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Abstract

Classical asymptotic theory deals with models in which the sample size n goes to

infinity with the number of parameters p being fixed. However, rapid advancement of

technology has empowered today’s scientists to collect a huge number of explanatory

variables to predict a response. Many modern applications in science and engineering

belong to the “big data” regime in which both p and n may be very large. A variety

of genomic applications even have p substantially greater than n. With the advent of

MCMC, Bayesian approaches exploded in popularity. Bayesian inference often allows

easier interpretability than frequentist inference. Therefore, it becomes important

to understand and evaluate Bayesian procedures for “big data” from a frequentist

perspective. In this dissertation, we address a number of questions related to solving

large-scale statistical problems via Bayesian nonparametric methods.

It is well-known that classical estimators can be inconsistent in the high di-

mensional regime without any constraints on the model. Therefore, imposing ad-

ditional low-dimensional structures on the high-dimensional ambient space becomes

inevitable. In the first two chapters of the thesis, we study the prediction perfor-

mance of high-dimensional nonparametric regression from a minimax point of view.

We consider two different low-dimensional constraints: 1. the response depends only

on a small subset of the covariates; 2. the covariates lie on a low dimensional manifold

in the original high dimensional ambient space. We also provide Bayesian nonpara-

metric methods based on Gaussian process priors that are shown to be adaptive to
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unknown smoothness or low-dimensional manifold structure by attaining minimax

convergence rates up to log factors. In chapter 3, we consider high-dimensional clas-

sification problems where all data are of categorical nature. We build a parsimonious

model based on Bayesian tensor factorization for classification while doing inferences

on the important predictors.

It is generally believed that ensemble approaches, which combine multiple algo-

rithms or models, can outperform any single algorithm at machine learning tasks,

such as prediction. In chapter 5, we propose Bayesian convex and linear aggrega-

tion approaches motivated by regression applications. We show that the proposed

approach is minimax optimal when the true data-generating model is a convex or

linear combination of models in the list. Moreover, the method can adapt to sparsity

structure in which certain models should receive zero weights, and the method is

tuning parameter free unlike competitors. More generally, under an M-open view

when the truth falls outside the space of all convex/linear combinations, our theory

suggests that the posterior measure tends to concentrate on the best approximation

of the truth at the minimax rate.

Chapter 6 is devoted to sequential Markov chain Monte Carlo algorithms for

Bayesian on-line learning of big data. The last chapter attempts to justify the use

of posterior distribution to conduct statistical inferences for semiparametric estima-

tion problems (the semiparametric Bernstein von-Mises theorem) from a frequentist

perspective.
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1

Introduction

1.1 Motivation

Classical asymptotic theory deals with models in which the sample size nÑ 8 with

the number of parameters p being fixed. However, rapid advancement of technology

has empowered today’s scientists to collect a huge number of explanatory variables

to predict a response. Many modern applications in science and engineering belong

to the “big data” regime in which both p and n may be very large. In finance, market

data comprises high-frequency measurements of hundreds or thousands of financial

instruments over time, leading to many statistical challenges (Fan et al., 2011). A

variety of genomic applications fall into the high-dimensional statistics paradigm in

which p may even be substantially larger than n. For example, in genome-wide

association studies, hundreds of thousands of single-nucleotide polymorphisms are

potentially relevant genetic markers for studying human diseases.

It is of fundamental importance to study under what assumptions a particular

statistical problem is tractable. For example, it is well known that classical estima-

tors become inconsistent in the regime p " n without any additional constraints on
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the model. Therefore, a variety of studies try to impose some low-dimensional struc-

tures on the high-dimensional ambient space, and quantify performance of different

estimators. For example, in high-dimensional linear regression literature, people tend

to assume the sparsity condition, under which the response only depends on d � opnq
important predictors among a list of p predictors. In matrix completion problems,

the true matrix to be estimated is assumed to be of a low-rank. To judge whether a

statistical problem is well-defined, one way is to study its minimax property, which

quantifies the best worst case performance that an estimator can achieve. Minimax

risks are often related to the size of the model space in terms of metric entropies,

which compete with the statistical power of discriminating the truth from others in

the model space. The statistical power usually depends on the available information

characterized by sample size n. Therefore, high-dimensional statistical problems are

solvable if and only if the size of the model space is compatible with the statistical

power based on a sample of size n. This explains the reason for seeking various

reasonable low-dimensional constraints to restrict high-dimensional problems.

The frequentist literature illustrates the success of applying optimization methods

for large scale problems. Many well-known estimators are constructed via penalized

M-estimation, where a regularizer penalizes the deviation of the parameter from the

low-dimensional structure. An optimal choice for the regularization parameter, which

determines the amount of penalization, typically involves some prior knowledge on

the true data generating model, such as the number of important predictors in high-

dimensional linear regression or the true rank in matrix completion problems. In

practice, regularization parameters are often determined via cross-validation. How-

ever, a main disadvantage of cross-validation is that every time only a subset of

observations are used to fit the model.

In recent years, there has been an emergence of interest in conducting statistical

inference for large scale data based on Bayesian procedures. Unlike the optimization
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focus of usual frequentist methods, typical Bayesian estimators rely on integration.

Performance of Bayesian estimators can be assessed from a frequentist perspective by

viewing the observations as generated from a true underlying distribution. Under this

perspective, it turns out that many Bayesian procedures with properly chosen priors

for large scale problems can accommodate the potential low-dimensional structure

in the data — the estimators can automatically adapt to the unknown sparsity level,

smoothness level or manifold structure and achieve the minimax optimal convergence

rate (van der Vaart and van Zanten, 2009; Rousseau and Mengersen, 2011; Yang

and Dunson, 2013; Castillo and van der Vaart, 2012). Therefore, in contrast to

many frequentist competitors, these Bayesian procedures do not require any prior

knowledge on the truth and are tuning free.

In many applications, the relationship between a response Y and its explanatory

variables X � pX1, ..., Xpq P Rp may be highly nonlinear and include interaction.

It is of practical importance to develop sensible models with mild assumptions on

the relationship between X and Y . This motivates us to treat the structure of this

relationship nonparametrically. One way of constructing a nonparametric model is

to allow a growing number of parameters to accommodate the complexity of the

data. Examples include mixture models with increasing number of components and

nonparametric sieve regression (Geman and Hwang, 1982; Hansen, 2012). Under this

perspective, high-dimensional parametric models such as linear models can also be

treated as nonparametric. Another class of nonparametric models are models whose

parameter space are infinite-dimensional. For example, consider a regression model

Y � fpXq � ε, ε � Np0, σ2q. If the only assumption on the regression function f

is twice differentiable or monotone constraints, then f cannot be characterized by a

finite number of parameters and the resulting regression problem is nonparametric.

Intuitively, such flexible modeling assumptions allow us to learn the structure of f

on a growing resolution scale as more data are collected.
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Although optimization methods are often good at obtaining sensible point esti-

mators, they do not provide a natural way to conduct statistical inferences, such as

uncertainty quantification. In practice people tend to apply resampling techniques,

such as the bootstrap or subsampling, to approximate the sampling distribution of

their estimators. In contrast, fully model-based Bayesian procedures offer a standard

way to doing inferences based on posterior distributions. It is then of fundamental

importance to justify the validity of Bayesian statistical inferences from a frequen-

tist perspective. This justification is especially important for large scale problems

since it provides a guidance on how many observations one needs to collect in order

to achieve certain estimation accuracy. A well-known result for regular parametric

models is given by the Bernstein von-Mises theorem, which states that the posterior

distribution tend to converge in total variation distance to a normal distribution cen-

tered at a Bayesian estimator θ̃ with variance the same as the asymptotic variance

of θ̃. As a result, the coverage of the corresponding Bayesian credible region asymp-

totically coincides with its nominal level. Whether similar frequentist justification

for more complicated Bayesian methods, such as semiparametric/nonparametric or

high-dimensional procedures, can be proved is still an open question.

With the above motivations in mind, we start to introduce the topics considered

in this thesis.

1.2 Research questions and main contributions

Motivated by large scale data, the primary focus of this thesis is on developing

practically efficient Bayesian methodology having strong theoretical guarantees. In

this section, we briefly summarize the central research questions addressed in later

chapters.
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Nonparametric regression in high dimensions

The first research question is concerned with the prediction performance of nonpara-

metric regression in the high-dimensional regime from a minimax point of view. Since

parametric models in reality can seldom capture the exact dependence structure, it

is important to develop sensible regression models

y � fpxq � ε, ε
iid� Np0, σ2q

to predict the response y under mild assumptions on f in the high dimensional setting

where the sample size n is smaller than the dimensionality p of the covariate vector

x � px1, . . . , xpq.
Good statistical methods for large p small n regression should scale well with the

predictor dimensions and quickly identify any underlying low dimensional structures

to facilitate maximum statistical learning from limited data. They must also allow

flexible estimation of the function shape and capture predictor interaction. Motivated

by these requirements, three types of modeling assumptions are considered: 1. the

regression function f depends on d covariates, and d ! mintn, pu, but is otherwise

of an arbitrary form; 2. f still depends on a small subset of the covariates, but

has an additive form as
°k
s�1 fs, where each additive component fs depends on a

small number ds ! mintn, pu of covariates which can be different across s; 3. f

can potentially depend on all covariates, but the covariate vector x � px1, . . . , xpq is

assumed to lie on a low dimensional manifold M in the ambient space Rp.

To assess the performance of high-dimensional nonparametric models, we describe

a general framework to show the minimax risks for regression problems under L2 loss.

Our contribution is the construction of a general class of Bayesian sieve estimators,

which are shown to attain the minimax lower bound provided by Fano’s lemma.

By applying this general framework, we study the minimax risks for estimating f

under the first two sparse assumptions. The minimax risks are shown to be the
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sum of two terms: estimation risks and variable selection risks. The estimation

risks are the minimax risks of estimating the regression functions as if we knew

which predictors are important and the variable selection risks reflect the variable

selection uncertainty. We also show that Bayesian nonparametric regression based on

Gaussian process (GP) priors and variable selections can not only achieve minimax

optimal rates, but are also adaptive to the unknown smoothness levels and numbers

of important predictors.

Under the third assumption of low dimensional manifold, it is clear that proba-

bilistic models for learning the manifold M face daunting statistical and computa-

tional hurdles. Therefore, we take a very different approach in attempting to define

a simple and computationally tractable model, which bypasses the need to estimate

M but can exploit the lower dimensional manifold structure when it exists. We

prove that a simple GP prior with a random length-scale parameter could lead to

the minimax-optimal rate in estimating f , and the rate is adaptive to the manifold

and smoothness of the regression function. Moveover, we find a counter-intuitive

blessing of dimensionality phenomenon, which suggests that by applying random

projections, large p facilitates reducing the independent additive noise in x.

High-dimensional nonparametric classification for categorical data

In the second research problem, we consider high-dimensional problems where all

data are of categorical nature. The goal is to build a parsimonious model for classi-

fication while doing inferences on the important predictors. With categorical predic-

tors, the conditional probabilities P pY � y |X1 � x1, . . . , Xp � xpq can be cast into

a d1 � � � � � dp tensor for each class label y, with dj denoting the number of levels of

the jth categorical predictor Xj. We use a carefully-structured Tucker factorization

to define a model that can characterize any conditional probability, while facilitating

variable selections and capturing of higher-order interactions. To overcome the curse
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of dimensionality, we make a near low-rank assumption on the conditional proba-

bility tensor, under which the posterior is shown to achieve a convergence rate of

order
a

log p{n up to a log n term in high dimensional settings. The low-rank as-

sumption for categorical predictors resembles the sparsity assumption for continuous

predictors. The real data examples illustrate that this low-rank assumption yields

satisfactory classification performance when our model is compared to the state-

of-the-art classifiers. In Cornelis et al. (2013), an application of conditional tensor

factorization model to crack detection in ultra high resolution multimodal images of

paintings demonstrates its potential in solving real high dimensional problems.

Bayesian aggregation in statistical learning

The third research problem focues on Bayesian ensemble learning procedures via ag-

gregation. In many applications, it is not at all clear how to pick one most suitable

method out of a list of possible models or learning algorithmsM � tM1, . . . ,MMu.
Each model/algorithm has its own set of implicit or explicit assumptions under which

that approach will obtain at or near optimal performance. However, in practice ver-

ifying which if any of these assumptions hold for a real application is problematic.

Hence, it is of substantial practical importance to have an aggregating mechanism

that can automatically combine the estimators f̂1, . . . , f̂M obtained from the M dif-

ferent approaches M1, . . . ,MM , with the aggregated estimator potentially better

than any single one.

Bayesian methods are appealing in providing a probabilistic approach for com-

bining different models together. For example, Bayesian model averaging (BMA)

is a widely used approach in practice. The justification for BMA arises from the

viewpoint that one of the listed models in the ensemble is the correct underlying

model that generates the data. Then, in many cases, as the sample size increases,

the posterior probability on this true model converges to one. If the true model is
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not in the list, the model with the minimal KL divergence from the true model will

instead be assigned probability that is converging to one.

To formally allow the true model to fall outside the ensemble in the Bayesian

framework, we propose to aggregate different models instead of averaging them. We

focus on two main aggregation strategies: convex aggregation (CA) and linear aggre-

gation (LA). CA aims at selecting the optimal convex combination of the estimators

and LA focuses on choosing the optimal linear combination. Modeling the model-

specific weights via symmetric Dirichlet distributions, we show that our Bayesian

approach obtains the minimax optimal rate up to a log factor of convex/linear aggre-

gation (Tsybakov, 2003). Even if the true model is not a convex/linear combination

of the models in the ensemble, we show that the posterior would concentrate around

the best approximation of the truth.

Sequential MCMC for on-line learning

The fourth research topic is Bayesian on-line learning for big data. We propose a se-

quential Markov chain Monte Carlo (SMCMC) algorithm to sample from a sequence

of probability distributions tπt : t ¥ 0u, which correspond to posterior distributions

at different times in on-line applications. SMCMC proceeds as in usual MCMC but

with the stationary distribution updated appropriately each time new data arrive.

SMCMC has advantages over sequential Monte Carlo (SMC) in avoiding particle de-

generacy issues. We provide theoretical guarantees for the marginal convergence of

SMCMC under various settings, including both parametric and nonparametric mod-

els. Even in batch situations where a full dataset ty1, . . . , ynu has been obtained, we

can still consider the sequence of posterior distributions ppθptq|y1, . . . , ytq for t ¤ n.

The annealing effect (Chopin, 2002) of adding data sequentially can lead to sub-

stantial improvements over usual MCMC methods, which incorporate all the data at

once and sample serially.
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In the theoretical aspect, we prove the ergodicity of a time-inhomogeneous Markov

chain with time varying transition kernel tTt : t ¥ 0u, i.e.

||Tt � � � � � T1 � π0 � πt||TV Ñ 0, as tÑ 8,

where πt is the stationary measure associated with Tt, under the assumption that

tπt : t ¥ 0u forms a Cauchy sequence, i.e. ||πt � πt�1||TV Ñ 0, as t Ñ 8 with

|| � ||TV the total variation distance. We propose a novel condition on verifying the

geometric ergodicity of a time-homogenous Markov chain, which greatly simplifies

and is weaker than the commonly used conditions such as the local minorization and

drift condition (Rosenthal, 1995). In addition, we generalize the SMCMC algorithm

and its ergodicity to the case when the dimension of the parameter space is also

growing in time.

Bayesian inference for semi-parametric models

The last research topic consider semiparametric estimation problems, where the sta-

tistical model P � tPλ : λ � pθ, ηqu is indexed by two parameters θ and η, with

θ P Rk a finite-dimensional parameter of interest and η P H an infinite-dimensional

nuisance parameter. We justify the use of Bayesian credible intervals for θ by study-

ing its frequentist coverage as the sample size goes to infinity based on the so-called

Bernstein-von Mises (BvM) theorem. For frequentists considering using a Bayes

procedure for uncertainty quantification, it is highly appealing that credible inter-

vals have valid coverage asymptotically. BvM theorems have been established for

the marginal posterior of finite dimensional parameter θ in semiparametric models

(Shen, 2001; Bickel and Kleijn, 2012; Castillo and van der Vaart, 2012), which state

that under certain conditions,

sup
A

��Πpθ P B|X1, . . . , Xnq �Nk

�
B; θ0 � n�1{2∆̃n, pnIθ0,η0q�1

���Ñ 0, (1.1)
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in Pθ0,η0-probability, where X1, . . . , Xn are i.i.d observations,

∆̃n � 1?
n

ņ

i�1

Ĩ�1
θ0,η0

l̃θ0,η0pXiq,

l̃θ,η is the efficient score function and Ĩθ,η the efficient Fisher information. However,

results based merely on the first-order expansion of the marginal posterior of θ as

(1.1) are unable to reveal how the estimating efficiency of the nuisance parameter

η impacts the estimation of θ. Such a delicate relationship can only be revealed by

considering a higher-order expansion.

We consider a fully Bayesian framework by putting a joint prior on pθ, ηq that is

shown to lead to an adaptive convergence rate in estimating η. Moreover, we consider

more general cases where the likelihoods are substituted with quasi-likelihoods, which

only require assumptions on the forms of the conditional means of Y given pθ, ηq in-

stead of assumptions on the complete information about the conditional distribution

P pY |θ, ηq. This general setting includes generalized partial linear models as special

cases. Interestingly, we observe that if independent priors are assigned to θ and η,

then even the first-order convergence rate n�1{2 of θ would be deteriorated by a bias

term depending on the least favorable direction h of the semiparametric model. To

eliminate this bias, we propose a dependent prior on θ and η and show that the right

hand side of (1.1) for the resulting posterior becomes Op?nρ2
n�

?
nρnκnq, where κn

is the approximating error of h. Moreover, this prior is shown to be adaptive to the

smoothness of the nuisance part. Therefore, an adaptive second-order efficiency of

estimating θ is achieved.

1.3 Outline

In Chapter 2, we derive the Minimax L2 risks for high dimensional nonparametric

regression under two sparsity assumptions: 1. the true regression surface is a sparse
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function that depends only on d � Oplog nq important predictors among a list of p

predictors, with log p � opnq; 2. the true regression surface depends on Opnq predic-

tors but is an additive function where each additive component is sparse but may

contain two or more interacting predictors and may have a smoothness level different

from other components. Broad range general results are presented to facilitate sharp

lower and upper bound calculations on minimax risks in terms of modified packing

entropies and covering entropies, and are specialized to spaces of additive functions.

For either modeling assumption, a practical extension of the widely used Bayesian

Gaussian process regression method is shown to adaptively attain the optimal mini-

max rate (up to log n terms) asymptotically as both n, pÑ 8 with log p � opnq.
In Chapter 3, our focus is on developing computationally tractable and theoret-

ically supported Bayesian nonparametric regression methods in the context where

the predictors lie on a D-dimensional surface. When the subspace corresponds to a

locally-Euclidean Riemannian manifold, we show that a Gaussian process regression

approach can be applied that leads to the minimax optimal adaptive rate in estimat-

ing the regression function under some conditions. The proposed model bypasses

the need to estimate the manifold, and can be implemented using standard algo-

rithms for posterior computation in Gaussian processes. Finite sample performance

is illustrated in an example data analysis.

In Chapter 4, we consider a categorical response and high-dimensional categorical

predictors. The goal is to build a parsimonious model for classification while doing

inferences on the important predictors. By using a carefully-structured Tucker fac-

torization, we define a model that can characterize any conditional probability, while

facilitating variable selection and modeling of higher-order interactions. Following a

Bayesian approach, we propose a Markov chain Monte Carlo algorithm for posterior

computation accommodating uncertainty in the predictors to be included. Under

near low rank assumptions, the posterior distribution for the conditional probability
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is shown to achieve close to the parametric rate of contraction even in ultra high-

dimensional settings. The methods are illustrated using simulation examples and

biomedical applications.

In Chapter 5, we propose Bayesian convex and linear aggregation approaches mo-

tivated by regression applications. We show that the proposed approach is minimax

optimal when the true data-generating model is a convex or linear combination of

models in the list. Moreover, the method can adapt to sparsity structure in which

certain models should receive zero weights, and the method is tuning parameter

free unlike competitors. More generally, under an M-open view when the truth falls

outside the space of all convex/linear combinations, our theory suggests that the

posterior measure tends to concentrate on the best approximation of the truth at

the minimax rate. We illustrate the method through simulation studies and several

applications.

In Chapter 6, we propose a class of sequential Markov chain Monte Carlo (SM-

CMC) algorithms to sample from a sequence of probability distributions, correspond-

ing to posterior distributions at different times in on-line applications. SMCMC pro-

ceeds as in usual MCMC but with the stationary distribution updated appropriately

each time new data arrive. We provide theoretical guarantees for the marginal con-

vergence of SMCMC under various settings, including parametric and nonparametric

models. SMCMC exhibits an encouraging improvement over competitors in a simu-

lation study. We also consider an application to on-line nonparametric regression.

In Chapter 7, we study second order expansion of semiparametric BvM theorems

and show that the right hand side in (1.1) is OP0p
?
nρ2

nq, with ρn the estimation

error of the nonparametric part. This second order term motivates us to consider

an adaptive prior for the nonparametric part to achieve second order efficiency. As

has been observed in recent work by Castillo (2012) and Rivoirard and Rousseau

(2012), an adaptive independent prior for parametric and nonparametric parameters
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tends to cause a bias term, called semiparametric bias, that can even break down

the first-order consistency. We show that by introducing prior dependence, the semi-

parametric bias can be eliminated by shifting the center of the prior for the nuisance

parameter. As a result, a dependent prior can achieve the adaptation to the second

order term under mild conditions. We provide simulations to support our theory.

Technical proofs and details are provided in chapter specific appendices at the

end of this thesis.
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2

High-dimensional sparse nonparametric regression

2.1 Introduction

Rapid advancement of technology has empowered today’s scientists to collect a huge

number of explanatory variables to predict a response (Bülmann and van de Geer,

2011). Because the relationship between a response Y and its explanatory variables

X � pX1, . . . , Xpq P Rp may be highly nonlinear and include interaction, there is a

practical need to develop sensible regression models

Y � fpXq � ε, ε � Np0, σ2q,

under mild assumptions on f in the high dimensional setting, especially when p is

much larger than n, the number of observations on pX, Y q available for estimating

the regression function f . Good statistical methods for such so called “large p small

n regression” should scale well with the predictor dimension and quickly identify any

underlying low dimensional structure to facilitate maximum statistical learning from

limited data. They must also allow flexible estimation of the function shape and

capture predictor interaction.

Efficient statistical learning in high dimensional settings requires strong model
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assumptions to avoid “the curse of dimensionality”. One attractive assumption is

M1. f potentially depends on all elements ofX, butX itself lies in a low dimensional

manifold Md in the ambient space Rp.

M1 enables näıve nonparametric methods that algorithmically scale well with p to

achieve near optimal performance guarantees (Bickel and Li, 2007; Ye and Zhou,

2008; Yang and Dunson, 2013). However for many high dimensional applications,

such as gene expression studies, a low dimensional manifold assumption on X may

not be tenable or verifiable. In such cases one often assumes a sparse relationship

between Y and X such as

M2. f depends on a small subset of d predictors with d ¤ mintn, pu.

M2 has served as the springboard for many widely used regression methods, includ-

ing high dimensional linear regression approaches, such as the Lasso (Tibshirani,

1996) and the Dantzig selector (Candes and Tao, 2007), and nonparametric regres-

sion methods with variable selection, such as the Rodeo (Lafferty and Wasserman,

2008) and Gaussian process regression (Tokdar, ????). The latter two allow flexible

estimation of f and is able to capture interactions among the selected important

predictors. However, as will be shown later, when f is allowed to be fully non-

parametric, M2 enables good statistical learning only when d ! mintn, pu, i.e. the

regression function is extremely sparse.

To rectify this without completely giving up on nonparametric shape flexibility,

we introduce a third modeling assumption:

M3. f may depend on d � mintn, pu variables but admits an additive structure f �°k
s�1 fs, where each additive component fs depends on a small ds ! mintn, pu

number of predictors.
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Clearly, M3 subsumes M2 as a special case and in Theorem 2 we reveal that M2

represents the worst end of the difficulty spectrum of statistical learning under M3

as measured by minimax error rates in estimating f under the L2 loss. At the

other end of the spectrum is the special case of a completely additive structure

fpXq � f1pX i1q � � � � � fdpX idq for which scalable algorithms have been devised

(Hastie and Tibshirani, 1986) and attractive minimax error bounds have been derived

albeit under the strong assumption that all component functions fs have the same

smoothness (Koltchinskii and Yuan, 2010; Meier and Buhlmann, 2009; Ravikumar

et al., 2009; Raskutti et al., 2012).

Compared to either of these two extremes, M3 provides a much more practi-

cally attractive theory of large p small n nonparametric regression. It promises to

offer efficient statistical learning even when the relationship between Y and X is

not extremely sparse. It also avoids the complete additivity assumption and al-

lows explanatory variables to interact with each other. The ability to model and

learn variable interaction is a feature of considerable scientific relevance to modern

statistical applications.

The aim of this chapter is twofold: to derive the minimax L2 error rates of

estimating f under M3 and to show existence of practical statistical methods that

offer adaptive, near optimal performance across the entire M3 model space. Toward

the first goal, we present in Theorem 2 sharp upper and lower bounds on the minimax

L2 estimation error under M3 as a function of n, p, component sizes d1, . . . , dk and

smoothness properties of the component functions f1, . . . , fk, which are allowed to

have different levels of smoothness than one another. Both Theorem 1 and the results

of Raskutti et al. (2012) follow as corollaries to this general result.

Toward the second goal, we demonstrate that a conceptually straightforward ex-

tension of the widely used Gaussian process regression method (see, e.g., Rasmussen

and Williams, 2006, for a review) adaptively achieves the optimal minimax rate
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across all subclasses of M3 under suitable large p small n asymptotics where p grows

almost exponentially in n. In this paper we restrict only to a theoretical study of

this new approach, which we call the additive Gaussian process regression. A full

fledged methodological development of the same is underway and will be reported

elsewhere.

The rest of this chapter is organized as follows. Section 2.2 introduces the nota-

tion and some basic assumptions. Section 2.3 summarizes our main minimax results

for high dimensional nonparametric regression under M2 and M3. Section 2.4 pro-

vides a general framework for characterizing minimax risks. Section 2.5 details the

application of the results in section 2.4 to M2 and M3. Section 2.6 shows the adap-

tive minimax optimality of Bayesian Gaussian process regression. Technical proofs

appear in Appendix A.

2.2 Notations

Let pXi, Yiq, i � 1, . . . , n denote the observations on pX, Y q. We make a stochastic

design assumption that X1, . . . , Xn are independent and identically distributed (IID)

according to some probability measure Q on Rp and that f P L2pQq, the linear space

of real valued functions on Rp equipped with inner product xf, gyQ �
³
fpxqgpxqQpdxq

and norm }f}Q � xf, fy1{2. We do not need to know or estimate Q for the purpose of

estimating f , but it is a natural candidate to judge average loss in prediction at future

observations of X drawn from Q, as will be the case under simple exchangeability

assumptions. The associated minimax risk rnpΣ, Q, σq of estimating f under a model

M is defined as

r2
npΣ, Q, σq � inf

f̂PAn
sup
fPΣ

Ef,Q }f̂ � f}2
Q

where Σ � L2pQq is the function space specified by the model M , An is the space of

all measurable functions of data to L2pQq and Ef,Q denotes expectation under the
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model: Xi � Q, Yi|Xi � NpfpXiq, σ2q, independently across i � 1, � � � , n. When no

risk of ambiguity is present, we will shorten rnpΣ, Q, σq to simply rn and call rn the

minimax rate.

We will focus on function spaces characterized by smoothness conditions in ad-

dition to sparsity properties specified by models M2 and M3. Let N denote the

set of natural numbers and N0 � N Y t0u. For any d dimensional multi-index

a � pa1, . . . , adq P Nd
0 define |a| � a1 � � � � � ad and let Da denote the mixed partial

derivative operator B|a|{Bxa1
1 � � � Bxadd . For any real number b let tbu denote the largest

integer strictly smaller than b. The Hölder class Σpα,L, dq indexed by the triplet

pα,L, dq, is defined as the set of all d-variate l � tαu times differentiable functions f

on r�1, 1sd such that:

||f ||Cα � max
|a|�l

sup
x,yPr�1,1sd,x�y

|Dafpxq �Dafpyq|
|x� y|α�l ¤ L. (2.1)

A d-variate function f will be loosely referred to as an α-smooth function if it belongs

to Σpα,L, dq for some L   8.

We encode sparsity in a p-dimensional space through binary inclusion vectors

b P t0, 1up and for any x � px1, . . . , xpq P Rp, let xb � pxj : bj � 1q denote the vector

of |b| � °p
j�1 bj predictors picked by b. For M2, we will focus on “sparse” function

spaces indexed by α,L ¡ 0, d, p P N defined as:

ΣSpα,L, d, pq � tx ÞÑ gpxbq : g P Σpα,L, |b|q with b P t0, 1up and |b| ¤ du.

Without loss of generality, we assume that each element f in ΣSpα,L, d, pq has zero

mean with respect to Q, i.e.
³
fpxqQpdxq � 0, since otherwise we can always subtract

the mean from f without changing its smoothness.

For M3, we will consider “additive” function spaces indexed by α,L P p0,8qk,
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d P Nk, k, p, d̄ P N defined as:

ΣA

�
α,L, d, k, p, d̄

� �tx ÞÑ f1pxb1q � � � � � fkpxbkq : fs P Σpαs, Ls, |bs|q,

bs P t0, 1up, |bs| ¤ ds, bs � bt, b1j � � � � � bkj ¤ d̄,

for s, t � 1, . . . , k; s � t; j � 1, . . . , pu,

i.e., the elements of ΣApα,L, d, k, p, d̄q decompose into k irreducible components with

a cap ds on the interaction order of component s. Also, each predictor is restricted

to appear in at most d̄ many of the k components. Again, we will assume without

loss of generality that each component function fs is zero mean with respect to Q.

Under this assumption, xfs, ftyQ � 0 if and only if fs and ft share common important

predictors, i.e.,
°p
j�1 bsjbtj � 0. Consequently for each s, there are at most dspd̄� 1q

indices t � s such that xfs, ftyQ � 0, and hence

||f ||2Q �
ķ

s�1

||fs||2Q �
ķ

s�1

¸
t�s
xfs, ftyQ

¤
ķ

s�1

||fs||2Q �
1

2

ķ

s�1

¸
t:t�s,xfs,fty�0

p||fs||2Q � ||ft||2Qq

¤
ķ

s�1

||fs||2Q �
ķ

s�1

dspd̄� 1q||fs||2Q

¤ t1� dmaxpd̄� 1qu
ķ

s�1

||fs||2Q, (2.2)

where dmax � maxpd1, . . . , dkq. This inequality plays a key role in calculating covering

entropies of the function spaces ΣApα,L, d, k, p, d̄q. These entropy numbers behave

well even when p and k are arbitrarily large, as long as dmax and d̄ remain small.

The covering number Npε,Σ, ρq of a function space Σ equipped with a metric

ρ is defined as the minimal number of ρ-balls of radius ε needed to cover Σ. It

is customary to call logNpε,Σ, ρq the ε covering entropy of Σ under ρ. A related
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notion is the packing number of Σ under ρ, which is defined as the maximal number

of ε separated elements in Σ. For linear space Σ, we introduce a new concept, the

modified packing number Cpε,K,Σ, ρq defined as the maximal number of elements

of Σ that are ε distance apart from each other and each have norm smaller than Kε.

By Apxq � Bpxq for two functions Apxq and Bpxq, we mean 0   limApxq{Bpxq   8,

where the limit is either xÑ 0 or xÑ 8 determined by the specific context.

2.3 Minimax results for large-p small-n nonparametric regression

2.3.1 A brief overview of existing results

The minimax risk under M1 is well known (Bickel and Li, 2007; Ye and Zhou, 2008;

Yang and Dunson, 2013). Bickel and Li (2007) show that multivariate local poly-

nomial regression can adapt to the lower dimensional structure in the sense that it

achieves the minimax rate n�α{p2α�dq when f is known to be α-smooth and α ¤ 2.

Yang and Dunson (2013) consider Bayesian nonparametric regression with Gaus-

sian process priors and prove that under M1, Gaussian process priors can achieve

the minimax rate n�α{p2α�dq up to some log factor with additional adaptation to an

unknown α that does not exceed 2.

However under M2 and M3, precise calculations of rn and theoretical results on

which estimation methods attain the minimax rates are known only under additional

simplifying assumptions on the shape of f , or, for inference tasks that are simpler

than prediction. In the linear model setup, Raskutti et al. (2011) show that with Σ

taken as the set of functions fpxq � xTβ with β in an l0 ball of Rp and under some

regularity conditions on the design matrix,

r2
n �

d logpp{dq
n

up to some multiplicative constant, where d is the number of important predictors.

As we will see later, this is the typical minimax risk associated with variable selection
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uncertainty. Note that for q � 0, the lq norm precisely encodes the sparsity condition

of M2. Wainwright (2009a) and Wainwright (2009b) consider minimax lower bounds

for support recovery. For a review on various types of minimax risks for high di-

mensional linear models, see Verzelen (2012). Many authors have also obtained near

minimax optimal convergence rates of various methods for linear regression under

the L2 loss, such as Bickel et al. (2009), Candes and Tao (2007), Meinshausen and

Yu (2009) and Zhang and Huang (2008).

As a non-linear, non-parametric generalization of their results, Raskutti et al.

(2012) consider sparse additive models with univariate components, which is a special

case of M3 with each ds � 1 and with each fs being α-smooth for a common α ¡ 0.

For this model they show

r2
n � kδ2

n �
k log p

n
,

where k is the component number and δn � n�
α

2α�1 – the minimax risk of estimating

an α-smooth univariate function. The minimax risk in this case can be decomposed

into two terms, where the first term is the sum of minimax risks of estimating each

component and the second term is the variable selection uncertainty.

As indicated earlier, an entirely different generalization of the linear model is the

fully sparse nonparametric regression model of M2. To the best of our knowledge, the

only result in this context is Comminges and Dalalyan (2012), who analyze minimax

risks of support recovery under the variable selection framework. They show that if

d logpp{dq{n is lower bounded by some positive constant α0, then for some constant

c ¡ 0,

inf
Ĵn

sup
fPΣ

Pf pĴn � Jf q ¥ c,

where Ĵn ranges over all variable selection estimators, i.e., measurable maps of data

to the space of all subsets of t1, . . . , pu, Σ is the space of all differentiable functions
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that depend on only d many predictors and have squared integrable gradients, and

Jf � t1, . . . , pu is the index set of truly important predictors associated with f . This

result is the reason we call the term d logpp{dq{n the minimax risk associated with

variable selection uncertainty. In fact, for large p, the numerator d logpp{dq in the

second term is asymptotically of the same order of the log of
�
p
d

�
, the number of

ways to select d important predictors from p covariates. Therefore, it is reasonable

to expect that any estimation problem related to high dimensional variable selection

should include a variable selection uncertainty term d logpp{dq{n.

2.3.2 Results on minimax rates under M2 and M3

In this paper we provide sharp upper and lower bounds to the minimax L2 prediction

risk for both M2 and M3 under the following condition on the predictor distribution

Q:

Assumption Q. Q � Qp
0 where Q0 is a probability measure on r�1, 1s that admits a

Lebesgue density q0 satisfying: infuPr�1,1s q0puq ¡ 0 and supuPr�1,1s q0puq   8.

The main condition we need is independence among the predictors. They do not nec-

essarily need to be identically distributed, though that additional assumption keeps

notations tidier. Also, the independence assumption is needed only for providing a

sharp lower bound to the minimax rate, but is not needed either for calculating a

sharp upper bound or for deriving the posterior convergence rates of the additive

Gaussian process regression method.

Theorem 1 (Minimax risk for M2). Under Assumption Q

r2
npΣSpα,L, d, pq, Q, σq �

� n
σ2

	� 2α
2α�d � σ2d logpp{dq

n
. (2.3)

As we can see, the minimax risk in Theorem 1 consists of two terms. The first

term corresponds to the minimax risk for estimating a d-variate function f0 with the
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knowledge of which d covariates are the important predictors. To make this term

meaningful, d should be smaller compared to log n. The second term is incurred by

variable selection uncertainty, which is consistent with the results of Comminges and

Dalalyan (2012).

Theorem 2 (Minimax risk for M3). Under Assumption Q,

r2
npΣApα,L, d, k, p, d̃qq � cpdmax, d̃q

ķ

s�1

"� n
σ2

	� 2αs
2αs�ds � σ2ds logpp{dsq

n

*
(2.4)

where cpdmax, d̃q is a number between 1{B and
?
B with B � 1� dmaxpd̄� 1q.

Toward proving these results, we first provide several fundamental results on how

to calculate such sharp bounds over a general nonparametric function space Σ. Lower

bounds are derived by using well known information-theoretic arguments (Yang and

Barron, 1999). For upper bounds, we establish existence of Bayesian estimators with

desired risks. Our construction borrows from Bayesian posterior convergence theory

(Ghosal et al., 2000). We specialize these results to the cases of M2 and M3. It

is more difficult to calculate minimax risk bounds for M3 than for the univariate

additive case of Raskutti et al. (2012) where different components are assumed to

be from the same function space. In the univariate case, zero mean components

depending on different predictors are always orthogonal under the inner product

x�, �yQ. However, in the general additive case, different components can share the

same predictors and break down the orthogonality.

2.4 General theorems on characterizing minimax risks

2.4.1 Upper bounds for minimax risks

Theorem 3. If pεn : n � 1, 2, . . .q satisfies εn Ñ 0, nε2n Ñ 8 and nε2n ¥ σ2 logNpεn,Σ, ||�
||Qq, then there exists a prior Πn over Σ such that for any f0 P Σ,

Ef0,QΠn

�
f : ||f � f0||Q ¡Mεn|X1, Y1, . . . , Xn, Yn

�Ñ 0, (2.5)
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for some fixed M ¡ 0. Furthermore, if f̂ is defined as the maximizer of g ÞÑ Πn

�
f :

||f � g||Q ¤Mεn|X1, Y1, . . . , Xn, Yn
�

then

Pf0,Q

�||f̂ � f0||Q ¤ 2Mεn
�Ñ 1, as nÑ 8.

In Theorem 3, we use the subscript n to indicate the dependence of the sample size

on the constructed prior Πn. The quantity εn in this statement can be understood as

the posterior convergence rate, which means that the posterior probability measure

assigns almost all its mass to a sequence of ||�||Q-balls in Σ whose radii shrink towards

f0 at rate εn.

Although Theorem 3 ensures the convergence of ||f̂ � f0||Q to zero in probability,

it does not characterize the decay rate of the posterior probability of tf P Σ :

||f̂�f0||Q ¤Mεnu. This decay rate of the tail probability is important for estimating

the L2pQq risk E||f̂ �f0||2Q. To control this tail probability, we need to constrain the

complexity of Σ in terms of the uniform covering entropy, which is defined for any

ε ¡ 0 by supR logNpε,Σ, || � ||Rq, with R ranging over all probability distributions (or

all discrete probability distributions) on the support of Σ.

Theorem 4 (Upper bounds for minimax risks II). If pεn : n � 1, 2, . . .q satisfies

εn Ñ 0, nε2n Ñ 8 and nε2n ¥ σ2 supR logNpε,Σ, || � ||Rq, then there exists a prior Πn

over Σ such that for any f0 P Σ,

Ef0,Q

 
Πn

�
f : ||f � f0||n ¡Mεn|X1, Y1, . . . , Xn, Yn

�( � expp�Cnε2nq, (2.6)

for some fixed numbers M and C. Furthermore, if f̂ is defined as either the posterior

expectation of f or the maximizer of g ÞÑ Πn

�
f : ||f�g||n ¤Mεn|X1, Y1, . . . , Xn, Yn

�
then

Pf0,Q

�||f̂ � f0||n ¥ 2Mεn
� ¤ expp�Cnε2nq.

Moreover, if Σ is uniformly bounded, then for some D ¡ 0,

max
 
Ef0,Q

�||f̂ � f0||2Q
�
, Ef0,Q

�||f̂ � f0||2n
�( ¤ Dε2n.
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The assumption on the uniform covering entropy is not a strong one and is com-

monly used in many statistical problems involving function spaces, such as Koltchiskii

and Pancheko (2005). In particular, the uniform covering entropies of the function

spaces under M2 and M3 are finite for any ε ¡ 0 and have the same order as

logNpε,Σ, || � ||Qq. Therefore, Theorem 4 implies exponentially decay rate of the

posterior probabilities of tf : ||f � f0||Q ¡Mεnu for ΣS and ΣA.

2.4.2 Review of lower bounds for minimax risks

Theorem 5 (Lower bounds for minimax risks). Let εn to be a positive sequence such

that εn Ñ 0 and nε2n ¤ p2K2q�1σ2 logCp2εn, K,Σ, || � ||Qq for some K ¡ 0, then

inf
f̂PAn

sup
fPΣ

Pf,Q
 ||f̂ � f ||Q ¥ εn

( ¥ 1

2
.

Therefore, the minimax risk under the L2pQq loss satisfies r2
npΣ, Q, σq ¥ 1

2
ε2n.

At a first sight, Theorem 3 and Theorem 5 seem to contradict each other since in

the regular parametric models where Bernstein von-Mises theorem holds and εn �
n�1{2, the posterior distribution of

?
n||f�f0||Q is approximately normal and Πnp||f�

f0||Q ¥Mεq � expp�CM2q Û 0 for some C ¡ 0 and any M . In fact, Theorem 3 only

apply for nonparametric cases where the condition nε2n Ñ 8 rules out the parametric

cases. Therefore, the results imply that when the minimax rate is slower than the

parametric rate n�1{2, there is a phase transition in the sense that for some critical

value M0, we have

lim
nÑ8

inf
f̂

sup
fPΣ

Pf,Q
 ||f̂ � f ||Q ¥Mεn

(" ¡ 0, M  M0;
� 0, M ¡M0.

However, since our primary interest is in the asymptotic order of the minimax rate

rnpΣ, Q, σq, we will not attempt to determine the exact multiplicative constant in it.

By Theorem 3 and Theorem 5, if we can obtain a tight lower bound log Ĉpεq to

logCpε,K,Σ, ||�||Qq for someK ¡ 0 and a tight upper bound log N̂pεq to logNpε,Σ, ||�
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||Qq, such that log Ĉpεq � log N̂pεq as εÑ 0, then rnpΣ, Q, σq will be determined up

to a multiplicative constant as the solution of the equation log N̂pεq � nε2. With such

an ε, the corresponding prior Πn in Theorem 3 can be considered as asymptotically

least favorable from a decision-theoretical point of view.

