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Abstract

One of the key mechanisms that mediate renal autoregulation is the tubuloglomerular

feedback (TGF) system, which is a negative feedback loop in the kidney that balances

glomerular filtration with tubular reabsorptive capacity. In this dissertation, we

develop several mathematical models of the TGF system to study TGF-mediated

model dynamics.

First, we develop a mathematical model of compliant thick ascending limb (TAL)

of a short loop of Henle in the rat kidney, called TAL model, to investigate the effects

of spatial inhomogeneous properties in TAL on TGF-mediated dynamics. We derive

a characteristic equation that corresponds to a linearized TAL model, and conduct

a bifurcation analysis by finding roots of that equation. Results of the bifurcation

analysis are also validated via numerical simulations of the full model equations.

We then extend the TAL model to explicitly represent an entire short-looped

nephron including the descending segments and having compliant tubular walls, de-

veloping a short-looped nephron model. A bifurcation analysis for the TGF loop-

model equations is similarly performed by computing parameter boundaries, as func-

tions of TGF gain and delay, that separate differing model behaviors. We also use

the loop model to better understand the effects of transient as well as sustained flow

perturbations on the TGF system and on distal NaCl delivery.

To understand the impacts of internephron coupling on TGF dynamics, we fur-

ther develop a mathematical model of a coupled-TGF system that includes any finite
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number of nephrons coupled through their TGF systems, coupled-nephron model.

Each model nephron represents a short loop of Henle having compliant tubular walls,

based on the short-looped nephron model, and is assumed to interact with nearby

nephrons through electrotonic signaling along the pre-glomerular vasculature. The

characteristic equation is obtained via linearization of the loop-model equations as

in TAL model. To better understand the impacts of parameter variability on TGF-

mediated dynamics, we consider special cases where the relation between TGF delays

and gains among two coupled nephrons is specifically chosen. By solving the char-

acteristic equation, we determine parameter regions that correspond to qualitatively

differing model behaviors.

TGF delays play an essential role in determining qualitatively and quantitatively

different TGF-mediated dynamic behaviors. In particular, when noise arising from

external sources of system is introduced, the dynamics may become significantly

rich and complex, revealing a variety of model behaviors owing to the interaction

with delays. In our next study, we consider the effect of the interactions between

time delays and noise, by developing a stochastic model. We begin with a simple

time-delayed transport equation to represent the dynamics of chloride concentration

in the rigid-TAL fluid. Guided by a proof for the existence and uniqueness of the

steady-state solution to the deterministic Dirichlet problem, obtained via bifurcation

analysis and the contraction mapping theorem, an analogous proof for stochastic

system with random boundary conditions is presented. Finally we conduct multiscale

analysis to study the effect of the noise, specifically when the system is in subcritical

region, but close enough to the critical delay. To analyze the solution behaviors in

long time scales, reduced equations for the amplitude of solutions are derived using

multiscale method.

v



To my family

vi



Contents

Abstract iv

List of Tables x

List of Figures xi

List of Abbreviations and Symbols xiv

Acknowledgements xvi

1 Biological Background 1

1.1 The Nephron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Autoregulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Tubuloglomerular Feedback . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Dynamic properties of tubuloglomerular feedback . . . . . . . 6

1.3.2 Feedback delay . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Experimental and modeling evidence of tubuloglomerular feed-
back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 Interaction between neighboring nephrons . . . . . . . . . . . 9

1.4 Previous Mathematical Models . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Tubuloglomerular feedback operation . . . . . . . . . . . . . . 12

1.4.2 Tubuloglomerular feedback in coupled-nephron system . . . . 17

1.5 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Introduction to Subsequent Chapters . . . . . . . . . . . . . . . . . . 23

vii



2 Mathematical Model 27

2.1 Thick Ascending Limb Model . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Model cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.3 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.4 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Short-Looped Nephron Model . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Coupled-Nephron Model . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.2 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.3 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Model Results and Analysis 45

3.1 Thick Ascending Limb Model . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Characteristic equation . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.3 Analysis of the characteristic equation . . . . . . . . . . . . . 62

3.2 Short-Looped Nephron Model . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Characteristic equation . . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Coupled-Nephron Model . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.1 Characteristic equation . . . . . . . . . . . . . . . . . . . . . . 92

3.3.2 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

viii



4 Stochastic Model 111

4.1 Deterministic System . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.1.1 Steady-state solution . . . . . . . . . . . . . . . . . . . . . . . 113

4.1.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Stochastic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.1 Stationary solution for sufficiently small τ . . . . . . . . . . . 131

4.2.2 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . 138

4.3 Multiscale Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3.3 Analysis and numerical simulation . . . . . . . . . . . . . . . . 150

5 Discussion and Future Work 154

5.1 Summary of Modeling Results . . . . . . . . . . . . . . . . . . . . . . 154

5.2 Significance of Our Findings . . . . . . . . . . . . . . . . . . . . . . . 162

5.3 Model Limitations and Future Extensions . . . . . . . . . . . . . . . 167

5.4 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Bibliography 178

Biography 188

ix



List of Tables

2.1 Glossary for TAL model . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Individual parameter values for five model cases . . . . . . . . . . . . 33

2.3 Model parameter values common to all five cases . . . . . . . . . . . 34

2.4 Parameter values for loop model . . . . . . . . . . . . . . . . . . . . . 39

3.1 Base-case time-averaged MD variables for selected gain values with
TGF delay τ “ 3.5 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Deviations of MD variables from steady-state base-case, for gain γ “ 5 87

3.3 Individual parameter values for three cases in the sensitivity study . . 91

3.4 Signs of ρn,m for four parameter regions described in Fig. 3.16B . . . 101

x



List of Figures

1.1 A schematic diagram of a short-looped nephron and its renal corpuscle,
afferent arteriole (AA), and efferent arteriole (EA). . . . . . . . . . . 3

1.2 A schematic diagram of two short-looped nephrons and their renal
corpuscles, afferent arterioles (AA), and efferent arterioles (EA). . . . 11

2.1 A schematic representation of the TAL-model TGF system . . . . . . 30

2.2 TAL radius and maximum active NaCl transport rate for five consid-
ered cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 A schematic representation of the short-looped TGF system. . . . . . 37

2.4 A schematic representation of coupled-TGF system in the ith nephron. 42

3.1 Steady-state tubular fluid chloride concentration profiles in TAL for
the five cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Root loci for H case and IR case in the TAL model. . . . . . . . . . . 55

3.3 Root loci for IR case, IT case, IRT case, and CIRT case in the TAL
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Sample solutions for points W and X from Fig. 3.2B (IR case), and
Y and Z from Fig. 3.3B (IT case). . . . . . . . . . . . . . . . . . . . 60

3.5 Sample solutions for points P1 and Q1 from Fig. 3.3C (IRT case),
and for points P2, Q2, and R2 from Fig. 3.3D (CIRT case). . . . . . 61

3.6 Steady state tubular fluid pressure, luminal radius, tubular flow rate,
Cl´ concentration as functions of position. . . . . . . . . . . . . . . . 73

3.7 Behaviors of model solutions, based on numerical simulations using
base-case compliance and 1/4 of base-case compliance. . . . . . . . . 75

3.8 Sample solutions for points W, X, Y, and Z from Fig. 3.7A. . . . . . 77

xi



3.9 Behaviors of model solutions for the TAL model using base-case TAL
compliance and for the base-case whole-loop model from Fig. 3.7A. . 78

3.10 Effect of TGF gain γ on chloride delivery, with TGF delay τ “ 3.5 s. 80

3.11 Effect of TGF gain γ on chloride delivery, with TGF delay τ “ 3 s. . 83

3.12 Effect of TAL fluid flow rate on chloride delivery with TGF delay
τ “ 3.5 s and gain γ “ 5. . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.13 Effect of sustained perturbations of inflow pressure on MD fluid flow
rates, chloride concentrations, and chloride delivery rates, for TGF
gain γ “ 5 and delay τ “ 3.5 s. . . . . . . . . . . . . . . . . . . . . . 88

3.14 Waveforms in response to the sustained perturbations in inflow pres-
sure of -15%, 0%, and +15% for TGF gain γ “ 5 and delay τ “ 3.5 s. 89

3.15 Profiles of the unpressurized luminal radius βpxq for three different
cases: ad “ 2.25ˆ L, 2.5ˆ L, 2.75ˆ L. . . . . . . . . . . . . . . . . . 91

3.16 Root loci, for an uncoupled nephron and for two identical coupled
nephrons, as a function of TGF gain γ and delay τ . . . . . . . . . . . 100

3.17 Sample solutions (which are identical in coupled identical nephrons)
at the points X, Y, and Z, marked in panel A. . . . . . . . . . . . . . 103

3.18 Root loci corresponding to coupled nephron B with nephron A having
fixed gain and delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.19 Root loci corresponding to two coupled nephron with identical gains
γ “ 1.5 and γ “ 5 as functions of delays τA and τB. . . . . . . . . . . 106

3.20 Oscillations in tubular fluid pressure, flow rate, and MD chloride con-
centration in nephron A of two coupled nephrons. . . . . . . . . . . . 109

3.21 Power spectra corresponding to oscillations in tubular fluid pressure
for two coupled nephrons (Fig. 3.20A) in linear ordinate. . . . . . . . 110

4.1 Time profiles for Y ptq with σ “ 0.05 and Cp1, tq for τ “ 0.15. . . . . . 139

4.2 Time profiles for Y ptq with σ “ 0.5 and Cp1, tq for τ “ 0.15. . . . . . 140

4.3 Time profiles for Y ptq with σ “ 0.01 and Cp1, tq for τ “ 0.21. . . . . . 141

4.4 The numerical simulation of (4.61) for τ “ τ0 ´ ε2 and δ “ .01. The
three choices of ε2 are .01, .002, and .0002. . . . . . . . . . . . . . . . 144

xii



4.5 Comparison of the invariant density ppxq for Up1, tq obtained from
(4.61) and (4.66) for different ε values . . . . . . . . . . . . . . . . . . 153

xiii



List of Abbreviations and Symbols

Symbols

R The set of real numbers

C The set of complex numbers

N The set of natural numbers

C The set of continuous functions

X The set of functions in Cpr0, 1sq ˆ Cpr0, τ sq

B The Banach space Cpr0, 1sq

H The Banach space Cpr0, 1s ˆ r0, T sq

Ω The sample space

F σ-algebra associated with Ω

P Probability measure function

E Expected value

Abbreviations

TGF Tubuloglomerular Feedback

AA Afferent Arterial

EA Efferent Arterial

PCT Proximal Convoluted Tubule

PST Proximal Straight Tubule

DL Descending Limb

xiv



TAL Thick Ascending Limb

DCT Distal Convoluted Tubule

MD Macula Densa

GFR Glomerular Filtration Rate

SNGFR Single Nephron Glomerular Filtration Rate

ATP Adenosine Tri-Phosphate

JGA Juxtaglomerular Apparatus

LCO Limit-Cycle Oscillation

CRA Cortial Radial Artery

SHR Spontaneously Hypertensive Rats

ODE Ordinary Differential Equation

PDE Partial Differential Equation

SDE Stochastic Differential Equation

SDDE Stochastic Delay Differential Equation

SPDE Stochastic Partial Differential Equation

xv



Acknowledgements

I would like to thank numerous people who have supported me during my five years

of graduate study at Duke University. First and foremost, I would like to thank

two of my advisors, Anita T. Layton and James Nolen. Dr. Layton has been a

wonderful mentor and has helped me to explore many interesting problems in math-

ematical physiology. I am grateful for her patience, enthusiasm, and tremendous

help. Dr. Nolen has been a great teacher for me to learn various subjects and has

helped me to go through a wide range of problems. I would like to express sincere

thank to him for his valuable discussion.

Many thanks also go to the other members of my dissertation committee, Michael

C. Reed and Thomas P. Witelski. Dr. Reed has been a great mentor from the

very beginning of graduate program, so I would like to sincerely thank him for his

willingness to listen to my concern and to guide me in the right direction. Also, I

would like to thank Dr. Witelski for his invaluable suggestion and help.

In addition to my research experience, I have enjoyed my many teaching op-

portunities at Duke University and I am thankful for the teaching mentorship of

Professors Lewis Blake, Jack Bookman, and Sarah Schott. I am also deeply grateful

to my fellow graduate students in the Mathematics Department at Duke University

for their collaboration and encouragement. I have been privileged to be supported by

several fellowships during my graduate study and I would like to thank the National

Science Foundation for support through a Mathematical Biology Research Training

xvi



Grant DMS-0943760 to the Department of Mathematics at Duke university as well

as support through grant DMS-1007572 to Dr. James Nolen, National Institutes of

Health for support through grant DK089066 to Dr. Anita T. Layton.

Finally, I would like to thank my family for their unconditional love and support.

My wonderful husband, Timothy Changwon Lee, has been a constant source of

encouragement and support for me to go through all the challenges of completing this

thesis. I am, in particular, grateful for his spiritual support through his continuous

prayer. I am also deeply grateful for my parents, sisters, and brother in South

Korea, and all of family-in-law here in Raleigh, NC. Without their faithful prayers,

this dissertation would have not been possible. Lastly, I would like to thank God for

his endless blessings and amazing love. All of the gifts and abilities he has provided

have enabled me to complete this dissertation.

xvii



1

Biological Background

In this chapter, we provide the biological background necessary to develop and un-

derstand our mathematical models of the tubuloglomerular feedback (TGF) in the

kidney. We start by describing basic anatomy of the fundamental unit of the kidney,

the nephron, and its functional properties. Then we explain renal autoregulation

and its associated mechanisms at the level of the nephron. Finally we provide an

overview of previous mathematical modeling studies in TGF.

1.1 The Nephron

The kidney plays a vital role in removing metabolic waste from the body while

maintaining whole-organism chemical and physical stability. In particular, the kidney

maintains a balance of volume, osmolarity, mineral composition, and acidity of blood

plasma within the narrow limits that are compatible with effective cellular function;

and the kidney participates in blood pressure regulation and in the maintenance of

steady whole-organism water volume (Eaton and Pooler (2004)).

Most of the basic renal regulatory functions are achieved by multiple mechanisms

that are associated with the individual functional unit of the kidney, called the
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nephron. Each rat kidney is composed of about 38,000 nephrons (Han et al. (1992));

each human kidney contains up to a million nephrons (Nyengaard and Bendtsen

(1992)). Each nephron consists of an initial filtering component called the renal

corpuscle and a renal tubule containing a U-shaped loop of Henle, which is specialized

for reabsorption and secretion.

Nephrons are classified depending on the location of their renal corpuscles and

the length of their associated loop of Henle. The renal corpuscles of all nephrons

are located in the cortex, which is the outer portion of the kidney. Short-looped,

or cortical, nephrons have their loop of Henle in the cortex and the outer medulla.

Specifically, depending on the relative location of their corpuscle within the cor-

tex, cortical nephrons are divided into two different nephrons: superficial cortical

nephrons with their renal corpuscle near the surface of the kidney and midcorti-

cal nephrons with their corpuscle deep down the cortex relative to the superficial

nephrons. Long-looped, or juxtamedullary, nephrons have their loop that extends

further into the inner medulla. Since many of transport properties of long-looped

nephrons in the inner medulla have not been well characterized, we will consider the

superficial, short-looped nephron based on its relatively well-discovered anatomic,

biochemical, and functional characteristics. A schematic diagram of a short-looped

nephron is shown in Fig. 1.1.

The renal corpuscle is the site of formation of the glomerular filtrate, and is com-

posed of a glomerulus and Bowman’s capsule. A glomerulus, labeled ‘G’ in Fig. 1.1,

is a ball-shaped structure composed of capillary blood vessels that is surrounded by

Bowman’s capsule. Blood enters and leaves Bowman’s capsule through an afferent

arterial (AA) and an efferent arteriole, respectively. Through glomerular capillaries,

approximately 20% of water and solutes in the blood are driven by pressure gradient

into the space formed by Bowman’s capsule. This filtrate then enters the first portion

of the nephron tubule. The remainder of the blood leaves each glomerulus through

2



the efferent arteriole.

G

AA

EA

MD

PCT

PST

DL

TAL

To DCT

Cortex

Outer
medulla

Figure 1.1: A schematic diagram of a short-looped nephron and its renal corpus-
cle, afferent arteriole (AA), and efferent arteriole (EA). Initially, blood enters via AA
into a spherical filtering component, the glomerulus (G), through which the filtrate
is generated and flows into the tubule. The first portion of the tubule, the proxi-
mal convoluted tubule (PCT), extends from the renal corpuscle and is followed by
proximal straight tubule (PST) and descending limb (DL). At the boundary between
outer and inner medullas, the terminal part of DL turns into the loop bend where
the thick ascending limb (TAL) begins to rise back into the cortex. The macula
densa (MD) cells located at the end of the TAL walls are adjacent to the AA and
sense the chloride concentration in the downstream fluid. Once it passes through the
MD, the fluid streams through the distal convoluted tubule (DCT) and flows into the
collecting duct system (not shown), where the formation of urine occurs. Reprinted
from Ryu and Layton (2013c).

One functional advantage of containing interconnected, narrow glomerular cap-

illaries in the glomerulus is its ability to filter large amount of blood relative to
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their mass while separating the filtrate from relatively large size of particles such

as large plasma proteins, making the glomerular filtrate nearly protein-free. Despite

the presence of smaller proteins such as many of the peptide hormones in the filtrate,

the total mass of them is negligibly small compared to that of large plasma proteins

within the blood (Eaton and Pooler (2004)).

A nephron tubule has walls made up of a single layer of epithelial cells and ex-

tends from the renal corpuscle into the proximal convoluted tubule, proximal straight

tubule, and descending limb. Following the loop bend, the thick ascending limb

(TAL) extends through the connecting tubule into the distal convoluted tubule that

is followed by the collecting duct system. See Fig. 1.1. The structural and functional

properties of those epithelial cells vary along the different segments of the tubule,

allowing each segment to participate in its primary transport processes.

The proximal tubule consists of a coiled segment, the proximal convoluted tubule

that is located in the cortex, and an outer medullary segment, the proximal straight

tubule, which terminates at the boundary between the outer and inner stripe within

outer medulla (approximately 0.6 mm from the cortico-medullary boundary). Along

the proximal tubule, about two thirds of the filtered water and NaCl are reabsorbed to

surrounding interstitial area (Young and Marsh (1981)), which eventually flows into

the general circulation. The next segment, the descending limb, has an initial water-

permeable segment, which spans the first „60% of the inner strip, and a terminal

water-impermeable segment (Wade et al. (2000)), which spans the remainder of the

inner strip. Beyond the terminal part of the descending limb, the TAL, which is water

impermeable, rises back into the cortex, returns into Bowman’s capsule, and passes

by the afferent and efferent arterioles. Segments containing both the descending limb

and TAL are called the loop of Henle. The macula dense (MD) cells, located at the

end of the TAL walls and adjacent to the AA, are specialized in sensing the chloride

concentration in the downstream fluid.
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1.2 Autoregulation

The water volume and blood pressure regulation in the kidney begins with the forma-

tion of the glomerular filtrate. The volume of filtrate formed per unit time is called

the glomerular filtration rate (GFR) and, in particular, GFR in single nephron is

known as the single nephron GFR or SNGFR which is of„30 nl/min in a short-looped

nephron of normal rats. The level of GFR is dependent on capillary hydrostatic

pressure that is significantly influenced by arterial blood pressure. A higher GFR

increases the tubular fluid flow rate, resulting in a rise in the distal fluid and sodium

delivery. To keep the GFR at an appropriate level and regulate the water-volume of

the body, the kidney operates several mechanisms to achieve renal autoregulation.

One such regulatory mechanism is the myogenic response, which is characterized

by a constriction (or dilation) of the AA vessels in response to an increase (or de-

crease) of transmural arterial pressure (Loutzenhiser et al. (2002)). The myogenic

response, an intrinsic property of smooth muscle along the pre-glomerular vascula-

ture, acts as a fast mediator. For example, once an increase in arterial blood pressure

is sensed, this mechanism shortly induces a vasoconstriction of the AA vessel, via

a depolarization of AA smooth muscle cells, to increase vascular resistance, thereby

reducing intravascular pressure downstream.

The second mechanism is a negative feedback system, called the tubuloglomerular

feedback (TGF), by which the nephron controls the incoming blood flow from the

AA, and thus GFR to stabilize the fluid and solute delivery into the distal nephron.

TGF operates as a slow mediator of GFR relative to myogenic response and modifies

the muscle tension in the AA, according to the level of chloride concentration in

the fluid leaving the loop of Henle. Several other mechanisms (Just (2007); Ren

et al. (2007); Siu et al. (2009)), which are not well characterized, exist, but they are

generally known to make a minor contribution to autoregulation.
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The two major autoregulatory mechanisms, the myogenic response and TGF,

operate together to substantially attenuate the fluctuations present in the blood

flow by changing the muscle tone of the AA. Specifically, both of these responses

affect the intravascular fluid pressure along pre-glomerular vasculature, regulating

the amount of the blood flowing into the filtering component. By these means,

the kidney protects the glomerular capillaries from excessive variations in arterial

blood pressure, thus maintaining GFR within a range that is compatible with the

glomerular filtering capacity.

1.3 Tubuloglomerular Feedback

1.3.1 Dynamic properties of tubuloglomerular feedback

The TGF system is a unique renal regulatory mechanism for GFR in a nephron (or

SNGFR), in which information of the tubular fluid flow rate can be transferred to

the glomerulus to stabilize variations in tubular flow. This process is known to be

involved with a primary signal and its signaling agent. A specialized cluster of cells,

MD, which are located in the tubular walls near the end of TAL, acts as the signaling

agent to detect changes in the chloride concentration near the MD and to report this

information to the glomerulus to consequently adjust SNGFR.

The TGF response is initiated by the deviation in the MD chloride concentra-

tion, which directly depends on TAL fluid flow rate. Because the water-impermeable

TAL actively transports NaCl out of the luminal fluid by transepithelial transport

processes, low flow rate along the TAL allows more reabsorption of chloride ions

(Cl´) into the surrounding interstitium. This results in the decreased chloride con-

centration at the MD. Once MD chloride concentration is below a target value, MD

cells detect the deviation and produce signals that affect the smooth muscle cells

of the adjacent AA to induce vasodilation, resulting in an increase in the diameter

of AA vessel. This then reduces the intravascular resistance downstream, causing
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an increase of blood flow into the glomerulus and consequently of higher SNGFR.

More fluid flowing into the tubular system increases TAL flow rate and yields a rise

in MD chloride concentration due to less chloride reabsorption along the TAL. In

the case where the MD chloride concentration exceeds the target value because of

high TAL flow, the effect of MD response is opposite. Once the AA constricts, the

pre-glomerular vascular resistance rises, thereby reducing intravascular downstream

flow rate. This results in a reduction in SNGFR, leading to the decreased TAL flow

rate, by which the MD chloride concentration decreases to the target value again.

By this negative feedback mechanism, the TGF system attenuates variations in the

tubular system and, thus, effectively regulates SNGFR.

1.3.2 Feedback delay

The TGF response for SNGFR to the changes in MD chloride concentration is not

instantaneous, but rather delayed relative to the time when an initial perturbation in

MD chloride concentration occurs. This TGF delay is caused by signal propagation

via a series of different biological events. Its primary source is the time needed for

the AA to constrict or dilate in response to the signal, produced by a release of

adenosine triphosphate (ATP), from the MD.

One major difficulty in experimentally assessing the delay measurement or the

dynamics of the MD response in 1980s and early 1990s was the inaccessibility of

the juxtaglomerular apparatus (JGA) (Holstein-Rathlou and Marsh (1994b)). The

JGA is a highly complex structure consisting of three cell types: juxtaglomerular,

extraglomerular mesangial, and MD cells. Several layers of extraglomerular mesan-

gial cells separate the AA from the MD cells. Despite the difficulty of studying the

detailed cellular interactions within the JGA, a number of in vivo and in vitro mi-

cropuncture studies (e.g. Young and Marsh (1981); Persson et al. (1991); Bell et al.

(1991)) have been alternatively conducted to identify the basic characteristics of the
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TGF mechanism. Moreover, many of modern imaging techniques, such as two- or

multi-photon fluorescence microscopy (e.g. Dunn et al. (2002); Peti-Peterdi et al.

(2002); Yu et al. (2005); Kang et al. (2006)), have since been developed to provide

more accurate pictures of the underlying mechanism for the TGF regulation. With

an aid of those imaging work, in vivo dynamic processes and multiple regulatory

functions in the kidney can be visualized with high optical resolution.

An experimental development to measure the AA response by Casellas and Navar

(1984) and a subsequent study by Casellas and Moore (1990) have shown that the

average time for the full activation of the TGF response, i.e., a rapid decrease (or

increase) in the diameter of the AA caused by increased (or decreased) MD chloride

concentration, is „4–5 s. Specifically, results of Casellas and Moore (1990) have

indicated that the intravascular diameter begins to change after a discrete (or pure)

delay time, followed by subsequent effect that requires additional time delay, called

distributed (or filtered) delay. A previous modeling study by Pitman et al. (1993)

has shown that the bifurcation loci separating different dynamic behaviors of the

TGF system with the combined effect of pure and distributed delays remain nearly

same as those of the system with the pure delay only. Based on these experimental

and modeling observation, the feedback delay in our study will be represented by the

pure delay.

In addition to the TGF time delay, a full response of MD chloride concentra-

tion to TGF-mediated SNGFR through the tubular system, called the transit time,

is typically measured to be 8–10.5 s in experiments (Holstein-Rathlou and Marsh

(1989)). Although most of important qualitative features of the AA response to MD

chloride concentration within TGF activation have been well discovered, each indi-

vidual step involved in the signal transmission pathway from the MD to the AA and

its corresponding detailed dynamics have not been fully elucidated in experimental

studies.
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1.3.3 Experimental and modeling evidence of tubuloglomerular feedback

Early experiments in normotensive rats (Leyssac and Baumbach (1983); Leyssac

and Holstein-Rathlou (1986)) have demonstrated that the feedback regulation can

become unstable and generate self-sustained oscillations in proximal tubular pressure

and related variables in the nephron with a typical period of 30–40 s (Holstein-

Rathlou and Marsh (1990)). Later experimental studies have also indicated that the

emergence of regular oscillations in nephron flow is a consequence of TGF activation

(Holstein-Rathlou and Marsh (1989, 1994b)).

To better understand the phenomena that have been reported in the above ex-

perimental studies, a series of mathematical models for the TGF system in a single

nephron of the kidney have been developed (Jensen et al. (1986); Holstein-Rathlou

and Leyssac (1987); Holstein-Rathlou and Marsh (1990); Layton et al. (1991, 1995);

Budu-Grajdeanu et al. (2007); Layton (2010)). These model results have shown that

TGF-mediated oscillations arise from a Hopf bifurcation; if the feedback-loop gain

or feedback delay becomes sufficiently large, the dynamic state of nephron changes,

i.e., from one type of stable solution (e.g., a time-independent steady state) to an-

other type of stable solution (e.g., limit-cycle oscillation (LCO)). For example, if the

feedback delay exceeds its critical threshold, a feedback loop may lose its stability so

that the stable behavior of the TGF system becomes a sustained oscillation.

1.3.4 Interaction between neighboring nephrons

Most of early experiments developed to investigate the role of TGF control in the

renal regulatory function generally assumed that the TGF response in each nephron

is independent of that in other nephrons, excluding the possibility that interaction

among nephrons can occur and affect the overall response of the kidney. However,

many experimental studies for tubular pressure oscillations in neighboring nephrons

(Holstein-Rathlou (1987); Källskog and Marsh (1990); Holstein-Rathlou et al. (2001))
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have indicated that the interaction between nephrons arising from the common corti-

cal radial artery (CRA) may exist, considerably affecting qualitative features of TGF-

mediated dynamics in nephrons such as the emergence of synchronization. Moreover,

in a comparison study between normotensive and spontaneously hypertensive rats

(SHR), Yip et al. (1992) showed clear evidence that suggests nephrons originating

from the same artery interact with each other.

In addition to the presence of interactions among neighboring nephrons, tubular

pressure oscillations in SHR appear as highly irregular fluctuations that exhibit a

high degree of spectral complexity with multiple strong peaks in the range of „10–

50 mHz, exhibiting characteristics similar to deterministic chaos (Holstein-Rathlou

and Leyssac (1986, 1987); Yip et al. (1991)). That irregularity of oscillations in SHR

is a notably different feature compared to oscillations in normal rats, in that the

latter exhibit regular with one sharp peak in the power spectrum. Also, coupling

effect among nephrons in SHR is known to be stronger than in normotensive rats

(Chen et al. (1995); Wagner et al. (1997)). For the study of the emergence of irregular

oscillation observed in SHR, it has been suggested that those irregular oscillations

arise, in part, from the interactions between nearby nephrons through their TGF

systems, i.e., internephron coupling (Layton et al. (2006, 2009)). Specifically, the

coupling effect is mediated by propagation of TGF-induced electrotonic signals along

the pre-glomerular vasculature, as observed in experiments (Holstein-Rathlou (1987);

Källskog and Marsh (1990); Yip et al. (1992)). For instance, if two AAs associated

with two nephrons share a common CRA, then the contraction of one nephron’s AA

likely causes the other AA to contract. A schematic representation of two coupled

nephrons is illustrated in Fig. 1.2.
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Figure 1.2: A schematic diagram of two short-looped nephrons and their renal cor-
puscles, afferent arterioles (AA), and efferent arterioles (EA). The nephrons receive
blood through their AAs that are connected with a small connecting artery (un-
labeled), arising from a common cortical radial artery (CRA). Through a filtering
component, the glomerulus (G), the filtrate from blood plasma is formed and flows
into a tubule consisting of the proximal convoluted tubule (PCT), proximal straight
tubule (PST), descending limb (DL), and the thick ascending limb (TAL). Once the
fluid reaches the terminal part of the TAL, to which the AA is adjacent, the macula
densa (MD) cells at the tubular walls sense the chloride concentration and produce
a signal that modifies the smooth muscle tension of AA. This signal electrotonically
propagates to the smooth muscle cells of the neighboring AA, affecting fluid dynam-
ics along that tubule. The fluid continues to flow into the distal convoluted tubule
(DCT) and enters the collecting duct system (not shown), where the formation of
urine occurs. Reprinted from Ryu and Layton (2013b).
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1.4 Previous Mathematical Models

1.4.1 Tubuloglomerular feedback operation

The emergence of oscillations in the tubular fluid pressure and flow rate of the rat

kidney’s nephron was first demonstrated by Leyssac and Baumbach (1983). Based

on this observation, a number of modeling studies (Jensen et al. (1986); Holstein-

Rathlou and Leyssac (1987); Pitman and Layton (1989); Holstein-Rathlou and Marsh

(1990); Layton et al. (1991); Holstein-Rathlou and Marsh (1994a); Barfred et al.

(1996); Pitman et al. (2002); Ditlevsen et al. (2005, 2007); Layton (2010)) have

since been conducted to show that those oscillations arise from the TGF operation.

Although each model’s emphasis differs from each other, one common goal of those

studies was to identify the important parameters that determine the qualitatively

different behaviors, i.e., the generation of sustained oscillations, and to show the

systematic dependence of the stability for the TGF system on the parameter values

within the physiologic range.

Holstein-Rathlou and collaborators first developed a relatively simple model of

the TGF system (Jensen et al. (1986); Holstein-Rathlou and Leyssac (1987)), which

includes a quasi-steady-state description of the GFR based on the previous mod-

els by Deen et al. (1972); Jensen et al. (1981). The delay, which was assumed to

arise from both the signal transmission from MD to AA and the signal propagation

through the tubular system (Marsh (1982)), was modeled by a third-order delay (lag)

function, a linear system of three coupled-differential equations. The AA response

to the MD signal and the TGF activation were described by a second-order ODE

and an empirical relation for the steady-state feedback response (Briggs and Schner-

mann (1987, 1990)), respectively (Holstein-Rathlou and Marsh (1994b)). The model

revealed a variety of qualitatively different TGF-mediated dynamic behaviors that

are consistent with experimental observation. Specifically, model results indicated
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that the strength of the feedback gain and the length of the feedback delay can be

important bifurcation parameters in determining the stability of the feedback loop

(Holstein-Rathlou and Leyssac (1987)).

A subsequent mathematical model (Holstein-Rathlou and Marsh (1990)) ex-

tended the above-mentioned model to explicitly represent the detailed dynamics

of the fluid and solute transport processes along the tubular system. Based on a

reduced version of Navier-Stokes equation to describe the tubular fluid pressure and

flow rate previously introduced by Young and Marsh (1981), and a mass conservation

equation to describe the motion of the chloride ions in the fluid, the model consis-

tently predicted the phase relations between the tubular fluid pressure, flow rate, and

the MD chloride concentration (Holstein-Rathlou and Marsh (1990)) as well illus-

trated in their experimental data (Holstein-Rathlou and Marsh (1989)). Using this

model formulation, they then thoroughly examined the role of the TGF system in the

context of autoregulation of renal blood in comparison to the experimental results

(Holstein-Rathlou and Marsh (1994a)). Bifurcation analysis of nephron pressure

and flow regulation was also conducted to investigate how the dynamic behaviors of

the detailed TGF model systematically depend on important bifurcation parameters

such as the feedback gain and delay (Barfred et al. (1996)).

In a more recent study using the model (Holstein-Rathlou and Marsh (1990)), a

different approach to assess the role of TGF mediation in regular and irregular os-

cillations was obtained by Ditlevsen et al. (2005, 2007). A key parameter, TGF gain

value, in determining the stability of the feedback system was assumed to undergo

abrupt changes over time due to various external perturbations such as heart beat,

blood pressure, and hormone levels; thus, to be modeled by a random (stochastic)

process (Ditlevsen et al. (2005)). The previous deterministic TGF models in a single

nephron (Holstein-Rathlou and Marsh (1990, 1994a)) assumed the constant or dis-

crete TGF gain value and predicted only regular tubular pressure oscillations with
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constant period and amplitude, given the parameters within the physiologic range.

In contrast, this stochastic model reproduced irregular behaviors in model solutions

as demonstrated in the experimental data of SHR. The model results, thus, suggested

that the irregular characteristics observed in nephron’s flow of SHR may be explained

by the intrinsic noise present in the TGF bifurcation parameters (Ditlevsen et al.

(2005)).

Another TGF model for a short-looped of Henle having rigid walls was developed

by Pitman and collaborators (Pitman and Layton (1989)). The model, which rep-

resented the interactions of the descending limb, TAL, and collecting duct system,

was formulated based on a single-solute dynamic model for a short-looped nephron

in the renal medulla (or called a central core), originally introduced by Stephenson

(1972). This model was similar to the model by Holstein-Rathlou and Marsh (1990)

in that the detailed dynamics along the short-looped of Henle were explicitly rep-

resented to study the TGF operation in response to perturbations in MD chloride

concentration. However, unlike the model by Holstein-Rathlou and Marsh (1990),

the proximal tubule was not explicitly incorporated and the dynamics of the AA

and glomerulus were described using a relatively simple resistance network in the

model by Pitman and Layton (1989). Regardless of these differences, model results

exhibited sustained oscillations in the tubular system as a result of sufficiently long

feedback delay, as similarly discovered in the results by (Holstein-Rathlou and Marsh

(1990)) and experiments.

The TGF model by Pitman and Layton (1989) included the detailed TGF-

mediated dynamics but their model results fully relied on numerical simulations

owing to the complication of the model formulation. To alleviate this complication,

they instead introduced a minimal or rigid-TAL model of the TGF system (Layton

et al. (1991)), in which the dynamic behaviors of the chloride concentration in the

rigid-TAL were modeled, as a key component, to study the TGF-mediated tubular
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oscillations. The model formulation was based on the observation that TGF response

is initiated by perturbations present in the tubular fluid chloride concentration at the

MD (Schnermann and Briggs (2008)). By means of linear stability and bifurcation

analyses, they showed that the model exhibits qualitatively important features of

the TGF system, specifically sustained tubular flow oscillations for sufficiently long

delay, which are in good agreement with experimental evidence and model results by

Holstein-Rathlou and Marsh (1990). Because of its simplicity which makes a more

comprehensive analysis possible, the minimal model has been widely used in their

following studies. For example, the role of feedback loop gain and delay in determin-

ing the stability of the TGF system (Pitman et al. (1993); Layton et al. (1995)), the

nonlinear filter properties of the TGF loop (Layton et al. (1997a,b)), and the effect

of TGF-mediated LCO in the distal fluid and NaCl delivery (Layton et al. (2000))

were subsequently investigated.

To further facilitate computational simplicity, a reduced integral model (Pitman

et al. (2002)), a simplification of the minimal PDE model (Layton et al. (1991)),

was also derived. Given the assumption of no NaCl backleak along the TAL, they

obtained a functional ODE arising from the linearization of the original PDE. Both

models yielded the identical characteristic equation, indicating that the reduced in-

tegral model has qualitatively similar behaviors to the minimal model if bifurcation

parameters are near their respective critical values. These results combined with sig-

nificantly reduced computational cost suggested that the reduced integral model can

be alternatively used for the study of large systems of the coupled-nephrons (Pitman

et al. (2002)). However, because of the assumption on zero diffusion permeability,

which was critical for its derivation, the integral model cannot be used to study the

case of nonzero NaCl backleak along the TAL unlike the minimal model.

The minimal model (Layton et al. (1991)) consists of only simple components,

the detailed transport processes along the TAL only, to study the TGF-mediated
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dynamics. Specifically, the TAL walls were assumed to be rigid and only the chlo-

ride ion was explicitly represented to describe a single solute in the TAL fluid with

constant volumetric flow rate, which was prescribed by a fixed fraction of SNFGR.

In vivo, however, the TAL is likely subject to transmural fluid pressure, for which

it may expand or contract to consequently affect TAL fluid pressure, flow rate, and

the overall TAL dynamics.

To resolve the rigid-tube assumption and assess the impact of the compliant wall

movement on the TGF-mediated dynamics, Layton (2010) recently developed an

extended TGF model, in which the TAL fluid pressure and flow rate are directly

computed to determine the chloride concentration along the compliant TAL. Results

of bifurcation analysis demonstrated that, given a set of the parameter values within

the physiologically relevant range, a variety of different dynamic behaviors become

attainable, as similarly shown in Layton et al. (1991) and in previous experiments.

Specifically, a comparison of bifurcation diagrams that illustrate qualitatively differ-

ent model behaviors between the rigid- and compliant-TAL models, suggested that

the compliance of the TAL walls reduces the stability of the model TGF system

(Layton (2010)), as can be shown by the decreased parameter region supporting the

steady-state solution.

More recently, Layton et al. (2012a) thoroughly investigated nonlinear properties

of the TGF loop using the compliant-TAL model (Layton (2010)). Model results

were consistent with those of similar TGF models, which explicitly included the

compliant tubular walls in the model formulation (Young and Marsh (1981); Sakai

et al. (1986); Holstein-Rathlou and Marsh (1990)), that high-frequency pressure per-

turbations present in SNGFR are damped at the MD more than low-frequency per-

turbations, indicating that a compliant TAL operates as a low-pass filter for pres-

sure oscillations (Layton et al. (2012a)). However, due to the differences in TAL

fractional chloride reabsorption and TAL flow rate, the nonlinearity in TGF trans-

16



duction, i.e., the degree of waveform distortions in MD chloride concentration, was

more marked in model results by (Layton et al. (2012a)) than (Holstein-Rathlou and

Marsh (1990)).

