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Abstract

Today’s consumer mobile platforms such as Android and iOS manage large ecosys-

tems of untrusted third-party applications. It is common for an application to request

one or more types of sensitive data. Unfortunately, users have no insight into how

their data is used. Given the sensitivity of the data accessible by these applications,

it is paramount that mobile operating systems prevent apps from leaking it.

This dissertation shows that it is possible to improve the soundness of dynamic

information-flow tracking on a mobile device without sacrificing precision, perfor-

mance, or transparency. We extend the state of the art in dynamic information-flow

tracking on Android and address two major limitations: quantifying implicit flow

leaks in Dalvik bytecode and tracking explicit flows in native code. Our goal is to

deliver seamless end-to-end taint tracking across Dalvik bytecode and native code.

We propose SpanDex, a system that quantifies implicit flow leaks in Dalvik byte-

code for apps handling password data. SpanDex computes a bound of revealed

tainted data by recording the control-flow dependencies and for each password char-

acter, keeps track of the possible set of values that have been inferred. We also

propose TaintTrap, a taint tracking system for native code in third party apps.

We explore native taint tracking performance bottlenecks and hardware acceleration

techniques to improve instrumentation performance.
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Chapter 1

Dynamic Information-Flow

Tracking

1.1 Introduction

There is a clear need for privacy and security in computer systems. A modern

example comes from widespread adoption and usage of popular mobile devices such

as smartphones and tablets. Users store increasing amounts of sensitive information

on their personal devices but also make use of applications (apps) that do not offer

privacy guarantees. Growing reports of security breaches, confidential and personal

information leaks are now common events.

Current mobile OS’s such as iOS or Android, provide the user the option of

granting or denying access to certain types of information (e.g. location, contacts,

photos). This leaves the user deciding whether to trust an app will not leak their

sensitive information. Once an app is granted permissions, the user has no guarantee

the same permissions are not used in a way that either intentionally or unintentionally

leaks sensitive information.

The underlying problem in todays mobile devices is that they make no guarantees

in secure information-flow. As defined by the pioneering work of Denning [1] in the

70s, secure information-flow means no unauthorized flow of information is possible.
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1.2 Motivation

Although there is a vast range of previous work on dynamic information-flow tracking

(DIFT), their design goals and decisions were done in a very different context. One

of the major distinctions is the environment: desktop versus smartphone. Unlike a

desktop, a smartphone has different usage scenarios, more limited performance and is

under strict battery constraints. We aim for a system that is continuously monitoring

and protecting sensitive data and doing so without incurring an overhead that impairs

users device interaction. In our view, the user does not trust the application developer

with safe guarding sensitive data stored on the device from being leaked to external

parties. Coupled with the vibrant app ecosystem on smartphones, we need a tracking

system that can support unmodified app binaries whether from official or third party

app stores.

To summarize, we argue for a practical smartphone DIFT system with the fol-

lowing properties:

• Full-system end-to-end dynamic information-flow tracking: support across OS,

libraries and application code.

• Low performance overhead: minimal impact on noticeable user device perfor-

mance.

• High tracking precision: fine-granularity accurate taint tracking (low false pos-

itives) and multiple taint markings.

• Online continuous monitoring and protection.

• No app developer burden (e.g. annotations).

• No application source code required.
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In delivering a smartphone tracking system none of the prior works offer a prac-

tical system with all the desirable properties outlined above. Other work has ex-

tensively addressed some of the properties we seek but they are either unable to

cover all the properties, have significant limitations or their performance overheads

are not suitable for real-time usage on a smartphone. We think the time is ideal for

providing such a desirable DIFT system.

In this work we focus specifically on the popular Android platform, mostly be-

cause it offers complete source code on which we can build on. Android provides a

powerful mix of features: garbage collection (GC), virtual machine (VM), just-in-

time (JIT) compilation and native code (ARM). All of these can have very different

impact and requirements with respect to information-flow tracking, both in tracking

granularity and overhead. Leveraging these features efficiently is one of our main

goals.

We first discuss at a high level the motivation and challenges for the system

properties we chose:

Full-system end-to-end DIFT Most prior work addresses application level

information-flow. Moreover apps interact with the underlying system in many ways

that could leak information. On Android, apps are composed of Dalvik bytecode

running inside a VM and can optionally include native ARM code. In order to

ensure strong privacy guarantees a DIFT system needs to be end-to-end, covering all

interactions both between and within the OS and app layers. In the case of Android,

we specifically need taint tracking across the OS, filesystem, network, Dalvik VM and

across native code. To address this, in this paper we are extending the TaintDroid

platform with precise native code taint tracking.
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Low performance overhead If a DIFT system is to monitor sensitive infor-

mation and provide privacy guarantees, it holds that the system needs to be contin-

uously aware of any sensitive flows. One way current systems approach this is by

instrumenting all machine instructions with additional instructions required to prop-

agate and update taint. Generally these instructions occur regardless of any tainted

data actually being propagated and they can incur very significant overheads. While

for certain types of data flow or security analyses the performance overhead might

not be a limiting factor, in the case of smartphones performance is critical. Not only

is performance capability very limited on a smartphone compared to a desktop but

the types of apps running on a device are generally highly interactive. This prohibits

the use of systems that significantly increase overhead making device interaction

extremely slow and unusable.

To reduce DIFT performance, some systems propose hardware extensions. In

general, the hardware associates tags with each memory location and register, and

propagates the tags in hardware, without any additional instrumentation overhead.

These systems are generally limited to 1-bit tags with prohibitive overheads for multi-

bit tags and have inflexible taint propagation rules. The drawback is that the require-

ment on highly specialized hardware limits wide-spread deployment and adoption,

and the flexibility is generally constrained over a software approach. We believe a

more interesting middle ground is in hybrid solutions that minimally extend or re-

purpose existing hardware together with software for high flexibility. In this work

we favor the latter hybrid approach.

Online continuous monitoring and protection A key goal is to offer reg-

ular users a system that runs in real-time on their smartphone, watches and safe-

guards sensitive data at all times. Continuously running a typical heavy-weight

DIFT system is not feasible especially on a severely resource constrained devices
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such as smartphones. We believe there is an opportunity to meet the goal of having

continuous execution while still maintaing useable device performance by specifically

tuning DIFT for Android with variable taint tracking granularity (e.g. file, parcel,

object, field, variable and instruction levels).

High tracking precision The majority of DIFT systems offer only the ability

to label or tag data with a single bit, representing trusted or untrusted data. While

this is sufficient to detect some security attacks or leaks, it is not suitable for providing

a rich policy set. Having more tag expressiveness by raising the number of bits per

tag can accommodate for more user-focused policies: a user may consider sharing

his coarse grain location with certain apps but not his fine-grain location, or may

chose to explicitly deny apps the ability to send out his phone number or contacts

without explicit approval, while allowing other information such as his IMEI that

is generally used for advertisement tracking purposes. These policies could require

around 5 bits (encoding 32 different types of tainted data). On the high end of tag

expressiveness, using a full 32-bit tag can enable not just leak detection but precise

flow tracking, determining what path a piece of data takes from its first use to its

point of exit from the system. These types of analyses are called information-flow

data tomography and can be very powerful.

No developer burden Some previously proposed systems offload to the de-

veloper the burden of annotating their programs. There are various approaches: rely

on special information-flow programming languages and having to annotate sensi-

tive data with labels, might be required to include and link against some special

IFT aware libraries in their code to allow the platform to intercept sensitive flows,

rely on a specially modified compiler to compute and verify program labels. While

these approaches may be suitable for some applications, in our case where users can
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easily install applications from the many hundreds of thousands available in the app

stores, it is infeasible to expect all developers will perform the extra effort. More-

over, it is likely the user does not trust the app developer with properly making such

changes. The user is much more likely to trust the platform (Google in the case

of Android or Apple for iOS) or a subset of the platform, responsible for enforcing

privacy mechanisms. Thus in this work we are designing a system that does not

require the user trust the developer or the developer perform extra effort to support

a DIFT smartphone system.

No application source code required In a similar view to the previous

property of no developer burden, we also make the important observation that even

though some DIFT systems may not require developer burden, they still rely on

the application source code to automatically instrument the original source code

before running it. This is a major barrier as most applications offered on app stores,

although free, do not offer their source code as well. Requiring source code is thus a

significant limitation for a practical smartphone DIFT system. The user should never

have to worry about these aspects and instead should expect the underlying system

will function correctly and protect their data at all times regardless of what apps they

install and from what sources. That being said, we note that although app source

code is not available, we are free to modify or statically instrument the available app

binary. For instance, we consider the one-time cost of binary rewriting acceptable.

In the case of Android, the system already does some binary optimizations the first

time an app is installed so it is possible we perform additional rewriting for taint

tracking purposes.

6



1.2.1 Android

Android is a open source mobile device platform. The Android OS is Linux-based

and it offers support for third party applications built on top of the platform. Apps

are written in Java and compiled to Dalvik EXecutable (DEX) bytecode. Apps can

also include optional C libraries and C code is compiled to ARM assembly. Each

application runs in its own process which includes a Dalvik VM.

Dalvik VM Interpreter Dalvik VM process DEX bytecode in a register-based

machine. The registers and stack are managed internally by the VM. Unlike other

register-based machines like x86, Dalvik long-term storage is in the form of class

fields as opposed to storing in memory locations. This property helps with taint

propagation. For performance, Android also includes a just-in-time (JIT) compiler

starting with Android 2.3.

Native Methods Android applications can be partially or fully written in C

and compiled to native ARM assembly. This use case is common practice for Android

platform libraries, 3rd party libraries such as OpenGL and Webkit, games or perfor-

mance critical code. Until now, native code support for taint tracking on Android

has been a limitation. There are two types of native methods: VM internal methods

and JNI methods. The VM internal methods are used for interpreter structures and

operation while the JNI implement the Java Native Interface standard [2].

Current Android tracking systems support only applications running inside the

Dalvik VM. Taint tracking inside a VM has practical benefits: low performance

overhead due to operation on Dalvik bytecode as opposed to lower level ARM in-

structions, isolation and metadata rich execution environment.

On the other hand, running native code escapes the VM and the benefits are

lost at the gain of increased application performance. Malware applications can

7



circumvent the VM taint tracking system by simply running native code.

Binder IPC The Android IPC system is Binder. A Binder IPC library runs

in userspace while a kernel module manages communication between processes. The

messaging unit in Binder is a parcel.

3

IPC overhead while extending the analysis system-
wide. Third, for system-provided native libraries, we use
method-level tracking. Here, we run native code without
instrumentation and patch the taint propagation on re-
turn. These methods accompany the system and have
known information flow semantics. Finally, we use file-
level tracking to ensure persistent information conserva-
tively retains its taint markings.

To assign labels, we take advantage of the well-
defined interfaces through which applications access
sensitive data. For example, all information retrieved
from GPS hardware is location-sensitive, and all in-
formation retrieved from an address book database is
contact-sensitive. This avoids relying on heuristics or
manual specification for labels.

In order to achieve this tracking at multiple granu-
larities, our approach relies on the firmware’s integrity.
The taint tracking system’s trusted computing base in-
cludes the virtual machine executing in userspace and
any native system libraries loaded by the untrusted
interpreted application. However, this code is part of
the firmware, and is therefore trusted. Applications can
only escape the virtual machine by executing native
methods. In our target platform (Android), we modified
the native library loader to ensure that applications can
only load native libraries from the firmware and not
those downloaded by the application. We leave dealing
with third-party native libraries as future work.

In summary, we provide a novel, efficient, system-
wide, multiple-marking, taint tracking design by com-
bining multiple granularities. While some techniques
such as variable tracking within an interpreter have been
previously proposed (see Section 9), to our knowledge,
our approach is the first to extend such tracking system-
wide. By choosing a multiple-granularity approach, we
balance performance and accuracy.

3 BACKGROUND: ANDROID

Android is a Linux-based, open source, mobile phone
platform. Most core phone functionality is implemented
as applications running on top of a customized middle-
ware. Applications are written in Java and compiled to
a custom byte-code format known as Dalvik EXecutable
(DEX). Each application executes within its own Dalvik
VM interpreter instance. Each instance executes as a
unique UNIX user identity to isolate applications within
the Linux platform. Applications communicate via the
binder IPC subsystem. The following discusses topics
necessary to understand our tracking system.
Dalvik VM Interpreter: DEX is a register-based machine
language, as opposed to Java byte-code, which is stack-
based. Each DEX method has its own predefined number
of virtual registers (which we frequently refer to as
simply “registers”). The Dalvik VM interpreter manages
method registers with an internal execution state stack;
the current method’s registers are always on the top
stack frame. These registers loosely correspond to local

Dalvik VM
Interpreter

Trusted Application Untrusted Application
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Virtual Taint Map
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Binder IPC Library Binder Hook
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Dalvik VM
InterpreterVirtual Taint Map
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(9)

Native Methods. [WHE: say a little about how Dalvik
creates a byte-array of arguments that is passed. internal
VM vs JNI. significanlty more JNI than internal VM (more
internal VM methods is unlikely). mention call bridge]
Android contains two types of native methods: internal
VM methods and JNI methods. The internal VM methods
access interpreter specific structures and APIs, whereas
JNI methods conform to Java native interface standards
specifications [cite]. The specifications include passing Java
arguments to JNI methods as separate variables, which is
performed automatically by a call bridge in Dalvik. Internal
VM methods do not have this luxury and manually parse
arguments from a byte array of arguments created by the
interpreter.

Android’s middleware Java libraries make frequent use
of the Java Native Interface (JNI). The native methods are
written in C and C++ and expose the POSIX functionality
provided by the underlying Linux kernel and services. An-
droid uses the Apache Harmony implementation of Java [12]
for base Java functionality in the Dalvik VM. Portions of
the Apache Harmony implementation wraps system libraries
(e.g., math libraries) to provide functionality. The Android
binder and parcel interfaces also make use of JNI. Fur-
thermore, Android uses JNI to includes Java interfaces to
third party libraries such as OpenGL and Webkit. Finally,
Android provides the Native Development Toolkit (NDK)
to allow third party application developers to implement
and package native libraries with downloaded applications.
However, NDK use is strongly discouraged, as it impedes
application portability on a platform that runs on different
instruction set architectures, including ARM and x86. The
NDK is primarily seen as a means of providing better
runtime performance.

IV. TAINTDROID ARCHITECTURE

TaintDroid is a system that performs system-wide taint
tracking built upon Android. Figure 2 shows TaintDroid
architecture. TaintDroid propagates taint tags within an
application and between applications.

The goal of TaintDroid is to perform taint to tracking to
enforce security polices to untrusted third-party applications.
For correct taint tracking, TaintDroid’s trusted computing
base includes the firmware, including all system applica-
tions and libraries provided by the stock Android distribu-
tion. Similar assumptions are made by other taint tracking
systems, e.g., Panorama [4]. In addition, we assume all
downloaded (i.e., unknown) code executes within the Dalvik
VM. We do not allow execution of downloaded native code,
which do not propagate taint tags or may maliciously modify
taint tag storage.

Figure 2 shows an example of taint tracking in TaintDroid.
Information is tainted (1) in a trusted application with
sufficient context (e.g., the location provider). The taint
interface invokes a native method (2) that interfaces with the
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Figure 2. TaintDroid Architecture

Dalvik VM interpreter, storing the specified taint marking(s)
in the virtual taint map. As the trusted application uses the
tainted information, the Dalvik VM propagates taint tags
(3) according to our data flow rules. When the trusted ap-
plication uses the tainted information in an IPC transaction,
the modified binder library (4) ensures the parcel message
carries a taint tag reflecting the combined taint markings
of all contained data. The parcel is passed transparently
through the kernel (5) and received by the remote untrusted
application. Note that the third-party interpreted code is
untrusted. The modified binder library retrieves the taint tag
from the parcel and assigns it to all values read from the
parcel (6). The remote Dalvik VM instance propagates taint
tags (7) identically for the untrusted application. When the
untrusted application invokes a library specified as a taint
sink (8), e.g., sending a data buffer over the network, the
library retrieves the taint tag for the data in question (9-11)
and makes a policy decision.