2.4.3 Auxiliary results for function spaces with additive structures

Consider a general framework where the additive function space takes the form F �Àk
s�1Fs � tf � °k

s�1 fs : fs P Fs, s � 1, . . . , ku for k function spaces F1, . . . ,Fk.

In the sequel, K is a fixed constant and logCpε,K,F , || � ||Qq, logCpε,K,Fs, || �
||Qq, logNpε,F , || � ||Qq and logNpε,F , || � ||Qq will be abbreviated as logCpε,Kq,
logCspε,Kq, logNpεq and logNspεq.

Next, we study the minimax risks associated with F . We make two assumptions:

F1. ||f ||2Q ¤ B
°k
s�1 ||fs||2Q, @f � °k

s�1 fs P F for some constant B ¡ 0;

F2. For any ε1, . . . , εk ¡ 0, there exist mutually orthogonal modified εs-packing sets

Espεsq of size Cspεs, Kq for s � 1, . . . , k, i.e. @s � t, fs P Espεsq and ft P Etpεtq,
xfs, ftyQ � 0.

Under the near orthogonal condition F1, ||f � g||2Q can be bounded by a multiple

of
°k
s�1 ||fs � gs||2Q for any two functions f � °k

s�1 fs and g � °k
s�1 gs in F . This

property plays a key role in obtaining an upper bound to the covering entropy of F .

F2 is important for constructing a sufficiently large packing set for F . ΣA is close toÀk
s�1 ΣSpαs, Ls, dsq up to a negligible subset caused by the non-inclusive constraints

on the additive components. Therefore, the results in this subsection on F can be

easily transferred to ΣA.

The following theorem provides lower and upper bounds to logCpε{2q and logNpK1εq
in terms of tlogCspεqu and tlogNspεqu under F1 and F2.
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Theorem 6 (Entropies for additive spaces). Under assumption F1 and F2, for any

ε ¡ 0,

logC

�
ε

2
,
?
BK



¥ K0

ķ

s�1

logCspᾱsε,Kq,

where K0 ¡ 0 is some universal constant and pᾱ1, . . . , ᾱkq P Rk
� are the solution of

logC1pα1ε,Kq
α2

1

� � � � � logCkpαkε,Kq
α2
k

�
ķ

s�1

logCspαsε,Kq. (2.7)

Moreover, for any nonnegative vector pα1, . . . , αkq satisfying
°k
s�1 α

2
s � 1,

logNp
?
Bεq ¤

ķ

s�1

logNspαsεq.

In particular, the above holds for the pᾱ1, . . . , ᾱkq in (2.7).

If for each Fs, we have a lower bound log Ĉspεq and upper bound log N̂spεq to

logCspεq and logNspεq so that for any fixed constant a1 ¡ 0, a2 ¡ 0, log Ĉspa1εq �
log N̂spa2εq as ε Ñ 0 then by Theorem 6, we can obtain lower and upper bounds

for logCpεq and logNpεq respectively so that log Ĉpa1εq � log N̂pa2εq as ε Ñ 0.

Combining this observation with Theorem 3 and Theorem 5, we have the following

corollary on minimax risks of F .

Corollary 7 (Minimax risks for additive spaces). Under assumptions F1 and F2,

the minimax risk of estimating a function f P F �Àk
s�1Fk is ε2n �

°k
s�1 δ

2
n,s, where

δn,s is the solution of log N̂spδ2
sq � nδ2

s for s � 1, . . . , k.

2.5 Applications of the general results to M2 and M3

In this section, we provides tight lower/upper bounds for the modified packing en-

tropies and covering entropies of ΣS and ΣA. Then with the help of Theorem 5 and

Theorem 3, we can obtain the minimax risks of ΣS and ΣA.
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2.5.1 Minimax lower bounds for high dimensional regression

In this subsection, we study modified packing entropies of the relevant sparse regres-

sion spaces. With the help of Theorem 5, lower bounds on these quantities provide

lower bounds for the minimax risks.

Lemma 8 (Modified packing entropy lower bounds). Assume assumption Q. Then

for ε ¡ 0, Σ and N ¡ 0 in any of the following cases:

1. Σ � Σpα,L, dq and logN ¥ K1pL{εqd{α;

2. Σ � ΣSpα,L, d, pq and logN ¥ K1pL{εqd{α � d logpp{dq;

3. Σ � ΣA

�pα1, . . . , αkq, pL1, . . . , Lkq, pd1, . . . , dkq, p, d̄
�

and logN ¥ K1

°k
s�1

pLs{pαsεqqβs � K1

°k
s�1 ds logpp{dsq, for some K1 ¡ 0, where βs � ds{αs and

pα1, . . . , αkq solves

ķ

s�1

α2
s � 1,

�
L1

ε


β1 1

α2�β1

1

� � � � �
�
Lk
ε


βk 1

α2�βk
k

, (2.8)

there exist N � 1 functions tfsuNs�0 � Σ such that

(i). f0 � 0, ||fs||Q ¤ K2ε, 1 ¤ s ¤ N,

(ii). dpfs, ftq ¥ ε, 0 ¤ s   t ¤ N,

for some K2 ¡ 0 independent of ε and L or tLsu. This implies

logC
�
ε,K2,Σpα,L, dq, || � ||Q

� ¥ K1

�
L

ε


 d
α

,

logC
�
ε,K2,ΣSpα,L, d, pq, || � ||Q

� ¥ K1

�
L

ε


 d
α

� d log
p

d
,

logC
�
ε{2,

?
BK2,ΣA

�pα1, . . . , αkq, pL1, . . . , Lkq, pd1, . . . , dkq, p, d̄
�
, || � ||Q

�
¥K1

ķ

s�1

�
Ls
αsε


βs

�K1

ķ

s�1

ds log
p

ds
,
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for B � 1� dmaxpd̄� 1q.

The above lemma indicates that the “size” of ΣSpα,L, dq is characterized by

β � d{α, which will be referred to as the complexity index. To appreciate the

above modified packing entropy lower bound for the additive function space ΣA, we

consider two special cases. In the first case, all additive components are univariate

with the same smoothness α and magnitude L. The same framework is considered in

Raskutti et al. (2012). In this case, α1 � � � � � αk � k�1{2 and the lower bound for

the modified packing entropy becomes K1kp
?
kL{εq1{α �K1k log p. By Theorem 5,

this provides a lower bound to the minimax risk as ε2n � kn�
2α

2α�1 �k log p{n, which is

the same as the minimax risk obtained in Raskutti et al. (2012) when the univariate

additive function spaces are α-smooth Hölder classes.

In the second case, assume k to be fixed and one additive component to be much

more complex than the rest, i.e. β1 � d1{α1 " βs � ds{αs for s � 2, . . . , k. In

this case, α1 � 1 and pαsεq�βs ! ε�β1 for s ¡ 1. As a result, the lower bound to

the modified packing entropy is dominated by the first component as K1pL1{εqβ1 �
K1

°k
s�1 ds logpp{dsq. As a result, the lower bound for the minimax risk becomes

ε2n � n
� 2
β1�2 � °k

s�1 ds logpp{dsq{n, in which the first term is dominated by the

slowest convergence rate of the additive components, while the second term is still

determined by the overall variable selection uncertainty.

2.5.2 Minimax upper bounds for high dimensional regression

In this subsection, we study the covering entropies, which provide upper bounds for

the corresponding minimax risks by Theorem 5. In the proofs, the distribution Q is

not necessarily the common marginal distribution of the components of X, but can

be any distribution on r�1, 1sp.
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Birman and Solomjak (1967) provide an upper bound for the covering entropy

of Σpα,L, dq under sup norm, which is of the same order as the lower bound for the

modified packing entropy obtained in Theorem 8. Since || � ||Q is dominated by || � ||8,

their result also provides an upper bound for the covering entropy of Σpα,L, dq under

the || � ||Q norm. Based on this, we can obtain upper bounds for the covering entropy

of ΣSpα,L, d, pq and ΣA

�pα1, . . . , αkq, pL1, . . . , Lkq, pd1, . . . , dkq, p, d̄
�

as the following

lemma shows.

Lemma 9 (Covering entropy upper bounds). For any ε ¡ 0, we have

logN
�
ε,Σpα,L, dq, || � ||Q

� ¤ K

�
L

ε


 d
α

,

logN
�
ε,ΣSpα,L, d, pq, || � ||Q

� ¤ K

�
L

ε


 d
α

� d log
p

d
,

logN
�?

Bε,ΣA

�pα1, . . . , αkq, pL1, . . . , Lkq, pd1, . . . , dkq, p, d̄
�
, || � ||Q

�
¤K

ķ

s�1

�
Ls
αsε


βs

�
ķ

s�1

ds log
p

ds
,

where K is a positive constant independent of ε and L or tLsu and pα1, . . . , αkq solves

(2.8).

Similar to Lemma 8, as long as B remains small, the lower bounds for the modified

packing entropies and minimax risks are also upper bounds up to multiplicative

constants, i.e. these bounds are sharp. In addition, since the upper bounds in

Lemma 9 do not depend on Q, they also serve as upper bounds to the uniform

covering entropies defined before Theorem 4.
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2.6 Adaptive near minimax optimality of Bayesian additive Gaussian
process regression

Although the Bayesian estimator constructed in the proof of Theorem 3 attains the

minimax rate, it is essentially a mathematical construct and its practical implemen-

tation is nearly infeasible. Also, it requires the use of a different prior distribution

for different sample sizes, which may not be attractive in practice. In this section,

we demonstrate the existence of practical Bayesian methods based on single prior

distributions that adapt automatically across various function spaces satisfying M2

and M3.

Gaussian process (GP) priors are widely used in nonparametric regression. Adap-

tivity and near minimax optimality of Bayesian GP regression methods are known for

low dimensional applications (van der Vaart and van Zanten, 2009). We investigate

extensions of these methods to sparse high dimensional settings. We show that with

appropriate point mass mixture priors for Bayesian variable selection, GP priors are

still guaranteed to attain the minimax rates up to some log factors.

2.6.1 GP and its adaptive rate optimality for fixed p

We briefly review the theory developed by van der Vaart and van Zanten (2009)

on adaptive posterior contraction rate of Gaussian Process (GP) priors. Consider

a GP W � pWx;x P r�1, 1sdq on r�1, 1sd. The law GP pm,Kq of W is completely

determined by its mean function mpxq � EWx and covariance function Kpx, x1q �
EpWx � mpxqqpWx1 � mpx1qq. We consider a zero mean and stationary GP, where

the covariance function Kpx, x1q � EWxWx1 only depends on x � x1. The square

exponential kernel expp�||x � x1||2q is a common choice for Kpx, x1q. By Bochner’s

theorem,

Kpx, x1q �
»
e�ipλ,x�x

1qdµpλq,
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where the finite Borel measure µ on Rd is called the spectral measure of W . van der

Vaart and van Zanten (2009) focus on GPs whose spectral measure has exponential

tails: for some δ ¡ 0, »
eδ||λ||dµpλq   8.

van der Vaart and van Zanten (2008a) propose a set of conditions that ensure the

posterior convergence rate of GP priors for estimating the function f0 P Cr�1, 1sd in

the regression problem Y |X � Npf0pXq, σ2q to be at least εn as:

P p||W � f0||8 ¤ ε̃nq ¥e�nε̃2n , (2.9)

P pW R Bnq ¤e�4nε̃2n , (2.10)

logNpεn,Bn, || � ||8q ¤nε2n, (2.11)

where pBn : n ¥ 1q is a sequence of subsets of Cr�1, 1sd, called sieves and pε̃n : n ¥ 1q
is a sequence satisfying ε̃n   εn, limnÑ8 nε̃2n � 8.

van der Vaart and van Zanten (2008a) show that the prior concentration condition

(2.9) is intimately connected with the concentration function φf0pεq since P p||W �
f0||8 ¤ εnq ¥ e�φf0 pεq, where the concentration function is defined as the sum of two

terms:

φf0pεq � inf
hPH:||h�f0||8¤ε

||h||2H � logP p||W ||8 ¤ εq,

where pH, || � ||Hq is the reproducing kernel Hilbert space (RKHS) associated with the

GP W . The first term measures how well f0 is approximated by the elements in H.

The second term, the so-called small ball probability, characterizes the probability

mass of W assigned to a ε ball around f0. An upper bound for the small ball

probability can be directly obtained by the condition (2.11) (Lemma 4.6 in van der

Vaart and van Zanten (2009)).

To achieve adaptation to unknown smoothness, van der Vaart and van Zanten

(2009) propose to rescale W by a random length scale parameter A as WA � pWAx :
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x P r�1, 1sdq, where Ad follows a gamma distribution Gapa1, a2q with scale parameter

a1 and rate parameter a2. For f0 P Σpα,L, dq, Stone (1982) shows that the minimax

rate of estimating f0 is Ld{p2α�dqn�α{p2α�dq (which is also implied by Lemma 8, Lemma

9, Theorem 3 and Theorem 5), where n is the sample size. van der Vaart and van

Zanten (2009) prove that by introducing A, the posterior distribution of WA can

achieve the minimax rate up to some logarithm factors. Hereafter, we use either a

superscript or a subscript a(A) to indicate the dependence on the (random) length

scale. For example, we write the covariance function of Wa by Kapx, x1q.
To verify condition (2.9), van der Vaart and van Zanten (2008a) show that for

sufficiently large n

P p||WA � f0||8 ¤ ρnq ¥ e�nρ
2
n , (2.12)

for ρn a large multiple of Ld{p2α�dqn�α{p2α�dqplog nqp1�dq{p2�d{αq. To satisfy condition

(2.10) and (2.11), they construct a sequence of sieves taking some specific forms. The

following lemma summarizes their constructions. Since the results in this lemma play

a key role in our later proofs, we provide an outline of a proof extracted from van der

Vaart and van Zanten (2009) for completeness.

Lemma 10. For positive constants M, r, ε, δ, let

BM,r,ε,δ �
 pr{δqd{2MHr

1 � εB1

(Y "¤
a δ

MHa
1 � εB1

*
, (2.13)

where Hr
1 is the unit ball of the RKHS Hr associated with Wr and B1 is the unit ball

of Cr�1, 1sd in sup-norm. Suppose that the prior density g for A satisfies

B1a
p expp�D1a

dq ¤ gpaq ¤ B2a
p expp�D2a

dq,

for some B1, B2, D1, D2 and p ¡ 0, which is true when Ad follows a Gapp � 1, Dq
prior. Then there exist some universal positive constants C0, C1, C2, C3, C4, a0 ¡ 1,

ε0   1{2, such that for every r ¡ a0, 0   ε0,M
2 ¡ C0r

dplogpr{εqq1�d and δ �
33



ε{p2d3{2Mq, the following inequalities hold:

P pWA R BM,r,ε,δq ¤C1r
p�d�1e�C2rd � e�M

2{8, (2.14)

logNp3ε,BM,r,ε,δ, || � ||8q ¤C3r
d

�
log

M3{2?2d3{2r
ε3{2


1�d
� 2 log

C4M

ε
. (2.15)

As a result, for an arbitrary sequence pε̄n : n ¥ 1q satisfying limnÑ8 ε̄n � 0 and

limnÑ8 nε̄2n � 8, the sequence of sieves pBn � BMn,rn,εn,δn : n ¥ 1q with rdn a large

multiple of nε̄2n, M2
n a large multiple of nε̄2nplog nq1�d and δn � ε̄n{p2|b|3{2Mn satisfy

the following inequalities: for some universal positive constants C4, C5, L,

P pWA R Bnq ¤e�C4nε̄2n ,

logNpLε̄n,Bn, || � ||8q ¤C5nε̄
2
nplog nq1�d.

(2.16)

With the special choice of ε̄n � δn, van der Vaart and van Zanten (2009) prove that

GP priors with random length scales can achieve posterior contraction rate at least

εn � ρnplog nqp1�dq{2, which is a large multiple of Ld{p2α�dqn�α{p2α�dqplog nqγ with

γ � p1� dq{p2� d{αq � p1� dq{2. We would like to emphasize the flexibility of the

choice of ε̄n in (2.16), since it is crucial in the later construction of sieves in the proof

for the adaptive property in terms of variable selection.

2.6.2 GP with high dimensional variable selection

In this subsection, we consider the estimation of f under M2. We extend the GP

prior to include variable selection. Let B P t0, 1up represent a random inclusion

vector and b0 be the inclusion vector corresponding to f0 that generates the data

Yi|Xi � Npf0pXiq, σ2q, i � 1, . . . , n. Use the notation W b
a �

�
W b
xb

: xb P r0, 1s|b|� to

denote the GP with covariance function Kb
apxb, x1bq.

We consider the following GP variable selection (GPVS) prior to model the un-
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known function, denoted by W :

P pB � bq9p�|b|p1� p�1qp�|b|Ip|b| ¤ d0q,

A|B||B � Gapa1, a2q,

W � WB
A |A,B � GP p0, KB

A q,

(2.17)

where d0 is a prespecified hyperparameter, interpreted as the prior belief on the maxi-

mum number of important predictors. The following provides a posterior contraction

rate εn of this prior.

Theorem 11. Assume f0 P Σpα0, L0, d0q. If p Ñ 8 as n Ñ 8 and d0 ¥ |b0|, then

the posterior contraction rate εn of the GPVS prior is at least

L
c0{p2�c0q
0 n�1{p2�c0qplog nqβ1 �

c
d0 log p

n
plog nqβ2 ,

where c0 � |b0|{α0 and β1 � p1� |b0|q{p2� c0q � p1� d0q{2 and β2 � p1� d0q{2.

By Theorem 11, the contraction rate is adaptive to the unknown smoothness

α0 and number of important predictors d0, and almost attains the minimax rate

indicated by Theorem 1. The first part in the rate n�α0{p2α0�|b0|q plog nqβ1 does not

involve the dimensionality p of the covariates and corresponds to the minimax rate

n�α0{p2α0�|b0|q of estimating a |d0| variate function up to a logarithmic factor as if we

knew the important predictors. However, for this result to hold, we require d0 ¥ |b0|.
Since we do not know |b0| in advance, ideally we need to specify d0 large enough

to cover |b0|. We can allow d0 to slowly grow with n such that the logarithmic

factor is still asymptotically smaller compared to nλ for any λ ¡ 0. For example,

d0 � plog nqκ, where 0   κ   1. In the second part, since we do not know |b0|
but only an upper bound d0, we have d0 log p{n instead of |b0| log p{n in the variable

selection uncertainty error.
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2.6.3 Additive GP with high dimensional variable selection

In this subsection, we consider the regression problem under the assumption M3.

Suppose that the true function f0 has an additive form:

f0pxq �
k0̧

h�1

f0,hpxb0,hq, (2.18)

where b0,h is the inclusion vector for the h-th component. Assume the Hölder smooth-

ness of the |b0,h| variate function f0,h is αh and its magnitude is Lh. Under such

assumptions, f0 P ΣA

�pα0,1, . . . , α0,k0q, pL0,1, . . . , L0,k0q, pd0,1, . . . , d0,k0q, p, d̄
�
. Since

the number k0 of components is unknown, we introduce a prior for the random com-

ponent number K P t1, . . . , K0u, where K0 is a sufficiently large but fixed number.

Conditioning on K, each component can be specified by the GPVS prior (2.17).

Denote bhpBhq and ahpAhq the (random) inclusion vector and (random) length scale

for the h-th component. As a result, the additive GP variable selection (AGPVS)

prior for the random additive function W has the following hierarchical model: for°K0

k�0 pk � 1, pk ¡ 0, k � 0, 1, . . . , K0,

P pK � kq � pk, for k � 0, 1, . . . , K0,

P pBh � bhq9p�|bh|p1� p�1qp�|bh|Ip|bh| ¤ d0q, for h ¤ K,

A
|Bh|
h |Bh � Gapa1, a2q, for h ¤ K,

WBh
h |Ah, Bh � GP p0, KBh

Ah
q, for h ¤ K,

W �
Ķ

h�1

WBh
h .

The posterior contraction rate of the AGPVS prior is provided by the following

theorem:

Theorem 12. Assume that f0 P ΣA

�pα0,1, . . . , α0,k0q, pL0,1, . . . , L0,k0q, pd0,1, . . . , d0,k0q,
p, d̄

�
. If p Ñ 8 as n Ñ 8, d0 ¥ max1¤h¤k0 |d0h | and k0 ¤ K0, then the posterior
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contraction rate εn of the AGPVS prior is at least

a
K0

� k0̧

h�1

L
c0,h{p2�c0,hq
0,h n�1{p2�c0,hqplog nqβ1,h �

c
K0d0 log p

n
plog nqβ2



,

where c0,h � |b0,h|{α0,h, β1,h � p1� |b0,h|q{p2� c0,hq � p1� d0q{2 and β2 � p1� d0q{2.

In practice, in order to accommodate the unknown number k0 of components,

which is assumed to be fixed, we can allow K0 to slowly grow with the sample size

n in a slow rate and still attain a near optimal rate. For example, if K0 is of order

Opplog nqγq for some γ ¡ 0, then the convergence rate only differs from the minimax

rate up to a logarithmic factor. Again, since we only know upper bounds d0 and K0

for d0,h and k0 respectively, we have K0d0 log p{n instead of
°k0

h�1 |b0,h| log p{n in the

variable selection uncertainty error.
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3

Nonparametric regression on manifolds

3.1 Introduction

Dimensionality reduction in nonparametric regression is of increasing interest given

the routine collection of high-dimensional predictors in many application areas. In

particular, our primary focus is on the regression model

Yi � fpXiq � εi, εi � Np0, σ2q, i � 1, . . . , n, (3.1)

where Yi P R, Xi P RD, f is an unknown regression function, and εi is a residual

having variance σ2. We face problems in estimating f accurately due to the moderate

to large number of predictors D. Fortunately, in many applications, the predictors

have support that is concentrated near a d-dimensional subspace M. If one can

learn the mapping from the ambient space to this subspace, the dimensionality of

the regression function can be reduced massively from D to d, so that f can be much

more accurately estimated.

There is an increasingly vast literature on the topic of subspace learning, but there

remains a lack of approaches that allow flexible non-linear dimensionality reduction,

are scalable computationally to moderate to large D, have theoretical guarantees
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and provide a realistic characterization of uncertainty. Regarding this last point, we

would like to be able to characterize uncertainty in estimating the regression function

f , in functionals of f of interest and in predictions. Typical two-stage approaches

in which one conducts dimensionality reduction in a first stage, and then plugs the

d-dimensional features into a next stage regression may provide a point estimate with

good properties but do not characterize uncertainty in this estimate.

With this motivation, we focus on Bayesian nonparametric regression methods

that allow M to be an unknown Riemannian manifold. One natural direction is to

choose a prior to allow uncertainty in M, while also placing priors on the mapping

from xi toM, the regression function relating the lower-dimensional features to the

response, and the residual variance. Some related attempts have been made in the

literature. Tokdar et al. (2010) propose a logistic Gaussian process model, which

allows the conditional response density fpy|xq to be unknown and changing flexibly

with x, while reducing dimension through projection to a linear subspace. Their

approach is elegant and theoretically grounded, but does not scale efficiently as D

increases and is limited by the linear subspace assumption. Also making the linear

subspace assumption, Reich et al. (2011) proposed a Bayesian finite mixture model

for sufficient dimension reduction. Page et al. (2013) instead propose a method for

Bayesian nonparametric learning of an affine subspace motivated by classification

problems.

There is also a limited literature on Bayesian nonlinear dimensionality reduction.

Gaussian process latent variable models (GP-LVMs) (Lawrence, 2003) were intro-

duced as a nonlinear alternative to PCA for visualization of high-dimensional data.

Kundu and Dunson (2011) proposed a related approach that defines separate Gaus-

sian process regression models for the response and each predictor, with these models

incorporating shared latent variables to induce dependence. The latent variables can

be viewed as coordinates on a lower dimensional manifold, but daunting problems
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arise in attempting to learn the number of latent variables, the distribution of the la-

tent variables, and the individual mapping functions while maintaining identifiability

restrictions. Chen et al. (2010) instead approximate the manifold through patching

together hyperplanes. Such mixtures of linear subspace-based methods may require

a large number of subspaces to obtain an accurate approximation even when d is

small.

It is clear that probabilistic models for learning the manifold face daunting sta-

tistical and computational hurdles. In this article, we take a very different ap-

proach in attempting to define a simple and computationally tractable model, which

bypasses the need to estimate M but can exploit the lower-dimensional manifold

structure when it exists. In particular, our goal is to define an approach that ob-

tains a minimax-optimal adaptive rate in estimating f , with the rate adaptive to the

manifold and smoothness of the regression function. Surprisingly, we show that this

can be achieved with a simple Gaussian process prior.

Section 3.2 defines the proposed model and gives some basic geometric back-

ground along with a heuristic motivation for the model. Section 3.3 contains sim-

ulation studies of finite sample performance relative to competitors, and Section 7

discusses the results. Appendix B.1 contains a more thorough background of neces-

sary geometric concepts. Appendix B.2 provides the technical proofs.

3.2 Gaussian processes on manifolds

3.2.1 Background

Gaussian processes (GP) are widely used as prior distributions for unknown func-

tions due to tractable posterior computation and strong theoretical guarantees. For

example, in the nonparametric regression (3.1), a GP can be specified as a prior for

the unknown function f . In classification, the conditional distribution of the binary
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response Yi is related to the predictor Xi through a known link function h and a

regression function f as Yi|Xi � Ber
�
htfpXiqu

�
, where f is again given a GP prior.

The following developments will mainly focus on the regression case. The GP with

squared exponential covariance is a commonly used prior in the literature. The law

of the centered squared exponential GP tWx : x P X u is entirely determined by its

covariance function,

Kapx, yq � EWxWy � expp�a2||x� y||2q, (3.2)

where the predictor domain X is a subset of RD, || � || is the usual Euclidean norm

and a is a length scale parameter. Although we focus on the squared exponential

case, our results can be extended to a broader class of covariance functions with

exponentially decaying spectral density, including standard choices such as Matérn,

with some elaboration. We use GP pm,Kq to denote a GP with mean m : X Ñ R

and covariance K : X � X Ñ R.

Given n independent observations, the minimax rate of estimating a D-variate

function that is only known to be Hölder s-smooth is n�s{p2s�Dq (Stone, 1982). A

function in RD is said to be Hölder s-smooth if it has bounded mixed partial deriva-

tives up to order tsu for tsu the largest integer strictly smaller than s with the partial

derivative of order tsu being Lipschitz-continuous of order s � tsu. Surprisingly,

van der Vaart and van Zanten (2009) proved that, for Hölder s-smooth functions, a

prior specified as

WA|A � GP p0, KAq, AD � Gapa0, b0q, (3.3)

for Gapa0, b0q the Gamma distribution with pdf pptq9ta0�1e�b0t leads to the minimax

rate n�s{p2s�Dq up to a logarithmic factor plog nqβ with β � D adaptively over all

s ¡ 0 without knowing s in advance. The superscript inWA indicates the dependence

on A, which can be viewed as a scaling or inverse bandwidth parameter. Although

the sample paths from this GP prior are almost surely infinitely differentiable, an
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Figure 3.1: In this data, 72 size 128 � 128 images were taken for a “lucky cat”
from different angles: one at every 5 degrees of rotation. 36 images are displayed in
this figure.

intuitive explanation for such smoothness adaptibility is that less regular or wiggly

functions can be well approximated by shrinking the long path of a smooth function

by a large factor a.

In many real problems, the predictor X can be represented as a vector in high

dimensional Euclidean space RD, where D is called the ambient dimensionality. Due

to the curse of dimensionality, the minimax rate n�s{p2s�Dq will deteriorate rapidly

as D increases. This will become extremely fatal in the notorious small n large

p problem, where D can be much larger than the sample size n. In such high

dimensional situations, there is no hope to accurately estimate the regression function

f without any assumption on the true model. One common assumption requires that

f only depends on a small number d ! n of components of the vector X that are

identified as important. In the GP prior framework, Savitsky et al. (2011) proposed to

use “spike and slab” type point mass mixture priors for different scaling parameters
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for each component of X to do Bayesian variable selection. Bhattacharya et al.

(2012) showed that carefully calibrated implementations of this approach can lead

to minimax adaptive rates of posterior concentration. However, variable selection is

a very restrictive notion of dimension reduction. Our focus is on a different notion,

which is that the predictor lies on a manifold M of intrinsic dimension d much

lower than the ambient space dimension D. This manifold can be considered as a

d dimensional hyper surface in RD. A rigorous definition is described in section 3.

A concrete example is shown in Fig.3.1. These data (Nene et al. (1996)) consist

of 72 images of a “lucky cat” taken from different angles 5�, 10�, . . .. The predictor

X P R1282
is obtained by vectorizing the 128 � 128 image. The response Y is a

continuous function f of the rotation angle θ P r0, 2πs satisfying fp0q � fp2πq,
such as sin or cos functions. Intuitively, the predictor X concentrates on a circle in

D � 1282-dim ambient space and thus the intrinsic dimension d of X is equal to one,

the dimension of the rotation angle θ.

3.2.2 Our model and rate adaptivity

When X PM with M d-dimensional, a natural question is whether we can achieve

the intrinsic rate n�s{p2s�dq for f Hölder s-smooth without estimating M. Surpris-

ingly, the answer is affirmative. Ye and Zhou (2008) showed that a least squares

regularized algorithm with an appropriate d dependent regularization parameter can

ensure a convergence rate at least n�s{p8s�4dqplog nq2s{p8s�4dq for functions with Hölder

smoothness s ¤ 1. Bickel and Li (2007) proved that local polynomial regression with

bandwidth dependent on d can attain the minimax rate n�s{p2s�dq for functions with

Hölder smoothness s ¤ 2. However, similar adaptive properties have not been es-

tablished for a Bayesian procedure. In this paper, we will prove that a GP prior on

the regression function with a proper prior for the scaling parameter can lead to the

minimax rate for functions with Hölder smoothness s ¤ t2, γ � 1u, where γ is the
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smoothness of the manifoldM. In the remainder of this section, we first propose the

model, and then provide a heuristic argument explaining the possibility of manifold

adaptivity. Formal definitions and descriptions of important geometric concepts can

be found in the next section.

Analogous to (3.3), we propose the prior for the regression function f as

WA|A � GP p0, KAq, Ad � Gapa0, b0q, (3.4)

where d is the intrinsic dimension of the manifold M and Ka is defined as in (3.2)

with || � || the Euclidean norm of the ambient space RD. Although the GP in (3.4) is

specified through embedding in the RD ambient space, we essentially obtain a GP on

M if we view the covariance function Ka as a bivariate function defined onM�M.

Moreover, this prior has two major differences with usual GPs or GP with Bayesian

variable selection:

1. Unlike GP with Bayesian variable selection, all predictors are used in the cal-

culation of the covariance function Ka;

2. The dimension D in the prior for inverse bandwidth A is replaced with the

intrinsic dimension d.

Generally, the intrinsic dimension d is unknown and needs to be estimated. Many

estimation methods has been proposed (Carter et al., 2010; Camastra and Vinviarelli,

2002; Levina and Bickel, 2004; Little et al., 2009). For example, Levina and Bickel

(2004) considered a likelihood based approach and Little et al. (2009) relies on sin-

gular value decomposition of local sample covariance matrix. We will use Levina and

Bickel (2004) to obtain an estimator d̂ and then plug in this estimator into our prior

(3.4) to obtain an empirical Bayes approach.

In our model, we only need to estimate the intrinsic dimensionality d rather

than the manifold M. Most algorithms for learning M become computationally
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demanding as the ambient space dimensionality D increases, while estimating d is

fast even when D is tens of thousands. Moreover, although we use the full data in the

calculation of the covariance function, computation is still fast for moderate sample

sizes n regardless of the size of D since only pairwise Euclidean distances among D-

dimensional predictors are involved whose computational complexity scales linearly

in D. This dimensionality scalability provides huge gains over two stage approaches

(section 2.3) in high dimensional regression settings even though they can also achieve

the optimal posterior convergence rate (Theorem 15).

Intuitively, one would expect that geodesic distance should be used in the square

exponential covariance function (3.2). However, there are two main advantages of

using Euclidean distance instead of geodesic distance. First, when geodesic distance

is used, the covariance function may fail to be positive definite. In contrast, with

Euclidean distance in (3.2), Ka is ensured to be positive definite. Second, for a given

manifold M, the geodesic distance can be specified in many ways through different

Riemannian metrics onM (section 3.1). According to Lemma 68, all these geodesic

distances are equivalent to each other and the Euclidean distance on RD. Therefore,

by using the Euclidean distance, we bypass the need to estimate geodesic distance,

but still reflect the geometric structure of the observed predictors in terms of pairwise

distances.

We provide heuristic explanations on why the rate can adapt to the predictor

manifold through two observations. The first focuses on the possibility of obtaining

an intrinsic rate for the regression problem (3.1) per se. Although the ambient space

is RD, the support M of the predictor X is a d dimension submanifold of RD. As a

result, the GP prior specified in section 2.1 has all probability mass on the functions

supported on this support, leading the posterior contraction rate to entirely depend

on the evaluations of f on M. More specifically, the posterior contraction rate is
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lower bounded by any sequence tεn : n ¥ 1u such that

Π
�
dpf, f0q ¡ εn|Xn

�Ñ 0, nÑ 8,

where ΠpA|Xnq is the posterior probability of A and d2pf, f0q � p1{nq°n
i�1

�
fpxiq �

f0pxiq
�2

under fixed design or d2pf, f0q �
³
M

�
fpxq � f0pxq

�2
Gpdxq under random

design, with G the marginal distribution for predictor X. Hence, dpf, f0q measures

the discrepancy between f and the truth f0, and only depends on the evaluation of

f on M. Therefore, in a prediction perspective, we only need to fit and infer f on

M. Intuitively, we can consider a special case when the points on manifoldM have

a global smooth representation x � φptq, where t P Rd is the global latent coordinate

of x. Then the regression function

fpxq � f
�
φptq� � hptq, t P Rd, (3.5)

is essentially a d-variate s-smooth function if φ is sufficiently smooth. Then estima-

tion of f on RD boils down to estimation of h on Rd and the intrinsic rate would be

attainable. For the general case, we can consider parameterizing a compact manifold

M by a finite number of local charts tpUi, φiq : i � 1, . . . ,mu and obtain (3.5) for x

in each local neighborhood Ui �M. However, since the parametrization µ in (3.5)

is unknown or even does not exist, one possible goal is to develop methods that can

adapt to low dimensional manifold structure.

This motivates the second observation on the possibility of obtaining the in-

trinsic rate via the ambient space GP prior specified in (3.3). With this prior,

the dependence among tfpxiquni�1 is entirely characterized by the covariance matrix

pKApxi, xjqqn�n, which depends on the pairwise Euclidean distance e among observed

predictors txiuni�1. Ideally, a distance dM used in the covariance matrix should be

an intrinsic distance, which measures the distance by traveling from one point to

the other without leaving M. More formally, an intrinsic distance is defined as the

infimum of the length of all paths between two points. In the special case of (3.5),
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Figure 3.2: Examples of one dimensional submanifolds in R2.

dMpx, x1q would be e
�
φ�1pxq, φ�1px1q� if φ is an isometric embedding from Rd into

RD. Fig. 3.2 also gives two simple examples where M is a one dimensional sub-

manifold in R2. Although B and C are close in Euclidean distance, they are far

away in terms of intrinsic distance, which is the length of the arc from B to C.

Fortunately, Lemma 68 in the next section suggests that for compact submanifolds,

this bad phenomenon only occurs for remote points — d and dM will become com-

parable as two points move close. Moreover, as two points A and B become closer,

using d to approximate the intrinsic distance dM only introduces higher order error

(see Proposition 67) proportional to the curvature of M, which characterizes local

distortion. In contrast, in the right plot is a straight segment in R2. In this case

Euclidean distance always matches the intrinsic distance and whether the M itself

is known would make no difference in predicting f since a straight segment is locally

flat and has zero curvature.

A typical nonparametric approach estimates fpxq by utilizing data at points near

x, such as averaging over samples in a δn-ball around x, where the bandwidth δn

decreases with sample size n. It is expected that as more observations come in,

properly shrinking δn could suppress both bias and variance, where the former is

caused by local averaging and the latter is due to measurement error. This is only
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possible when f has certain smoothness such that large local fluctuations are not

allowed. Therefore bandwidth tends to decrease at rate n�1{p2s�dq depending on the

smoothness level s of f . Since the scaling parameter a in the covariance function

Ka serves as an inverse bandwidth which would grow at rate n1{p2s�dq, remote points

tend to have exponentially decaying impact. As a result, one can imagine that

accurate approximation of local intrinsic distance could provide good recovery of f

as if we know the manifold and the associated intrinsic metric dM. Note that for

manifold M, the notion of “closeness” is characterized by the geodesic distances

defined onM. Often geodesic distances onM are not uniquely determined (section

3.1). Fortunately, Lemma 68 implies that for compact submanifolds, all distance

metrics induced by Riemannian metrics on M are equivalent. Therefore we can

choose any valid Riemannian metric as the base metric, which is the one induced

by the ambient Euclidean metric in this paper. The following theorem is our main

result which formalizes the above observations.

Theorem 13. Assume that M is a d-dimensional compact Cγ submanifold of RD.

For any f0 P CspMq with s ¤ mint2, γ � 1u, if we specify the prior as (3.3), then

(B.8) will be satisfied for εn a multiple of n�s{p2s�dqplog nqκ1 and ε̄n a multiple of

εnplog nqκ2 with κ1 � p1 � dq{p2 � d{sq and κ2 � p1 � dq{2. This implies that the

posterior contraction rate will be at least a multiple of n�s{p2s�dqplog nqd�1.

The ambient space dimension D implicitly influences the rate via a multiplicative

constant. This theorem suggests that the Bayesian model (3.4) can adapt to both the

low dimensional manifold structure of X and the smoothness s ¤ 2 of the regression

function. The reason the near optimal rate can only be allowed for functions with

smoothness s ¤ 2 is the order of error in approximating the intrinsic distance dM

by the Euclidean distance d (Proposition 67). Even if the intrinsic dimensionality d

is misspecified as d1, the following theorem still ensures the rate to be much better
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pM, gMq
Φ
��

Id
// pM, g̃Mq

Φ̃
��

pRD, eq Ψ // pRd̃, ẽq
Figure 3.3: (Communicative) diagrams explaining the relationship between original
ambient space and feature space.

than n�Op1{Dq when d1 is not too small.

Theorem 14. Assume the same conditions as in Theorem 13, but with the prior

specified as (3.3) with d1 � d and d1 ¡ d2{p2s� dq.

1. If d1 ¡ d, then the posterior contraction rate will be at least a multiple of

n�s{p2s�d
1qplog nqκ, where κ � p1� dq{p2� d1{sq;

2. If d2

2s�d   d1   d, then the posterior contraction rate will be at least a multiple

of n
� p2s�dqd1�d2

2p2s�dqd1 plog nqκ, where κ � pd� d2q{p2d1 � dd1{sq � p1� dq{2.

3.2.3 Dimensionality reduction and diffeomorphism invariance

Tenenbaum et al. (2000) and Roweis and Saul (2000) initiated the area of manifold

learning, which aims to design non-linear dimensionality reduction algorithms to map

high dimensional data into a low dimensional feature space under the assumption

that data fall on an embedded non-linear manifold within the high dimensional am-

bient space. A combination of manifold learning and usual nonparametric regression

leads to a two-stage approach, in which a dimensionality reduction map from the

original ambient space RD to a feature space Rd̃ is estimated in the first stage and a

nonparametric regression analysis with low dimensional features as predictors is con-

ducted in the second stage. As a byproduct of Theorem 13, we provide a theoretical

justification for this two stage approach under some mild conditions.

Fig. 3.3 describes relationships used in formalizing this theory. The original

predictor manifold M sits in the ambient space RD. A Riemannian metric gM
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on M is induced by the embedding map Φ and the Euclidean metric e on RD.

Ψ : RD Ñ Rd̃ is a dimensionality reduction map such that the restriction ΨM of Ψ

on the embedding image ΦpMq �M is a diffeomorphism, which requires ΨM to be

injective and both ΨM and its inverse to be smooth. The former requirement would

imply d̃ ¥ d. Diffeomorphism is the least and only requirement such that both the

intrinsic dimension d of predictor X and smoothness s of regression function f are

invariant. Ψ will naturally induce an embedding

Φ̃ � Ψ � Φ : pM, g̃Mq Ñ pRd̃, ẽq, (3.6)

where the new Riemannian metric g̃M is induced by the Euclidean metric ẽ of Rd̃.

Finally Id is an identity map between the same set M with different Riemannian

metrics. Such a map Ψ could also be chosen so that the induced embedding Φ̃

satisfies some good properties, such as the equivariant embedding in shape analysis

(Kent, 1992). Due to the dimensionality reduction, the regression function becomes

fpxq � f
�
Ψ�1

Mpx̃q� � f̃px̃q,

where f̃ is a well defined function on the manifold M represented in Rd̃ and has

the same smoothness as f . Therefore, by specifying a GP prior (3.3) directly on Rd̃,

we would be able to achieve a posterior contraction rate at least n�s{p2s�dqplog nqd�1.

The above heuristic can be formalized into the following theorem.

Theorem 15. Assume that M is a d-dimensional compact Cγ submanifold of RD.

Suppose that Ψ : RD Ñ Rd̃ is an ambient space mapping (dimension reduction)

such that Ψ restricted on ΦpMq is a Cγ1-diffeomorphism onto its image. Then by

specifying the prior (3.3) with tΨpXiquni�1 as observed predictors and Euclidean norm

of Rd̃ as || � || in (3.2), for any f0 P CspMq with s ¤ mint2, γ�1, γ1�1u, (B.8) will be

satisfied for εn � n�s{p2s�dqplog nqκ1 and ε̄n � εnplog nqκ2 with κ1 � p1� dq{p2� d{sq
and κ2 � p1 � dq{2. This implies that the posterior contraction rate will be at least

εn � n�s{p2s�dqplog nqd�1.
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3.2.4 Measurement error in the predictors

In applications, predictor Xi may not exactly lie on the manifoldM. We assume that

Xi � Xi0 � εi, where Xi0 PM falls on the manifold and εi � NDp0, σ2
XIDq are i.i.d

measurement errors. In this case, choosing a linear projection map ΨP P Rd̃�D as the

dimensionality reduction Ψ in the previous section can provide huge gain in terms of

smoothing the data. As long as the elements of ΨP do not have large variations, the

central limit theorem ensures that the noise part ΨP ε has order OppD�1{2q, where

ε � pε1, . . . , εnq P RD�n. It is not straightforward to deterministically specify a linear

projection ΨP having good properties. Hence, we consider randomly generating ΨP

by sampling the elements i.i.d from a common distribution. The following multiplier

central limit theorem (van der Vaart and Wellner, 2000, Lemma 2.9.5) provides

support.

