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Abstract

Novel wind turbine designs are deemed acceptable through a simulation-based certi-

fication process that involves generating a synthetic wind record and using it as an

input to a computer model of the turbine. Naturally, whether the simulation loads

reflect the loads that the turbine would actually experience depends on the accuracy

of the wind turbine model and, more importantly, on the accuracy of the method

used to generate the synthetic wind record. The simulation methods that are com-

monly used for this purpose are spectral-based and produce Gaussian, stationary

random fields. These methods prescribe a power spectral density (PSD) of the wind

velocity, which fixes the magnitudes of the Fourier components, then assumes that

the Fourier phase angles are independent and uniformly distributed. An inverse Fast

Fourier Transform (IFFT) is then used to transform the wind velocity field to the

time domain.

This thesis applies the concept of phase coherence—i.e., Fourier phase angles

that are not independent—to the stochastic modeling and simulation of wind veloc-

ity fields. Using a large dataset available from the National Wind Technology Center

(NWTC), a joint distribution is characterized for the mean wind speed U , turbulence

σu, Kaimal length scale L, and a metric for the degree of phase coherence in wind

data, R̄. The correlations between these four parameters, the vertical height, and

another phase coherence parameter are presented; only U , σu, and L have a signifi-

cant degree of correlation. The joint distribution is used to generate synthetic wind
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records, which are then compared with measured data that have the same parameter

values. For data with low to medium coherence values, the synthetic records have a

similar qualitative appearance to the data. For high levels of phase coherence, the

records simulated with the proposed model were qualitatively different from records

with the same parameter values due to the variation of the phase difference spread in

the spectral domain. Lastly, the importance of correctly modeling phase coherence

is demonstrated by using the data and the synthetic records as inputs to a single-

degree-of-freedom (SDOF) oscillator and comparing the peak response statistics and

damage equivalent loads (DELs).
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1

Introduction

Few people will argue that the human race should aim for an energy portfolio that has

more renewable resources. Up until recently, we have depended almost exclusively on

fossil fuels due to their prevalence, low cost, and facility for conversion to electricity,

despite the fact that they produce greenhouse gas emissions that are linked to climate

change [1, 2]. It is unlikely that current energy sources are sustainable in terms of

the environment, so it is high time that our energy comes from renewable sources.

One such renewable energy source is wind power, which is electricity that is ex-

tracted from ambient wind in the atmospheric boundary layer through the use of

wind turbines. While wind power alone could not support the nation’s energy de-

mands, it is capable of supplying a significant portion of the national energy portfolio:

the US Department of Energy (DOE) has published a plan for 20% of the US energy

demands to be provided by wind energy by 2030 [3]. For that to occur, wind turbine

technology and wind forecasting must be reliable enough such that the volatility of

wind power is minimized and its cost is low enough to be competitive with fossil

fuels.

Data from Germany in 2013 show that the levelized cost of energy (LCOE) for
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onshore wind turbines is the lowest of all of the renewable resources ($33/MWh

– $75/MWh), though it is still significantly higher than brown coal ($29/MWh –

$40/MWh) [4]. These LCOE values are generally higher than those reported by

Lantz et al. in the United States [5], which showed the LCOE for onshore wind

reaching a minimum of around $60/MWh in 2005, after which it steadily increased

to around $80/MWh in 2010. Lantz et al. state that this cost increase is tied with

wind turbine upscaling, and delineate several research areas where wind turbines

might improve. The research area that is most relevant to this thesis is that of

resource assessment, which is tied to wind simulation methods and wind turbine

design.

Wind turbine designs may be certified by following the recommendations in the

IEC 61400 standards, which are a set of design guidelines published by the Interna-

tional Electrotechnical Commission (IEC) [6]. The IEC 61400-1 provides recommen-

dations for modeling the external conditions and for designing the structure, control

system, and mechanical systems. The structural design is accomplished through the

simulation of different load cases, each corresponding to particular events or condi-

tions that the turbine might experience. In many cases, several different simulations

are run for each load case, and a design is deemed acceptable if specified limit states

are not exceeded.

The majority of these load cases correspond to a specific type of wind input, often

stochastic, and a specific operational configuration of the turbine. If the method

used to generate the stochastic wind input creates wind fields that do not accurately

reflect real-world conditions, the loads generated in the model will be too high or too

low and the turbine will be either over- or under-designed. This is bad either way,

as over-designing leads to more expensive turbine production and under-designing

leads to unexpected failure and/or maintenance. Thus, the accurate generation of

synthetic wind is central to the optimal design of wind turbines.

2



The two main methods1 that are currently recommended to generate synthetic

turbulent wind fields for wind turbine applications are the Mann turbulence model

[16] and the Sandia method [17]. Both methods are stochastic spectral methods in

which the discrete Fourier transform (DFT) of the velocity field is generated and then

an inverse Fast Fourier Transform (IFFT) is used to construct the field in the time

domain. In both cases, the magnitudes of the Fourier vectors are prescribed through

an assumed form of the process’s power spectral density (PSD) and the phases are

uniformly and independently sampled. This produces a Gaussian stationary process

that has “equal energy” at all times. (See Appendix A for proof and Section 2 for

more discussion.)

The two models differ in their construction of the PSD, their implementation of

cross-axis correlations (e.g., the correlation between lateral and vertical wind veloc-

ities at a single point), and their implementation of spatial correlations (e.g., the

correlation between the downwind velocity at two different heights). In particular,

Mann derives a 3D spectral tensor of an isotropic turbulence field that is distorted

by vertical shear. This spectral tensor embeds the proper theoretical cross-axis and

spatial correlations in its PSD formulation, which makes it the preferred method in

the IEC standard. However, its 3D formulation necessitates the use of a 3D Fourier

transform. Veldkamp [18] indicates that this is extremely computationally intensive

in practice, necessitating the reduction of the number of spatial points, which leads

to a loss of frequency resolution and high frequency content. In general, the method

is known to be computationally intensive [19], and there appears to be no research

clearly indicating its superiority over a modified Sandia method.

The Sandia method in its most basic form includes spatial correlations but not

1 Note that there are several other techniques for producing turbulent wind fields, including
wavelets [7, 8, 9, 10, 11], computational fluid dynamics [12, 13, 14], and Hilbert spectral analyses
[15]. This thesis focuses on developing simple modifications to methods currently used in wind
engineering, so these other methods are not reviewed here in depth.
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cross-axis correlations, though it is possible to add in cross-axis correlations after

the field has been simulated [20]. It is substatially less computationally intenstive

than the Mann model, as it only requires a series of one-dimensional Fast Fourier

Transforms (FFTs). It is the method used in the open-source turbulent field simula-

tor TurbSim, which is developed and maintained by the National Wind Technology

Center (NWTC) [21]. Because of its relatively simple formulation and its common

use in the wind turbine design process, the simulation method proposed in this thesis

is developed as a modification of the Sandia method.

To generate a downwind wind velocity vector at a single point, u(k), the Sandia

method only requires the specification of the PSD of the process.2 The PSD can be

directly related to the magnitude of the Fourier component:

|U(k)| =

[∫ (k+ 1
2

)∆f

(k− 1
2

)∆f

S(f)

2
df

]1/2

, (1.1)

where S(f) is a specified one-sided PSD and ∆f is the frequency resolution. For

simplicity, the magnitudes are often approximated using a Riemann sum:

|U(k)| ≈
√
S(k∆f)∆f

2
. (1.2)

Thus, once the form of the PSD is chosen, the Fourier magnitudes are known. The

PSD that is used in the Sandia method is the Kaimal spectrum [22],

S(f) = σ2
u

4L/U

(1 + 6fL/U)5/3
, (1.3)

which is parameterized by the mean wind speed U (conventionally taken over a 10-

minute window), the turbulence σu (the standard deviation of the wind velocity,

2 For simplicity, the proposed simulation modifications will be presented only for the downwind
velocity at a single point. However, the proposed method could be applied to a correlated 3D field
by using the standard simulation procedure for a 3D field and implementing the proposed model
for phase coherence.
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usually in a 10-minute window), and the Kaimal length scale, or turbulent length

scale, L. To introduce randomness to the simulation method, the Fourier phase an-

gles, ∠U(k), are assumed to be random variables that are independent and uniformly

distributed. Once the entire Fourier vector has been prescribed, an IFFT is used to

transform it into the time domain.

This thesis examines a new method for characterizing and simulating synthetic

wind that does not produce a stationary, Gaussian process. The main contribu-

tion of this work is the exploration of the concept of “phase coherence,” which has

been explored in stochastic earthquake simulations but has not yet been applied

to stochastic wind simulations. This thesis uses a large dataset available from the

NWTC to fit a joint probability density function (PDF) to several different wind

parameters, including a novel parameter that measures the degree of phase coher-

ence. Samples are drawn from the joint distribution to generate synthetic records,

which are then compared to data records with the same parameter values to verify

that the simulation method mimics the data characteristics. Lastly, the data and

synthetic records are used as inputs to a single-degree-of-freedom (SDOF) oscillator

to demonstrate the effects of phase coherence on the response of a dynamical system.

An overview of the theory behind phase coherence and its use in earthquake

simulations is given in Chapter 2. The details of the dataset used to characterize

the joint PDF, including the pre-processing methods required to clean the data,

are presented in Chapter 3. The data analysis and characterization of the joint

distribution is presented in Chapter 4. The simulation results, comparison with

data, and SDOF analysis are given in Chapter 5. Lastly, conclusions are presented

in Chapter 6.
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2

Phase Coherence

Phase coherence in its most basic form is the concept that the Fourier phase angles

are not independent, as is commonly assumed in stochastic simulation methods. In

this thesis, the interdependence of the phase angles is modelled by a non-uniform

distribution of the phase differences, which are the differences between the angles of

adjacent Fourier components. To be more specific, the phase difference values are

calculated as

∆θ(k) = ∠U(k + 1)− ∠U(k), (2.1)

where ∠U(k) is the phase of the kth component of the Fourier vector. If the phase

difference values are uniformly distributed, then ∆θ(k) is equally likely to take any

value. Therefore, prescribing the value of ∠U(k) would not affect the probability of

∠U(k + 1). However, if the phase difference distribution is not uniform, ∆θ(k) will

tend towards some mean value, denoted by θ̄. In this case, prescribing the value of

∠U(k) will increase the likelihood that ∠U(k+1) takes a value near ∠U(k)+θ̄. Thus,

specifying a non-uniform distribution of the phase differences will produce coherence

in the phase angles.

Phase coherence was first investigated by researchers in the earthquake engineer-
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ing field because it is closely connected with the simulation of enveloped processes.

Section 2.1 provides a literature review of phase coherence as it has been applied

to earthquake simulations. Because phase coherence relies on the distributions of

angles, which are circular, it is necessary to provide a brief overview of directional

statistics, which addresses unique issues that arise with distributions and moments

of circular variables (Section 2.2). This chapter also provides a description of the

circular distribution that is used to model the phase difference distributions that

were found in the wind data, along with various approximation methods that were

developed to use the distribution in simulation.

2.1 Background

As mentioned in Chapter 1, the simulation of a stationary, Gaussian process requires

assuming that the phase angles in the Fourier domain are independent and uniformly

distributed. However, real-world processes are often neither stationary nor Gaussian,

so this assumption will produce synthetic records that do not match the experimental

data. The connection between phase coherence and non-stationarity in the time

domain was first investigated in the earthquake engineering field, where researchers

realized that the distribution of differences between adjacent Fourier phases a) was

not uniform for real data and b) affected the envelope of the process in the time

domain.

Ohsaki [23] was one of the first researchers to examine phase coherence in earth-

quake simulations. He noted that phase difference distributions in earthquake data

looked approximately normal and claimed that their shape was related to the shape

of the envelope function for the earthquake record. Nigam [24] took a more theoret-

ical route and proved that a uniformly modulated, Gaussian white noise process has

uniformly distributed phase angles. He also derived the PDF for the phase deriva-

tive, dθ/dω, for a uniformly modulated Gaussian white-noise process, which is not
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actually Gaussian, as suggested by Ohsaki.