1.4.2 Tubuloglomerular feedback in coupled-nephron system

Interactions between nephron pairs in coupled-nephron system have been investi-

gated in a series of modeling studies by Holstein-Ratholu and coworkers (Holstein-

Rathlou et al. (2001); Andersen et al. (2002); Sosnovtseva et al. (2003); Marsh et al.

(2005a,b, 2007, 2013)). These studies include a vascular coupling on TGF-mediated

dynamics to explain the mechanisms responsible for behaviors observed in experi-

mental data from normal rats and SHR.

Early modeling studies (Holstein-Rathlou et al. (2001); Andersen et al. (2002);

Sosnovtseva et al. (2003)) have developed a model of two coupled nephrons, based

on the single-nephron model of Barfred et al. (1996) that provides a detailed repre-

sentation of the nonlinear phenomena arising from the response of AA to the TGF

mechanism. Although their coupled-nephron model includes an explicit represen-

tation of hemodynamic and vascular coupling along the renal microvasculature, it

represents the dynamics of the individual nephron with relatively simple formula-

tion of three first-order ODEs. Despite its simplicity, the model demonstrated that

internpehron coupling can introduce the complexity in TGF-mediated model behav-

iors, e.g., irregular oscillations, in nephron tubular pressure similar to those found in

SHR.

In recent studies, Holstein-Ratholu and coworkers extended the above-mentioned

early model to include a detailed representation of interactions between TGF and

the myogenic mechanism (Marsh et al. (2005a,b, 2013)) and to represent a system of

many nephrons, a multinephron network, each of which is supplied with blood from a

common CRA (Marsh et al. (2007, 2013)). Although there are substantial differences
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in the scope of each modeling study, all of those studies consistently predicted in-

phase, anti-phase (out-of-phase), and even chaotic phase synchronization as well as

irregular oscillations in coupled-nephron behaviors within physiologically realistic

parameter regimes, as can be similarly observed in nephron’s behaviors of SHR.

Pitman and coworkers developed the coupled-nephron model for two nephrons

(Pitman et al. (2004)), each of which includes relatively simple but key components

for the TGF system, based on their previous rigid-TAL model (Layton et al. (1991)).

As in the single-nephron model, the systematic dependence of the stability for the

coupled-TGF system on the important bifurcation parameters was analogously iden-

tified by means of bifurcation analysis. Model results indicated that the region

supporting oscillatory solutions increases with internephron coupling (Pitman et al.

(2004)). Although their model included a detailed representation of tubular trans-

port processes in each nephron, the structural components of AA, glomerulus, and

EA were not explicitly included unlike models by Holstein-Ratholu and coworkers.

Specifically, as a result of the lack of hemodynamic coupling effect in model formula-

tion, the model by Pitman et al. (2004) predicted only in-phase regular oscillations.

Another assumption made in the model by Pitman et al. (2004) was zero NaCl

backleak along the TAL, simplifying the derivation of characteristic equation for two-

coupled nephrons. However, experimental evidence obtained by Mason et al. (1979);

Wittner et al. (1988) indicated that the TAL is NaCl permeable with a low but

nonzero diffusion permeability. To assess more realistic effects of chloride diffusion

on coupled-TGF system, Hattaway (2004) developed a TGF model of two coupled

nephrons with nonzero NaCl diffusion parameter unlike (Layton et al. (1991); Pit-

man et al. (2004)) but with appropriate external chloride concentration adapted

from (Kevrekidis and Whitaker (2003)) so that the steady-state chloride concentra-

tion profile is consistent with experimental data. Hattaway’s model predicted that

nonzero (or increased) diffusion permeability results in the enlarged parameter re-
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gion that corresponds to the stable steady-state solution, which is consistent with

numerical results previously shown in (Layton et al. (1991)).

The coupled-nephron model was further extended to a system of coupled-nephrons

(Bayram (2006); Bayram et al. (2009)). Based on the reduced integral equation

(Pitman et al. (2002)) with zero diffusion permeability, model results consistently

supported the previous finding that internephron coupling tends to increase the like-

lihood of LCO in the coupled-TGF system. However, due to the lack of the detailed

representation of the dynamics along the microvasculature, only regular oscillations

were predicted in the model simulations similar to the results by Pitman et al. (2004).

Layton and coworkers (Layton et al. (2006, 2009)) developed another model of

many coupled-nephrons, based on the rigid-TAL model (Layton et al. (1991)) but

with nonzero NaCl diffusion permeability, to examine the role of internephron cou-

pling in the emergence of complex dynamic behaviors that have been reported in ex-

perimental studies of SHR. They derived the characteristic equation for two coupled-

nephrons with different combinations of parameter values such as TGF gain, delay,

TAL transit time, and NaCl diffusion parameter (Layton et al. (2009)), and found

corresponding roots of that equation as in a single-nephron model (Layton et al.

(1991)). Model results demonstrated that the coupled-TGF system exhibits substan-

tially increased multistability in its solution behaviors compared to the uncoupled

TGF system (Layton et al. (2006, 2009)). In addition, their model suggested that

nonzero NaCl permeability increases the parameter region where the steady-state

behavior is supported (Layton et al. (1991, 2006, 2009)), which is consistent with

the previous finding by Hattaway (2004).

As noted above, most of previous coupled-nephron models by Pitman’s and Lay-

ton’s groups were developed based on the single-nephron rigid-TAL model (Layton

et al. (1991)); the impact of compliant TAL walls on the coupled-TGF system was

not explicitly incorporated in those models. To describe physiologically more real-
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istic coupled-TGF system with tubular compliance, Layton and coworkers (Layton

et al. (2011)) further developed a model of two coupled nephrons, each of which is

modeled based on their previous compliant-TGF model in a single (or uncoupled)

nephron (Layton (2010)). Results of bifurcation analysis of the corresponding char-

acteristic equation for two-coupled TALs with supplemental numerical simulations

demonstrated that both compliance of TAL walls (Layton (2010)) and internephron

coupling (Pitman et al. (2004); Layton et al. (2006, 2009)) significantly reduces

the stability of coupled-TGF system. Moreover, their model reproduced irregular

tubular flow oscillations with a high degree of spectral complexity in the physio-

logic parameter range, supporting the previous finding by Layton et al. (2006, 2009)

that internephron coupling contributes to the complex model behaviors exhibited in

nephron’s flow of SHR.

1.5 Stochastic Model

Feedback delays play a fundamental role in determining qualitatively and quantita-

tively different TGF-mediated dynamic behaviors as demonstrated in previous TGF

modeling studies. Specifically, the length of feedback delays can be an important

bifurcation parameter to affect the stability of the TGF system; for a fixed feedback

gain value within the physiologic range, the feedback loop may lose the stability to

exhibit stable sustained oscillations as the delay exceeds its critical threshold.

Most of previous TGF models have been formulated in the deterministic setting,

excluding the possibility of the presence of external random effects. In vivo, however,

the TGF system is likely subject to a variety of continuous external perturbations, for

example, arising from the breathing activity and heart movement. Those (unknown)

effects, generally called noise, may interact with the deterministic TGF dynamics to

generate significantly rich and complex behaviors that would have not been appeared

in the deterministic system. Specifically, even though the parameter values of the
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deterministic TGF system lie in the steady-state regime, the introduction of noise

may induce sustained oscillations in model solutions, so-called stochastic resonance,

as a result of the interaction with delay. To assess how the stability of TGF system

is affected by unknown external sources, it is, thus, essential to thoroughly examine

the role of noise interacting with the delay in the TGF-mediated dynamics.

The role of time delay which is one of the key parameters in determining dynamic

behaviors has been investigated in a number of different biological and engineering

problems, such as neuronal networks (Beuter et al. (1993); Crook et al. (1997); Er-

mentrout and Ko (2009); Gils et al. (2013)), cellular replication (Mackey and Rud-

nick (1994)), machine tool vibrations (Buckwar et al. (2006)), and coupled oscillators

(Kim et al. (1997); Choi et al. (2000); Earl and Strogatz (2003)). Specifically, the

interaction of delays with noise that represents external fluctuations, in the context

of stochastic resonance, has been an important subject for understanding delayed

feedback mechanisms.

To study the influence of noise in stochastic delayed dynamical systems, a variety

of numerical studies have been developed; however, only a few analytical approaches

have been attempted to describe the dynamics due to the difficulty of rigorous anal-

ysis. One of widely used analytic tools to study the solution behaviors is multiscale

analysis, in which slow-scale variable that is independent of fast-scale variable is

introduced and a leading order approximation to the solutions is subsequently de-

rived. This method has been also used in many deterministic models with delays

(Giacomelli and Politi (1998); Pieroux et al. (2000); Das and Chatterjee (2002)) and

stochastic models without delays (Yu et al. (2006); Kuske et al. (2007)).

Kuske (2003) first developed the multiscale approach for stochastic differential

equation (SDE), specifically, stochastic Duffing-van der Pol equation. Kuske showed

that multiscale method provides an efficient way to analyze the dynamics where

the amplitude of oscillations corresponding to the deterministic system near Hopf
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bifurcation slowly varies due to the influence of noise (Kuske (2003)). By deriving

the slowly varying amplitude equation according to a stochastic process, a leading

order approximation of the solution was obtained. This approach enables one to

better understand the systematic dependence of the stability of the system, i.e., the

generation of sustained oscillations, on important parameters.

Based on this observation, Kuske and collaborators (Kuske (2005); Klosek and

Kuske (2005)) considered both linear (with additive as well as multiplicative noise)

and logistic (with additive noise) stochastic delay differential equation (SDDE). For

example, the linear SDDE with additive noise studied in (Klosek and Kuske (2005))

is given by

dx “ r´αxptq ` βxpt´ τqsdt` δdW ptq,

τ “ τ0 ` ε
2τ1,

where α ą 0 and β ă 0 are constants, W ptq is an one-dimensional Brownian motion,

τ0 is the critical value of the delay in the deterministic system, and ε ! 1 is used

to measure the proximity of the delay to its critical value with an Op1q constant,

τ1 “ ´1. They looked for the leading order approximation of the solution with the

form

x „ x̂ “ ApT q cosωt`BpT q sinωt, T “ ε2t,

where ApT q and BpT q are functions of a slow time T , which is treated as independent

of a fast-time variable t, and ω represents the natural frequency of the oscillation

associated with the bifurcation of the deterministic system. Moreover, the equations

for A and B were assumed to have the following SDEs:

dA “ ψAdT ` σAξ1pT q,

dB “ ψBdT ` σBξ2pT q,

where ψi and σi for i “ A,B are unknown constants to be determined, and ξipT q

for i “ 1, 2 are independent Brownian motions with respect to a slow time variable
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T . Using asymptotic expansions and multiscale techniques, the above stochastic

envelops or amplitudes of deterministic oscillations, i.e., ApT q and BpT q, which ap-

proximate the solution behaviors over long time scales, were rigorously derived. Al-

though their analytical results describe the detailed stochastic dynamical behaviors

near bifurcations of the system, their model equation as a simple first-order differ-

ential equation was not specifically related to a biological system with delays, but

rather intended to consider a general case of the delayed feedback system.

Another multiscale-analysis study was conducted by Blömker et al. (2007), in

which SPDE without the delay arising from modeling surface phenomena was con-

sidered. They rigorously obtained the amplitude equation of the solution, which

stochastically varies on a slow time variable, under the assumption that the noise

acts only on the stable modes and the proximity of the delay to its critical value is

sufficiently small relative to the strength of the noise (Blömker et al. (2007)). Apply-

ing the multiscale techniques, they showed that noise that only acts on the fast-scale

dynamics also affects the slow-scale dynamics, resulting in a diffusion effect on the

amplitude equation.

1.6 Introduction to Subsequent Chapters

In this section, we provide the motivation of the development of three TGF models

in relation to previous experimental and modeling studies, and describe each model’s

emphasis and main goal.

We first consider the TAL model which explicitly represents the detailed TAL

dynamics with spatially inhomogeneous TAL’s luminal radius and maximum NaCl

transport rate to study the impact of those inhomogeneity on the stability of the

TGF system. By means of bifurcation analysis for a characteristic equation that

corresponds to a linearized model and with numerical simulations using the full TGF

model equations, we thoroughly examine how the stability of the TGF dynamics
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is affected by TAL physical and transport inhomogeneous properties. The TAL-

model formulation is based on experimental evidence, indicating that TAL radius and

maximum transport rate vary along the TAL, i.e., spatially inhomogeneous (Knepper

et al. (1977); Garg et al. (1982)). Because of this spatial dependence, TAL model

extends the previous TAL-only models (Layton et al. (1991); Layton (2010)), in

which the TAL’s luminal radius and maximum NaCl transport rate were assumed to

be spatially homogeneous.

Despite an inclusion of the spatial inhomogeneous TAL properties, the above-

mentioned TAL model explicitly represents the TAL only; the dynamic behaviors

along the proximal tubule and the descending limb are represented by means of

simple, phenomenological relations. In our next modeling study, we extend our TAL

model to include an explicit representation of the entire short loop of Henle and we use

the resulting model, which we call short-looped nephron model, to better understand

factors that impact the stability of the TGF system. Specifically, using this whole-

nephron representation, we study how tubular fluid and chloride delivery are affected

or mediated by the TGF system. The effects of sustained flow perturbation on the

TGF autoregulatory mechanism are also investigated.

The previous study of coupled nephrons (Layton et al. (2011)) represents two

nephrons, each of which explicitly includes the compliant TAL only based on the (un-

coupled) TAL model (Layton (2010)). To better understand the impact of transport

processes along the proximal tubule and descending limb as well as of internephron

coupling on overall coupled-TGF system, we extend the (uncoupled) short-looped

nephron model, to include two nephrons coupled through their TGF systems. With

this coupled-nephron model, we aim to investigate (1) how coupling may impact the

TGF-mediated dynamics of the single-nephron model, and (2) to what extent cou-

pling contributes to the complexities in TGF-mediated model behaviors, as have

been observed in SHR (Layton et al. (2006, 2009, 2011)).
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To answer above questions, we analyze the model by means of linearization and

numerical simulations, as in our TAL model. Finding roots of corresponding char-

acteristic equation for the coupled-TGF model equations, we systematically identify

how qualitatively different model behaviors are determined dependent on physiolog-

ical model parameters. Also, we show how complex model behaviors, i.e., irregular

TGF-mediated oscillations, emerge and how the region supporting multistable LCO

is affected in the presence of internephron coupling.

Based on model results from the above-mentioned three TGF modeling studies,

we then develop the stochastic model to study the effect of noise on the stability of

TGF system. We are specifically interested in how the feedback delay interacts to the

external noise to determine the stability of TGF-mediated dynamics. We begin with

a time-delayed transport equation to represent the dynamics of chloride concentration

in the rigid-TAL fluid. We first show the existence and uniqueness of the steady-state

solution for the deterministic Dirichlet boundary problem. Using bifurcation analysis

in which the critical delay can be explicitly found, we determine the stability of the

steady-state solution dependent on the feedback delay. An alternative way to show

the systematic dependence of the stability on delays will be also considered via the

contraction mapping theorem. Applying similar analytic techniques that are used

for the deterministic system, we then extend our analysis to the stochastic system

with random boundary conditions; we provide an analogous proof for the existence

and uniqueness of the statistically stationary solution for sufficiently small feedback

delay.

Finally we conduct multiscale analysis for a linear time-delayed transport equa-

tion. We are particularly interested in the case when the system is in the subcritical

region but close enough to the critical delay to investigate how the noise can interact

with the delay of system, affecting overall behaviors of solutions, e.g,. the generation

of oscillatory solutions that would not appear in the deterministic system. Using mul-

25



tiscale analysis as well as asymptotic expansions, we derive approximate stochastic

(reduced) equations for the amplitudes of solutions near the critical delay.

In sum, Chapter 2 provides respective description of the above-mentioned three

different TGF models, TAL, short-looped nephron, and coupled-nephron. The re-

spective model results and analysis are summarized in Chapter 3, which are adapted

from the published results in Ryu and Layton (2013a) (TAL model), Ryu and Lay-

ton (2013c) (short-looped nephron model), and Ryu and Layton (2013b) (coupled-

nephron model) after minor changes with permission of reprints. Chapter 4 describes

analytical and numerical results for stochastic model. Discussion of model results

and future research work is given in Chapter 5.
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2

Mathematical Model

In this chapter, we describe model formulation, model parameters, and numerical

method for the TAL model, short-looped nephron model, and coupled-nephron model.

Each nephron considered in all three models is specified to be a superficial nephron.

2.1 Thick Ascending Limb Model

2.1.1 Model formulation

The TAL model is a mathematical model of a TGF system that explicitly represents a

TAL with compliant tubular walls. The model consists of four differential equations,

which predict tubular fluid pressure, volumetric flow rate, tubular radius, and fluid

chloride concentration within the TAL as functions of time and space. We model

pressure-driven flow within a compliant tubule which expands and contracts based

on transmural fluid pressure gradient, based on the previous compliant-TGF model

by Layton (2010). The model represents tubular chloride concentration because the

chloride concentration at the MD is believed to be the primary signal that initiates

the TGF response (Schnermann and Briggs (2008)). Note that the sodium-potassium

pumps (Na-K-ATPase) in the epithelium transport sodium across the tubular wall
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with chloride transported passively and secondary to sodium.

Boundary conditions for fluid pressure are needed at the two ends of the TAL. At

the entrance of the TAL, the inflow pressure is determined by the TGF response. At

the end of the TAL, tubular fluid pressure is assumed to be known a priori. However,

because tubular pressure at the MD is not well-characterized in experimental data,

we instead introduce a downstream resistance tube and impose the outflow pressure

value at the end of the (longer) model tubule. Thus, the model tubule extends in

space from x “ 0 at the entrance of loop bend to x “ L0 at the end of collecting duct,

where fluid pressure in rats has shown to be „1–3 mmHg, based on measurements

in the interstitium, vessels, and the pelvic space (Angell et al. (1998); Gottschalk

(1952); Gottschalk and Mylle (1957)). Cl´ concentration is represented only along

the TAL, from x “ 0 at loop bend to x “ L at the MD (L ď L0 “ 4L). A schematic

diagram for the TAL-model TGF system is given in Fig. 2.1.

The model equations are

B

Bx
P px, tq “ ´

8µ

πRpx, tq4
Qpx, tq, (2.1)

B

Bx
Qpx, tq “ ´

ˆ

2πRpP px, tqq
dR

dP

˙

B

Bt
P px, tq, (2.2)

B

Bt
pπR2

pP px, tqqCpx, tqq “ ´
B

Bx
pQpx, tqCpx, tqq ´ 2πRsspxq

ˆ

ˆ

VmaxpxqCpx, tq

KM ` Cpx, tq
` κpxqpCpx, tq ´ Cepxqq

˙

, (2.3)

RpP px, tqq “αpP px, tq ´ Peq ` βpxq, (2.4)

Poptq “P̄o `K1 tanhpK2pCop ´ CpL, t´ τqqq. (2.5)

Equations 2.1 and 2.2 describe intratubular fluid pressure and fluid flow rate,

where x is axial position along the extended tubule (0 ď x ď L0), t is time, P px, tq

is the tubular fluid pressure, Qpx, tq is the tubular flow rate, and RpP px, tqq is the
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tubular radius, which is a function of the fluid pressure (see below). The inflow

pressure Poptq “ P p0, tq is assumed to be given by the TGF response, and the

outflow pressure P1 “ P pL0, tq is considered fixed.

Equation 2.3 represents solute concentration in the TAL’s tubular fluid by con-

servation law, where 0 ď x ď L, Cpx, tq is TAL tubular fluid chloride concentration,

Cepxq is the time-independent extratubular (interstitial) chloride concentration which

is assumed to be fixed. The first component on the right-hand side represents axial

advective chloride transport at the intratubular volumetric flow rate Qpx, tq. The two

terms inside the large pair of parentheses corresponds to outward-directed active so-

lute transport characterized by Michaelis-Menten-like kinetics (with maximum Cl´

transport rate Vmax and Michaelis constant KM) and transepithelial Cl´ diffusion

(with backleak permeability κ). We assume that chloride channels are insensitive

to the stretch of the tubular walls, and that such stretch does not render accessible

parts of the membrane that might be previously folded. Thus, solute transport is

not affected by changes in tubular radius, which implies that the solute flux term in

Eq. (2.3) is proportional to Rsspxq instead of Rpx, tq (Layton (2002)). The boundary

condition Cp0, tq “ Co is considered to be fixed so that fluid entering the TAL has a

constant chloride concentration.

Equation 2.4 represents a compliant tube, such that its tubular luminal radius

varies as a function of transmural pressure difference. Pe denotes the extratubular

(interstitial) pressure, α specifies the degree of tubular compliance, and βpxq is the

unpressurized TAL radius (see below).

Equation 2.5 defines the feedback-mediated loop-bend pressure. K1 denotes half

of the range of pressure variation around its reference value P̄o; K2 quantifies TGF

sensitivity; the target concentration Cop is the time-independent steady-state TAL

tubular fluid chloride concentration alongside the MD when P p0, tq “ P̄o (i.e., when

Cop “ CpL, t ´ τq); and CpL, t ´ τq is the chloride concentration alongside the MD
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at the time t´ τ , where τ represents the TGF delay. The TGF response in Eq. (2.5)

is based on experimental data by Briggs (1982); Schnermann and Briggs (2008),

which suggests a sigmoidal relationship between inflow pressure and time-delayed

MD chloride concentration.
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Figure 2.1: A schematic representation of the TAL-model TGF system. Model rep-
resents three essential elements of the TGF pathway: (i) compliant thick ascending
limb (TAL), which is modeled by Eqs. (2.1)–(2.4) with spatially inhomogeneous Rss

and Vmax, (ii) delay at the MD (right square), and (iii) TGF response function (left
square). Symbols are identified in Table 2.1. Perturbations enter as adjustments to
hydrodynamics pressure P p0, tq that drives flow into TAL entrance (x “ 0) at time
t. Oscillations in pressure result in oscillations in TAL flow Qpx, tq, radius Rpx, tq,
and tubular fluid chloride concentration Cpx, tq. Reprinted from Ryu and Layton
(2013a).

2.1.2 Model cases

To better understand the individual and combined effects of TAL NaCl active trans-

port rate, tubular radius, and tubular compliance on the TGF dynamics, we consid-

ered five cases: one spatially homogeneous model (H) and four spatially inhomoge-

neous models (IR, IT, IRT, CIRT):
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H: spatially homogeneous TAL radius and maximum active chloride transport rate

(i.e., constant Rss and Vmax); rigid TAL (α “ 0).

IR: spatially homogeneous maximum active chloride transport rate; spatially inho-

mogeneous TAL luminal radius (i.e., piecewise-function Rss); rigid TAL (α “ 0).

IT: spatially homogeneous TAL radius; spatially inhomogeneous maximum active

chloride transport rate (i.e., piecewise-function Vmax); rigid TAL (α “ 0).

IRT: spatially inhomogeneous TAL radius; spatially inhomogeneous maximum ac-

tive chloride transport rate; rigid TAL (α “ 0).

CIRT: spatially inhomogeneous TAL luminal radius; spatially inhomogeneous max-

imum active chloride transport rate; compliant TAL.

Profiles for TAL radii and maximum chloride transport rates for different model

cases are given in Fig. 2.2. Defining parameters for each case are given in Table 2.2.

Arrows indicate that a quantity varies as a function of increasing x; see Fig. 2.2.
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Figure 2.2: TAL radius (A) and maximum active NaCl transport rate (B) for five
considered cases: H, homogeneous; IR, inhomogeneous radius; IT, inhomogeneous
transport; IRT, inhomogeneous radius and transport; CIRT, inhomogeneous radius
and transport with the compliant walls. Defining parameters for each case are given
in Table 2.2. Reprinted from Ryu and Layton (2013a).
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Table 2.1: Glossary for TAL model

Independent Parameters
α TAL compliance (cm mmHg´1)
Co [Cl´] at TAL entrance (mM)
Ce,1 interstitial [Cl´] at the loop bend (mM)
P̄o base-case fluid pressure at the loop bend (mmHg)
β0 initial boundary value for β0,1pxq (µm)
β1 end boundary value for β0,1pxq (µm)
β2 end boundary value for β1,2pxq (µm)
κ TAL chloride permeability (cm s´1)
K1, K2 parameters for TGF response
KM Michaelis constant (mM)
L0 length of model nephron (cm)
L length of TAL (cm)
µ fluid viscosity (g cm´1s´1)
P1 pressure at end of nephron (mmHg)

Specified Functions
βpxq unpressurized TAL radius (µm)
Rsspxq steady-state TAL radius (µm)
Vmaxpxq maximum active Cl´ transport rate (nmole cm´2s´1)
Cepxq extratubular [Cl´] (mM)
Poptq pressure at loop bend (mmHg)
Pepxq extratubular pressure (mmHg)

Dependent Parameters and Variables
to base-case steady-state TAL transit time (s)
To steady-state TAL transit time (s)
Cop steady-state chloride concentration alongside MD (mM)
Cpx, tq TAL [Cl´] (mM)
P px, tq Tubular fluid pressure (mmHg)
Qpx, tq Tubular fluid flow (nl min´1)
Rpx, tq luminal radius (µm)
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Table 2.2: Individual parameter values for five model cases

Parameter (units) H IR IT IRT CIRT
α (cm mmHg´1) 0 0 0 0 0.266 ˆ 10´5

Rss (µm) 10 5 Ñ 10 10 5 Ñ 10 5 Ñ 10
β0 (µm) 10 5 10 5 4.867
β1 (µm) 10 10 10 10 9.92
β2 (µm) 5.57 5.89 5.57 5.89 5.92
Vmax,1 (nmol cm´2s´1) 14.50 14.50 25.86 25.86 25.86
Vmax,2 (nmol cm´2s´1) 14.50 14.50 10.82 10.82 10.82
KM (mM) 70 60.4 48.3 34.0 34.1
Cop (mM) 31.98 31.97 32.04 32.02 32.01
To (s) 15.70 13.79 15.70 13.79 13.79

2.1.3 Model parameters

Model parameters that are common to all five cases are given in Table 2.3. Param-

eters that differ among the cases are displayed in Table 2.2.

For case IT, IRT, and CIRT, the TAL maximum active transport rate Vmaxpxq

is assumed to decrease linearly over the first 30% of the TAL, and then remains

constant afterwards; i.e.,

Vmaxpxq “

"

Vmax,1 ´ pVmax,1 ´ Vmax,2q
x

0.3L
, 0 ď x ď 0.3L,

Vmax,2, 0.3L ď x ď L,
(2.6)

where Vmax,1 and Vmax,2 are parameters given in Table 2.2.

The unpressurized tubular radius parameter βpxq is given (in µm) by the piece-

wise function:

βpxq “

$

&

%

β0,1pxq, 0 ď x ď 0.3L,
β1, 0.3L ď x ď 1.5L,
β1,2pxq, 1.5L ď x ď L0,

(2.7)

where βi,jpxq denotes a cubic polynomial defined in x0 ď x ď x1 such that βi,jpx0q “

βi and βi,jpx1q “ βj, and β1px0q “ β1px1q “ 0. The parameters βi and βj are chosen

such that in the time-independent steady state (when Q is a constant in time and

space), the model yields a target TAL radius and a target outflow pressure P pL0q.
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Table 2.3: Model parameter values common to all five cases

Parameter Dimensional Value
Independent Parameters
Co, Ce,1 275 mM
Qo 6 nl min´1

Ro 10 µm
κ 1.5ˆ 10´5 cm s´1

L0 2 cm
L 0.5 cm
µ 7.2ˆ 10´3 g cm´1s´1

Pe 5 mmHg
P̄o 10 mmHg
P1 2 mmHg
to 15.708 s

Extratubular concentration is specified by

Cepxq “ Ce,1pA1 expp´A3px{Lqq ` A2q, (2.8)

where A1 “ p1 ´ CepLq{Ce,1q{p1 ´ expp´A3qq, A2 “ 1 ´ A1, and A3 “ 2, and where

CepLq corresponds to a cortical interstitial concentration of 150 mM.

2.1.4 Numerical method

To simulate the tubular fluid motions, we take the spatial derivative of Eq. (2.1)

and use the resulting equation to eliminate the fluid flow gradient term BQ{Bx from

Eq. (2.2). This yields an advection-diffusion equation for the pressure P

B

Bt
P px, tq ´

R2px, tq

4µ BR
BP

B

Bx
Rpx, tq

B

Bx
P px, tq “

R3px, tq

16µ BR
BP

B2

Bx2
P px, tq, (2.9)

subject to the boundary conditions P p0, tq “ Poptq and P pL0, tq “ P1.

Eq. (2.9) was advanced in time using numerical method that is second order

in space and time, based on the numerical scheme described in Ref. Layton et al.

(2012a). Let ∆x and ∆t be the spatial and time step, respectively. Then, we write
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P n
j “ P pj∆x, n∆tq and use the analogous notation for R. P n

j is advanced to P n`1
j

in each time step by using the discretized version of Eq. (2.9),

˜

P n`1
j ´ P n´1

j

2∆t

¸

´

ˆ

pRn
j q

2

4µα

˙ˆ

Rn
j`1 ´R

n
j´1

2∆x

˙ˆ

P n
j`1 ´ P

n
j´1

2∆x

˙

“
pRn

j q
3

2 ¨ 16α

˜

P n`1
j`1 ´ 2P n`1

j ` P n`1
j´1

p∆xq2
`
P n´1
j`1 ´ 2P n´1

j ` P n´1
j´1

p∆xq2

¸

, (2.10)

where BR
BP

was substituted by α from Eq. (2.4). Once P n`1
j was obtained, the radius

Rj
n`1 using (2.4) and the flow rate Qn`1

j using (2.2) were updated. The discretized

verison of Eq. (2.2) is given by

Qn`1
j “ ´

πpRn`1
j q4

8µ

˜

P n`1
j`1 ´ P

n`1
j´1

2∆x

¸

. (2.11)

The chloride concentration Cn
j “ Cpj∆x, n∆tq was advanced by one time step

using

πCn
j

˜

pRn`1
j q2 ´ pP n

j q
2

∆t

¸

` πpRn
j q

2

˜

Cn`1
j ´ Cn

j

∆t

¸

“ ´Cn
j

˜

Qn`1
j ´Qn

j

∆x

¸

(2.12)

´Qn
j

ˆ

Cn
j ´ C

n
j´1

∆x

˙

´ 2πRss,j

ˆ

pVmaxqjC
n
j

pKMqj ` Cn
j

` κjpC
n
j ´ Ce,jq

˙

.

A time step of ∆t “ 1{320 s was applied on a spatial grid of 1280 subintervals, which

yield a space step of ∆x “ L0{1280 “ 2{1280 cm.

2.2 Short-Looped Nephron Model

2.2.1 Model formulation

A short-looped nephron model of a TGF system explicitly represents the proximal

tubule, the descending limb, and the TAL of a short loop of Henle. As in the TAL

model, the loop model is analogously formulated as a boundary value problem and
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predicts tubular fluid rate, fluid pressure, and tubular radius as functions of time and

space. Also, we similarly use an extended model tubule to represent a short loop of

Henle, which extends in space from x “ 0 at the entrance to the proximal tubule,

through x “ L at the loop bend and x “ 2L at the MD, to x “ L0p“ 5Lq at the end of

collecting duct. Boundary condition for inflow fluid pressure is now prescribed at the

entrance of the proximal tubule at x “ 0, which is determined by the TGF response.

By assuming the tubular walls to be compliant and representing the chloride ion (Cl´)

as the principal signaling agent for TGF activation, the mathematical equations for

loop model are same as those for TAL model, given in Eqs. (2.1)–(2.5), with Eq. (2.2)

and (2.5) replaced by the following equations, respectively,

B

Bx
Qpx, tq “ ´

ˆ

2πRpP px, tqq
dR

dP

˙

B

Bt
P px, tq ´ Φpx, tq, (2.13)

Poptq “P̄o `K1 tanhpK2pCop ´ Cp2L, t´ τqqq, (2.14)

where Φpx, tq is the transmural water flux per unit length, taken to be positive out

of the tubule (see below). Note that because the model includes the descending

portions of the loop, the boundary condition Cp0, tq “ Co, which is considered to be

fixed, is prescribed at the entrance of the proximal tubule. A schematic diagram for

the short-looped TGF system is given in Fig. 2.3.

2.2.2 Model parameters

New parameter values for short-looped model, which were not appeared in Table 2.1

or differ from TAL model, are given in Table 2.4. The model tubule is divided

into three functionally distinct segments: the proximal tubule (the proximal convo-

luted and straight tubules), the descending limb, and the TAL. As previously noted,

anatomical findings have indicated the proximal straight tubule terminates at the

boundary between the outer and inner stripe within outer medulla (approximately

0.6 mm from the cortico-medullary boundary). An initial water-permeable descend-
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Figure 2.3: A schematic representation of short-looped TGF system. Hydrody-
namic pressure Poptq “ P p0, tq drives flow into loop entrance (x “ 0) at time t.
Oscillations in inflow pressure result in oscillations in loop pressure P px, tq, flow rate
Qpx, tq, water flux Φpx, tq, radius Rpx, tq, and tubular fluid chloride concentration
Cpx, tq. Reprinted from Ryu and Layton (2013c).

ing limb spans the first „60% of the inner strip and a terminal water-impermeable

descending limb spans the remainder of the inner strip. The entire TAL is water

impermeable.

The total length of model nephron is set to be L0 “ 25 mm. The length of the

descending segments, including the proximal tubule and descending limb, is assumed

to be L “ 5 mm and is equal to the length of the TAL. The length of the proximal

convoluted tubules is set to LC “ 3 mm and is equal to the length of the cortical

TAL. The length of the descending limb and the proximal straight tubule is assumed
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to be LD “ 2 mm, which is equal to the length of the medullary TAL. Note that

L “ LC ` LD and L0 “ 5L. Fluid dynamics equations (Eq. (2.1), (2.13), (2.4)) are

solved for 0 ď x ď L0p“ 5Lq, corresponding to the entire model nephron, whereas

the chloride conservation equation (Eq. (2.3)) is solved for 0 ď x ď 2L, corresponding

to the tubule only up to the MD.

To yield steady-state tubular radius and pressure profiles that are consistent with

experiment measurements, we specified unpressurized tubular radius βpxq (in µm)

using the following piecewise function:

βpxq “

$

’

’

’

’

&

’

’

’

’

%

β0, 0 ď x ď xw,
β0,1pxq, xw ď x ď L,
β1,2pxq, L ď x ď 1.5L,
β2, 1.5L ď x ď ad,
β2,3pxq, ad ď x ď L0,

(2.15)

where βi,jpxq denotes a cubic polynomial defined in x0 ď x ď x1 such that βi,jpx0q “

βi and βi,jpx1q “ βj, and β1px0q “ β1px1q “ 0. The parameters β0, β1, β2, and β3 (8.8,

5.4, 9.9, and 6.6 µm, respectively) were chosen such that in the time-independent

steady state (when Q is a constant in time and space), the tubular radius was „5.5

at the loop bend and „10 µm at the MD (Knepper et al. (1977)), and so that the

tubular fluid pressure was „8 mmHg at the MD (i.e., x “ 2L) and „2 mmHg at the

end of the model tubule (i.e., x “ L0). xw denotes the position at which the water-

impermeable segment of the descending limb begins; xw is taken to be LC ` 0.6LD.

ad denotes the position past the MD at which the tubular radius begins to decrease

and is set to 2.5ˆ L.

In normal rats, SNGFR is „30 nl/min. Micropuncture experiments by Young

and Marsh (1981) have indicated that approximately two-third of the water and

NaCl are reabsorbed along the proximal convoluted tubule; thus, the fluid flow rate
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Table 2.4: Parameter values for loop model

Symbol Description Dimensional value
αDL Proximal tubule and DL compliance 0.45 ˆ 10´5

cm¨mmHg´1

αTAL TAL compliance 0.266 ˆ 10´5

cm¨mmHg´1

β0 Initial boundary value for β0,1pxq 8.843 µm
β1 End boundary value for β0,1pxq 5.43 µm
β2 End boundary value for β1,2pxq 9.98 µm
β3 End boundary value for β2,3pxq 6.55 µm
Ce,o Interstitial Cl´ concentration 150 mM

at the upper cortex
Co Cl´ concentration at proximal tubule entrance 160 mM
L0 Total length of model nephron 2.5 cm
LC Length of the proximal convoluted tubule 0.3 cm

or the cortical TAL
LD Length of the short descending limb 0.2 cm

or the medullary TAL
xω Position where water-impermeable segment 0.42 cm

of the descending limb starts
ad Position where unpressurized radius begins 1.25 cm

to decrease after the MD
P̄o Steady-state inflow pressure 13.0 mmHg

at the proximal tubule
κPCT Proximal convoluted tubule 20.0 ˆ 10´5

Cl´ permeability for 0 ď x ď LC cm¨s´1

κPST Proximal straight tubule 10.0 ˆ 10´5

Cl´ permeability for LC ď x ď xω cm¨s´1

κDL DL Cl´ permeability for xω ď x ď L 1.5 ˆ 10´5 cm¨s´1

κTAL TAL Cl´ permeability for L ď x ď 2L 1.5 ˆ 10´5 cm¨s´1

Vmax, PCT Proximal convoluted tubule 28.0
maximum active Cl´ transport rate nmole¨cm´2s´1

Vmax, PST Proximal straight tubule 2.5
maximum active Cl´ transport rate nmole¨cm´2s´1

Vmax, DL Descending limb 0.0
maximum active Cl´ rate nmole¨cm´2s´1

Vmax, TAL TAL maximum active Cl´ transport rate 19.18 nmole¨cm´2s´1

τ Base-case TGF delay 3.5 s
K1 Half of the range of pressure variation 6 mmHg

around P̄o
K2 TGF sensitivity, ´γ{pK1C

1
ssp2Lqq –
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into the proximal straight tubule is „10 nl/min. We assume the same fractional

reabsorption in dynamic state. Flow rate at the loop bend is believed to be „6–

8 nl/min. Given these observations, we describe the transmural water flux Φpx, tq as

a piecewise constant function in terms of Qp0, tq:

Φpx, tq “

$

’

&

’

%

2
3
Qp0,tq
LC

, 0 ď x ď LC ,
1
10
Qp0,tq
0.6LD

, LC ď x ď xw,

0, xw ď x ď L0,

(2.16)

where LC and xω are the positions where the proximal straight tubule (or, descending

limb) and the water-impermeable segment of the descending limb begin, respectively

(see Fig. 2.3). Together with appropriate inflow pressure and luminal radius, the

model predicts a steady-state fluid flow rate of „7.0 nl/min at the loop bend (i.e.,

x “ L).