Lemma 16. Let Z1, Z2, . . . be i.i.d. Euclidean random vectors with EZi � 0 and

E||Zi||2   8 independent of the i.i.d. sequence ξ1, ξ2, . . ., with Eξi � 0 and Eξ2
i � 1.

Then conditionally on Z1, Z2, . . .,

?
m

m̧

j�1

ξiZi Ñ Np0, covpZ1qq in distribution,

for almost every sequence Z1, Z2, . . ..

For a fixed row ΨP
l � pζl1, . . . , ζlDq, its i.i.d components ζlj can be viewed as

ξj in the lemma. Denote the rows of the noise matrix ε by εp1q, . . . , εpDq. Viewing

εpjq as the Zj, by Lemma 16, we obtain that the new projected lth predictor vec-

tor ΨP
l pX1, . . . , XnqT P Rd̃ has noise ΨP

l ε �
°D
j�1 Ψljεj � OppD�1{2q. Therefore, the

noise in the original predictors is reduced by random projection. The question is then

whether the projected predictors can be included in a GP regression without sacri-

ficing asymptotic performance relative to using Xi0. The answer is the affirmative

relying on Theorem 15 by the following argument.
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Theorem 15 only requires that ΨP is a diffeomorphism when restricted on M.

Surprisingly, Baraniuk and Wakin (2009) (Theorem 3.1) proved more than this in

the sense that for a compact d-dimensional Riemannian submanifold M of RD and

a column normalized random projection ΨP , if the projected dimension d̃ is larger

than O
�
dδ�2 logpCDδ�1q logpρ�1q�, where C is a positive constant depending onM,

then with probability at least 1� ρ, for every pair of points x, y PM, the following

holds

p1� δq
d
d̃

D
¤ ||ΨPx�ΨPy||

||x� y|| ¤ p1� δq
d
d̃

D
,

where || � || is the Euclidean norm in RD or Rd̃. This theorem implies that ΨP

preserve the ambient distances up to a scaling
b
d̃{D on the manifold by choosing

δ ! 1. In addition, this distance preservation property can also be extended to

geodesic distances (Baraniuk and Wakin, 2009, Corollary 3.1). Under the noised

case, by normalizing the columns in ΨP , the noise ΨP
l ε has order OppD�1q, which is

of higher order compare to the scaling OpD�1{2q in this theorem. Therefore, even if

noise exists, a combination of the distance preservation property with the fact that

ΨP is a linear map implies that with large probability, ΨP would be a diffeomorphism

when restricted onM. Then Theorem 15 ensures that applying random projections

in the first stage and plug in these projected predictors in a second state will not

sacrifice anything asymptotically relative to using Xi0 in the GP.

3.3 Numerical example

We provide a numerical example using the lucky cat data (Fig. 3.1). This data set has

intrinsic dimensionality one, which is the dimension of the rotation angle θ. Since we

know the true value of θ, we create the truth f0pθq � cos θ as a continuous function

on the unit circle. The responses are simulated from Yi � f0pθiq � εi by adding
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independent Gaussian noises εi � Np0, 0.12q to the true values. In this model, the

total sample size N � 72 and the predictors Xi P Rp with D � 16, 384. To assess the

impact of the sample size n on the fitting performance, we randomly divide n � 18,

36 and 64 samples into training set and treat the rest as testing set. Training set

is used to fit a model and testing set to quantify the estimation accuracy. For each

training size n, we repeat this procedure for m � 100 times and calculate the square

root of mean squared prediction error (MSPE) on the testing set,
m̧

l�1

1

N � n

¸
iPTl

||Ŷi � f0pθiq||2,

where Tl is the lth testing set and Ŷi is an estimation of ErY |Xis � f0pθiq. We

apply three GP based algorithms on this data set: 1. vanilla GP specified by (3.4);

2. Two stage GP (2GP) where the D-dimensional predictors were projected into R2

by using Laplacian eigenmap (Belkin, 2003) in the first stage and then a GP with

projected features as predictors was fitted in the second stage; 3. Random projection

GP (RPGP) where the new predictors were produced by projecting the original

predictors into R1000 with a random projection matrix ΨP � pΨljq P R1000�16384

with Ψlj � i.i.d. Np0, 1q. To assess the prediction performance, we also compare

our GP prior based models (3.4) with lasso (Tibshirani, 1996) and elastic net (EN)

(Zou and Hastie, 2005) under the same settings. We choose these two competing

models because they are among the most widely used methods in high dimensional

regression settings and perform especially good when the true model is sparse. In

the GP models, we set d � 1 since the sample size for this dataset is too small for

most dimension estimation algorithms to reliably estimate d. In addition, for each

simulation, we run 10, 000 iterations with the first 5, 000 as burn-in.

The results are shown in Table. 3.1. As we can see, under each training size

n, GP performs the best. Moreover, as n increases, the prediction error of GP

decays much faster than EN and Lasso: when n � 18, the square root of MSPEs
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Table 3.1: Square root of MSPE for the lucky cat data by using three different
approaches over 100 random splitting are displayed. The numbers in the parenthesis
indicate the standard deviations.

n � 18 n � 36 n � 54
EN .416(.152) .198(.042) .149(.031)

LASSO .431(.128) .232(.061) .163(.038)
GP .332(.068) .128(.036) .077(.014)
2GP .181(.051) .124(.038) .092(.021)

RPGP .340(0.071) .130(.039) .077(.015)

by using EN and lasso are about 125% of that by using GP; however as n increases

to 54, this ratio becomes about 200%. Moreover, the standard deviation of square

root of MSPEs by using GP are also significantly lower than those by using lasso

and EN. Among GP based methods, RPGP has slightly worse performance than

GP under small training size, but as n grows to 54, they have comparable MSPEs.

It is not surprising that 2GP has better performance than GP when n is small

since the dimensionality reduction map Ψ is constructed using the whole dataset

(the Laplacian eigenmap code we use cannot do interpolations). Therefore when

the training size n become closer to the total data size 72, GP becomes better.

In addition, GP is computationally faster than 2GP due to the manifold learning

algorithm in the first stage of 2GP.

To compare the performances between GP and RPGP in the case when there are

noises in the predictors, we add Np0, σXIDq noises into each predictor vector Xi with

noise levels σX � 0, 10, 20, 40 and 80, where the range of predictors is 0 � 255. We

also change the projected dimension d̃ from 10 to 1, 000. The training size n is fixed

at 54. Table. 3.2 displays the results.

As we can see, for small d̃ � 10 or 100, applying GP on the original predictors

appears to be better than RPGP on the projected predictors under any settings. As

d̃ grows to 1, 000, GP and RPGP have similar performances in the noise free setting.

However, as noises are added to the predictors, RPGP with d̃ � 1, 000 outperforms
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Table 3.2: Square root of MSPE for the lucky cat data with noised predictors. results
over 100 random splitting are displayed. The numbers in the parenthesis indicate
the standard deviations.The numbers after RPGP indicates the projected dimension
d̃.

σX 0 10 20 40 80
GP .077(.014) .095(.015) .116(.017) .180(.020) .276(.23)

RPGP(10) .275(.065) .291(.069) .335(.075) .452(.085) .606(.102)
RPGP(100) .106(.023) .116(.026) .143(.033) .225(.043) .360(.065)
RPGP(1000) .077(.015) .088(.017) .102(.018) .178(.021) .289(.033)

GP. However, as the noise increases to the order comparable to the signals, GP

becomes close to and finally outperforms RPGP. In addition, the standard deviation

of RPGP also grows rapidly as noise increases. This suggests that GP might be more

stable than RPGP under small signal-to-noise ratio scenarios.

3.4 Discussion

In this work, we considered a nonparametric Bayesian prior for high dimensional

regression when the predictors are assumed to be lying on a low dimensional intrinsic

manifold. The proposed prior can be considered as an extension of a Gaussian process

prior on Euclidean space to a general submanifold. We show that this GP prior can

attain near optimal posterior convergence rate that can adapt to both the smoothness

of the true function ps ¤ 2q and the underlying intrinsic manifold M. Our theorem

validates the surprising phenomenon suggested by Bickel in his 2004 Rietz lecture

(Bickel and Li, 2007) under the GP prior scenario:

“... the procedures used with the expectation that the ostensible

dimension D is correct will, with appropriate adaptation not involving

manifold estimation, achieve the optimal rate for manifold dimension d.”

Moreover, we also provide theoretical guarantees for two stage GP with dimen-

sionality reduction. We suggest the use of random projection GP as a special two

stage GP when noises exist in the predictors.

55



One possibility of our future work is to investigate whether the smoothness re-

quirement s ¤ 2 could be relaxed. This extension will be dependent on whether

Lemma 71 could be improved to s ¥ 2. Currently we construct the approximation

function Iapfq in RKHS through convolving f with the covariance function. It is not

clear whether this is the best way to approximate the function f by elements in the

RKHS.

A second possibility is to build a coherent model not only estimating the re-

gression function ErY |Xs, but simultaneously learning the dimensionality d of the

intrinsic manifoldM. Our current GP prior (3.4) completely ignores the information

contained in the marginal distribution PX of the predictor X. As an alternative, we

can only model part of PX and therefore utilize some of PX ’s information, such as

the support or dimensionality of M.
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4

Bayesian conditional tensor factorizations for
high-dimensional classification

4.1 Introduction

Classification problems involving high-dimensional categorical predictors have be-

come common in a variety of application areas, with the goals being not only to

build an accurate classifier but also to identify a sparse subset of important pre-

dictors. For example, genetic epidemiology studies commonly focus on relating a

categorical disease phenotype to single nucleotide polymorphisms encoding whether

an individual has 0, 1 or 2 copies of the minor allele at a large number of loci across

the genome. In such applications, it is expected that interactions play an important

role, but there is a lack of statistical methods for identifying important predictors

that may act through both main effects and interactions from a high-dimensional set

of candidates. Our goal is to develop nonparametric Bayesian methods for addressing

this gap.

There is a rich literature on methods for prediction and variable selection from

high or ultra high-dimensional predictors with a categorical response. The most
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common strategy would rely on logistic regression with the linear predictor having

the form x1iβ, with xi � pxi1, . . . , xipq1 denoting the predictors and β � pβ1, . . . , βpq1

regression coefficients. In high-dimensional cases in which p is the same order of n or

even p ¡ n, classical methods such as maximum likelihood break down but there is

a rich variety of alternatives ranging from penalized regression to Bayesian variable

selection. Popular methods include L1 penalization (Tibshirani, 1996) and the elastic

net (Zou and Hastie, 2005), which combines L1 and L2 penalties to accommodate

p " n cases and allow simultaneous selection of correlated sets of predictors. For effi-

cient L1 regularization in generalized linear models including logistic regression, Park

and Hastie (2007) proposed a solution path method. Genkin et al. (2007) propose

a related Bayesian approach for high-dimensional logistic regression under Laplace

priors. Wu et al. (2009) applied L1 penalized logistic regression to genome wide asso-

ciation studies. Potentially, related methods can be applied to identify main effects

and epistatic interactions (Yang et al., 2010), but direct inclusion of interactions

within a logistic model creates a daunting dimensionality problem limiting attention

to low-order interactions and modest numbers of predictors.

These limitations have motivated a rich variety of nonparametric classifiers, in-

cluding classification and regression trees (CART) (Breiman et al., 1984) and random

forests (RFs) (Breiman, 2001). CART partitions the predictor space so that samples

within the same partition set have relatively homogeneous outcomes. CART can

capture complex interactions and has easy interpretation, but tends to be unsta-

ble computationally and lead to low classification accuracy. RFs extend CART by

creating a classifier consisting of a collection of trees that are all used to vote for

classification. RFs can substantially reduce variance compared to a single tree and

result in high classification accuracy, but provide an uninterpretable machine that

does not yield insight into the relationship between specific predictors and the out-

come. Moreover, through our simulation results in section 6, we found that random
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forests did not behave well in high dimensional low signal-to-noise cases.

Our focus is on developing a new framework for nonparametric Bayes classifi-

cation through tensor factorizations of the conditional probability P pY � y |X1 �
x1, . . . , Xp � xpq, with Y P t1, . . . , d0u a categorical response and X � pX1, . . . , Xpq1

a vector of p categorical predictors. The conditional probability can be expressed as a

d1�� � ��dp tensor for each class label y, with dj denoting the number of levels of the

jth categorical predictor Xj. If p � 2 we could use a low rank matrix factorization of

the conditional probability, while in the general p case we could consider a low rank

tensor factorization. Such factorizations must be non-negative and constrained so

that the conditional probabilities add to one for each possible X, and are fully flexible

in characterizing the classification function for sufficiently high rank. Dunson and

Xing (2009) and Bhattacharya et al. (2012) applied two different tensor decomposi-

tion methods to model the joint probability distribution for multivariate categorical

data. Although an estimate of the joint pmf can be used to induce an estimate of the

conditional probability, there are clear advantages to bypassing the need to estimate

the high-dimensional nuisance parameter corresponding to the marginal distribution

of X.

We address such issues using a Bayesian approach that places a prior over the pa-

rameters in the factorization, and provide strong theoretical support for the approach

while developing a tractable algorithm for posterior computation. Some advantages

of our approach include (i) fully flexible modeling of the conditional probability al-

lowing any possible interactions while favoring a parsimonious characterization; (ii)

variable selection; (iii) a full probabilistic characterization of uncertainty providing

measures of uncertainty in variable selection and predictions; and (iv) strong the-

oretical support in terms of rates at which the full posterior distribution for the

conditional probability contracts around the truth. Notably, we are able to obtain

near a parametric rate even in ultra high-dimensional settings in which the number
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of candidate predictors increases exponentially with sample size. Such a result dif-

fers from frequentist convergence rates in characterizing concentration of the entire

posterior distribution instead of simply a point estimate. Similar contraction rate

results in p diverging with n settings are currently only available in simple parametric

models, such as the normal means problem (Castillo and van der Vaart, 2012) and

generalized linear models (Jiang, 2006). Although our computational algorithms do

not yet scale to massive dimensions, we can accommodate 1, 000s of predictors.

4.2 Conditional Tensor Factorizations

In section 2.1, we briefly introduce the tensor factorization techniques and describe

their relevance to high-dimensional classification. In section 2.2 and 2.3, we char-

acterize two desirable properties, which only rely on the structure of our proposed

model.

4.2.1 Tensor factorization of the conditional probability

Although there is a rich literature on tensor decompositions, little is in statistics. The

focus has been on two factorizations that generalize matrix singular value decompo-

sition (SVD). The most popular is parallel factor analysis (PARAFAC) (Harshman,

1970; Harshman and Lundy, 1994; Zhang and Golub, 2001), which expresses a ten-

sor as a sum of r rank one tensors, with the minimal possible r defined as the rank

(Fig.4.1). The second approach is Tucker decomposition or higher-order singular

value decomposition (HOSVD), which was proposed by Tucker (1966) for three-way

data and extended to arbitrary orders by De Lathauwer et al. (2000). HOSVD

expresses d1 � � � � � dp tensor A � tac1���cpu as

ac1���cp �
k1̧

h1�1

� � �
kp¸

hp�1

gh1���hp

p¹
j�1

u
pjq
hjcj

, (4.1)
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Figure 4.1: A diagram describes PARAFAC for 3 dimensional tensor. The lines
in the middle correspond to the mode vectors corresponding to each mode of the
tensor. The rightmost representation draws analogy to the matrix SVD.

where kjp¤ djq is the j-rank for j � 1, . . . , p and G � tgh1���hpu is a core tensor,

with constraints on G such as low rank and sparsity imposed to induce better data

compression and fewer components compared to PARAFAC (Fig.4.2). This is intu-

itively suggested by comparing Fig.4.1 and Fig.4.2: PARAFAC can be considered

as a special case of HOSVD when the core tensor G is restricted to be diagonal. In

HOSVD, the j-rank kj is the rank of the mode j matrix Apjq, defined by rearranging

elements of the tensor A into a dj � d1 � � � dj�1dj�1 � � � dp matrix such that each row

consists of all elements ac1���cp with the same cj. Although kj can be close to dj, low

rank approximations of A can lead to high accuracy and provide satisfactory results

(Eldén and Savas (2009),Vannieuwenhoven et al. (2012)).

For probability tensors, we need nonnegative versions of such decompositions

(Kim and Choi (2007)) and the concept of rank changes accordingly (Cohen and

Rothblum, 1993). In the following, we solely consider nonnegative HOSVD, where

all quantities in (4.1) are nonnegative. We define k � pk1, . . . , kpq to be a multirank

of a nonnegative tensor A if: 1. A has a representation (4.1) with k; 2. k has the

minimum possible size, which is defined by |k| �±p
j�1 kj. Note that the rank in this

definition might not be unique but representations with different multirank k have

the same number of parameters in the core tensors. This suggests that the multirank

k reflects the best possible tensor compression level.

The conditional probability P pY � y|X1 � x1, . . . , Xp � xpq can be structured as
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Figure 4.2: A diagram describes HOSVD for 3 dimensional tensor. The smaller
cube G is the core tensor and the rectangles are the mode matrices upjq’s correspond-
ing to each mode of the tensor.

a d0 � d1 � � � � � dp dimensional tensor. We call such tensors conditional probability

tensors. Let Pd1,...,dppd0q denote the set of all conditional probability tensors, so that

P P Pd1,...,dppd0q implies

P py|x1, . . . , xpq ¥ 0 @y, x1, . . . , xp,
d0̧

y�1

P py|x1, . . . , xpq � 1 @x1, . . . , xp.

To ensure that P is a valid conditional probability, the elements of the tensor must

be non-negative with constraints on the first dimension for Y. A primary goal is

accommodating high-dimensional covariates, with the overwhelming majority of cells

in the table corresponding to unique combinations of Y and X unoccupied. In such

settings, it is necessary to encourage borrowing information across cells while favoring

sparsity.

Our proposed model for the conditional probability has the form:

P py|x1, . . . , xpq �
k1̧

h1�1

� � �
kp¸

hp�1

λh1h2...hppyq
p¹
j�1

π
pjq
hj
pxjq, (4.2)

with the parameters subject to

d0̧

c�1

λh1h2...hppcq � 1, for any possible combination of ph1, h2, . . . , hpq,

kj¸
h�1

π
pjq
h pxjq � 1, for any possible pair of pj, xjq. (4.3)
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Analogous to HOSVD, we preserve the names core tensor for Λ � tλh1���hppyqu and

mode matrices for π � tπpjqhj pxjqu. More specifically, the dj � kj matrix πpjq with

pu, vqth element π
pjq
v puq will refer to the jth mode matrix. Similar to the definition

of multirank for nonnegative tensors, we define k � pk1, . . . , kpq to be a multirank of

the conditional probability tensor P if: 1. P has a representation (C.12) satisfying

the constraints (C.10) with k; 2. k has the minimum possible size |k|. In the rest

of this article, we always consider the representation (C.12) with a multirank k.

Intuitively, pd0 � 1q|k| is equal to the degrees of freedom of the core tensor Λ, and

controls the complexity of the model. By allowing |k| to gradually increase with

sample size, one can obtain a sieve estimator. The value of kj controls the number

of parameters used to characterize the impact of the jth predictor. In the special

case in which kj � 1, the jth predictor is excluded from the model, so sparsity can

be imposed by setting kj � 1 for most j’s.

We format the conditional probability P py|x1, . . . , xpq as a d1 � � � � � dp vector

V ectP py|�qu �  
P py|1, . . . , 1, 1q, P py|1, . . . , 1, 2q, . . . , P py|1, . . . , 1, dpq, . . . ,

P py|1, . . . , dp�1, dpq, . . . , P py|d1, . . . , dp�1, dpq
(1

and λh1,...,hppyq as a k1 � � � � � kp vector

V ectΛpyqu �  
λ1,...,1,1pyq, λ1,...,1,2pyq, . . . ,

λ1,...,1,kppyq, . . . , λ1,...,kp�1,kppyq, . . . , λk1,...,kppyq
(1
.

Let πpjq be a dj � kj matrix with π
pjq
v puq as the pu, vqth element. It is a stochastic

matrix, so rows sum to one, by constraint (C.10). Then representation (C.12) can

be written in vector form:

V ectP py|�qu � �
πp1q b πp2q b � � � b πppq

�
V ectΛpyqu, for y � 1, . . . , d0, (4.4)
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where b denotes the Kronecker product. Furthermore, if we let MatpP q and MatpΛq
be two stochastic matrices with the yth column V ectP py|�qu and V ectΛpyqu respec-

tively for y � 1, . . . , d0, then we can write the above d0 identities together as:

MatpP q � �
πp1q b πp2q b � � � b πppq

�
MatpΛq.

The following theorem provides basic support for factorization (C.12)-(C.10) through

showing that any conditional probability has this representation. The proof of this

theorem, which can be found in the appendix, sheds some light on the meaning of

k1, . . . , kp and how it is related to a sparse structure of the tensor.

Theorem 17. Every d0 � d1 � d2 � � � � � dp conditional probability tensor P P
Pd1,...,dppd0q can be decomposed as (C.12), with 1 ¤ kj ¤ dj for j � 1, . . . , p. Fur-

thermore, λh1h2...hppyq and π
pjq
hj
pxjq can be chosen to be nonnegative and satisfy the

constraints (C.10).

We can simplify the representation through introducing p latent class indicators

z1, . . . , zp for X1, . . . , Xp, with Y conditionally independent of pX1, . . . , Xpq given

pz1, . . . , zpq. The model can be written as

Yi|zi1, . . . , zip � Multinomial
�t1, . . . , d0u, λzi1,...,zip

�
,

zij|Xj � Multinomial
�t1, . . . , kju, πpjq1 pXjq, . . . , πpjqkj pXjq

�
, (4.5)

where λzi1,...,zip �
 
λzi1,...,zipp1q, . . . , λzi1,...,zippd0q

(
. Marginalizing out the latent class

indicators, the conditional probability of Y given X1, . . . , Xp has the form in (C.12).

4.2.2 Bias-variance trade off

In tensor factorization model (C.12), the multirank k controls the sparsity, charac-

terizing the impact of each predictor Xj through the “effective category count” kj.

For example, if the level of X1, say 1, 2, 3, can be divided into 2 classes t1u and t2, 3u
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such that P pY � y|X1 � 2, . . . , Xp � xpq � P pY � y|X1 � 3, . . . , Xp � xpq, then k1

is equal to 2. The following illustration suggests that to select k, we can use a hard

clustering approximation by setting π
pjq
hj
pxjq to be either zero or one (section 4.2).

We initially provide a heuristic argument to demonstrate the tendency of our

model to produce low mean squared error (MSE), which is defined as:

MSEpP̃ q �
» d0̧

y�1

E
�
P̃ py|x1, . . . , xpq � P0py|x1, . . . , xpq

�2
Gpdx1, . . . , dxpq

�
» d0̧

y�1

�
EP̃ py|x1, . . . , xpq � P0py|x1, . . . , xpq

�2
Gpdx1, . . . , dxpq

�
» d0̧

y�1

V arP̃ py|x1, . . . , xpqGpdx1, . . . , dxpq

�Bias2pP̃ q � VarpP̃ q, (4.6)

where P̃ is an estimator of the truth P0, G is the joint marginal distribution of the

covariates X and the expectation is taken with respect to the joint distribution of

pX, Y q. Our focus is on obtaining accurate estimates of the conditional probabil-

ity P pY |Xq; accurate estimates will lead to accurate classification while containing

information on classification uncertainty, of critical importance in medical decision

making among other areas.

For simplicity of exposition, assume the response Y to be binary. Denote by T

the set of all conditional probability tensors parameterized by (C.12). Let T0 be a

subset of T consisting of models with π
pjq
hj
pxjq being either zero or one. Then given

k and π, πpjq uniquely determines a hard clustering of Xj: Xj � xj belongs to the

hjpxjqth cluster, where hjpxjq is the unique hj such that π
pjq
hj
pxjq � 1. Consider

approximating P0 by this subset T0. Intuitively, the best MSE attained within T0

gives an upper bound on the optimal MSE achievable by the whole model class T .

To demonstrate the bias-variance trade-off in terms of the selection of the multirank
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k, we compare the MSE of the maximum likelihood estimators (MLE) in model space

T0 under different k and the clustering scheme determined by π. Define

εM � inf
PPT0:|kpP q|¤M

||P � P0||,

where |kpP q| denotes the size of the multirank of the conditional probability tensor

P and

||P � P0|| �
"» 2̧

y�1

|P py|x1, . . . , xpq � P0py|x1, . . . , xpq|2Gpdx1, . . . , dxpq
*1{2

. (4.7)

εM can be interpreted as the smallest error or bias caused by approximating P0 using

P P T0 with size |kpP q| ¤M , related to compressibility of P0.

Under degeneracy of the π’s, P py|x1, . . . , xpq � λh1px1q...hppxpqpyq, where hjpxjq is

defined previously as the unique hj such that π
pjq
hj
pxjq � 1. Given k and π, the MLE

of λh1...hp is the sample frequencies of Yi � y among all observations with covariates

Xi � pXi1, . . . , Xipq satisfying hjpXijq � hj for each j � 1, . . . , p:

λ̂h1...hppiq �
°

px1,...,xpq:hjpxjq�hj
°n
i�1 IpXi1 � x1, . . . , Xip � xp, Yi � iq°

px1,...,xpq:hjpxjq�hj
°n
i�1 IpXi1 � x1, . . . , Xip � xpq , i � 1, 2,

where 0{0 is defined to be 0 for simplicity. Although given k and π an unbiased

estimator does not exist due to model misspecification, the following lemma shows

that this MLE is still optimal in terms of minimizing the bias. A proof is sketched

in the appendix.

Lemma 18. Given k and π, among all estimators of λ’s, the MLE defined above

minimizes the Bias2pP̃ q in (4.6).

This lemma indicates that the εM has another characterization as

εM � min
pk,πq:|k|¤M,π degenerate

Bias
�
P̂ pk, πq�,
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where P̂ pk, πq is the MLE of P given pk, πq.
Intuitively, under the degeneracy of π, n samples are separated into |k| clusters

to estimate the corresponding λ’s, and the variance term in (4.6) should be of order

|k|{n. The following lemma formalizes this and a proof is sketched in the appendix.

Lemma 19. Given k and π, the VarpP̃ q as defined in (4.6) for the MLE P̂ satisfies

Var
�
P̂ pk, πq� � C|k|{n�Op|k|{n2q, (4.8)

where the constant C P ra, bs, where a, b ¡ 0 only depends on P0 and G.

Combining Lemma 18 and 19, given k and π, the MSE of MLE P̂ satisfies:

MSE
�
P̂ pk, πq� ¥ ε2|k| � C

|k|
n
�Op|k|{n2q.

This reflects the so-called bias-variance trade-off for our model: as |k| increases, the

model becomes more complex and thus the bias term decreases; however, the variance

term increases as more parameters are introduced. Therefore, there exists an optimal

model size |k| that solves |k| � nε2|k| minimizing the MSE. This typical trade-off also

appears in the Assumption B in section 3.2 where the posterior convergence rate is

studied.

4.2.3 Borrowing of information

The previous section discussed the bias-variance trade-off for a subclass of models

specified by (C.12), where π’s are degenerate at zero and one. In this section, we

illustrate another desirable property by allowing π’s to be continuous on r0, 1s: bor-

rowing of information across cells corresponding to each combination of X1, . . . , Xp.

Letting wh1,...,hppx1, . . . , xpq �
±

j π
pjq
hj
pxjq, model (C.12) is equivalent to

P pY � y|X1 � x1, . . . , Xp � xpq �
¸

h1,...,hp

wh1,...,hppx1, . . . , xpqλh1...hppyq, (4.9)
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and constraints (C.10) imply
°
h1,...,hp

wh1,...,hppx1, . . . , xpq � 1. In the special case

when π is degenerate, λh1...hppyq is just the conditional probability of Y � y given

the observations in cluster h1pX1q � h1, . . . , hppXpq � hp (for details, refer to the

descriptions in the paragraph before (4.7)). If π’s are allowed to be continuous, then

our model essentially uses a kernel estimate that allows borrowing of information

across clusters via a weighted average of the cluster frequencies.

To illustrate the strength of this, consider a simplified example involving one

covariate X with m categories and a binary response Y . In fact, each category of X

can correspond to a cluster as in the preceding paragraph and the implications can be

extended to our model by changing the notations. Let Pj � P pY � 1|X � jq for j �
1, . . . ,m. Then the MLE for pP1, . . . , Pmq is sample frequencies ps1{n1, . . . , sm{nmq,
denoted by pP̂1, . . . , P̂mq, where sj � 7ti : yi � 1 and xi � ju and nj � 7ti : xi � ju.
Instead, kernel estimates (4.9) are

P̃k �
"

1�
¸
j�k

wjk

*
P̂k �

¸
j�k

wjkP̂j, k � 1, . . . ,m,

where wjk could be considered as the weight of the contribution to cluster k by cluster

j. MLE corresponds to a special case when wjk � 0 for all j � k. We use squared

loss to compare these two estimators. After some calculations,

EtLpP̂ , P qu �
m̧

j�1

EpP̂j � Pjq2 �
m̧

j�1

Pjp1� Pjq
nj

,

and EtLpP̃ , P qu � °m
j�1EpP̃j � Pjq2 is a function of wjk’s, whose partial derivative

with respect to wjkpj � kq at zero is

BEtLpP̃ , P qu
Bwjk

����
wst�0,@s�t

� �2
Pkp1� Pkq

nk
.

This implies that EtLpP̃ , P qu will be reduced by 2Pkp1�Pkq
nk

for every unit increasing

of wjk near zero. Particularly when nk is small, borrowing information from other
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cluster jp� kq will considerably reduce EtLpP̃ , P qu compare to MLE. In the special

case when all wjk are equal, EtLpP̃ , P qu can attain a minimum

EtLpP̂ , P qu
�

1�
�

1� 1

m



EtLpP̂ , P qu

EtLpP̂ , P qu � 1
m�1

°
i jpPi � Pjq2

�

P
�

1

m
EtLpP̂ , P qu, EtLpP̂ , P qu



.

This suggests that when Pj’s are similar, the estimate P̃ can reduce the risk up to

only 1{m the risk of estimating P̂ separately. If Pj’s are not similar, P̃ can still

reduce the risk considerably when the cell counts tnju are small.

Another interesting feature of our tensor model is the special structure of the

weights w’s in (4.9). Consider a class of continuous π̃’s indexed by a single parameter

c P p0, 1q characterizing the strength of borrowing information,

π̃
pjq
hj
pxjq � p1� kjcqI

 
hj � hjpxjq

(� cI
 
hj � hjpxjq

(
,

for hj ¤ kj and all possible xj’s. This π̃ still satisfies constraint (C.10) and the

weight becomes

w̃h1,...,hppx1, . . . , xpq �
p¹
j�1

p1� kjcqIthj�hjpxjqucIthj�hjpxjqu.

When c is small, given x, the weight of the contribution by the cluster indexed by

ph1, . . . , hpq is approximately equal to cs, where s � °p
j�1 Ithj � hjpxjqu is the

number of latent classes not shared by ph1, . . . , hpq and ph1px1q, . . . , hppxpqq, i.e. the

Hamming distances between the latent class indices. This special structure in the

weights suggests that similar clusters should share more information.

4.3 Bayesian Tensor Factorization

In this section, we will provide a Bayesian implementation of the tensor factorization

model and prove the corresponding posterior convergence rate.
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4.3.1 Prior specification

To complete a Bayesian specification of our model, we choose independent Dirich-

let priors for the parameters Λ � tλh1,...,hp , hj � 1, . . . , kj, j � 1, . . . , pu and π �

tπpjqhj pxjq, hj � 1, . . . , kj, xj � 1, . . . , dj, j � 1, . . . , pu,

 
λh1,...,hpp1q, . . . , λh1,...,hppd0q

( � Dirip1{d0, . . . , 1{d0q, 
π
pjq
1 pxjq, . . . , πpjqkj pxjq

( � Dirip1{kj, . . . , 1{kjq, j � 1, . . . , p. (4.10)

These priors have the advantages of imposing non-negative and sum to one con-

straints, while leading to conditional conjugacy in posterior computation. The hyper-

parameters in the Dirichlet priors are chosen to favor placing most of the probability

on a few elements, inducing near sparsity in these vectors.

If kj � 1 in (C.12), by constraints (C.10) π
pjq
1 pxjq � 1, P py|x1, . . . , xpq will not

depend on xj and Y K Xj|Xj1 , j
1 � j. Hence, Ipkj ¡ 1q are variable selection

indicators. In addition, kj can be interpreted as the number of latent classes for the

jth covariate. Levels of Xj are clustered according to their relations with the response

variable in a soft probabilistic manner, with k1, . . . , kp controlling the complexity of

the latent structure as well as sparsity. Because we are faced with extreme data

sparsity in which the vast majority of combinations of Y,X1, . . . , Xp are not observed,

it is critical to impose sparsity assumptions. Even if such assumptions do not hold,

they have the effect of massively reducing the variance, making the problem tractable.

A sparse model that discards predictors having less impact and parameters having

small values may still explain most of the variation in the data, resulting in a useful

classifier that has good performance in terms of the bias-variance tradeoff even when

sparsity assumptions are not satisfied.

To embody our prior belief that only a small number of kj’s are greater than one,
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we want

P pkj � kq � Qpj, kq �
�

1� r

p



Ipk � 1q � r

pdj � 1qpIpk ¡ 1q,

for j � 1, . . . , p, where IpAq is the indicator function for the event A and r is the

expected number of predictors included. This specification accommodates variable

selection. To further include a low rank constraint on the conditional probability

tensor, we impose |k| � ±p
j�1 kj to be less than or equal to M . Intuitively, M

controls the effective number of parameters in the model. This low rank constraint

in turn restricts the maximum number of predictors to be log2M . We note that in

the setting in which p ¡ n some such constraint is necessary.

To summarize, the effective prior on the kj’s is

P pk1 � l1, . . . , kp � lpq9Qp1, l1q � � �Qpp, lpq I
" p¹
j�1

lj ¤M

*
. (4.11)

Let γ � pγ1, . . . , γpq1 be a vector having elements γj � Ipkj ¡ 1q indicating inclu-

sion of the jth predictor. Since
±p

j�1 lj ¤ M implies inclusion of at most log2M

predictors, the induced prior for γ resembles the prior in Jiang (2006). Potentially,

we can put a more structured prior on the components in the conditional tensor

factorization, including sparsity in Λ. However, the theory shown in the next part

provides strong support for prior (4.10)-(4.11).

4.3.2 Posterior convergence rates

Before formally describing the sparsity and low rank assumptions, we first introduce

some notations and definitions. Suppose we obtain data for n observations yn �
py1, . . . , ynq1, which are conditionally independent given Xn � px1, . . . , xnq1 with xi �
pxi1, . . . , xipnq1, xij P t1, . . . , du and pn " n. We exclude the n subscript on p and

other quantities when convenient and assume that d � maxjtdju is finite and does
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not depend on n. An important special case is when all dj’s are the same. Let P0

denote the true data generating model, which can be dependent on n. Let εn be

a sequence converging to zero while keeping nε2n Ñ 8. This sequence will serve as

the convergence rate in the sense that under a certain metric d to be defined later,

the posterior of the conditional probability tensor P will asymptotically concentrate

within an εn d-ball centered on the truth P0. We use the notation f   g to mean

f{g Ñ 0 as n Ñ 8. Next, we describe all the assumptions that are needed for the

main theorem.

To determine the posterior convergence rate, two things are competing with each

other: 1. variable selection among the high dimension covariates; 2. the approxi-

mation abilities of near low rank tensors. The assumption below characterizes the

first.

Assumption A. log pn   nε2n{ logDn.

Recalling the definition of Dn as the prior upper threshold for the size |k| �±p
j�1 kj, logDn can be interpreted as the maximum number of predictors to be

selected and cannot exceed log n. As a result, Assumption A implies that the high

dimensional variable selection per se imposes a lower bound for εn as
a

log n log pn{n.

As a result, to obtain a convergence rate of n�p1�αq{2 up to some logarithmic factor,

pn is allowed to increase with n as fast as openαq.
To characterize the low rank tensor assumption, rather than assume that most

of the predictors have no impact on Y , we consider the situation similar to Jiang

(2006) that most have nonzero but very small influence. Specifically, parameterizing

the true model P0 in our tensor form with kj � dj for j � 1, . . . , pn (this is always

possible for any P0), we assume:

Assumption B. Dn logp1{εnq   nε2n and there exists a multirank sequence
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kp1q, kp2q, . . . with |kpnq| ¤ Dn, such that

pņ

j�1

max
xj

dj¸
hj¡kpnqj

π
pjq
hj
pxjq   ε2n,

where f   g means f{g Ñ 0 as nÑ 8.

This is a near low rank restriction on P0. This assumption intuitively means that

the true tensor P0 could be approximated within error ε2n by a truncated tensor with

multirank kpnq, whose size is less than nε2n{ logp1{εnq. Theoretically, a lower bound

of εn attributed to the low rank approximation could be identified as the minimum

ε such that

D multirank k, s.t.|k|   nε2{ logp1{εq and
pņ

j�1

max
xj

dj¸
hj¡kj

π
pjq
hj
pxjq ¤ ε2.

The overall εn will be the minimum of this lower bound and the one determined by

Assumption A. Assumption B includes the special case when P0 is exactly of low

multirank kp0q. In such case, all kpnq could be chosen as kp0q and Assumption B

puts no constraint on εn, leading the convergence rate entirely determined by the

variable selection in Assumption A as
a

log pn{n (Corollary 6 below). In section 6 of

real data applications, we will provide empirical evidence of this near low multirank

assumption.

The last assumption can be considered as a regularity condition.

Assumption C. P0py|xq ¥ ε0 for any x, y for some ε0 ¡ 0.

Under this assumption, the Kullback-Leibler divergence would be bounded by

the sup norm up to a constant, where the latter is easier to characterize in case of

our model.

The next theorem states the posterior contraction rate under our prior (4.10)-

(4.11) and Assumption A-C. Recall that rn is the hyperparameters in the prior.
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Theorem 20. Assume the design points x1, . . . , xn are independent observations

from an unknown probability distribution Gn on t1, . . . , dupn. Moreover, assume the

prior is specified as in (4.10)-(4.11). Let εn be a sequence with εn Ñ 0, nε2n Ñ 8 and°
n expp�nε2nq   8, with which Assumptions A, B and C hold. Denote dpP, P0q �³ °d0

y�1

��P py|x1, . . . , xpq � P0py|x1, . . . , xpq
��Gnpdx1, . . . , dxpq, then

Πn

 
P : dpP, P0q ¥Mεn|yn, Xn

(Ñ 0 a.s.P n
0 ,

where ΠnpA|yn, Xnq stands for the posterior probability of A given the observations.

The following corollary tells us that the posterior convergence rate of our model

can be very close to n�1{2 under appropriate near low rank conditions.

Corollary 21. For α P p0, 1q, εn � n�p1�αq{2 log n will satisfy the conditions in

Theorem 20 if Mn   nα log n, pn   exppnα{ log nq and there exists a sequence of

multiranks kpnq with size at most Mn such that

pņ

j�1

max
xj

dj¸
hj¡kpnqj

π
pjq
hj
pxjq   n�p1�αq log2 n.

As mentioned after Assumption B, if the truth is exactly lower multirank, then

with a small modification to the proof of Theorem 20, we can eliminate the logDn

factor in Assumption A and leading to the following result.

Corollary 22. If the truth P0 has multirank k with a finite number of components

kj ¡ 1, then with the choice of Mn to be a sufficiently large fixed number, the posterior

convergence rate εn could be at least
a

log pn{n.

Since pd0�1qMn could be interpreted as the maximum effective number of param-

eters in the model, which should be at most the same order as the sample size n, we

suggest to set Mn � n as a default for the prior defined in section 3.1 to conceptually
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provide as loose an a priori upper bound as possible. Results tend to be robust to

the choice of Mn as long as it is not chosen to be small. Since M ¥ |k| ¥ 27tj:kj¡1u,

the maximum number of predictors included in the model is log2 n. This suggests

that we can choose plog2 nq{2 � log4 n as a default value for r in the prior.

4.4 Posterior Computation

In section 4.1, we consider fixed k � pk1, . . . , kpq1 and use a Gibbs sampler to draw

posterior samples. Generalizing this Gibbs sampler, we developed a reversible jump

Markov Chain Monte Carlo (RJMCMC) algorithm (Green, 1995) to draw posterior

samples from the joint distribution of k � tkj : j � 1, . . . , pu and pΛ, π, zq. However,

for n and p equal to several hundred or more, we were unable to design an RJMCMC

algorithm that was sufficiently efficient to be used routinely. Hence, in section 4.2,

we propose a faster two stage procedure based on approximated marginal likelihood.

4.4.1 Gibbs sampling for fixed k

Under (4.10) the full conditional posterior distributions of Λ, π and z all have simple

forms, which we sample from as follows.

1. For hj � 1, . . . , kj, j � 1, . . . , p, update λh1,...,hp from the Dirichlet conditional, 
λh1,...,hpp1q, . . . , λh1,...,hppdq

(|� �Diri

�
1

d
�

ņ

i�1

1pzi1 � h1, . . . , zip � hp, yi � 1q,

. . . ,
1

d
�

ņ

i�1

1pzi1 � h1, . . . , zip � hp, yi � dq


.