Thráinsson and Kiremidjian [25] examined earthquake data and fit distributions

to the Fourier magnitudes and phases, then derived relationships between the distri-

bution parameters and certain earthquake parameters. One of their most interesting

findings was that sorting the phase difference values by Fourier magnitude instead

of frequency produced a notable trend in the spread of the phase difference values.

Specifically, as the magnitude of the Fourier component decreased, the variance of the

phase difference values increased. They binned the phase difference values by their

Fourier magnitudes (separated into “small,” “medium,” and “large”), and fit either

a beta distribution or a beta distribution superimposed over a uniform distribution

to the bins.

Boore [26] derived a method to calculate the phase derivative, which is a con-

tinuous form of the phase difference and is therefore not dependent upon sampling

frequencies or durations of the time histories. His examination of the phase deriva-

tive, which he refers to as envelope delay, is thorough and well-informed and includes

a comparison of the phase derivative values for different earthquake records. Boore

proposes a method to modify stochastic earthquake simulation methods and also

notes that Ohsaki’s conclusions regarding the connection between the envelope and

phase difference distributions are innaccurate.

Other researchers such as Wang [27] have connected the concept of phase dif-

ference to other methods for simulating nonstationary, enveloped processes, such as

wavelets.

Phase difference values are simply the difference in angles between two adjacent

Fourier components, but the method used to calculate them can affect the resulting

sample of ∆θ. It should be noted that, because the signals of interest here are real,

only half of the Fourier vector is unique: the second half of the vector is the complex

conjugate of the first half. Thus, the phase difference values of the second half of
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the Fourier vector are the negated phase difference angles of the first half. This

symmetry affects the estimated phase difference distributions,1 so it is important to

only use the first half of the Fourier vector.

Additionally, while it is possible to calculate the phase difference values by sub-

tracting the angle from one component from the angle of the adjacent component,

this will produce values that are in no particular interval and must then be wrapped

to an interval of choice before analysis. A more elegant approach proposed by Kra-

jnik [28] that is used here involves taking a ratio of complex exponentials and then

calculating the phase of the result:

∠U(k + 1)− ∠U(k) = ∠

[
exp[j∠U(k + 1)]

exp[j∠U(k)]

]
. (2.2)

2.2 Directional Statistics

Random variables that wrap, such as the phase difference, feature different statistical

rules than those used for classical non-wrapping variables. This section overviews

the most relevant aspects of the statistics of wrapping variables, called directional

statistics. For a more thorough treatment, interested readers are directed to Mardia

and Jupp [29].

For circular random variables, the usual definitions of moments are no longer

useful. For example, consider the PDF

fΘ(θ) =
1

2π
(1 + cos θ) (2.3)

for some random variable θ ∈ [0, 2π), which is plotted in Cartesian coordinates in the

left panel of Fig. 2.1. Because this PDF is symmetric about θ = 0 and the variable

1 For example, consider a signal where all of the sinusoidal components are π/4 apart. With this
signal, the correct phase difference distribution would have only a single non-zero point at π/4. If
the whole Fourier vector is used to calculate phase differences, the resulting distribution will have
two non-zero points: one at π/4 and one at −π/4.
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Figure 2.1: Example of a circular PDF in Cartesian (left) and polar (right) coor-
dinates.

is circular, the mean value is expected to be θ = 0. However, if we use the standard

definition of the first moment,

E{θ} =

∫ 2π

0

θfΘ(θ)dθ = π. (2.4)

Not only is this value different from the predicted mean, it corresponds to the angle

with the smallest likelihood.

A natural inclination is to examine the distribution in a polar form, which is

shown in the right panel of Fig. 2.1. It is apparent from this plot that, due to

symmetry, the centroid of the PDF is located along the θ = 0 axis, which is the

predicted value for E{θ}. This observation is the basis of the concept of the mean

resultant vector, which is equivalent to the expected value in non-circular systems.

The equation for the mean resultant vector is similar to that for the classical expected

value, except that the complex variable z = eiθ is used in place of the usual kernel:

ρ̄ =

∫
Ω

eiθfΘ(θ)dθ. (2.5)

In this equation, Ω is any interval of length 2π and ρ̄ is the mean resultant vector,
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which is a complex number with magnitude and phase. The magnitude of the mean

resultant vector, denoted by R̄, is called the mean resultant length (MRL) and is a

measure of the non-uniformity of the distribution. If R̄ = 0, then the distribution is

completely uniform.2 If R̄ = 1, then the distribution is zero everywhere except for a

single value (or that value plus integer multiples of 2π). For example, a distribution

that had 50% probability of a random variable being either π/2 or 5π/2 would have

R̄ = 1. The MRL can also be viewed as a measure of dispersion of the points around

some mean angle. The phase of the mean resultant vector, θ̄, is called the mean

direction and is the mode of the distribution. The mean direction can be viewed as

the expected value of the circular random variable, and it is not affected by the choice

of the interval for Ω, unlike the classical definition of the expected value. The mean

resultant vector can be approximated from a sample with the following equation:

ρ̄ ≈ 1

N

N∑
n=1

eiθn . (2.6)

Applying Eq. (2.6) to the distribution given in Eq. (2.3) yields

ρ̄ = 0.5, (2.7)

which corresponds to R̄ = 0.5 and θ̄ = 0. The mean direction matches the predicted

mean value, and the non-zero value for R̄ reflects the non-uniformity of the selected

distribution.

2.2.1 Effect of mean resultant length and mean direction

It is of interest to examine the effect of the MRL and mean direction on simulations

in order to better understand the phenomena they can create in real data. To accom-

2 Technically, R̄ could also equal zero if the set had an even number of samples at evenly spaced
angles around the interval (e.g., 100 samples each at 0, 2π/3, and 4π/3). To be completely precise,
R̄ is a measure of the circular symmetry of fΘ(θ). Because the phase difference values for real data
will never fall into angles that are equally spaced, it is acceptable in this application to state that
if R̄ = 0 then the distribution is uniform.
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plish this, several different records were generated with different ∆θ distributions.

The distributions were uniform in all cases, but the values for the mean direction

and the MRL were varied individually in order to determine their effects.

The first experiment investigated the effects of the MRL by choosing four uniform

distributions with the same mean direction but decreasing widths (i.e., increasing

MRLs). The four distributions that were used for the simulations were U(0, 2π),

U(π/4, 7π/4), U(π/2, 3π/2), and U(3π/4, 5π/4), which all have a mean direction of

π. The MRL values for the four distributions are 0, 0.30, 0.67, and 0.90, respectively,

and the simulations are plotted in Fig. 2.2. As can be seen in the figure, narrowing

the spread of the ∆θ distribution localizes the energy in the system into a single

packet that occurs around 300 seconds. Thus, it can be said that increased MRLs

lead to a higher degree of non-stationarity in the time domain. Another way to view

these results is by noting that, in essence, increasing the MRL produces a “stronger”

enveloping function.

The second experiment focused on the effect of the mean direction, θ̄. The ∆θ

distributions for this experiment were all uniform with width π/2 (R̄ = 0.90), but

the location of the mean direction was varied from π/4 to 7π/4 in increments of π/2.

The plots of the simulations are shown in Fig. 2.3. As can be clearly seen in the

plots, the mean direction of ∆θ changes the location of the packet within the total

record. In other words, the mean direction shifts the enveloping function in time.

2.2.2 The von Mises distribution

There are several distributions that have been defined in circular statistics that can

be used to describe the probability of a wrapped random variable [29]. One such

distribution is the von Mises distribution, which is the maximum entropy distribution

for a random variable with a given mean resultant vector. The distribution was first

proposed by von Mises in 1918 to describe the variation of measured atomic weights
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Figure 2.2: Demonstration of the effect of the MRL upon simulations (θ̄ = π).
The ∆θ distributions for the different subplots are as follows: a) U(0, 2π), b)
U(π/4, 7π/4), c) U(π/2, 3π/2), d) U(3π/4, 5π/4).

and is one of the more tractable circular distributions.

The von Mises distribution is a two-parameter, symmetric distribution of a circu-

lar random variable that has support over any interval of length 2π. It can be used

to approximate the wrapped normal and wrapped Cauchy distributions, which are

more intuitive because they are the wrapped forms of well-known distributions but

are mathematically difficult to implement [29]. The two parameters of the distribu-

tion determine the location and spread, and the distribution was found to accurately

characterize the phase difference distributions that were found in the data.

The PDF for the von Mises distribution is

f(x|µ, κ) =
eκ cos(x−µ)

2πI0(κ)
, (2.8)

where I0(x) is the modified Bessel function of order 0. The parameter µ is the

mean direction of the distribution, and κ determines the spread or concentration of
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Figure 2.3: Demonstration of the effect of θ̄ upon simulations (R̄ = 0.90). The ∆θ
distributions for the different subplots are as follows: a) U(0, π/2), b) U(π/2, π), c)
U(π, 3π/2), d) U(3π/2, 2π).

the distribution. A plot of the von Mises PDF is shown in the left-hand panel of

Fig. 2.4. There is no analytical form of the CDF due to the Bessel functions, but

the CDF can be numerically integrated and plotted for demonstrative purposes, as is

done in the right-hand panel of Fig. 2.4. As can be seen in the figures, a zero value for

κ corresponds to a uniform distribution and increasing κ increases the concentration

of the distribution.

This research fits a joint distribution to the MRL and other wind record parame-

ters, which does not require a parametric model for the distribution of ∆θ in a record

of interest. However, a model for the distribution of ∆θ is required in order to simu-

late a synthetic record with phase coherence; additionally, for comparative purposes

it is of interest to be able to determine which von Mises distribution would best fit

the phase difference angles from a data record of interest. Thus, it is necessary to

be able to a) fit a von Mises distribution to a particular mean resultant vector and
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Figure 2.4: Plot of the PDF (left) and CDF (right) of a von Mises distribution for
different values of κ.

b) generate a sample from the subsequent distribution.

One simple method to determine the distribution parameters is to calculate the

mean direction and MRL of the sample and then choose the von Mises distribution

that has those values. The mean direction is relatively simple: the value for µ is

equal to the mean direction. Determining the value for the concentration is more

difficult. There is a closed-form relationship between the MRL and κ,

R̄ =
I1(κ)

I0(κ)
, (2.9)

but it is not clear how to use this relationship to determine κ from a sample’s MRL.

The relationship could be inverted numerically, as it is a smooth function, but for

computational efficiency a fourth-order polynomial was fit to this relationship and

then the Matlab function roots was used to invert the approximating polynomial.

The fit polynomial parameters are

a0 = -0.01641,
a1 = 0.6074,
a2 = -0.1627,
a3 = 0.02032,
a4 = -0.0009621,
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relationship between κ and R̄ (left), and a plot of the percent error (right).

where

R̄ = a0 + a1κ+ a2κ
2 + a3κ

3 + a4κ. (2.10)

A plot of the exact and approximated relationships between R̄ and κ is shown in the

left subplot of Fig. 2.5, and the percent error of the approximation is shown in the

right subplot of the same figure. The approximation is very good for MRL values

up to 0.92, which is sufficiently high for this application. There is a large percent

error for κ < 0.17 due to the small magnitude of the MRL, but the error for all other

MRL values is below 3%.

In simulation, it is also necessary to draw samples from a given distribution, which

requires a characterization of the inverse CDF. Oftentimes the inverse CDF is known

exactly, but because the von Mises distribution does not have an analytic CDF, the

analytic inverse CDF does not exist either. An acceptable approximation of the CDF

can be generated by approximating the exponential term in the PDF with a Taylor

series and integrating the result; doing so with a fourth-order expansion produces a

maximum difference between the exact and approximated CDF of 0.0019. However,

the resulting analytical expression is still not invertible. Attempts were also made to

construct an approximation to the numerical inverse CDF from various sets of basis

functions, but no acceptably accurate approximation was found.
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Figure 2.6: Plot of the numerical inverse CDF (left) and PDF (right) of an ex-
act von Mises distribution (κ = 3) and a 500-point sample generated using linear
interpolation.