At a high level, TaintDroid architecture enables system-
wide tracking by combining execution taint tracking, IPC
taint tracking, native interface taint tracking, and secondary
storage taint tracking.
Variable-level taint tracking While previous approaches
such as Panorama [panorama] and TaintBochs [taintbochs]
provide high-accuracy taint tracking via instruction-level
taint propagation, performance is sacrificed. On the other
end of the spectrum, approaches such as PRECIP [precip]
consider only high-level system calls into the kernel, trading
off accuracy for performance; thus, they provide only nomi-
nal advantage over OS permissions (e.g., those implemented
in Android).

In TaintDroid, we choose a middle ground, variable-
level taint tracking. TaintDroid is designed to taint primitive
type variables (e.g., int, float, etc). Our taint source and
sink libraries (Section VI) provide an easy interface to set
and check the taint markings on primitive types. However,
there are cases when object references must become tainted
to ensure taint propagation operates correctly. Applications
are compiled into the Dalvik EXecutable (DEX) byte-code
format. Dalvik, unlike the stack-based virtual machine Java,
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Native Methods. [WHE: say a little about how Dalvik
creates a byte-array of arguments that is passed. internal
VM vs JNI. significanlty more JNI than internal VM (more
internal VM methods is unlikely). mention call bridge]
Android contains two types of native methods: internal
VM methods and JNI methods. The internal VM methods
access interpreter specific structures and APIs, whereas
JNI methods conform to Java native interface standards
specifications [cite]. The specifications include passing Java
arguments to JNI methods as separate variables, which is
performed automatically by a call bridge in Dalvik. Internal
VM methods do not have this luxury and manually parse
arguments from a byte array of arguments created by the
interpreter.

Android’s middleware Java libraries make frequent use
of the Java Native Interface (JNI). The native methods are
written in C and C++ and expose the POSIX functionality
provided by the underlying Linux kernel and services. An-
droid uses the Apache Harmony implementation of Java [12]
for base Java functionality in the Dalvik VM. Portions of
the Apache Harmony implementation wraps system libraries
(e.g., math libraries) to provide functionality. The Android
binder and parcel interfaces also make use of JNI. Fur-
thermore, Android uses JNI to includes Java interfaces to
third party libraries such as OpenGL and Webkit. Finally,
Android provides the Native Development Toolkit (NDK)
to allow third party application developers to implement
and package native libraries with downloaded applications.
However, NDK use is strongly discouraged, as it impedes
application portability on a platform that runs on different
instruction set architectures, including ARM and x86. The
NDK is primarily seen as a means of providing better
runtime performance.

IV. TAINTDROID ARCHITECTURE

TaintDroid is a system that performs system-wide taint
tracking built upon Android. Figure 2 shows TaintDroid
architecture. TaintDroid propagates taint tags within an
application and between applications.

The goal of TaintDroid is to perform taint to tracking to
enforce security polices to untrusted third-party applications.
For correct taint tracking, TaintDroid’s trusted computing
base includes the firmware, including all system applica-
tions and libraries provided by the stock Android distribu-
tion. Similar assumptions are made by other taint tracking
systems, e.g., Panorama [4]. In addition, we assume all
downloaded (i.e., unknown) code executes within the Dalvik
VM. We do not allow execution of downloaded native code,
which do not propagate taint tags or may maliciously modify
taint tag storage.

Figure 2 shows an example of taint tracking in TaintDroid.
Information is tainted (1) in a trusted application with
sufficient context (e.g., the location provider). The taint
interface invokes a native method (2) that interfaces with the
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Dalvik VM interpreter, storing the specified taint marking(s)
in the virtual taint map. As the trusted application uses the
tainted information, the Dalvik VM propagates taint tags
(3) according to our data flow rules. When the trusted ap-
plication uses the tainted information in an IPC transaction,
the modified binder library (4) ensures the parcel message
carries a taint tag reflecting the combined taint markings
of all contained data. The parcel is passed transparently
through the kernel (5) and received by the remote untrusted
application. Note that the third-party interpreted code is
untrusted. The modified binder library retrieves the taint tag
from the parcel and assigns it to all values read from the
parcel (6). The remote Dalvik VM instance propagates taint
tags (7) identically for the untrusted application. When the
untrusted application invokes a library specified as a taint
sink (8), e.g., sending a data buffer over the network, the
library retrieves the taint tag for the data in question (9-11)
and makes a policy decision.

At a high level, TaintDroid architecture enables system-
wide tracking by combining execution taint tracking, IPC
taint tracking, native interface taint tracking, and secondary
storage taint tracking.
Variable-level taint tracking While previous approaches
such as Panorama [panorama] and TaintBochs [taintbochs]
provide high-accuracy taint tracking via instruction-level
taint propagation, performance is sacrificed. On the other
end of the spectrum, approaches such as PRECIP [precip]
consider only high-level system calls into the kernel, trading
off accuracy for performance; thus, they provide only nomi-
nal advantage over OS permissions (e.g., those implemented
in Android).

In TaintDroid, we choose a middle ground, variable-
level taint tracking. TaintDroid is designed to taint primitive
type variables (e.g., int, float, etc). Our taint source and
sink libraries (Section VI) provide an easy interface to set
and check the taint markings on primitive types. However,
there are cases when object references must become tainted
to ensure taint propagation operates correctly. Applications
are compiled into the Dalvik EXecutable (DEX) byte-code
format. Dalvik, unlike the stack-based virtual machine Java,
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Fig. 2. TaintDroid architecture within Android.

variables in the Java method and store primitive types
and object references. All computation occurs on regis-
ters; therefore, values must be loaded from and stored to
class fields before and after use, respectively. Note that
DEX uses class fields for all long-term storage, unlike
hardware register-based machine languages (e.g., x86),
which store values in arbitrary memory locations. This
additional context aids taint propagation in our design.

As of Android 2.3, the Dalvik VM contains a just-in-
time compiler (JIT) to boost performance by translating
byte-code to optimized native code at run-time.
Native Methods: The Android middleware provides
access to native libraries for performance optimization
and to support third-party libraries such as OpenGL
and Webkit. Native methods are written in C/C++ and
expose functionality provided by the underlying Linux
OS. They can also access Java internals, and hence are
included in our trusted computing base (Section 2).

Android contains two types of native methods: in-
ternal VM methods and JNI methods. The internal VM
methods access interpreter-specific structures and APIs.
JNI methods conform to Java native interface standards
specifications [21], which requires Dalvik to separate
Java arguments into variables using a JNI call bridge.
Conversely, internal VM methods must manually parse
arguments from the interpreter’s byte array of argu-
ments. This difference impacts our design.
Binder IPC: Android’s IPC subsystem is called binder.
Fundamental to binder are parcels, which serialize both
active and standard data objects. The former includes
references to binder objects, which allows the framework
to manage shared data objects between processes. A
binder kernel module passes parcels between processes.

4 TAINTDROID

TaintDroid is a realization of our multiple-granularity
taint tracking approach within Android. TaintDroid uses
variable-level tracking within the VM interpreter. Mul-
tiple taint markings are stored as one taint tag. When
applications execute native methods, variable taint tags
are patched on return. Finally, taint tags are assigned to
parcels and propagated through binder.

Figure 1.1: TaintDroid architecture within Android.

1.2.2 TaintDroid

TaintDroid is an enhancement built over Android that provides system-wide DIFT.

The TaintDroid architecture within Android is shown in Figure 1.1. Taint tracking

is performed with variable granularity allowing for low overhead. A single tag is 32-

bit and stores 32 distinct 1-bit taint markings. Taint tags are associated with files,

parcels, method local variables, method arguments, class fields and arrays. Files and

parcels are associated a single tag. A limitation of TaintDroid is that taint tracking
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is not possible inside native methods. Currently TaintDroid only patches the return

taint tag of a native method by considering the taint tags of all its input arguments.

Figure 1.2 shows the modified stack format required for adding taint tag support for

both interpreted targets and native targets.
4

Figure 2 depicts TaintDroid’s architecture. Information
is tainted (1) in a trusted application with sufficient
context (e.g., the location provider). The taint interface
invokes a native method (2) that interfaces with the
Dalvik VM interpreter, storing specified taint markings
in the virtual taint map. The Dalvik VM propagates taint
tags (3) according to data flow rules as the trusted ap-
plication uses the tainted information. Every interpreter
instance simultaneously propagates taint tags. When the
trusted application uses the tainted information in an
IPC transaction, the modified binder library (4) ensures
the parcel has a taint tag reflecting the combined taint
markings of all contained data. The parcel is passed
transparently through the kernel (5) and received by the
remote untrusted application. Note that only the inter-
preted code is untrusted. The modified binder library
retrieves the taint tag from the parcel and assigns it to all
values read from it (6). The remote Dalvik VM instance
propagates taint tags (7) identically for the untrusted
application. When the untrusted application invokes a
library specified as a taint sink (8), e.g., network send,
the library retrieves the taint tag for the data in question
(9) and reports the event.

Implementing this architecture requires addressing
several system challenges, including: a) taint tag storage,
b) interpreted code taint propagation, c) native code taint
propagation, d) IPC taint propagation, and e) secondary
storage taint propagation. The remainder of this section
describes our design and concludes with a discussion of
our integration of TaintDroid with the JIT version of the
Dalvik VM introduced in Android version 2.3.

4.1 Taint Tag Storage

The choice of how to store taint tags influences perfor-
mance and memory overhead. Dynamic taint tracking
systems commonly store tags for every data byte or
word [8], [9]. Tracked memory is unstructured and with-
out content semantics. Frequently taint tags are stored
in non-adjacent shadow memory [9] and tag maps [15].
TaintDroid uses variable semantics within the Dalvik
interpreter. We store taint tags adjacent to variables in
memory, providing spatial locality.

Dalvik has five variable types that require taint stor-
age: method local variables, method arguments, class
static fields, class instance fields, and arrays. In all cases,
we store a 32-bit bitvector with each variable to encode
the taint tag, allowing 32 different taint markings.
Method Local Variables: Temporary variables used for
computation within a method are called “method local
variables” and are the primary use of registers in the
Dalvik interpreter. Registers contain both primitive type
(i.e. scalar) values and object references. Registers are are
always 32 bits. For 64-bit types (e.g., long and double),
Dalvik stores the value in two adjacent 32-bit registers
and manages the registers separately. It is left to the byte-
code instructions to determine if one or two registers
are used for computation. The Dalvik interpreter uses
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Fig. 3. Modified Stack Format. Taint tags are interleaved
between registers for interpreted method targets and ap-
pended for native method arguments. Dark grayed boxes
represent taint tags.

a stack to manage the registers. On method invocation,
Dalvik pushes a new stack frame, allocating space for
its registers. During execution, registers are referenced
by an index offset from the current frame pointer. For
example, register v0 is fp[0], register v1 is fp[1], and so
on. On method termination, the stack frame is popped,
losing the register values.

TaintDroid stores 32-bit taint tags for each register (re-
gardless of its current taint state) by allocating room for
double the number of registers during the stack frame
push. Taint tags are stored immediately after registers for
efficient reference (as depicted in Figure 3). TaintDroid
accounts for tag storage by adjusting the frame pointer
index for each register vi to fp[2 · i] (a left bit shift), with
the corresponding taint tag in fp[2 · i + 1]. Note that for
64-bit scalars allocated as two adjacent 32-bit registers,
the taint tag is duplicated and stored after each register
for consistency with the Dalvik design.

Method Arguments: Dalvik uses registers to pass ar-
gument values to methods. A target method can be
either interpreted or native. Before a method is invoked,
temporary copies of the specified argument registers are
pushed onto the stack. If the target method is inter-
preted, the new values become high numbered local
variable registers in the callee stack frame. If the target
method is native, a pointer to the stack top is passed to
the native method. The target native method is passed a
pointer to a byte array from which it must parse 32 and
64-bit values in using its method signature.

This difference in handling method arguments impacts
taint tag storage, as shown in Figure 3. Arguments for
interpreted methods have interleaved taint tags for con-
sistency with local variable taint storage. Native meth-
ods, on the other hand, expect a specific format in the
received byte array of arguments, and interleaving taint

Figure 1.2: TaintDroid modified stack format.
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Chapter 2

SpanDex: Secure Password

Tracking for Android

2.1 Introduction

Today’s consumer mobile platforms such as Android and iOS manage large ecosys-

tems of untrusted third-party applications called “apps.” Apps are often integrated

with remote services such as Facebook and Twitter, and it is common for an app

to request one or more passwords upon installation. Given the critical and ubiq-

uitous role that passwords play in linking mobile apps to cloud-based platforms, it

is paramount that mobile operating systems prevent apps from leaking users’ pass-

words. Unfortunately, users have no insight into how their passwords are used, even

as credential-stealing mobile apps grow in number and sophistication [3–5].

Taint tracking is an obvious starting point for securing passwords [6]. Under taint

tracking, a monitor maintains a label for each storage object. As a process executes,

the monitor dynamically updates objects’ labels to indicate which parts of the system

state hold secret information. Taint tracking has been extensively studied for many

decades and has practical appeal because it can be transparently implemented below

existing interfaces [6–9].

Most taint-tracking monitors handle only explicit flows, which directly transfer
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secret information from an operation’s source operands to its destination operands.

However, programs also contain implicit flows, which transfer secret information to

objects via a program’s control flow. Implicit flows are a long-standing problem [1]

that, if left untracked, can dangerously understate which objects contain secret infor-

mation. On the other hand, existing techniques for securely tracking implicit flows

are prone to significantly overstating which objects contain secret information.

Consider secret-holding integer variable s and pseudo-code if s != 0 then x :“ a

else y :“ b done. This code contains explicit flows from a to x and from b to y as

well as implicit flows from s to x and s to y. A secure monitor must account for

the information that flows from s to x and s to y, regardless of which branch the

program takes: y’s value will depend on s even when s is non-zero, and x’s value will

depend on s even when s is zero.

Existing approaches to tracking implicit flows apply static analysis to all un-

taken execution paths within the scope of a tainted conditional branch. The goal

of this analysis is to identify all objects whose values are influenced by the condi-

tion. Strong security requires such analysis to be applied conservatively, which can

lead to prohibitively high false-positive rates due to variable aliasing and context

sensitivity [9, 10].

In this paper, we describe a set of extensions to Android’s Dalvik virtual machine

(VM) called SpanDex that provides strong security guarantees for third-party apps’

handling of passwords. The key to our approach is focusing on the common access

patterns and semantics of the data type we are trying to protect (i.e., passwords).

SpanDex handles implicit flows by borrowing techniques from symbolic execution

to precisely quantify the amount of information a process’ control flow reveals about

a secret. Underlying this approach is the observation that as long as implicit flows

transfer a safe amount of information about a secret, the monitor need not worry

about where this information is stored. For example, mobile apps commonly branch
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on a user’s password to check that it contains a valid mix of characters. As long as

the implicit flows caused by these operations reveal only that the password is well

formatted, the monitor does not need to update any object labels to indicate which

variables’ values depend on this information.

To quantify implicit flows at runtime without sacrificing performance, SpanDex

executes untrusted code in a data-flow defined sandbox. The key property of the

sandbox is that it uses data-flow information to restrict how untrusted code oper-

ates on secret data. In particular, SpanDex is the first system to use constraint-

satisfaction problems (CSPs) at runtime to naturally prevent programs from certain

classes of behavior. For example, SpanDex does not allow untrusted code to en-

crypt secret data using its own cryptographic implementations. Instead, SpanDex’s

sandbox forces apps that require cryptography to call into a trusted library.