2. Update πpjqpkq from the Dirichlet full conditional posterior distribution,

 
π
pjq
1 pkq, . . . , πpjqkj pkq

(|� � Diri

�
1

kj
�

ņ

i�1

1pzij � 1q1pxij � kq,

. . . ,
1

kj
�

ņ

i�1

1pzij � kjq1pxij � kq


.
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3. Update zij from the multinomial full conditional posterior, with

P pzij � h|�q9πpjqh pxijqλzi,1,...,zi,j�1,h,zi,j�1,...,zi,ppyiq.
4.4.2 Two step approximation

We propose a two stage algorithm, which identifies a good model in the first stage

and then learns the posterior distribution for this model in a second stage via the

Gibbs sampler of section 4.1. We first propose an approximation to the marginal

likelihood. For simplicity in exposition, we focus on binary Y with d0 � 2, but

the approach generalizes in a straightforward manner, with the beta functions in

the below expression for the marginal likelihood replaced with functions of the form

Γpa1qΓpa2q � � �Γpad0q{Γpa1 � � � � � ad0q. To motivate our approach, we first note that

π
pjq
hj
pxjq can be viewed as providing a type of soft clustering of the jth feature Xj,

controlling borrowing of information among probabilities conditional on combina-

tions of predictors. To obtain approximated marginal likelihoods to be used only

in the initial model selection stage, we propose to force π
pjq
hj
pxjq to be either zero or

one, corresponding to a hard clustering of the predictors. The example in Section

3.2 gives a heuristic argument on the variance-bias tradeoff by using the degener-

ate approximation. Under this approximation, the marginal likelihood has a simple

expression.

For a given model indexed by k � tkj, j � 1, . . . , pu, we assume that the levels of

Xj are clustered into kj groups A
pjq
1 , . . . , A

pjq
kj

. For example, with levels t1, 2, 3, 4, 5u,

A
pjq
1 � t1, 2, 3u and A

pjq
2 � t4, 5u. Then it is easy to see that the marginal likelihood

conditional on k and A is Lpy|k,Aq �
¹

h1,...,hp

1

Betap1{2, 1{2qBeta

�
1

2
�

ņ

i�1

Ipxi1 P Ap1q
h1
, . . . , xip P Appq

hp
, yi � 1q,

1

2
�

ņ

i�1

Ipxi1 P Ap1q
h1
, . . . , xip P Appq

hp
, yi � 0q



.
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Having an expression for the marginal likelihood, we apply a stochastic search MCMC

algorithm (George and McCulloch, 1997) to obtain samples of pk1, . . . , kpq from the

approximated posterior distribution. This proceeds as follows.

1. For j � 1 to p, do the following. Given the current model indexed by k � tkj :

j � 1, . . . , pu and clusters A � tApjq
h : h � 1, . . . , kj, j � 1, . . . , pu, propose to

increase kj to kj � 1 (if kj   d) or reduce it to kj � 1 (if kj ¡ 1) with equal

probability.

2. If increase, randomly split a cluster of Xj into two clusters (all splits have equal

probability). For example, if dj � 5, kj � 2 and the levels of Xj are clustered

as t1, 2, 3u and t4, 5u. There are 4 possible splitting schemes: three ways to

split t1, 2, 3u and one way to split t4, 5u. We randomly choose one. Accept this

move with acceptance rate based on the approximated marginal likelihood.

3. If decrease, randomly merge two clusters and accept or reject this move.

4. If kj remains 1, propose an additional switching step that switches kj with a

currently “active predictor” j1 whose kj1 ¡ 1 and randomly divide the cluster

of Xj into kj1 clusters.

Estimating approximated marginal inclusion probabilities of kj ¡ 1 based on this al-

gorithm, we keep predictors having inclusion probabilities great than 0.5; this leads to

selecting the median probability model, which in simpler settings has been shown to

have optimality properties in terms of predictive performance (Barbieri and Berger,

2004).

4.5 Simulation Studies

To assess the performance of the proposed approach, we conducted a simulation study

and calculated the misclassification rate on the testing samples. Each simulated
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dataset consisted of N � 3, 000 instances with p of the covariates X1, . . . , Xp, each

of which has d � 4 levels, and a binary response Y . Two scenarios were considered:

moderate dimension setting where p � 3, 4, 5 and high dimension setting where

p � 20, 100, 500. Note that although p � 20 appears less than the training size

n, the effective number of parameters is equal to 420. Similarly, we can call p � 3

moderate since the effective number of parameters is equal to 43 � 64. Fixing p,

four training sizes n � 200, 400, 600 and 800 were considered. In the moderate

(high) dimension settings, 100 (10) datasets were simulated for each combination of

training size n and covariate dimension p. We assumed that the true model had

three important predictors X1, X2 and X3, and generated P pY � 1|X1 � x1, X2 �
x2, X3 � x3q independently for each combination of px1, x2, x3q; this was done once

for each simulation replicate prior to generating the data conditionally on P pY |Xq.
To obtain an average Bayes error rate (optimal misclassification rate) around 15%

(standard deviation is around 2%), we generated the conditional probabilities from

fpUq � U2{tU2 � p1 � Uq2u, where U � Unifp0, 1q. For each dataset, we randomly

chose n samples as training with the remaining N � n as testing. We implemented

the two stage algorithm on the training set and calculated the misclassification rate

on the testing set.

According to our theoretical results, we chose r � rlog4 ns as the expected num-

ber of important predictors in the prior and M � log n as the maximum model

size, where rxs stands for the minimal integer greater equal than x. We ran 1,000

iterations for the first stage and 2,000 iterations for the second stage, treating the

first half as burn-in. We compared the results applied to the same training-test split

data with classification and regression trees (CART), random forests (RF) (Breiman,

2001), neural networks (NN) with two layers of hidden units, lasso penalized logistic

regression (LASSO) (Park and Hastie, 2007), support vector machines (SVM) and

Bayesian additive regression trees (BART) (Chipman et al., 2010). All these models
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were fitted by using existed R-packages. The penalizing regularization parameter

for LASSO was chosen by cross validation. The tunable parameters for other meth-

ods were chosen by their default settings. In the moderate dimension scenario, we

enumerated all orders of interactions as input covariates for NN, LASSO and SVM.

NN was not implemented for p � 5 since the available R code was unable to fit the

model with 45 � 1024 covariates. In the high dimension scenario, since the number

of interactions grows exponentially fast, we only included pd�1q�p dummy variables

for the main effects as input covariates for NN, LASSO and SVM. Under p � 5p500q
and n � 800p800q, the first stage of our algorithm took about 1s(2s) to draw 40(1)

iterations and the second stage took about 1s(1s) to draw 50(50) iterations in matlab.

The sampler was quite efficient, with a burn-in of 100 iterations in the first stage and

200 iterations in the second stage sufficient and autocorrelations rapidly decreasing

to zero with increasing lag time.

Table 1 displays the results under moderate dimension settings. When p � 3,

the effective number 43 � 64 of parameters is much smaller than the sample size,

resulting in the good performances of all methods, among which LASSO was the

best under n � 200 and 400. Nevertheless, our method had a rapid decreasing

misclassification rate and achieved comparable performance to the best competitors

when n � 400 and 600. As p increases to 4 and 5, irrelevant covariates are included.

As can be seen from table 1, the best methods under p � 3, including NN, LASSO

and SVM, had noticeably worse performance than our method and RF. Especially,

it was interesting that RF had better performance under p � 4 and 5 than under

p � 3. We guess that when all covariates were important, RF tended to overfit the

model and lead to poor classification performance on the test samples. Nonetheless,

our methods still had the best performance and tended to be robust to the inclusion

of irrelevant covariates.
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Table 4.1: Simulation study results for moderate dimension case. RF: random forests,
NN: neural networks, SVM: support vector machine, BART: Bayesian additive re-
gression trees, TF: Our tensor factorization model. Misclassification rates and their
standard deviations over 100 simulations are displayed.

n � 200 n � 400 n � 600 n � 800

p � 3

CART 0.371(0.056) 0.357(0.066) 0.341(0.072) 0.335(0.064)
RF 0.277(0.034) 0.254(0.039) 0.243(0.034) 0.235(0.032)
NN 0.212(0.033) 0.188(0.038) 0.181(0.043) 0.175(0.037)

LASSO 0.206(0.031) 0.178(0.027) 0.169(0.023) 0.167(0.021)
SVM 0.320(0.065) 0.195(0.065) 0.168(0.023) 0.167(0.026)

BART 0.354(0.044) 0.311(0.041) 0.279(0.036) 0.266(0.036)
TF 0.243(0.041) 0.181(0.031) 0.168(0.023) 0.165(0.021)

p � 4

CART 0.376(0.055) 0.360(0.066) 0.342(0.072) 0.336(0.071)
RF 0.278(0.028) 0.223(0.029) 0.195(0.025) 0.189(0.026)
NN 0.353(0.044) 0.266(0.039) 0.235(0.039) 0.223(0.037)

LASSO 0.323(0.036) 0.256(0.030) 0.219(0.025) 0.201(0.023)
SVM 0.325(0.032) 0.257(0.024) 0.219(0.025) 0.202(0.023)

BART 0.378(0.042) 0.329(0.041) 0.282(0.035) 0.269(0.034)
TF 0.241(0.041) 0.183(0.031) 0.170(0.023) 0.164(0.021)

p � 5

CART 0.384(0.054) 0.364(0.067) 0.342(0.071) 0.342(0.063)
RF 0.324(0.031) 0.267(0.031) 0.230(0.028) 0.218(0.063)
NN - - - -

LASSO 0.415(0.046) 0.366(0.048) 0.314(0.032) 0.298(0.025)
SVM 0.414(0.042) 0.374(0.036) 0.335(0.029) 0.306(0.029)

BART 0.395(0.027) 0.353(0.036) 0.335(0.031) 0.306(0.029)
TF 0.242(0.042) 0.184(0.031) 0.168(0.022) 0.164(0.022)

Table 2 displays the results under high dimension settings. The differences be-

come more perceptible. All the competing methods broke down and had worse

performance than TF. In the very challenging case in which the training sample size

was only 200 and p � 500, all methods had poor performance. However, as the

training sample size increased, the proposed conditional tensor factorization method

rapidly approached the optimal 15%, with excellent performance even in the n � 600,

p � 500 case. In contrast, the competitive methods had consistently poor perfor-

mance. In this challenging setting involving a low signal strength, a modest sample

size, and moderately large numbers of candidate predictors, CART appeared to be
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Table 4.2: Simulation study results in the high dimension setting. RF: random
forests, NN: neural networks, SVM: support vector machine, BART: Bayesian addi-
tive regression trees, TF: Our tensor factorization model. Misclassification rates and
their standard deviations over 100 simulations are displayed.

n � 200 n � 400 n � 600 n � 800

p � 20

CART 0.448(0.025) 0.367(0.042) 0.342(0.063) 0.337(0.087)
RF 0.461(0.022) 0.444(0.025) 0.412(0.026) 0.393(0.023)
NN 0.501(0.009) 0.494(0.008) 0.507(0.043) 0.482(0.021)

LASSO 0.440(0.040) 0.418(0.025) 0.372(0.032) 0.357(0.044)
SVM 0.503(0.011) 0.485(0.012) 0.494(0.012) 0.472(0.024)

BART 0.450(0.026) 0.401(0.037) 0.374(0.032) 0.345(0.031)
TF 0.249(0.036) 0.182(0.036) 0.172(0.026) 0.162(0.022)

p � 100

CART 0.478(0.023) 0.428(0.042) 0.389(0.046) 0.361(0.052)
RF 0.468(0.022) 0.472(0.027) 0.433(0.025) 0.421(0.022)
NN 0.504(0.010) 0.492(0.008) 0.495(0.015) 0.479(0.013)

LASSO 0.450(0.036) 0.430(0.033) 0.410(0.042) 0.404(0.032)
SVM 0.507(0.011) 0.483(0.011) 0.490(0.013) 0.463(0.024)

BART 0.465(0.017) 0.450(0.024) 0.410(0.013) 0.404(0.032)
TF 0.323(0.120) 0.179(0.027) 0.169(0.021) 0.164(0.024)

p � 500

CART 0.489(0.09) 0.461(0.048) 0.404(0.032) 0.380(0.080)
RF 0.480(0.023) 0.468(0.020) 0.446(0.028) 0.434(0.019)
NN 0.496(0.013) 0.488(0.021) 0.466(0.028) 0.446(0.019)

LASSO 0.459(0.012) 0.466(0.025) 0.392(0.020) 0.419(0.016)
SVM 0.492(0.016) 0.493(0.021) 0.482(0.017) 0.468(0.016)

BART 0.475(0.013) 0.466(0.025) 0.427(0.027) 0.431(0.015)
TF 0.454(0.105) 0.205(0.083) 0.173(0.022) 0.164(0.021)

the best competing method.

In addition to the clearly superior classification performance, our method had

the advantage of providing variable selection results. Table 3 provides the average

approximated marginal inclusion probabilities for the three important predictors and

remaining predictors in the high dimension settings. Consistently with the results in

Table 2, the method fails to detect the important predictors when p � 500 and the

training sample size is only n � 200. But as the sample size increases appropriately,

TF assigns high marginal inclusion probabilities to the important predictors and low

ones to the unimportant predictors. In addition, to access the fitting performances,
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Table 4.3: Simulation study variable selection results in the high dimensional
case. Rows 1-3 within each fixed p are approximated inclusion probabilities of the
1st,2nd,3rd predictors. Max is the maximum inclusion probability across the re-
maining predictors. Ave is the average inclusion probability across the remaining
predictors. These quantities are averages over 10 trials.

n � 200 n � 400 n � 600 n � 800

p � 20

X1 1.00 1.00 1.00 1.00
X2 1.00 1.00 1.00 1.00
X3 1.00 1.00 1.00 1.00

Max 0.00 0.00 0.00 0.00
Ave 0.00 0.00 0.00 0.00

aMSE 0.074(0.013) 0.025(0.005) 0.014(0.004) 0.009(0.002)

p � 100

X1 0.74 1.00 1.00 1.00
X2 0.70 1.00 1.00 1.00
X3 0.72 1.00 1.00 1.00

Max 0.21 0.00 0.00 0.00
Ave 0.01 0.00 0.00 0.00

aMSE 0.089(0.026) 0.027(0.003) 0.014(0.002) 0.009(0.002)

p � 500

X1 0.23 0.91 1.00 1.00
X2 0.24 0.90 1.00 1.00
X3 0.21 0.91 1.00 1.00

Max 0.28 0.07 0.00 0.00
Ave 0.00 0.00 0.00 0.00

aMSE 0.134(0.034) 0.036(0.037) 0.014(0.003) 0.009(0.002)

we calculated the empirical average MSE defined as

aMSE � 1

N

Ņ

i�1

 
P pY � 1|xi1, . . . , xipq � P̂ pY � 1|xi1, . . . , xipq

(2
,

where pxi1, . . . , xipq is the vector of covariates of the ith sample and P̂ is the fitted

conditional probability. The aMSE approached to zero rapidly as testing size in-

creased and tended to be robust to the covariate dimension as long as the method

could identify the important predictors.
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4.6 Applications

We compare our method with other competing methods in three data sets from

the UCI repository. The first data set is Promoter Gene Sequences (abbreviated as

promoter data below). The data consists of A, C, G, T nucleotides at p � 57 positions

for N � 106 sequences and a binary response indicating instances of promoters and

non-promoters. We use 5-fold cross validation with n � 85 training samples and

N � n � 21 test samples in each training-test split.

The second data set is the Splice-junction Gene Sequences (abbreviated as splice

data below). These data consist of A, C, G, T nucleotides at p � 60 positions for

N � 3, 175 sequences. Each sequence belongs to one of the three classes: exon/intron

boundary (EI), intron/exon boundary (IE) or neither (N). Since its sample size is

much larger than the first data set, we compare our approach with competing meth-

ods in two scenarios: a small sample size and a moderate sample size. In the small

sample size case, each time we randomly select n � 200 instances as training and cal-

culate the misclassification rate on the testing set composed of the remaining 2, 975

instances. We repeat this for each method for five training-test splits and report the

average misclassification rate. In the moderate sample size case, we use 5-fold cross

validation so that each time n � 2, 540 instances are treated as training data.

The third data set describes diagnosing of cardiac Single Proton Emission Com-

puted Tomography (SPECT) images. Each of the patients is classified into two

categories: normal and abnormal. The database of 267 SPECT image sets (pa-

tients) has 22 binary feature patterns. This data set has been previously divided

into a training set of size 80 and a testing set of size 187.

We considered the same competitors as those in the simulation part. Among

them, BART was not implemented in the splice data since we were unable to find a

multi-class implementation of their approach.
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Table 4.4: UCI Data Example. RF: random forests, NN: neural networks, SVM:
support vector machine, BART: Bayesian additive regression trees, TF: Our tensor
factorization model. Misclassification rates are displayed.

Data CART RF NN LASSO SVM BART TF
Promoter (n=85) 0.236 0.066 0.170 0.075 0.151 0.113 0.066
Splice (n=200) 0.161 0.122 0.226 0.141 0.286 - 0.112
Splice (n=2540) 0.059 0.046 0.165 0.123 0.059 - 0.058
SPECT (n=80) 0.312 0.235 0.278 0.277 0.246 0.225 0.198

Table 4 shows the results. Our method produced at worst comparable classifica-

tion accuracy to the best of the competitors in each of the cases considered. Among

the competitors, Random Forests (RF) provided the best competitor overall, which is

consistent with our previous experiment under high dimensional settings. We expect

our approach to do particularly well when there is a modest training sample size and

high-dimensional predictors. We additionally have an advantage in terms of inter-

pretability over several of these approaches, including RF and BART, in conducting

variable selection.

Table 5 displays the selected variables along with their associated mode ranks.

As can been seen, in the promoter data and splice data, nearby nucleotide sequences

are selected. These results are reasonable since for nucleotide sequences, nearby

nucleotides form a motif regulating important functions. For the splice data, the

number of variables selected by our model increases from 4 under n � 200 to 6 under

n � 200. This gradually increase in the model size suggests that the splice data

may possess a near low multirank structure characterized by Assumption B, where

the optimal number of selected variables is determined by the bias-variance tradeoff.

As the training size further grows, more important variables would be selected into

the model. In the contrast, the number of selected variables in the SPECT data

remains the same as the training size grows, suggesting that an exact low multirank

assumption maybe valid. It is notable that in each of these cases we obtained excel-
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Table 4.5: Variable selection results. The selected variables are displayed, with their
associated mode ranks kj’s included in the parenthesis.

Important variables selected
Promoter (n=106) 15th(2), 16th(2), 17th(3), 39th(3)

Splice (n=200) 29th(2), 30th(2), 31st(2), 32nd(2)
Splice (n=2540) 28th(2), 29th(2), 30th(2), 31st(2), 32nd(2), 35th(2)
SPECT (n=80) 11th(2), 13th(2), 16th(2)
SPECT (n=267) 11th(2), 13th(2), 16th(2)

lent classification performance based on a small subset of the predictors. Moreover,

for the nucleotide sequences data, most selected variables have low mode ranks kj

comparing to the full size dj � 4. Therefore, these variable selection results provide

empirical verifications of the near low multirank assumption B in section 3.2.

4.7 Discussion

This article proposes a framework for nonparametric Bayesian classification rely-

ing on a novel class of conditional tensor factorizations. The nonparametric Bayes

framework is appealing in facilitating variable selection and uncertainty about the

core tensor dimensions in the Tucker-type factorization, while avoiding the need for

parameter tuning. In particular, we have recommended a single default prior setting

that can be used in general applications without relying on cross-validation or other

approaches for estimating tuning parameters. One of our major contributions is the

strong theoretical support we provide for our proposed approach. Although it has

been commonly observed that Bayesian parametric and nonparametric methods have

practical gains in numerous applications, there is a clear lack of theory supporting

these empirical gains.

Interesting ongoing directions include developing faster approximation algorithms

and generalizing the conditional tensor factorization model to accommodate broader

feature modalities. In the fast algorithms direction, online variational methods (Hoff-
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man et al., 2010) provide a promising direction. Regarding generalizations, we can

potentially accommodate continuous predictors and more complex object predictors

(text, images, curves, etc) through probabilistic clustering of the predictors in a first

stage, with Xj then corresponding to the cluster index for feature j.
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5

Minimax optimal Bayesian aggregation

5.1 Introduction

In many applications, it is not at all clear how to pick one most suitable method

out of a list of possible models or learning algorithms M � tM1, . . . ,MMu. Each

model/algorithm has its own set of implicit or explicit assumptions under which that

approach will obtain at or near optimal performance. However, in practice verifying

which if any of these assumptions hold for a real application is problematic. Hence,

it is of substantial practical importance to have an aggregating mechanism that

can automatically combine the estimators f̂1, . . . , f̂M obtained from the M different

approachesM1, . . . ,MM , with the aggregated estimator potentially better than any

single one.

Towards this goal, three main aggregation strategies receive most attention in

the literature: model selection aggregation (MSA), convex aggregation (CA) and

linear aggregation (LA), as first stated by Nemirovski (2000). MSA aims at selecting

the optimal single estimator from the list; CA considers searching for the optimal

convex combination of the estimators; and LA focuses on selecting the optimal linear
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combination. Although there is an extensive literature (Juditsky and Nemirovski,

2000; Tsybakov, 2003; Wegkamp, 2003; Yang, 2000, 2001, 2004; Bunea and Nobel,

2008; Bunea and Tsybakov, 2007; Guedj and Alquier, 2013; van der Laan et al.,

2007) on aggregation, there has been limited consideration of Bayesian approaches.

In this chapter, we study Bayesian aggregation procedures and their performance

in regression. Consider the regression model

Yi � fpXiq � εi, i � 1, . . . , n, (5.1)

where Yi is the response variable, f : X Ñ R is an unknown regression function, X

is the feature space, Xi’s are the fixed- or random-designed elements in X and the

errors are iid Gaussian.

Aggregation procedures typically start with randomly dividing the sample Dn �
tpX1, Y1q, . . . , pXn, Ynqu into a training set for constructing estimators f̂1, . . . , f̂M ,

and a learning set for constructing f̂ . Our primary interest is in the aggregation

step, so we adopt the convention (Bunea and Tsybakov, 2007) of fixing the training

set and treating the estimators f̂1, . . . , f̂M as fixed functions f1, . . . , fM . Our results

can also be translated to the context where the fixed functions f1, . . . , fM are con-

sidered as a functional basis (Juditsky and Nemirovski, 2000), either orthonormal or

overcomplete, or as “weak learners” (van der Laan et al., 2007). For example, high-

dimensional linear regression is a special case of LA where fj maps an M -dimensional

vector into its jth component.

Bayesian model averaging (BMA) (Hoeting et al., 1999) provides an approach

for aggregation, placing a prior over the ensemble and then updating using available

data to obtain posterior model probabilities. For BMA, f̂ can be constructed as a

convex combination of estimates f̂1, . . . , f̂M obtained under each model, with weights

corresponding to the posterior model probabilities. If the true data generating model

f0 is one of the models in the pre-specified list (“M-closed” view), then as the
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sample size increases the weight on f0 will typically converge to one. With a uniform

prior over M in the regression setting with Gaussian noise, f̂ coincides with the

exponentially weighted aggregates (Tsybakov, 2003). However, BMA relies on the

assumption that M contains the true model. If this assumption is violated (“M-

open”), then f̂ tends to converge to the single model in M that is closest to the

true model in Kullback-Leibler (KL) divergence. For example, when f0 is a weighted

average of f1 and f2, under our regression setting f̂ will converge to f P tf1, f2u that

minimizes ||f � f0||2n � n�1
°n
i�1 |fpXiq� f0pXiq|2 under fixed design or ||f � f0||2Q �

EQ|fpXq � f0pXq|2 under random design where X � Q. Henceforth, we use the

notation || � || to denote || � ||n or || � ||Q depending on the context.

In this chapter, we primarily focus on Bayesian procedures for CA and LA. Let

FH �  
fλ �

M̧

j�1

λjfj : λ � pλ1, . . . , λMq P H
(

be the space of all aggregated estimators for f0 with index set H. For CA, H takes

the form of Λ � tpλ1, . . . , λMq : λj ¥ 0, j � 1, . . . ,M,
°M
j�1 λj � 1u and for LA,

H � Ω � tpλ1, . . . , λMq : λj P R, j � 1, . . . ,M,
°M
j�1 |λj| ¤ Lu, where L ¡ 0

can be unknown but is finite. In addition, for both CA and LA we consider sparse

aggregation with FHs , where an extra sparsity structure ||λ||0 � s is imposed on

the weight λ P Hs � tλ P H : ||λ||0 � su. Here, for a vector θ P RM , we use

||θ||p � p°M
j�1 |θj|pq1{p to denotes its lp-norm for 0 ¤ p ¤ 8. In particular, ||θ||0

is the number of nonzero components of θ. The sparsity level s is allowed to be

unknown and expected to be learned from data. In the sequel, we use the notation

fλ� to denote the best || � ||-approximation of f0 in FH . Note that if f0 P FH , then

f0 � fλ� .

One primary contribution of this work is to propose a new class of priors, called

Dirichlet aggregation (DA) priors, for Bayesian aggregation. Bayesian approaches
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with DA priors are shown to lead to the minimax optimal posterior convergence rate

over FH for CA and LA, respectively. More interestingly, DA is able to achieve the

minimax rate of sparse aggregation (see Section 5.1.1), which improves the minimax

rate of aggregation by utilizing the extra sparsity structure on λ�. This suggests that

DA is able to automatically adapt to the unknown sparsity structure when it exists

but also has optimal performance in the absence of sparsity. Such sparsity adaptive

properties have also been observed in Bunea and Tsybakov (2007) for penalized

optimization methods. However, in order to achieve minimax optimality, the penalty

term, which depends on either the true sparsity level s or a function of λ�, needs to

be tuned properly. In contrast, the DA does not require any prior knowledge on λ�

and is tuning free.

Secondly, we also consider an “M-open” view for CA and LA, where the truth f0

can not only fall outside the list M, but also outside the space of all convex/linear

combinations of the models in M. Under the “M-open” view, our theory suggests

that the posterior measure tends to put all its mass into a ball around the best

approximation fλ� of f0 with a radius proportional to the minimax rate. The metric

that defines that ball will be made clear later. This is practically important because

the true model in reality is seldom correctly specified and a convergence to fλ� is the

best one can hope for. Bayesian asymptotic theory for misspecified models is under

developed, with most existing results assuming that the model class is either known

or is an element of a known list. One key step is to construct appropriate statistical

tests discriminating fλ� from other elements in FH . Our tests borrow some results

from Kleijn and van der Vaart (2006) and rely on concentration inequalities.

The proposed prior on λ induces a novel shrinkage structure, which is of inde-

pendent interest. There is a rich literature on theoretically optimal models based on

discrete (point mass mixture) priors (Ishwaran and Rao, 2005; Castillo and van der

Vaart, 2012) that are supported on a combinatorial model space, leading to heavy
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computational burden. However, continuous shrinkage priors avoid stochastic search

variable selection algorithms (George and McCulloch, 1997) to sample from the com-

binatorial model space and can potentially improve computational efficiency. Fur-

thermore, our results include a rigorous investigation on M -dimensional symmetric

Dirichlet distributions, Diripρ, . . . , ρq when M " 1 and ρ ! 1. Here Diripα1, . . . , αMq
denotes a Dirichlet distribution with concentration parameters α1, . . . , αM . In ma-

chine learning, Diripρ, . . . , ρq with ρ ! 1 are widely used as priors for latent class

probabilities (Blei et al., 2003). However, little rigorous theory has been developed

for the relationship between its concentration property and the hyperparameter ρ.

Rousseau and Mengersen (2011) consider a related problem of overfitted mixture

models and show that generally the posterior distribution effectively empties the

extra components. However, our emphasis is to study the prediction performance

instead of model selection. Moreover, in Rousseau and Mengersen (2011) the num-

ber M of components is assumed to be fixed as n increases, while in our setting we

allow M to grow in the order of eopnq. In this large-M situation, the general prior

considered in Rousseau and Mengersen (2011) is unable to empty the extra compo-

nents and we need to impose sparsity. In this chapter, we show that if we choose

ρ � M�γ with γ ¡ 1, then Diripρ, . . . , ρq could lead to the optimal concentration

rate for sparse weights (Section 5.2.1). Moreover, such concentration is shown to be

adaptive to the sparsity level s.

The rest of the chapter is organized as follows. In Section 1.1, we review the

minimax results for aggregation. In Section 2, we describe the new class of priors for

CA and LA based on symmetric Dirichlet distributions. In Section 3, we study the

asymptotic properties of the proposed Bayesian methods. In Section 4, we show some

simulations and applications. The proofs of the main theorems appear in Section 5

and some technical proofs are deferred to Section 6. We provide details of the MCMC

implementation of our Bayesian aggregation methods in the appendix.
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5.1.1 A brief review of the minimax risks for aggregation

It is known (Tsybakov, 2003) that for CA, the minimax risk for estimating the best

convex combination fλ� within FΛ is

sup
f1,...,fMPF0

inf
f̂

sup
f�λ PFΛ

E||f̂ � f�λ ||2 �
#

M{n, if M ¤ ?
n,b

1
n

log
�
M{?n� 1

�
, if M ¡ ?

n,
(5.2)

where F0 �
 
f : ||f ||8 ¤ 1u and f̂ ranges over all possible estimators based on n

observations. Here, for any two positive sequences tanu and tbnu, an � bn means

that there exists a constant C ¡ 0, such that an ¤ Cbn and bn ¤ Can for any n.

The norm is understood as the L2-norm for random design and the || � ||n-norm for

fixed design. If we have more information that the truth f�λ also possesses a sparse

structure ||λ�||0 � #tj : λj ¡ 0u � s ! n, then we would expect a faster convergence

rate of estimating f�λ . For example, in the “M-closed” case where f�λ � fj for some

j P t1, . . . ,Mu, λ�i � Ipi � jq and ||λ�||0 � 1. Let FΛ
s �  

f � °M
j�1 λjfj : λ P

Λ, ||λ||0 � s
(

be the space of all s-sparse convex aggregations of f1, . . . , fM . By

extending the results in Tsybakov (2003), it can be shown that when the sparsity

level s satisfies s ¤ a
n{ logM , the minimax risk of estimating an element in FΛ

s is

given by

sup
f1,...,fMPF0

inf
f̂

sup
f�λ PFΛ

s

E||f̂ � f�λ ||2 �
s

n
log

�
M

s



. (5.3)

From the preceding results,
a
n{ logM serves as the sparsity/non-spasrsity boundary

of the weight λ� as there is no gain in the estimation efficiency if s ¡a
n{ logM .

From Tsybakov (2003), the minimax risk for LA with H � RM is

sup
f1,...,fMPF0

inf
f̂

sup
f�λ PFRM

E||f̂ � f�λ ||2 �M{n.

As a result, general LA is only meaningful when M{nÑ 0, as nÑ 8. Similarly, the

above minimax risk can be extended to s-sparse LA FRM
s �  

f � °M
j�1 λjfj : λ P
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RM , ||λ||0 � s
(

for s P t1, . . . ,Mu as

sup
f1,...,fMPF0

inf
f̂

sup
f�λ PFRM

s

E||f̂ � f�λ ||2 �
s

n
log

�
M

s



.

Note that for sparse LA, the sparsity level s can be arbitrary. A simple explanation is

that the constraint ||λ�||1 � 1 ensures that every element in FΛ can be approximated

with error at most
b

1
n

log
�
M{?n� 1

�
by some

a
n{ logM -sparse element in FΛ

(see Lemma 82). However, if we further assume that ||λ�|| ¤ A and restrict fλ
� P FΩ,

then by extending Tsybakov (2003), it can be shown that the minimax risks of LA

of FRMA is the same as those of convex aggregation under a non-sparse structure as

(5.2) and a sparse structure as (5.3).

5.2 Bayesian approaches for aggregation

5.2.1 Concentration properties of high dimensional symmetric Dirichlet distribu-
tions

Consider an M -dimensional symmetric Dirichlet distribution Diripρ, . . . , ρq indexed

by a concentration parameter ρ ¡ 0, whose pdf at λ P Λ is given by ΓpMρqtΓpρqu�M±M
j�1 λ

ρ�1
j , where Γp�q is the Gamma function. M -dimensional Dirichlet distributions

are commonly used in Bayesian procedures as priors over the M � 1-simplex. For

example, Dirichlet distributions can be used as priors for probability vectors for latent

class allocation. In this subsection, we investigate the concentration properties of

Diripρ, . . . , ρq when M " 1 and ρ ! 1. Fig. 5.2.1 displays typical patterns for

3-dimensional Dirichlet distributions Diripρ, ρ, ρq with ρ changing from moderate

to small. As can be seen, the Dirichlet distribution tends to concentrate on the

boundaries for small ρ, which is suitable for capturing sparsity structures.

To study the concentration of Diripρ, . . . , ρq, we need to characterize the space

of sparse weight vectors. Since Dirichlet distributions are absolutely continuous, the
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ρ=1

(a) ρ � 1.

ρ=0.1

(b) ρ � 0.1.

ρ=0.01

(c) ρ � 0.01.

Figure 5.1: Symmetric Dirichlet distributions with different values for the concen-
tration parameter. Each plot displays 100 independent draws from Diripρ, ρ, ρq.

probability of generating an exactly s-sparse vector is zero for any s  M . Therefore,

we need to relax the definition of s-sparsity. Consider the following set indexed by a

tolerance level ε ¡ 0 and a sparsity level s P t1, . . . ,Mu: FΛ
s,ε � tλ P Λ :

°M
j�s�1 λpjq ¤

εu, where λp1q ¥ λp2q ¥ � � � ¥ λpMq is the ordered sequence of λ1, . . . , λM . FΛ
s,ε consists

of all vectors that can be approximated by s-sparse vectors with l1-error at most ε.

The following theorem shows the concentration property of the symmetric Dirichlet

distribution Diripρ, . . . , ρq with ρ � α{Mγ. This theorem is a easy consequence of

Lemma 26 and Lemma 29 in Section 5.5.

Theorem 23. Assume that λ � Diripρ, . . . , ρq with ρ � α{Mγ and γ ¡ 1. Let

λ� P Λs be any s-sparse vector in the M � 1-dimensional simplex Λ. Then for any

ε P p0, 1q and some C ¡ 0,

P p||λ� λ�||2 ¤ εq Á exp

"
� Cγs log

M

ε

*
, (5.4)

P pλ R FΛ
s,εq À exp

"
� Cpγ � 1qs log

M

ε

*
. (5.5)

The proof of (5.5) utilizes the stick-breaking representation of Dirichlet processes

(Sethuraman, 1994) and the fact that Diripρ, . . . , ρq can be viewed as the joint dis-

tribution of
�
Gpr0, 1{Mqq, . . . , GprpM � 1q{M, 1qq� where G � Dirichlet process

DPppMρqUq with U the uniform distribution on r0, 1s. The condition γ ¡ 1 in The-

orem 23 reflects the fact that the concentration parameter Mρ � αM�pγ�1q should
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decrease to 0 as M Ñ 8 in order for DPppMρqUq to favor sparsity. (5.5) vali-

dates our observations in Fig. 5.2.1 and (5.4) suggests that the prior mass around

every sparse vector is uniformly large since the total number of s-sparse patterns

(locations of nonzero components) in Λ is of order exptCs logpM{squ. In fact,

both (5.4) and (5.5) play crucial roles in the proofs in Section 5.5.1 on charac-

terizing the posterior convergence rate εn for the Bayesian method below for CA

(also true for more general Bayesian methods), where tεnu is a sequence satisfying

P p||λ � λ�||2 ¤ εnq Á expp�nε2nq and P pλ R FΛ
s,εq À expp�nε2nq. Assume the best

approximation fλ� of the truth f0 to be s-sparse. (5.5) implies that the posterior

distribution of λ tends to put almost all its mass in FΛ
s,ε and (5.4) is required for the

posterior distribution to be able to concentrate around λ� at the desired minimax

rate given by (5.2).

5.2.2 Using Dirichlet priors for convex aggregation

In this subsection, we assume Xi to be random with distribution Q and f0 P L2pQq.
Here, for a probability measure Q on a space X , we use the notation || � ||Q to

denote the norm associated with the square integrable function space L2pQq � tf :³
X |fpxq|2dQpxq ¤ 8u. We assume the random design for theoretical convenience and

the procedure and theory for CA can also be generalized to fixed design problems.

Assume the M functions f1, . . . , fM also belong to L2pQq. Consider combining these

M functions into an aggregated estimator f̂ � °M
j�1 λ̂jfj, which tries to estimate f0

by elements in the space FΛ �  
f � °M

j�1 λjfj : λj ¥ 0,
°M
j�1 λj � 1

(
of all convex

combinations of f1, . . . , fM . The assumption that f1, . . . , fM are fixed is reasonable

as long as different subsets of samples are used for producing f1, . . . , fM and for

aggregation. For example, we can divide the data into two parts and use the first

part for estimating f1, . . . , fM and the second part for aggregation.
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We propose the following Dirichlet aggregation (DA) prior:

(DA) f �
M̧

j�1

λjfj, pλ1, . . . , λMq � Diri

�
α

Mγ
, . . . ,

α

Mγ



,

where pγ, αq are two positive hyperparameters. As Theorem 23 and the results

in Section 5.5 suggest, such a symmetric Dirichlet distribution is favorable since

Diripα1, . . . , αMq with equally small parameters α1 � . . . � αM � α{Mγ for γ ¡ 1 has

nice concentration properties under both sparse and nonsparse L1 type conditions,

leading to near minimax optimal posterior contraction rate under both scenarios.

We also mention a related paper (Bhattacharya et al., 2013) that uses Dirichlet

distributions in high dimensional shrinkage priors, where they considered normal

mean estimating problems. They proposed a new class of Dirichlet Laplace priors for

sparse problems, with the Dirichlet placed on scaling parameters of Laplace priors

for the normal means. Our prior is fundamentally different in using the Dirichlet

directly for the weights λ, including a power γ for M . This is natural for aggregation

problems, and we show that the proposed prior is simultaneously minimax optimal

under both sparse and nonsparse conditions on the weight vector λ as long as γ ¡ 1.

5.2.3 Using Dirichlet priors for linear aggregation

For LA, we consider a fixed design for Xi P Rd and write (5.1) into vector form as

Y � F0 � ε, ε � Np0, σ2Inq, where Y � pY1, . . . , ynq is the n � 1 response vector,

F0 � pf0pX1q, . . . , f0pXnqqT is the n�1 vector representing the expectation of Y and

In is the n � n identity matrix. Let F � pFijq � pfjpXxqq be the n �M prediction

matrix, where the jth column of F consists of all values of fj evaluated at the training

predictors X1, . . . , Xn. LA estimates F0 as Fλ with λ � pλ1, . . . , λMqT P RM the p�1

the coefficient vector. Use the notation Fj to denote the jth column of F and F piq the

ith row. Notice that this framework of linear aggregation includes (high-dimensional)

linear models as a special case where d �M and fjpXiq � Xij.
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Let A � ||λ||1 � °M
j�1 |λj|, µ � pµ1, . . . , µMq P Λ with µj � |λj|{A, z �

pz1, . . . , zMq P t�1, 1uM with zj � sgnpλjq. This new parametrization is identifiable

and pA, µ, zq uniquely determines λ. Therefore, there exists a one-to-one correspon-

dence between the prior on pA, µ, zq and the prior on λ. Under this parametrization,

the geometric properties of λ transfer to those of µ. For example, a prior on µ that

induces sparsity will produce a sparse prior for λ. With this in mind, we propose the

following double Dirichlet Gamma (DDG) prior for λ or pA, µ, zq:

(DDG1) A � Gapa0, b0q, µ � Diri

�
α

Mγ
, . . . ,

α

Mγ



,

z1, . . . , zM iid with P pzi � 1q � 1

2
.

Since µ follows a Dirichlet distribution, it can be equivalently represented as�
T1°p
j�1 Tj

, . . . ,
TM°p
j�1 Tj



, with Tj

iid� Ga

�
α

Mγ
, 1



.

Let η � pη1, . . . , ηMq with ηj � zjλj. By marginalizing out the z, the prior for µ can

be equivalently represented as�
T1°M

j�1 |Tj|
, . . . ,

TM°M
j�1 |Tj|



, with Tj

iid� DG

�
α

Mγ
, 1



. (5.6)

where DGpa, bq denotes the double Gamma distribution with shape parameter a,

rate parameter b and pdf t2Γpaqu�1ba|t|a�1e�b|t| (t P R), where Γp�q is the Gamma

function. More generally, we call a distribution as the double Dirichlet distribution

with parameter pa1, . . . , aMq, denoted by DDpa1, . . . , aMq, if it can be represented by

(5.6) with Tj �DGpaj, 1q. Then, the DDG prior for λ has an alternative form as

(DDG2) λ � Aη, A � Gapa0, b0q, η � DD

�
α

Mγ
, . . . ,

α

Mγ



.

We will use the form (DDG2) for studying the theoretical properties of the DDG

prior and focus on the form (DDG1) for posterior computation.
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5.3 Theoretical properties

In this section, we study the prediction efficiency of the proposed Bayesian aggrega-

tion procedures for CA and LA in terms of convergence rate of posterior prediction.

We say that a Bayesian model F � tPθ : θ P Θu, with a prior distribution Π over

the parameter space Θ, has a posterior convergence rate at least εn if

Π
�
dpθ, θ�q ¥ Dεn

��X1, . . . , Xn

� Pθ0ÝÑ 0, (5.7)

with a limit θ� P Θ, where d is a metric on Θ and D is a sufficiently large positive

constant. For example, to characterize prediction accuracy, we use dpλ, λ1q � ||fλ �
fλ1 ||Q and ||n�1{2F pλ�λ1q||2 for CA and LA, respectively. Let P0 � Pθ0 be the truth

under which the iid observations X1, . . . , Xn are generated. If θ0 P Θ, then the model

is well-specified and under mild conditions, θ� � θ0. If θ0 R Θ, then the limit θ� is

usually the point in Θ so that Pθ has the minimal Kullback-Leibler (KL) divergence

to Pθ0 . (5.7) suggests that the posterior probability measure puts almost all its mass

over a sequence of d-balls whose radii shrink towards θ� at a rate εn. In the following,

we make the assumption that σ is known, which is a standard assumption adopted

in Bayesian asymptotic proofs to avoid long and tedious arguments. de Jonge and

van Zanten (2013) studies the asymptotic behavior of the error standard deviation

in regression when a prior is specified for σ. Their proofs can also be used to justify

our setup when σ is unknown. In the rest of the chapter, we will frequently use C

to denote a constant, whose meaning might change from line to line.

5.3.1 Posterior convergence rate of Bayesian convex aggregation

Let Σ � pEQrfipXqfjpXqsqM�M be the second order moment matrix of pf1pXq, . . .,
fMpXqq, where X � Q. Let f� � °M

j�1 λ
�
j fj be the best L2pQq-approximation of f0

in the space FΛ �  
f � °M

j�1 λjfj : λj ¥ 0,
°M
j�1 λj � 1

(
of all convex combinations

of f1, . . . , fM , i.e. λ� � arg minλPΛ ||fλ � f0||2Q. This misspecified framework also
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includes the well-specified situation as a special case where f0 � f� P FΛ. Denote

the jth column of Σ by Σj.

