage, and leaching.

I estimated input and export terms for nitrogen using data I gathered from a

comprehensive literature review and a database of currently operating CAFOs (NC-

DENR, 2011). Several sources of data were available to quantify certain sinks, and I

combined all of them to estimate each sink in a way that incorporated the uncertainty

inherent across studies. In most cases I estimated the uncertainty in each variable

using specific distributional assumptions that matched the first two moments of the

data (i.e., the mean and standard deviation) and an associated Monte Carlo simu-

lation (n = 1000). Most of these estimates were scaled on a per unit hog mass or

per unit area basis. Thus, I was able to scale up these area-based and mass-based

estimates to all swine CAFOs in the Neuse River Basin by using estimates for the

total hog mass, lagoon volume, and sprayfield area, which I determined from re-
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gressions constructed from literature data. Specifically, I obtained a database of all

current swine operations (NCDENR, 2011) and used the regressions to estimate the

total hog mass, lagoon volume, and sprayfield area at each farm. The total in the

basin was then calculated by summation across the estimates for each CAFO. Given

the large uncertainty in the lagoon denitrification flux reported in the literature, I

assessed all other sinks independently and then calculated the denitrification flux by

subtraction. The associated R (R Core Team, 2014) code is in Appendix A.

2.3 Results

The entire nitrogen budget I compiled for swine CAFOs in the Neuse River Basin

CAFOs is shown in Table 2.1 and Figure 2.2. The system boundaries lie at the edges

of the three CAFO compartments (i.e., confinement housing, lagoon, sprayfield).

Therefore, the budget I present does not directly assess transport from farms to

local waterbodies because such transport relies on numerous local hydrologic factors

which are difficult to synthesize (e.g., Israel et al. (2005)).
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Table 2.1: Nitrogen budget for swine CAFOs in the Neuse River Basin
Gg N/yr % of Input

Inputs Mean SD Mean SD
Feed Input 37.1 3.9 100% 10.5%
Outputs Mean SD Mean SD
Housing
Ammonia Volatilization 4.1 1.6 11.1% 4.3%
Hog Assimilated Nitrogen 11.1 1.2 29.9% 3.2%
Lagoon
Sludge Sedimentation (Net) 1.7 0.3 4.5% 1.1%
Ammonia Volatilization 2.1 0.8 5.8% 2.3%
Denitrification 13.0 3.7 34.6% 7.7%
Seepage Export 1.1 0.6 2.8% 1.7%
Sprayfield
Soil Storage 0.6 0.6 1.6% 1.7%
Microbial Immobilization 0.4 0.2 1.2% 0.6%
Plant Uptake 2.0 1.4 5.6% 3.7%
Ammonia Volatilization 0.5 0.4 1.4% 1.2%
Denitrification 0.0 0.0 0.0% 0.0%
Leaching 0.4 0.2 1.2% 0.7%

2.3.1 Inputs and Housing Sinks

533 farms possess 1.9 ˆ106 hogs in North Carolina’s Neuse River Basin(NCDENR,

2011). The total hog mass estimated through Monte Carlo simulation is 99.6 ˘ 0.5

Gg. Combining regression estimates for each farm, I calculated total food intake of

1300 ˘ 45 Gg{year. After multiplying by the percent nitrogen in feed (2.8% ˘ 0.3%),

I estimated the annual nitrogen input to swine CAFOs in the Neuse River Basin to

be 37.1 ˘ 3.9 Gg N{yr (Table 2.1). In the confinement housing compartment, I

estimated three major nitrogen fates: hog biomass assimilation, ammonia volatiliza-

tion, and waste input to the lagoon. Several studies use a standard value of 30% of

ingested nitrogen that can be assimilated into biomass (Doorn et al., 2002b,a; Aneja

et al., 2008a,b). Thus, nitrogen assimilated into biomass is estimated at 11.1 ˘ 1.2

Gg N/year and nitrogen excreted in waste is 26.0 ˘ 2.7 Gg N/year (Table 2.1). Af-

14



ter combining estimates and uncertainties across studies, I estimated the mass-based

ammonia volatilization rate to be 0.041 ˘ 0.017 kg N{kg hog{year. The annual

ammonia volatilization from confinement housing is therefore estimated to be 4.1 ˘

1.6 Gg N{year (Table 2.1). The remainder (21.9 ˘ 3.3 Gg N{year) is exported to

the lagoon compartment. In the following the detailed step by step procedure of

calculating nitrogen sources/sinks within swine CAFO’s housing is demonstrated.

Average Hog Mass for Each Type of Farm The detailed data on types of

farms, the percentage of each hog type within the farm and the average hog mass of

each hog type (Table 2.2) is available (Williams et al., 2003). The distribution of av-

erage hog mass in each operation type was calculated using Monte Carlo simulation,

which enabled us to capture uncertainty.

Table 2.2: Types of CAFO operations with the Mean and Standard Deviation of
Hog Mass

Type of operations Mean Standard Deviation
Farrow to Wean 88.9 6.9
Farrow to Feed 45.3 3.1
Farrow to Finish 54.3 3.7
Feed to Finish 61.0 6.0
Wean to Feed 13.6 1.4
Gilt 180.0 18.0
Boar 180.0 18.0

Food Intake

Food intake was calculated by developing a regression based on the data from

Aneja et al. (2008a,b). The regression is as follows, and data and the developed

regression is shown in Figure 2.3.

Food Intake “ 13.78039` 3.56039e´ 06ˆ Total Hog Mass

Percentage Nitrogen in Food Using data from Aneja et al. (2008a,b), mean

and variance of percent nitrogen in food was calculated and then Monte Carlo sim-

ulation was used. To estimate a distribution for percent nitrogen in food a beta
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Figure 2.3: Relationship between Food Intake and Total Hog Mass.

Figure 2.4: Distribution of Percentage Nitrogen in Food.

distribution was utilized. This enabled us to capture the uncertainty. Figure 2.4

show the result of this simulation.

Number of Hogs The data is available from NC DENR DWQ 2011:

The amount of nitrogen input to Neuse River Basin CAFOs through feed: Neuse

Swine CAFO Nitrogen Feed Input “ FoodIntakeˆ % N in Food ˆ Number of Hogs

ˆ Avg. Hog Mass Splitting up nitrogen to pig biomass and waste: From Aneja et al.

(2008a,b); Doorn et al. (2002b), it is estimated that 30% of nitrogen goes to pig
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Figure 2.5: Distribution of Confinement Housing Ammonia Volatilization.

biomass, and the 70% remaining goes to waste.

Volatilization from Confinement Housing to Atmosphere

Using the data from (Williams et al., 2003; Aneja et al., 2008a,b; Doorn et al.,

2002b) and bootstrap method, we calculated ammonia emission rates from confine-

ment housing (Figure 2.5).

2.3.2 Lagoon Sinks

The total lagoon volume, surface area, and bottom area in the Neuse River Basin

were estimated by regression to be 1.03 ˆ107 m3, 4.11 ˆ106 m2, and 4.11 ˆ106

m2 respectively. After combining estimates and uncertainties across studies, I esti-

mate the ammonia volatilization rate to be 0.02 ˘ 0.008 kg NH3 ´N{kg hog{year.

Consequently, the annual lagoon ammonia volatilization flux is 2.1 ˘ 0.8 Gg N{year

(Table 2.1). By combining an estimation of the mass-based sludge accumulation rate

(0.0040 ˘ 0.0004 m3{kg hog{year) and the total nitrogen concentration in sludge

(4.3 ˘ 0.7 g{L), the annual nitrogen accumulated in sludge is 1.7 ˘ 0.3 Gg N{year

(Table1). Combining several independent sources of lagoon seepage, I estimate the

total export from lagoon seepage to be 1.1 Gg N{yr. The lagoon denitrification flux,
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calculated by subtracting lagoon ammonia volatilization, sludge accumulation, seep-

age export, and land application (See Sprayfield Section Below) from lagoon import,

is 13.0 ˘ 3.6 Gg N{year. Multiplying the TKN (Total Kjehldahl Nitrogen) concen-

tration in the lagoon liquid (402.10 ˘ 77.52 mg/L) by the total lagoon volume in the

Neuse River Basin yields a lagoon nitrogen pool size of 4.1 ˘ 0.8 Gg N. Assuming

steady state, and dividing this number by the flux through the lagoon, I estimated

the mean residence time of nitrogen in the lagoon to be 58 days, a reasonable esti-

mate. In the following the detailed step by step procedure of calculating nitrogen

sources/sinks within swine CAFO’s lagoon compartment is demonstrated.

Total Lagoon Volume, Surface Area, Bottom Area

Having the data for the relationship between lagoon volume and hog mass (Hunt

et al., 2010; Bicudo et al., 1999), we developed a regression in order to estimate the

total lagoon volume for the Neuse River basin (Figure 2.6). To calculate the surface

and bottom area, we made an assumption on the lagoon geometry that all lagoons

are rectangular prisms.

Lagoon Volatilization to Atmosphere

Using the data from Williams et al. (2003); Aneja et al. (2008a,b); Doorn et al.

(2002b) we did a Monte Carlo simulation for different seasons, in order to capture

variation of ammonia volatilization due to seasonality, and then averaged them to

come up with a mean value for the lagoon volatilization to the atmosphere.

Lagoon Sludge Accumulation

In order to calculate sludge accumulation, first we estimated the sludge nitrogen

concentrations, based on the data available from Bicudo et al. (1999); Williams et al.

(2003) and using Monte Carlo simulation. Sludge accumulation rates were calculated

from Chastain (2006). Nfluxsludge “ Sludge Accumulation Rate ˆ Average Sludge

Nitrogen Concentration ˆ Total Hog Mass

Lagoon Seepage
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Figure 2.6: Relationship between log (Lagoon Volume) and Total Hog Mass

Using data from Ham (2002), we calculated lagoon seepage rate. Then we calcu-

lated average ammonia concentration in the lagoon based on the data from Bicudo

et al. (1999); Hunt et al. (2010). Finally we calculated export as follows:

Lagoon Seepage Export “ Average Ammonia Concentration in Lagoon ˆ Seepage

Rate

2.3.3 Sprayfield Sinks

The total sprayfield area in the Neuse River Basin was estimated to be 1.24 ˆ108

m2. The mean agronomic rate across soil types characteristic of the region weighted

by my assumed crop composition (20% Corn, 40% Bermuda Grass, 40% Soybeans) is

0.016 ˘ 0.005 kg N{m2{application. Assuming all farms apply biannually, the total

nitrogen applied to swine CAFO sprayfields was calculated to be 4.1˘ 0.6 Gg N/year.

Six major fates were assessed using rescaled percentage losses reported by Whalen

and DeBerardinis (2007): plant uptake = 2 ˘ 1.4 Gg N{year, soil storage = 0.6 ˘ 0.6

Gg N{year, microbial immobilization = 0.4 ˘ 0.2 Gg N/year, leaching = 0.4 ˘0.2
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Gg N{year, ammonia volatilization = 0.5 ˘ 0.4 Gg N{year, and denitrification 0.03

˘ 0.02 Gg N{year (Table 1). In the following the detailed step by step procedure

of calculating nitrogen sources/sinks within swine CAFO’s sprayfield compartment

is demonstrated.

Sprayfield Total Area

We took two different datasets available to calculate the Sprayfield area. From

2007 Agricultural Census and NC Animal Waste Operators Certification Program,

we had the total sprayfield area for different livestock, and then based on the ratios

of different livestock we calculated the sprayfield area for swine CAFOs.

We also had a detailed Nutrient Management Plan for a particular farm in the

North Carolina. Based on the number of hogs in the farm, type of operation and the

sprayfield area, we scaled that up to all the swine CAFOs in the Neuse River Basin.

Finally we averaged the two numbers together.

Sprayfield Land Application

We assumed that swine CAFOs in Neuse River basin produce corn, Bermuda

grass and soybean in their sprayfields. This assumption is not far from reality since

these three crop types are the most common ones in the Neuse river basin. We had

the data for application rates for the three crop types (Table 2.3), and based on that

we did a Monte Carlo simulation, to calculate the mean application rate, and also

capture the variation in it.

Table 2.3: Distribution of Crops in the Neuse River Basin, and their Application
Rates. Units for Mean of Application Rate (App. Rate) and Standard Deviation
(SD) of Application Rate are both kg{m2{application

Spatial Distribution App. Rate App. Rate
% Mean SD

Corn 40 0.013 0.003
Soybean 20 0.017 0.004
Bermuda Grass 40 0.019 0.005
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Sprayfield Sinks

From Whalen and DeBerardinis (2007) we have the detailed percentage data to

track the nitrogen through its sinks in the sprayfield. The major sinks in the spray-

field are plant up take, microbial activity, leaching, volatilization, and soil storage.

2.4 Discussion

According to the approach I took in this study, the most significant exports of annual

nitrogen import in feed are lagoon denitrification (35%), hog assimilation (30%), total

ammonia volatilization (18%), and plant uptake (5%). To estimate the impact of

CAFOs on the Neuse River Basin nitrogen budget, a comparison of CAFO nitrogen

exports to watershed nitrogen yield is instructive. I assume that CAFOs degrade

ambient water quality through sprayfield leaching and lagoon seepage. Although

the nitrogen exported by these two processes may suffer other fates before reaching

surface or ground water, the amounts set an upper boundary of nitrogen impact

to water bodies from swine CAFOs in the Neuse Basin. The annual nitrogen yield

from the Neuse River Basin, estimated by the Spatially Referenced Regression on

Watershed Attributes (SPARROW) model is 4.7 kg N{ha{year, resulting in a total

basin export of 6.86 Gg N{year (McMahon et al., 2003). Thus, my results indicate

that, at most 15% ˘ 9% of the nitrogen export is due to swine lagoon seepage and

7% ˘ 4% is due to sprayfield leaching. Since these nitrogen sinks can be further

transformed before reaching surface or ground water, the actual impact is likely

diminished. My analysis does not assess catastrophic lagoon breaches or runoff due

to land application at an inappropriate time (e.g., before a rain storm) due to absence

of accurate data. Detailed information about the soil type, hydrological parameters,

CAFO location in regard to waterbodies, and crops in rotation would help provide

a more accurate estimate.

According to my nitrogen budget, ammonia volatilization from swine CAFOs in
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the Neuse basin significantly impacts the atmosphere. Combining ammonia emis-

sions from housing, lagoon and sprayfield, the annual flux is 6.7 ˘ 2.1 Gg N{year.

Using data from the National Atmospheric Deposition Program (NADP 2011), the

mean wet ammonia deposition in the Neuse River Basin is 4.42 kg inorganic N{ha,

resulting in total wet nitrogen deposition of 6.45 Gg N{year. Thus, the amount

of ammonia emission from swine CAFOs is roughly equal to the wet deposition of

inorganic nitrogen. Although a portion of the emission will be deposited outside the

boundary of the Neuse River Basin depending on prevailing atmospheric conditions,

these numbers suggest that CAFOs are significant sources of atmospheric inorganic

nitrogen deposited within the basin.

I estimate the annual lagoon denitrification flux from swine CAFOs in the Neuse

Basin to be 13.0 ˘ 3.7 Gg N2{yr. This sink represents the most significant export

(35.0%) of the yearly nitrogen input. After converting this estimate to the same units

as reported by Harper et al. (2000, 2004), the distribution (87.0˘ 24.7 kg N2{ha{day)

covers the upper end of the range of reported values for North Carolina (11-86 kg

N2{ha{day), with the mean corresponding to the high endpoint. My estimate of

the ratio between lagoon dinitrogen and ammonia emissions (7.6:1 +/- 5.4:1) also

covers Harper’s estimate from one swine farm (5.7:1). Although I am confident that

lagoon denitrification represents a significant loss of nitrogen from the system, my

estimate should be received with several qualifications. First of all, my estimate

was calculated by subtraction, a method which assumes I have accurately assessed

all other nitrogen losses. If I have underestimated or excluded any other loss, the

denitrification flux will be artificially high. For example, my estimate of nitrogen

applied to land assumes that CAFO operators are applying waste at agronomic

rates due to absence of accurate data on violations of agronomic application rates. If

significant overapplication is occurring, denitrification will then be proportionately

less. Furthermore, my assessment of total sprayfield area, crop distribution, and
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agronomic rates, while based on data I had at hand, oversimplifies the heterogeneity

of sprayfields in the basin. Finally, given that uncertainty exists regarding the exact

biological process which generates the lagoon dinitrogen flux, this loss might better

be termed dinitrogen loss.

Similarly, the assessment of nitrogen fates in the sprayfield compartment is highly

uncertain. My method utilizes the proportional losses of applied nitrogen as reported

by Whalen and DeBerardinis (2007). These proportional losses were reported with

high uncertainty, and when combined with my crude estimate of land applied nitro-

gen, the proportional losses exhibit high uncertainty. Although the data reported

by Whalen and DeBerardinis (2007) represent the most comprehensive assessment

of nitrogen sinks after application of swine lagoon slurry, I compared the values I

estimated to other independent estimates of sprayfield ammonia volatilization. My

estimate (0.007 ˘ 0.002 kg NH3 ´ N{kg hog{year) was much lower than the es-

timates of Murray et al. (2003)( 0.046 ˘ 0.024 kg NH3 ´ N{kg hog{year), but

corresponded in magnitude to that reported by Doorn et al. (2002b,a) (0.012 kg

NH3 ´N{kg hog{year).

To create the nitrogen budget, I made several simplifying assumptions due to a

lack of detailed data on farms in the Neuse River Basin. In the confinement housing

compartment I assumed that 70% of the nitrogen in food goes to waste, and 30% goes

to the pig biomass (Doorn et al., 2002b,a; Aneja et al., 2008a,b). Detailed information

regarding the distribution of nitrogen division between pig biomass and waste was

lacking, so I was unable to assess variability in this number. I also assumed that

all farms in the Neuse River Basin treat waste with anaerobic lagoons even though

this is true for only a majority of farms. Due to the lack of data on crop types for

individual farms, I assumed that swine sprayfields grow only three types of crops

(Bermuda Grass, Corn, and Soybeans). Although several other crop types are grown

on swine CAFO sprayfields and the distribution among crop types varies significantly,
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this assumption while reasonable may be unduly influencing my results. Calculating

the total sprayfield area within the Neuse Basin was also challenging. As noted by

Murray et al. (2003), estimating sprayfield area for farms across a wide geographic

region can be difficult without farm-level data. The two techniques I used generally

agreed, but both estimates were significantly higher than those in Williams et al.

(2003).

Further work to rigorously assess CAFO nitrogen losses should be performed. I

used percentages from Whalen & DeBerardinis(2007) to ascertain the relative nitro-

gen losses in the sprayfield; however, soil heterogeneity and hydrology influence these

percentages. Future work should also examine the extent and variability of lagoon

denitrification in conjunction with studies estimating the pathway responsible for

such large fluxes. Assessing the extent of nitrous oxide (N2O) leakage which occurs

during denitrification would also be worthwhile.
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3

A Study of Anthropogenic and Climatic
Disturbance of the New River Estuary using a

Bayesian Belief Network

3.1 Introduction

Over the past two decades, more estuarine ecosystems across the globe have experi-

enced eutrophication, defined as “an increase in the rate of supply of organic matter

to an ecosystem” (Nixon, 1995; Rabalais et al., 2009). Estuaries are particularly

susceptible to eutrophication due to riverine nutrient inflow, efficient nutrient trap-

ping, long flushing times, and shallow depth. Moreover, climatic and anthropogenic

perturbations have exacerbated eutrophication symptoms, through higher temper-

atures, extreme floods/droughts, and land use alterations, which further endangers

estuarine ecological health (Neff et al., 2000; Cloern, 2001; Scavia et al., 2002; Lloret

et al., 2008; Armstrong, 2009; Rabalais et al., 2009; Kaushal et al., 2010).

Our goals were to quantify the impact of eutrophication on the ecological health

of estuaries, facilitate decision-making processes by managers, and develop tools for

clear communication with stakeholders. To this end, we investigated potential drivers
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of eutrophication in an estuary using a Bayesian belief network (BBN) approach

(Ryther and Dunstan, 1971; Strobl and Robillard, 2008; Conley et al., 2009; Sheldon

and Alber, 2011). The term Bayesian refers to methods related to statistical inference

using Bayes’ theorem.

BBNs are directed acyclic graphical models, composed of nodes and links, with

embedded conditional probability tables associated with each node (Jensen and

Nielsen, 2007; Heckerman, 2008). The BBNs1 visual interface makes them a valu-

able tool to illustrate complicated connections and communicate scientific research

with a wide range of stakeholders. Additionally, the BBNs1 modularity makes them

transferable to other estuaries, assuming the structure of the model is generalizable

(Nixon, 1995; Smith, 2003) and accounting for ecosystem specific variability (Koller

and Pfeffer, 1997; Jensen and Nielsen, 2007; Johnson et al., 2010). The developed

model for the former estuary would act as prior information for the later estuary. The

model can then be updated using data from the later estuary due to the Bayesian

nature of the BBN (posterior 9 likelihood of observed data ˆ prior). Finally, BBNs

accommodate our goal of scenario investigation (Uusitalo, 2007).

In this chapter, we describe the study area, the dataset, and the BBN model con-

struction and evaluation. Using the model, we explore potential impacts of climatic

variability and management scenarios on the NRE1s water quality.

3.2 Materials and Methods

3.2.1 Study Area

Our study area (see Figure 3.1), the New River Estuary (NRE, „ 1435 km2), located

in Onslow County, North Carolina, USA, was a highly eutrophic estuary (1995-2002)

with elevated levels of chlorophyll a (>60 µg{l), nitrogen (total dissolved nitrogen

>1 mg{l), phosphorus (total dissolved phosphorus >0.1 mg{l), turbidity (secchi disk

depth <1 m), occasional bottom water hypoxia (dissolved oxygen <2 mg{l), and
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Figure 3.1: New River Estuary, land use and cover, and monitoring stations. For
the BBN, data from CL 6, CL7, and CL8 were used.

nuisance/harmful algal blooms (Mallin et al., 2005). Even after the upgrade of the

sewage treatment plant of the City of Jacksonville and the U.S. Marine Corps Base

at Camp Lejeune in 1998, moderate to severe eutrophication symptoms are still

observed (NOAA, 1996; Mallin et al., 2005). Poor water quality has negatively im-

pacted the regional commercial fisheries for blue crab and shrimp (NCDMF, 1993;

Tomas et al., 2007). Although high nutrient concentrations and elevated chlorophyll

a production extends along the 25 Km of the NRE, eutrophication symptoms are

most severe in Morgan Bay, our study area, near the head of the estuary (NOAA,

1996; Mallin et al., 2005). The NRE Bayesian belief network was developed with wa-

ter quality monitoring data from the Defense Coastal/Estuarine Research Program

(DCERP), Aquatic Estuarine Monitoring component (RTI, 2013), unless otherwise

stated. Eight stations along the length of the NRE were sampled on a monthly basis,

starting in October 2007, for a range of physical, chemical, and biological variables.

In this study, we used data from October 2007 to October 2012 for the three stations
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in the upper estuary (stations CL 6, CL7, and CL8 in the Morgan Bay) where eu-

trophication symptoms are most severe (Figure 3.1) (Hall et al., 2012). Furthermore,

the NRE is functionally divided into two shallow estuaries with different ecological

properties, with the upper section showing stronger relations between chlorophyll a

and nutrient concentrations (RTI, 2013). We used the data from October 2007 to

September 2011 for model development and the remainder (i.e., October 2011 to

October 2012) for model validation purposes.

3.2.2 Model Construction

We followed the guidelines on developing Bayesian belief network models suggested

in the literature by undergoing several cycles of model development and revision

(Marcot et al., 2006; Chen and Pollino, 2012). We implemented the BBN in the

Hugin Educational 7.1 software package (Madsen et al., 2003).

The first step in developing the BBN was to determine the most important fac-

tors that were believed to have an impact on the eutrophication in the NRE. The

number of variables and nodes of the BBN model depend on the purpose and scope

of the study. Here our objective was to quantify the impacts of anthropogenic and

climatic factors on water quality indicators (i.e., chlorophyll a concentrations, bot-

tom water dissolved oxygen and presence/absence of harmful algal bloom species).

To this end, we developed an ecological network with surface chlorophyll a concentra-

tions, bottom water dissolved oxygen and presence/absence of harmful algae (toxic

algae and/or hypoxia generating and/or food web disrupting) as key water quality

indicators suggested by US EPA National Coastal Condition Report1s suggestions

(EPA, 2001a,b; Sheldon and Alber, 2011) (Figure 3.2). The variables within the

BBN were compartmentalized into five functional components: “Physical Environ-

ment”, “Chemical Environment”, “Biological Environment”, “Harmful Algae”, and

“Hypoxia/Anoxia” (Figure 3.2), to accommodate our goal of investigating the im-
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pacts of anthropogenic nutrient pollution and climatic variability. One advantage of

this compartmentalization is that the current components can be further expanded

in the future or additional components such as land-use can later be developed and

added as a sub-model to the current BBN.

We investigated a large selection of variables in the dataset (see supplementary

material Table B.2) using exploratory data analysis, personal communications with

local experts and scientific literature during the variable selection procedure. We

included the following variables with a monthly time scale in the model to pre-

dict surface chlorophyll a concentrations, bottom water dissolved oxygen and pres-

ence/absence of harmful algae (toxic algae and/or hypoxia generating and/or food

web disrupting): wind speed (data from State Climate Office of North Carolina,

2007, Station Name: New River MCAS, mph), photosynthetically active radiation

(PAR) (data from State Climate Office of North Carolina (CRONOS, 2007), Station

Name: New River MCAS, µmoles{sec{m2), temperature (˝C, representing seasonal

variation), precipitation (data from State Climate Office of North Carolina 2007, Sta-

tion Name: New River MCAS, cm{mo), freshwater discharge (average monthly data

from USGS Station Number 02093000, latitude: 34˝501572, longitude: 77˝311102,

m3{s), stratification (density gradient, bottom water density minus surface water

density, g{cm3)(salinity is used in calculating stratification), light attenuation coef-

ficient (Kd, 1{m), dissolved inorganic nitrogen (surface DIN, µg{l), orthophosphate

(surface PO4, µg{l), chlorophyll a (surface algal biomass, µg{l), primary production

(PPR, mg of C{m3{h), growth rate (GR, 1{h), and bottom water dissolved oxygen

(O2, mg{l).