Without an analytical or approximate form for the inverse CDF, the only solution

is to sample from the distribution by linearly interpolating points from a numerically

generated CDF. A comparison of the CDF and PDF of the exact distribution and a

500-point sample with κ = 3 is shown in Fig. 2.6. As can be seen in the figure, the

distribution of samples closely follows the exact CDF and PDF. This method might

not be as accurate as using a numerical solver to invert the approximate CDF, but

it has the advantage of being extremely efficient computationally.
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3

Wind Data

The data used in this thesis were recorded by sonic anemometers installed on me-

teorological towers at the NWTC in Louisville, CO, and were available through the

generosity of Dr. Andy Clifton at the NWTC. This section describes the experimen-

tal system used to acquire the data, the data processing performed by the NWTC,

the in-house data processing, and which data were selected to use for the fitting of

the joint distribution.

3.1 NWTC Data and Processing

The NWTC has two 135-m tall meteorological towers, named M4 and M5, that are

placed upwind of two test turbines on their Colorado campus. These towers are both

heavily instrumented with sensors to measure a variety of atmospheric quantities. A

detailed description of the instrumentation, data acquisition, and processing can be

found in Refs. [30] and [31].
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Figure 3.1: Picture of the M4 tower with instrumentation boom reproduced from
Clifton [30].

3.1.1 Towers and instrumentation

The discussion of the towers and instrumentation here is limited to the M4 tower

because only data from that tower were used in this analysis. The M4 tower is

located approximately 2 rotor diameters (300 meters) away from a Siemens wind

turbine, upwind in the prevailing wind direction. The towers have a lattice structure

to further minimize flow effects and feature instrumentation booms to minimize the

tower’s effect on the sampled data. The main face of the tower is oriented such

that the booms extend at an angle into the prevailing wind direction instead of

perpendicular to the wind; this is because the booms would not be able to withstand

the wind conditions if they were oriented perpendicularly. A photograph of the top

of the M4 tower with an instrumentation boom is shown in Fig. 3.1.

The main instruments of interest on the M4 tower are the six 3D sonic anemome-

ters that are located at 15 m, 30 m, 50 m, 76 m, 100 m, and 131 m above the

ground. Sonic anemometers have three sets of orthogonal microphone/speaker arms,
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and they measure the 3D wind speed by sending a sonic pulse from one arm to an-

other and measuring the time it takes to travel the known distance. The velocities

in the x, y, and z directions can then be calculated by dividing the known distance

by the measured time. The anemometers are mounted on long booms, which places

them approximately 6.4 m away from the outside of the mast leg. The anemometers

installed on site are ATI ‘K’ Type, with a range between −50 oC to +60 oC and

an accuracy of 0.1 oC. Tests at the NWTC indicate that the sonic anemometers on

the long booms measure over 99% of the free-stream wind when the wind is flowing

directly towards the booms.

3.1.2 Data acquisition

The anemometers were sampled at a rate of 20 Hz by a rack-mounted data acquisition

system (DAQ) consisting of a National Instruments (NI) chassis with PC and PXI

cards. The data were recorded in 10-minute segments, which is conventional for

wind turbine applications [19]. The overall acquisition process is controlled by a

PC running LabVIEW. Once the anemometers have been sampled, the signals are

converted to engineering units, then to binary, and then copied to network storage

for future processing.

The binary files are processed by code written by NWTC staff, which converts

them to a .mat format suitable for Matlab processing. This .mat file is also used to

calculate “derived values” that require averaging over the 10-minute period, such as

the mean wind speed and turbulence. The 20 Hz data and the 10-minute averages

are then written to the web server to be accessed by users.

3.1.3 NWTC processing

The NWTC runs all of the recorded data through several routines for quality control

before saving them in the .mat format. The quality control process generally involves
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Figure 3.2: Diagram of sonic anemometer processing, reproduced from Clifton [30].

checking that the data values do not exceed prescribed manufacturer and user limits

to ensure that the signal is within the physical limitations of the sensor and the DAQ

and also assigning quality control flags to potentially bad data. Data channels are

generally flagged as having failed if there is irregular timing, the data is a constant

value (i.e., there has been a malfunction), the channel is empty, the values are all

NaNs, or the values are all bad (e.g., -999).

Sonic anemometers undergo even more specific processing to ensure that the

recorded data are good. An overview of the sonic anemometer processing utilized by
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the NWTC is shown in Fig. 3.2. First, if at least 92% of the original data stream

are healthy values, the wind in the three orthogonal directions x, y and z undergo a

denoising process. This requires removing “spikes” that occur in the raw wind and/or

temperature data. These spikes can be caused by the system instrumentation (if the

system loses contact with an instrument, then the channel value is set to -97 in the

data stream for that sample) or by insects or particles impacting the sensors. The

NWTC processing routine identifies spikes by locating all point-to-point differences

that are in the top 1%, then searching for adjacent up-down or down-up jumps. If a

spike is detected, it is removed by replacing the value with the average of the points

before and after the spike (i.e., linear interpolation). As will be discussed in the

next section, this definition of a spike only identifies spikes that are one sample in

duration. It was found, however, that many of the data records contain spikes that

are more than one sample in length.

In many cases, the DAQ would not sample at exactly 20 Hz. Thus, the next step

in the denoising process is to interpolate the recorded data and GPS time stamp from

the DAQ into a record with perfectly uniform sampling at 20 samples per second. If

there are missing data points in the middle of the record, those points are linearly

interpolated; if points are missing at the end of the record and at least 95% of the

record was originally error-free, then the mean wind speed is appended to the last

missing values. As will be seen below, this appending of the mean creates more

spikes in the data records.

Once the records have been cleaned and denoised, they are rotated to generate

the downwind, lateral, and vertical components (u, v, and w, respectively). In this

rotation process, the cleaned and denoised data are first rotated around the vertical

axis such that the average of the lateral wind velocity is zero. The data are then

rotated around the new lateral axis until the average of the vertical wind velocity is

zero. It should be noted that this rotation only occurs if at least 95% of the original
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record is error-free. Note that, with this rotation scheme, the downwind direction is

not necessarily horizontal.

From these cleaned, denoised, and rotated records it is then possible to calculate

turbulence characteristics, fluxes, and other derived values.

3.2 In-House Processing

It was found that the NWTC data processing methods do not catch and remove

all of the data quality issues, so additional processing routines were developed to

identify potentially bad data. The main issues present in the data were the presence

of quantization and multi-point spikes. The use of linear detrending and its effects

on phase coherence are also discussed.

3.2.1 Quantization

It was noted that many records feature some degree of quantization, some of them

very severe (see Fig. 3.3). The effects of quantization upon phase difference were

initially unknown, so a data flag (3003) was defined to mark those records that

featured quantization. A record was defined as quantized if it had 10 quantization

“occurrences” in a single record, where a quantization occurrence was defined as

having 5 sequential points whose values did not change more than 10−12 m/s between

each point.

Quantization was a potential concern for this project because it was theorized

to have a strong effect on a sample’s phase coherence. This hypothesis was based

on the facts that a quantized record is essentially a sequence of square waves with

different amplitudes and that a square wave has perfect phase coherence because its

sinusoidal components must be perfectly aligned to sum up to a square shape. A

brief study was conducted to determine if quantized records would skew the phase

coherence results.
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Figure 3.3: Plot of wind velocity recorded on October 20, 2013, at 10:20 at a height
of 76 m. There is quantization that is evidenced by the rectanguler jumps in the
record.

The study started with a Gaussian process generated from a Kaimal spectrum

PSD with L = 340 m, U = 5 m/s, and σu = 1 m/s. Quantization occurrences

were introduced at random locations by setting 5 consecutive values equal to the

1.3 times the first value. The number of occurrences and widths were varied to

ensure that effects of quantization were thoroughly investigated. It was found that

the quantization of records with no phase coherence, even what could be considered

severe degrees of quantization, still yields MRLs that are close to zero (on the order

of 0.1). However, although the MRL values changed only a litte, there is a visible

effect on the distribution. For example, the time history shown in Fig. 3.4 clearly

has significant quantization, and a comparison of the histogram of ∆θ for the records

with and without quantization is shown in Fig. 3.5. The record with no quantization

has a ∆θ distribution that is essentially uniform, but the distribution of ∆θ for the

quantized record is clearly non-uniform.

It was additionally found that the method used to detect quantized records could

identify several records with sensor malfunctions, such as the record shown in Fig. 3.6.

Thus, the method for detecting quantized records could also be used to detect bad

data, and therefore any records that were flagged as quantized were removed from

subsequent analyses. Doing so left approximately 34,000 records for 15 m, 42,000
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Figure 3.4: Synthetic record with severe quantization.
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Figure 3.5: Histogram of ∆θ for a synthetic signal without (top) and with (bottom)
quantization.

records for 30 m, 37,000 records for 50 m, 41,000 records for 76 m, 37,000 records

for 100 m, and 28,000 records for 131 m.

3.2.2 Spike removal

It was quickly discovered that the spike detection method implemented at the NWTC

did not remove many spikes in the data because they were more than one point in

length. The potential effects of spikes on phase coherence were investigated using a

similar study as in the previous section, except that a single spike of three points in
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Figure 3.6: Example of a sensor malfunction. Recorded on December 8, 2013, at
16:50 at a height of 100 m.
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Figure 3.7: Histogram of ∆θ for a synthetic signal without (top) and with (bottom)
a 3-point spike.

duration was added into a Gaussian record generated from a Kaimal spectrum and

the change in phase difference values was examined. The presence of spikes was found

to have a similar effect on the histogram of ∆θ as quantization, as is demonstrated in

Fig. 3.7, so it was necessary to determine a method to detect and remove the spikes

in the records and flag those records for data quality purposes.

An overview of a selection of spike detection methods is shown in Fig. 3.8. There

are two general categories of methods that can be used to detect the presence of spikes
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Figure 3.8: Overview of a selection of spike detection methods.

in data. The first group scans through the signal and recursively estimates statistics

that can be used to identify spikes. Commonly, these statistics are just the mean and

standard deviation of the signal, and any points that are more than a few standard

deviations from the mean are classified and anomalous and removed either through

linear interpolation or with a surrogate model. This group of spike detection/removal

methods includes three methods of interest: 1) the procedure prescribed by Højstrup

[32], 2) the conventional method of using a moving window, and 3) the author’s

application of the Knuth algorithm [33] to solve the spike detection problem. Each

of the three methods are explained in further detail in the following paragraphs. It

should be noted that the moving window and Knuth algorithms can either be applied

to the wind data itself, u(k), or the sequence of point-to-point differences, d(k).

The Højstrup method is stated by Vickers and Mahrt [34] to be the basis of their

moving average method, so the theory is presented here although it was not con-

sidered as a spike detection method. The method has two main components: 1) a

recursive, auto-regressive model and 2) recursive estimates of the mean µe and stan-

dard deviation σe of the errors between the predictions and the data. For each data

point in the sequence, µe and σe are used to determine error threshold values corre-

sponding to a specified probability exceedance level (Højstrup used 10−5), assuming
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that the errors are normally distributed. Then, the error between the prediction

and the data at that iteration is calculated. If the error falls outside the threshold,

the point is classified as anomalous and is replaced with the model prediction. The

benefit of this method is that there is no need for interpolation, as spike points are

simply replaced with the values predicted by the auto-regressive model. This method

was ultimately abandoned because it requires two running estimations (one for the

auto-regressive model, one for the errors), whereas the other iterative methods only

required one.

