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Abstract

Networks – abstract objects composed of vertices connected by edges, are ubiquitous

in the real world. Examples such as social networks, the world wide web, and neural

networks in the brain are constantly evolving in their topology, the state of their

vertices, or a combination of the two. This dissertation presents a computational

and theoretical study of three models of network dynamics, one corresponding to

each of these modes of evolution.

The first study models the disintegration of a social network of voters with binary

opinions, who prefer to be connected to others with the same opinion. We study two

versions of the model: the network evolves by voters in discordant ties choosing to

either adopt the opinion of their neighbors, or to rewire their ties to some randomly

chosen voter of (i) the same, or (ii) any, opinion. We examine how the probability

of rewiring, and the initial fraction ρi in the minority, determine the final minority

fraction ρf, when the network has bifurcated. In case (i), there is a critical probability,

that is independent of ρi, above which ρf is unchanged from ρi, and below which

there is full concensus. In case (ii), the behavior above the critical probability, that

now depends on ρi, is similar; but below it, ρf matches the result of starting with

ρi = 1/2. Using simulations and approximate calculations, we explain why these two

nearly identical models have such dramatically different behaviors.

The second model, called the quadratic contact process (QCP) involves “birth”

and “death” events on a static network. Vertices take on the binary states occu-
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pied(1) or vacant(0). We consider two versions of the model – Vertex QCP, and Edge

QCP, corresponding to birth events 1−0−1 −→ 1−1−1 and 1−1−0 −→ 1−1−1

respectively, where ‘−’ represents an edge. We study the fraction of occupied ver-

tices at steady state as a function of the birth rate, keeping the death rate constant.

To investigate the effects of network topology, we study the QCP on homogeneous

networks with a bounded or rapidly decaying degree distribution, and those with a

heavy tailed degree distribution. From our simulation results and mean field cal-

culations, we conclude that on the homogeneous networks, there is a discontinuous

phase transition with a region of bistability, whereas on the heavy tailed networks,

the transition is continuous. Furthermore, the critical birth rate is positive in the

former but zero in the latter.

In the third study, we propose a general scheme for spatial networks evolving in

order to reduce their total edge lengths. We study the properties of the equilbria

of two networks from this class, one of which interpolate between two well studied

objects: the Erdős-Rényi random graph, and the random geometric graph. The first

of our two evolutions can be used as a model for a social network where individuals

have fixed opinions about a number of issues and adjust their ties to be connected to

people with similar views. The second evolution which preserves the connectivity of

the network has potential applications in the design of transportation networks and

other distribution systems.
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1

Introduction

The purpose of this chapter to provide the reader with all the background information

needed to comprehend the material in Chapters 2, 3, and 4. First we introduce

the relatively new and emerging field of complex networks that is the focus of this

dissertation. We then review the basics of network theory and some of the associated

terminology. We then proceed to a general description of random graphs that are

used as models of complex networks, and the stochastic processes involving them

and their associated phase transitions. Since all these topics are extremely broad,

we will restrict our discussion to parts of them that are relevant to the dissertation.

Finally, we give an overview of the three projects covered in the later chapters that

form the core of this dissertation.

1.1 Complex Networks

A wide variety of systems, both natural and man-made, could be viewed simply as a

collection of entities that interact with each other. The entities themselves may have

a complex internal structure; but their relevant behavior, i.e., how they interact with

their peers, is usually relatively simple. Yet, the system as a whole exhibits what
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are called emergent phenomena. By this we mean that the behavior is non-intuitive

and difficult to predict solely from the knowledge of the system’s entities. In other

words, the interaction between the different entities is the key to their macroscopic

behavior.

Examples of the aforementioned systems include many biological systems such

as the brain where the interaction between the neurons lead to “consciousness” [2],

and large social groups where interactions among individuals lead to the spread of

an epidemic, or the formation of an opinion on an issue.

All the above examples entice us to abstract them as a network or graph – a

mathematical object composed of vertices and edges, the former corresponding to

the entities, and the latter to the interactions. Furthermore, these networks may

be more approriately called complex networks, since their topologies are typically

far from regular (as in, say, a square lattice) but at the same time, not completely

random either; in other words the connection between vertices do not have an easily

discernible pattern, which makes them intriguing and fascinating. For example, the

world wide web (WWW) connecting billions of web pages through hyper links, al-

though a man-made creation, has a very complex structure that is constantly evolving

and is yet to be fully understood.

Table 1.1: Examples of complex networks (adapted from page 110 of [1]).

Network Vertex Edge
Internet Computer or router Cable
Citation network Article, patent, or legal case Citation
Power grid Generating station or substation Transmission line
Friendship network Person Friendship
Metabolic network Metabolite Metabolic reaction
Neural network Neuron Synapse
Airline network Airport Flight segment
Road network Cities Road
Food web Species Predation

Complex networks may show properties such as
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• the number of hops needed to travel between any two vertices being much

smaller than the network size. This is also called the small world property

leading to the notion of “six degrees of separation”.

• the presence of vertices called hubs that have an unusually large number of

edges connected to them. For example, in the world wide web (WWW), the

number of hyper links to google.com is many orders of magnitude larger than

that to most sites in the WWW [3]. Such networks are said to have a heavy

tailed degree (number of neighbors) distribution.

• community structure, i.e., the tendency of groups of vertices to have signifi-

cantly more connections among themselves than to vertices outside the group.

For example, consider the friendship network of high school students. There

could be cliques of students who “hang out” together with few interactions be-

tween students belonging to different groups, and thereby dividing the friend-

ship network into communities. Designing algorithms for the detection of com-

munities in a network is a very active research area [4].

• high transitivity or clustering, i.e., the tendency of the neighbors of a vertex to

be connected to each other. In a social network one’s friends are highly likely

to be also friends of each other.

• assortativity or homophily, i.e., the tendency of vertices with similar attributes

to be connected to each other, or the opposite tendency called dissortativity. In

a social network, for example, individuals may have a tendency to preferentially

form friendships with others of similar age, national origin, income level, etc.

Notice that the features mentioned above are in stark contrast to those of regular

lattices that have traditionally been studied in physics; in other words, lattices are

not complex networks. It is also important to differentiate the field of complex
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networks from that of graph theory which has a long history in discrete mathematics

starting with Euler’s famous solution of the Königsberg Bridge Problem in 1735.

Graph theory typically deals with small graphs with relatively regular features and

attempts to prove rigorous and exact results about them. Examples of problems

considered in graph theory include existence of Hamiltonian paths, graph coloring

(e.g.: the four color theorem), planarity and finding maximal independent sets.

The field of complex networks, on the contrary, is relatively new and highly in-

terdisciplinary, and aims to describe, and uncover the large scale properties of, huge

graphs found in the real world. Research on complex networks have primarily ad-

vanced in two complementary directions: the empirical study of real world networks

on the one hand, and the use of simplistic abstract models that attempt to replicate

the observed features, on the other. The latter includes the development of models,

their analysis by simulation, by approximate calculations from heuristic arguments,

and by rigorous mathematical results. This dissertation focuses on the first three,

with simulations playing the major part.

The history of complex networks may be dated back to the 1950s. During this

period, political scientist Ithiel de Sola Pool and mathematician Manfred Kochen

became interested in social networks, especially the small world phenomenon [5].

In the same decade, mathematicians Solomonoff and Rapoport [6], and Paul Erdös

and Alfréd Rényi [7] undertook pioneering studies on random graph models. Their

models which have now come to be know as the Erdős-Rényi random graph (ER)

was studied extensively for many decades that followed. The ER graph did have the

small world property. However, it failed to reproduce two other important features:

the high clustering seen in social networks, and the scale free (power law) degree

distribution seen in many real world networks.

The empirical study of real networks was not very active until the late 1990s

when technological developments lead to the ease of access to and computational

4



power to process, large data sets about them. Two seminal papers by Watts and

Strogatz [8], and Barabási and Albert [9] triggered an explosion in the number of

publication on complex networks [1, 10]. The former paper introduced what is now

known as the Watts-Strogatz or WS model, which generated networks that in addi-

tion to the small world property showed high clustering. Notice that the properties

of small world, and high transitivity, are in some sense at odds with each other. It is

therefore remarkable that real networks have this property, and the WS model was

able to capture it. The latter paper proposed a “preferential attachment” growth

model, i.e., new vertices connect preferentially to existing vertices of high degree,

for networks. This model, that has come to be know an the Barabási-Albert or

BA model, generated networks that had a power law degree distribution, and small

values for the diameter (maximum distance between vertex pairs), but had very low

clustering.

1.2 Basic network theory

A network, also called a graph, G is specified by its vertices and its edges. Mathemat-

ically, a network is a pair G = (V,E), where V is the set of vertices and E is the set

of edges. We will denote the number of vertices and edges by n = |V |, and m = |E|,

respectively. In the most general type of network, the edges are directed, and are

also allowed to point from a vertex to itself forming a self loop. In this dissertation,

however, we will limit ourselves to undirected edges and disallow self loops. Such

networks are called simple graphs and here the edge set is composed of unordered

pairs of distinct elements the vertex set, i.e., E ⊆
(
V
2

)
≡ {{x, y} : x, y ∈ V, x 6= y}.

However, it may sometimes be more convenient to view an undirected network as a

directed one by simply viewing each undirected edge to be composed of two directed

edges pointing in opposite directions.

The vertex set and edge set together specify the topology of the network. How-
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ever, real world networks have a lot more structure to them. Typically, the vertices

of a network have states associated with them. For example, in a social network

where the vertices represent individuals, and the edges represent friendship between

pairs of individuals, the state of the vertices could be the opinion of the individuals

on a particular issue. Thus, the full specification of the network may require the

inclusion of the vertex states. Additionally, networks in the real world are hardly

ever static. Our friends change, opinions change, we get infected by diseases, and

so on. In other words, the networks associated with real world systems evolve over

time.

If S is the set of states that vertices can adopt, then we can represent the graph

by the triple Gt = (Vt, Et, st), where st : Vt → S. If no two vertices can be in the

same state, we can use the states of the vertices to label them, eliminating the need

for s.

The above mentioned simplification could be done for spatial networks – a special

class of networks, whose vertices are embedded in space. To be precise, the vertex

set of spatial networks is a set of points in a metric space, so that there is a notion

of distance between every vertex pair. The state a vertex is its spatial location, and

is unique if we disallow any two vertices to be in the same location.

If Vt, Et and st are all constant then the network is static. In all other cases the

network is dynamic. If Vt and Et are constant and st alone changes, then we call the

process a dynamics on the network. On the other hand, if st is fixed, but Vt and/or

Et change, then it is termed dynamics of networks. The more general case where

the topology of networks and the state of vertices change is the realm of coevolving

networks.

In this dissertation, we will treat time to be continuous as it is in the real world.

Additionally, we restrict ourselves to networks whose set of vertices, and number of

edges do not change, i.e., Vt and |Et| = m are constant in time.
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1.3 Some network terminology

The triple (V,E, s) completely specifies the network. However, for large networks,

this level of detail is usually impractical and unnecessary. Instead, we introduce

quantities that provide a more insightful global description of the network. We will

first define some terms at the local level, and use them to build the terms for the

global description.

If there is an edge between two vertices then each of the vertices is called a

neighbor of the other, i.e., if {x, y} ∈ E then x is a neighbor of y and vice-versa. The

number of neighbors that a vertex has is called its degree d, i.e., d(x) = |{y : {x, y} ∈

E}|. The average degree µ =
∑

x d(x)/n of the vertices is one of the simplest global

measures of the network. It is easy to see that µ = 2m/n. A more informative

description of the network is given by the distribution pk = |{x : d(x) = k}|/n of

the degrees. A network where every vertex has the same degree, i.e., pk = 1k=µ, is

called a regular graph. Related to the degree distribution is the size-biased degree

distribution qk, which is the degree distribution of the neighbors of a vertex, i.e.,

qk = |{(x, y) : {x, y} ∈ E, d(y) = k}|/2m. It can be seen that the two distributions

are related as qk = kpk/µ.

A subgraph G′ = (V ′, E ′) of a graph G = (V,E), is a graph that contains some

(or all) of the vertices of G and all the edges connecting those vertices, i.e., G′ ⊆

G⇒ V ′ ⊆ V, E ′ = E ∩
(
V ′

2

)
.

The pk and qk distributions deals with vertices and their immediate neighborhood.

Moving beyond that, consider the set of paths

P(x, y) = {(x, z1, z2, . . . , z..., y) : {x, z1}, {z1, z2}, . . . , {z..., y} ∈ E}

between two vertices x and y. If a path exists between every pair of vertices , then

we say that the network is connected. In general, however, this may not be the case

and the network could be composed of disconnected components. A component G′
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of a graph G is a maximal subgraph of G that is connected, i.e., it is impossible to

add more vertices to G′ while still maintaining the connectivity property.

For a path P ∈ P(x, y), the hop length h(P ) is the number of edges in P . In

a spatial network, one can also define a route length r(P ) = |x − z1| + |z1 − z2| +

. . . + |z... − y|. Related to these path lengths, are two kinds of distances between x

and y: the hop distance h(x, y) = minP∈P(x,y) h(P ), and the route distance r(x, y) =

minP∈P(x,y) r(P ). Three related global metrics are the mean hop distance h, the

mean route distance r, and the largest hop distance among all vertex pairs, called

the diameter. Note that in a disconnected network, the definitions above result in an

infinite value for the three global metrics, and therefore in such cases, one considers

only the largest component of the network.

A cycle or loop is a path from a vertex to itself. A graph that does not contain

any cycles is a called a tree. It is easy to see that any tree on n vertices will have

exactly n − 1 edges. A connected network that is also a tree is called a spanning

tree. In spatial networks (or more generally, in networks with weighted edges), the

spanning tree with the smallest total edge length (edge weight) is called a minimum

spanning tree. In many approximate calculations on networks it is common to treat

them to be locally tree like. This means that if one starts from a vertex and follows

its neighbors and their neighbors and so on, then the first cycle is encountered after

a large number of hops.

As mentioned earlier, in many real networks, especially social networks, there is a

tendency for the neighbors of a vertex to be connected to each other. This property

called transitivity is quantified by a metric called the clustering coefficient defined

as

C =
number of triangles× 6

number of paths of hop length two
. (1.1)
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1.4 Random graphs

We argued earlier that real world networks are complex. We seek to capture this

complexity in our network models by making them as random as possible, subject

to a handful of reasonable constraints.

A random graph, similar to a random variable, is defined by its probability dis-

tribution π over the set G of all graphs, i.e., π : G → [0, 1].

1.4.1 The thermodynamic limit

As is common in the literature, in the network models we study, we will be interested

in the limit where the network size n → ∞, also known as the thermodynamic

limit. Furthermore, the networks we study will be sparse, i.e., the number of edges

m = O(n), or equivalently, the mean degree µ = O(1).

For random graphs in the thermodynamic limit, some of the network metrics we

discussed in Section 1.3 could be slightly redefined. If x is a randomly chosen vertex,

the degree distribution pk = P(d(x) = k) and the mean degree µ = E[d(x)]. If (x, y)

is a randomly chosen directed edge, then qk = P(d(y) = k). The clustering coefficient

is the probability that two vertices that are connected to a common third vertex are

also connected to each other, i.e., for three randomly chosen vertices x, y and z,

C = P({x, z} ∈ E | {x, y}, {y, z} ∈ E). (1.2)

An important concept that arises in the thermodynamic limit is that of the giant

component (GC). For a random network with n vertices, the giant component is a

component, if there exists one, whose size is proportional to n, i.e., if the GC contains

nGC vertices , then

lim
n→∞

nGC

n
= constant. (1.3)
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1.4.2 General uncorrelated random graphs

The simplest types of random graphs are degree uncorrelated random graphs, which

means that given two connected vertices x and y, their degrees d(x) and d(y) are

independent random variables. The topology of these networks are fully determined

by their degree distribution. The initial state of all the random graphs studied in this

dissertation will have this property. The Erdős-Rényi random graph and the more

general configuration model discussed later are all examples of uncorrelated random

graphs.

