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Abstract

Background: Genetic association studies are conducted to discover genetic loci that contribute to an inherited trait,
identify the variants behind these associations and ascertain their functional role in determining the phenotype. To
date, functional annotations of the genetic variants have rarely played more than an indirect role in assessing
evidence for association. Here, we demonstrate how these data can be systematically integrated into an association
study’s analysis plan.

Results: We developed a Bayesian statistical model for the prior probability of phenotype–genotype association that
incorporates data from past association studies and publicly available functional annotation data regarding the
susceptibility variants under study. The model takes the form of a binary regression of association status on a set of
annotation variables whose coefficients were estimated through an analysis of associated SNPs in the GWAS Catalog
(GC). The functional predictors examined included measures that have been demonstrated to correlate with the
association status of SNPs in the GC and some whose utility in this regard is speculative: summaries of the UCSC
Human Genome Browser ENCODE super–track data, dbSNP function class, sequence conservation summaries,
proximity to genomic variants in the Database of Genomic Variants and known regulatory elements in the Open
Regulatory Annotation database, PolyPhen–2 probabilities and RegulomeDB categories. Because we expected that
only a fraction of the annotations would contribute to predicting association, we employed a penalized likelihood
method to reduce the impact of non–informative predictors and evaluated the model’s ability to predict GC SNPs not
used to construct the model. We show that the functional data alone are predictive of a SNP’s presence in the GC.
Further, using data from a genome–wide study of ovarian cancer, we demonstrate that their use as prior data when
testing for association is practical at the genome–wide scale and improves power to detect associations.

Conclusions: We show how diverse functional annotations can be efficiently combined to create ‘functional
signatures’ that predict the a priori odds of a variant’s association to a trait and how these signatures can be integrated
into a standard genome–wide–scale association analysis, resulting in improved power to detect truly associated
variants.
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Background
The purpose of genetic association studies is to discover
genetic loci that contribute to an inherited trait, identify
the variants behind these associations and ascertain their
functional role in determining the phenotype [1]. Mod-
ern association studies bring to bear on this problem
high coverage genotype data, comprehensive databases of
genetic variation that allow imputation of most common
ungenotyped variants to high accuracy and extensive,
publicly available, in silico resources housing a growing
assortment of genomic data that allow functional charac-
terization of vast regions of the human genome. In the
typical genome–wide association study (GWAS), the first
two forms of data are combined to reconstruct genotypes
to a desired density and these genotypes are then sys-
tematically tested for association with the phenotype. The
functional annotation data are most frequently used in
post hoc interpretation of evident associations raised by
the analysis [2].

To date, functional annotation data have rarely played
more than an indirect role in assessing evidence for asso-
ciation. For example, they may be used to suggest candi-
date genes and SNPs for study or to support links between
candidate SNPs and genes. While methods to incorporate
functional annotation data a priori in genetic association
analyses exist, they are infrequently used. The prevailing
approach to this is via a two–staged hierarchical model in
which coefficients in the stage I generalized linear model
for phenotype given genotype and exposure measure-
ments are regressed, in stage II, on the annotation data
[3-6]. This is limited to analysis of a modest number of
variants and does not make use of prior data derived from
previous association studies to inform the nature of that
relationship.

It is becoming increasingly clear that a widening array
of annotation data correlates with a variant’s having been
associated with a human phenotype [7-14]. In what fol-
lows, we describe a formal approach to inference for
association that combines functional annotation data
(through a prior distribution) with genotype data (through
a sampling model for the phenotype given genetic and
other covariate data). We construct the prior distribution
through careful analysis of SNPs housed in the GWAS
Catalog [8]. We refer to the linear combination of the
annotation variables defined by this model and evaluated
for a given SNP as its ‘functional annotation signature’.
We show that functional signatures so derived are pre-
dictive of the association status of SNPs not used in their
creation and that, when coupled with genetic association
data following the method we describe, improve the effi-
ciency of association testing in a GWAS study of ovarian
cancer. Data used to construct and evaluate the functional
signatures are available at ftp://stat.duke.edu/pub/Users/
iversen/FunctionalSignatures/.

Results and discussion
In association studies statistical analysis is utilized to
measure the evidence in favor of association. The data
that inform these analyses usually comprise phenotype
labels, SNP genotype data and a set of non–genetic covari-
ates in addition to functional annotations of the vari-
ants under study. The statistical analysis may take many
forms, varying according to choice of modeling approach
and inferential paradigm (Frequentist or Bayesian). The
approach we develop here relies on Bayesian inference
but can also be applied when the genetic association
summaries are derived from a Frequentist analysis. In
this paradigm, prior data on a quantity of interest (such
as the binary association status of a genetic variant)
are updated to reflect evidence in the current data
set.

A Bayesian analysis of genetic association data returns
an estimate of the posterior odds of association of each
marker given the available data. When the data take two
distinct forms — here subject–level phenotype, genotype
and covariate data and variant–level functional annota-
tions — the posterior odds of association may be cal-
culated in two stages, either by incorporating functional
data prior to or following evaluation of the genetic data.
The latter represents the heuristic typically followed in
practice, whereby functional data is evaluated in an infor-
mal way (from the probabilistic point of view) conditional
on evidence for association. Here we describe a model–
based framework for combining functional and associa-
tion data following the second factorization. We focus on
the case–control study design for purposes of illustrating
integration of the a priori (to association data) models for
functional annotation data we describe below into analy-
ses of genetic association data. Details of the models and
their assumptions are provided in Methods.

When the functional data are incorporated as prior
information, the posterior odds of a SNP’s association
given the functional and subject–level data can be written
as the product of the Bayes factor (BF) in favor of associa-
tion and the prior odds of association given the functional
data. The BF is the ratio of the integrated likelihood of
the phenotype data given the covariate and genotype data
assuming the SNP is associated to the integrated likeli-
hood of the phenotype data given the covariate data only
(i.e. assuming the SNP is not associated). It is a commonly
used Bayesian statistical measure of association and is cal-
culated by the SNPTEST [15] and BIMBAM [16] packages
for analysis of GWAS data. Alternately, it can be approx-
imated by the ABF [17,18], allowing the method to be
used in conjunction with standard Frequentist association
testing software.

In short, the functional annotation data are incorpo-
rated into an analysis by formally updating the prior odds
of association given the annotation data by a standard

ftp://stat.duke.edu/pub/Users/iversen/FunctionalSignatures/
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measure of genetic association. This process is depicted
schematically in Figure 1. In what follows, we describe
the model used to calculate prior odds of association
and demonstrate its use in a GWAS of ovarian cancer.
In it, the log of a SNP’s prior odds of association equals
α + Fβ , where F denotes its functional data and α and
β are parameters. We refer to the linear combination Fβ

associated with a SNP as its ‘functional signature’.

Functional signatures of known associations
We constructed the functional annotation signatures by
estimating the multivariate relationship between a set of
functional annotation variables and the binary association
status of a set of SNPs. In this way, we identify a linear
combination, βF , of the functional annotations, denoted
F . We refer to this linear combination as a SNP’s ‘func-
tional signature’ when it is evaluated using that SNP’s
annotations, Fs. Figure 2 provides a schematic of our
approach. In brief, we identified a set of associated SNPs
and, for each, we chose a matching, unassociated ‘control’
SNP. We divided the matched pairs into ‘training’ and
‘validation’ sets and used the former to construct a series
of models to predict association status given the func-
tion data and used the latter to compare the performance
of these models. We chose the model that demonstrated
the best predictive accuracy in the validation data, as

measured by concordance index, to define the functional
annotation signatures.

We began by constructing a matched case–control study
of SNPs in which the cases were drawn from the GWAS
Catalog [8] and the controls were identified from the
HapMap database, Release 27, Phases II and III merged
genotypes. We identified 2,093 case SNPs and, for each,
identified one control SNP matched on chromosome,
minor allele frequency and the genotyping platform(s)
it appeared on. Since SNPs in the GWAS Catalog are
arguably more frequently tags than the directly associ-
ated variant, we identified ‘LD partners’ [8] for each case
and control SNP. We grouped each case and control SNP
together with its LD partners to form blocks.

Using on–line bioinformatics resources, we assembled
a set of functional annotation variables representing a
variety of contextual descriptions and empirical mea-
surements with which we annotated each of the 48,889
case, control and LD partner SNPs. We included anno-
tation variables shown to be correlated with presence
in the GWAS Catalog or that we believed likely to be
so. These were: dbSNP function designation; summaries
of ENCODE Project [19,20] data on transcription levels
assayed by RNA–seq [21,22], measures of signal enrich-
ment for H3K4Me1, H3K27Ac and H3K4Me3 histone
modifications associated with enhancer and promoter

Figure 1 Two–staged procedure for integrating variant–level functional annotation data with subject–level genetic association data. At
the first stage, functional annotation data are combined to estimate the prior (to observing the genetic association data) probability of association
for each variant. At stage two, these estimates are combined with the Bayes Factor (a metric of association) in favor of genetic association via Bayes’
formula to estimate the posterior (to observing the functional and genetic association data) probability of association for each variant.
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Figure 2 Construction and evaluation of models for (prior) probability of association given the functional annotation data. The purple
arrows represent model construction (‘training’), while the green arrows represent evaluation of the models. Construction of the training set,
validation set and functional annotation database are depicted in Additional file 1: Figure S10 and described in Methods. The training data were
used to construct a series of models, each distinguished by the coefficients (or ‘weights’) it assigns to the various annotation variables. We chose the
best among these by comparing their predictions in the validation set using the concordance index.

activity [23,24], evidence for overlap with a DNaseI hyper-
sensitivity cluster [25,26] and evidence for transcription
factor binding [27-31]; PhyloP evolutionary conservation
scores [32]; indicators for whether or not the variant falls
in a region of known copy number variation, a region
containing insertions or deletions or a region with inver-
sions [33,34]; PolyPhen–2 [35] probability that a mutation
is damaging; and RegulomeDB score [36]. We used prin-
cipal components analysis to reduce 75 Broad ChIP–seq,
24 Caltech RNA–seq, and 24 PhyloP ENCODE track sum-
mary statistics to the 18, 11 and 4 principal components,
respectively, that explained at least 90% of variation in the
class.

