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Abstract

We consider analysis of relational data (a ma-
trix), in which the rows correspond to sub-
jects (e.g., people) and the columns corre-
spond to attributes. The elements of the
matrix may be a mix of real and categori-
cal. Each subject and attribute is character-
ized by a latent binary feature vector, and
an inferred matrix maps each row-column
pair of binary feature vectors to an observed
matrix element. The latent binary features
of the rows are modeled via a multivariate
Gaussian distribution with low-rank covari-
ance matrix, and the Gaussian random vari-
ables are mapped to latent binary features
via a probit link. The same type construc-
tion is applied jointly to the columns. The
model infers latent, low-dimensional binary
features associated with each row and each
column, as well correlation structure between
all rows and between all columns.

1. Introduction

The inference of low-dimensional latent structure in
matrix and tensor data constitutes a problem of in-
creasing interest. For example, there has been a sig-
nificant focus on exploiting low-rank and related struc-
ture in many types of matrices, primarily for matrix
completion (Lawrence & Urtasun, 2009; Yu et al.,
2009; Salakhutdinov & Mnih, 2008). In that prob-
lem one is typically given a very small fraction of the
total matrix, and the goal is to infer the missing en-
tries. In other problems, all or most of the matrix is
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given, and the goal is to infer relationships between the
rows, and between the columns. For that problem, co-
clustering has received significant attention (Dhillon
et al., 2003; Wang et al., 2011). In co-clustering
the rows/columns are typically mapped to hierarchical
clusters, which may be overly restrictive in some cases.
Specifically, there are situations for which two or more
rows/columns may have a subset of (latent) charac-
teristics in common, but differ in other respects, and
therefore explicit assignment to clusters is inappro-
priate. This motivates so-called mixed-membership
models. For instance, in (Meeds et al., 2007) the au-
thors develop a model in which each row and column
has an associated binary feature vector, representing
each in terms of the presence/absence of particular la-
tent features. Rather than explicitly assigning cluster
membership, the binary features assign “mixed mem-
berships,” because rows/columns may partially share
particular latent features. In (Meeds et al., 2007) the
latent binary features are mapped to observed matrix
elements via an intervening regression matrix, which
is also inferred. Rather than using binary features to
represent the rows and columns, one may also use a
sparse real feature vector for each row and column
(Salakhutdinov & Mnih, 2008; Wang et al., 2010), as
is effectively done in factor analysis (Carvalho et al.,
2008). As noted in (Meeds et al., 2007), and discussed
further below, the use of binary feature vectors aids
model interpretation, and may also enhance data shar-
ing.

The Indian buffet process (IBP) (Griffiths & Ghahra-
mani, 2005) is a natural tool for modeling latent bi-
nary feature vectors, and that approach was taken
in (Meeds et al., 2007). The IBP is closely related
to the beta-Bernoulli process (Thibaux & Jordan,
2007), which implies that each row (subject) effec-
tively selects a given feature i.i.d. from an under-
lying Bernoulli distribution, with feature-dependent
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(but subject-independent) Bernoulli probability. It
is expected that many subjects may be closely re-
lated, and therefore these are likely to have similar
latent binary features, with the same expected of the
columns. This statistical correlation between sub-
sets of rows/columns motivates the co-clustering ap-
proaches, but for reasons stated above clustering is
often too restrictive.

To address these limitations of existing approaches,
we propose a new model, in which the rows/columns
are each characterized by latent binary feature vectors,
as in (Meeds et al., 2007). However, a new construc-
tion is used to model the binary row/column features,
moving beyond the i.i.d. assumption that underlies the
IBP. Assume the matrix of interest is characterized by
N rows. For each of the latent features of the rows,
an N -dimensional real vector is drawn from a zero-
mean multivariate Gaussian distribution, with an un-
known covariance structure. This N -dimensional real
vector is employed with a probit link function to con-
stitute an N -dimensional binary vector, manifesting
the row-dependent binary value for one of the latent
features. This is done for all latent binary features.
By inferring the underlying covariance matrix, we un-
cover the latent correlation between the rows, without
explicit clustering. Multivariate probit models are uti-
lized jointly for the simultaneous analysis of rows and
columns; this embodies the joint analysis of rows and
columns manifested by co-clustering, while performing
such in a mixed-membership setting.