The moving window method can be found in Vickers and Mahrt [34] and is

commonly used for sonic anemometer spike removal. In this recommended method,

the mean µL and standard deviation σL of a moving window of length L are used

to calculate a threshold for the wind signal. Thus, if a wind data point is above

µL +ασL or below µL−ασL, the point is identified as a spike. This moving window

and threshold can either be applied to the wind signal u(k) or the difference signal

d(k). The suggested value for α for u(k) was approximately 3.

The moving window method was tested on both a wind record u(k) and on its

difference signal d(k) to evaluate its effectiveness. In both situations, there was a

significant variability in the σL throughout the record, even when using a window

length of 10 seconds (200 points). Because the thresholds were based on the previous

data, the method was unable to quickly respond to sudden changes in the signal and

it was necessary to make α large to prevent false positives. This, in turn, led to false

negatives for smaller spikes that occurred after sudden changes in the wind. The

moving window worked marginally better with the difference signal instead of the

wind signal, but there were generally many false positives and false negatives. Thus,

the method often failed to detect spikes and was therefore abandoned.

Another recursive method that was investigated was the application of the Knuth

algorithm [33] to the spike detection problem. The Knuth algorithm recursively
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updates the mean and variance of a sample as more points are added; in this case,

the sample at time n is simply the first n points of the wind velocity record. The

algorithm uses the following equations to update the mean and variance:

m(n) = m(n− 1) + [u(n)−m(n− 1)]/n, (3.1)

S(n) = S(n− 1) + [u(n)−m(n− 1)][u(n)−m(n)], (3.2)

σ(n) =
√
S(n)/(n− 1). (3.3)

The threshold at a given point n is then calculated according to µ(n)± ασ(n).

The downside of this algorithm is that it was intended for the online estimation of

a sample’s mean and variance. In other words, it assumes that the signal is stationary

and thus is not meant to track changes in the mean. Thus, using this algorithm on

u(k), in which the short-term mean varies quite a lot over the record, led to a bias

that produced bad estimates of the variance and subsequent threshold values that

were too large.

On the other hand, the difference signal d(k) is very close to a zero-mean signal.

Thus, the inability of the algorithm to track the mean is not an issue, and it estimates

the variance fairly well. However, determining the initial values for the algorithm

proved to be difficult. If the initial values for the variance are too large and a spike

occurs at the beginning of the record, then the spike is missed. If the values are too

small, then non-spike behavior is flagged as a spike. The “best” values for the initial

variance estimate vary from record to record with the turbulence, so it was thought

to initiate the variance estimate with the value of the variance of the overall record.

However, the presence of spikes affected the overall variance, and so this was not

a robust method for choosing the initial algorithm values. Thus, the focus shifted

away from iterative methods and back to difference-based methods.

The single-point difference method (i.e., d(k) = u(k+ 1)− u(k)) as implemented

by the NWTC was unable to detect spikes that were multiple points in length,

29



nor could it detect spikes that had a point in the middle of a jump. The NWTC

spike detection method was therefore modified to use multiple-point differences (i.e.,

d(k) = u(k + m) − u(k), where m is an integer of choice), which is able to detect

spikes with points in the middle of jumps and can be modified to detect spikes that

are more than one point long. The method also needed to detect and remove spikes

in the first or last few points of the record that were only one jump, not an up-down

or down-up pattern. These anomalous spikes could occur by chance—i.e., if the data

segment ended mid-spike—but there were also many artificial spikes at the end of

records caused by an aspect of the NWTC processing. Specifically, if a record was

not 12,000 points long, the mean value was appended to the end of the record.

The ultimate denoising process used in this thesis has the following steps:

1. Calculate the three-point differences d3(k) = u(k + 2)− u(k).

2. Take the absolute value of d3(k) and determine the 90% threshold value, d90.

3. Construct a boolean vector, Iup(k), of the same length as d3(k) whose elements

are 1 if d3(k) ≥ d90 and 0 else. Construct a similar vector, Idown(k), whose

elements are 1 if d3(k) ≤ −d90 and 0 else.

4. Find and remove any large jumps in the first or last few points of the record.

5. For each non-zero element in Iup:

• Determine if there is a non-zero element in Idown between k−LSW/2 and

k + LSW/2, where LSW is a set maximum width of a spike (LSW = 6

points in this thesis).

• If so, use linear interpolation to replace the values of u(k) between the

two non-zero elements in Iup and Idown.

• Replace the non-zero elements in Iup and Idown with zeros.
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• If there is no matching non-zero element in Idown, delete the non-zero

element in Iup.

6. Return to 1 and repeat the entire procedure once to ensure that no spikes have

been missed.

3.2.3 Detrending

Initially, the records were not linearly detrended after spike removal to ensure that

the phase difference values were accurate. However, it was found that records with

very small turbulence but a significant linear trend over the 10-minute period had

abnormally high phase difference values due to the linear trend. A brief study re-

vealed that detrending records with higher turbulence does not significantly affect

the phase difference properties. Records with lower turbulence, however, had phase

difference that shifted from high to low after detrending, as expected. Thus, all

records were linearly detrended after the spikes were removed from the record.

3.3 Data Used to Fit Joint Distribution

The dataset includes records from 2012, 2013, and 2014, but the concern was raised

whether the overlap of certain seasons would overweight certain behaviors. A his-

togram of the number of records by day of the year is shown in Fig. 3.9, where each

subplot corresponds to a different height on the tower. As can be seen in the figure,

there are significantly more records for the first 50 days of the year. It was found that

these days also correspond to generally higher mean wind speeds and turbulence, so

the decision was made to use only the data recorded for the 2013 calendar year. The

histogram for the records from 2013 versus the day of year for the 6 different heights

is shown in Fig. 3.10. As can be seen in the figure, there is generally good coverage

throughout the year, with the exception of 76 m, 100 m, and 131 m for several days

in May and June.
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Figure 3.9: Number of records per day of year for entire dataset at a) 15 m, b) 30
m, c) 50 m, d) 76 m, e) 100 m, and f) 130 m.

The denoising procedure will not remove multiple spikes that are adjacent to

one another, so there were still some spikes that were not detected and as such

were present in the processed records. These spikes tended to cause MRL values

that were abnormally high; it was also found that some records with obvious sensor

malfunctions had high MRL values as well. Thus, all records with MRL values above

0.7 were not used.

In summary, a record was retained in the data set used to fit the joint distribution

if it satisfied all of the following characteristics:
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Figure 3.10: Number of records per day of year for 2013 at a) 15 m, b) 30 m, c)
50 m, d) 76 m, e) 100 m, and f) 130 m.

• No NaN values;

• 12,000 points in length;

• Recorded in 2013;

• No quantization;

• 20 or fewer spikes that were interpolated;

• Linearly detrended;

• Have R̄ ≤ 0.7.

The total number of records that satisfied these criteria was 159,468, with the height
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Table 3.1: Distribution of records in dataset by height.

Height (m) No. of records
15 29,472
30 30,417
50 25,133
76 29,386
100 24,703
131 20,357

distribution shown in Table 3.1.
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4

Data Analysis

The ultimate goal of this research is to develop a parameterized statistical model

that can be used to accurately simulate a nonstationary wind velocity rcord, which

requires a joint PDF of the variables of interest. The method recommended in the

IEC 61400-1 [6] for simulating wind records requires specifying the mean wind speed

U , the turbulence σu, and the Kaimal length scale L; our proposed modification

also requires the specification of the MRL R̄ and the mean direction θ̄. The mean

direction is assumed to be independent of the other variables, and the joint PDF

of the other four parameters can be completely defined by marginal distributions

of the variables and by their correlations in a standardized Guassian space. This

section discusses an overview of how the parameters were estimated (Section 4.1),

the estimation of the Kaimal length scale from the records (Section 4.2), the marginal

distributions that were found to best fit the data, (Section 4.3), and the results of

the correlation study (Section 4.4).
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4.1 Metadata

To fit the marginal PDFs to the data set, it was necessary to process each record

and determine the four variables necessary for simulation: the mean wind speed U ,

turbulence σu, Kaimal length scale L, and the MRL R̄. The first three variables are

necessary to specify the PSD of the process, and the last variable describes the phase

coherence of the process. Again, the mean direction only produces a time shift in

the envelope, so it is assumed to be independent (this decision is supported by low

correlation values, as will be presented later) and is therefore not a parameter in

the joint distribution. The processing also extracted and stored the minimum and

maximum wind speeds, the mean direction, and the slope of the linear detrending

line for possible analysis. All of the parameters, with the exception of the slope

of the detrending line, were calculated from a denoised and detrended record. The

parameters from each record were stored as a row in a metadata array in Matlab,

which contained the time stamp; the quality control flag; the mean, minimum, and

maximum wind speeds; the turbulence; the MRL; the mean direction; the Kaimal

length scale; and the slope of the detrending line. The Kaimal length scale cannot

be directly extracted from the wind velocity record, like the other parameters; the

next section specifies how the length scale was determined for each record.

4.2 Kaimal Length Scales

The power spectral density for wind velocity in this study is modeled with a Kaimal

spectrum, which is parameterized by the mean wind speed U , the turbulence intensity

σu, and the Kaimal length scale L. The Kaimal length scale, or turbulent length

scale, can be viewed as the spatial length scale of the dominant vortices; smaller

Kaimal length scales mean more energy at higher frequencies. The Kaimal spectrum
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Figure 4.1: Plot of nondimensionalized Kaimal spectrum for L = 100 m, 300 m,
500 m, and 1000 m.

is often presented in the literature in its nondimensional form:

S(f)f

σu2
=

4fL/U

(1 + 6fL/U)5/3
. (4.1)

A plot of the nondimensionalized version of the Kaimal spectrum for different length

scales is shown in Fig. 4.1.

The Kaimal length scale must be determined by fitting the Kaimal spectrum to

the data, and there is no discussion in the literature regarding the choice of cost

function or best optimization method. Several different cost functions and optimiza-

tion methods were tested and are discussed in the following subsections, along with

the final method that was selected for this thesis.
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4.2.1 Cost function

Four cost functions were considered:

J =

N/2∑
i=1

[
S(fi)∆f − Ŝi

]2

, (4.2)

J =

N/2∑
i=1

[
fi S(fi)∆f

σu2
− fi Ŝi

σu2

]2

, (4.3)

J =

N/2∑
i=1

[
log[S(fi)∆f ]− log[Ŝi]

]2

, (4.4)

J =

N/4∑
i=1

[
S(fi)∆f − Ŝi

]2

. (4.5)

In Eqs. (4.2) through (4.5), S(fi)∆f is an estimate of the spectral power at frequency

fi for the Kaimal spectrum and Ŝi is the spectral power at fi from the record. Equa-

tion (4.2) represents the sum-of-squared-error (SSE) of the standard form of the

Kaimal spectrum (Eq. (1.3)). Equation (4.3) represents the SSE of the nondimen-

sionalized form of the Kaimal spectrum (Eq. (4.1)). Equation (4.4) is the SSE of the

log of the standard Kaimal spectrum. Lastly, Eq. (4.5) is the SSE of the standard

Kaimal spectrum, but only for frequencies up to 5 Hz.

When considering the choice between Eq. (4.2) and Eq. (4.3), the nondimension-

alized form seems to be a residue of convention and is not based on any scientific

reasoning. Thus, there does not seem to be any logical reason to use the nondimen-

sionalized form in the cost function. Additionally, the nondimensional cost function

can be viewed as the standard cost function with frequency weighting, and the use

of frequency weighting in this application is undesirable because it will increase the

weighting on the high-frequency noise. Thus, the SSE of the standard Kaimal spec-

trum should be chosen over the SSE of the nondimensional form.
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Figure 4.2: Comparison of linear (left) and log (right) cost functions versus L for
a record recorded at 16:50 on Feb. 21, 2013 at 131 m. The optimal length scale
values for the linear and log cost functions are approximately 145 m and 596 m,
repsectively.

Second, it was necessary to determine whether to use the “linear” form of the

spectrum (see Eq. (1.3)) or to take the log of both sides and define the cost function

as the SSE between log(S(f)) and the log of the spectral data. A comparison of both

cost functions versus L for a data record is shown in Fig. 4.2. As can be seen in the

figure, the choice of cost function affects the optimal length scale—the optimum for

the linear cost function occurs around 145 m, and the optimum for the log function

is around 596 m. Additionally, note that there are two local minima for the linear

cost function of this particular record. This presence of multiple minima in the linear

cost function was found in many different records.

In general, the optimal L for the linear cost function was shorter than that for the

log cost function, corresponding to more frequency content in the higher frequencies.

This is logical, because the log cost function is more affected by the low amounts of

power in the higher frequencies, which will shift the optimal solution so there is more

power in the lower frequencies. This is demonstrated graphically in Fig. 4.3, which

overlays the linear- and log-optimal S(f) over the experimental PSD in a log-log plot.
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Figure 4.3: Comparison of linear and log optimal fits to S(f) for a record recorded
at 16:50 on Feb. 21, 2013 at 131 m.

As expected, the fit spectrum from Eq. (4.3) has less power in the higher frequencies.

Because the lowest frequency of interest for a large wind turbine is around 1 Hz and

because Eq. (4.2) has more energy in that frequency range than Eq. (4.4), the linear

SSE is more conservative than the log SSE. It was therefore decided to eliminate

Eq. (4.4) as a possible method for calculating L.

The third choice was related to the frequency band used to fit the spectrum. It

was possible that low-energy content in the higher frequencies could have a significant

effect on the optimal solution when summing over different frequency bands, but a

brief investigation found that, with the linear cost function, fitting up to 10 Hz and

fitting up to 5 Hz yielded essentially the same optimal solution. Thus, Eq. (4.5) was

the final cost function that was eliminated, and it was decided to use Eq. (4.2) to

determine the best-fit value for L.

4.2.2 Solution method

The cost functions of interest were sums of the squared errors, so the problem nat-

urally lent itself to the application of least squares optimization techniques. The

Kaimal spectrum cannot be transformed such that there is a linear relationship be-

tween functions of the spectral value and of the length scale, so linear least-squares
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solution methods cannot be used. Thus, an approximately exact optimal solution

can only be determined with an iterative solver, such as the Golden Search method

or a Gauss-Newton solver, or with a gridding method.

A gridding method was ultimately used to select an approximately optimal L,

due to its numerical speed and the smoothness of the cost function. In particular,

a grid of lognormally spaced points for L was generated and the value of L that

corresponded to the lowest cost was chosen as the optimum. This computation

could be vectorized and was sufficiently fast to process the hundreds of thousands of

records in the dataset.

4.3 Marginal Distributions

The joint distribution is partially characterized by the marginal distributions, so it

was necessary to identify the distributions that best fit the samples of the wind data

parameters. The parameters that were investigated were U , σu, R̄, and L. The

details of the distributions for each parameter are discussed in the four subsections

below.

For the four parameters, it was found that the majority of the dataset would fit

one distribution, but the extremal values would deviate from this main distribution.

This deviation in the tail data can be modeled through the use of a generalized

Pareto (GP) distribution, which can model exceedance values above a threshold

quantile value, P . The use of two distributions does not affect the sampling method:

points are drawn from a uniform distribution, and those in (0,P) are mapped using

the distribution fit to the main data and those in [P,1) are mapped using the GP

distribution. The theory of the GP distribution and how it is fit to the data is

presented in the next subsection.
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4.3.1 Generalized Pareto distribution

The GP distribution was first introduced by Pickands in 1975 [35] as an alternative

to the classic extreme value methods and has been utilized in diverse applications

[36, 37, 38, 39, 40]. The classical method for modeling extreme values is to separate

the data into groups, select the maximum (or minimum) value, then fit a general-

ized Extreme Value (GEV) distribution to the set of maximal (or minimal) values.

Pickands, on the other hand, proposed a method in which the tail values are trans-

formed into exceedances over a particular threshold and then a GP distribution is

fit to the exceedances. The GP distribution has a PDF and CDF of the form

f(x) =

 1
σ

(
1 + k (x−θ)

σ

)−1− 1
k

x > θ for k > 0; θ < x < θ − σ/k for k < 0,

1
σ

exp
(
− (x−θ)

σ

)
x > θ for k = 0,

(4.6)

F (x) =

 1−
(

1 + k (x−θ)
σ

)− 1
k

for k 6= 0,

1− exp
(
− (x−θ)

σ

)
for k = 0.

(4.7)

In Eqs. (4.6) and (4.7), the shape parameter k determines the general shape of the

distribution, the scale parameter σ affects the spread of the distribution, and the

threshold value θ represents the threshold value used to calculate exceedances. The

scale parameter must be strictly positive, but the shape and threshold parameters

can be any finite, real number. If k = 0 and σ = 0, the GP distribution reduces to the

exponential distribution; if k > 0 and θ = σ/k, it reduces to a Pareto distribution.

There have been multiple proposed methods regarding the fitting of a GP dis-

tribution to a sample[41, 42, 43]. Hosking and Wallis [41] looked at the maximum

likelihood estimation (MLE) of the parameters with the log likelihood function, which

entails choosing a scale and shape parameter such that

logL(x;σ, k) = −n log σ − (1 + k)

k

n∑
i=1

log

[
1 + k

(xi − θ)
σ

]
, (4.8)
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where the xi are the data, is maximized1. They noted that, if the scale parameter is

between −1
2

and 1
2
, the parameters derived by MLE are only more accurate than esti-

mators derived from the Method of Moments (MOM) or the method of Probability-

Weighted Moments (PWM) if the sample size is larger than 500. Grimshaw [42]

investiaged a method to reduce the two-parameter numerical search in MLE to a

one-parameter numerical search. Castillo and Hadi [43] noted that the maximum

likelihood estimates do not exist for k < −1 and may be inaccurate for k < −0.5;

also, the the use of PWM and MOM is impossible for k ≥ 0.5 due to the non-

existence of moments of order 2 or higher, and they may produce inaccurate answers

regardless of the shape parameter. They proposed a method to estimate the GP

parameters and quantiles that generally produces more accurate estimations than

MLE, MOM, and PWM.

This thesis utilizes the function gpfit in Matlab, which uses MLE to determine

the best GP parameters. As will be seen in later sections, the fit scale parameter for

all of the wind parameters at all heights is between -0.5 and 0.5 and the sample sizes

are generally large, so MLE is expected to perform acceptably well in this application.

gpfit uses the Nelder-Mead algorithm to determine the optimal solution of the

negated log-likelihood function:

J = n log σ +
(1 + k)

k

n∑
i=1

log

[
1 + k

x̂i
σ

]
, (4.9)

where x̂i = xi − θ and xi ≥ θ.

4.3.2 Mean wind speed

The variability of the mean wind speed is commonly modeled with a Weibull distri-

bution [44, 45, 46, 47, 48, 49]. The Weibull distribution has a PDF and CDF of the

1 Note that Hosking and Wallis define the shape parameter with the opposite sign in their paper
and that there is an error in their equation.
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form

f(x) =
k

λ

(x
λ

)k−1

e−(x/λ)k , (4.10)

F (x) = 1− e−(x/λ)k , (4.11)

where k is the shape parameter and λ is the scale parameter. The IEC standard [6]

recommends assuming a Rayleigh distribution for the mean wind speed, which is a

Weibull distribution with k = 2.

It is possible to transform the Weibull CDF to get a linear relationship between

a function of the CDF value F and a function of x. Doing so yields

ln[− ln(1− F )] = k lnx− k lnλ. (4.12)

These transformed variables can be plotted in a Weibull plot, which is a special type

of quantile plot, in which a sample drawn from a Weibull distribution appears a

straight line. Then, an estimation of the distribution parameters k and λ can easily

be calculated from a linear fit in this transformed space:

k = m, (4.13)

λ = e−b/m, (4.14)

where m is the slope of the linear fit and b is the y-intercept. The Weibull plots

of the data categorized by height are shown in Fig. 4.4, along with superimposed

straight-line fits. As can be clearly seen in the figure, the distribution of mean wind

speed at the NWTC for the data available in 2013 are not linear in this transformed

space and therefore do not follow a Weibull distribution, as is often assumed. This

observation prompted the investigation of other types of distributions.

In the end, the data were found to fit a lognormal distribution very well. The
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Figure 4.4: Weibull plots for U for a) 15 m, b) 30 m, c) 50 m, d) 76 m, e) 100
m, and f) 131 m. The blue line indicates the empirical CDF and the green line is a
straight-line fit through the data.

PDF and CDF for a lognormal distribution are given by

f(x) =
1

x
√

2πσ
e−

(ln x−µ)2

2σ2 , (4.15)

F (x) =
1

2
+

1

2
erf

[
lnx− µ√

2σ

]
, (4.16)

where µ is the mean of lnx, σ is the standard deviation of lnx, and erf(x) is the

standard error function. This CDF can also be transformed in a method similar to

that shown for the Weibull plot, which yields

erf−1(2F − 1) =
1√
2σ

lnx− µ√
2σ
. (4.17)
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Figure 4.5: Lognormal plots for U for a) 15 m, b) 30 m, c) 50 m, d) 76 m, e) 100
m, and f) 131 m. The blue line indicates the empirical CDF and the green line is a
straight-line fit through the data.

Transforming the empirical CDF of U according to the above equation and plotting

the result yields the plot shown in Fig. 4.5. By comparing Figs. 4.4 and 4.5, it is

apparent that the mean wind speed at the NWTC generally follows a lognormal

distribution, although the extremal values deviate slightly.

A GP distribution was used to fit the data at the 99% quantile and above. The

value for this quantile was chosen by visually determining the quantiles at which the

empirical CDF began to diverge from the straight line in the lognormal plot and

choosing a value that was well below that point. A comparison of the fit CDF values

with and without a GP distribution fit to the tail for the 100 m data is shown in
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Fig. 4.6. As can be clearly seen in the figure, using the GP distribution to fit the

tail yields a CDF that much better mimics the behavior of the empirical CDF. A

plot showing the final bi-distribution fits for the data at the 6 different heights is

shown in Fig. 4.7. The parameters for the 6 different bi-distribution fits are listed in

Table 4.1. The table also lists the Kolmogorov-Smirnov statistic,

D =
√
N sup

x
|Ffit(x)− Femp(x)|, (4.18)

where N is the number of points in the sample and x represents the sample points,

as a measure of the distribution fit (a lower D indicates a better fit).

In general, the mean wind speed increases with height, which matches the general

trend of the wind shear profile commonly assumed [19]. Interestingly, the variation

of the mean wind speed also increases with height, which could possibly be due to

the presence of nighttime lower-level jets at higher heights.

All of the fit GP shape parameters are between −0.5 and 0, which falls within the

region in which the MLE method for GP distributions is generally well-behaved. This

is also the region in which the GP distribution has a maximum value of θ−σGP/kGP .

The data for 30 m and higher all have roughly the same maximum value (about 11

m/s above the threshold value), but the 15 m tail is closer to exponential (kGP ≈ 0)

so it’s maximum value is much larger (about 44 m/s above the threshold value).

Lastly, the accuracy of the fit increase with height, but all of the fits are fairly good,

considering that N is approximately 25,000 for these data.

4.3.3 Turbulence

The IEC standard [6] recommends the use of a lognormal distribution to characterize

the turbulence parameters, and this distribution was found to be the best fit to the

data. The turbulence data also had tails that deviated from the general trends, so

a GP distribution was once again used to characterize the extreme values. The tails
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Table 4.1: Distribution parameters for U bi-distributions and Kolmogorov-Smirnov
statistic (P = 0.99).

Height (m) µLN σLN kGP σGP D
15 1.416 0.5139 -0.06636 2.976 5.203
30 1.485 0.5318 -0.2812 3.492 3.911
50 1.548 0.5575 -0.2680 3.804 3.322
76 1.578 0.5619 -0.3999 4.701 2.782
100 1.601 0.5839 -0.3989 4.3302 2.843
131 1.637 0.5921 -0.3519 3.971 1.716
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Figure 4.6: Comparison of transformed CDFs for the empirical CDF (blue), a
best-fit lognormal CDF (green), and a lognormal-GP CDF (red) for the mean wind
speed at 100 m.

for the turbulence data start to deviate from lognormal at a lower quantile, so the

95% quantile was used to separate the tail data instead of the 99% quantile.

A plot containing the fit distributions for all of the heights is shown in Fig. 4.8, and

the fit parameters are listed in Table 4.2. The fits are generally good, though there is

some deviation in the extremely low turbulence values. For this wind parameter, the

shape parameters are all close to zero, so it is likely that an exponential distribution

could be used to accurately characterize the tails of the turbulence values. A closer

inspection (see Fig. 4.9) reveals that, in this case, there is some deviation away from

lognormal behavior even in the middle quantiles, which is manifested in the form of

a nonlinear relation in these transformed axes. Although it appears significant in
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Figure 4.7: Lognormal plots for U for a) 15 m, b) 30 m, c) 50 m, d) 76 m, e)
100 m, and f) 131 m. The blue line indicates the empirical CDF, the green line is
the transformed CDF calculated with two best fit distributions, and the red point
indicates the threshold value used to separate the two distributions (99% quantile).

this transformed space, the Kolmogorov-Smirnov statistic values (see Table 4.2) are

still quite good.

4.3.4 Mean resultant length

The MRL was found to follow a Weibull distribution very closely, including the

tails, so it was not necessary to fit a GP distribution to the extreme values. A plot

containing the Weibull plots for the 6 different heights is shown in Fig. 4.10, and a

list of the distribution fit parameters is shown in Table 4.3.
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Figure 4.8: Lognormal plots for σu for a) 15 m, b) 30 m, c) 50 m, d) 76 m, e)
100 m, and f) 131 m. The blue line indicates the empirical CDF, the green line is
the transformed CDF calculated with two best fit distributions, and the red point
indicates the threshold value used to separate the two distributions (95% quantile).

Table 4.2: Distribution parameters for σu bi-distributions and Kolmogorov-Smirnov
statistic (P = 0.95).

Height (m) µLN σLN kGP σGP D
15 -1.029 1.454 0.032 2.689 2.920
30 -1.038 1.469 0.047 2.677 3.063
50 -1.024 1.521 0.011 2.855 3.410
76 -1.011 1.517 -0.026 3.185 3.075
100 -1.004 1.564 -0.037 3.262 3.341
131 -0.990 1.606 -0.035 2.908 2.531
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Figure 4.9: Magnified plot of the empirical (blue) and fit (green) transformed
CDFs of the turbulence for the 15 m data. The data show some variation away from
a lognormal distribution in the lower and middle quantiles.

Table 4.3: Distribution parameters for R̄ Weibull distribution and Kolmogorov-
Smirnov statistic.

Height (m) λ k D
15 0.144 1.752 4.723
30 0.144 1.738 4.466
50 0.145 1.755 4.744
76 0.147 1.728 3.965
100 0.146 1.740 3.943
131 0.148 1.711 3.573

4.3.5 Kaimal length scale

The Kaimal length scales were found to roughly follow a lognormal distribution,

although the tail behavior deviated slightly and was not well-captured by a GP

distribution. The threshold quantile was chosen to be 95% in order to account for

the different tail behavior. A figure containing lognormal plots for the empirical and

fit distributions is shown in Fig. 4.11, and the distribution parameters are shown in

Table 4.4. The jaggedness of the empirical distribution is due to the gridding method

that was used to choose the optimal L. The Kolmogorov-Smirnov statistics shown

in Table 4.4 are not as small as the previous fits, but changing the tail fit by small

amounts did not affect the statistic, so it is likely that the lower quantile variables
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Figure 4.10: Weibull plots for R̄ for a) 15 m, b) 30 m, c) 50 m, d) 76 m, e) 100 m,
and f) 131 m. The blue line indicates the empirical CDF and the green line is the
transformed CDF calculated with two best fit distributions.

are the limiting factor in calculating D. Because L is not likely to have a direct effect

on wind turbine loads, the authors are content with these fits for the Kaimal length

scale.

4.4 Correlations

Two types of correlative studies were completed. First, a simple Spearman corre-

lation of the data for all heights was computed to estimate general trends and to

determine any relationship between height and the wind parameters. Second, the
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Figure 4.11: Lognormal plots for L for a) 15 m, b) 30 m, c) 50 m, d) 76 m,
e) 100 m, and f) 131 m. The blue line indicates the empirical CDF, the green line
is the transformed CDF calculated with two best fit distributions, and the red point
indicates the threshold value used to separate the two distributions (95th quantile).

Table 4.4: Distribution parameters for L bi-distributions and Kolmogorov-Smirnov
statistic (P = 0.95).

Height (m) µLN σLN kGP σGP D
15 5.839 0.581 -0.062 284.781 3.857
30 5.915 0.605 -0.120 321.131 3.914
50 5.973 0.637 -0.102 366.382 3.923
76 6.002 0.646 -0.095 383.525 4.726
100 6.016 0.665 -0.111 410.727 4.809
131 6.049 0.663 -0.137 417.347 4.894
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data were categorized by height and a more in-depth analysis was completed to de-

termine the Pearson correlation parameters for the normalized variables that are

necessary for the joint distribution.

4.4.1 Spearman correlations

Spearman’s rank correlation coefficient, also called Spearman’s ρ, is useful in deter-

mining the degree of a monotonic relationship between two variables, and it has the

advantage over the Pearson correlation in that it does not require the relationship

to be linear [50]. A Spearman correlation is in essence the degree of correlation be-

tween the CDF values of the different parameters. The value is calculated by first

mapping the value of the parameter to its rank in the data set, and identical values

are mapped to the average of the ranks (i.e., if u2 and u3 would be 5th and 6th, they

both take on a rank value of 5.5). Then, the value for the Spearman correlation is

calculated by

ρS =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
, (4.19)

where xi and yi are the ranks of random variables Xi and Yi, respectively.

Spearman’s ρ is not particularly useful for simulation purposes, unlike the Pear-

son correlation, but its ability to detect nonlinear monotonic relationships between

variables makes it a useful tool for estimating general trends over the entire cleaned

dataset and for investigating the relationship between the parameters and height.

The Spearman correlation values are shown in Table 4.5, where the significant corre-

lations are in bold. In general, the only parameters that show any significant degree

of correlation are U , σu, and L. It is interesting to note that U is only slightly

correlated with height.
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Table 4.5: List of Spearman rank correlation values. The largest correlation value
are shown in bold.

h U σu R̄ L θ̄ m
h 1.0000 0.1307 0.0127 0.0115 0.1099 -0.0019 0.0041
U 0.1307 1.0000 0.6340 -0.2009 0.8078 0.0441 -0.2172
σu 0.0127 0.6340 1.0000 -0.1026 0.5409 0.0123 -0.0700
R̄ 0.0115 -0.2009 -0.1026 1.0000 -0.0806 0.0200 -0.0533
L 0.1099 0.8078 0.5409 -0.0806 1.0000 0.0432 -0.1966
θ̄ -0.0019 0.0441 0.0123 0.0200 0.0432 1.0000 -0.1936
m 0.0041 -0.2172 -0.0700 -0.0533 -0.1966 -0.1936 1.0000

4.4.2 Pearson correlations

The ultimate goal of this research was to produce a joint PDF for parameters that can

characterize a nonstationary 10-minute wind record. This joint distribution requires

the Pearson correlations of the standardized variables. The standardization is done

by mapping the variable values to their empirical CDF values, which are uniformly

distributed, and then using the inverse standard normal CDF to map the CDF values

to a standard Gaussian space. The Pearson correlation, ρ, is given by

ρS =

∑
iXiYi√∑

iXi
2∑

i Yi
2
, (4.20)

where Xi and Yi are elements of samples of two standardized random variables of

interest.

The data were first separated by height, and the correlations were determined for

each height; the correlation values for the different heights are shown in Tables 4.6

through 4.11. In general, the only parameters that show any significant correlation

to each other for all of the heights are once again U , σu, and L; all other correlation

values are fairly small. Additionally, comparison plots of the normalized variables

for the different heights are shown in Figs. 4.12 through 4.17. These plots only con-

tain 5000 points that were randomly sampled from the available data due to file size

constraints on the plots; however, the general trends have been preserved, which are
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Table 4.6: Correlation matrix for 15 m data.

U σu R̄ L θ̄ m
U 1.0000 0.7033 -0.1895 0.7753 0.0736 -0.2550
σu 0.7033 1.0000 -0.0700 0.5832 0.0188 -0.0659
R̄ -0.1895 -0.0700 1.0000 -0.0416 0.0189 -0.0747
L 0.7753 0.5832 -0.0416 1.000 0.0626 -0.2278
θ̄ 0.0736 0.0188 0.0189 0.0626 1.0000 -0.2307
m -0.2550 -0.0659 -0.0747 -0.2278 -0.2307 1.0000

Table 4.7: Correlation matrix for 30 m data.

U σu R̄ L θ̄ m
U 1.0000 0.6767 -0.1939 0.7956 0.0392 -0.2465
σu 0.6767 1.0000 -0.0590 0.5825 -0.0004 -0.0594
R̄ -0.1939 -0.0590 1.0000 -0.0667 0.0155 -0.0592
L 0.7956 0.5825 -0.0667 1.0000 0.0346 -0.2204
θ̄ 0.0392 -0.0004 0.0155 0.0346 1.0000 -0.1781
m -0.2465 -0.0594 -0.0592 -0.2204 -0.1781 1.0000

similar for the different heights. Some subplots, such as k, l, and n, correspond to

variable pairs with low correlation values but do not feature the expected cloud-like

behavior demonstrated in subplots g or h, for example. It is hypothesized that these

heart-shaped scatterplots are caused by different mechanisms that occur under dif-

ferent atmospheric conditions. Future work will separate the dataset by atmospheric

stability to verify this hypothesis.

The specification of the marginal distributions and correlations completely specify

the joint distribution. It is then possible to draw samples from the joint distribution

for simulation purposes, as is done in the next chapter.

Table 4.8: Correlation matrix for 50 m data.