While not a comprehensive set, the functional vari-
ables we chose to work with covered the major annotation
classes available at the time of analysis and are readily
available to individuals executing an association study.
The infrastructure and methods described here are easily
updated to accommodate new variables as they become
generally available. Table 1 lists the 57 variables that we
used to construct the functional signatures of association.

The 48,889 SNPs included in the analysis were grouped
into 2,093 case and an equal number of control blocks. We
randomly selected 1,675 of these matched case–control
pairs for development of the model (the ‘training set’)
and left the remaining 418 pairs for model evaluation
and comparison (the ‘evaluation set’). We modeled the

probability that a SNP is associated given its functional
data using a logistic regression model in which the asso-
ciation status of the individual SNPs in the case blocks
is assumed unknown. The model assumes, however, that
each case block contains at least one truly associated SNP
and that each control block contains none; as in [7,14],
the identities of the associated SNPs are not specified as
they are unknown (details of the model are provided in
Section “Model”); a prior distribution on the overall frac-
tion of associated SNPs was employed to encourage their
number to be close to one on average. In this way, the
model is free to identify multivariate patterns in the anno-
tation data (‘signatures’) of individual SNPs that would be
diluted by averaging the annotation measurements of all
SNPs within a block.

While the assembled list of functional predictors
includes measures that have been demonstrated to cor-
relate with the association status of SNPs in the GC, it
also includes a number of measures whose utility in this
regard was unclear. Hence, we expected that only a frac-
tion of the 57 variables would contribute to predicting
phenotype association. We used shrinkage priors [37,38]
to reflect this belief and chose the normal–exponential–
gamma (NEG) distribution for its ability to penalize
heavily weakly determined predictors and to penalize
weakly those that are well determined [39-41]. Further
details of the model and the Markov chain Monte Carlo
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Table 1 Annotations used to construct the functional signatures

Name Annotation class Description

MAF1..4 Minor Allele Frequency Natural spline basis for MAF

funcIntron dbSNP Function Class Indicator that variant is intronic.

funcNg3 dbSNP Function Class Indicator that variant is near-gene-3.

funcNg5 dbSNP Function Class Indicator that variant is near-gene-5.

funcNonsynon dbSNP Function Class Indicator that variant is missense or nonsense.

funcSynon dbSNP Function Class Indicator that variant is synonymous.

funcUTR dbSNP Function Class Indicator that variant is in the 3′ or 5′ UTR.

PhyPC1..4 phyloP Evol. Cons. Score First 4 PCs for PhyloP data.

IndelInd DGV Regions Indicator that SNP is in the region of a known in–del.

CNVInd DGV Regions Indicator that SNP is in the region of a known CNV.

InvInd DGV Regions Indicator that SNP is in the region of a known inversion.

BrPC1..18 ENCODE Super–Track PCs of Broad promoter/enhancer ChIP–seq data.

CalPC1..11 ENCODE Super–Track PCs of CalTech transcription level RNA–seq data.

logDNase ENCODE Regulatory Super–Track DNaseI hypersensitivity cluster log(score).

TFBSfreq ENCODE Regulatory Super–Track SNP in ChIP–seq TFBS region(s) – count.

logTFBS ENCODE Regulatory Super–Track SNP in ChIP–seq TFBS region(s) – log(TFBS score).

ORegInd Open REGulatory ANNOtation DB Indicator that SNP is in ORegAnno DB.

PPh2Prob PolyPhen–2 Probability that SNP is damaging.

RegDBcat RegulomeDB RegulomeDB category.

Definitions of the 54 variables appearing in the prior model for association status arranged by type/class of annotation.

(MCMC) algorithm used for inference can be found in
Methods.

Table 2 provides a summary of the coefficient esti-
mates obtained for the binary regression of association
status on the 57 functional annotation variables. Because
all variables in the model were standardized, coefficients
measure the difference in the log–odds of phenotype asso-
ciation attributed to an increase of one standard deviation
in the covariate when the others remain fixed. The major-
ity of variation (51%) in the functional scores as measured
in the control block SNPs from the validation set, is due to
the Broad promoter/enhancer ChIP–seq principal com-
ponents (PCs) and nearly all (> 97%) of this variation is
due to PCs 1, 2, 4, 5, 6, 8 and 13. Each PC is a linear
combination of the 75 summary statistics of the 25 assays.
Additional file 1: Figure S3 depicts the loadings (weights
in the linear combinations) for these PCs as they depend
on histone modification, cell line and summary statis-
tic. Grossly, PC 1 measures total signal strength across
all cell lines and histone modifications, PC 2 contrasts
average signal strength of the H3k4me3 assay against
average signal strength of the remaining assays, while
the remaining PCs each contrast signal in one subset of
cell lines with that in another (PC 4: HMEC and NHEK
versus GM12878 and K562; PC 5: GM12878, HMEC
and NHEK versus HSMM, HUVEC and NHLF; PC 6:

H1–hESC, HepG2 and HSMM versus GM12878 and
HUVEC; PC 8: K562 versus H1-hESC; and PC 13: HepG2
versus H1–hESC). Additional file 1: Figure S1 and S2
depict the correlation matrix and a hierarchical clus-
tering of the 75 summary statistics, respectively. For a
given combination of cell line and histone modifica-
tion, the signal strength (‘log(mean)’) and peak signal
(‘log(maximum)’) measures tend to be highly correlated
with one another but tend to have only modest correlation
with the signal consistency measure (‘log(z)’); patterns of
correlation across cell lines and histone modifications are
more complex.

The sequence conservation PCs collectively make the
next largest contribution, explaining 16% of variation
in the functional scores; PCs 1 and 3 explain > 97%
of this. Each PC is a linear combination of the sum-
mary statistics of the 28 and 44 species PhyloP scores,
each for all species and restricted to placental mam-
mals. Additional file 1: Figure S6 graphs the loadings
for these PCs as they depend on number of species,
depth of alignment and summary statistic; Additional
file 1: Figure S4 and S5 depict the correlation matrix
and a hierarchical clustering of these variables, respec-
tively. Briefly, PC 1 measures total signal strength across
scores with the scores based on the 28–way alignment
weighted more heavily than those based on the 44–way
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Table 2 Summary of estimates for the model for association status given the functional annotation data

Coefficient Mean SD Mean/SD Coefficient Mean SD Mean/SD

MAF1 0.029 0.0272 1.051 CalPC8 0.096 0.0608 1.584

MAF2 0.003 0.0185 0.151 CalPC9 0.009 0.0218 0.406

MAF3 0.018 0.0236 0.759 CalPC10 -0.019 0.0234 -0.809

MAF4 -0.008 0.0199 -0.425 CalPC11 -0.044 0.0468 -0.943

BrPC1 -0.348 0.0388 -8.983 PhyPC1 0.225 0.0452 4.982

BrPC2 0.174 0.0360 4.845 PhyPC2 -0.023 0.0308 -0.742

BrPC3 0.002 0.0172 0.099 PhyPC3 0.053 0.0395 1.336

BrPC4 -0.077 0.0301 -2.561 PhyPC4 0.024 0.0289 0.839

BrPC5 0.149 0.0301 4.932 funcIntron -0.003 0.0199 -0.160

BrPC6 0.097 0.0329 2.961 funcNg3 0.002 0.0238 0.098

BrPC7 -0.019 0.0229 -0.825 funcNg5 0.003 0.0200 0.158

BrPC8 -0.078 0.0312 -2.498 funcNonsynon 0.089 0.0387 2.308

BrPC9 -0.012 0.0202 -0.573 funcSynon -0.007 0.0236 -0.283

BrPC10 0.007 0.0182 0.407 funcUTR 0.002 0.0210 0.078

BrPC11 0.021 0.0239 0.887 logDNase 0.011 0.0253 0.419

BrPC12 -0.039 0.0290 -1.343 TFBSfreq 0.024 0.0267 0.885

BrPC13 -0.094 0.0318 -2.972 logTFBS 0.019 0.0299 0.641

BrPC14 -0.000 0.0175 -0.015 ORegInd 0.027 0.0236 1.163

BrPC15 -0.039 0.0286 -1.354 IndelInd -0.023 0.0337 -0.693

BrPC16 0.009 0.0185 0.467 CNVInd 0.059 0.0321 1.842

BrPC17 -0.015 0.0213 -0.696 InvInd 0.090 0.0305 2.938

BrPC18 -0.014 0.0210 -0.688 rDBcat1 0.014 0.0257 0.550

CalPC1 -0.103 0.0492 -2.084 rDBcat2 0.066 0.0378 1.741

CalPC2 0.090 0.0441 2.030 rDBcat3 0.012 0.0264 0.467

CalPC3 -0.019 0.0270 -0.709 rDBcat4 0.116 0.0461 2.508

CalPC4 0.086 0.0457 1.889 rDBcat5 0.106 0.0527 2.003

CalPC5 0.053 0.0395 1.350 rDBcat6 -0.056 0.0552 -1.018

CalPC6 -0.012 0.0233 -0.496 pph2prob 0.078 0.0269 2.905

CalPC7 0.002 0.0207 0.078

Estimates of the posterior mean and standard deviation are provided for each coefficient in the model along with the ratio of these quantities, a ‘signal–to–noise’
measure analogous to the Z statistic.

alignment, while PC 3 contrasts the 28–way with 44-way
scores.