For large N (i.e., many rows or columns), one must im-
pose structure on the row/column covariance matrices,
to achieve computational efficiency, and to enhance the
uncovering of structure. This is implemented by im-
posing a low-rank covariance matrix model, via factor
analysis with sparse factor loadings (Carvalho et al.,
2008). The rows (columns) that share non-zero values
in the factor loadings are inferred to be statistically
correlated, without the necessity of imposing explicit
clustering.

Bayesian model inference is performed, via efficient
MCMC. The model is demonstrated on three real
datasets.

2. Basic Model Setup

2.1. Problem statement

We consider data from N subjects, with the data in
general a mix of categorical and real. There are M1

categorical entries andM2 real entries. The categorical
data are represented as an N ×M1 matrix X, and the
real entries are represented by the N ×M2 matrix Y ;

we wish to analyze X and Y jointly.

The transpose of the column vector xi represents
the ith row of X, and the transpose of the col-
umn vector yi represents the ith row of Y . Vector
xi = (xi1, . . . , xiM1)T contains categorical observa-
tions where xij ∈ {0, . . . , qj − 1} and qj corresponds
to the number of categories associated with the jth
component.

2.2. Factor analysis

A qj-dimensional probit-regression model is employed
for xij . Specifically, assume that there is a feature
vector vi ∈ RKx associated with subject i (as discussed
below, the need to set Kx disappears in the final form
of the model). The observed multinomial variable xij
is modeled in terms of a latent variable βij ∈ Rqj−1
such that

βij = Sj
Tvi + εij , εij ∼ N (0,Σj)

xij =

{
0 if max1≤l≤qj−1 β

(l)
ij < 0

p if max1≤l≤qj−1 β
(l)
ij = β

(p)
ij > 0

where p = 1, . . . , qj − 1, Sj = (s
(1)
j , . . . , s

(qj−1)
j ) ∈

RKx×qj−1, s
(p)
j ∈ RKx , {Σj}11 = 1 and xij = 0

corresponds to the base category. Note that Σj is
a (qj − 1) × (qj − 1) covariance matrix, and the first
element of Σj is fixed to 1 in order to avoid identifia-
bility problems (Chib & Greenberg, 1998; Zhang et al.,
2008). The covariance matrix Σj infers statistical cor-
relation between the qj possible categories associated
with attribute j, and an inverse-Wishart prior is em-
ployed for Σj .

The pth component of βij is given by

β
(p)
ij = vTi s

(p)
j + ε

(p)
ij , p = 1, . . . , qj − 1, (1)

where ε
(p)
ij ∼ N (0, {Σj}pp) and s

(p)
j ∈ RKx repre-

sents a feature vector associated with the choice p ∈
{1, . . . , qj − 1} for the component j of xi.

A similar construction is employed for the components
of the real matrix Y , without the need for the pro-
bit link. Specifically, for row i and column j we re-
spectively define real feature vectors ai ∈ RKy and
bj ∈ RKy , and the (i, j)th matrix entry is modeled as

yij = aTi bj + εij , εij ∼ N(0, σ2
y). (2)

with Ky again disappearing in the final form of the
model.

2.3. Binary row and column feature vectors

Let ri ∈ {0, 1}K represent a latent binary feature vec-
tor characteristic of row i in both X and Y . We assu-
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me that

vi = R(X)ri and ai = R(Y )ri, (3)

where R(X) ∈ RKx×K , R(Y ) ∈ RKy×K . Similarly, let

d
(p)
j ∈ {0, 1}K represent the latent binary feature vec-

tor associated with s
(p)
j , with cj ∈ {0, 1}K so defined

for bj (for notational simplicity we write all binary vec-
tors as being of same dimension K, but in practice the
model infers the number of binary components needed
to represent each of these vectors). We assume

s
(p)
j = C(X)d

(p)
j and bj = C(Y )cj , (4)

where C(X) ∈ RKx×K and C(Y ) ∈ RKy×K . Using the
above constructions, we can rewrite (1) and (2) as

β
(p)
ij = rTi M

(X)d
(p)
j + ε

(p)
ij , (5)

yij = rTi M
(Y )cj + εij . (6)

Note that the need to set the aforementioned dimen-
sions Kx and Ky has been removed, and what remains

are the matrices M (X) = R(X)TC(X) ∈ RK×K and
M (Y ) = R(Y )TC(Y ) ∈ RK×K ; K is typically set as a
large upper bound on the number of binary features
needed to represent the rows and columns, with only a
subset of these K variables inferred as important when
performing computations.