Harmful algal genera described in the NRE include Karlodinium veneficum (di-

noflagellate), Chattonella, Fibrocapsa, and Heterosigma (raphidophytes). Species

composition was determined by high performance liquid chromatography (HPLC)

measurements. Unique class levels pigments of 191-hexanoyloxyfucoxanthin and vi-
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olaxanthin were used to determine presence/absence of Karlodinium veneficum and

marine raphidophytes, respectively. The presence of violaxanthin was translated into

presence of raphidophytes. Chlorophytes also contain violaxanthin but they are a

minor component of the biomass in the NRE (Hall et al., 2012). Other pigments such

as zeaxanthin (cyanobacteria) that might be important in mid- to late summer have

not been included in this study since they have not been described in the NRE. We

also investigated occurrence of dinoflagellates as a group containing several harmful

species by presence/absence of peridinin. In the BBN the presence of diagnostic pig-

ments does not translate into harmful algal bloom (HAB) conditions (i.e., blooming

and/or producing toxins); however, the report of absence of a pigment ascertains

lack of HAB conditions.
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The main driving factors of chlorophyll a concentration are light, physical forces

(mixing), nutrients, temperature and zooplankton grazing. All aforementioned vari-

ables have been measured for the NRE except grazing. In order to examine grazing,

the growth rate was calculated based on an empirical relationship by Cloern et al.

(1995), using concentration of the most limiting nutrient (DIN), half saturation con-

stant (KN , the value was prescribed equal to 1 µM based on Cloern et al. (1995)),

spectrally averaged light attenuation coefficient (Kd), depth of mixing layer (H, cal-

culated based on salinity profile), daily irradiance (IΦ, calculated from PAR data)

and temperature (T):

Chlorophyll a : C “ 0.003` 0.0154N
KN`N

e0.05T´0.059
Iφp1´e´kHq

kH

GR “ PPR
Chlorophyll aˆChlorophyll a:C

Significant uncertainty is associated with all phytoplankton growth models; hence,

the growth rate term was interpreted as lower versus higher than 0.01 to investigate

top-down versus bottom-up control. The 0.01 value is an average value for growth

rate calculated from studies on the Neuse River Estuary, a similar neighboring estu-

ary (Hall et al., 2008). The growth rate node is terminal (i.e., no child nodes) and

as such does not influence the model1s behavior.

The second step in developing the BBN was to determine the structure of the

model. The primary structure of the BBN was developed based on a priori expected

causal dependencies established on the existing literature and exploratory data anal-

ysis (see supplementary material Figure B.1 for the base model that only included

chlorophyll a and its predecessor nodes) (RTI, 2011). The developed model was

then reviewed and revised by experts through series of in person/online meetings

and email communications to evolve to its final version shown in Figure 3.2. The

expert comments were specifically valuable for variable choice in the harmful algae
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component since they are estuarine specific. The structure was then fed into the

Hugin software.

The third step of the BBN model development process is to specify the con-

ditional probability tables (CPTs). The CPT contains the probability of a node1s

values conditioned on every possible combination of its predecessor nodes1 values (for

examples of CPTs see supplementary material Tables 3 to 11). The arrows in a BBN

represent conditional probabilities associated with states of a node as a function of

the states of its direct predecessors (parent nodes). There are several ways to specify

the conditional probabilities in the BBN depending on the sources and amount of ac-

cessible data (Marcot et al., 2006; Chen and Pollino, 2012). In this study, the CPTs

were estimated using the Expected-Maximization algorithms provided by the Hugin

software (Dempster et al., 1977; Madsen et al., 2003) for data from field monitoring

sites (see Subsection 3.2.1).

The present BBN was developed with discrete probability distributions for all

variables in the model (Jensen and Nielsen, 2007; Alameddine et al., 2011), due

to restrictions of continuous variables in BBNs and their specialized software. The

discretization procedure remains one of the challenges in building the BBNs. Points

to consider when discretizing are: the size of the available dataset, the interpretation

goal of the node, the placement of the node with in the BBN (does it have any

predecessor nodes?), the shape of the underlying distribution, the number of outliers,

and the number of repetitive values for data points.

The two established discretization techniques for empirical datasets are equal-

interval and equal-frequency (Chen and Pollino, 2012). The equal-interval method

is unsuitable when the dataset is unevenly distributed or contains outliers, since it

would result in sparsely populated bins. The equal-frequency method has short-

comings when dataset has repetitive values. Further, neither of these techniques

preserve the original distribution of the data; hence, we discretized the BBN nodes
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by exploring a new approach called moment matching method, which focuses on

matching lower statistical moments of the initial distribution (i.e., mean, variance,

skewness, kurtosis, etc.). Unlike the equal-interval or equal-frequency discretization

methods, the moment matching method leads to a better representation of the under-

lying continuous distribution by matching its moments with an appropriate discrete

distribution (Smith, 1993).

Another important point to address while discretizing continuous variables is the

number of intervals. Large number of intervals would improve representation of the

underlying distribution but increase the size of the conditional probability tables

due to increase in states of predecessor nodes; hence, an optimal number of intervals

for each variable should be determined. The number of intervals for each node was

determined to accommodate our analysis and its application to the various scenarios

that were investigated (Alameddine et al., 2011).

In this study environmental factors were discretized into four bins to accommo-

date detailed scenario investigations. For chlorophyll a and bottom water dissolved

oxygen nodes, we fixed one of the intervals on roughly (the approximation is due to

the limitation in discretization of BBNs, an interval endpoint should be an observed

data point) 40 µg{l and 4 mg{l respectively, to examine scenarios resulting in vio-

lation of water quality standards in North Carolina (NCDENR-DWQ, 2007). The

other endpoints for chlorophyll a and bottom water dissolved oxygen nodes were se-

lected to match the moments of the underlying distributions. Our purpose here was

to identify conditions that are suitable for presence/absence of harmful algae; hence,

for the harmful algae component, we defined two intervals, representing presence and

absence of indicator pigments.
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3.2.3 Model Diagnostics

The developed BBN1s performance accuracy was evaluated both qualitatively and

quantitatively. As a qualitative assessment, we examined the various scenarios of

chlorophyll a concentration, bottom water dissolved oxygen, and nutrients to assess

whether the observed increased/decreased responses were consistent with the direc-

tions of such changes in the literature (see table 3.1). Quantitative evaluations were

done using the Area under the Receiving Operating Characteristic Curve (AUC)

to validate the BBN (Fawcett, 2006; Marcot et al., 2006; Chen and Pollino, 2012).

The analysis wizard embedded in Hugin 7.1 was utilized to evaluate the BBN. The

dataset from October 2011 to 2012 was used to calculate the evaluation criteria, i.e.,

AUC and 90 % Highest Density Interval (HDI) (Kruschke, 2010). The AUC varies

between 0 and 1 and provides a diagnostic measure of models prediction accuracy,

which represents the probability of a true positive outcome (the proportion of actual

observations which are correctly classified) versus a false positive outcome (accuracy

of data classification). A model with perfect predictions would have an AUC equal

to 1. The 90% HDI contains credible values, that have higher credibility than values

outside the interval, which spans 90% of the distribution. The 90% HDI is a more

intuitive and meaningful summary of the posterior distribution, and hence a better

evaluation criteria. Furthermore, the HDI intervals work better for skewed distri-

butions than equal-tailed intervals, which exclude points in the compact tail with

higher credibility and include points near the skewed tail.

3.3 Results: Current Conditions

The BBN for the sampling period is depicted in Figure 3.3. Following, we summa-

rize the results under three categories of biological environment, harmful algae, and

hypoxia/anoxia, the water quality indicators of interest.
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Table 3.1: List of investigated scenarios. The first column represents the scenario
investigated, the variable name and the range it was set for the investigated scenario.
The second column lists the variables that showed a significant change under the
investigated scenario. Only variables with Pr(| µ1 ´ µ2 |ą 0q ě 0.9 are presented,
where µ1 and µ2 are the means during the sampling period and under investigated
scenarios, respectively. The third column represents the difference of the means
during the sampling period and under investigated scenarios for the variables in the
second column.

Scenario Variables µ1 ´ µ2

Freshwater Discharge -13.20
Low Precipitation [1.37, 3.80] Stratification -0.23

Chlorophyll a -2.74
Freshwater Discharge 107.00
Stratification 0.62

High Precipitation [16.69, 40.60] Light 0.55
Phosphorus 15.70
Nitrogen to Phosphorus Ratio 3.17
Chlorophyll a 5.18
Light 0.82
Nitrogen 134.00
Phosphorus 15.70
Nitrogen to Phosphorus Ratio 2.01

Stratified [3.61, 15.11] Primary Productivity 17.20
Chlorophyll a 4.48
Bottom Dissolved Oxygen -1.26
Dinoflagellates -0.07
Raphidophytes -0.13
Light 0.23
Nitrogen 18.80

Mixed [-0.04, 1.04] Phosphorus -2.23
Chlorophyll a -4.01
Bottom Dissolved Oxygen -0.46

Low Temperature [5.42, 12.25] Bottom Dissolved Oxygen 1.56
Karlodinium veneficum 0.14
Chlorophyll a 2.28

High Temperature [25.80, 32.63] Karlodinium veneficum 0.22
Dinoflagellates 0.17

Low Nitrogen [5.57, 56.30] Chlorophyll a -7.80
Raphidophytes 0.04
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3.3.1 Nutrient and Biological Conditions

Nutrients are primarily delivered by freshwater discharge or recycled through sedi-

ment re-suspension; therefore, the intensity of water column stratification and fresh-

water discharge control nutrient delivery. Nutrient concentration is a poor predictor

of nutrient availability for limiting nutrients, because those available are removed by

phytoplankton rapidly and not captured by monthly sampling (Cassar et al., 2011).

Although nutrient loading would be the best indicator of nutrient availability, in the

absence of acceptable nutrient loading estimates, nutrient concentration was used as

an indicator of nutrient availability.

The results show that chlorophyll a concentrations violate North Carolina1s “ac-

ceptable” water quality standard of 40 µg{l (NCDENR-DWQ, 2007) 23.03% of the

time during the sampling period (monthly frequency)(see Figure 3.3). In conjunction

with chlorophyll a concentrations, we also examined primary production (PPR) and

growth rate (GR) to assess whether the system is top-down, controlled by predation,

(high GR, low PPR) or bottom-up, controlled by nutrients or light, (low GR, high

PPR) controlled. The estimated GR is compared to the respective PPR to judge

top-down versus bottom-up control, due to lack of data on grazing in the NRE. The

BBN analyses indicate that during the sampling period, GR is low (<0.01 with 64%

frequency) and PPR is medium to high (>21.21 with 75% frequency) (Figure 3.3),

which is typical of a bottom-up eutrophic ecosystem (Laws, 2000). Growth rate and

primary production distribution would change under different seasons, which are

specified in the BBN by freshwater discharge, temperature, and light. Growth rate

and primary production distributions rule out grazing limitation of primary produc-

tion; hence, the system is either light or nutrient limited. Our analysis does not take

into consideration phytoplankton vertical migration, which is known to occur in the

NRE (Hall et al., 2012). This does not have an impact on our analysis, since the
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NRE does not appear to be light limited.

Light limitation is common in highly turbid estuarine ecosystems, such as NRE

(Cloern, 1987). In our study Kd is lower than 2.2 1{m 78% of the time. Considering

that the NRE has an average depth of 1.6 m, the water column is in the euphotic zone

more than 78% of the time; hence, light limitation is unlikely during the sampling

period. The nutrient concentrations reveal that dissolved inorganic nitrogen and

orthophosphate are in the low bracket range (<56.30 and <5.30 µg{l, respectively)

80% and 40% of the time, respectively. The N to P ratio is lower than 9.506, 62.5% of

the time; hence, NRE is N limited, which is consistent with previous studies showing

nitrogen limitation in the NRE (Altman and Paerl, 2012). The nutrient limitation in

the NRE highlights the importance of management decisions on nutrient regulation,

since the system would respond promptly to nutrient enrichment.

3.3.2 Harmful Algae

Based on the model results over the dataset timeline (4 years), Karlodinium venefi-

cum, other harmful dinoflagellates, and harmful raphidophytes (Chattonella, Fibro-

capsa, and Heterosigma) were present in the NRE 48.7%, 47.3%, and 65.5% of the

time during the sampling period, respectively (Figure 3.3). It should be noted that

presence does not necessarily imply bloom or toxic conditions. The harmful bloom

conditions can be determined by investigating chlorophyll a concentrations of higher

than 40 µg{l in conjunction with community composition, which is outside the scope

of this study.

3.3.3 Hypoxia/Anoxia

In the BBN structure bottom water dissolved oxygen is connected to chlorophyll a

concentrations, temperature, and stratification intensity. The relationship of chloro-

phyll a and bottom water dissolved oxygen is strongest during summer-fall (see
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supplementary material, Figure B.2). Lower temperatures result in higher oxygen

solubility in water; therefore, during winter/early spring there is not a strong rela-

tionship between oxygen and chlorophyll a. Bottom water dissolved oxygen concen-

trations in the NRE violated the North Carolina’s water quality standard of 4 mg{l,

11.5% of the time during the sampling period(NCDENR-DWQ, 2007).

3.4 Discussion

The BBN was used to quantitatively assess the response of water quality indicators

to climatic variability and nutrient management scenarios. The evidence for low

and high scenarios of precipitation, stratification, temperature, and nitrogen was

propagated through the model and marginal probabilities were re-calculated (Table

1). The scenarios in this chapter were set within the system1s observed variability

of the physical and chemical environment. During the study period the ecosystem

experienced a wide range of values for climatic and nutrient variables (RTI, 2013);

hence, investigation of future climatic and nutrient management scenarios was pos-

sible. Here we only present the results with Pr(| µ1 ´ µ2 |ą 0q ě 0.9, where µ1 and

µ2 are the means - the weighted-average of the midpoints of each category, weighted

by the probability of that category- of any of the variables for the sampling period

and under the investigated scenarios, respectively (Kruschke, 2010). Therefore, we

are comparing the water quality under an investigated scenario versus current con-

ditions. The AUC, a measure of the model1s prediction accuracy, was 0.75 and 0.95

for chlorophyll a and bottom water dissolved oxygen, respectively, suggesting good

performance in predicting the variables of interest. We concluded that the BBN is

capable of distinguishing between different values measured for all the water quality

indicators.
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3.4.1 Climatic Variability

Our BBN quantifies the impact of climatic variability on water quality, which was de-

scribed only qualitatively in the literature (Najjar et al., 2000; Rogers and McCarty,

2000; Rabalais et al., 2009; Kaushal et al., 2010). Following, we will present the

results of low/high precipitation, stratification, and temperature scenarios (one vari-

able manipulation per scenario). These scenarios were formed based on Najjar et al.

(2000) assessment of the potential impacts of climate change on the mid-Atlantic

coastal region of the United States.

Precipitation

Precipitation controls water quality indicators in our BBN through several pathways,

i.e., nutrient delivery, turbidity, stratification intensity and freshwater discharge. Al-

though time-lagged freshwater discharge and water residence time impact the phy-

toplankton biomass of the NRE (Peierls et al., 2012), we did not consider lagging

because the freshwater discharge gauging station is very close to our monitoring

sites. Furthermore, land-use/land-cover affects freshwater discharge, but we can-

not directly measure the effect due to the short duration of the study. As a result

freshwater discharge is only connected to precipitation. There is lagging between pre-

cipitation and freshwater discharge; however, this is negligible for the upper estuary,

our study area.

Precipitation and thus freshwater discharge in our dataset includes a range of

drought to flood conditions (Peierls et al., 2012). We ran the BBN under low and high

precipitation scenarios to examine how the NRE may respond to extreme events such

as storms and droughts. The BBN predicts that under a low precipitation scenario

(<3.78 cm{month), freshwater discharge decreases significantly, with flows equal or

less than 0.58 m3{s occurring 71.4% of the time (see supplementary online material,

Figure 1). Under low precipitation the water column is completely mixed (stratifica-
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tion <1.04 g{cm3) 50.07% of the time, which might explain the lower chlorophyll a

concentrations. The increase in the probability of chlorophyll a concentration being

lower than 40 µg{l is 81.3% vs. 79.9% during the whole sampling period. The change,

while subtle, is significant based on the statistical criterion (Pr(| µ1´µ2 |ą 0q ě 0.9).

This is interpreted as lower probability of violating North Carolina1s water quality

standards (Chlorophyll a <40 µg{l and bottom water dissolved oxygen <4 mg{l).

In our BBN model, the reduction of chlorophyll a under low precipitation is due to

the impact of river flow on both stratification and nutrient load (Vargo, 2009)(see

supplementary online material, Figure B.3).

Under the high precipitation scenario, defined as precipitation greater than 16.7

cm{month, the model predicts statistically significant changes in freshwater dis-

charge, stratification, chlorophyll a concentration, light, phosphorus, and molar N:P

ratio, under non-saturation conditions (Table 1). As we have discussed before the

NRE is a nutrient limited estuary and thus not saturated. The probability of fresh-

water discharge being higher than 1.98 m3{s is 88.3% - a 57.0% increase from the

sampling period average of 31.3%. The probability of the NRE being stratified is

23.8%, more likely due to the density gradient induced by high freshwater discharge.

The probability of chlorophyll a concentration exceeding North Carolina’s water

quality standard (22.4%) is significantly greater than the sampling period average of

20.4%. This is likely due to high nutrient concentrations as a result of high nutrient

delivery associated with enhanced freshwater discharge. The change in chlorophyll

a concentration is subtle since higher precipitation and hence very high freshwater

discharge (>3.98 m3{s) results in lower light availability due to high concentrations

of colored dissolved organic matter, mixed water column, and transfer of phyto-

plankton to the lower estuary. The likelihood of high N:P ratio (>9.506) increases

by 11.4% (from 37.5% to 48.9%) consistent with higher availability of N relative to

P under high precipitation (Green and Wang, 2008). Mobilization of nitrogen and
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phosphorus are further dependent on the degree of stratification and internal nutrient

regeneration. The model fails to detect a significant increase in nitrogen concentra-

tion, which may be attributed to the discrete observations that could have missed

the event (e.g., first flush) and fast nutrient drawdown by phytoplankton. The 15.3%

increase (from 20.7% to 36.0%) in Kd of higher than 2.20 1{m is associated with high

levels of riverine colored dissolved organic matter inflow, which is enhanced by high

freshwater discharge (see supplementary online material, Figure B.4) (Branco and

Kremer, 2005). Our study quantitatively confirms previous qualitative speculations

on the effects of precipitation on coastal ecosystems (Najjar et al., 2000; Scavia et al.,

2002; Wetz and Paerl, 2008; Doney, 2010).

Water Column Stratification

The intensity of water column stratification in estuarine ecosystems is regulated

by freshwater discharge, wind, and tidal forcings (Cloern, 2001). Tidal forcing is

minimal in the upper NRE due to the microtidal regime of the NC coast and the

attenuation of tidal flow by the narrow and shallow inlet and straits within the

lower NRE (RTI, 2013). As a result in the NRE freshwater discharge and wind are

the only determinants of stratification. We investigated the response of the system

to stratification since it is one of the most important influencers of water quality

in estuaries (Paerl, 1988; Diaz and Rosenberg, 2008). Stratification and freshwater

discharge have a parabolic relationship; the system is mixed under low freshwater

discharge (<0.90 m3{s) but also stratification breaks down again under very high

freshwater discharge (>3.98 m3{s). In the BBN the stratification is also impacted by

wind intensity; hence, it is not expected to observe the marginal impact of freshwater

discharge in the BBN.

A stratified water column (stratification>3.61 g{cm3) is associated with signifi-

cant changes in primary productivity, nitrogen (N), phosphorus (P), N:P ratio, light
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availability, chlorophyll a concentrations, bottom water dissolved oxygen and the

probability of presence of dinoflagellates and harmful motile raphidophytes (Chat-

tonella, Fibrocapsa, and Heterosigma) (Table 1). The important role of stratification

has been noted in previous studies (Diaz and Rosenberg, 2008; Murphy et al., 2011).

Stratification is in part induced by freshwater discharge, which also brings high

concentrations of colored dissolved organic matter (with Kd >2.2 1{m, 55.9% of the

time) and results in a decrease in transparency (Keller, 1989; Domingues et al., 2011;

Gameiro et al., 2011). Freshwater discharge delivers high nutrient loads which stim-

ulate phytoplankton growth and result in elevated chlorophyll a concentration. The

likelihood of bottom water dissolved oxygen violating NC water quality standard (4

mg{l) increases by 21.75% (from 11.50% to 33.25%). The duration of stratification

is an important factor in this speculation; however, it is not captured by our monthly

sampling scheme. Data from two vertical profilers along the NRE with 30 minute

sampling frequency could be used to further assess the duration of stratification

(RTI, 2013). The likelihood of the presence of harmful raphidophytes (Chattonella,

Fibrocapsa, and Heterosigma) and dinoflagellates decrease by 9.3% (from 65.5% to

56.2%) and 2.8% (from 47.3% to 44.5%), respectively. This is most likely due to

the loss of their competitive advantage over other phytoplankton under high N:P

conditions. Paerl and others have however shown that N:P ratio is not a strong forc-

ing on harmful algae, especially under conditions where nitrogen or phosphorus are

saturating (Paerl, 2009; Paerl and Scott, 2010; Lewis Jr et al., 2011). In a partially

mixed water column (1.04<stratification<3.61 g{cm3), motile harmful species often

seem to thrive. The likelihood of presence of Karlodinium veneficum, raphidophytes

and dinoflagellates increase by 3.1% (from 48.6% to 51.7%), 7.1% (from 65.5% to

72.6%), and 9.2% (from 47.3% to 56.5%), respectively.

A mixed water column (stratification<1.04 g{cm3) results in a significant change

in light availability, nitrogen, phosphorus, chlorophyll a, and bottom water dissolved
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oxygen compared to the sampling period (Table 1). A 4.0% decrease (from 20.65% to

16.65%) in Kd less than 2.2 1{m is associated with lower chlorophyll a. In a mixed

water column the likelihood of the bottom water dissolved oxygen violating state

criteria decreases by 10.9% (from 11.50% to 0.6%) (see Figure 3.3 and supplementary

online material, Figure B.7). An 8.9% increase (from 78.0% to 86.9%) in frequency

of chlorophyll a concentrations lower than 40.71 µg{l are associated with a mixed

water column. A 10% increase (from 75.3% to 85.3%) in DIN<56.30 µg{l, and

15.1% increase (from 40.0% to 55.1%) in PO4<5.30 µg{l are associated with higher

freshwater discharge, water column mixing, and sediment resuspension.

The likelihood of presence of potentially harmful algal species under mixed water

column conditions does not show a significant change; in a partially mixed water

column, all harmful algal species increase significantly; whereas in a stratified water

column mixed responses are observed. One potential explanation is that the highest

stratification intensities are likely related to high flow events, which may reduce res-

idence time and limit harmful algae development. Well-mixed conditions are more

likely to occur when freshwater inputs are low which also corresponds to low input

of riverine nutrients. Additionally, if there is any stratification, it is likely that the

flagellates are capable of vertically migrating and this may give them an advan-

tage over other groups (Hall and Paerl, 2011) (see supplementary online material,

Figure B.5- B.7).

Temperature Effects

Low temperatures (<12.25 ˝C) result in a 9.2% increase (from 88.5% to 97.7%)

in bottom water dissolved oxygen greater than 4 mg{l due to increased solubility

of oxygen, lower productivity during cooler months, and lower respiration rates at

lower temperatures. An increase in the presence of Karlodinium veneficum (8.7%

(from 48.7% to 57.4%)) is observed under low temperatures (<12.25 ˝C). Chloro-
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phyll a does not show a significant change under a low temperature scenario (<12.25

˝C) compared to the whole sampling period. This might be due to shifts in phyto-

plankton community composition during lower temperature periods or an increase in

chlorophyll a to phytoplankton carbon in cell ratio. Furthermore, grazing activity is

also impacted by temperature. A reduction in grazing pressure at low temperature

could result in weak sensitivity of chlorophyll a to temperature (see supplementary

online material, Figure B.8).

High temperatures (>25.8 ˝C) are associated with an increase in the presence of

Karlodinium veneficum, dinoflagellates, and harmful raphidophytes by 16.4% (from

48.7% to 65.1%), 4.3% (from 47.3% to 51.6%), 16.6% (from 65.5% to 82.1%), respec-

tively. Previous studies on Karlodinium veneficum high abundance at temperatures

of 5-15 ˝C and 25-30 ˝C) confirmed our observed and quantified pattern (Zhang

et al., 2008) (see supplementary online material, Figure B.9).

Nutrient Availability

The NRE is nitrogen limited (Altman and Paerl, 2012); hence, for the nutrient man-

agement scenarios the BBN was run only under varying nitrogen concentrations,

rather than phosphorus, to examine nutrient management scenarios and their im-

pact on water quality indicators.

A significant decrease in chlorophyll a concentration is observed under a low DIN

scenario (<56.29 µg{l). The likelihood of the NRE chlorophyll a concentration vio-

lating the state criteria decreases to 18.7%. If nutrient concentrations are low, the

N:P ratio might be a good predictor for harmful species. The probability of harm-

ful raphidophytes slightly increases by 3.0%, consistent with raphidophytes thriving

under low N:P and low nitrogen conditions (Hodgkiss and Ho, 1997).

High DIN concentration scenario (>334.20 µg{l) is concurrent with very high

freshwater discharge, which results in a mixed water column. Dinoflagellates lose
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their competitive advantage (motility) over other phytoplankton; hence, their likeli-

hood of presence decreases by 8.2%, under a high DIN. Kd is predicted to increase

significantly with likelihood of Kd >2.2 1{m increasing from 20.7% to 65.9% of the

time. This is likely the result of the correlation of high DIN concentration with

freshwater discharge and resulting elevated colored dissolved organic matter content.