The CalTech RNA–seq PCs collectively explain 10% of
the signature, with PCs 1, 2, 4 and 8 contributing 87%
of this. Additional file 1: Figure S9 depicts the loadings
for these PCs as they depend on cell line and summary
statistic. PC 1 provides a measure of total signal strength
across all cell lines, while the remaining PCs each con-
trast signal in one subset of cell lines with that in another
(PC 2: H1-hESC and K562 versus GM12878 and NHEK;
PC 4: GM12878 and H1-hESC versus K562, NHEK and
HepG2; PC8: HUVEC versus NHEK). Additional file 1:
Figure S7 and S8 depict the correlation matrix and a hier-
archical clustering of the RNA–seq summary statistics,
respectively. These reveal the largely complementary

information provided by each of the cell lines as well as
high correlations between the signal strength, peak signal
and signal indicator measures of a given cell line. Here, as
in the Broad ChIP–seq data, the signal consistency mea-
sure is only modestly correlated with the remaining signal
measures.

RegulomeDB categorizes variants into a seven-level
functional score based on a synthesis of regulatory data
derived from ENCODE and other sources. Category 7
variants lack evidence of association; categories 4-6 show
‘minimal binding evidence’; categories 2 and 3 are ‘likely’
and ‘less likely to affect binding’, respectively; and cat-
egory 1 variants are those ‘likely to affect binding and
linked to expression of a gene target’. Its score explains
the next largest fraction (8%) of variation. It is represented
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by six variables, each indicating a functional category;
category 7 serves as the reference (‘baseline’). Categories
2, 4, 5 and 6 explain 99% of this variation suggesting that
other annotation variables in the model better charac-
terize the probability of phenotype association for vari-
ants in categories 1 and 3. This is especially notable
for category 1 as it is the only variable included in
the model explicitly tied to eQTL status. This failure
of simple eQTL summaries to provide predictive power
once the other annotations are included in the model is
consistent with our findings from a preliminary analy-
sis that included lymphoblastoid line–based eQTL sum-
maries derived from the SCAN database (http://www.
scandb.org; [10]), but not the RegulomeDB variables.
We found no practical or statistically detectable differ-
ence between the accuracy, as measured by concordance
index (see below and Methods), of out–of–sample pre-
dictions made using the model including all annotations
and the model including all annotations except the eQTL
variables.

Virtually all (96%) of the 2.5% contribution to variation
made by the DGV variables is due to the copy number and
inversion variables. Finally, at 1.7%, the dbSNP functional
class variables are the only remaining that contribute more
than 1% of the variation in functional scores. Virtually all
(99%) of this contribution is due to the non–synonymous
designation and the PolyPhen–2 probability contributes
to the model’s ability to predict within this class of vari-
ants. This suggests that more direct measures of a variant’s
involvement in transcriptional regulation, such as location
in or near a DNAse I hypersensitive site (DHS), are bet-
ter predictors of association than proximity to a nearby
transcription start site (TSS) or other gene–centric land-
mark. Indeed, it has been shown [42] that GWAS vari-
ants are concentrated in DHSs, features captured by the
Broad promoter/enhancer ChIP–seq principal compo-
nents and the transcription factor ChIP–seq data. These
are more flexible measures that allow the model to dis-
tinguish between promoters and more distant enhancers,
inactive versus active promoters and local versus more
distant enhancer–TSS interactions, each representing
an important distinction [43,44] relevant to predicting
function.

We estimated the concordance indexes (equivalent to
AUC, area under the ROC curve) for each model using
the 418 matched case–control block pairs in the validation
set as a tool for comparing the accuracy of their out–
of–sample predictions. Table 3 provides the estimates of
concordance and associated 95% interval estimates. While
the concordance statistics are not discernibly different
from one another, the best out–of–sample predictive abil-
ity is achieved using the model with the prior distribution
having the strongest shrinkage properties, i.e. the ‘NEG3’
model.

Table 3 Means and 95% interval estimates of the
concordance indices for each of the four models

Concordance index

Label Prior Mean 95% CI

Normal N(0, 1) 0.6348 (0.6112, 0.6555)

NEG1 NEG(0.834, 0.1610) 0.6397 (0.6148, 0.6615)

NEG2 NEG(0.950, 0.0588) 0.6433 (0.6208, 0.6675)

NEG3 NEG(0.978, 0.0245) 0.6487 (0.6244, 0.6675)

Application to an ovarian cancer multi–GWAS study
We compared the ranks assigned to a group of variants
in a GWAS analysis when those ranks are calculated
with and without the functional annotation data. Each
in the group of variants is assumed to have known asso-
ciation status (associated/unassociated) with epithelial
ovarian cancer, where this determination is based on
confirmatory studies subsequent to the GWAS. The
group is constructed as follows. There are currently
11 published, genome–wide significant loci for epithe-
lial ovarian cancer. Nine of the 11 have come to light
through analysis of genome–wide SNP data. These
are rs3814113 [45], rs8170 [46], rs2072590, rs2665390,
rs7814937, rs9303542 [47], rs11782652, rs7084454,
rs757210 [48]. The remaining two (rs10069690 and
rs2077606) were identified by candidate gene/pathway
investigations [49,50]; all 11 have been evaluated in very
large confirmatory studies. We consider these to be ‘true
positive’ variants. Our analysis of data from the large–
scale follow–up study of GWAS candidates [48] allowed
us to identify a group of 5,155 variants with ‘strong evi-
dence’ (BF>10) in favor of the null model, i.e. the model
of no association, based on Jeffreys’ scale of evidence [51]
that we treat here as ‘true negatives’.

Table 4 summarizes the GWAS results for the true
positive and true negative SNPs when the analysis is con-
ducted with (subscript ‘A+F’) and without (subscript ‘A’)
the functional signatures. Note that, among the true pos-
itives, the SNPs discovered through candidate studies
are ranked substantially lower than those identified via
GWAS. Indeed, the evidence in the association data for
these variants is actually against association (both of their
Bayes factors are less than 1.0). The GWAS SNPs are all
ranked in the top 50,000 (of approximately 2.5 million) by
the same measure and all have Bayes factors of at least 3
to 1 in favor of association.

Only two of the truly associated SNPs (rs11782652
and rs9303542) are ranked higher when the functional
data are ignored than when they are used, however their
respective changes in rank are small. The median (alt.
average) rank of the truly associated SNPs was 5,272
(178,246) without and 3,532 (80,143) with the functional

http://www.scandb.org
http://www.scandb.org
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Table 4 Functional signatures improve inference for association status in a GWAS of ovarian cancer

Variant Locus MAF LOF log(BFA) RankA RankA+F

rs2072590 2q31 0.34 1.46 8.63 65 59

rs2665390 3q25 0.09 0.77 8.08 77 73

rs10069690 5p15 0.23 0.91 -1.38 1,549,122 651,710

rs11782652 8q21 0.08 0.22 2.98 5,272 6,843

rs7814937 8q24 0.12 1.54 14.61 21 16

rs3814113 9p22 0.30 -0.09 14.01 38 38

rs7084454 10p12 0.31 1.44 1.19 45,616 12,221

rs757210 17q12 0.37 1.74 2.31 11,630 2,411

rs2077606 17q21 0.18 0.70 -0.25 339,456 200,494

rs9303542 17q21 0.27 0.05 3.70 2,276 3,532

rs8170 19p13 0.19 0.82 2.72 7,133 4,179

Mean True + 0.23 0.87 5.15 178,246 80,143

Median True + 0.23 0.82 2.98 5,272 3,532

Mean True − 0.35 0.11 0.37 438,664 517,810

Median True − 0.36 0.06 0.14 181,116 244,393

Ranks of known associated variants (labeled ‘true +’) tend to improve (i.e. are closer to one) when association and functional data are incorporated in the analysis
(RankA+F) relative to when only the association data are used (RankA) and, hence, are more likely to be studied further. Conversely, ranks of (very likely) unassociated
variants (labeled ‘true −’) tend to fall with inclusion of the functional data. The functional data for a given variant is summarized by its ‘functional signature’, defined as
the prior log–odds of its association given the functional data (LOF). Aggregate (mean and median) values are provided for the true + set and the true − set. Ranks are
out of approximately 2.5M variants.

data included. If design constraints allowed only for fol-
lowup of the top 5,000 variants, a larger fraction (7/11)
would be discovered with addition of the functional data
than without (5/11); with followup of 10,000 variants,
these fractions become 8/11 and 7/11. In contrast, when
the function data were included, the median (alt. aver-
age) rank among a set of ‘true negative’ SNPs increased
from 181,116 (438,664) to 244,393 (517,810), while the
number selected for followup fell from 244 to 204 under
the 5K scenario and from 443 to 373 under the 10K
scenario.

Functional signatures of tag SNPs correlate with function
of tagged SNPs
While a few of the functional variables, such as the func-
tion class designation ‘nonsynonymous’, incorporated in
the signature are base pair specific, most map to con-
tiguous regions of 100’s or 1000’s of base pairs. Hence,
the functional signatures associated with nearby SNPs are
correlated. Figure 3 is a plot of the correlation between the
functional signatures of adjacent SNPs that passed QC in
the ovarian cancer GWAS described above as a function
of the distance, measured in base pairs (BPs), between the
two variants. This correlation is greater than 0.72 (alt 0.68)
for more than 80% (alt 97.5%) of adjacent variants, corre-
sponding to those at distances of 1470 (alt 4376) BPs or
less. Hence, while there are gains to be realized in doing so,
it is not necessary to impute to and annotate at the highest
possible density to realize an increase in power to detect

association through the use of functional signatures, a
fact we demonstrated empirically above. Note that typical
BP distances between tagged (not genotyped or imputed)
variants and their nearest tag will be on the order of
one half of the distances reported here for adjacent
tags.