To compute passive chloride transport, we define interstitial concentration for the

descending segments and then assume symmetry to obtain the profile for the TAL:

Cepxq “

"

Ce,opA1 exppA3px{Lqq ` A2q, 0 ď x ď L,
Ce,op´x` 2Lq, L ă x ď 2L,

(2.17)

where A1 “ p1 ´ Ce,1{Ce,oq{p1 ´ exppA3qq, A2 “ 1 ´ A1, and A3 “ 2. The initial

condition for the interstitial chloride concentration, Ce,o, is set to 150 mM. Ce,1

denotes an interstitial loop-bend concentration of 275 mM. The exponential form of

Cepxq assumes that the steepest increase in interstitial concentration is found in the

outer medulla, as is generally expected (Layton and Edwards (2010); Layton and

Layton (2005)).

The proximal convoluted tubule is assumed to have a moderate Cl´ permeability

of 20ˆ 10´5 cm¨s´1 (Weinstein (1986)). The proximal straight tubule is assumed to

be moderately NaCl permeable; the descending limb and TAL are assumed to have

a low Cl´ permeability of 1.5ˆ 10´5 cm¨s´1 (Mason et al. (1979)).
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The base-case tubular wall compliance is set to αDL “ 0.45ˆ10´5 cm¨mmHg´1 for

the proximal tubule and the descending limb, and to αTAL “ 0.266ˆ10´5 cm¨mmHg´1

for the TAL. These values are 1/5 of measured compliance in isolated tubule studies

(Young and Marsh (1981)). This choice of the tubular compliance is based on the

consideration that the effective compliance of the tubular walls may be lowered in

vivo by the stiffness of the interstitial matrix, and by the resistance exerted by neigh-

boring nephrons whose tubular fluid may be oscillating in synchronization (Leyssac

and Baumbach (1983)).

2.2.3 Numerical method

In the numerical simulations, we solve the differential equations describing tubular

pressure, flow, radius, and chloride concentration. As for numerical simulation of the

TAL model described in Section 2.1.4, we similarly derive the following advection-

diffusion equation for the pressure P :

B

Bt
P ´

R2

4µdR
dP

B

Bx
R
B

Bx
P “

R3

16µdR
dP

B2

Bx2
P ´

Φ

2πR dR
dP

, (2.18)

subject to the boundary conditions P p0, tq “ P0ptq and P pL0, tq “ P1.

Same numerical methods, which are applied to the TAL model in Section 2.1.4,

are used to advance Eq. (2.18) with a spatial step ∆x “ L0{400 “ 0.5{400 “

0.00125 cm and a time step of ∆t “ 1{3200 “ 0.0003125 s.

2.3 Coupled-Nephron Model

2.3.1 Model formulation

The mathematical model of coupled short-looped nephrons analogously follows that

of short-looped model in Section 2.2. Model equations for tubular fluid pressure,

volumetric flow rate, radius, and fluid chloride concentration in each nephron, as

functions of time and space, can be formulated as in Eqs. (2.1), (2.13), (2.3), and
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(2.4), respectively. A schematic diagram for the model of coupled-TGF system is

given in Fig. 2.4.

P
1

x = L  = 5L0

   (x,t)
i

P (0,t)
i

Q (x,t)
 i

R (x,t)
 i

P (x,t)
i

P (x,t)
i

R (x,t)
 i

C (x,t)
 i

C (2L,t)
 i

i
iC (2L,t−   )

 i

Q(x,t)
i

C (x,t)
 i

x = 0

x = LC

x = L
x = L

x = 2L

D
o

w
n

st
re

am
 r

es
is

ta
n

ce
 t

u
b

e

T
h

ic
k

 a
sc

en
d

in
g

 l
im

b

P
ro

x
im

al
 c

o
n

v
o

lu
te

d
 t

u
b

u
le

Cl−

Loop bend

H  O
2

Interstitial
concentration

Macula densa

Gain parameters

Delay

Φ

τ

1,iK    , K2,iCoupling and
Perturbations

τ

Interstitial
pressure
P (x)e

x = x
ω

D
es

ce
n

d
in

g
  

li
m

b

C (x)e

Figure 2.4: A schematic representation of coupled-TGF system in the ith nephron.
Hydrodynamic pressure Pip0, tq drives flow into loop entrance (x “ 0) at time t. Os-
cillations in pressure result in oscillations in loop pressure Pipx, tq, flow rate Qipx, tq,
radius Ripx, tq, and tubular fluid chloride concentration Cipx, tq. Reprinted from Ryu
and Layton (2013b).

In a (uncoupled) short-looped model in Section 2.2, we assumed that inflow pres-

sure to the proximal tubule is determined by the TGF response, given as a nonlinear

function of the chloride concentration in the terminal segment of TAL. To represent

internephron coupling, inflow pressure at the entrance of the proximal tubule in ith

42



nephron, Pip0, tq, is defined as a sum of two terms. The first term represents the

feedback-mediated inflow pressure in response to the nephron itself. The second

term represents the sum of all coupled TGF responses that are caused by nearby

nephrons. Thus we write

Pip0, tq “P̄0,i `K1,i tanhpK2,ipCop ´ Cip2L, t´ τiqqq

`
ÿ

j‰i

φi,jK1,j tanhpK2,jpCop ´ Cjp2L, t´ τjqqq, (2.19)

where the coupling constant φi,j characterizes the strength of the coupling between

nephrons i and j; K1,i denotes half of the range of pressure variation around its

reference value P̄0,i for the nephron i; K2,i quantifies TGF sensitivity; the operating

concentration Cop is the steady-state luminal fluid chloride concentration adjacent

to the MD when Pip0, tq “ P̄0,i (i.e., when Cop “ Cip2L, t´ τiq); and Cp2L, t´ τiq is

the chloride concentration alongside the MD (of nephron i) at time t ´ τi, where τi

represents the TGF delay for signal transmission from the MD to the AA.

2.3.2 Model parameters

Model parameter values for each nephron are applied same as those for the short-

looped model, given in Table 2.4. Also, the physical anatomy of the model tubule

and the length of each functionally different segment along the tubule are adapted

from those of short-looped model. We similarly specify unpressurized tubular radius

βipxq, transmural water flux Φipx, tq, tubular compliance of the loop α, maximum

active Cl´ transport rate Vmax, and Cl´ permeability κ for each nephron i, as in the

short-looped model. Moreover, we use the same profile for the interstitial chloride

concentration Cepxq defined in (2.17).

2.3.3 Numerical method

To predict time-varying tubular pressure, flow, radius, and chloride concentration

for each nephron i, we similarly use the advection-diffusion equation for the pressure
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Pi as derived in Eq. (2.18).

B

Bt
Pi ´

R2
i

4µdRi
dPi

B

Bx
Ri
B

Bx
Pi “

R3
i

16µdRi
dPi

B2

Bx2
Pi ´

Φi

2πRi
dRi
dPi

, (2.20)

subject to the boundary conditions Pip0, tq “ P0,iptq and PipL0, tq “ P1,i.

Same numerical methods, which were applied to the TAL model in Section 2.1.4,

are used to advance Eq. (2.20) with a spatial step ∆x “ L0{400 “ 0.5{400 “

0.00125 cm and a time step of ∆t “ 1{3200 “ 0.0003125 s.
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3

Model Results and Analysis

In this chapter, we present analytic and numerical results for each model we con-

sider. Because each model’s emphasis and analysis substantially differ from each

other, we start with the overview of model results in the beginning of each section.

Results and all figures in each section are adapted from the published results in Ryu

and Layton (2013a) (TAL model), Ryu and Layton (2013c) (short-looped nephron

model), and Ryu and Layton (2013b) (coupled-nephron model) after minor changes

with permission of reprints.

3.1 Thick Ascending Limb Model

The TAL model was developed to account for the potential effects of spatial TAL

radius and NaCl transport rate on the stability of the TGF system. To do this,

one may obtain an asymptotic behavior of the in vivo tubular fluid dynamics sub-

sequent to a perturbation by a direct computation of the numerical solution to the

TAL-model equations (Eqs. (2.3), (2.4), and (2.9)). However, to attain a thorough

understanding how model behaviors systematically depend on model parameters,

those computations can be time-consuming and impractical. Thus, as an alterna-
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tive, we derived and analyzed a characteristic equation from a linearization of the

full model equations.

To further facilitate a direct comparison between all considered model cases (H,

IR, IT, IRT, and CIRT) in Section 2.1.2, the respective characteristic equation for

each case was derived and its corresponding root curves were identified by means

of bifurcation analysis. Guided by the information obtained from the characteristic

equation, numerical simulations were also conducted to validate and supplement that

information.

3.1.1 Characteristic equation

Before we derive the characteristic equation, we first nondimensionalize Eqs. (2.9)

and (2.3). We use the following reference base-case units: unit length along the TAL,

L “ 0.5 cm; unit fluid pressure at the loop bend, Po “ 10 mmHg; unit luminal radius

of TAL, Ro “ 10 µm; unit chloride concentration, Co “ Cp0, tq “ 275 mM; unit flow

rate in the TAL, Qo “ 6 nl min´1; unit time, to “ πR2
oL{Qo “ 5π s (the TAL fluid

transit time at flow rate Qo). We define x̃ “ x{L, t̃ “ t{to, τ̃ “ τ{to, C̃ “ C{Co, C̃e “

Ce{Co, Q̃ “ Q{Qo, Ṽmax “ Vmax{pCoQo{pcAoLqq, K̃M “ KM{Co, κ̃ “ κ{pQo{pcAoLqq,

P̃ “ P {Po, R̃ “ R{Ro, R̃ss “ Rss{Ro, β̃ “ β{Ro, µ̃ “ µ{pπPoR
4
o{QoLq, α̃ “ αPo{Ro,

where cAo “ 2πRo. Then, expressing Eqs. (2.9) and (2.3) in terms of nondimensional

variables, simplifying, and dropping the tildes, we obtain

B

Bt
P´

R2

4µα

B

Bx
R
B

Bx
P “

R3

16µα

B2

Bx2
P, (3.1)

R2 B

Bt
C “ ´2RC

B

Bt
R ´Q

B

Bx
C ´Rss

ˆ

VmaxC

KM ` C
` κpC ´ Ceq

˙

. (3.2)

We now linearize Eq. (3.1) about its steady-state by assuming infinitesimal per-
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turbations in C, P , and R:

Cpx, tq “ Csspxq ` εCεpx, tq, (3.3)

P px, tq “ Psspxq ` εPεpx, tq, (3.4)

Rpx, tq “ Rsspxq ` εRεpx, tq, (3.5)

where ε ! 1, and Csspxq, Psspxq and Rsspxq denote the steady-state Cl´ concentra-

tion, pressure, and radius, respectively. From nondimensionalized forms of Eqs. (2.1)

and (2.4), one can show that

R4
ss

B

Bx
Pss “ ´8µ, (3.6)

Rss “ αpPss ´ Peq ` β, (3.7)

Rε “ αPε. (3.8)

Note that steady-state tubular flow rate is normalized to 1. Then, by taking the

spatial derivative of Eq. (3.6), we get

R3
ss

B2

Bx2
Pss “ ´4R2

ss

B

Bx
Rss

B

Bx
Pss “

32µ

R2
ss

B

Bx
Rss. (3.9)

Also, substituting (3.7) into (3.6), we obtain an equation for Pss

pαpPss ´ Peq ` βq
4 B

Bx
Pss “ ´8µ. (3.10)

Next, we substitute (3.4) and (3.5) into (3.1) and keep only the Opεq terms

Rss
B

Bt
Pε ´

1

4µα

ˆ

R3
ss

B

Bx
Rε
B

Bx
Pss `R

3
ss

B

Bx
Rss

B

Bx
Pε ` 3R2

ssRε
B

Bx
Rss

B

Bx
Pss

˙

“
1

16µα

ˆ

R4
ss

B2

Bx2
Pε ` 4R3

ssRε
B2

Bx2
Pss

˙

. (3.11)

Simplifying (3.11) from Eqs. (3.6) and (3.9), we obtain the following advection-

diffusion equation for Pε,

B

Bt
Pε `

B

Bx
Pε

ˆ

2

R2
ss

´
1

4µα
R2
ss

B

Bx
Rss

˙

´ 2Pε

ˆ

1

R3
ss

B

Bx
Rss

˙

“
R3
ss

16µα

B2

Bx2
Pε, (3.12)
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subject to the boundary conditions:

Pεp0, tq “ P 1pCopqCεp1, t´ τq, (3.13)

PεpL0, tq “ 0. (3.14)

As in the previous studies (Layton et al. (1991); Pitman et al. (1993); Layton

et al. (1997b, 2009); Layton (2010)), we assume that Cεpx, tq can be written as

Cε “ fpxqeλt, for some function fpxq and a constant λ. Thus,

Pεp0, tq “ P 1pCopqfp1qe
λpt´τq. (3.15)

Assuming that the solution for Eqs. (3.12)–(3.14) has the form

Pεpx, tq “ P 1pCopqfp1qgpxqe
λpt´τq, (3.16)

and substituting into Eq. (3.12), we obtain the second-order differential equation for

gpxq

R3
ss

16µα
g2pxq ´

ˆ

2

R2
ss

´
1

4µα
R2
ss

B

Bx
Rss

˙

g1pxq `

ˆ

2

R3
ss

B

Bx
Rss ´ λ

˙

gpxq “ 0, (3.17)

with boundary conditions gp0q “ 1 and gpL0q “ 0.

Next, we linearize the solute conservation equation (3.2),

pRss ` εRεq
2 B

Bt
pCss ` εCεq “ ´ 2pRss ` εRεqpCss ` εCεq

B

Bt
pRss ` εRεq

`
pRss ` εRεq

4

8µ

B

Bx
pPss ` εPεq

B

Bx
pCss ` εCεq

´Rss

ˆ

VmaxpCss ` εCεq

KM ` Css ` εCε
` κpxqpCss ` εCε ´ Ceq

˙

.

(3.18)

Note that at steady state ε “ 0, the steady-state solutions satisfies

R4
ss

8µ

B

Bx
Pss

B

Bx
Css “ pKpCssq ` κpCss ´ CeqqRss, (3.19)

where the active transport term is denoted by KpCq “ VmaxC
KM`C

.
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Keeping only the Opεq terms in Eq. (3.18), we arrive at the evolution equation

for Cε

R2
ss

B

Bt
Cε “ ´2αRssCss

B

Bt
Pε ´ pK

1
pCssq ` κqRssCε

`
R3
ss

8µ

ˆ

4Rε
B

Bx
Pss

B

Bx
Css `Rss

B

Bx
Pss

B

Bx
Cε `Rss

B

Bx
Pε
B

Bx
Css

˙

. (3.20)

Substituting Cε “ fpxqeλt, Pεpx, tq “ P 1pCopqfp1qgpxqe
λpt´τq, and Rεpx, tq “

αPεpx, tq into the above equation and canceling out eλt, we obtain

λR2
ssfpxq “ ´2αλRssCssP

1
pCopqfp1qgpxqe

´λτ
´ pK 1

pCssq ` κqRssfpxq

R3
ss

8µ
pRssP

1
ssf

1
`RssC

1
ssP

1
pCopqfp1qg

1
pxqe´λτ ` 4αC 1ssP

1
ssP

1
pCopqfp1qgpxqe

´λτ
q.

(3.21)

Applying Eq. (3.6) and rearranging,

f 1pxq ` ppK 1
pCssq ` κqRss ` λR

2
ssqfpxq

“ e´λτP 1pCopqfp1q

ˆ

R4
ss

8µ
C 1ssg

1
pxq ´ 2αgpxqpλRssCss ` 2

C 1ss
Rss

q

˙

. (3.22)

Recall we have fixed Cl´ concentration at the loop bend (i.e x “ 0). Thus,

Cεp0, tq “ fp0qeλt “ 0 ñ fp0q “ 0. (3.23)

Given the initial condition (3.23), the solution for (3.22) can be found to be

fpsq “ exp

ˆ

´

ż s

0

P pxq dx

˙ˆ
ż s

0

Qpxq exp

ˆ
ż x

0

P pyq dy

˙

dx

˙

, (3.24)

where

P pxq “ pK 1
pCssq ` κqRss ` λR

2
ss, (3.25)

Qpxq “ e´λτP 1pCopqfp1q

ˆ

R4
ss

8µ
C 1ssg

1
pxq ´ 2αgpxqpλRssCss ` 2

C 1ss
Rss

q

˙

. (3.26)
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Setting s “ 1 and canceling the factor fp1q, we arrive at the characteristic equation

1 “ e´λτP 1pCopq

ż 2

0

ˆ

R4
ss

8µ
C 1ssg

1
´ 2αgpλRssCss ` 2

C 1ss
Rss

q

˙

ˆ exp

ˆ

´

ż 2

x

pK 1
pCssq ` κqRss ` λR

2
ss dy

˙

dx. (3.27)

To facilitate a comparison of (3.27) with the characteristic equations derived for

homogeneous rigid and compliant TAL models (Layton et al. (1991); Layton (2010)),

we apply (3.6) to (3.19) to obtain

d

dx
Css “ ´pKpCssq ` κpCss ´ CeqqRss. (3.28)

Taking the spatial derivative of (3.28) yields

C2ss “ ´pK
1
pCssqC

1
ss `

V 1maxCss
KM ` Css

` κpC 1ss ´ C
1
eqqRss ´ pKpCssq ` κpCss ´ CeqqR

1
ss

“ ´pK 1
pCssqC

1
ss `

V 1maxCss
KM ` Css

` κpC 1ss ´ C
1
eqqRss `

R1ssC
1
ss

Rss

. (3.29)

Dividing by C 1ss from both sides and rearranging,

pK 1
pCssq ` κqRss “ ´

C2ss
C 1ss

`
R1ss
Rss

` κ
C 1e
C 1ss

Rss ´
V 1maxCss

pKM ` CssqC 1ss
Rss. (3.30)

Substituting (3.30) into (3.27) and simplifying, we finally get

1 “
γe´λτ

Rssp1q

ż 1

0

ˆ

R5
ss

8µ
g1 ´ 2αgpλR2

ss

Css
C 1ss

` 2q

˙

ˆ

exp

ˆ

´

ż 1

x

ˆ

κC 1e
C 1ss

` λRss ´
V 1maxCss

pKM ` CssqC 1ss

˙

Rss dy

˙

dx, (3.31)

where γ ” P 1pCopqC
1
ssp1q is the TGF gain and gpxq satisfies Eq. (3.17). Equa-

tion (3.31) assumes compliant TAL walls and allows spatially varying radius and

maximum active transport, i.e., it applies to the CIRT case. It can also be simplified

and applied to other cases.
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In the rigid-tube limit where αÑ 0, (3.31) reduces to

1 “
γe´λτ

8µRp1q

ż 1

0

R5g1 exp

ˆ

´

ż 1

x

ˆ

κC 1e
C 1ss

` λR ´
V 1maxCss

pKM ` CssqC 1ss

˙

R dy

˙

dx. (3.32)

Note that Rss is replaced by R for a rigid TAL.

Multiplying (3.17) by 16µα and setting α “ 0, it becomes

g2pxq ` 4
R1

R
g1pxq “ 0, (3.33)

with boundary conditions gp0q “ 1 and gpL0q “ 0. Solving for gpxq, we get

gpxq “ ´
1

C1

ż x

0

1

R4
dy ` 1, (3.34)

g1pxq “ ´
1

C1R4pxq
, (3.35)

where C1 “
şL0

0
R´4 dx. Plugging (3.35) into (3.32),

1 “ ´
γ

8µC1

e´λτ

Rp1q

ż 1

0

R ¨ exp

ˆ

´

ż 1

x

ˆ

κC 1e
C 1ss

` λR ´
V 1maxCss

pKM ` CssqC 1ss

˙

R dy

˙

dx.

(3.36)

With appropriate functions for R and Vmax, Eq. (3.36) can be applied to the IR, IT

and IRT cases.

To derive the characteristic equation for a TGF model of a rigid TAL with inho-

mogeneous radius and maximum active transport, we begin with the solute conser-

vation equation, in nondimensional form, given by Layton et al. (1991)

R2 B

Bt
C `QpCp1, t´ τqq

B

Bx
C “ ´R pKpCq ` κpC ´ Ceqq , (3.37)

where KpCq “ VmaxC
KM`C

. Q represents the fluid flow through the tube, which depends

on the MD chloride concentration at an earlier time t´ τ , i.e., Q “ QpCpL, t´ τqq.
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We linearize Eq. (3.37) by applying Eq. (3.3) and gathering Op1q and Opεq terms,

respectively,

d

dx
Css “ ´

R

Qop

pKpCssq ` κpCss ´ Ceqq, (3.38)

R2 B

Bt
Cε `Qop

B

Bx
Cε `Q

1
pCopqCεp1, t´ τq

B

Bx
Css “ ´pK

1
pCssq ` κqRCε, (3.39)

where QpCssp1qq and Cssp1q have been replaced with Qop and Cop, respectively. Now

by setting Qop “ 1 plugging Cε “ fpxqeλt into Eq. (3.39), we obtain

f 1pxq ` fpxqpλR ` κ`K 1
pCssqqR “ ´Q

1
pCopqC

1
ssfp1qe

´λτ . (3.40)

This first-order linear differential equation has the solution

fpsq “ ´ exp

ˆ

´

ż s

0

pK 1
pCssq ` κqR ` λR

2 dx

˙

ˆ
ż s

0

Q1pCopqC
1
ssfp1qe

´λτ exp

ˆ
ż x

0

pK 1
pCssq ` κqR ` λR

2 dy

˙

dx

˙

, (3.41)

where we have used the boundary condition fp0q “ 0. Setting s “ 1 and canceling

the factor fp1q yields

1 “ ´Q1pCopqe
´λτ

ż 1

0

C 1ss exp

ˆ

´

ż 1

x

pK 1
pCssq ` κqR ` λR

2 dy

˙

dx. (3.42)

Finally, using (3.38), one can obtain

1 “ ´γrigid
e´λτ

Rp1q

ż 1

0

R ¨ exp

ˆ

´

ż 1

x

ˆ

κC 1e
C 1ss

` λR ´
V 1maxCss

pKM ` CssqC 1ss

˙

R dy

˙

dx, (3.43)

where γrigid ” Q1pCopqC
1
ssp1q. Comparing (3.36) and (3.43), we see that in the limit

αÑ 0, the gain factors for the rigid and compliant TAL models is related by

γ “ 8µC1γrigid. (3.44)

Furthermore, if we assume for the rigid TAL model that Vmax and R are spatially

homogeneous, then (3.36) by setting R “ 1 and V 1max “ 0, becomes

1 “ ´
γ

8µL0

e´λτ
ż 1

0

e´λp1´xq exp

ˆ

´

ż 1

x

κC 1e
C 1ss

dy

˙

dx (3.45)
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which was also derived in Ref. Layton (2010). Equation (3.45) will be used for the

H case.

3.1.2 Model results

We first compare the steady-state behaviors of the five cases. We computed steady-

state TAL tubular fluid chloride concentration profiles Csspxq, using TAL trans-

port parameters corresponding to each of the five cases in Table 2.2, by integrat-

ing Eq. (3.28). Those Csspxq profiles with x “ 0 corresponding to loop bend and

x “ 0.5 cm corresponding to macula densa, and the external chloride concentration

profile Cepxq (plotted in dotted), are shown in Figure 3.1. At steady state, the chlo-

ride concentration profiles for the IRT and CIRT cases are identical. Among the five

cases, the IT case, which has the highest transport rate, given by the product VmaxR,

near the loop bend, yields a Csspxq that has the steepest slope near x “ 0. As a

result, along the cases with rigid TAL walls, the IT case has the highest degree of

instability in the near-zero delay parameter regime, as we will see below.

To better understand the effects of inhomogeneities of TAL on the dynamics of

the TGF system, we used the model’s characteristic equations (Eqs. (3.31), (3.36),

and (3.45)) to predict parameter boundaries that separate qualitatively differing

dynamic behaviors. Then, we used numerical solutions of the full (nonlinear) model

(Eqs. (2.3), (2.4) and (2.9)) to validate and to supplement the information provided

by the characteristic equations.

A solution to the characteristic equation (3.31) is a number in an infinite series

λ1, λ2, . . . , where λn P C. The real and imaginary parts of λn correspond to the

strength and frequency, respectively, of a solution of the model equations. We de-

termined parameter regions that have differing combinations of signs of Re(λn) by

computing values of γ–τ pairs that correspond to Repλnq “ 0, i.e., roots that may

indicate a solution bifurcation or transition between stable solution behaviors. These
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Figure 3.1: Steady-state tubular fluid chloride concentration profiles in TAL, com-
puted from Eq. (3.28), for the five cases, corresponding to the parameter sets in
Table 2.2. x “ 0, loop bend; x “ 0.5 cm, macula densa. At steady state, the chlo-
ride concentration profiles for the IRT and CIRT cases are identical. The profile for
Ce (dotted) is included for comparison. Reprinted from Ryu and Layton (2013a).

γ–τ pairs, in γ–τ plane, were obtained for five model cases by using the correspond-

ing characteristic equations. Bifurcation results for the H and IR cases are shown

in Fig. 3.2, panels A and B, respectively. Results for each of the four models with

inhomogeneous parameters (IR, IT, IRT, and CIRT) are given in Fig. 3.3. Note

that Fig. 3.2B and Fig. 3.3A are the same, but with different γ-axis scales for the

comparison with other model cases.

H case. Consider first the H case. For sufficiently small γ or τ such that (γ, τ)

that fall below all curves Repλnq “ 0 in Fig. 3.2A, the time-independent steady-

state solution, indicated by “ρn ă 0”, is the only stable solution to which any initial

solution, or any transient perturbation of a steady-state solution converges. For

(τ, γ) values above the curve Repλnq “ 0 for some n, a perturbation of the steady-

state solution results in a LCO. An example is the region where Repλ2q ą 0 and

Repλ1q ă 0, and where a LCO of a frequency corresponding to either Impλ1q or

Impλ2q can be elicited. Model solutions can exhibit multiple stable dynamic modes,
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Figure 3.2: Root loci for H case (A) and IR case (B). MD chloride concentration
oscillations corresponding to the points W and X are given in Figs. 3.4W and 3.4X.
Reprinted from Ryu and Layton (2013a).

i.e., multistability (Layton et al. (2006)), as the crossings of the root curves introduce

new parameter regimes (Layton et al. (2009)).

Figure 3.2B exhibits bifurcation curves for the IR case, where TAL radius is given

as a piecewise-increasing function. A comparison between Figs. 3.2A and 3.2B reveals

that the inhomogeneous TAL radius lowers the root curves. But more surprisingly,

oscillatory states become attainable at τ “ 0 and sufficiently large γ (γ ą 22.35 for

the linearized IR model). In contrast, root curves do not cross the γ-axis in the H

case, which implies that, with τ “ 0, a transient perturbation always result in a

steady-state solution. These results imply that a nonzero delay is not a necessary

condition for the emergence of LCO, and that the spatial distribution of TAL radius

is an important bifurcation parameter.

To better understand the effects of spatial inhomogeneity in TAL radius and its

role in the emergence of LCO at zero TGF delay, we analyze Eq. (3.2) for the IR

case. Replacing the steady-state radius Rss by a piecewise-increasing function Rpxq
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and dividing by R2, Eq. (3.2) becomes

B

Bt
C “ ´

QpCp1, t´ τqq

R2

B

Bx
C ´

1

R
pKpCq ` κpC ´ Ceqq (3.46)

Because the TAL walls are assumed rigid, BR
Bt
“ 0. Suppose that at time t the

TAL [Cl´] profile approximates the steady-state profile, but the MD [Cl´], denoted

by CMD, falls slightly below Cop. TGF then acts to increase the inflow fluid flow

rate at the entrance of the proximal tubule. If τ “ 0, then tubular flow Q increases

instantaneously at the loop bend (x “ 0) and throughout the TAL. Because BC
Bx
ă 0, a

larger Q implies that the right-hand side of Eq. (3.46) is positive; thus, C is increasing

in time. However, when R is smaller near the loop bend, chloride concentration will

change faster near the loop bend than at the macula densa. Consequently, for large

γ values, the TGF response may induce a rapid rise in chloride concentration near

the loop bend, which, after the TAL transit time, results in an increase in CMD that

may be sufficiently large so that it exceeds Cop. A LCO thus results. An analogous

argument can be made for the case where CMD exceeds Cop slightly.

Note that if TAL radius is larger near the loop bend, chloride concentration

changes faster near the macula densa than near the loop bend; thus, no LCO will be

generated at zero delay.

IT case. We then computed root curves for the IT case, where TAL maximum

active NaCl transport rate Vmax is specified as a piecewise-decreasing function. Com-

pared to the IR case, root curves for IT case, shown in Fig. 3.3B, are even lower, with

the curves crossing the γ-axis at as low a γ value as 5.47 (compare with Fig. 3.2B

for the IR case). For the parameter values considered, these results suggest that

spatially inhomogeneous Vmax reduces the stability of the TGF system, to a greater

extent than spatially inhomogeneous TAL radius.
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Figure 3.3: Root loci for IR case (A), IT case (B), IRT case (C), and CIRT case
(D). MD chloride concentration oscillations corresponding to the points Y and Z
in panel B are given in Figs. 3.4Y and 3.4Z; MD chloride concentration oscillations
corresponding to the points P1 and Q1 in panel C, and to P2, Q2, and R2 in panel
D are given in Fig. 3.5. Reprinted from Ryu and Layton (2013a).

IRT case. The IRT case represents both inhomogeneous TAL radius and Vmax.

A smaller TAL radius near the loop bend lowers the stability of the system at small

delays. However, a smaller TAL circumference also reduces the effective TAL trans-

port rate. As shown in Fig. 3.3C, these two factors result in crossings of the root

curves with the γ-axis at γ values that are finite but larger than the IT case, with a

smallest γ value of 6.25 (compare to 5.47 for the IT case).
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The explanation of the emergence of LCO at zero τ value for the IT and IRT

cases is similar to that for the IR case: A higher Vmax near the loop bend implies a

larger BC
Bt

there, compared to at the MD. As a result, following a perturbation in Q,

CMD may overshoot, which leads to LCO.

CIRT case. In the CIRT case, TAL compliance is introduced with α “ 0.226 ˆ

10´5 cm mmHg´1, taken to be 1/5 of measured compliance in isolated tubule studies

(Young and Marsh (1981)). This choice of the TAL compliance is based on the con-

sideration that the effective compliance of the TAL tubular walls may be lowered in

vivo by various factors including the possible tethering of the TAL to other tubules

via the interstitial matrix, resistance of the renal capture, and resistance exerted by

neighboring TALs that may be oscillating in synchronization (Layton (2010)). Root

curves are shown in Fig. 3.3D for n ď 5. Compared with the IRT case (Fig. 3.3C),

root curves corresponding to the CIRT case suggest that TAL compliance increases

the tendency of the system to oscillate, especially at high frequency. This is consis-

tent with a previous study that used a simple TAL model with homogeneous TAL

transport (Layton (2010)). Indeed, if we used the isolated-tubule TAL compliance

(α “ 1.33 ˆ 10´5 cm mmHg´1), oscillatory states became attainable at even lower

(possibly unphysiologically low) gain values („ 1.5 at τ “ 0.2); result not shown.

Crossing of the root curves with the γ-axis has not been revealed in the TGF

models that include a detailed representation of the TAL, but not the spatial inho-

mogeneity of its transport properties and dimension (Layton et al. (1991); Layton

(2010)). To validate the emergence of LCO at zero delay, we computed numerical

solutions to the full model equations (Eqs. (2.3), (2.4), and (2.9)) for selected val-

ues of gain γ and delay τ . We chose two points from each of the IR and IT cases,

labeled W and X in Fig. 3.2B, and Y and Z in Fig. 3.3B. These points were all

chosen along the γ-axis and correspond to the following pairs of delays and gains:
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pτW , γW q “ p0, 15q, pτX , γXq “ p0, 25q, pτY , γY q “ p0, 4q, and pτZ , γZq “ p0, 9q. The

time-profiles for the MD [Cl´] following a transient perturbation are shown in Fig-

ure 3.4. Points W and Y, which lie within the “ρn ă 0” regime and at τ “ 0, corre-

spond to time-independent steady states. Points X and Z, which lie above “ρ4 “ 0”

and “ρ3 “ 0”, respectively, correspond to oscillatory solutions; see Figs. 3.4X and

3.4Z. These results indicate an agreement between the full model and the linearized

model: that LCOs may be obtained at zero TGF delay for some spatially varying

TAL transport rates and dimensions.

We performed similar simulations for the IRT case, for two points along the γ-

axis, with pτP1, γP1q “ p0, 4q, pτQ1, γQ1q “ p0, 8q; and for the CIRT case, for the

following τ–γ pairs: pτP2, γP2q “ p0.2, 1q, pτQ2, γQ2q “ p0.4, 2.5q, and pτR2, γR2q “

p0, 8q. Locations of these points are indicated in Figs. 3.3C and 3.3D. The MD [Cl´]

time-profiles corresponding to these points are displayed in Figure 3.5. Both points

P1 and P2, which lie below all root curves, i.e., within the “ρn ă 0” regime, yields

a time-independent steady state. Points Q1, Q2 and R2 correspond to oscillatory

solutions with frequencies that depend on the γ values.
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Figure 3.4: Sample solutions for points (W: τ “ 0, γ “ 15), (X: τ “ 0, γ “ 25)
from Fig. 3.2B (IR case), and (Y: τ “ 0, γ “ 4) and (Z: τ “ 0, γ “ 9) from
Fig. 3.3B (IT case), obtained via numerical simulations using full model equations
(Eqs. (2.3)–(2.4) and (2.9)) Reprinted from Ryu and Layton (2013a).
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Figure 3.5: Sample solutions for points (P1: τ “ 0, γ “ 4), (Q1: τ “ 0, γ “ 8),
from Fig. 3.3C (IRT case, α “ 0), and for points (P2: τ “ 0.2, γ “ 1), (Q2: τ “ 0.4,
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(2.4) and (2.9)). Reprinted from Ryu and Layton (2013a).
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3.1.3 Analysis of the characteristic equation

In this section, we provide a rigorous justification for the existence of roots along

the γ-axis in TAL models with inhomogeneous radius and maximum transport rate.

To that end, we analyze the characteristic equations corresponding to the H, IR,

and IT cases and compare the results. First, we examine the characteristic equation

Eq. (3.45) for the H case and show that no root exists for τ “ 0 and some γ ą 0. By

setting τ “ 0 and ρ “ 0 (where λ “ ρ` iω), we simplify Eq. (3.45) to

1 “ ´
γ

8µL0

ż 1

0

e´iωp1´xq exp

ˆ

´

ż 1

x

κC 1e
C 1ss

dy

˙

dx. (3.47)

Substituting e´iωp1´xq “ cospωp1 ´ xqq ´ i sinpωp1 ´ xqq into (3.47), we note that if

a root exists for some γ ą 0 and some ω, then the imaginary part of the resulting

equation must satisfy

0 “

ż 1

0

sinpωp1´ xqq exp

ˆ

´

ż 1

x

κC 1e
C 1ss

dy

˙

dx, (3.48)

where the sine term in the integrand is oscillatory and the exponential term corre-

sponds to the amplitude of integrand, which we denote by F pxq.

Consider the amplitude part of F pxq, i.e., expp´fpxqq, where fpxq “
ş1

x
κC1e
C1ss

dy.

Note that fpxq is a decreasing function of x because C 1ss and C 1e are positive, and

fp1q “ 0; thus, expp´fpxqq is an increasing function of x. Next, note that sinpωp1´

xqq is oscillatory with equidistant x-intercepts, i.e., the n-th root of sinpωp1´xqq “ 0

is given by

xn “ 1´
2πn

ω
such that xn ´ xn´1 “ xn´1 ´ xn´2.

It follows that F pxq is an oscillatory function with increasing amplitude, such that

the area bounded by a pair of consecutive x-intercepts increases and switches sign.

Thus, the total positive and negative areas do not cancel, which implies that the
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right side of Eq. (3.48) is never zero and a root does not exist for a positive γ.

Consequently, in the H case, the root curves do not cross the γ-axis.

Now consider the characteristic equation for the IR case:

1 “
γ

8µC1

e´λτ

Rp1q

ż 1

0

R ¨ exp

ˆ

´

ż 1

x

κC 1e
C 1ss

R ` λR2 dy

˙

dx. (3.49)

Setting τ “ 0 and ρ “ 0, the above equation becomes

1 “
γ

8µC1

1

Rp1q

ż 1

0

R ¨ expp´g1pxqq expp´iωh1pxqq dx, (3.50)

where g1pxq “
ş1

x
κC1e
C1ss

R dy and h1pxq “
ş1

x
R2 dy.

For a root to exist for some γ ą 0 and ω ą 0, the imaginary part of (3.50) must

satisfy

0 “

ż 1

0

R ¨ expp´g1pxqq sinpωh1pxqq dx. (3.51)

Similar to fpxq in (3.48), g1pxq is decreasing so that R ¨ expp´g1pxqq is an in-

creasing function. However, when we consider the distance between x-intercepts

of sinpωh1pxqq, we must take into account the concavity of h1pxq. Because h21pxq “

´2RR1 ă 0, h1pxq is concave down and the distance between consecutive x-intercepts

is decreasing. Thus, even though the amplitude of the integrand is increasing from

0 to 1, some ω may exist such that the positive and negative areas exactly can-

cel. Indeed, for ω “ 13 and with nondimensional parameters, the right-hand side of

Eq. (3.51) is evaluated to be 0.0169; for ω “ 14, the right-hand side of Eq. (3.51) is

-0.0109. Thus, by the intermediate value theorem, the right-hand side vanishes for

some ω P p13, 14q. This result explains the crossing of the γ-axis by the root curves

in the IR case.

Consider the opposite radius variation, where where R decreases from the loop

bend to the MD. Then the distance between two consecutive roots of sinpωh1pxqq “ 0
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increases as x increases due to h21pxq ą 0. This implies that the positive and negative

areas do not cancel and the right-hand side of Eq. (3.51) should be positive for any

ω. Thus, for this radius function, we expect no γ-crossings; that was confirmed by

numerical solution of the characteristic equation (results not shown).

Finally, consider the characteristic equation for IT case:

1 “ ´
γ

8µC1

e´λτ
ż 1

0

e´λp1´xq exp

ˆ

´

ż 1

x

κC 1e
C 1ss

´
V 1maxCss

pKM ` CssqC 1ss
dy

˙

dx. (3.52)

Setting τ “ 0 and ρ “ 0, Eq. (3.52) becomes

1 “
γ

8µC1

ż 1

0

expp´g2pxqq expp´iωh2pxqq dx, (3.53)

where g2pxq “
ş1

x
κC1e
C1ss
´

V 1maxCss
pKM`CssqC1ss

dy and h2pxq “ 1´ x.

If a root exists for some γ ą 0 and ω ą 0, then the imaginary part of (3.53) must

satisfy

0 “

ż 1

0

expp´g2pxqq sinpωh2pxqq dx. (3.54)

Similar to the H case, sinpωh2pxqq is oscillatory with equidistant x-intercepts. How-

ever, the second term in the integrand of g2, V 1maxCss
pKM`CssqC1ss

, is nonnegative because

V 1max ď 0; thus, g2pxq has both increasing and decreasing parts, and so does expp´g2pxqq.