BBN can be used for backward propagation analysis to explore a multitude of

scenarios, including violations of NC water quality standards. As an example, chloro-

phyll a would consistently violate the NC water quality standard when freshwater

discharge in the bracket above 0.90 m3{s increases by 6.9% (from 58.8% to 65.7%),

stratification greater than 1.04 g{cm3 increases by 16.1% (from 55.5% to 71.6%) and

DIN and PO4 concentrations of higher than 56.30 and 5.30 µg{l increase by 6.5%

(from 24.7% to 31.2%) and 11.0% (from 60.0% to 71.0%) respectively (see supple-

mentary online material, Figures B.10 & B.11).

3.5 Applications

The Bayesian belief network model presented in this chapter provides structure to

understand and communicate the key dynamics and factors driving water quality and

potential state standard violations in the New River estuary. As an aid to estuarine

informed management decisions, the BBN can explicitly make predictions of water

quality standard violations under varying scenarios. The North Carolina Division of

Water Resources (NCDWR), a division of NCDENR, is charged with developing a

basin-wide management plan for each basin in the state. Each plan must examine the

effects of pollution on the water bodies in terms of their designated uses (e.g., primary

recreation, supporting aquatic life) and involve stakeholders in its development. The

management of New River estuary, situated in the White Oak basin, includes a

diverse set of stakeholders and water managers such as the City of Jacksonville and

the Camp Lejeune Marine Corps Base, along with multiple state agencies.
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Several scholars have developed guidelines for good practices of incorporating

scientific information into decision-making processes, such as basin-wide planning.

These guidelines suggest: (1) use of a transparent and simple modeling process (Ko-

rfmacher, 1998; Maguire, 2003) ; (2) inclusion of stakeholders in the modeling process

(Grayson et al., 1994; Korfmacher, 1998; Maguire, 2003); (3) explicitly addressing

and accounting for scientific uncertainty (Reckhow, 1994; Ragas et al., 1999; Huang

and Xia, 2001; Borsuk et al., 2001; Maguire, 2003; McDaniels and Gregory, 2004)

and (4) use of an adaptive management approach to decision making (Walters, 1997;

Failing et al., 2004; Shindler and Cheek, 1999; Borsuk et al., 2001; Maguire, 2003;

Smith and Bosch, 2004). The BBN points to the driving forces behind chlorophyll

a concentrations in the estuary, providing a transparent and fairly simple modeling

approach, digestible to the array of stakeholders present in the basin. By manipu-

lating nitrogen concentrations and climatic conditions, along with other factors, the

likelihood of water quality standard violations can be calculated. The BBN can be

updated as new data is collected, allowing for an adaptive management approach

in basin-wide planning. While providing insight into the dynamics of the New river

estuary on which management decisions can be based, the BBN also offers a com-

munication tool to interested stakeholders.

3.6 Conclusion

The BBN-quantified effects of nutrient input and likely future climate change on the

NRE eutrophication are in agreement with qualitative descriptions from previous

studies (Wetz and Paerl, 2008; Conley et al., 2009; Paerl and Scott, 2010). The

BBN further highlights the potential impacts of extreme climatic events as well as

nutrient management scenarios on the ecological condition of the NRE. Our results

also confirm the importance of nutrient input reduction to minimize the presence of

harmful algae and avoid violating water quality standards.
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The accuracy of the BBN’s predictions for the NRE was evaluated with AUC.

The moment matching method improved on data discretization by a better rep-

resentation of the underlying continuous distribution, although discretization still

constitutes a limitation of the BBN approach. The BBN presented in this chapter

is an initial step that can be followed by a network-based model with continuous

variables. The continuous model would build upon the structure of the BBN but

further improve the description of relationships between nodes. Furthermore, BBNs’

acyclicity cannot handle feedback relationships. This can be addressed using Dy-

namic Object Oriented Bayesian Networks (OOBN) with each OOBN representing

a time step; Implementation of such a model would require a longer dataset to pop-

ulate conditional probability tables for each time slice of the DOOBN. To further

improve the model, separate sub-networks should be developed for the “Chemical

Environment component” (including DIN, PO4 and N:P ratio) with inorganic and

organic nutrient composition. Additional improvements, based on existing models

such as the Bayesian SPARROW (Qian et al., 2005), can be achieved by developing

a sub-BBN on land use/land cover and its impact on nutrient composition and fresh-

water discharge levels in the NRE. Finally, although temperature indirectly reflects

seasonality in our current model, future modeling efforts should account for seasonal

variations in the direction and magnitude of relationships.
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4

A Comparison of Discretization Methods for
Bayesian Networks

4.1 Introduction

Bayesian Networks (BNs) are directed acyclic graphical (DAG) models, which are

causal networks that consist of nodes and directed links. The relationships between

the variables are described using conditional probability tables (CPTs). BNs are

promising tools to aid reasoning and decision making under uncertainty. The term

Bayesian Network was first introduced by Pearl (1982) and Spiegelhalter and Knill-

Jones (1984) in the field of expert systems. Some of the early appearances of BNs in

environmental modeling were by Varis and Kuikka (1997), Varis (1997), and Reckhow

(1999).

BNs have several distinct strengths. The main strength of BNs lies in their

knowledge updatability based on Bayes’s theorem, which is important in the context

of adaptive management. The BNs modularity enables integrating multiple system

components or aspects of problems (e.g., science network and management network

in Johnson et al. (2010)). This is beneficial in environmental modeling due to the
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complexity of natural ecosystems and the associated decision-making processes. BNs

can accommodate various knowledge sources and data types (e.g., expert knowledge,

previous data from same system or other similar systems), with transparent defi-

nition of prior knowledge. Among environmental modeling approaches, suitability

to both data-rich and data-poor systems is another advantage over other modeling

approaches. As new environmental problems arise, monitoring plans start or adapt

to accommodate the data requirements. Hence, accommodating minimal data in

conjunction with expert knowledge is a methodological advantage. The model can

be developed with minimal data and as more information becomes available the

model can be updated. Environmental modeling cannot be implemented without

incorporating uncertainty from natural ecosystems variability, current knowledge of

environmental processes, modeling structure, computational restrictions, and prob-

lems with data/observations (due to measurement error or missingness), as it aims to

explore complex ecosystems and provide support for the management of natural re-

sources. BNs explicitly represent uncertainty by conditional probability distributions

for each node and the uncertainty is propagated through the model and presented

in final results.

These advantages of BNs resulted in a large number of applications in ecological

and environmental sciences over the last decade, including natural resources manage-

ment (McCann et al., 2006; Castelletti and Soncini-Sessa, 2007; Dorner et al., 2007;

Farmani et al., 2009), ecological risk assessment (Borsuk et al., 2004; Pollino et al.,

2007; Barton et al., 2008; Malekmohammadi et al., 2009), and integrated models

(Bromley et al., 2005; Croke et al., 2007; Johnson et al., 2010; Kragt et al., 2011).

Aguilera et al. (2011) examined 118 papers published between 1990 to 2010 re-

lated to the applications of BNs in environmental sciences. Among these papers, 62

(52.6%) used discrete data and 32 (30.7%) used some form of discretization method

to convert continuous data; however, 48.6% of the papers did not include any de-
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scription about the process of discretization, 25.7% used experts to discretize the

continuous data into intervals, 2.9% used equal interval, 2.9% used equal frequency,

and 2.9% used default method of the software (Aguilera et al., 2011). Of all the ap-

plied BN papers published in the field of environmental sciences, from January 1990

to December 2010, 34.2% used Netica (http://www.norsys.com/) and 20.2% used

Hugin (http://www.hugin.com/, Madsen et al. (2005)) (Aguilera et al., 2011). Net-

ica provides tools to facilitate discretization of continuous variables. The input data

file does not have to be discretized; however, the intervals for each variable should

be defined. On the other hand, Hugin software is not capable of allocating con-

tinuous data into intervals; hence, input data must be either previously discretized

or manually done so during the model development phase in the Graphical User

Interface.

Discretization is a process that can result in loss of information but since BNs

can handle continuous variables only under severe constraints (1- Each continuous

variable be assigned a (linear) conditional Normal distribution; 2- No discrete variable

have continuous parents (Nielsen and Jensen, 2009)), data is usually discretized to

develop BNs. I am interested in how discretization may affect the resulting model,

since different discretization methods will lead to different characterization of variable

distributions. In this study, I use a simple example with a large data set to examine

the effects of discretization methods on the final model.

4.2 Material and methods

4.2.1 Study design

I designed a study to assess the effects of discretization methods and number of

intervals on the developed BN models. The BN presented in this study is a simple

one. It consists of three nodes. Figure 4.2 shows the dependency relationships among

variables using a DAG model. Two decisions must be made when discretizing a
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Equal Interval
−4 −2 0 2 4 6 8

−2.302 0.603 3.508 6.413
3% 85% 12%

Equal Quantile
−4 −2 0 2 4 6 8

−2.302 1.723 2.639 6.413
33% 33% 34%

Moment Matching
−4 −2 0 2 4 6 8

−2.302 1.910 3.390 6.413
40% 45% 14%

Figure 4.1: The figure depicts original data for chlorophyll a concentrations from
-2.302 to 6.411, discretized using the equal interval, equal quantile, and moment
matching methods. The numbers in black show the break points of each method and
the percentages show the frequency of observation in each interval.

continuous data set: (1) the discretization method and (2) the number of intervals.

Our study assesses the impact of the three most common discretization techniques

(described below) and three most common number of intervals on the developed

BNs. I categorized the original continuous data set into three (four or five) sets and

I named the categories as Low, Medium, and High (“Low, Medium Low, Medium,

High” or “Low, Medium Low, Medium, Medium High, and High”) (Figure 4.1).

Nine BNs were developed, each corresponding to one of the nine combinations of

discretizing method and number of intervals. The BN was then fit to the training

discretized data using the bnlearn package in R (Scutari, 2010; Nagarajan et al.,

2013; R Core Team, 2014).

Discretization methods

Equal length interval is a discretization method using which the distribution is di-

vided into equal intervals between the minimum and maximum observed values. It

is used frequently because of its simplicity. This discretization method can be prob-

lematic in cases where there are outliers in the data set. For example, in the data
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P Chla

N

Figure 4.2: Directed Acyclic Graph

set I used, several unusually low and high nitrogen concentration values appear after

log-transformation. The discretization when the potential outlier values are included

results in the following break points: 3.434, 5.665, 7.896, 10.127. The low nitrogen

includes ten observations (0.05% of all observations). In the case of chlorophyll a

including outliers, the low would include only one observation, whereas a minimum

of 6 observations in each interval is recommended (Liu et al., 2002). The discretiza-

tion when the outlier value is removed results in the following break points: 4.500,

5.818, 7.137, 8.455. The discretization is transformation dependent. The definition

of low nitrogen changes from ă 5.665 to ă 5.818 (high from 7.896 ă to 7.137 ă)

in the log scale. Furthermore, when the data is log-normally distributed as is the

case with most chlorophyll a and nutrient data, equal interval would result in some

intervals with high and some with low probabilities. Considering the chlorophyll a

concentrations (not log-transformed), the discretization will have the following break

points using the equal interval method: 5.0ˆ10´11, 1.3ˆ102, 2.6ˆ102, 3.9ˆ102. The

low, medium, and high will contain 99.3%, 0.006%, and 0.004% of data respectively.

Equal quantile (a.k.a. equal frequency) discretization method is based on the
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frequency of observed values. It divides data into categories of (approximately)

equal sample size. The equal quantile method can result in assignment of the same

value to different intervals if there are multiple occurrences of the same value (in

variables such as secchi disk depth). In equal quantile, the order of the observation is

important; however, in equal interval the relative spacing among observations is also

critical. Hence, equal interval discretization is transformation-dependent, whereas

equal interval discretization changes as the data is log-transformed.

The third method I use in our experiment is moment matching. This method

matches the moments of the discretized distribution with the moments of the con-

tinuous distribution. As the number of the moments being matched increases, the

discrete distribution becomes a more accurate approximation of the continuous dis-

tribution. However, as the number of moments to be matched grows, the problem

becomes more complex and computationally interactable for more than five intervals.

Number of intervals

Although a model may be more precise as the number of intervals increases, the model

is not necessarily more accurate (Marcot et al., 2006). The conditional probability

tables, especially in models with more than three layers, will be complicated, as for

every state of a given variable, the probability of its occurrence must be assigned

given every combination of its parent nodes. Even in a simple causal network, as the

one described in this study, the difference between three states and five states for

chlorophyll a would be assigning nine versus 25 conditional probabilities.

4.2.2 Comparison

Our criteria to compare the developed BNs discretized using different methods were

based on Marcot (2012). I used sum of squared errors (SSE), model accuracy, and

Area Under Curve (AUC) to assess and compare how well the developed models
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predicted the test data. SSE is calculated as the squared discrepancy between the

observed data and the mid point of the predicted interval. Model accuracy is cal-

culated as the percentage of total number of cases for which actual interval and

predicted interval are equal using the confusion matrix (Marcot et al., 2006; Chen

and Pollino, 2012), which is a table with a row and column for each defined inter-

val, whereby each element of the matrix is the number of cases for which the actual

interval is the row and the predicted interval is the column. The area under the

receiving operating characteristic curve (AUC) varies between 0 and 1. It provides a

diagnostic measure of model’s prediction accuracy, which represents the probability

of a true positive outcome (the proportion of actual observations which are correctly

classified) versus a false positive outcome (accuracy of data classification). A model

with perfect predictions would have an AUC equal to 1.

4.2.3 Study area

The goal in this chapter was not to study a specific ecosystem or to model certain

process. However, for the purpose of demosntrating the impact of discretization on

resulting BNs, I used lake monitoring data from Finland reported by Malve and Qian

(2006). The large number of lakes in Finland, coupled with long-term monitoring of

Finnish lakes, resulted in a rich data-set. I used 19248 July and August observations

from a Finnish Lakes data set for total nitrogen (N), total phosphorus (P), chlorophyll

a (Chla) from 1988 to 2004 (Malve and Qian, 2006). The data set covers 2289 Finnish

Lakes which are categorized into nine different types based on the guidelines of the

Finnish Environment Institute (SYKE) (Lepisto et al., 2002).

I examine the effect of discretizing method on a model’s predictive accuracy using

a cross-validation procedure. The Finnish Lakes data set was randomly divided into

two subsets for training and testing purposes. The training data set holds 90% of

the original data and the testing subset holds 10% of the original data. This process
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was repeated 100 times.

4.3 Results

4.3.1 Conditional probability tables

Conditional probability tables (CPTs) represent the probability of a node taking

any of its discrete states, given the states of its parent nodes. CPTs describe the

relationship among the nodes. Table 4.1 shows the CPT for chlorophyll a in the

equal quantile discretized BN. I developed the BNs with the same data set; hence,

the defined relationships (CPTs) should be similar as well. This is not the case when

I discretize the data set with different methods. The probabilities of chlorophyll

a states under medium nitrogen and low phosphorus are shown in Figures 4.3(a)

to 4.5(a) and summarized in Table 4.2. Chlorophyll a has a 3% chance of being

low under such conditions in the BN discretized with the equal interval methods,

whereas it has a 60% and 31% chance of being low in the BN discretized with equal

quantile and moment matching methods, respectively. Further, the definition of low,

medium, and high is different in each discretization methods, which results in a

communication problem. High chlorophyll a is defined as concentrations larger than

3.51, 2.64, and 3.39 (µg{l in log scale) in BNs discretized using equal interval, equal

quantile, and moment matching, respectively. I will further discuss the conceptual

and application difficulty as a result of difference among CPTs in subsection 4.3.2.

4.3.2 Prediction

BNs discretized using different methods result in different future predictions, as well.

I used the developed BNs using the training data set (90% of the original data

set) to predict the testing data set (10% of the original data set). Consider the

confusion matrices in table 4.3. The equal interval method predicts Chlorophyll

a to be in low, medium, and high states with probabilities of 0%, 96%, and 4%,
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Figure 4.3: Conditional Probability Table for Phosphorus, Nitrogen, and Chloro-
phyll a - Equal Interval
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respectively. The equal quantile method predicts Chlorophyll a to be in low, medium,

and high states with probabilities of 37%, 32%, and 31%, respectively. The moment

matching method predicts Chlorophyll a to be in low, medium, and high states with

probabilities of 41%, 46%, and 13%, respectively. Our predictions for different states

of chlorophyll a changes significantly from one method to the other. Furthermore, I

should note that the definition of states changes from one method to another.

I used multiple measures of performance to compare predictions for the testing

data, without one method outperforming the others. Table 4.4 summarizes model

comparison results using SSE, Model Accuracy, and AUC as criteria. The data set

is large and the considered variables and their underlying relationships is simple and

known ( 4.6). Furthermore, I am optimally fitting the data to each model and often

the goodness-of-fit is not a good source of information to differentiate models (Qian

and Cuffney, 2012). Hence, the differences shown in Table 4.4 are small. There is no

conclusion based on chosen criteria that one method/number of intervals outperforms

the others; however, the models differ significantly in the relationships and CPTs as

well as scenario investigation (described in subsection 4.3.3).

4.3.3 Management application

BNs are tools for managers and policy makers to assess the impact of their deci-

sions/policies on the ecosystem prior to implementation. Consider a case where

the policy makers are assessing the impact of lowering phosphorus on chlorophyll a.

Table 4.5 summarizes the results of low phosphorus on chlorophyll a distribution.

Different BNs discretized using different methods result in different conclusions in

such analyses. The BN discretized using equal interval method might not conclude

that lowering phosphorus is effective, while the BN discretized using equal quantile

finds lowering phosphorus effective since it results in low chlorophyll a concentrations

66% of the time.
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As another case, consider managers targeting policies that would result in low

or medium chlorophyll a concentrations (avoid high chlorophyll a). While the BNs

discretized with equal quantile and moment matching methods recommend low and

medium phosphorus and nitrogen concentrations, the BN discretized using equal in-

terval recommends medium nitrogen and phosphorus concentrations (see Table 4.6).

4.4 Discussion

The application of BNs in the environmental sciences is justified by their many ad-

vantages. It has been argued in the literature though that discretization of data in

BNs results in loss of information. Furthermore, there are no guidelines provided on

the process of discretization. My goal in this paper was to investigate the effect of

different methods of discretization on BNs. If so, the decisions made based on various

BNs would consequently be different. I compared nine combinations of discretizing

method and number of intervals in this study. The resulting CPTs changed from one

method of discretization to the other. The CPTs provide the basis and define the

relationships in a BN; hence, any calculation based on them would also be different.

The predictions and scenario investigations were different among methods. As dis-

cussed in subsection 4.3.3 management recommendations were also different among

the developed BNs. In the following paragraphs, I summarize the main drawbacks

of discretization.

Firstly, as our results in subsection 4.3.2 showed, our quantified comparison cri-

teria, SSE, model accuracy, and AUC were not able to provide a sound reasoning

in favor of one discretization method. Hence, I was unable to provide guidelines

without one method outperforming the others in the the defined criteria.

Secondly, I discussed in section 4.2.1 that some of the discussed discretization

methods are log-transformation dependent. This is of importance in environmental
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sciences, as the data is often log-normally distributed. As the methods are trans-

formation dependent, another question rises about whether the data should be log-

transformed or not.

Thirdly, each discretization method resulted in a different definition of categories

(low, medium, and high). In our 3-interval case study, the definition of low, medium,

and high changes between equal interval, equal quantile, and moment matching meth-

ods. The distinct categorical definitions can be a source of miscommunication, as

different parties involved in the decision analysis might have different interpretation

of low, medium, and high. The categorical/discrete variables as opposed to continu-

ous variables would specially be problematic when expert elicitation rather than data

is used to develop the CPTs, as interpretation of defined categories varies among ex-

perts. For example, definitions of low chlorophyll a varies among scientists and in

different contexts.

Finally, the discrepancy in the management recommendations is the main draw-

back of the discretized BNs. As discussed in the results, the BN discretized using

equal interval did not find the lowering phosphorus as effective as the other two

methods. If the BN discretized with equal intervals was used to provide recom-

mendations, then the management might decide lowering phosphorous is not cost-

effective, although that finding is only the result of discretization. I would caution

managers about making decisions based on models for which the outputs vary by a

choice (discretization method) that does not have a solid basis.

4.5 Conclusions

The BNs are effective in quantifying uncertainty and valuable tools in environmental

modeling. I highlighted the main drawback of the BNs, discretization. I argued that

unless solid reason addresses a certain method’s superior performance, a continuous

data set should not be discretized. However, with the current softwares available for

63



BNs and the restrictions that come with them, it is not possible to avoid discretiza-

tion. Future work should focus on developing BNs using continuous data sets.
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Table 4.1: Conditional probability table developed using Expected-Maximization
algorithm for chlorophyll a node in the BN discretized using equal quantile method.
Each number represents the probability of chlorophyll a taking any of its discrete
states, given the states of nitrogen and phosphorus. For example, the last number
in the lower left of the table, 0.86, is the probability of chlorophyll a concentrations
between 2.64 and 6.41 µg{l given that nitrogen concentrations are between 6.41 and
8.46 and phosphorus concentrations are between 3.3 and 7.24

Nitrogen [3.43,5.99]
Phosphorus [0,2.64] (2.64,3.3] (3.3,7.24]
[-2.3,1.72] 0.80 0.37 0.18

Chlorophyll a (1.72,2.64] 0.20 0.57 0.57
(2.64,6.41] 0.00 0.05 0.24
Nitrogen (5.99,6.41]
Phosphorus [0,2.64] (2.64,3.3] (3.3,7.24]
[-2.3,1.72] 0.60 0.12 0.04

Chlorophyll a (1.72,2.64] 0.39 0.67 0.38
(2.64,6.41] 0.02 0.21 0.58
Nitrogen (6.41,8.46]
Phosphorus [0,2.64] (2.64,3.3] (3.3,7.24]
[-2.3,1.72] 0.54 0.09 0.01

Chlorophyll a (1.72,2.64] 0.43 0.64 0.12
(2.64,6.41] 0.03 0.27 0.86

Table 4.2: Chlorophyll a probabilities under low phosphorus and medium nitrogen
concentrations scenario under three different discretization methods in a 3-interval
BN. For example, the equal interval BN, chlorophyll a concentrations will be low,
medium, and high with probabilities of 0.03, 0.09, and 0.00, respectively.

Chlorophyll a
Low Medium High

Equal Interval 0.03 0.97 0.00
Equal Quantile 0.60 0.38 0.02
Moment Matching 0.31 0.67 0.02
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Table 4.3: Confusion matrix for chlorophyll a in BN discretized using equal interval
method and 3-interval. Each element of the matrix is the number of cases for which
the actual interval is the row and the predicted interval is the column.

Predicted
Equal Interval [-2.3,0.603] (0.603,3.51] (3.51,6.41]

O
b
se

rv
e
d [-2.3,0.603] 0 65 0

(0.603,3.51] 0 1637 17
(3.51,6.41] 0 165 59

Predicted
Equal Quantile [-2.3,1.72] (1.72,2.64] (2.64,6.41]

O
b
se

rv
e
d [-2.3,1.72] 533 105 6

(1.72,2.64] 180 389 107
(2.64,6.41] 11 121 491

Predicted
Moment Matching [-2.3,2.56] (2.56,3.37] (3.37,6.41]

O
b
se

rv
e
d [-2.3,1.91] 642 155 1

(1.91,3.39] 154 657 71
(3.39,6.41] 2 90 171

Table 4.4: Comparison of predictive accuracy among different discretization methods
using SSE, Accuracy, and AUC as criteria with 3 intervals and 5 intervals

3 Intervals
SSE Accuracy AUC

Equal Interval 1818.545 0.871 0.844
Equal Quantile 3681.574 0.728 0.824
Moment Matching 3228.382 0.751 0.807

4 Intervals
SSE Accuracy AUC

Equal Interval 1962.192 0.700 0.803
Equal Quantile 2852.654 0.624 0.772
Moment Matching 2480.924 0.621 0.765

5 Intervals
SSE Accuracy AUC

Equal Interval 1325.392 0.698 0.902
Equal Quantile 2141.934 0.549 0.725
Moment Matching 818.166 0.702 0.843
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Figure 4.6: Log-transformed chorophyl a distribution versus log-transformed nitro-
gen and phosphorus. The blue line depicts the fitted linear regression model between
chlorophyll a and nutrients

Table 4.5: Probability Table for Chlorophyll a under low phosphorus scenario for
models discretized using three different methods.

Chlorophyll a
Method Low Medium High
Equal Interval 0.07 0.93 0.00
Equal Quantile 0.66 0.32 0.02
Moment Matching 0.73 0.26 0.01

Table 4.6: Probability Table for phosphorus and nitrogen under a scenario where
chlorophyll a concentrations do not exceed medium.

Phosphorus Nitrogen
Method Low Medium High Low Medium High
Equal Interval 0.27 0.72 0.01 0.19 0.79 0.02
Equal Quantile 0.46 0.36 0.18 0.41 0.33 0.26
Moment Matching 0.44 0.49 0.07 0.48 0.48 0.04
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Figure 4.7: (a)Left figures: Evaluation data in continuous and discrete form using
the equal interval, equal quantile, and moment matching method, respectively from
top to bottom, respectively. (b) right figures: Evaluation data in continuous and
predicted values in discrete form using the equal interval, equal quantile, and the
moment matching method, respectively from top to bottom, respectively.
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5

A Continuous Variable Bayesian Network Model for
Water Quality Prediction under Uncertainty

5.1 Introduction

Human population growth, particularly in the world’s coastal regions, resulted in

adverse changes in aquatic ecosystems, largely due to anthropogenic activities such

as land use alterations, fertilizer use, industrial activity, and climatic perturbations.

One of the central issues in coastal ecosystems, which demands particular atten-

tion of managers and policymakers, is eutrophication. Estuaries are particularly

susceptible to eutrophication due to riverine nutrient inflow, efficient nutrient trap-

ping, long flushing times, and shallow depth. Key concerns of public and environ-

mental managers for estuaries include water quality, particularly the enrichment of

nutrients causing elevated chlorophyll a concentrations and depressed oxygen lev-

els (i.e. hypoxia/anoxia) (Kiddon et al., 2003). As human-induced pressures cou-

pled with climate-driven variability will likely continue in the future, models, as

decision-making tools, gain more utility for effective environmental management and

development of adaptation strategies and restoration plans. An updatable, adapt-
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able, communicable, and transferable model would best serve water quality modeling

with the purpose of policy/decision analysis, climate/human impact evaluation, and

broad stakeholder participation. We propose the continuous variable Bayesian net-

work modeling (cBN) approach to integrate the most valuable attributes of Bayesian

Networks (BNs), empirical, and causal/mechanistic modeling approaches.