Conclusions
Using the GWAS Catalog as a sampling frame, we
developed a model for the probability that a given poly-
morphism is associated with an observable human phe-
notype given a set of functional annotation variables and
demonstrated that this model has the ability to predict
a set of phenotype associated variants not used in the
model building exercise. We demonstrate several meth-
ods for incorporating functional annotation signatures
defined by this model and evaluated for a SNP’s annota-
tion data as prior data and show through example that by
doing so we improve the efficiency of GWAS scale anal-
ysis to identify true positive associations for follow–up
study.

The approach we describe is computationally tractable
and scalable to modern genome–wide analysis. Our use
of penalized regression techniques to model the func-
tional data and construct the function signatures allows
us to consider a relatively large number of individual
annotation variables while controlling for over–fitting.
We evaluated sensitivity of the model’s out–of–sample
predictions to choice of shrinkage prior and found that
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Figure 3 Correlation of functional signatures between adjacent HapMap II/III SNPs as a function of base pair distance (black line).
Cumulative distribution function(CDF) of base pair distances across the genome (red line).

the most aggressive choice we examined, the model
whose results are summarized herein, resulted in the best
out–of–sample concordance estimates. Our approach can
be expanded and adapted to incorporate more detailed
annotation data such as was recently released by the
ENCODE consortium [11] or generated experimentally in
individual labs.

In principle, estimates of the parameters in the model
for SNP association status given the functional data can
be refined via Bayesian updating as part of an asso-
ciation analysis. This requires an additional layer of
analysis that is feasible, but computationally demand-
ing to implement on a genome–wide scale. However,
the value of this will be limited in settings where
there are few truly associated SNPs and/or the case–
control data supporting associations are weak, i.e. the
vast majority of applications. Here, Bayesian updat-
ing will yield estimates equivalent to those using the
approach we describe above up to Monte Carlo simulation
error. Indeed, we formally compared the two approaches
using the ovarian cancer GWAS data and found little
change in the median ranks of the true positive (3,532
versus 3,705) and true negative SNPs (244,393 versus
248,459). This suggests that the added value of Bayesian
updating to the functional signatures will typically be
limited.

Performance for our integrative approach likely depends
on the depth, specificity and density of coverage of the

available annotation data. The current study defines a
starting point and benchmark in each of these dimensions.
In particular, while the depth of annotation considered
here is sufficient to noticeably improve inference for
association, it is clear from recent ENCODE Project
Consortium publications that it reflects only a small
fraction of the complexity present in the regulatory land-
scape. Further, none of the annotation variables are tai-
lored to the outcome phenotype; indeed, the ENCODE
super–track data enter the model through linear combi-
nations of the cell–line specific measurements, effectively
averaging over cell type. In addition, the associations we
observe in our study of the GWAS Catalog SNPs are
those that tend to identify regulatory functions impor-
tant to a range of phenotypes (i.e. those represented in
the GWAS Catalog). This may explain, at least in part, the
relatively modest nature of the improvements observed
in our GWAS analysis and the failure of general sum-
maries of eQTL status to contribute meaningfully to the
functional signatures. Indeed, many regulatory processes
are cell–type–specific [11,12] and hence will be more
informative for a given phenotype if measured in the
appropriate context [14]. However, determining the rel-
evant annotation data, assuming it exists, for a given
phenotype requires domain expertise and more careful
modeling to create functional signatures. While Bayesian
updating did not improve inferences in the ovarian can-
cer GWAS example using the existing model, it may when



Iversen et al. BMC Genomics 2014, 15:398 Page 10 of 16
http://www.biomedcentral.com/1471-2164/15/398

the model is generalized to incorporate disease–specific
annotations.

Finally, our analyses have been carried out entirely
at the HapMap III density. Our approach succeeds
at this density because the functional signatures of
SNPs nearby, at distances typical of HapMap III, are
highly correlated and hence the functional signatures of
HapMap III polymorphisms essentially tag function of
nearby polymorphisms not in the database. As cover-
age (genotype/imputation density) of the typical associ-
ation study becomes more complete, the need to rely
on correlations between functional signatures will dimin-
ish and their power to assist in identifying and local-
izing associations is expected to increase. Association
analyses at the density of the 1000 Genomes Project
database [52] are now possible and will likely become
common. The specificity of the functional signatures
should improve when reconstructed and applied at this
density as we plan to do as we continue to develop this
approach.

Methods
Association analysis given annotation data
Let G be an n by p matrix of SNP genotypes, D be an n
by 1 vector of disease indicators where Di = 1 if individ-
ual i has the disease and Di = 0 otherwise, X be an n by
r matrix of covariates used in the association model and
F be a p by m matrix of SNP–level functional annotation
data where n is the number of individuals, p is the number
of SNPs, r is the number of covariates and m is the num-
ber of annotation variables. Finally, let A be a p by 1 vector
of 0-1 indicators of the (unknown) association status of
the variants, where As = 1 if SNP s is associated with the
phenotype of interest.

In what follows, we specify the likelihood for the associ-
ation indicator given the association (X, D, G) and func-
tion (F) data. To this end, we let Pr(A|D, X, G, F) ∝∏p

s=1 Pr(As | D, X, Gs, Fs). This relies on two assumptions:
(1) that the As’s are conditionally independent given
(X, D, G, F) and (2) that the As’s are conditionally inde-
pendent of other variants (G−s, F−s) given (X, D, Gs, Fs).
The notation G−s indicates the matrix obtained by remov-
ing column s from G.

Further, we assume that the disease phenotype data are
conditionally independent of the functional data for SNP
s given its association status, covariate and genotype data
and that its association status is conditionally independent
of the covariate and genotype data given its functional
data. The latter assumption may be violated, for example,
if the genotype data Gs carries information about function
(e.g. minor allele frequency) not included in F. Given this,
the posterior odds of association of SNP s given its asso-
ciation and functional data can be written as the product
of the (prior) odds of its association given its functional

data times the (integrated) likelihood ratio or Bayes Factor
(BF) of the phenotype given the SNP genotype and other
covariate data, i.e.

odds(As = 1|D, X, Gs, Fs) = Pr(As = 1|D, X, Gs, Fs)

Pr(As = 0|D, X, Gs, Fs)

= Pr(D|As = 1, X, Gs) Pr(As = 1|Fs)

Pr(D|As = 0, X, Gs) Pr(As = 0|Fs)

= BFs × odds(As = 1|Fs),

We describe estimation of the association summary Bayes
factor below.

Given the binary, logistic link model developed below
for association status given the functional data and the
parameters α and β , odds(As|Fs) = exp (α + Fsβ) and
hence, given α and β

Pr(As = 1|D, X, Gs, Fs, α, β) = BFs exp(α + Fsβ)

1 + BFs exp(α + Fsβ)
,

(1)

where Fsβ is the ‘functional signature’ of SNP s. Provided
that estimates of α and β are available from an external
analysis such as described in the next section, one can
estimate Pr(As = 1|D, X, Gs, Fs) by

I∑
i=1

Pr(As = 1|D, X, Gs, Fs, αi, βi)/I

where the αi and βi are samples from the poste-
rior distribution from an analysis such as described in
Section “Functional signatures of known associations”.

The above procedure depends on estimates of the
marginal likelihoods,

Pr(D | X, Gs, As = a) =
∫

Pr(D|X, Gs, As = a, θa)Pr(θa),

of the association data for each SNP under Ho (As = 0)
and under Ha (As = 1). Pr(D | X, Gs, As = a, θa) is a logis-
tic regression of the disease status indicator, D, on the
covariates, X, and SNP genotype, Gs, and with coefficient
vector θ1 under Ha and is a logistic regression D on X with
coefficient vector θ0 under Ho. We place independent nor-
mal mean 0, standard deviation 10 prior distributions on
all components of θ0 and θ1, with exception of the coeffi-
cient of Gs, which is accorded a normal mean 0, standard
deviation 0.25 prior distribution, as the majority of log–
odds estimates cited in the GWAS catalog are smaller
than 0.5 in absolute value. We estimate the SNP–specific
marginal likelihoods under each hypothesis of associa-
tion using the Laplace approximation [53] implemented in
software described in Wilson et al. (2010) [54] and avail-
able from the authors. In cases where it is not convenient
or possible to directly calculate Bayes factors, they can be
approximated by the ABF [17,18], allowing the method
to be used in conjunction with Frequentist association
testing software.
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Construction of functional signatures
In what follows, we detail the steps we took to assemble
the case–control study of SNPs used to build and evalu-
ate the models for a variant’s association status given the
functional data. These comprised identification of a rep-
resentative set of phenotype–associated SNPs to serve as
‘cases’ in the analysis and a matched set of ‘controls’ and
the collection of a set of measurements related to func-
tion to serve as annotations for the variants. The process
is depicted in Additional file 1: Figure S10 and described
in detail below.

Sampling frame
Many genomewide genotyping arrays were designed to
over–sample variants with characteristics related to their
ability to explain phenotypic variation, such as prox-
imity to coding regions, type of variant (e.g. missense)
and minor allele frequency (MAF). Hence, a compari-
son of case SNPs identified using such assays to con-
trol SNPs drawn randomly from the HapMap or dbSNP,
for example, may lead to spurious associations between
assay design variables and the SNP’s association with a
human phenotype. In order to avoid confounding due
to the selection method employed in the design of the
genomewide genotyping platform, we constructed a sam-
pling frame of SNPs by combining SNPs on the Affymetrix
GeneChip Human Mapping 500K Array Set and the
Illumina HumanHap550 Genotyping BeadChip, as this
generation of arrays and their predecessors cover most
of the reported findings in the GWAS Catalog attributed
to an Affymetrix or Illumina product and these products
were the most commonly used. We labeled SNPs in the
sampling frame according to whether they appeared only
on the Affymetrix list, only on the Illumina list or on both
and confined attention to those variants appearing in both
the Genome Browser’s dbSNP 130 and HapMap Release
27 tables (see Additional file 1: Table S1) and having a
MAF estimated in HapMap’s CEU sample to be 0.05 or
larger. The sampling frame comprises 803,991 SNPs with
421,072 unique to Illumina, 305,672 to Affymetrix and the
remaining 77,247 common to both.