We will now investigate the conditions under which uncorrelated networks will

have a giant component. Let x be a randomly chosen vertex and let ρ be the probabil-

ity that x belongs to the giant component, and ω be the probability that a randomly

chosen neighbor y of x does not belong to the giant component if the edge {x, y} is

deleted from the network. The number of neighbors of y is distributed according to

the size-biased degree distribution qk. Now, y is connected to the GC solely through

x iff all its neighbors, except x, are connected to the GC through y. This means

ω =
∞∑
k=1

qkω
k−1 = gq(ω). (1.4)

The number of neighbors of x are distributed according to pk and x is not part of

the GC iff none of its neighbors are part of the GC, i.e.,

1− ρ =
∞∑
k=0

pkω
k = gp(ω). (1.5)

Functions like gp and gq are called the generating functions of the corresponding

probability distributions. Solving (1.4) for ω and plugging it in (1.5), one can find

the fraction ρ of vertices in the giant component. (See [11] for a more detailed version

of the calculation that follows) Notice that gp(1) = gq(1) = 1 and therefore ρ = 0

10



is a trivial solution. Also, notice that gq(0) = q1. A non-trivial solution exists if

g′q(1) > 1, i.e.,

g′q(1) =
∞∑
k=1

(k − 1)qk =
∞∑
k=1

(k − 1)
kpk
µ

=
E[d2]− E[d]

E[d]
> 1 , (1.6)

Notice that the numerator E[d2]−E[d] = E[d(d−1)] is the expected number of second

neighbors d(2) of a vertex; therefore, (1.6) essentially means that the expected number

of second neighbors must be greater than that for the (first) neighbors. Defining the

branching ratio ν = E[d(2)]/E[d], the condition for the existence of a giant component,

which was first given by Molloy and Reed [12], is ν > 1.

What is the largest degree dmax = maxx∈V d(x) in a network of size n, and is it

“large”, i.e., does the network contain hubs? In degree uncorrelated graphs, since

the d(x)’s are i.i.d, the distribution of dmax is, in principle, straight forward to write

down:

P(dmax = j) = [P(d ≤ j)]n − [P(d ≤ j − 1)]n

=

[∑
k≤j

pk

]n
−

[ ∑
k≤j−1

pk

]n
, (1.7)

although, depending on pk, calculating or even estimating, say, E[dmax] could be

cumbersome. A quicker alternative to estimating dmax is to look at the “thickness of

the tail” of pk. Specifically, if dn = min{k : nP(d > k) < 1}, then dmax ∼ dn, which

means that

nP(d > dmax) ≈ 1 (1.8)

gives a good estimate of dmax.

1.4.3 The Erdős-Rényi random graph

The simplest random graph, with n vertices and mean degree µ, one can think of is

where the m = nµ/2 edges are chosen uniformly at random from all possible vertex
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pairs, i.e., E is a random subset of
(
V
2

)
of size m. Such a random graph was studied

extensively by Erdős and Rényi [7, 13, 14] and is therefore named after them. Since

there are
((n

2)
m

)
graphs with a given n and µ, the distribution π of the graphs is

π(G) =

{
1/
((n

2)
m

)
if |V (G)| = n, |E(G)| = m,

0 otherwise.
(1.9)

The above random graph model is sometimes called the G(n,m) model. Although

G(n,m) is simple to define, it is easier to work with a slightly different version of

G(n,m) called the G(n, p) model [6, 15]. In the G(n, p) random graph, edges are

created between vertex pairs with a fixed probability p and so the distribution of

graphs is

π(G) = Binomial

[(
n

2

)
, p; |E|

]
=

((n
2

)
|E|

)
p|E|(1− p)(

n
2)−|E| (1.10)

if |V | = n, and 0 otherwise. The properties of the G(n,m) and G(n, p) models

approach each other in the n → ∞ limit. Their relation is similar to that between

the canonical and grand canonical ensembles in statistical mechanics. The mean

number of edges in G(n, p) is
(
n
2

)
p. If we set this equal to m, then the G(n,m)

and G(n, p) random graphs have similar properties, since the density in the binomial

distribution is strongly peaked around its mean when n→∞, i.e.,

(
n

2

)
p = n

µ

2
⇒ p =

µ

n
. (1.11)

Some properties of the Erdős-Rényi (ER) random graph are easy to calculate.

Since the edges are all assigned independent of each other, the clustering coefficient

C = P({x, z} ∈ E|{x, y}, {y, z} ∈ E) = P({x, z} ∈ E) =
µ

n
. (1.12)
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This implies that the ER graph has C → 0 in the n → ∞ limit, and therefore is

a poor model for most real networks, especially social networks, which have been

found to possess significant clustering.

Since a vertex is connected to each of the other n − 1 vertices with a fixed

probability, the degree distribution

P(d = k) = Binomial(n− 1, p; k)

→ Poisson(µ; k) as n→∞. (1.13)

1 2 3 4 5
Μ
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0.6
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Ρ

Figure 1.1: Fraction of vertices ρ in the giant component as a function of the mean
degree µ for the Erdős-Rényi random graph.

Solving equations (1.4) and (1.5), the size of the giant component can be found

to be

ρ = 1 +
1

µ
W (−µe−µ), (1.14)

where W (z) is the function that solves z = WeW . The size of the largest component

as a function of the mean degree is plotted in Fig. 1.1. The giant component emerges

when µ = 1, consistent with the Molloy-Reed criterion. The formation of the giant

component in an ER graph has strong similarities with the formation of a percolating

cluster in bond percolation. More specifically, the Erdős-Rényi random graph on n
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vertices is like bond percolation [16] on a Bethe lattice with coordination number n−

1. The percolation threshold for a Bethe lattice is pc = 1/(coordination number−1),

which for the ER graph becomes 1/(n− 2) ≈ 1/n.

The size of the giant component increases with increasing µ until the graph

becomes connected. When the graph is close to being connected, ρ = 1 − 1/n.

Plugging this into (1.14), we get

W (−µe−µ) = −µ
n
⇒ −µe−µ = −µ

n
e−µ/n

⇒ µ ∼ log n. (1.15)

When µ crosses log n, we say that the ER graph undergoes a condensation transition,

and becomes connected.

If one assumes the formation of an ER random graph to be a branching pro-

cess [17], then one can get an order of magnitude estimate of the diameter or the

mean hop distance h. The starting vertex has on average µ neighbors, and subse-

quent generations on average reproduce µ additional neighbors. Thus the number

of expected number of vertices in the `-th generation is µ`. The total number of

vertices in all generations is n:

h∑
`=0

µ` = n⇒ µh+1 − 1

µ− 1
= n⇒ h ≈ log n

log µ
. (1.16)

Thus the average hop distance is much smaller than the network size, and thus ER

graphs are small world.

The tail of the Poisson distribution is thinner than that of an exponential distri-

bution (i.e., ∃K(µ, µ2) : ∀ k > K, Poisson(µ; k) < Exponential(µ2; k)). From (1.8),

dmax for the exponential distribution can be found to be O(log n), implying that ER

graphs have dmax = O(log n), and therefore are very short tailed.
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1.4.4 The Configuration model

One way to generate uncorrelated random graphs is by the configuration model intro-

duced by Bender and Canfield [18] and further studied by Bollobás [19]. This model

may be viewed as a generalization of the Erdős-Rényi graphs. While the original

model was defined with a degree sequence, i.e., a degree specified for each vertex,

Newman et al. [20] studied a more convenient version where the degree distribution is

specified instead. This model generates random graphs that are maximally random

subject to the given degree distribution.

The algorithm for generating a random graph by the configuration model is as

follows. For each vertex x, we generate a random number kx from the given degree

distribution. If
∑

x kx turns out to be odd, we decrease one of the kx’s by 1 to get∑
x kx = 2m. We then attach kx “half-edges” to x. Finally, we randomly pair all

the half edges. The resulting graph clearly has the given degree distribution in the

n→∞ limit.

However, there are a couple of caveats worth mentioning. First, some of the

pairings could contain multiple edges and self loops. Fortunately, when n→∞, the

number of self loops and the number of multiple edges can be shown (see Theorem

3.1.2. in [11]) to be independently distributed as Poisson(ν/2) and Poisson(ν2/4),

respectively, where ν is the branching ratio as defined earlier. This means that if

the degree distribution has a finite second moment, then the expected number of self

loops and multiple edges is O(1). Second, not all pairings lead to different graphs,

i.e., given a pairing, permutations of the half-edges emanating from a common vertex,

leave the graph unchanged. There are (2m − 1)!! ≡ 1 × 3 × . . . × (2m − 1) ways

to pair up the 2m half-edges, each of which is equally likely to be chosen. Ignoring

the negligible number of multiple edges and self loops, corresponding to any given

pairing, there are
∏

x kx! pairings, formed by permutations of the half edges, that
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produce the same graph. Putting this all together, the probability distribution in

the configuration model is,

π(G) ≈ 1

(2|E| − 1)!!

∏
x∈V

d(x)! pd(x) if |V | = n, and 0 otherwise . (1.17)

The probability of an edge between two vertices with degrees k and j respectively

is P({x, y} ∈ E|d(x) = k, d(y) = j) ≈ kj/2m. Suppose two vertices x and z are

connected to a common vertex y, then d(x) and d(z) are distributed according to qk,

and so the probability of an edge between x and z gives the clustering coefficient to

be

C = P({x, z} ∈ E) =
∑
k,j

qkqj
(k − 1)(j − 1)

nµ
=

1

n

(E[d2]− E[d])2

(E[d])3
=
ν2

nµ
. (1.18)

Thus, if E[d2] is finite, then the clustering coefficient vanishes in the thermodynamic

limit.

1.4.5 Power law random graphs

The configuration model can used to generate graphs whose degree distribution fol-

lows a power law, i.e., pk = c k−α ∀ k ≥ dmin, where α > 1, and c is a normalization

constant. Empirical studies of many real networks such as the internet [21], scien-

tific collaboration networks [22], and collaboration network of movie actors [9] have

reported a power law degree distribution motivating the study of power law random

graphs [23].

If the exponent α ≤ 1, then the distribution cannot be normalized. When α > 1,

it determines the finiteness of the moments of the degree distribution :

µ = E[d] = c

∞∑
k=dmin

k−α+1 <∞ iff α > 2 (1.19)

E[d2] = c
∞∑

k=dmin

k−α+2 <∞ iff α > 3. (1.20)
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Thus, the degrees of power law graphs with α ∈ (2, 3) have a finite mean but

an infinite variance, and are sometimes referred to as scale free networks as they

lack a characteristic degree or scale. Another feature that makes the α ∈ (2, 3)

regime interesting is that the graphs are “ultra small world” by which we mean that

they have a mean hop distance h ∼ log log n [24]; the diameter is also ∼ log log n if

dmin ≥ 3 [25].

In order to estimate dmax, from (1.8) we have

n c

∞∑
k=dmax+1

k−α ≈ 1 (1.21)

Approximating the sum in (1.21) by an integral,

dmax ≈ dmin n
1/(α−1). (1.22)

This means that when α > 1, large power law graphs can have large degree vertices

or hubs.

1.5 Stochastic processes with random networks

In this dissertation, we study stochastic processes involving random graphs. Specif-

ically, our processes will be continuous time homogeneous Markov processes.

Let our initial random graph be G0 whose distribution is known to be π0. We

are interested in the distribution πt(G) = P(Gt = G) of the graph for t > 0. Given

the present state of the graph, the future states are independent of the past states.

In an infinitesimal amount of time dt, the distribution evolves according to

P(Gt+dt = G|Gt = G′) =

{
Λ(G′ → G)dt if G 6= G′

1−
∑

G′′ 6=G′ Λ(G′ → G′′)dt if G = G′
(1.23)
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where Λ(G′ → G) is the time independent transition rate from G′ to G. This means

π̇t(G) =
∑
G′

[πt(G
′) Λ(G′ → G)− πt(G) Λ(G→ G′)]

=
∑
G′

πt(G
′)

[
Λ(G′ → G)− 1G′=G

∑
G′′

Λ(G→ G′′)

]
. (1.24)

Equation (1.24) may be written compactly in matrix form as

π̇t = πt R ⇒ πt = π0 e
Rt, (1.25)

where πt is the vector whose elements are πt(G) and R, called the generator of the

stochastic process, is the matrix with elements

R(G′, G) = Λ(G′ → G)− 1G′=G
∑
G′′

Λ(G→ G′′) (1.26)

We say that steady state has been reached when π̇t = 0. This means that the

steady state distribution π∗ satisfies

π∗ R = 0 (1.27)

Equivalently, the steady state is given by

π∗ = lim
t→∞

πt = lim
t→∞

π0 e
Rt. (1.28)

The steady state is an equilibrium if the more restrictive detailed balance condition

is satisfied :

π∗(G
′) Λ(G′ → G) = π∗(G) Λ(G→ G′) ∀ G,G′ , (1.29)

so that the system looks the same going forward or backward in time. Systems that

do not satisfy detailed balance are termed non-equilibrium systems. One is usually

interested in the steady state value ρ∗ ≡ ρ(π∗) of some attribute ρ of the random

graph.
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1.6 Phase transitions involving networks

The G(n, p) model discussed in Section 1.4.3 may be viewed as a growth model,

where starting with n vertices, one visits vertex pairs sequentially and adds an edge

between them with probability p. The resulting graph in the n→∞ limit can then

be treated as a thermodynamic system described by the parameter µ. Fig. 1.1 shows

that this system undergoes a phase transition when the parameter µ crosses 1. In

this Section, we discuss this phenomenon as a general feature exhibited by many

systems.

A phase transition is a qualitative change in the nature of a thermodynamic

system at a particular value λc , called the critical point, of the parameter λ (e.g.:

temperature) that describes the system. Note that λ here could represent a collection

of parameters. The “orderedness” or symmetry of the system is captured by some

judiciously chosen attribute (typically a scalar, but not necessarily so) called its order

parameter ρ∗(λ). At the critical point, the function ρ∗(λ) is non-analytic, and usually

takes different functional forms on either side of λc. For instance, in the G(n, p)

model, ρ∗(µ) = 0 below the critical point, and ρ∗(µ) = 1 + µ−1W (−µe−µ) above

it. Thus, the phases of a system may be distinguished by their respective functional

forms of ρ∗(λ). Phases on either side of the critical point are sometimes called the

ordered (lower symmetry) and disordered (higher symmetry) phases respectively.

Depending on how the order parameter changes at the critical point, the phase

transition is classified as continuous or discontinuous. The boiling of water to vapor

at a fixed pressure (less than 217.7 atm) is a discontinuous phase transition, while

the transition of the Ising ferromagnet from a non-magnetic to a magnetic phase

when cooled (at zero external field) is a continuous phase transition. Returning

to the G(n, p) model, the order parameter is the fraction of vertices in the giant

component, and the phase transition is continuous.
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Diverse physical systems have been found to show similar behavior near the criti-

cal region leading to the notion of universality, and attempts to classify systems into

universality classes [26]. In the case of continuous transitions, many quantities (e.g.:

order parameter, susceptibility ∂ρ/∂λ, correlation length, etc.) associated with the

system scale as a power law near the critical point, e.g.: |ρ∗(λ)−ρ∗(λc)| ∼ |λ−λc|−b.