As a result, despite the equidistant distribution of the x-intercepts of sinpωh2pxqq,

the amplitude part of the integrand in Eq. (3.54) is not monotonic, so that some ω

may exist such that the positive and the negative areas exactly cancel. This result

indicates the existence of γ-intercepts by the root curves in the IT case.
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3.2 Short-Looped Nephron Model

The short-looped nephron model was developed to serve as an essential component

for the tubular system with TGF mechanism, by incorporating the detailed dynamics

along the proximal tubule and descending limb into our TAL model. Specifically, in

contrast to the TAL model which includes only a detailed representation of the TAL,

our whole-loop model explicitly represents a short-looped nephron so that it can be

used to conduct the sensitivity-study of the TGF regulation in a single nephron to

tubular fluid pressure perturbations.

As in the TAL model, we analogously derived the characteristic equation of short-

looped model. However, the information provided by the characteristic equation

may introduce some discrepancies in model predictions between the linearized and

nonlinear full models, which can be attributed to simplifying assumptions made in the

linearization process. If one desires to attain a more realistic picture of actual model

behaviors for thorough understanding of TGF autoregulation, parameter boundaries,

which separate differing model behaviors, need to be directly identified by solving

nonlinear full equations instead of finding roots of the characteristic equation.

By obtaining the bifurcation diagrams, we first considered the effect of tubular

wall compliance on the stability of the TGF system. Similarly, we studied the effect

of the explicit representation of the proximal tubule and descending limb in compar-

ison to our TAL-only model. Based on the information provided by the bifurcation

diagram of the short-looped model, we also investigated the effects of transient or

sustained flow perturbations on the TGF system and on distal fluid and NaCl deliv-

ery. By these means, we assessed the regulatory ability of TGF system in response

to those perturbations.
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3.2.1 Characteristic equation

In this section, we provide the derivation of a characteristic equation for short-

looped nephron model. Using the same normalizing factors applied to TAL model

in Section 3.1.1, the equations for tubular pressure (2.18) and chloride concentration

(2.3) in nondimensional form are given by

B

Bt
P´

R2

4µα

B

Bx
R
B

Bx
P “

R3

16µα

B2

Bx2
P ´

Φ

2αR
, (3.55)

R2 B

Bt
C “´ 2RC

B

Bt
R ´Q

B

Bx
C ´ C

B

Bx
Q´Rss

ˆ

VmaxC

KM ` C
` κpC ´ Ceq

˙

. (3.56)

We then linearize Eq. (3.55) by assuming infinitesimal perturbations in C, P , R,

Q, and Φ:

P px, tq “ Psspxq ` εPεpx, tq, (3.57)

Rpx, tq “ Rsspxq ` εRεpx, tq, (3.58)

Cpx, tq “ Csspxq ` εCεpx, tq, (3.59)

Qpx, tq “ Qsspxq ` εQεpx, tq, (3.60)

Φpx, tq “ Φsspxq ` εΦεpx, tq, (3.61)

where ε ! 1, and Psspxq, Rsspxq, Csspxq, Qsspxq, and Φsspxq denote the steady-state

pressure, radius, Cl´ concentration, flow rate, and water flux, respectively. Note that

from nondimensionalized forms of Eqs. (2.1), (2.13), and (2.4) one can show that

´8µQss “ R4
ss

B

Bx
Pss, (3.62)

´8µQε “ R4
ss

B

Bx
Pε ` 4R3

ssRε
B

Bx
Pss, (3.63)

B

Bx
Qss “ ´Φss, (3.64)

B

Bx
Qε “ ´2αRss

B

Bt
Pε ´ Φε, (3.65)

Rss “ αpPss ´ Peq ` β, (3.66)
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Note that Qss and Φss are piecewise-linear functions of x. Then, taking spatial

derivative of Eq. (3.62) and substituting Eq. (3.64) yields

4R3
ss

B

Bx
Rss

B

Bx
Pss `R

4
ss

B2

Bx2
Pss “ ´8µ

B

Bx
Qss “ ´8µp´Φssq “ 8µΦss, (3.67)

Next, we substitute (3.57) and (3.58) into (3.55) and keep only the Opεq terms

Rss
B

Bt
Pε ´

1

4µα

ˆ

R3
ss

B

Bx
Rε
B

Bx
Pss `R

3
ss

B

Bx
Rss

B

Bx
Pε ` 3R2

ssRε
B

Bx
Rss

B

Bx
Pss

˙

“
1

16µα

ˆ

R4
ss

B2

Bx2
Pε ` 4R3

ssRε
B2

Bx2
Pss

˙

´
1

2αi
Φε. (3.68)

Using the definition and the assumption for Φpx, tq from Eq. (2.16),

Φpx, tq “
Qp0, tq ´Qpx, tq

x
“ hpxqQp0, tq, (3.69)

where hpxq is defined as a piece-wise constant function of x from Eq. (2.16). If we

solve for Qp0, tq in terms of Qpx, tq from the second equality in (3.69) and substitute

the resulting expression back into the first equality, we obtain equations for Φpx, tq

and for Φεpx, tq:

Φpx, tq “

ˆ

hpxq

1´ xhpxq

˙

Qpx, tq “ HpxqQpx, tq, (3.70)

Φεpx, tq “ HpxqQεpx, tq, (3.71)

Simplifying (3.68) from Eqs. (3.62), (3.63), (3.67), and (3.71), we obtain the following

advection-diffusion equation for Pε

B

Bt
Pε `

B

Bx
Pε

ˆ

2
Qss

R2
ss

´
1

4µα
R2
ss

B

Bx
Rss ´

H

16µα
R3
ss

˙

“
2Pε
R2
ss

ˆ

Φss `
Qss

Rss

B

Bx
Rss ´HQss

˙

`
R3
ss

16µα

B2

Bx2
Pε, (3.72)

subject to the boundary conditions:

Pεp0, tq “ P 1pCopqCεp2, t´ τq, (3.73)

PεpL0, tq “ 0, (3.74)
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where P 1pCopq ”
dP
dC

ˇ

ˇ

C“Cop
. The boundary condition at x “ 0 (i.e., Eq. (3.73))

specifies the change in Po in response to a deviation in MD Cl´ concentration; that

response has a delay of τ . The other boundary condition (Eq. (3.74)) imposes a fixed

pressure value at x “ L0.

As in the previous studies (Layton et al. (1991); Pitman et al. (1993); Layton

et al. (1997b, 2009); Layton (2010)), we assume Cεpx, tq “ fpxqeλt, for some function

fpxq and λ P C. Thus, the boundary condition (Eq. (3.73)) becomes

Pεp0, tq “ P 1pCopqfp2qe
λpt´τq, (3.75)

Assuming that the solution for Eqs. (3.72)–(3.74) has the form

Pεpx, tq “ gpxqP 1pCopqfp2qe
λpt´τq, (3.76)

and substituting into Eq. (3.72) for Pε, we obtain the second-order differential equa-

tion for gpxq

R3
ss

16µα
g2pxq ´

ˆ

2
Qss

R2
ss

´
1

4µα
R2
ss

B

Bx
Rss ´

H

16µα
R3
ss

˙

g1pxq

`

ˆ

2Φss

R2
ss

` 2
Qss

R3
ss

B

Bx
Rss ´ 2H

Qss

R2
ss

´ λ

˙

gpxq “ 0, (3.77)

with boundary conditions gp0q “ 1 and gpL0q “ 0.

Next, we linearize the solute conservation equation for each nephron by substi-

tuting Eqs. (3.57)–(3.60) and the nondimensional form of Eqs. (2.1) and (2.13) into

(3.56),

pRss ` εRεq
2 B

Bt
pCss ` εCεq “ ´ 2pRss ` εRεqpCss ` εCεq

B

Bt
pRss ` εRεq

`
pRss ` εRεq

4

8µ

B

Bx
pPss ` εPεq

B

Bx
pCss ` εCεq

´ pCss ` εCεq
B

Bx
pQss ` εQεq

´Rss

ˆ

VmaxpCss ` εCεq

KM ` Css ` εCε
` κpCss ` εCε ´ Ceq

˙

.

(3.78)
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Note that the steady-state solutions satisfy

R4
ss

8µ

B

Bx
Pss

B

Bx
Css “ pKpCssq ` κpCss ´ CeqqRss ´ ΦssCss, (3.79)

where the active transport term is given by KpCq “ VmaxC
KM`C

and Eq. (3.64) was used.

Keeping only the Opεq terms in Eq. (3.78) and using Eqs. (3.64)–(3.66), we arrive

at the evolution equation for Cε,

R2
ss

B

Bt
Cε “´ 2αRssCss

B

Bt
Pε,i ´ ppK

1
pCssq ` κqRss ´ ΦssqCε ` Cssp2αRss

B

Bt
Pε ` Φεq

(3.80)

`
R3
ss

8µ

ˆ

4Rε
B

Bx
Pss

B

Bx
Css `Rss

B

Bx
Pss

B

Bx
Cε `Rss

B

Bx
Pε
B

Bx
Css

˙

Substituting Cε “ fpxqeλt, Pεpx, tq “ gpxqPεp0, tq, and Rεpx, tq “ αPεpx, tq into

the above equation, we obtain

λR2
ss,ifpxqe

λt
“
R3
ss,i

8µ
p4αiP

1
ss,iC

1
ssgiPε,ip0, tq `Rss,iP

1
ss,if

1eλt `Rss,iC
1
ss,ig

1
iPε,ip0, tqq

(3.81)

´ ppK 1
pCssq ` κqRss,i ´ Φss,iqfpxqe

λt
´
H

8µ
CssR

3
ss,iPε,ip0, tqpRss,ig

1
ipxq ` 4αiP

1
ss,igipxqq.

Applying Eq. (3.62) repeatedly, substituting Eq. (3.75), canceling out eλt, and rear-

ranging,

Qssf
1
pxq ` ppK 1

pCssq ` κqRss ´ Φss ` λR
2
ssqfpxq (3.82)

“ P 1pCopqfp2qe
´λτ
pC 1ss ´HCssq

ˆ

R4
ss

8µ
g1pxq ´ 4αgpxq

Qss

Rss

˙

.

Recall we have fixed Cl´ concentration at the entrance to the proximal tubule (i.e

x “ 0). Thus,

Cεp0q “ fp0qeλt “ 0 ñ fp0q “ 0. (3.83)
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Given the initial condition (3.83), the solution for (3.82) can be found to be

fpsq “ exp

ˆ

´

ż s

0

Ωpxq dx

˙ˆ
ż s

0

Ξpxq exp

ˆ
ż x

0

Ωpyq dy

˙

dx

˙

, (3.84)

where

Ωpxq “
pK 1pCssq ` κqRss ´ Φss ` λR

2
ss

Qss

, (3.85)

Ξpxq “ P 1pCopqfp2qe
´λτ pC

1
ss ´HCssq

Qss

ˆ

R4
ss

8µ
g1pxq ´ 4αigpxq

Qss

Rss

˙

. (3.86)

Setting s “ 2 and canceling the factor fp2q, we get the characteristic equation

1 “P 1pCopqe
´λτ

ż 2

0

pC 1ss ´HCssq

Qss,i

ˆ

R4
ss

8µ
g1pxq ´ 4αigpxq

Qss,i

Rss,i

˙

ˆ exp

ˆ

´

ż 2

x

pK 1pCssq ` κqRss ´ Φss ` λR
2
ss

Qss

dy

˙

dx. (3.87)

To facilitate a comparison of (3.87) with the characteristic equation derived for a

compliant TAL model, we apply Eq. (3.62) to Eq. (3.79) and consider the resulting

equation:

´Qss
d

dx
Css “ pKpCssq ` κpCss ´ CeqqRss ´ ΦssCss. (3.88)

Taking spatial derivative of (3.88) yields

´Q1ssC
1
ss ´QssC

2
ss “pK

1
pCssqC

1
ss `

V 1maxCss
KM ` Css

` κpC 1ss ´ C
1
eq ` κ

1
pCss ´ CeqqRss

` pKpCssq ` κpCss ´ CeqqR
1
ss ´ ΦssC

1
ss

“pK 1
pCssqC

1
ss `

V 1maxCss
KM ` Css

` κpC 1ss ´ C
1
eq ` κ

1
pCss ´ CeqqRss

`
R1ss
Rss

p´QssC
1
ss ` ΦssCssq ´ Φss,iC

1
ss. (3.89)
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Dividing by C 1ss from both sides and rearranging,

pK 1
pCssq ` κqRss ´ Φss “ ´Q

1
ss ´Qssp

C2ss
C 1ss

´
R1ss
Rss

q ´ Φss
Css
C 1ss

R1ss
Rss

(3.90)

`

ˆ

κ
C 1e
C 1ss

´
V 1maxCss

pKM ` CssqC 1ss
´
κ1pCss ´ Ceq

C 1ss

˙

Rss.

Substituting (3.90) into (3.87) and simplifying, we finally get

1 “ γe´λτ
Qssp2q

Rssp2q

ż 2

0

Ψpxq exp

ˆ

´

ż 2

x

Γpyq dy

˙

dx, (3.91)

where γ “ P 1pCopqC
1
ssp2q is the TGF gain,

Ψpxq “
1

Q2
ss

ˆ

1´H
Css
C 1ss

˙ˆ

R5
ss

8µ
g1pxq ´ 4αgpxqQss

˙

Γpxq “

ˆ

κ
C 1e
C 1ss

´
V 1maxCss

pKM ` CssqC 1ss
´
κ1pCss ´ Ceq

C 1ss
` λRss

˙

Rss

Qss

´
Φss

Qss

Css
C 1ss

R1ss
Rss

,

and gpxq satisfies Eq. (3.77). Equation (3.91) assumes compliant tubular walls and

allows spatially varying radius, maximum active transport, chloride permeability.

The gain γj can be related to the parameters K1,j and K2,j in the pressure response

function (Eq. (2.14)). Differentiating Eq. (2.14) with respect to Ci and setting Ci to

Cop, we obtain P 1pCopq “ ´K1K2; thus

γ “ ´K1K2C
1
ssp2q. (3.92)

We have previously derived a characteristic equation for a uncoupled nephron,

in which only the TAL is explicitly represented, as provided in Section 3.1.1. Equa-

tion (3.91) can be reduced to that simpler TAL model. Because the TAL is water-

impermeable with constant volumetric fluid flow rate, we set Qss “ 1, H “ 0, and

Φss “ 0 in Eq. (3.91), and, after some algebraic manipulations, we obtain

1 “
γe´λτ

Rssp2q

ż 2

1

ˆ

R5
ss

8µ
g1 ´ 2αgpλR2

ss

Css
C 1ss

` 2q

˙

(3.93)

ˆ exp

ˆ

´

ż 2

x

ˆ

κ
C 1e
C 1ss

´
V 1maxCss

pKM ` CssqC 1ss
´
κ1pCss ´ Ceq

C 1ss
` λRss

˙

Rss dy

˙

dx,
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where gpxq satisfies the reduced form of (3.77):

R3
ss

16µα
g2pxq ´

ˆ

2

R2
ss

´
1

4µα
R2
ss

B

Bx
Rss

˙

g1pxq `

ˆ

2

R3
ss

B

Bx
Rss ´ λ

˙

gpxq “ 0, (3.94)

with boundary conditions gp0q “ 1 and gpL0q “ 0. Note that the outer integral in

Eq. (3.93) ranges from 1 to 2, corresponding to the segments from the loop bend to

the MD. This equation corresponds to Eq. (3.31) in the TAL model.

3.2.2 Model results

Steady-state model predictions

We first computed steady-state behaviors for a short-looped nephron using param-

eters given in Table 2.4. The model equations (Eqs. (2.1), (2.13), (2.3)–(2.4)) were

solved numerically, as described in Section 2.1.4, to obtain steady-state spatial pro-

files of tubular fluid pressure, radius, flow rate, and chloride concentration along the

loop. The results are shown in Fig. 3.6. Panel A shows the tubular fluid pressure drop

along the loop. Steady-state inflow pressure at the proximal tubule is „13 mmHg and

continuously decreases to „10 mmHg at the loop bend and to „8 mmHg at the end

of the TAL. Based on transmural pressure difference (Eq. (2.4)), steady-state tubular

radius is computed and shown in panel B. The steady-state water flux term Φpxq

along each segment determines the fluid flow rate (panel C). First, along the proximal

convoluted tubule, two-third of the water is reabsorbed so that the water flow rate

decreases from „30 (SNGFR) to „10 nl/min; then along the proximal straight tubule

and the water-permeable descending limb segment, „3/10 of the water is reabsorbed

so the flow rate reaches at 7 nl/min in the beginning of the water-impermeable de-

scending limb. After the water-permeable segments (x ą xω), tubular fluid flow rate

remains constant at 7 nl/min owing to the zero water permeability along the rest of

the loop.

Panel D shows steady-state tubular fluid Cl´ concentration profile together with
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Figure 3.6: Steady state tubular fluid pressure (panel A), luminal radius (panel
B), tubular flow rate (panel C), Cl´ concentration (panel D) as functions of position.
xω in panel C denotes the position at which the water-impermeable segment of the
descending limb starts. Reprinted from Ryu and Layton (2013c).

the external chloride concentration profile Cepxq (dashed line). Along the water-

permeable segments (x ă xω), tubular fluid Cl´ concentration increases because of

the substantial water reabsorption. Along the water-impermeable segment of the

descending limb (xw ď x ă 5 mm), Cl´ concentration remains almost constant.

At the loop bend (x “ 5 mm), chloride permeability, κ, and maximum active Cl´

transport rate, Vmax, change. Along the TAL, NaCl is vigorously pumped out with-

out accompanying water loss. Thus, chloride concentration progressively decreases,
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finally reaching the target concentration, Cop, at the MD.

Tubular wall compliance lowers the stability of the TGF system

By solving the nonlinear model equations (Eqs. (2.1), (2.13), (2.3)–(2.4)) numerically,

we computed parameter boundaries, as functions of gain γ and delay τ , that separate

differing model behaviors. The TGF gain γ is a measure of the closed feedback loop

sensitivity at steady state. This value depends on two derivatives (slopes), P 1opCopq

and C 1ssp2Lq, given by

γ “
dPo
dCMD

ˇ

ˇ

ˇ

ˇ

CMD“Cop

dCss

dx

ˇ

ˇ

ˇ

ˇ

x“2L

“ ´K1K2C
1
ssp2Lq, (3.95)

where CMD “ Cp2L, t ´ τq, Cop is the target chloride concentration at the MD,

and Css is the steady-state chloride concentration profile shown in Fig. 3.6D (solid

curve). The dependence of Po on CMD is given in Eq. (2.5). The first derivative

dPo
dCMD

ˇ

ˇ

ˇ

ˇ

CMD“Cop

comes from the TGF response to a deviation of CMD from Cop. In

other words, this quantifies the sensitivity of the TGF system to deviations from the

target MD concentration (Holstein-Rathlou and Marsh (1989)). This derivative can

be obtained by differentiating the right-hand side of Eq. (2.5) with respect to CMD

and setting CMD to Cop, i.e., P 1opCopq “ ´K1K2. The other derivative dCss

dx

ˇ

ˇ

ˇ

ˇ

x“2L

is the

slope of the chloride concentration at the MD when the system is at steady state.

Note that γ is positive since C 1ssp2Lq is negative as shown in Fig. 3.6D.

In the regions marked “Steady state” in Fig. 3.7, the only stable solution is the

time-independent steady state. The change in behavior of solutions across the curves

between “Steady state” and the above regions arises from a Hopf bifurcation. Across

the boundaries, a stable time-independent steady-state solution bifurcates into a

regular oscillatory solution. In particular, “fn” (n “ 1, 2, 3) labels a region that

supports stable LCO-solutions with the nth frequency, with f1 being the natural fre-
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Figure 3.7: Behaviors of model solutions, based on numerical simulations using
base-case compliance (A) and 1/4 of base-case compliance (B). MD chloride concen-
tration oscillations corresponding to the points W, X, Y, and Z are given in Fig. 3.8.
Reprinted from Ryu and Layton (2013c).

quency. The model predicts that for sufficiently small values of γ, i.e. for points

(γ, τ) within the region “Steady state”, any initial solution, or any transient pertur-

bation of a steady-state solution, results in the convergence to the time-independent

steady-state solution; this is the only stable solution. But for points (γ, τ) in the

regions marked “fn” above the “Steady state” region, a perturbation of the steady-

state solution results in a LCO with its corresponding frequency fn. Thus, within

different regions in the bifurcation diagram, a transient perturbation results in qual-
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itatively different solutions, either the steady-state or LCO, and if LCO, solutions

with different frequencies. The emergence of LCO at zero TGF delay (τ “ 0) with

sufficiently high gain values (ą 3.8) can be attributed to the spatial inhomogeneity

of the TAL radius shown in Fig. 3.6B, a result that was previously discussed in the

TAL model.

Simulated oscillations in tubular fluid Cl´ concentration at the MD were com-

puted for four points, labeled W, X, Y, and Z in Fig. 3.7A. These points correspond

to the following pairs of delays (in second) and gains: pτW , γW q “ p3.14, 2q, pτX , γXq “

p3.93, 4q, pτY , γY q “ p2.98, 7q, and pτZ , γZq “ p1.57, 4q. The time-profiles of the MD

[Cl´] following a transient perturbation are shown in Figure 3.8. Point W, which lies

within the “Steady state” regime, corresponds to a time-independent steady state.

Points X, Y, and Z, which lie in the f1, f2, and f3 regions, respectively, corre-

spond to oscillatory solutions, with LCO frequencies f1 “ 37.68, f2 “ 88.66, and

f3 “ 152.2 mHz, respectively.

Next, to assess the impact of tubular wall compliance on TGF-mediated dy-

namics, we computed model solutions using tubular wall compliance values that

are 1/4 of base-case compliance, i.e., we set αDL “ 0.11 ˆ 10´5 cm¨mmHg´1 and

αTAL “ 0.066 ˆ 10´5 cm¨mmHg´1. The resulting bifurcation diagram is shown in

Fig. 3.7B. By comparing Figs. 3.7A and 3.7B, one notes that the lower tubular wall

compliance increases the stability of the TGF system. For instance, for TGF delay

τ “ 3.5 s, LCO can be obtained using the base-case compliance for a gain value

of as low as γ “ 2.45, whereas with the reduced compliance, LCOs are predicted

above γ “ 3.8. In contrast, if wall compliance is increased to 5/2 of base-case

value (or 1/2 of the measured values, i.e., αDL “ 1.125 ˆ 10´5 cm¨mmHg´1 and

αTAL “ 0.665 ˆ 10´5 cm¨mmHg´1), the steady-state regime becomes smaller, indi-

cating that the increased compliance further reduces the stability of the TGF system

(results not shown).
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Figure 3.8: Sample solutions for points (W: τ “ 3.14 s, γ “ 2), (X: τ “ 3.93 s,
γ “ 4), (Y: τ “ 2.98 s, γ “ 7), and (Z: τ “ 1.57 s, γ “ 4) from Fig. 3.7A. Oscilla-
tion frequencies for X, Y, and Z are estimated to be 37.68, 88.66, and 152.2 mHz,
respectively. Reprinted from Ryu and Layton (2013c).

Explicit representation of proximal tubule and descending limb lowers the stability of
the TGF system

To better understand the impact of the explicit representation of the proximal tubule

and descending limb on model dynamics, we compared base-case dynamics with a

model that explicitly represents the TAL only, i.e., TAL model. Loop-bend inflow

pressure was set to „10 mmHg and the base-case TAL compliance was applied in

the TAL model. Bifurcation curves were computed and are shown in Fig. 3.9A.
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A comparison with base-case curves (Fig. 3.9B) shows that bifurcation curves are

noticeably lower in the base case. For a TGF delay of 3.5 s, the base case predicts

oscillations above a critical gain value of γ “ 2.45, whereas the TAL model predicts

a substantially higher critical gain value of γ “ 3.27. These results suggest that

explicit representation of the proximal tubule and descending limb of the loop of

Henle lowers the stability of the system.
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Figure 3.9: Behaviors of model solutions for the TAL model (A) using base-
case TAL compliance and for the base-case whole-loop model (B) from Fig. 3.7A.
Reprinted from Ryu and Layton (2013c).
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LCO increases distal NaCl delivery but fluid delivery remains relatively stable

We studied the effects, in the context of distal fluid and NaCl delivery, of LCO

that arises from transient pressure perturbations. To that end, we computed and

compared fluid and chloride delivery rates at the MD in the steady state with cor-

responding time-averaged rates during LCO. Results for gain values from 0 to 10

with TGF delay τ “ 3.5 s, are summarized in Fig. 3.10A, where the time-averaged

variables are normalized by their corresponding steady-state base-case values. Gray

bar indicates 100% of steady-state base-case values for comparison. Dimensional re-

sults for selected γ values are given in Table 3.1. As shown in Fig. 3.7A, for a TGF

delay of 3.5 s, LCO emerges at the critical gain value γc « 2.45. As γ exceeds γc,

fluid delivery is lowered by LCO, to a maximum of ´1.41% at γ « 5. In contrast,

time-averaged MD chloride concentration progressively rises with increasing γ. The

result of these two competing factors is that, for sufficiently large γ values, distal

chloride delivery increases with γ, to +9.3% at γ “ 10.

Figure 3.10B shows a phase plot, where the values of chloride delivery are plotted

as a function of TAL fluid flow rate determined at the MD, for γ “ 3, 5, 7, and

10. Arrows indicate direction of time evolution. As γ increases, the peak chloride

delivery rate increases substantially, to a maximum of „90% for γ “ 10. In contrast,

the decrease in the minimum is restricted to „40%. Maxima of fluid flow and chloride

delivery rates increase significantly as γ increases while minima are restricted. The

dots in center of the plot show time-averaged values for fluid flow and chloride delivery

rates for different gain values.

To understand why distal chloride delivery is increased by LCO, whereas distal

fluid delivery remains relatively stable, we study the time-profiles in the fluid flow,
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Figure 3.10: Effect of TGF gain γ on chloride delivery, with TGF delay τ “ 3.5 s.
A: Time-average MD fluid flow rate, chloride concentration, and chloride fluid de-
livery rate as functions of gain magnitude γ. These variables are expressed as per-
centages of their corresponding steady-state base-case values. Gray bar indicates
100% of steady-state base-case values for comparison. B: phase plots, showing MD
chloride delivery as a function of TAL fluid flow rate, for selected gain values γ.
Arrows indicate direction of time evolution. Maxima of fluid flow and chloride de-
livery rates increase significantly as γ increases while minima are restricted. Inset:
time-averaged fluid flow rate and chloride delivery. C and D: oscillations profiles
in fluid flow rate (dotted curve), chloride concentration (dashed curve), and chlo-
ride delivery rate (solid curve) at the loop bend (panel C) and at the MD (panel
D), for γ “ 5. Variables are expressed as percentages of corresponding steady-state
base-case values. Chloride delivery rate is the product of fluid flow rate and chloride
concentration. Reprinted from Ryu and Layton (2013c).
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Table 3.1: Base-case time-averaged MD variables for selected gain values with TGF
delay τ “ 3.5 s

Gain Cl´

Magnitude, Fluid Flow Rate, [Cl´], Delivery Rate,
γ nl/min mM pmol/min
Steady State
γ ď γc 7.273 31.96 232.5

LCO
3 7.210 32.91 233.9
5 7.170 35.12 243.3
7 7.179 36.13 249.3
10 7.192 36.84 254.1

chloride concentration, and chloride delivery at the loop bend and at the MD, ob-

tained for γ “ 5 and τ “ 3.5 s. Figures 3.10C and D show these variables at the

loop bend and at the MD, respectively, normalized by the corresponding steady-state

base-case values.Chloride delivery rate is the product of fluid flow rate and chloride

concentration. As shown in Fig. 3.10C, the oscillations of loop-bend variables are

symmetric around respective steady-state values. However, while MD oscillations

in fluid flow are approximately symmetric around its steady-state value, chloride

concentration oscillations exhibit sharp crests, relative to their troughs (Fig. 3.10D),

and are shifted upwards relative to those of fluid delivery. The upward shift and

sharp crests relative to their troughs can be explained by the Michaelis-Menten-

like kinetics that characterize the active NaCl transport of the TAL, which limits

the extent to which MD [Cl´] can be lowered as the NaCl reabsorption approaches

static head, where the luminal [Cl´] is sufficiently low that active NaCl reabsorption

is balanced by passive backleak. Furthermore, because of the dependence of MD

chloride concentration and other related variables on TAL transit time, the chloride

concentration waveform is phase-shifted relative to the fluid flow waveform, a pre-

diction that is consistent with experimental recordings (Holstein-Rathlou and Marsh
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(1989)). As a result, the chloride delivery rate, given by the instantaneous product

of fluid flow rate and chloride concentration, exhibits phase and upwards shifts as

well. The competing effects of the sharp crests and upward-shifted waveform result

in the increase in the time-averaged distal chloride delivery rate shown in Fig. 3.10A

for γ ą γc. A comparison of Fig. 3.10C and Fig. 3.10D indicates that the waveform

distortion, specifically in the chloride concentration, that increases distal chloride

delivery happens mostly along the TAL: time-averaged fluid flow rates are approx-

imately equal, 98.5 and 98.6% of respective steady-state values, at the loop bend

and MD, respectively. But while at the loop bend chloride concentration and flow

rate remain almost at steady-state values (101 and 100% of steady state), MD val-

ues exhibit significant increases over steady-state values (110 and 105% for chloride

concentration and delivery rate, respectively).

High-frequency oscillations reduces the effect of LCO on distal NaCl delivery

As results in Fig. 3.8 suggest, oscillations of different frequencies can be excited at

different TGF gain and delay values. To study how the oscillation frequency impacts

distal NaCl delivery to the MD, we computed time-averaged MD fluid flow rate,

chloride concentration, and chloride fluid delivery for gain values from 0 to 10, and

for TGF delay τ “ 3 s. Key variables are normalized by their corresponding steady-

state values and summarized in Fig. 3.11A. Model solution behaviors are similar

to the previous simulation results in Fig. 3.10A for γ ă 6.97. When γ exceeds

6.97, model parameters cross a bifurcation curve and enter a f2-LCO regime (see

Fig. 3.16A). Owing to its shorter period and smaller amplitude, relative to f1-LCO,

f2-LCO exhibits a drop in time-averaged chloride concentration and delivery rate.

Indeed, for γ “ 7, the time-averaged chloride delivery rate is predicted to be only

0.8% higher than steady-state value.

Model results, shown in Fig. 3.11B as a phase plot of chloride delivery versus
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Figure 3.11: Effect of TGF gain γ on chloride delivery, with TGF delay τ “ 3
s. A: Time-average MD fluid flow rate, chloride concentration, and chloride fluid
delivery rate as functions of gain magnitude γ. B: phase plots, showing MD chloride
delivery rate as a function of TAL fluid flow rate determined at the MD, for selected
gain values γ. C and D: oscillations in TAL fluid flow rate (dotted curve), chloride
concentration at the MD (dashed curve), and chloride delivery rate to the MD (solid
curve), for γ “ 6 and γ “ 7, respectively. Reprinted from Ryu and Layton (2013c).

fluid flow rate, further illustrate the frequency-dependency of LCO-mediated distal

chloride delivery. Arrows indicate direction of time evolution. The area enclosed by

the phase curve corresponding to γ “ 7 is noticeably smaller compared to γ “ 6,

which indicates a reduction in the oscillation amplitude. The oscillation profiles in

Figs. 3.11C and 3.11D show that the γ “ 7 profiles are also more nearly sinusoidal
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compared to the γ “ 6 profiles and to Fig. 3.10D. Variables are expressed as per-

centages of steady-state base-case values. The more sinusoidal waveforms result in

smaller deviations from steady-state delivery rates. Thus, the time-averaged chloride

delivery rate is decreased for higher-frequency oscillations as indicated in Fig. 3.11B,

inset.

Mean TAL flow affects TGF waveform distortion and distal NaCl delivery

We then conducted simulations designed to characterize the influence of mean TAL

flow on the strength of the nonlinearities in the transduction process that produces a

nonlinear waveform in [Cl´] at the MD, and on distal chloride delivery. In separate

simulations, we scaled water reabsorption rate along the proximal tubule and water-

permeable descending limb segment to attain steady-state TAL fluid flow of QL « 6.3

and QH « 8.2 nl/min (base-case QB « 7.3 nl/min) while keeping tubular fluid

pressure „2 mmHg at the end of the model tubule (i.e., x “ L0). TAL maximum

active transport rate Vmax was simultaneously adjusted so that steady-state MD [Cl´]

is „32 mM in all cases.

With γ and τ set to 5 and 3.5 s, respectively, all three cases predicted LCO.

The model predicted that the TGF-mediated oscillations have larger amplitudes and

are less sinusoidal at lower baseline flow rates (compare Fig. 3.12, panels B and

C, and compare the areas of the three regions in Fig. 3.12A). These results can

be attributed to the larger fractional change in flow during oscillations at a lower

mean flow. Also, owing to the inverse relationship between flow and transit time

(transit time becomes infinite as flow approaches zero), the case where the mean

flow is lower should exhibit larger, more asymmetric, swings in transit time, leading

to a stronger slope asymmetry. Taken together, the differences in waveform and

oscillation amplitude yield a larger increase in distal chloride delivery at a lower mean

TAL flow rate (+11.4% at QL compared to +1.82% at QH); see inset of Fig. 3.12A.
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Figure 3.12: Effect of TAL fluid flow rate on chloride delivery with TGF delay
τ “ 3.5 s and gain γ “ 5. A: phase plots, showing chloride delivery rate to MD
as a function of TAL fluid flow rate, for selected TAL fluid flow rates (in nl/min),
QL “ 6.3, QB “ 7.3 (base-case), and QH “ 8.2 nl/min. Inset: time-averaged
fluid flow and chloride delivery rates. As fluid flow rate in the TAL is increased,
time-averaged chloride delivery rate is decreased while time-averaged flow rate is
increased. B and C: oscillations in TAL fluid flow rate (dotted curve), chloride
concentration at the MD (dashed curve), and chloride delivery rate to the MD (solid
curve). Variables are expressed as percentages of corresponding steady-state base-
case values. Reprinted from Ryu and Layton (2013c).

Results were obtained for two cases: no TGF control (open-loop, open circle),

TGF control with LCO (closed-loop, closed circle). For perturbations of ˘ 20%, 25%,

and 30%, the LCO were suppressed by the perturbations. A: time-averaged flow

rate at MD, given as a percentage of respective base-case values, in response to the
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sustained perturbations in inflow pressure. Dotted line is obtained via extrapolation.

B: time-averaged chloride concentration at MD, as percentage of respective base-case

values. C: time-averaged chloride delivery rate to MD, as a percentage of respective

base-case values.

In the presence of sustained perturbations, LCO significantly increases distal NaCl
delivery

Next we simulated an experimental technique in which sustained perturbations are

imposed on proximal tubule fluid flow in a nephron where the TGF feedback loop

is closed and functional (Holstein-Rathlou (1991); Holstein-Rathlou and Leyssac

(1987); Holstein-Rathlou and Marsh (1989)). We computed the responses of MD

variables for proximal tubule pressure perturbations of up to ˘30% and for γ “ 5.

Model responses to the perturbations, illustrated in Fig. 3.13, are given as percentage

deviations from base-case LCO values at zero perturbation. Analogous responses for

the control case in which TGF was disabled were also computed. The deviations of

MD variables from base-case steady-state values in response to sustained perturba-

tions are summarized in Table 3.2.

When TGF was assumed absent, the open-loop case yielded large deviations from

steady-state values. Deviations in MD fluid flow rates were similar to the proximal

tubule pressure perturbations, whereas deviations in chloride concentrations and

chloride flow rates were much larger.

Compared to the open-loop case, the closed-loop case predicted substantially

smaller deviations from steady-state MD variables. When perturbations of ˘15%

were applied, fluid delivery varied by „6%. Substantially larger variations were

obtained for MD chloride concentration (up to 36%) and for chloride delivery (up

to 41%). These results suggest that while TGF regulates chloride delivery, LCO

results in larger deviation in distal NaCl delivery than in distal fluid delivery, which
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may lead to enhanced NaCl excretion. The reduced regulatory ability of TGF by

LCO was previously observed with transient perturbations. A comparison of the

two types of perturbations indicates that transient perturbations yield relatively

small deviations in time-averaged MD fluid delivery, chloride concentration, chloride

delivery from steady-state values (1, 10, and 5%, respectively), whereas the sustained

perturbations of ˘15% result in much larger deviations (up to 6, 36, and 41%,

respectively). The drop in MD chloride concentration (and thus chloride delivery

rate) at ˘20% perturbation is due to the suppression of LCO. When yet larger

perturbations are applied, MD [Cl´] and Cl´ flow continue to rise, despite the absence

of LCO.

Table 3.2: Deviations of MD variables from steady-state base-case, for gain γ “ 5

Perturbation, Fluid Flow, % [Cl´], % Cl´ Delivery, %
% OL LCO OL LCO OL LCO
-30 -37.7 -15.0 (˚) -70.4 -62.6 (˚) -81.5 -68.2 (˚)
-25 -31.6 -10.3 (˚) -66.6 -33.7 (˚) -77.1 -40.4 (˚)
-20 -25.4 -6.63 (˚) -61.4 -23.1 (˚) -71.2 -28.2 (˚)
-15 -19.2 -6.13 -52.9 -17.8 -62.0 -23.3
-10 -12.9 -5.35 -40.2 -9.58 -47.9 -16.0
-5 -6.46 -3.54 -22.6 -0.230 -27.6 -6.30
0 0 -1.40 0 9.87 0 4.69
5 6.53 1.11 19.7 19.6 35.6 17.3
10 13.1 3.53 27.3 28.2 79.4 28.9
15 19.8 6.01 34.5 36.0 131.2 40.7
20 26.6 6.01 (˚) 129.7 25.0 (˚) 190.6 32.5 (˚)
25 33.4 9.54 (˚) 167.8 41.2 (˚) 257.1 54.6 (˚)
30 40.3 15.4 (˚) 206.7 69.7 (˚) 330.1 95.8 (˚)

OL, open-loop without feedback; ˚LCO are suppressed by the perturbations.

For each perturbation, the waveforms of TAL fluid flow rate at the MD (panel

A), chloride concentration at the MD (panel B), and chloride delivery rate to the
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Figure 3.13: Effect of sustained perturbations of inflow pressure on MD fluid flow
rates, chloride concentrations, and chloride delivery rates, for TGF gain γ “ 5 and
delay τ “ 3.5 s. Results were obtained for two cases: no TGF control (open-loop,
open circle), TGF control with LCO (closed-loop, closed circle). For perturbations
of ˘ 20%, 25%, and 30%, the LCO were suppressed by the perturbations. A: time-
averaged flow rate at MD, given as a percentage of respective base-case values, in
response to the sustained perturbations in inflow pressure. Dotted line is obtained
via extrapolation. B: time-averaged chloride concentration at MD, as percentage
of respective base-case values. C: time-averaged chloride delivery rate to MD, as a
percentage of respective base-case values. Reprinted from Ryu and Layton (2013c).