Jacobs et al. (2005) argues that the limited communication of scientific research

to broader audience is mainly due to the complex nature of scientific findings; other

studies highlight the critical role of visualization in environmental communication

(Cox, 2012). Hence, modeling tools are preferred that are not only powerful in

their predictive ability but are also readily communicable to variety of stakeholders.

Among such modeling approaches are BNs, with their graphical structure that makes

them communicable to a wide variety of stakeholders.

BNs are directed acyclic graphs (DAGs) composed of nodes and links, with em-

bedded conditional probability tables (CPTs) associated with each node. BNs are

models with structures based on scientific understanding of the underlying processes

and/or empirical investigation of field data (Nielsen and Jensen, 2009). The visual

nature of BNs facilitates model communication with decision/policy makers and

stakeholders who might not be experts in the underlying scientific disciplines. How-

ever, the main drawback of BNs is the requirement of data discretization (Nielsen and

Jensen, 2009; Alameddine et al., 2011; Nojavan A. et al., 2014). The discretization

captures only certain characteristics of the original underlying distribution. De-

pending on the method used, discretization often leads to loss of information. The

scientific literature currently does not make any recommendations on selection of

discretization methods; furthermore, the majority of applied BN papers in the field

of environmental sciences do not justify the selection process of their method of

discretization (Aguilera et al., 2011).

Mechanistic models represent our best understanding of the causal relationship;
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however, a typical mechanistic model often provides too much detail to be adequately

calibrated. Hence, results from a mechanistic model are likely uncertain. Further,

the calibration process would fit a mechanistic model to a specific data set. In a

mechanistic model, casual relationships are based on scientific knowledge; however,

the underlying statistical relationships are not justified well.

The commonly argued shortcoming of statistical models, representing correlation

but not necessarily causation, is addressed by combining the network-based attribute

of BNs with empirical relationships. The BN graphical structure is used for develop-

ing and presenting the underlying causal relationship. The links among nodes of a

BN imply dependencies and the direction of a link corresponds to the the direction

of causality. The network-based structure also reduces the complexity of the model

fitting process by fitting each sub-model separately.

Smith (2003) and others (Nixon, 1995; Jørgensen and Richardson, 1996) suggest

a common global pattern in aquatic and coastal ecosystems’ eutrophication, whereas

other studies suggest unique ecosystem specific patterns which may substantially dif-

fer in magnitude and trajectory, reflecting complex non-linear and estuary-specific

ecological interactions (Cloern, 2001). The opposing views of common versus unique

patterns in estuaries have resulted in models developed either for a single estuary

(Borsuk et al., 2003) or multiple estuaries (Smith, 2006). In a model developed for a

single estuary, the information gained from other similar ecosystems is disregarded;

in a multiple ecosystem model, each estuary loses its individual specifications. Our

method is a compromise between the two opposing approaches, as it can use an-

other system’s model output but it is also ecosystem specific. We provide a general

framework to integrate data from other estuaries in two ways described in section 5.3

under spatial model updating and section 5.4.

While some estuaries have been monitored extensively for long periods of time,

others have been monitored minimally, if at all. For example, the National Estuar-
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ine Eutrophication Assessment (NEEA) lists only eight of the Southern California

Bight1s 76 estuaries as study sites and only two of those has adequate data to make

an assessment of eutrophic status (McKee et al., 2011). Furthermore, many mon-

itoring programs are initiated when problems occur in a water body; as a result,

we may not have adequate data right away for developing models. However, envi-

ronmental managers should take action immediately and cannot wait for long-term

data set availability. The data integration and the Bayesian attribute of the proposed

modeling approach enables usage of data from other well-studied estuaries to make

informed decisions promptly and not be restricted by data availability.

Data integration and model updating can be done spatially or temporally in

the proposed methodology. The spatial model updating is done among a set of

comparable estuaries. This is useful when developing models for estuaries with no

or limited data and it can be achieved by introducing models developed from similar

estuaries as a prior model. The model from the former ecosystem(s) would act as a

prior for estuaries with no or limited data. The model can then be updated using data

from the latter estuary through Bayes’ theorem as it becomes available (posterior 9

likelihood of observed data ˆ prior). As for temporal model updating, it is done on

one estuary as new data becomes available. This is beneficial for studying gradual

environmental changes such as climate/land use change, as well as implementing

adaptive management. For more details on spatial and temporal model updating,

refer to sections 5.3.2 and 5.3.3.

In this chapter, we explore a continuous variable Bayesian network modeling

(cBN) approach, which provides a general framework that can be used in single or

multiple estuarine ecosystems to investigate eutrophication and the effects of climate

and land use variation on water quality. Our goal in this chapter is to propose a

methodology and demonstrate its performance with emphasis on management. We

are not aiming at understanding a specific system. We demonstrate an application
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of the proposed modeling approach for the New River Estuary, North Carolina, USA

as a case study.

5.2 Materials and Procedures

5.2.1 Materials - Data set

The New River Estuary (NRE, „ 1435 km2) located in North Carolina, USA is a

shallow broad lagoon. The NRE begins upstream of the city of Jacksonville, NC

and after approximately 30 km, it discharges to the Atlantic Ocean. The National

Atmospheric and Oceanic Administration (NOAA) listed the NRE as one of the

four estuaries with high expression of eutrophic conditions within the south Atlantic

region (Bricker et al., 1999). The proposed model in the present study was developed

with water quality monitoring data from the Defense Coastal/Estuarine Research

Program (DCERP), Aquatic Estuarine Monitoring component (RTI, 2013). Eight

stations along the axis of the NRE (Figure 5.1) were sampled on a monthly basis,

starting in October 2007, for a range of physical, chemical, and biological variables.

In this study, we used data from October 2007 to September 2011 to build the model

and data from October 2011 to October 2012 to assess the model.

The variables in the model included: temperature (˝C, representing seasonal

variation), stratification (density gradient, bottom water density minus surface water

density, g{cm3), salinity (used in calculating stratification, psu), light attenuation co-

efficient (Kd, 1{m), dissolved inorganic nitrogen (surface DIN , µg{l), total dissolved

nitrogen (surface TDN , µg{l), orthophosphate (surface PO4, µg{l), chlorophyll a

(surface algal biomass in µg{l), and bottom water dissolved oxygen (O2, mg{l).

Ott (1995), using the central limit theorem, demonstrates that environmental

concentration variables are log-normal, which justifies log-transformation of all nu-

trient and chlorophyll a concentration data prior to statistical analyses in the present

chapter; we note that the interpretation of regression model coefficients are different
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Figure 5.1: The New River Estuary (NRE), study area, is located in Onslow
County, North Carolina, USA. High chlorophyll a concentration, low bottom water
dissolved oxygen, and harmful algal blooms is an ongoing problem in the NRE.

when log-transformed (Qian, 2010). Further, all predictors in our case study data set

were scaled based on the discussion of Gelman and Hill (2007) and Gelman (2008)

on scaling predictors to simplify the interpretation of the intercept when predictors

cannot be set equal to zero. Scaling also improves the interpretation of coefficients

in models with interacting terms (e.g., in the present model the interaction between

salinity and nitrogen, see subsection 5.2.2), and coefficients can be interpreted on

approximately a common scale. Weisberg (2005) also demonstrates that centered

predictors would result in uncorrelated regression model coefficients.

5.2.2 Procedures – Rationale

The BN model in Chapter 3 was the first statistical modeling effort using the DCERP

data set for the NRE since the sampling started in October 2007 (RTI, 2013). The
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BN was an initial step toward quantifying our understanding of the eutrophication

process and factors leading to high chlorophyll a and low oxygen concentrations in the

NRE. The BN provided a platform to communicate the results with the stakeholders

and investigate management scenarios. The results from Chapter 3 are in agreement

with qualitative descriptions in the literature (Wetz and Paerl, 2008; Conley et al.,

2009; Paerl and Scott, 2010). The BN further highlights the potential impacts of

extreme climatic events as well as nutrient management scenarios on the ecological

condition of the NRE. Our results also confirm the importance of nutrient input re-

duction to minimize the presence of harmful algae and avoid violating water quality

standards. However, the discretization process essential for developing BNs resulted

in loss of information and limited the model application. In this section, we de-

scribe some of the drawbacks of discretization and provide reasoning for proposing

a continuous variable Bayesian Network model (cBN).

Many software packages (e.g., Hugin) limit the discretizing break point values

to be among the observed values. For example, when discretizing bottom dissolved

oxygen values into three intervals using moment matching methods, we have low

defined as bottom dissolved oxygen from 0.73 to 4.04 (mg{l), medium from 4.04

to 10.26 (mg{l), and high from 10.26 to 13.44 (mg{l). The North Carolina state

criterion for the bottom dissolved oxygen is 4 (mg{l) (EPA, 2001b); however, we

were unable to fix the break point at 4 since it was not among the observed values.

Also, future samples might not fall within the current observed range from 0.73 to

13.44 (mg{l), which would result in an error during the model update procedure,

depending on the software being used to develop the model. Another drawback of

discretization is that once the model is developed and the break points are fixed, we

no longer have the flexibility of working with continuous data. For example, in the

developed BN, we are not able to examine the probabilities associated with anoxia,

bottom dissolved oxygen concentrations lower than 2 (mg{l), because 2 (mg{l) is not
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Figure 5.2: Histogram of nitrogen concentration in the New River Estuary for 2008
and 2010. The figure depicts the different ranges of observed nitrogen concentrations
during the two years due to different precipitation patterns. Hence, the definition of
low, medium, and high would be different in 2010 compared to 2008.

a break point in the developed model.

Once a continuous variable is discretized, the resulting categories (e.g., low,

medium, high) may be interpreted differently under different circumstances. For

example, using our data, the nitrogen concentration in the BN is discretized into

three categories: [5.57-56.30), [56.30-334.21), and [334.21-1269.20] (µg{l), represent-

ing low, medium, and high, respectively. Because nitrogen concentration distribu-

tions in NRE in 2008 and 2010 are very different (Figure 5.2), the meanings of low,

medium, and high are also different between 2008 and 2010.

Our proposed model addresses these discretization problems by developing em-

pirical models among connected variables to replace CPTs. We illustrate the process

of building a cBN model by developing a model for the NRE, using chlorophyll a con-

centration and bottom water dissolved oxygen as indicator variables, to demonstrate

the proposed model’s development process.
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Network Structure

Our proposed methodology begins with developing a graphical representation of the

key environmental variables of interest (the response variables, chlorophyll a concen-

trations and bottom water dissolved oxygen) and factors affecting them (predictors,

nitrogen, phosphorus, light, salinity, stratification, temperature, season, and section)

in the studied ecosystem. The predictor variables for chlorophyll a and bottom wa-

ter dissolved oxygen were established based on a combination of previous findings

and exploratory data analysis (e.g., scatterplot matrices and multivariate conditional

scatterplots). It has been shown in the literature that chlorophyll a concentration in

estuaries are affected mainly by light, nutrients, water column mixing, temperature,

and grazing (Ryther and Dunstan, 1971; Cloern, 1987; Koseff et al., 1993; Conley

et al., 2009). Furthermore, oxygen levels in the water column are also influenced

by water column mixing, temperature, and chlorophyll a. Based on the exploratory

analysis described in the appendix, we present our model graphically in the form of

a DAG (Figure 5.3).

Model Formulation

The relationship between chlorophyll a, bottom dissolved oxygen and their predictors

is examined using simple linear regression model as an initial step. We compared

different empirical relations based on goodness-of-the-fit statistics such as R2. The

simple linear regressions are expressed in terms of conditional probability distribu-

tions. The conditional probability distributions are then combined based on the DAG

model. For example, in the oxygen component shown in Figure 5.5, the bottom wa-

ter dissolved oxygen is the variable we are interested in predicting. The predictors

based on the analysis described in Section 5.2.2 are chlorophyll a, stratification, and

temperature. The log-transformed bottom dissolved oxygen has a normal distribu-

tion. The mean is calculated as a regression model between the important predictors
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Figure 5.3: Directed Acyclic Graphical (DAG) model depicts the variables of in-
terest, chlorophyll a and bottom dissolved oxygen, and their predictors.

(see Figure 5.3). The standard deviation of the normal distribution, as well as each

parameter in the regression model, is then assigned non-informative prior distribu-

tions. When fitting the oxygen component model separately, observed chlorophyll a

is used as the predictor. Figures 5.5 and 5.4 describe the chlorophyll a and bottom

water dissolved oxygen network-based models. The equations are further described

in the appendix.

Connecting Components

The nodes (and the variables represented by the nodes) in the combined model are

classified into three groups: (1) forcing nodes (nodes without parents, e.g., tempera-

ture), (2) intermediate nodes (with both parents and child, e.g., chlorophyll a), and

(3) terminal nodes (without child, e.g., oxygen). The pre-specified causal network,

DAG (see Figure 5.3) specifies the marginal distributions of forcing nodes. The con-
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Chlorophyll a)

µChlorophyll a = β0[Sectioni] + β1Nitrogeni + β2Phosphorusi + β3Stratificationi
+β4Lighti + β5Salinityi ×Nitrogeni + β6[Seasoni]× Temperaturei

Figure 5.4: The chlorophyll a model shows chlorophyll a as the response variable
with its predictors. The equation below the figure describes the distribution of log-
transformed chlorophyll a as normal. The corresponding mean is calculated from a
regression model developed for chlorophyll a and its predictors. Uninformative priors
are placed on the coefficients. For detailed information on the equations, please refer
to the appendix.
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Figure 5.5: The oxygen model shows bottom dissolved oxygen as the response
variable with its predictors. The equation below the figure describes the distribution
of log-transformed bottom dissolved oxygen as normal. The corresponding mean
is calculated from a regression model developed for bottom dissolved oxygen and
its predictors. Uninformative priors are placed on the coefficients. For detailed
information on the equations, please refer to the appendix.

ditional probability distributions of all intermediate and final nodes are based on the

regression analysis in subsection 5.2.2. The final model is depicted in Figure 5.6.

The goal in this section is to define the joint distribution of all variables. The

A “ tNitrogen,Phosphorus, ¨ ¨ ¨ ,Light,Chlorophylla,Oxygenu is the collection of all

variables. The causal diagram defines conditional dependency of the component vari-

ables. The forcing nodes have marginal distributions (e.g., PrpNitrogenq), whereas

the intermediate or terminal nodes have conditional probability distributions (e.g.,

PrpOxygenq|Chlorophylla, Stratification ˆ Season, Temperature ˆ Season). Us-

ing the marginal distributions and conditional probability rule, we can assemble the

joint distribution for A. The conditional distributions are relatively easy to find;

hence, our approach simplifies computation.
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The joint distribution can be characterized using a Markov chain Monte Carlo

(MCMC) simulation method (Qian et al., 2003), once the set of full conditionals is

specified. We created a Markov process and ran it long enough to approximate the

joint probability distribution. The joint probability distribution was then used to

predict 2011-2012 conditions. It can help answer questions such as which conditions

would lead to high chlorophyll a and hypoxia/anoxia and help develop strategies to

avoid undesirable conditions. Statistical analyses were performed using R 3.0.2 (R

Core Team, 2014) and JAGS (Plummer et al., 2003).

5.3 Assessment

In the assessment section, we describe the following:

• Fitted versus observed (for assessing the goodness-of-the-fit)

• Predicted versus observed (not used in model fitting)

• Temporal updating

• Spatial updating

5.3.1 Model Performance

We developed the model using the NRE data from October 2007 to September 2011.

The developed model was then used to predict the observations from October 2011

to October 2012. First, the posterior distribution for coefficients αs1 and βs1 (Ta-

ble 5.2) were calculated using the developed model. The predictive distribution for

chlorophyll a and dissolved oxygen levels for the period of 2011 to 2012 were then

calculated and compared to the observed values. The comparison was done by exam-

ining the model’s ability to predict the mean, median, violation of state criteria for

chlorophyll a (chlorophyll aą 40 µg{l) and dissolved oxygen concentrations (DOă 4

mg{l) (Table 5.1).
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σChla

Nitrogen

β1

Phosphorus

β2
Stratification

β3

Light

β4

Salinity*Nitrogen

β5

Temperature*Season

β6

β0

µChlaτChla

Chlorophyll a

Chlorophyll a
¯

σOxygen

α1α0 Stratification Ratio*Season

α2 Temperature*Season

α3

τOxygen µOxygen

Oxygen

Oxygen
¯

Oxygeni ∼ N (µOxygen, τ
2
Oxygen)

µOxygen = α0[Sectioni] + α1µChlorophyll ai
+ α2[Seasoni]×Rstratificationi

+α3[Seasoni]× Temperaturei
Chlorophyll ai ∼ N (µChlorophyll a , τ

2
Chlorophyll a)

µChlorophyll a = β0[Sectioni] + β1Nitrogeni + β2Phosphorusi + β3Stratificationi
+β4Lighti + β5Salinityi ×Nitrogeni + β6[Seasoni]× Temperaturei

Figure 5.6: The combined continuous variable Bayesian network model combines
individual models in Figures 5.5 and 5.4 to develop the final model. The nodes (and
the variables represented by the nodes) in the combined model are classified into
forcing nodes (nodes without parents- e.g., temperature), intermediate nodes (with
both parents and child- e.g., chlorophyll a), and terminal nodes (without child- e.g.,
oxygen). Operationally, the combination process is complete when observations for
intermediate nodes are replaced by their respective means.
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Table 5.1: Results of predictive capability of the original model for the New River
Estuary data (2011-2012). As evaluation criteria, we compare the predictive value
versus the observed value for chlorophyll a violation (chlorophyll a ą 40 µg{l), bot-
tom dissolved oxygen violation (bottom dissolved oxygen ă 4 mg{l) and their means
and medians.

Variable Predicted (95% CI) Observed Error (%)
PrpChla ą 40 µg{lq (0.07,0.11) 0.11 -19
Chla Mean (1.32, 2.64) 2.45 -18
Chla Median (1.22, 2.73) 2.47 -20
PrpOxygen ă 4 mg{lq (0.09, 0.21) 0.17 -15
Oxygen Mean (1.59, 2.13) 1.73 9
Oxygen Median (1.62, 2.21) 1.93 1
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5.3.2 Temporal Model Updating

As discussed in section 5.1, ecosystem managers and policy makers need tools that

can help learning from experience and enable them to manage the ecosystem as

new knowledge becomes available. Several studies have called for adaptive manage-

ment of eutrophication (Rabalais et al., 2002; Stow et al., 2003). In this section,

a Bayesian model updating has been implemented after additional data for the pe-

riod of 2011 to 2012 was acquired. The Bayesian model updating is based on the

repeated use of the Bayes’ theorem, whereby the posterior of the model developed

in the methods section with non-informative priors and the data from September

2007 to October 2011 is used as the prior for the Bayesian model updating step. The

regression model coefficients are modeled by multivariate-normal distributions with

means equal to a vector that consists of the means of posterior distributions of α’s

and covariance matrices equal to the covariance matrices multiplied by 100 from the

combined model runs, respectively. σChlorophyll a and σOxygen have scaled inverse χ2

distributions (informative prior) with parameters based on posterior distribution of

σOxygen (σChlorophylla) in the combined model run. The additional data from 2011 to

2012 is used to form the likelihood function at the Bayesian model updating step.

The fitted model can be updated with the new data one year (or other time periods

depending on the frequency of monitoring and the need for updated information) at

a time.

Apart from the benefit of updating the model to evaluate the efficacy of the new

management strategies, the output from the updated model can be used to evaluate

the validity of the network model and parameterized relationship in the previous

step. This comparison was done using QQ plots to detect any significant changes

between the distribution of coefficients before and after the temporal model updating

step. A QQ plot is a visual way to compare the distribution of coefficients prior and
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Figure 5.7: QQ plot for nitrogen coefficient before and after temporal model up-
dating.

post the update. The QQ plots do not show any changes for model coefficient during

the temporal updating process (Figure 5.7). However, if the QQ plots detect any

significant changes, further investigation is required to decide the reason behind the

change. One speculation of such a change would be that the model is no longer

adequate to describe the system. This might have been the result of a change in

the system, such as a nutrient management scenario that has altered the dynamics

of the estuary. The discrepancy between the prior and posterior distributions offers

further insights into the prediction capability of the model.

5.3.3 Spatial Model Updating

We built the original model with the goal of transferability to other similar estuaries.

The developed model could have been further simplified if we were only targeting the

NRE. For example, phosphorus was included while the NRE specific data set did not

confirm a significant role for the phosphorus in predicting chlorophyll a; however,

it has been shown in the scientific literature that phosphorus is a critical nutrient

for phytoplankton growth (Conley et al., 2009). In the following section, we will

86



describe spatial model updating steps for another neighboring estuary.

The spatial model updating step is demonstrated using the Neuse River Estuary

data set. The Neuse River Estuary has similar dynamics and concerns of eutroph-

ication as of the NRE. The Neuse River Estuary is a shallow drowned river valley

estuary located in central coastal North Carolina, USA, with a length of approxi-

mately 70 km. The Neuse River Estuary, similar to the NRE, is a mesotrophic to

eutrophic ecosystem. It has a history of hypoxia/anoxia, harmful algal blooms, and

fish kills. The stratification is stronger in comparison to the NRE; however, the wind

pattern and tidal regimes are similar.

The spatial model updating steps and procedure is similar to temporal model

updating. We used the data sampled between January 2007 and December 2012.

Again, we divide the data into two subsets: a training dataset (January 2007 to

December 2011) and a verification data set (Jan., 2012 to Dec, 2012). The training

dataset was used to update the model from the NRE. The verification data was used

to predict chlorophyll a and bottom dissolved oxygen using the updated model. We

then compared the predictions to the observed values. Table 5.3 shows the results of

the comparison.

Table 5.3: Results of predictive capability of the spatially updated model for the
Neuse River Estuary data (2011-2012). As evaluation criteria, we compare the pre-
dictive value versus the observed value for chlorophyll a violation (chlorophyll a ą 40
µg{l), bottom dissolved oxygen violation (bottom dissolved oxygen ă 4 mg{l) and
their means and medians.

Variable Predicted (95% CI) Observed Error (%)
PrpChla ą 40 µg{lq 0.02 0.01 34
Chla Mean 2.33 2.37 -2
Chla Median 2.32 2.29 1
PrpOxygen ă 4 mg{lq 0.53 0.51 3
Oxygen Mean 1.22 0.88 39
Oxygen Median 1.31 1.37 -5
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5.4 Discussion

The proposed cBN retains the advantages of BNs. It has the graphical network-based

structure, which eases the communication of science and also depicts the causal

relationships and the dependencies among variables of interest. The cBN is also

suitable for any sample size data sets. Furthermore, different knowledge sources can

be used to form the prior distributions of the model. The BNs discretize data sets

into intervals/categories, which results in loss of information. There are different

methods of discretization described in the literature; however, no guideline on usage

of discretization methods has been provided. The proposed cBN avoids the pitfalls of

discretization and uses empirical modeling to establish the connections among nodes.

The relation among variables in the proposed cBN is described by empirical models,

unlike BNs where the relation among variables are described by CPTs. However, the

cBN can accomodate process-based models by using the equations from a process-

based model and then describing priors for the coefficients.

The proposed cBN facilitates temporal updating. As new information becomes

available for the ecosystem, the Bayesian attribute of the proposed model facilitates

temporal updating. We demonstrated an example of temporal model updating in

subsection 5.3.2. The model can further be used in other ecosystems with similar

dynamics. We called this procedure spatial updating. As an example, we used

the model from the NRE for the Neuse River Estuary, which is a similar non-tidal

estuary.

Complex ecosystem dynamics and uncertain conditions require more than merely

ecosystem monitoring and single step models. Managers and policy makers must

modify their strategies and action plans as new information becomes available. The

utility of the proposed model is in its capacity to study the patterns promptly, as new

conditions unfold. The updatable nature of the Bayesian model captures the essence
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of adaptive management by enabling learning from experience (i.e., data). The key

concept in adaptive management is iterative learning. The requirements of iterative

learning are (1) observing the ecosystem to gauge the impact of policies and man-

agement actions, continuously, (2) communicating the ecosystem’s status with policy

makers and managers, (3) updating the management actions and recommendations.

Our proposed model facilitates the latter two requirements. Our proposed model

simplifies communication with policy makers and managers with its network-based

structure. It also provides a straightforward ability to assimilate new information

by using a Bayesian approach. In long-term monitoring programs, new data become

available every day/week/month. It would be greatly beneficial for managers/policy

makers to update the model in some time intervals depending on the frequency of

sampling and the temporal resolution of the problem. Here, the posterior distribu-

tion calculated in the previous model run step would be considered an updated prior

distribution. An updated posterior distribution can then be computed via Bayes’

theorem using new data. Based on the updated posterior, effectiveness of previous

policies/strategies would be evaluated and new recommendations would be provided.

Adaptive management is also intertwined with uncertainty. The hypothesis in

adaptive management is that our decisions have uncertain outcomes and managers

should update their understanding of the ecosystem as they learn from the conse-

quences of their actions (Ellison, 1996). Despite decades of study, uncertainty still

exists in our understanding of the eutrophication, and hence, in the consequences of

policies and management recommendations. Our proposed method, through proba-

bility calculus, provides an explicit expression of the amount of uncertainty in our

knowledge.

As a concluding remark, we used a continuous variable Bayesian network model

to predict water quality indicators in a non-tidal estuarine ecosystem. The statistical

approach proposed here can be further applied in water quality problems other than
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eutrophication and in other ecosystems (e.g., lakes). However, this methodology

should also work with some modifications for a broad range of aquatic pollution.