The scaling exponents depends only on a few aspects of the system such as its di-

mension, and not on its microscopic details, and thereby unify disparate systems

into a small number of universality classes. We shall not dwell on this topic further,

but instead direct the interested reader to classic books on the subject such as [27]

and [28]. A detailed discussion, specific to networks, can be found in [29].

1.6.1 Equilibrium vs. non-equilibrium systems

In Section 1.5, we introduced equilibrium and non-equilibrium systems. In the con-

text of phase transitions, it is instructive to elaborate on the differences between the

two.

In an equilibrium system (or set of graphs) G, one can define a Hamiltonian or

“energy function” H(G) ∀ G ∈ G such that the equilibrium distribution is the Gibbs

distribution π∗(G) ∼ e−βH(G), where β is some “inverse-temperature” parameter.

Alternatively, the equilibrium distribution is the one that maximizes the entropy

−
∑

G π(G) log π(G) [30]. This means that in (1.27), one already knows π∗ up to

a normalization constant (whose calculation, albeit, is usually challenging). If one

needs to simulate the system to calculate thermodynamic quantities, one just needs

to devise transition rates that satisfy detailed balance. As far as the equilibrium

state is concerned, the dynamics is irrelevant. On the contrary, for non-equilibrium

systems, π∗ is not available for “free”; the dynamics are important making the

analysis more involved [31]. Obvious examples of non-equilibrium systems are the

ones that contain an absorbing state, i.e., a state that can be reached but not left.
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The systems studies in Chapters 2 and 3 are non-equibrium systems, while Chapter

4 deals with one in equilibrium.

1.6.2 Approximate analytical methods

The definition of phase transitions we gave earlier is reminiscent of the phenomenon of

bifurcations in nonlinear dynamical systems. How are the two related? To start with,

bifurcations are defined for finite dimensional dynamical systems, where as phase

transitions occur in the thermodynamic limit, i.e., the phase space of the system is

infinite dimensional. In finite dimensional stochastic systems, the transitions are not

sharp due to the noise [32].

In almost all models of network dynamics, it is impossible to analytically calculate

the steady state distribution π∗. Even if the distribution is known, the calculation of

ρ∗ and other statistics (expected value of properties of the graph) of interest is usually

intractable. One therefore resorts to approximate methods. The primary aim of all

these methods is to convert the infinite dimensional dynamical system into a finite

dimensional one, which one can then describe and analyze using tools from nonlinear

dynamics. The approximated nonlinear dynamical system might show bifurcations,

which (hopefully) correspond to the phase transitions in the thermodynamic system,

thus providing a rough qualitative picture of the transition.

For dynamics on networks, one usually attempts an analytical study by writing

down the dynamical equations for the various moments of the network. By moment

of a graph, we mean the expected number of copies a certain small labeled graph

it contains (e.g.: two connected vertices, one in “on” state and the other “off”).

We will call the number of vertices in the subgraph as the order of the moment.

However, the equations for moments of a certain order will almost inevitably involve

moments of higher orders, thereby forming an infinite hierarchy of equations. We

can trucate this infinite set of equations at some level by what are known as mo-
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ment closure techniques [33]. Specifically, we approximate the higher order moments

by lower order moments, and thereby create a closed set of equations. Obviously,

higher the truncation level, the better the approximation. The simplest of these, i.e.,

truncating at the first level, is known as the mean field approximation (MFA). The

MFA essentially replaces the complex interaction of the elements the graph among

each other, by interactions of each element with an unknown average “field” that

permeates the graph. Improving on the MFA is the pair approximation where one

decomposes third order moments into products of second order ones [34].

1.7 Overview of the projects

This dissertation is a study of three models of network dynamics that form chapters

2, 3 and 4 respectively. Below we provide an overview of the projects.

Chapter 2 deals with a model, for the spread of opinion in a social network, known

as the voter model. In this model each vertex of the network can be in one of many

(2 in our case, which we label as 0 and 1) possible states (opinions). The network

gets continuously updated by a randomly selected vertex adopting the opinion of

one of its neighbors. Such a rule embodies the tendency of vertices to imitate their

neighbors [35]. Our project titled “Graph Fission in an Evolving Voter Model”, is

a coevolving variant of the voter model wherein vertices are allowed to either adopt

the neighbor’s opinion with probability 1−α or to “rewire” to another vertex in the

network with probability α . We study two versions here: rewire-to-same, where the

rewiring happens only to a vertex of the same opinion and rewire-to-random, where

it can happen to any randomly chosen vertex . Through simulations starting with

various fractions ρ0 of ‘1’ vertices , we find a phase transition in the final minority

fraction ρ of voters as α is varied – continuous for the rewire-to-random case (Fig. 2.2)

and discontinuous for the rewire-to-same case (Fig. 2.1). Specifically, in the rewire-

to-same case, there is a critical value αc which does not depend on ρ0, with ρ ≈ ρ0
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for α > αc and ρ ≈ 0 for α < αc. In the rewire-to-random case, the transition point

αc(ρ0) depends on the initial density ρ0. For α > αc(ρ0), ρ ≈ ρ0, but for α < αc(ρ0)

we have ρ(α, ρ0) = ρ(α, 1/2). The main result of the project is an explanation of

these phase transitions.

In the simulations, we notice that for the rewire-to-random version, the number

of discordant edges n01 quickly drops to about half of its initial value and that there

is a significant correlation between the number n1 of vertices in state 1 and n01

(Fig. 2.3). Further, a plot of n01 vs. n1 reveals an interesting curve which we call the

arch (Fig. 2.4). Guided by these observations, we conjectured that, after an initial

transient period, all statistics on the network converge to the arch, i.e., depends

only on n1 and diffuses on it until n01 becomes zero. The arch is able to explain

the continuous phase transition as follows. The support interval of the arch shrinks

with increasing α. So n1 values that start outside this interval remain unaltered

at equilibrium, whereas n1 values that start within the support interval end up at

either boundaries of the interval. For the rewire-to-same model, the arches always

span (0, 1) but flatten with increasing α, coinciding with the n1 axes at the critical

value and inverting beyond that. This explains the discontinuous phase transition.

We also try to determine the equation for the arch through approximate calculations

– mean field, pair approximation and approximate master equation, whose agreement

with the simulation results improve in that order.

The author was one among eight researchers who participated in this project that

started in the fall of 2010. The author’s own association with the project began in

the summer of 2011 and his work involved performing some of the approximate calcu-

lations and numerical simulations, in particular, Fig. 2.3which led to the conjecture

about the arch. The contents of Chapter 2 are taken from the published version of

the work [36].

Chapter 3 deals with the quadratic contact process (QCP) on random graphs
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and their associated phase transitions. The quadratic contact process (QCP) is a

natural extension of the well studied linear contact process. In the linear contact

process, similar to the voter model, vertices can be in one of two states – infected

(1) or susceptible (0); and infected individuals infect susceptible neighbors at rate λ

and at rate 1, recover (1 −→ 0)]. In the QCP, a combination of two 1’s is required

to effect a 0 −→ 1 change. We extend the study of the QCP, which so far has

been limited to lattices, to complex networks. However, unlike in the evolving voter

model, the topology of the network does not change. We define two versions of

the QCP – vertex centered (VQCP) and edge centered (EQCP) with birth events

1− 0− 1 −→ 1− 1− 1 and 1− 1− 0 −→ 1− 1− 1 respectively, where ‘−’ represents

an edge. We investigate the effects of network topology by considering the QCP on

random regular, Erdős-Rényi and power law random graphs. We perform two types

of mean field calculations suited for networks with homogeneous and with heavy

tailed degree distributions respectively, as well as simulations to find the steady

state fraction of occupied vertices as a function of the birth rate. We also give a few

rigorous results about the models. Combining our simulation, mean field calculation

and rigorous results, we conclude that on the homogeneous graphs – random regular

and Erdős-Rényi graphs, there is a discontinuous phase transition with a region of

bistability, whereas on the heavy tailed power law graph, the transition is continuous.

Furthermore, the critical birth rate is positive in the former but zero in the latter.

Chapter 4 introduces a class of models of evolving spatial networks which we call

the Evolving Spatial Network Model (ESNM), motivated by earlier models studied

by Henry et al. [37] and by Magura et al. [38] in the context of social networks. The

network evolves with a tendency to reduce its total length by rewiring of edges only,

following a Metropolis-Hastings algorithm. In a rewiring attempt, shorter edges

are always accepted while longer edges are accepted with a probability that decays

exponentially with the change in length. In a second version of the model, we also
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require the network to satisfy some constraint (for e.g., the network is connected) at

all times. The evolving networks have an equilibrium distribution π(G) ∼ exp[−β×

total edge length] which depends on four parameters – the dimension of the space,

the average degree, β, and the constraint.

We first consider the ESNM with no constraint imposed on the networks, which

could be a model for a social network where individuals have fixed opinions and

adjust their ties to be connected to people with similar opinion. The extreme values

of the parameter β lead to equilibrium networks that have been well studied in the

literature: β = 0 corresponds to the Erdős-Rényi random graph, while β →∞ results

in the random geometric graph where every vertex is connected to all its spatial

neighbors up to a certain fixed distance. For intermediate values of β, following

Magura et al. , we use an equivalent percolation model wherein every vertex pair

{x, y} is independently connected with a probability g(|x − y|). A proper choice of

the function g(·) makes the properties of networks in both models approach each

other. Using the percolation model, we compute analytically and by simulation

some quantities of interest, such the distribution of edge lengths, the fraction of

vertices in the largest component, and the clustering coefficient.

We also study the ESNM with the constraint that the network be connected.

This evolution model has potential applications in the design of transportation and

distribution networks. With this constraint and β large , the model can be viewed

as an algorithm to find the shortest length connected network (which we refer to

as the optimized network) with a given mean degree over a set of points. On the

other hand, with β = 0, the equilibrium network is a random connected network

(RCN). The connectedness constraint precludes an equivalent percolation version,

as it existed for the unconstrained model. So we obtain an approximation to the

optimized network by simulating the model with a large value of β.

The projects in Chapters 3 and 4 are joint works of the author with his advisor
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Rick Durrett. The author was involved in both the computational and analytical

aspects of the research. The contents of Chapter 3 is taken from the published

version [39] of the work, while that of Chapter 4 is from the manuscript that will be

submitted soon after his thesis defense.

In Chapter 5, we provide some closing remarks on the results from the three

projects. We conclude this introductory chapter by pointing out the key similarities

and differences between the stochastic network dynamics in the models considered

in the three projects : In all the cases, the starting network is random in its vertex

set, its edge set, and in its vertex states. In the QCP and ESNM, the evolution

happens exclusively in their vertex states and edge sets respectively. Thus the QCP

is a dynamics on networks, while the ESNM deals with dynamics of networks. In

contrast, the evolution of the edge set and the vertex states are coupled in the

evolving voter model, making it a coevolving network model. Furthermore, the

ESNM is an equilibrium model, while the evolving voter model and the QCP are

non-equilibrium models.
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2

Graph Fission in an Evolving Voter model

In recent years, research efforts from different disciplines have combined with estab-

lished studies in social network analysis and random graph models to fundamentally

change the way we think about networks. Significant attention has focused on the

implications of dynamics in establishing network structure, including preferential

attachment, rewiring, and other mechanisms [40–44]. At the same time, the im-

pact of structural properties on dynamics on those networks has been studied, [45],

including the spread of epidemics [1, 46–48], opinions [11, 35, 49], information cas-

cades [50–52], and evolutionary games [53, 54]. Of course, in many real-world net-

works the evolution of the edges in the network is tied to the states of the vertices

and vice versa. Networks that exhibit such a feedback are called adaptive or coevo-

lutionary networks [55, 56]. As in the case of static networks, significant attention

has been paid to evolutionary games [57–60] and to the spread of epidemics [61–65]

and opinions [66–71], including the polarization of a network of opinions into two

groups [37, 72]. In this paper, we examine two closely related variants of a simple,

abstract model for coevolution of a network and the opinions of its members.
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2.1 Holme-Newman Model

Our starting point is the model of Holme and Newman [73–76]. They begin with a

network of n vertices and m edges, where each vertex x has an opinion s(x) from a

set S of possible opinions and the number of people per opinion an = n/|S| stays

bounded as n gets large. On each step of the process, a vertex x is picked at random.

If its degree d(x) = 0, nothing happens. If d(x) > 0, then (i) with probability α

an edge attached to vertex x is selected and the other end of that edge is moved to

a vertex chosen at random from those with opinion s(x); (ii) otherwise (i.e., with

probability 1−α) a random neighbor y of x is selected and we set s(x) = s(y). This

process continues until there are no longer any edges connecting individuals with

different opinions.

When α = 1, only rewiring steps occur, so once all of the m edges have been

touched, the graph has been disconnected into |S| components, each consisting of

individuals who share the same opinion. Since none of the opinions have changed

the components are small (i.e., their sizes are Poisson with mean an). By classical

results for the coupon collector’s problem, this requires ∼ m logm updates, (see e.g.,

page 57 in [77]).

In contrast, for α = 0 this system reduces to the voter model on a static graph.

If we suppose that the initial graph is an Erdös-Rényi random graph in which each

vertex has average degree µ > 1, then, as we discussed in Section 1.4.3, there is a

giant component that contains a positive fraction, b n, of the vertices and the second

largest component is small having only O(log n) vertices, i.e., when n is large the

size will be ≈ cµ log n, where cµ is a constant that depends on µ (see e.g., Chapter

2 of [11]). The voter model on the giant component will reach consensus in O(n2)

steps (see, e.g., Section 6.9 of [11]), so the end result is that one opinion has b n

followers while all of the other groups are small.
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Using simulation and finite size scaling, Holme and Newman showed that there

is a critical value αc so that for α > αc all of the opinions have a small number

of followers at the end of the process, while for α < αc “a giant community of like-

minded individuals forms.” When the average degree µ = 2m/n = 4 and the number

of individuals per opinion an → 10, this transition occurs at αc ≈ 0.46.

2.2 Our Model & Simulation Results

The rewire to same model we study differs from that of Holme and Newman in two

ways: (a) we consider two opinions (called 0 and 1) instead of a number proportional

to the size of the graph; and (b) on each step, we pick a discordant edge (x, y) at

random rather than a vertex, avoiding the problem of picking vertices with degree 0

or vertices that agree with all of their neighbors. With probability 1 − α the voter

at x adopts the opinion of the voter at y. Otherwise (i.e., with probability α), x

breaks its connection to y and makes a new connection to a voter chosen at random

from those that share its opinion. The process continues until there are no edges

connecting voters that disagree.

Despite the differences in implementation, this rewire to same model has a phase

transition similar to that of Holme and Newman. In particular, the final fraction ρ of

voters with the minority opinion undergoes a discontinuous transition at a value αc

that does not depend on the initial density. Figure 2.1 shows results of simulations

for the rewire to random model starting from an initial graph that is Erdös-Rényi

with n = 100, 000 vertices and average degree µ = 4. Opinions are initially assigned

randomly with the probability of opinion 1 given by ρ0 = 0.5, 0.25, 0.1, and 0.05.