U σu R̄ L θ̄ m
U 1.0000 0.6673 -0.2094 0.8142 0.0396 -0.2231
σu 0.6673 1.0000 -0.1232 0.5810 0.0082 -0.0508
R̄ -0.2094 -0.1232 1.0000 -0.0865 0.0068 -0.0578
L 0.8142 0.5810 -0.0865 1.0000 0.0367 -0.1998
θ̄ 0.0396 0.0082 0.0068 0.0367 1.0000 -0.1523
m -0.2231 -0.0508 -0.0578 -0.1998 -0.1523 1.0000
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Figure 4.12: Plots of 5000 randomly sampled normalized random variables for 15
m. a) U vs. σu, b) U vs. R̄, c) σu vs. R̄, d) U vs. L, e) σu vs. L, f) R̄ vs. L, g)
U vs. θ̄, h) σu vs. θ̄, i) R̄ vs. θ̄, j) L vs. θ̄, k) U vs. m, l) σu vs. m, m) R̄ vs. m, n)
L vs. m, o) θ̄ vs. m.
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Figure 4.13: Plots of 5000 randomly sampled normalized random variables for 30
m. a) U vs. σu, b) U vs. R̄, c) σu vs. R̄, d) U vs. L, e) σu vs. L, f) R̄ vs. L, g)
U vs. θ̄, h) σu vs. θ̄, i) R̄ vs. θ̄, j) L vs. θ̄, k) U vs. m, l) σu vs. m, m) R̄ vs. m, n)
L vs. m, o) θ̄ vs. m.
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Figure 4.14: Plots of 5000 randomly sampled normalized random variables for 50
m. a) U vs. σu, b) U vs. R̄, c) σu vs. R̄, d) U vs. L, e) σu vs. L, f) R̄ vs. L, g)
U vs. θ̄, h) σu vs. θ̄, i) R̄ vs. θ̄, j) L vs. θ̄, k) U vs. m, l) σu vs. m, m) R̄ vs. m, n)
L vs. m, o) θ̄ vs. m.
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Figure 4.15: Plots of 5000 randomly sampled normalized random variables for 76
m. a) U vs. σu, b) U vs. R̄, c) σu vs. R̄, d) U vs. L, e) σu vs. L, f) R̄ vs. L, g)
U vs. θ̄, h) σu vs. θ̄, i) R̄ vs. θ̄, j) L vs. θ̄, k) U vs. m, l) σu vs. m, m) R̄ vs. m, n)
L vs. m, o) θ̄ vs. m.
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Figure 4.16: Plots of 5000 randomly sampled normalized random variables for 100
m. a) U vs. σu, b) U vs. R̄, c) σu vs. R̄, d) U vs. L, e) σu vs. L, f) R̄ vs. L, g)
U vs. θ̄, h) σu vs. θ̄, i) R̄ vs. θ̄, j) L vs. θ̄, k) U vs. m, l) σu vs. m, m) R̄ vs. m, n)
L vs. m, o) θ̄ vs. m.
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Figure 4.17: Plots of 5000 randomly sampled normalized random variables for 131
m. a) U vs. σu, b) U vs. R̄, c) σu vs. R̄, d) U vs. L, e) σu vs. L, f) R̄ vs. L, g)
U vs. θ̄, h) σu vs. θ̄, i) R̄ vs. θ̄, j) L vs. θ̄, k) U vs. m, l) σu vs. m, m) R̄ vs. m, n)
L vs. m, o) θ̄ vs. m.
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Table 4.9: Correlation matrix for 76 m data.

U σu R̄ L θ̄ m
U 1.0000 0.6193 -0.1992 0.8194 0.0374 -0.2215
σu 0.6193 1.0000 -0.1128 0.5367 0.0041 -0.0594
R̄ -0.1992 -0.1128 1.0000 -0.0786 0.0159 -0.0525
L 0.8194 0.5367 -0.0786 1.0000 0.0380 -0.1988
θ̄ 0.0374 0.0041 0.0159 0.0380 1.0000 -0.1591
m -0.2215 -0.0594 -0.0525 -0.1988 -0.1591 1.0000

Table 4.10: Correlation matrix for 100 m data.

U σu R̄ L θ̄ m
U 1.0000 0.6262 -0.2290 0.8274 0.0350 -0.2067
σu 0.6262 1.0000 -0.1585 0.5314 0.0148 -0.0514
R̄ -0.2290 -0.1585 1.0000 -0.1043 0.0174 -0.0552
L 0.8274 0.5314 -0.1043 1.0000 0.0362 -0.1907
θ̄ 0.0350 0.0148 0.0174 0.0362 1.0000 -0.1501
m -0.2067 -0.0514 -0.0552 -0.1907 -0.1501 1.0000

Table 4.11: Correlation matrix for 131 m data.

U σu R̄ L θ̄ m
U 1.0000 0.6215 -0.2844 0.8287 0.0176 -0.1912
σu 0.6215 1.0000 -0.1739 0.5190 0.0031 -0.0460
R̄ -0.2844 -0.1739 1.0000 -0.1614 0.0195 -0.0421
L 0.8287 0.5190 -0.1614 1.0000 0.0250 -0.1739
θ̄ 0.0176 0.0031 0.0195 0.0250 1.0000 -0.1274
m -0.1912 -0.0460 -0.0421 -0.1739 -0.1274 1.0000
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5

Simulation

This section provides an overview of the proposed modified Sandia method and com-

pares the sampled data to the actual dataset, both in terms of marginal distributions

and comparisons in the time domain. Records generated with the standard Sandia

method are used as input to an SDOF oscillator, and its response is compared to the

response generated when a data record with the same parameters is used as input.

5.1 Method

The parameters for the detrend slope value m and the mean direction θ̄ are not

included in the generation of a correlated sample of wind parameters because a) they

both have low correlations values with the other parameters and b) their effects on a

system’s fatigue or ultimate response are likely to be minimal. To be more specific, a

gradual increase in the mean wind speed over a 10-minute period will not cause large

load excursions in a system; similarly, θ̄ only affects the temporal location of packets

of energy, not the shape or magnitude of the packets, and should therefore have a

minimal effect on the system response. Thus, in the proposed simulation method, the

slope is set to zero and θ̄ is independently drawn from a uniform distribution. The
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Figure 5.1: Schematic of the process for sampling the wind parameters from the
joint distribution. Four independent normal variables are correlated, transformed to
a uniform space, then to the correct marginal form to produce a sample of U , σu, L,
and R̄.

remaining correlated variables, U , σu, L, and R̄, are drawn from the joint distribution

characterized by the marginals and correlations matrices presented in the previous

chapter.

This demonstration of the simulation method will be for a height of 30 m. The

full correlation matrix for this example—which is equal to the covariance matrix

[Σ] due to the unitary variance of the normalized random variables—is presented in

Table 4.7. The steps for the simulation process, which involves sampling from the

joint distribution and then generating a time series, are given below. A diagram of

the sampling process is given in Fig. 5.1.

1. Sample θ̄ from U(0, 2π).

2. Independently sample four standard normal variables, one each for U , σu, L,

and R̄. Place these into a column vector Z.

3. Correlate the Gaussian variables through a linear transformation,

C = [A]Z, (5.1)

where [A][A]T = [Σ] and [A] is the Cholesky decomposition of [Σ].1 This pro-

1 It is also possible to use the eigenvalues and vectors of [Σ] to perform this correlation instead of
the Cholesky decomposition. Then C = [V ][D]1/2Z.
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duces four correlated Gaussian variables with zero mean and unitary variance.

4. Use the standard normal CDF to transform the correlated variables into a

uniform probability space:

U = Φ (C) . (5.2)

5. Transform the variables to their correct marginal form by using the inverse

CDF of each marginal distribution:

U = FU
−1(U1), (5.3)

σu = Fσu
−1(U2), (5.4)

L = FL
−1(U3), (5.5)

R̄ = FR̄
−1(U4). (5.6)

6. Calculate the Kaimal PSD from U , σu, and L and use it to specify the magni-

tudes of the Fourier vector.

7. Use Eq. (2.10) and roots to determine the value of κ from R̄. Set µ = θ̄,

then use the method outlined in Section 2.2.2 to draw a sample of N/2 phase

difference values from a von Mises distribution with the calculated µ and κ.

Use cumsum to calculate the corresponding phase angles and construct the first

half of the Fourier vector.

8. Assemble the full Fourier vector from the unique first half, then call ifft to

produce a time history.

9. Scale and shift the record appropriately to ensure it has the correct mean wind

speed and turbulence.

The last step in this simulation process is necessary due to the continuous form

of the Kaimal PSD; choosing |X(fi)| =
√
S(fi)∆f/2 will not produce a time series
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whose standard deviation is equal to σu. Thus, normalizing the IFFT result by

its standard deviation, multiplying by σu, then adding U to the record will ensure

the record has the correct mean and variance (assuming the original IFFT result is

zero-mean).

5.2 Comparison of Marginals with Data

To verify that the sampled values have similar distributions to the dataset, 10,000

samples were drawn from the joint distribution for the 30 m height and compared

with the 30 m dataset. The plots of the sample marginals for the four different

parameters are compared with the marginals for the entire dataset in Fig. 5.2. Each

subplot corresponds to a different parameter (clockwise from top left is U , σu, L, and

R̄), and the plots are either Weibull or lognormal plots to allow ease of comparison

for the main distribution and the tail. The marginals for the sample and for the

entire dataset fit well, so the sampling method is verified.

5.3 Comparison of Time Records

In addition to verifying that the correct marginal distributions are recreated with

the sampling method, it is also important to verify that the simulations in the time

domain have a similar appearance to the data. Many records were found to be

qualitatively similar to the data, especially for smaller MRL values. The simulations

for certain records with higher MRL values, however, were not found to be visually

similar to the data record with the same parameters.

An example record was chosen, recorded at 03:30 on July 11, 2013 at a height of

50 m, to demonstrate this difference between data and simulation and to investigate

the possible origins of the differences between the records. This particular record

has a very high degree of phase coherence (R̄ = 0.66) and therefore a high degree

of nonstationarity, as demonstrated by the time history shown in the top plot of
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Figure 5.2: Monte Carlo analysis (10,000 samples) to demonstrate that the sam-
pling method creates the correct marginal distributions for the four parameters. The
blue lines indicate the marginals from the entire dataset; the green lines correspond
to the sampled values.

Fig. 5.3. The figure features the data in the top subplot and a synthetic record,

generated with the method described in Section 5.1, in the bottom plot. Both the

data and the synthetic records have the same U (6.796 m/s), σu (1.056 m/s), R̄

(0.657), and L (988 m) values. As can be clearly seen in the figure, the simulation

method does not produce the same degree of nonstationarity as is present in the

recorded data; there is more energy at all points in time instead of concentrated in

the time period from 50 s to 250 s.

It was hypothesized that these differences in the time domain were caused by a

mismatch between the fit von Mises distribution and the actual distribution of phase

difference values that were found in the data. Histograms of the phase difference dif-
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Figure 5.3: Time histories of data record recorded at 03:30 on July 11, 2013 at a
height of 50 m (top) and a synthetic record (bottom) with the same values for U
(6.796 m/s), σu (1.056 m/s), R̄ (0.657), and L (988 m).

ference values for the data and synthetic record are shown in Fig. 5.4. The von Mises

distribution that has the same MRL value produces a histogram that has a wider

and shorter peak and fewer values that are sampled at the antimode. However, this

difference in distributions does not fully explain the temporal variation, as drawing

∆θ from the empirical histogram produced a time history that was very similar to

the lower subplot in Fig. 5.3.

Further differences between the spectral characteristics of the data and simulation

were observed by following the observation made by Thráinsson and Kiremidjian

[25] that sorting by Fourier magnitude generated trends in the spread of ∆θ in the

spectral domain. Plotting the phase difference values as a function of frequency did

not yield any significant trends (see Fig. 5.5); however, sorting the phase difference

values by the inverse of the Fourier magnitude2 produced a distinct trend in the

2 Sorting by the inverse Fourier magnitude, instead of the Fourier magnitude, was selected because
of the inverse relationship between wind velocity PSDs and frequency. Thus, sorting by inverse
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Figure 5.4: Histograms for the phase difference values for the data (light blue) and
simulation (pink). The fit distribution has a wider and shorter peak and fewer values
at the antimode.

data (see Fig. 5.6). In particular, the data’s spectral coefficients with the largest

Fourier magntiudes (towards the left-hand side of the plot) show a much tighter

distribution of ∆θ, and the variance of ∆θ generally increases as the magnitudes of

the Fourier coefficients decrease. For the Fourier magnitudes with the very smallest

magnitudes (towards the right-hand side of the plot), the phase difference values are

almost uniformly distributed. This variation in the ∆θ spread for different Fourier

magnitudes is not captured in the proposed simulation methods; the spread of ∆θ is

the same for all simulated Fourier magnitudes (see bottom subplot).

These qualitative trends can be quantified by binning the phase difference values,

sorted by Fourier magnitude, then calculating the MRL for each bin. Doing this for

a bin size of 150 points and overlaying the MRL values over the sorted ∆θ values

produces the plot shown in Fig. 5.7. The plot clearly displays the high coherence

values for large magnitudes and the steady decrease in coherence with decreasing

Fourier magnitude.