Case and control selection
The GWAS Catalog is subject to constant update and
versions are available from several locations. We down-
loaded the GWAS Catalog from the Genome Browser
(time stamp and location in Additional file 1: Table
S1). We confined attention to non–CNV variants in the
GWAS Catalog discovered by association studies utiliz-
ing an Affymetrix and/or an Illumina genomewide array
and present in the sampling frame. We randomly chose
a single representative of each set of SNPs appearing
multiple times in the GWAS Catalog or sharing one or
more ‘LD partners’ (see below). This left 2093 unique

case SNPs, 1306 of which were unique to Illumina, 403
unique to Affymetrix and 384 in common. We randomly
matched one control SNP drawn from the sampling frame
to each case SNP on chromosome, platform (Illumina
only, Affymetrix only, on both) and MAF rounded to the
nearest 0.02. We excluded SNPs in the sampling frame in
LD (R2 > 0) with one or more case SNPs as reported in
the HapMap Release #27 LD files (see Additional file 1:
Table S1) or sharing an LD partner with another control
SNP.

LD Partner identification
SNPs in the GWAS Catalog are arguably more likely to
tag the variant that is directly associated with the phe-
notype than to be that variant [8]. For this reason, we
identified and annotated each case and control SNP’s ‘LD
partners’ [8]. We defined LD partners as those SNPs with
R2 ≥ 0.8 with a case or control SNP as reported in the
HapMap Release #27 LD files. Hindorff et al. (2009) [8]
chose a threshold of 0.9 but noted that their results were
nearly the same when using thresholds of 1.0 and 0.8. We
identified 20,924 LD partners of the case SNPs and 23,779
LD partners of the control SNPs.

Annotation data
All data drawn from the UCSC Genome Browser [55] used
the “March 2006 (NCBI36/hg18)” assembly. Additional
file 1: Table S1 provides locations, revision dates and ref-
erences for each of the annotation files referred to below.
In what follows, we describe each class of annotation vari-
able, its source and the parameterization we use for it in
the models we fit.

Variants described in dbSNP [56] release 130 are classi-
fied according to their predicted function as determined
by their locations relative to known genes in the reference
assembly. Variants that fall within the coding sequence of
a known gene are further described as ‘non–synonymous’
if they result in a change to the associated amino acid
or ‘synonymous’ if they do not. A variant may have sev-
eral such designations; for purposes of our analysis, we
confine attention to each variant’s primary designation.
Those observed among the SNPs included in our anal-
ysis are ‘unknown’, ‘coding–synon’, ‘intron’, ‘near–gene–
3’, ‘near–gene–5’, ‘nonsense’, ‘missense’, ‘untranslated–3’,
and ‘untranslated–5’. Given the small number (n = 5) of
nonsense variants, we created a ‘coding–nonsynonymous’
designation by combining the ‘missense’ and ‘nonsense’
categories; similarly, we combined the ‘untranslated–3’,
and ‘untranslated–5’ designations into the category
‘untranslated’.

We investigated the PhyloP evolutionary conservation
scores [32] applied to 28– and 44–species alignments,
and to those alignments restricted to the placental mam-
mals and human, for their ability to predict the disease
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association status of common variants. Each of the four
relevant Genome Browser tables provides the sum of the
score, its sum of squares and the number of nucleotides
that contribute to these statistics within ranges of con-
tiguous nucleotides. We calculated a standardized score
(mean divided by standard deviation) for each range and
alignment and assigned these values to SNPs within the
range. The PhyloP conservation scores exhibited pair-
wise correlations of up to 0.984. The top four, six, and
nine PCs explain 90%, 96%, and 99% of the variabil-
ity, respectively, in the 12 variables. The top four PCs
were used. Additional file 1: Figure S4 and S5, respec-
tively, depict a heat map of the correlation matrix and
a dendrogram depicting an average linkage, one–minus–
absolute–correlation–distance clustering of the 12 PhyloP
variables used to construct the PCs.

The Database of Genomic Variants (DGV) [33,34] is
a compilation of reported genomic alterations spanning
more than 1000 bases (>100 in the case of indels)
observed in healthy subjects. We formed three vari-
ables indicating, respectively, whether (=1) or not (=0)
each SNP falls in a region of copy number variation, a
region containing insertions or deletions or a region with
inversions.

The ENCODE Project [19,20] is an ambitious project
to identify and characterize the various functional ele-
ments present in the human genome sequence and to
facilitate public access to the data it generates; its over-
arching objective is to improve our knowledge of human
disease processes by providing a more comprehensive
understanding of human molecular biology. Application
of ENCODE functional annotation data to the design,
analysis and interpretation of GWAS studies is one way
in which ENCODE data can quickly be put to use to
shed light on human disease processes [20]. To this
end, we examine the utility of the recently released
ENCODE regulation super–track data available from, and
displayed on, the Genome Browser for a priori predic-
tion of functional, disease-associated variants. In par-
ticular, we include variables (see below) summarizing:
transcription levels assayed in six cell lines by RNA–
seq [21,22] and represented as normalized read den-
sity; density of sequence tags for H3K4Me1 (Histone H3
Lysine 4 monomethylation) associated with enhancer and
promoter activity measured in eight cell lines, similarly
coded measures of promoter– and enhancer–associated
H3K27Ac (Histone H3 Lysine 27 acetylation) in eight
cell lines and of promoter–associated H3K4Me3 (Histone
H3 Lysine 4 tri–methylation) in nine cell lines [23,24];
evidence for the variant falling within a DNaseI hypersen-
sitivity cluster [25,26]; and the evidence for transcription
factor binding measured via ChIP–seq [27-31].

The Broad ChIP–seq, Caltech RNA–seq, and PhyloP
signal tracks are summarized at the level of genomic bins.

The ChIP–seq signals are measured within 118,084 con-
tiguous bins of 25,600 bases apiece. The RNA–seq and
PhyloP signals are measured in sets of non–overlapping,
non–uniform bins. Bins are indexed according to the hier-
archical scheme described in [57]. The ENCODE database
provides basic summary statistics of the signal densi-
ties measured within each bin. These are: the number of
valid data points, the minimum, the range, the sum and
the sum–of–squares. Sums are non–negative and range
across six orders of magnitude; in bins where the sum was
zero, we set it to one. From these summaries we derived
the mean, the ratio of the mean to the standard deviation
(‘z’) and the maximum for each bin. We interpreted these
as bin–level measures of overall signal strength, signal
consistency and peak signal, respectively. We transformed
each of these measures to the log scale prior to analysis.
Finally, we include an indicator variable for when a variant
falls in a Caltech RNA–seq bin with zero signal.

The three Broad types (signal enrichment for H3K4
Me1, H3K27Ac and H3k4Me3 histone modifications)
comprise data on eight, eight and nine cell lines, respec-
tively. We found significant pairwise correlations among
the 75 variables (25 each of log(mean), log(maximum),
and log(z)), ranging as high as 0.949, and therefore con-
ducted a principal components analysis to identify the
linear combinations, i.e. principal components (PCs), that
explain most of the variability in the data. The top 18,
27 and 44 PCs explain 90%, 95% and 99% of variabil-
ity, respectively, in the 75 measures. Finally, we mapped
each SNP to the appropriate Broad bin and annotated
each with the top 18 PCs for purposes of the analysis.
Additional file 1: Figure S1 and S2, respectively, depict
a heat map of the correlation matrix and a dendro-
gram depicting an average linkage, one–minus–absolute–
correlation–distance clustering of the 75 Broad ChIP–seq
variables used to construct the PCs.

The Caltech tables comprise RNA–seq raw signal
enrichment data on six cell lines. Pairwise correlations
among the 24 variables ranged as high as 0.970. The top
11, 12, and 16 PCs explain 92%, 95%, and 99% of the
variability. The top 11 PCs were used in the analysis.
Additional file 1: Figure S7 and S8, respectively, depict
a heat map of the correlation matrix and a dendrogram
depicting an average linkage, one–minus–absolute–
correlation–distance clustering of the 24 Caltech
RNA–seq variables used to construct the PCs.

The transcription factor ChIP–seq data are summarized
by scores, ranging from 6 to 1000, measuring strength of
evidence for binding within specified, sometimes overlap-
ping, chromosomal bins (‘clusters’). We summarize these
data as they apply to each SNP using two variables: the
number of clusters it intersects with (‘TFBSfreq’) and the
average loge(score) (‘logTFBS’) assigned to those clusters
(coded as 0 if the SNP does not intersect with a cluster).
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Similarly, the DNaseI hypersensitivity data are summa-
rized by scores, ranging from 16 to 1000, within specified
chromosomal bins (‘clusters’). We summarize these data
as they apply to each SNP using (1) an indicator for the
variant falling within a clusters and (2) the loge(score)
assigned to that cluster.

The Open REGulatory ANNOtation database (OReg-
Anno) [58,59] is a curated collection of regulatory ele-
ments. The Genome Browser ORegAnno table provides
start and stop coordinates and annotations for elements in
the database. For purposes of our analysis, we summarize
these data with an indicator variable for whether or not a
variant falls within an ORegAnno regulatory region.

PolyPhen–2 (PPh2) [35] assigns to nonsynonymous
SNPs a probability of being damaging based on the
sequence, phylogenetic and structural information char-
acterizing the amino acid substitution.

RegulomeDB [36] annotates SNPs with known and pre-
dicted regulatory elements in the intergenic regions of
the human genome. Each SNP is assigned one of seven
categories based on its likelihood of affecting protein
binding.