The figure shows the final fraction ρ of voters with the minority opinion from five

realizations for each ρ0. For α > αc ≈ 0.43 we observe ρ ≈ ρ0 and for α < αc ρ ≈ 0.

We also study a rewire to random variant of this model that differs from the

rewire to same model in only one way: x makes its new connection to a voter chosen
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Figure 2.1: Simulation results for rewire to same model, starting from Erdös-Rényi
graphs with n = 100, 000 nodes and average degree µ = 4.

at random from all of the vertices in the graph. This single difference leads to

fundamentally different model outcomes, as seen in Figure 2.2, showing simulation

results for the rewire to random model on initially Erdös-Rényi graphs with n =

100, 000 nodes and average degree µ = 4 for ρ0 = 0.5, 0.25, 0.1, and 0.05. When

ρ0 = 0.5 the fraction in the minority is constant at 0.5 over [αc(0.5), 1] and then

decreases continuously to a value near 0 as α decreases to 0.

The behavior of our models for α > αc is easy to understand. As in the case

of the Holme and Newman model, we expect consensus to be reached in O(n log n)

steps when α = 1 and in O(n2) steps when α = 0. We define the boundary between

the fast and slow consensus regimes to be the value of α where the average number

of steps needed to reach consensus is n3/2 (any power between 1 and 2 would give the

same results when n → ∞). When an edge is chosen between voters with different

opinions then a rewiring event does not change the number of 1’s, while a voting
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Figure 2.2: Simulation results for the rewire to random model, starting from Erdös-
Rényi graphs with n = 100, 000 nodes and average degree µ = 4.

event will increase and decrease the number of 1’s with equal probability, i.e., the

number of 1’s is a random walk that on each step stays constant with probability α.

The central limit theorem implies that when consensus is reached in O(n3/2) steps

the typical change in the number of 1’s from the initial configuration is O(n3/4).

Hence, when the initial fractions of 1’s is ρ0 ≤ 1/2 the final fraction ρ with the

minority opinion will be approximately equal to ρ0.

Turning to the curves in Figure 2.2 for ρ0 = 0.25, 0.1 and 0.05, we see that

each initial density ρ0 has a critical value αc(ρ0) so that for α > αc(ρ0) we have

ρ(α, ρ0) = ρ0, while for α < αc(ρ0) we have ρ(α, ρ0) = ρ(α, 0.5). Since all of the

ρ(α, ρ0) agree with ρ(α, 0.5) when they are < ρ0, we call the graph of ρ(α, 0.5) on

[0, αc(0.5)] the universal curve. The main goal of this paper is to explain this

phenomenon.
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2.3 Quasi-stationary distributions

Let ni be the number of vertices in state i. Our first clue to the reason for a universal

curve in the rewire to random model came from Figure 2.3, which shows the change

over time of the fraction of vertices with the minority opinion min{n1, n0}/n and the

number of edges connecting vertices with opposite opinions, n1−0, for a simulation

in which the initial density of 1’s is ρ0 = 1/2, α = 0.3, the number of nodes is

n = 1000, and we start with an Erdös-Rényi graph with average degree µ = 4.

In the visualization of these results and the theoretical discussions that follow, the

model is considered in continuous time with each edge subject to change at times

of a rate one Poisson process. The sequence of states visited by the model is the

same in discrete or continuous time, but tm updates correspond to continuous time

t. Hence, in the slow consensus regime O(n2) updates becomes time O(n).

There are m ≈ 2000 edges in this graph simulated in Figure 2.3, so the initial

number of 1-0 edges is ≈ 1000, but the curve drops very quickly to a value near

600, and then begins to change more slowly. The second key observation is that the

number of 0-1 edges and the fraction with the minority opinion min{n1, n0}/n appear

to be strongly correlated. The initial transient and the reason for the correlation will

be seen more clearly in Figure 2.4.

To explain the key insight derived from this simulation, we recall results for the

voter model on the D-dimensional integer lattice ZD in which each vertex decides

to change its opinion at rate 1, and when it does, it adopts the opinion of one of its

2D nearest neighbors chosen at random. Let st(x) be the opinion of the voter at x

at time t. Holley and Liggett (see [78], [79]) proved the following result.

Theorem 1. In D ≤ 2, the voter model approaches complete consensus that is, if

x 6= y then P(st(x) 6= st(y)) → 0. In D ≥ 3 if the voter model starts from product

measure with density u, i.e., s
(u)
0 (x) are independent and equal to 1 with probability
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Figure 2.3: Fraction of nodes with the minority opinion (min{n0, n1}/n) and the
number of discordant edges n10 versus time, for a simulation of n = 1000 nodes,
ρ0 = 0.5, and α = 0.3.

u then s
(u)
t converges in distribution to a limit νu, which is a stationary distribution

for the voter model.

Simulations of the voter model are done on a finite set, typically the torus (Z mod

L)D. In this setting the behavior of the voter model is “trivial” because it is a finite

Markov chain with two absorbing states, all 1’s and all 0’s. As the next result due

to Cox and Greven [80] shows, the voter model has interesting behavior along the

road to absorption.

Theorem 2. If the voter model on the torus in D ≥ 3 starts from product measure
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Figure 2.4: Plot of n10/m versus n1/n when α = 0.5 in the rewire to random
case. Five simulations starting from ρ0 = 0.2, 0.35, 0.5, 0.65, and 0.8 are plotted in
different colors. These results are from graphs with n = 10, 000 vertices and plotted
every 1, 000 steps.

with density u then at time nt it looks locally like νθ(t) where the density θt changes

according to the Wright-Fisher diffusion process

dθt =
√
ηD · 2θt(1− θt)dBt

and ηD is the probability that two random walks starting from neighboring sites never

hit, and Bt is standard Brownian motion.

In the next section we will describe conjectures for the evolving voter model that

are analogues of the the last theorem. To prepare for stating our conjectures note

that (i) while the voter model on the torus does not have a nontrivial stationary
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distribution, it does have a one parameter family of quasi-stationary distributions 1

that look locally like νu and (ii) the quantity under the square root in the Wright-

Fisher diffusion is, by results of Holley and Liggett, the expected value of n10/m

under νθ(t).

2.4 Conjectures

Our next goal is to use simulation results to formulate the analogues of the Cox and

Greven result for our two evolving voter models, beginning with the more interesting

rewire to random case. Figure 2.4 shows results from simulations of the system with

α = 0.5. The initial graph is Erdös-Rényi with n = 10, 000 vertices and average

degree µ = 4. Observations of the pair (n1/n, n10/m) are plotted every 1, 000 steps

starting from densities ρ0 = 0.2, 0.35, 0.5, 0.65 and 0.8. The plotted points converge

quickly to a curve that is approximately (fitting to a parabola) 1.707x(1−x)−0.1867

and then diffuse along the curve until they hit the axis near 0.125 or 0.875. Thus

the final fraction with the minority opinion ρ ≈ 0.125, a value that agrees with the

universal curve in Figure 2.2 at α = 0.5.

The fact that, after the initial transient, n10/m is a function of n1/n supports

the conjecture that the evolving voter model has a one parameter family of quasi-

stationary distributions, for if this is true then the values of all of the graph statistics

can be computed from n1/n. To further test this conjecture, we examined the joint

distribution of the opinions at three sites. Let nijk be the number of oriented triples

x-y-z of adjacent sites having states i, j, k respectively. Note for example, that in the

010 case this will count all such triples twice.

Figure 2.5 shows a plot of n010/n versus n1/n. After an initial transient, the

observed values stay close to a curve that is well approximated by a cubic. Simula-

1 Quasi-stationary distribution is the eigenvector associated with the smallest non-zero eigenvalue
of the rate matrix. It gives the distribution of states of the network, given that it has not reached
the absorbing state n10 = 0.
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Figure 2.5: Plot of n010/n versus n1/n when α = 0.5 in the rewire to random case.
All simulations start at ρ0 = 0.5, since multiple runs from one starting point are
enough to explore all of the arch. These results are from graphs with n = 100, 000
vertices and plotted every 10, 000 steps.

tions of the other nijk show similar behavior. Since the numbers of 010 triples must

vanish when the number of 1-0 edges do, the fitted cubic shares two roots with the

quadratic approximating the graph of n10/m versus n1/n. This quadratic curve (see

again Figure 2.4 for α = 0.5) is fundamental to our understanding of the observed

system behavior, and we hereafter refer to it as the arch.

The phenomena just described for α = 0.5 also hold for other values of α. Figure

2.6 shows the arches that correspond to α = 0.1, 0.2, . . . , 0.7. Numerical results show

that the curves are well approximated by cαρ0(1− ρ0)− bα. Let (v(α), 1− v(α)) be

the support interval where the arch has positive values. Simulations show that if
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Figure 2.6: Observed arches for the rewire to random model. The specified parabo-
las are fits to simulation data with n = 10, 000, µ = 4.

ρ0 < v(α) then the simulated curve rapidly goes almost straight down and hits the

axis where n10 = 0.

Conjecture 1. In the rewire to random model if α < αc(1/2) and v(α) < ρ0 ≤ 1/2

then starting from product measure with density ρ0 of 1’s, the evolving voter model

converges rapidly to a quasi-stationary distribution να,ρ0. At time tn the evolving

voter model looks locally like να,θ(t) where the density changes according to a gener-

alized Wright-Fisher diffusion process

dθt =
√

(1− α)[cαθt(1− θt)− bα]dBt

until θt reaches v(α) or 1− v(α).
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Figure 2.7: Observed arches for rewire to same model. The specified parabolas are
fits to simulation data with n = 10, 000, µ = 4.

Here the quantity under the square root is (1 − α)n10/m with (1 − α) = the

fraction of steps that are voter steps, since rewiring steps do not change the number

of 1’s.

If Conjecture 1 is true then the universal curve in Figure 2.2 has ρ(α, 0.5) = v(α)

for α < αc(0.5). When α is close to αc(0.5), v(α) ≈ 1/2, so when the evolving voter

model hits n10 = 0 both opinions are held by large groups, and the graph splits into

two giant connected components (that is, their size is proportional to n for large

graphs).

Though the nature of the phase transition looks different in the rewire to same

model, the underlying picture is the same. Figure 2.7 shows arches computed from

simulations for the rewire to same model that correspond to the ones in Figure
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2.6 for the rewire to random model. However, now all the arches have the same

support interval, (0, 1), and the formulas in that figure show that the curves are well

approximated by cαρ0(1− ρ0) for different values of cα.

In the rewire to same case, Vazquez, Egúıluz and San Miguel [75] were the first

to notice that the fraction of active links n10/m plotted versus the fraction of 1’s

converged rapidly to an arch and then diffused along it (see their Figure 4). However,

they did not formulate the following:

Conjecture 2. In the rewire to same model the behavior is as described in Conjecture

1 but now bα = 0, so αc is independent of the initial density ρ0, and for α < αc,

ρ ≈ 0.

2.5 Discussion

We have considered a model in which the opinions of individuals and network struc-

ture coevolve. Based on the simulations we conclude that,

(i) there is a discontinuous transition in the rewire to same model, similar to that

in Holme and Newman [73], which occurs at an αc independent of the initial fraction

ρ0 of 1’s;

(ii) there is a continuous transition in the rewire to random model at the critical

value αc(ρ0) that depends on ρ0, and the curves for the final fraction ρ(α, ρ0) of

voters in the minority agree with ρ(α, 1/2) for α < αc(ρ0).

Thus our study shows how the disintegration of a social network containing two

opinions on a polarizing issue, could depend on the strength of the polarization

(i.e, the parameter α), and on whether the individuals have prior knowledge of the

opinion of strangers whom they might befriend. Although the latter appears to be

a minor variation in the dynamics of the model, it results in a large change in the

qualitative behavior, i.e., discontinuous vs. continuous transition. If we compare
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Fig. 2.1and Fig. 2.2, the behavior in the region between α ≈ 0.43 and α ≈ 0.74,

is not surprising. That is, for a given rewiring probability, if voters always try to

connect to someone of the same opinion, the network splits very quickly, giving them

insufficient time to influence each other. On the other hand, if the voters tend to

“befriend strangers”, the network is unlikely to break for a long time during which

voters alter each others’ opinions. However, when the rewiring probability is outside

the above mentioned range, the network stays intact for the same (α > 0.74), or even

a longer (α < 0.43), period of time when voters are specifically choosing like minded

friends, rather than any stranger. This is a bit counterintuitive.
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3

The Quadratic Contact Process on Complex
Networks

3.1 Introduction

Inspired by technological and social networks, the study of complex networks has seen

a surge in the past fifteen years [1,10,43,44,81]. Research has traditionally progressed

in two distinct directions – dynamics of networks and dynamics on networks. The

former is concerned with the formation of a network or change in its structure with

time, whereas the latter deals with processes (deterministic or stochastic) taking

place on a fixed network. Preferential attachment and its many generalizations [40,

82] are prototypical examples of the first type. Examples of the second are epidemics

[46, 47, 83, 84], the voter model for the spread of an opinion [11, 35, 49], cascades

[50–52] that model spread of a technology, and evolutionary games [53]. The phase

transitions [29,45] associated with these models have been of particular interest.

In the mathematics community, spatial models are studied under the heading

of interacting particle systems [85]. One of the simplest models of those models is

the contact process [86–88] (equivalent to the SIS model in epidemiology). In the
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linear contact process each site can be in one of two states which we will call 1 and

0. 0’s become 1 at a rate proportional to the number of 1 neighbors they have and

1’s become 0 at a constant rate (here and in all following models, unless otherwise

specified, the processes occur in continuous time).

A natural extension of the linear process is the quadratic contact process (QCP)

where each 0→ 1 event will require two other sites in state 1. We will occasionally

refer to 1 as being the “occupied” state and 0 as being “vacant”, and the events 0→ 1

and 1→ 0 to be birth and death events respectively. At this stage, the model is quite

general in that we do not specify where the two 1’s that cause the 0→ 1 event must

be located with respect to the 0. On the 2D lattice, specifying these locations leads

to different realizations of the QCP. For example, Toom’s North-East-Center model

(originally defined in discrete time) allows a 0 at site x to be filled if its neighbors

x+(0, 1) and x+(1, 0) are occupied [89]. Chen [90,91] has studied versions of Toom’s

model in which two or three specified adjacent pairs or all four adjacent pairs are

allowed to reproduce. Evans, Guo and Liu [92–96] have studied the QCP as a model

for adsorption-desorption on a two dimensional square lattice. In the version of the

model studied by Liu [96], 0 becomes 1 at rate proportion to the number of adjacent

pairs of 1 neighbors. He found a discontinuous phase transition with a region of

bistability, where the 1’s die out starting from a small density. He also found that

by introducing spontaneous births at a sufficiently high rate, the transition becomes

continuous.

The QCP is similar to Schlögl’s second model [97] of autocatalysis character-

ized by chemical reactions 2X −→ 3X,X −→ ∅ where X represents the reactant.

Grassberger [98] studied a version of Schlögl’s second model in which each site has

a maximum occupancy of two and doubly occupied sites give birth to a neighboring

vacant site. He found that the model shows a continuous phase transition in 2D.

Studies to date on the QCP have been limited to regular lattices in low dimen-
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sions. In this paper, we extend the study to complex networks. There are two ways

to view the QCP on networks:

• as a model that replaces the linear birth rate of the contact process that has

been extensively studied on networks [99,100], by a quadratic birth rate.