MD (panel C) are in the appropriate relative phase relationship. Horizontal gray

line in each panel corresponds to steady-state base-case value. Solid Curves labeled

0% in each panel represents the LCO for γ “ 5 and τ “ 3.5 s, for no perturbation;

Dashed and dotted curves correspond to sustained perturbations of +15% and -15%,
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respectively.
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Figure 3.14: Waveforms in response to the sustained perturbations in inflow pres-
sure of -15%, 0%, and +15% for TGF gain γ “ 5 and delay τ “ 3.5 s. For each
perturbation, the waveforms of TAL fluid flow rate at the MD (panel A), chloride
concentration at the MD (panel B), and chloride delivery rate to the MD (panel C)
are in the appropriate relative phase relationship. Horizontal gray line in each panel
corresponds to steady-state base-case value. Solid Curves labeled 0% in each panel
represents the LCO for γ “ 5 and τ “ 3.5 s, for no perturbation; Dashed and dot-
ted curves correspond to sustained perturbations of +15% and -15%, respectively.
Reprinted from Ryu and Layton (2013c).

LCO waveforms for fluid flow, chloride concentration, and chloride flow at the

MD are shown in Fig. 3.14 for three cases: sustained proximal tubule pressure per-

turbations of -15%, 0%, and +15%. Compared to the profiles obtained for transient

perturbations (Figs. 3.10D and 3.11C), the marked nonlinearity of the TGF system is
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more evident in the distortion of the waveforms obtained in the cases with sustained

perturbations. It is particularly noteworthy that the vertical shifts of the profiles were

exaggerated, augmenting the deviations of delivery responses from steady state.

Effect of distal tubule and collecting duct representation on the model behaviors is
nearly negligible

Recall that to avoid specifying the poorly-characterized pressure at the end of the

TAL, the model represents a downstream resistance tube that is loosely associated

with the distal tubule and the contiguous collecting duct system. The downstream

resistance tube is assumed water impermeable and its unpressurized luminal radius

βpxq was chosen so that the hydrostatic pressure at x “ L0 is „2 mmHg. In vivo,

however, water is reabsorbed along the distal tubules and, in anti-diuresis, along the

collecting duct. Also, the collecting ducts undergo a series of coalescences in the

inner medulla.

To assess the sensitivity of model results to the differences in physical and trans-

port properties between the simple downstream resistance tube and the distal tubules

and collecting duct system, we conducted sensitivity studies in which we varied

the parameter ad, which is the location at which the unpressurized luminal radius

βpxq begins to decrease after the MD (see Eq. (6)). We obtained model results for

ad “ 2.25 ˆ L, 2.5 ˆ L (base case), and 2.75 ˆ L. For all three cases, β0, β1, β2,

were set to base-case values, so that the steady-state (pressurized) tubular radius

remained unchanged up to the MD (as shown in Fig. 3.6B). β3 and Vmax,TAL were

chosen for the three cases to produce MD chloride concentration of „32 mM as well

as P pL0q “ 2 mmHg. These values are shown in Table 3.3.

The three βpxq profiles are illustrated in Fig. 3.15. In all three cases, the TGF-

mediated dynamic behaviors appear nearly insensitive to changes in downstream

90



Table 3.3: Individual parameter values for three cases in the sensitivity study

ad 2.25 ˆL 2.5 ˆL 2.75 ˆL
β3 (µm) 6.70 6.55 6.38
Vmax,TAL (nmol¨cm´2s´1) 18.08 19.18 18.05

resistance tube representation. For instance, with the base-case compliance, the

boundaries between different regions in the bifurcation diagram are qualitatively

similar in all cases, with relative differences of ă 0.1%. The impact on other model

predictions, and on results obtained for the tubular compliance having 1/4 of the

base-case, is similarly small, and all cases yielded the prediction that compliance in

tubular walls increases the tendency for the TGF system to oscillate.
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Figure 3.15: Profiles of the unpressurized luminal radius βpxq for three different
cases: ad “ 2.25 ˆ L (dashed line), 2.5 ˆ L (base-case, solid line), 2.75 ˆ L (dotted
line). x “ 5 and x “ 10 mm correspond to the loop bend and the MD, respectively.
Reprinted from Ryu and Layton (2013c).

3.3 Coupled-Nephron Model

We developed the coupled-nephron model with the whole-loop representation to

study the effect of internephron coupling on the TGF-mediated dynamics. Model

equations for each individual nephron were formulated, based the (uncoupled) loop
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model, and the coupling effect was incorporated to represent the interaction between

neighboring nephrons through their TGF systems.

Our main goal of this coupled-TGF study is to help elucidate how coupling may

impact the TGF-mediated dynamics and to what extent coupling introduces the com-

plexities to TGF-mediated model behaviors. To obtain a better understanding of the

roles of internephron coupling, we similarly applied linear stability and bifurcation

analyses, as in TAL and short-looped models, to derive the characteristic equation

for coupled-TGF system. By identifying parameter regions that correspond to quali-

tatively different solution behaviors, we compared model predictions of coupled-TGF

system with (uncoupled) short-looped model. We also determined the range of pa-

rameter values for which irregular TGF-mediated oscillations emerge as a result of

internephron coupling.

3.3.1 Characteristic equation

As in the short-looped model, we analogously derive a characteristic equation for

coupled-nephron model. Using the same normalizing factors applied to TAL model

in Section 3.1.1, the equations for tubular pressure and chloride concentration of each

ith nephron in nondimensional form are Eq. (3.55)–(3.56)

B

Bt
Pi´

R2
i

4µαi

B

Bx
Ri
B

Bx
Pi “

R3
i

16µαi

B2

Bx2
Pi ´

Φi

2αiRi

, (3.96)

R2
i

B

Bt
Ci “´ 2RiCi

B

Bt
Ri ´Qi

B

Bx
Ci ´ Ci

B

Bx
Qi ´Rss,i

ˆ

Vmax,iCi
KM,i ` Ci

` κipCi ´ Ceq

˙

.

(3.97)

Throughout the derivation of the characteristic equation for coupled-nephron

model, we assume that the nephrons share the same transport parameters (i.e.,

Vmax,i, KM,i, and, κi are the same for all i); thus their steady-state Cl´ concentration

profiles are the same. Given these assumptions, we then linearize Eq. (3.96) by using

(3.57)–(3.61). Also, analogously using the expressions given in (3.62)–(3.71) for ith
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nephron, we obtain the following advection-diffusion equation for Pε,i

B

Bt
Pε,i `

B

Bx
Pε,i

ˆ

2
Qss,i

R2
ss,i

´
1

4µαi
R2
ss,i

B

Bx
Rss,i ´

H

16µαi
R3
ss,i

˙

“
2Pε,i
R2
ss,i

ˆ

Φss,i `
Qss,i

Rss,i

B

Bx
Rss,i ´HQss,i

˙

`
R3
ss,i

16µαi

B2

Bx2
Pε,i, (3.98)

subject to the boundary conditions:

Pε,ip0, tq “ P 1i pCopqCε,ip2, t´ τiq `
ÿ

j‰i

φi,jP
1
jpCopqCε,jp2, t´ τjq, (3.99)

Pε,ipL0, tq “ 0, (3.100)

where P 1i pCopq ”
dPi
dCi

ˇ

ˇ

ˇ

ˇ

Ci“Cop

. The boundary condition at x “ 0 (i.e., Eq. (3.99))

specifies the change in Pi,0 in response to a deviation in MD Cl´ concentration; that

response has a delay of τi. The other boundary condition (Eq. (3.100)) imposes a

fixed pressure value at x “ L0.

As in the short-looped model, we assume that Cε,ipx, tq can be written as Cε,i “

fipxqe
λit, for some function fipxq and λi P C. We further assume that

Cε,i “ Cε,j ” Cε, fipxq “ fjpxq ” fpxq, λi “ λj ” λ (3.101)

With this notation, the boundary condition (Eq. (3.99)) becomes

Pε,ip0, tq “ P 1i pCopqfp2qe
λpt´τiq `

ÿ

j‰i

φi,jP
1
jpCopqfp2qe

λpt´τjq, (3.102)

or, if we define φj,j ” 1,

Pε,ip0, tq “
N
ÿ

j“1

φi,jP
1
jpCopqfp2qe

λpt´τjq. (3.103)

where N denotes the number of model nephrons. Assuming that the solution for

Eqs. (3.98)–(3.100) has the form

Pε,ipx, tq “ gipxq

˜

N
ÿ

j“1

φi,jP
1
jpCopqfp2qe

λpt´τjqq

¸

, (3.104)
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and substituting into Eq. (3.98) for Pε,i, we obtain the second-order differential equa-

tion for gipxq

R3
ss

16µαi
g2i pxq ´

ˆ

2
Qss

R2
ss

´
1

4µαi
R2
ss

B

Bx
Rss ´

H

16µα
R3
ss

˙

g1ipxq

`

ˆ

2Φss

R2
ss

` 2
Qss

R3
ss

B

Bx
Rss ´ 2H

Qss

R2
ss

´ λ

˙

gipxq “ 0, (3.105)

with boundary conditions gip0q “ 1 and gipL0q “ 0.

Next, we linearize the solute conservation equation for each nephron by substi-

tuting Eqs. (3.57)–(3.60) and the nondimensional form of Eqs. (2.1) and (2.13) into

(3.97),

pRss,i ` εRε,iq
2 B

Bt
pCss ` εCεq “ ´ 2pRss,i ` εRε,iqpCss ` εCεq

B

Bt
pRss,i ` εRε,iq

`
pRss,i ` εRε,iq

4

8µ

B

Bx
pPss,i ` εPε,iq

B

Bx
pCss ` εCεq

´ pCss ` εCεq
B

Bx
pQss,i ` εQε,iq

´Rss,i

ˆ

VmaxpCss ` εCε,iq

KM ` Css ` εCε
` κpCss ` εCε ´ Ceq

˙

.

(3.106)

Note that the steady-state solutions satisfy

R4
ss,i

8µ

B

Bx
Pss,i

B

Bx
Css “ pKpCssq ` κpCss ´ CeqqRss,i ´ Φss,iCss, (3.107)

where the active transport term is given by KpCq “ VmaxC
KM`C

and Eq. (3.64) was used.

Keeping only the Opεq terms in Eq. (3.106) and using Eqs. (3.64)–(3.66), we arrive
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at the evolution equation for Cε,

R2
ss,i

B

Bt
Cε “´ 2αRss,iCss

B

Bt
Pε,i ´ ppK

1
pCssq ` κqRss,i ´ Φss,iqCε (3.108)

` Cssp2αRss,i
B

Bt
Pε,i ` Φε,iq

`
R3
ss,i

8µ

ˆ

4Rε,i
B

Bx
Pss,i

B

Bx
Css `Rss,i

B

Bx
Pss,i

B

Bx
Cε `Rss,i

B

Bx
Pε,i

B

Bx
Css

˙

Substituting Cε “ fpxqeλt, Pε,ipx, tq “ gipxqPε,ip0, tq, and Rε,ipx, tq “ αiPε,ipx, tq

into the above equation, we obtain

λR2
ss,ife

λt
“
R3
ss,i

8µ
p4αiP

1
ss,iC

1
ssgiPε,ip0, tq `Rss,iP

1
ss,if

1eλt `Rss,iC
1
ss,ig

1
iPε,ip0, tqq

(3.109)

´ ppK 1
pCssq ` κqRss,i ´ Φss,iqfe

λt
´
H

8µ
CssR

3
ss,iPε,ip0, tqpRss,ig

1
ipxq ` 4αiP

1
ss,igipxqq.

Applying Eq. (3.62) repeatedly, substituting Eq. (3.103), canceling out eλt, and re-

arranging,

Qss,if
1
pxq ` ppK 1

pCssq ` κqRss,i ´ Φss,i ` λR
2
ss,iqfpxq (3.110)

“

˜

N
ÿ

j“1

φi,jP
1
jpCopqfp2qe

´λτj

¸

pC 1ss ´HCssq

ˆ

R4
ss,i

8µ
g1ipxq ´ 4αigipxq

Qss,i

Rss,i

˙

.

Recall we have fixed Cl´ concentration at the entrance to the proximal tubule (i.e

x “ 0). Thus,

Cεp0q “ fp0qeλt “ 0 ñ fp0q “ 0. (3.111)

Given the initial condition (3.111), the solution for (3.110) can be found to be

fpsq “ exp

ˆ

´

ż s

0

Ωpxq dx

˙ˆ
ż s

0

Ξpxq exp

ˆ
ż x

0

Ωpyq dy

˙

dx

˙

, (3.112)
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where

Ωpxq “
pK 1pCssq ` κqRss,i ´ Φss,i ` λR

2
ss,i

Qss,i

, (3.113)

Ξpxq “

˜

N
ÿ

j“1

φi,jP
1
jpCopqfp2qe

´λτj

¸

pC 1ss ´HCssq

Qss,i

ˆ

R4
ss,i

8µ
g1ipxq ´ 4αigipxq

Qss,i

Rss,i

˙

.

(3.114)

Setting s “ 2 and canceling the factor fp2q, we get the characteristic equation

1 “
N
ÿ

j“1

φi,jP
1
jpCopqe

´λτj

ż 2

0

pC 1ss ´HCssq

Qss,i

ˆ

R4
ss,i

8µ
g1pxq ´ 4αigipxq

Qss,i

Rss,i

˙

ˆ exp

ˆ

´

ż 2

x

pK 1pCssq ` κqRss,i ´ Φss,i ` λR
2
ss,i

Qss,i

dy

˙

dx. (3.115)

If we apply Eq. (3.62) to Eq. (3.107), the resulting equation becomes

´Qss,i
d

dx
Css “ pKpCssq ` κpCss ´ CeqqRss,i ´ Φss,iCss. (3.116)

Taking spatial derivative of (3.116) yields

´Q1ss,iC
1
ss ´Qss,iC

2
ss “pK

1
pCssqC

1
ss `

V 1maxCss
KM ` Css

` κpC 1ss ´ C
1
eq ` κ

1
pCss ´ CeqqRss,i

` pKpCssq ` κpCss ´ CeqqR
1
ss,i ´ Φss,iC

1
ss

“pK 1
pCssqC

1
ss `

V 1maxCss
KM ` Css

` κpC 1ss ´ C
1
eq ` κ

1
pCss ´ CeqqRss,i

`
R1ss,i
Rss,i

p´Qss,iC
1
ss ` Φss,iCssq ´ Φss,iC

1
ss. (3.117)

Dividing by C 1ss from both sides and rearranging,

pK 1
pCssq ` κqRss,i ´ Φss,i “ ´Q

1
ss,i ´Qss,ip

C2ss
C 1ss

´
R1ss,i
Rss,i

q ´ Φss,i
Css
C 1ss

R1ss,i
Rss,i

(3.118)

`

ˆ

κ
C 1e
C 1ss

´
V 1maxCss

pKM ` CssqC 1ss
´
κ1pCss ´ Ceq

C 1ss

˙

Rss,i.
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Substituting (3.118) into (3.115) and simplifying, we finally get

1 “
N
ÿ

j“1

φi,jγje
´λτj

Qssp2q

Rssp2q

ż 2

0

Ψpxq exp

ˆ

´

ż 2

x

Γpyq dy

˙

dx, (3.119)

where γj “ P 1jpCopqC
1
ssp2q is the TGF gain,

Ψpxq “
1

Q2
ss,i

ˆ

1´H
Css
C 1ss

˙ˆ

R5
ss,i

8µ
g1ipxq ´ 4αgipxqQss,i

˙

,

Γpxq “

ˆ

κ
C 1e
C 1ss

´
V 1maxCss

pKM ` CssqC 1ss
´
κ1pCss ´ Ceq

C 1ss
` λRss,i

˙

Rss,i

Qss,i

´
Φss,i

Qss,i

Css
C 1ss

R1ss,i
Rss,i

,

and gipxq satisfies Eq. (3.105). Equation (3.119) assumes compliant tubular walls and

allows spatially varying radius, maximum active transport, chloride permeability.

The gain γj can be related to the parameters K1,j and K2,j in the pressure response

function (Eq. (2.19)). Differentiating Eq. (2.19) with respect to Ci and setting Ci to

Cop, we obtain P 1jpCopq “ ´K1,jK2,j; thus

γj “ ´K1,jK2,jC
1
ssp2q. (3.120)

In the case of two coupled nephrons (N “ 2) one may obtain for i “ 1:

1

ωpλq
“ γ1e

´λτ1 ` φ1,2γ2e
´λτ2 , (3.121)

where

ωpλq ”
Qssp2q

Rssp2q

ż 2

0

Ψpxq exp

ˆ

´

ż 2

x

Γpyq dy

˙

dx. (3.122)

Eq. (3.121) can be written as

1´
1

γ1e´λτ1ωpλq
“ ´φ1,2

γ2

γ1

e´λpτ2´τ1q. (3.123)

An identical equation holds for i “ 2, but with the indices reversed. If we assume

that the coupling is symmetric, i.e., if φ1,2 “ φ2,1 “ φ, then one obtains
ˆ

1´
1

γ1e´λτ1ωpλq

˙ˆ

1´
1

γ2e´λτ2ωpλq

˙

“ φ2 (3.124)
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3.3.2 Model results

We used the model’s characteristic equation (3.124) to study the dynamics of our

coupled-nephron model. We first performed a bifurcation analysis and solved Eq. (3.124)

to obtain parameter regions that indicate qualitatively differing model behaviors.

Then, we numerically solved the full equations (Eqs. (2.1), (2.13), (2.3), and (2.4))

to validate and supplement the information provided by the characteristic equation.

In this study, we restricted our analysis to the simple case of two coupled nephrons,

indexed by ‘A’ and ‘B’. When comparison is made with the uncoupled case, nephron

index was omitted. Throughout this study, we assumed symmetric coupling, which

implies the effect of the first nephron on the second is the same as the second nephron

on the first, i.e., φ ” φAB “ φBA. The coupling coefficient φ was taken to be 0.2

(Källskog and Marsh (1990); Chen et al. (1995)).

Recall that steady-state behaviors for an uncoupled nephron using parameters

given in Table 2.4 were computed in our short-looped model and summarized in

Fig. 3.6.

Two coupled nephrons having identical bifurcation parameter: TGF gain and delay

To investigate the impact of internephron coupling on TGF-mediated dynamics, we

used the model’s characteristic equation (3.124) to compare model behaviors of an

uncoupled TGF system with those of a coupled system. We first considered the case

of two coupled identical nephrons, where γ ” γA “ γB and τ ” τA “ τB.

For a given set of model parameters, the solutions to the characteristic equa-

tion (3.124) are an infinite series of complex-valued eigenvalues, tλn,mun“1,2,...,m“A,B,

where λn,m ” ρn,m ` iωn,m. The real and imaginary parts of λn,m correspond to the

strength and frequency, respectively, of the oscillations in model nephron ‘m’. We

identified parameter regions that correspond to different combinations of the signs of

Re(λn,m), i.e., ρn,m (positive, negative, or zero). To compute parameter boundaries,
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we solved the characteristic equation (3.124) for ρn,m “ 0, which may correspond to

a solution bifurcation or a transition in dynamics states of solutions, as a function

of bifurcation parameters γ and τ . These γ–τ pairs were obtained for two cases: (1)

an uncoupled system with φ “ 0; (2) a coupled system with φ “ 0.2. The results

are shown in Fig. 3.16, panels A and B, respectively. The physiologic range for TGF

gain and delay values was set to be pγ, τq P r0, 10s ˆ r0, 0.5s.

For the uncoupled TGF system, the time-independent steady-state solution ap-

pears only for sufficiently small γ such that the points (γ, τ) lie below all curves

ρn “ 0. In this solution regime, which is labeled ‘ρn ă 0’ in Fig. 3.16A, any initial

solution or any transiently perturbed steady-state solution converges to the time-

independent steady-state solution. But for γ such that the points (γ, τ) lie above

the curve corresponding to ρn “ 0 for some n, a perturbation of the steady-state

solution gives rise to a LCO, indicated by ‘ρn ą 0’ for n “ 1, 2, 3, 4. It is noteworthy

that, with spatially inhomogeneous TAL radius as shown in Fig. 3.6B, the curves

for ρn “ 0, n “ 1, 2, 3, 4 cross the γ-axis, a results that was not observed when a

TAL radius was assumed to be homogeneous (Layton (2010)). Such γ-axis crossings

implies that a nonzero (or, sufficiently long) TGF delay is not necessary for the emer-

gence of oscillatory solutions. A detailed analysis of the TGF system with spatially

inhomogeneous TAL radius and transport properties were given in TAL model (see

Section 3.1 herein).

When internephron coupling is introduced, i.e., φ “ 0.2, model behaviors become

noticeably more complex, as shown in Fig. 3.16B. One notable effect of coupling

is that the number of root curves within the physiologic range doubles from four

(ρn “ 0, n “ 1, 2, 3, 4) to eight (ρn,m “ 0, n “ 1, 2, 3, 4;m “ A,B). This doubling

in the number of root curves can be explained by a spectral splitting in which each

eigenvalue associated with differing n’s is splitted into the number N of nearby

eigenvalues where N is the number of coupled nephrons. For two identical nephrons
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Figure 3.16: Panel A: root loci, for an uncoupled nephron, as a function of TGF
gain γ and delay τ . B: root loci for two identical coupled nephrons. Black, red, blue,
green curves correspond to ρ1 “ 0, ρ2 “ 0, ρ3 “ 0, and ρ4 “ 0, respectively. The
TGF delay τ is expressed in non-dimensional form in this figure and in subsequent
figures. Reprinted from Ryu and Layton (2013b).

(N “ 2), the root loci arising from spectral splitting gives rise to parameter regions

not found in the uncoupled case: e.g., where ρ1,A ą 0 and ρ1,B ă 0, and where

also ρn,A ă 0 and ρn,B ă 0 for n ą 1 (marked ‘I’ in Fig. 3.16B); where ρ1,A ą 0

and ρ1,B ą 0, and where also ρn,A ă 0 and ρn,B ă 0 for n ą 1 (marked ‘I˚’ in

Fig. 3.16B); where ρ1,A ą 0 and ρ1,B ă 0, and ρ2,A ą 0 and ρ2,B ă 0, and ρn,A ă 0

and ρn,A ă 0 for n ą 2 (marked ‘II’ in Fig. 3.16B); and where ρn,A ą 0 and ρn,B ą 0

for n “ 1, 2, and ρn,A ă 0 and ρn,A ă 0 for n ą 2 (marked ‘III’ in Fig. 3.16B). The

signs of ρn,m for the different parameter regions described in Fig. 3.16B is given in
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Table 3.4. Other regions where some ρn,m’s are positive and others are negative can

be identified likewise.

Table 3.4: Signs of ρn,m for four parameter regions described in Fig. 3.16B

ρn,m I I˚ II III

ρ1,A + + + +
ρ1,B ´ + ´ +
ρ2,A ´ ´ + +
ρ2,B ´ ´ ´ +

ρn,A, ρn,B (n ą 2) ´ ´ ´ ´

Besides doubling the number of root curves, the model predicts that coupling

decreases the size of the parameter region that support a time-independent steady-

state solution, because stable oscillatory solutions can be attained at lower gain values

relative to the uncoupled TGF system (compare the area of the ρn ă 0 region in

Fig. 3.16, panels A and B). This result implies the stability of the TGF system is re-

duced by internephron coupling, consistent with the results in the previous modeling

studies (Pitman et al. (2004); Layton et al. (2011)).

To validate the predictions of the characteristic equations, we investigate dynamic

behaviors of the full nonlinear model. We computed numerical solution to model

equations Eqs. ((2.1), (2.13), (2.3), and (2.4)) for two identical nephrons, for selected

values of gain γ and delay τ . Four points, labeled W, X, Y, and Z in Fig. 3.17A,

were selected which correspond to the following delays and gains pairs: pγW , τW q “

p1, 0.15q, pγX , τXq “ p2, 0.4q, pγY , τY q “ p4.5, 0.2q, and pγZ , τZq “ p3, 0.1q. The time

profiles for the TGF-mediated inflow pressure following a transient perturbation and

their corresponding power spectra are summarized in Fig. 3.17. Panels X1, Y1, and

Z1 show three oscillations in the inflow pressure with different frequencies; panels X2,

Y2, Z2 show corresponding power spectra. Peaks in these spectra, and in the spectra
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of subsequent figures, have frequency labels that are in mHz. Point W, which lies

within the “ρn ă 0” region, corresponds to a time-independent steady state. X, Y,

and Z correspond to oscillatory solutions, which LCO frequencies f1 “ 36, f2 “ 85,

and f3 “ 152 mHz, receptively.
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Figure 3.17: Sample solutions at the points X, Y, and Z, marked in panel A.
Panels X1, Y1, and Z1 show three oscillations in the inflow pressure with different
frequencies; panels X2, Y2, Z2 show corresponding power spectra. Peaks in these
spectra, and in the spectra of subsequent figures, have frequency labels that are in
mHz. (Point W: γ “ 1, τ “ 0.15; X: γ “ 2, τ “ 0.4; Y: γ “ 4.5, τ “ 0.2; Z:
γ “ 3, τ “ 0.1). Reprinted from Ryu and Layton (2013b).
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Two coupled nephrons with only one nephron having varying TGF gain and delay

TGF gain and delay in vivo likely differ among nephrons. In this section, we studied

cases where one model nephron (A) havs fixed TGF gain and delay while the other

model nephron (B) has variable parameters.

We computed root loci, corresponding to nephron B, that are encompassed within

physiologic ranges for gain γB and delay τB given by pγB, τBq P r0, 10sˆr0, 0.5s. Also,

note that each nephron naturally corresponds to a specific set of eigenvalues, i.e.,

nephrons A and B are associated with eigenvalues λn,A and λn,B, respectively, for

n “ 1, 2, 3, 4, . . .. The root curves were obtained for three sets of fixed parameters

for nephron A: pγA, τAq “ p4, 0.3q, p6.8, 0.18q, and p8, 0.1q. The results are shown in

Fig. 3.18. We refer ρn,B “ 0 to ρn “ 0 in each panel, denoted by black, red, blue,

green curves, corresponding to n “ 1, 2, 3, 4, respectively.

In all three cases, ρn,A for n “ 1, 2, 3, 4 is always positive for the parameter space

displayed. Below the black curve corresponding to ρ1,B “ 0 in each panel, ρ1,B is

negative, whereas above that curve ρ1,B is positive. In fact, below all the curves,

all eigenvalues associated with nephron B have negative real parts, i.e. ρn,B ă 0 for

all n. However the stable model solution for nephron B is not a time-independent

steady-state because the stable solution for nephron A is oscillatory and nephron

B is driven by nephron A to oscillate. Similarly, above the red, blue, and green

curves corresponding to ρ2,B “ 0, ρ3,B “ 0, and ρ4,B “ 0, respectively, ρ2,B, ρ3,B, and

ρ4,B are positive, and below the curves, those ρ’s, respectively, are negative. By a

comparison of the boundary curves among three cases, one can conclude although

one nephron (nephron A) has a different choice of fixed gain and delay values, the

qualitatively distinct parameter boundaries that separate model behaviors remain

nearly the same.
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Figure 3.18: Root loci corresponding to coupled nephron B with nephron A
having fixed gain and delay (we refer ρn,B “ 0 to ρn “ 0 in each panel, denoted
by black, red, blue, green curves, corresponding to n “ 1, 2, 3, 4, respectively). (A)
pγA, τAq “ p4, 0.3q; (B) pγA, τAq “ p6.8, 0.18q; (C) pγA, τAq “ p8, 0.1q. Reprinted from
Ryu and Layton (2013b).

Two coupled nephrons with identical gains, varying delays

We next considered another special case of parameters in two coupled nephrons:

the gains in two nephrons were assumed to be identical, i.e., γ ” γA “ γB, but
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with differing time delays. We determined the roots corresponding to ρn “ 0 for

n “ 1, 2, 3, 4 by solving the characteristic equation (Eq. (3.124)) as a function of

τA and τB for two choices of gains: γ “ 1.5 and γ “ 5. The results are shown

in Fig. 3.19. In Fig. 3.19 and in the explanation below, any root curve such that

ρn,A “ 0 or ρn,B “ 0 is denoted by ρn “ 0. Black, red, blue, green curves correspond

to ρ1 “ 0, ρ2 “ 0, ρ3 “ 0, and ρ4 “ 0, respectively.
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Figure 3.19: Root loci corresponding to two coupled nephron with identical gains
γ “ 1.5 (A) and γ “ 5 (B) as functions of delays τA and τB. Black, red, blue, green
curves correspond to ρ1 “ 0, ρ2 “ 0, ρ3 “ 0, and ρ4 “ 0, respectively. Reprinted
from Ryu and Layton (2013b).

For a relatively low gain value of γ “ 1.5, bifurcation diagram Fig. 3.19A exhibits

five qualitatively distinct parameter regions: (1) the left-lower region below the big
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oval, where the real parts of all eigenvalues are negative; (2) the left-upper and right-

lower regions, and the region marked ‘I’, where one and only one of ρ1,A and ρ1,B is

positive, and ρn ă 0 for n ą 1; (3) the region marked ‘II’, where one and only one of

ρ1,A and ρ1,B is positive and one and only one of ρ2,A and ρ2,B is positive, and ρn ă 0

for n ą 2; (4) the small oval but outside the big oval marked ‘III’, where both ρ1,A

and ρ1,B are positive, and one and only one, of ρ2,A and ρ2,B is positive, and ρn ă 0

for n ą 2; and (5) the right-upper regions, where both ρ1,A and ρ1,B are positive,

and ρn ă 0 for n ą 1. The results indicate that the full model equations (Eqs. (2.1),

(2.13), (2.3), and (2.4)) may have three stable solutions: a time-independent steady-

state solution, a f1-LCO, and a f2-LCO. These results can also be related to results

obtained for the γ–τ plane for identical nephrons. Consider first the diagonal line

corresponding to τA “ τB in Fig. 3.19A. That line intercepts the root curves four

times: two times with ρ1 “ 0 at τA “ τB “ 0.0187, 0.212 and another two times

with ρ2 “ 0 at τA “ τB “ 0.127, 0.328. Then consider the same line in the γ–τ

plane, which corresponds to the γ “ 1.5 line in Fig. 3.16B: that line also has the

same interceptions with the root curves: τ “ 0.0187, 0.127, 0.212, 0.328 for γ “ 1.5.

In both of Figs. 3.16B and 3.19A, the two interceptions pγ, τq “ p1, 5, 0.0187q and

pγ, τq “ p1, 5, 0.127q may correspond to changes in model solution behaviors, from a

stable steady state to a f1-LCO and from a f1-LCO to a f2-LCO, respectively.

As gain γ is increased, model behavior becomes more complex. At γ “ 5, all root

curves observed for γ “ 1.5 disappear and new root curves arise across which one

of ρ3 or ρ4 changes sign: see Fig. 3.19B. As a consequence, stable solutions with a

frequency corresponding to λn for n “ 3 or 4, may arise. The diagonal line τA “ τB

intercepts the root curves ten times.Most of those interceptions can also be observed

by considering the line corresponding to γ “ 5 in the γ–τ plane in Fig. 3.16B.

Additional interceptions, which are not apparent in Fig. 3.16B, were observed at the

small oval for ρ3 “ 0 and the oval for ρ4 “ 0 in the right-upper region of Fig. 3.19B.
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Coupled nonidentical nephrons

A number of experimental recordings have shown that proximal tubule pressure oscil-

lations obtained in SHR appear irregular and resemble deterministic chaos (Holstein-

Rathlou and Leyssac (1986)). It is also known that internephron coupling is stronger

in SHR. Hence, we examined the extent to which TGF coupling may affect (or in-

tensify) the spectral complexity of TGF-mediated oscillations.

We solved the full model equations (Eqs. (2.1), (2.13), (2.3), and (2.4)) for two

nephrons, A and B with parameters: pγA, τAq “ p3, 0.1q and pγB, τBq “ p5, 0.2q. The

time profiles of TGF-mediated tubular fluid pressure, flow rate, Cl´ concentration

at the MD for nephron A are summarized in Fig. 3.20. The power spectra cor-

responding to tubular fluid pressure are shown in Fig. 3.21. In nephron A, three

peaks were observed in the frequencies of MD fluid pressure: „46.9, „105, and

„151.8 mHz. Among the three, the first and third frequencies are the strongest.

These two frequencies correspond to the fundamental frequency of nephron B, which

is in the single-frequency region, and the third-frequency of nephron A, which is in

the bistable region, respectively, as can be seen in Fig. 3.16B. Power spectra corre-

sponding to flow rate and Cl´ concentration exhibit similar complexity with multiple

peaks (results not shown). These model results suggest that irregular oscillations in

tubular pressure, which resemble the characteristics of fluid pressure in SHR, can be

introduced by internephron coupling. Moreover, our extended coupled TGF system

has the increased tendency to exhibit irregular TGF-mediated oscillations in fluid

pressure inasmuch as the parameter regions which support solution multistability are

increased by coupling.
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Figure 3.20: Oscillations in tubular fluid pressure (A), flow rate (B), and [Cl´]
(C) at the macula densa in nephron A of two coupled nephrons. The parameters of
the two nephrons, A and B, were set to pγA, τAq “ p3, 0.1q and pγB, τBq “ p5, 0.2q.
Reprinted from Ryu and Layton (2013b).
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4

Stochastic Model

Feedback delays play an essential role in determining qualitatively and quantita-

tively different TGF-mediated dynamic behaviors, as observed in our model results

presented in the preceding Chapters. In particular, when noise that may arise from

various sources of perturbations, such as heart beat, movement, and hormone levels,

is introduced, the resulting dynamics may become significantly rich and complex,

revealing a variety of model behaviors due to the interaction of noise with delays.

In this chapter, we aim to study the effect of that interaction on the stability of the

feedback-mediated dynamic behaviors.

For analytic simplicity we consider a time-delayed transport equation that repre-

sents the motion of chloride ions in the rigid-TAL fluid. We first show the existence

and uniqueness of the steady-state solution for the deterministic Dirichlet bound-

ary problem, using bifurcation analysis and the contraction mapping theorem. We

then extend our analysis to the stochastic system with random boundary conditions

to provide an analogous proof for the existence and uniqueness of the statistically

stationary solution.

Finally we apply multiscale analysis to a linear time-delayed transport equation
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and derive approximate stochastic (reduced) equations for the amplitudes of solutions

near the critical delay of the deterministic system. Specifically, we will consider the

case when the system is in the subcritical region, but close enough to the critical

delay to better understand how the noise can interact with the delay of the system,

affecting overall solution behaviors.

4.1 Deterministic System

We first consider the deterministic system subject to Dirichlet boundary condition to

provide the basic analytic results for further study of the stochastic system. In the

rigid-TAL model developed by Layton et al. (1991), the mass conservation equation

to represent the chloride concentration, in nondimensional form, is given by

B

Bt
C ` F pCp1, t´ τqq

B

Bx
C “ ´KpCq ` κpC ´ Ceq,

where x represents axial position along the TAL (0 ď x ď 1) with rigid walls, t is

time, KpCq “ VmaxC
KM`C

, and Ce is time-independent extratubular (interstitial) chloride

concentration which is assumed to be fixed. F represents the fluid flow through the

TAL, which depends on the MD chloride concentration at an earlier time t´ τ , i.e.,

F “ F pCp1, t´ τqq. Note that the equation can be obtained by nondimensionalizing

Eq. (2.3) and assuming constant R because of the rigidity of the TAL. Under further

assumption with no passive diffusion by setting κ “ 0, we arrive at the following

time-delayed transport equation for C

B

Bt
C ` F pCp1, t´ τqq

B

Bx
C “ ´KpCq, x P p0, 1q, t ą 0, (4.1)

with Dirichlet boundary condition Cp0, tq “ m ą 0 on the left side and initial

condition Cpx, 0q “ C0pxq P Cpr0, 1sq. For a delay term F pCp1, t ´ τqq, we must

specify Cp1, tq “ ηpt ` τq for t P r´τ, 0s with η P Cpr0, τ sq. Also, F is a smooth

function and K is Lipschitz continuous with Kp0q “ 0. Based on Eq. (4.1), the

(reduced) integral TGF model was derived in Ref. Pitman et al. (2002).
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Before we conduct a stability analysis, we show well-posedness of the main equa-

tion (4.1) using the method of characteristics in PDE theory (Evans (1998)).

Proposition 1. Given Cpx, 0q “ C0pxq and Cp1, tq “ ηpt ` τq for t P r´τ, 0s, the

initial value problem (4.1) is well-posed, i.e,. the solution exists.

Proof. Since Cp1, tq “ ηpt ` τq for t P r´τ, 0s is given, the drift term F pCp1, t ´

τqq is determined for t P r0, τ s and is independent of x. Then, by the method of

characteristics, the (classical) solution exists and is unique up to t “ τ , given initial

condition in Cpr0, 1sq and boundary condition Cp0, tq “ m for t ě 0. For the next

time interval t P rτ, 2τ s, we determine the term F pCp1, t ´ τqq for t P rτ, 2τ s given

Cp1, tq on t P r0, τ s, and use the same argument to find the solution for next time

interval. Using this argument repeatedly, the unique solution can be obtained for all

t ě 0 by the induction method. Thus, given the Dirichlet boundary condition, the

initial value problem (4.1) is well-posed. The solution exists.

4.1.1 Steady-state solution

Now, we consider the time-independent steady-state solution of Eq. (4.1). If we write

Cpx, tq “ zpxq, zpxq solves the following ODE

F pzp1qqzx `Kpzq “ 0, x P p0, 1q, (4.2)

subject to initial condition zp0q “ m ą 0. F pzp1qq corresponds to the steady-state

TAL flow rate in the TGF model, denoted by b, which is a positive constant. Note

that upon choosing different normalizing factors in nondimensionalization to obtain

Eq. (4.1), as in Section 3.1.1, the value of b can vary.

Proposition 2. Given that K is a strictly positive for all z ą 0 with Kp0q “ 0

and Lipschitz continuous, there is a unique function zpxq, satisfying (4.2), which is

strictly positive and decreasing for all x in r0, 1s.
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Proof. The solution of (4.2) is dependent only on the function K. Because K is

positive and Lipschitz continuous, and Eq. (4.2) is separable on z, the existence of

a solution with zp0q “ m ą 0 follows from Lipschitz continuity of K. Moreover, the

strict positivity of K for positive z and F for any z implies zx ă 0 from Eq. (4.2),

i.e., zpxq is decreasing.

To prove zpxq ą 0 for all x P r0, 1s, we use a contradiction argument. Suppose

that zpxq is nonzero solution and there exist x1 P r0, 1s such that zpx1q “ 0. We know

z̄ ” 0 is a solution because of Kp0q “ 0. The uniqueness then implies that z “ z̄ as

the ODE is autonomous, which results in a contradiction. Thus, zpxq cannot have

zero solution in r0, 1s.

The simplest case we can consider is that K is linear: KpCq “ kC for some k ą 0.

Let us assume F pzp1qq “ b “ 1 again. For this case, the solution can be found easily

using the property of exponential functions, zpxq “ me´kx. However, for the general

form of K, we might not be able to solve for zpxq explicitly, but rather implicitly.

By separation of variables,

ż

dz

Kpzq
“ ´x` c.

Note that Kpzq cannot be zero because of zpxq ą 0 for all x in Proposition 2

(which represents the steady-state chloride concentration). Using the initial con-

dition, zp0q “ m for some m ą 0, c can be specified.

For a nonlinear function of Kpzq “ Vmaxz
KM`z

in the TGF model, the implicit form

of zpxq is derived by:

dz

Kpzq
“
KM ` z

Vmaxz
dz “

1

Vmax

„

KM

z
` 1



dz “ ´dx,

1

Vmax

rKM ln|z| ` zs “ ´x` c.
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Applying the initial condition zp0q “ m, we finally find the solution

rKM ln|z| ` zs “ ´Vmaxx` rKM lnpmq `ms .

4.1.2 Stability

Our main goal of this section is to study the stability of the solution for the lin-

earized system, depending on delay τ by linear stability and bifurcation analysis.

We linearize our main equation (4.1) about its steady state zpxq in (4.2) to obtain

the linearized system. To analyze the stability of the solutions to that linear system,

we particularly employ the method of separation of variables.

If we use Cpx, tq “ zpxq ` wpx, tq and substitute it into Eq. (4.1), we obtain the

equation for w given by

wt ` F pzp1q ` wp1, t´ τqqpzx ` wxq `Kpz ` wq “ 0, wp0, tq “ 0.

Using Taylor’s expansion for F and K, it is written as

wt ` rF pzp1qq ` F
1
pzp1qqwp1, t´ τq `Opw2

qspzx ` wxq

` rKpzq `K 1
pzqw `Opw2

qs “ 0.

From Eq. (4.2) (i.e., F pzp1qqzx `Kpzq “ 0), it follows that

wt ` F pzp1qqwx ` F
1
pzp1qqzxpxqwp1, t´ τq `K

1
pzqw

“ Opw2
q `Opwp1, t´ τqwxpx, tqq.

Dropping the higher order terms, we arrive at the linear equation for wpx, tq:

wt ` bwx ` gpxqwp1, t´ τq ` kpxqwpx, tq “ 0, x P p0, 1q, t ą 0 (4.3a)

wp0, tq “ 0, t ě 0, (4.3b)

wpx, 0q “ ψpxq, x P r0, 1s, (4.3c)

wp1, tq “ φpt` τq, t P r´τ, 0s, (4.3d)

where ψ P Cpr0, 1sq and φ P Cpr0, τ sq are given functions. Note that in the TGF

model, the constant b “ F pzp1qq, and functions gpxq “ F 1pzp1qqzxpxq and kpxq “
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K 1pzpxqq are all positive for x P r0, 1s. Because of the positive drift term b ą 0, we

do not need to impose a boundary condition at x “ 1.

Our primary interest for the linear system (4.3) is to see whether a small per-

turbation wpx, tq grows or decays over time for different values of τ . Specifically, we

seek exponentially growing solutions of the form wpx, tq “ eλtfpxq for some λ P C

and some function f due to the linearity of the problem (4.3). Using this specific

form of the solutions, we conduct bifurcation analysis to find the existence of the

critical delay of the system. Much of the following bifurcation analysis can be also

found in Layton et al. (1991).

If we assume that the solution of (4.3) has the form wpx, tq “ eλtfpxq for some

function f , plugging this expression for wpx, tq in Eq. (4.3a) and canceling eλt terms

lead to the equation for fpxq

bf 1pxq ` pkpxq ` λqfpxq ` gpxqe´λτfp1q “ 0, fp0q “ 0. (4.4)

We can easily solve this ODE by multiplying both sides by an integrating factor

µpxq “ expp
şx

0
kpyq`λ

b
dyq and using the initial condition fp0q “ 0,

fpsq “ ´ exp

ˆ

´

ż s

0

kpyq ` λ

b
dy

˙
ż s

0

gpxqe´λτfp1q

b
exp

ˆ
ż x

0

kpyq ` λ

b
dy

˙

dx. (4.5)

Setting s “ 1 and canceling fp1q out from both sides, we finally arrive at the following

characteristic equation that b, gpxq, kpxq satisfy with different λ P C depending on

τ ě 0 :

1 “ ´
e´λτ

b

ż 1

0

gpxq exp

ˆ

´

ż 1

x

kpyq ` λ

b
dy

˙

dx. (4.6)

Plugging gpxq “ F 1pzp1qqzxpxq and kpxq “ K 1pzpxqq back to (4.6), the equation

becomes

1 “ ´
e´λτF 1pzp1qq

b

ż 1

0

zxpxq exp

ˆ

´

ż 1

x

K 1pzpyqq ` λ

b
dy

˙

dx. (4.7)

116



Substituting the relation for K 1pzq, which is obtained by differentiating Eq. (4.2)

with respect to x,

K 1
pzpxqq “ ´b

zxx
zx
“ ´b

d

dx
plog zxq (4.8)

into (4.7), calculating the resulting integral, and rearranging terms, we obtain the

characteristic equation

1 “ e´λτF 1pzp1qqz1p1q

˜

e´
λ
b ´ 1

λ

¸

, (4.9)

which was also derived in Eq. (20) of Ref. Layton et al. (1991).

Recall that in the TGF model, F 1pzp1qqz1p1q quantifies the gain value, denoted

by γ, of feedback loop. The first derivative F 1pzp1qq represents the sensitivity of

the TGF system to deviations from the target MD chloride concentration (Holstein-

Rathlou and Marsh (1989)) and the second derivative z1p1q is the slope of the chloride

concentration at the MD when the system is at steady state. The gain γ can be

another bifurcation parameter independent of τ , which is assumed to be fixed (γ “

γ0) for the rest of our analysis as it is not of our main interest. A detailed analysis

in which the effects of τ and γ are individually analyzed with b “ 1 can be found in

Ref. Layton et al. (1991).

Bifurcation analysis for the critical delay τ0

In this section, we provide bifurcation analysis to determine the critical delay of the

linear system (4.3), as previously conducted by Layton et al. (1991). If we can solve

(4.9) for λ in terms of τ and γ (=F 1pzp1qqz1p1q), the explicit form of wpx, tq can be

obtained by using wpx, tq “ eλtfpxq. However, Eq. (4.9) is implicit for λ and the

solution space of λ is infinite-dimensional, which make solving Eq. (4.9) difficult.

Instead, we write λpτ, γq “ ρpτ, γq ` iapτ, γq, where ρ and a are functions of τ and

γ. If ρ ă 0, wpx, tq decays to zero as time evolves. Conversely, if ρ ą 0, wpx, tq
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may exhibit sustained deviations from zero solution. Given the fixed value of γ, to

find the critical delay, at which the stability of the solution behavior of the form

wpx, tq “ eλtfpxq may change, it suffices to show that if ρ “ 0, there exists τ such

that

1´ e´λτγ

˜

e´
λ
b ´ 1

λ

¸

“ 0. (4.10)

By setting ρ “ 0 (i.e., λ “ ia for some a ‰ 0) and using trigonometric identities, the

above equation can be simplified

a

2
“ ´γsin

´ a

2b

¯

„

cos

ˆ

apτ `
1

2b
q

˙

´ isin

ˆ

apτ `
1

2b
q

˙

. (4.11)

The real and imaginary parts of this equation satisfy

a

2
“ ´γsin

´ a

2b

¯

cos

ˆ

apτ `
1

2b
q

˙

, (4.12)

0 “ γsin
´ a

2b

¯

sin

ˆ

apτ `
1

2b
q

˙

, (4.13)

respectively. Eq. (4.13) implies either a
2b
“ nπ or apτ` 1

2b
q “ nπ for n “ 0,˘1,˘2, . . ..

To obtain the relation between γ and τ , we drop the first solution a
2b
“ nπ because

it only gives the trivial solution, i.e., a “ 0. Substituting apτ ` 1
2b
q “ nπ into (4.12)

and solving for γ yield the following expression:

γpτq “ p´1qn`1

`

bnπ
2bτ`1

˘

sin
`

nπ
2bτ`1

˘ , (4.14)

for n “ 1, 2, 3, . . .. Given the fixed γ0 ą 0, if there exists τ0 ą 0 such that γ0 “

γpτ0q for some n and Bρ
Bτ

ˇ

ˇ

τ“τ0
ą 0, which is computed from (4.10), it can be implied

that the sign of ρ changes from negative and positive values as τ passes through τ0

from below. Thus, the stability of wpx, tq is determined accordingly. To consider

the physiologically relevant range of τ , we restrict our analysis to the case when

0 ă τ ď 1. Now we provide our main Theorem.
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Theorem 3. For the solution of the form wpx, tq “ eλtfpxq to (4.3), there exists a

critical delay τ0 ą 0 such that if τ ă τ0, the trivial solution to (4.3) is asymptotically

stable; if τ ą τ0, the trivial solution is unstable.

Proof. We begin with n “ 1. Then, (4.14) becomes

γpτq “

`

bπ
2bτ`1

˘

sin
`

π
2bτ`1

˘ . (4.15)

Differentiating the above equation with respect to τ , one can show that dγ
dτ

is always

positive for 0 ă τ ď 1 after some tedious algebra. Also, we can find the range of

γ to be r0, 10s. Then, it follows that the function γ is invertible in a neighborhood

of γ0 P p0, 10q so that, for any given γ0 P p0, 1q, there exists some τ0 ą 0 such that

γ´1pγ0q “ τ0 by the inverse function theorem. Also, one can check Bρ
Bτ

ˇ

ˇ

τ“τ0
ą 0

when γ “ γ0 from (4.10), implying that the sign of ρ changes from negative to

positive as τ passes through τ0. These two conditions, thus, prove the existence of

the critical delay τ0, at which the stability of the solution wpx, tq “ eλtfpxq changes.

Specifically, wpx, tq decays so that the trivial solution is stable for τ ă τ0, whereas

wpx, tq exponentially grows in time, implying that the zero solution is unstable for

τ ą τ0.

We only prove the existence of τ0 for n “ 1. To check if there exists another τ0

that satisfies (4.14) and Bρ
Bτ

ˇ

ˇ

τ“τ0
ą 0 for given γ0, and find the smallest value among

all of such τ0, we should repeatedly apply the same argument for different n values.

However, it involves a number of computations of Bρ
Bτ

ˇ

ˇ

τ“τ0
with additional algebra

and it would not complete our analysis to apply any solution of (4.3) (see below).

Thus, we omit the details here. In fact, Layton et al. (1991) numerically showed that

other τ0 for different n values does not exist for n ą 1 or is bigger than τ0 for n “ 1,

suggesting that τ0 in Theorem 3 corresponds to the primary bifurcation point.
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It is also noteworthy that the critical delay τ0 in Theorem 3 is only true for the

solutions of the form eλtfpxq. Nonetheless, Theorem 3 ensures the existence of the

critical delay for the linearized problem, inferred by the existence of τ0 for a special

case. Based on this τ0 value, we may study how the stability of the TGF system

alters. To generalize our results to any solution of (4.3), we turn to the next section.

Contraction mapping for sufficiently small τ : I. linear system

We have shown the existence of the critical delay τ0 for the linearized problem (4.3),

by looking for a special solution with the form of eλtfpxq. To generalize this result

for any solution, we aim to obtain an alternative, perhaps more complete way to view

our problem (4.3) by defining a suitable map and studying the solution in terms of

this map. We desire to show that the map is a contraction for sufficiently small τ ,

which implies that the steady-state solution is a unique fixed point for (4.3) by the

contraction mapping theorem.

Let us first consider the linearized problem for wpx, tq in (4.3). Given (ψ, φq P

Cpr0, 1sq ˆ Cpr0, τ sq, the solution wpx, tq is well-defined for all t ą 0 using the

method of characteristics. Let wpx, t;ψ, φq denote this solution. Observe that for

t P r0, τ s, wpx, t;ψ, φq solves

wt ` bwx ` kpxqw “ ´gpxqφptq, x P p0, 1q, t ą 0 (4.16a)

wp0, tq “ 0, t ě 0, (4.16b)

wpx, 0q “ ψpxq, x P r0, 1s. (4.16c)

In order to advance the solution in time with the initial and boundary conditions,

we define the following map.

Definition 4. Let X “ Cpr0, 1sq ˆ Cpr0, τ sq. A map M : X Ñ X is defined by

Mpψ, φq “ pΨ,Φq
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where

Ψpxq “ wpx, τ ;ψ, φq, for x P r0, 1s,

Φptq “ wp1, t;ψ, φq, for t P r0, τ s.

Now, let w solve (4.3a)–(4.3d) with pψ, φq “ pψ0, φ0q P X given. Let us define

the pair pψn, φnq P X by

pψn, φnq “Mn
pψ0, φ0q.

This is the nth iterate of the map M applied to pψ0, φ0q. It is easy to see that

wpx, τn;ψ0, φ0q “ ψnpxq, x P r0, 1s,

and

wp1, τpn´ 1q ` t;ψ0, φ0q “ φnptq, t P r0, τ s.

Definition 5. Given the function space X in Definition 4, define the norm in X as

||pψ, φq||X “ ||ψ||Cpr0,1sq ` ||φ||Cpr0,τ sq where || ¨ ||CpΩq is the sup-norm on CpΩq.

For the rest of our analysis, we will simply use || ¨ ||8 for || ¨ ||CpΩq.

Lemma 6. The space X with the norm in Definition 5 is a Banach space.

Lemma 7. M is linear on the Banach space X : for any α, β P R,

Mpαpψ1, φ1q ` βpψ2, φ2qq “ αMpψ1, φ1q ` βMpψ2, φ2q.

Proof. Let f1 “ pψ1, φ1q, f2 “ pψ2, φ2q P X , and Mpf1q “ pΨ1,Φ1q,Mpf2q “

pΨ2,Φ2q. Let wpx, t; f1q “ w1px, tq be the solution of Eqs. (4.16a)–(4.16c) with

pψ, φq “ pψ1, φ1q for t P r0, τ s. Similarly, let wpx, t; f2q “ w2px, tq be the solution

with pψ2, φ2q. Using the linearity of (4.16a) and the initial condition (4.16c), it

immediately follows that αw1px, tq “ wpx, t;αf1q, βw2px, tq “ wpx, t; βf2q. Then,
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αw1 ` βw2 “ wpx, t;αf1 ` βf2q for t P r0, τ s.

Mpαf1 ` βf2q “ pαw1px, τq ` βw2px, τq, αw1p1, tq ` βw2p1, tqq

“ αpw1px, τq, w1p1, tqq ` βpw2px, τq, w2p1, tqq

“ αpΨ1,Φ1q ` βpΨ2,Φ2q

“ αMpf1q ` βMpf2q.

Thus, M is linear on X .

Now we provide our main theorem for M .

Theorem 8. M2 is a contraction on X for a sufficiently small τ so that the trivial

solution of (4.3) is linearly stable.

Proof. To prove that Mτ is a contraction for sufficiently small τ , it suffices to show

that if f1 “ pψ1, φ1q, f2 “ pψ2, φ2q P X , there exists 0 ď λτ ă 1 such that

||Mτ pf1q ´Mτ pf2q||X ď λτ ||f1 ´ f2||X . (4.17)

Let wpx, t; f1q “ w1px, tq and wpx, t; f2q “ w2px, tq denote the solutions of Eqs. (4.16a)–

(4.16c) with f1 and f2, respectively, for τ P r0, τ s. Also, let Mτ pf1q “ pΨ1,Φ1q and

Mτ pf2q “ pΨ2,Φ2q by the definition of Mτ .

||Mτ pf1q ´Mτ pf2q||X “ ||pΨ1,Φ1q ´ pΨ2,Φ2q||X

“ ||pw1px, τq ´ w2px, τq, w1p1, tq ´ w2p1, tqq||X

“ ||pw1px, τq ´ w2px, τq||Cpr0,1sq ` ||w1p1, tq ´ w2p1, tqq||Cpr0,τ sq,
(4.18)

where the last equality follows from the norm defined in X . To show (4.17), it suffices

to show how each norm in the right-hand side of (4.18) depends on the norm of f1

and f2.

To obtain the inequality (4.17), we first decompose the map using the linearity,

Mτ pψ, φq “Mτ pψ, 0q `Mτ p0, φq, (4.19)
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where the first and second terms correspond to the homogeneous and inhomogeneous

solutions, respectively. For the rest of our analysis, we assume τ is sufficiently small,

specifically, bτ ď 1. To see how ||Mτ pψ, φq||X depends on ||ψ||8 and ||φ||8, we solve

(4.16a)–(4.16c) for t P r0, τ s by the method of characteristics. That is,

X 1
ptq “ b, Xp0q “ x0,

T 1ptq “ 1, T p0q “ 0,

Z 1ptq “ ´gpXptqqφptq ´ kpXptqqZptq, Zp0q “ ψpx0q,

where Zptq “ wpXptq, tq. Solving the first two ODEs yields T ptq “ t and Xptq “

x0 ` bt. By multiplying an integrating factor µptq “ exp
´

şt

0
kpXpyqqdy

¯

to the last

equation for Zptq, we obtain

d

dt
pµptqZptqq “ ´gpXptqqφptqµptq.

Using the initial condition for Z, solving this ODE, and dividing by µptq again result

in

Zptq “ ψpx0q exp

ˆ

´

ż t

0

kpXpsqqds

˙

´

ż t

0

gpXpsqqφpsq exp

ˆ

´

ż t

s

kpXpyqq dy

˙

ds,

wpx, tq “ ψpx0px, tqq exp

ˆ

´

ż t

0

kpXps;x, tqq ds

˙

´

ż t

0

gpXps;x, tqqφpsq exp

ˆ

´

ż t

s

kpXpy;x, tqqdy

˙

ds. (4.20)

Given px, tq, we want to find x0 such that Xptq “ x, and Xps;x, tq such that

Xp0;x, tq “ x0px, tq.

x “ Xptq “ x0 ` bt ñ x0px, tq “ x´ bt,

Xps;x, tq “ x0px, tq ` bs “ x´ bt` bs “ x` bps´ tq.

After substituting x0px, tq and Xps;x, tq into Eq. (4.20), we finally arrive at the

123



solution wpx, tq for t P r0, τ s

wpx, tq “ ψpx´ btq exp

ˆ

´

ż t

0

kpx` bps´ tqq ds

˙

´

ż t

0

gpx` bps´ tqqφpsq exp

ˆ

´

ż t

s

kpx` bpy ´ tqqdy

˙

ds. (4.21)

Note that at x “ 1, ψpx´ btq, gpx` bps´ tqq, and kpx` bps´ tqq are well-defined

on t P r0, τ s because of our assumption bτ ď 1. Plugging x “ 1 into (4.21) yields

Φptq “ wp1, tq “ ψp1´ btq exp

ˆ

´

ż t

0

kp1` bps´ tqq ds

˙

(4.22)

´

ż t

0

gp1` bps´ tqqφpsq exp

ˆ

´

ż t

s

kp1` bpy ´ tqq dy

˙

ds.

Let Φhptq and ΦIptq denote the first and second terms, respectively, on the right-hand

side of (4.22). At t “ τ , we need to consider two different solutions for 0 ď x ď bτ

and bτ ă x ď 1. For bτ ă x ď 1, the initial condition ψpx ´ bτq is well-defined.

Thus,

Ψpxq “ wpx, τq “ ψpx´ bτq exp

ˆ

´

ż τ

0

kpx` bps´ τqq ds

˙

(4.23)

´

ż τ

0

gpx` bps´ τqqφpsq exp

ˆ

´

ż τ

s

kpx` bpy ´ τqq dy

˙

ds.

Analogously, let Ψhpxq and ΨIpxq denote the first and second terms in (4.23). On

the other hand, if 0 ď x ď bτ , the characteristic lines meet the left-hand boundary

where the value is zero. Also, Xps;x, tq “ bs because x0 “ 0. It follows that

Ψpxq “ wpx, τq “ ´

ż τ

0

gpbsqφpsq exp

ˆ

´

ż τ

s

kpbyq dy

˙

ds. (4.24)

Using the expressions in Eqs. (4.22)–(4.24) and the decomposition in (4.19), we
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compute ||Mτ pψ, φq||X to find a condition on τ such that Mτ is a contraction map.

||Mτ pψ, φq||X ď ||Mτ pψ, 0q||X ` ||Mτ p0, φq||X

“ ||pΨh,Φhq||X ` ||pΨI ,ΦIq||X

“ ||Ψh||8 ` ||Φh||8 ` ||ΨI ||8 ` ||ΦI ||8. (4.25)

Using the positivity of function k, one can easily show that

||Ψh||8 ď λ1||ψ||8, ||Φh||8 ď ||ψ||8, (4.26)

for some λ1 ă 1. If we further assume that Kpuq “ cu for some c ą 0 and gpxq “

g ą 0 so that kpxq “ K 1pzpxqq “ c ą 0 for analysis simplicity, we can find the upper

bounds on inhomogeneous part ΦIptq as well.

|ΦIptq| ď sup
0ďsďt

|φpsq|

ˇ

ˇ

ˇ

ˇ

ż t

0

gp1` bps´ tqq exp pcps´ tqq ds

ˇ

ˇ

ˇ

ˇ

“ sup
0ďsďt

|φpsq|
g

c
p1´ e´ctq,

||ΦI ||8 ď sup
0ďtďτ

|ΦIptq| “
g

c
p1´ e´cτ q||φ||8 “ λ2||φ||8. (4.27)

If τ is sufficiently small so that p1 ´ e´cτ q ! 1, we can find λ2 ă 1. Similarly, there

exists λ3 ă 1 such that ||ΨI ||8 ď λ3||φ||8 for sufficiently small τ . Putting all upper

bounds on terms in (4.25) together using (4.26)–(4.27), we obtain

||Mτ pψ, φq||X ď p1` λ1q||ψ||8 ` pλ2 ` λ3q||φ||8.

Although pλ2 ` λ3q can be less than 1, Mτ cannot be a contraction because of

p1` λ1q ą 1. However, if we apply Mτ again to Mτ pψ, φq, there exists λ such that

||M2
τ pψ, φq||X “ ||Mτ pΨ,Φq||X ď p1` λ1q||Ψ||8 ` pλ2 ` λ3q||Φ||8

ď p1` λ1qpλ1||ψ||8 ` λ3||φ||8q ` pλ2 ` λ3qp||ψ||8 ` λ2||φ||8q

“ λ̃||ψ||8 ` λ̂||φ||8

ď λ||pψ, φq||X ,
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where λ̃ “ p1` λ1qλ1 ` pλ2 ` λ3q, λ̂ “ p1` λ1qλ3 ` pλ2 ` λ3qλ2, and λ “ maxpλ̃, λ̂q.

If we choose τ small enough such that λ̃, λ̂ ă 1, it follows λ ă 1. To show (4.17)

holds for some λτ ă 1, we substitute pψ, φq by pψ1 ´ ψ2, φ1 ´ φ2q “ f1 ´ f2 and use

the linearity of Mτ . Thus, we conclude that M2
τ is a contraction on X for sufficiently

small τ , which implies that the trivial (zero) solution is a unique fixed point for the

linear system (4.3).

The argument described above can be extended for more general case of gpxq and

kpxq if we carefully treat the inequality in (4.27). Because g and k are uniformly

bounded functions, we can find constants g, k ą 0 such that

||g||8 ď g, ||k||8 ď k.

Using these inequalities, we obtain similar results to (4.27) with suitable λ2 ă 1 for

sufficiently small τ . The rest of procedures analogously follow.

Contraction mapping for sufficiently small τ : II. nonlinear system

Next, we generalize our results in previous section for the linear system to the non-

linear one. Specifically, we analogously construct a solution map to show the con-

vergence of the solution of the nonlinear system (4.1) to its steady-state solution for

a sufficiently small delay.

Let us restate the nonlinear problem for Cpx, tq

Ct ` F pCp1, t´ τqqCx “ ´KpCq, x P p0, 1q, t ą 0 (4.28a)

Cp0, tq “ m, t ě 0, (4.28b)

Cpx, 0q “ ψpxq, x P r0, 1s, (4.28c)

Cp1, tq “ φpt` τq, t P r´τ, 0s. (4.28d)

where F and K are Lipschitz continuous and Kpuq ą 0 for all positive u with

Kp0q “ 0. Given (ψ, φq P Cpr0, 1sq ˆ Cpr0, τ sq “ X , let Cpx, t;ψ, φq denote the
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well-defined solution for t ą 0. For t P r0, τ s, it follows that Cpx, t;ψ, φq solves

Ct ` F pφptqqCx “ ´KpCq, x P p0, 1q, t ą 0 (4.29a)

Cp0, tq “ m, t ě 0, (4.29b)

Cpx, 0q “ ψpxq, x P r0, 1s. (4.29c)

As we defined a map M in the linearized system, we can similarly construct a

new map N for the solution of (4.28).

Definition 9. A map N : X Ñ X is defined by

Npψ, φq “ pΨ,Φq

where

Ψpxq “ Cpx, τ ;ψ, φq, for x P r0, 1s,

Φptq “ Cp1, t;ψ, φq, for t P r0, τ s.

Theorem 10. Let usspxq be the steady-state solution of (4.28) and τ be sufficiently

small. If an initial condition ψpxq satisfies ||ψ ´ uss||8 ď k ă 8, the solution

advanced by a map N in Definition 9 exponentially converges to usspxq at the rate of

λ ą 0, i.e.,

||up¨, tq ´ ussp¨q||8 ď ||ψ ´ uss||8e
´λt, (4.30)

where λ depends on k.

Proof. Let u be the solution of the nonlinear problem (4.28) with f1 “ pψ1, φ1q and

v denote uss with f2 “ pψ2, φ2q “ puss, Copq. Then for t P r0, τ s, u and v solve

ut ` F pφ1qux “ ´Kpuq,

F pφ2qvx “ ´Kpvq,

respectively. Subtracting the second equation from the first one, we obtain

ht ` F1hx ` pF1 ´ F2qvx “ ´pKpuq ´Kpvqq, (4.31)
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where h “ u ´ v, F1 “ F pφ1q, and F2 “ F pφ2q. From the Fundamental Theorem of

Calculus, we can rewrite the right-hand side of Eq. (4.31) as

´pKpuq ´Kpvqq “ ´

ż 1

0

d

dr
Kpru` p1´ rqvq dr

“ ´

˜

ż 1

0

dK

du

ˇ

ˇ

ˇ

ˇ

u“πprq

dr

¸

pu´ vq

“ ´Ipx, tqpu´ vq, (4.32)

where πprq “ ru` p1´ rqv for r P r0, 1s and Ipx, tq corresponds to an integral with

a derivative of K with respect to u as an integrand.

Substituting the expression (4.32) into (4.31) and using the method of charac-

teristics to the resulting equation yield the following system of ODEs for Zptq “

hpXptq, tq, t P r0, τ s

X 1
ptq “ F1ptq, Xp0q “ x0,

T 1ptq “ 1, T p0q “ 0,

Z 1ptq “ pF2 ´ F1qvx ´ IpXptq, tqZptq, Zp0q “ ψpx0q, (4.33)

where ψ “ ψ1 ´ ψ2. Solving the first two ODEs gives T ptq “ t and Xptq “ x0 `

şt

0
F1psq ds. Also, because of the Lipschitz continuity of function F , there exists

C1 ą 0 such that

|pF2 ´ F1qvx| “ |pF pφ1q ´ F pφ2qqvx| ď C1||φ||8||vx||8, (4.34)

where φ “ φ1´φ2. Here we have used the fact that a continuous function (i.e., vx) on

a compact support is bounded. Substituting the inequality (4.34) into (4.33) yields

the following differential inequality for Zptq

´C||φ||8 ´ IpXptq, tqZptq ď Z 1ptq ď C||φ||8 ´ IpXptq, tqZptq, Zp0q “ ψpx0q,
(4.35)

where C “ C1||vx||8. By multiplying an integrating factor

µptq “ exp

ˆ

´

ż t

0

IpXpyq, yq dy

˙
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and applying Gronwall’s inequality, we obtain

ψpx0q exp

ˆ

´

ż t

0

IpXpsq, sq ds

˙

´ C||φ||8

ż t

0

exp

ˆ

´

ż t

s

IpXpyq, yq dy

˙

ds

ď Zptq ď ψpx0q exp

ˆ

´

ż t

0

IpXpsq, sq ds

˙

` C||φ||8

ż t

0

exp

ˆ

´

ż t

s

IpXpyq, yq dy

˙

ds,

(4.36)

Given px, tq, we want to find x0 such that Xptq “ x, and Xps;x, tq such that

Xp0;x, tq “ x0px, tq.

x “ Xptq “ x0 `

ż t

0

F1pyq dy ñ x0px, tq “ x´

ż t

0

F1pyq dy,

Xps;x, tq “ x0px, tq `

ż s

0

F1pyq dy “ x`

ż s

t

F1pyq dy.

Finally, we find the following inequality for hpx, tq

hhpx, tq ´ hIpx, tq ď hpx, tq ď hhpx, tq ` hIpx, tq, (4.37)

where

hhpx, tq “ ψ

ˆ

x´

ż t

0

F1pyq dy

˙

exp

ˆ

´

ż t

0

Ipx`

ż s

t

F1pyq dy, sq ds

˙

,

hIpx, tq “ C||φ||8

ż t

0

exp

ˆ

´

ż t

s

Ipx`

ż s

t

F1pzq dz, yq dy

˙

ds.

Plugging x “ 1 and t “ τ , separately, into (4.37) yield

hhp1, tq ´ hIp1, tq ď Φptq “ hp1, tq ď hhp1, tq ` hIp1, tq, (4.38)

hhpx, τq ´ hIpx, τq ď Ψpxq “ hpx, τq ď hhpx, τq ` hIpx, τq, (4.39)

respectively, where Φptq “ Φ1ptq ´ Φ2ptq and Ψpxq “ Ψ1pxq ´ Ψ2pxq defined in

Definition 9.

Using the expressions in (4.38)–(4.39), let us show (4.30) for sufficiently small τ .

Recall that the function I is defined as

Ipx, tq “

ż 1

0

dK

du

ˇ

ˇ

ˇ

ˇ

u“ru`p1´rqv

dr. (4.40)
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It is easy to check that the function Kpuqp“ Vmaxu
KM`u

q is differentiable with respect to

u. Moreover, for 0 ď r ď 1,

ru` p1´ rqv “ rpu´ vq ` v ď r||u´ v||8 ` ||v||8

ď r||ψ ´ v||8 ` ||v||8 ď k ` k1,

where ||v||8 “ ||uss||8 “ k1. Applying this inequality to (4.40) implies that there

exists some k̃ ą 0 such that

I ě min
0ďwďk`k1

dK

du

ˇ

ˇ

ˇ

ˇ

u“w

“
a

pb` k ` k1q
2
” k̃, (4.41)

with a “ VmaxKM and b “ KM . Substituting the lower bound on I into (4.38)–(4.39)

gives

||Φ||8 “ sup
0ďtďτ

|Φptq| ď ||hhp1, tq||8 ` ||hIp1, tq||8

ď ||ψ||8 ` C||φ||8 sup
0ďtďτ

ˇ

ˇ

ˇ

ˇ

ż t

0

exp
´

k̃ps´ tq
¯

ds

ˇ

ˇ

ˇ

ˇ

“ ||ψ||8 `
C

k̃
||φ||8 sup

0ďtďτ
p1´ e´k̃tq

ď ||ψ||8 ` λ1||φ||8. (4.42)

If τ is sufficiently small so that p1´e´k̃τ q ! 1, it follows that λ1 ă 1. Similarly, there

exist λ2, λ3 ă 1 such that

||Ψ||8 “ sup
0ďxď1

|Ψpxq| ď λ2||ψ||8 ` λ3||φ||8. (4.43)

Applying the inequalities in (4.42)–(4.43), we obtain

||Nτ pf1q ´Nτ pf2q||X “ ||pΨ1,Φ1q ´ pΨ2,Φ2q||X “ ||Ψ||8 ` ||Φ||8

ď p1` λ2q||ψ||8 ` pλ1 ` λ3q||φ||8.

Because of 1 ` λ2 ą 1, we cannot find a suitable constant λ ă 1 to satisfy (4.30).
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However, if we apply Nτ again to both Nτ pf1q and Nτ pf2q, respectively, it follows

||N2
τ pf1q ´N

2
τ pf2q||X “ ||Nτ pΨ1,Φ1q ´Nτ pΨ1,Φ1q||X

ď p1` λ2q||Ψ1 ´Ψ2||8 ` pλ1 ` λ3q||Φ1 ´ Φ2||8

ď p1` λ2qpλ2||ψ||8 ` λ3||φ||8q ` pλ1 ` λ3qp||ψ||8 ` λ1||φ||8q

“ λ̃||ψ||8 ` λ̂||φ||8

ď λ||pψ, φq||X “ λ||f1 ´ f2||X ,

where λ “ maxpλ̃, λ̂q with

λ̃ “ p1` λ2qλ2 ` pλ1 ` λ3q, λ̂ “ p1` λ2qλ3 ` pλ1 ` λ3qλ1, (4.44)

λ1 “ λ3 “
C

k̃
p1´ e´k̃τ q, λ2 “ e´k̃τ ,

for k̃ in (4.41) and some C ą 0. This inequality implies that if we choose τ small

enough such that λ̃, λ̂ ă 1, the distance between u and v exponentially converges to

zero at the rate of λ that depends on k, i.e., (4.30) holds. Therefore, the steady-state

solution for the nonlinear problem (4.28) is asymptotically stable.

4.2 Stochastic System

4.2.1 Stationary solution for sufficiently small τ

In this section, we show the existence and uniqueness of an analogous version of

the steady-state solution for random dynamical system with sufficiently small τ , as

shown in Section 4.1 for the deterministic system. In particular, we are interested in

the system perturbed via stochastic boundary conditions and its stability dependent

on τ .

Let us consider the following nonlinear stochastic system for Cpx, tq with a
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stochastic process Y ptq,

Ct ` F pCp1, t´ τqqCx “ ´KpCq, x P p0, 1q, t ą 0 (4.45a)

Cp0, tq “ Y ptq, t ě 0, (4.45b)

Cpx, 0q “ ψpxq, x P r0, 1s, (4.45c)

Cp1, tq “ φpt` τq, t P r´τ, 0s. (4.45d)

Here we assume that Y ptq is a stationary stochastic process with constant mean

m ą 0 in (4.28b) and it is continuous in t. Also, for any T ă 8,

Ep sup
0ďtďT

|Y ptq|q ă 8, EpY p0qq “ m. (4.46)

This stochastic boundary condition represents the noise entering the bounded domain

through its left-hand side.

For a given pψ, φq P X , the solution Cp¨, t;ψ, φ), well-defined for all t ą 0, is a

stochastic process on the probability space pΩ,F ,Pq. For t P r0, τ s, it follows that

Cpx, t;ψ, φq solves

Ct ` F pφptqqCx “ ´KpCq, x P p0, 1q, t ą 0 (4.47a)

Cp0, tq “ Y ptq, t ě 0, (4.47b)

Cpx, 0q “ ψpxq, x P r0, 1s. (4.47c)

Before we begin to analyze the system, we give the definitions of stochastic process

and statistically stationary process.

Definition 11. Let pΩ,F ,Pq be a probability space, B be a separable Banach space,

and I Ă R be an interval (possibly infinite). A B-valued stochastic process tUptqutPI

is a set of B-valued random variables Uptq on pΩ,F ,Pq where t P I.

Definition 12. A stochastic process Uptq is a called (statistically) stationary if tUptqu

has the same distribution as tUpt` hqu for any h ą 0 and the joint distributions of

tUpt1 ` hq, Upt2 ` hq, . . . , Uptn ` hqu with t1 ă t2 ă . . . ă tn are same for all h ą 0.
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A special case which will be of our interest is the case where the probability

space is taken to be Ω “ Cpr0, T s,Bq for B “ Cpr0, 1sq and T ą 0 with a probability

measure P and where the process U is given by

Uptqpωq “ ωptq, ω P Ω.

In this case, U is called the canonical process on Ω (Hairer (2009); van Zanten (2013)).

Now we prove the existence and uniqueness of the stationary solution for (4.45) when

τ is sufficiently small.

Theorem 13. For sufficiently small τ , the nonlinear stochastic problem (4.45) ad-

mits a statistically stationary solution.

Proof. STEP I.

The system is non-autonomous owing to the noise Y ptq at the boundary. To prove the

existence of an “attractor” for random dynamical system, we use pullback attractor

method. Let us define a sequence of time tn “ ´n and its corresponding solution

Cnp¨, tq that satisfies (4.45a) for t ě tn with initial and boundary conditions

Cn
p0, tq “ Y ptq, t ě tn, (4.48)

Cn
px, tnq “ ψnpxq, x P r0, 1s (4.49)

Cn
p1, tq “ φnpt´ tn ` τq, t P rtn ´ τ, tns (4.50)

Note that we define the solution not from t “ 0, but from the past time at t “ tn.

Given the sequence tCnp¨, tqunPN of continuous functions on an interval r0, 1s for

t ě tn, we will show, for each ω P Ω, this is a Cauchy sequence in a Banach space

H “ Cpr0, 1s ˆ r0, T sq for 0 ă T ă 8, which ensures the existence of a convergent

limit Ūpωq in H.

To show that tCnp¨, tqunPN is a Cauchy sequence, let us consider the difference

between two solutions, V p¨, tq “ Cnp¨, t;ψn, φnq´Cmp¨, t;ψm, φmq for t ě minptn, tmq.

Because the system is nonlinear, given (ψ, φ)=(ψn ´ ψm, φn ´ φm) V solves

Vt ` FnVx ` pFn ´ FmqC
m
x “ ´pKpC

n
q ´KpCm

qq,
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where Fn “ F pCnq and Fm “ F pCmq with almost zero-boundary condition at x “ 0,

specifically,

V p0, tq “

#

0, for t ě maxptn, tmq

Y ptq, for minptn, tmq ď t ă maxptn, tmq

This indicates the system for V becomes autonomous after a short time period.

STEP II.

Recall that we defined a linear map N2 in Definition 9 and showed the convergence

of the solution for the nonlinear system to its steady state for sufficiently small τ ,

using the contraction mapping argument. Specifically,

||C1p¨, tq ´ C2p¨, tq||Cpr0,1sq “ sup
xPr0,1s

|C1px, tq ´ C2px, tq| Ñ 0 as tÑ 8,

where C1 and C2 are two different solutions for Eq. (4.28) with the convergence rate

λ ă 1. In other words, for any given ε ą 0, there exist Tε ă 8 such that

||C1p¨, tq ´ C2p¨, tq||Cpr0,1sq ă ε, for t ě Tε,

indicating the difference of two solutions becomes negligibly small after sufficiently

long time T ą 0.

To apply this property to the solution V , we similarly consider a map for the

nonlinear stochastic system to advance V in time, given the pair of functions pψn ´

ψm, φn ´ φmq P X . However, the system is non-autonomous for minptn, tmq ď t ă

maxptn, tmq due to the random boundary condition over that period. Thus, we

need to consider two separate ranges of time: minptn, tmq ď t ă maxptn, tmq and

t ě maxptn, tmq. Without loss of generality, let n “ m ` 1 so that tn ď tm. Then,

V p¨, tq “ Cnp¨, t;ψn, φnq solves (4.45a) for tn ď t ď tm subject to the boundary

condition Y ptq. That is,

Vt ` FnVx “ ´KpV q “ ´Ipx, tqV,
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where

Ipx, tq “

ż 1

0

dK

du

ˇ

ˇ

ˇ

ˇ

u“rV

dr.

Using the method of characteristics to the above PDE for V yields the following

system of ODEs for Zptq “ V pXptq, tqq,

X 1
ptq “ Fnptq, Xp0q “ x0,

T 1ptq “ 1, T p0q “ tn,

Z 1ptq “ ´IpXptq, tqZptq, Zp0q “ ψnpx0q. (4.51)

Solving the first two ODEs gives T ptq “ tn ` t and Xptq “ x0 `
şt

tn
Fnpsq ds. Solving

for Z with the initial condition in (4.51), we obtain

Zptq “ ψnpx0q exp

ˆ

´

ż t

tn

IpXpsq, sq ds

˙

.

Given px, tq, we want to find x0 such that Xptq “ x, and Xps;x, tq such that

Xp0;x, tq “ x0px, tq.

x “ Xptq “ x0 `

ż t

tn

Fnpyq dy ñ x0px, tq “ x´

ż t

tn

Fnpyq dy,

Xps;x, tq “ x0px, tq `

ż s

tn

Fnpyq dy “ x´

ż t

s

Fnpyq dy.

Finally, we find V px, tq

V px, tq “ ψn
ˆ

x´

ż t

tn

Fnpyq dy

˙

exp

ˆ

´

ż t

tn

I

ˆ

x´

ż t

s

Fnpyq dy, s

˙

ds

˙

. (4.52)

At t “ tm, ψn
´

x´
ştm
tn
Fnpyq dy

¯

is well-defined for
ştm
tn
Fnpyq dy ă x ď 1. The

solution becomes

V px, tmq “ ψn
ˆ

x´

ż tm

tn

Fnpyq dy

˙

exp

ˆ

´

ż tm

tn

I

ˆ

x´

ż tm

s

Fnpyq dy, s

˙

ds

˙

.

(4.53)
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On the other hand, if 0 ď x ď
ştm
tn
Fnpyq dy, the characteristic lines meet the left-hand

boundary where the value is Y ptq. Then, it follows that

V px, tmq “ Y ptm ´ t
˚
q exp

ˆ

´

ż tm

tn

I

ˆ

x´

ż tm

s

Fnpyq dy, s

˙

ds

˙

, (4.54)

where t˚ satisfies x “
şt˚

tn
Fnpyq dy. If ||ψn||8 “ k, then we can find some k̃ ą 0 that

depends on k such that

k̃ ď I.

It implies that there exists λpkq ă 1, as similarly found in (4.44) for the deterministic

system, such that

||V p¨, tmq||Cpr0,1sq ď λpkqmaxp||Y ||Cprtn,tmsq, kq. (4.55)

Given V p¨, tmq as an initial condition, we can advance V in time by constructing a

suitable map as in the deterministic system (see Definition 9) with zero boundaries,

but the stochastic boundary condition Y ptq could be arbitrarily large for tn ď t ă tm.

Thus, depending on how large ||Y ||Cprtn,tmsq is, the number of steps, which is necessary

to apply the map to make the solution small, is random.

STEP III.

Let us define a random variable ||Y ||Cprtn,tmsq “ Yn while keeping the condition n “

m ` 1. Also, let us define a map N̄ similarly as in Definition 9 and the solution

(ψ̄i, φ̄i) generated by the ith iteration of N̄ be

pψ̄i, φ̄iq “ N̄ i
pψ̄0, φ̄0q, (4.56)

where

ψ̄0pxq “ V px, tmq, for x P r0, 1s,

φ̄0ptq “ V p1, tq, for t P rtn, tms.

Applying similar argument given in Theorem 10, we can show that, for sufficiently

small τ ,

||ψ̄i||8 ď ||ψ̄0||8e
´ ci
p1`||ψ̄0||8q

2 . (4.57)
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with a suitable constant c ą 0. Let ε ą 0 be arbitrarily given. Then, we have

PpAipεqq “ Pp||ψ̄i||8 ą εq ď P
´

||ψ̄0||8e
´ ci
p1`||ψ̄0||8q

2 ą ε
¯

. (4.58)

By Markov’s inequality, (4.58) implies

PpAipεqq ď ε´1E
´

||ψ̄0||e
´ ci
p1`||ψ̄0||q

2

¯

“ ε´1E
´

||ψ̄0||e
´ ci
p1`||ψ̄0||q

2
`

1p||ψ̄0||ă1q ` 1p||ψ̄0||ą1q

˘

¯

ď ε´1
´

Ep||ψ̄0||qe
´c̄i
` E

´

||ψ̄0||e
´ c̄i
||ψ̄0||

2

¯¯

,

where c̄ “ c{4. Also, using Cauchy-Schwarz inequality,

E
´

||ψ̄0||e
´ c̄i
||ψ̄0||

2

¯

“ E
´

||ψ̄0||e
´ c̄i
||ψ̄0||q

2

´

1p||ψ̄0||2ă
?
iq ` 1p||ψ̄0||2ą

?
iq

¯¯

ď

´

Ep||ψ̄0||qe
´c̄
?
i
` E

´

||ψ̄0||e
´ c̄i
||ψ̄0||

2
1p||ψ̄0||2ą

?
iq

¯¯

ď

ˆ

Ep||ψ̄0||qe
´c̄
?
i
`

b

Ep||ψ̄0||
2qq

b

Pp||ψ̄0||
2 ą

?
iq

˙

ď

ˆ

Ep||ψ̄0||qe
´c̄
?
i
`

b

Ep||ψ̄0||
2qe´

c̃
?
i

2

˙

,

where some c̃ ą 0 assuming that Yn has the normal distribution. Moreover, since Yn

has a bounded mean in (4.46), we finally obtain

PpAipεqq ď ε´1
´

µ
´

e´c̄i ` e´c̄
?
i
¯

` µ1e
´ c̃i

2

¯

, (4.59)

with some µ1 ą 0. Applying the Borel-Cantelli Lemma to (4.59), we can show that

8
ÿ

i“1

PpAiq ă 8 ñ ||ψ̄i||8 Ñ 0 a.s.

This implies that for sufficiently small τ , if we take the limit as n,m Ñ 8, the

difference of Cn ´ Cm after sufficiently long time, i.e., for t ě 0, becomes small

lim
n,mÑ8

sup
xPr0,1s

|Cn
px, tq ´ Cm

px, tq| “ 0 for all t ě 0,
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almost surely. For each ω P Ω, tCnpωqunPN is Cauchy in H and, thus, there exists a

convergent limit C̄pωq in Banach space H.

To show that C̄ is a P-measurable function, we note that Cnp¨, t;ψn, φnq is measur-

able on r0, 1s for all t defined. Since the pointwise limit of a sequence of measurable

functions is measurable, C̄ is measurable function with respect to P, i.e., the limit C̄

is a random process on the probability space pΩ,F ,Pq. Finally, using the pullback

attractor argument, we have the following equality

C̄pt` h, ωq “ lim
nÑ8

Cn
pt` h, ωq “ lim

nÑ8
Cn`h

pt, π´hωq “ C̄pt, π´hωq, for any h ą 0,

where π´h is a suitably defined map on Ω and the second equality is from the sta-

tionary property of Cn. This equality implies that C̄ is a stationary process from

Definition 12. Thus, the problem (4.45a)–(4.45d) admits a stationary solution for

sufficiently small τ .

4.2.2 Numerical simulation

To supplement and support our analytic results, we numerically solve (4.45) for

different values of τ . To impose the left-hand boundary condition Y ptq, we use a sta-

tionary Ornstein-Uhlenbeck process that satisfies the following stochastic differential

equation (SDE)

dY ptq “ αpµ´ Y ptqqdt` σdW ptq, (4.60)

where α, µ, and σ are constants and W ptq denotes a standard one-dimensional

Brownian motion.

To show the convergence of the nonlinear system toward its stationary solution

for sufficiently small τ and the emergence of oscillatory solutions for relatively large τ ,

we numerically computed (4.45a) given pψ, φq “ pzpxq ` 0.01, Cop´ 0.01q in (4.45c)–

(4.45d), where zpxq is the steady-state solution in the deterministic system, which is
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prescribed. Here, the two functions F and K in (4.45a) have the following form:

F pCq “ 1`K1 tanhpK2pCop ´ Cqq,

KpCq “
VmaxC

KM ` C
,

where the nondimensional values of K1, K2, Cop, Vmax, and KM were adapted from

our TAL model. See Tables 2.1 and 2.2. Recall that the form of F was chosen

from experimental data for TGF system (Layton et al. (1991)). Because of the

positive drift term b, Eq. (4.45a) was advanced in time using upwind scheme. For

the boundary condition Y ptq, SDE in (4.60) was solved using Gillespie algorithm

developed by Gillespie (1996). Without the noise, i.e., Y ptq “ 0, the value of τ0 is

« 2.05. Based on this value, we first consider the case of delay τ “ 0.15 such that

the system lies in the subcritical region for two different sets of coefficients in Y ptq:

pµ, α, σq “ p1, 5, 0.05q and pµ, α, σq “ p1, 20, 0.5q. Both a trajectory of Y ptq and its

corresponding solution Cpx, tq at x “ 1, as functions of t, are given in Figs. 4.1 and

4.2, respectively.
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Figure 4.1: Cp0, tq “ Y ptq with µ “ 1, α “ 5, σ “ 0.05 (left) and corresponding
solution Cp1, tq for τ “ 0.15 (right). The gray line corresponds to the steady-state
solution in the deterministic system for comparison.
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Figure 4.2: Cp0, tq “ Y ptq with µ “ 1, α “ 20, σ “ 0.5 (left) and corresponding
solution Cp1, tq for τ “ 0.15 (right). The gray line corresponds to the steady-state
solution in the deterministic system for comparison.

In the absence of noise, our analysis shows that there is a critical delay τ0 such

that the solution asymptotically converges to its steady state for τ ă τ0. The ran-

dom solution, in the present of noise, also converges toward its stationary solution

for sufficiently small τ . Fig. 4.1 supports our analytic results that (4.45) admits a

stationary solution near „0.116 which corresponds to the steady-state value in the

deterministic system. Even if we increase the value of σ to be 0.5 so that the ampli-

tude of perturbations in Y ptq becomes larger compared to that of the left panel in

Fig. 4.1, the corresponding solution exhibits to have more variations from the steady

state solution of the deterministic system, as illustrated in the right panel of Fig. 4.2.

We similarly computed time profiles for Y ptq and Cp1, tq for large value of τ “

0.21. Applying Y ptq with σ “ 0.01, the corresponding solution Cp1, tq, as a function

of t, is shown in Fig. 4.3. Compared to the solution corresponding to τ “ 0.15,

plotted in gray line, the solution corresponding to τ “ 0.21 exhibits oscillatory

behaviors with markedly increased amplitudes. Note that the range of Cp1, tq in

all three Figures are set to be same to show a clear distinction between amplitudes

of solutions for different τ and σ. Although the oscillations emerge as the delay is
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increased, the solution exhibits regular behaviors, unlike the case of small delays,

in that the amplitude as well as the period of oscillations are almost same in time.

These regular behaviors can be explained by the delay in the system. Once τ passes

through its critical value τ0, the system enters the supercritical region so that the

effect of delay may dominate the overall dynamics, as a result of the competition

of the noise. If the increased effect of noise is further introduced to the system,

the resulting dynamics may exhibit much more complex behaviors, which can help

explain the irregular oscillations observed in experimental observation of the TGF

system.

500 600 700 800 900 1000 1100 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

t (sec)

C
(1

,t
)

τ = 0.21

 

 

Figure 4.3: Cp1, tq with random left-hand boundary Y ptq (µ “ 1, α “ 5, σ “ 0.01)
for relatively large value of τ “ 0.21. The gray line corresponds to the stationary
solution for τ “ 0.15 with same left-hand boundary Y ptq for comparison.

4.3 Multiscale Analysis

4.3.1 Introduction

In this section, we provide multiscale analysis to study the effect of noise in the

stability of (linear) stochastic delayed PDE. We specifically consider the case where

the delay is sufficiently close to the critical delay of the deterministic system and
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the noise is small relative to the proximity of the delay to the critical delay, so

that the overall dynamics are sensitive to the noise via an interaction with delays.

For example, in the absence of noise so that the system becomes deterministic, the

solution of (4.3) decays over time if the delay lies in the subcritical region. In

contrast, when the noise is introduced to the system, oscillations can emerge and be

sustained even in the subcritical region. To better understand how those oscillatory

behaviors are generated as a result of the interaction between the noise and the delay,

we apply well-known multiscale analysis to study the sensitivity of our time-delayed

TGF system to the noise that represents various external perturbations.

A recent study by Kuske (2005); Klosek and Kuske (2005) introduced multiscale

analysis for stochastic (ordinary) delay differential equations. The amplitude equa-

tions of oscillatory solutions near the critical delay of the deterministic system were

derived, using asymptotic expansions and standard multiscale techniques, to capture

the solution behaviors over long times. Although they considered the relatively sim-

ple equation to provide analytical results that can help better describe the stochastic

dynamical system with delays, the applied mathematical tools could be productively

used to study other types of stochastic delayed system. In this study, we aim to sim-

ilarly apply multiscale analysis to a more complicated equation, a stochastic delayed

PDE, which arises from our TGF model.

For analytic simplicity, we consider the linearized transport equation in Eq. (4.3)

with additive noise

dU “ ´pbUx ` gUp1, t´ τq ` kUqdt` δdWt, (4.61)

where Upx, tq denotes a random solution and Wt is a standard 1-dimensional Brown-

ian motion. The Itô interpretation of Eq. (4.61) corresponds to the stochastic integral

equation

Upx, tq “ Upx, 0q ´

ż t

0

bUxpx, sq ` gUp1, s´ τq ` kUpx, sq ds`

ż t

0

δdWs. (4.62)
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If the magnitude of δ is large enough, the effect of noise would dominate the overall

dynamics, which makes it difficult to understand how the interaction of delays to

noise affects the solution behaviors. For this reason, we consider the case when

δ ! 1 in order to examine the sensitivity of the dynamics to small noise. Specifically,

when δ “ 0, the problem (4.61) reduces to the deterministic linearized equation in

Eq. (4.3a). If we look for a solution of the form

Upx, tq “ eλtfpxq, (4.63)

we find the critical delay τ0 such that for τ ă τ0, <pλq ă 0 and for τ ą τ0, <pλq ą 0.

The resulting ODE for fpxq was derived in Eq. (4.4). Let a be a natural frequency

such that λ “ ia when τ “ τ0. Substituting λ “ ia and τ “ τ0 into Eq. (4.4) and

collecting real and imaginary parts separately, we obtain

bf 1pxq ` kpxqfpxq ` gpxq cospaτ0qfp1q “ 0, afpxq “ gpxq sinpaτ0qfp1q. (4.64)

To express the delay term τ in terms of the critical value τ0, we use a small

parameter ε such that 0 ă ε ! 1, which will be used as a measurement of proximity

to the critical delay:

τ “ τ0 ` ε
2τ1. (4.65)

To facilitate asymptotic analysis, the coefficient τ1 is assumed to be Op1q constant,

which we will set to be ´1 in order for the system to be in subcritical region.

To illustrate the sensitivity of the delayed system to small noise, we numerically

solved Eq. (4.61) with δ “ .01 for three different values of ε2, the proximity of the

critical delay, in (4.65): ε2 “ .01, .002, .0002. Time profiles of the solution at x “ 1,

Up1, tq, are shown in Figure 4.4. In the absence of noise, our previous bifurcation

analysis in Theorem 3 shows that there is a critical delay τ0 such that oscillations

decay for τ ă τ0 and grow for τ ą τ0. Here τ0 « 0.205. When the noise is introduced

to the system, however, numerical simulations demonstrate that if 0 ă τ0 ´ τ ! 1,
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Figure 4.4: The numerical simulation of (4.61) for τ “ τ0 ´ ε
2 and δ “ .01. In the

top image, ε2 “ .01. In the bottom image, the solid line is for ε2 “ .002 and the
dash-dotted line corresponds to ε2 “ .0002. As ε decreases, the solution exhibits a
more marked oscillatory behavior even though τ ă τ0.

the periodic behavior of solutions becomes amplified through the interaction of noise

and delay. This effect is noticeably intensified as τ0´ τ “ ε2 decreases while keeping

δ ! 1, as can be seen by comparing top image and bottom images in Fig. 4.4.

4.3.2 Main results

We employ the multiscale analysis to study the influence of the noise over a long

time. Here we specifically provide a generalization of the previous work by Klosek
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and Kuske (2005), in which SDE with additive noise was analyzed, to a case of SPDE

with additive noise (Eq. (4.61)). We first assume that the oscillatory solutions can be

written as a combination of two qualitatively different parts: fast-time deterministic

dynamics and slow-time stochastic dynamics. Specifically, we look for a periodic

solution with a stochastically varying amplitude on a slow-time scale T , which is

treated as independent of a fast-time scale t. To prescribe the periodic modes,

we use the natural frequency a for deterministic oscillatory solutions when τ “ τ0

(bifurcation point), as generally introduced in the multiscale approximation (Klosek

and Kuske (2005)). Given all these assumptions and adapting the same variables

used in the previous work (Klosek and Kuske (2005)), we now write the leading order

approximation for the solution to (4.61)

Upx, tq „ Ûpx, tq “ Apx, T q cos at`Bpx, T q sin at, T “ ε2t, 0 ă ε ! 1. (4.66)

This form assumes that, below the critical delay but with noise, the leading order

behavior of the solution can be described by two separate dynamics with different

time scales: fast-time dynamics that correspond to the deterministic oscillations and

slow-time dynamics that correspond to the effect of noise. The choice of slow time

scale T is implied by solving Eq. (4.61) with (4.65); it results in an eigenvalue λ with

Opε2q real part.

Our goal of this study is to derive the amplitude equations for Apx, T q and Bpx, T q

to efficiently describe the solution behaviors in a long time period instead of a direct

computation of Eq. (4.61). Specifically, we assume that those equations have the

following forms:

dA “ ψAdT ` σAdξ1pT q, (4.67)

dB “ ψBdT ` σBdξ2pT q, (4.68)

where ξ1pT q and ξ2pT q are independent Brownian motions, and the coefficients

ψA, σA, ψB, and σB are unknown. To determine these coefficients in terms of a, τ0, τ1, ε,
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and σ to obtain the complete equations (4.67)–(4.68), we derive two expressions of

dU in (4.61) by substituting Û for U : the first expression is by applying Itô formula

to (4.66) and the second is by direct substitution of (4.66) into (4.61).

For fixed x, Itô formula for U in (4.66) implies

dU “

ˆ

BU

Bt
dt`

BU

BA
dA`

BU

BB
dB `

B2U

BA2
pdAq2 `

B2U

BB2
pdBq2

˙

. (4.69)

Because U is linear in both A and B, the second derivatives of U with respect to

them, respectively, are zero. Substituting the expressions in (4.67)–(4.68) to this

formula, we obtain

dU “ap´Apx, T q sin at`Bpx, T q cos atqdt` pψA cos at` ψB sin atqdT

` σA cos atdξ1pT q ` σB sin atdξ2pT q. (4.70)

Second expression for dU is obtained by substitution of (4.66) into (4.61)

dU “´ rb

ˆ

BA

Bx
cos at`

BB

Bx
sin at

˙

` gpxqpAp1, T ´ ε2τq cos apt´ τq

`Bp1, T ´ ε2τq sin apt´ τqq ` kpxqpApx, T q cos at`Bpx, T q sin atqsdt` δdW ptq.
(4.71)

Given the above two expressions in (4.70)–(4.71) for dU , we equate them, collect

the coefficients of same orders of ε, and find the solvability conditions for ψA, ψB, σA,

and σB. To consider the case where the delayed system is sensitive to the noise,

we restrict δ ! 1 (as well as ε ! 1) to apply an asymptotic expansion to the terms

containing ε. First, using trigonometric identities we expand out the two terms,

cos apt´ τq and sin apt´ τq, in the right-hand side of (4.71),

cos apt´ τq “ cos at cos aτ ` sin at sin aτ, (4.72)

sin apt´ τq “ sin at cos aτ ´ cos at sin aτ. (4.73)

Then, we use asymptotic expansions for cos aτ and sin aτ around τ0 after substituting
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(4.65) to obtain

cos aτ “ cos apτ0 ` ε
2τ1q “ cos aτ0 ´ ε

2aτ1 sin aτ0 `Opε
4
q, (4.74)

sin aτ “ sin apτ0 ` ε
2τ1q “ sin aτ0 ` ε

2aτ1 cos aτ0 `Opε
4
q. (4.75)

Also, we have

Ap1, T ´ ε2τq “ Ap1, T q ` ε2
Ap1, T ´ ε2τq ´ Ap1, T q

ε2
“ Ap1, T q ` ε2∆Ap1, T q,

(4.76)

Bp1, T ´ ε2τq “ Bp1, T q ` ε2
Bp1, T ´ ε2τq ´Bp1, T q

ε2
“ Bp1, T q ` ε2∆Bp1, T q,

(4.77)

where ∆Ap1, T q and ∆Bp1, T q will be treated as Op1q. To see this, let us write

Apx, T q “ Apx, T ´ ε2τq `

ż T

T´ε2τ

ψA ds`

ż T

T´ε2τ

σA dξ1psq,

using the integral form of (4.67). The first integral on the right-hand side is Opε2q.

To bound the variance of the second integral, we use the property of Itô integral

var

ˆ
ż T

T´ε2τ

σA dξ1psq

˙

ď

ż T

T´ε2τ

σ2
A ds “ Opε2q ¨Opσ2

Aq.

Given these upper bounds, it follows that ∆Ap1, T q is asymptotically Op1q. The

same argument can be used to show ∆Bp1, T q „ Op1q.

Plugging all expansions (4.72)–(4.75) and expressions (4.76)–(4.77) into the right-

hand side of (4.71), equating the resulting expression with the right-hand side of

(4.70), and collecting the coefficients of Op1q terms with respect to ε, we obtain

Op1q : ´ aApx, T q sin at` aBpx, T q cos at

“ ´b

ˆ

BApx, T q

Bx
cos at`

BBpx, T q

Bx
sin at

˙

´ gpxqpAp1, T qpcos at cos aτ0 ` sin at sin aτ0q

`Bp1, T qpsin at cos aτ0 ´ cos at sin aτ0qq

´ kpxqpApx, T q cos at`Bpx, T q sin atq. (4.78)
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Collecting the coefficients of cos at and sin at, respectively, we have the following two

equations:

aBpx, T q “ ´b
BApx, T q

Bx
´ gpxqpAp1, T q cos aτ0 ´Bp1, T q sin aτ0q ´ kpxqApx, T q

“ ´

ˆ

b
BApx, T q

Bx
` gpxq cos aτ0Ap1, T q ` kpxqApx, T q

˙

` gpxqBp1, T q sin aτ0,

aApx, T q “ b
BBpx, T q

Bx
` gpxqpAp1, T q sin aτ0 `Bp1, T q cos aτ0q ` kpxqBpx, T qfpxq

“ b
BBpx, T q

Bx
` gpxq cos aτ0Bp1, T q ` kpxqBpx, T q ` gpxqAp1, T q sin aτ0.

Using Eq. (4.64), we conclude that both equalities for cos at and sin at hold so that

Op1q terms in (4.78) cancel.

Next, we collect next higher Opε2q terms

pψA cos at` ψB sin atqdT ` σA cos atdξ1pT q ` σB sin atdξ2pT q

“ gpxqt∆Ap1, T qpcos at cos aτ0 ` sin at sin aτ0q

`∆Bp1, T qpsin at cos aτ0 ´ cos at sin aτ0q

` aτ1Ap1, T qp´ cos at sin aτ0 ` sin at cos aτ0q

` aτ1Bp1, T qp´ sin at sin aτ0 ` cos at cos aτ0qudT `Opε
4
q ` δdW ptq. (4.79)

Here ε2dt “ dT has been substituted. If we ignore the higher order terms to have

only Opε2q, we obtain the equations for drift and diffusion coefficients ψA, ψB, σA,

and σB, in the equations for Apx, T q and Bpx, T q. First, if we only collect the drift

terms in (4.79) and use Eq. (4.64) again, we then obtain

ψA cos at` ψB sin at (4.80)

“ r´a2τ1pApx, T q `Bpx, T q cot aτ0q ` a∆Apx, T q cot aτ0 ´ a∆Bpx, T qs cos at

` ra2τ1pApx, T q cot aτ0 ´Bpx, T qq ` a∆Apx, T q ` a∆Bpx, T q cot aτ0s sin at.

To determine ψA and ψB, we use the projection onto resonant modes of deterministic

oscillations, i.e., cos at and sin at, as similarly used in the previous analysis (Klosek
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and Kuske (2005)). While treating the functions of T as independent of t, we multiply

both sides in (4.80) by cos at and take the integrals over one period of that periodic

mode with respect to a fast-time scale t, i.e., 2π{a,
ż 2π{a

0

cos atrψA cos at` ψB sin atsdt “

ż 2π{a

0

cos at ¨ p˚qdt, (4.81)

where p˚q corresponds to the right-hand side of (4.80). Due to the orthogonality of

cos at and sin at in L2pr0, 2π{asq, computing the above integral yields the condition

for ψA in (4.67). Similarly, we obtain the condition for ψB in (4.68) by applying

sin at instead. The expression of drift terms, ψA and ψB, are given by

ψApx, T q “ ´a
2τ1pApx, T q `Bpx, T q cot aτ0q ` a∆Apx, T q cot aτ0 ´ a∆Bpx, T q,

(4.82)

ψBpx, T q “ a2τ1pApx, T q cot aτ0 ´Bpx, T qq ` a∆Apx, T q ` a∆Bpx, T q cot aτ0.
(4.83)

We similarly project the equation of diffusion terms onto cos at and sin at, while

T is treated as independent of t as in (Klosek and Kuske (2005)). Moreover, we

rewrite the noise term dW ptq as a linear combination of two independent Brownian

motions Wjptq, j “ 1, 2, multiplied by each resonant mode of oscillations. Then, we

rescale each Wjptq in terms of slow time variable T , using the property of Brownian

motion, to be compatible with the diffusion terms on the left-side hand of (4.79):

dW ptq “ cos atdW1ptq ` sin atdW2ptq, (4.84)

δdWjptq “
δ

ε
dWjpε

2tq “
δ

ε
dWjpT q. (4.85)

Using the expressions (4.84)–(4.85) and the orthogonality of cos at and sin at in

L2pr0, 2π{asq, and computing the following integrals
ż 2π{a

0

ˆ

cos at

sin at

˙

rσA cos atdξ1pT q ` σB sin atdξ2pT qsdt

“

ż 2π{a

0

ˆ

cos at

sin at

˙

δ

ε
rcos atdW1pT q ` sin atdW2pT qsdt, (4.86)
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imply the conditions on the diffusion terms in (4.67)–(4.68):

σA “ σB “
δ

ε
. (4.87)

In the integral (4.86), the slow-time variable T was treated as independent of t. Also

we equate the independent Brownian motions: ξ1pT q “ W1pT q, ξ2pT q “ W2pT q in

the method of multiscale analysis.

Substituting all derived coefficients (4.82)–(4.83) and (4.87) into (4.67)–(4.68),

we finally obtain a system of SDDEs that provides the amplitude equations for A

and B
„

dApx, T q
dBpx, T q



“

"

P

„

Apx, T q
Bpx, T q



`Q

„

Apx, T ´ ε2τq
Bpx, T ´ ε2τq

*

dT `R

„

dξ1pT q
dξ2pT q



, (4.88)

where

P “

„

´a2τ1 ´ a cot aτ0{ε
2 ´a2τ1 cot aτ0 ` a{ε

2

a2τ1 cot aτ0 ´ a{ε
2 ´a2τ1 ´ a cot aτ0{ε

2



,

Q “

„

´a cot aτ0{ε
2 ´a{ε2

a{ε2 a cot aτ0{ε
2



, R “

„

δ{ε 0
0 δ{ε



. (4.89)

4.3.3 Analysis and numerical simulation

Suppose that δ “ 0 (and R “ 0) so that the system (4.88) becomes deterministic.

The resulting problem can be viewed a system of delay differential equations. If we

seek the solution of the form VpxqeΛT to (4.88), Upx, tq in (4.66) can be approximated

by

Upx, tq „ V1pxqe
ΛT cos at` V2pxqe

ΛT sin at,

where Vpxq “

„

V1pxq
V2pxq



. The characteristic equation for Λ is given by

CpΛq “ P`Qe´ε
2τΛ
´ ΛI.

For example, if τ1 ă 0 so that τ ă τ0 in (4.65), the solution to (4.61) of the form (4.63)

asymptotically approaches to zero, implying that the corresponding amplitudes A
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and B converge to zero, respectively, on slow time scale. Thus, the real part of

every eigenvalue that satisfies CpΛq is negative for τ ă τ0, indicating that the system

(4.88) is stable, i.e., for any arbitrary initial conditions of A and B, the process

approaches toward its steady state, zero, on slow time scale T . However, if τ1 ą 0 such

that the original system (4.61) enters the supercritical region, the given multiscale

approximation (4.88) for amplitude equations is not stable, thus, would be valid only

upto short time periods. After these periods, the exponential growth would dominate

the overall solution behaviors.

To apply asymptotic expansions to obtain (4.88), we restrict our analysis to the

case where 0 ă ε ! 1, so that the delay is set to be sufficiently close to the critical

delay of the deterministic system. If we take the limit as ε Ñ 0, we can obtain

the multiscale approximation of the long time dynamics for the deterministic system

(when δ “ 0). Specifically, SDEs for A and B given in (4.67)–(4.68) become the

deterministic ODEs and, thus, A and B are differentiable with respect to T . Then

it follows

∆Apx, T q “ p´τq ¨
Apx, T ´ ε2τq ´ Apx, T q

´ε2τ

“ p´τ0 ´ ε
2τ1q ¨

Apx, T ´ ε2τq ´ Apx, T q

´ε2τ

Ñ ´ τ0
BApx, T q

BT
as εÑ 0.

Similarly, we can show ∆Bpx, T q Ñ ´τ0
BBpx,T q
BT

as εÑ 0. Substituting these resulting

limits into (4.82)–(4.83), and rearranging the terms by using ψApx, T q “
BApx,T q
BT

and

ψBpx, T q “
BApx,T q
BT

from (4.67)–(4.68) yield the following system of ODEs for A and

B

ψApx, T q “ cpc1Apx, T q ` c2Bpx, T qq,

ψBpx, T q “ cpc2Apx, T q ´ c1Bpx, T qq,
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where

c “
a2τ1

p1` aτ0 cot aτ0q
2 ` paτ0q

2
,

c1 “ 1` 2aτ0 cot aτ0,

c2 “ ´ cot aτ0p1` aτ0 cot aτ0q ´ aτ0.

These drifts terms, thus, correspond to the long time dynamics, which can be ob-

tained similarly by the method of multiscale analysis, for the deterministic system

as in Ref. Gopalsamy (1992).

To validate the multiscale approximation in (4.88), we compare the invariant

density ppxq for the value of Up1, tq by numerically solving two equations, the original

SPDE in (4.61) and the reduced envelop equation in (4.88). For two different values

of ε2 “ .01 and “ .0002 while keeping δ “ .01, the approximations of the invariant

density ppxq are illustrated in Fig. 4.5. Each simulation to approximate a point for

ppxq was run for large time, t ą 5000, and that simulation was repeatedly conducted

over 5000 times to obtain a reasonably good approximation of ppxq. Comparing the

solid lines (or dash-dotted lines) of two cases reveals that the variance of the process

increases as ε decreases, as previously observed in Fig. 4.4. Although the amplitude

slowly varies over time, as can be seen in the envelop of oscillations in Fig. 4.4 (dash-

dotted line in bottom image), the various amplitudes of oscillations can be observed,

thus, resulting in the variance of ppxq. This variance also indicates that oscillations

with larger amplitudes more frequently appear as ε decreases, which confirms the

emergence of the noticeably amplified oscillations in Fig. 4.4.
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Figure 4.5: The invariant density ppxq for Up1, tq obtained from (4.61), plotted in
solid lines, and (4.66), plotted in dash-dotted lines, for ε2 “ .01 and ε2 “ .0002. In
both cases, δ “ .01 so that δ{ε ! 1.
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5

Discussion and Future Work

In this chapter, we summarize major contributions of each modeling study, compare

the results with other models, and discuss possible direction for future research work.

5.1 Summary of Modeling Results

TAL model

We have developed three mathematical models of the TGF system in the rat kidney

to investigate a variety of qualitative and quantitative features of the TGF-mediated

dynamics. We first studied the TAL model to assess the impacts of the TAL spatial

inhomogeneity and TAL wall compliance on the stability of TGF system.

One important observation in the TAL-model study is that oscillatory solutions

become attainable at zero TGF delay and sufficiently high TGF gain values when the

spatial inhomogeneity of TAL radius and NaCl transport rate is introduced to the

system. In most of previous modeling studies (e.g., Layton et al. (1991); Pitman et al.

(2002); Layton (2010)), it has been generally believed that LCO solutions emerge as

a result of sufficiently long delays and sufficiently high gains. However, our model

suggests that zero TGF delay with sufficiently high gain values can give rise to LCO
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solutions if the TAL radius is smaller or the maximum TAL NaCl transport rate

is higher near the loop bend. This finding, implied by analyzing the characteristic

equation corresponding to the linearized model, was also validated by numerical

simulation of the full nonlinear model, as can be seen in Figs. 3.4 and 3.5.

Another key finding of TAL-model study is that the introduction of TAL wall

compliance increases the tendency of the TGF system to oscillate, reducing the

overall stability (Layton (2010)). The inclusion of the TAL wall compliance was

based on the consideration that, in vivo, the TAL likely expands and contracts

depending on the transmural fluid pressure. The choice of the reduction factor (1{5)

that was applied to isolated tubule measurements accounts for the limitation of the

active movements of the tubular walls by neighboring TALs and their connecting

tissues, thus, reducing in situ compliance (Leyssac and Baumbach (1983)). Despite

the reduced compliance effect, however, our model indicates that a representation of

TAL compliant walls greatly reduces the stability of TGF system, as can be shown by

comparing root loci in bifurcation diagrams given in Figs. 3.3C and D. Moreover, it is

noteworthy that locus curves corresponding to higher frequencies are much lowered

compared to locus curve corresponding to “ρ1 “ 0”, which indicates that the TGF

system more likely exhibits high-frequency LCO.

Short-looped nephron model

Although the TAL model explicitly represents the TAL in detail, as a key compo-

nent, to study TGF-mediated dynamics, other important components of the TGF

loop such as the actions of the proximal tubule and descending limb of a short-

looped nephron are represented by means of simple and phenomenological represen-

tations (Layton et al. (1991); Layton (2002, 2010)). However, because the proximal

tubule as well as the outer-strip segment of the descending limb are water- and

NaCl-permeable, substantial amounts of water and NaCl are reabsorbed into the
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interstitial area along those segments, directly affecting TAL flow rate and overall

TAL dynamics. In addition, MD chloride concentration, which is believed to be

primary signal for the TGF response, depends significantly on the TAL flow rate

due to the water-impermeability of TAL walls. Thus, to obtain more comprehensive

understanding of TGF regulatory mechanisms through the entire tubular system,

we have developed the short-looped nephron model that explicitly incorporates the

dynamics of an entire short-looped of Henle.

Unlike our TAL model and other TGF previous studies (Layton et al. (1991,

2000, 2006); Oldson et al. (2003); Layton (2010)), the short-looped model explicitly

computes tubular fluid pressure, flow rate, and chloride concentration along the

proximal tubule and descending limb. To describe the water reabsorption along

those segments, the transmural water flux was prescribed such that the „1/3 and

„7/30 of the SNGFR reach the descending limb and the loop bend, respectively,

which are quantitatively consistent with experimental measurements (Young and

Marsh (1981)). Similar to TAL model, tubular wall compliance was also included

to describe more realistic representation of the short-looped nephron. Given this

whole-loop model formulation, we identified parameter boundaries that separate the

dynamic behaviors of TGF system. Based on the bifurcation diagrams, we also

investigated the effects of LCO on the regulatory ability of the TGF system.

The present short-looped model predicts TGF-mediated oscillations at frequen-

cies that are largely consistent with in vivo observations. Experimental recordings in

rats have shown that nephron flow and related variables may exhibit regular TGF-

mediated oscillations with a frequency of„30–40 mHz (Holstein-Rathlou and Leyssac

(1986); Holstein-Rathlou (1987); Holstein-Rathlou and Marsh (1989)). Given physi-

ologically relevant parameters, the model can predict oscillations with a fundamental

frequency of 37.7 mHz (Fig. 3.8X). It is also noteworthy that with higher gain and

shorter feedback delay values, the model predicts oscillations at much higher frequen-
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cies (first and second harmonics), as high as „150 mHz (Fig. 3.8Z), which have not

been observed experimentally. Even if the lower tubular compliance than one-fourth

of the base-case compliance (see Fig. 3.7B) is applied to the model, oscillations at

high frequencies are still predicted, but with TGF gains ą„6 (with delays ă„2.5 s),

which are higher than the gain value of „3.5 measured experimentally in normoten-

sive rats (results not shown). Thus, the emergence of the high-frequency LCO may

be, in part, attributable to tubular compliance used in the present study (see below),

which is likely higher than in situ compliance (Leyssac and Baumbach (1983)).

Numerical simulations of the short-looped model equations also indicate that

the dynamic regime supporting the steady-state behavior becomes smaller when the

(increased) tubular compliance is introduced to the system, as demonstrated in TAL-

model results. Although ad hoc choice of the reduction factor (1{5) in the tubular

compliance was made due to the poorly-characterized in situ compliance, the model

predictions are consistent with previous results by Layton (2010) and TAL model

herein that the increased compliance in tubular walls further reduces the stability of

the TGF system (see Fig. 3.7).

A comparison of the dynamic behaviors, guided by their respective bifurcation

curves, between the TAL and short-looped models, demonstrates that the explicit

representation of the descending portions along the loop of Henle reduces the stability

of the TGF system (see Fig. 3.9). Moreover, loop-model results support an obser-

vation previously shown in TAL model that the spatial dependence of TAL physical

and transport parameters can be an important bifurcation parameter. For example,

because the TAL has a smaller radius near the loop bend as shown in Fig. 3.6B, the

model predicts oscillatory solutions at zero TGF delay and TGF gains ą 3.8, a result

that is consistent with TAL-model study (see Fig. 3.7A for loop model and Fig. 3.3

for TAL model).

Incorporating the detailed dynamics along the entire loop of Henle, we inves-
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tigated the effects of LCO generated by transient flow perturbations on the TGF

regulatory functions of distal fluid and sodium delivery. To assess physiologically

realistic effects of LCO, we specified the base-case feedback delay and gain near

physiologic parameter values based on experimental measurements. Casellas and

Navar (1984) estimated the average TGF response to be „4 s in normotensive rats.