We encourage researchers to take and implement the proposed continuous variable

Bayesian network model in other contexts.
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Appendix A

R Code for Chapter 2

#####################################################################

##Functions

#####################################################################

mulognorm=function(par){

##par[1] is Ex, par[2] is SDx

log(par[1])-1/2*log(1 + par[2]^2/par[1]^2)

}

sdlognorm=function(par){

sqrt(log(1 + par[2]^2/par[1]^2))

}

#####################################################################

## data import

#####################################################################
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library(MCMCpack)

farm=read.csv(’Swine_CAFO_Neuse_table.csv’,header=T)

View(farm)

colnames(farm)

str(farm)

keep=which(farm$Number_of>0)

farm=farm[keep,]

nrow(farm)

table(farm$Regulate_1)

sum(farm$Number_of)

#####################################################################

## Average hog mass for each type of farms

## Function to calculate average hog mass for each hog type

#####################################################################

avgmass=function

(pgest,plact,pboar,pftow,pwtof,pftof,n.sims =1000,CV1 =0.1){

wtgest = rnorm(n.sims,181,(181*CV1))

wtlact = rnorm(n.sims,181,(181*CV1))

wtboar = rnorm(n.sims,181,(181*CV1))

wtftow = rnorm(n.sims,4.5,(4.5*CV1))

wtwtof = rnorm(n.sims,13.6,(13.6*CV1))

wtftof = rnorm(n.sims,61.2,(61.2*CV1))

wtavg = pgest*wtgest + plact*wtlact

+ pboar*wtboar + pwtof*wtwtof
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+ pftow*wtftow + pftof*wtftof

mc.avgmean=mean(wtavg)

mc.avgsd=sd(wtavg)

return(c(mc.avgmean,mc.avgsd))

}

## farrow to finish

pgest = .068

plact = .016

pboar = .004

pftow = .097

pwtof = .254

pftof = .561

avgmass_fartofin=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[1]

sdmass_fartofin=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[2]

## farrow to wean

pgest = 81/220

plact = 19/220

pboar = 5/220

pftow = 115/220

pwtof = 0

pftof = 0

avgmass_ftow=
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avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[1]

sdmass_ftow=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[2]

## wean to feed

pgest = 0

plact = 0

pboar = 0

pftow = 0

pwtof = 1

pftof = 0

avgmass_wtof=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[1]

sdmass_wtof=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[2]

## feed to finish

pgest = 0

plact = 0

pboar = 0

pftow = 0

pwtof = 0

pftof = 1

avgmass_feedtofin=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[1]

sdmass_feedtofin=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[2]
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## farrow to feed

pgest = 81/521

plact = 19/521

pboar = 5/521

pftow = 115/521

pwtof = 301/521

pftof = 0

avgmass_fartofeed=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[1]

sdmass_fartofeed=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[2]

## gilts

pgest = 1

plact = 0

pboar = 0

pftow = 0

pwtof = 0

pftof = 0

avgmass_g=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[1]

sdmass_g=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[2]

## boar

pgest = 0
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plact = 0

pboar = 1

pftow = 0

pwtof = 0

pftof = 0

avgmass_b=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[1]

sdmass_b=

avgmass(pgest,plact,pboar,pftow,pwtof,pftof)[2]

#####################################################################

##Feed intake

#####################################################################

no=c(4392,3727,7611,5784,4221,4373

,6332,6095,3386,2680,1249,1485

,9507,10248)

mass=c(104.3,88.5,52.3,67,82.7,48.0

,59.2,59.7,55.4,104.7,98.5,70.3

,38.3,44.7)

intake=c(12.84,12.59,10.99,12.37,11.93

,14.41,12.89,13.21,15.44,16.27

,16.27,14.47,10.03,11.02)

totmass=mass*no

totintake=no*intake*52

plot(totmass,log(totintake),main=’kg feed intake per kg hog’

,xlab=’Hog mass (kg)’, ylab=’Feed intake(kg)’,pch=19)
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logfit.intake=lm(log(totintake)~totmass)

summary(logfit.intake)

plot(totmass,log(totintake),pch=19

,xlab=’hog mass’,ylab=’log(food intake)’)

abline(coef(logfit.intake)[1],coef(logfit.intake)[2])

recode.list<-farm$Regulate_1

farm$type <- as.numeric(recode.list)

farm <- farm[farm$type!=9,]

meanmass <- c(avgmass_b,avgmass_fartofeed,avgmass_fartofin

,avgmass_ftow,avgmass_feedtofin,avgmass_g

,0,avgmass_wtof)

sdmass <- c(sdmass_b,sdmass_fartofeed,sdmass_fartofin

,sdmass_ftow,sdmass_feedtofin,sdmass_g,1

,sdmass_wtof)

#####################################################################

## N goes to pork produced

#####################################################################

## kg pork produced in NC, NC agricultural census

NCpork=3815438*1000/2.2

## number of pigs in 2007 in NC

NCpig=10134004

## number of pigs in 2007 in Neuse

Neusepig=1894057

## pork produced in the Neuse
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NeusePork=Neusepig/NCpig*NCpork

## nitrogen % in swine

##= protein % in swine * N% in protein (which is 6.25)

## N% in protein found in book, nutrient requirement of swine, CH. 2

## protein% found in swine nutrition

## 0.95: change the amount of pork produced in the Neuse to empty e

## pig mass becausprotein % is based on empty body weights.

Protein=rnorm(1000,0.16,sd=0.02)

hist(Protein)

biomassN=NeusePork*0.95*Protein/6.25

hist(biomassN)

#####################################################################

## Total Lagoon Volume, Surface Area, Bottom Area Calculations

#####################################################################

mass=c(225090,230518,216808,216808,298910,216808,436846,460977

,651175,651175,651175,651175,384453,512604,434367)

vol=c(16790,17973,11994,18802,31611,15076,57763,41797,47570

,53103,62435,45928,51252,45616,22738)

new.mass=c(1000*54,9200*54,4500*61,4360*61,4900*61,2900*61

,5280*61,2200*61,5880*61)

new.area=c(1.89,0.54,0.92,1.25,2.68,0.58,1.58,0.58,1.32)

new.depth=c(0.78,1.66,1.77,1.10,1.46,2.17,2.06,1.40,2.27)

new.volume=new.area*new.depth*10000

plot(mass,vol,pch=19,xlim=c(0,700000),ylim=c(0,70000))

points(new.mass,new.volume,col=’green’,pch=19)
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mass=c(mass,new.mass)

vol=c(vol,new.volume)

plot(mass, vol,xlim=c(0,600000),ylim=c(0,60000))

lagoon.fit=lm(vol[-17]~mass[-17])

plot.lm(lagoon.fit)

loglagoon.fit=lm(log(vol[-17])~mass[-17])

plot.lm(loglagoon.fit,which=4)

summary(loglagoon.fit)

plot(mass[-17], log(vol[-17]),pch=19,xlab=’hog mass’

,ylab=’log(lagoon volume)’)

abline(coef(loglagoon.fit)[1],coef(loglagoon.fit)[2])

n.sims <- 100

tot.mass <- numeric()

intake <- numeric()

total.intake <- numeric()

Neuse.totalmass <- numeric()

lagvol <- matrix(NA,nrow=nrow(farm),ncol=n.sims)

for (j in 1:n.sims){

for (k in 1:nrow(farm)){

tot.mass[k] <- farm$Number_of[k]*

rnorm(1,meanmass[farm$type[k]],sdmass[farm$type[k]])

new=data.frame(totmass=tot.mass[k])

pred=predict(logfit.intake,new,se.fit=T)

intake[k] <- exp(

rnorm(1,mean=pred$fit
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,sd=sqrt(pred$se.fit^2+pred$residual.scale^2)))

new2=data.frame(mass=tot.mass[k])

pred2=predict(loglagoon.fit,new2,se.fit=T)

lagvol[k,j] <- exp(

rnorm(1,mean=pred2$fit

,sd=sqrt(pred2$se.fit^2+pred2$residual.scale^2)))

}

total.intake[j] <- sum(intake)

Neuse.totalmass[j] <- sum(tot.mass)

print(j)

}

hist(total.intake)

mean(total.intake)

sd(total.intake)

hist(Neuse.totalmass)

mean(Neuse.totalmass)

sd(Neuse.totalmass)

farm$lagvolmean <- apply(lagvol,1,mean)

farm$lagvolsd <- apply(lagvol,1,sd)

lagvoltotal <- sum(farm$lagvolmean)

depth.hunt <- c(0.78,1.66,1.77,1.10,1.46,2.17,2.06,1.4,2.27)

depth.ave <- (15*3.05 + sum(depth.hunt))/24
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lagSAtotal <-lagvoltotal/depth.ave

#####################################################################

##perNfood

#####################################################################

Nfeed = c(3.14,2.52,3.02,2.95,2.78,3.24,2.56,2.67

,3.01,2.15,2.76,3.08,2.79,3.17)

Nfeed = Nfeed/100

hist(Nfeed, main="Distribution of Nitrogen in Food"

, xlab="Percent Nitrogen in Food")

meanperN = mean(Nfeed)

sd(Nfeed)

n = length(Nfeed)

varperN = (n-1)/n*var(Nfeed)

alpha = meanperN*((meanperN*(1-meanperN)/varperN) - 1)

beta = (1-meanperN)*((meanperN*(1-meanperN)/varperN) - 1)

alpha

beta

N_per_feed=rbeta(1000,alpha,beta)

#####################################################################

#Yearly Feed N Intake

#####################################################################

total.intake <- rnorm(1000,mean(total.intake),sd(total.intake))

Nintake.yr <- total.intake*N_per_feed

mean(Nintake.yr)

sd(Nintake.yr)
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#####################################################################

## Yearly N to Biomass

#####################################################################

N.Biomass <- Nintake.yr*0.3

mean(N.Biomass)

sd(N.Biomass)

#####################################################################

## Yearly N to Waste

#####################################################################

N.Waste <- Nintake.yr*0.7

mean(N.Waste)

sd(N.Waste)

#####################################################################

## N excretion

#####################################################################

Nexcrete=c(0.091,0.219,0.113,0.138,0.153)

mean(Nexcrete)

sd(Nexcrete)

NH3_RTI=1.61/150*2.2/17*14

NH3_doorn=c(0.0351,0.0137,0.0141)/17*14

mean(NH3_doorn)

sd(NH3_doorn)

#####################################################################

## Confinement housing Yearly Ammonia Emission Rate from

## (Aneja et al. 2008b)

#####################################################################
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NH3_spr=c(0.31,0.23,0.21,0.39)

NH3_sum=c(0.58,0.23,1.07)

NH3_aut=c(0.07,0.33,0.35)

NH3_win=c(0.12,0.81)

NH3=numeric()

for (i in 1:1000){

NH3[i]=mean(c(sample (NH3_spr,1),sample (NH3_sum,1),

sample (NH3_aut,1),sample (NH3_win,1)))/1000*52}

mean(NH3)

sd(NH3)

#####################################################################

## Confinement Housing Ammonia Emissions

#####################################################################

NH3.1=c(0.34,0.49,0.57,1.29,0.98,1.15,0.16,0.008,0.12,0.52,

0.07,0.75)/1000*52

mean(NH3.1)

sd(NH3.1)

NH3.2 <- c(rep(1.81,70),rep(1.21,87),rep(1.81,15),rep(2.98,13)

,rep(2.98,331))/150*2.2/17*14

mean(NH3.2)

sd(NH3.2)

NH3_doorn=0.059/17*14

0.01/17*14
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mu <- c(0.03,0.055,0.028,0.049)

sd <- c(0.0087,0.020,0.002,0.008)

trans.mu <- numeric()

trans.sd <- numeric()

for (i in 1:4){

trans.mu[i] <- mulognorm(c(mu[i],sd[i]))

trans.sd[i] <- sdlognorm(c(mu[i],sd[i]))

}

NH3.studies <- rlnorm(1000,trans.mu,trans.sd)

mean(NH3.studies)

sd(NH3.studies)

hist(NH3.studies)

totalhogmass <- rnorm(1000,mean(Neuse.totalmass)

,sd(Neuse.totalmass))

confine.vol <- NH3.studies*totalhogmass

hist(confine.vol, xlab="Confinement Housing Volatilization"

, main="Distribution of Confinement Housing Volatilization ")

mean(confine.vol)

sd(confine.vol)

#####################################################################

## Lagoon Yearly Ammonia Emission Rate (Aneja et al. 2008a)

## avg.rt: ug N-NH3/m2 /min

## NH3vol: kg N-NH3/m2/year

#####################################################################
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error_rate <- 0.227

sum.rt <- rlnorm(1000,0.117*30+4.474,error_rate)

fall.rt <- rlnorm(1000,0.117*11.6+4.474,error_rate)

win.rt <- rlnorm(1000,0.117*12.1+4.474,error_rate)

spr.rt <- rlnorm(1000,0.117*24.7+4.474,error_rate)

avg.rt <- (sum.rt + fall.rt + win.rt + spr.rt)/4

NH3vol <- avg.rt*60*24*365/1e9

mean(NH3vol)

sd(NH3vol)

## change to hog based emission rate

hogPerm2=

((7611*52.3+5784*67)/2/17150+(4392*104.3+3727*88.5)/2/15170)/2

mean(NH3vol/hogPerm2)

sd(NH3vol/hogPerm2)

#####################################################################

## Average Emission Rate from Lagoon

#####################################################################

lagNH3.2 <- c(0.017,0.010)

lagNH3.3 <- c(0.029,0.004)

lagNH3.4 <- c(0.021,0.006)

lagNH3<-rbind(lagNH3.2,lagNH3.3,lagNH3.4)

CV <- lagNH3[,2]/lagNH3[,1]

CV

105



mean(CV)

lagNH3.1 <- c(0.019,0.019*mean(CV))

lagNH3 <- rbind(lagNH3,lagNH3.1)

mu <- lagNH3[,1]

sd <- lagNH3[,2]

trans.mu <- numeric()

trans.sd <- numeric()

for (i in 1:4){

trans.mu[i] <- mulognorm(c(mu[i],sd[i]))

trans.sd[i] <- sdlognorm(c(mu[i],sd[i]))

}

NH3lag.studies <- rlnorm(1000,trans.mu,trans.sd)

hist(NH3lag.studies)

mean(NH3lag.studies)

sd(NH3lag.studies)

NH3lagvol <- NH3lag.studies*totalhogmass

mean(NH3lagvol)

sd(NH3lagvol)

#####################################################################

## Lagoon sludge N concentration mg/L

#####################################################################
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par=matrix(NA, nrow=15,ncol=2)

par[,1]=musludge = c(2.8,3.3,3.2,3.4,2.4,1.2,6.2,4.2,4.5,4.2,3.2

,3.3,5.8,5.7,4.2)*1000

par[,2]=sdsludge =c(0.3,0.3,0.5,0.3,0.8,0.4,2.5,0.6,0.6,0.8,0.6

,0.9,3.5,0.6,1.1)*

1000/1.96/sqrt(10) #var of mean = var/n

logpar=matrix(NA, nrow=15,ncol=2)

for (i in 1: 15){

logpar[i,1]=mulognorm(par[i,])

logpar[i,2]=sdlognorm(par[i,])

}

Nsludge=numeric()

for ( i in 1:1000){

Nsludge[i]=mean(rlnorm(15, logpar[,1],logpar[,2]))}

hist(Nsludge)

mean(Nsludge)

sd(Nsludge)

Nsludgeavg <- rlnorm(375,mulognorm(c(5000,700))

,sdlognorm(c(5000,700)))

Nsludgeavg <-c(Nsludgeavg,

rlnorm(625,mulognorm(c(3837,54))

,sdlognorm(c(3837,54))))

hist(Nsludgeavg)

mean(Nsludgeavg)

sd(Nsludgeavg)

#####################################################################
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##Lagoon Sludge Accumulation

##(Chastain 2006 + Bicudo et al. 1999) m3/kg hog /year

#####################################################################

par=matrix(NA, nrow=6,ncol=2)

par[,1]=u_sludge = c(0.00783, 0.003,0.00353,0.00343,0.002,0.0045)

par[,2]=sd_sludge = c(0.00247,0.00054,0.00078,0.00092,0.0015,0.0015)

logpar=matrix(NA, nrow=6,ncol=2)

for (i in 1: 6){

logpar[i,1]=mulognorm(par[i,])

logpar[i,2]=sdlognorm(par[i,])

}

sludgeacc=numeric()

for ( i in 1:1000){

sludgeacc[i]=sum(c(rlnorm(6, logpar[,1],logpar[,2])

,0.00492,0.0022))/8}

hist(sludgeacc)

mean(sludgeacc)

sd(sludgeacc)

Nfluxsludge <- sludgeacc*Nsludgeavg*totalhogmass/1000

hist(Nfluxsludge)

mean(Nfluxsludge)

sd(Nfluxsludge)

#####################################################################

## Lagoon Seepage Rate
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## Data from Ham (2002) need to check standard deviation

## mm/d

#####################################################################

seepagert =c(0.6,0.8,0.8,0.8,0.8,0.9,0.9,1,1.3,1.3,1.4,1.5,1.7,2)

par=c(mean(seepagert),sd(seepagert))

hist(seepagert,freq=F)

mulognorm(par)

sdlognorm(par)

seeprt=rlnorm(1000,mulognorm(par),sdlognorm(par))

mean(seeprt)

sd(seeprt)

#####################################################################

## Lagoon Yearly Seepage Loss *assuming* new liner

## Lagoon seepage export Ham and DeSutter 2000, kg / m2 /year

#####################################################################

seepageexp=c(0.522,0.500,0.451,0.289,0.229,0.218,0.131)

hist(seepageexp)

mean(seepageexp)

sd(seepageexp)

seepageexp <- runif(1000,0.1,0.6)

#####################################################################

## Lagoon liquid NH3 concentration
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#####################################################################

par=matrix(NA, nrow=15,ncol=2)

par[,1]=NH3_mu=c(350,350,350,310,340,350,290,330,440,470,410,490

,280,500,570)

par[,2]=NH3_sd=c(30,30,30,30,20,30,20,30,30,40,30,40,40,50,60)

/1.96/sqrt(10)

logpar=matrix(NA, nrow=15,ncol=2)

for (i in 1: 15){

logpar[i,1]=mulognorm(par[i,])

logpar[i,2]=sdlognorm(par[i,])

}

NH3_con=numeric()

for ( i in 1:1000){

NH3_con[i]=mean(c(rlnorm(15, logpar[,1],logpar[,2])))}

mean(NH3_con)

sd(NH3_con)

NH3lag=numeric()

for ( i in 1:1000){

NH3lag[i]=mean(rlnorm(15, logpar[,1],logpar[,2]))}

hist(NH3lag)

mean(NH3lag)

sd(NH3lag)

NH3lagavg <- rlnorm(375,mulognorm(c(349,136)),sdlognorm(c(349,136)))

NH3lagavg <-c(NH3lagavg,rlnorm(625,mulognorm(c(389,1.4))
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,sdlognorm(c(389,1.4))))

hist(NH3lagavg)

mean(NH3lagavg)

sd(NH3lagavg)

export2 <- NH3lagavg*seeprt*365/1e6

hist(export2)

mean(export2)

sd(export2)

seep.export.est <- rlnorm(500,mulognorm(c(mean(export2),sd(export2)))

,sdlognorm(c(mean(export2),sd(export2))))

seep.export.est <-c(seep.export.est,runif(500,0.1,0.6))

hist(seep.export.est)

mean(seep.export.est)

sd(seep.export.est)

totalexport <- seep.export.est*lagSAtotal

hist(totalexport)

mean(totalexport)

sd(totalexport)

#####################################################################

## Lagoon TKN

#####################################################################

par=matrix(NA, nrow=15,ncol=2)

par[,1]=TKN_mu=c(410,420,420,370,390,400,350,390,490,520,450,560,

340,570,650)
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par[,2]=TKN_sd=c(30,40,40,30,30,30,20,40,30,40,30,60,30,50,70)

/1.96/sqrt(10)

logpar=matrix(NA, nrow=15,ncol=2)

for (i in 1: 15){

logpar[i,1]=mulognorm(par[i,])

logpar[i,2]=sdlognorm(par[i,])

}

TKN_con=numeric()

for ( i in 1:1000){

TKN_con[i]=mean(c(rlnorm(15, logpar[,1],logpar[,2])))}

mean(TKN_con)

sd(TKN_con)

TKNlag=numeric()

for ( i in 1:1000){

TKNlag[i]=mean(rlnorm(15, logpar[,1],logpar[,2]))}

hist(TKNlag)

mean(TKNlag)

sd(TKNlag)

TKNlagavg <- rlnorm(375,mulognorm(c(416,157)),sdlognorm(c(416,157)))

TKNlagavg <-c(NH3lagavg,rlnorm(625,mulognorm(c(449,1.7))

,sdlognorm(c(449,1.7))))

hist(TKNlagavg)

mean(TKNlagavg)

sd(TKNlagavg)
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lagoonNpool <- TKNlagavg/1000*lagvoltotal

hist(lagoonNpool)

mean(lagoonNpool)

sd(lagoonNpool)

#####################################################################

## Total Sprayfield Area

## 2007 Ag. census & NC animal waste operation certification program

## total lagoon liquid

#####################################################################

chicken_lagoon=(0.885*7.3+0.04*22.3+0.075*25.2)*6484314

cow_lagoon=(0.43*1946+0.51*6570+0.06*9490)*49456

hog_lagoon=(0.16*191+0.7*927+0.13*3203+0.03*3861+0.02*10481)*1894057

perhog=hog_lagoon/(hog_lagoon+chicken_lagoon+cow_lagoon)

totalsprayarea1=37767*perhog*4047

## management plan for Boknam’s farm

totalsprayarea2=121.4/(88.9*4800)*9.96e7*4047

totalsprayarea=(totalsprayarea2+totalsprayarea1)/2

## old values

## break.val <- c(0,seq(750,21750,by=1500))

## spray.hist <- hist(farm$Number_of,breaks=break.val)

## spray.hist$breaks

##totalsprayarea<-

##(57*5+117*10+149*20+104*30+50*40
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## +28*50+7*60+7*70+8*80+5*90+100)*4047

##totalsprayarea

## new values

##break.val <- c(0,3750,6250,21000)

##spray.hist <- hist(farm$Number_of,breaks=break.val)

##spray.hist$breaks

##spray.hist$counts

##totalsprayarea<- (323*50/3+143*100/3+67*260/3)*4047

##totalsprayarea

#####################################################################

##Land Application Rate

#####################################################################

corn.app <- c(104,141,70,67,71,130,138,128,125,137,148,138,98,130

,82,125,78,124,135,135,80,68,133,131,128,128,137,134

,136,150,128,135,130,81,80,139,90,119)/2.2/4046

mean(corn.app)

sd(corn.app)

soy.app <- c(119,191,97,86,79,155,192,175,172,156,176,173,124,174

,134,164,101,174,178,178,102,109,173,164,161,161,176

,172,161,195,156,170,170,97,108,163,109,135)/2.2/4046

mean(soy.app)

sd(soy.app)

bg.app <-c(196,216,165,123,180,108,210,198,194,207,230,126,155,161

,95,230,99,151,172,172,115,166,168,230,225,225,230,225
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,95,165,154,151,108,108,161,165,192,151)/2.2/4046

mean(bg.app)

sd(bg.app)

hist(corn.app)

hist(soy.app)

hist(bg.app)

app.rt <- c(sample(corn.app,400,replace=TRUE)

,sample(soy.app,200,replace=TRUE)

,sample(bg.app,400,replace=TRUE))

hist(app.rt)

mean(app.rt)

sd(app.rt)

app.rt <- rnorm(1000,mean(app.rt),sd(app.rt))

landapp <- app.rt*totalsprayarea*2

hist(landapp)

mean(landapp)

sd(landapp)

#####################################################################

## Sprayfield Ammonia emission factors RTI(2003)

#####################################################################

sprRTI <- c(1.96,7.27,2.83,3.26,3.84)/150*2.2*14/17

mean(sprRTI)

sd(sprRTI)
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mean(sprRTI[-2])

sd(sprRTI[-2])

#####################################################################

## Sprayfield % of several nitrogen sinks in the sprayfield.

##Summary of Data in Whalen & DeBerardinis

#####################################################################

sf.denit <- c(2,1,1,1,1,1)

sf.plantup <- c(25,46,73,68,117,52)

sf.micimm <- c(22,14,13,9,14,8)

sf.leach <- c(14,15,19,35,6,9)

sf.vol <- c(5,6,17,17,13,14)

sf.soilsto <- c(50,30,10,10,14,9)

sf.tot <- sf.denit+sf.plantup+sf.micimm+sf.leach+sf.vol+sf.soilsto

sf.tot

mean(sf.denit)

sd(sf.denit)

mean(sf.plantup)

sd(sf.plantup)

mean(sf.micimm)

sd(sf.micimm)

mean(sf.leach)

sd(sf.leach)

mean(sf.soilsto)

sd(sf.soilsto)

mean(sf.tot)

sd(sf.tot)

19/128*102
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#####################################################################

##Application rates in the sprayfield Summary in Read et al.