• as an alternative model for the spread of rumors, fads and technologies such as

smart phones in a social network. In sociology the requirement of more than a

single 1 for the “birth” event is called complex contagion [101]. Also related are

the threshold contact process [102] and models for the study of “cascades” [51].

The key difference here is that the QCP involves a death event that represents

the loss of interest in the fad or technology and the rate for birth events is a

function of the actual number and not the fraction of occupied neighbors.

The questions we are interested in are: How does network topology affect the

phase transitions? What model and network features lead to discontinuous versus

continuous phase transitions?

The rest of this chapter is organized as follows. We define the specific QCP that

we study in Section 3.2 and we do mean field calculations in Section 3.3. In Section

3.4 we present a few rigorous results about the QCP. Simulation results are presented

in Section 3.5, followed by some concluding remarks in Section 3.6.

3.2 Model definition

The birth event in the linear contact process can be formulated as each 1 − 0 edge

converts to a 1−1 edge at a constant rate λ. Such a definition can be easily extended

to the quadratic case by defining the birth event in terms of connected vertex triples.

Two such definitions are possible: 1−0−1 −→ 1−1−1, and 1−1−0 −→ 1−1−1. We

call the former version the vertex centered QCP (VQCP) because the central 0 vertex
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is getting filled by its two neighboring 1s, and the latter as the edge centered QCP

(EQCP) as it can be viewed as a 1− 1 edge giving birth on to a neighboring vacant

vertex. Note that the models can also be defined in terms of how a vacant vertex gets

filled i.e., suppose that a 0 vertex has k 1 neighbors and j 1− 1 neighbors1, then the

0 vertex will become 1 at rates
(
k
2

)
λ and jλ in the VQCP and EQCP respectively.

Death events 1 −→ 0 occur at rate 1 as in the linear process.

If the death rate is changed to zero, the VQCP reduces to bootstrap percola-

tion [103], where vertices that are occupied remain occupied forever, and vacant

vertices that have at least two occupied neighbors become occupied. While boot-

strap percolation is typically defined in discrete time, the final configuration of the

network is independent of whether the dynamics happens in discrete or continuous

(as in our model) time.

We will use random graphs as models for complex networks on which the QCP

is taking place. We will denote by d the degree of a randomly chosen vertex in the

network and the degree distribution by pk = P(d = k). We are interested in networks

with size n→∞ and where the vertex degrees are uncorrelated. The specific random

graphs that we will consider are

• Random regular graphs RR(µ) in which each vertex has degree µ. Since every-

one has exactly µ friends, this graph is not a good model of a social network.

However, the fact that it looks locally like a tree will facilitate proving results.

• Erdős-Rényi random graphs ER(µ) where each pair of vertices is connected

with probability µ/n. In the n → ∞ limit, the degree distribution of the

limiting graph is Poisson with mean µ. This is a prototypical model for the

situation in which the degree distribution has a rapidly decaying tail.

• Power law random graphs PL(α) with degree distribution pk = ck−α. We

1 The number of 1−1 neighbors of a vertex x is |{(y, z) : {x, y}, {y, z} ∈ E, z 6= x, s(y) = s(z) = 1}|
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are particularly interested in graphs where the exponent α lies between 2 and

3, which has been found to be the case for many real world networks [3].

We construct our graphs using the configuration model, so the degrees are

uncorrelated.

We will occasionally refer to RR and ER as homogeneous networks as their degree

distributions are peaked around the mean, in contrast to PL where the distribution

has a heavy tail.

3.3 Mean field calculations

We can attempt an analytical study of the dynamics by writing the equations for the

various moments of the network. Let g be a small graph labeled with 1’s and 0’s.

We define the g−moment, written as 〈g〉, of a {0, 1} valued process on a graph G as

the expected number of copies of g that exist in the set of all subgraphs of G. For

example if g = 1− 0− 1, we look at all the connected vertex triples in the network

and count the ones where the center vertex is in state 0 and the other two vertices

are in state 1. We will write ρ(λ, ρ(0); t) as the density 〈1〉/n at time t with a birth

rate of λ and an initial configuration where each vertex is independently occupied

with a probability ρ(0). The order parameter for our phase transitions is the steady

state density

ρ∗(λ, ρ
(0)) = lim

t→∞
ρ(λ, ρ(0); t) . (3.1)

We define the critical birth rate λc as the birthrate above which there exists a stable

steady state density that is greater than zero, i.e.,

λc = inf{λ : ρ∗(λ, 1) > 0} . (3.2)

In the definition above, we chose ρ(0) = 1 since it has the best chance of having

a positive limit. We also define a critical initial density ρc as the minimum initial
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density required to reach a positive steady state density when the birth rate is infinite,

i.e.,

ρc = inf{ρ(0) : lim
λ→∞

ρ∗(λ, ρ
(0)) > 0} . (3.3)

From their definitions, it is straight forward to write the dynamical equations of

〈1〉 for the VQCP and the EQCP,

d

dt
〈1〉 = −〈1〉+ λ

{
〈1− 0− 1〉 for the VQCP

〈1− 1− 0〉 for the EQCP
. (3.4)

If we were to write the equations for the third order moments that appear on the

RHS of (3.4), those equation would involve still higher order moments. Continuing

this way, we end up with an infinite series of equations that are not closed. Therefore

we resort to a mean field approximation by assuming the states of neighbors of a

vertex to be independent at all times.

3.3.1 Homogeneous networks

In the following we do a naive calculation that ignores the correlation between degree

and occupancy, which should be reasonable for homogeneous networks. With these

assumptions, 〈1− 0− 1〉 will be nρ2(1− ρ)E
[(
d
2

)]
. Plugging this value into (3.4) we

get

ρ̇ = −ρ+ λρ2(1− ρ)E
[(
d

2

)]
. (3.5)

Setting the RHS of (3.5) to zero gives a cubic equation whose roots are the possible

steady state densities ρ∗. Clearly, zero is a trivial root of (3.5). The other two roots

are

ρ± =
1

2

[
1±

√
1− λc

λ

]
. (3.6)

These solutions are real only when λ > λc = 4/E
[(
d
2

)]
. In the language of nonlinear

dynamics, (3.5) exhibits a saddle node bifurcation at λc. It is easy to see that zero

46



0 Λc
Λ
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Ρ*

Figure 3.1: The solid red (top), dashed and solid blue (bottom) curves correspond
to ρ∗ = ρ+, ρ− and 0 respectively obtained from the mean field calculation for both
QCP types on homogeneous networks.

and ρ+ are stable fixed points whereas ρ− is an unstable fixed point. This can be

seen in Fig. 3.1. The limiting critical initial density is

ρc = lim
λ→∞

ρ− = 0 . (3.7)

For ER(µ) we have E
[(
d
2

)]
= µ2/2 which gives λc = 8/µ2. For PL(α ≤ 3) we have

E
[(
d
2

)]
=∞ so λc = 0 while PL(α > 3) has finite E

[(
d
2

)]
leading to a non-zero value

for λc. The mean field calculation for the EQCP is essentially the same as done above

and predicts the same qualitative features. Thus, for networks with finite E
[(
d
2

)]
,

the simple mean field calculation predicts a discontinuous phase transition at λ = λc

and a region of bistability for λ > λc, for both QCP types.
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3.3.2 Heavy tailed degree distributions

The mean field calculation of Section 3.3.1 is simplistic since it ignores the fact that

the occupancy probability depends on the degree. Pastor-Satorras and Vespignani

[83] improved the mean field approach for the linear contact process by defining ρk,

the fraction of vertices of degree k that are occupied, and θ, the probability that a

given edge points to an occupied vertex. These variables can be related through the

size biased degree distribution qk = kpk/E [d] which is the distribution of the degree

of a vertex at the end of a randomly chosen edge.

θ =
∑
k

qkρk (3.8)

Note that for homogeneous networks we assumed θ = ρ. As before, the state of

the neighbors of a vacant vertex are assumed to be independent. So the number of

occupied neighbors of a vertex of degree k follow a distribution Binomial(k, θ). This

enables us to apply this approach to the VQCP. We write equations for ρk,

ρ̇k = −ρk + λ(1− ρk)
(
k

2

)
θ2 . (3.9)

So in steady state

ρk∗ =
λ
(
k
2

)
θ2
∗

1 + λ
(
k
2

)
θ2
∗
. (3.10)

Combining (3.8) and (3.10) leads us to a self-consistent equation for θ∗.

θ∗ = θ∗I(λ, θ∗) , (3.11)

where,

I(λ, θ) =
∞∑
k=2

kpk
E [d]

[
λ
(
k
2

)
θ

1 + λ
(
k
2

)
θ2

]
. (3.12)
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Clearly, θ∗ = 0 is a solution of (3.11). Finding a non-trivial solution involves solving

I(λ, θ∗) = 1 , θ∗ ∈ (0, 1) . (3.13)

Through the slighty lengthy calculation that follows, we show that for power law

graphs PL(α), the mean field calculation predicts:

• If 2 < α < 3, λc = 0, the transition is continuous, and ρ∗(λ) ∼ λγ(α).

• If α = 3, λc > 0 and the transition is continuous.

• If α > 3, λc > 0 and the transition is discontinuous.

Before attempting to solve (3.13), we note the following facts about it:

(i) I(λ = 0, θ) = 0∀ θ, ruling out any solution to (3.13) when λ = 0.

(ii)

I(λ > 0, θ = 1) =
∞∑
k=2

kpk
µ

[
λ
(
k
2

)
1 + λ

(
k
2

)] < ∞∑
k=2

kpk
µ

= 1. (3.14)

Since I(λ, θ) is continuous, this means that a solution to (3.13) will definitely

exist if ∃λ > 0 :

I(λ, θ → 0) ≥ 1 . (3.15)

(iii) The equality in (3.15) corresponds to the solution (λ = λc, θ → 0).

(iv) If (3.15) is satisfied for λ→ 0, then (λ = λc = 0, θ → 0) is a solution.

(v) If (3.15) is not satisfied, then a θ that solves (3.13) is definitely positive. Also,

∃λ = λc > 0 such that supθ∈(0,1) I(λ, θ) = 1. For λ > λc there will be two roots,

the larger of which is the relevant solution since we must have θ(λ) > θ(λc).

(vi) If θ → 0 solves (3.13), then it corresponds to ρk → 0 ⇒ ρ → 0, and therefore

the transition will be continuous.
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(vii) Conversely, if the solution θ is positive, then it corresponds to ρ > 0, and

consequently the transition will be discontinuous.

0.0 0.2 0.4 0.6 0.8 1.0
Θ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IHΛ ,ΘL

Α = 2.5 , Λ ® Λc = 0

Α = 3, Λ = Λc

Α = 3.5 , Λ = Λc

Figure 3.2: I(λ, θ) versus θ near λ = λc for various power law graphs.

Substituing for pk in (3.12),

lim
θ→0

I(λ > 0, θ) =
c

µ
lim
θ→0

∞∑
k=2

k1−α

[
λ
(
k
2

)
θ

1 + λ
(
k
2

)
θ2

]
. (3.16)

Converting the above sum to an integral by the substitution x = kθ and dx = θ

µ

c
lim
θ→0

I(λ > 0, θ) = lim
θ→0

∞∑
k=2

k1−αθ−2

[
λ
(
k
2

)
θ2

1 + λ
(
k
2

)
θ2

]
θ

= lim
θ→0

θα−3

∫ ∞
0

x1−α λx2/2

1 + λx2/2
dx = lim

θ→0
θα−3f(λ, α), (3.17)

where,

f(λ, α) =
π

2α/2
csc [π (α/2− 1)]λα/2−1 if α ∈ (2, 4), (3.18)
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and +∞ otherwise. Combining (3.17) and (3.18), we find that

lim
θ→0

I(λ > 0, θ) = +∞ if α ∈ (2, 3), (3.19)

satisfying condition (3.15) ∀λ > 0. Thus, combining facts (iv) and (vi), we conclude

that λc = 0 and the transition is continuous when α ∈ (2, 3).

For small θ, I(λ, θ) ∼ θα−3f(λ, α), so that solving I(λ, θ) = 1 gives

θ ∼ [f(λ, α)]1/(3−α) . (3.20)

Now, ρ =
∑

k pkρk. For small θ which corresponds to small ρ, the sum can be

converted into an integral:

ρ ∼
∞∑
k=2

k−α
λ
(
k
2

)
θ2

1 + λ
(
k
2

)
θ2
∼ θα−1

∫ ∞
0

x−α
λx2/2

1 + λx2/2
dx (3.21)

∼ θα−1 f(λ, α + 1) (3.22)

∼ [f(λ, α)](α−1)/(3−α) f(λ, α + 1) ∼ (λ− λc)
γ(α), (3.23)

where the critical exponent

γ(α) =
1

3− α
− 1

2
. (3.24)

When α = 3, the limit I(λ, θ → 0) = (πc/2µ)
√
λ/2 is finite. Now using facts

(iii) and (vi), we conclude that λc =
(
2µ
√

2/πc
)2

is positive, and the transition is

continuous.

Moving on to the case of α > 3, we note that,

I(λ, θ) .
∑
k

k1−α λk2θ/2

1 + λk2θ2/2
=
√
λ bα(θ

√
λ/2), (3.25)

where,

bα(ε) =
∑
k

k3−αε

1 + k2ε2
.
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For α ∈ (3, 4], we split sum in bα(ε) at k = 1/ε, and write bα(ε) = b≤α (ε) + b>α (ε).

b≤α (ε) =
∑
k≤1/ε

k3−αε

1 + k2ε2
≤ ε

∑
k≤1/ε

k3−α

≤ ε

∫ 1/ε

0

x3−αdx =

{
1

4−αε
α−3 if α ∈ (3, 4)

−ε log ε if α = 4

→ 0 as ε→ 0 (3.26)

b>α (ε) =
∑
k>1/ε

k1−α

ε

k2ε2

1 + k2ε2
≤ 1

ε

∑
k=1/ε+1

k1−α

≤ 1

ε

∫ ∞
1/ε

x1−αdk =
1

α− 2
εα−3 → 0 as ε→ 0 (3.27)

Thus, bα(ε) → 0 as ε → 0, which combined with (3.25) gives I(λ, θ → 0) = 0.

Now, using facts (v) and (vii), we conclude that λc is positive and the transition is

discontinuous when α ∈ (3, 4].

For α > 4,

bα(ε) ≤
∑
k

k3−αε→ 0 as ε→ 0. (3.28)

So, the nature of the transition is same as when α ∈ (3, 4]. This completes the

calculation. The behavior of I(λ ≈ λc, θ) for various values of α is shown in Fig. 3.2.

A second way to determine the nature of the phase transition is to adapt the

argument of Gleeson and Cahalane [51], which can be applied if we use a discrete

time version of the model in which a vertex with k neighboring pairs will be occupied

at the next step with probability 1 − (1 − p)k. The computation in their formulas

(1)–(3) supposes that the vertices at a distance n from x are independently occupied

with probability ρ0. The function G(ρ) defined in their (3) gives the occupancy

probabilities at distance k − 1 assuming that the probabilities at distance k are ρ.
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Iterating G n times and letting n→∞ gives a prediction about the limiting density

in the cascade. If one repeats the calculation for our system then 0 is an unstable

fixed point when α < 3, while it is locally attracting for α > 3. This agrees with

the mean-field prediction of λc = 0 in the former case and a discontinuous transition

with λc > 0 in the second.