We collected the annotation variables described above
for each SNP in the HapMap Release 27 tables into an
annotations data base that is available on our web site. In
what follows, we refer to the collection of these variables
as F ; when F is indexed we are referring to the functional
data for a given SNP (Fs) or, as just below, to a given SNP,
s, in a given LD block, b (Fsb).

Model
For purposes of the analysis, we assumed that blocks and
the SNPs within the blocks were independent conditional
on the functional data. We modeled the probability that
a SNP s in block b was an associated SNP, πsb, given
the functional data for that SNP, Fsb, using the logistic
regression model logit(πsb) = α + Fsbβ . We assumed
that there was at least one associated SNP in each case
block and that there were no associated SNPs in con-
trol blocks. Hence, each case block contributed the factor[
1 − ∏nb

s=1(1 − πsb)
]

to the likelihood, while each control
block contributed

∏nb
s=1(1 − πsb). As a result, we expected

at least 1,675 of the 48,888 SNPs in the training set to
be phenotype associated. This corresponds to α = −3.34
(columns of F are centered); if 10% (alt 20%) of case blocks
contain two phenotype associated SNPs, α = −3.24 (alt
-3.15). Hence the normal mean -3.24, standard deviation
0.1 prior distribution we placed on α is consistent with
our expectation that there were fewer than 2,178 (= 1.3 ×
1, 675) true phenotype associated variants among the case
blocks.

Our specification of the prior distribution on β was
guided by the observation that, in the normal model with
the normal–exponential–gamma (NEG) distribution as

prior on the mean and the variance known, the poste-
rior mode is identically zero when the maximum likeli-
hood estimator (MLE) is in a neighborhood around zero,
but rapidly converges to the MLE as the MLE diverges
from zero (this setting approximates the more general
one in which the NEG distribution is used as the prior
distribution for a parameter whose likelihood is approxi-
mately normal). The NEG distribution is specified by its
shape and scale parameters and the width of the thresh-
old neighborhood is a function of these parameters. For
purposes of our analysis, we chose parameter values for
which no more than 10% of the coefficients are outside
of the threshold region with probability 0.90, a priori. We
placed independent NEG prior distributions on the com-
ponents of β ; in addition, we also considered the model
with independent standard normal distributions on the
components of β . Inference for each of these models was
carried out using the training set and were evaluated using
the evaluation set.

We used random–walk Markov chain Monte Carlo
(MCMC) algorithms [60,61] to estimate summaries of
the posterior distribution under each of the models. We
started 10 independent chains per model from starting
points drawn from the prior distribution. In each case,
step sizes were adjusted so that parameter level accep-
tance ratios fell between 0.3 and 0.5 during an initial,
‘burn–in’ set of iterations not used for inference. We fixed
the step sizes and ran the 10 chains from their leave–
off positions for an additional 50,000 iterations per chain.
Inspection of trace plots, as well as computation of the
Gelman–Rubin [62], Heidelberger–Welch [63], Raftery–
Lewis [64], and Geweke [65] diagnostics implemented
in the CODA package [66] in R [67], indicated satisfac-
tory convergence. We thinned the 10 chains by 1,000 and
combined them to produce a sample of 500 coefficient
vectors.

We used the concordance index (CI) to measure the
out–of–sample predictive accuracy of the model. We cal-
culated the CI as the fraction of matched pairs in the
‘evaluation set’ in which the average probability of asso-
ciation given the functional data over the n1 SNPs in the
case block (‘b1’) was larger than the corresponding aver-
age over the n0 SNPs in the matched control block (‘b0’);
i.e. if

n1∑
s=1

Pr(As,b1 | Fs,b1)/n1 >

n0∑
s=1

Pr(As,b0 | Fs,b0)/n0,

where we estimated Pr(As,bn | Fs,bn) by
500∑
i=1

Pr(As,bn = 1 | Fs,bn, αi, βi)/500,

where the αi and βi are MCMC samples saved from
analysis of the training data.
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Evaluation
We carried out a genome–wide association analysis of
serous ovarian cancer using the methods described above.
The data for this analysis were drawn from GWAS studies
conducted in the US [68] and the UK [45]. The genotype
data from these studies were combined and imputed to
HapMap III density, resulting in a data set comprising ana-
lyzable genotypes at 2,500,004 SNPs for 7,272 subjects of
European ancestry. The association analysis was confined
to the 2,004 cases with advanced stage serous ovarian can-
cer and the 3,272 available controls and was adjusted for
study site and the first two principal components of the
sample genotypes. We calculated Bayes factors (BFs) as
described above and set the prior probability of associa-
tion to be 0.00001 when estimating posterior probabilities;
ranks are invariant to this choice.

Several large scale studies conducted to follow up
promising associations from these GWAS have identi-
fied the eleven genome–wide significant loci listed in
Table 4. We treat these as established or ‘true positive’
associations for purposes of evaluating the various asso-
ciation measures. In addition, we identified a set of likely
unassociated, ‘true negative’ SNPs from among 22,254
GWAS followup SNPs placed on the iCOGS chip [48].
This analysis included 8,344 cases with advanced stage
serous ovarian cancer and 22,913 controls of European
ancestry and was adjusted for study site and the first five
European ancestry principal components. We identified a
subset of 5,155 SNPs with strong evidence against associa-
tion (defined as BF<0.1 on Jeffreys’ scale of evidence [51])
to serve as the ‘true negatives’.

We compared the rankings of these two sets of SNPs in
the original GWAS analysis when association was mea-
sured using genotype data only to those obtained with
incorporation of the functional signatures. We compared
the procedures based on their power to identify the
truly associated variants for follow–up assuming budgets
allowing for evaluation of the top 5,000 or 10,000 SNPs.

In most association studies, genotypes are determined,
through a combination of genotyping and imputation, for
only a subset of the universe of variants. In this setting,
it is standard to rely on correlations between genotyped
variants (‘tags’) and those that are ‘tagged’ (not genotyped)
to identify and localize associations. Likewise, the utility
of functional signatures in a typical study will depend on
the degree to which they reflect the likelihood of func-
tion of both the tag for which it is calculated and for the
set of variants it tags. We evaluated correlations between
functional signatures, defined as (Fsβ), for adjacent pairs
of SNPs included in the ovarian cancer GWAS analysis.
We identified the quantile of each adjacent variant pair
in the overall distribution of distances measured in base
pairs (BPs). For purposes of this analysis, we defined quan-
tiles in increments of 0.025, i.e. with each containing 2.5%

of the mass of the distance distribution. We estimated the
Pearson correlation between the functional signatures of
the adjacent SNP pairs within each quantile and plotted
these estimates against BP distance, locating the estimates
at the midpoints of the quantile bins.

Additional file

Additional file 1: Supplemental table and figures.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EI conceived the study, coordinated its design, the analysis and drafting of the
manuscript. GL carried out statistical and bioinformatic analyses and
participated in drafting the manuscript. MC contributed to study design, the
analysis plan and the manuscript. AM contributed to study design,
interpretation of results and the manuscript. All authors have read, critically
reviewed and approved its final version.

Acknowledgements
This work was funded by the National Institutes of Health through its Genes
and Environment Initiative, grant number R01–HL090559 and through
R21–ES020796 (NIEHS) and by the National Science Foundation via
DMS–1106891. The ovarian cancer multi–GWAS analyzed herein were
provided by the FOCI project (1U19-CA148112) of NCI’s GAME–ON
consortium. The authors wish to thank two anonymous referees for their
important contributions to the manuscript.

Author details
1Department of Statistical Science, Duke University, Box 90251, 27708–0251
Durham, NC, USA. 2Cancer Epidemiology Program, H. Lee Moffitt Cancer
Center & Research Institute, 12902 Magnolia Drive, 33612 Tampa, FL, USA.

Received: 20 December 2013 Accepted: 13 May 2014
Published: 24 May 2014

References
1. Manolio TA: Genomewide association studies and assessment of the

risk of disease. N Engl J Med 2010, 363(2):166–176. doi:10.1056/
NEJMra0905980. PMID:20647212. http://www.nejm.org/doi/pdf/10.1056/
NEJMra0905980.

2. Freedman ML, Monteiro ANA, Gayther SA, Coetzee GA, Risch A, Plass C,
Casey G, Biasi MD, Carlson C, Duggan D, James M, Liu P, Tichelaar JW,
Vikis HG, You M, Mills IG: Principles for the post–GWAS functional
characterization of cancer risk loci. Nat Genet 2011, 43(6):513–518.
doi:10.1038/ng.840.

3. Witte JS, Greenland S, Haile RW, Bird CL: Hierarchical regression
analysis applied to a study of multiple dietary exposures and breast
cancer. Epidemiology 1994, 5(6):612–621.

4. Aragaki CC, Greenland S, Probst-Hensch N, Haile RW: Hierarchical
modeling of gene-environment interactions: estimating NAT2
genotype–specific dietary effects on adenomatous polyps. Cancer
Epidemiol Biomarkers & Prev 1997, 6(5):307–314. http://cebp.aacrjournals.
org/content/6/5/307.full.pdf+html.

5. Hung RJ, Brennan P, Malaveille C, Porru S, Donato F, Boffetta P, Witte JS:
Using hierarchical modeling in genetic association studies with
multiple markers: application to a case-control study of bladder
cancer. Cancer Epidemiol Biomarkers & Prev 2004, 13(6):1013–1021.