We make the following assumptions:

(A1) There exists a constant 0   κ   8 such that sup1¤j¤M |Σjj| ¤ κ.

(A2) (Sparsity) There exists an integer s ¡ 0, such that ||λ�||0 � s   n.

(A3) There exists a constant 0   κ   8 such that sup1¤j¤M supxPX |fjpxq| ¤ κ.

• If EQrfjpXqs � 0 for each j, then Σ is the variance covariance matrix. (A1)

assumes the second moment Σjj of fjpXq to be uniformly bounded. By apply-

ing Cauchy’s inequality, the off-diagonal elements of Σ can also be uniformly

bounded by the same κ.

• (A3) implies (A1). This uniformly bounded condition is only used in Lemma

30 part a. As illustrated by Birgé (2004), such a condition is necessary for

studying the L2pQq loss of Gaussian regression with random design, since under

this condition the Hellinger distance between two Gaussian regression models

is equivalent to the L2pQq distance between their mean functions.

• Since λ� P Λ, the l1 norm of λ� is always equal to one, which means that λ� is

always l1-summable. pA2q imposes an additional sparse structure on λ�. We

will study separately the convergence rates with and without (A2). It turns out

that the additional sparse structure improves the rate if and only if s !
b

n
logM

.

The following theorem suggests that the posterior of fλ concentrates on an || � ||Q-

ball around the best approximation f� with a radius proportional to the minimax

rate of CA. In the special case when f� � f0, the theorem suggests that the proposed

Bayesian procedure is minimax optimal.
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Theorem 24. Assume (A3). Let pX1, Y1q, . . . , pXn, Ynq be n iid copies of pX, Y q
sampled from X � Q, Y |X � Npf0pXq, σ2q. If f� � °M

j�1 λ
�
j fj is the minimizer of

f ÞÑ ||f � f0||Q on FΛ, then under the prior (DA), for some D ¡ 0, as nÑ 8,

E0,QΠ

�
||f � f�||Q ¥ Dmin

"c
M

n
,

4

c
logpM{?n� 1q

n

*����X1, Y1, . . . , Xn, Yn



Ñ 0.

Moreover, if (A2) is also satisfied, then as nÑ 8,

E0,QΠ

�
||f � f�||Q ¥ D

c
s logpM{sq

n

����X1, Y1, . . . , Xn, Yn



Ñ 0.

5.3.2 Posterior convergence rate of Bayesian linear aggregation

Let λ� � pλ�1 , . . . , λ�Mq be the coefficient such that Fλ� best approximates F0 in

|| � ||2 norm, i.e. λ� � arg minλPRM ||Fλ � F0||22. Similar to the CA case, such a

misspecified framework also includes the well-specified situation as a special case

where F0 � Fλ� P FRM . It is possible that there exists more than one such a

minimizer and then we can choose λ� with minimal nonzero components. This non-

uniqueness will not affect our theorem quantifying the prediction performance of LA

since any minimizers of ||Fλ�F0||22 will give the same prediction Fλ. Our choice of

λ�, which minimizes ||λ�||0, can lead to the fastest posterior convergence rate.

We make the following assumptions:

(B1) There exists a constant 0   κ   8 such that 1?
n

sup1¤j¤M ||Fj||2 ¤ κ.

(B2a) (Sparsity) There exists an integer s ¡ 0, such that ||λ�||0 � s   n.

(B2b) (l1-summability) There exists a constant A0 ¡ 0, such that A� � ||λ�||1   A0.

(B3) For m0 � r
?
n s, there exists a constant κ0 ¡ 0 such that 1?

n
||Fλ||2 ¥ κ0||λ||1

for all λ P RM with ||λ||0 � m0.
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• (B1) is the column normalizing condition for the design matrix. This assump-

tion is mild since the predictors can always be normalized to satisfy it. This

condition can also be considered as the empirical version of (A1), where the

matrix Σ is replaced by its empirical estimator 1
n
F TF .

• (B2a) is a counterpart of the sparsity condition (A2) of the aggregation prob-

lem. This assumption is commonly made in the high dimensional linear regres-

sion literature. (B2b) is assumed by Bühlmann (2006) in studying consistency

of boosting for high dimensional linear regression. This condition includes the

sparsity condition (B2a) as a special case while also including the case in which

many components of λ� are nonzero but small in magnitude. Similar to the

aggregation problem, under (B2b), the sparsity gains only when s !
b

n
logM

.

(B2a) also implies a sparsity constraint on η� � λ�{A�, where η� always satis-

fies ||η�||1 � 1.

• (B3) is the same in spirit as the sparse eigenvalue condition made in Raskutti

et al. (2011), which provides identifiability for m0-sparse vectors. This assump-

tion is only made for the l1-summable case, where any l1-summable λ P RM

can be approximated by an m0-sparse vector with error at most Op||λ1||εnq
under dF (Lemma 28 part b), with εn given in (DA-PC), where dF pλ, λ1q �
||n�1{2F pλ � λ1q||2. Under this assumption, we show that the posterior prob-

ability of t||λ||1 ¤ KA�u converges to zero as n Ñ 8 for some constant K

and therefore with high posterior probability, λ can be approximated by an

m0-sparse vector with error at most Opεnq.

The following theorem is a counterpart of Theorem 24 for LA.

Theorem 25. Assume (B1). Let Y be an n-dimensional response vector sampled

from Y � NpF0, σ
2Inq. Let λ� be any one of the minimizers of λ ÞÑ ||Fλ � F0||2 in
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RM . If (B2b) and (B3) are true, then under the prior (DDG2), for some D ¡ 0, as

nÑ 8,

E0Π

�
||n� 1

2F pλ� λ�q||2 ¥ Dmin

"c
M

n
,

4

c
logpM{?n� 1q

n

*���� Y
Ñ 0.

If (B2a) is true, then as nÑ 8,

E0Π

�
||n� 1

2F pλ� λ�q||2 ¥ D

c
s logpM{sq

n

���� Y
Ñ 0.

Theorem 25 suggests that in order to obtain the fastest posterior convergence rate

for prediction, we can choose the λ� having the minimal ||λ�||0 among all minimizers

of ||Fλ�F0||2. This suggests that the posterior measure tends to concentrate on the

sparsest λ� that achieves the same prediction accuracy, which explains the sparse

adaptivity. The non-uniqueness happens when M ¡ n.

5.4 Experiments

As suggested by Yang (2001), the estimator f̂n depends on the order of the obser-

vations and one can randomly permute the order a number of times and average

the corresponding estimators. In addition, one can add a third step of estimat-

ing f1, . . . , fM with the full dataset as f̂1, . . . , f̂M and setting the final estimator

as f̃ � °M
j�1 λ̂j f̂j. We will adopt this strategy and our splitting and aggregation

scheme can be summarized as follows. First, we randomly divide the entire n sam-

ples into two subsets S1 and S2 with |S1| � n1 and |S2| � n2. As a default, we set

n1 � 0.75n and n2 � 0.25n. Using S1 as a training set, we obtain M base learners

f̂
pn1q
1 , . . . , f̂

pn1q
M . Second, we apply the above MCMC algorithms to aggregate these

learners into f̂ pn1q � °M
j�1 λ̂j f̂

pn1q
j based on the n2 aggregating samples. Finally,

we use the whole dataset to train these base learners, which gives us f̂
pnq
j , and the

final estimator is f̂ pnq � °M
j�1 λ̂j f̂

pnq
j . Therefore, one basic requirement on the base
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learners is that they should be stable in the sense that f̂
pnq
j can not be dramatically

different from f̂
pn1q
j (e.g. CART might not be a suitable choice for the base learner).

5.4.1 Bayesian linear aggregation

In this subsection, we apply the Bayesian LA methods to the linear regression Y �
Xλ � ε, with X P RM and ε � Np0, σ2Inq. Since every linear aggregation problem

can be reformed as a linear regression problem, this is a simple canonical setting

for testing our approach. We consider two scenarios: 1. the sparse case where

the number of nonzero components in the regression coefficient λ is smaller than

M and the sample size n; 2. the non-sparse case where λ can have many nonzero

components, but the l1 norm ||λ||1 �
°M
j�1 |λj| remains constant as M changes. We

vary model dimensionality by letting M � 5, 20, 100 and 500.

We compare the Bayesian LA methods with lasso, ridge regression and horse-

shoe. Lasso (Tibshirani, 1996) is widely used for linear models, especially when λ is

believed to be sparse. In addition, due to the use of l1 penalty, the lasso is also mini-

max optimal when λ is l1-summable (Raskutti et al., 2011). Ridge regression (Hoerl

and Kennard, 1970) is a well-known shrinkage estimator for non-sparse settings.

Horseshoe (Carvalho et al., 2010) is a Bayesian continuous shrinkage prior for sparse

regression from the family of global-local mixtures of Gaussians (Polson and Scott,

2010). Horseshoe is well-known for its robustness and excellent empirical perfor-

mance for sparse regression, but there is a lack of theoretical justification. n training

samples are used to fit the models and N � n testing samples are used to calculate

the prediction root mean squared error (RMSE)
 pN � nq�1

°N
i�n�1pŷi � yiq2

(1{2
,

where ŷi denotes the prediction of yi.

The MCMC algorithm for the Bayesian LA method is run for 2,000 iterations,

with the first 1,000 iterations as the burn-in period. We set α � 1, γ � 2, a0 � 0.01

and b0 � 0.01 for the hyperparameters. The tuning parameters in the MH steps are
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chosen so that the acceptance rates are around 40%. The lasso is implemented by

the glmnet package in R, the ridge is implemented by the lm.ridge function in R and

horseshoe is implemented by the monomvn package in R. The iterations for horseshoe

is set as the default 1,000. The regularization parameters in Lasso and ridge are

selected via cross-validation.

Sparse case

In the sparse case, we choose the number of non-zero coefficients to be 5. The

simulation data are generated from the following model:

pSq y � �0.5x1 � x2 � 0.4x3 � x4 � 0.6x5 � ε, ε � Np0, 0.52q,

with M covariates x1, . . . , xM � i.i.d Np0, 1q. The training size is set to be n �
100 and testing size N � n � 1000. As a result, (S) with M � 5 and 20 can be

considered as moderate dimensional, while M � 100 and M � 500 are relatively

high dimensional.

Table 5.1: RMSE for the sparse linear model (S). The numbers in the parentheses
indicate the standard deviations. All results are based on 100 replicates.

M 5 20 100 500

LA
.511 .513 .529 .576

(0.016) (0.016) (0.020) (0.023)

Lasso
.514 .536 .574 .613

(0.017) (0.020) (0.039) (0.042)

Ridge
.514 .565 1.23 2.23

(0.017) (0.019) (0.139) (0.146)

Horseshoe
.512 .519 .525 .590

(0.016) (0.014) (0.019) (0.022)

From Table 5.1, all the methods are comparable when there is no nuisance pre-

dictor (M � 5). However, as more nuisance predictors are included, the Bayesian

LA method and horseshoe have noticeably better performance than the other two

methods. For example, for M � 100, the Bayesian LA method has 8% and 53%
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improvements over lasso and ridge, respectively. In addition, as expected, ridge

deteriorates more dramatically than the other two as M grows. It appears that

Bayesian LA is more computationally efficient than horseshoe. For example, under

m � 100 it takes horseshoe 50 seconds to draw 1,000 iterations but only takes LA

about 1 second to draw 2,000 iterations.
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Figure 5.2: Traceplots for a non-zero regression coefficient and a zero coefficient.

Fig. 5.2 displays the traceplots after the burn-in for a typical non-zero and a typ-

ical zero regression coefficient respectively under M � 100. The non-zero coefficient

mixes pretty well according to its traceplot. Although the traceplot of the zero coeffi-

cient exhibits some small fluctuations, their magnitudes are still negligible compared

to the non-zero ones. We observe that these fluctuant traceplots like Fig. 5.2(b) only

happens for those λj’s whose posterior magnitudes are extremely small. The typical

orders of the posterior means of those λj’s in LA that correspond to unimportant

predictors range from 10�17 to 10�2. However, the posterior medians of unimpor-

tant predictors are less than 10�4 (see Fig. 5.3). This suggests that although the

coefficients are not exactly to zero, the estimated regression coefficients with zero

true values are still negligible compared to the estimators of the nonzero coefficients.
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Figure 5.3: 95% posterior credible intervals for λ1, . . . , λ100 in sparse regresion.
The solid dots are the corresponding posterior medians.
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Figure 5.4: 95% posterior credible intervals for λ1, . . . , λ100 in non-sparse regression.
The solid dots are the corresponding posterior medians.
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In addition, for LA the posterior median appears to be a better and more robust

estimator for sparse regression than the posterior mean.

Non-sparse case

In the non-sparse case, we use the following two models as the truth:

pNS1q y �
M̧

j�1

3p�1qj
j2

xj � ε, ε � Np0, 0.12q,

pNS2q y �
tM{2u¸
j�1

5

tM{2uxj � ε, ε � Np0, 0.12q,

with M covariates x1, . . . , xM � i.i.d Np0, 1q. In (NS1), all the predictors affect the

response and the impact of predictor xj decreases quadratically in j. Moreover, λ

satisfies the l1-summability since limpÑ8 ||λ||1 � π2{3 ≈ 4.9. In (NS2), half of the

predictors have the same influence on the response with ||λ||1 � 5. The training size

is set to be n � 200 and testing size N � n � 1000 in the following simulations.

From Table 5.2, all the methods have comparable performance when M is mod-

erate (i.e 5 or 20) in both non-sparse settings. In the non-sparse settings, horseshoe

also exhibits excellent prediction performance. In most cases, LA, lasso and horse-

shoe have similar performance. As M increases to an order comparable to the sample

size, LA and horseshoe tend to be more robust than lasso and ridge. As M becomes

much greater than n, LA, lasso and horseshoe remain good in (NS1) while breaking

down in (NS2); ridge breaks down in (NS1) while becoming the best in (NS2). It

might be because in (NS1), although all λj’s are nonzero, the first several predictors

still dominate the impact on y. In contrast, in (NS2), half of λj’s are nonzero and

equally small. Fig. 5.4 plots 95% posterior credible intervals for λ1, . . . , λ100 of (NS2)

under M � 100. According to Section 5.1.1, the spasrse/non-sparse boundary for

pNS2q under M � 100 is
?

200{ log 100 � 3 ! 50. Therefore, the results displayed
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Table 5.2: RMSE for the non-sparse linear models (NS1) and (NS2). All results are
based on 100 replicates.

M 5 20 100 500

NS1

LA
.101 .112 .116 .129

(0.002) (0.003) (0.005) (0.007)

Lasso
.105 .110 .116 .155

(0.006) (0.005) (0.005) (0.006)

Ridge
.102 .107 .146 2.42

(0.003) (0.004) (0.008) (0.053)

Horseshoe
.102 .111 .114 .136

(0.003) (0.003) (0.004) (0.005)

NS2

LA
.101 .104 .121 .326

(0.002) (0.003) (0.005) (0.008)

Lasso
.111 .106 .131 .323

(0.006) (0.003) (0.007) (0.008)

Ridge
.103 .107 .140 .274

(0.003) (0.003) (0.008) (0.010)

Horseshoe
.102 .104 .124 .308

(0.003) (0.003) (0.004) (0.007)

in Fig. 5.4 can be classified into the non-sparse regime. A simple variable selection

based on these credible intervals correctly identifies all 50 nonzero components.

Robustness against the hyperparameters

Since changing the hyperparameter α in the Dirichlet prior is equivalent to changing

the hyperparameter γ, we perform a sensitivity analysis for γ in the above two

regression settings with M � 100.

From Figure 5.5, the Bayesian LA method tends to be robust against the change

in γ at a wide range. As expected, the Bayesian LA method starts to deteriorate

as γ becomes too small. In particular, when γ is zero, the Dirichlet prior no longer

favors sparse weights and the RMSE becomes large (especially for the sparse model)

in all three settings. However, the Bayesian LA methods tend to be robust against

increase in γ. As a result, we would recommend choosing γ � 2 in practice.
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Figure 5.5: Robustness of the Bayesian LA methods against the hyperparameter
γ. The results are based on 100 replicates.

5.4.2 Bayesian convex aggregation

In this subsection, we conduct experiments for the Bayesian convex aggregation

method.

Simulations

The following regression model is used as the truth in our simulations:

y � x1 � x2 � 3x2
3 � 2e�x4 � ε, ε � Np0, 0.5q, (5.8)

with p covariates x1, . . . , xd � i.i.d Np0, 1q. The training size is set to be n � 500

and testing size N � n � 1000 in the following simulations.

In the first simulation, we choose M � 6 base learners: CART, random forest

(RF), lasso, SVM, ridge regression (Ridge) and neural network (NN). The Bayesian

aggregation (BA) is compared with the super learner (SL). SL is implemented by the

SuperLearner package in R. The implementations of the base learners are described

in Table 5.3. The MCMC algorithm for the Bayesian CA method is run for 2,000

iterations, with the first 1,000 iterations as the burn-in period. We set α � 1, γ � 2

for the hyperparameters. The simulation results are summarized in Table 5.4, where

square roots of mean squared errors (RMSE) of prediction based on 100 replicates
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are reported.

Table 5.3: Descriptions of the base learners.

Base learner CART RF Lasso
R package rpart randomForest glmnet

SVM Ridge NN GAM
e1071 MASS nnet gam

Table 5.4: RMSE for the first simulation. All results are based on 100 replicates.

d CART RF Lasso SVM Ridge NN SL BA

5
3.31 3.33 5.12 2.71 5.12 3.89 2.66 2.60

(0.41) (0.42) (0.33) (0.49) (0.33) (0.90) (0.48) (0.48)

20
3.32 3.11 5.18 4.10 5.23 5.10 3.13 3.00

(0.41) (0.49) (0.37) (0.46) (0.38) (1.57) (0.54) (0.48)

100
3.33 3.17 5.17 5.48 5.64 7.12 3.19 3.03

(0.38) (0.45) (0.32) (0.35) (0.33) (1.31) (0.45) (0.45)

In the second simulation, we consider the case when M is moderately large. We

consider M � 26, 56 and 106 by introducing pM � 6q new base learners in the

following way. In each simulation, for j � 1, . . . ,M � 6, we first randomly select a

subset Sj of the covariates tx1, . . . , xdu with size p � tmintn1{2, d{3uu. Then the jth

base learner fj is fitted by the general additive model (GAM) with the response y

and covariates in Sj as predictors. This choice of new learners is motivated by the

fact that the truth is sparse when M is large and brutally throwing all covariates

into the GAM tends to have a poor performance. Therefore, we expect that a base

learner based on GAM that uses a small subset of the covariates containing the

important predictors x1, x2 x3 and x4 tends to have better performance than the full

model. In addition, with a large M and moderate p, the probability that one of the

randomly selected pM � 6q models contains the truth is high. In this simulation, we

compare BA with SL and a voting method using the average prediction across all

base learners. For illustration, the best prediction performance among the pM � 6q
random-subset base learners is also reported. Table 5.5 summarizes the results.
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Table 5.5: RMSE for the second simulation study. All results are based on 100
replicates.

d M Best Voting SL BA

20

26
3.14 4.63 3.40 2.78

(0.82) (0.48) (0.60) (0.52)

56
2.86 4.98 3.33 2.79

(1.57) (0.71) (0.86) (0.78)

106
2.79 4.95 3.23 2.73

(0.62) (0.60) (0.70) (0.61)

100

26
3.14 4.72 3.09 2.78

(0.71) (0.44) (0.50) (0.45)

56
2.95 4.93 3.07 2.78

(0.46) (0.45) (0.50) (0.47)

106
2.84 4.90 2.98 2.69

(0.45) (0.47) (0.55) (0.51)

500

26
5.21 5.75 3.77 3.19

(0.75) (0.50) (0.650) (0.59)

56
4.86 5.92 4.02 3.18

(0.78) (0.59) (0.73) (0.70)

106
4.65 5.98 4.18 3.13

(0.69) (0.45) (0.52) (0.49)

Applications

We apply BA to four datasets from the UCI repository. Table 5.6 provides a brief

description of those datasets. We use CART, random forest, lasso, support vector

machine, ridge regression and neural networks as the base learners. We run 40,000

iterations for the MCMC for the BA for each dataset and discard the first half as

the burn-in. Table 5.7 displays the results. As we can see, for 3 datasets (auto-mpg,

concrete and forest), the aggregated models perform the best. In particular, for the

auto-mpg dataset, BA has 3% improvement over the best base learner. Even for

the slump dataset, aggregations still have comparable performance to the best base

learner. The two aggregation methods SL and BA have similar performance for all

the datasets.
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Table 5.6: Descriptions of the four datasets from the UCI repository. CCS: concrete
compressive strength.

dataset sample size # of predictors response
variable

auto-mpg 392 8 mpg

concrete 1030 8 CCS�

slump 103 7 slump

forest 517 12 log(1+area)

Table 5.7: RMSE of aggregations for real data applications. All results are based on
10-fold cross-validations.

dataset Cart RF Lasso SVM Ridge NN GAM SL BA

auto-mpg 3.42 2.69 3.38 2.68 3.40 7.79 2.71 2.61 2.61

concrete 9.40 5.35 10.51 6.65 10.50 16.64 7.95 5.31 5.33

slump 7.60 6.69 7.71 7.05 8.67 7.11 6.99 7.17 7.03

forest .670 .628 .612 .612 .620 .613 .622 .606 .604

5.5 Proofs of the main results

Let KpP,Qq � ³
logpdP {dQqdP be the KL divergence between two probability dis-

tributions P and Q, and V pP,Qq � ³ | logpdP {dQq �KpP,Qq|2dP be a discrepancy

measure.

5.5.1 Concentration properties of Dirichlet distribution and double Dirichlet distri-
bution

According to the posterior asymptotic theory developed in Ghosal et al. (2000) (for

iid observations, e.g. regression with random design, such as the aggregation problem

in section 5.2.2), to ensure a posterior convergence rate of at least εn, the prior has

to put enough mass around θ� in the sense that

(PC1) ΠpBpθ�, εnqq ¥ e�nε
2
nC , with

Bpθ�, εq �tθ P Θ : KpPθ� , Pθq ¤ ε2, V pPθ� , Pθq ¤ ε2u,
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for some C ¡ 0. For independent but non-identically distributed (noniid) obser-

vations (e.g. regression with fixed design, such as the linear regression problem

in section 5.2.3), where the likelihood takes a product form P
pnq
θ pY1, . . . , Ynq �±n

i�1 Pθ,ipYiq, the corresponding prior concentration condition becomes (Ghosal and

van der Vaart, 2007)

(PC2) ΠpBnpθ�, εnqq ¥ e�nε
2
nC , with

Bnpθ�, εq �
"
θ P Θ :

1

n

ņ

i�1

KpPθ�,i, Pθ,iq ¤ ε2,
1

n

ņ

i�1

V pPθ�,i, Pθ,iq ¤ ε2
*
.

If a (semi-)metric dn, which might depend on n, dominates KL and V on Θ, then

(PC) is implied by Πpdnpθ, θ�q ¤ cεnq ¥ e�nε
2
nC for some c ¡ 0. In the aggrega-

tion problem with a random design and parameter θ � λ, we have KpPθ� , Pθq �
V pPθ� , Pθq � 1

2σ2 ||
°M
j�1pλj � λ�j qfj||2Q � 1

2σ2 pλ � λ�qTΣpλ � λ�q. Therefore, we can

choose dnpθ, θ�q as dΣpλ, λ�q � ||Σ1{2pλ � λ�q||2. In the linear aggregation prob-

lem with a fixed design and θ � λ,
°n
j�1KpPθ�,i, Pθ,iq � °n

j�1 V pPθ�,i, Pθ,iq �
1

2σ2 ||F pλ� λ�q||2, where Pθ,ipY q � PλpY |F piqq. Therefore, we can choose dnpθ, θ�q as

dF pλ, λ�q � || 1?
n
F pλ� λ�q||2.

For CA and LA, the concentration probabilities can be characterized by those

of λ� P Λ and η� P DM�1 � tη P RM , ||η||1 � 1u. Therefore, it is important to

investigate the concentration properties of the Dirichlet distribution and the double

Dirichlet distribution as priors over Λ and DM�1. The concentration probabilities

ΠpdΣpλ, λ�q ¤ cεq and ΠpdF pη, η�q ¤ cεq depend on the location of the centers λ�

and η�, which are characterized by their geometrical properties, such as sparsity and

l1-summability. The next lemma characterizes these concentration probabilities and

is of independent interest.

Lemma 26. Assume (A1) and (B1).
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a. Assume (A2). Under the prior (DA), for any γ ¥ 1,

ΠpdΣpλ, λ�q ¤ εq ¥ exp

"
� Cγs log

M

ε

*
, for some C ¡ 0.

b. Under the prior (DA), for any m ¡ 0, any λ P Λ and any γ ¥ 1,

Π

�
dΣpλ, λ�q ¤ ε� C?

m



¥ exp

"
� Cγm log

M

ε

*
,

ΠpdΣpλ, λ�q ¤ εq ¥ exp

"
� CγM log

M

ε

*
, for some C ¡ 0.

c. Assume (B2a). Under the prior for η in (DDG2), for any γ ¥ 1,

ΠpdF pη, η�q ¤ εq ¥ exp

"
� Cγs log

M

ε

*
, for some C ¡ 0.

d. Under the prior for η in (DDG2), for any m ¡ 0, any η P DM�1 and any

γ ¥ 1,

Π

�
dF pη, η�q ¤ ε� C?

m



¥ exp

"
� Cγm log

M

ε

*
,

ΠpdF pη, η�q ¤ εq ¥ exp

"
� CγM log

M

ε

*
, for some C ¡ 0.

• The lower bound expt�Cγs logpM{εqu in Lemma 26 can be decomposed into

two parts: expt�Cγs logMu and exptCs log εu. The first part has the same

order as 1{�M
s

�
, one over the total number of ways to choose s indices from

t1, . . . ,Mu. The second part is of the same order as εs, the volume of an

ε-cube in Rs. Since usually which s components are nonzero and where the

vector composed of these s nonzero components locates in Rs are unknown,

this prior lower bound cannot be improved.

• The priors (DA) and (DDG2) do not depend on the sparsity level s. As a result,

Lemma 26 suggests that the prior concentration properties hold simultaneously
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for all λ� or η� with different s and thus these priors can adapt to an unknown

sparsity level.

By the first two parts of Lemma 26, the following is satisfied for the prior (DA)

with D large enough,

(DA-PC) ΠpdΣpλ, λ�q ¤ εnq ¥ e�nε
2
nC , with εn �

$'''&'''%
D
b

s logpM{sq
n

, if ||λ�||0 � s;

D
b

M
n
, if M ¤ ?

n;

D 4

b
logpM{?n�1q

n
, if M ¡ ?

n.

This prior concentration property will play a key role in characterizing the posterior

convergence rate of the prior (DA) for Bayesian aggregation.

Based on the prior concentration property of the double Dirichlet distribution

provided in Lemma 26 part c and part d, we have the corresponding property for

the prior (DDG2) by taking into account the prior distribution of A � ||λ||1.

Corollary 27. Assume (B1).

a. Assume (B2a). Under the prior (DDG2), for any γ ¥ 1,

ΠpdF pλ, λ�q ¤ εq ¥ exp

"
� Cγs log

M

ε

*
, for some C ¡ 0.

b. Assume (B2b). Under the prior (DDG2), for any m ¡ 0, any η P DM�1 and

any γ ¥ 1,

Π

�
dF pλ, λ�q ¤ ε� C?

m



¥ exp

"
� Cγm log

M

ε

*
,

ΠpdF pλ, λ�q ¤ εq ¥ exp

"
� CγM log

M

ε

*
, for some C ¡ 0.

Based on the above corollary, we have a similar prior concentration property for

the prior (DDG2):

(DDG2-PC) ΠpdF pθ, θ�q ¤ cεnq ¥ e�nε
2
nC , with the same εn in (DA-PC).
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5.5.2 Supports of the Dirichlet distribution and the double Dirichlet distribution

By Ghosal et al. (2000), a second condition to ensure the posterior convergence rate

of θ� P Θ at least εn is that the prior Π should put almost all its mass in a sequence

of subsets of Θ that are not too complex. More precisely, one needs to show that

there exists a sieve sequence tFnu such that θ� P Fn � Θ, ΠpF cnq ¤ e�nε
2
nC and

logNpεn,Fn, dnq ¤ nε2n for each n, where for a metric space F associated with a

(semi-)metric d, Npε,F , dq denotes the minimal number of d-balls with radii ε that

are needed to cover F .

For the priors (DA) and (DDG2), the probability of the space of all s-sparse

vectors is zero. We consider the approximate s-sparse vector space FΛ
s,ε defined in

Section 5.2.1 for CA. For LA, we define FDB,s,ε � tθ � Aη : η P DM�1,
°M
j�s�1 |ηpjq| ¤

B�1ε; 0 ¤ A ¤ Bu, where |ηp1q| ¥ � � � ¥ |ηpMq| is the ordered sequence of η1, . . . , ηM

according to their absolute values.

The following lemma characterizes the complexity of Λ, DB
M�1 � tAη : η P

DM�1; 0 ¤ A ¤ Bu, FΛ
s,ε and FDB,s,ε in terms of their covering numbers.

Lemma 28. Assume (A1) and (B1).

a. For any ε P p0, 1q, integer s ¡ 0 and B ¡ 0, we have

logNpε,FΛ
s,ε, dΣq À s log

M

ε
,

logNpε,FDB,s,ε, dF q À s log
M

ε
� s logB.
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b. For any ε P p0, 1q and integer m ¡ 0, we have

logNpC{?m,Λ, dΣq À m logM,

logNpε,Λ, dΣq ÀM log
M

ε
,

logNpCB{?m,BDM�1, dF q À m logM,

logNpBε,BDM�1, dF q ÀM log
M

ε
.

The next lemma provides upper bounds to the complementary prior probabilities

of FΛ
s,ε and FDB,s,ε. The proof utilizes the connection between the Dirichlet distribution

and the stick-breaking representation of the Dirichlet processes (Sethuraman, 1994).

Lemma 29. a. For any ε P p0, 1q, under the prior (DA) with γ ¡ 1, we have

Πpλ R FΛ
s,εq À exp

"
� Cspγ � 1q log

M

ε

*
.

b. For any ε P p0, 1q, under the prior (DDG2) with γ ¡ 1, we have

Πpθ R FDB,s,εq À exp

"
� Cspγ � 1q log

M

ε
� Cs logB

*
� expt�CBu.

5.5.3 Test construction

For CA, we use the notation Pλ,Q to denote the joint distribution of pX, Y q, whenever

X � Q and Y |X � Np°M
j�1 λjfjpXq, σ2q for any λ P Λ and Eλ,Q the expectation

with respect to Pλ,Q. Use P
pnq
λ,Q to denote the n-fold convolution of Pλ,Q. Let Xn �

pX1, . . . , Xnq and Y n � pY1, . . . , Xnq be n copies of X and Y . Recall that f0 is

the true regression function that generates the data. We use P0,Q to denote the

corresponding true distribution of Y . For LA, we use Pλ to denote the distribution

of Y , whenever Y � NpFλ, σ2Inq and Eλ the expectation with respect to Pλ.

For both aggregation problems, we use the “M-open” view where f0 might not

necessarily belong to FΛ or FRM . We apply the result in Kleijn and van der Vaart
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(2006) to construct a test under misspecification for CA with random design and

explicitly construct a test under misspecification for LA with fixed design. Note that

the results in Kleijn and van der Vaart (2006) only apply for random-designed models.

For LA with fixed design, we construct a test based on concentration inequalities for

Gaussian random variables.

Lemma 30. Assume (A3).

a. Assume that f� � °M
j�1 λ

�
j fj satisfies EQpf�f�qpf��f0q � 0 for every f P FΛ.

Then there exist C ¡ 0 and a measurable function φn of Xn and Y n, such that

for any other vector λ2 P Λ,

P
pnq
0,QφnpXn, Y nq ¤ exp

 � Cnd2
Σpλ2, λ

�q(
sup

λPΛ: dΣpλ,λ2q  1
4
dF pλ�,λ2q

P
pnq
λ,Qp1� φnpXn, Y nqq ¤ exp

 � Cnd2
Σpλ2, λ

�q(.
b. Assume that λ� P Rd satisfies F T pFλ� � F0q � 0 for every λ P Rd. Then there

exists a measurable function φn of Y and some C ¡ 0, such that for any other

λ2 P Rd,

P0φnpY q ¤ exp
 � Cnd2

F pλ2, λ
�q(

sup
λPRM : dF pλ,λ2q  1

4
dF pλ�,λ2q

Pλp1� φnpY qq ¤ exp
 � Cnd2

Xpλ2, λ
�q(.

• As we discussed in the remark in section 5.3.1, in order to apply Kleijn and

van der Vaart (2006) for Gaussian regression with random design, we need the

mean function to be uniformly bounded. For the convex aggregation space FΛ,

this uniformly bounded condition is implied by (A3). For the linear regression

with fixed design, we do not need the uniformly bounded condition. This

property ensures that the type I and type II errors in b do not deteriorate as

||λ2||1 grows, which plays a critical role in showing that the posterior probability
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of tA ¡ CA�u converges to zero in probability for C sufficiently large, where

A � ||λ||1 and A� � ||λ�||1. Similarly, if we consider CA with a fixed design,

then only an assumption like (B1) on the design points is needed.

• The assumption on f� in CA is equivalent to that f� is the minimizer over

f P FΛ of ||f � f0||2Q, which is proportional to the expectation of the KL

divergence between two normal distributions with mean functions f0pXq and

fpXq with X � Q. Therefore, f� is the best L2pQq-approximation of f0 within

the aggregation space FΛ and the lemma suggests that the likelihood function

under f� tends to be exponentially larger than other functions in FΛ. Similarly,

the condition on λ� in LA is equivalent to that λ� is the minimizer over λ P
Rd of ||Fλ � F0||22, which is proportional to the KL divergence between two

multivariate normal distributions with mean vectors Fλ and F0.

5.5.4 Proof of Theorem 24

The proof follows similar steps as the proof of Theorem 2.1 in Ghosal et al. (2000).

The difference is that we consider the misspecified framework where the asymptotic

limit of the posterior distribution of f is f� instead of the true underlying regression

function f0. As a result, we need to apply the test condition in Lemma 30 part a in

the model misspecified framework. We provide a sketched proof as follows.

Let εn be given by (DA-PC) and ΠBpλq � Π
�
λ|Bpλ�, εnq

�
with Bpλ�, εnq defined

in (PC1). By Jensen’s inequality applied to the logarithm,

log

»
Bpλ�,εnq

n¹
i�1

Pλ,Q
P0,Q

pXi, YiqdΠBpλq ¥
ņ

i�1

»
Bpλ�,εnq

log
Pλ,Q
P0,Q

pXi, YiqdΠBpλq.

By the definition of Bpλ�, εnq and an application of Chebyshev’s inequality, we have
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that for any C ¡ 0,

P0

" ņ

i�1

»
Bpλ�,εnq

�
log

Pλ,Q
P0,Q

pXi, Yiq �KpPλ0,Q, Pλ,Qq


dΠBpλq

¤ �p1� Cqnε2n � n

»
Bpλ�,εnq

KpPλ0,Q, Pλ,QqdΠBpλq
*

¤ P0

" ņ

i�1

»
Bpλ�,εnq

�
log

Pλ,Q
P0,Q

pXi, Yiq �KpPλ0,Q, Pλ,Qq


dΠBpλq ¤ �Cnε2n

*

¤
n
³
Bpλ�,εnq V pPλ0,Q, Pλ,QqdΠBpλq

pCnε2nq2
¤ 1

C2nε2n
Ñ 0, as nÑ 8.

Combining the above two yields that on some set An with P0-probability converging

to one,»
Bpλ�,εnq

n¹
i�1

Pλ,Q
P0,Q

pXi, YiqdΠpλq ¥ expp�p1� Cqnε2nqΠpBpλ�, εnqq ¥ expp�C0nε
2
nq,
(5.9)

for some C0 ¡ 0, where we have used the fact that ΠpBpλ�, εnqq ¥ ΠpdΣpλ, λ�q ¤
Cεnq ¥ expp�Cnε2nq for some C ¡ 0.

Let Fn � Fλas,εn for some a ¡ 0 if (A2) holds and otherwise Fn � Λ. Then by

Lemma 28 part a and Lemma 29 part a, for some constants C1 ¡ 0 and C2 ¡ 0,

logNpεn,Fn, dΣq ¤ C1nε
2
n, Πpλ R Fnq ¤ expp�C2nε

2
nq. (5.10)

Because C2 is increasing with the a in the definition of Fn, we can assume C2 ¡ C0�1

by properly selecting an a.

For some D0 ¡ 0 sufficiently large, let λ�1 , . . . , λ
�
J P Fn � tλ : dΣpλ, λ�q ¤ 4D0εnu

with |J | ¤ exppC1nε
2
nq be J points that form an D0εn-covering net of Fn � tλ :

dΣpλ, λ�q ¤ 4D0εnu. Let φj,n be the corresponding test function provided by Lemma

30 part a with λ2 � λ�j for j � 1, . . . , J . Set φn � maxj φj,n. Since dΣpλ�j , λ�q ¥
4D0εn for any j, we obtain

P
pnq
0,Qφn ¤

J̧

j�1

P
pnq
0,Qφj,n ¤ |J | expp�C16D2

0nε
2
nq ¤ expp�C3nε

2
nq, (5.11)
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where C3 � 16CD2
0 � 1 ¡ 0 for D0 large enough. For any λ P Fn � tλ : dΣpλ, λ�q ¤

4D0εnu, by the design, there exists a j0 such that dΣpλ�j0 , λq ¤ D0εn. This implies

that dΣpλ�j0 , λ�q ¥ 4D0εn ¥ 4dΣpλ�j0 , λq, therefore

sup
λPFn: dΣpλ,λ�q¥4D0εn

P
pnq
λ,Qφn

¤ min
j

sup
λPΛ: dΣpλ,λ�j q  1

4
dΣpλ�,λ�j q

P
pnq
λ,Qp1� φnq ¤ exp

 � C4nε
2
n

(
, (5.12)

with C4 � 16CD2
0 ¡ C0 � 1 with D0 sufficiently large. With D � 4D0, we have

E0,QΠpdΣpλ, λ�q ¥ Dεn|X1, Y1, . . . , Xn, YnqIpAnq

¤ P
pnq
0,Qφn � E0,QΠpdΣpλ, λ�q ¥ Dεn|X1, Y1, . . . , Xn, YnqIpAnqp1� φnq. (5.13)

By (5.9), (5.10) and (5.12), we have

E0,QΠpdΣpλ, λ�q ¥ Dεn|X1, Y1, . . . , Xn, YnqIpAnqp1� φnq

¤ P
pnq
0,Qp1� φnqIpAnq

³
λPFn:dΣpλ,λ�q¥Dεn

±n
i�1

Pλ,Q
P0,Q

pXi, YiqdΠpλq³
Bpλ�,εnq

±n
i�1

Pλ,Q
P0,Q

pXi, YiqdΠpλq

� P
pnq
0,QIpAnq

³
λRFn

±n
i�1

Pλ,Q
P0,Q

pXi, YiqdΠpλq³
Bpλ�,εnq

±n
i�1

Pλ,Q
P0,Q

pXi, YiqdΠpλq

¤ exppC0nε
2
nq sup

λPFn: dΣpλ,λ�q¥4D0εn

P
pnq
λ,Qφn � exppC0nε

2
nqΠpλ R Fnq ¤ 2 expp�nε2nq.

(5.14)

Combining the above with (5.11), (5.13), and the fact that E0,QIpAcnq Ñ 0 as nÑ 8,

Theorem 24 can be proved.

5.5.5 Proof of Theorem 25

For the sparse case where (B2a) is satisfied, we construct the sieve by Fn � FDbnε2n,as,εn
with the εn given in (DDG2-PC), where a ¡ 0, b ¡ 0 are sufficiently large constants.

Then by Lemma 28 part a and Lemma 29 part b, we have

logNpεn,Fn, dF q ¤ C1nε
2
n, Πpλ R Fnq ¤Πp�C2nε

2
nq, (5.15)
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where C2 is increasing with a and b. The rest of the proof is similar to the proof of

Theorem 24 with the help of (5.15), Corollary 26 part b and Lemma 30 part b.

Next, we consider the dense case where (B2b) and (B3) are satisfied. By the

second half of Lemma 28 part b, the approximation accuracy of BDM�1 degrades

linearly in B. Therefore, in order to construct a sieve such that (5.15) is satisfied

with the εn given in (DDG2-PC), we need to show that E0ΠpA ¤ KA�|Y q Ñ 0 as

nÑ 8 with some constant K ¡ 0. Then by conditioning on the event tA ¤ KA�u,
we can choose Fn � BDM�1 with B � KA�, which does not increase with n, and

5.15 will be satisfied. As long as 5.15 is true, the rest of the proof will be similar to

the sparse case.

We only prove that E0ΠpA ¤ KA�|Y q Ñ 0 as n Ñ 8 here. By (B1) and (B3),

for any η P DM�1 and A ¡ 0, dF pAη,A�η�q ¥ κ0A � κA�. As a result, we can

choose K large enough so that dF pAη,A�η�q ¥ 4 for all A ¥ KA� and all η P DM�1.

Therefore, by Lemma 30 part b, for any λ2 � A2η2 with A2 ¡ KA� and η2 P DM�1,

there exists a test φn such that

Pλ�φnpY q ¤ exp
 � Cn

(
sup

λPRM : dF pλ,λ2q  1
4
dF pλ�,λ2q

Pλp1� φnpY qq ¤ exp
 � Cn

(
.

By choosing K large enough, we can assume that κ0KA
�{8 ¡ κ � κA�{4. For any

λ � Aη satisfying dF pη, η2q ¤ κ0{8 and |A � A2| ¤ 1, by (B1) and A2 ¡ KA� we

have

dF pλ, λ2q ¤ dF pAη,A2ηq � dF pA2η, A2η2q ¤ κ� 1

8
κ0A2

¤1

4
pκ0A2 � κA�q ¤ 1

4
dF pλ�, λ2q.

Combining the above, we have that for any λ2 � A2η2 with A2 ¡ KA� and η2 P
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DM�1,

Pλ�φnpY q ¤ exp
 � Cn

(
sup

|A�A2|¤1,dF pη,η2q¤κ0{8
Pλp1� φnpY qq ¤ exp

 � Cn
(
.