3.4 Some rigorous results

We have not been able to extend the mean field calculation to the EQCP on power

law graphs, but by generalizing an argument of Chatterjee and Durrett [99] we can

prove that λc = 0 for α ∈ (2,∞). The details are somewhat lengthy, so we only

explain the main idea. Consider a tree in which the vertex 0 has k neighbors and

each of its neighbors has l neighbors and l is chosen so that lλ ≥ 10. One can show

that if k is large then with high probability the infection will persist on this graph for

time ≥ exp(c(λ)k). In a power law graph one can find such trees with k = n1/(α−1).

Using the prolonged persistence on these trees as a building block one can easily show

that if we start with all vertices occupied the infection persists for time ≥ exp(n1−ε)

with a positive fraction of the vertices occupied. With more work (see [104,105]) one

can prove persistence for time exp(c(λ)n).

For both types of QCP it is easy to show that it is impossible to have a discon-

tinuous transition with λc = 0. The proof for VQCP is as follows. Let 〈1k〉 be the

expected number of occupied sites of degree k and 〈10k1〉 be the expected number

of 1-0-1 triples when the 0 vertex has degree k. We can write an equation similar to

(3.4)

d

dt
〈1k〉 = −〈1k〉+ λ〈1− 0k − 1〉 (3.29)

which means at steady state

53



〈1k〉∗ = λ〈1− 0k − 1〉∗ ≤ λ〈0k〉∗
(
k

2

)

⇒ ρk∗ ≤ λ(1− ρk∗)
(
k

2

)
⇒ ρk∗ ≤

λ
(
k
2

)
1 + λ

(
k
2

) . (3.30)

So, as λ → 0, ρk∗ → 0 and ρ∗ =
∑

k ρk∗pk → 0. Thus the transition will be

continuous. The proof for EQCP is similar. In that case the subscript k stands for

the secondary degree d(2) which is defined as the number of neighbors of neighbors of

a given vertex (not including itself), i.e., d(2)(x) = |{z : {x, y}, {y, z} ∈ E, z 6= x}|.

d

dt
〈1k〉 = −〈1k〉+ λ〈1− 1− 0k〉 (3.31)

So at steady state

〈1k〉∗ = λ〈1− 1− 0k〉∗ ≤ λ〈0k〉∗k ⇒ ρk∗ ≤
λk

1 + λk
(3.32)

Thus for both QCP types we find that if λc = 0 then the phase transition is contin-

uous.

For both QCP types on random r-regular graphs we can show that the critical

birth rate is positive as follows. In the EQCP let there be m occupied vertices. Each

of these m vertices can have at most r neighbors that are vacant and can give birth

on to them at rate ≤ (r−1)λ or die at rate 1. So the total birth rate in the network is

≤ (r−1)λrm against a death rate of m, and it follows that λc > 1/r(r−1). Similarly,

for the VQCP the total birth rate is ≤ λ
(
r
2

)
rm and it follows that λc > 1/r

(
r
2

)
. These

arguments depend on the degree being bounded, so they do not work for Erdős-Rényi

and power law graphs.
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3.5 Simulation results

We perform simulations of the QCP on RR(4), ER(4) and PL(2.5). We generate the

random regular and power law random graphs using the recipe called configuration

model [12]. We draw samples dx from the degree distribution and attach that many

“half-edges” to vertex x. We pair all the half edges in the network at random. We

then delete all self loops and multiple edges. When α > 2 this does not significantly

modify the degree distribution. If
∑

x dx turns out to be odd (an event with probabil-

ity ≈ 1
2
), we ignore the last remaining unpaired half-edge. Furthermore, for PL(2.5)

we start the degree distribution at 3 as, in the VQCP, the vertices of degree 1 and 2

are impossible or difficult to get occupied.

To deal with finite size effects, we observe how the plot of the steady state density

ρ∗(λ, 1) versus λ starting with all vertices occupied changes when size n of the network

ranging from 103 to 105. Fig. 3.3 shows the results of both QCP types on RR(4) and

ER(4). Here the curves seem to converge to a positive value implying a positive λc.

The results for PL(2.5) are shown in Fig. 3.4. We observe that the transition happens

close to zero and moves towards zero with increasing n indicating that the critical

birth rate is zero. As explained earlier, if λc = 0 then the transition is continuous.

This is consistent with the the mean field predictions for the VQCP and rigorous

result for EQCP. In addition, in Fig. 3.4(a), the critical exponent for the n = 105

curve can be measured to be approximately 1.45 which is close to the mean field

value of 1.5 (obtained by setting α = 2.5 in (3.24)).

In order to further investigate the phase transitions in random regular and Erdős-

Rényi graphs, we look at the steady state density attained by starting from two

different initial densities for the same network size n = 105. Fig. 3.5 again shows

a similar pattern across both QCP and both network types. In Fig. 3.5(b) we see

that for birth rates between 0.9 and 2.3, the VQCP survives when the starting
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Figure 3.3: Steady state density reached, starting from all vertices occupied, for
QCP on homogeneous networks of various sizes n.

configuration had all vertices occupied but dies out when starting with only one-

tenth of the vertices occupied. Thus we see bistability in the region λ ∈ (0.9, 2.3)

implying a discontinuous transition and consequently that λc is positive and close to
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Figure 3.4: Steady state density reached, starting from all vertices occupied, for
QCP on power law networks of various sizes n. Note that the λ axis is in the log
scale.

0.9. This is qualitatively in agreement with the mean field prediction seen in Fig. 3.1,

although the critical birth rate of 0.9 shows a deviation from the mean field value of

8/42 = 0.5.

Fontes and Schonmann [106] have shown that for bootstrap percolation on the

tree there is a critical density pc so that if the initial density is < pc then the final

bootstrap percolation configuration has no giant component of occupied sites. In

this situation having deaths at a positive rate in the VQCP will lead to an empty

configuration. The last argument is for the tree, but results of Balogh and Pittel [107]

show that similar conclusions hold on the random regular graph. While this argument

is not completely rigorous, the reader should note that since all of the VQCP are

dominated by bootstrap percolation, it follows that the limiting critical initial density
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Figure 3.5: Steady state density reached, starting from two different initial densities
ρ(0), for QCP on homogeneous networks of size n = 105. Notice the similarity with
the mean field prediction on Fig. 3.1.

defined in (3.3) has ρc > 0 in contrast to the mean field prediction in (3.7). Fig. 3.6

shows the final density attained as a function of the initial density when the birth
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Figure 3.6: Steady state density when the birth rate is infinite in the VQCP on
various networks of size n = 105. Note that the ρ(0) axis is in the log scale.

rate is infinite (and death rate is positive). We see that ρc in the VQCP is positive

for the random regular and Erdős-Rényi graphs whereas it is zero for the power law

graph. The corresponding results (not shown here) in the case of the EQCP indicate

that ρc = 0 for random regular, Erdős-Rényi and power law random graphs.

3.6 Conclusion

In this paper we have investigated the properties of two versions of the quadratic

contact process on three types of random graphs. The mean field calculations we

performed agree qualitatively with the simulation results. This may be due to the

fact that complex networks have exponential volume growth and therefore are like

infinite dimensional lattices where mean field is exact.

Table 3.1 summarizes what is known about the phase transitions of contact pro-
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Table 3.1: Nature of phase transitions of contact processes on various networks.
Note that ‘0’,‘+’ and ‘∞’ stand for zero, positive and infinite values respectively of
λc. The superscripts r, s, and m indicate how the corresponding result was obtained
– rigorously, by simulation, and by mean field calculation, respectively.

Linear CP Vertex QCP Edge QCP

1D cont. , + [79,108] NA , ∞ cont. , + [109]
2D cont. , + [79,110] discon. , + [96] cont. , + [98]
RR cont. [111] , + [112] discon.s m , + r s m discon.s m , + r s m

ER cont. , + [100] discon. , + s m discon. , + s m

PL((2,3)) cont. , 0 [99] cont. , 0 s m cont. , 0 r s

PL(3) cont. , 0 [99] cont. , + m cont. , 0 r

PL((3,∞)) cont. , 0 [99] discon. , + m cont. , 0 r

cesses in 1 and 2 dimensional lattices and on the random graphs RR, ER and PL.

The positivity of the critical birth rate for 1D, 2D and RR follows trivially from the

boundedness of their degrees. For VQCP on a 1D lattice, two consecutive 0’s can

never get filled and it follows that λc =∞. The results for the linear process on RR

are inferred from the rigorous results for trees and the fact that RR is locally tree

like.

The results indicate that the EQCP is qualitatively not very different from the

linear contact process on low dimensional lattices and power law graphs, in contrast

to the VQCP, which differs from its low dimensional analogue. In view of the fact

that they are very different in how they fill vacant vertices on a network, the similarity

between VQCP and EQCP in their phase transitions on complex networks is a little

perplexing.

The EQCP can easily propagate on a chain and “cross bridges” connecting com-

munities, compared to the VQCP which always requires two occupied neighbors. In

the EQCP vertices with a large number of neighbors of large degree are the key to its

survival. However, in the VQCP it is impossible for the central vertices to repopulate

the leaves, so these structures are not long lasting. In contrast, the Gleeson-Cahalane

calculation suggests that survival is due to the fact that as waves of particles move
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through the system the densities increase.
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4

An Evolving Spatial Network model

4.1 Introduction

The availability of real world network data spurred enormous interest in the study

of complex networks starting in the late 1990s [81]. Numerous models have been

proposed for the formation of many observed technological, social, information and

biological networks. Many of these network models were purely topological, i.e., the

location of the vertices of the network were irrelevant. However, it is clear that most

real world networks have a spatial element to them. Examples include transportation

networks [113–117], distribution networks [118], some social networks [119] and the

neural network in the brain [120–122]. See [123] for an extensive review. The effects of

space on the topology can be significant. For example, in a social network, individuals

are likely to have more friends closer to their spatial locations than farther away.

Many of the models of spatial network that have been proposed are essentially

static. Well studied models of this nature include the random geometric graph, the

Waxman model of the internet [124], and the Watts-Strogatz model [8] that generates

small-world networks. Barnett, Paolo and Bullock [125] performed an extensive study
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of networks where the probability that vertex pairs are connected depend on their

spatial separation. Frasco et al. [119] studied a model for the formation of social

networks where the topology was decided first and vertices were then sequentially

placed in a square depending on the topology and distance to already placed vertices.

However, most real networks are not static but rather evolve in an attempt to

improve their efficiency. For example, the networks in the brain are constantly

rewired for the purpose of cognition and other brain functions [10,126].

4.1.1 A general evolution scheme

We consider the equilibrium of evolving undirected spatial networks Gt = (V,Et),

where V = VnD is a set of n points uniformly distributed in a D-dimensional space

VnD of volume n, so that the mean density of points is unity. Although any metric

can in principle be used, we will stick to the familiar Euclidean metric for defining

distances. With applications to transportation and distribution networks in mind,

the boundaries of the space are not periodic. We are primarily interested in the

“thermodynamic” limit n → ∞ and dimension D = 2; so Vn2 is, say, a square of

side
√
n. The network evolves only through the rewiring of edges, so the number of

edges |Et| at time t, and consequently, the mean degree µ = 2|Et|/n are constant.

Consider a spatial network as defined above that is required to satisfy some topo-

logical constraint T (we only consider the constraint that the network is connected;

however, other examples include: the network is planar, the degree of the vertices

is bounded, etc.), and evolve with the aim of lowering its total length. Assume

that the edges rewire independently of each other and according to the following

Metropolis-Hastings dynamics [127]:

• Edges attempt to rewire at a rate proportional to some power δ ≥ 0 of their

length. So if δ > 0, larger edges have a higher tendency to attempt to rewire.
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• If a proposed rewiring of an edge of length ` to an edge of length `′ leads to

a network that satisfies constraint T , then it is accepted with a probability

min(1, f(`)/f(`′)), where f(·) is a non-decreasing function. In other words, a

shorter edge is definitely accepted while the chance of a longer edge getting

accepted is lower, the longer it is.

With the above evolution scheme, it is easy to find the distribution of the networks

at equilibrium. Consider the set G of possible networks. Let G,F ∈ G and suppose

that F is formed by rewiring edge {x, y} in G to {x, z}. Without loss of generality

assume |x− y| > |x− z|. The transition rates of going from G to F and from F to

G respectively in one step are

Λ(G→ F ) = |x− y|δ 1

n− 1− d(x)
, and

Λ(F → G) = |x− z|δ 1

n− 1− d(x)

f(|x− z|)
f(|x− y|)

, (4.1)

where d(x) is the degree of vertex x. We seek an equilibrium distribution π that

satisfies detailed balance

π(G) Λ(G→ F ) = π(F ) Λ(F → G) . (4.2)

This holds if π(G) is proportional to

∏
{x,y}∈E

1

|x− y|δf(|x− y|)
= exp

− ∑
{x,y}∈E

log
(
|x− y|δf(|x− y|)

) . (4.3)

Note that all the transition rates and probabilities above are conditional on the vertex

set VnD. One may interpret the distribution (4.3) as follows: the cost of an edge is
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an increasing function of its length `, specifically, log[`δf(`)]; the cost of a network

is the sum of the cost of its edges; the equilibrium networks have a distribution that

is exponential in their cost.

The main motivation for our work is the model of segregation in a social network

by Henry, Pra lat and Zhang (HPZ) [37], which corresponds to the case δ > 0, f(x) =

constant in the general evolution scheme. They defined their model in discrete time

with a parameter p that controls the rate of convergence to equilibrium. Motivated by

HPZ, Magura et al. [38] studied a continuous time model with δ = 1 and f(x) = xα−1.

4.1.2 Our model

In order to have short edges, we choose f(x) = eβx, where β is a non-negative

parameter. For simplicity, we set δ = 0. In other words, edges make independent

rewire attempts at a constant rate 1, and longer edges are accepted with a probability

that decays exponentially with the difference in the lengths. Thus, in our model, at

each evolution step: an edge {x, y} ∈ E is chosen at random and one of its vertices,

say, x is designated as its pivot; the vertex x chooses another vertex z outside its

neighborhood; if the network created by rewiring the edge {x, y} to {x, z} satisfies

constraint T , then the move is accepted with probability min
[
1, e−β(|x−z|−|x−y|)].

Substituting δ = 0 and f(x) = eβx in (4.3), we find our equilibrium network to

be in the set G(VnD, µ, T ) of spatial networks with vertex set VnD and nµ/2 edges

that satisfy constraint T , and with a probability measure

π(G) =
1

Zβµ
e−βH(G) , (4.4)

where H(G) =
∑
{x,y}∈E(G) |x − y| is the total length of the network, and Zβµ =∑

G∈G e
−βH(G) is a normalization constant. Thus, in going from the general evolution

scheme to our model, we have made the definition of the cost of an edge more specific,
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i.e., the cost is proportional to its length, with the cost per unit length being β.

With n → ∞, the four parameters D, β, µ and T specify the equilibrium network

of our Evolving Spatial Network model which we abbreviate as ESNM. The first

two parameters D and β control the spatial effects, while the latter two – µ and T

regulate the topology of the network.

4.2 The unconstrained network

In the simplest version of our model, the network is not required to satisfy any

constraint. With this simplification, as we see below, the model is closely related to

a percolation process and hence is amenable to some analytical calculations.

4.2.1 A Fermion gas picture and connection with percolation

In the unconstrained network, the distribution (4.4) of the equilibrium network leads

us to an alternative view of the model. If we treat the
(
n
2

)
possible vertex pairs {x, y}

as the single particle energy levels |x−y| in a Fermionic system, and the edges of the

network to correspond to the occupied energy levels, then we have a non-interacting

Fermionic system (constraints on the network would mean interacting Fermions).