SpanDex does not “solve” the general problem of implicit flows. If the amount of

secret information revealed through a process’ control flow exceeds a safe threshold,

then a monitor must either fall back on conservative static analysis for updating

individual labels or simply assume that all subsequent process outputs reveal con-

fidential information. However, we believe that the techniques underlying SpanDex

may be applicable to important data types besides passwords, including credit card

numbers and social security numbers. Experiments with a prototype implementa-

tion demonstrate that SpanDex is a practical approach to securing passwords. Our

experiments show that SpanDex generates far fewer false alarms than the current

state of the art, protects user passwords from a strong attacker, and is efficient.

This paper makes the following contributions:

• SpanDex is the first runtime to securely track password data on unmodified

apps at runtime without overtainting or poor performance.

• SpanDex is the first runtime to use online CSP-solving to force untrusted code

12



to invoke trusted libraries when performing certain classes of computation on

secret data.

• Experiments with a SpanDex prototype show that it imposes negligible perfor-

mance overhead, and a study of 50 popular, non-malicious unmodified Android

apps found that all but eight executed normally.

The rest of this paper is organized as follows: Section 2.2 describes background

information and our motivation, Section 2.3 provides an overview of SpanDex’s de-

sign, Section 2.4 describes SpanDex’s design in detail, Section 2.5 describes our

SpanDex prototype, Section 2.6 describes our evaluation, and Section 2.7 provides

our conclusions.

2.2 Background and Motivation

Under dynamic information-flow tracking (i.e., taint tracking), a monitor maintains

a label for each storage object capable of holding secret information. A label indicates

what kind of secret information its associated object contains. Labels are typically

represented as an array of one-bit tags. Each tag is associated with a different source

of secret data. A tag is set if its object’s value depends on data from the tag’s

associated source. Operations change objects’ state by transferring information from

one set of objects to another. Monitors propagate tags by interposing on operations

that could transfer secret information, and then updating objects’ labels to reflect

any data dependencies caused by an operation. We say that information derived

from a secret is safe if it reveals so little about the original secret that releasing the

information poses no threat. However, if information is unsafe, then it should only

be released to a trusted entity.
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2.2.1 Related Work: Soundness, Precision, and Efficiency

The three most important considerations for taint tracking are soundness, precision,

and efficiency. Tracking is sound if it can identify all process outputs that contain an

unsafe amount of secret information. Soundness is necessary for security guarantees,

such as preventing unauthorized accesses of secret information. Tracking is precise

if it can identify how much secret information a process output contains. Precision

can be tuned along two dimensions: better storage precision associates labels with

finer-grained objects, and better tag precision associates finer-grained data sources

with each tag.

Imprecise tracking leads to overtainting, in which safe outputs are treated as if

they are unsafe. A common way to compensate for imprecise tracking is to require

users or developers to declassify tainted outputs by explicitly clearing objects’ tags.

Tracking is efficient if propagating tags slows operations by a reasonable amount.

The relationship between efficiency and precision is straightforward: increasing stor-

age precision causes a monitor to propagate tags more frequently because it must

interpose on lower-level operations; increasing tag precision causes a monitor to do

more work each time it propagates tags. Finding a suitable balance of soundness,

precision, and efficiency is challenging, and prior work has investigated a variety of

points in the design space.

One approach to information-flow tracking is to use static analysis in combination

with a secrecy-aware type system and programmer-defined declassifiers to prevent

illegal flows [11]. This approach is sound, precise, and efficient but is not compat-

ible with legacy apps. Integrating secrecy annotations and declassifiers into apps

and platform libraries requires a non-trivial re-engineering effort by developers and

platform maintainers.

An alternative way to ensure soundness is to propagate tags on high-level oper-
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ations that generate only explicit flows. An explicit flow occurs when an operation

directly transfers information from from a set of well-defined source objects to a set

of well-defined destination objects [1]. For example, process-level monitors such as

Asbestos [12], Flume [13], and HiStar [14] maintain labels for each address space and

kernel-managed communication channel (e.g., file or socket), and propagate tags for

each authorized invocation of the system API.

Such process-grained tracking is sound and efficient, but operations defined by

a system API commonly manipulate fine-grained objects, such as byte ranges of

memory. The mismatch between the granularity of labeled objects and operation

arguments leads to imprecision. For example, once a process-grained monitor sets

a tag for an address space’s label, it conservatively assumes that any subsequent

operation that copies data out of the address space is unsafe, even if the operation

discloses no secret information.

As with language-based flow monitors, process-grained monitors must rely on

trusted declassifiers to compensate for this imprecision. These declassifiers proxy all

inter-object information transfers and are authorized to clear tags from labels under

their control. However, because declassifiers make decisions with limited context,

they can be difficult to write and require developers to modify existing apps.

Other monitoring schemes have improved precision by associating labels with

finer-grained objects such as individual bytes of memory [7, 8]. While tracking at

too fine a granularity leads to prohibitively poor performance [7, 8] (e.g., 10x to

30x slowdown), propagating tags for individual variables within a high-level lan-

guage runtime is efficient [6]. The primary challenge for such fine-grained tracking

is balancing soundness and precision in the presence of implicit flows.

As before, consider secret-holding variable s and pseudo-code if s != 0 then

x :“ a else y :“ b done. Borrowing terminology from [15], we say that all op-

erations between then and done represent the enclosed region of the conditional
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branch. Thus, the enclosed region contains explicit flows from a to x and from b to

y. Operations like conditional branches induce implicit flows by transferring infor-

mation from the objects used to evaluate a condition to any object whose value is

influenced by an execution path through the enclosed region. We refer to the set of

influenced objects as the enclosed set. The enclosed set includes all objects that are

modified along the taken execution path as well as all objects that might have been

modified along any untaken paths. To ensure soundness, a monitor must propagate

s’s tags to all objects in the enclosed set.

Propagating tags to members of the enclosed set can lead to overtainting in

two ways. First, because a conditional branch does not specify its enclosed set,

the membership must be computed through a combination of static and dynamic

analysis [8, 15]. In our example, a simple static analysis of the program’s control-flow

graph could identify the complete enclosed set consisting of x and y. However, strong

soundness guarantees require an overly conservative analysis of far more complex

untaken paths containing context-sensitive operations and aliased variables. This can

overstate which objects’ values are actually influenced by a branch. Less conservative

tag propagation creates opportunities for malicious code to leak secret information.

Second and more important, the amount of information transferred through a

process’ control flow is often very low. These information-poor flows expose the

problem with tag imprecision. In particular, conventional monitors can only account

for an implicit flow by propagating single-bit tags from the branch condition to mem-

bers of the enclosed set. And yet members of the enclosed set can only reflect as

much new information as the branch condition reveals. When the condition reveals

very little information (e.g., s != 0), a single-bit tag cannot be used to differenti-

ate between an object whose value is weakly dependent on secret information and

one whose value encodes the entire secret. Thus, when an execution’s control flow

transfers very little information, propagating tags to members of the enclosed set
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significantly overstates how much secret information the branch transfers to the rest

of the program state.

Prior work on DTA++[9] and Flowcheck [15] have articulated similar insights

about the causes of overtainting. DTA++ propagates tags to an enclosed set only

if an execution’s control flow reveals the entire secret (i.e., the execution path is

injective with respect to a secret input). However, DTA++ relies on offline symbolic

execution of several representative inputs to select which branches should propagate

tags to their enclosed sets. Offline symbolic execution provides limited code cov-

erage for moderately complex programs and is unlikely to deter actively malicious

programs.

Flowcheck focuses on the imprecision of single-bit taint tags and precisely quan-

tifies the total amount of secret information an execution reveals (as measured in

bits). However, Flowcheck imposes significant performance penalties and must com-

pute the enclosed set (often with assistance from the programmer) to quantify the

channel capacity of enclosed regions.

To summarize, we are unaware of any prior work on information-flow tracking

that provides a combination of soundness, precision, and efficiency that would be

suitable for tracking passwords on today’s mobile platforms.

2.2.2 Android-app Study

To test our hypothesis that conventional handling of implicit flows leads to over-

tainting and false alarms, we created a modified version of TaintDroid [6] called

TaintDroid++ that supports limited implicit-flow tracking. TaintDroid and Taint-

Droid++ track explicit flows the same way. Each variable in a Dalvik executable is

assigned a label consisting of multiple tags, and tags are propagated according to a

standard tag-propagation logic.

The primary difference between the two monitors is that TaintDroid ignores
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implicit flows and TaintDroid++ does not. First, for a Dalvik executable, Taint-

Droid++ constructs a control-flow graph and identifies the immediate post-dominator

(ipd) for each control-flow operation. It then uses smali [16] to insert custom Dalvik

instructions that annotate (1) each ipd with a unique identifier, and (2) each control-

flow operation with the identifier of its ipd. Like Dytan [8], TaintDroid++ does not

propagate tags to objects that might have been updated along untaken execution

paths.

Using these two execution environments, we ran four popular Android apps that

require a user to enter a password: the official apps for LinkedIn, Twitter, Tumblr,

and Instagram. Both systems tagged password data as it was input but before it

was returned to an app. We then manually exercised each app’s functionality and

monitored its network and file outputs for tainted data.

Figure 2.1 shows the number and type of tainted outputs we observed for apps

running under TaintDroid and TaintDroid++. For each tainted output, we manu-

ally inspected the content to determine whether it contained password data or not.

Each tainted output under TaintDroid appeared to be an authentication message

that clearly contained a password. TaintDroid++ also tainted these outputs, but

generated many more tainted network and file writes. We were unable to detect any

password information in these extra tainted outputs, and regard them as evidence

of overtainting.

Overtainting is only a problem if incorrectly tainted data is copied to an inap-

propriate sink. Thus, a false positive occurs when an app copies data that is safe

but tainted to an inappropriate sink. Apps authenticate using the OAuth protocol

and should not store a local copy of a password once they receive an OAuth token

from a server. Thus, each tainted file write generated under TaintDroid++ is a false

positive.

For network writes, we also consider whether the password data was sent over
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Figure 2.1: Tainted outputs for apps running under TaintDroid and Taint-
Droid++.

an encrypted connection (i.e., over SSL) and the IP address of the remote server.

Both Tumblr and Instagram under TaintDroid++ generated unencrypted tainted

network writes. None of these writes were tainted under TaintDroid. Furthermore,

TaintDroid only taints outputs to appropriate servers, but under TaintDroid++

several overtainted outputs were sent to third-parties such as the cloudfront.net CDN

and flurry.com analytics servers. These results are consistent with previous work on

overtainting [17, 18], and confirm that securing users’ passwords requires a better

balance of soundness and precision.
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2.3 System Overview

This section provides an overview of SpanDex, including the principles and attacker

model that inform its design.

2.3.1 Principles

SpanDex’s primary goal is to soundly and precisely track how information about

a password circulates through a mobile app. For example, if an app requests a

Facebook password, then SpanDex should raise an alert only if the app tries to

send an unsafe amount of information about the password to a non-Facebook server.

Preventing leaks also requires a way for users to securely enter and categorize their

passwords, and to address these issues we rely on secure password-entry systems such

as ScreenPass [19]. SpanDex is focused on tracking information after a password has

been securely input and handed over to an untrusted app. The following design

principles guided our work.

Monitor explicit and implicit flows differently. In practice, explicit and im-

plicit flows affect a program’s state in very different ways. Operations on secret data

that trigger explicit flows, transfer a relatively large amount of secret information

to a small number of objects. The inverse is true of control-flow operations that

depend on secret data. These operations often transfer very little secret information

to members of a large enclosed set. These observations led us to apply different

mechanisms to tracking explicit and implicit flows.

First, SpanDex uses conventional taint tracking to monitor explicit flows. Span-

Dex is integrated with TaintDroid and Android’s Dalvik VM, and maintains a label

for each program variable. Each label logically consists of a single-bit tag indicating

whether the variable contains an unsafe amount of information about a character

within a user’s password. Because explicit flows transfer a relatively large amount
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of information between objects, when an object’s tag is set, SpanDex assumes that

the variable contains an unsafe amount of secret information.

Second, when SpanDex encounters a branch with a tainted condition, it does not

immediately propagate tags to objects in the enclosed set. Rather, SpanDex first

updates an upper bound on the total amount of secret information the execution’s

control flow has revealed to that point. This upper bound precisely captures the

maximum amount of secret information that an attacker could encode in untagged

objects. As long as the total amount of secret information transferred through im-

plicit flows is safe, SpanDex can ignore where that information is stored.

Like DTA++, SpanDex borrows techniques from symbolic execution to quantify

the amount of information revealed through implicit flows. In particular, SpanDex

integrates operation logging with tag propagation to record the chain of operations

leading from a tainted variable’s current state back to the original secret input. When

SpanDex encounters a tainted conditional branch, it updates its information bounds

by using these records to solve a constraint-satisfaction problem (CSP). The CSP

solution identifies a set of secret inputs that could have led to the observed execution

path. This set precisely captures the amount of information transferred through

implicit flows.

The drawback of applying these techniques at runtime is the potential for poor

performance. A monitor can efficiently record operations on tainted data at run-

time, but solving a CSP when encountering a tainted branch could be disastrous. In

the worst case, trying to solve a CSP could cause a non-malicious app to halt. For

example, passwords must be encrypted before they are sent over the network, but it

is infeasible to compute the set of all plaintext inputs that could have generated an

encrypted output. Balancing the need to track implicit flows while preventing com-

mon primitives such as cryptography from slowing, or even halting, non-malicious

apps led to our second design principle.
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If commonly used functionality makes tracking difficult, force apps to use

a trusted implementation. Mobile apps typically receive a password, perform san-

ity checks on the characters, encode the password as an http-request string, encrypt

the http-request, and forward the encrypted string to a server. The code used to

transform password data from one representation to another (e.g., encoding a char-

acter array as an http-request string and then encrypting the string) is problematic

because it uses a number of operations that make quantifying implicit flows pro-

hibitively slow or even impossible. This code includes a large number of bit-wise and

array-indexing operations interleaved with tainted conditional branches. If SpanDex

tracked implicit flows within this code as we have described thus far, non-malicious

apps would become unusable.

Fortunately, it is exceedingly rare for apps to implement this functionality them-

selves. Instead, apps rely on platform libraries for common transformations, such as

character encoding and cryptography. On Android this library code is small in size,

easy to understand, and protected by the Java type system.

Tracking explicit flows remains the same for trusted libraries as for untrusted

app code. However, within a trusted library, SpanDex does not solve CSPs when

encountering a tainted branch and may directly update the information bound of a

secret before exiting. This approach is sound for library code whose state is strongly

encapsulated and whose semantics are well understood.

For example, encrypting a tainted string involves a sequence of calls into a crypto

library for initializing the algorithm’s state, updating that state, and retrieving the

final encrypted result. Ignoring tainted conditional branches within this code is

sound for two reasons. First, tracking explicit flows within the library ensures that

any intermediate outputs as well as the final output are properly tagged. Second,

external code can only access library state through the narrow interface defined by
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the library API; there is no way for untrusted code to infer properties about the

plaintext except those that the library explicitly exposes through its interface or by

branching on the plaintext data itself. SpanDex tracks both cases.

The protection boundary separating untrusted code from trusted library code has

two novel properties. First, the boundary is defined by both data flow and control

flow. An app is allowed to use a custom cryptographic implementation on untainted

data, but must use the trusted crypto library to encrypt tainted data. Second,

the boundary is enforced by the aggregate complexity of the operations performed

rather than by hardware or a conventional software guard. If an app attempts to

encrypt password data using a custom implementation or branches on encrypted

data returned by the trusted library, it will be forced to solve an intractable CSP

and halt.

Thus, the key property of a SpanDex’s sandbox is that it restricts the classes of

computation that untrusted code may directly perform on secret data. Instead, an

app must yield control to the trusted platform so that these computations can be

performed on its behalf.

Given an execution environment that can efficiently quantify the amount of secret

information transferred through implicit flows, SpanDex’s final challenge is determin-

ing whether the quantified amount is safe to release. This challenge led to our final

design principle.