6. Hung RJ, Baragatti M, Thomas D, McKay J, Szeszenia-Dabrowska N,
Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout
V, Bencko V, Chabrier A, Moullan N, Canzian F, Hall J, Boffetta P, Brennan P:
Inherited predisposition of lung cancer: a hierarchical modeling
approach to DNA repair and cell cycle control pathways. Cancer
Epidemiol Biomarkers & Prev 2007, 16(12):2736–2744.

http://www.biomedcentral.com/content/supplementary/1471-2164-15-398-S1.pdf
http://www.nejm.org/doi/pdf/10.1056/NEJMra0905980
http://www.nejm.org/doi/pdf/10.1056/NEJMra0905980
http://cebp.aacrjournals.org/content/6/5/307.full.pdf+html
http://cebp.aacrjournals.org/content/6/5/307.full.pdf+html


Iversen et al. BMC Genomics 2014, 15:398 Page 15 of 16
http://www.biomedcentral.com/1471-2164/15/398

7. Veyrieras JB, Kim SY, Dermitzakis ET, Gilad Y, Stephens M, Pritchard JK:
High-resolution mapping of expression-QTLs yields insight into
human gene regulation. PLoS Genet 2008, 4(10):1000214.
doi:10.1371/journal.pgen.1000214.

8. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS,
Manolio TA: Potential etiologic and functional implications of
genome-wide association loci for human diseases and traits. Proc
Nat Acad Sci 2009, 106(23):9362–9367. doi:10.1073/pnas.0903103106.
http://www.pnas.org/content/106/23/9362.full.pdf+html.

9. Lee SI, Dudley AM, Drubin D, Silver PA, Krogan NJ, Peér D, Koller D:
Learning a prior on regulatory potential from eQTL data. PLoS Genet
2009, 5(1):1000358. doi:10.1371/journal.pgen.1000358.

10. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ:
Trait–associated SNPs are more likely to be eQTLs: Annotation to
enhance discovery from GWAS. PLoS Genet 2010, 6(4):1000888.
doi:10.1371/journal.pgen.1000888.

11. An integrated encyclopedia of DNA elements in the human
genome. Nature 2012, 489:57–74. doi:10.1038/nature11247.

12. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M: Linking disease
associations with regulatory information in the human genome.
Genome Res 2012, 22(9):1748–1759. doi:10.1101/gr.136127.111. http://
genome.cshlp.org/content/22/9/1748.full.pdf+html.

13. Carbonetto P, Stephens M: Integrated enrichment analysis of variants
and pathways in genome-wide association studies indicates central
role for IL-2 signaling genes in type 1 diabetes, and cytokine
signaling genes in Crohn’s disease. PLoS Genet 2013, 9(10):1003770.
doi:10.1371/journal.pgen.1003770.

14. Pickrell JK: Joint analysis of functional genomic data and
genome-wide association studies of 18 human traits. 2014. arXiv
1311.4843 [q-bio.GN].

15. Marchini J, Howie B, Myers S, McVean G, Donnelly P: A new multipoint
method for genomewide association studies by imputation of
genotypes. Nat Genet 2007, 39:906–913.

16. Servin B, Stephens M: Imputation–based analysis of association
studies: Candidate regions and quantitative traits. PLoS Genet 2007,
3(7):114. doi:10.1371/journal.pgen.0030114.

17. Wakefield J: A Bayesian measure of the probability of false discovery
in genetic epidemiology studies. Am J Hum Genet 2007, 81(2):208–227.
doi:10.1086/519024.

18. Wakefield J: Bayes factors for genome–wide association studies:
comparison with p-values. Genet Epidemiol 2009, 33(1):79–86.
doi:10.1002/gepi.20359.

19. The ENCODE Project Consortium: Identification and analysis of
functional elements in 1% of the human genome by the ENCODE
pilot project. Nature 2007, 447(7146):799–816.

20. The ENCODE Project Consortium: A user’s guide to the encyclopedia
of DNA elements (ENCODE). PLoS Biology 2011, 9(4):1001046.
doi:10.1371/journal.pbio.1001046.

21. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods
2008, 5(7):621–628. doi:10.1038/nmeth.1226.

22. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and
memory–efficient alignment of short DNA sequences to the human
genome. Genome Biol 2009, 10(3):25.

23. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B,
Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL,
Lander ES: A bivalent chromatin structure marks key developmental
genes in embryonic stem cells. Cell 2006, 125(2):315–326.

24. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez
P, Brockman W, Kim T-K, Koche RP, Lee W, Mendenhall E, O’Donovan A,
Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C,
Lander ES, Bernstein BE: Genome–wide maps of chromatin state in
pluripotent and lineage–committed cells. Nature 2007,
448(7153):553–560. doi:10.1038/nature06008.

25. Sabo PJ, Kuehn MS, Thurman R, Johnson BE, Johnson EM, Cao H, Yu M,
Rosenzweig E, Goldy J, Haydock A, Weaver M, Shafer A, Lee K, Neri F,
Humbert R, Singer MA, Richmond TA, Dorschner MO, McArthur M,
Hawrylycz M, Green RD, Navas PA, Noble WS, Stamatoyannopoulos JA:
Genome–scale mapping of DNase I sensitivity in vivo using tiling
DNA microarrays. Nat Methods 2006, 3(7):511–518.
doi:10.1038/nmeth890.

26. Sabo PJ, Hawrylycz M, Wallace JC, Humbert R, Yu M, Shafer A, Kawamoto
J, Hall R, Mack J, Dorschner MO, McArthur M, Stamatoyannopoulos JA:
Discovery of functional noncoding elements by digital analysis of
chromatin structure. Proc Nat Acad Sci 2004, 101(48):16837–6842.

27. Euskirchen G, Royce TE, Bertone P, Martone R, Rinn JL, Nelson FK, Sayward
F, Luscombe NM, Miller P, Gerstein M, Weissman S, Snyder M: CREB binds
to multiple loci on human chromosome 22. Mol Cell Biol 2004,
24(9):3804–3814.

28. Euskirchen GM, Rozowsky JS, Wei CL, Lee WH, Zhang ZD, Hartman S,
Emanuelsson O, Stolc V, Weissman S, Gerstein MB, Ruan Y, Snyder M:
Mapping of transcription factor binding regions in mammalian cells
by ChIP: comparison of array– and sequencing–based technologies.
Genome Res 2007, 17(6):898–909.

29. Martone R, Euskirchen G, Bertone P, Hartman S, Royce TE, Luscombe NM,
Rinn JL, Nelson FK, Miller P, Gerstein M, Weissman S, Snyder M:
Distribution of nf–κb–binding sites across human chromosome 22.
Proc Nat Acad Sci USA 2003, 100(21):12247–12252.

30. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen
G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith OL, He A, Marra M,
Snyder M, Jones S: Genome–wide profiles of STAT1 DNA association
using chromatin immunoprecipitation and massively parallel
sequencing. Nat Methods 2007, 4(8):651–657. doi:10.1038/nmeth1068.

31. Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R,
Carriero N, Snyder M, Gerstein MB: PeakSeq enables systematic scoring
of ChIP–seq experiments relative to controls. Nat Biotech 2009,
27(1):66–75. doi:10.1038/nbt.1518.

32. Siepel A, Pollard K, Haussler D: New methods for detecting
lineage–specific selection. Res Computat Mol Biol 2006, 3909:190–205.

33. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW,
Lee C: Detection of large–scale variation in the human genome. Nat
Genet 2004, 36(9):949–951.

34. Zhang J, Feuk L, Duggan GE, Khaja R, Scherer SW: Development of
bioinformatics resources for display and analysis of copy number
and other structural variants in the human genome. Cytogenet &
Genome Res 2006, 115(3/4):205–214.

35. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,
Kondrashov AS, Sunyaev SR: A method and server for predicting
damaging missense mutations. Nat Methods 2010, 7:248–249.

36. Boyle A, Hong E, Hariharan M, Cheng Y, Schaub M, Kasowski M,
Karczewski K, Park J, Hitz B, Weng S, Cherry J, Snyder M: Annotation of
functional variation in personal genomes using RegulomeDB.
Genome Res 2012, 22(9):1790–1797. doi:10.1101/gr.137323.112.

37. Hans CM: Bayesian lasso regression. Biometrika 2009, 96:835–845.
38. Richardson S, Bottolo L, Rosenthal JS: Bayesian models for sparse

regression analysis of high dimensional data. In Bayesian Statistics 9.
Edited by Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D,
Smith AFM. Oxford: Oxford University Press; 2011.

39. Griffin JE, Brown PJ: Bayesian adaptive lassos with non–convex penalization.
Technical report, University of Kent, 2007.

40. Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ: Simultaneous analysis
of all SNPs in genome–wide and re–sequencing association studies.
PLoS Genet 2008, 4(7):1000130. doi:10.1371/journal.pgen.1000130.

41. Griffin JE, Brown PJ: Inference with normal–gamma prior distributions
in regression problems. Bayesian Anal 2010, 5(1):171–188.

42. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H,
Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin
T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D,
Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S,
Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, et al: Systematic
localization of common disease–associated variation in regulatory
DNA. Science 2012, 337(6099):1190–1195. doi:10.1126/science.1222794.
http://www.sciencemag.org/content/337/6099/1190.full.pdf.

43. Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen C-A, Schmitt AD, Espinoza
CA, Ren B: A high–resolution map of the three–dimensional
chromatin interactome in human cells. Nature 2013, 503:290–294.
doi:10.1038/nature12644.

44. Sanyal A, Lajoie BR, Jain G, Dekker J: The long–range interaction
landscape of gene promoters. Nature 2012, 489:109–113.
doi:10.1038/nature11279.

45. Song H, Ramus SJ, Tyrer J, Bolton KL, Gentry-Maharaj A, Wozniak E,
Anton-Culver H, Chang-Claude J, Cramer DW, DiCioccio R, Dork T, Goode

http://www.pnas.org/content/106/23/9362.full.pdf+html
http://genome.cshlp.org/content/22/9/1748.full.pdf+html
http://genome.cshlp.org/content/22/9/1748.full.pdf+html
http://www.sciencemag.org/content/337/6099/1190.full.pdf


Iversen et al. BMC Genomics 2014, 15:398 Page 16 of 16
http://www.biomedcentral.com/1471-2164/15/398

EL, Goodman MT, Schildkraut JM, Sellers T, Baglietto L, Beckmann MW,
Beesley J, Blaakaer J, Carney ME, Chanock S, Chen Z, Cunningham JM,
Dicks E, Doherty JA, Durst M, Ekici AB, Fenstermacher D, Fridley BL, Giles G,
et al.: A genome-wide association study identifies a new ovarian
cancer susceptibility locus on 9p22.2. Nature Genet 2009, 42:996–1000.
doi:10.1038/ng.424.