Fourier magnitude is the same as sorting by frequency for synthetic records.
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Figure 5.5: Scatterplot of ∆θ for data (top) and simulation (bottom), sorted by
frequency. The phase difference values have been shifted in this plot so that the
mean direction is at 0.
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Figure 5.6: Scatterplot of ∆θ for data (top) and simulation (bottom), sorted by
inverse Fourier magnitude. The phase difference values have been shifted in this plot
so that the mean direction is at 0.
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Figure 5.7: Scatterplot of ∆θ for data with binned vales for R̄ overlayed (150 points
per bin), sorted by inverse Fourier magnitude.

This trend in the variation of the phase difference spread was observed in many

records that had high degrees of phase coherence and displayed a high degree of non-

stationarity in the time domain. Thus, developing a simulation method that would

exactly mimic this nonstationary behavior would require the modeling of this vari-

ation of the phase difference values in the spectral domain. This problem, however,

is extremely complicated due to the variation in the shape of the MRL trend from

record to record and due to the variability of in Fourier magnitudes from record to

record. Thus, the modeling of the spectral variation of the phase difference distribu-

tions is left for further study.

5.4 Response from an SDOF Oscillator

This study is motivated by the implicit assumption that the improper modeling of

phase coherence in synthetic records will lead to an improper wind turbine design.

The full verification of this assumption should and will be carried out using the
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National Renewable Energy Laboratory (NREL) 5 MW reference FAST model in

the future [51]. However, the effects of phase coherence on a dynamical system can

be examined on a simple SDOF oscillator (ζ = 0.01 and ωn = 5 rad/s) to illustrate

two points: 1) how the system responds to input generated with the proposed method

for different degrees of phase coherence, and 2) how the system responds to the data,

to an input generated with the standard Sandia method and to an input generated

with the proposed method.

5.4.1 Simulations with varying phase coherence

For this experiment, the input signal is assumed to have a Kaimal spectrum for the

PSD and the phase difference values are drawn from von Mises distributions with

θ̄ = π and varying values of κ. Figure 5.8 shows the time histories of the input signal

x(t) in the left column and the oscillator response y(t) in the right column for κ =

0, 1, and 4 (first, second, and third rows). As expected, increasing the value of κ

produces a concentration of signal energy in the time domain. This, in turn, excites

the oscillator to a higher degree and produces larger excursions.

This qualitative observation can be quantified by performing a simple Monte

Carlo analysis in which the quantities of interest are the record’s maximum value,

minimum value, and damage equivalent load (DEL). The first two parameters can

be viewed as the required yield strength of the material in tension and compression,

respectively, assuming y(t) is the stress in the system. The DEL for a stress series is

the stress range that would generate the same level of fatigue damage as the original

record, assuming a constant stress range and an average number of cycles per record.

DELs can be calculated using the Palmgren-Miner linear damage accumulation rule,

a log-log SN relationship, and an average number of cycles per record Navg [18]:

DEL =

[
N∑
i=1

niSi
m

Navg

]1/m

, (5.7)
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Figure 5.8: Plots of the input signal and response of SDOF oscillator for a) κ = 0,
b) κ = 1, and c) κ = 4. The plots in the left column are the input to the oscillator
and the plots in the right column are the time histories of the oscillator response.

where ni is the number of cycles at stress range Si and m is the SN curve slope. For

this experiment, the value for m was taken to be 3, which is commonly assumed for

components made of metal. The value for Navg was 480 cycles, which was calculated

by rainflow counting 5 records, calculating the number of cycles for each record, and

rounding the average result to the nearest integer.

The results of the Monte Carlo analysis are shown in Figure 5.9, which were

generated by simulating 5000 individual realizations for each of the three different

values for κ. As can be clearly seen in the figure, an increase in phase coherence

leads to “more dangerous” responses: the maximum response increases, the mini-

mum response decreases, and the DEL increases. In addition, the presence of phase

coherence leads to distributions of these parameters that have a larger variance,

implying that more simulations would be necessary to ensure the design is robust.
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Figure 5.9: Histograms of the maximum response, minimum response, and DEL
for varying levels of κ (5000 samples).

Table 5.1: Wind parameters for four data records used to evaluate simulation
method.

Record U (m/s) σu (m/s) R̄ L (m) θ̄ (rad)
1 3.494 0.246 0.672 523 2.704
2 3.257 0.897 0.673 415 2.270
3 6.796 1.056 0.657 988 -1.838
4 3.473 0.739 0.668 110 -0.760

Thus, it is likely that the characterization of phase coherence has a significant impact

upon the design of wind turbines.

5.4.2 Response comparison for data and simulation

It is also important to compare the oscillator response when the input is data versus

a simulated input. For this experiment, the SDOF responses were compared for

three different inputs: the data; a synthetic record generated with a modified Sandia

method with phase coherence; and a synthetic record generated with the standard

Sandia method.

Four records were chosen that featured high coherence values, and the parameters

for the records are shown in Table 5.1. The mean wind speed was used to calculate

the Kaimal PSD, but all of the records were shifted to a zero mean before being input
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Figure 5.10: Comparison of the data, simulation with phase coherence, and simu-
lation without phase coherence for four different records (a-d) used as input to the
SDOF oscillator.

to the oscillator to facilitate comparison between the results. Example realizations

for the synthetic inputs to the system are compared with the detrended real data

in Fig. 5.10. As noted in the previous section, the simulation generally does not

produce the same degree of nonstationarity or the same type of envelope as the data.

Additionally, as expected, the simulation with no phase coherence does not have any

concentration of energy in the time domain, so it is expected that the SDOF response

will be generally smaller for the simulation with the standard Sandia method.

The output response of the SDOF oscillator is shown in Fig. 5.11. As predicted,

the response to the simulation with no phase coherence is generally smaller in ampli-
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Figure 5.11: Comparison of the output from the SDOF oscillator for the data,
simulation with phase coherence, and simulation without phase coherence for four
different records (a-d).

tude than the simulation with phase coherence (note the difference in y-axis limits

between the two columns). The response to the synthetic input with phase coherence

is more similar to the response to data than the response without phase coherence,

but it does not mimic the correct behavior perfectly. In particular, the extremal val-

ues are generally larger, but the computed responses tend to have more cycles with

slightly smaller amplitudes. This will create differences in the load spectra generated

by the two methods and will likely affect DEL calculations.

These qualitative observations can be quantified with a Monte Carlo simulation.

Five thousand different realizations were generated to determine the mean and stan-
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bars indicate the standard deviation of the parameter.

dard deviation of the maximum response, minimum response, and DEL for responses

to the data and to simulations with and without phase coherence. The results are

shown in Fig. 5.12, where the record number is plotted along the x-axis and the

value for the parameter is plotted along the y-axis. The blue circles indicate the

SDOF response from the data, the green are for the response to the modified Sandia

method, and the red are from the standard Sandia method; the error bars indicate

the standard deviation of the results. As can be seen in the figure, the modified

Sandia method provides more accurate results than the standard Sandia method for

all three quantities, but there is still a significant difference between the response to

data and the response to the modified Sandia method. These results indicate that

the modeling of the variation of the ∆θ spread in the spectral domain is essential to

accurately determining the loads that real wind will generate in a wind turbine.
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6

Conclusion

Spectral methods for wind simulation such as the Sandia method assume that the

phase angles of a single-point wind field simulation are independent and uniformly

distributed. This thesis introduces the concept of phase coherence for wind mod-

eling as a simple method to expand the Sandia method to generate nonstationary

simulations.

A joint PDF is fit to 6 different wind parameters (mean wind speed, turbulence,

mean resultant length, mean direction, turbulent length scale, and slope of detrend

line) that were calculated from a large dataset provided by the NWTC. A presented

correlation study indicates that only U , σu, and L have any significant degree of

correlation. The distributions that best fit the marginals of U , σu, R̄, and L are

lognormal/GP, lognormal/GP, Weibull, and lognormal/GP, respectively, and their

best fit parameters are given. The sampling method is explained and demonstrated,

and the generation of the correct marginal distributions is verified with a Monte Carlo

simulation. Synthetic wind velocity records generated with the proposed method are

compared with data records with the same parameters to verify that the simulation

record is acceptably adequate. Simulations with lower MRL values are found to be
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qualitatively similar to the data, but some simulations with higher degrees of phase

coherence do not have the same degree of nonstationarity as the original data. These

differences are explained through the description of the spectral variation of phase

coherence.

The proposed simulation method is used as input to an SDOF oscillator to demon-

strate the effects of phase coherence on a dynamical system. In one study, the os-

cillator responses to synthetic records with varying degrees of phase coherence are

compared, and a presented Monte Carlo analysis of the maximum response, mini-

mum response, and DEL reveals that all three quantities increase in magnitude and

variability. In a second study, the oscillator response to data, to simulations with

the modified Sandia method, and to simulations with the standard Sandia method

are examined for four different data records. The proposed method generates better

results than the standard Sandia method, though it does not match the results from

the data perfectly.
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Appendix A

Miscellaneous Proof

Theorem 1. The inverse discrete Fourier transform of a vector of the form

U = [P1e
jθ1 · · · PNejθN ]T , (A.1)

where Pk are deterministic coefficients and θi are independent and uniformly dis-

tributed, is wide-sense stationary (WSS) and approximately Gaussian. Furthermore,

if Pk = 1, the transformed vector is white noise.

Proof. The inverse discrete Fourier transform is given by

u(n) =
N∑
k=1

U(k) exp

[
j

2πn

N
k

]
=

N∑
k=1

Pk exp

[
j

(
2πn

N
k + θk

)]
. (A.2)

Thus, u(n) is a scaled sum of independent, identically distributed (i.i.d.) random

variables, and by the Central Limit Theorem it approaches a Gaussian distribution

as N →∞.
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Note that

E{u(n)} = E

{
N∑
k=1

Pk exp

[
j

(
2πn

N
k + θk

)]}
(A.3)

=
N∑
k=1

Pk exp

[
j

2πn

N
k

]
E {exp[jθk]} . (A.4)

Because θk is uniformly distributed,

E {exp[jθk]} =

∫ 2π

0

1

2π
exp[jθk]dθk = 0. (A.5)

Thus,

E{u(n)} = 0. (A.6)

Consider the autocovariance function:

E[u(n)u(m)∗] = E

{
N∑
k=1

Pk exp

[
j

(
2πn

N
k + θk

)] N∑
l=1

Pl exp

[
−j
(

2πm

N
l + θl

)]}
(A.7)

= E

{
N∑
k=1

N∑
l=1

PkPl exp

[
j

2π

N
(nk −ml) + (θk − θl)

]}
(A.8)

=
N∑
k=1

N∑
l=1

PkPl exp

[
j

2π

N
(nk −ml)

]
E {exp[jθk] exp[−jθl]} (A.9)

Because the θk are independent and uniformly distributed, the expected value term

is zero unless k = l. Therefore,

E[u(n)u(m)∗] =
N∑
k=1

P 2
k exp

[
j

2πk

N
(n−m)

]
. (A.10)

Note that this expression is only a function of the difference between n and m.

Thus, because the mean is zero and the autocovariance only depends on the time lag

between the signals, this signal is WSS.
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If Pk = 1, then Eq. (A.10) reduces to

E[u(n)u(m)∗] =
N∑
k=1

exp

[
j

2πk

N
(n−m)

]
=

N∑
k=1

(
exp

[
j

2π

N
(n−m)

])k
. (A.11)

If n = m, then this reduces to N. If n 6= m, applying the equation for a geometric

series reveals

E[u(n)u(m)∗] =
exp

[
j 2π
N

(n−m)N
]
− 1

exp
[
j 2π
N

(n−m)
]
− 1

=
1− 1

exp
[
j 2π
N

(n−m)
]
− 1

= 0. (A.12)

Therefore, if Pk = 1,

E[u(n)u(m)∗] = Nδnm, (A.13)

where δnm is the Kronecker delta, which proves that u(n) is a white vector.
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