The advantage of this construction is that real feature

vectors {vi}, {s(p)j }, {ai} and {bi} are constituted in
terms of binary feature vectors, with the regression
matrices M (X) and M (Y ) between the binary and
real vectors shared for all rows and columns. This im-
poses significant structure and sharing on the learning

of {vi}, {s(p)j }, {ai} and {bi}, as considered in (Meeds
et al., 2007). This paper differs from (Meeds et al.,
2007) in three ways: (i) we jointly consider real and
categorical data jointly, (ii) we impose low-rank struc-
ture on M (X) and M (Y ) (discussed next), and (ii) a
new framework is developed for modeling the binary

vectors {ri}, {d(p)j } and {cj} (discussed in Section 3).

2.4. Low-rank regression matrices

We model M (X) and M (Y ) as low-rank matrices:

M (X) =

K∑
l=1

λ
(X)
l b

(X)
l u

(X)
l (v

(X)
l )T , (7)

M (Y ) =

K∑
l=1

λ
(Y )
l b

(Y )
l u

(Y )
l (v

(Y )
l )T , (8)

with λ
(X)
l ∼ N0,∞(0, σ2

λ), corresponding to a truncated
normal distribution, over (0,∞), with an inverse-

gamma prior on σ2
λ; λ

(Y )
l is defined similarly. The

vectors u
(X)
l , v

(X)
l , u

(Y )
l and v

(Y )
l are all defined sim-

ilarly, and we discuss one in detail, for conciseness.

Specifically, we draw u
(X)
l ∼ N (0, IK), where IK is

the K × K identity matrix. The variables b
(X)
l and

b
(Y )
l are binary, and they allow inference of the as-

sociated matrix rank. Again illustrating one of these
for conciseness, we employ a sparseness-inducing beta-

Bernoulli representation, with b
(X)
l ∼ Bernoulli(π(X)),

with π(X) ∼ Beta(1/K, 1).

Using, for example, (7) in (5), we observe that the
model imposes

β
(p)
ij =

∑
l∈S

λ
(X)
l < ri,u

(X)
l >< d

(p)
j ,v

(X)
l > +ε

(p)
ij (9)

where < ·, · > corresponds to a vector inner product,

and S defines the set of indices for which b
(X)
l = 1.

Note that for the probit link function this construction
implies that we do not require random-effect terms for
the subjects and attributes (as is typically done when
using real feature vectors (Wang et al., 2010)), since
the sum of terms in (9) automatically allow random-
effect terms, if needed (such will correspond to one of
the terms in the sum).

From (9), and considering (1), note that we may rep-

resent vi as a vector composed of

√
λ
(X)
l < ri,u

(X))
l >

for l ∈ S; s
(p)
j is similarly defined by

√
λ
(X)
l <

d
(p)
j ,v

(X))
l > for l ∈ S. Therefore, via the low-rank

construction in (7), we infer Kx to be the size of set S
(rank ofM (X)). As discussed when presenting results,
the low-rank construction in (8) allows us to similarly
infer Ky. This property is a principal reason for impos-
ing low-rank structure on M (X) and M (Y ), it aiding
interpretation of the model results.

3. Correlated Binary Feature Vectors

We describe in detail the proposed modeling of ri,

with a similar construction employed for {d(p)j } and
{cj}. A sparse multivariate probit model is imposed:
ηk ∼ N (0,Σ), with rik|ηik = 1 if ηik > 0, and
rik|ηik = 0 otherwise; k = 1, . . . ,K, with ηik the ith
component of ηk, and rik is the kth component of ri.
Marginally, rik ∼ Ber(πik) where πik = Pr(ηik > 0).
The covariance matrix Σ ∈ RN×N imposes an under-
lying correlation structure between (r1k, . . . , rNk), for
all binary features k.

We must now place a prior on the covariance matrix Σ.
A large class of models impose sparsity on the inverse
of Σ (i.e., the precision matrix), corresponding to a
sparse Gaussian graphical models (GGM). The GGM
approach for covariance matrix estimation is attrac-
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tive and many approaches have been proposed (Atay-
Kayis & Massam, 2005; Dobra et al., 2011). Alter-
natively, other approaches have been proposed for di-
rectly modeling the covariance matrix, placing shrink-
age priors on various parameterizations of Σ. For in-
stance, (Liechty et al., 2004) considered shrinkage pri-
ors in terms of the correlation matrix, and (Yang &
Berger, 1994) used reference priors based on the spec-
tral decomposition of Σ.