The parameter β may then be viewed as the inverse temperature, H(G) as the

Hamiltonian of the system, and Zβµ as the canonical partition function. However,

this canonical ensemble description is analytically and computationally intractable.

We will therefore use a grand canonical ensemble description which is equivalent to

that of the canonical ensemble when the number particles is large. Given VnD, the

grand canonical partition function is

Ξ(β, κ) =
∑

G∈G(VnD)

κ|E(G)|e−βH(G) , (4.5)

where κ is the fugacity and G(VnD) is the set of simple graphs with vertex set VnD.
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Another way to simplify the equilibrium network, which is equivalent to the grand

canonical description above, is to view it as the result of a percolation process on VnD.

For this, consider the set G(VnD) of graphs as before, but now the edges assigned

independently between all vertex pairs {x, y} with probability g(|x − y|). Barnett,

Paolo and Bullock [125] studied such percolation networks for arbitrary functions

g(·) and called them Spatially Embedded Random Networks. The distribution π′ of

the percolation network is

π′(G) =
∏

{x,y}∈E

g(|x− y|)
∏

{x,y}∈(V
2)\E

(1− g(|x− y|))

=

 ∏
{x,y}∈(V

2)

(1− g(|x− y|))

 ∏
{x,y}∈E

g(|x− y|)
1− g(|x− y|)

, (4.6)

where
(
V
2

)
is the set of vertex pairs. This distribution can be made similar to π if

we let

g(ε)

1− g(ε)
= κe−βε which means g(ε) =

1

1 + κ−1eβε
. (4.7)

As shown in [38], the properties of the percolation model are closely related to those

of the random graph model if we choose κ such that the expected mean degree in the

percolation network is equal to the mean degree µ of our model. The only difference

is that while the number of edges is fixed in the ESNM, it is random in the percolation

version.

4.2.2 Properties of the percolation network

It is well known (see for e.g. [128]) that the grand partition function Ξ(β, κ) of a

collection of non-interacting particles at temperature 1/β and fugacity κ, can be

written as a product over single particle states. So, in our case, we have
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Ξ(β, κ) =
∏

{x,y}∈(V
2)

(
1 + κe−β|x−y|

)
. (4.8)

Since the partition functions above are conditional on the location of the vertices,

we calculate the expected value

E log Ξ =

[∏
x∈V

∫
VnD

dx

n

] ∑
{x,y}∈(V

2)

log
(
1 + κe−β|x−y|

)

=

(
n

2

)∫
VnD

∫
VnD

dx

n

dy

n
log
(
1 + κe−β|x−y|

)
. (4.9)

In the limit of large n, the double integration in (4.9) is to be performed over R2D and

all points are identical. We can choose a point at x. Then calculate
∫
g(|x− y|)dy,

by constructing shells centered at x at all radii ε. This integral will be independent

of x. The remaining integral
∫

dx/n is just equal to 1, giving

E log Ξ =
n

2
SD−1

∫ ∞
0

εD−1 log
(
1 + κe−βε

)
dε (4.10)

=
n

2

SD−1Γ(D)

βD
[−LiD+1(−κ)] . (4.11)

Now that we know E log Ξ, the following two quantities can be directly calculated.

First, the expected number of edges in the grand canonical ensemble is

E|E(G)| = E[E[|E(G)| |VnD]] = E
∂ log Ξ

∂ log κ
=
∂E log Ξ

∂ log κ
(4.12)

=
n

2

SD−1

βD
Γ(D) [−LiD(−κ)] , (4.13)
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where SD−1 = Dπ
D
2 /Γ(1 + D

2
) is the area of the unit (D − 1)-sphere, and Lis(z) =∑∞

k=1 z
k/ks is the Polylogarithm function. In order that the grand canonical ensem-

ble description be equivalent to the ESNM, we need to set E|E(G)| equal to the

number of edges nµ/2 in the ESNM. This means

µ =
SD−1

βD
Γ(D) [−LiD(−κ)] . (4.14)

In the rest of the section we will treat κ = κ
(D)
βµ to be implicitly defined through

(4.14), and g(·) = g
(D)
βµ (·).

Second, the expected value of the network Hamiltonian, i.e., the expected total

length of the network is

EH(G) = −∂E log Ξ

∂β
=
n

2

SD−1Γ(D + 1)

βD+1

[
−LiD+1

(
−κ(D)

βµ

)]
. (4.15)

The mean edge length ξ = E[H(G)/|E(G)|]. When n → ∞, both H(G)/n and

|E(G)|/n will converge to their respective limits, so that

ξ = ξ
(D)
βµ →

EH(G)

E|E(G)|
=
SD−1Γ(D + 1)

µβD+1

[
−LiD+1

(
−κ(D)

βµ

)]
. (4.16)

To find the distribution of vertex degrees and edge lengths it is more convenient

to use the percolation picture. First, let us determine the degree distribution: Let X

be a randomly chosen vertex and let Y be one of the other vertices. The probability

that X is connected to Y is

P({X, Y } ∈ E) =

∫
P({X, Y } ∈ E|Y = y)P(Y = y) =

1

n

∫
g(|X − y|)dy . (4.17)

The probability that X is connected to exactly k of the other n− 1 vertices is
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P(d(X) = k) = Binomial (n− 1,P({X, Y } ∈ E); k)

= Binomial

(
n− 1,

1

n

∫
g(|X − y|)dy; k

)

→ Poisson

(∫
g(|X − y|)dy; k

)
as n→∞ . (4.18)

So a vertex x has its degree distributed as Poisson[µ(x)], where µ(x) =
∫
g(|x−y|)dy.
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Figure 4.1: Results for β = 1 (solid line), 3 (dashed line), and ∞ (dotted line) in
dimension D = 2; (a) gives the distribution of edge lengths when µ = 5, (b) gives
the mean edge length as a function of µ.

Next we consider the distribution of the lengths of the edges in the network. We

want to find the probability

P(|x− y| = ε|{x, y} ∈ E) =
P({x, y} ∈ E||x− y| = ε)P(|x− y| = ε)

P({x, y} ∈ E)

=
g

(D)
βµ (ε)P(|x− y| = ε)∫
g

(D)
βµ (ε′)P(|x− y| = ε′)

. (4.19)

As n → ∞, P(|x − y| = ε) → SD−1ε
D−1dε/n. Substituting in (4.19), we get the

probability density function of the distribution of edge lengths to be (see Fig. 4.1(a))
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f
(D)
βµ (ε) = SD−1

g
(D)
βµ (ε)εD−1

µ
. (4.20)

(a) β = 0 (b) β →∞

Figure 4.2: Pictures of the (a) Erdős-Rényi graph, and (b) the random geometeric
graph, on a square with n = 1000 vertices.

The two extreme values of β deserve special consideration. With β = 0, the

spatial location of the vertices have no effect on the evolution of the network and so

the equilibrium network is the Erdős-Rényi graph (a random graph drawn uniformly

from the set of networks with a given number of vertices and edges) of which the

degree distribution, the formation of the giant component, clustering coefficient, etc.

are well known [1]. As n → ∞, the mean edge length grows as the mean vertex

pair distance which is O(n1/D). Note that this is consistent with the fact that

limβ→0 ξ
(D)
βµ =∞ for all D, µ > 0.

In the limit of large β, the rewiring algorithm becomes a greedy algorithm that

always chooses the shorter edge. The equilibrium network will then be a random

geometric graph (RGG) [129, 130] where vertices are connected to all their spatial
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neighbors up to a distance ε0, equal to the |E|-th smallest distance between vertices.

Alternatively, ε0 is the Fermi energy 1 of the system. This means

(
n

2

)
P(|x− y| < ε0) = |E| . (4.21)

So as n→∞, we have

(
n

2

)∫ ε0

0

1

n
SD−1ε

D−1dε = n
µ

2
which means ΩDε

D
0 = µ , (4.22)

where ΩD = π
D
2 /Γ(1 +D/2) is the volume of a unit D- ball. The mean edge length

is

ξ
(D)
β→∞,µ =

∫ ε0

0

ε
SD−1ε

D−1dε

ΩDεD0
=

SD−1

(D + 1)ΩD

ε0 =
D

(D + 1)Ω
1
D
D

µ1/D . (4.23)

The clustering coefficient C should be expected to be high for spatial networks,

since two spatial neighbors of a vertex are also spatial neighbors of each other. Using

three randomly chosen vertices x, y and z, we find the clustering coefficient of the

percolation network to be

C = P({x, z} ∈ E|{x, y}, {y, z} ∈ E) =

∫ ∫
g(|x|) g(|y|) g(|x− y|) dx dy∫ ∫

g(|x|) g(|y|) dx dy
. (4.24)

For general values of β, it is difficult to evaluate (4.24). However, in the β → ∞

limit, C can be calculated as done in [129]: Consider a vertex z that is connected to

vertices x and y. This means that x and y lie within a D-ball of radius ε0 centered at

1 Recall that the Fermi energy of a Fermionic system is the highest occupied single particle energy
level at zero temperature.
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z. Now, x and y will be connected to each other only if y lies in the intersection of the

D-balls of radii ε0 centered at x and z respectively. In other words, the probability

that y is connected to x is the ratio of the intersection volume of the D-balls to the

volume of a D-ball. The volume of the cap that subtends a half angle θ of a unit

D-ball is given by

Ωcap
D (θ) =

π
D−1

2

Γ
(
D+1

2

) ∫ θ

0

sinD t dt . (4.25)

If |x − z| = ε < ε0, to find the intersection volume, we need to add the volumes

of two such caps with θ = arccos(ε/2ε0). The probability that |x − z| = ε is

SD−1ε
D−1dε/ΩDε

D
0 . So averaging the intersection volume over all ε, we have,

C =
1

ΩDεD0

∫ ε0

0

2Ωcap
D

(
arccos

(
ε

2ε0

))
εD0
SD−1ε

D−1dε

ΩDεD0

=
2D2

√
π

Γ(D/2)

Γ((D + 1)/2)

∫ 1

0

∫ arccos(t/2)

0

sinD τ dτ tD−1 dt . (4.26)

Notice that C
(D)
β→∞,µ is independent of the mean degree µ consistent with the simu-

lation result in Fig. 4.4.

It does not seem possible to analytically compute the size of the giant component

in the percolation network. Because of this, we simulate the percolation process. In

all the results that follow, the dimension D = 2, and, unless otherwise stated, the

network size n = 104.

For fixed β, when µ is varied, the equilibrium network undergoes a percolation

transition (in the n → ∞ limit), indicated by the fraction ρ of vertices in the giant

component. For β = 0, we know that the critical mean degree µ
(β=0)
∗ = 1 for

formation of the giant component (see Fig. 4.3(a)). Increasing β makes the formation

of the largest component difficult, as long connections are not favored. However, there
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Figure 4.3: Fraction of vertices ρ in the largest component (a) as a function of µ
for various values of β and (c) as a function of β for various values of µ. (b) shows
the finite size scaling for β = 3; notice that all the curves seem to cross at one point.

is an upper bound on µ∗ achieved when β → ∞ and the network is an RGG. Our

simulation shows this bound to be µ
(β→∞)
∗ ≈ 4.5, in agreement with the simulation

result reported in [129]. For β = 3, the critical mean degree for percolation appears

to be µ
(β=3)
∗ ≈ 3.1 from the crossing point of the curves corresponding to different

network sizes in Fig. 4.3(b). Fig. 4.3(c) shows the size of the largest component

as function of β for fixed values of µ. Consistent with Fig. 4.3(a), we see that for

µ < µ
(β→∞)
∗ there is a maximum β = β∗ for the existence of a giant component, while

for µ > µ
(β→∞)
∗ there is a giant component for all values of β.
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Figure 4.4: Clustering coefficient as a function of µ for various values β. (The
non-uniform distribution of data points in µ correspond to uniform data points in
κ

(D)
βµ .)

For a given µ, the clustering of vertices increases as β increases, achieving the

maximum value as β →∞ (see Fig. 4.4). Substituting D = 2 in (4.26), we find that

C = 1− 3
√

3/4π ≈ 0.59.

4.2.3 A model for a social network

The unconstrained model can be used as a model of a social network where the

individuals have fixed opinions on D number of issues. The parameter β represents

the tendency of individuals to befriend others of opinions similar to theirs, also

known as homophily. The limitation in the number of active social contacts an

average person can maintain is represented by the fixed value of the mean degree µ.

With the above interpretation of the parameters, the properties of the unconstrained

ESNM are compatible with those of real social networks. First, clustering, which is

a central feature of any social network is easily captured by the model (Fig. 4.4).

Second, the absence of a giant component would imply a fragmented social net-

work (Fig. 4.3(a)). So the critical mean degree µ
(β)
∗ is the minimum number of friends
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that individuals need to make, so that the social network is mostly connected. The

stronger the preference of individuals to connect to similar individuals (i.e., large β),

the larger the number of friends they need to make (large µ) to prevent disintegra-

tion. However, even with a very high homophily, if the number of friends is at least

µ
(β→∞)
∗ ≈ 4.5, the social network is guaranteed to be mostly connected.

For D = 1, the distribution (4.20) of edge lengths is monotonically decreasing,

i.e., most edges are extremely small. This means than when there is only a single

issue on which opinions matter, the individuals mostly connect to their closest spatial

neighbors. However, for D ≥ 2, the distribution has a maxima (Fig. 4.1(a)). So

when individuals choose their friends based on their opinions on multiple issues, most

of the friends are located farther away.

4.3 The Connected ESNM

(a) µ = 2 (b) µ = 4

Figure 4.5: A realization of the almost optimized network (β = 10)for two different
values of the mean degree. The red circles and blue lines correspond to the vertices
and edges respectively

We now consider our model with the constraint T that the network be con-
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nected. Such a requirement is natural for many real world networks, for e.g., airline

networks [131]. Although, we know the equilibrium distribution (4.4) of the network,

it is difficult to proceed further analytically as we can no longer define an equivalent

percolation version of the model as we did for the unconstrained model. The con-

nectedness constraint makes the edges of the equilibrium network highly correlated.

Therefore we study the connected ESNM purely by simulation. For simplicity, we

will focus on two cases: when the parameter β is zero and when it takes a large

value 10. We will refer to the β = 0 equilibrium network as the Random Connected

Network or RCN(µ), and for reasons that will be elucidated in Section 4.3.1, the

β = 10 network will be called the Almost Optimized Network or AON(µ).

In our simulations, we choose n = 103 and dimension D = 2. The initial network

is formed by randomly ordering the vertices and adding n− 1 edges to form a chain.

The remaining nµ/2− (n− 1) edges are randomly chosen from the remaining vertex

pairs. We say that equilibrium has been reached when the mean edge length changes

by less that 0.5% across time points separated by a large number (1000 times the

number of edges) of network update attempts. Fig. 4.5 shows the network for two

values of the mean degree.