#####################################################################

##lowapp <- c(28.,33.3,37.0,34.3,25.8,35,27.5)

##highapp <- c(29.5,35.5,3,30,46,32,31.8)

##mean(lowapp)

##sd(lowapp)

##mean(highapp)

##sd(highapp)

corn.app <- c(104,141,70,67,71,130,138,128,125,137,148,138,98,130,82

,125,78,124,135,135,80,68,133,131,128,128,137,134,136

,150,128,135,130,81,80,139,90,119)/2.2/4046

mean(corn.app)

sd(corn.app)

soy.app <- c(119,191,97,86,79,155,192,175,172,156,176,173,124,174,134

,164,101,174,178,178,102,109,173,164,161,161,176,172,161

,195,156,170,170,97,108,163,109,135)/2.2/4046

mean(soy.app)

sd(soy.app)

bg.app <-c(196,216,165,123,180,108,210,198,194,207,230,126,155,161,95

,230,99,151,172,172,115,166,168,230,225,225,230,225,95,165

,154,151,108,108,161,165,192,151)/2.2/4046
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mean(bg.app)

sd(bg.app)

#####################################################################

##Background Denitrification Sprayfield

#####################################################################

##back.denit <- 210*24*365/1e9

##back.denit

### check the percentage with other data NH3 volatilization

mean(0.163*landapp/totalhogmass)

sd(0.163*landapp/totalhogmass)

windows()

hist(0.163*landapp/totalhogmass)

points(density(rlnorm(1000,mulognorm(c(0.035,0.010))

,sdlognorm(c(0.035,0.010)))),type=’l’)

hist(rlnorm(1000,

mulognorm(c(0.035,0.010)),sdlognorm(c(0.035,0.010))))

windows()

hist( rlnorm(1000,mulognorm(c(0.012,0.01/0.035*0.012))

,sdlognorm(c(0.012,0.010/0.035*0.012))))

margmean <- c(0.163,0.635,0.135,0.205,0.010,0.133)

margmean <- margmean/sum(margmean)

##margsd<- c(0.10,0.31,0.05,0.17,.005,0.05)
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##margsd <- margsd/sum(margmean)

betapars <- function(m,s,n){

v <- (n-1)/n*s^2

alpha = m*((m*(1-m)/v) - 1)

beta = (1-m)*((m*(1-m)/v) - 1)

return(c(alpha,beta))

}

pars <- numeric()

for (i in 1:6){

alphbet <- betapars(margmean[i],margsd[i],6)

pars <- rbind(pars,alphbet)

}

vol <- landapp*rbeta(1000,pars[1,1],pars[1,2])

uptake <- landapp*rbeta(1000,pars[2,1],pars[2,2])

leach <- landapp*rbeta(1000,pars[3,1],pars[3,2])

soil <- landapp*rbeta(1000,pars[4,1],pars[4,2])

denitr <- landapp*rbeta(1000,pars[5,1],pars[5,2])

microb <-landapp*rbeta(1000,pars[6,1],pars[6,2])

mean(vol)

sd(vol)

mean(uptake)
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sd(uptake)

mean(leach)

sd(leach)

mean(soil)

sd(soil)

mean(denitr)

sd(denitr)

mean(microb)

sd(microb)

#####################################################################

##Lagoon Denitrifcation by Difference

#####################################################################

lagdenit <- N.Waste-confine.vol-Nfluxsludge

-totalexport-NH3lagvol-landapp

hist(lagdenit)

mean(lagdenit)

sd(lagdenit)

#####################################################################

## N export from the Neuse River Basin

## Total area of Neuse River basin 1458936 hectare

#####################################################################
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N_neuse=1458936*4.7

N_neuse

#####################################################################

## potential N lost to water lfrom CAFO

#####################################################################

mean(leach)/N_neuse

sd(leach)/N_neuse

mean(totalexport/N_neuse)

sd(totalexport/N_neuse)

#####################################################################

## atm deposition

#####################################################################

N_neuse=(3.26+4.89+3.62+5.91)/4*1458936 ## kg/year

N_neuse

mean(NH3lagvol+confine.vol+vol)/N_neuse

mean(NH3lagvol+confine.vol+vol)

sd(NH3lagvol+confine.vol+vol)

#####################################################################

##percentages

#####################################################################

mean(confine.vol/Nintake.yr)

sd(confine.vol/Nintake.yr)

mean(N.Biomass/Nintake.yr)

sd(N.Biomass/Nintake.yr)
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mean(totalexport/Nintake.yr)

sd(totalexport/Nintake.yr)

mean(NH3lagvol/Nintake.yr)

sd(NH3lagvol/Nintake.yr)

mean(lagdenit/Nintake.yr)

sd(lagdenit/Nintake.yr)

mean(Nfluxsludge/Nintake.yr)

sd(Nfluxsludge/Nintake.yr)

mean(uptake/Nintake.yr)

sd(uptake/Nintake.yr)

mean(soil/Nintake.yr)

sd(soil/Nintake.yr)

mean(leach/Nintake.yr)

sd(leach/Nintake.yr)

mean(vol/Nintake.yr)

sd(vol/Nintake.yr)

mean(microb/Nintake.yr)

sd(microb/Nintake.yr)
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Appendix B

Supplementary Material for Chapter 3
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Figure B.1: Structure of the New River Estuary base model.

Oxygen

C
hl

or
op

hy
ll

0

20

40

60

5 10

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fall

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Spring

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

Summer

5 10

0

20

40

60

●
●

●

●

●

●● ●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

Winter

Figure B.2: Bivariate scatter plot chlorophyll a versus bottom dissolved oxygen
with respect to seasons.

124



F
ig
u
r
e
B
.3

:
A

lo
w

p
re

ci
p
it

at
io

n
sc

en
ar

io
fo

r
th

e
N

R
E

.
B

lu
e

b
ar

s
re

p
re

se
n
t

p
ro

b
ab

il
it

y
of

ea
ch

d
efi

n
ed

st
at

e;
re

d
b
ar

s
ar

e
ev

id
en

ce
fo

r
a

d
om

in
an

t
st

at
e

fo
r

sc
en

ar
io

s
of

in
te

re
st

;
th

e
n
u
m

b
er

s
n
ex

t
to

b
ar

s
ar

e
p
ro

b
ab

il
it

y
of

th
e

va
ri

ab
le

b
ei

n
g

in
th

at
st

at
e,

an
d

th
e

n
u
m

b
er

s
re

p
re

se
n
te

d
as

in
te

rv
al

s
to

th
e

ri
gh

t
of

th
e

p
ro

b
ab

il
it

ie
s

ar
e

th
e

in
te

rv
al

d
efi

n
ed

fo
r

th
e

st
at

u
s

of
th

e
va

ri
ab

le
s

of
in

te
re

st
.

125



F
ig
u
r
e
B
.4

:
A

h
ig

h
p
re

ci
p
it

at
io

n
sc

en
ar

io
fo

r
th

e
N

R
E

.
B

lu
e

b
ar

s
re

p
re

se
n
t

p
ro

b
ab

il
it

y
of

ea
ch

d
efi

n
ed

st
at

e;
re

d
b
ar

s
ar

e
ev

id
en

ce
fo

r
a

d
om

in
an

t
st

at
e

fo
r

sc
en

ar
io

s
of

in
te

re
st

;
th

e
n
u
m

b
er

s
n
ex

t
to

b
ar

s
ar

e
p
ro

b
ab

il
it

y
of

th
e

va
ri

ab
le

b
ei

n
g

in
th

at
st

at
e,

an
d

th
e

n
u
m

b
er

s
re

p
re

se
n
te

d
as

in
te

rv
al

s
to

th
e

ri
gh

t
of

th
e

p
ro

b
ab

il
it

ie
s

ar
e

th
e

in
te

rv
al

d
efi

n
ed

fo
r

th
e

st
at

u
s

of
th

e
va

ri
ab

le
s

of
in

te
re

st
.

126



F
ig
u
r
e

B
.5

:
A

m
ix

ed
w

at
er

co
lu

m
n

sc
en

ar
io

fo
r

th
e

N
R

E
.

B
lu

e
b
ar

s
re

p
re

se
n
t

p
ro

b
ab

il
it

y
of

ea
ch

d
efi

n
ed

st
at

e;
re

d
b
ar

s
ar

e
ev

id
en

ce
fo

r
a

d
om

in
an

t
st

at
e

fo
r

sc
en

ar
io

s
of

in
te

re
st

;
th

e
n
u
m

b
er

s
n
ex

t
to

b
ar

s
ar

e
p
ro

b
ab

il
it

y
of

th
e

va
ri

ab
le

b
ei

n
g

in
th

at
st

at
e,

an
d

th
e

n
u
m

b
er

s
re

p
re

se
n
te

d
as

in
te

rv
al

s
to

th
e

ri
gh

t
of

th
e

p
ro

b
ab

il
it

ie
s

ar
e

th
e

in
te

rv
al

d
efi

n
ed

fo
r

th
e

st
at

u
s

of
th

e
va

ri
ab

le
s

of
in

te
re

st
.

127



F
ig
u
r
e
B
.6

:
A

p
ar

ti
al

ly
-m

ix
ed

w
at

er
co

lu
m

n
sc

en
ar

io
fo

r
th

e
N

R
E

.
B

lu
e

b
ar

s
re

p
re

se
n
t

p
ro

b
ab

il
it

y
of

ea
ch

d
efi

n
ed

st
at

e;
re

d
b
ar

s
ar

e
ev

id
en

ce
fo

r
a

d
om

in
an

t
st

at
e

fo
r

sc
en

ar
io

s
of

in
te

re
st

;
th

e
n
u
m

b
er

s
n
ex

t
to

b
ar

s
ar

e
p
ro

b
ab

il
it

y
of

th
e

va
ri

ab
le

b
ei

n
g

in
th

at
st

at
e,

an
d

th
e

n
u
m

b
er

s
re

p
re

se
n
te

d
as

in
te

rv
al

s
to

th
e

ri
gh

t
of

th
e

p
ro

b
ab

il
it

ie
s

ar
e

th
e

in
te

rv
al

d
efi

n
ed

fo
r

th
e

st
at

u
s

of
th

e
va

ri
ab

le
s

of
in

te
re

st
.

128



F
ig
u
r
e
B
.7

:
A

st
ra

ti
fi
ed

w
at

er
co

lu
m

n
sc

en
ar

io
fo

r
th

e
N

R
E

.
B

lu
e

b
ar

s
re

p
re

se
n
t

p
ro

b
ab

il
it

y
of

ea
ch

d
efi

n
ed

st
at

e;
re

d
b
ar

s
ar

e
ev

id
en

ce
fo

r
a

d
om

in
an

t
st

at
e

fo
r

sc
en

ar
io

s
of

in
te

re
st

;
th

e
n
u
m

b
er

s
n
ex

t
to

b
ar

s
ar

e
p
ro

b
ab

il
it

y
of

th
e

va
ri

ab
le

b
ei

n
g

in
th

at
st

at
e,

an
d

th
e

n
u
m

b
er

s
re

p
re

se
n
te

d
as

in
te

rv
al

s
to

th
e

ri
gh

t
of

th
e

p
ro

b
ab

il
it

ie
s

ar
e

th
e

in
te

rv
al

d
efi

n
ed

fo
r

th
e

st
at

u
s

of
th

e
va

ri
ab

le
s

of
in

te
re

st
.

129



F
ig
u
r
e
B
.8

:
A

lo
w

te
m

p
er

at
u
re

sc
en

ar
io

fo
r

th
e

N
R

E
.

B
lu

e
b
ar

s
re

p
re

se
n
t

p
ro

b
ab

il
it

y
of

ea
ch

d
efi

n
ed

st
at

e;
re

d
b
ar

s
ar

e
ev

id
en

ce
fo

r
a

d
om

in
an

t
st

at
e

fo
r

sc
en

ar
io

s
of

in
te

re
st

;
th

e
n
u
m

b
er

s
n
ex

t
to

b
ar

s
ar

e
p
ro

b
ab

il
it

y
of

th
e

va
ri

ab
le

b
ei

n
g

in
th

at
st

at
e,

an
d

th
e

n
u
m

b
er

s
re

p
re

se
n
te

d
as

in
te

rv
al

s
to

th
e

ri
gh

t
of

th
e

p
ro

b
ab

il
it

ie
s

ar
e

th
e

in
te

rv
al

d
efi

n
ed

fo
r

th
e

st
at

u
s

of
th

e
va

ri
ab

le
s

of
in

te
re

st
.

130



F
ig
u
r
e
B
.9

:
A

h
ig

h
te

m
p

er
at

u
re

sc
en

ar
io

fo
r

th
e

N
R

E
.

B
lu

e
b
ar

s
re

p
re

se
n
t

p
ro

b
ab

il
it

y
of

ea
ch

d
efi

n
ed

st
at

e;
re

d
b
ar

s
ar

e
ev

id
en

ce
fo

r
a

d
om

in
an

t
st

at
e

fo
r

sc
en

ar
io

s
of

in
te

re
st

;
th

e
n
u
m

b
er

s
n
ex

t
to

b
ar

s
ar

e
p
ro

b
ab

il
it

y
of

th
e

va
ri

ab
le

b
ei

n
g

in
th

at
st

at
e,

an
d

th
e

n
u
m

b
er

s
re

p
re

se
n
te

d
as

in
te

rv
al

s
to

th
e

ri
gh

t
of

th
e

p
ro

b
ab

il
it

ie
s

ar
e

th
e

in
te

rv
al

d
efi

n
ed

fo
r

th
e

st
at

u
s

of
th

e
va

ri
ab

le
s

of
in

te
re

st
.

131



F
ig
u
r
e
B
.1
0

:
A

lo
w

n
it

ro
ge

n
sc

en
ar

io
fo

r
th

e
N

R
E

.
B

lu
e

b
ar

s
re

p
re

se
n
t

p
ro

b
ab

il
it

y
of

ea
ch

d
efi

n
ed

st
at

e;
re

d
b
ar

s
ar

e
ev

id
en

ce
fo

r
a

d
om

in
an

t
st

at
e

fo
r

sc
en

ar
io

s
of

in
te

re
st

;
th

e
n
u
m

b
er

s
n
ex

t
to

b
ar

s
ar

e
p
ro

b
ab

il
it

y
of

th
e

va
ri

ab
le

b
ei

n
g

in
th

at
st

at
e,

an
d

th
e

n
u
m

b
er

s
re

p
re

se
n
te

d
as

in
te

rv
al

s
to

th
e

ri
gh

t
of

th
e

p
ro

b
ab

il
it

ie
s

ar
e

th
e

in
te

rv
al

d
efi

n
ed

fo
r

th
e

st
at

u
s

of
th

e
va

ri
ab

le
s

of
in

te
re

st
.

132



F
ig
u
r
e

B
.1
1

:
A

ch
lo

ro
p
h
y
ll

a
w

at
er

cr
it

er
ia

v
io

la
ti

on
sc

en
ar

io
fo

r
th

e
N

R
E

.
B

lu
e

b
ar

s
re

p
re

se
n
t

p
ro

b
ab

il
it

y
of

ea
ch

d
efi

n
ed

st
at

e;
re

d
b
ar

s
ar

e
ev

id
en

ce
fo

r
a

d
om

in
an

t
st

at
e

fo
r

sc
en

ar
io

s
of

in
te

re
st

;
th

e
n
u
m

b
er

s
n
ex

t
to

b
ar

s
ar

e
p
ro

b
ab

il
it

y
of

th
e

va
ri

ab
le

b
ei

n
g

in
th

at
st

at
e,

an
d

th
e

n
u
m

b
er

s
re

p
re

se
n
te

d
as

in
te

rv
al

s
to

th
e

ri
gh

t
of

th
e

p
ro

b
ab

il
it

ie
s

ar
e

th
e

in
te

rv
al

d
efi

n
ed

fo
r

th
e

st
at

u
s

of
th

e
va

ri
ab

le
s

of
in

te
re

st
.

133



Table B.1: The station information for data downloaded on precipitation.
State Climate Office of North Carolina
North Carolina State University
Data Base CRONOS
Station ID KNCA
Station Type AWOS
Station Name New River MCAS
City, State Jacksonville, NC
County Onslow County
Latitude 34.7073361
Longitude -77.4451639

134



Table B.2: List of investigated physical, chemical, and biological variables
Parameter
Wind
Freshwater Discharge
Precipitation
Stratification (Density gradient)
Stratification (Density ratio)
Station name
Season
Temperature
Salinity
Dissolved oxygen
pH
Turbidity
Chlorophyll a
Secchi depth
Diffuse light attenuation coefficient
Total suspended solids
Particulate organic carbon
Particulate nitrogen
Carbon to nitrogen molar ratio
Nitrate/Nitrite
Ammonium
Dissolved inorganic nitrogen
Dissolved organic nitrogen
Orthophosphate
Total dissolved phosphorus
Nitrogen to phosphorus molar ratio
Silica
Primary productivity
Growth rate Peridinin
Fucoxanthin
19’-Hexanoyloxyfucoxanthin
Violaxanthin
Gyroxanthin
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Table B.3: Conditional probability table for the temperature node with states 5.42-
63.29 (Low), 12.25-19.03 (Medium), 19.03-25.80 (Medium High) and 25.80-32.63
(High).

Interval Probability
5.42-63.29 0.2222
12.25-19.03 0.2092

Temperature 19.03-25.80 0.2092
25.80-32.63 0.3595
Experience 153

Table B.4: Conditional probability table for the wind node with states 0.29-1.21
(Low), 1.21-2.56 (Medium), 2.56-3.80 (Medium High) and 3.80-5.11 (High).

Interval Probability
0.29-1.21 0.0980
1.21-2.56 0.4118

Wind 2.56-3.80 0.3725
3.80-5.11 0.1176
Experience 153

Table B.5: Conditional probability table for the precipitation node with states 1.37-
3.80 (Low), 3.80-8.87 (Medium), 8.87-16.69 (Medium High) and 16.69-40.60 (High).

Interval Probability
1.37-3.80 0.1373
3.80-8.87 0.4118

Precipitation 8.87-16.69 0.3333
16.69-40.60 0.1176
Experience 153

Table B.6: Conditional probability table for the freshwater discharge node with
states 0.31-0.90 (Low), 0.90-1.98 (Medium), 1.98-3.98 (Medium High), and 3.98-8.64
(High).

Precipitation 1.37-3.80 3.80-8.87 8.87-16.69 16.69-40.60
0.31-0.90 0.7143 0.4286 0.4118 0.0000

Freshwater 0.90-1.98 0.1429 0.3333 0.2941 0.1667
Discharge 1.98-3.98 0.0000 0.1905 0.1765 0.3333

3.98-8.64 0.1429 0.0476 0.1176 0.5000
Experience 21 63 51 18
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Table B.7: Conditional probability table for the stratification node with states -0.04-
1.04 (Stratified), 1.04-3.61 (Partially-Mixed), 3.61-15.11 (Mixed).

Freshwater 0.31-0.90
Discharge
Wind 0.29-1.21 1.21-2.56 2.56-3.80 3.80-5.11
-0.04-1.04 1.0000 0.4848 0.5833 0.3333
1.04-3.61 0.0000 0.4545 0.3333 0.6667

Stratification 3.61-15.11 0.0000 0.0606 0.8333 0.0000
Experience 3 33 24 3
Freshwater 0.90-1.98
Discharge
Wind 0.29-1.21 1.21-2.56 2.56-3.80 3.80-5.11
-0.04-1.04 0.5555 0.1667 0.4286 0.3333
1.04-3.61 0.2222 0.5 0.4762 0.3333

Stratification 3.61-15.11 0.2222 0.3333 0.0952 0.3333
Experience 9 12 21 0
Freshwater 1.98-3.98
Discharge
Wind 0.29-1.21 1.21-2.56 2.56-3.80 3.80-5.11
-0.04-1.04 0.3333 0.1667 0.5000 1.0000
1.04-3.61 0.3333 0.5833 0.5000 0.0000

Stratification 3.61-15.11 0.3333 0.2500 0.0000 0.0000
Experience 0 12 12 3
Freshwater 3.98-8.64
Discharge
Wind 0.29-1.21 1.21-2.56 2.56-3.80 3.80-5.11
-0.04-1.04 0.3333 0.5000 0.3333 0.4167
1.04-3.61 0.0000 0.3333 0.3333 0.1667

Stratification 3.61-15.11 0.6667 0.1667 0.3333 0.4167
Experience 3 6 0 12
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Table B.8: Conditional probability table for the light node.
Freshwater 0.31-0.90
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
0.55-1.30 0.3823 0.3600 0.0000
1.30-2.20 0.5000 0.6000 0.5000

Light 2.20-4.66 0.1176 0.0400 0.5000
Experience 34 25 4
Freshwater 0.90-1.98
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
0.55-1.30 0.0625 0.1111 0.1250
1.30-2.20 0.6875 0.8333 0.3750

Light 2.20-4.66 0.2500 0.5556 0.5000
Experience 16 18 8
Freshwater 1.98-3.98
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
0.55-1.30 0.1818 0.0769 0.3333
1.30-2.20 0.7273 0.6923 0.6667

Light 2.20-4.66 0.0909 0.2308 0.0000
Experience 11 13 3
Freshwater 3.98-8.64
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
0.55-1.30 0.0000 0.2500 0.0000
1.30-2.20 0.7500 0.2500 1.0000

Light 2.20-4.66 0.2500 0.5000 1.0000
Experience 9 4 8
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Table B.9: Conditional probability table for the nitrogen node.
Freshwater 0.31-0.90
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
5.57-56.30 0.8529 0.9200 0.7500

Nitrogen 56.30-334.21 0.1471 0.0800 0.2500
334.21-1269.20 0.0000 0.0000 0.0000
Experience 34 25 4
Freshwater 0.90-1.98
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
5.57-56.30 1.0000 0.7778 0.3750

Nitrogen 56.30-334.21 0.0000 0.2222 0.3750
334.21-1269.20 0.0000 0.0000 0.2500
Experience 16 18 8
Freshwater 1.98-3.98
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
5.57-56.30 0.8182 0.7692 0.333

Nitrogen 56.30-334.21 0.1818 0.2308 0.6667
334.21-1269.20 0.0000 0.0000 0.0000
Experience 11 13 3
Freshwater 3.98-8.64
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
5.57-56.30 0.6667 0.5000 0.0000

Nitrogen 56.30-334.21 0.1111 0.0000 0.2500
334.21-1269.20 0.2222 0.5000 0.7500
Experience 9 4 8
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Table B.10: Conditional probability table for the phosphorus node.
Freshwater 0.31-0.90
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
0.81-5.30 0.5942 0.4000 0.0000
5.30-36.76 0.4058 0.5340 0.5000

Phosphorus 36.76-144.20
Experience 34 25 4
Freshwater 0.90-1.98
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
0.81-5.30 0.5311 0.2782 0.0000
5.30-36.76 0.3439 0.6655 0.3750

Phosphorus 36.76-144.20 0.1250 0.0563 0.6250
Experience 16 18 8
Freshwater 1.98-3.98
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
0.81-5.30 0.6121 0.4615 0.0000
5.30-36.76 0.3879 0.5385 1.000

Phosphorus 36.76-144.20 0.0000 0.0000 0.0000
Experience 11 13 3
Freshwater 3.98-8.64
Discharge
Stratification -0.04-1.04 1.04-3.61 3.61-15.11
0.81-5.30 0.3333 0.5000 0.0000
5.30-36.76 0.6667 0.2500 0.6250

Phosphorus 36.76-144.20 0.0000 0.2500 0.3750
Experience 9 4 8
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Table B.11: Conditional probability table for the nitrogen to phosphorus ratio node.
Nitrogen 5.57-56.30
Phosphorus 0.81-5.30 5.30-36.76 36.76-144.20
0.30-9.51 0.6059 0.9397 0.8575

N:P 9.51-41.03 0.3941 0.0494 0.0000
41.03-150.80 0.0000 0.0109 0.1424
Experience 54.4415 55.8958 5.6626
Nitrogen 56.30-334.21
Phosphorus 0.81-5.30 5.30-36.76 36.76-144.20
0.30-9.51 0.0000 0.0000 1.0000

N:P 9.51-41.03 0.2857 0.7692 0.0000
41.03-150.80 0.7143 0.2308 0.0000
Experience 7 13 5
Nitrogen 334.21-1269.20
Phosphorus 0.81-5.30 5.30-36.76 36.76-144.20
0.30-9.51 0.3333 0.0000 0.2000

N:P 9.51-41.03 0.3333 0.1429 0.8000
41.03-150.80 0.3333 0.8571 0.0000
Experience 0 7 5
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Appendix C

R Code for Chapter 4

#################################################################

# Load Packages

#################################################################

require(bnlearn)

require(moments)

require(ROCR)

require(caTools)

source("http://bioconductor.org/biocLite.R")

biocLite("RBGL")

require(gRbase)

require(gRain)

require(pROC)

require(xtable)

#################################################################

# Set the Working Directory
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#################################################################

#Mac

base <- "~/Thesis/Discretization"

setwd(base)

getwd()

#################################################################

# Remove Everything

#################################################################

rm(list = ls(all = TRUE))

#################################################################

#Finnish Lake Data-set - Data

#################################################################

Lake.Data <- read.csv("summerAll.csv", header=TRUE, sep=",")

colnames(Lake.Data)

View(Lake.Data)

dim(Lake.Data)

colnames(Lake.Data) <- c(’P’, ’Chla’, ’Type’, ’Lake’, ’Year’, ’N’

, ’Month’, ’Depth’, ’Surface Area’, ’Color’)

#################################################################

# Log-transform the data

#################################################################

Lake.Data[,’P’] = log(Lake.Data[,’P’])

Lake.Data[,’Chla’] = log(Lake.Data[,’Chla’])

Lake.Data[,’N’] = log(Lake.Data[,’N’])

# Remove Outliers

# Remove one data point with log(Chla) = -23
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Lake.Data <- Lake.Data[!Lake.Data[,’Chla’]==min(Lake.Data[,’Chla’]),]

# Remove one data point with log(N) > 9

Lake.Data <- Lake.Data[!Lake.Data[,’N’]>9,]

Lake.Data <- Lake.Data[!Lake.Data[,’N’]<4,]

hist(Lake.Data[,’P’])

hist(Lake.Data[,’N’])

hist(Lake.Data[,’Chla’])

#################################################################

# Sample 10\%/90\% of eash lake type

# We will use 90\% of data for model development

# & 10\% of data for model evaluation

#################################################################

for (i in 1:9){

assign(paste("Lake.",i,sep=""), Lake.Data[which(Lake.Data$Type==i),])

}

Type.Size <- c(nrow(Lake.1), nrow(Lake.2), nrow(Lake.3), nrow(Lake.4)

, nrow(Lake.5), nrow(Lake.6), nrow(Lake.7), nrow(Lake.8)

, nrow(Lake.9))

for (j in 1:10){

set.seed(j+10)

assign(paste("Model.",j,sep=""), 0)

assign(paste("Evaluation.",j,sep=""), 0)

144



for(i in 1:9){

assign(paste("L.",i,".M.",j,sep="")

, get(noquote(paste(’Lake.’, i, sep="")))

[sample(1:Type.Size[i]

, size= round(0.9*Type.Size[i]), replace=FALSE),]

)

assign(paste("L.", i,".M.E.",j, sep="")

, get(noquote(paste(’Lake.’, i, sep="")))

[-sample(1:Type.Size[i]

, size= round(0.9*Type.Size[i]), replace=FALSE),]

)