We choose to directly model the components of Σ. In
fact, given that N (dimensionality of the covariance
matrix) is typically larger than K, standard estimators
are liable to be unstable (Sun & Berger, 2006; Hahn
et al., 2012). Hence, we impose a factor structure on a
covariance matrix, in a similar fashion to (Hahn et al.,
2012). Such regularization is crucial when the number
of variables is large relative to the sample size, and also
when the covariance corresponds to an unobservable
latent variable (Rajaratman et al., 2008).

We assume that cov(ηk) = BBT + Ψ where Ψ ∈
RN×N is a diagonal matrix, rank(B) = K < N and
B ∈ RN×K . That construction implies that ηk ∼
N (Bfk,Ψ) where fk ∼ N (0, IK). The matrixB must
be constrained to be zero for upper-triangular entries
and positive along the diagonal, to avoid identifiability
problems. Further, Ψ is fixed to be the identity to
allow a simple identification strategy. The prior on
the loadings B is given by

(bik|vi, πk) ∼ πkN (0, vi) + (1− πk)δ0 (10)

with vi ∼ IG(c/2, cd/2) and πi ∼ Beta(1, 1), with
IG an inverse-gamma distribution and δ0 a unit point
measure concentrated at 0. The sparsity prior per-
mits some of the unconstrained elements in the factor-
loadings matrix B to be identically zero.

4. Posterior Computation

An approximation to the full posterior of model pa-
rameters is performed based on a Gibbs sampler, with
Metropolis-Hastings updates for a subset of the param-
eters. We now briefly describe how to sample some of
the most interesting parameters, based on their full
conditional posterior distributions.

• Sample u
(X)
l as (u

(X)
l |−) ∼ N (m

(X)
l ,V

(X)
l ),

where V
(X)
l =

(
IK +

∑N
i=1(Ẽ

(l)
i )T Σ̃−1Ẽ

(l)
i

)−1
,

m
(X)
l = V

(X)
l

∑N
i=1(Ẽ

(l)
i )T Σ̃−1β

(−l)
i , Ẽ

(l)
i =

λ
(X)
l DTv

(X)
l rTi , D = (d1, . . . ,dM1

), dj =

(d
(1)
j , . . . ,d

(qj−1)
j ), Σ̃ = diag(Σ1, . . . ,ΣM1

), β
(−l)
i =

βi − DT (
∑
k 6=l λ

(X)
k b

(X)
k v

(X)
k (u

(X)
k )T )ri, and βTi =

(βTi1, . . . ,β
T
iM1

) ∈ Rq1+...+qM1
−M1 .

• In order to sample rik ∈ {0, 1}, i = 1, . . . , N ,
k = 1, . . . ,K, let yi = M̃Y ri + εi and

βi = M̃Xri + εi where M̃Y = CTM (Y )T and

M̃X = DTM (X)T . Also, let y
(−k)
i = yi −

M̃
(−k)
Y r

(−k)
i and β

(−k)
i = βi − M̃ (−k)

X r
(−k)
i . Then,

(rik|−) ∼ Bernoulli(p1/(p1 + p2)), where p1 =
πik exp{−0.5(σ−2y eTi ei + fTi Σ̃−1fi)}, p2 = (1 −

πik) exp{−0.5(σ−2y y
(−k)
i

T
y
(−k)
i + β

(−k)
i

T
Σ̃−1β

(−k)
i )},

ei = y
(−k)
i − M (−k)

Y , fi = β
(−k)
i − M (−k)

X and

πik = Pr(ηik > 0). Samples for cjk, d
(p)
jk , b

(X)
l and

b
(Y )
l are obtained similarly.