Let A�
1 , . . . , A

�
J1

be a 1-covering net of the interval rKA�, Cnε2ns with J1 ¤ Cnε2n and

η�1 , . . . , η
�
J2

be a κ0{8-covering net of DM�1 with log J2 ¤ Cnε2n (by Lemma 28 part

b with B � 1). Let φj (j � 1, . . . , J1J2) be the corresponding tests associated with

each combination of pA�
s , η

�
t q for s � 1, . . . , J1 and t � 1, . . . , J2. Let φn � maxj φj.

Then for n large enough,

Pλ�φnpY q ¤ exp
 

logpnε2nq � Cnε2n � Cn
( ¤ exp

 � Cnu

sup
λ�Aη:APrKA�,Cnε2ns,ηPDM�1

Pλp1� φnpY qq ¤ exp
 � Cn

(
.

(5.16)

Moreover, because A � Gapa0, b0q, we have

Πpλ R Cnε2nDM�1q ¤ ΠpA ¡ Cnε2nq ¤ expt�Cnε2nu. (5.17)

Combining (5.16) and (5.17), we can prove that E0ΠpA ¤ KA�|Y q Ñ 0 as n Ñ 8
by the same arguments as in (5.14).
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6

Sequential Markov chain Monte Carlo

6.1 Introduction

The Bayesian paradigm provides a natural formalism for optimal learning from data

in a sequential manner, with the posterior distribution at one time point becoming the

prior distribution at the next. Consider the following general setup. Let tπt : t P Nu
be a sequence of probability distributions indexed by discrete time t P N � t0, 1, . . .u.
Assume that each πt can either be defined on a common measurable space pE, Eq or

a sequence of measurable spaces tpEt, Etq : t P Nu with non-decreasing dimensions

d0 ¤ d1 ¤ . . .. Without loss of generality, we assume that pEt, Etq � pRdt ,BpRdtqq,
where BpRdtq is the Borel field on Rdt . Moreover, πt admits a density πtpθptqq with

respect to the Lebesgue measure λdtpdθptqq, where θptq � pθpt�1q, ηtq is the quantity or

parameter of interest at t and ηt P Rdt�dt�1 is the additional component other than

θptq. This framework can be considered as a generalization of Liu and Chen (1998)

from dynamic systems to arbitrary models or extension of Del Moral et al. (2006)

from fixed space E to time-dependent space Et.

Many applications can be placed within this setting. In the sequential Bayesian
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inference context, θptq corresponds to a vector composed of all the parameters and

other unknowns to sample at time t. Similarly, πt is the posterior distribution of

θptq given the data collected until time t. For example, in generalized linear models

with fixed number of covariates, θptq includes the regression coefficients and residual

variance and dt is a constant. In finite mixture models, θptq includes both the pa-

rameters of the mixture components and mixing distribution, and the latent class

indicators for each observation, so that dt is increasing with t. In state-space models,

θptq could be a vector composed of static parameters and state space variables, where

the size of the latter grows with t. Even in batch situations where a full dataset

ty1, . . . , ynu has been obtained, we can still consider the sequence of posterior dis-

tributions ppθptq|y1, . . . , ytq for t ¤ n. The annealing effect (Chopin, 2002) of adding

data sequentially can lead to substantial improvements over usual MCMC methods,

which incorporate all the data at once and sample serially.

Markov Chain Monte Carlo (MCMC) is an important statistical analysis tool,

which is designed to sample from complex distributions. It can not only be used for

Bayesian analysis where a normalizing constant is unknown, but also for frequentist

analysis when the likelihood involves high dimensional integrals such as in missing

data problems and mixed effects models. However, in general, MCMC methods have

several major drawbacks. First, it is difficult to assess whether a Markov chain has

reached its stationary distribution. Second, a Markov chain can be easily trapped

in local modes, which in turn would impede convergence diagnostics. To speed up

explorations of the state space, annealing approaches introduce companion chains

with flattened stationary distributions to facilitate the moves among separated high

energy regions (Geyer, 1991; Earlab and Deema, 2005; Kou et al., 2006).

An alternative to MCMC is sequential Monte Carlo (SMC). The main idea of

SMC is to represent the distribution πt through the empirical distribution π̂t �
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°N
i�1W

piq
t δ

X
piq
t

, where tpW piq
t , X

piq
t q : i � 1, . . . , Nu is a finite set of N weighted

particles with
°N
i�1W

piq
t � 1 and δx is the Dirac measure at x. As a new observation

yt�1 arrives, both weights and states of particles are updated in order to represent

the new posterior πt�1. Although SMC can potentially solve many of the drawbacks

of MCMC mentioned above, it suffers from the notorious weight degeneracy issue

where few particles quickly dominate as t increases, causing performance based on π̂t

to degrade. Moreover, numerical errors introduced in an early stage can accumulate

for some SMCs when static parameters are present (Storvik, 2002). Although many

variants of SMC, such as adaptive importance sampling (West, 1993), resample-

move strategies (Chopin, 2002) and annealed importance sampling (Neal, 2001), are

proposed to alleviate the weight degeneracy problem, issues remain, particularly in

models involving moderate to high-dimensional unknowns.

In this work, we propose a sequential MCMC algorithm to sample from tπt :

t P Nu that is based on parallel sequential approximation algorithms. The proposed

sequential MCMC is a population-based MCMC, where each chain is constructed

via specifying a transition kernel Tt for updating θptq within time t and a jumping

kernel Jt for generating additional component ηt. The annealing effect of sequential

MCMC can substantially boost efficiency of MCMC algorithms with poor mixing

rates with slight modifications. By exploiting multiple processors, SMCMC has

comparable total computational burden as MCMC. For streaming data problems,

SMCMC distributes this burden over time and allows one to extract current available

information at any time point.

We develop a theoretical justification on the convergence of SMCMC and pro-

vide explicit bounds on the error in terms of a number of critical quantities. The

theory indicates an opposite phenomenon as the weight degeneracy effect of SMC:

the deviations or numerical errors in the early stage decay exponentially fast as t
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grows, leading to estimators with increasing accuracy. One of our main theoretical

contribution is to formulate the geometric ergodicity for general state-space Markov

chains. Our conditions are much easier to verify compared to the usual conditions for

geometric erdogic chain, such as the drift and minorization conditions (Rosenthal,

1995). In the special case of uniform ergodic chains, our conditions are weaker than

the minorization condition (Meyn and Tweedie, 1993). We provide two different

proofs for the uniform ergodicity. The first proof is based on the coupling tech-

niques and the second is based on the operator theory. As an easy byproduct of this

formulation, we show that for any geometrically ergodic transition kernel, starting

from any initial distribution, the one step distribution always becomes closer to its

stationary distribution.

This chapter has the following organization. In Section 5.2, we present a generic

SMCMC algorithm to sample from a sequence of distributions tπt : t P Nu and discuss

possible variations. In Section 5.3, we study the convergence properties of SMCMC

under various settings, including parametric and nonparametric models. Section 5.4

compares SMCMC with other methods in a finite mixture of normals simulation. In

Section 5.5, we apply SMCMC to an on-line nonparametric regression problem. In

section 5.6, we review and introduce some new results on the convergence of Markov

chains. Technical proofs appear in Appendix D.

6.2 Sequential Markov chain Monte Carlo

We propose a sequential Markov chain Monte Carlo (SMCMC) class of algorithms

in this section. The main idea of SMCMC is to run time-inhomogeneous Markov

chains in parallel with the transition kernels depending on the current available

data. Inferences can be made by using the ensemble composed of the last samples

in those chains.
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6.2.1 Notation and assumptions

Let Yt denote the data coming in at time t, Y ptq � pY1, . . . , Ytq the entire data

up to t, θptq the parameters at time t, dt the size of θptq and πptqpθptqq the prior

distribution, implying that we can add parameters over time. In the sequel, we will

use the same notation to interchangeably denote a probability measure or its density

function with respect to the Lebesgue measure λ. Throughout this chapter, we use

the notation ||p|| � 2 supA |ppAq| �
³ |ppxq|dx to denote the L1-norm (total variation

norm) for a signed measure p. Although not necessary, for notational simplicity

we assume that the prior is compatible: πptqpθptqq � ³
πpt�1qpθptq, ηt�1qλpdηt�1q with

θpt�1q � pθptq, ηt�1q. Under this assumption, we can suppress the superscript t in πptq.

The compatibility assumption is a consequence of the restriction that if the extra

parameters in the prior at time t� 1 are marginalized out, then we recover the prior

at time t. This restriction is trivially satisfied under the special case when dt does not

grow with time, and is also true under more general priors such as hierarchical priors

for mixed effects models and Gaussian process priors for nonparametric regression.

We propose to conduct L Markov chains in parallel exploiting L processors to obtain

samples, θpt,lq � tθp1,t,lq, . . . , θpmt,t,lqu for t � 1, 2, . . . and l � 1, . . . , L, where mt is

the number of draws obtained at time t for each chain and θps,t,lq P Rdt is the sth

draw obtained in the lth chain at t. The ensemble Θt � tθmt,t,l : l � 1, . . . , Lu will

be treated as independent draws sampled from the posterior πtpθptqq � πpθptq|Y ptqq at

time t.

6.2.2 Markov chain construction

At each time t, we consider two kernels: a jumping kernel Jt proposing the parameter

jumping from t�1 to t at the beginning of time t and a transition kernel Tt specifying

the parameter updating process within time t. Jtp�, �q is defined on Rdt�1 �Rdt and is

primarily designed for the situation when the parameter grows at t. In the case when
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dt � dt�1, Jt could be chosen as the identity map. Ttp�, �q is defined on Rdt�Rdt so that

the posterior πt is the stationary measure of the Markov chain with transition kernel

Tt, i.e. πtpθ1q �
³
Rdt πtpθq Ttpθ, θ1qλpdθq. Tt aims at transferring the distribution of

the draws Θt�1 from πt�1 to πt. From standard Markov chain theory (Meyn and

Tweedie, 1993), if the chain with transition kernel Tt is an aperiodic recurrent Harris

chain, then ||Tmtt �p0�πt|| Ñ 0 as mt Ñ 8 for any initial distribution p0. Therefore,

as we repeat applying the transition Tt for enough times, the distribution of Θt will

converge to πt. Theorem 46 in section 6.3.2 quantifies such approximation error with

given mt. Section 6.2.5 provides recommendations on choosing mt in practice.

We construct our SMCMC based on Jt and Tt as follows:

1. At t � 0, we set mt � 1 and draw L samples from a known distribution, for ex-

ample, the prior π � π0. The samples at t � 0 are denoted as θp1,0,1q, . . . , θp1,0,Lq.

2. At t ¡ 0, we first update θpmt�1,t�1,lq to θp1,t,lq through the jumping kernel Jt as

P
�
θp1,t,lq

��θpmt�1,t�1,lq� � Jt
�
θpmt�1,t�1,lq, θp1,t,lq

�
,

in parallel for l � 1, . . . , L. Then, for s � 1, . . . ,mt � 1, θps,t,lq is sequentially

transited to θps�1,t,lq through the transition kernel Tt as

P
�
θps�1,t,lq��θps,t,lq� � Tt

�
θps,t,lq, θps�1,t,lq�,

in parallel for l � 1, . . . , L.

With the above updating scheme, the last samples tθpmt,t,lq : l � 1, . . . , Lu at t would

be taken as the ensemble Θt to approximate the posterior πt. Let π̂t denote the

common distribution of θpmt,t,lq’s. Theorem 32 in section 6.3.2 and Theorem 36 in

section 6.3.3 guarantee the error ||π̂t� πt|| decays to zero as t increases to infinity as

long as ||πt�πt�1|| Ñ 0. When dt is growing, the πt in the L1 norm is understood as

the marginal distribution of θpt�1q given by πtpθpt�1qq � ³
Rdt�dt�1 πtpθpt�1q, ηtqλpdηtq.
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The sequential Monte Carlo sampler (Del Moral et al., 2006) could also be cast

into this framework if the jumping kernel Jt is a random kernel that depends on

Θt�1. However, as Theorem 32 indicates, with sufficient iterations mt at each time

point t, one can guarantee the convergence without the resampling step used in SMC

algorithms as long as the posterior πt does not change too much in t.

As the mixture model example in section 6.4 demonstrates, even in batch prob-

lems, the annealing effect of adding data sequentially will lead to substantial im-

provements over usual MCMC algorithms that incorporate all the data at once and

sample serially. This annealing effect has also been observed in the SMC litera-

ture, for example, Chopin (2002). For streaming data problems, SMCMC avoids

the need to restart the algorithm at each time point as new data arrive, and allows

real time updating exploiting multiple processors and distributing the computational

burden over time. For example, the SMCMC for nonparametric probit regression in

section 6.5 has similar total computational burden as running MCMC chains in par-

allel using multiple processors. However, SMCMC distributes this burden over time,

and one can extract current available information at any time point. Moreover, the

samples tθpmt,t,lq : l � 1, . . . , Lu within each time point are drawn from independent

chains. This independence and the annealing effect can substantially boost efficiency

of MCMC algorithms with poor mixing rates.

6.2.3 Choice of Jt

We shall restrict the jumping kernel Jt to be a pre-specified transition kernel that

leaves θpt�1q unchanged by letting

P
�pθ̃pt�1q, ηtq|θpt�1q� � Jt

�
θpt�1q, pθ̃pt�1q, ηtq

�
Ipθpt�1q � θ̃pt�1qq, (6.1)

where Ip�q denotes the indicator function. Otherwise, Jt can always be decomposed

into an updating of θt�1 followed by a generation of ηt, where the former step can be
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absorbed into Tt�1. Henceforth, with slight abuse of notation, the jumping kernel Jt

will be considered as a map from Rdt�1 to Rdt�dt�1 , mapping θpt�1q to ηt.

Intuitively, if θpt�1q is approximately distributed as πtpθpt�1qq and ηt is sampled

from the conditional posterior πtpηt|θpt�1qq, then pθpt�1q, ηtq is approximately dis-

tributed as πtpθpt�1q, ηtq � πtpθpt�1qqπtpηt|θpt�1qq, the exact posterior distribution.

This observation is formalized in Lemma 35 in section 6.3.3, suggesting that the

jumping kernel Jt should be chosen close to full conditional πtpηt|θpt�1qq at time t.

Two types of Jt can be used (some examples can be found in Del Moral et al. (2006)):

1. Exact conditional sampling. When draws from the full conditional πtpηt|θpt�1qq
can be easily sampled, Jt can be chosen as this full conditional. For exam-

ple, πtpηt|θpt�1qq can be recognized as some standard distribution. Even when

πtpηt|θpt�1qq is unrecognizable, if dt�dt�1 is small, then we can apply the accept-

reject algorithm (Robert and Casella, 2004) or slice sampler (Neal, 2003).

2. Approximate conditional sampling. When sampling from the full conditional of

ηt is difficult, we can use other transition kernels, such as blocked Metropolis-

Hastings (MH) or inter-woven MH or Gibbs steps chosen to have πtpηt|θpt�1qq
as the stationary distribution.

Theorem 36 in section 6.3.3 provides an explicit expression about the impact of

τt � sup
θpt�1qPRdt�1

||πtp�|θpt�1qq � Jtpθpt�1q, �q||

on the approximation error of πt, which basically requires τt Ñ 0 as t Ñ 8. To

achieve τt Ñ 0, one can run the transition kernel in approximate conditional sampling

case for an increasing number of iterations as t grows. However, we observe good

practical performances for a fixed small number of iterations.
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6.2.4 Choice of Tt

Lemma 43 in section 6.6 suggests that a good Ttpθ, θ1q should be close to πtpθ1q. The

transition kernel Tt can be chosen as in usual MCMC algorithms. For example, Tt

can be the transition kernel associated with blocked or inter-weaved MH or Gibbs

samplers. For conditionally conjugate models, it is particularly convenient to use

Gibbs and keep track of conditional sufficient statistics to mitigate the increase in

storage and computational burden over time.

6.2.5 Choice of mt

The number of samples in each chain per time point, mt, should be chosen to be

small enough to meet the computational budget while being large enough so that the

difference between the distribution of samples in Θt and the posterior distribution πt

goes to zero. Formal definitions of difference and other concepts will be given in the

next section. Intuitively, for a given t, if the Markov chain with transition kernel Tt

has slow mixing or there are big changes in πt from πt�1, then mt should be large.

Theorem 32 in section 6.3.2 provides explicit bounds on the approximation error as

a function of mt’s. Moreover, for a given ε P p0, 1q, Theorem 32 implies that if we

select mt to be the minimal integer k such that rtpkq ¤ 1 � ε, where rt is the rate

function associated with Tt defined in (??), then the distribution of Θt converges to

πt as t Ñ 8 under the assumption that ||πt � πt�1|| Ñ 0. Typical rate functions

can be chosen as rtpkq � ρk, for some ρk. Since the rate functions rt relate to the

unknown mixing rate of the Markov chain with transition kernel Tt, we estimate

them in an online manner.

To estimate rt we utilize the relationship between the mixing rate of a Markov

chain and its autocorrelation function. By comparing (6.10) and (6.11) in section

6.3.5, the decay rate of the autocorrelation function provides an upper bound for

the mixing rate. Therefore, we can bound the rate function rtpkq with the lag-k
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autocorrelation function

ftpkq � max
j�1,...,p

corrpXpkq
j , X

p0q
j q,

where pXp1q
j , . . . , X

ppq
j q is the p-dimensional sample in the kth step of the Markov

chain with transition kernel Tt.

For a single Markov chain, the common choice of estimating ftpkq by the sample

average of lag-k differences over the steps from s � s1, . . . , s2 as

f̃tpkq � max
j�1,...,p

°s2
s�s1pX

psq
j � X̄jqpXps�kq

j � X̄jq°s2
s�s1pX

psq
j � X̄jq2

,

where X̄j �
°s2
s�s1 X

psq
j {ps2 � s1 � 1q, could have large bias even though s2 � s1 is

large. The reason is that for slow mixing Markov chains, the samples tend to be stuck

in local modes, leading to high variation of f̃tpkq’s with X
psq
j starting from different

regions. Within these local modes, f̃tpkq might decay fast, inappropriately suggesting

good mixing. In our algorithm, we have L chains running independently in parallel.

Hence, instead of averaging over time, we can estimate the autocorrelation function

ftpkq by averaging across the independent chains as

f̂tpkq � max
j�1,...,p

°L
l�1pXpk,lq

j � X̄
pkq
j qpXp0,lq

j � X̄
p0q
j q�°L

l�1pXpk,lq
j � X̄

pkq
j q2�1{2�°L

l�1pXp0,lq
j � X̄

p0q
j q2�1{2 ,

where X
pk,lq
j is the jth component of the sample in the kth step of the lth chain and

X̄
pkq
j � °L

l�1X
pk,lq
j {L is the ensemble average of the draws in the kth step across

the L Markov chains. f̂t will be more robust than f̃t to local modes. Although by

Slutsky’s theorem, both estimators are asymptotically unbiased as s2 � s1 Ñ 8 and

LÑ 8 respectively, the convergence of f̃t might be much slower than that of f̂t due

to potential high correlations among the summands in f̃t.

In our case, the estimator f̂tpkq takes the form of

f̂tpkq � max
j�1,...,p

°L
l�1pθpk�1,t,lq

j � θ̄
pk�1,tq
j qpθp1,t,lqj � θ̄

p1,tq
j q�°L

l�1pθpk�1,t,lq
j � θ̄

pk�1,tq
j q2�1{2�°L

l�1pθp1,t,lqj � θ̄
p1,tq
j q2�1{2 , (6.2)
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where θ̄
pk,tq
j � °L

l�1 θ
pk,t,lq
j {L is the jth component of the ensemble average of the

draws across the L Markov chains in the kth step at time t. For each t ¡ 0, we

choose mt to be the minimal integer k such that the sample autocorrelation decreases

below 1� ε, i.e. mt � mintk : f̂tpkq ¤ 1� εu. In practice, we can choose ε according

to the full sample size n and error tolerance εT based on Theorem 32. For example,

for small datasets with n � 102, we recommend ε � 0.5 and for large datasets, ε

such that
°n
t�1

εn�1�t?
t

¤ εT , where t�1{2 is a typical rate for ||πt � πt�1|| for regular

parametric models (Lemma 33). To summarize, Algorithm 1 provides pseudo code

for SMCMC.

Algorithm 1 Sequential Markov Chain Monte Carlo
m0 Ð 1
for l � 1 to L do

Draw θp1,0,lq � π0
end for
for t � 1 to n do
mt Ð 1
ρÐ 1
for l � 1 to L do

Draw rηpt,lq | θpmt�1,t�1,lqs � Jtpθpmt�1,t�1,lq, �q
θp1,t,lq Ð pθpmt�1,t�1,lq, ηpt,lqq

end for
while ρ ¡ 1� ε do
mt Ð mt � 1
for l � 1 to L do

Draw rθpmt,t,lq | θpmt�1,t,lqs � Ttpθpmt�1,t,lq, �q
end for
Calculate f̂tpmt � 1q by (6.2)

ρÐ f̂tpmt � 1q
end while
Θt Ð tθpmt,t,lq : l � 1, . . . , Lu

end for

All the loops for l in the above algorithm can be computed in parallel. Assuming

the availability of a distributed computing platform with multiple processors, Algo-

rithm 1 has comparable computational complexity to running MCMC in parallel on

L processors starting with the full data at time t. The only distributed operation

is computation of f̂t, which can be updated every s0 iterations to reduce commu-

nication time. Moreover, the t loop can be conducted whenever t0 (¡ 1) new data

134



points accrue, rather than as each data point arrives, as long as ||πt � πt�t0 || Ñ 0

as t Ñ 8. More generally, for any sequence t1   t2   . . .   tk0 � n such that

||πtk � πtk�1
|| Ñ 0 as k Ñ 8, the loop for t can be changed into “for k � 1 to k0 do

tÐ tk . . . end for”. Since the posterior πt is expected to vary slower as t grows, the

batch sizes tk� tk�1 can be increasing in k, leading to faster computations. To avoid

the SMCMC becoming too complicated, we shall restrict our attention to Algorithm

1 in the rest of the chapter.

6.3 Convergence of SMCMC

In this section, we study the convergence properties of SMCMC as tÑ 8 by applying

the convergence results for Markov chains in Section 6.6.

We introduce some notation that will be used throughout this section. For a tran-

sition kernel T px, yq, we recursively define its t-step transition kernel by T tpx, yq �³
T t�1px, zqT pz, yqλpdzq. Similarly, given an initial density p0, we denote by T t � p0

the probability measure evolved after tth steps with transition kernel T from the

initial distribution p0, which is related to T t by T t � p0pxq �
³
T tpz, xqp0pzqλpdzq.

SMCMC generates L time-inhomogeneous Markov chains. To investigate its

asymptotic properties, we need a notion of convergence. Existing literature on the

convergence of MCMC or adaptive MCMC focuses on the case when the stationary

distribution does not change with time. A nonadaptive MCMC algorithm is said to

be converging if

||Qt � p0 � π|| Ñ 0, as tÑ 8, (6.3)

where || � || is the L1 norm, Q is the time homogeneous transition kernel, p0 is the

initial distribution and π is the unique stationary measure. However, for sequential

MCMC, both the stationary distribution πt and the transition kernel Qt is changing

over time. As an extension of (6.3), a stationary-distribution-varying Markov chain
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is said to be convergent if

||Qt � � � � �Q1 � p0 � πt|| Ñ 0, as tÑ 8. (6.4)

In our case, Qt � Tmtt � Jt, where Tt, Jt and mt are defined in section 6.2.2.

6.3.1 Implications of the convergence

In this subsection, we illustrate the annealing effect of the SMCMC. Consider a mul-

timodal example where each distribution πt �
°S
s�1w

psqhpsqt is a mixture of S com-

ponents thpsqt : s � 1, . . . , Su, where each probability density h
psq
t � 1

δt
hpsq

�
µs � ��µs

δt

�
converges to a Delta function centered at the mode µs of hpsq at rate δt Ñ 0, as

tÑ 8. As t grows, the S modes of πt tend to be well-separated. For example, in the

case when each hpsq is a normal density with different centers, the transition prob-

ability between different modes of a metropolis random walk decays exponentially

fast in δ�2
t . As a result, common MCMC algorithms might take an exponentially

long time to explore the whole state space.

Assume that the goal is to estimate the mixing probabilities pwpsqq. For instances,

mixture models and Bayesian model selections can be fit into this framework. As a

result of the multimodality, most commonly used MCMC algorithms for sampling

from πt tend to be stuck in one of the S local modes for large t. This is a main

motivation of applying L Markov chains in parallel in the SMCMC. Even though

any single chain might be stuck in some local mode, the ensemble Θt still consists of

nearly independent samples from πt. Benefitted by the annealing effect, these chains

as an ensemble have been shuffled by the frequent moves among the modes at early

time. As an ensemble, roughly Lwpsq chains tend to get stuck in the sth local mode

at t. Therefore, an estimator of wpsq can be formulated by counting the numbers of

chains stuck in the sth mode.

More formally, the following lemma suggests that for any Markov chain conver-

gent in the sense of (6.4), the above counting estimator of wpsq is consistent.
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Lemma 31. Assume that there exists d0 ¡ 0, so that |µs � µt| ¥ 3d0 for any

s � t. Let π̂t be an approximation of πt so that ||π̂t � πt|| Ñ 0, as t Ñ 8. If

tµpt,lq : l � 1, . . . , Lu are L independent points sampled from π̂t and ŵ
psq
t � #tl :

|µpt,lq � µs| ¤ d0u{L, then as tÑ 8 and LÑ 8, ŵ
psq
t Ñ wpsq in probability.

The definition of ŵ
psq
t in Lemma 31 greatly simplifies the proof. In practice, pµsq

are mostly unknown and one can calculate ŵ
psq
t as the proportion of points in the sth

clusters of tµpt,lqu. The corresponding consistency of the estimator can be obtained

by modifying Lemma 31.

6.3.2 Constant parameter dimension dt

We first focus on the case when the parameter size is fixed, i.e. Jt is the identity

map. The following theorem provides guarantees for the convergence of SMCMC

under certain conditions. We will use the convention that
°

H � 0 and
±

H � 1.

Theorem 32. Assume the following conditions:

1. (Universal ergodicity) There exists εt P p0, 1q, such that for all t ¡ 0 and x P E,

||Ttpx, �q � πt|| ¤ 2ρt.

2. (Stationary convergence) The stationary distribution πt of Tt satisfies αt �
1
2
||πt � πt�1||.

Let εt � ρmtt . Then for any initial distribution π0, as tÑ 8

||Qt � � � � �Q1 � π0 � πt|| ¤
ţ

s�1

" t¹
u�s�1

εup1� αuq
*
εsαs.

Furthermore, if limtÑ8 αt � 0 and there exists an ε ¡ 0 such that εt ¤ 1� ε for any

t P N, then as tÑ 8, ||Qt � � � � �Q1 � π0 � πt|| Ñ 0.
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To illustrate the idea, we provide here a short proof for the above theorem with

a weakened conclusion

||Qt � � � � �Q1 � π0 � πt|| ¤ 2
ţ

s�1

" t¹
u�s

εt

*
αs.

In fact, by the universally ergodicity condition and Lemma 43 in Section 6.6, for all

t ¡ 0 and any probability distribution p,

||Qt � p� πt|| � ||Tmtt � p� πt|| ¤ εt||p� πt||. (6.5)

A recursive application of (6.5) yields

||Qt � � � � �Q1 � π0 � πt|| ¤εt||Qt�1 � � � � �Q1 � π0 � πt||

¤εt||Qt�1 � � � � �Q1 � π0 � πt�1|| � εt||πt � πt�1||

¤ � � � ¤
ţ

s�1

" t¹
u�s

εt

*
||πs � πs�1||,

which completes the proof.

If mt in the algorithm is chosen large enough so that

sup
x
||Tmtt px, �q � πt|| ¤ 2εt ¤ 2p1� εq, (6.6)

and limtÑ8 αt � 0, then as tÑ 8,

||Qt � � � � �Q1 � π0 � πt|| ¤2
ţ

s�1

" t¹
u�s

εt

*
αs ¤ 2

ţ

s�1

p1� εqt�1�sαs Ñ 0.

In practice, we can choose mt as in section 6.2.5, which provides good approxi-

mations to (6.6). Although Tt are required to be universally ergodic in the theorem,

it might be possible to weaken the conditions to those in Theorem 46 with direct

application of the coupling techniques in the proofs of Lemma 42 and Lemma 43.

In this section, we focuses on the universally ergodic case for conciseness and easy

exhibition. In Section 6.3.4, we will consider the more general geometrically ergodic
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condition. Condition 2 is intuitively reasonable and can be verified for many prob-

lems. In this subsection, we provide such a verification for regular parametric cases in

Lemma 33 below, where the Bernstein von-Mises theorem holds. In the next subsec-

tion when dt is allowed to grow in t, we provide a verification for general models that

may not have n�1{2 convergence rate or Gaussian limiting distributions; for example,

nonparametric models.

For simplicity, we illustrate this for a one dimensional case. Let Y1, . . . , Yn be i.i.d.

fθ, where fθ is a density with respect to the Lebesgue measure λ and θ P R. Let

lpy, θq � log fpy|θq be the log likelihood function. We consider a regular parametric

model (Lehmann and Casella, 1998), where fθ satisfies the following conditions at

the truth θ0: 1. ty : fθpyq ¡ 0u is the same for all θ; 2. lpy, θq is three times

differentiable with respect to θ in a neighborhood pθ0 � δ, θ0 � δq; 3. If 9lpy, θq,
:lpy, θq and ;lpy, θq denotes its first, second and third derivatives, then Eθ0

9lpY, θq and

Eθ0
:lpY, θq are finite and supθPpθ0�δ,θ0�δq |;lpy, θq| ¤ Mpyq with Eθ0MpY q ¤ 8; 4. The

order of expectation and differentiation of lpy, θq and 9lpy, θq at θ0 is interchangeable;

5. I � Eθ0p 9lpy, θqq2 ¡ 0.

Lemma 33. Assume the regularization conditions on fθ. If ∆t observations are

added at time t, so that the sample size at time t is nt �
°t
s�1 ∆s, then ||πt �

πt�1|| � O
�b

∆t

nt

�
. In particular, if ∆t � opntq, the stationary convergence condition

in Theorem 32 holds.

As a special case of Lemma 33, one can add one observation at each time, under

which t is the sample size n and ||πt � πt�1|| � Opt�1{2q. However, in the batch

setting where the total sample size n is fixed, such an updating scheme might not be

optimal when taking the time consumption into account because the additional gain

p1� εq||πt � πt�1|| � p1� εqOpt�1{2q of performing the transition operator Tt decays

as nt � t increases. As a result, there exists a trade-off between the increasing rate of
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nt (or ∆t) and the decaying rate of αt. First, we look for a theoretical upper bound

for nt. Consider the extreme case when αt � α for any t P N. Under such a case, we

have ∆t � α2pnt�1 �∆tq and hence

∆t � α2

1� α2
nt�1 � α2

1� α2
nt�2 � α2

1� α2
∆t�1 � α2

1� α2
nt�2 � α4

p1� α2q2nt�2

� α2

p1� α2q2nt�2 � � � � � α2

p1� α2qt�1
n1.

This implies that nt �
°t
s�1 ∆s � n1

�p1 � α2q�t�1 � p1 � α2qs � exppDtq with

D � � logp1�α2q ¡ 0. This upper bound cannot be improved. In fact, for any q ¡ 1

and any C ¡ 0, we can choose nt � pCtqq so that ∆t � pCtqq�pCpt�1qqq ¤ qCqtq�1

and αt � Opaqtq�1{tqq � Opq1{2t�1{2q Ñ 0 as t Ñ 8. Therefore, for any fixed

K P N, we can also choose nt �
°K
k�0

1
k!
pCtqk so that limtÑ8 αt � 0. Such an nt can

be arbitrarily close to exppCtq by choosing a sufficiently large K.
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Figure 6.1: A plot of the error upper bound F pn, q, Cq as a function of pn, q, Cq
provided by Theorem 32.

Consider the batch setting where the total sample size n is fixed. Denote F pn, q, Cq
be the error upper bound provided by Theorem 32 when ε � 1

2
. We consider two
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special case: 1. C � 1 and nt � tq so that αt � Opq1{2t�1{2q and the total steps

T � Opn1{qq; 2. q � 1 and nt � Ct so that αt � Opt�1{2q and the total steps

T � Opn{Cq. The left panel in Figure 6.1 plots F pn, q, Cq as a function of n under

C � 1 and q P t1, 1.2, 1.5, 2u, where q � 1 corresponds to adding one observation

each time. The right panel in Figure 6.1 plots F pn, q, Cq as a function of n under

q � 1 and C P t1, 5, 10, 50u, where C � 1 corresponds to adding one observation

each time. As expected, the error bound decays slower when the batch size ∆t in-

creases in t than when ∆t keeps constant. However, the total step T in the former

is smaller than that in the latter. Therefore, there always exists a tradeoff between

the computational complexity and the approximation accuracy.

From Figure 6.1, even in the worst case displayed, the error bound εt is less than

0.2. Let π̂t denote an approximation of πt. The following lemma suggests that for

regular parametric models, as long as ε   1{2, the error of an point estimator con-

structed by π̂ is comparable to the statistical variation of the asymptotically optimal

point estimator, such as the maximum likelihood estimator (MLE). Moreover, the

coverage of the credible intervals created via π̂ is of the same order as ε, which sug-

gests that the uncertainty magnitude provided by π̂ is correct. We will use zα to

denote the α-th quantile of the standard normal distribution. If α   0 or α ¡ 1,

then we define zα � 8.

Lemma 34. Consider estimating the parameter θ of a regular parametric family

tfθu. Assume ||π̂t � πt|| ¤ ε ¤ 1{2. Then there exists an estimator θ̃t based on

π̂t, such that |θ̂t � θ0| � OP

�
z0.5�ι�εn

�1{2
t

�
, where ι � OP pn�1{2

t q and θ0 is the true

underlying parameter that generates the data. Moreover, let Aα be any α credible

region created by π̂t, then P0pθ0 P Aαq � α �OP pεq �OP pιq.

Consider the case when nt is large so that ι ! ε. If ε � 0.2, then z0.5�ε � 0.52,

suggesting that in terms of the accuracy of point estimation, using π̂t is almost as
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good as using πt. Under the same error level, P0pθ0 P A0.95q ¥ 0.95 � 0.2 � 0.75,

which is still a satisfactory coverage for a 0.95 credible interval. Therefore, Lemma 34

suggests that excessive reduction in the approximation error ||π̂t�πt|| is unnecessary

in improving the estimation accuracy and it is enough to just keep this error below

some pre-specified level, for example, 0.05.

6.3.3 Increasing parameter dimension dt

Recall that the parameter at t can be written as θptq � pθpt�1q, ηtq. Consider the Jt

satisfying (6.1) in section 6.2.3 and Qt � Jt � Tmtt . The following lemma links the

approximation errors before and after applying the jumping kernel Jt.

Lemma 35. For any probability density pp�q for θpt�1q, the following holds:

||πt � Jt � p|| ¤||πt�1 � p|| � sup
θpt�1qPRdt�1

||πtp�|θpt�1qq � Jtpθpt�1q, �q||,

where the πt in the second term of the right hand side stands for the marginal posterior

of θpt�1q at time t.

If a Gibbs or slice sampling step is applied as Jt, then the last term in the above

lemma vanishes. With Lemma 35, we can prove the following analogue of Theorem

32 for the increasing dt scenario.

Theorem 36. Assuming the following conditions:

1. (Universal ergodicity) There exists ε P p0, 1q, such that for all t ¡ 0 and x P E,

||Ttpx, �q � πt|| ¤ 2ρt.

2. (Stationary convergence) The stationary distribution πt of Tt satisfies αt �
1
2
||πt � πt�1||, where πt is the marginal posterior of θpt�1q at time t in αt.

3. (Jumping consistency) For a sequence of τt, supθpt�1qPRdt�1 ||πtp�|θpt�1qq�Jtpθpt�1q, �q|| ¤
2τt.
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Let εt � ρmtt . Then for any initial distribution π0,

||Qt � � � � �Q1 � π0 � πt|| ¤
ţ

s�1

" t¹
u�s

εu

*
pαs � τsq.

Furthermore, if limtÑ8 αt � 0, limtÑ8 τt � 0, and there exists an ε ¡ 0 such that

εt ¤ 1� ε for any t P N, then as tÑ 8, ||Qt � � � � �Q1 � π0 � πt|| Ñ 0.

Similarly, if we choose mt such that supx ||Tmtt px, �q � πt|| ¤ 2p1� εq, then ||Qt �
� � � �Q1 � π0 � πt|| Ñ 0, as tÑ 8.

An increasing parameter dimension often occurs in Bayesian nonparametric mod-

els, such as Dirichlet mixture models and Gaussian process regressions. The following

lemma is a counterpart of Lemma 33 for general models that may not have n�1{2

convergence rate or normal as limiting distribution for the parameters. A function

f defined on a Banach space pV, || � ||q is said to be Fréchet differentiable at v P V if

there exists a bounded linear operator Av : V Ñ R such that

fpv � hq � fpvq � Avphq � op||h||q, as ||h|| Ñ 0,

where Av is called the Fréchet derivative of f . For V being a Euclidean space, Fréchet

differentiability is equivalent to the usual differentiability. The proof utilizes the

notion of posterior convergence rate (Ghosal et al., 2000) and Fréchet differentiability.

Lemma 37. Consider a Bayesian model P � tPθ : θ P Θu with a prior measure Π on

a Banach space pΘ, || � ||q, where the parameter space Θ can be infinite dimensional.

Let pθ be the density of Pθ with respect to some base measure m. Assume the following

conditions:

1. the posterior convergence rate of the Bayesian model is at least εn Ñ 0 as

nÑ 8, i.e. the posterior satisfies

Πp||θ � θ0|| ¡Mεn|Y1, . . . , Ynq Ñ 0, in probability,

where Y1, . . . , Yn is the observation sequence generated according to Pθ0, M ¡ 0

is a constant.
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2. Assume that

max
�
Erθ|Y1,...,YnstpθpY qIp||θ � θ0|| ¡Mεnqu,

Erθ|Y1,...,Ynstlog pθpY qIp||θ � θ0|| ¡Mεnqu
�Ñ 0 in probability,

where Y � Pθ0 is independent of Y1, . . . , Yn and the expectation is taken with

respect to the posterior distribution Πpθ|Y1, . . . , Ynq for θ.

3. Also assume that the log likelihood function log pθpyq is Fréchet differentiable at

θ0 with a Fréchet derivative Av,y satisfying Eθ0 ||Av,Y ||   8, where || � || is the

induced operator norm and the expectation is taken with respect to Y � Pθ0.

Then

||πp�|Y1, . . . , Ynq � πp�|Y1, . . . , Yn�1q|| Ñ 0, as nÑ 8.

The second assumption strengthens the first assumption in terms of the tail be-

havior of the posterior distributions and can be implied by the first if both pθpyq and

log pθpyq are uniformly bounded; for example, when Θ is compact. Since the primary

goal of this chapter is the investigation of the SMCMC, we will not pursue a weakest

conditions for Lemma 37 here.

The following corollary is an easy consequence of the above lemma by using the

inequality | ³ fpxqλpdxq| ¤ ³ |fpxq|λpdxq.
Corollary 38. Let ξ be a d0 dimensional component of θ. Denote the marginal

posterior of ξ by πξp�|Y1, . . . , Ynq. Then under the conditions in Lemma 37, we have

||πξp�|Y1, . . . , Ynq � πξp�|Y1, . . . , Yn�1q|| Ñ 0, as nÑ 8.

In the case when Tt corresponds to the transition kernel of a Gibbs sampler, we

can consider the marginal convergence of some fixed d0 dimensional component ξ of

θ, for example, for θ in function spaces, ξ can be the evaluations θpx1, . . . , xd0q on

d0 fixed points x1, . . . , xd0 in the domain of θ. Due to the special structure of the
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graphical representation for a Gibbs sampler, the process of tξs : s ¥ 0u obtained

by marginalizing out other parameters in the Gibbs sampler with transition kernel

Tt is still a Markov chain with another transition kernel Tξ,t defined on Rd0 � Rd0 .

Therefore, with this marginalized process for ξ, we can combine Theorem 32 and

Corollary 38 to prove the marginal convergence of the posterior for the fixed dimen-

sional parameter ξ under the new transition kernels Tξ,t’s. To ensure the convergence

of this marginal chain, mt can also be chosen by the procedures in section 6.2.5, but

only including the components of ξ in the calculations of (6.2).

6.3.4 Weakening the universal ergodicity condition

Both Theorem 32 and 36 rely on the strong condition of universal ergodicity. In

this subsection, we generalize these results to hold under the weaker geometrically

ergodic condition. We will use the following sufficient condition for geometric ergod-

icity (Roberts and Rosenthal, 1997) for an irreducible, aperiodic Markov chain with

transition kernel T : there exists a π-a.e.-finite measurable function V : E Ñ r1,8s,
which may be taken to satisfy πpV kq   8 for any j P N, such that for some ρ   1,

||T tpx, �q � πp�q||V ¤ V pxqρt, x P E, t P N, (6.7)

where ||µp�q||V � sup|f |¤V |µpfq| for any signed measure µ. When V � 1, we return

to the uniform ergodic case. The following lemma generalizes Lemma 42 and 43 to

geometrically ergodic chains.

Lemma 39. Let tXtu be a Markov chain on E, with transition kernel T and sta-

tionary distribution π. If there exists a function V : E Ñ r1,8q and ρ P p0, 1q such

that for all x P E,

||T px, �q � πp�q||V ¤ V pxqρ, (6.8)

then tXtu is geometrically ergodic. Moreover, for any initial distribution p0, we have

||T t � p0 � π||V ¤ ρt||p0 � π||V , x P E, t P N.
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By taking t � 1 in (6.7), (6.8) is also a necessary condition for geometric er-

godicity. Therefore, the above lemma provides a necessary and sufficient condition

for geometric ergodicity, which extends Lemma 43. By the above lemma, we can

generalize Theorem 32 as follows, where dt � d, for any t.

Theorem 40. Assuming the following conditions:

1. (Geometric ergodicity) There exists a function V : Rd Ñ r1,8q, C ¡ 0 and

ρt P p0, 1q, such that πtpV 2q � EπtV
2 ¤ C for any t and for all x P Rd,

||Ttpx, �q � πtp�q||V ¤ V pxqρt.