Use properties of a secret’s data type to set release policies. Like SpanDex,

DTA++ requires a threshold on the amount of information revealed through implicit

flows. DTA++ applies a strict policy to determine when to propagate tags by doing

so only when the control flow is injective. That is, DTA++ propagates tags when a

single secret value could have led to a particular execution path.

Though simple, this policy is inappropriate for SpanDex. Revealing an entire

23



secret value via implicit flows is clearly unsafe, but revealing partial information

about a password may be too. For example, using carefully crafted branches, malware

could cause significant harm by narrowing every character of a password to two

possible values. However, as we have seen, treating all implicit flows as unsafe

leads to prohibitive overtainting. SpanDex’s challenge is to support practical release

policies that sit between these two extremes.

SpanDex benefits from its focus on passwords. Passwords have a well-defined rep-

resentation and fairly well understood attacker model. For example, it is reasonable

to assume that an attacker knows that a password consists of a sequence of human-

readable characters (i.e., ASCII characters 32 through 126), many of which are likely

to be alphanumeric. An attacker gains no new information from observing the con-

trol flow of a process if the flow reveals that each character is within the expected

range of values. We investigate what apps’ control flows reveal in Section 2.6.

2.3.2 Trust and Attacker Model

SpanDex is implemented below the Dalvik VM interface (i.e., the Dex bytecode ISA),

and the protections provided by this VM provide the foundation for SpanDex’s trust

model. Most Android app logic is written in Java and compiled into Dex bytecodes,

which run in an isolated Dalvik VM instance. SpanDex cannot protect passwords

from an app that executes third-party native code while there is password data in its

address space. Thus, objects tainted with password data must be cleared before an

app is allowed to execute its own native code. In addition, once a process invokes

third-party native code, it may not receive password data. SpanDex must rely on

the kernel to maintain information about which processes have invoked third-party

native code. Finally, apps may not write tainted data to persistent storage or send

it to another app via IPC.

SpanDex is focused on securely tracking how password data flows within an app.

24



Attacks on other aspects of password handling are outside the scope of our design.

First, we assume that users can securely enter their password before it is given to

an app, and that users will tag a password with its associated domain. A secure,

unspoofable user interface, such as the one provided by ScreenPass [19], can provide

such guarantees. Special purpose hardware, such as Apple’s Touch ID fingerprint

sensor and secure enclave [20], could also provide this guarantee.

Second, SpanDex can help ensure that password data is shared only with servers

within the domain specified by the user, but provides no guarantees once it leaves

a device. For example, SpanDex cannot prevent an attacker from sending a user’s

Facebook password as a message to a Facebook account controlled by the attacker.

Preventing such cases requires cooperation between SpanDex and the remote server.

SpanDex could notify the service when a message contains password data, and the

service could determine whether such messages should contain password data.

We assume that an attacker completely controls one or more apps that a user has

installed, and that the attacker is also in control of one or more remote servers. The

attacker’s servers can communicate with the attacker’s apps, but the servers reside in

a different domain than the one the user associates with her password. The attacker

can make calls into the platform libraries and manipulate its apps’ data and control

flows to send information about passwords to its remote servers.

Based on the large-scale leakage of large password lists from major services, such

as Gawker [21] and Sony Playstation [22], we assume that an attacker has access to a

large list of unique passwords, and that the user’s password is on the list. However,

we assume that the attacker does not know which usernames are associated with

each entry in the list (though it does know the user’s username).

Thus, our attacker’s goal is to de-anonymize the user within its password list

using information gathered from its apps. The attacker can send its servers as much

untainted data describing a user’s password as SpanDex’s release policies allow (i.e.,
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the password length as well as a range of possible values for each password character).

In the worst case, the attacker will eliminate all but one of the passwords in its list.

On the other hand, if the app provides no new information, then the user’s password

could be any of the ones in the list.

Once the attacker has computed the set of possible passwords for a username, it

can only identify the correct username-password combination through online query-

ing. For example, if an attacker infers that Bob’s Facebook password is one of ten

possibilities, then the attacker needs at most ten tries to login to Facebook as Bob.

The attacker may also have extra information about the usage distribution of

passwords in its database. For example, the attacker may know that one password

is used by twice as many users as another. While information from the app can

help the attacker narrow a user’s password to a smaller set of possibilities, the usage

distribution allows the attacker to prioritize its login attempts to reduce the expected

number of attempts before a successful login. We return to this issue in Section 2.6.

2.4 SpanDex Design

As with conventional taint tracking, SpanDex updates objects’ labels on each oper-

ation that generates an explicit flow. If the monitor encounters a control-flow opera-

tion with a tainted condition, it does not update the labels of objects in the enclosed

set. Instead, the monitor updates an upper bound on the amount of information the

execution’s control flow has revealed about the secret input.

SpanDex represents this bound as a possibility set (p-set). SpanDex maintains

a p-set for each password character an app receives. P-sets logically contain the

possible values of a character revealed by a process’ control flow. Each time the

app’s control flow changes as a result of tainted objects, SpanDex attempts to remove

values from the secret’s p-set.
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2.4.1 Operation dag

In order to narrow a p-set, SpanDex must understand the data flow from the original

secret values to a tainted condition. We capture these dependencies in an operation

dag (op-dag). This directed acyclic graph provides a record of all taint-propagating

operations that influenced a tainted object’s value as well as the order in which the

operations occurred.

SpanDex reuses TaintDroid’s label-storage strategy, and stores each 32-bit label

adjacent to its object’s value. However, whereas each bit in a TaintDroid label

represents a different category of sensitive data (e.g., location or IMEI), SpanDex

labels are pointers to nodes in the op-dag. If an object’s label is null, then it is

untainted. If an object’s label is non-null, then its value depends on secret data.

Label storage in SpanDex most significantly differs from TaintDroid for arrays.

In TaintDroid, each array is assigned a single label for all entries. If any array

element becomes tainted, then the entire array is treated as tainted. This approach is

inappropriate for SpanDex because we want to track individual password characters.

Thus, SpanDex maintains per-entry labels. However, the reason that TaintDroid

maintains a single label for each array is storage overhead. Byte and character

arrays account for a large percentage of an app’s memory usage, and assigning a

32-bit label for each byte-array entry could lead to a minimum fourfold increase in

memory overhead for array labels.

To avoid this overhead, SpanDex allocates labels for arrays only after they contain

tainted data. Each array is initially allocated a single label. If the array is untainted,

then its label points to null. If the array contains tainted data, then its label points

to a separate label array, with one label for each array entry. As with local-variable

and object-field labels, array-element labels point to nodes in the op-dag. Since very

few arrays contain password data, the overhead of maintaining per-entry labels is
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low overall.

The roots of the op-dag are special nodes that contain the original value of each

secret (i.e., each password character), a pointer to the secret’s p-set, and domain

information. A p-set is represented as a doubly-linked list of value ranges. Each

entry in the list contains a pointer to the previous and next entries, as well as a

minimum and maximum value. Ranges are inclusive, and the union of the ranges

specifies the set of possible secret values revealed by an app’s control flow. SpanDex

initializes p-sets to the range r32, 126s to represent all printable ASCII characters. A

secret’s domain can be specified by the user through a special software keyboard [19].

Each tainted object version has an associated non-root node that records the

operation that created the version, including its source operands. Source operands

can be stored as concrete values (when operands are untainted) or as pointers to

other nodes in the op-dag (when operands are tainted).

A node can point to more than one node, and there may be multiple paths from

a node to one or more roots. The more complex the paths from a node to the op-dag

roots are, the more complex updating p-sets becomes.

2.4.2 Example Execution

If a tainted variable influences an app’s control flow (e.g., via a conditional branch),

then SpanDex traverses the op-dag from the node pointed to by the object’s label

toward the roots. To demonstrate how SpanDex maintains and uses op-dags and p-

sets, consider the simple snippet of pseduo-code below. Figure 2.2 shows the resulting

op-dag and p-set.

0000: mov v1, v0 // v0, v1 label=ROOT

0002: add v2, v1, 3 // v2’s label=N1

0004: add v2, v2, 2 // v2’s label=N2

0006: sub v3, 6, v2 // v3’s label=N3

0008: add v2, v2, 7 // v2’s label=N4
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Figure 2.2: Simple op-dag and p-set example.

000a: const/16 v4, 122 // v4’s label=0

000c: if-le v3, v4, 0016

000e: ...

The first character of the password is ‘p’, or numeric value 112, and is stored in

register v0. The password’s domain is Facebook. v0’s label points to the Root node

for the secret character. v0 is then copied into v1, whose label must also point to

Root. The sum of v1 and 3 is then stored in v2, whose label then points to new

node, N1. N1 contains the addition operation, the 3 operand, and points to Root.

The next line adds 2 to v2. This creates a new version of v2, which is recorded in

N2. N2 contains the 2 operand and points to the node for the previous version of v2,

node N1. The remaining arithmetic operations proceed similarly. Finally, the code

loads the constant value of 122 into v4 for an upcoming conditional branch. v4’s

label is null, since it is not tainted.
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When the code reaches the conditional branch, v3 is less than or equal to v4,

since v3’s value is 111, and v4’s value is 122. Because v3’s label is non-null, SpanDex

uses the op-dag node in v3’s label (N3) to update the p-set.

Updating the p-set is equivalent to solving a CSP to determine which secret values

could have led to the control-flow change. In our example, updating the p-set is easy.

SpanDex solves the inequality v0` 6´ 2´ 3 ď 122, leading to v0 ď 121. Thus, the

control flow reveals that the first character of the user’s password is within the range

of r32, 121s. SpanDex updates the p-set to reflect this before resuming execution.

Figure 2.2 shows the state of the op-dag and p-set at this point.

This simple example demonstrates some of the challenges and nuances of Span-

Dex’s approach. First, each node in the op-dag represents a version of a tainted

variable. N3 points to the version of v2 used to update v3, so that when SpanDex

reaches the conditional branch, it can retrieve the sequence of operations that led to

v3’s current value.

Second, reversible operations such as addition and subtraction make updating

p-sets straightforward. Unfortunately, Dalvik supports a number of instructions

that are much trickier to handle. For example, Dalvik supports instructions for

operating on Java Object references and arrays that behave very differently than

simple arithmetic operations. Even some classes of arithmetic operations, such as

bit-wise operators and division, can make solving a CSP non-trivial.

Third, there was a single path from N3 to Root in our example. If N3 had forked

due to multiple tainted operands, or had led to multiple root nodes due to mixing

secret characters, solving the CSP would have been far more complex. Compression

and cryptography often mix information from multiple characters, which creates a

complex nest of paths from nodes to the op-dag roots.

Fortunately, among the popular non-malicious apps that we have studied, difficult-

to-handle operations occur only in platform code such as the Android cryptography
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library. Furthermore, it is rare to find apps that branch on the results of these opera-

tions outside of platform code. Thus, as long as SpanDex can ensure that all outputs

from these libraries are explicit and tainted, then we can ignore implicit flows within

them (and thus, avoid CSP solving).

This approach is intuitive. First, outside of simple sanity checking on a pass-

word, there is little reason for an app to operate on password data itself. Second,

libraries such as a crypto library are designed to suppress implicit flows. Observing

an encrypted output or a cryptographic hash should not reveal anything about the

plaintext input. Third, there is no obvious reason why app code should branch on ei-

ther encrypted data or a cryptographic hash. Apps simply use the platform libraries

to encode these outputs as strings and send them to a server.

There are many difficult operations that we have not observed in either app code

or library code. Our general approach to these operations is to propagate taint to the

results of these operations, but to fault if they cause the control flow to change. For

example, an app may use bit-wise operations to encode a character, but branching

on the encoded result is not allowed. This is secure and does not disrupt non-

malicious apps. In the next section, we describe how SpanDex treats each class of

Dex bytecodes in greater detail.

2.4.3 Dex Bytecodes

In this section, we describe how SpanDex handles each of the following classes of

bytecodes: type-conversion operations, object operations, control-flow operations,

arithmetic operations, and array operations.

Type conversions. Dalvik supports the following data types: boolean, byte, char,

short, int, long, float, double, and Object reference, as well as arrays of each of

these types. P-set ranges are represented internally as pairs of floats. Solving CSPs

involving conversions to alternate representations is supported as long as the type is
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a native and numeric.

Object Conversions. Dex provides a number of instructions for converting be-

tween data types, but conversions can also occur through Object-method invocations

and arrays. For example, an app could index into an Object array with a tainted

character, where the fields of each Object encodes its position in the array. The

returned Object reference would be tainted, and would identify the character used

to index into the array. The return value of any method used to access a field of the

tainted Object would also be tainted. However, SpanDex would have to understand

the internal semantics of the Object in order to solve a CSP involving the tainted

returned value. Thus, branching on data derived from a tainted Object reference is

not allowed.

Control-flow. A Dalvik program’s control flow can change as a result of secret

data in many ways. Conditional branch operations such as if-eq are the most

straightforward, and SpanDex handles these as described in Section 2.4.2.

Dalvik also supports two case switching operations: packed-switch and sparse-

-switch. Both instructions take an index and a reference to a jump table as argu-

ments. The difference between the instructions is the format of the jump table and

how it is used. The table for a packed-switch is a list of key-target pairs, in which

the keys are consecutive integers. Dalvik first checks to see if the index is within the

table’s range of consecutive keys. If it is not, then the code does not branch and

execution resumes at the instruction following the switch instruction. If it is in the

table, then the code computes the new PC by adding the matching target to the

current PC.

The table for a sparse-switch is also a list of key-target pairs, but the keys do

not have to be consecutive integers (though they have to be sorted from low-to-high).

To handle this instruction, the VM checks whether the index is greater than zero and

less than or equal to the table size. It then uses the index to perform a binary search
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on the keys to find a match. If it finds a match, then it jumps to the instruction at

the sum of the matching target and current PC.

Although more complex than conditional branches, handling these switch instruc-

tions is straightforward. If the code falls through the switch instruction, then the

resulting implicit flow reveals that the index is not equal to any of the table keys.

SpanDex can solve a CSP for each of the keys and update its p-sets accordingly. If

the control-flow is diverted by the switch instruction, then the resulting implicit flow

reveals that the index is equal to the matching table key. SpanDex can solve a CSP

for this condition as well. In practice, most switch instructions are packed and the

corresponding jump tables are small, which makes solving CSPs for these operations

fast.

Finally, a program’s control flow can be influenced by tainted data if an operation

on tainted data causes an exception to be thrown. For example, an app could divide

a number by a tainted variable with value of a zero, or it could use a tainted variable

to index beyond the length of an array. SpanDex could compute a CSP for the

information revealed by each of these conditions, e.g., that a tainted variable is equal

to zero or that a tainted variable is greater than the length of an array. However,

we have not seen this behavior in any of the apps we have studied. As a result, our

current implementation simply stops the program when an instruction with a tainted

operand causes an exception to be thrown.

Arithmetic. As we saw in Section 2.4.2, reversible arithmetic operations are straight-

forward to handle. Other arithmetic operations are not impossible to handle, but

require a complex solver. For example, reversing multiplication and division oper-

ations is tricky because of rounding. Bit-wise operations are even more difficult to

reason about. Fortunately, it is exceedingly rare for app code to branch on the results

of these operations. Instead, we have observed that trusted library code is far more

likely to branch on the results of these operations. As long as we can ensure that
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all library outputs are explicit, then we do not need to solve CSPs involving difficult

operations when in trusted code.

Arrays. Dex provides instructions for inserting (iput) and retrieving (iget) data

from an array. Due to type-conversion problems, SpanDex does not allow tainted

indexing of non-numeric arrays. In particular, an app may not use a tainted variable

to index into an Object array.

Handling an iget operation requires keeping a checkpoint of the array in the

op-dag node for the variable holding the result. For example, say that all of the

entries in an int array are zero or one, and that an app indexes into the array with

a tainted variable. The returned value would be stored in a tainted variable. If the

app later branched on the tainted variable, then SpanDex must look at the array

checkpoint to determine which indexes would have returned the same value as the

executed iget. In practice, tainted iget instructions are rare, and when they do

occur the arrays are small.

Unlike a tainted iget, a tainted iput instruction is dangerous. Consider an

attacker that initializes an array a with known size, such that all entries are equal to

zero. It then stores the first password character in the variable s and inserts a one

into arss. Because SpanDex maintains per-entry labels for arrays, arss is tainted, but

no other entries are. The attacker can then incrementally send each value in the array

to its server: only arss is tainted and will be stopped by SpanDex. Unfortunately,

stopping the app at this point is too late, since the number of received zeros reveals

the value of s. As a result of this attack, tainted iput instructions are illegal.

Finally, Dex also provides instructions such as filled-new-array for creating

and populating arrays, and SpanDex disallows tainted operands on these instructions.
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2.4.4 Trusted Libraries

As described above, there are a number of operations on tainted data that would

add significant complexity to SpanDex’s CSP solver to support. Even worse, the

complexity of the op-dags that combinations of these operations would create make

it doubtful that even a sophisticated solver could handle them quickly, if at all.

Ideally, these operations would never arise, and if they did, an app would never

branch on their results. Sadly, this not the case. Many apps require cryptographic

and string-encoding libraries to handle passwords, and these libraries are rife with

difficult to handle operations as well as branching on the results of those operations.

Trying to solve such complex CSPs would make SpanDex unusable: non-malicious

apps would halt just trying to encrypt a password. At the same time, ignoring flows

generated by these operations is not secure. Luckily, we have observed that branching

on the results of difficult operations consistently occurs within a handful of simple

platform libraries.

Thus, SpanDex’s approach to handling difficult implicit flows is to identify the

functionality that creates them in advance and to isolate these flows inside trusted

implementations. As long as the outgoing information flows from these libraries are

always tainted and explicit, SpanDex does not need to worry about their internal

control-flow leaking secret information. Furthermore, this code is open and well

known, is protected by the Java type system, and can be modified to eliminate

implicit flows through the library API.

The set of libraries that SpanDex trusts not to leak information implicitly is

shown in Listing 2.1.
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java.lang.String (selected methods excluded)
java.lang.Character
java.lang.Math
java.lang.IntegralToString
java.lang.RealToString
java.lang.AbstractStringBuilder
java.net.URLEncoder
java.util.HashMap
android.os.Bundle
android.os.Parcel
org.bouncycastle.crypto

Listing 2.1: Set of libraries trusted by SpanDex to not leak information implicitly.

Nearly all of this code is either stateless string encoding and decoding, or cryp-

tography.

2.4.5 Various Attacks and Counter-measures

We described several attacks in Section 2.3.2 that are beyond the scope of SpanDex.

In this section, we describe several other attacks and how SpanDex might handle

them.

First, SpanDex does not allow tainted data to be written to the file system or

copied to another process via IPC. This is reasonable because mobile apps should

only require a user’s password to retrieve an OAuth token from a remote server.

After receiving the token, the app should discard the user’s password. If an app tries

to copy tainted data to an external server, then SpanDex must consult the domains

in the set of reachable op-dag root nodes.

Second, an attacker could have multiple apps under its control generate multiple

overlapping (but not identical) p-sets. Each individual p-set would appear safe,

but when combined at the attacker’s server, they could collectively reveal an unsafe

amount of information. Relatedly, a malicious app could request a user’s password

multiple times and compute different ranges on each password copy.

One way to detect this class of attacks is by inspecting the membership of a

secret’s p-sets. For the apps that we have observed, p-sets usually correspond to
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natural character groupings, e.g., numbers, lower-case letters, upper-case letters,

and related special characters. P-sets containing unusual character groupings could

be a strong signal that an app is malicious.

The solution to this attack suggests a larger class of counter-measures that use

information from the p-sets and op-dag to detect malicious behavior. For example,

anomalous operation mixes or an unusually large op-dag could indicate an attack.

One of the advantages of SpanDex is that it gives the monitor a great deal of insight

into how an app operates on password data. We believe that this information could

enable a rich universe of policies, though enumerating all of them is beyond the scope

of this paper.

Finally, it is possible that SpanDex is vulnerable to certain classes of side-channel

and timing attacks that we have not considered. However, any attack that relies

on branching on tainted data would be detected. For example, consider the well-

known attack on Tenex’s password checker [23]. Even though the attack uses a page-

fault side channel that is out of SpanDex’s scope, SpanDex would have prevented it

because each additional character comparison would have narrowed its p-set to an

unsafe level.

2.5 Implementation

Our SpanDex prototype is built on top of TaintDroid for Android 2.3.4. We modified

TaintDroid to support p-sets and op-dags, and made several modification to the

Android support libraries. Most of our changes to these libraries were made in

java.lang.String.

First, public String methods whose return value could reveal something about a

tainted string’s value are not considered trusted to ensure that p-sets are updated

properly (e.g., equals(Object), compareTo(String)).
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Second, as a performance optimization, the Dalvik VM replaces calls to certain

performance-critical Java methods with inlined “intrinsic” functions that are written

in C and built in to the Dalvik VM (e.g., String.equals(Object), String.compare-

To(String)). However, if an intrinsic inlined function operates on a tainted string

and performs comparisons involving the string’s characters, we are unable to update

the p-sets accordingly. To avoid this, we modified Dalvik’s intrinsic inlines that

operate on strings to check if the string is tainted and, if so, invoke the Java version

instead.

Third, Android’s implementation of java.lang.String performs an optimization

when converting an ASCII character to its String value: it uses the character’s

ASCII code to index into a constant char array containing all ASCII characters. If

the character to be converted is tainted, we prevent this optimization from being

used, as it would result in an array lookup with a tainted index.

Finally, we modified the android.widget.TextView and implemented a custom

IME with a special tainted input mode that can be enabled to indicate to SpanDex

when a sequence of characters is sensitive (i.e., a password).

2.6 Evaluation

In order to evaluate SpanDex, we sought answers to the following questions: How well

does SpanDex protect users’ passwords from an attacker? What is the performance

overhead of SpanDex?

2.6.1 Password Protection

As described in Section 2.3.2, we have designed SpanDex based on an attacker that

has access to a large list of cleartext passwords. The attacker knows that a user’s

password is in the list, and uses untainted information from its malicious app to
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narrow a user’s password to a smaller set of possibilities. To understand how well

SpanDex can protect users from such an attack, we need to know the kind of p-

sets that real apps induce, we need access to a large list of cleartext passwords,

and we need a realistic distribution of how passwords are used. All of these pieces

of information will allow us to calculate the number of expected logins an attacker

would need to guess a user’s password, given the amount of untainted password

information that SpanDex allows apps to reveal.

First, we ran 50 popular apps from Google’s Play Store. Each of these apps re-

quired a login, and we used the same 35-character password for each app. The pass-

word contained one lower-case letter (‘a’), one upper-case letter (‘A’), one number

(‘0’), and one of each of the 32 non-space special ASCII characters. 42 ran without

modification1. The top row of Table 2.1 shows each character in the password.

Eight apps invoked native code before requesting a user’s password2. While these

apps would have to be modified to run under SpanDex, waiting to invoke native code

before requesting a user’s password is unlikely to require major changes. All other

apps ran normally.

Table 2.1: Password-character p-set sizes for 42 popular Android apps
! ” # $ % & ’ ( ) * + , - . / 0 : ; ă = ą ? @ A [ \ ] ˆ ‘ a { | } ˜

Max 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
75th 90 16 33 90 90 33 33 90 90 90 90 90 90 90 83 92 90 90 33 90 92 90 90 90 90 32 65 90 90 90 95 90 90 90 90
Med 16 12 12 16 16 12 12 16 16 13 16 16 13 13 14 10 7 7 7 7 7 7 7 26 6 6 6 6 6 6 90 4 4 4 4
25th 12 4 12 12 12 12 12 12 12 1 12 12 1 1 12 10 7 7 7 7 7 7 7 26 5 5 5 5 1 5 26 4 4 4 4
Min 1 1 3 1 1 1 1 1 1 1 3 4 1 1 1 10 1 1 1 1 1 1 3 26 1 1 2 4 1 4 26 1 1 3 4

For the 42 apps that ran unmodified, after their password was sent, we inspected

the p-set for each password character and counted its size. Table 2.1 shows the

1 Audible, Amazon, Amazonmp3, Askfm, Atbat, Badoo, Chase, Crackle, Ebay, Etsy, Evernote,
Facebook, Flipboard, Flixster, Foursquare, Heek, Howaboutwe, Iheartradio, imdb, LinkedIn, My-
fitnesspal, Nflmobile, Pandora, Path, Pinger, Pinterest, Rhapsody, Skout, Snapchat, Soundcloud,
Square, Tagged, Textplus, Tumblr, Tunein, Twitter, Walmart, Wordpress, Yelp, Zillow, Zite, and
Zoosk

2 Dropbox, Hulu+, Kindle, Mint, Skype, Spotify, Starbucks, and Voxer
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maximum, 75th percentile, median, 25th percentile, and minimum p-set size for each

password character. The header of the table shows the password. The first thing to

notice is that the p-sets for the letters in our password (i.e., ‘A’ and ‘a’) were never

smaller than 26. This makes sense, since each app is branching to determine that

the character is either a lower or upper case letter. The same is true for the number

in our password, ‘0’. No numeric p-set was smaller than 10.

The more difficult cases are the non-alphanumeric special characters. For these

cases, the p-sets are fairly app specific. In some cases, the app’s control flow depends

on a specific character (e.g., Skout with several special characters), but most char-

acters’ p-sets remain large across most apps. With the exception of ‘*’, ‘-’, ‘.’, and

‘ ’, all non-alphanumeric characters had large p-sets for 75% of apps or more.

Given this observed app behavior, we next obtained the uniqpass-v11 list of 131-

million unique passwords [24]. The list contains passwords from a number of sources,

including the Sony Pictures [22] and Gawker leaks [21]. To simulate an attack, we

selected a password, p, from the list and computed the p-sets that a typical app

would generate for p. In particular, we assume that the attacker can infer p’s length

and whether each character is a lower-case letter (26 possibilities), an upper-case

letter (26 possibilities), a number (10 possibilities), or a member of a block of special

ASCII characters (i.e., the 16 characters below ‘0’, the 7 characters between ‘9’ and

‘A’, the 6 characters between ‘Z’ and ‘a’, and the 4 characters after ‘z’).

This information gave us a kind of regular expression for p based on the type

of each of its characters. We call the set of passwords matching this expression the

match set and the size of the match set the match count. The larger a password’s

match count, the more uncertain an attacker is about what password the user entered.

We computed the match count for all passwords in the uniqpass list in this way.

Finally, we counted the number of passwords with a given match count to arrive at

the inverse distribution function.
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Figure 2.3: CDFs of expected login attempts using the uniqpass password list.

These calculations show that if SpanDex allows an attacker to learn the p-sets

for a password from a typical app, the attacker will have trouble narrowing the set

of possible passwords for the user. In particular, 92% of passwords have a match

count greater than 10,000, 96% of passwords have a match count greater than 1,000,

98% of passwords have a match count greater than 100, and 99% of passwords have

a match count greater than 10.

Unfortunately, recent work on a variety of password databases suggest that pass-

word usage follows a zipf distribution [25]. Thus, we also model the N passwords in

a match set as a population of N elements that contains exactly one success (as a

user would only have one correct password). Next, we let n be the random variable

denoting the number of tries required to guess the correct password and find Erns,

the expected value of n. If the passwords are all equally probable, we try them in

random order. Otherwise, we try them in the descending order of their probability.

Note that each password try is done without replacement, i.e., after trying i pass-

words, we only consider the remaining pN´ iq passwords when picking the next most

probable password.
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A study of the distribution of passwords publicly leaked from Hotmail, flirtlife.de,

computerbits.ie, and RockYou found that the passwords in each of these sets can be

reasonably modelled by a zipf distribution with s parameter values of 0.246, 0.695,

0.23, and 0.7878 respectively [25]. Using these values of s, we modeled the passwords

in each match set and computed the CDF of Erns.

When s “ 0.7878, 95% of the time, the attacker is likely to guess the correct

password within 50 tries. When the s value for the zipf distribution is 0.246 or less,

99% of passwords are expected to require 10 or more login attempts, and 90% of

passwords are expected to require 80 or more attempts. for all users. Figure 2.3

shows the CDFs for all four s values.

Unfortunately, we do not know the usage distribution for the uniqpass dataset

since it contains only unique passwords.

2.6.2 Performance Overhead

To measure the performance overhead of SpanDex we used the CaffeineMark bench-

mark and compared it to stock Android 2.3.4 and TaintDroid. Both TaintDroid

and SpanDex ran without any tainted data. Since SpanDex only handles password

data that is discarded after an initial login, this is SpanDex’s common case. The

benchmark was run on a Nexus S smartphone. The results are in Figure 2.4.

Overall, SpanDex performs only 16% worse than stock Android and 7% worse

than TaintDroid. Stock Android performs significantly better than either TaintDroid

or SpanDex in the string portion of the benchmark. This is because TaintDroid and

SpanDex both disable some optimized string-processing code to store labels.

Finally, we would like to note that when testing apps in Section 2.6.1, we did not

encounter any noticeable slow down under SpanDex. This was due to login being

dominated by network latency and the simplicity of the CSPs these apps generated.
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2.7 Conclusion

SpanDex tracks implicit flows by quantifying the amount of information transferred

through implicit flows when an app executes a tainted control-flow operation. Using

a strong attacker model in which a user’s password is known to exist in a large

password list, we found that for a realistic password-usage distribution, for 90%

of users an attacker is expected to need 80 or more login attempts to guess their

password.
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Chapter 3

TaintTrap: Native Code Taint

Tracking

3.1 Introduction

Android apps are typically written in Java and compiled to Dalvik Bytecode inter-

preted by the Dalvik Virtual Machine (VM). However, apps can also leverage native

code that executes outside of the VM. For performance or legacy reasons, apps can

provide their own shared libraries within the application package, written in C/C++,

which execute directly as native code. A recent study found that 16% of apps use

native code [27]. Furthermore, starting with Android 4.4, a new experimental An-

droid runtime (ART) [28] aims to replace the default Dalvik runtime, and provides

automatic and transparent ahead-of-time compilation of Dalvik code to native code

for apps. Furthermore with the release of Android 5.0, ART is the default runtime,

leading towards 100% native code execution in apps.

Hence, we believe supporting native code is key to providing complete system-

wide information-flow tracking. Unfortunately there is no existing smartphone track-

ing system that supports native code tracking without significant performance impact

on the device.

TaintDroid [6], the current state of the art Android on-device taint tracking
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system, is only capable of monitoring taint within the Dalvik VM. If the Dalvik

code attempts to execute an app provided native function, TaintDroid is unable

to continue to propagate taint until the native function returns. For this reason,

TaintDroid’s policy is to block all 3rd party apps from loading and invoking packaged

native libraries. Unfortunately, this strong restriction can break any application that

relies on native code, a common occurrence for the popular Android apps which rely

on native code for performance reasons.

Another recent system, NDroid [27], also notes the importance of native code and

extends TaintDroid to support native code interactions. However, it does not run on

a real smartphone limiting its applicability, and relies on QEMU for virtualization,

preventing apps from interacting with real environments (e.g., GPS or camera).

Motivated by ART and limitations of native code taint tracking for mobile de-

vices, our goal is to create a practical taint tracking system that runs on a real

smartphone device and allows apps to freely use native code, while maintaining the

same tracking capabilities of Dalvik code offered by TaintDroid.

The intuition behind this work is based on the observation that apps, while

trusted with sensitive data (e.g. passwords, contacts, GPS, camera), access this data

or perform computations on it either rarely or for brief periods of time during the

entire usage of the app. Using this insight we aim for a smartphone specific hardware-

software approach that is built around the common case: apps rarely touch tainted

data.

The key idea is to only perform the expensive taint tracking in rare cases when

needed, otherwise providing the ability to run with negligible performance overhead.

The purpose of our system is to deliver seamless end-to-end taint tracking across

the Dalvik VM interpreter, platform native libraries and native libraries used by

applications.

The proposed system has the following objectives:
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• Full-system taint tracking on Android, spanning both Dalvik VM and native

ARM code.

• Ability to switch between Unmodified Native Execution and Emulation, only

when strictly needed.

• Low-overhead fine-grained Taint Access Faults by leveraging hardware support.

Section 3.2 provides an overview of the system. Section 3.3 covers the implemen-

tation details of our prototype. We evaluate the system in Section 3.4, review related

work in Section 3.5, and conclude in Section 3.6.

3.2 System Overview

Since continuously instrumenting all native code execution on Android is prohibitively

slow, we envision a flexible hybrid approach between a Dalvik taint tracking system

and a native code tracking system. We extend TaintDroid’s existing VM taint track-

ing with native code taint tracking and allow native code to execute unmodified so

long as it does not access any tainted data. The challenge is knowing when native

code touches tainted data while letting the code run unmodified. The key idea is

that a mechanism for protecting access to tainted memory is sufficient to allow code

to execute unmodified, relying on the protection to interrupt (trap) execution if the

program does access tainted data.

We propose TaintTrap, a taint tracking system where native code tracking is

designed with the ability to switch between unmodified/non-tainted execution and

tainted execution. A key benefit of TaintTrap is Selective Emulation: the ability to

emulate on-demand only the instructions accessing tainted data. This is a significant

benefit in the common case of apps infrequently accessing tainted data (e.g. one-

time password login) as the majority of app’s execution is unaffected by TaintTrap.
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Figure 3.1 provides a high level overview of the native code execution phases in

TaintTrap’s design.

• Disassemble)
• Emulate)
• Taint)Track{

Taint)Access)  
Protection

Native)Call)
(JNI)

Native)Execution 
Unmodified

Native)Execution 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Taint)Access)
Fault

All)Registers)
Untainted

Return

Memory Files

Figure 3.1: TaintTrap overview of on-demand native code taint tracking using
emulation.

In this section, we describe the essential components needed for full-system taint

tracking used by TaintTrap.

3.2.1 Dalvik VM Tainting

The VM interpreter executes Dalvik bytecode and for each bytecode opcode, addi-

tional instrumentation is added for taint propagation logic responsible for updating

shadow memory and for assigning per-file taint tags. This instrumentation is part of

the existing TaintDroid system.

3.2.2 Taint Map

At any given time, TaintTrap is aware of the range of addresses containing tainted

data. This is achieved by keeping track of tainted data movement together with

instrumenting system library functions such as libc’s read and write. The memory

taint map keeps track of tainted data stored in memory. For each word of memory, it

keeps track of its associated 32-bit taint tag. Whenever an instruction that references
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memory is emulated, the taint map is accessed to either check if the memory being

read is tainted or to update the taint tag when memory is written. Separate from

the memory taint map, TaintTrap also keeps track of taint for each architectural

register.

3.2.3 Taint Access Protection

TaintDroid’s tracking loses visibility when apps call into native code. The role of

the TaintTrap’s Taint Access Protection (TAP) layer is to ensure that once control

is transferred from the VM to native code, any memory access to data inside the

Taint Map triggers a Taint Access Protection Fault. Upon a TAP Fault, control is

then transferred to a TAP Handler responsible for preparing the transition to Native

Execution Emulation. To also intercept any access to tainted files on the device and

trigger a TAP Fault, we also need to make transparent changes to the file system

interface.

3.2.4 Native Execution Emulation

In emulation, we execute the application binary with complete (registers, memory

and I/O) taint propagation logic. The taint tracking aware binary can either be

statically instrumented with taint tracking instructions, dynamically in the form of

JIT or taint tracking is emulated. Static instrumentation can be useful if the require-

ment is to instrument the entire binary, while TaintTrap’s approach instruments only

when strictly needed, on-demand depending on the data the program accesses. Thus,

statically instrumenting the binary is not a feasible option, particularly since it re-

quires statically determining which code to instrument and code touching tainted

data could vary at run-time.

To emulate any instruction, TaintTrap requires dynamic disassembly and decod-

ing of assembly instructions. For this task, TaintTrap leverages darm [29], an efficient
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structural disassembler for ARM.

For performance reasons, it is important that TaintTrap spends as little time as

needed performing emulation. The key is determining what conditions are needed

to allow a transition back to unmodified native execution. The insight comes from

observing with a mechanism such as TAP that is able to protect tainted memory

accesses, once architectural registers are no longer tainted, it is safe to switch to

unmodified native execution.

3.2.5 Trust and Attacker Model

TaintTrap’s emulation framework is implemented in user-space and relies on non-

privileged OS features that the application being instrumented has access to. The

operating system (Android platform and Linux kernel) is considered trusted. This

means that TaintTrap can be subverted by a malicious adversary with specific knowl-

edge of the system’s internals. For example, an attacker with knowledge of emulation

state memory layout within the app’s virtual memory, could craft a malicious app

that can change emulation state to disable monitoring or covertly un-taint tainted

data by directly writing memory inside the app’s own address space. However, Taint-

Trap is still useful for monitoring malicious apps that are not intentionally subverting

TaintTrap, although in this case we cannot make any guarantees.

Upon decoding an instruction, darm provides detailed structural information. A

listing of the most commonly used fields is shown in Listing 3.1.
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struct darm_t {
// the original encoded instruction
uint32_t w;
// the instruction label
darm_instr_t instr;
darm_enctype_t instr_type;
// conditional execution flags, if any
darm_cond_t cond;
// flag: conditional flags updated
uint32_t S;
// flag: add or to subtract the immediate
uint32_t U;
// flag: pre-indexed or post-indexed addressing
uint32_t P;
// flag: write-back
uint32_t W;
// flag: immediate set
uint32_t I;
// rotation value
uint32_t rotate;
// register operands
// dest, 1st operand, 2nd, accum, transferred, 2nd transferred
darm_reg_t Rd, Rn, Rm, Ra, Rt, Rt2;
// immediate operand
uint32_t imm;
// register shift info
darm_shift_type_t shift_type;
darm_reg_t Rs;
uint32_t shift;
// some instructions operate on bits and specify bits used
uint32_t lsb, msb, width;
// bitmask of registers affected by STM/LDM/PUSH/POP instr
uint16_t reglist;

} darm_t;

Listing 3.1: Snippet of darm’s decoded instruction (most common elements).

3.3 Implementation

TaintTrap is a prototype emulation framework built on TaintDroid 4.1.1, and is

implemented with 4000 lines of C code, not including the darm disassembler. One of

our primary objectives is to create a working prototype capable of running directly on

a smartphone, using existing software primitives and hardware. Building a prototype

provides a great level of understanding and insight into the fundamental challenges

of a practical system. This section outlines the implementation decisions, tradeoffs

and opportunities for improvement.
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3.3.1 Emulation Required Hooks

For emulation to function correctly, it requires knowledge of when a process starts or

exits, and when new threads are created or freed. This is achieved by adding hooks

to a select set of library calls, e.g. thread creation and teardown. Android uses a

process called Zygote that has been initialized and has all the core libraries linked

in. When a new application is started, a new VM is created by forking the Zygote

process, an operation that saves time and memory as libraries are shared. Given

that core libraries are read-only, at any given time there is a single copy in memory.

The select set of library calls is shown in Listing 3.2.

pid_t forkAndSpecializeCommon(const u4* args, bool isSystemServer)
void __thread_entry(int(*func)(void*), void *arg, void **tls)
void __bionic_clone_entry(int (*fn)(void *), void *arg)
void __bionic_atfork_run_child()
void _pthread_internal_free(pthread_internal_t* thread)
void _exit_thread(int retCode)

Listing 3.2: Hooked platform functions needed by emulation.

With the exception of Zygote’s fork implementation in dalvik.system.Zygote,

all other functions are part of libc’s Pthreads implementation and used by pub-

lic APIs (e.g. pthread_create and pthread_exit). In our implementation, we

modified the platform source code (considered trusted code) to insert needed hooks,

however it may be possible to dynamically hook functions with a mechanism like

LD_PRELOAD offered by the dynamic linker.

3.3.2 Memory Taint Map

The taint map needs to cover both the stack and the rest of a program’s memory such

as text and data segments, dynamically allocated memory via mmap, sbrk or malloc.

For performance reasons, TaintTrap linearly allocates the taint map from anonymous

virtual memory through mmap using the flags MAP_ANONYMOUS and MAP_NORESERVE
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which allows allocating more virtual memory than physical memory. Accessing the

taint tag for a given memory address is fast and requires directly indexing into the

taint map based on the offset computed from the given address and the starting

memory address covered by the taint map. While the taint maps need to cover

both current and potential future memory expansion, only a very small fraction of

memory is expected to become tainted and thus needing additional physical memory

compared to the program’s original memory requirements. If the available virtual

memory is insufficient for allocating the taint maps, alternative approaches can trade

off speed for smaller memory footprint: bitmaps and on-demand page level taint

storage allocation. In practice, TaintTrap allocates separate taint map for stack

memory. A lookup step at runtime determines the matching taint map based on the

desired address and information stored with each taint map identifying its type and

covered address range. A sample memory layout with allocated taint tag storage is

shown in Listing 3.3.

10000000 - 18000000 // Taint Tags (Stack)
20000000 - 40000000 // Text + Data
40000000 - 70000000 // Heap
70000000 - be800000 // Taint Tags (Non-Stack)
be800000 - bf000000 // Stack
ffff0000 - ffff1000 // Vectors

Listing 3.3: Example of program memory layout including taint tag storage.

The structure of a taint map is shown below in Listing 3.4:

struct taintmap_t {
uint32_t *data; /* mmap-ed data */
uint32_t start; /* address range start */
uint32_t end; /* address range end */
uint32_t bytes; /* (end - start) bytes */
taintpage_t *pages; /* taintpages */

};

Listing 3.4: Emulator taint map data structure.
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3.3.3 Architectural Registers’ Taint

The register taint map is implemented as a 16-element array for fast lookups and

indexing is performed with the register number: r0 to r15. Taint propagation

rules are similar to an instructions’ data movement. For example the instruction

add r0, r1, r2 performs r0 Ð r1 + r2 and Taint(r0) = Taint(r1) Y (r2),

where Y represents the union of two taint tags, which in our implementation is a

bitwise OR, same as in TaintDroid.

3.3.4 Protection Granularity

The mechanism we use to enforce tainted data access protection is traditional OS

Page Protections. Due to the coarse grain page granularity (4KB), we expect false

positives. Prior work on hardware support for fine grained memory protection in

the form of watchpoints [30] is a very promising match for TaintTrap as a way of

removing such false positives. The impact of protection granularity is measured in

detail in the evaluation section.

3.3.5 Protection Primitive

To change page protections TaintTrap uses the OS provided mprotect system call,

which allows changing the memory access protection for a region of memory. For

example, mprotect(0x1000, PAGE_SIZE, PROT_NONE) prevents any memory access

to the page located at address 0x1000. Any subsequent access to a tainted page

triggers a segmentation-fault signal (SIGSEGV). Conversely, instead of PROT_NONE, to

restore original protections after a page is no longer tainted, a combination of one or

more of PROT_READ, PROT_WRITE and PROT_EXEC allows a mix of read, write memory

access and code execution of the page.
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3.3.6 Tainting Memory

Whenever TaintTrap taints a piece of memory, if the data resides on a untainted

page, the page is immediately protected from subsequent memory accesses. This

ensures that if any other thread of the application tries to access the newly tainted

data, a TAP Fault triggers, providing the entry-point for emulation.

3.3.7 Untainting Memory

A memory read or write reference can only access and taint or untaint 1, 2 or 4 bytes

at a time. Instructions such as PUSH/POP, LDM/STM that load and store multiple

values are considered as making multiple memory references, one for each element.

However, protecting memory at the page-level prevents directly knowing if all the

non-written bytes on a page are non-tainted. It is prohibitively expensive to naively

scan all other 1023 words in the taint map. Instead, to efficiently detect when a

page is tainted and when it first becomes untainted, TaintTrap keeps a per-page

taint counter with values ranging from 0 to 1024, representing the number of word-

size tainted elements on a 4KB page. When the counter is first incremented from

0 to 1, the page is tainted and mprotect is called. Similarly, when the counter is

decremented from 1 to 0, the page becomes untainted, and mprotect is called to

restore the original page protections.

3.3.8 Special Cases

User-space emulation and taint tracking exposes a number of cases requiring special

handling. In this section we discuss some of the most interesting cases we observed.

Tainted Stack. On ARM the Stack Pointer (SP) can be used as a general

purpose register. Thus, it is possible for the SP to become tainted. In fact, we have

seen a legitimate switch statement on tainted data in jpeg exif benchmark. The
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switch statement switches on tainted data read from a file. Assembly instructions

modify the SP using a logical shift with the tainted value as immediate. This is a

legitimate use although it is more closely related to implicit flows. TaintTrap only

emulates explicit flows and hence ignores taint propagation using the SP.

Another stack special case is the stack itself becoming tainted and hence protected

from access. This can happen by legitimate register spills on the stack or during

function calls where registers are saved and restored. Saving a tainted register on

the stack is sufficient to protect the entire stack page around the value. This is not

a correctness issue but a performance one, since it results in additional work due to

false taint access traps when the remaining stack page is used, requiring TaintTrap

to check the faulting instruction for taint, single-step it and resume execution back

unmodified native code. A high number of watchpoints as proposed by prior work

[30], can alleviate the performance hit of false taint access traps.

Tainted Thread-Local Storage. The Linux Pthreads implementation stores

the Thread-Local Storage (TLS) data at the top of the stack. TLS is used for internal

state such as Thread ID and errno, or it can accessed through Pthreads APIs such

as pthread_key_create and pthread_{set,get}specific. Android’s Bionic libc

library allocates storage for up to 64 TLS slots of 32-bit each and the rest of the page

is used for stack frames. Hence, if the first stack page becomes tainted, accessing

TLS causes a TAP Fault. This is problematic since emulation also needs to access

TLS, which causes an infinite trap loop. To avoid trapping on the TLS data, we

allocate 1024 TLS slots, thus ensuring any tainted stack page does not overlap TLS

data. As this issue stems from a protection granularity limitation, watchpoints are

again a useful primitive to have that TaintTrap can benefit from.
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Trampolines. Since TaintTrap only emulates user-level instructions and since

it is not always running due to the nature of selective emulation, it needs some

assistance from the platform. TaintTrap relies trampolines to check for tainted data

its behalf and notify back if necessary. Consider an app that reads and writes a file

on the filesystem. The operations performed are read and write syscalls on a file

descriptor. If the file is tainted and TaintTrap is not already running for the thread

performing the syscall, it cannot notice the taint interaction. To solve this problem,

TaintTrap inserts trampolines in libc’s read and write functions (which already

exist as wrappers around the syscalls). The trampolines then transfer control to code

which checks if the source or destination buffers are tainted and if the file descriptor

is associated with a tainted file.

While trampolines add the required taint checks, they also expose a subtle issue.

Consider the potential callers for read/write:

1. App while executing without emulation (common case). This can be easily

handled by making sure the taint logic checks for a thread-local running flag

that is set while emulation is running. When the flag is not set (no emulation

underway), trampolines are responsible for checking taint, otherwise trampoline

taint checks are skipped as they are performed during instruction emulation.

2. App while under emulation. Since the app is already under emulation when

it calls read/write, the taint propagation logic part of the trampoline gets

emulated. While not a correctness issue, this is a major performance issue

that TaintTrap addresses. The problem is complicated by the stack poten-

tially being tainted and trapping on access, preventing any trampoline taint

check bypass logic from executing as any subsequent function call would trap.

TaintTrap’s workaround leverages the fact that for emulation, each thread has

a dedicated alternate stack that is never protected. Thus, instead of running
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the bypass logic on the regular stack, it is run on the TaintTrap stack through

the use of a TLS-based side channel. Trampolines check if the current stack

frame is tainted/protected before attempting to run any taint checks, and if

tainted, request it be performed on the dedicated stack by recording what taint

checking function needs to be called then raising a trap using a specially crafted

undefined instruction that is delivered as a SIGILL to TaintTrap. This ensures

that TaintTrap can distinguish between a common SIGSEGV on tainted data

access triggering emulation, versus a request to call a function on its stack and

resume execution.

3. TaintTrap for its own use (not requested by app). This can only happen due

to TaintTrap’s distinct usage of libraries, for example writing the execution

instruction trace. In this case TaintTrap never directly manipulates an app’s

tainted data and hence trampoline taint checks need to be skipped. One so-

lution is to make sure TaintTrap does not call these trampolines directly by

avoiding use of any libraries used by the app (e.g. libc) and instead relying

on syscalls directly.

Accessing Tainted Memory. While page protections prevent an app from

accessing tainted data by forcing emulation, they unfortunately prevent emulation

itself from accessing memory on tainted pages. If TaintTrap directly performs loads

and stores within a tainted page, it causes another SIGSEGV (TAP Fault), leading to

an infinite loop. While emulation can use mprotect to give back rights, perform the

load or store, then restore restricted access, it requires two syscalls for each mem-

ory operation making it expensive. However, a correctness issue arises since other

non-emulated threads could temporarily access a tainted page while one emulated

thread is manipulating the protections and data for the same page. For this reason,

TaintTrap always keeps tainted pages protected from access but uses an additional
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mechanism to be able to read and write memory without issuing user-level loads and

stores. The Linux kernel provides a procfs mechanism under /proc/self/mem that

allows an app to read its own memory using standard read and write syscalls on

a file descriptor. This is used by debuggers like GDB to set and change software

breakpoints.

The code in Listing 3.5 shows how to read a value at address ptr and return it in

val. Note that opening the file descriptor is a one-time operation. We can aggregate

the lseek and read syscalls into a single pread syscall, which allows reading a file

descriptor at a given offset. Similarly we use pwrite instead of lseek and write. A

code snippet that uses pread is shown in Listing 3.6.

int fd = open("/proc/self/mem", O_RDWR); // one-time cost
lseek(fd, ptr, SEEK_SET);
read(fd, &val, sizeof(val));

Listing 3.5: Using /proc/self/mem to read memory: two syscalls per access.

int fd = open("/proc/self/mem", O_RDWR); // one-time cost
pread(fd, &val, sizeof(val), offset);

Listing 3.6: Using /proc/self/mem to read memory: one syscall per access.

From a security perspective, the /proc/self/mem mechanism does not give an

app more privileges than it already has, it allows an app to read and write its own

memory, which it is able to regardless of the mechanism. If a page is protected, a

malicious adversary can unprotect the page before accessing it with loads and stores.

The kernel implementation of pread/pwrite, requires finding a free page, call-

ing copy_from_user if handling a pwrite, access_remote_vm, and copy_to_user

if handling pread. In this case access_remote_vm is a very expensive operation.

Normally the function is used to access any process’ virtual memory, although in our

case we are accessing memory in the calling process.
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The kernel’s implementation is shown in Listing 3.7. The kernel uses copy to/from

functions since it is not allowed to directly read user-level memory. The special

functions leverage the Memory Management Unit (MMU) and account for faults

due to invalid memory mappings or permissions.

The current limitation on accessing tainted and protected memory exposes an

opportunity: TaintTrap may avoid the kernel workaround by protecting memory

at the user-level but emulating the hypervisor level with direct access to tainted

memory, avoiding costly tainted memory accesses.
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ssize_t mem_rw(struct file *file, char __user *buf,
size_t count, loff_t *ppos, int write)

{
struct mm_struct *mm = file->private_data;
unsigned long addr = *ppos;
ssize_t copied;
char *page;
if (!mm)

return 0;
page = (char *)__get_free_page(GFP_TEMPORARY);
if (!page)

return -ENOMEM;
copied = 0;
if (!atomic_inc_not_zero(&mm->mm_users))

goto free;
while (count > 0) {

int this_len = min_t(int, count, PAGE_SIZE);
if (write && copy_from_user(page, buf, this_len)) {

copied = -EFAULT;
break;

}
this_len = access_remote_vm(mm, addr, page, this_len, write);
if (!this_len) {

if (!copied)
copied = -EIO;

break;
}
if (!write && copy_to_user(buf, page, this_len)) {

copied = -EFAULT;
break;

}
buf += this_len;
addr += this_len;
copied += this_len;
count -= this_len;

}
*ppos = addr;
mmput(mm);

free:
free_page((unsigned long) page);
return copied;

}

Listing 3.7: Kernel code of pread/pwrite on Android Linux Kernel 3.0.31.

Tainted Atomic Sequences. ARM does not provide a single atomic instruc-

tion that can update memory. Instead it offers a general synchronization primitive

that splits atomically updating memory into two steps with the help of exclusive

monitors. First, the LDREX (Load-Exclusive) instruction loads a word from memory

and updates the exclusive monitor to track the synchronization operation. Second,
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the STREX (Store-Exclusive) instruction conditionally stores a word to memory. If

the executing processor’s exclusive monitor permits, the store updates memory and

returns the value 0, otherwise it does not update memory and returns the value 1.

Consider the pseudocode shown in Listing 3.8 that performs an atomic incre-

ment. While the atomic increment code performs as expected in a non-emulated

environment, it is possible that under emulation the page containing the ptr ad-

dress is tainted and hence protected from memory access. If the page is tainted,

upon attempting to execute the LDREX instruction, a TAP Fault triggers emula-

tion but unfortunately the only way to emulate a synchronization primitive is with

another primitive. If TaintTrap’s emulation attempts to execute a crafted LDREX

and STREX to the same address, it faults again causing an infinite loop. To avoid

the delicate situation, TaintTrap instead uses a per-thread Pthreads mutex that is

only locked and unlocked during emulation, while memory is read and written using

/proc/self/mem’s pread and pwrite instead (which does not fault even if the page

is protected). The mutex is locked before emulating the LDREX and unlocked after

emulating the STREX.

int32_t
__bionic_atomic_inc(volatile int32_t* ptr) {

int32_t prev, tmp, status;
do {// assembly

ldrex prev, [ptr]
add tmp, prev, 1
strex status, tmp, [ptr]

} while (status != 0);
return prev;

}

Listing 3.8: Atomic increment from libc using LDREX/STREX primitive.

Emulation of tainted atomic sequences suffers from a similar limitation to the one

previously seen when accessing tainted memory. The same approach of performing

memory accesses and emulation at the hypervisor level may avoid the special case

handling currently required and reduce overheads.
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Prefetching. Any emulated prefetched instructions, PLD (preload data) and

PLI (preload instruction), are likely to no longer have their desired benefit due to

emulation interference. Hence, TaintTrap ignores prefetch instructions and treats

them as NOPs, without having any impact on execution correctness.

Page Protection Permissions. To restore page permissions when a page be-

comes untainted, TaintTrap needs to save the page permissions at the time when

the page was last tainted. This is necessary since protecting a tainted page requires

removing all existing permissions. Unfortunately, Linux does not provide an efficient

mechanism for a user-level application to query the permissions for specific page. In-

stead the kernel offers a procfs based mechanism which requires reading and parsing

a text file representation located at /proc/self/maps. This file is updated by the

kernel when memory is allocated for a process. Using this file method is very slow and

incorrect for multi-threaded applications since the file cannot be locked for changes

while it is being read.

A solution is to either 1) extend the kernel to provide page protection query,

or 2) keep track of memory allocations performed via mmap and sbrk system calls

and any non-emulation specific mprotect calls that could change these protections.

TaintTrap favors the latter approach instead of changing the kernel.

3.3.9 Prototype Limitations

TaintTrap’s prototype implementation has a few non-fundamental limitations as it

does not currently have emulation support for:

• Vector SIMD instructions. We observed these instructions in some Bionic

libc optimizations such as memcpy and disabled SIMD support by undefin-

ing __ARM_HAVE_NEON.
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• Vector Floating Point (VFP) in 3rd party apps. System libraries that did

use VFP were recompiled with gcc’s -mfloat-abi=soft to enable software

emulation. Bionic libc required undefining __ARM_HAVE_VFP.

• Coprocessor instructions. In system library code we have observed a single use

of these instructions: accessing the Thread ID inside TLS. We only support

this special case.

3.4 Evaluation

The main questions we want to answer are: 1) does TaintTrap work and propagate

taint for native code?; and 2) can TaintTrap be used on a real device? The current

TaintTrap prototype, even with its limitations, runs on a Galaxy Nexus smartphone

and is able to detect, intercept and propagate taint for a set of programs. In this

section we explore the main causes of overhead in the current implementation of

TaintTrap, discuss opportunities for improvement and use a performance model to

gauge their benefit if applied to TaintTrap.

3.4.1 Benchmarks

We consider three micro-benchmarks to gauge TaintTrap’s overhead: password,

matrix, and jpeg-exif:

• password, represents a minimal example of leaking a user’s password through

a native code file system write call. It is used to test tracking functionality

across files. TaintTrap captures and flags the leak by tainting the file with the

stolen password. Listing 3.9 shows the micro-benchmark code.

• matrix, simulates variable sized tainted data and computation through the use

of a classic three loop matrix multiply (AˆB “ C) and with adjustable taint,
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ranging from tainting one row to all rows of the matrix A. TaintTrap propagates

taint to the corresponding rows of the result matrix C. Measurements are

gathered for the inner loop and do not include the allocation, initialization and

initial one-time tainting of the input.

• jpeg-exif, is based on an observed native code use case seen in the Insta-

gram app, where after the user takes a camera picture, it is saved to disk and

processed using native code. Instagram first uses libjhead library to parse

and extract the extended JPEG metadata (EXIF), and then applies a cus-

tom image filter. We reproduced the parsing of the JPEG EXIF phase as

standalone micro-benchmark. TaintTrap intercepts the use of a tainted image

file and tracks tainted data usage throughout the parsing phase. Unlike the

first two benchmarks, jpeg-exif includes libc read/write as well as atomic

sequences, which are handled correctly by TaintTrap.
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// Application Dalvik VM Code (Java)
public boolean authenticate() {

// platform trusted API for input
String password = user_input();
// untrusted 3rd party app code
return native_authenticate(password);

}

// Application Native Code (C/C++)
bool native_authenticate(char *password) {

hide(password);
return login(password);

}
void hide(char *password) {

char stash[MAX_LEN];
int c = 0;
while(password[c] != ’\0’) {

// obfuscate/hash password
stash[c] = password[c] - 32;
c++;

}
// stash password on filesystem
int fd = open("leak.tmp", O_CREAT|O_RDWR);
write(fd, stash, c);
close(fd);

}

# Example password
$ echo ’t0psecr3t!@#’ | xxd
0000000: 7430 7073 6563 7233 7421 4023 0a t0psecr3t!@#.
# Obfuscated password (subtract 0x20)
$ xxd cache.tmp
0000000: 5410 5053 4543 5213 5401 2003 T.PSECR.T. .

Listing 3.9: Password leak test case.

A comprehensive set of statistics for each of the benchmarks is shown in Table 3.1.

For each of the 3 benchmarks, a comparison is made between Selective Emulation

(SE), where TaintTrap performs taint tracking and emulation only as needed, and

Full Emulation (FE), where TaintTrap is continuously running from start to finish.

The main observation is that coarse grain memory protection results in a high num-

ber of expensive taint traps, up to 96% for jpeg-exif. In this case most of the false

traps are caused by protecting the stack due to one or more tainted values being

temporarily left on the stack. Since the stack is frequently used during execution,
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false traps result in a major cause of performance overhead. For matrix, a compar-

ison of compiler optimizations levels (O0 vs O3) shows how in the optimized case

(O3), the matrix inner loop is tuned such that at any given time there is at least a

tainted register, preventing TaintTrap from turning itself off in the SE case. In the

unoptimized O0 case, SE can turn itself off but half of the traps are false taint traps

due to protection granularity.

Table 3.1: TaintTrap comparison of Full Emulation (FE) and Selective Emulation
(SE) with per event breakdown.

Benchmark Count

Event password matrix (O0) matrix (O3) jpeg-exif

SE FE SE FE SE FE SE FE

emulated instructions 124 149 859,297 1,180,265 227,815 227,883 172,855 241,291
emulated load instructions 17 20 561,248 672,048 112,794 112,827 24,732 30,554
emulated store instructions 13 13 68,671 69,699 5,243 5,262 13,179 14,270
emulated atomic sequences - - - - - - 22 30
traps 6 - 136,351 - 3 - 13,379 -
traps on stack access 5 - 69,792 - 0 - 12,654 -
traps non-stack hit % 16.7 - 24.0 - 33.3 - 0.4 -
traps stack hit % 0 - 0.8 - 0 - 2.7 -
traps non-stack miss % 0 - 24.8 - 66.7 - 5.1 -
traps stack miss % 83.3 - 50.4 - 0 - 91.9 -
memory read refs total 29 25 561,248 672,048 112,802 112,827 44,814 51,723
memory write refs total 28 21 68,671 69,699 5,243 5,262 35,469 37,620
memory read refs tainted 12 12 65,536 65,536 32,768 32,768 14,508 14,502
memory write refs tainted 9 9 33,792 33,792 1,024 1,024 10,053 10,047
trampoline read total 0 0 - - - - 3 3
trampoline write total 1 1 - - - - 55 55
trampoline stack taint 0 0 - - - - 7 -
trampoline taint read 0 0 - - - - 3 3
trampoline taint write 0 0 - - - - 53 53
page protection updates 1 1 2,049 2,049 10 10 54 54
tainted reg instructions 24 24 131072 131072 65536 65536 35059 35059
tainted mem instructions 12 12 33792 33792 1024 1024 10965 10959
tainted instructions % 38.7 32.2 19.2 14.0 29.2 29.2 26.7 19.1

3.4.2 False Positives

Instead of emulating the entire program (Full Emulation) to add taint tracking,

TaintTrap’s Selective Emulation design aims to only emulate instructions that are

required for taint tracking correctness and revert to native/unmodified execution

when no longer necessary. There are two scenarios that can artificially increase

TaintTrap’s number of instructions that require emulation:

67



1. Taint trap false positives. Due to page protection granularity, when only part

of a page is tainted and a memory access is performed on the non-tainted

region, a trap can still be raised, requiring TaintTrap to check if tainted data

is accessed and to single-step (emulate) the faulting instruction.

2. Tainted registers. To ensure tracking correctness, although the instruction

being emulated may not access and propagate taint, TaintTrap is unable to

revert to unmodified native code while any CPU registers are marked as tainted.

To measure the impact of these two cases, we used the matrix micro-benchmark

with dynamically allocated matrix storage. First, for each matrix row memory is

allocated through malloc, resulting in sequential memory allocations in our case

and thus being susceptible to taint trap false positives. Second, mmap is used instead

for allocation, resulting in dedicated pages for each row, thus removing any taint trap

false positives when an entire row is tainted. As a lower bound, the ideal smallest

number of instructions emulated is determined by counting only the instructions that

strictly propagate taint through registers and memory. However, achieving this in a

real system is impractical.

The results are shown in Figure 3.2, comparing the emulated instruction counts

for Selective Emulation. Sequential allocation results in false positive traps while

allocating with mmap ensures each row resides on a dedicated page, removing false

positive traps. Ideal (lower bound) strictly represents only the instructions that

propagate taint.

The less amount of taint, the higher the impact of coarse grain protection false

traps, while at the far end when the entire input is tainted, TaintTrap’s Selective

Emulation ability is unused and the system becomes equivalent to performing Full

Emulation.
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Figure 3.2: Impact of false positives due to memory protection granularity de-
pending on sequential allocation (malloc) versus page-aligned (mmap).

3.4.3 TaintTrap Overheads

To better understand the underlying components of TaintTrap we measured the

overheads of system operations such as signals, traps and pread/pwrite, relative to

a null syscall. The overheads are shown in Figure 3.3 where each overhead is the

average of at least 10000 operations. As seen, our workaround for accessing tainted

data through the help of the kernel’s pread/pwrite incurs significant overhead. In

our measurements, we find a noticeable difference between the pread and pwrite

times, where writing is more expensive than reading. This is possibly caused by

the read path being cached while the write requires additional work to flush and

propagate the new data.
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Figure 3.3: System average overhead for various operations compared to null-
syscall.

To better see the impact of the using pread/pwrite for accessing tainted data, we

measure the breakdown between user and kernel time for our jpeg-exif benchmark.

The results are shown in Figure 3.4. TaintTrap’s workaround for accessing tainted

memory through kernel help (/proc/self/mem), significantly impacts performance

seen in the increased kernel time fraction.
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Figure 3.4: Application time spent in user or kernel for jpeg-exif without taint
tracking (left) and with taint tracking (right).

Another important metric in understanding TaintTrap’s behavior is found by

observing the total amount of tainted memory throughout a program’s execution.

As seen in Figure 3.5, about 15-40% of the entire memory references are for tainted

data. This is to be expected given the nature of our micro-benchmarks focusing on

accessing and manipulating tainted data. However, in a real app use case, the fraction

of tainted memory references is expected to be much lower as is likely dominated by

regular non-tainted flows.
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3.4.4 Accelerating Taint Tracking

One of TaintTrap’s implementation objectives is to run on existing devices, and to

achieve this with existing software support. However, it is important to consider how

TaintTrap may evolve in future systems. For example, eliminating taint access false-

positives and the resulting overhead, TaintTrap can take advantage of Dune [31],

which exposes privileged CPU features, including page tables, to user-level applica-

tions. This can significantly reduce the performance overhead of managing and pro-

tecting tainted data. Although TaintTrap makes use of existing memory protection

(mprotect), the coarse protection granularity can be detrimental to performance.

However, prior work on fine-grained memory protection through watchpoints [30],
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can be very beneficial to TaintTrap’s approach. Watchpoints can be used efficiently

used and modified directly from user-code. Additional hardware support in the form

of range caches provide great performance for watchpoint operations [32]. Coupled

with user-level traps, TaintTrap’s selective emulation can be very practical for many

real world use cases involving sensitive data on mobile devices, without having to

sacrifice performance and battery life for the common case of apps not interacting

with sensitive data. For additional security, TaintTrap could run at the hypervisor

level. A hypervisor helps isolate the emulator and its state from the program being

instrumented, and provides strong guarantees for tracking malicious apps without

the risk of TaintTrap being subverted.

3.4.5 Performance Model

To understand the impact of potential improvements to TaintTrap, we consider a

simple performance model where overheads can be adjusted separately. For example,

user-level faults can significantly reduce the trap overhead, a hypervisor accessing

taint no longer requires expensive pread/pwrite operations and hence lowers the

overhead of accessing tainted and protected memory.

The starting point for the model comes from benchmarking individual TaintTrap

operations, shown in Table 3.2. For example, TEmu represents the average overhead

of emulating an instruction, including disassembly time TDisassembly which represents

half the time. Changing the memory protection bits for a page (4K) using mprotect

is represented by TProtect. Taking a taint trap results in handling a SIGSEGV which

is represented by TTrap.

More formally, we model the execution time as follows:

Modeled Execution Time (MET) =

(# traps) ˆ pTTrapq +

(# mem read + # mem write) ˆ TCheckTaintPage +
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Table 3.2: Measured average cycle overheads for TaintTrap internal operations.

Event Symbol Cycles

Processor cycles per instruction TCPI 1.25
Read tag for single address TGetTaintTag 25
Check if page is tainted TCheckTaintPage 20
Disassemble one instruction TDisassembly 100
Emulate one instruction without taint TEmu 200
Emulate one instruction with memory taint TEmuTaint 20,000
Read tainted memory using pread TGetTaintMem 40,000
Write tainted memory using pwrite TSetTaintMem 70,000
Allocate temporary buffer (4K) TAllocBuffer 8,000
Change memory protection bits (4K) TProtect 10,000
Taint Access Protection (TAP) Fault TTrap 12,000
Check if memory range is tainted (4K) TGetTaintBuffer 4,000
Write taint for memory range (4K) TSetTaintBuffer 7,600
Check if file descriptor is tainted TGetTaintFile 200,000
Taint file descriptor TSetTaintF ile 210,000

(# taint mem read + # taint mem write) ˆ pTTaintAccess ` TTaintMemAccessq +

(# page protection updates) ˆ TProtect +

(# instructions) ˆ pTCPI ` TEmuq

The MET above includes the execution time without emulation: (# instructions)

ˆ pTCPIq.

We explore four scenarios, each subsequent one making additional improvements:

1. Selective Emulation + Taint: The current implementation of TaintTrap using

the expensive pread/pwrite for tainted memory access. The exact overheads

are taken from the measurements seen in Table 3.2 with the exception that we

model read and writes as taking the same time, specifically TTaintMemAccess is

TSetTaintMem.

2. Fast Taint: Quick access to tainted data is crucial to system overhead. From

prior work, we model the availability of watchpoints [30] and consider TTaintMemAccess

and TTrap as 20 cycles.

3. Fast Emulation: Another major component to TaintTrap overheads is the emu-
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lation overhead per instruction, TEmu. The current prototype does not yet take

advantage of typical improvements such as caching the disassembly, emulating

basic blocks instead of single instructions or saving and re-using the emulation

work with Just-In-Time (JIT) compilation. We model such improvements as

TEmu per instruction taking 20 cycles, although we believe this can be more

aggressively reduced.

4. Selective Emulation (Ideal): As a lower-bound, we model emulation of bare

minimum instructions (only instructions that propagate taint), although this

is not practical to implement particularly for tight loops like our matrix micro-

benchmark which can add additional overheads to enable/disable emulation for

each iteration, which we do not model.

The performance model is applied using profiling information from the matrix

micro-benchmark, using O3 optimizations. The information includes how many in-

structions need emulation and access tainted data. The performance model system

overhead estimates are shown in Figure 3.6. Each of the four scenarios are compared

across variable taint ratios of the input matrix A. For the matrix benchmark, taint-

ing 100% of matrix A results in an overall dynamic taint access fraction of almost

30%.

The most interesting data point is the Fast Emulation variant, representing a

version of TaintTrap that improves on the existing selective emulation by leveraging

watchpoints together with more efficient emulation. We find the results to be very

encouraging, as we expect the common case for apps to have dynamic fractions of

tainted data accessed around or well under 1%. For example, the password leak is

under 200 instructions, a negligible amount compared to over 1 billion instructions

a second executed by the processor (Galaxy Nexus runs at 1.2GHz and most ARM

instructions have an average CPI of 1 cycle). We believe TaintTrap can be practical
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and very useful for running on real mobile devices, where it efficiently runs in the

rare case when needed, and does not impact the perceived user experience, in the

common case when apps do not interact with the user’s sensitive data.

3.5 Related Work

Dynamic taint analysis (DTA) has been an active research area since the pioneering

work on information-flow tracking by Denning [1] in the 70s. There are three main

approaches used to implement taint tracking: instrumentation-based, interpreter-

based and architecture-based. We discuss each of these below and focus on the

flexibility and overhead of taint tracking.

Instrumentation-based systems. These systems generally leverage one of

the available dynamic binary-rewriting frameworks available: Pin [33–35], Valgrind

[36], Dynamo, DynamoRIO, StarDBT. A limitation of using these frameworks is that

they only support process level taint tracking.. The approach is limited to user-level

applications and instrumentation overhead is generally significant, prohibiting real

time usage on a smartphone. Systems that provide full-system taint tracking use

virtualization or emulation such as offered by Xen or QEMU, also have significant

overheads [27, 37–40].

Most systems only provide support for 1-bit tags but still incur a significant over-

head [7, 41]. Other systems make use of very architectural specific features to improve

overheads but end up suffering from lack of wide-spread applicability or restrictions.

Minemu [42] implements a fast taint-tracking x86 process-based emulator which sup-

ports one byte taint tags for each byte of emulated process memory. Although it

achieves low overheads between 1.5x and 3x by using SSE registers to avoid register

spills and store tags, it is specific to 32-bit x86 code and requires SSE extensions

making their implementation non-portable and unable to support applications using

77



SSE instructions. LIFT [43] has 1-bit tags and extending to multi-bit tags signifi-

cantly increases the memory overhead. LIFT uses the StartDBT binary translator

which translates IA32 instructions to EM64T instructions since like with Minemu,

EM64T has more registers than IA32, avoiding register spills for performance gains.

Finally LIFT does not support multi-threading or implicit flows and does not work

on 32-bit systems.

Like TaintDroid and TaintTrap, most systems only support explicit flows. Im-

plicit flow support has been proposed in Dytan [8] for x86, which uses Pin mak-

ing the overheads impractical for a mobile device. It leverages statically-computed

post-dominance information and requires adding spurious definitions to make the

memory definitions on both sides of a branch equal. The reported time overhead

for data flows is 30x and including control flows it is 50x, while the space overhead

is 240x. Another system, DTA++ [9] implemented on top of BitBlaze framework,

targets implicit flows that can lead to under-tainting and uses symbolic execution

but requires slow whole-system emulation. Other work has added support for limited

types of implicit flows in the context of detecting security exploits [44].

Dynamic taint analysis has been used to determine privacy exposure [10, 45] as

well as to track Internet worms [46]. Similar to TaintTrap’s taint access protection,

libdft [40] is built over Pin and uses page protections to block a tracked program from

accidentally corrupting Pin or libdft. On-demand emulation and page protections

have also been explored but in an environment with virtualization with Xen and

emulation with QEMU [47].

Interpreter- or VM-based. TaintDroid [6] implements system-wide information-

flow tracking with variable data object granularities ranging from one tag per variable

or register to one tag per file. The tags are stored stored as a 32-bit bitvector and

variable tags are adjacent in memory for spatial locality. It is specifically designed
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for the unique constraints of Android smartphones and thus taint propagation logic

is implemented inside Android’s Dalvik VM interpreter which makes it significantly

more coarse grain than previous work where taint is done at the machine binary level.

This has the benefit of very small overheads, 14-27% performance overhead and 3.5%

memory overhead. TaintDroid however, is unable to monitor information-flows in

native code.

Many language-specific optimizations have been proposed such as fine-grain char-

acter level taint tracking for Java [48]. Other systems have targeted JVM, PHP,

Python and SQL. Laminar [49] offers decentralized information-flow control by pro-

viding language extensions for JVM and a security library. It also requires the help

of programmer annotations which is not applicable in our environment.

Architecture-based Many hardware extensions and designs have been pro-

posed to aid information-flow tracking. A majority only offer 1-bit tags for every

physical memory word [50–53].

Raksha [52] is among the most configurable hardware DIFT implementations but

does not support full-system information-flow (does not cover the operating system).

Raksha supports tags per 4-bit tags per 32-bit where tags are 4-bit where each bit

represents a security policy with distinct propagation rules and checks. Another

key feature is that security exceptions are processed at the user-level avoiding an

expensive switch to kernel mode. Whenever an exception is triggered, the hardware

maintains its current privilege level and activates trusted mode . It then invokes the

handler in the same address space as the application.

Tiwari et al. [32] address the performance critical component in all hardware

DIFT architectures, the on-chip tag cache. Specifically they address the problem

of storing and querying large multi-bit tags efficiently. They propose the Range

Cache which provides support for fine-grain tracking up to the byte level, flexible
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tracking granularities with per-byte or per-word tags, and efficient on-chip storage

of large multi-bit tags of 32-bit or larger. The work is based on the observation that

tag bits exhibit a very high degree of spatial-value locality: large contiguous blocks

of memory addresses store the same tag value. Thus, the Range Cache associates

tags with ranges of addresses instead of individual addresses. Mondrian Memory

Protection (MMP) [54] has been proposed to reduce tag storage overhead by offering

a compact in-memory representation. It offers word-level granularity access control

using a protection look-aside buffer. MMP is designed for tools that do not perform

frequent updates. MMP similarly associates metadata with ranges of addresses but

is limited to allocations defined directly through malloc, free or page boundaries.

Another limitation of MMP is that ranges have to be aligned power-of-two sized

which complicates the discovery of contiguous ranges as well as range split or merge

operations. In contrast, Range Cache provides support for very fast range split,

merge and update without any alignment restrictions.

One of the challenges that prevents wide-spread adoption of specialized hardware

for dynamic software systems is that each of the different analysis types require highly

specific hardware support. A generalized acceleration mechanism has a higher chance

of being integrated in a commercial processor.

To address this opportunity, Greathouse et al. [30] argue for data watchpoints as a

primitive useful in a large number of analyses including Dynamic Dataflow Analysis,

Deterministic Concurrent Execution and Data Race Detection. In particular, they

propose hardware support that provides software the ability to set virtually unlim-

ited watchpoints. Watchpoints can be byte-accurate or cover any range of memory

addresses. For performance reasons, they use two key mechanisms to enable on chip

caching of watchpoints: a modified range cache (RC) proposed by Tiwari et al. [32]

and a Watchpoint Lookaside Buffer (WLB). The RC handles large ranges of watch-

points efficiently but is not good for small watchpoint regions. To overcome that
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limitation a bitmap is used for compact representation and to avoid going out to

memory to search the bitmap, the WLB is used to cache these accesses.

Dune [31] uses virtualization extensions to provide user-level access to privileged

CPU features including the page table. This can be a very beneficial addition to

TaintTrap. iWatcher [55] provides watchpoint-like support by leveraging thread-

level speculation (TLS). TaintBochs [56] tracks sensitive information at the whole-

system level with the goal of analyzing data lifetime. RIFLE [57] converts implicit

to explicit flows with the help of a dynamic binary translation (DBT) by trading off

coding restrictions. FlexiTaint [58] separates the storage of processing of taints from

data. Minos [51] provides integrity bits and propagation logic that prevents control

flow hijacking. Loki [59] aims to reduce the trusted computing base in a system

and provides guarantees even in the presence of a compromised OS by using tagged

memory support. Each 32-bit word is associated a 32-bit tag and a permissions cache

is stores the set of tag values.

Parallel approaches have also been proposed: Speck [60] accelerates security

checks using multiple cores. For taint analysis they support only 1-bit tags and

in the best case report a 2x speedup using 8 cores relative to their own implemen-

tation of TaintCheck using Pin (which has 18x overhead). This places Speck clearly

outside the space of real-time usage for smartphones. Ruwase et al. [61] propose

a parallel yet relaxed DIFT implemented over a Log-Based Architecture (LBA). It

only tracks flows through unary operations and supports 1-bit tags. Their work can

reduce overhead to as low as 1.2x but requires 9 monitoring cores on 16-core chip

multiprocessor and extensive hardware support for LBA, making it infeasible in a

smartphone setting.

Other low-level hardware approaches have considered building a new design from

the ground up and proposed gate-Level information-flow tracking [62] having the

benefit of supporting explicit, implicit and timing flows. The tradeoff is in area
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increases of 70%, harder to program and is computationally less powerful than tra-

ditional processors.

Panorama [63] offers whole-system DIFT aiming to support off-line malware de-

tection and analysis. The reported overhead is an average 20x and the system is too

heavy-weight for a resource constrained smartphone. HDL have also been designed

from the ground up with the goal of secure information-flow [64].

3.6 Conclusions

We extended the state of the art in dynamic information flow tracking on Android by

creating a practical system built around on-demand native code emulation. Taint-

Trap is designed to leverage the common case for smartphone apps, where sensitive

data is rarely and briefly accessed. To address performance overheads, we explored

potential improvements building on prior work that could be very beneficial to our

system. Given the results, TaintTrap can be practical for safeguarding user’s sensitive

data on a mobile device, without impacting the overall experience. Since TaintTrap

works at the binary level, no source code or developer effort is required to support

our system, allowing for simple deployment.
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