4.3.1 The β →∞ model as an optimization process

In the β →∞ limit, the connected ESNM may be viewed as a stochastic algorithm

(although not a very efficient one) to solve the following optimization problem: Given

a collection of n points uniformly distributed in VnD and µ ≥ 2−2/n (i.e., the number

of edges is at least the minimum n−1 needed to connect n vertices), find the connected

spatial network G∗ with mean degree µ that has the lowest total length, i.e., find

G∗(µ) = arg max
G∈Gc(VnD,µ)

H(G) , (4.27)
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where Gc(VnD, µ) is the set of connected networks with vertex set VnD and nµ/2 edges

Now, consider the general problem of finding an “efficient” network over a given

collection of points. Obviously, the application one is interested in determines the

optimization metric [132]. A simple and very popular optimal network is the mini-

mum spanning tree abbreviated as MST (see [133] for a history and [134] for a classic

algorithm). Here the quantity that is minimized is the total length, or equivalently,

the “wiring cost” of the network. G∗(µ) is very similar to the MST with the notable

exception that it is not a tree for µ ≥ 2. Indeed, G∗(µ = 2− 2/n) is the MST.

However, one could potentially be concerned about other aspects of the network

in addition to its wiring cost, and a tree may no longer be a good option. For example,

Aldous [135, 136] sought networks which in addition to minimizing the wiring cost

also has short routes, i.e., the route distance between any pair of vertices is close

to their spatial distance. He quantified this property by defining the route factor

R(x, y) between two vertices x and y as

R(x, y) =
r(x, y)

|x− y|
− 1 . (4.28)

The route factor defined for a single vertex pair can then be averaged over all vertex

pairs to arrive at a useful statistic for the network – the mean route factor R. Gast-

ner and Newman [118] studied a growth model for spatial networks, where given a

Vn2 (i.e., vertices distributed uniformly in a square) with a designated “root” ver-

tex, a connected cluster is grown by sequentially adding edges to vertices outside

the cluster; the edges are chosen according to a greedy optimization criterion that

minimizes a linear combination of the new edge length, and the route factor between

the new and the root vertices.

One may also want the network to be robust to random failures of its edges. One

way to test this kind of robustness of a connected network is by randomly removing
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edges [137] and noting the size of the largest component of the resulting network.

Specifically, for a connected network of mean degree µ we look at the fraction ρµ(µ′)

of vertices in the largest component when the edge removal leads to a network of

mean degree µ′. A robust network should retain a large fraction of its vertices in

its largest component when µ′ decreases from µ; in other words the function ρµ(µ′)

should be concave downwards for a sizeable region near µ′ = µ. We thus quantify the

robustness of the network by the inflection point µ̃(µ) of the ρµ(·) curve. Note that

lower µ̃(µ) means more robust. The ρµ(·) curve may always be convex indicating the

lack of robustness of the network; therefore, for a collection of networks parametrized

by their mean degrees µ, we define the critical mean degree µ∗ for robustness as the

smallest µ for which there exists an inflection point.

Thus, similar to [116], we characterize the efficiency of a given network of mean

degree µ, by three statistics: the total edge length per vertex χ = H(G)/n = ξµ/2,

the route factor R, and µ̃. The smallness of all these network statistics is desirable

for an efficient network. How does G∗(µ) fare in these measures of efficiency? In

order to get an approximation to G∗(µ), we perform simulations using β = 10 and

term the equilibrium network as the almost optimized network or AON(µ). Since the

equilibrium of the β = 0 connected model is uniformly drawn from the set Gc(VnD, µ)

without regard for the edge length, it can be viewed as a null model for comparison

with the AON, and we will refer to it as the Random Connected Network or RCN(µ).

Although intuitive, it is not completely obvious that the route factor, and the

total edge length will monotonically decrease and increase, respectively with the

mean degree, as the simulations reveal. Fig. 4.6(a) shows that the route factor drops

sharply as µ increases slightly from 2. The two opposing statistics are plotted against

each other in Fig. 4.6(b) to get convex “efficiency curves”, which show that the AON

is significantly more efficient than the RCN if we only take χ and R into account.

However, in terms of robustness to random edge failures, the RCN with its abun-
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Figure 4.6: The route factor R as a function of the (a) mean degree µ, and (b) the
total edge length per vertex χ, for the RCN and AON.
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Figure 4.7: Robustness of the (a) RCN and (b) AON.

dance of long range connections performs better as shown in Fig. 4.7. For comparison,

we also include the fraction of vertices in the largest component of an Erdős-Rényi

random graph (note than an ER graph with edges removed at random is just an-

other ER graph with a lower mean degree). While it is difficult to precisely locate

the inflection point µ̃(µ) in these curves, it is easy to see that it decreases with in-

crease in the mean degree µ, i.e., as one would expect, more edges make the network

more robust. In Fig. 4.7(a), the µ = 3, 4, 5 curves are almost indistinguishable from
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the ER curve and show the percolation transition close to µ′ = 1, indicating that

they are very similar to Erdős-Rényi networks. However, the behavior of the Almost

Optimized Networks as seen in Fig. 4.7(b) is quite different. It can be inferred from

Fig. 4.7 that the critical mean density µ∗ = 2 for the RCN, and 4 < µ∗ < 5 for the

AON.

4.3.2 Other properties
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Figure 4.8: Degree distribution of the random connected and optimized networks.
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Figure 4.9: Mean edge length ξ as a function of µ for the AON.

For the RCN, since the spatial locations are unimportant, it is natural that the

clustering coefficient vanishes (as n → ∞). The AON, on the contrary, has high
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Figure 4.10: Clustering coefficient as a function of the mean degree µ.

clustering as shown in Fig. 4.10.
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Figure 4.11: Hop distance h and route distance r as a function of the mean degree
µ for the RCN and AON.

In contrast to the unconstrained network, the degree distribution of the connected

network does not appear to be Poisson for any value of β, as seen in Fig. 4.8. The

distribution however is still peaked around the mean with a thin tail. For µ = 2, the

AON has a markedly higher peak at 2 than the RCN.

As in the unconstrained case, the mean edge length blows up in the RCN for

n→∞. The mean edge length as a function of µ for the AON is shown in Fig. 4.9.

It is interesting to note that that ξ(µ) is not monotone, but achieves a minima around

82



µ = 2.2. As µ increases from 2 until about 2.5, the increase in the total length of

the network seems to be overcompensated by the increased flexibility in keeping the

network connected, resulting in short edge lengths.

The mean route distance r (Fig. 4.11(b)) is lower for the AON than for the

RCN. However, in achieving a lower r, the AON gets a higher mean hop distance h

(Fig. 4.11(a)).

4.3.3 Testing the model on real data

In this section, we apply the connected ESN model on two sets of data, to gain some

insight into the applicability of the model.

(a) (b)

Figure 4.12: Pictures generated using the Minnesota road network data – (a) the
actual network, and (b) the simulated network with β = 50.

Table 4.1: Comparison of various statistics of the actual and simulated networks.

Data Simulation
mean edge length ξ 0.0682662 0.051706

clustering C 0.0280275 0.113856
hop distance h 80.0338 76.7535

route distance r 6.10399 5.76164
route factor R 1.78887 1.63773
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Figure 4.13: Comparison of (a) robustness and (b) degree distribution, of the
actual, simulated, and Erdős-Rényi networks.

Our first data set is about the network of roads in the US state of Minnesota,

obtained from [138] . There are n = 2635 vertices in this network which correspond to

the intersections of the roads. The mean degree is µ ≈ 2.5. To obtain the simulated

network, we run the connected ESNM on the vertex set of the actual network, with

the same mean degree and a large β = 50.

In Fig. 4.12 we see that the actual and simulated networks look very different.

While the actual network has a grid like structure almost throughout, the simulated

network is tree like for the most part, expect for the small region (which corresponds

to the capital city of Minneapolis) with a very high density of vertices. Table 4.1

compares the two network using the statistics we used earlier, and we find that the

simulated network performs better than the actual network on all of them. Specifi-

cally, the hop and route distances, and the route factor, which are all measures of the

ease of traversing the network, are marginally lower. Also for the simulated network,

the construction cost of the roads measured by the mean edge length is slightly lower,

while the clustering coefficient is significantly higher – a desirable feature.

So does this mean that the simulated network is the more “efficient” and “better”

network? It does not seem likely that people living along the border with Canada
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would agree. They often have to go large distances to get to a nearby town, and

even if they are driving to Minneapolis they have a much longer route. Second, how

robust are the two networks to edge failures? Fig. 4.13(a) shows that the simulated

network is extremely fragile compared to the actual network; a loss of less than 8%

of the edges is enough to bring the size of the largest component down to a third

of the network size. The actual network, on the contrary, is robust (by our earlier

definition) with a µ̃ ≈ 1.9. Fig. 4.13(b) shows that in the actual network, a large

fraction of the intersections are created by two roads, and no intersection is made of

more than four roads – both of which are unsurprising. The simulated graph, while

having a peak at 2, has unrealistic 9-road intersections in the capital region.

The confounding result above can be attributed mainly to the highly non-uniform

distribution of vertices in the graph (recall that our model assumes a uniform distri-

bution of the vertices). Our connected ESNM allocates a disproportionate amount of

edges to regions of high vertex density. One may also argue about the quality of the

statistics we used; specifically, in practical applications, extreme values of the hop

and route distances and route factor are perhaps more relevant than their averages.

Nevertheless, our robustness measure seems to be a reliable statistic for most cases.

(a) µ = 2 (b) µ = 3

Figure 4.14: Pictures of connected ESNM on US the state capitals” locations for
two values of the mean degree.
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Table 4.2: Statistics obtained for the ESNM on US state capitals’ locations with
three values of the mean degree.

µ = 2 µ = 3 µ = 4
mean edge length ξ 2.69 2.56 2.83

clustering C 0.0375 0.555 0.595
hop distance h 9.31 7.98 5.74

route distance r 24.4 23.0 19.6
Route factor R 0.653 0.525 0.268
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Figure 4.15: Comparison of (a) robustness and (b) degree distribution, of simula-
tion results for US state capitals’ locations data for three values of µ.

Our next test bed for the connected ESNM is the locations of the lower 48 US

state capitals. Here, the vertices are more uniformly distributed than in the the road

network we considered earlier. Nonetheless, Fig. 4.14(b) shows the accumulation

of edges when µ = 3, in the north east region where the density of states is high.

In Table 4.2 shows that, as is to be expected, the clustering coefficient and all the

distance measures decrease when µ increases. The mean edge length, however, is non-

monotone, consistent with our earlier findings in Fig. 4.9. The robustness profile in

Fig. 4.15(a) shows that the µ = 4 network is robust by our criterion, while µ = 2 and

3 are not, i.e., 3 < µ∗ < 4. Fig. 4.15(b) shows the degree distribution; the jaggedness

of the µ = 3 and 4 curves is peculiar and is perhaps due to the small system size.
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4.4 Summary and Outlook

In this paper we have introduced an abstract model for the evolution of spatial

networks whose equilibrium distribution is known, and is specified by their spatial

dimension, their mean degree, a topological constraint and the inverse temperature

β. We examined two cases – one where the topological constraint is absent, and the

other where the network is required to be connected.

The unconstrained network is closely related to a percolation problem. This en-

abled us to analytically compute the distribution of the degrees and edge lengths, and

the clustering coefficient of the network. Other quantities such as the critical mean

degree µ
(β→∞)
∗ for percolation were estimated by simulation. One interesting aspect

of this model is that that it interpolates between the Erdős-Rényi random graph

(β = 0) and the random geometric graph (β =∞). Furthermore, the unconstrained

ESNM can be a model for a social network where stubborn individuals with fixed

opinions a number of issues, have a tendency to rewire their ties to those with similar

opinions. Even when this tendency was high, the fact that the number of edges is

fixed, ensured that a small mean degree was enough to have a giant component.

An analytical framework for computing quantities associated with the connected

network model is lacking, so we studied that model purely by simulation concentrat-

ing on the random connected network (β = 0) and the almost optimized network

(β = 10). Our analysis focused on the total length (wiring cost) of the network, how

routes between vertices compare with their spatial separation, and the robustness of

the network to random removal of edges. In the former two aspects, we found that

the almost optimized network is notably more efficient than the random connected

network. However, in terms of the metric that we proposed, the RCN was found to

be more robust. A peculiar feature we noted of the AON(µ) is that the mean edge

length is the lowest when µ ≈ 2.2, and not at 2 as one would expect.
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To test the success of our second model for network design we considered two

examples: the Minnesota road network and the 48 state capitals of the continen-

tal US. While the rewiring produced networks with good values of some important

statistics, additional criteria (e.g., reweighted edges based on population density to

compensate for uneven vertex distributions) will need to be introduced to produce

good solutions.
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5

Closing remarks

The primary motivation for all the models presented in this dissertation has been

social networks, and is a common theme that unites them. The evolving voter

model and the unconstrained ESNM are models of social networks where individuals

actively alter their ties based on their opinions. In the former, there is a single

issue on which individuals have one of two incompatible opinions that could change

under each others’ influence; where as in the latter, there may be many issues with

a continuum of possible opinions about each, but individuals stubbornly hold on

to their original opinions. The eventual fission of the network is inevitable in the

evolving voter model, although its nature depends in a non-trivial way on (1) the

relative ease with which new friendships can be created, as compared to influencing

one another, and (2) on whether or not the new friends are chosen based on their

opinion. Our study provides an explanation for this observation. In the evolving

spatial network, however, the disintegration is avoided if the average number of

friendships per individual exceeds a minimum number.

The quadratic contact process takes place on a social network that is frozen in

time. Hence it is an appropriate model for the spread of fads or rumors that happen
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over a very short time scale, that is insufficient for new friendships to be made

or existing ones to be broken. The survival of the fad obviously depends on how

contagious it is, but our study shows that the degree distribution of the network

too has a significant effect. If the fad or rumor is not sufficiently contagious, it

is crucial that the network contains highly connected individuals who act as the

primary “sources”; in the absence of hubs, there is a minimum threshold for the

contagiousness as well as the seed population of the fad’s adopters, if the fad is to

survive.

In addition to examining the dynamics of social networks, this dissertation also

makes a minor foray into transport and distribution network design, through the

connected ESNM. The use of this model to optimize the Minnesota road network,

and design a road network to connect the 48 state capitals in the US, shows that

the process needs modification in order to be useful for applications. Nonetheless,

we believe that the model is interesting from a theoretical standpoint, and warrants

further investigation.

All of the models studied here are very simple, as are the Ising model and perco-

lation from statistical mechanics. However, we believe that they offer insights into

the behavior of more complicated systems. The evolving voter model and other sys-

tems where the network and the states of the nodes coevolve have interesting phase

transitions, but they are also relevant to important problems such as the spread of

the human pappiloma virus through high school social networks.
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[123] Marc Barthélemy. Spatial networks. Physics Reports, 499(1-3):1–101, February
2011.

[124] B.M. Waxman. Routing of multipoint connections. IEEE Journal on Selected
Areas in Communications, 6(9):1617–1622, 1988.

[125] L. Barnett, E. Di Paolo, and S. Bullock. Spatially embedded random networks.
Physical Review E, 76(5):056115, November 2007.

[126] Amir Minerbi, Roni Kahana, Larissa Goldfeld, Maya Kaufman, Shimon
Marom, and Noam E Ziv. Long-term relationships between synaptic tenac-
ity, synaptic remodeling, and network activity. PLoS biology, 7(6):e1000136,
June 2009.

[127] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. Equation of State Calculations by Fast
Computing Machines. The Journal of Chemical Physics, 21(6):1087, December
1953.

[128] Raj Kumar Pathria and Paul D. Beale. Statistical Mechanics, Third Edition.
Academic Press, 2007.

[129] Jesper Dall and Michael Christensen. Random geometric graphs. Physical
Review E, 66(1):016121, July 2002.

[130] Mathew Penrose. Random Geometric Graphs (Oxford Studies in Probability).
Oxford University Press, USA, 2003.
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