# Keeping variables: N, P, and Chla

Vars <- c(’P’, ’Chla’, ’N’)

assign(paste("L.",i,".M.",j,sep="")

, get(noquote(paste(’L.’,i,".M.",j, sep="")))[,Vars])

# Keeping variables: N, P, and Chla

Vars <- c(’P’, ’Chla’, ’N’)

assign(paste("L.",i,".M.",j,sep="")

, get(noquote(paste(’L.’,i,".M.",j, sep="")))[,Vars])

assign(paste("L.",i,".M.E.",j,sep="")

, get(noquote(paste(’L.’,i,".M.E.",j, sep="")))[,Vars])

assign(paste("Model.",j,sep="")

, rbind(get(noquote(paste("Model.",j,sep="")))

, get(noquote(paste("L.",i,".M.",j,sep="")))))

assign(paste("Evaluation.",j,sep="")

, rbind(get(noquote(paste("Evaluation.",j,sep="")))
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, get(noquote(paste("L.",i,".M.E.",j,sep="")))))

}

}

write.table(Model.1, file="Model1.csv", sep=",")

#################################################################

#BN discretized with equal interval

#################################################################

# Break Points

Range.Chla <- range(Lake.Data[,’Chla’])[2]

-range(Lake.Data[,’Chla’])[1]

Breaks.I.Chla = c(min(Lake.Data[,’Chla’])

, min(Lake.Data[,’Chla’])+Range.Chla/3

, max(Lake.Data[,’Chla’])-Range.Chla/3

, max(Lake.Data[,’Chla’]))

Range.P <- range(Lake.Data[,’P’])[2]-range(Lake.Data[,’P’])[1]

Breaks.I.P = c(min(Lake.Data[,’P’])

, min(Lake.Data[,’P’])+Range.P/3

, max(Lake.Data[,’P’])-Range.P/3

, max(Lake.Data[,’P’]))

Range.N <- range(Lake.Data[,’N’])[2]-range(Lake.Data[,’N’])[1]

Breaks.I.N = c(min(Lake.Data[,’N’])

, min(Lake.Data[,’N’])+Range.N/3

, max(Lake.Data[,’N’])-Range.N/3

, max(Lake.Data[,’N’]))
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for (j in 1:10){

assign(paste("Interval.",j,sep="")

, data.frame(P = cut(get(noquote(paste("Model.",j,sep="")))$P

, breaks = Breaks.I.P

, ordered = TRUE, include.lowest=TRUE, include.highest=TRUE)

, Chla = cut(get(noquote(paste("Model.",j,sep="")))$Chla

, breaks = Breaks.I.Chla

, ordered = TRUE, include.lowest=TRUE, include.highest=TRUE)

, N = cut(get(noquote(paste("Model.",j,sep="")))$N

, breaks = Breaks.I.N

, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)))

assign(paste("Interval.",j,sep="")

, get(noquote(paste("Interval.",j,sep="")))

[complete.cases(get(noquote(paste("Interval.",j,sep="")))),])

assign(paste("Interval.E.",j,sep="")

, data.frame(P = cut(get(noquote(paste("Evaluation.",j,sep="")))$P

, breaks = Breaks.I.P, ordered = TRUE, include.lowest=TRUE

, include.highest=TRUE)

, Chla = cut(get(noquote(paste("Evaluation.",j,sep="")))$Chla

, breaks = Breaks.I.Chla, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)

, N = cut(get(noquote(paste("Evaluation.",j,sep="")))$N

, breaks = Breaks.I.N, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)))

assign(paste("Interval.E.",j,sep="")
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, get(noquote(paste("Interval.E.",j,sep="")))

[complete.cases(get(noquote(paste("Interval.E.",j,sep="")))),])

Model.Interval <-

empty.graph(names(get(noquote(paste("Interval.",j,sep="")))))

modelstring(Model.Interval) <- "[P],[N],[Chla|N:P]"

assign(paste("fit.Interval.",j,sep="")

, bn.fit(Model.Interval, get(noquote(paste("Interval.",j,sep="")))))

# Model Evaluation for Equal Interval

assign(paste("logLik.Interval.",j,sep="")

, logLik(get(noquote(paste("fit.Interval.",j,sep="")))

, get(noquote(paste("Interval.",j,sep="")))))

# Predict Class on Training Sample

assign(paste("Interval.Pred.ChlaT.",j,sep="")

, predict(get(noquote(paste("fit.Interval.",j,sep="")))

, "Chla", get(noquote(paste("Interval.",j,sep="")))))

# AUC for Evaluation Sample

assign(paste("Interval.Pred.ChlaE.",j,sep="")

, predict(get(noquote(paste("fit.Interval.",j,sep="")))

, "Chla", get(noquote(paste("Interval.E.",j,sep="")))))

# Develop Confusion Matrix for Training Sample

assign(paste("Interval.CM.ChlaE.",j,sep="")

, table(get(noquote(paste("Interval.E.",j,sep="")))

[,’Chla’],get(noquote(paste("Interval.Pred.ChlaE.",j,sep="")))))

# Compute Accuracy for Training Sample

assign(paste("Interval.Accuracy.",j,sep="")

, sum(diag(table(get(noquote(paste("Interval.E.",j,sep="")))[,’Chla’]
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,get(noquote(paste("Interval.Pred.ChlaE.",j,sep="")))))

/length(get(noquote(paste("Interval.Pred.ChlaE.",j,sep=""))))))

assign(paste("Interval.Pred.ChlaE.",j,sep="")

, data.frame(get(noquote(paste("Interval.Pred.ChlaE.",j,sep="")))))

assign(paste("AUC.Interval.",j,sep="")

, auc(as.matrix(get(noquote(paste("Interval.Pred.ChlaE.",j,sep=""))))

, get(noquote(paste("Interval.E.",j,sep="")))[ ,’Chla’]))

}

# Plot a Sample ROC

plot.roc(as.matrix(Interval.Pred.ChlaE.1), Interval.E.1[ ,’Chla’])

# Print a Sample Confusion MAtrix

CM.Table <- xtable(Interval.CM.ChlaE.1, digits=3)

print(CM.Table)

# Sum of Square Errors

SSE= NULL

for (i in 1:1943){

if(Interval.Pred.ChlaE.1[i,1]=="(3.51,6.41]") {SSE[i]=4.96}

if(Interval.Pred.ChlaE.1[i,1]=="(0.603,3.51]") {SSE[i]=2.0565}

if(Interval.Pred.ChlaE.1[i,1]=="(-2.3,0.603]") {SSE[i]=-0.8485}

}

Square= NULL

for (i in 1:1943){Square[i]=(SSE[i]-Evaluation.1[i+1,"Chla"])^2

}
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sum(Square, na.rm=TRUE)

#################################################################

# LATEX tables and figures

#################################################################

# LATEX OUTPUT by xtable 1.7-3 package

Interval <- matrix(NA, 0, 5)

for(j in 1:10){

assign(paste("Interval",sep="")

, rbind(get(noquote(paste("Interval",sep="")))

, cbind(get(noquote(paste("Interval.Accuracy.",j,sep="")))

, get(noquote(paste("AUC.Interval.",j,sep=""))))))

}

colnames(Interval) = c( "Accuracy", "AUC")

Interval <- rbind(Interval

, cbind(mean(Interval[,"Accuracy"]), mean(Interval[,"AUC"])))

Interval.Table <- xtable(Interval, digits=3)

print(Interval.Table)

# CPTs to LATEX N

print(xtable(fit.Interval.1$N$prob), floating=FALSE)

# CPTs to LATEX P
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print(xtable(fit.Interval.1$P$prob), floating=FALSE)

# CPTs to LATEX Chla

print(xtable(fit.Interval.1$Chla$prob[1:3, 1:3, 1]), floating=FALSE)

print(xtable(fit.Interval.1$Chla$prob[1:3, 1:3, 2]), floating=FALSE)

print(xtable(fit.Interval.1$Chla$prob[1:3, 1:3, 3]), floating=FALSE)

pdf("Plot-Interval.pdf", width=8, height=10)

hist(Model.1[ ,"Chla"], breaks=100, xlim=c(-3,7)

, xlab="Chlorophyll a", main="")

axis(3, at= Breaks.I.Chla, col="black"

, col.ticks="black", col.axis="black", line=-2)

mtext("Interval", 3, line=-2, at=-3.5, col="black")

axis(3, at= Breaks.Q.Chla, col="royalblue4"

, col.ticks="royalblue4", col.axis="royalblue4", line=0)

mtext("Quantile", 3, line=0, at=-3.5, col="royalblue4")

axis(3, at= Breaks.MM.Chla, col="darkgreen"

, col.ticks="darkgreen", col.axis="darkgreen", line=2)

mtext("Moment Matching", 3, line=2, at=-3.5, col="darkgreen")

plot(Model.Interval)

bn.fit.barchart(fit.Interval.1$P, ylab="Phosphorus Levels")

bn.fit.barchart(fit.Interval.1$N, ylab="Nitrogen Levels")

bn.fit.barchart(fit.Interval.1$Chla, ylab="Chlorophyll a Levels")

# bn.fit.dotplot(fit.Interval.1$P, ylab="Phosphorus Levels")

# bn.fit.dotplot(fit.Interval.1$N, ylab="Nitrogen Levels")
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# bn.fit.dotplot(fit.Interval.1$Chla, ylab="Chlorophyll a Levels")

# Histogram of data for model building: continuous vs discretized

hist(Model.1[ ,"Chla"], breaks=100, xlim=c(-3,7), freq = FALSE

, main="", xlab="", border="royalblue4", xaxt = ’n’)

axis(1, col.axis="royalblue4", , xlab="Chlorophyll a")

hist(Model.1[ ,"Chla"]

, breaks=c(-2.31, 0.6027629, 3.5081109, 6.42)

, main="", add=T, border="darkgreen"

, density=t(t(c(20,20,20))), angle=t(t(c(45,45,45))))

mtext(

levels(Interval.1[, "Chla"])

, 1, line=2,at=c(-1,2,5),col="darkgreen")

mtext("Interval", 1,line=2,at=c(-3),col="darkgreen")

# Histogram of data for model evaluation: continuous vs discretized

hist(Evaluation.1[ ,"Chla"], breaks=100, xlim=c(-3,7), freq = FALSE

, main="", xlab="", border="royalblue4", xaxt = ’n’)

axis(1, col.axis="royalblue4", , xlab="Chlorophyll a")

hist(Evaluation.1[ ,"Chla"]

, breaks=c(-2.31, 0.6027629, 3.5081109, 6.42)

, main="", add=T, border="darkgreen"

, density=t(t(c(20,20,20))), angle=t(t(c(45,45,45))))

mtext(levels(Interval.E.1[, "Chla"])

, 1, line=2,at=c(-1,2,5),col="darkgreen")

mtext("Interval", 1,line=2,at=c(-3),col="darkgreen")
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# Histogram of continuous data for model evaluation

# versus discretized model prediction

hist(Evaluation.1[ ,"Chla"], breaks=100, xlim=c(-3,7)

, freq = FALSE, main="", xlab="", border="royalblue4", xaxt = ’n’)

axis(1, col.axis="royalblue4", , xlab="Chlorophyll a")

pred.1 <-

runif(

length(Interval.Pred.ChlaE.1[Interval.Pred.ChlaE.1=="[-2.3,0.603]"])

, min = -2.3, max = 0.6)

pred.2 <-

runif(

length(Interval.Pred.ChlaE.1[Interval.Pred.ChlaE.1=="(0.603,3.51]"])

, min = 0.604, max = 3.51)

pred.3 <-

runif(

length(Interval.Pred.ChlaE.1[Interval.Pred.ChlaE.1=="(3.51,6.41]"])

, min = 3.52, max = 6.41)

pred <- c(pred.1, pred.2, pred.3)

hist(

pred, breaks=c(-2.31, 0.6027629, 3.5081109, 6.42)

, main="", add=T, border="darkgreen"

, density=t(t(c(20,20,20))), angle=t(t(c(45,45,45))))

mtext(levels(Interval.E.1[, "Chla"])

, 1, line=2,at=c(-1,2,5),col="darkgreen")

mtext("Interval", 1,line=2,at=c(-3),col="darkgreen")

invisible(dev.off())
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#################################################################

# BN discretized with equal quantile

#################################################################

# Break Points

Breaks.Q.Chla=c(quantile(Lake.Data[,"Chla"]

, probs = seq(0, 1, by = 1/3)))

Breaks.Q.P=c(quantile(Lake.Data[,"P"], probs = seq(0, 1, by = 1/3)))

Breaks.Q.N=c(quantile(Lake.Data[,"N"], probs = seq(0, 1, by = 1/3)))

for (j in 1:10){

assign(paste("Quantile.",j,sep=""), data.frame(P =

cut(get(noquote(paste("Model.",j,sep="")))$P

, breaks = Breaks.Q.P, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)

, Chla = cut(get(noquote(paste("Model.",j,sep="")))$Chla

, breaks = Breaks.Q.Chla, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)

, N = cut(get(noquote(paste("Model.",j,sep="")))$N

, breaks = Breaks.Q.N, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)))

assign(paste("Quantile.",j,sep="")

, get(noquote(paste("Quantile.",j,sep="")))

[complete.cases(get(noquote(paste("Quantile.",j,sep="")))),])

assign(paste("Quantile.E.",j,sep=""), data.frame(P =

cut(get(noquote(paste("Evaluation.",j,sep="")))$P
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, breaks = Breaks.Q.P, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)

, Chla = cut(get(noquote(paste("Evaluation.",j,sep="")))$Chla

, breaks = Breaks.Q.Chla, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)

, N = cut(get(noquote(paste("Evaluation.",j,sep="")))$N

, breaks = Breaks.Q.N, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)))

assign(paste("Quantile.E.",j,sep="")

, get(noquote(paste("Quantile.E.",j,sep="")))

[complete.cases(get(noquote(paste("Quantile.E.",j,sep="")))),])

Model.Quantile <-

empty.graph(names(get(noquote(paste("Quantile.",j,sep="")))))

modelstring(Model.Quantile) <- "[P],[N],[Chla|N:P]"

assign(paste("fit.Quantile.",j,sep="")

, bn.fit(Model.Quantile

, get(noquote(paste("Quantile.",j,sep="")))))

# Model evaluation for equal quantile

# AUC for evaluation sample

assign(paste("Quantile.Pred.ChlaE.",j,sep="")

, predict(get(noquote(paste("fit.Quantile.",j,sep="")))

, "Chla", get(noquote(paste("Quantile.E.",j,sep="")))))

# make confusion matrix for training sample

assign(paste("Quantile.CM.ChlaP.",j,sep="")

, table(get(noquote(paste("Quantile.E.",j,sep="")))

[,’Chla’],get(noquote(paste("Quantile.Pred.ChlaE.",j,sep="")))))
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# compute accuracy for training sample

assign(paste("Quantile.Accuracy.",j,sep="")

, sum(diag(table(get(noquote(paste("Quantile.E.",j,sep="")))

[,’Chla’],get(noquote(paste("Quantile.Pred.ChlaE.",j,sep="")))))

/length(get(noquote(paste("Quantile.Pred.ChlaE.",j,sep=""))))))

assign(paste("Quantile.Pred.ChlaE.",j,sep="")

, data.frame(get(noquote(paste("Quantile.Pred.ChlaE.",j,sep="")))))

assign(paste("AUC.Quantile.",j,sep="")

, auc(as.matrix(get(noquote(

paste("Quantile.Pred.ChlaE.",j,sep=""))))

, get(noquote(paste("Quantile.E.",j,sep="")))[ ,’Chla’]))

}

Quantile.Pred.ChlaE.Trial= predict(fit.Quantile.1, "Chla"

, Quantile.E.1[Quantile.E.1[,3]=="[3.43,5.99]",])

Interval.Pred.ChlaE.Trial= predict(fit.Interval.1, "Chla"

, Interval.E.1[Interval.E.1[,3]=="[3.43,5.11]",])

MM.Pred.ChlaE.Trial= predict(fit.MM.1, "Chla"

, MM.E.1[MM.E.1[,3]=="[3.43,5.7]",])

CM.Table <- xtable(Quantile.CM.ChlaP.1, digits=3)

print(CM.Table)

# Sum of Square Errors

SSE.Q= NULL

for (i in 1:1943){

if(Quantile.Pred.ChlaE.1[i,1]=="[-2.3,1.72]") {SSE.Q[i]=-0.29}
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if(Quantile.Pred.ChlaE.1[i,1]=="(1.72,2.64]") {SSE.Q[i]=2.18}

if(Quantile.Pred.ChlaE.1[i,1]=="(2.64,6.41]") {SSE.Q[i]=4.525}

}

Square.Q= NULL

for (i in 1:1943){Square.Q[i]=(SSE.Q[i]-Evaluation.1[i+1,"Chla"])^2

}

sum(Square.Q, na.rm=TRUE)

#################################################################

# LATEX tables and figures

#################################################################

# LATEX OUTPUT by xtable 1.7-3 package

Quantile <- matrix(NA, 0, 5)

for(j in 1:10){

assign(paste("Quantile",sep="")

, rbind(get(noquote(paste("Quantile",sep="")))

, cbind(get(noquote(paste("Quantile.Accuracy.",j,sep="")))

, get(noquote(paste("AUC.Quantile.",j,sep=""))))))

}

colnames(Quantile) = c("Accuracy", "AUC")

Quantile <- rbind(Quantile

, cbind(mean(Quantile[,"Accuracy"]), mean(Quantile[,"AUC"])))
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Quantile.Table <- xtable(Quantile, digits=3)

print(Quantile.Table)

# CPTs to LATEX N

print(xtable(fit.Quantile.1$N$prob), floating=FALSE)

# CPTs to LATEX P

print(xtable(fit.Quantile.1$P$prob), floating=FALSE)

# CPTs to LATEX Chla

print(xtable(fit.Quantile.1$Chla$prob[1:3, 1:3, 1]), floating=FALSE)

print(xtable(fit.Quantile.1$Chla$prob[1:3, 1:3, 2]), floating=FALSE)

print(xtable(fit.Quantile.1$Chla$prob[1:3, 1:3, 3]), floating=FALSE)

pdf("Plot-Quantile.pdf", width=8, height=10)

bn.fit.barchart(fit.Quantile.1$P, ylab="Phosphorus Levels")

bn.fit.barchart(fit.Quantile.1$N, ylab="Nitrogen Levels")

bn.fit.barchart(fit.Quantile.1$Chla, ylab="Chlorophyll a Levels")

# Histogram of data for model building: continuous vs discretized

hist(Model.1[ ,"Chla"], breaks=100, xlim=c(-3,7), freq = FALSE

, main="", xlab="", border="royalblue4", xaxt = ’n’)

axis(1, col.axis="royalblue4", , xlab="Chlorophyll a")

hist(Model.1[ ,"Chla"]

, breaks=c(-2.3025851, 1.722767, 2.639057, 6.4134590)

, main="", add=T, border="darkgreen"

, density=t(t(c(20,20,20))), angle=t(t(c(45,45,45))))

mtext(levels(Quantile.1[, "Chla"])

, 1,line=2,at=c(-1,2,5),col="darkgreen")
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mtext("Quantile", 1,line=2,at=c(-3),col="darkgreen")

# Histogram of data for model evaluation: continuous vs discretized

hist(Evaluation.1[ ,"Chla"], breaks=100, xlim=c(-3,7), freq = FALSE

, main="", xlab="", border="royalblue4", xaxt = ’n’)

axis(1, col.axis="royalblue4", , xlab="Chlorophyll a")

hist(Evaluation.1[ ,"Chla"]

, breaks=c(-2.3025851, 1.722767, 2.639057, 6.4134590)

, main="", add=T, border="darkgreen"

, density=t(t(c(20,20,20))), angle=t(t(c(45,45,45))))

mtext(levels(Quantile.E.1[, "Chla"])

, 1,line=2,at=c(-1,2,5),col="darkgreen")

mtext("Quantile", 1,line=2,at=c(-3),col="darkgreen")

# Histogram of continuous data for model evaluation

# versus discretized model prediction

hist(Evaluation.1[ ,"Chla"], breaks=100, xlim=c(-3,7), freq = FALSE

, main="", xlab="", border="royalblue4", xaxt = ’n’)

axis(1, col.axis="royalblue4", , xlab="Chlorophyll a")

pred.1 <-

runif(length(

Quantile.Pred.ChlaE.1[Quantile.Pred.ChlaE.1=="[-2.3,1.72]"])

, min = -2.3025851, max = 1.722767)

pred.2 <-

runif(length(

Quantile.Pred.ChlaE.1[Quantile.Pred.ChlaE.1=="(1.72,2.64]"])

, min = 1.722767, max = 2.639057)
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pred.3 <-

runif(length(Quantile.Pred.ChlaE.1[

Quantile.Pred.ChlaE.1=="(2.64,6.41]"])

, min = 2.639057, max = 6.4134590)

pred <- c(pred.1, pred.2, pred.3)

hist(pred, breaks=c(-2.3025851, 1.722767, 2.639057, 6.4134590)

, main="", add=T, border="darkgreen"

, density=t(t(c(20,20,20))), angle=t(t(c(45,45,45))))

mtext(levels(Quantile.E.1[, "Chla"])

, 1,line=2,at=c(-1,2,5),col="darkgreen")

mtext("Quantile", 1,line=2,at=c(-3),col="darkgreen")

invisible(dev.off())

#################################################################

# Break Points: BN discretized with moment matching method for P

#################################################################

mu.P = mean(Lake.Data[,’P’])

sd.P = sd(Lake.Data[,’P’])

s.P = skewness(Lake.Data[,’P’], na.rm = FALSE)

k.P = kurtosis(Lake.Data[,’P’], na.rm = FALSE)

f.P = moment(Lake.Data[,’P’], order = 5, central=TRUE

, na.rm = FALSE)/sd(Lake.Data[,’P’])^5

c0.P = (f.P-2*s.P*k.P+s.P^3)/(k.P-s.P^2-1)

c1.P = (s.P*f.P-k.P^2+k.P-s.P^2)/(k.P-s.P^2-1)

c2.P = (-f.P+s.P*k.P+s.P)/(k.P-s.P^2-1)

# polyroot: Find zeros of a real or complex polynomial.

root.P = polyroot(c(c0.P, c1.P, c2.P, 1))
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Im(root.P)

root.P = Re(root.P)

pa.P =

(1+root.P[2]*root.P[3])/((root.P[2]-root.P[1])*(root.P[3]-root.P[1]))

pb.P =

(1+root.P[1]*root.P[3])/((root.P[1]-root.P[2])*(root.P[3]-root.P[2]))

pc.P =

(1+root.P[1]*root.P[2])/((root.P[1]-root.P[3])*(root.P[2]-root.P[3]))

a.P = mu.P+sd.P*min(root.P)

b.P = mu.P+sd.P*median(root.P)

c.P = mu.P+sd.P*max(root.P)

c(a.P,b.P,c.P)

c(pa.P,pb.P,pc.P)

hist(Lake.Data[,’P’])

Break.MM.P.1 = min(Lake.Data[,’P’])

Break.MM.P.2 = a.P+(pa.P/(pa.P+pb.P))*(b.P-a.P)

Break.MM.P.3 = b.P+ (pb.P/(pb.P+pc.P))*(c.P-b.P)

Break.MM.P.4 = max(Lake.Data[,’P’])

Breaks.MM.P <- c(Break.MM.P.1, Break.MM.P.2

, Break.MM.P.3, Break.MM.P.4)

#################################################################

# Break Points: BN discretized with moment matching method for N

#################################################################
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mu.N = mean(Lake.Data[,’N’])

sd.N = sd(Lake.Data[,’N’])

s.N = skewness(Lake.Data[,’N’], na.rm = FALSE)

k.N = kurtosis(Lake.Data[,’N’], na.rm = FALSE)

f.N = moment(Lake.Data[,’N’], order = 5, central=TRUE

, na.rm = FALSE)/sd(Lake.Data[,’N’])^5

c0.N = (f.N-2*s.N*k.N+s.N^3)/(k.N-s.N^2-1)

c1.N = (s.N*f.N-k.N^2+k.N-s.N^2)/(k.N-s.N^2-1)

c2.N = (-f.N+s.N*k.N+s.N)/(k.N-s.N^2-1)

# polyroot: Find zeros of a real or complex polynomial.

root.N = polyroot(c(c0.N, c1.N, c2.N, 1))

Im(root.N)

root.N = Re(root.N)

pa.N =

(1+root.N[2]*root.N[3])/((root.N[2]-root.N[1])*(root.N[3]-root.N[1]))

pb.N =

(1+root.N[1]*root.N[3])/((root.N[1]-root.N[2])*(root.N[3]-root.N[2]))

pc.N =

(1+root.N[1]*root.N[2])/((root.N[1]-root.N[3])*(root.N[2]-root.N[3]))

a.N = mu.N+sd.N*min(root.N)

b.N = mu.N+sd.N*median(root.N)

c.N = mu.N+sd.N*max(root.N)

c(a.N,b.N,c.N)

hist(Lake.Data[,’N’])
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Break.MM.N.1 = min(Lake.Data[,’N’])

Break.MM.N.2 = a.N+(pa.N/(pa.N+pb.N))*(b.N-a.N)

Break.MM.N.3 = b.N+ (pb.N/(pb.N+pc.N))*(c.N-b.N)

Break.MM.N.4 = max(Lake.Data[,’N’])

Breaks.MM.N <- c(Break.MM.N.1, Break.MM.N.2

, Break.MM.N.3, Break.MM.N.4)

#################################################################

# Break Points: BN discretized with moment matching method for Chla

#################################################################

mu.Chla = mean(Lake.Data[,’Chla’])

sd.Chla = sd(Lake.Data[,’Chla’])

s.Chla = skewness(Lake.Data[,’Chla’], na.rm = FALSE)

k.Chla = kurtosis(Lake.Data[,’Chla’], na.rm = FALSE)

f.Chla = moment(Lake.Data[,’Chla’], order = 5

, central=TRUE, na.rm = FALSE)/sd(Lake.Data[,’Chla’])^5

c0.Chla = (f.Chla-2*s.Chla*k.Chla+s.Chla^3)/(k.Chla-s.Chla^2-1)

c1.Chla = (s.Chla*f.Chla-k.Chla^2+k.Chla-s.Chla^2)/(k.Chla-s.Chla^2-1)

c2.Chla = (-f.Chla+s.Chla*k.Chla+s.Chla)/(k.Chla-s.Chla^2-1)