46. Bolton KL, Tyrer J, Song H, Ramus SJ, Notaridou M, Jones C, Sher T,
Gentry-Maharaj A, Wozniak E, Tsai Y-Y, Weidhaas J, Paik D, Van Den Berg
DJ, Stram DO, Pearce CL, Wu AH, Brewster W, Anton-Culver H, Ziogas A,
Narod SA, Levine DA, Kaye SB, Brown R, Paul J, Flanagan J, Sieh W,
McGuire V, Whittemore AS, Campbell I, Gore ME, et al.: Common
variants at 19p13 are associated with susceptibility to ovarian
cancer. Nat Genet 2010, 42:880–884.

47. Goode EL, Chenevix-Trench G, Song H, Ramus SJ, Notaridou M,
Lawrenson K, Widschwendter M, Vierkant RA, Larson MC, Krüger-Kjaer S,
Birrer MJ, Berchuck A, Schildkraut J, Tomlinson I, Kiemeney LA, Cook LS,
Gronwald J, Garcia-Closas M, Gore ME, Campbell I, Whittemore AS,
Sutphen R, Phelan C, Anton-Culver H, Pearce CL, Lambrechts D, Rossing
MA, Chang-Claude J, Moysich KB, Goodman MT, et al.: A genome-wide
association study identifies susceptibility loci for ovarian cancer at
2q31 and 8q24. Nat Genet 2010, 42:874–879. doi:10.1038/ng.668.

48. Pharoah PDP, Tsai Y-Y, Ramus SJ, Phelan CM, Goode EL, Lawrenson K,
Buckley M, Fridley BL, Tyrer JP, Shen H, Weber R, Karevan R, Larson MC,
Song H, Tessier DC, Bacot F, Vincent D, Cunningham JM, Dennis J, Dicks E,
Aben KK, Anton-Culver H, Antonenkova N, Armasu SM, Baglietto L,
Bandera EV, Beckmann MW, Birrer MJ, Bloom G, Bogdanova N, et al.:
GWAS meta–analysis and replication identifies three novel
susceptibility loci for ovarian cancer. Nat Genet 2013, 45:362–370.
doi:10.1038/ng.2564.

49. Bojesen SE, Pooley KA, Johnatty SE, Beesley J, Michailidou K, Tyrer JP,
Edwards SL, Pickett HA, Shen HC, Smart CE, Hillman KM, Mai PL,
Lawrenson K, Stutz MD, Lu Y, Karevan R, Woods N, Johnston RL, French
JD, Chen X, Weischer M, Nielsen SF, Maranian MJ, Ghoussaini M, Ahmed S,
Baynes C, Bolla MK, Wang Q, Dennis J, McGuffog L: Multiple
independent variants at the TERT locus are associated with
telomere length and risks of breast and ovarian cancer. Nat Genet
2013, 45:371–384. doi:10.1038/ng.2566.

50. Permuth-Wey J, Lawrenson K, Shen HC, Velkova A, Tyrer JP, Chen Z, Lin
H-Y, Ann Chen Y, Tsai Y-Y, Qu X, Ramus SJ, Karevan R, Lee J, Lee N, Larson
MC, Aben KK, Anton-Culver H, Antonenkova N, Antoniou AC, Armasu SM,
Bacot F, Baglietto L, Bandera EV, Barnholtz-Sloan J, Beckmann MW, Birrer
MJ, Bloom G, Bogdanova N, Brinton LA, Brooks-Wilson A, et al.:
Identification and molecular characterization of a new ovarian
cancer susceptibility locus at 17q21.31. Nat Commun 2013, 4:1627.
doi:10.1038/ncomms2613.

51. Jeffreys H: Theory of Probability. 3rd edn. p. 459. Oxford: Oxford Univ. Press;
1961.

52. The 1000 Genomes Project Consortium: An integrated map of genetic
variation from 1,092 human genomes. Nature 2012, 491:56–65.

53. Kass RE, Raftery AE: Bayes factors. J Am Stat Assoc 1995, 90:773–795.
54. Wilson MA, Iversen ES, Clyde MA, Schmidler SC, Schildkraut JM:

Supplement to “Bayesian model search and multilevel inference for
SNP association studies”. Ann Appl Stat 2010, 4(3):1342-1364.

55. Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, Fujita PA, Diekhans
M, Smith KE, Rosenbloom KR, Raney BJ, Pohl A, Pheasant M, Meyer LR,
Learned K, Hsu F, Hillman-Jackson J, Harte RA, Giardine B, Dreszer TR,
Clawson H, Barber GP, Haussler D, Kent WJ: The UCSC genome browser
database: update 2010. Nucleic Acids Res 2010, 38(suppl 1):613–619.
doi:10.1093/nar/gkp939. http://nar.oxfordjournals.org/content/38/
suppl_1/D613.full.pdf+html.

56. Sherry S, Ward M, Kholodov M, Baker J, Phan L, Smigielski E, Sirotkin K:
dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001,
29(1):308–311.

57. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler
D: The human genome browser at UCSC. Genome Res 2002,
12(6):996–1006.

58. Montgomery SB, Griffith OL, Sleumer MC, Bergman CM, Bilenky M,
Pleasance ED, Prychyna Y, Zhang X, Jones SJM: ORegAnno: an open
access database and curation system for literature–derived
promoters, transcription factor binding sites and regulatory
variation. Bioinformatics 2006, 22(5):637–640.

59. Griffith OL, Montgomery SB, Bernier B, Chu B, Kasaian K, Aerts S, Mahony S,
Sleumer MC, Bilenky M, Haeussler M, Griffith M, Gallo SM, Giardine B,
Hooghe B, Van Loo, P, Blanco E, Ticoll A, Lithwick S, Portales–Casamar E,
Donaldson IJ, Robertson G, Wadelius C, De Bleser, P, Vlieghe D, Halfon MS,
Wasserman W, Hardison R, Bergman CM, Jones SJM, The Open Regulatory
Annotation Consortium: ORegAnno: an open–access community–
driven resource for regulatory annotation. Nucleic Acids Res 2008,
36(suppl 1):107–113.

60. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E:
Equations of state calculations by fast computing machines. J Chem
Phys 1953, 21:1087–1091.

61. Gilks WR, Richardson S, Spiegelhalter DJ: Introducing Markov chain
Monte Carlo. In Markov Chain Monte Carlo in Practice. Edited by Gilks WR,
Richardson S, Spiegelhalter DJ. London: Chapman and Hall; 1996.

62. Gelman A, Rubin DB: Inference from iterative simulation using
multiple sequences (with discussion). Stat Sci 1992, 7:457–511.

63. Heidelberger P, Welch P: Simulation run length control in the
presence of an initial transient. Oper Res 1983, 31:1109–1144.

64. Raftery AE, Lewis SM: Implementing MCMC. In Markov Chain Monte
Carlo in Practice. Edited by Gilks WR, Richardson S, Spiegelhalter DJ.
London: Chapman and Hall; 1996:115–127.

65. Geweke J: Evaluating the accuracy of sampling–based approaches to
calculating posterior moments. In Bayesian Statistics 4. Edited by
Bernado J, Erger J, AP D, Smith A. Oxford, UK: Clarendon Press; 1992.

66. Plummer M, Best N, Cowles K, Vines K: CODA: Output Analysis and
Diagnostics for MCMC. 2010. R package version 0.13-5. http://CRAN.R-
project.org/package=coda.

67. Ihaka R, Gentleman R: R: A language for data analysis and graphics.
J Comput Graph Stat 1996, 5(3):299–314.

68. Permuth-Wey J, Kim D, Tsai Y-Y, Lin H-Y, Chen YA, Barnholtz-Sloan J, Birrer
MJ, Bloom G, Chanock SJ, Chen Z, Cramer DW, Cunningham JM, Dagne G,
Ebbert-Syfrett J, Fenstermacher D, Fridley BL, Garcia-Closas M, Gayther SA,
Ge W, Gentry-Maharaj A, Gonzalez-Bosquet J, Goode EL, Iversen E, Jim H,
Kong W, McLaughlin J, Menon U, Monteiro ANA, Narod SA, Pharoah PDP,
et al.: LIN28B polymorphisms influence susceptibility to epithelial
ovarian cancer. Cancer Res 2011, 71(11):3896–3903.
doi:10.1158/0008-5472.CAN-10-4167. http://cancerres.aacrjournals.org/
content/71/11/3896.full.pdf+html.

doi:10.1186/1471-2164-15-398
Cite this article as: Iversen et al.: Functional annotation signatures of
disease susceptibility loci improve SNP association analysis. BMC Genomics
2014 15:398.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://nar.oxfordjournals.org/content/38/suppl_1/D613.full.pdf+html
http://nar.oxfordjournals.org/content/38/suppl_1/D613.full.pdf+html
http://CRAN.R-project.org/package=coda
http://CRAN.R-project.org/package=coda
http://cancerres.aacrjournals.org/content/71/11/3896.full.pdf+html
http://cancerres.aacrjournals.org/content/71/11/3896.full.pdf+html

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results and discussion
	Functional signatures of known associations
	Application to an ovarian cancer multi–GWAS study
	Functional signatures of tag SNPs correlate with function of tagged SNPs

	Conclusions
	Methods
	Association analysis given annotation data
	Construction of functional signatures
	Sampling frame
	Case and control selection
	LD Partner identification
	Annotation data
	Model

	Evaluation

	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice




