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The Role Of Extracellular Matrix
Elasticity and Composition
In Regulating the Nucleus
Pulposus Cell Phenotype
in the Intervertebral Disc:
A Narrative Review
Intervertebral disc (IVD) disorders are a major contributor to disability and societal
health care costs. Nucleus pulposus (NP) cells of the IVD exhibit changes in both pheno-
type and morphology with aging-related IVD degeneration that may impact the onset and
progression of IVD pathology. Studies have demonstrated that immature NP cell interac-
tions with their extracellular matrix (ECM) may be key regulators of cellular phenotype,
metabolism and morphology. The objective of this article is to review our recent experi-
ence with studies of NP cell-ECM interactions that reveal how ECM cues can be manipu-
lated to promote an immature NP cell phenotype and morphology. Findings demonstrate
the importance of a soft (<700 Pa), laminin-containing ECM in regulating healthy,
immature NP cells. Knowledge of NP cell-ECM interactions can be used for development
of tissue engineering or cell delivery strategies to treat IVD-related disorders.
[DOI: 10.1115/1.4026360]

Introduction

The intervertebral disc (IVD) is a heterogeneous, fibrocartilagi-
nous tissue that provides load support, energy dissipation, and
flexibility in the spine. The IVD, which is composed of the nu-
cleus pulposus (NP), anulus fibrosus (AF), and cartilage endplate
(Fig. 1), is situated between adjacent vertebral bodies and acts as
the main joint of the spinal column, occupying approximately 1/3
of its total height [1,2]. The cells within each of the regions of the
IVD are subjected to a variety of signals from both physical and
biochemical stimuli from their surrounding extracellular matrix
(ECM) microenvironment [3–8]. These cues are believed to play
critical roles in regulating development, maintenance, and repair
of the IVD, but in ways that are poorly understood.

During disc degeneration or aging, significant changes are
observed in IVD cell phenotype and density in parallel with
changes in ECM composition and structure. A dramatic decrease
in cell density and multicell clusters in both the NP and AF
regions is observed [9–11] with increased prevalence of cells with
cytoplasmic projections [12–14]. While the exact factors resulting
in decreased NP cell clustering with age in vivo are not fully
understood, it is likely that cell death associated with decreased
nutrient oxygen and glucose transport to the IVD can contribute to
these decreased cell numbers and cell clusters [2]. With decreases

in cell density, the large, vacuolated cells in the NP, which are
normally arranged in cell clusters, transition to a sparse population
of smaller, isolated chondrocyte-like cells [15]. The loss of pro-
teoglycan matrix causes changes in proteoglycan structure
[16–18], which results in decreased negative fixed-charge density,
decreased water content, and a loss of swelling pressure [19,20],
impairing the tissue’s ability to resist and redistribute compressive
loads. Corresponding with these compositional changes are struc-
tural alterations including loss of disc height and increased anulus
lamellar disorganization. Changes in ECM composition and struc-
ture may also result in substantially altered mechanics and kine-
matics for the entire IVD motion segment, with decreased internal
pressurization and disc height resulting in higher compressive
loads transferred to the AF, compromising its structure and func-
tion (e.g., overload leading to clefts, buckling, or rupture). Nerve
compression, spinal canal impingement, and altered spinal loading
configurations can also occur, which can contribute to sympto-
matic back pain [21]. These dramatic shifts in ECM mechanical
environment can be expected to impact NP cell health, metabo-
lism and survival, although the direct links between environmen-
tal factors and NP cell behaviors are still under study.

The purpose of this article is to review our experience with
studies of NP cell interactions with their surrounding ECM, as this
knowledge can be useful in the development of treatments for
disc-related ailments. The first section of this article covers what
we have learned of how NP cells interact with select proteins of
the native ECM. We then describe how changes in the surround-
ing ECM can alter NP cell phenotype and morphology, and sum-
marize recent work performed to reveal how NP cells sense,
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interpret, and respond to different mechanical and biochemical
cues in their ECM.

NP Cells and Their Native ECM Microenvironment

Immature NP Cells. Cells within the developing and immature
NP are derived from embryonic notochord [15,22–24], and exhibit
morphologic features that reflect this unique embryonic origin:
notochordal NP cells are large in diameter [25–27] containing
large intracellular vacuoles, are organized in interconnected cell
clusters, and exhibit strong cell-cell interactions characterized by
gap junctions [26,27], cadherins [28–30], and desmosomal cell-
cell adhesions [31,32]. Recent characterizations of immature NP
cells (bovine, rat, juvenile human) via cDNA microarrays, flow
cytometry, real time PCR, and immunohistochemistry, have iden-
tified new phenotype markers that are specific to immature NP cells
(Table 1, specific references displayed in table) [28,33–36]. Of
note, the transcription factor, T-brachyury, and adherens junction
protein, N-cadherin, are two markers that have high expression in
immature NP cells compared to mature or degenerate NP cells, or
even neighboring AF cells [34–36].

Immature NP cells exhibit a well-developed cytoskeleton; NP
cells have been shown to express F-actin (distributed in a punctu-
ate or cortical arrangement [37,38]), microtubules [37], and high
levels of both vimentin and cytokeratin intermediate filament pro-
teins (e.g., cytokeratins 8/2018/19, [13,32,37–41]). Quantitative
analysis of regional variations in cytoskeletal protein expression
in bovine IVDs indicates that NP cells express significantly higher
levels of vimentin as compared to AF cells, with these filaments
traversing from the NP cell’s plasma membrane to the nucleus
[37]. The intermediate filament cytoskeletal network is known to
support cell shape and resist mechanical loads [42,43], and has
been shown to be associated with tissue regions which experience
high levels of compressive loading and increased polymerized
vimentin [44–46]. The observed intermediate filament expression
patterns in the IVD appear to correspond with this notion.

Mature NP Cells. Cells with notochordal-like morphologic
features are retained into adulthood or throughout life in some ani-
mal species [41,47], but in the human many of these morphologic

cell features are lost by early adulthood, with only a sparse popu-
lation of nonclustering, rounded, chondrocyte-like cells remaining
in the mature human NP. Mature human NP cells do, however, ex-
hibit phenotypic characteristics distinct from chondrocytes
[48,49], and recent evidence indicates that mature NP cells retain
at least some phenotypic features of notochordal cells [28,39,50],
suggesting that the chondrocyte-like cells of the mature human
NP may have notochordal origins. NP cell morphology in the
mature human IVD has been described as rounded or ellipsoidal,
with cell sizes and shapes similar to chondrocytes [23,51,52].
Similarly, quantitative studies of in situ NP cell morphology in rat
IVDs found NP cell shape to be nearly spheroidal, with cells
exhibiting no preferred orientation within the tissue [53]. This is
distinct from the elongated and spindle-like morphologies noted
for AF cells, that align with the principal collagen fiber direction
[53]. NP cells may also extend cytoplasm-filled processes of vary-
ing length and number away from cell bodies [54].

NP Cell-Matrix Interactions. The extracellular matrix of the
NP is a highly hydrated, gelatinous tissue [55–57] that acts
mechanically to resist and to redistribute spinal compressive
loads. In the young, healthy human, the NP ECM elasticity ranges
from 0.3–5 kPa [56,57] and is comprised primarily of water
(70–90% of wet weight), proteoglycans (65% of dry weight), and
randomly oriented type II collagen (15-20% dry weight) [58–60].
Other compositionally minor (though potentially critical function-
ally) ECM components of the NP include elastin, small proteogly-
cans, and minor collagens (types III, VI, IX) [61–63], and
laminins [25,64,65]. Many of these ECM constituents can directly
interact with NP cells through cell-surface receptors, if resident
within the cell pericellular matrix or multicell cluster (e.g., type
VI collagen, N-cadherin [53]); alternately, these ECM constitu-
ents can exert a mechanical influence upon NP cells through regu-
lating nutrient transport, hydration (e.g., fixed charge density) and
swelling pressure [66]. Each of these studies demonstrates the NP
ECM environment interacts very closely with NP cells to regulate
cell response.

Prior studies in other cell types have demonstrated an influential
role of matrix composition or tissue elasticity in regulating cell
functions and behaviors, including cell differentiation, metabolism

Fig. 1 The intervertebral disc is situated between vertebral bodies in the spinal
column, and acts to support loads, provide flexibility, and dissipate energy in the
spine. The disc is comprised of distinct anatomic zones: the anulus fibrosus (AF),
nucleus pulposus (NP), and cartilage endplates. The AF consists of concentric
lamella of highly-aligned collagen fibers, with cells typically aligned along the fiber
direction. The NP is a gelatinous, highly-hydrated tissue, with cells typically exhib-
iting rounded, unaligned morphologies. Staining is safranin O and fast green.
Images of specific cell morphology in each region were obtained via light
microscopy.
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and cell death [30,67–69]. Relatively little is known of how matrix
composition or tissue elasticity can regulate NP cell differentiation,
metabolism and more, nor the cell signaling and associated mecha-
nisms that regulate these interactions. The following sections
describe our current knowledge of how the NP ECM may regulate
cell behavior via matrix elasticity and matrix composition.

NP Cell and Matrix Elasticity. Studies in different cell types
have indicated that cells seek to obtain information and signals to
determine cell fate via mechanical input from their environment,
either from cell-substrate or cell-cell interactions [70]. Generally,
cells adhere and maintain their desired phenotype in ECM that is
closest to their tissue’s physiological elasticity [30]. Prior studies
have identified NP tissue elasticity to range from 0.3–5 kPa
[71,72]. As NP cells are known to form cell clusters in vivo, stud-
ies have also been performed to determine similarity of NP cell
elasticity to its neighboring matrix. NP cell elasticity has been
determined via micropipette aspiration and also by atomic force
microscopy (AFM) testing. Both of these studies have shown that

porcine NP cell stiffness is also in a similar range to its native tis-
sue: 0.345–0.8 kPa [38,70].

NP Cell and Matrix Ligand Interactions. In addition to sens-
ing matrix elasticity, cells also sense the presence of various ECM
ligand proteins via both integrin and nonintegrin cell surface
receptors. Integrins are membrane-spanning heterodimeric pro-
teins consisting of a and b subunits (18 a and 8 b subunits which
form 24 known heterodimers) [73] with specific a-b pairings
determining ligand-binding specificity. The extracellular domains
of integrin receptors bind to various ECM ligand proteins (i.e.,
collagens, laminins, fibronectin). The cytoplasmic tail of the
integrin receptor interacts with a wide range of intracellular pro-
teins, including scaffolds, kinases and phosphatases [74]. A sub-
set of these proteins interact with the actin-myosin cytoskeleton to
transduce mechanical signals into intracellular biochemical sig-
nals to direct a variety of downstream signaling cascades that con-
trol cytoskeletal organization, gene regulation, and other cellular
processes and functions [30,68,75]. The integrin and non-integrin
(i.e., syndecans) receptors NP cells utilize to interact with their

Table 1 Listing of molecular markers identified as present in immature nucleus pulposus tissue or cells. A majority of these
markers are elevated in immature nucleus pulposus tissue as compared to adjacent anulus fibrosus, and may persist in elevated
expression patterns into maturity

Marker Speciesa Presence in NP Reference

Cell Surface Receptors
Integrin a6 (CD49e) R, P, H protein [64, 82]
Integrin aa3 (CD49c) R, P, H protein [64]
Integrin b4 (CD104) R, P, H protein [64]
Lu (BCAM, CD239) R, P, H mRNA and protein [64]
CD24 R, H, B mRNA and protein [34,35,48,101,102]
N-cadherin (CDH2, CD325) R, H, B mRNA and protein [31,33,35,36]

Transcription Factors
T-brachyury R, H, B, M mRNA and protein [34,102]

Cytoskeleton
KRT8 P, H, B mRNA and protein [29,35,39,40,103]
KRT19 R, H, B mRNA and protein [35,36,48]
Vimentin R, P, H, B mRNA and protein [29,31,37,40,48,82]

Matrix-related Proteins
Laminin a5 R, P, H protein [64]
Laminin c2 P protein [58]
Type II collagen P mRNA and protein [58,82,104]
Aggrecan P, B mRNA [35,82]

aR¼ rat, P¼ porcine, H¼ human, M¼mouse, B¼ bovine.

Fig. 2 Porcine NP cells preferentially attach and spread upon laminin-containing substrates. (a) Fraction of adherent cells
remaining attached to ECM substrates following application of centrifugal detachment force. Higher numbers of NP cells resist
detachment when adherent to laminin ligands (isoforms LM-332, LM-511, LM-111), as compared to collagen and fibronectin
ECM ligands ((b) and (c)) NP cell spreading and NP cell shape dynamics on ECM substrates. NP cells on laminin isoforms LM-
332 and LM-511 spread rapidly and to a greater extent as compared to other matrix substrates NP cells on laminin isoforms.
Additionally, NP cells lost their original shape factor as the cells spread on laminin isoforms (error bars omitted for clarity, sig-
nificant effects of substrate and time were detected via two-way ANOVA, p < 0.05; substrates not labeled with same letter were
statistically different. (LM 5 laminin, FN 5 fibronectin, BSA 5 bovine serum albumin, CM 5 cultured media) Specific methods
described in detail and image adapted from Gilchrist et al. 2011 [83].
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surrounding ECM may play critical roles in modulating these
same cell processes.

Cell surface receptors that modulate cell-matrix interactions
have been identified at various stages of IVD development,
maturation, and in degeneration. These receptors consist primarily
of the integrin class of cell-matrix receptors, which are known to
play critical roles in cell adhesion, signaling, and mechanosensing
in a variety of tissues [76,77]. In immature and mature IVD tis-
sues (porcine and human tissue), integrins that bind various ECM
ligands are expressed. Studies have identified many integrins
interacted with collagens (a1, a2, b1 integrin subunits) and fibro-
nectin (a5, av, b3, b5 integrin subunits) in both AF and NP
regions of immature and mature IVD tissues [65,78]. Cell assays
on fibronectin substrates indicate the a5b1 integrin mediates IVD
cell attachment for both NP and AF cells (bovine, human, rabbit)
that result in different signaling effects in each of the cell types
[25,79,80]. For NP cells, studies encapsulating NP cells (bovine
[81], rabbit [80]) in alginate beads with fibronectin-f fragment
have resulted in decreased cell proliferation and proteoglycan syn-
thesis, indicating fibronectin may be a main contributor to disc
degeneration.

NP Cell-Laminin Interactions. As prior studies have demon-
strated, several isoforms of laminin are present in the native
immature NP cell ECM for many different species, including
human, that are unique to the NP region of the disc [64]. However,
the presence of these laminin ligands and receptors are altered and
some disappear with aging and disc degeneration [64,70]. Imma-
ture NP cells appear to also uniquely express a number of laminin
(LM) binding integrins (a6, b4) [25,65,82] and non-integrin
(CD239, CD151) [64] cell surface receptors. Flow cytometric
analyses of isolated IVD cells have confirmed this NP-specific
expression of LM receptors in immature NP cells [25,64], with
differential expression between NP and AF cells maintained
in vitro, suggesting distinctly different roles for AF and NP cells
in interacting with LM proteins. How immature NP cells interact
LM through these LM-binding integrins, and how aging-related
changes in receptor expression and ECM protein composition,
may be important for understanding events that regulate NP cell
pathobiology. Experiments have shown immature porcine and
adult human NP cells to attach to surfaces coated with specific
LM ligands, and have been performed with selective integrin
blocking antibodies to determine the role of LM-integrin subunits
in attachment to specific matrix proteins [25,70]. NP cells were
found to adhere to two LM isoforms (LM-511, LM-332) at two-
fold or greater numbers than other ECM ligands (collagen, fibro-
nectin, LM-111), and to show significantly higher resistance to
detachment forces on laminins as compared to other substrates
(Fig. 2(a)). NP cells have also been found to attach to these lami-
nin ligands principally through integrin subunits a6 and b1 in the
immature porcine, but through a3, a5 and b1 in the mature human
NP cell [25,78,83]. Additionally, NP cells exhibited significantly
higher levels of spreading on these laminin ligands compared to
other ECM proteins (Figs. 2(b) and 2(c)), as recorded by measures
of cell spread area and shape factor, which is defined as 4 Ap/p2

(A¼ projected cell area, p¼ cell perimeter) [83]. These NP cell
adhesion behavior studies highlight the NP cells’ ability to inter-
act with laminins as an important constituent of the immature NP
tissue, and the importance of LM integrin subunits in regulating
NP cell attachment.

Substrate Elasticity and Matrix Protein Ligand Effects

on NP Cell Phenotype

Given the important role that laminin proteins appear to play in
mediating immature NP cell adhesion to surfaces, recent work in
our group has focused on studying if and how physical cues asso-
ciated with laminin ligand presentation serve to regulate behaviors
of the immature NP cell phenotype. Studies have been performed

to determine if a physical stiffness similar to that of the native NP
tissue (Young’s modulus of 200–300 Pa) can help maintain an
immature NP phenotype [83]. Immature porcine NP cells have
been cultured upon a mechanically-tunable polyacrylamide
(PAAm) gel system (E¼ 100–15200 Pa) [84] functionalized with
a laminin-111 rich extract (basement membrane extract or BME,
purified from Engelbreth-Holm-Swarm tumor [85]) or type II col-
lagen (as a control) [70]. Findings in this study showed mainte-
nance of the immature NP cell behavior, specifically cell
clustering, on soft (<700 Pa), BME-functionalized PAAm gels
(Fig. 3).

By contrast, studies have revealed anulus fibrosus (AF) cells
require different substrate stiffness and ECM ligand presentation
to maintain cell survival [86]. Rat AF cells were cultured upon the
same PAAm gel system described earlier but gels were functional-
ized with type I collagen. Findings in this study demonstrate AF

Fig. 3 Soft laminin-containing substrates promote immature
NP cells to form multicell clusters, while retaining cell dimen-
sions and rounded morphology. Actin immunostaining of
immature porcine NP cell behavior on BME-functionalized poly-
acrylamide gel (BME-PAAm) (100 and 290 Pa), “soft” BME
(300 Pa), and “stiff” BME (2900 Pa) substrates after 7 days of
culture (green 5 actin (phalloidin), red 5 cell nuclei (propidium
iodide), bar 5 100 lm). Specific methods and image adapted
from Gilchrist et al. 2011 [70].
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cells cultured upon a 0.1 kPa type I collagen-functionalized
PAAm gel adopted rounded, filopodia-poor morphologies with
increased cell apoptosis, while AF cells cultured upon a corre-
sponding stiffer PAAm gel (63 kPa) promoted cell spreading with
a significantly higher percentage of cell survival. These findings,
along with findings in other cell types (i.e., mesenchymal stem
cells [87], endothelial cells [88], fibroblasts [88,89]), confirm the
idea that matrix elasticity and composition can be used to manipu-
late cell behavior.

Based on prior work indicating laminin-containing substrates
can promote some features of an immature NP cell, “soft”
(300 Pa, 13.8 mg/ml self-polymerizing) and “stiff” (>2900 Pa,
200 lg/ml, glass-coated) surfaces coated with BME were created
to further understand the influence of these physical cues on the
immature NP phenotype. As observed on the PAAm gel system,
on soft BME substrates, porcine NP cells also showed minimal
spreading and assembled into multicell clusters over 7 days, with
over 98% of cells in large clusters [83] (Fig. 3).

Fig. 4 Changes in immature porcine NP cell morphology on substrates. (a) Imma-
ture porcine NP cells spread out on stiff BME but maintain rounded morphology on
soft BME. (b) Immature porcine NP cells have significantly decreased cell velocity
on soft BME upon formation of cell cluster. On stiff BME, NP cells continue to send
out lamellipodia and filopodia as if sensing the underlying substrate. (c) Immature
porcine NP cells transfected with GFP-actin display distinct actin fibers as the cell
spreads and attaches to the underlying stiff BME substrate. On soft BME, NP cells
remain rounded and do not have any actin stress fiber formation. Methods for sub-
strate development were adapted from Gilchrist et al. 2011 [70]. Imaging and analy-
sis performed using the Olympus VivaView Fluorescent Incubator Microscope and
Metamorph Software, in collaboration with the Duke Light Microscopy Core
Facility.

Fig. 5 Matrix production and changes in gene expression in immature porcine NP
cells cultured upon various substrates (a) Matrix production in immature porcine
NP cells on soft BME substrates is significantly higher (*p < 0.05, One-way ANOVA,
with Tukey’s post hoc analysis) than matrix production in NP cells on all other sub-
strates. (b) Gene expression was calculated relative to values for 18 s mRNA and
normalized by values for stiff BME. mRNA values for NP-specific and NP-matrix-
related markers were higher in immature porcine NP cells on soft BME substrates
compared to all other substrates Methods for biochemical assays are adapted from
Gilchrist et al. 2011 [70], and methods for gene expression are adapted from Tang
et al. 2012 [34]
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These findings were confirmed via live-cell imaging of imma-
ture porcine NP cells cultured upon the same soft-BME substrates
(Fig. 4). In addition to the same “soft” and “stiff” BME substrates
as described in the previous paragraph, corresponding “soft”
(300 Pa, self-polymerizing 4 mg/ml) and “stiff” (>2900 Pa,
50 lg/ml, glass-coated) type I collagen substrates were created as
control. Immature porcine NP cells (45,000 cells/well) were cul-
tured upon these four substrates for 24 h with live-cell imaging
(20� objective, Olympus VivaView Fluorescent Incubator Micro-
scope, Duke Light Microscopy Core Facility). Quantitative analy-
sis of NP cell spread area (Fig. 4(a)) and velocity (Fig. 4(b)) on
the four substrates demonstrated significantly higher cell spread
area and constant protrusions of cell lamellipodia when cells were
exposed to “stiff” BME substrates (Fig. 4). On “soft” BME sub-
strates, NP cells moved with higher velocities until forming a cell-
cell contact; after which, cell velocity decreased significantly. In
contrast, cells on any other “stiff” substrate were motile with a
steady velocity over the 24-hour duration of cell imaging. This
behavior of cell clustering was not observed when NP cells were
exposed to type I collagen surfaces (data not shown). Transfection

of NP cells with actin-GFP (Bacmam 2.0, Molecular Probes, Life
Technologies) showed formation of stress fibers in NP cells dur-
ing culture upon “stiff” BME substrates (Fig. 4(c)). Actin stress
fibers did not form when NP cells were cultured upon “soft” BME
substrates, as cells formed multicell clusters.

In addition to studying changes in cell morphology during cul-
ture on “soft” BME substrates, NP cells have been analyzed for
their ability to maintain an immature NP cell phenotype. Higher
matrix production was observed for NP cells on “soft” BME sub-
strates compared to “stiff” BME or type I collagen substrates (Fig.
5(a)). Gene expression analysis of NP-matrix proteins confirmed
high levels of type II collagen and aggrecan in NP cells cultured
on “soft” BME (Fig. 5(b)). Also, higher gene expression of NP-
specific markers, N-cadherin and T-brachyury, were observed on
“soft” BME as compared to other substrates (Fig. 5(b)).

Together, these findings demonstrate the importance of physical
cues, specifically substrate stiffness and laminin ligand presenta-
tion, in promoting morphologies and metabolism characteristic of
the immature NP cell. Future work would need to be done to
determine if adult NP cells that exhibit more fibroblast-like

Fig. 6 Treatment of immature porcine NP cells with Rho GTPase inhibitors, ROCK
(Y27632) and Rac1 (NSC23766). (a) Immature porcine NP cells are unable to form
cell clusters on soft BME substrates after treatment with ROCK inhibitor but not
Rac1 inhibitor (green 5 phalloidin, red 5 propidium iodide, bar 5 50 lm). (b)
Decreased matrix production in NP cells after 4-day treatment with ROCK inhibitor
on soft BME substrates (*p < 0.01, **p < 0.05, Two-way ANOVA with Tukey’s post
hoc analysis); matrix production is unaffected by ROCK inhibitor in NP cells on all
other substrates. (c) Gene expression was calculated relative to values for 18 s
mRNA and normalized by values for stiff BME. mRNA values for NP-specific and
NP-matrix-related markers are decreased in immature porcine NP cells after 4-day
treatment with ROCK inhibitor on soft BME substrates. Methods for biochemical
assays are adapted from Gilchrist et al. 2011 [70], and methods for gene expression
are adapted from Tang et al. 2012 [34].

021010-6 / Vol. 136, FEBRUARY 2014 Transactions of the ASME

Downloaded From: http://biomechanical.asmedigitalcollection.asme.org/ on 05/23/2014 Terms of Use: http://asme.org/terms



characteristics, including the synthesis of type I collagen and few
cell-cell contacts, could be promoted to express a juvenile NP cell
phenotype upon substrates of controlled stiffness and laminin
presentation.

Importance Of NP Cell Clustering In Regulating An Imma-
ture NP Phenotype. The ability to form multicell clusters in vivo
and on soft, laminin-containing substrates is unique to the imma-
ture NP cell [70]. This cell clustering behavior appears important
for promoting the immature NP phenotype, as preservation of the
immature NP phenotype has only been observed when NP cells
are able to form clusters. Still, the mechanisms that promote the
formation of a stable cell cluster for immature NP cells have not
yet been studied.

Rho family GTPases are known to orchestrate actin reorganiza-
tion during both cell-ECM adhesion formation and cell-cell adhe-
rens junction assembly [90,91]. Two of the major Rho GTPases
are Rac1 (often acting with CDC42) and RhoA, which play very
cell type-specific roles in regulating the cell cytoskeleton and cell-
cell contacts [92,93]. Rac1 and RhoA are primary regulators of
the cytoskeleton as well as focal adhesions and adherens junc-
tions. In particular, RhoA has been identified to regulate myosin
contractility, and actin polymerization, which leads to changes in
intracellular contractility, stress fiber assembly, focal adhesion
maturation, and adherens junction formation and disruption
[94–98]. Rac is a primary regulator of lamellipodia formation, as
well as the initiation of focal complex formation and of adherens
junction dynamics [98]. Additionally, Rho family GTPases are
also involved with cell cycle control and regulation of transcrip-
tion factor activity [99,100].

Therefore, to study the effects of cell clustering in regulating
NP cell phenotype, we treated immature porcine NP cells with
ROCK/Rho kinase (Y27632, 10 lM) and Rac1 (NSC23766,
20 lM) inhibitors upon “soft” BME surfaces, in order to study the
processes that regulate stable NP cell cluster formation. Results
demonstrate that NP cells lose their ability to form cell clusters
when treated with ROCK/Rho kinase, but not Rac1 inhibitor (Fig.
6(a)). These findings indicate ROCK-dependent RhoA GTPase
signaling as a main regulator of cell clustering behavior in imma-
ture porcine NP cells. Additionally, treatment with ROCK/Rho ki-
nase inhibitor resulted in decreased matrix production in porcine
NP cells on “soft” BME substrates, with associated decreases in
gene expression of NP-matrix-related markers, aggrecan and type
II collagen (Figs. 6(b) and 6(c)). NP-specific markers, N-cadherin
and T-brachyury, also showed decrease in gene expression in por-
cine NP cells on “soft” BME after treatment with ROCK/Rho ki-
nase inhibitor. These findings suggest that immature NP cells
unable to form clusters on soft BME substrates are also unable to
maintain their immature NP phenotype as observed by decrease in
both matrix production and presence of NP-specific markers.

Conclusion

In summary, intervertebral disc degeneration is believed to
arise in part by aging-associated changes in primary cells of the
NP region, including a loss of cell morphology, decreases in cell
number and change in cell phenotype towards a more fibroblast-
like cell type. During disc degeneration, NP cells that have lost
their ability to form functional and stable cell-cell contacts may
also lose their ability to produce NP-specific matrix and NP-
matrix-related proteins that contribute to an inability for self-
repair of the aging NP matrix. The NP cell interacts with the
matrix throughout growth and aging, and receives physical cues
from its ECM that help regulate and maintain the NP cell phenotype.

Work by our group and others have shown NP cells form func-
tional interactions with ECM proteins, including collagens, fibro-
nectin and laminin. Functional interactions studied include
integrin-mediated cell adhesion to these proteins as measured by
cell attachment number and strength, with ECM protein effects
observed upon cell shape, velocity, and spread area. Findings

from these functional interactions demonstrate NP cells have
higher cell attachment numbers and strength to laminin compared
to fibronectin or collagen. In addition to the importance of ECM
protein, ECM elasticity also regulates NP cell phenotype. Studies
have established that a soft (<0.5 kPa), laminin-111 rich ECM is
capable of promoting NP cell clustering behaviors that are associ-
ated with higher matrix production and gene expression of NP-
specific markers. This knowledge is just beginning to reveal how
cell-matrix interactions can be engineered to successfully support
cell-based therapies or tissue engineering strategies for generating
a healthy intervertebral disc.
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