# polyroot: Find zeros of a real or complex polynomial.

root.Chla = polyroot(c(c0.Chla, c1.Chla, c2.Chla, 1))

Im(root.Chla)

root.Chla = Re(root.Chla)

pa.Chla = (1+root.Chla[2]*root.Chla[3])
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/((root.Chla[2]-root.Chla[1])*(root.Chla[3]-root.Chla[1]))

pb.Chla = (1+root.Chla[1]*root.Chla[3])

/((root.Chla[1]-root.Chla[2])*(root.Chla[3]-root.Chla[2]))

pc.Chla = (1+root.Chla[1]*root.Chla[2])

/((root.Chla[1]-root.Chla[3])*(root.Chla[2]-root.Chla[3]))

a.Chla = mu.Chla+sd.Chla*min(root.Chla)

b.Chla = mu.Chla+sd.Chla*median(root.Chla)

c.Chla = mu.Chla+sd.Chla*max(root.Chla)

Break.MM.Chla.1 = min(Lake.Data[,’Chla’])

Break.MM.Chla.2 = a.Chla+(pa.Chla/(pa.Chla+pb.Chla))*(b.Chla-a.Chla)

Break.MM.Chla.3 = b.Chla+ (pb.Chla/(pb.Chla+pc.Chla))*(c.Chla-b.Chla)

Break.MM.Chla.4 = max(Lake.Data[,’Chla’])

Breaks.MM.Chla <- c(Break.MM.Chla.1, Break.MM.Chla.2

, Break.MM.Chla.3, Break.MM.Chla.4)

#################################################################

# BN discretized with moment matching method

#################################################################

for (j in 1:10){

assign(paste("MM.",j,sep=""), data.frame(P

= cut(get(noquote(paste("Model.",j,sep="")))$P

, breaks = Breaks.MM.P, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)

, Chla = cut(get(noquote(paste("Model.",j,sep="")))$Chla

, breaks = Breaks.MM.Chla, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)

, N = cut(get(noquote(paste("Model.",j,sep="")))$N
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, breaks = Breaks.MM.N, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)))

assign(paste("MM.",j,sep=""), get(noquote(paste("MM.",j,sep="")))

[complete.cases(get(noquote(paste("MM.",j,sep="")))),])

assign(paste("MM.E.",j,sep="")

, data.frame(P = cut(get(noquote(paste("Evaluation.",j,sep="")))$P

, breaks = Breaks.MM.P, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)

, Chla = cut(get(noquote(paste("Evaluation.",j,sep="")))$Chla

, breaks = Breaks.MM.Chla, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)

, N = cut(get(noquote(paste("Evaluation.",j,sep="")))$N

, breaks = Breaks.MM.N, ordered = TRUE

, include.lowest=TRUE, include.highest=TRUE)))

assign(paste("MM.E.",j,sep="")

, get(noquote(paste("MM.E.",j,sep="")))

[complete.cases(get(noquote(paste("MM.E.",j,sep="")))),])

Model.MM <- empty.graph(names(get(noquote(paste("MM.",j,sep="")))))

modelstring(Model.MM) <- "[P],[N],[Chla|N:P]"

assign(paste("fit.MM.",j,sep="")

, bn.fit(Model.MM, get(noquote(paste("MM.",j,sep="")))))

# AUC for evaluation sample

assign(paste("MM.Pred.ChlaE.",j,sep="")
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, predict(get(noquote(paste("fit.MM.",j,sep="")))

, "Chla", get(noquote(paste("MM.E.",j,sep="")))))

# make confusion matrix for testing sample

assign(paste("MM.CM.ChlaT.",j,sep="")

, table(get(noquote(paste("MM.E.",j,sep="")))

[,’Chla’],get(noquote(paste("MM.Pred.ChlaE.",j,sep="")))))

# compute accuracy for training sample

assign(paste("MM.Accuracy.",j,sep="")

, sum(diag(table(get(noquote(paste("MM.E.",j,sep="")))

[,’Chla’],get(noquote(paste("MM.Pred.ChlaE.",j,sep="")))))

/length(get(noquote(paste("MM.Pred.ChlaE.",j,sep=""))))))

assign(paste("MM.Pred.ChlaE.",j,sep="")

, data.frame(get(noquote(paste("MM.Pred.ChlaE.",j,sep="")))))

assign(paste("AUC.MM.",j,sep="")

, auc(as.matrix(get(noquote(paste("MM.Pred.ChlaE.",j,sep=""))))

, get(noquote(paste("MM.E.",j,sep="")))[ ,’Chla’]))

}

CM.Table <- xtable(MM.CM.ChlaT.1, digits=3)

print(CM.Table)

# Sum of Square Errors

SSE.MM= NULL

for (i in 1:1943){

if(MM.Pred.ChlaE.1[i,1]=="[-2.3,1.91]")

{SSE.MM[i]=-0.195} # -2.3+((1.91+2.3)/2)
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if(MM.Pred.ChlaE.1[i,1]=="(1.91,3.39]")

{SSE.MM[i]=2.65} # 1.91+((3.39-1.91)/2)

if(MM.Pred.ChlaE.1[i,1]=="(3.39,6.41]")

{SSE.MM[i]=4.9} # 3.39+((6.41-3.39)/2)

}

Square.MM= NULL

for (i in 1:1943){Square.MM[i]=(SSE.MM[i]-Evaluation.1[i+1,"Chla"])^2

}

sum(Square.MM, na.rm=TRUE)

#################################################################

# LATEX tables and figures

#################################################################

# LATEX OUTPUT by xtable 1.7-3 package

MM <- matrix(NA, 0, 5)

for(j in 1:10){

assign(paste("MM",sep="")

, rbind(get(noquote(paste("MM",sep="")))

, cbind(get(noquote(paste("MM.Accuracy.",j,sep="")))

, get(noquote(paste("AUC.MM.",j,sep=""))))))

}

colnames(MM) = c("Accuracy", "AUC")

MM <- rbind(MM,
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cbind(mean(MM[,"Accuracy"]), mean(MM[,"AUC"])))

MM.Table <- xtable(MM, digits=3)

print(MM.Table)

# CPTs to LATEX N

print(xtable(fit.MM.1$N$prob), floating=FALSE)

# CPTs to LATEX P

print(xtable(fit.MM.1$P$prob), floating=FALSE)

# CPTs to LATEX Chla

print(xtable(fit.MM.1$Chla$prob[1:3, 1:3, 1]), floating=FALSE)

print(xtable(fit.MM.1$Chla$prob[1:3, 1:3, 2]), floating=FALSE)

print(xtable(fit.MM.1$Chla$prob[1:3, 1:3, 3]), floating=FALSE)

pdf("Plot-MM.pdf", width=8, height=10)

bn.fit.barchart(fit.MM.1$P, ylab="Phosphorus Levels")

bn.fit.barchart(fit.MM.1$N, ylab="Nitrogen Levels")

bn.fit.barchart(fit.MM.1$Chla, ylab="Chlorophyll a Levels")

# Histogram of data for model building: continuous vs discretized

hist(Model.1[ ,"Chla"], breaks=100, xlim=c(-3,7)

, freq = FALSE, main="", xlab=""

, border="royalblue4", xaxt = ’n’)

axis(1, col.axis="royalblue4", , xlab="Chlorophyll a")

hist(Model.1[ ,"Chla"], breaks=c(-2.3025851, 1.497835, 3.231148, 6.4134590)

, main="", add=T, border="darkgreen"
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, density=t(t(c(20,20,20))), angle=t(t(c(45,45,45))))

mtext(levels(MM.1[, "Chla"]), 1,line=2,at=c(-1,2,5),col="darkgreen")

mtext("Moment Matching", 1,line=2,at=c(-3),col="darkgreen")

# Histogram of data for model evaluation: continuous vs discretized

hist(Evaluation.1[ ,"Chla"], breaks=100, xlim=c(-3,7)

, freq = FALSE, main="", xlab=""

, border="royalblue4", xaxt = ’n’)

axis(1, col.axis="royalblue4", , xlab="Chlorophyll a")

hist(Evaluation.1[ ,"Chla"]

, breaks=c(-2.3025851, 1.497835, 3.231148, 6.4134590)

, main="", add=T, border="darkgreen"

, density=t(t(c(20,20,20))), angle=t(t(c(45,45,45))))

mtext(levels(MM.E.1[, "Chla"]), 1,line=2,at=c(-1,2,5),col="darkgreen")

mtext("Moment Matching", 1,line=2,at=c(-3),col="darkgreen")

# Histogram of continuous data for model evaluation

# versus discretized model prediction

hist(Evaluation.1[ ,"Chla"], breaks=100, xlim=c(-3,7)

, freq = FALSE, main="", xlab="", border="royalblue4", xaxt = ’n’)

axis(1, col.axis="royalblue4", , xlab="Chlorophyll a")

pred.1 <-

runif(length(MM.Pred.ChlaE.1[MM.Pred.ChlaE.1=="[-2.3,2.56]"])

, min = -2.3025851, max = 2.564949)

pred.2 <-

runif(length(MM.Pred.ChlaE.1[MM.Pred.ChlaE.1=="(2.56,3.37]"])

, min = 2.564949, max = 3.367296 )
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pred.3 <-

runif(length(MM.Pred.ChlaE.1[MM.Pred.ChlaE.1=="(3.37,6.41]"])

, min = 3.367296, max = 6.4134590)

pred <- c(pred.1, pred.2, pred.3)

hist(pred, breaks=c(-2.3025851, 1.497835, 3.231148, 6.4134590)

, main="", add=T, border="darkgreen"

, density=t(t(c(20,20,20))), angle=t(t(c(45,45,45))))

mtext(levels(MM.E.1[, "Chla"]), 1,line=2,at=c(-1,2,5),col="darkgreen")

mtext("Moment Matching", 1,line=2,at=c(-3),col="darkgreen")

invisible(dev.off())
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Appendix D

Supplementary Material for Chapter 5

D.1 Model Formulation

The following equations describe the chlorophyll a model, also depicted in Figure 5.

Chlorophyll a has a normal distribution. The corresponding mean is calculated from

a regression model developed for chlorophyll a and its predictors. The prior for all

coefficients and precision is specified afterwards.

Chlorophyll ai „ N ppβ0rSectionis ` β1Nitrogeni ` β2Phosphorusi
`β3Stratificationi ` β4Lighti ` β5Salinityi ˆNitrogeni
`β6rSeasonis ˆ Temperatureiq, σ

2
Chlorophyll aq
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Specifying Priors

β0rjs „ N pµβ0 , σ2
β0
q,where j “ 1, 2, 3

µβ0 „ N p0, 0.0001q

σβ0 „ Up0, 100q

βk „ N p0, 0.0001q,where k “ 1, 2, 3, 4, 5

β6rjs „ N pµβ6 , σ2
β6
q,where j “ 1, 2, 3, 4

µβ6 „ N p0, 0.0001q

σβ6 „ Up0, 100q

σChla „ Up0, 100q

(D.1)

The following equations describe the oxygen model, also depicted in Figure 4. Chloro-

phyll a has a normal distribution. The corresponding mean is calculated from a re-

gression model developed for oxygen and its predictors. The prior for all coefficients

and precision is specified afterwards.

Oxygeni „ N ppα0rSectionis ` α1Chlai ` α2rSeasonis ˆRstratificationi
`α3rSeasonis ˆ Temperatureiq, σ

2
oxygenq
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Specifying Priors

α0rjs „ N pµα0 , σ
2
α0
q,where j “ 1, 2, 3

µα0 „ N p0, 0.0001q

σα0 „ Up0, 100q

α1 „ N p0, 0.0001q

α2rjs „ N pµα2 , σ
2
α2
q,where j “ 1, 2, 3, 4

µα2 „ N p0, 0.0001q

σα2 „ Up0, 100q

α3rjs „ N pµα3 , σ
2
α3
q,where j “ 1, 2, 3, 4

µα3 „ N p0, 0.0001q

σα3 „ Up0, 100q

σOxygen „ Up0, 100q

(D.2)

The following equations describe the combined model, also depicted in Figure 6.

The nodes (and the variables represented by the nodes) in the combined model are

classified into forcing nodes (nodes without parents, e.g. temperature), intermediate

nodes (with both parents and child, e.g. chlorophyll a), and terminal nodes (without

child, e.g. oxygen). Operationally, the combination process is complete when obser-

vations for intermediate nodes (i.e. chlorophyll a) are replaced by their respective

means. The prior for all coefficients and precision is specified afterwards.

Oxygeni „ N pµOxygen, σ2
Oxygenq

µOxygeni “ AXOxygen

Chlorophyll ai „ N pµChlorophyll a , σ
2
Chlorophyll aq

µChlorophyll ai “ BXChlorophyll a

A “
`

α0rks α1 α2rjs α3rjs
˘

1ˆ7

B “
`

β0rks β1 ¨ ¨ ¨ β5 β6rjs
˘

1ˆ7
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α0rks & β0rks “

"

1 if Sectioni “ k, where k=1, 2, 3;
0 if Sectioni ‰ k.

α2rjs & α3rjs & β6rjs “

"

1 if Seasoni “ j, where j=1, 2, 3,4;
0 if Seasoni ‰ j.

XOxygen and XChlorophyll a are design matrices of predictors for the oxygen and

chlorophyll a model. We have 408 observations from 2007 to 2011. For the oxygen

(chlorophylla a) model, we have three (6) predictors, hence XOxygen (XChlorophyll a)

is a matrix of 408 rows and 4 (7) columns (the first column is a vector of 1s). A and B

are regression model coefficient vectors both modeled by multivariate-normal distri-

butions with means µA “ tα0rks, α1, α2rjs, α3rjsu and µB “ tβ0rks, β1, ¨ ¨ ¨ , β5, β6rjsu

and covariance matrices 100 ˆ ΣA and 100 ˆ ΣB from the individual model runs,

respectively. σChlorophyll a and σOxygen have scaled inverse χ2 distributions with pa-

rameters based on posterior distribution of σOxygen (σChlorophylla) in the individual

model runs.

The following equations describe the temporal model updating.

Oxygenj „ N pµOxygenj , σ2
Oxygenq

µOxygenj “ AXOxygen

Chlorophyll aj „ N pµChlorophyll aj , σ
2
Chlorophyll aq

µChlorophyll a “ BXChlorophyll a

A “
`

α0rks α1 α2rjs α3rjs
˘

1ˆ7

B “
`

β0rks β1 ¨ ¨ ¨ β5 β6rjs
˘

1ˆ7

α0rks & β0rks “

"

1 if Sectioni “ k, where k=1, 2, 3;
0 if Sectioni ‰ k.

α2rjs & α3rjs & β6rjs “

"

1 if Seasoni “ j, where j=1, 2, 3,4;
0 if Seasoni ‰ j.

XOxygen and XChlorophyll a are design matrices of predictors for the oxygen and

chlorophyll a model. We have 104 observations. For the oxygen (chlorophylla a)
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model, we have three (6) predictors, hence XOxygen (XChlorophyll a) is a matrix of

104 rows and 4 (7) columns (the first column is a vector of 1s). σOxygen (σChlorophyll a)

has a scaled inverse χ2 distribution with parameters based on posterior distribution

of σOxygen (σChlorophylla) in the combined model. A and B are regression model

coefficient vectors both modeled by multivariate-normal distributions with means

µA “ tα0rks, α1, α2rjs, α3rjsu and µB “ tβ0rks, β1, ¨ ¨ ¨ , β5, β6rjsu and covariance ma-

trices ΣA and ΣB, respectively.

D.2 Figures

Recursive partitioning, a data mining tool, was used to explore the structure of the

data. Figures D.1 and D.2 depict the pruned tree model; the tree models were pruned

to avoid overfitting the data. It has been shown in the literature that chlorophyll

a concentration in estuaries are affected mainly by light, nutrients, water column

mixing, temperature, and grazing. Apart from grazing that is not measured in the

NRE, figures D.3 to D.7 depict scatterplot matrices and conditional scatterplots for

chlorophyll a and its predictor variables. Figure D.8 shows the interacting influence

of salinity and nitrogen on chlorophyll a concentration. Figures D.9 and D.10 show

the interacting effect of stratification and season and temperature and season on

bottom dissolved oxygen.
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|
Salinity>=21.75

log(TDN)< 5.515

log(Light)< 0.1099 Secchi>=0.925

Secchi>=0.925

Secchi>=1.275 Salinity>=18.16

0.7979 1.361
1.713 2.238

1.915 2.35 2.333 2.897

Figure D.1: A recursive partitioning (RP) method was applied to the NRE data
set from 2007 to 2011. The figure depicts the selected classification tree for predicting
chlorophyll a.
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|
Temperature>=19.61

log(Stratification.Ratio)>=0.002126

log(Chlorophylla)>=2.529

log(Chlorophylla)< 3.089

log(TN)>=6.282

log(TP)>=4.526

Season=ac

Temperature>=9.785

0.6623 1.135
1.516 1.313 1.825

1.78 1.987

2.165 2.366

Figure D.2: A recursive partitioning (RP) method was applied to the NRE data set
from 2007 to 2011. The figure depicts the selected classification tree for predicting
bottom dissolved oxygen.
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Figure D.3: Log-transformed chlorophyll a versus log-transformed dis-
solved/particulate and organic/inorganic nitrogen concentration is depicted.
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Figure D.4: Log-transformed chlorophyll a versus log-transformed dis-
solved/particulate phosphorus concentration.
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Figure D.5: Log-transformed chlorophyll a versus log-transformed light attenuation
coefficient and Secchi disk depth.
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Figure D.6: Log-transformed chlorophyll a versus stratification, defined as surface
and bottom water density gradient, and stratification ratio, defined as surface and
bottom water density ratio.
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Figure D.7: Log-transformed chlorophyll a versus temperature.
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Figure D.8: Log-transformed chlorophyll a versus total dissolved nitrogen under
different salinity.
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Figure D.9: Log-transformed bottom dissolved oxygen versus stratification under
different Seasons.
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Figure D.10: Log-transformed bottom dissolved oxygen versus temperature under
different Seasons.
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Appendix E

R Code for Chapter 5

E.1 Chlorophyll a Model JAGS Code

for (i in 1:408){

Chla[i] ~ dnorm((beta0[Section[i]]

+beta1*Nitrogen[i]

+beta2*Phosphorus[i]

+beta3*Stratification[i]

+beta4*Light[i]

+beta5*Salinity[i]*Nitrogen[i]

+beta6[Season[i]]*Temperature[i]), tau.Chla)

}

##Specifying Priors

tau.Chla <- pow(sigma.Chla.hat.2, -1)

sigma.Chla.hat.2 ~ dgamma(10, 1)

##beta0
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for (j in 1:3){

beta0[j] ~ dnorm(mu.beta0, tau.beta0)

}

mu.beta0~ dnorm(0, 0.0001)

sigma.beta0.hat.2 ~ dgamma(10,1)

tau.beta0 <- pow(sigma.beta0.hat.2,-1)

##beta1

beta1 ~ dnorm(0, 0.0001)

##beta2

beta2 ~ dnorm(0, 0.0001)

##beta3

beta3 ~ dnorm(0, 0.0001)

##beta4

beta4 ~ dnorm(0, 0.0001)

##beta5

beta5 ~ dnorm(0, 0.0001)

##beta6

for (j in 1:4){

beta6[j] ~ dnorm(mu.beta6, tau.beta6)

}

mu.beta6 ~ dnorm(0, 0.0001)

tau.beta6 <- pow(sigma.beta6.hat.2, -1)

sigma.beta6.hat.2 ~ dgamma(10, 1)

}

E.2 Oxygen Model JAGS Code

model {
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for (i in 1:408){

Oxygen[i] ~ dnorm((beta0[Section[i]]

+beta1*Chla[i]

+beta2[Season[i]]*RStratification[i]

+beta3[Season[i]]*Temperature[i]),tau.Oxygen)

}

##Specifying Priors

tau.Oxygen <- pow(sigma.Oxygen.hat.2, -1)

sigma.Oxygen.hat.2 ~ dgamma(10, 1)

##beta0

for (j in 1:3){

beta0[j] ~ dnorm(mu.beta0, tau.beta0)

}

mu.beta0~ dnorm(0,0.0001)

tau.beta0 <- pow(sigma.beta0.hat.2, -1)

sigma.beta0.hat.2 ~ dgamma(10, 1)

##beta1

beta1~ dnorm(0, 0.0001)

##beta2 & beta3

for (j in 1:4){

beta2[j] ~ dnorm(mu.beta2, tau.beta2)

beta3[j] ~ dnorm(mu.beta3, tau.beta3)

}

mu.beta2 ~ dnorm(0, 0.0001)

tau.beta2 <- pow(sigma.beta2.hat.2, -1)

sigma.beta2.hat.2 ~ dgamma(10, 1)

mu.beta3 ~ dnorm(0, 0.0001)
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tau.beta3<- pow(sigma.beta3.hat.2, -1)

sigma.beta3.hat.2 ~ dgamma(10, 1)

}

E.3 Chlorophyll a-Oxygen Model JAGS Code

model {

for (i in 1:408){

Oxygen[i] ~ dnorm(mu.Oxygen[i],tau.Oxygen)

mu.Oxygen[i]<- Alpha[]%*% X[,i]

Chla[i] ~ dnorm(mu.Chla[i], tau.Chla)

mu.Chla[i] <- Beta.Chla[] %*% X.Chla.P[,i]

X[1:3,i] <- X.Oxygen.P[1:3,i]

X[4,i] <- mu.Chla[i]

X[5:12,i] <- X.Oxygen.P[4:11,i]

}

##Specifying Priors

##tau.Oxygen

tau.Oxygen <- pow(sigma.Oxygen.hat, -2)

sigma.Oxygen.hat ~ dunif(0,3)

Alpha ~ dmnorm(mu.alpha.Oxygen[], omega.alpha.Oxygen[,])

omega.alpha.Oxygen <- inverse(var.alpha.Oxygen[,])

##tau.Chla

##tau.Chla <- pow(sigma.Chla.hat, -2)

sigma.Chla.hat ~ dunif(1,5)

Beta.Chla ~ dmnorm(mu.beta.Chla[], omega.beta.Chla[,])

omega.beta.Chla <- inverse(var.beta.Chla[,])
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##Predicted Chl a & Oxygen values for observed data from 2011-2012

for(j in 1:104){

Chla.Pred[j] ~ dnorm(mu.Chla.Pred[j], tau.Chla)

mu.Chla.Pred[j] <- Beta.Chla[] %*% X.Chla[,j]

Oxygen.Pred[j] ~ dnorm(mu.Oxygen.Pred[j], tau.Oxygen)

mu.Oxygen.Pred[j] <- Alpha[] %*% X.Pred[,j]

X.Pred[1:3,j] <- X.Oxygen[1:3,j]

X.Pred[4,j] <- mu.Chla.Pred[j]

X.Pred[5:12,j] <- X.Oxygen[4:11,j]

}

}

E.4 Temporal Model Update JAGS Code

#Model Updating with New Data from 2011-2012

model {

for (i in 1:104){

Oxygen[i] ~ dnorm(mu.Oxygen[i],tau.Oxygen)

mu.Oxygen[i]<- Alpha[] %*% X[,i]

Chla[i] ~ dnorm(mu.Chla[i], tau.Chla)

mu.Chla[i]<- Beta[] %*% X.Chla[,i]

X[1:3,i] <- X.Oxygen[1:3,i]

X[4,i] <- mu.Chla[i]

X[5:12,i] <- X.Oxygen[4:11,i]

}

#Specifying Priors

# The Precision

tau.Oxygen ~ dchisq(6.7)
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tau.Chla ~ dchisq(4.4)

#The Coefficients

Alpha ~ dmnorm(mu.alpha[], omega.alpha[,])

omega.alpha <- inverse(var.alpha[,])

Beta ~ dmnorm(mu.beta[], omega.beta[,])

omega.beta <- inverse(var.beta[,])

}

E.5 Spatial Model Update JAGS Code

#Model Updating with Neuse River Data from 2007-2012

model {

for (i in 1:873){

Oxygen[i] ~ dnorm(mu.Oxygen[i],tau.Oxygen)

mu.Oxygen[i]<- Alpha[] %*% X[,i]

Chla[i] ~ dnorm(mu.Chla[i], tau.Chla)

mu.Chla[i]<- Beta[] %*% X.Chla.P[,i]

X[1:3,i] <- X.Oxygen.P[1:3,i]

X[4,i] <- mu.Chla[i]

X[5:12,i] <- X.Oxygen.P[4:11,i]

}

#Specifying Priors

# The Precision

tau.Oxygen <- pow(sigma.Oxygen, -2)

sigma.Oxygen ~ dnorm(mu.sigma.Oxygen, omega.sigma.Oxygen)

omega.sigma.Oxygen <- pow(var.sigma.Oxygen,-1)

tau.Chla <- pow(sigma.Chla, -2)

sigma.Chla ~ dnorm(mu.sigma.Chla, omega.sigma.Chla)
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omega.sigma.Chla <- pow(var.sigma.Chla,-1)

#The Coefficients

Alpha ~ dmnorm(mu.alpha[], omega.alpha[,])

omega.alpha <- inverse(var.alpha[,])

Beta ~ dmnorm(mu.beta[], omega.beta[,])

omega.beta <- inverse(var.beta[,])

#Predicted Chla a & Oxygen values for observed data from 2011-2012

for(j in 1:151){

Chla.Pred[j] ~ dnorm(mu.Chla.Pred[j], tau.Chla)

mu.Chla.Pred[j] <- Beta[] %*% X.Chla[,j]

Oxygen.Pred[j] ~ dnorm(mu.Oxygen.Pred[j], tau.Oxygen)

mu.Oxygen.Pred[j] <- Alpha[] %*% X.Pred[,j]

X.Pred[1:3,j] <- X.Oxygen[1:3,j]

X.Pred[4,j] <- mu.Chla.Pred[j]

X.Pred[5:12,j] <- X.Oxygen[4:11,j]

}

}
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