Also, the experimental studies of TGF mechanism in normotensive rats with open-

loop (Briggs et al. (1984)) and closed-loop approaches (Knepper et al. (1977); Moore

and Mason (1983)) showed feedback gain value of 1.5–3.3. A number of microperfu-

sion studies have further demonstrated that the feedback responses in hypertensive

rats are enhanced compared to those in normal rats. In particular, the parameter

estimation study by Ditlevsen et al. (2007) reported a gain value of „ 8.3 for hyper-

tensive rats, which exceeds most of previous gain estimates in normal rats. Based

on these observation, we used τ “ 3.5 s and γ “ 5 which likely lie in physiologic

parameter ranges for normal rats.

With these base-case parameter values, the model predicts that the onset of

LCO, as a consequence of transient pressure perturbations, results in the increased

time-averaged distal NaCl delivery while distal fluid delivery is not much affected

(see Fig. 3.10A). In addition, high-frequency LCO (Fig. 3.11A) or high mean TAL

flow rate (Fig. 3.12A) reduces the degree of increased distal NaCl delivery. The

waveform distortions, specifically, in MD chloride concentration (see Figs. 3.10C and

D) suggest that the increased time-averaged distal NaCl delivery, which results in

enhanced sodium excretion, can be attributed to the nonlinear signal transduction

process in the TGF loop, as previously demonstrated in Refs. Layton et al. (1997a,

2012a,b).

Another important contribution of loop-model study is the investigation of the

effect of sustained pressure perturbations on the resulting TGF-mediated dynamics.

Our model results show that the distal fluid as well as chloride delivery are markedly
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increased, even compared to the transient perturbations, in the presence of sustained

perturbations, which may further limit TGF autoregulatory functions (Layton et al.

(2000); Oldson et al. (2003)). Also, in contrast to the case of transient perturbations,

in which the time-averaged chloride delivery monotonically rises with increasing feed-

back gain values, the response of distal chloride delivery to an increased amplitude of

the sustained perturbations exhibits noticeably non-monotonic. The major contribu-

tion to such non-monotonic increase is the suppression of LCO when the sufficiently

large perturbations are applied. Even though distal chloride delivery continues to rise

after the suppression of LCO, its deviations from the steady-state remain relatively

small compared to those obtained in the presence of LCO (see Fig. 3.13A, dotted line

which is computed via extrapolation). The reduced deviations after the suppression

of LCO at (perhaps unphysiologically) large sustained perturbations indicate that

the TGF autoregulation becomes enhanced in response to the excessive variations

in GFR. This enhanced regulation suggests that the kidney can maintain the GFR

near an appropriate range despite abrupt rises (or drops) over long time periods in

arterial blood pressure and, thus, operate its proper regulatory functions.

Oldson et al. (2003) also investigated the effect of TGF adaptation or resetting to

sustained flow perturbations on the stability of the TGF-mediated dynamics. They

identified the critical sensitivity curve, the boundary between stable steady-state

flow and stable oscillatory flow, as functions of flow perturbations and the feedback

sensitivity that corresponds to the first derivative appeared in (3.95) (Oldson et al.

(2003)). They then assessed how the sensitivity curve is affected by the presence

of sustained flow perturbations (or changes in extracellular fluid volume). Model

results indicate that even though LCO is suppressed due to sufficiently large sustained

perturbations, it can be reestablished through resetting the sensitivity curve, further

reducing the ability of TGF regulation of distal fluid and NaCl delivery. Thus,

TGF resetting may enhance the time-averaged distal NaCl delivery, which appears
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to be opposite to the results of the present study, as well illustrated by the non-

monotonicity of the responses to sustained perturbations in Fig. 3.13.

Coupled-nephron model

A series of experimental data in SHR have shown that TGF-mediated pressure in

the nephrons’ proximal tubule exhibits irregular oscillations with a high degree of

spectral density (Holstein-Rathlou and Leyssac (1986, 1987); Yip et al. (1991)). To

study the relevant mechanisms that may result in those complex behaviors, it has

been shown that spectral complexity may arise from a number of factors, such as the

combined action of bifurcations (Layton et al. (2009)) or internephron coupling be-

tween neighboring nephrons (Layton et al. (2006, 2011)). Nevertheless, the previous

coupled-TGF models were formulated primarily based on the previous (uncoupled)

TAL model (Layton et al. (1991); Layton (2010)); among all tubule segments, only

the TAL was explicitly represented.

To help elucidate the underlying mechanisms of irregular tubular pressure oscilla-

tions using the more inclusive TGF-coupled model, we have developed a mathemati-

cal model of the coupled-TGF system based on our short-looped model formulation.

As in the TAL model, we derived the characteristic equation (Eq. (3.124)) for two

coupled nephrons by means of linearization to identify the parameter regions that

correspond to qualitatively different dynamic behaviors. Results of the bifurcation

analysis were also validated by numerical solution of the full model equations.

In contrast to previous modeling studies for coupled-TGF system (Pitman et al.

(2004); Kesseler (2004); Layton et al. (2009, 2011)), our coupled-nephron model in-

cludes an explicit representation of the entire short loop of Henle in each nephron.

As a result, even for the uncoupled system, the steady-state region in the coupled-

nephron model becomes smaller than in the uncoupled TAL-only model (compare

Fig. 3.3D in TAL model with Fig. 3.16A in coupled-nephron model). This result
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supports a finding in the short-looped model that the explicit representation of the

proximal tubule and descending limb reduces the stability of the TGF system. Also,

the previous observation of TAL model that the spatial dependence of TAL pa-

rameters is an important bifurcation parameter for the emergence of LCO solutions

was similarly observed. This can be seen by the γ-axis crossings of the root loci in

Fig. 3.16, which are a result of the spatial inhomogeneous tubular radius along the

TAL as shown in Fig. 3.6B.

Our main goal of the coupled-nephron study is to investigate the impact of cou-

pling on the dynamics of coupled-TGF systems. Results of bifurcation analysis of

the characteristic equation show that coupling increases the size of the regions that

support oscillatory solutions, a result that is consistent with previous coupled-TGF

models by Pitman et al. (2004); Layton et al. (2006, 2009, 2011). This finding can

be seen by comparing the model behaviors of the uncoupled (panel A) and coupled

(panel B) systems in Fig. 3.16. The steady-state region indicated by ‘ρn ă 0’ is de-

creased in size by internephron coupling. In addition, coupling significantly increases

the sizes of parameter regions where ρ3 ą 0 or ρ4 ą 0, and it increases the sizes of

regions supporting the multistable LCO with more than one positive ρn. Moreover,

the increased tendency for coupled TGF system to exhibit oscillatory solutions is

more marked in the present model than other coupled-TGF models with the TAL-

only representation (e.g,. compare Fig. 2B in Layton et al. (2011) with Fig. 3.16B in

the coupled-nephron model).

Based on information provided by bifurcation analysis, we also identified a set of

parameters for two coupled nephrons in which irregular oscillations in nephron flows

and related variables emerge; see Figs. 3.20 and 3.21. Indeed, model results suggest

that a large class of parameter combinations can produce irregular oscillations be-

cause of the significantly increased size of parameter regions that support multistable

LCO (see Figs. 3.16 and 3.19). The increased tendency for the present model to ex-
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hibit irregular oscillatory solutions thus supports a role of coupling for the emergence

of irregular oscillations in SHR, as previously discussed in Refs. (Layton et al. (2009,

2011)).

5.2 Significance of Our Findings

In most of previous TGF models with TAL-only representation (Layton et al. (1991);

Pitman et al. (1993); Layton et al. (1995, 1997a,b); Layton (2010)), TAL physical and

transport properties were assumed to be spatially homogeneous. Our TAL model

extended those models to explicitly include two types of spatial inhomogeneity in

TAL radius and NaCl transport rate, and used the resulting model to study the

impacts of those inhomogeneities on the TGF-mediated dynamics. We found that

nonzero feedback delay is not necessary for the emergence of LCO, and the spatial

dependence of TAL radius and NaCl transport rate can be an important bifurcation

parameter in determining the stability of TGF system. This new finding, which has

not been previously demonstrated in other modeling studies, is confirmed by the

results of our short-looped nephron model (see below).

Compared to the previous TAL model (Layton (2010)), the present model, specif-

ically, CIRT case appears to be less stable in that LCO is attainable at a short (or

even zero) feedback delay with sufficiently high gain values (compare Fig. 2B1 in

Layton (2010) with Fig. 3.3D in our TAL model) due to the inclusion of TAL spatial

inhomogeneity. Except those parameter regions, however, the primary bifurcation

locus that separates the dynamic state of solution behaviors from the steady state

into oscillations remains nearly same as that of TAL model in Layton (2010). This

comparison suggests that if the TGF system lies in the parameter regions where the

feedback delay is short and feedback gain is relatively high, TGF-mediated dynamic

behaviors are significantly affected by the TAL physical and transport properties.

Moreover, model results show that the introduction of TAL wall compliance in-
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creases the tendency of the TGF system to oscillate, which is consistent with the

previous result by Layton (2010).

Budu-Grajdeanu et al. (2007) previously studied the impact of three types of

TAL spatial inhomogeneities, NaCl permeability, NaCl active transport, and TAL

radius, on the nonlinear transduction process along the TAL. Although their model

incorporated the effect of tubular inhomogeneity similar to our TAL model, TAL was

assumed to be rigid and the TGF response was not explicitly represented (i.e., open-

loop) in contrast to the present model. Despite these assumptions, Budu-Grajdeanu

et al. (2007) found that the introduction of spatial inhomogeneities increases the

degree of waveform distortions in MD chloride concentration. Based on this observa-

tion, they hypothesized that the inclusion of the spatial dependence of TAL physical

and transport properties in a model of TGF system would introduce more complex

TGF dynamics, e.g. the emergence of parameter regimes supporting high-frequency

or multistable LCO, which is supported by the results of the present TAL-model

study.

Pitman and coworkers (Layton et al. (1991)) developed the TAL model with rigid

tubule and zero diffusion permeability (i.e., κ “ 0 in Eq. (2.3)) for analytic simplicity

unlike our TAL model. As a result, the root curves of the characteristic equation

do not cross each other, whereas those for all considered model cases in TAL model

do, as can be shown by comparing Fig. 4 in Layton et al. (1991) and Fig. 3.2 in

TAL model herein. Such crossings, which can give rise to new parameter regimes

where model solutions can exhibit multiple stable dynamic modes, i.e., multistability

(Layton et al. (2006)), suggest that TAL backleak permeability can be an important

bifurcation parameter, as previously discussed in Refs. Layton et al. (2006, 2009).

In our next study, we extended the TAL model to include an entire short-looped

nephron, in which the impact of the explicit representation of the proximal tubule

and descending limb on the stability of the TGF system was directly assessed in
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comparison to the TAL-only model. Based on model results, we concluded that the

introduction of the descending portions of nephron tubule reduces the stability of the

feedback loop, which has not been demonstrated in the previous modeling studies.

Also, γ-axis crossings of the bifurcation curves in the bifurcation diagram support

the previous results of the TAL model that LCO becomes attainable at zero TGF

delay with sufficiently high gain values if the spatial inhomogeneity of TAL radius

is introduced. Furthermore, the previous finding of the TAL model that tubular

wall compliance is another factor that affects the stability of the TGF system was

confirmed by the short-looped model.

Based on the information provided by the bifurcation diagram, we investigated

the effect of LCO on the distal fluid and NaCl delivery. Specifically, we considered

two different TGF delay values for a clear comparison of the impact of LCO frequency

on the TGF regulatory ability. For the TGF delay of 3.5 s, LCO does not undergo

the frequency change as the gain value increases, whereas, for the delay of 3 s, LCO

does from the fundamental (f1) to the first harmonic (f2) frequencies (see Fig. 3.7A).

The change in LCO frequency causes a reduction in the degree of the increased time-

averaged NaCl delivery, compared to the case of no frequency change. This finding,

which was not previously shown in the similar TGF-regulation study by Layton

et al. (2000), indicates that high-frequency LCO reduces the effect of LCO on distal

NaCl delivery, resulting in an enhanced TGF autoregulatory ability compared to

low-frequency LCO.

Using the whole-loop formulation, we also conducted a comparison study for the

effect of mean TAL flow on TGF waveform distortion and distal NaCl delivery. By

adjusting the scale of water reabsorption rate along the proximal tubule and water-

permeable descending limb, and additional parameter values to yield different mean

TAL flow while keeping the steady-state MD chloride concentration nearly same,

we characterized how mean TAL flow affects distal NaCl delivery. The model pre-
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dicts that a low mean TAL flow rate yields larger amplitudes and less sinusoidal of

TGF-mediated LCO, resulting in the increased time-averaged distal NaCl delivery

compared to a high TAL flow rate. This prediction can be attributed to a limited

ability to lower MD chloride concentration when flow decreases, as the NaCl re-

absorption approaches the static-head limit where the active NaCl reabsorption and

passive backleak balance each other (Layton et al. (2012a,b)). Moreover, our findings

suggest that the transport dynamics along the proximal tubule and descending limb,

which directly influence the mean TAL flow rate, can be an important factor that

impacts the TGF regulation of distal NaCl delivery. Although Layton et al. (2000)

did not conduct a sensitivity-study of mean TAL flow due to the lack of the explicit

representation of the descending segments of model tubule, similar results could have

been obtained by applying appropriate transport parameters to yield different mean

TAL flow and consistent steady-state MD chloride concentration in their rigid-tube

TAL model.

The previous coupled-TGF study by Layton et al. (2011) considered a system of

two nephrons having compliant TAL walls. Our coupled-nephron model extended

that model to include the explicit representation of the proximal tubule and descend-

ing limb in each nephron, and investigated the effect of internephron coupling on the

stability of coupled-TGF system. Model results indicate that the tendency for cou-

pled system to exhibit oscillatory behaviors is noticeably increased compared to the

previous model (Layton et al. (2011)). This observation could have been inferred

from the results by our short-looped model, demonstrating that the explicit repre-

sentation of the entire short-looped nephron decreases the stability of TGF system

in a (uncoupled) nephron.

The coupled-nephron models developed by Bayram and coworkers (Bayram (2006,

2012); Bayram et al. (2009)) were based on the much simpler integral equation (Pit-

man et al. (2002)) with zero diffusion permeability. Their results are similar to ours
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in that both predict that the region supporting oscillatory solutions increases with

internephron coupling (Bayram et al. (2009); Bayram (2012)). However, unlike the

present model, which can predict irregular oscillations (see Fig. 3.20), the models by

Bayram and coworkers predict only regular oscillations.

A series of previous coupled-nephron models by Holstein-Ratholu and coworkers

(Holstein-Rathlou et al. (2001); Andersen et al. (2002); Sosnovtseva et al. (2003);

Marsh et al. (2005b,a); Sosnovtseva et al. (2003); Marsh et al. (2007, 2013)), used the

detailed representation of the microvasculature including the structural components

of AA, glomerulus, and EA. In contrast, our model represents the coupling effect

by using phenomenological relations while neglecting those components. Instead,

our model uses an explicit representation of the time dependent dynamic behaviors

along the tubular system based on our short-looped model. Regardless of the major

difference in model’s emphasis, our model results support their findings that coupling

can give rise to complex dynamic behaviors, e.g., irregular oscillations in nephron

tubular pressure similar to those found in SHR. However, due to the lack of explicit

implementation of hemodynamic coupling, our model cannot predict out-of-phase

synchronization among coupled nephrons, whereas the models by Holstein-Ratholu

and coworkers (e.g., Andersen et al. (2002); Sosnovtseva et al. (2003)) exhibit a

variety of qualitatively different coupled-nephron behaviors, including in-phase, anti-

phase (out-of-phase), and even chaotic phase synchronization as well as irregular

oscillations.

Furthermore, the models by Holstein-Rathlou and coworkers included not only a

detailed representation of AA dynamics in response to TGF activation, but also the

myogenic response of AA interacting with TGF mechanism (Marsh et al. (2005a,b,

2013)), which were not present in the present model formulation. Hence, there are

substantial differences in the origin of the complex behaviors between their and our

models; in their models those complexities are originated primarily from microvas-
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culature dynamics, whereas in our model they are from the nonlinear dynamics of

tubular transport processes. Therefore, both model results are needed to provide

more comprehensive explanation of the complex dynamic phenomena observed in

SHR.

5.3 Model Limitations and Future Extensions

In all three TGF models, we used the downstream resistance tube after the terminal

part of TAL instead of a realistic representation of the distal tubule and collecting sys-

tem. This assumption makes it possible to avoid prescribing the poorly-characterized

tubular fluid pressure at the MD. In addition, no water was assumed to be reabsorbed

along the distal nephron, specifically, the segments after the MD. In vivo, however,

a significant amount of water is reabsorbed along those segments, affecting the chlo-

ride concentration in surrounding interstitial areas and, thus, the tubular system.

Although qualitative dynamic model behaviors are nearly insensitive to variations in

the downstream resistance tube, as shown in our sensitivity study (Fig. 3.15), some

quantitative aspects of the system behaviors such as the time-averaged distal NaCl

delivery may be changed, affecting the TGF regulatory functions. Thus, to better

assess the role of in vivo dynamics of the distal nephron in TGF mediation, one can

further extend our short-looped nephron model to include physiologically more re-

alistic representation of the distal nephron, which can be guided by a mathematical

model in Ref. Moss and Layton (2014).

Another limitation in our short-looped model is the simplified PCT representa-

tion. In the rat kidney, PCT is rather convoluted, not straight as shown in Fig. 2.3.

In fact, the total length of PCT is measured to be „5 mm (Corman et al. (1981)),

which is same as the length of the whole descending portions of short-looped nephron

used in our study. In addition, due to its physical properties, the transport processes

and fluid flow rate along the PCT described in the present formulation may sig-
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nificantly differ from in vivo dynamics. Modeling studies by Layton et al. (2006,

2009) previously showed that the longer length of the tubule increases the tendency

of the TGF system to oscillate. Also, the present loop-model results indicated that

the explicit representation of the proximal tubule reduces the stability of the TGF

system. Taken together, it can be inferred that the TGF loop with an inclusion

of a realistic (longer) PCT segment may exhibit the reduced stability. However, to

thoroughly understand the TGF mediation along the tubular system, the roles of the

detailed PCT dynamics in the context of renal autoregulation are worthy of further

investigation.

Another direction of future extension is to introduce the spatial inhomogeneity of

transport parameters to short-looped model. Similar to TAL model, the steady-state

tubular radius of our short-looped model exhibits spatially inhomogenous, specifi-

cally, along the TAL. As a result, LCO is attainable even at zero TGF delay and

sufficiently high gain values, consistent with TAL-model results. However, NaCl max-

imum transport rate was assumed to be spatial homogeneous along the PST, PCT,

DL, and TAL, respectively. The previous modeling results by Budu-Grajdeanu et al.

(2007) indicated that the introduction of TAL spatial inhomogeneities results in the

increased degree of waveform distortions in MD chloride concentration. Based on

this observation, it is worthy to further study the impact of spatially inhomogeneous

NaCl transport rate and NaCl permeability along the whole tubular system on TGF

autoregulation, as similarly conducted in the present short-looped model.

The loop-model equations that describe the detailed transport dynamics in a sin-

gle nephron are formulated based on the Stokes equation. To avoid complication for

analytic study and make numerical simulation more tractable, the three-dimensional

equation was simplified under model assumptions such as no axial or radial intratubu-

lar diffusion, as previously justified in Ref. Layton (2002). Also, Poiseuille flow to

represent the tubular fluid pressure (Eq. (2.1)) was based on the assumption that
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the luminal radius remains almost constant that is much smaller relative to its to-

tal length. However, when the tubular wall compliance is introduced, the luminal

radius is no longer constant, but rather changes depending on transmural pressure

difference. Even though the reduced factor (1/5) was applied to the isolated tubule

measurements and the resulting compliance has small magnitude relative to other

model parameters, specifying the compliance while keeping Poiseuille model formula-

tion may introduce some discrepancy in model results. To alleviate that discrepancy,

the TGF system with compliant tubular walls can be further extended to be mod-

eled by the more realistic formulation. Specifically, because the model tubule has

sufficiently low Reynolds number of 10´2 order of magnitude, i.e., „ 2.6ˆ 10´2 ! 1,

the Stokes equation can be alternatively employed.

Despite their limitations, our TAL- and loop-TGF models can serve as an essen-

tial component in models of integrated renal hemodynamic regulation. For instance,

our models could be productively combined with a model of glomerular filtration

(e.g., Ref. Deen et al. (1972)) and a model of the afferent arteriole (e.g., Ref. Sgouralis

and Layton (2012)) to study the interactions between the myogenic and TGF re-

sponses in the context of renal autoregulation, similar to Refs. Marsh et al. (2005b);

Sgouralis and Layton (2013). Also, our short-looped model can be combined to a

whole-kidney model by Moss and Layton (2014), in which the key factors that derive

pressure natriuresis were investigated, to study the urine concentration mechanism

as well as renal autoregulation.

In our coupled-nephron study, we represented internephron coupling using phe-

nomenological relations. Specifically, we assumed the coupling is mainly from the

propagation of TGF-induced electrotonic signal along the pre-glomerular vascula-

ture. This assumption was based on micropuncture experiments (Holstein-Rathlou

(1987); Källskog and Marsh (1990); Yip et al. (1992)) which show that TGF-induced

constriction in an AA can cause a simultaneous but smaller constriction in a second
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AA that are nearby from a common CRA. The interactions between nearby nephrons

through their TGF systems then directly influence the inflow pressures at the prox-

imal tubule, which were incorporated in the formulation of the TGF response in

Eq. (2.19).

Another limitation of the present model formulation is the lack of hemodynamic

coupling effect. In the presence of hemodynamic coupling while neglecting the vas-

cular coupling, the increased vascular resistance due to the constriction of AA will

increase blood flow into nearby AA, resulting in the increased tubular fluid flow rate

of nearby nephron. Note that this effect is opposite to that of vascular coupling. By

incorporating hemodynamic as well as vascular coupling along the pre-glomerular

vasculature, we can better understand possible factors that generate in-phase and

out-of-phase synchronization of coupled nephrons, and their implications for phys-

iologic functions, as similarly studied in (Holstein-Rathlou et al. (2001); Andersen

et al. (2002); Sosnovtseva et al. (2003); Marsh et al. (2005a,b, 2007, 2013)).

In the present coupled-TGF model, we considered only two nephrons. However,

TGF coupling may extend to many nephrons (vide infra) as in (Marsh et al. (2007,

2013)). The systematic investigation of a model with many coupled nephrons, rela-

tive to two, would be much more complicated because it would involve finding the

root loci of the characteristic equation in the higher-dimensional parameter space

and performing a large number of additional numerical simulations.

Despite its limitations, the present coupled-TGF model can be used as a key com-

ponent in studying important autoregulatory mechanisms in the kidney. By consid-

ering hemodynamic coupling in addition to vascular coupling as in Refs. (Holstein-

Rathlou et al. (2001); Andersen et al. (2002); Sosnovtseva et al. (2003)), one can

investigate the impacts of their interactions on the dynamics of the coupled TGF

system. Moreover, applying a similar approach in Ref. Marsh et al. (2013), which

considered the interactions between TGF and the myogenic response among multi-
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nephrons, one can ultimately study the renal regulatory functions in a large-scale

system.

5.4 Stochastic Model

Summary and major contribution

We have studied the influence of noise interacting with delays on the stability of the

feedback dynamics. We first considered the stochastic system perturbed via noise

at the boundary. By means of bifurcation analysis and the contraction mapping

theory, we showed the stochastic system admits the statistically stationary solution

for sufficiently small τ , even within the presence of noise at the boundary conditions.

Similar to the deterministic system, the stochastic system exhibits two qualitatively

different solution behaviors, converging towards its stationary solution or evolving to

sustained oscillations, depending on feedback delay term τ . These analytic results,

based on the proof from the deterministic system and the “pullback attractor” ar-

gument, were validated by numerical simulations of the nonlinear stochastic model

equations.

In our next study, we have conducted the sensitivity-analysis of the stochastic

delayed PDE to relatively small additive noise, which represents unknown external

perturbations to the system. To better understand the effect of the noise on solu-

tion behaviors over long time periods, we used multiscale analysis for a linearized

transport equation, separating deterministic and stochastic effects in fast and slow

time scales, respectively. The case where the system is in the subcritical region,

but sufficiently close to the critical delay, was particularly considered to assess the

sensitivity of the stochastic system to the interaction between delays and noise. We

derived the stochastic equations for the envelope of deterministic oscillations on slow

time scale, which provide much more efficient way to analyze the solution behaviors

compared to solving the original stochastic PDE with delays.
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One of the biggest challenges in studying the behavior of dynamical systems

with delays is that the systems are infinite dimensional, which makes the analytic

approach significantly difficult. To reduce this difficulty and obtain more compre-

hensive understanding of the emergence of sustained oscillations due to noise, the

multiscale method was employed by projecting the stochastic system onto the basis

of the deterministic system at a bifurcation point, i.e., resonant modes, as widely

used in dynamical systems without noise (Gopalsamy (1992); Hale and Verduyn-

Lunel (1993)). This projection has been also introduced in the analysis of stochastic

systems without delays (Yu et al. (2006); Kuske et al. (2007)). Also, to determine

the right scale of the diffusion coefficients in amplitude equations, the noise term

was written as a sum of resonant modes on the fast time scale with slowly varying

stochastic coefficients in the method of multiscale analysis. The form is given by

using two independent Brownian motions (see Eq. (4.84)).

Multiscale approach implicitly assumes that the sustained oscillations arise from

competition between the deterministic dynamics, represented by the drift terms, and

the stochastic dynamics, by the diffusion terms (Kuske (2003)). Under this assump-

tion, we specifically look for solutions that are written in terms of the deterministic

oscillations on the fast scale and the stochastic amplitudes on the slow scale. For this

reason, if the noise becomes large enough to dominate the overall dynamics of the

system, the multiscale approximation given in (4.66) is only valid for a short time

period. Conversely, if the fluctuations on the fast scale becomes dominate because

of τ ą τc (e.g., Fig. 4.3), the separation of the leading order approximation into two

different time scales is not reasonable. Moreover, if the diffusion coefficient in ampli-

tude equations has large scale relative to the proximity parameter ε, which renders

the noise to dominate the dynamics on the slow time scale, the multiscale approxi-

mation is no longer valid. Given these consideration, to apply the multiscale analysis

the system is required to have the noise with relatively small scale, e.g., δ ! 1 and
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0 ă ε ! 1 while keeping δ{ε ! 1. In fact, numerical simulations indicate that solution

behaviors obtained by the multiscale approximation is in good agreement with those

by the original equation up to δ „ ε, as previously discussed in Ref. (Klosek and

Kuske (2005)).

Significance of model results

In the previous studies by Kuske (2005); Klosek and Kuske (2005), the multiplicative

noise for linear case and the additive noise for nonlinear case, in particular, logistic

equation, were also considered, in which reduced amplitude equations for each case

were analogously derived. Using the same ansatz and assumptions on δ and ε but

with additional steps, they showed that those reduced equations provide a good

approximation of the real solution behaviors over long times. Specifically, for the

case of nonlinear equation with additive noise, the multiscale method can be used in

both the sub- and super-critical cases and the results were validated by computing

the respective invariant density functions.

Despite its usefulness for understanding of long-time dynamics, their model was

formulated as the first-order ODE with delays, whereas ours is PDE which signif-

icantly complicates the analysis. Moreover, because their model equation was not

specifically related to a biological system with delays, the model results were not in-

terpreted in the context of the feedback mechanism. In contrast, our stochastic model

was motivated by the TGF system in the kidney to better understand a variety of

qualitatively different phenomena, e.g., sustained (regular or irregular) oscillations,

previously found in experimental data. Indeed, our results suggest that sustained

oscillations in nephron flow may arise from the introduction of external perturba-

tions, even when the system lies in the steady-state regime. This finding supports

the results of previous modeling study by Ditlevsen et al. (2005, 2007), in which the

effect of TGF gain that was modeled by a stochastic process on the TGF-mediated
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dynamics was investigated, in that regular or irregular oscillations can emerge as a

result of stochastic perturbations to the TGF system.

Although the studies by Ditlevsen et al. (2005, 2007) similarly provided a stochas-

tic analysis of the stability of the TGF system, the underlying assumptions on noise

are significantly different from those of our model. We assumed that noise directly

influences the TAL transport process, thus perturbing the MD chloride concentra-

tion. Also, the bifurcation parameter itself, specifically, the feedback delay of the

system is not changed by the effect of noise. In contrast, the models by Ditlevsen

et al. (2005, 2007) assumed that one of the key parameters, the feedback gain, is di-

rectly perturbed via noise, modifying the intrinsic properties of the TGF system such

as the dynamic state of model behaviors and consequently resulting in qualitatively

different behaviors from those before the perturbation occurs. Due to the difference

in the subjects that noise acts on, each model-results provide different implications.

First, the models by Ditlevsen et al. (2005, 2007) reproduced irregular oscillatory

behaviors as similarly observed in the experimental data of SHR. However, the mag-

nitude of perturbations present in (stochastically varying) TGF gain appears to be

perhaps unphysiologically large (see the bottom image of Fig. 2 in Ditlevsen et al.

(2005)), although the estimated value can be considered as the combined effect of all

possible factors that determine the feedback effectiveness or gain. Also, unlike our

stochastic study, the critical value of the feedback gain in the absence of noise was

not explicitly identified, which makes it difficult to directly assess the sensitivity of

the feedback system, i.e., the generation of sustained oscillations, to external noise.

Nonetheless, their results implied that nephron’s flow can exhibit irregular oscilla-

tions with time-varying amplitudes and periods, which significantly contribute to the

spectral complexity, if intrinsic noise is introduced to a single parameter, feedback

gain, of the TGF system.

In contrast, our goal of the stochastic study was to show how noise can induce
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oscillations, via stochastic resonance, that would not appear in the deterministic

system. To capture the interaction of noise with the delayed system, we considered

relatively small additive noise that represents external perturbations but does not

alter the TGF bifurcation parameters such as feedback gain and delay. We found

that if the delay of the system is sufficiently close to its critical value so that the

proximity between those two values is small relative to noise, sustained oscillations

with slowly varying amplitude can emerge as a result of interactions with noise.

This new observation has important physiological implication in that the interaction

of small noise with the steady-state TGF dynamics can generate noise-induced os-

cillations, which may limit the regulatory ability of TGF system as demonstrated

by the results of the present short-looped model. Although LCO predicted by our

model exhibits constant period unlike that by the models (Ditlevsen et al. (2005)),

its amplitude varies in slow time scale, which is governed by a stochastic process

(see the amplitude equations in Eq. (4.88)). This time-varying amplitude with con-

stant period may not be sufficient to explain the emergence of irregular oscillations

with a high degree of spectral complexity as found in nephron’s flow of SHR, but it

can, in part, contribute to the complexities of model behaviors through the interac-

tions with fluctuations present in another parameter such as the TGF gain. Thus,

our stochastic study and the studies by Ditlevsen et al. (2005) are complementary

in that the irregular oscillations can arise from the combined effects of noise that

directly influences both a key bifurcation parameter and tubular transport process.

Model limitations and future extensions

For analytic simplicity, we made an assumption on zero diffusion permeability (i.e., κ “

0) to derive the main equation (4.1). However, experimental evidence indicated that

the TAL has nonzero NaCl permeability (Mason et al. (1979); Wittner et al. (1988)),

which may contribute to the complexity in model behaviors as previously shown in
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(Layton et al. (2006); Layton (2010)). Thus, the case of nonzero diffusion perme-

ability needs to be considered to better understand the impact of that parameter on

the resulting TGF dynamics. Although this inhomogeneous term on the right-side of

Eq. (4.1) would make rigorous analysis, e.g., finding explicit formula of the solutions,

more difficult, model results can be used to compare to many other TAL models with

nonzero permeability.

In the present multiscale analysis, we only considered the additive (constant)

noise for linear system. However, because the solution is spatially dependent, the

noise that is a function of x, i.e., δpxq, may be a more reasonable representation of

external perturbations. Also, the noise effect can be described by the multiplicative

noise, assuming that the scale of perturbations, in part, depends on the current

value of the solution. Even though, to our knowledge, no analytic studies for both

noise cases in SPDE with delays have been yet accomplished owing to difficulties in

rigorous analysis of model equations, we can consider a special case where δpxq is a

periodic function of x.

Our stochastic model assumed that the feedback delay is constant in time. How-

ever, in the real TGF system, the delay is likely to change in time or to be different in

nephron-to-nephron. Moreover, the interaction of the delays with noise may induce

physiologically undesirable oscillatory behaviors as shown in Fig. 4.4. For instance, as

demonstrated in our short-looped model, noise-induced LCO may significantly limit

the ability of TGF autoregulation of distal NaCl delivery. Specifically, if the system

is subject to excessive perturbations over long time periods, the time-averaged distal

fluid and NaCl delivery remain to be increased, which may cause the excretion of sub-

stantial amounts of water and NaCl and thus fail to keep a balance of whole-organism

water volume. It is, thus, essential to thoroughly examine the role of (determinis-

tically or stochastically) time-dependent delays interacting with external noise on

the stability of the systems for the realistic assessment of the mechanisms responsi-
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ble for TGF autoregulation. By incorporating the effect of time-varying delays into

our stochastic model, as in Refs. Appleby and Kelly (2004); Appleby and Buckwar

(2005), the interaction of stochasticity with the delays can be further investigated to

better understand the renal regulatory functions.
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Henle,” Pflügers Arch, 379, 11–18.

Moore, L. and Mason, J. (1983), “Perturbation analysis of tubuloglomerular feed-
back in hydropenic and hemorrhaged rats,” Am J Physiol (Renal Fluid Electrolyte
Physiol 14), 245, F554–F563.

Moss, R. and Layton, A. (2014), “Dominant factors that govern pressure natriuresis
in diuresis and antidiuresis: a mathematical model,” Am J Physiol Renal Physiol,
in press.

184



Nyengaard, J. and Bendtsen, T. (1992), “Glomerular number and size in relation to
age, kidney weight, and body surface in normal man,” Anat Rec, 232, 194–201.

Oldson, D., Layton, H., and Moore, L. (2003), “Effect of sustained flow perturbations
on stability and compensation of tubuloglomerular feedback,” Am J Physiol Renal
Physiol, 285, F972–F989.

Persson, A., abd P Westerlund, Z. S., Greger, R., Schlatter, E., and Gonzalez, E.
(1991), “Macula densa cell function,” Kidney Int, 39, S3944.

Peti-Peterdi, J., Morishima, S., Bell, P., and Okada, Y. (2002), “Two-photon excita-
tion fluorescence imaging of the living juxtaglomerular apparatus,” Am J Physiol
Renal Physiol, 283, F197–F201.

Pieroux, D., Erneux, T., Gavrielides, A., and Kovanis, V. (2000), “Hopf bifurcation
subject to a large delay in a laser system,” SIAM J Appl Math, 61, 966–982.

Pitman, E. and Layton, H. (1989), “Tubuloglomerular Feedback in a Dynamic
Nephron,” Commun Pure Appl Math, 42, 759–787.

Pitman, E., Layton, H., and Moore, L. (1993), “Dynamic flow in the nephron: filtered
delay in the TGF pathway,” Contemp Math, 114, 317–336.

Pitman, E., Zaritski, R., Moore, L., and Layton, H. (2002), “A reduced model for
nephron flow dyanmics mediated by tubuloglomerular feedback,” in Membrane
Transport and Renal Physiology, The IMA Volumes in Mathematics and Its Ap-
plications, eds. L. HE and W. AM, vol. 129, pp. 345–364, Springer, New York.

Pitman, E., Zaritski, R., Kesseler, K., Moore, L., and Layton, H. (2004), “Feedback-
mediated dynamics in two coupled nephrons,” Bull Math Biol, 66, 1463–1492.

Ren, Y., Garvin, J., Liu, R., and Carretero, O. (2007), “Crosstalk between the con-
necting tubule and the afferent arteriole regulates renal microcirculation,” Kidney
Int, 71, 1116–1121.

Ryu, H. and Layton, A. (2013a), “Effect of tubular inhomogeneities on feedback-
mediated dynamics of a model of a thick ascending limb,” Math Med Biol, 30,
191–212.

Ryu, H. and Layton, A. (2013b), “Feedback-mediated dynamics in a model of coupled
nephrons with compliant short loop of Henle,” AMS Contemporary Mathematics,
Biological Fluid Dynamics: Modeling, Computations, and Applications, in press.

Ryu, H. and Layton, A. (2013c), “Tubular fluid flow and distal NaCl delivery medi-
ated by tubuloglomerular feedback in the rat kidney,” J Math Biol, in press.

185



Sakai, T., Craig, D., Wexler, A., and Marsh, D. (1986), “Fluid waves in renal
tubules,” Biophys J, 50, 805–813.

Schnermann, J. and Briggs, J. (2008), “Function of the juxtaglomerular apparatus:
Control of glomerular hemodynamics and renin secretion,” in Seldin and Giebisch’s
The Kidney: Physiology and Pathophysiology, eds. A. RJ and H. SC, pp. 589–626,
Elsevier Academic Press, Amsterdam; Boston, 4th edn.

Sgouralis, I. and Layton, A. (2012), “Autoregulation and conduction of vasomotor
responses in a mathematical model of the rat afferent arteriole,” Am J Physiol
Renal Physiol, 303, F229–F239.

Sgouralis, I. and Layton, A. (2013), “Theoretical Assessment of Renal Autoregulatory
Mechanisms,” Am J Physiol Renal Physiol, in press.

Siu, K., Sung, B., Cupples, W., Moore, L., and Chon, K. (2009), “Detection of
low-frequency oscillations in renal blood flow,” Am J Physiol Renal Physiol, 297,
F155–F162.

Sosnovtseva, O., Postnov, D., Mosekilde, E., and Holstein-Rathlou, N. (2003), “Syn-
chronization of tubular pressure oscillations in interacting nephrons,” Chaos, Soli-
tons & Fractals, 15, 343–369.

Stephenson, J. (1972), “Concentration of urine in a central core model of the renal
counterflow system,” Kidney Int, 2, 85–94.

van Zanten, H. (2013), An Introduction to Stochastic Processes in Continuous Time,
Lecture notes.

Wade, J., Lee, A., Ecelbarger, C., Mitchell, C., Bradford, A., Terris, J., Kim, G.-H.,
and Knepper, M. (2000), “UT-A2: a 55-kDa urea transporter in thin descending
limb whose abundance is regulated by vasopressin,” Am J Physiol Renal Physiol,
278, F52–F62.

Wagner, A., Holstein-Rathou, N., and Marsh, D. (1997), “Internephron coupling by
conducted vasomotor responses in normotensive and spontaneously hypertensive
rats,” Am J Physiol (Renal Physiol 41), 272, F372–F379.

Weinstein, A. (1986), “An equation for flow in the renal proximal tubule,” Bull Math
Biol, 48, 29–57.

Wittner, M., Stefano, A. D., Wangemann, P., Nitschke, R., Greger, R., Bailly, C.,
Amiel, C., Roinel, N., and de Roufignac, C. (1988), “Differential effects of ADH
on sodium, chloride, potassium, calcium and magnesium transport in cortical and
medullary thick ascending limbs of mouse nephron,” Pflügers Arch., 412, 516–523.
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