• The parameter-extended Metropolis-Hastings algo-
rithm is employed to sample Σj given the restriction
{Σj}11 = 1 (Zhang et al., 2008) only when qj > 2,
otherwise Σj is fixed to one. Considering a Wishart
prior Σj ∼ W(m0,Ωj), the algorithm is as follows:

(1) at iteration t, set the values (R
(t)
j , D

(t)
j ) by gener-

ating Σj = D
(t)1/2
j R

(t)
j D

(t)1/2
j , where R

(t)
j is the cor-

relation matrix and D
(t)
j the diagonal variance ma-

trix with the first element equal to one. (2) Generate

candidate values Σ∗j = D
∗1/2
j R∗jD

∗1/2
j ∼ W (m0,Σj),

D∗j is a diagonal matrix without restrictions. (3)
Accept the new values (replacing {D∗j }11 = 1) with

probability α = min

{
1,

p(R∗
j ,D

∗
j |−)

p(R
(t)
j ,D

(t)
j |−)

q(Σj |Σ∗
j )

q(Σ∗
j |Σj)

}
, where

p(Rj , Dj |−) is the joint posterior distribution and
q(·|Σj) is the proposal distribution given by the prod-
uct of the Jacobian term for the transformation from
Σj to (Rj , Dj) and the Wishart density W (m,Σj),

such that JΣj→Rj ,Dj =
∏qj−1
l=1 d

qj−2

2

l .

5. Applications

5.1. Analysis of the animals dataset

We first test the performance of the proposed model on
the animals dataset (Kok & Domingos, 2007; Sutskever
et al., 2009). This consists of 50 animal classes and 85
binary attributes (with no missing data). Note that
in this experiment we only have a categorical (binary)
observation matrix X ∈ {0, 1}50×85.

The model is fitted using the proposed MCMC scheme.
We ran the algorithm considering 20,000 iterations
with a burn-in of 5,000 draws, and we collect ev-
ery third sample that give us a total of 5,000 saved
samples. The analysis was performed with K = 20,
c = d = 1, and σ2

λ = 1 (many other similar settings
yielded similar results). For the sparse probit factor
model (discussed in Section 3) we consider six factors;
larger models are possible and were considered, how-
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−1.0 −0.5 0.0 0.5 1.0

Figure 1. Animals dataset: Learned correlation matrices
of the distributed representations of the animals (top)
and attributes (botton) as well as their derived dendro-
grams. Example inferred clusters are denoted by Cm

(m = 1, . . . , 11) and Gn (n = 1, . . . , 11) for the animals
classes and their attributes, respectively.

ever in our experiments we noticed that less than six
factors were enough to capture the underlying corre-
lation structure of the binary features. Indeed, only
three and four of the columns of Br and Bd, respec-
tively, have non zero elements. In general, the results
are very insensitive to the setting of K, as long as it is
set relatively large.

We examine the latent correlations (between the rows
and columns) learned by the model by inspecting the
most likely sample produced by the Gibbs sampler.
Figure 1 shows the latent correlation structure be-
tween {ri}i=1,...,50 learned for the animals as well as
between {dj}j=1,...,85 learned for the attributes. By
the analysis of those correlations, we are able to iden-
tify hierarchical clusters and affinities between rows
and columns; we use a clustering algorithm (Kaufman
& Rousseeuw, 1990) to identify row and column hi-
erarchical cluster structure based on the inferred cor-
relation matrix (this is done for illustration; we do
not perform clustering when implementing the model,
rather the full covariance between rows and columns is
inferred). The hierarchical clustering algorithm yields
a dendrogram, plotted jointly with the learned corre-
lation matrices in Figure 1. The closeness of any two
clusters is determined by a dissimilarity matrix I −R
where R is the correlation matrix (see Eisen et al.,
1998; Wilkinson & Friendly, 2009, for more details).
The learned groups are described on the right panel
of the figure. Some interesting interpretations are de-
rived from the correlation structure for the attributes.

For example, cluster G1 (which includes attributes of
marine animals) is highly correlated to cluster G8 and
negative correlated to cluster G10 and G11 (which in-
cludes attributes like quadrupedal, ground and moun-
tain).

5.2. Senate voting data

We next examine a binary vote matrix from the United
States Senate during the 110th Congress, from Jan-
uary 3, 2007 to January 3, 2009. The binary matrix,
X, has dimension 102 × 657, where each row corre-
sponds to a senator and each column corresponds to a
piece of legislation; X is manifested by mapping all
“yes” votes to one and “no” votes (or abstentions)
to zero. The percentage of missing values is about
7.1%. We perform analysis of the voting data consid-
ering K = 50. We use the same priors and MCMC
setup considered in the previous application. We in-
ferred that there are approximately 10 binary features
for the senators, 13 for the legislation, and M (X) had
a rank of Kx ≈ 4, with one dominant factor, with

dominant corresponding λ
(X)
l (consistent with related

research that indicates one dominant factor for such
data (Wang et al., 2010)). Figure 2 shows the dendro-
gram derived from the correlation matrix associated
with the senators, to illustrate the clustering of people.
The correlation matrix reveals significant differences
between two groups of senators, which are constituted
by Democrats and Republicans. As an example in-
terpretation of the dendrogram for the senators, note
that Republican senators Collins, Snowe and Specter
are inferred as being at the “edge” of the Republican
party, nearest to the Democrats; these were the only
Republicans who joined most Democrats in voting for
the 2009 Economic Stimulus Package (and Specter
later switched to the Democratic party). Also, Barack
Obama and Hillary Clinton, who competed closely for
the Democratic presidential nomination in 2008, are
very weakly correlated with any of the Republicans.

In Figure 2, middle panel, we show the reordered vot-
ing data matrix X. The matrix was reordered by rows
and columns according to similarities learned from
the correlations matrices associated with the senators
and legislation. The matrix reveals interesting pat-
terns. For example, the first 300 columns are primar-
ily Democrat-sponsored legislation, the following 200
legislation are primarily Republican-sponsored legisla-
tion, and the last columns are unanimous votes, for
things like nominations for various government posts.
We performed LDA (Blei et al., 2003) topic model-
ing on the text documents (separate analysis), to in-
fer structure in the legislation, and help interpret the
inferred relationships; three types of legislation so in-
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Figure 2. Voting data. Left: Learned senator groups derived from the correlation structure. Middle: Original voting
data (“yes” blue, white “no”) reordered based on the model; Republicans are at the top-half rows, and Democrats are in
the bottom half. Three types of legislation are inferred (rectangles at right), based upon topic modeling (Blei et al., 2003)
applied separately to the text legislation. Right: Proportion of correct predictions for different fractions of missing data.
Error bars indicate the standard deviation around the mean.

ferred are shown in Figure 2.

We compare our results with two related models. The
first follows the proposed construction, except that the
latent binary vectors are modeled via an IBP; the sec-
ond is the logistic binary matrix factorization (BMF)
model (Meeds et al., 2007); the main difference be-
tween the first and second alternatives is that the for-
mer imposes the low-rank model of Section 2.4. Fig-
ure 2, right panel, shows the average fraction of correct
predictions for each model as a function of the fraction
of missing data (held-out data, averaged over 15 runs).
These results reveal the advantage of the low-rank con-
struction (by comparing the two IBP solutions), and of
the imposition of correlation in the latent binary fea-
tures (omitted in the two IBP-based constructions).

5.3. Behavioral dataset

The behavioral dataset comes from a survey conducted
by the Duke Visual Cognition Lab during 2010 and
2011 (details omitted here to keep authors anonymous
during review). The 508 responders were members of
a university community, answering different types of
questionnaires; the questions regarded media multi-
tasking (MMI), an attention deficit hyperactivity dis-
order (ADHD) test, the Autism Spectrum Quotient,
eating attitudes (EAT) test, video games (VG) activ-
ities, a NEO-AC personality inventory (neuroticism,
extraversion, openness, agreeableness, conscientious-
ness scores) and Barratt Impulsivity Scale (BIS-11);
almost all of these questions come from standard sur-
veys in the respective areas (discussed further below).
The total dataset consists of M1 = 20 categorical and
M2 = 106 real-valued questions. Among the 20 cate-
gorical variables considered in the analysis, there are
16 binary observations and 4 variables with more than
2 nominal categories. Concerning the real-valued ob-
servations, the 106 studied variables were classified as

follows: 40 variables related to VG-playing habits, 23
variables related to passtime activities, 30 associated
with the NEO-AC facets, 5 autism subscales, 3 im-
pulsivity subscales, and the last 5 variables related to
EAT score, MMI, age, years of education and ADHD
score. The percentage of missing values is approxi-
mately 13%.

We perform a joint analysis of the categorical and real-
valued data matrices considering K = 50. The real-
valued data matrix Y was column-normalized to zero
mean and unit variance before the analysis. In addi-
tion, σ2

λ = 10, m0 = 8, Ω = Iqj−1 and c = d = 1. The
MCMC algorithm was run for 50,000 iterations, with
the first 25,000 discarded, and then every 5th collected
to produce a posterior sample of size 5,000.

Figure 3 shows the approximate posterior distribu-
tion for the number of features associated with ques-
tions (categorical and real-valued answers) and people.
From these results we note that approximately 8 and

6 features in d
(p)
j and cj are used by the model, while

there are approximately 20 binary features inferred as
associated with the people.
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Figure 3. Behavioral dataset: Histograms showing the ap-
proximate posterior distribution of the number of features
associated with questions with categorical answers (left),
real-valued answers (middle), and for the people (right).

In a similar fashion to the analysis of the Animals
dataset, we analyze the learned correlation matrices
associated with the questions and people. Figure 4
shows those matrices with the rows and columns or-
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dered such that similar rows and columns are near each
other. In the vertical margin appears the hierarchi-
cal cluster tree derived from the correlation (as dis-
cussed above). Based upon these results, we are able
to identify blocks of correlated questions and clusters
of people. Interesting interpretations can be derived
from these results. For example, men are highly cor-
related with fighting and real time strategy VG and
negatively correlated with normal vision and monolin-
gual. Figure 4, right panel, displays the learned cor-
relation structure between people. It shows three big
clusters; G1 is primarily composed of women (82.3%
women, 17.7% men), G2 represents a heterogeneous-
gender group (59% women, 41% men), and G3 is pre-
dominantly men (20.6% women, 79.4% men).

We are also interested in the analysis of questions re-
lated to behavior scores like the NEO-AC characteris-
tics, autism, ADHD, EAT and MMI. The analysis of
these variables is of particular interested in Psychol-
ogy, where the Big Five factors of personality traits
(McCrae & John, 1992; Costa & McCrae, 1992) has
emerged as a robust model to describe human person-
ality. Specifically, the five factors are directly related
with the NEO-AC data (real, non-categorical answers,
represented in Y ) and we seek to connect our inferred
latent features with what is known from Psychology,
to analyze the quality of inferred structure. From (6)

and (8) we have that yij =
∑
l∈S λ

(Y )
l < ri,u

(Y )
l ><

cj ,v
(Y )
l > +εij , and therefore from (2) we may express

the lth component of bj as bjl =

√
λ
(Y )
l < cj ,v

(Y )
l >,

this corresponding to the factor loading for question
j, factor l. Considering the most likely sample in the
Gibbs sampling, we infer bj ∈ R6, with Ky = 6 factors
coming from the rank of M (Y ).

Figure 5 shows a diagram where groups of questions
are associated to the 6 inferred factors. The plot shows
connections between factors and questions in terms of
the major values on each factor loading. An interesting
finding is that the model uncovered the proper num-
ber of factors, i.e., five factors that group thirty facets
of personality and an additional factor that groups
autism scores (to our knowledge, this is the first quan-
titative analysis of this sort that demonstrates that
the question in these questionnaires indeed capture
the aspects of personality intended by subject-matter
experts in their design). The first five features are
clearly related to personality traits, each of them in-
volving different facets of neuroticism (N), extraver-
sion (E), openness (O), agreeableness (A) and con-
scientiousness (C). Autism scores like communication,
social skill and imagination form an additional inde-
pendent factor. Also, impulsivity scores belong to the

factor associated with the conscientiousness charac-
teristic but with negative values.

5.4. Computations

The code for these experiments was written in Mat-
lab, and the computations were run on a computer
with 2.53GHz processor and 4GB memory. To give a
sense of computation times, for the Behavioral dataset
considered above, approximately 11 seconds were re-
quired per MCMC sample.
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Impulsivity: Attentional

Impulsivity: Motor
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Figure 5. Behavioral dataset: Learned factors that group
30 personality facets of personality (NEO-AC characteris-
tics), autism, ADHD, EAT and MMI, corresponding here
to the inferred Ky = 6 non-zero components in each bj ,
for question j. At left are types of questions, with signif-
icant loading values linked to the factors. The numbers
represent the value of the factor loading on the respective
question, with negative values showed in red.

6. Summary

A new model has been developed for representing real,
categorical and mixed real-categorical relational data.
A multivariate probit model was employed, jointly im-
posing correlation between the subjects and between
the attributes. These covariances were used in the ex-
periments to infer hierarchical structure between the
subjects and between the attributes. Encouraging re-
sults were demonstrated on three real-world data sets,
the last of which is new, characterized by mixed real-
categorical survey data for several interesting psycho-
logical conditions.
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