2. (Stationary convergence) The stationary distribution πt of Tt satisfies αt �
2
?
CdHpπt, πt�1q, where dH is the Hellinger distance defined by d2pµ, µ1q �³pµ1{2pxq � µ11{2pxqq2λpdxq.

Let εt � ρmtt . Then for any initial distribution π0,

||Qt � � � � �Q1 � π0 � πt|| ¤
ţ

s�1

" t¹
u�s

εu

*
αs.

Furthermore, if limtÑ8 αt � 0 and there exists an ε ¡ 0 such that εt ¤ 1� ε for any

t P N, then as tÑ 8, ||Qt � � � � �Q1 � π0 � πt|| Ñ 0.

The first condition in the theorem is a uniform geometric ergodic condition on

the collection tTt : t P Nu of transition kernels, where a common potential V exists.

The second condition is true for those πt’s in Lemma 33 and 37. In fact, Lemma 33

uses the inequality ||πt � πt�1|| ¤ dHpπt, πt�1q and proves dHpπt, πt�1q Ñ 0. Lemma

37 proves ||πt � πt�1|| ¤ 2
a
Kpπt, πt�1q Ñ 0, where Kpp, qq is the Kullback-Leibler

divergence and satisfies dHpp, qq2 ¤ Kpp, qq for any probability densities p and q.

Similarly, we have the following counterpart for Theorem 36 under geometrically

ergodic condition.
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Theorem 41. Assuming the following conditions:

1. (Geometric ergodicity) For each t, there is a function Vt : Rdt Ñ r1,8q, C ¡ 0

and ρt P p0, 1q, such that:

(a) πtpV 2
t q � EπtV

2
t ¤ C for any t;

(b) EπtrVtpθptqq|θpt�1qs � Vt�1pθpt�1qq, where θptq � pθpt�1q, ηtq;

(c) for all x P Rdt, ||Ttpx, �q � πtp�q||Vt ¤ Vtpxqρt.

2. (Stationary convergence) The stationary distribution πt of Tt satisfies αt �
2
?
CdHpπt, πt�1q, where πt is the marginal posterior of θpt�1q at time t in αt.

3. (Jumping consistency) For a sequence of τt, the following holds:

sup
θpt�1qPRdt�1

||πtp�|θpt�1qq � Jtpθpt�1q, �q||Ṽt ¤ τt,

where Ṽt is defined on Rdt�dt�1 by Ṽtpηtq �
³
Rdt�1 Vtpθpt�1q, ηtqdθpt�1q.

Let εt � ρmtt . Then for any initial distribution π0,

||Qt � � � � �Q1 � π0 � πt|| ¤
ţ

s�1

" t¹
u�s

εu

*
pαs � τsq.

Furthermore, if limtÑ8 αt � 0, limtÑ8 τt � 0, and there exists an ε ¡ 0 such that

εt ¤ 1� ε for any t P N, then as tÑ 8, ||Qt � � � � �Q1 � π0 � πt|| Ñ 0.

6.3.5 Relationship between Markov chain convergence rate and the autocorrelation
function

The convergence results in the previous two subsections are primarily based on a

coupling technique, which can provide explicitly quantitative convergence bounds for

computation. The arguments in this subsection will mainly utilize functional analysis

and operator theory, which can reveal the relationship between convergence rate and
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maximal correlation between two states in the Markov chain. For background details,

refer to chapter 12 in Liu (2001).

For a time homogeneous Markov chain tXt : t � 0, 1 . . .u with transition kernel

T px, yq and stationary distribution π, consider the space of all mean zero and finite

variance functions under π

L2
0pπq �

"
hpxq :

»
h2pxqπpxqλpdxq   8 and

»
hpxqπpxqλpdxq � 0

*
.

Being equipped with the inner product

xh, gy � Eπthpxq � gpxqu, (6.9)

L2
0pπq becomes a Hilbert space. On L2

0pπq, we can define two operators, called forward

and backward operators, as

Fhpxq �
»
hpyqT px, yqλpdyq � EthpX1q|X0 � xu,

Bhpyq �
»
hpyqT px, yqπpxq

πpyq λpdyq � EthpX0q|X1 � yu.

The operator F can be considered as the continuous state generalization of the

transition matrix T for finite state Markov chain (with Tv as the operation on vector

space). Similarly, the operator B can be considered as the generalization of the

transpose of T . With this definition, we can see that

EthpXtq|X0 � xu � F thpxq and EthpX0q|Xt � yu � Bthpyq.

Define the norm of an operator F to be the operator norm induced by the L2
0pπq

norm defined in (6.9). By iterative variance formula

varthpX1qu � ErvarthpX1|X0qus � varrEthpX1q|X0us ¤ varrEthpX1q|X0us,

and hence the norm of F and B are both less than or equal to one. By the Markov

property, F and B are adjoint to each other, i.e. xFh, gy � xh,Bgy. Since nonzero
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constant functions are excluded from L2
0pπq, the spectral radius rF of F is strictly

less than one under mild conditions (Liu et al., 1995), which is defined by rF �
limtÑ8 ||F t|| 1t   1. Lemma 12.6.3 in Liu (2001) provides a Markov chain convergence

bound in terms of the operator norm of F t,

||T t � p0 � π||L2pπq ¤ ||F t|| � ||p0 � π||L2pπq, (6.10)

where ||p � π||2L2pπq �
³pppzq � πpzqq2{πpzqλpdzq and ||p � π|| ¤ ||p � π||L2pπq holds

for any probability measure p. Theorem 2.1 in Roberts and Rosenthal (1997) shows

that if (6.10) is true for a time reversible Markov chain with transition kernel T ,

then the chain is geometric ergodic with that same rate function, i.e. there exists a

potential function V : E Ñ r1,8s, such that ||T tpx, �q � πp�q|| ¤ V pxq||F t||, x P X.

Therefore, (6.10) implies a geometric convergence in L1 norm with rate function

rptq � ||F t|| � rtF . On the other side, by Lemma 12.6.4 in Liu (2001),

sup
g,hPL2pπq

corrtgpX0q, hpXtqu � sup
||g||�1,||h||�1

xF th, gy � ||F t||. (6.11)

This suggests the maximal autocorrelation function is of the same decay rate as the

rate function rptq. In practice, for multidimensional process Xt � pX1,t, . . . , Xp,tq,
the above quantity can often be well approximated by maxj�1,...,p |corrtXj,0, Xj,tu|.
Therefore, the maximal sample autocorrelation function provides a quantitative de-

scription of the mixing rate of the Markov chain, which provides the rationale for

our choice of mt in section 6.2.5.

If the Markov chain is reversible, then F � B and hence F is self-adjoint. Under

the further assumption that F is compact, ||F t|| � |τ1|t, where |τ1| ¥ |τ2| ¥ � � � are

the discrete eigenvalues of F . Therefore the rate function would be rptq � |τ1|t. For

any hpxq P L2
0pπq, define the autocorrelation function as fptq � corrthpXtq, hpX0qu, t ¥

1. Let α1pxq, α2pxq, . . . be the corresponding eigenfunctions. Then as long as xh, α1y �
0, we have limtÑ8t|fptq|u1{t � |τ1|, which implies that the autocorrelation function

and the rate function are very similar, i.e. fptq � rptq � |τ1|t.
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6.4 Simulation with finite Gaussian mixtures

The mixing rate of Gibbs samplers are notoriously slow for mixture models (Jasra

et al., 2005). As an illustrative example, we consider the Bayesian Gaussian mix-

ture model of Richardson and Green (1997), which is also considered by Del Moral

et al. (2006) as a benchmark to test their method. Observations y1, . . . , yn are i.i.d.

distributed as

ryi | µ1:k, τ1:k, w1:ks �
ķ

j�1

wjNpµj, τ�1
j q, (6.12)

where τ1:k and τ1:k are the means and inverse variances of k Gaussian components

respectively, and w1:k are the mixing weights satisfying the constraint
°k
j�1wj �

1. The priors for the parameters of each component j � 1, . . . , k are taken to be

exchangeable as µj � Npζ, κ�1q, τj � Gapα, βq, w1:k � Diripδq, where Gapα, βq
is the gamma distribution with shape α and rate β and Diripδq is the Dirichlet

distribution with number of categories k and concentration parameter δ. To enable

a Gibbs sampler for the above model, we introduce for each observation i � 1, . . . , n

a latent class indicator zi such that

ryi | zi � j, µ1:k, τ1:k, w1:ks � Npµj, τ�1
j q,

P pzi � j|w1:kq 9 wj.

Then by marginalizing out zi’s, we can recover (6.12). With the above exchangeable

prior, the joint posterior distribution P pµ1:k|y1, . . . , ynq of the k component means

µ1:k has k! modes and the marginal posterior for each µj, j � 1, . . . , k is the same as

a mixture of k components. Therefore, we can diagnose the performances of various

samplers by comparing the marginal posteriors of µ1, . . . , µk. Standard MCMC al-

gorithms tend to get stuck for long intervals in certain local modes, and even a very

long run cannot equally explore all these modes (Jasra et al., 2005).
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In this simulation, we generate the data with n � 100 samples and choose the

true model as k � 4, µ1:4 � p�3, 0, 3, 6q, τ1:4 � p0.55�2, 0.55�2, 0.55�2, 0.55�2q and

w1:4 � p0.25, 0.25, 0.25, 0.25q, which has the same settings as in Jasra et al. (2005)

and Del Moral et al. (2006). The hyperparameters for the priors are: ζ � 0, κ � 0.01,

α � 1, β � 2 and δ � 1. We consider a batch setup with batch size (BS) 1, 2, 4, 6, 8

and 10, which means that data arrive in batches of size BS. As a result, the algorithms

operate T � r100{BSs � 100, 50, 25, 17, 13 steps, where rxs stands for the smallest

integer no less than x.

In SMCMC, the dimension of the parameter θptq � pµ1:k, τ1:k, w1:k, z1:ntq at time t

is increasing when the latent class indicators z1:t are included, where nt � 0 for t � 0

or 100�BS �pT�tq for t � 1, . . . , T is the data size at time t. We choose the transition

kernel Tt to correspond to that for the Gibbs sampler. The jumping kernel Jt is the

conditional distribution for the additional latent indicators of ypnt�1�1q:nt given θptq

and y1:nt . Note that zi are conditionally independent of zj for i � j, i, j ¤ nt given

pµ1:k, τ1:k, w1:k, y1:ntq.
We compare SMCMC with two competitors. The first algorithm is the sequential

Monte Carlo (SMC) sampler in Del Moral et al. (2006), which avoids data augmen-

tation and works directly with the posterior of pµ1:k, τ1:k, w1:kq using MH kernels.

The second algorithm is the parallel Gibbs sampler (Richardson and Green, 1997)

running on the full data y1, . . . , yn, with L Gibbs samplers running in parallel, whose

iterations KBS equal the total Gibbs steps
°T
t�1mt in the SMCMC with batch size

BS. The posterior distribution of each µj with j � 1, 2, 3, 4 is approximated by the

empirical distribution of the L samples at KBSth iteration in parallel. To demon-

strate the annealing effect of SMCMC, the initial distributions of the L chains for

both SMCMC and MCMC (parallel Gibbs) are centered at p�3, 0, 3, 6q. As a result,

if no pair of labels are switched, the posterior draws will be stuck around the local

mode centered at p�3, 0, 3, 6q, which is one of the 4! � 24 local modes.
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To compare the three algorithms, we calculate the averages of sorted estimated

means across 10 trials under each setting as shown in Table 6.1. More specifically, we

sort the estimated posterior means of µ1:4 in increasing order for each run and then

average the 4 sorted estimates over 10 replicates. A good algorithm is expected to

provide similar posterior means of µ1:4, which is approximately 1.5 in our case. The

purpose for sorting the estimated means is to prevent the differences in the estimated

posterior means being washed away from averaging across 10 replicates.

As can be seen from Table 6.1, SMCMC outperforms both SMC and MCMC

under each setting and has satisfactory performance even when the batch size is 6,

i.e. the number of time steps T is 17. Moreover, the performance of SMCMC ap-

pears stable as the batch size grows from 1 to 6, and become worse when the batch

size increases to 8 and 10. A similar phenomenon is observed for SMC, with perfor-

mance starting to deteriorate at batch size 6. MCMC has slightly worse performance

with batch size 1 than SMCMC. However, its performance rapidly becomes bad as

the number of iterations decreases. The comparison between SMCMC and MCMC

illustrates substantial gains due to annealing for our method.

Figure 6.2 displays some summaries for SMCMC with batch size 1. The left plot

shows the number of Gibbs iteration mt versus time t (which is equal to the sample

size at time t). mt increases nearly at an exponential rate, which indicates the slow

mixing rate of the Gibbs sampler used to construct the transition kernels Tt. As

a by product of SMCMC, we can assess the convergence rate of the sampler used

to construct Tt as a function of the sample size. The automatic mixing diagnostics

procedure guarantees the convergence of the approximated posterior as tÑ 8. The

right panel shows the “traceplot” for µ1:k for one Markov chain among the L chains.

This is not the usual traceplot since we selected the last samples of µ1:k at each time

t, where µ1:k is approximately distributed according to a time changing posterior πt.

This “traceplot” suggests satisfactory mixing of µ1:k, i.e. frequent moves between
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Table 6.1: Averages of sorted estimated means in mixture model by three approaches.
We ran each algorithm 10 times with 1000 Markov chains or particles. We sorted the
estimated means in increasing order for each run and then averaged the sorted esti-
mates over 10 replicates. The last column reports the sample standard deviations of
the first 4 numbers displayed. In the parenthesis following MCMC are the number of
iterations it runs, which is equal to the average iteration the corresponding SMCMC
runs across 10 replicates.

Algorithm description
Averages of sorted estimated component means standard

µ1 µ2 µ3 µ4 deviation

SMCMC (batch size 1) 1.38 1.50 1.57 1.67 0.12
SMC (batch size 1) 1.13 1.37 1.60 1.97 0.36
MCMC (8621 iterations) 1.31 1.42 1.56 1.77 0.20

SMCMC (batch size 2) 1.40 1.50 1.56 1.66 0.11
SMC (batch size 2) 1.22 1.46 1.75 1.99 0.34
MCMC (4435 iterations) 0.91 1.12 1.30 2.69 0.81

SMCMC (batch size 4) 1.42 1.50 1.54 1.64 0.09
SMC (batch size 4) 1.57 1.84 2.01 2.32 0.31
MCMC (2367 iterations) 0.23 0.71 1.20 3.34 1.37

SMCMC (batch size 6) 1.36 1.48 1.59 1.65 0.13
SMC (batch size 6) 1.31 1.63 1.93 2.35 0.44
MCMC (1657 iterations) -0.23 0.53 1.32 4.45 2.05

SMCMC (batch size 8) 1.35 1.45 1.54 1.73 0.16
SMC (batch size 8) 1.43 1.69 1.99 2.35 0.40
MCMC (1390 iterations) -0.50 0.53 1.36 4.68 2.24

SMCMC (batch size 10) 1.19 1.32 1.57 2.04 0.37
SMC (batch size 10) 1.36 1.69 1.98 2.38 0.43
MCMC (1069 iterations) -1.00 0.38 1.60 5.11 2.62

the modes.

6.5 Sequential Bayesian estimation for heart disease data

In the following we apply SMCMC to a sequential, growing dimension nonparametric

problem. We consider nonparametric probit regression with a Gaussian process (GP)

prior. Let y1, y2, . . . be a sequence of binary responses and x1, x2, . . . the p dimensional

covariates. The model assumes P pyi � 1q � Φpfpxiqq, where Φ is the cdf of the

standard normal distribution and f is a d-variate nonlinear function. We choose
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Figure 6.2: Summaries of SMCMC with batch size 1. The left panel displays the
plot of the number of Gibbs iterations mt versus time t (which is equal to the sample
size at time t). The right panel displays the last samples of µ1:k at each time t in
one of L Markov chains.

a GP as a prior, f � GP pκ,Kq, with mean function κ : Rp Ñ R and covariance

function K : Rd � Rd Ñ R. We consider the squared exponential kernel Kapx, x1q �
σ2 expt�a2||x� x1||2u with a powered gamma prior on the inverse bandwidth, which

leads to an adaptive posterior convergence rate (van der Vaart and van Zanten, 2009).

The computation of the nonparametric probit model can be simplified by intro-

ducing latent variables zi such that

P pyi � 1q � Ipzi ¡ 0q,

zi � fpxiq � εi, εi � Np0, 1q.
(6.13)

The model has simple full conditionals so that a Gibbs sampler can be used to sample

the zi’s and Ft � tfpx1q, . . . , fpxtqu.
To alleviate the Opn3q computational burden of calculating inverses and deter-

minants of n � n covariance matrices, we use a discrete prior to approximate the

powered gamma prior for a and pre-compute those inverses and determinants over

the pre-specified grid. We combine the sequential MCMC with the following off-line

sequential covariance matrix updating.

Let a1, . . . , aH denote a grid of possible inverse bandwidths. For example, ah

can be chosen as the h�1
H

th quantile of the powered gamma prior and the discrete
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prior as the uniform distribution over a1, . . . , aH . Let Chpx, x1q � expt�a2
h||x�x1||2u

and Kah � σ2Ch. We use the notation CpA,Bq to denote the matrix pcpai, bjqqp,q
for a function C : Rd � Rd Ñ R and matrices A P Rp�d, B P Rq�d. Let Xt �
pxT1 , . . . , xTt qT P Rt�d, Yt � py1, . . . , ytq and Zt � pz1, . . . , ztq be the design matrix,

response vector and latent variable vector at time t. At time t, for each h � 1, . . . , H,

we update the lower triangular matrix L
ptq
h and pLptqh q�1 in the Cholesky decomposi-

tion C
ptq
h � L

ptq
h pLptqh qT of the t�t correlation matrix C

ptq
h � ChpXt, Xtq. The reason is

two-fold: 1. inverse and determinant can be efficiently calculated based on L
ptq
h and

pLptqh q�1; 2. due to the uniqueness of Cholesky decomposition, L
pt�1q
h and pLpt�1q

h q�1

can be simply updated by adding pt�1qth row and column to L
ptq
h and pLptqh q�1. More

precisely, if L
pt�1q
h and pLpt�1q

h q�1 are written in block forms as

L
pt�1q
h �

�
L
ptq
h 0

B
pt�1q
h d

pt�1q
h

�
and pLpt�1q

h q�1 �
�
pLptqh q�1 0

E
pt�1q
h g

pt�1q
h

�
,

where B
pt�1q
h and E

pt�1q
h are t-dimensional row vectors and d

pt�1q
h and g

pt�1q
h are scalars,

then we have the following recursive updating formulas: for h � 1, . . . , H,

d
pt�1q
h � Chpxt�1, xt�1q � Chpxt�1, XtqpLptqh q�T pLptqh q�1ChpXt, xt�1q

(1{2
,

B
pt�1q
h �Chpxt�1, XtqpLptqh q�1,

g
pt�1q
h �pdpt�1q

h q�1,

E
pt�1q
h �� g

pt�1q
h Chpxt�1, XtqpLptqh q�T pLptqh q�1,

where for a matrix A, A�T is a shorthand for the transpose of A�1. The computation

complexity of the above updating procedure is Opt2q.
As t increases to t�1, the additional component ηt�1 is pfpxt�1q, zt�1q. Therefore,

in the jumping step of the sequential updating, we repeat drawing fpxt�1q and zt�1

from their full conditionals in turn for r times. In our algorithm, we simply choose

r � 1 as the results do not change much with a large r. In the transition step of the
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sequential updating, each full conditional is recognizable under the latent variable

representation (6.13) and we can run a Gibbs sampler at each time t. Predicting

draws fpx1q on new covariates x1 can be obtained based on posterior samples of Ft.

Note that the computational complexity for the off-line updating at time t is

Opt2q. Therefore the total complexity due to calculating matrix inversions and de-

terminants is Op°n
t�1 t

2q � Opn3q, which is the same as the corresponding calcu-

lations in the MCMC with all data. However, the proposed algorithm distributes

the computation over time, allowing real-time monitoring and extracting of current

information.

To illustrate the above approach, we use the south African heart disease data

(Rousseauw et al., 1983; Hastie and Tibshirani, 1987) to study the effects of obesity

and age on the probability of suffering from hypertension. The data contains n � 462

observations on 10 variables, including systolic blood pressure (sbp), obesity and age.

A patient is classified as hypertensive if the systolic blood pressure is higher than

139 mmHg. We use Ipsbp ¡ 139q as a binary response with obesity and age as a

two-dimensional covariate x.
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Figure 6.3: The iterations mt at time t versus the sample size t is displayed. mt

has been smoothed with window width equal to 10.

Fig. 6.3 demonstrates the relationship between the number of iterations mt and

the sample size t. As can be seen, mt keeps fluctuating between 150-200 as t becomes
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Figure 6.4: The fitted hypertension probability contours at t � 150, 250, 350, 462.
The circles correspond to hypertensive patients and plus signs correspond to normal
blood pressure people.

greater than 100, indicating that contrary to the mixture model example, the mixing

rate of the above Markov chain designed for the nonparametric probit regression is

robust to the sample size. The total number of iterations
°n
t�1mt is about 80k.

However, the computation complexity of each SMCMC chain is much less than a

80k iterations full data MCMC since many iterations of SMCMC run with smaller

sample sizes. In addition, we can reduce the iterations needed by increasing block

sizes.

Fig. 6.4 shows the fitted probabilities of hypertension as a function of obesity and
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age at t � 150, 250, 350, 462. With a relatively small sample size, the bandwidth a�1

tends to be small and the fitted probability contours are wiggly. As the sample size

t increases, the bandwidth grows. As a result, contours begin to capture some global

features and are less affected by local fluctuations. In addition, at large time point

t � 350, the posterior changes little as the sample size further grows to t � 462. As

expected, the probability of hypertension tends to be high when both obesity index

and age are high. The gradient of the probability P psbp ¡ 139|obesity,ageq as a

function of obesity and age tends to be towards the 45-degree direction. The results

in Fig. 6.4 are indistinguishable from those obtained running a long MCMC at each

time, which are omitted here.

6.6 Convergence of Markov chain

In this section, we review some convergence results for Markov chains and introduce

some new properties, which is applied to study the SMCMC convergence.

A transition kernel T is called uniformly ergodic if there exists a distribution π

and a sequence rptq Ñ 0, such that for all x, ||T tpx, �q�π|| ¤ rptq, where ||�|| is the L1

norm. rptq will be called the rate function. If T is ergodic, then π in the definition

will be the stationary distribution associated with T . Uniformly ergodic implies

geometric convergence, where rptq � ρt for some ρ P p0, 1q (Meyn and Tweedie,

1993).

We call a transition kernel T universally ergodic if there exists a distribution π and

a sequence rptq Ñ 0, such that for any initial distribution p0, ||T t�p0�π|| ¤ rptq||p0�
π||. rptq will also be called rate function. The concept of universal ergodicity plays

an important role in the following study of the convergence properties of SMCMC.

By choosing p0 as a Dirac measure at x, one can see that universal ergodicity implies

uniform ergodicity with rate function 2rptq. In addition, universal ergodicity can

provide tighter bounds on the MCMC convergence than uniform ergodicity especially
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when the initial distribution p0 is already close to π. The following lemma provides

the converse. The proof is based on coupling techniques.

Lemma 42. If a transition kernel T is uniformly ergodic with rate function rptq,
then it is universally ergodic with the same rate function.

The coupling in the proof of Lemma 42 is constructed through importance weights.

By using the same technique, we can prove the uniform ergodicity for certain T as

in the following lemma.

Lemma 43. If the transition kernel T satisfies

sup
x
||T px, �q � π|| ¤ 2ρ, (6.14)

for some ρ   1, then T is uniformly ergodic with rate function rptq � ρt.

Note that condition (6.14) in the above lemma is weaker than the minorization

condition (Meyn and Tweedie, 1993) for proving uniform ergodicity with rate func-

tion rptq � ρt. The minorization condition assumes that there exists a probability

measure ν such that,

T px, yq ¥ p1� ρqνpyq, @x, y P E. (6.15)

In practice, there is no rule on how to choose such measure ν. To see that (6.14) is

weaker, first note that if (6.15) holds, then by the stationarity of π,

πpyq �
»
T px, yqπpxqλpdxq ¥ p1� ρqνpyq

»
πpxqλpdxq � p1� ρqνpyq.

Therefore, for any x P E, we have

||T px, �q � π|| ¤||T px, �q � p1� ρqν|| � ||π � p1� ρqν||

�
» �

T px, yq � p1� ρqνpyq�λpdyq � » �
πpyq � p1� ρqνpyq�λpdyq

�1� p1� ρq � 1� p1� ρq � 2ρ.
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Therefore, condition (6.14) can lead to a tighter MCMC convergence bound than

the minorization condition. Using supx ||T px, �q�π|| in (6.14) also provides a tighter

bound than using the Dobrushin coefficient βpT q � supx,y ||T px, �q � T py, �q||, which

is another tool used in studying the Markov chain convergence rate via operator

theory. In fact, for any set A P E

sup
x
|T px,Aq � πpAq| � sup

x

���� »
A

"»
E

πpyq�T px, zq � T py, zq�λpdyq*λpdzq����
¤
»
A

"»
E

πpyq��T px, zq � T py, zq��λpdyq*λpdzq
¤ βpT qπpAq,

which implies that supx ||T px, �q�π|| ¤ βpT q. Moreover, comparing to the minoriza-

tion condition and Dobrushin coefficient, (6.14) has a more intuitive explanation that

the closer the transition kernel T px, �q is to the stationary distribution, the faster the

convergence of the Markov chain. Ideally, if T px, �q � πp�q for all x P E, then the

Markov chain converges in one step. The converse of Lemma 43 is also true as shown

in the following lemma, which implies that condition (6.14) is also necessary for

uniform ergodicity.

Lemma 44. If T is uniformly ergodic, then there exists ρ P p0, 1q, such that

sup
x
||T px, �q � π|| ¤ 2ρ. (6.16)

When the condition (6.14) does not hold, we can still get a bound by applying the

above coupling techniques. More specifically, assume tXt : t ¥ 0u is a Markov chain

with state space E, transition kernel T and initial distribution p0 over E. Recall that

π is the stationary measure associated with T . We define an accompanied transition

kernel T 1 as

T 1px, yq � T px, yq �mintT px, yq, πpyqu
δpxq ,
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where δpxq � 1
2
||T px, �q � π||. Let tX 1

t : t ¥ 0u be another Markov chain with state

space E, transition kernel T 1 and the same initial distribution p0. The following

lemma characterizes the convergence of Xt via X̃t.

Lemma 45. With the above notations and definitions, we have the following result:

||T t � p0 � π|| ¤ E
 ±t

s�1 δpX 1
sq
(

.

The Markov chain X̃t in the above proof is known as the trapping model in

physics, where before getting trapped, a particle moves according to the transition

kernel T 1 on E and every time the particle moves to a new location y, with probability

1� δpyq, it will be trapped there forever. Generally, the upper bound in Lemma 45

is not easy to compute. However, under the drift condition and an analogue of local

minorization assumption (Rosenthal, 1995), we can obtain an explicit quantitative

bound for MCMC convergence as indicated by the following theorem. The proof is

omitted here, which is a combination of the result in Lemma 45 and the proof of

Theorem 5 in Rosenthal (1995).

Theorem 46. Suppose a Markov chain has transition kernel T and initial distribu-

tion p0. Assume the following two conditions:

1. (Analogue of local minorization condition) There exists a subset C P E, such

that for some ρ   1, supxPC ||T px, �q � π|| ¤ 2ρ.

2. (Drift condition) There exist a function V : E Ñ r1,8q and constant b and

τ P p0, 1q, such that for all x P E,
³
T px, zqV pzqλpdzq ¤ τV pxq � b1Cpxq.

Then for any j, 1 ¤ j ¤ t, ||T t � p0 � π|| ¤ ρj � τ tBj�1V̄ , where B � 1 � b{τ and

V̄ � ³
V pzqp0pzqλpdzq.

By optimizing the j in the above theorem, we can obtain the following geomet-

rically decaying bound on ||T t � p0 � π||, which is similar to Rosenthal (1995):

||T t � p0 � π|| ¤ V̄ ρ̃t,with log ρ̃ � log ρ log τ

log ρ� logB
.
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This implies that the Markov chain with transition kernel T is geometrically ergodic.

Recall that a chain is geometrically ergodic if there is ρ   1, and constants Cx for

each x P E, such that for π�a.e. x P E, ||T tpx, �q � πp�q|| ¤ Cxρ
t.

6.7 Discussions

In this work, we proposed a sequential MCMC algorithm to sample from a sequence

of probability distributions. Supporting theory is developed and simulations demon-

strate the potential power of this method. The performance of SMCMC is closely

related to the mixing behavior of the transition kernel Tt as t Ñ 8. If Tt tends to

have poor mixing as t increases, then updating the ensemble Θt every time a new

data point arrives can lead to increasing computational burden over time. To allevi-

ate this burden, we have three potential strategies. First, we can make the updating

of Θt less frequent as t grows, i.e. updating Θt only at time ttk : k � 1, . . .u with

tk Ñ 8 as k Ñ 8 and tk � tk�1 Ñ 8, as long as ||πtk � πtk�1
|| Ñ 0. Second, we

can let the ε in Algorithm 1 decrease in t so that the upper bound in Theorem 32

still converges to zero. Third, we can develop ‘forgetting’ algorithms that only use

the data within a window but still guarantee the convergence up to approximate er-

ror. The first two strategies may also be developed in an adaptive/dynamic manner,

where the next step size tk�1 � tk or decay rate εk�1 is optimized based on some

criterion by using the past data and information.
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7

Semiparametric Bernstein-von Mises Theorem:
Second Order Studies

7.1 Introduction

Semiparametric modelling has provided a flexible and powerful modeling framework

for modern complex data. Semiparametric models are indexed by a Euclidean pa-

rameter of interest θ P Θ � Rk and an infinite-dimensional nuisance function η

belonging to a Banach space H. For example, in the Cox proportional hazards

model, θ corresponds to the log hazard ratio for the regression covariate vector and

η is the cumulative hazard function. In the partial linear model, θ corresponds

to the regression coefficient vector for the linear component and η is the nonlinear

component. By introducing a prior Π on Θ � H, we are particularly interested in

making Bayesian inferences for θ in semiparametric context. For example, we want

to construt credible intervals for θ and test its significance using Bayes factors. These

Bayesian inferences are known to be supported by the semiparametric Bernstain-von

Mises (BvM) theorems (Shen, 2001; Bickel and Kleijn, 2012; Castillo and van der

Vaart, 2012), which states that the marginal posterior distribution of θ converges (in
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total variation norm) to a normal limit:

sup
A

��Πpθ P A|X1, . . . , Xnq �Nk

�
θ0 � n�1{2 r∆n, pnrIθ0,η0q�1

�pAq�� Pθ0,η0ÝÑ 0, (7.1)

where A is any measurable subset of Θ, Nkpµ,Σq denotes a k-variate normal distribu-

tion with mean vector µ P Rk and variance-covariance matrix Σ P Rk�k. Pθ0,η0 is the

true underlying distribution generating the data, where θ0 and η0 are the true val-

ues. Here, rlθ,η is the efficient score function and rIθ,η the efficient Fisher information

evaluated at pθ, ηq and

r∆n � 1?
n

ņ

i�1

rI�1
θ0,η0

rlθ0,η0pXiq
Pθ0,η0ù Np0, rI�1

θ0,η0
q. (7.2)

Here, the notation “
P
ù ” and “

PÑ ” denote the weak convergence and convergence

in probability, respectively. A brief review of the semiparametric efficiency theory is

provided in Section 7.2.1. We call (7.2) as the first order version of semiparametric

BvM theorem.

The major goal of this chapter is the second order studies of semiparametric

BvM theorem with an attempt to figure out the influence of nonparametric Bayesian

prior on the semiparametric inference. Such results can provide us new theoretical

insight, and can also be used to guide the choice of nonparametric prior. Cheng and

Kosorok (2008a,b, 2009) derived the second order version of a special semiparametric

BvM based on the posterior distribution of the profile likelihood in which the nui-

sance parameter is maximized out. In this case, no nonparametric prior is assigned.

To the best of our knowledge, a comprehensive second order study of the general

semiparametric Bernstein-von Mises theorem in the fully Bayesian setup does not

exist.

The primary goal of this chapter is to formulate a set of necessary conditions for

quantifying the second-order convergence rates of Bayesian semiparametric methods.
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Intuitively, this set of conditions would be stronger than those for first-order BvM

theorems. The first contribution of this chapter is that we derived the convergence

rate (7.1) as OPθ0,η0
pn1{2ρ2

nq, with ρn the estimation error of the nuisance part. This

second order term suggests that more accurate estimation of the nuisance parameter

η could lead to better estimation efficiency of the parametric part. This is consistent

with Cheng and Kosorok (2008b) and Cheng and Kosorok (2009) even the non-

parametric prior is not assigned therein. In addition, we consider multi-dimensional

nuisance function in this chapter. For example, in the partially linear model under

penalization, the convergence rate for the nuisance parameter is r � α{p2α � 1q,
where α is the known smoothness of the nuisance parameter. The set of conditions

we formulated can also be used to study first order BvM results and appears to be

weaker than that in Bickel and Kleijn (2012), where the very strong condition on the

root-n convergence rate of the parametric part is replaced with a convergence rate

of ρn.

Understanding of these conditions can conversely guide the design of the semi-

parametric objective prior, by which we mean a prior that achieves the same second-

order estimation and inference accuracy as frequentist approaches, such as the max-

imum penalized likelihood estimator (Cheng and Kosorok, 2009), could achieve. For

example, a point estimator resulted from a semiparametric objective prior should

match the corresponding frequentist estimators in terms of second order expansion

and the resulted credible intervals/region should have the same accuracy of coverage

compared to the corresponding confidence intervals. Another contribution of this

chapter is to show that a new class of dependent priors for θ and η are semiparamet-

ric objective and the commonly used independent priors for θ and η might even break

down the first-order consistency under some situations. The failure of independent

priors has also been observed in a recent work by Castillo (2012), who proposes an

interesting counter-example where the BvM does not hold due to a bias term appear-
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ing in the posterior distribution. We will call such a bias term the semiparametric

bias in the rest of the chapter. Intuitively, a non-negligible semiparametric bias is

caused by a nonzero least favorable direction. Surprisingly, we show that by intro-

ducing prior dependence, the semiparametric bias can be eliminated by shifting the

center of the prior for the nuisance parameter.

What is more surprising is that our adaptive semiparametric objective priors can

be easily made adaptive. This is counted as our third contribution. In the first two

conditions, we assume the smoothness α is known, which is unrealistic in reality.

A third contribution of this chapter is to study the impact of the nonparametric

adaptivity on the second order semiparametric efficiency under from a Bayesian

perspective. Note that such nonparametric adaptive issues can only be investigated

in the second order representation. Rivoirard and Rousseau (2012) propose a counter-

example to rule out the BvM for independent adaptivity priors, where an independent

prior achieves adaptive learning of η but fails to capture the semiparametric bias.

This negative result on adaptive priors is first observed by Castillo (2012). In this

chapter, we investigate sufficient conditions for a prior to be adaptive. Interestingly,

we show that a dependent prior can achieve the adaptation to the second order term

under mild conditions while an independent prior needs very stringent conditions.

7.2 Preliminaries

7.2.1 Semiparametric efficiency review

In this section, we review the semiparametric efficiency theory in a heuristic manner,

and comment its connection to our results.

We briefly review the semiparametric efficiency theory. The score functions for θ

and η are defined as

9lθ0,η0pXiq � B
Bθ

����
θ�θ0

lθ,ηpXiq, Aθ0,η0hpXiq � B
Bθ

����
t�θ0

lθ,ηptqpXiq,
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where h denotes a direction along which ηptq P H approaches η0 as t Ñ θ0 and

Aθ0,η0 : H ÞÑ L0
2pP0q is the score operator for η withH some closed and linear direction

set, and L0
2pP0q � tf P L2pP0q : P0f � 0u is a subset of L2pP0q equipped with the

L2-norm || � ||2. The efficient score function l̃θ0,η0 is defined as the orthocomplement

projection of 9lθ0,η0 onto the tangent space T , which is defined as the completion

of the linear span of the tangent set tAθ0,η0h : h P Hu. Therefore, the efficient

score function at pθ0, η0q can be written as l̃θ0,η0 � 9lθ0,η0 � Π0
9lθ0,η0 , where Π0

9lθ0,η0 �
arg minτPT ||τ � 9lθ0,η0 ||22. The variance of 9lθ0,η0 is defined as the efficient information

matrix Ĩθ0,η0 , whose inverse attains the Cramér-Rao lower bound for estimating θ

under a semiparametric framework (Bickel et al., 1998).

The main idea of semiparametric inference is to reduce the infinite dimensional

estimation problem to a finite dimensional submodel called the least favorable sub-

model tPθ,η�pθq : θ P Rku, where η�pθq is the so-called least favorable curve. The

information matrix of the least favorable submodel attains the Cramér-Rao lower

bound Ĩ�1
θ0,η0

and the least favorable curve η�pθq could be evaluated as the unique

minimizer in H of the Kullback-Leibler (KL) divergence with the parametric part θ

being fixed (Severini and Wong, 1992), i.e.

η�pθq � arg inf
ηPH

KpPθ0,η0 , Pθ,ηq � arg inf
ηPH

�
� Pθ0,η0 log

pθ,η
pθ0,η0



, (7.3)

where KpP,Qq � ³
logpdP {dQqdP is the KL divergence between two measures P

and Q. The existence of the least favorable submodel is implied by the closedness of

the tangent set.

An intuitive explanation of the least favorable curve in Bayesian regime is that

conditioning on θ, the posterior distribution of the nuisance parameter η tends to

allocate all its mass around η�θ (Kleijn and van der Vaart, 2006). However, the

posterior distribution of θ tends to concentrate around θ0 (by Lemma 51 or Lemma

52 below). As a result, we only need to characterize the least favorable curve in a
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small neighborhood of θ0. In the sequel, we denote ∆ηpθq � η�pθq � η�pθ0q.

7.2.2 Model assumptions

Let Xi � pUi, Vi, Yiq, i � 1, . . . , n, be i.i.d. copies of T � pU, V, Y q, where Y P R

is the response variable and T � pU, V q P r0, 1sk � r0, 1sd is the covariance variable.

Let Xpnq � tX1, . . . , Xnu. In the rest of the chapter, we stick to the notation P0

to indicate the true underlying distribution that generates the data. Assume the

following partially linear structure for a class of semi-parametric models:

m0ptq � E0pY |T � tq � F pg0ptqq, g0ptq � θT0 u� η0pvq, t � pu, vq,

where F : R Ñ R is some known link function, θ0 P Rk is some unknown parameter

of interest and η0 is some unknown smooth function. Many statistical models can be

included into this general framework. One example is the generalized partially linear

models (Boente et al., 2006), where y|t � ppy;m0ptqq for a conditional distribution

p in the exponential family, such as the Guassian distribution for regression and the

binomial distribution for classification. The generalized partially linear model with

a Gaussian response is theoretically easiest to analysis and we will focus on it as one

application of our general theory. Another example is the general partially linear

model (GPLM) (Mammen and van de Geer, 1997), where the only assumption is

made on the relationship between the conditional mean mθ,η � F pgθ,ηq and the con-

ditional variance V arpY |T q � V pmθ,ηpT qq for some known positive function V . For

GPLM, the parameters pθ, ηq can be estimated based on the quasi-likelihood function

Qθ,ηpyq � exptqθ,ηpyqu, with qθ,ηpyq the quasi-log-likelihood function (Wedderburn,

1974)

qθ,ηpyq �
» mθ,ηptq

y

py � sq
V psq ds. (7.4)

If V is chosen as the conditional variance of the response Y and is assumed to

depend only on the conditional mean m of Y , i.e. V � V pmq, then the quasi-
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likelihood coincides with the likelihood of the corresponding generalized linear models

(Wedderburn, 1974).

Despite the distinct modeling assumptions, these two classes of statistical models

in the examples share many similarities and from now on, we work with a general

“log-likelihood” function lnpθ, ηq �
°n
i�1 lθ,ηpXiq, where the general criterion function

lθ,ηpxq can represent either log ppy;m0pθ, ηqq or qθ,ηpyq. For GPLM, let

fpξq � dF pξq
dξ

, lpξq � fpξq
V pF pξqq , ξ P R,

f0 � fpg0q and l0 � lpg0q. Similar to Mammen and van de Geer (1997), we make the

following assumptions for GPLM:

Assumption 1. [(a)]

1. There exists some positive constant C0 such that E0pexppt|W |{C0q|T q ¤ C0e
C0t2,

for all t ¡ 0, i.e. W � Y �m0pT q is sub-Gaussian.

2. There exist positive constants C1, C2, C3 and C4 such that: 1. 1{C1 ¤ V psq ¤
C1 for all s P F pRq; 2. 1{C2 ¤ |lpξq| ¤ C2 for all ξ P R; 3. |lpξq � lpξ0q| ¤
C3|ξ�ξ0| for all |ξ�ξ0| ¤ η0; 4. |fpξq�fpξ0q| ¤ C4|ξ�ξ0| for all |ξ�ξ0| ¤ η0.

The assumption that V and l are both bounded could be restrictive and can be

removed in many cases, such as the binary logistic regression model, by applying

empirical process arguments similar to those in Section 7 of Mammen and van de

Geer (1997). Under Assumption 1(2), the following lemma describes the local least

favorable curve of the GPLM when |θ � θ0| is small.

Lemma 47. Suppose Assumption 1(2) is met. Then the least favorable curve η�pθq,
defined as the minimizer η of

E0 logpQθ0,η0{Qθ,ηq � E0

» mθ,ηpT q

mθ0,η0 pT q

pY � sq
V psq ds � E0

» mθ,ηpT q

mθ0,η0 pT q

pmθ0,η0pT q � sq
V psq ds
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as a function of θ, takes the following expression

η�pθq � η0 � pθ � θ0qh�pV q �Op|θ � θ0|2q, as |θ � θ0| Ñ 0, (7.5)

with h�pvq � �E0

�
Uf0pT ql0pT q|V � v

�
E0

�
f0pT ql0pT q|V � v

� . (7.6)

h�pvq is called the least favorable direction as it reflects the change of the least

favorable curve due to a unit change in θ. The following two commonly used models

are special cases of the GPLM.

Example 7.2.1 (Partially linear models). In the partially linear model (PLM), we

have observations tXi � pUi, Vi, Yiq : Ui P Rk, Vi P Rd, Yi P R, i � 1, . . . , nu where the

conditional distribution of Y given pU, V q are described by

Y � UT θ0 � η0pV q � ε, (7.7)

where ε � Np0, 1q is assumed to be independent of pU, V q. For simplicity, we focus

on univariate θ, i.e., k � 1, and assume that pU, V q has an unknown distribution P

supported on r0, 1s1�d. lθ,ηpxq is given by

log dPθ,ηpXq � �1

2

�
ε� pθ � θ0qU � pη � η0qpV q

�2
, (7.8)

where ε � Y � θ0U � η0pV q is the random error under pθ0, η0q. For identifiability,

we further assume P pU � ErU |V sq2 ¡ 0. We consider the case that η0 belongs to

a Hölder function class Cαpr0, 1sdq with an unknown smoothness index α. For the

PLM (7.7), the KL divergence between P0 and Pθ,η is P0 logppθ0,η0{pθ,ηq � 1
2
P
�pθ �

θ0qU � pη � η0qpV q
�2

and the least favorable curve is given by

η�pθqpvq � η0pvq � pθ � θ0qErU |V � vs, (7.9)

which satisfies assumption S0 with the least favorable direction h�pvq � �ErU |V � vs
and ∆ηpθqpvq � �pθ�θ0qErU |V � vs. This is also a special case of Lemma 47 when

V psq � 1 and F pxq � x.
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Example 7.2.2 (Partially linear logistic models). In the partially linear logistic

model, Yi P 0, 1 and the conditional probability of Y given pU, V q can be described by

log
P0pY � 1|U, V q
P0pY � 0|U, V q � UT θ0 � η0pV q. (7.10)

For this model, fpξq � V pF pξqq � eξp1 � eξq�2 and lpξq � 1. Therefore, by Lemma

47 its least favorable curve is given by

η�pθqpvq � η0pvq � pθ � θ0qErUf0pU, V q|V � vs
Erf0pU, V q|V � vs �Op|θ � θ0|2q, (7.11)

where f0pu, vq � eu
T θ0�η0pvqp1� eu

T θ0�η0pvqq�2.

Example 7.2.3 (Partially linear exponential models). In the partially linear expo-

nential model, the conditional density of Y given pU, V q is

p0py|u, vq � λ0pu, vq expp�λ0pu, vqyq, y ¡ 0, (7.12)

with λ0pu, vq � 1{m0pu, vq. For this model, fpξq � eξ, V pF pξqq � e�2ξ and lpξq �
e�ξ. Therefore, by Lemma 47 its least favorable curve is given by

η�pθqpvq � η0pvq � pθ � θ0qErU |V � vs �Op|θ � θ0|2q, (7.13)

where the least favorable direction h�pvq � �ErU |V � vs is the same as that of the

PLM because f0l0 � 1.

7.3 Second order semiparametric BvM theorem

7.3.1 Main results

For a general class of semiparametric models P � tPθ,η : θ P Rk, η P Hu, we consider

a prior distribution Π over Rk �H for pθ, ηq. In the sequel, we use Πθpηq and Πpθq
to denote the conditional prior distribution of η given θ and the marginal prior

distribution of θ, respectively. Denote lnpθ, ηq as the log-likelihood.

We assume the following assumptions.
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Assumption 2 (Localization condition). There exist two sequences tδnu and tρnu
satisfying δn Ñ 0, ρn Ñ 0 and nρ2

n Ñ 8, and a sequence of sets tHnu, such that for

some M ¡ 0 as nÑ 8,

Π
�||θ � θ0|| ¤Mρn, η P Hn

��X1, . . . , Xn

� � 1�OP0pδnq.

Define the localized integrated likelihood ratio with respect to tHnu as rSn : Rk Ñ R:

rSnpθq � »
Hn

exp
�
lnpθ, ηq � lnpθ0, η0q

�
dΠθpηq. (7.14)

Assumption 3 (Second order integrated local asymptotic normality). There exists

a nondecreasing function Rnp�q : R Ñ R such that for every sequence θn such that

θn � θ0 �OP0pρnq,

log
rSnpθnqrSnpθ0q

�?npθn � θ0qTrgn � n

2
pθn � θ0qT rIθ0,η0pθn � θ0q

� OP0pRn

�|θn � θ0| _ n�1{2 log n
�q,

(7.15)

where rgn � p1{?nq°n
i�1

r̀
0pXiq P0ù Nkp0, rIθ0,η0q.

Theorem 48. We assume the prior for θ is thick at θ0. Suppose X1, . . . , Xn are

i.i.d. observations sampled from P0. Suppose that Assumption 2 & 3 are true. Then

the marginal posterior for θ has the following expansion,

sup
A

��Πpθ P A|X1, . . . , Xnq �Nk

�
θ0 � n�1{2 r∆n, pnrIθ0,η0q�1

�pAq�� � OP0pSnq, (7.16)

where Sn � Rnpn�1{2 log nq � δn.

For regular parametric models, Johnson (1970) derived the above convergence rate

as OP0pn�1{2q.
Assumption 2 is the test condition for semiparametric models, which allows us

to focus on the posterior probability conditioning on the set tpθ, ηq : ||θ � θ0|| ¤
172



Mρn, η P Hnu. A typical set of sufficient conditions (e.g. Lemma 51) for Assump-

tion 2 already implies a test condition (Ghosal et al., 2000; Ghosal and van der

Vaart, 2007). Therefore, Assumption 2 is stronger than the test condition for the

semiparametric BvM. Further discussions on Assumption 2 are provided in Section

7.3.3.

Assumption 3 is a semiparametric extension of local asymptotic normality re-

quired for parametric BvM theorem (LeCam, 1953, LAN). Note that, by Fubini’s

theorem, the marginal posterior for θ can be written as

Πpθ P A|X1, . . . , Xnq �
»
A

"»
H

exp
�
lnpθ, ηq � lnpθ0, η0q

�
dΠθpηq

*
dΠpθq

N»
Θ

"»
H

exp
�
lnpθ, ηq � lnpθ0, η0q

�
dΠθpηq

*
dΠpθq.

(7.17)

Therefore, the following integrated likelihood ratio Snpθq, i.e.,

Sn : Rk Ñ R : θ ÞÑ
»
H

exp
�
lnpθ, ηq � lnpθ0, η0q

�
dΠθpηq. (7.18)

in a semiparametric model plays the same role as the likelihood ratio in a parametric

model. To prove the first order semiparametric BvM theorems, Bickel and Kleijn

(2012) assume that

log
Snpθ0 � n�1{2hnq

Snpθ0q � hTnrgn � 1

2
hTn

rIθ0,η0hn � oP0p1q, (7.19)

for every random sequence thnu of order OP0p1q.
However, accompanied with ILAN, Bickel and Kleijn (2012) requires a condi-

tion that the marginal posterior distribution of θ converges to θ0 at rate n�1{2.

In many cases, the verification of this parametric rate condition is nontrivial. To

avoid the stringent assumption on the convergence rate of θ as well as keep track

of the higher-order remainders, we introduce the notion of localized integral likeli-

hood ratio as in (7.14), where tHnu � H is the sequence of subsets of H defined
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in Assumption 2. Note that each Hn forms a local neighborhood of η0 such that

Πpη P Hn|X1, . . . , Xnq P0ÝÑ 1. For example, Hn can be defined as tη : ||η � η0||n ¤
Mρnu X Fηn , where Fηn is a sieve sequence for the nuisance parameter defined after

Lemma 51 and ||f ||n � n�1
°n
i�1 f

2pXiq for a function f . ρn usually corresponds to

the marginal posterior convergence rate of the nuisance parameter. By introducing

the localization sequence tHnu, a uniform bound for the corresponding higher order

term in the local asymptotic expansion as (7.19) can be developed with respect to

the local neighborhood Hn instead of the whole space H. Therefore, the additional

information ||η � η0||n ¤ Mρn and η P Fηn can be utilized when applying the max-

imal inequalities (van der Vaart and Wellner, 1996, Corollary 2.2.5). Moreover, we

no longer need to assume a root-n marginal convergence rate for θ since we only

need to focus on the posterior distribution over tθ : ||θ � θ0|| ¤ Mρnu and the

posterior probability of tθ : Mn�1{2 log n ¤ ||θ � θ0|| ¤ Mρnu decays faster than

Sn for sufficiently large M . (7.15) can be translated into (7.19) by letting the lo-

calization parameter hn �
?
npθn � θ0q. The uniform remainder-bound in (7.15) is

weaker than OP0rRnp}θn�θ0}qs because we only require the remainder to be of order

Rnpn�1{2 log nq when θn is in a n�1{2 log n neighborhood of θ0. In the sequel, any

mentioning of ILAN refers to (7.15).

The ILAN condition imposes constraints on both the prior through the definition

of the localized integrated likelihood ratio S̃n, and the semiparametric model tPθ,ηu
through the second order LAN expansion in (7.15). Interestingly, Lemma 53 in

Section 7.3.4 suggests that this convoluted condition can separated into the following

condition (A1) on the semiparametric model and condition (A2) on the prior — (A1)

and (A2) implies (7.15) with Rn � Gn �G1
n.

(A1) (Stochastically local asymptotic normality) There exists an increasing func-
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tion Gn : RÑ r0,8q, such that for every sequence tθnu such that θn � θ0�OP0pρnq,

sup
ηPHn

����ln�θn, η �∆ηpθnq
�� lnpθ0, ηq � pθn � θ0qT

ņ

i�1

l̃θ0,η0pXiq

� 1

2
npθn � θ0qT rIθ0,η0pθn � θ0q

���� � OP

�
Gn

�
maxt|θn � θ0|, n�1{2 log nu��.

In the sequel, we will say that an identity holds uniformly over η P Hn instead of

taking a sup over Hn to ease the exhibition. We call a prior as being thick at θ0 if it

has a Lebesgue density that is continuous and strictly positive at θ0.

(A2) (Prior stability under perturbation) There exists an increasing function

G1
n : RÑ r0,8q, such that for any θn � θ0 �OP pρnq,³

Hn
expplnpθ0, η �∆ηpθnqqqdΠθnpηq³

Hn
expplnpθ0, ηqqdΠθ0pηq � 1�OP rG1

npmaxt|θn � θ0|, n�1{2 log nuqs.

As we will see, (A2) plays an important role for a prior to be semiparametric

objective. The definition of semiparametric objective priors is provided in Section

7.4. More discussions on (A1) and (A2) can be found in Section 7.3.4 and Section

7.4.

7.3.2 Second order Bayesian inference

In practice, an MCMC algorithm is designed to sample a sequence of draws tθplq : l �
1, . . . , Lu approximately from the marginal posterior distribution of θ � pθ1, . . . , θkq.
Then for each component θs with 1 ¤ s ¤ k, an estimation pθBn,s, such as the posterior

median, and its corresponding α-th credible interval ppqs,α{2, pqs,1�α{2q are obtained

from the samples tθplqs u, which are approximately drawn from the marginal posterior

distribution of θs. Then pθBn � ppθBn,1, . . . , pθBn,kq forms an point estimator of θ0. Another

way to quantify the estimation uncertainty is to construct the αth highest posterior

density (HPD) region An,α based on tθplqu, which forms a αth joint credible regions

for the k-dimensional vector θ.
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The following result shows the frequentist validity of this procedure for the point

estimator.

Corollary 49. Consider the semiparametric model and the prior Π in Theorem 48.

Under the same assumptions, the estimator pθBn of θ0 constructed as above satisfies

?
nppθBn � θ0q � r∆n �OP0pSnq,

where r∆n

Pθ0,η0ù Np0, rI�1
θ0,η0

q, as nÑ 8.

The second order term OP0pSnq could be very close to the first order term even

when the sample size n is moderate. For instance, if Sn �
?
nρ2

n (which are the case

in the examples) and the nuisance part converges at a cubic rate as ρn � n�1{3 up

to log terms, then Sn � n�1{6 and
?
nppθBn � θ0q � OP0p1q �OP0pn�1{6q. Therefore, it

is important to quantify the impact of the higher order term on BvM results.

Next we study the frequentist coverage of the individual/joint credible inter-

val/region by the above procedures. For any α P p0, 1q, we define the α-th marginal

posterior quantile pqs,α of θs through the following equation Πpθs ¤ pqs,α|X1, . . . , Xnq �
α. Consider any 1�α credible region An,1�α that satisfies Πpθ P An,1�α|X1, . . . , Xnq �
1� α.

Corollary 50. Consider the semiparametric model and the prior Π in Theorem 48.

Under the same assumptions, we have

P0pθ0,s P ppqs,α{2, pqs,1�α{2qq � 1� α �OpSnq, (7.20)

P0pθ0 P An,1�αq � 1� α �OpSnq. (7.21)

From this corollary, we see that the second order term also determines the frequen-

tist coverage of the credible intervals/resions. Therefore, the second order properties

are also important for statistical inferences and developing semiparametric objective

priors that lead to the best second order term is necessary.
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7.3.3 Higher-order results on posterior convergence of nuisance parameter

In this section, we provide a set of sufficient conditions for Assumption 2. We consider

a general framework for investigating the posterior contraction rate based on inde-

pendent but unnecessarily identically distributed observations Y pnq � pY1, . . . , Ynq;
see Ghosal and van der Vaart (2007). In this case, the statistical model in consider-

ation is written as P � tP pnq
λ : λ P Λu, where P

pnq
λ pY pnqq � ±n

i�1 Pλ,ipYiq is the joint

distribution of Y pnq with a common parameter λ.

Define a semimetric dn by d2
npλ, λ1q � 1

n

°n
i�1

³p?pλ,i�?pλ1,iq2dµi, which averages

the squared Hellinger distances for distributions of Yi. In the above statistical model

P , we say that the posterior convergence rate of λ is ρn if

Π
�
dnpλ, λ0q ¥Mρn

��X1, . . . , Xn

� P0ÝÑ 0, (7.22)

where M is a sufficiently large positive constant; see Ghosal et al. (2000) and Ghosal

and van der Vaart (2007). However, our second order studies of BvM theorem

requires an explicit bound, called as decaying rate, characterizing the convergence

rate of (7.22), e.g., Assumption 2.

In the below, we provide a Lemma for deriving a polynomial decaying rate in

general cases, and further improve it to a exponential rate in the case of GPLM. The

first Lemma is an immediate consequence from combining Lemma 10 in Ghosal and

van der Vaart (2007) with the proof of Theorem 2.1 in Ghosal et al. (2000). Hence,

we skip its proof.

For any integer k, define the discrepancy measure V0,kpP,Qq �
³ | logpdP {dQq �

KpP,Qq|kdP .

Lemma 51. Let ρn be a sequence satisfying ρn Ñ 0 and nρ2
n Ñ 8. If there exists an

increasing sequence of sieves Fn � F , such that the following conditions are satisfied:

a. ΠpFzFnq ¤ expp�nρ2
npC � 4qq for some C ¡ 0;
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b. logNpρn,Fn, dnq ¤ nρ2
n;

c. ΠpBnpP pnq
0 , ρn; kqq ¥ expp�Cnρ2

nq,

where BnpP pnq
0 , ρn; kq �

"
P P P : KpP pnq

0 , P pnqq ¤ nρ2
n, V0,kpP pnq

0 , P pnqq ¤ nk{2ρkn

*
,

then we have

Π
�
dnpλ, λ0q ¥Mρn

��X1, . . . , Xn

� � OP0

�pnρ2
nq�k{2

�
. (7.23)

By taking k � 2 in Lemma 51, we recover Theorem 2.1 in Ghosal et al. (2000) for

iid observations without explicit characterizations on the decaying rate. Moreover,

if n�k{2ρ�kn � Opn�γq for some γ ¡ 1, then by the Borel-Cantelli lemma and Lemma

51, Π
�
dpP, P0q ¥Mρn

��X1, . . . , Xn

�Ñ 0 almost surely.

A typical sieve construction for semiparametric models involves sieve sequences

tF θnu and tFηnu for the parametric part and nuisance part, respectively. For example,

for the GPLM, the sieve takes a product form as Fn � F θn ` Fηn � tθTu� ηpvq : θ P
F θn, η P Fηnu.

Lemma 51 provides up to polynomial decaying rates for general cases. However,

for the GPLM, an exponential decaying rate can be attained by the following lemma.

Lemma 52. Consider the GPLM under Assumption 1. If conditions (a) and (b) in

Lemma 51 and the following condition are true,

d. Πp||g � g0||n ¤ ρnq ¥ expp�Cnρ2
nq,

where gptq � θTu� ηpvq, then there exists a C0 ¡ 0, so that

Π
�||g � g0||n ¥Mρn

��X1, . . . , Xn

� � OP0

�
expp�C0nρ

2
nq
�
. (7.24)

7.3.4 Sufficient conditions for ILAN

In this section, we discuss sufficient conditions (A1) & (A2) for Assumption 3. Condi-

tion (A1) strengthens the stochastically LAN introduced in Bickel and Kleijn (2012).
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If we set η � η0 in (A1), then we obtain the LAN for the least favorable submodel

ln
�
θn, η

�pθnq
�� lnpθ0, η0q �

?
npθn � θ0qTrgn � 1

2
npθn � θ0qT rIθ0,η0pθn � θ0q

�OP rGnpmaxt|θ � θ0|, n�1{2 log nuqs.

This explains the reason for the inclusion of the ∆ηpθnq term in (A1). Note that

(A1) depends on the prior through the localization sequence tHnu, to which the

posterior distribution allocates most mass. Larger the subset Hn, greater the high

order leftover in (A1). So we aim to make the Hn as small as possible while keeping

ΠpHn|X1, . . . , Xnq close to one. Motivated by this, we set

Hn � tη : ||η � η0||n ¤Mρnu X Fηn , (7.25)

where tFηnu is the sieve sequence for the nuisance part η constructed in Lemma 51

and ρn is the corresponding posterior convergence rate of η. By Assumption 2 and

condition (a) in Lemma 51, we have

ΠpHn|X1, . . . , Xnq � 1�OP0pmaxtδn, expp�nρ2
nquq,

where δn � pnρ2
nq�k{2 or expp�nρ2

nq depends on whether Lemma 51 or Lemma 52

is satisfied. The remainder term in (A1) can be bounded from above by calculating

the continuity modulus or applying the maximal inequalities from empirical process

theory (van der Vaart and Wellner, 1996). The partially linear model and GPLM

with quasi-likelihood examples later illustrate how to apply these tools to verify (A1).

Based on the above preparations, we can prove the following lemma which pro-

vides a sufficient condition for the ILAN.

Lemma 53. If (A1) and (A2) hold, then we have the following ILAN,

log
rSnpθnqrSnpθ0q

�?npθn � θ0qTrgn � n

2
pθn � θ0qT rIθ0,η0pθn � θ0q

�OP rRnpmaxt|θn � θ0|, n�1{2 log nuqs,

with Rn � Gn �G1
n.
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(A2) characterizes the stability of the prior under a small perturbation in the log

likelihood function caused by the semiparametric bias ∆ηpθnq in the nuisance part.

In the special case that the LFS is given by tPθ,η0 : θ P Rku, i.e., ∆η � 0, (A2)

automatically holds when independent priors are specified for θ and η.

However, in general cases where ∆η � 0, since S0 implies ∆ηpθnq � Op|θn � θ0|q,
we have

exp
 
lnpθ0, η �∆ηpθnqq � lnpθ0, ηq

( � OP0pn|θn � θ0|ρnq,

which does not converge to zero as we expect that |θ � θ0| � OP pn�1{2q. Hence

under independent priors for θ and η, i.e. Πθ � Π for any θ, (A2) cannot be simply

proved by bounding the difference between the logarithms of the integrands in the

denominator and the numerator.

7.4 Semiparametric objective priors

According to Cheng and Kosorok (2008a) and Cheng and Kosorok (2009), the maxi-

mum (penalized) profile likelihood estimator pθn for a semiparametric model satisfies

?
nppθn � θ0q � r∆n �OP0pMnpρnqq, (7.26)

where Mnptq �
?
nt2 and ρn corresponds to the convergence rate of the nuisance

parameter. For example, ρn � n�α{p2α�dq if η0 is a d-variate function with known

smoothness level α. Similar to the objective prior for regular parametric models

defined via probability matching (Datta and Mukerjee, 2004; Staicu and Reid, 2008),

we call a prior for semiparametric models to be semiparametric objective if:

1. The marginal posterior median pθBn of θ satisfies
?
nppθBn�θ0q � r∆n�OP0p�Mnpρnqq.

where �Mn is the same as Mn up to log n factors.

2. For any α P p0, 1q, the αth marginal posterior quantile pqs,α of the sth component

θs satisfies P0pθ0,s ¤ pqs,αq � α �Op�Mnpρnqq.
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Different from the parametric probability matching prior where the remainder order

is always n�1{2, the remainder order of a semiparametric model also depends on the

prior. Therefore, we define semiparametric objective priors in terms of higher-order

matching. From the results in Section 7.3.2, a prior is semiparametric objective if

the Sn term in Theorem 48 has the same order as Mnpρnq up to log n factors.

In this section, we first investigate the conditions under which an independent

prior is semiparametric objective. These conditions become unrealistic for those in-

dependent priors whose marginal on the nonparametric part η is adaptive to the

smoothness of the true function η0, which is consistent with former negative obser-

vations (Castillo, 2012; Rivoirard and Rousseau, 2012). On the contrary, we show

that a new class of dependent priors can be simultaneously semiparametric objective

and adaptive under mild conditions. Throughout this section, we assume

(A3) (Local expansion for the least favorable curve) There exists a function h� P
L2pP0q such that as θ Ñ θ0,

η�θ pvq � η0 � pθ � θ0qh�pvq �Op|θ � θ0|2q.

A3 is a mild condition. For example, it is satisfied for the GPLM with quasi-likelihood

(Lemma 47).

As we show in Lemma 53, the high-order remainder term Sn depends on Gn and

G1
n in (A1) and (A2). (A1) appears to be intrinsic to the semiparametric model. For

example, in many cases Gnptq takes a form of nt3 � ?
nt2 � nt2ρn � ntρ2

n �
?
nρ2

n.

Therefore, by Theorem 48, under this situation a prior is semiparametric objective if

it satisfies (A2) with G1
nptq � OpGnptqq as tÑ 0. As a weaker requirement compared

to the semiparametric objectiveness, we call a prior to be unbiased if (A2) holds with

G1
npn�1{2 log nq Ñ 0 as n Ñ 8. Note that (A2) is also a basic requirement for the

root-n convergence rate of θ.
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7.4.1 Independent prior

We illustrate when an independent prior

(PI) θ � ΠΘ, η � ΠH .

is semiparametric objective. Applying a change of variable η Ñ rη � ∆ηpθnq in the

numerator in (A2) yields»
Hn

expplnpθ0, η �∆ηpθnqqqdΠHpηq �
»
Hn�∆ηpθnq

expplnpθ0, rηqqfprηqdΠHprηq, (7.27)

with fprηq � dΠH,��∆ηpθnqprηq{dΠHprηq the Radon-Nykodym derivative between the two

measures, where ΠH,��g representing the distribution of W � g if W � ΠH . Consider

the following assumption:

(A4) There exists a nondecreasing function G2
n : R Ñ R, such that for any

θn � θ0 � OP0pρnq and uniformly over η P Hn, | log fpηq � 1| � OrG2
npmaxt|θn �

θ0|, n�1{2 log nuqs.
The following lemma provides sufficient conditions under which (PI) is unbiased.

Lemma 54. Assume A3, Assumption 2 and A4. Then the independent prior satisfies

(A2) with G1
n � G2

n � δn.

G1
nptq in Lemma 54 does not converge to 0 as tÑ 0. Therefore, we do not require

the remainder term in (A1) to converge to Gnp0q � 0 as θn Ñ θ. Given a prior

for η, A4 indeed puts a restriction on ∆ηpθnq. For example, when Π corresponds to

the Gaunsian process (GP) prior (Rasmussen and Williams, 2006), this restriction

requires ∆ηpθnq P H, where H is the reproducing kernel Hilbert space associated with

the GP, and otherwise |fpηq| � 8. When the smoothness α of η is known and the co-

variance function of the GP prior is chosen properly, ρn can attain n�α{p2α�dqplog nqγ

for some γ ¡ 0, which is close to the minimax rate ∆ηpθnq of estimating an d-variate

α-smooth function, as long as h� is at lease α-smooth. As a result, such an indepen-

dent prior can be unbiased and semiparametric objective. On the other hand, when
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a smoothness-adaptive GP prior with random length scale parameter (van der Vaart

and van Zanten, 2009) is specified for η, the restriction ∆ηpθnq P H becomes very

stringent under the same ρn. Section 7.5.1 provides a concrete example.

7.4.2 Dependent prior

Since our primary interests is a smoothness adaptive prior for η, the above analysis

implies that we need to consider unbiased and semiparametric objective priors where

θ and η are dependent.

Let ph be an estimator of the least favorable direction h� that satisfies the following

assumption: for any θn � θ0 �OP pρnq,

(A5) lnpθ0, η �∆ηpθnq � pθn � θ0qphq � lnpθ0, ηq

� OP0rG2
npmaxt|θ � θ0|, n�1{2 log nuqs.

Because ∆ηpθnq � pθn � θ0qph � pθn � θ0qph� � phq � Op|θn � θ0|2q, in many cases A5

can be implied by the following condition with G2
nptq � nρnκnt� nρnt

2:

(A6) ||ph� h�||n � OP pκnq, κn Ñ 0.

For example, assumption A6 will be made in the examples in Section 7.5.

Let ΠΘ be an appropriate marginal prior for θ and ΠH a smoothness adaptive

prior for η. Consider the following prior for pθ, ηq,

(PD) θ � ΠΘ, η|θ � W � θph with W � ΠH .

The conditional prior of η given θ in (PD) is obtained by shifting the center of ΠH by

θph. The idea is simple: we want to compensate for the bias by adjusting the center

of the prior for the nuisance part. With this bias correction, the stringent condition

A4 on the least favorable direction can be avoided.

Lemma 55. If A3, Assumption 2 and A5 are true, then the dependent prior (PD)

satisfies (A2) with G1
n � G2

n � δn.
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Compared to A4, A6 is much weaker because it only requires a satisfactory es-

timator of h�. On the contrary, A4 puts constraints on both the prior ΠH and h�.

The constraint on ΠH is too stringent to admit adaptivity. For example, see Section

7.5.1.

7.4.3 Second-order BvM theorems for unbiased priors

Applying Theorem 48 to the priors in the above subsections, we obtain the following

result.

Theorem 56. Suppose X1, . . . , Xn are i.i.d. observations sampled from P0 � P0.

Suppose that A3, S1, Assumption 2, (A1) holds. If either A4 for the independent

prior (PI) or A5 for the dependent prior (PD) is true, then the marginal posterior

for θ has the following expansion in total variation as nÑ 8,

sup
A

��Πpθ P A|X1, . . . , Xnq�Nk

�
θ0 � n�1{2 r∆n, pnrIθ0,η0q�1

�pAq��
� OP rGnpn�1{2 log nq �G2

npn�1{2 log nq � δns.

7.5 Examples

Because the PLM is easy to analysis and sufficient for comprehension, we primarily

focus on PLM as an application of the general theory. Then we provide general

results for the GPLM, of which the PLM is a special case.

7.5.1 Partially linear models

Independent prior

First, we consider independent priors for θ and η. Theoretically, the prior for θ can

be any continuous distribution on Rk that has a full support. However, for computa-

tional convenience such as conjugacy, we choose a multivariate normal distribution

Np0, Ik{φ0q for Πpθq, where φ0 is the precision parameter of the prior. For example,

one can choose φ0 � 0.01 for a vague prior for θ.
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The prior Πη is a infinite dimensional measure over the d0-variate Hölder func-

tion class with unknown smoothness. We consider the Gaussian process (GP) prior

with a random inverse bandwidth parameter (van der Vaart and van Zanten, 2009).

The inverse bandwidth parameter determines the decaying rate of the covariance

function. A GP W a � tW a
x : x P Rdu with a fixed inverse parameter a is denoted by

W a � GP pm,Kaq, where m : Rd Ñ R is the mean function and Ka : Rd�Rd Ñ R is

the covariance function that depends on a. We primarily focus on the squared expo-

nential covariance function, although with slight modifications, the following results

could be generalized to a broader class of covariance functions with exponentially

decaying spectral densities. Let Kapx, yq � EW a
xW

a
y � expp�a2||x � y||2q be the

squared exponential covariance function indexed by a ¡ 0.

Given n independent observations, the minimax rate of estimating a d-variate

function that is known to be Hölder α-smooth is n�α{p2α�dq. van der Vaart and van

Zanten (2009) shows that a hierarchical prior as

WA|A � GP p0, KAq, Ad � Gapa0, b0q, (7.28)

for Gapa0, b0q the Gamma distribution with pdf pptq9ta0�1e�b0t leads to the minimax

rate n�α{p2α�dq up to a logarithmic factor, adaptively over the unknown smoothness

level α. We slightly modify the prior for A to be a truncated Gapa0, b0q whose pdf

pptq9ta0�1e�b0tIpt ¥ t0q for technical reasons and this modification will not sacrifice

the adaptivity of the prior. Choices of the hyperparameters have diminishing impacts

on the posterior as the sample size n grows and therefore we simply set a0 � 1{2 and

b0 � 1{2.

Properties of a GP with a covariance function K are intimately related to the

reproducing kernel Hilbert space (RKHS) associated with K. For the scaling depen-

dent covariance Ka, we use Ha and || � ||a to denote the RKHS and the RKHS norm,

respectively. The unit ball in the RKHS Ha is denoted by Ha
1.
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By checking the assumptions A3, Assumption 2, (A1), (A2) and A4, we have the

following theorem for the independent prior above for partially linear models.

Theorem 57. Let Xi � pUi, Vi, Yiq P Rk � Rd � R, i � 1, . . . , n, be n observations

from the partially linear model (7.7). Consider the independent priors for θ and η

as above. Assume the following conditions:

1. η0 is Hölder α-smooth;

2. P pU � ErU |V sq2 ¡ 0;

3. The conditional expectation ErU |V � vs as a function of v belongs to the RHKS

Ht0.

Then the following second order asymptotic expansion holds:

sup
A

��Πpθ P A|Xpnqq �Nk

�
θ0 � n�1{2 r∆n, pnI�1

0 q�pAq�� � OP p
?
nρ2

n log nq, (7.29)

where r∆n � n�1{2 °n
i�1 I

�1
0 εipUi � ErU |Visq P0ù Nkp0, I�1

0 q, I0 � P pU � ErU |V sq2

and ρn � n�α{p2α�dqplog nq1�d.

The above theorem suggests that by choosing an adaptive prior for the nuisance

parameter, the second order estimating efficiency of the parametric part could also be

improved adaptively. However, this theorem requires a strong constraint on the least

favorable direction h � pvq if an independent prior is specified. In fact, a necessary

and sufficient condition for a function f belonging to Ht0 is that it has a Fourier

transform pf satisfying »
Rd
| pfpλq|2ec||λ||2{t20dλ ¤ 8,

for some c ¡ 0 (van der Vaart and van Zanten, 2009). This condition implies the

infinite differentiability of h�. Since Hs P Ht for all s   t (van der Vaart and van
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Zanten, 2009, Lemma 4.7), Theorem 57 guarantees the second order BvM results

under a weaker constraint on h� with a larger t0. To avoid such a strong condition,

we consider the dependent prior as in the next subsection.

Dependent prior

We consider the dependent prior (PD) in section 7.4.2. For partially linear models,

the least favorable direction h�p�q takes the form of �ErU |V � �s, which does not

involves pθ0, η0q and thus can be estimated as ph by using the design points tpUi, Viqu
directly. For GP prior, shifting the center is equivalent to the translation of the

mean function. Therefore, for partially linear models with the above GP prior, the

dependent prior version (PD) is,

θ �ΠΘ, Ad � Gapa0, b0q,

η|θ, A � GP pθph,KAq.
(7.30)

An intuitive explanation of the above prior is the following. If we reparameterize the

nuisance parameter as ξ � η � θph, then ξ|A, θ � GP p0, KAq and the partially linear

model becomes

Y � θ
�
U � phpV q�� ξpV q � ε, (7.31)

with the truth θ � θ0 and ξ � ξ0 � η0 � θ0
ph. If we consider U � phpV q as a new rU ,

then the least favorable direction of the new model becomes

rh � ErrU |V s � EtU � ErU |V s|V u � h� � ph � OP0pκnq P0ÝÑ 0,

with κn being defined in assumption A6. As a result, the semiparametric bias of the

new model is negligible.

The following theorem formalizes this observation and provides the seconder order

BvM theorem under this dependent prior.
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Theorem 58. Let Xi � pUi, Vi, Yiq, i � 1, . . . , n, be a sample from the partially

linear model. Suppose that ph is an estimator of the least favorable direction h�p�q �
�ErU |V � �s. Assume the first two conditions in Theorem 57 and A6. Then under

the prior (7.30), the following second order asymptotic expansion holds:

sup
A

��Πpθ P A|Xpnqq�Nk

�
θ0�n�1{2 r∆n, pnI�1

0 q�pAq�� � OP

�?
nρ2

n log n�?nκnρn log n
�
,

(7.32)

where r∆n � n�1{2 °n
i�1 I

�1
0 eipUi � ErU |Visq P0ù Nkp0, I�1

0 q, I0 � P pU � ErU |V sq2

and ρn � n�α{p2α�dqplog nq1�d.

By the above theorem, if κn � OP pρnq, then we can achieve the same adaptive

second order efficiency as Theorem 57, but under a much weaker condition A6. For

example, when h� is at least α times differentiable, then the typical construction of ph
as a kernel type estimator with appropriate choices of the kernel and the bandwidth

parameter satisfies A6.

Simulation study

In this part, we conduct a simulation study comparing the dependent prior and the

independent prior. In each setting, we generate 100 replicates from the following

four models:

M1 Yi � 0.5Ui � exppViq �Np0, 0.52q, with Vi
iid� Np0, 1q and Ui|Vi � Np0.5|Vi|3, 1q;

M2 Yi � 0.5Ui � exppViq �Np0, 0.52q, with Vi
iid� Np0, 1q and Ui|Vi � Np0.5V 3

i , 1q.

M3 Yi � 0.5Ui�expp|Vi|q�Np0, 0.52q, with Vi
iid� Np0, 1q and Ui|Vi � Np0.5|Vi|3, 1q;

M4 Yi � 0.5Ui � expp|Vi|q �Np0, 0.52q, with Vi
iid� Np0, 1q and Ui|Vi � Np0.5V 3

i , 1q.

In M1, the least favorable direction h�pvq � 0.5|v|3 is twice differentiable in R but not

thrice differentiable at v � 0. In contrast, the least favorable direction h�pvq � 0.5v3
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in M2 is infinitely differentiable. M3 and M4 are counterparts of M1 and M2 respec-

tively with non-differentiable nuisance parts at v � 0. We consider three procedures

to fit these models: P1. the independent prior (7.28); P2. the dependent prior (7.30)

with phpvq, which estimates �ErU |V � vs, produced by the Nadaraya-Watson kernel

regression algorithm using the Gaussian kernel with an optimal bandwidth (Bow-

man and Azzalini, 1997, p.31); P3. the dependent prior (7.30) with phpvq the same

as the truth hpvq. In all of them, we choose the hyperparameters a0 � b0 � 1 in the

Gamma prior for A and a vague prior for θ as Np0, 102q. For each replicate, we run

the MCMC for 10, 000 iterations and treat the first 5, 000 as the burn-in.

The results for M1 and M2 are displayed in Table 7.1. M1 and M2 have smooth

nuisance function models. We vary the sample size n from 20 to 400 for model

M1 and M2 and apply the three methods P1, P2 and P3 on each. We record the

root mean squared error (RMSE) for θ (under the Euclidean norm) and η (under the

empirical norm) respectively. The average estimated standard error based on MCMC

(SE) and the empirical coverage of nominal 0.95 credible intervals based on MCMC

(CR95) are also reported. From Table 7.1, as n grows, the estimation accuracy of θ

with the dependent priors improves. However, the RMSE for θ with the independent

prior only significantly decreases as n goes from 20 to 50 and keeps around 0.1 as

n further grows. On the other hand, the estimated standard error by P1 decays

as that by P2 and P3. As a result of these, the actual coverage by P1 becomes

significantly smaller than the nominal level as n grows. This phenomenon occurred

with the independent prior empirically justifies the semiparametric bias we discussed

after Lemma 53 and illustrates the necessity of compensating the bias by considering

the dependent priors. As we expected, the RMSE for θ intimately depends on the

RMSE for η: a large RMSE for η usually corresponds to a large RMSE for θ. In

most cases, the RMSE for η in the less smooth model M1 is greater than that in
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Table 7.1: Simulation results for the partially linear model with a smooth nuisance
part based on 100 replicates.

model method RMSE(θ) SE RMSE(η) CR95

n � 20

M1
P1 0.277 0.155 0.571 0.91
P2 0.188 0.176 0.454 0.97
P3 0.150 0.181 0.392 0.99

M2
P1 0.311 0.162 0.587 0.85
P2 0.195 0.182 0.477 0.95
P3 0.159 0.183 0.390 0.97

n � 50

M1
P1 0.115 0.078 0.308 0.92
P2 0.085 0.082 0.274 0.96
P3 0.083 0.083 0.270 0.95

M2
P1 0.104 0.080 0.298 0.84
P2 0.084 0.085 0.267 0.96
P3 0.082 0.085 0.268 0.96

n � 100

M1
P1 0.103 0.052 0.225 0.83
P2 0.056 0.056 0.202 0.95
P3 0.053 0.056 0.204 0.96

M2
P1 0.096 0.051 0.235 0.85
P2 0.055 0.054 0.209 0.94
P3 0.051 0.055 0.206 0.97

n � 200

M1
P1 0.106 0.038 0.230 0.62
P2 0.042 0.038 0.197 0.93
P3 0.036 0.038 0.187 0.97

M2
P1 0.094 0.036 0.209 0.72
P2 0.038 0.038 0.180 0.95
P3 0.038 0.038 0.183 0.98

n � 400

M1
P1 0.115 0.035 0.289 0.38
P2 0.030 0.028 0.187 0.93
P3 0.025 0.028 0.187 0.98

M2
P1 0.107 0.033 0.268 0.45
P2 0.030 0.027 0.178 0.92
P3 0.027 0.026 0.179 0.98
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the model M2, leading to higher estimation accuracy of θ in M1 than that in M2.

Another observation from the displayed results is that as n increases, the difference

in the estimation efficiency between P2 and P3 becomes negligible. This might be

attributed to the increasing accuracy of the estimation of ph.

Table 7.2: Simulation results for the partially linear model with a nonsmooth nui-
sance part based on 100 replicates.

model method RMSE(θ) SE RMSE(η) CR95

n � 20

M3
P1 0.404 0.184 0.752 0.76
P2 0.183 0.181 0.410 0.96
P3 0.156 0.178 0.377 0.97

M4
P1 0.207 0.148 0.495 0.92
P2 0.148 0.180 0.390 0.98
P3 0.144 0.180 0.409 0.99

n � 50

M3
P1 0.243 0.088 0.499 0.74
P2 0.090 0.085 0.279 0.94
P3 0.084 0.087 0.280 0.97

M4
P1 0.194 0.089 0.408 0.80
P2 0.084 0.087 0.270 0.97
P3 0.084 0.087 0.265 0.97

n � 100

M3
P1 0.217 0.064 0.441 0.67
P2 0.061 0.056 0.233 0.93
P3 0.057 0.056 0.231 0.93

M4
P1 0.122 0.052 0.309 0.84
P2 0.059 0.055 0.221 0.96
P3 0.058 0.055 0.219 0.95

n � 200

M3
P1 0.189 0.036 0.410 0.53
P2 0.042 0.039 0.215 0.94
P3 0.042 0.039 0.212 0.97

M4
P1 0.106 0.042 0.271 0.77
P2 0.041 0.038 0.204 0.98
P3 0.040 0.038 0.203 0.97

n � 400

M3
P1 0.194 0.041 0.429 0.21
P2 0.035 0.029 0.207 0.95
P3 0.031 0.028 0.205 0.95

M4
P1 0.115 0.033 0.282 0.65
P2 0.033 0.028 0.193 0.94
P3 0.030 0.028 0.193 0.96
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Table 7.2 provides the results for M3 and M4, whose nuisance functions are non-

smooth. As expected, the overall estimation accuracy in Table 7.2 is worse than that

in Table 7.1. However, similar overall trends as those in Table 7.2 can be observed.

For example, the estimation performance of P1 are generally worse than that of P2

and P3 and the semiparametric bias in P1 is more salient under M3 and M4 than

under M1 and M2. In addition, the RMSE for θ associated with P1 under a non-

smooth h� is significantly worse than that under a smooth h�. This is consistent

with A4 because the semiparametric bias under the independent prior (PI) tends to

be larger when h� is less smooth.

7.5.2 General partially linear models with quasi-likelihood

The corresponding second order semiparametric BvM theorem of GPLM with quasi-

likelihood is similar to that of partially linear models and we only provide the version

for the dependent prior here. Similar to section 7.5.1, we consider a semiparametric

adaptive prior for GPLM. Let ph be any estimator of the h given by Lemma 47 that

satisfies assumption A6. We still focus on (7.30) based on the GP prior for the

nuisance part.

Theorem 59. Let Xi � pUi, Vi, Yiq, i � 1, . . . , n, be a sample from the general

partially linear model with quasi-likelihood (7.4). Suppose that ph is an estimator of

h that satisfies A6. Assume Assumption 1. Furthermore, if the following conditions

are satisfied:

1. η0 is Hölder α-smooth;

2. P pU � ErU |V sq2 ¡ 0;

Then under the prior (7.30), the following second order asymptotic expansion holds:

sup
A

��Πpθ P A|Xpnqq�Nk

�
θ0�n�1{2 r∆n, pnI�1

0

��pAq�� � OP

�?
nρ2

n log n�?nκnρn log n
�
,
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where

r∆n �n�1{2
ņ

i�1

I�1
0 Wil0pTiqpUi � h�pViqq P0ù Nkp0, I�1

0 q,

I0 �E0

�
l0pT qf0pT qpU � h�pV qqpU � h�pV qqT �,

and ρn � n�α{p2α�dqplog nq1�d.

7.6 Proofs of Theorem 48 and Theorem 56

The following lemma shows that the ILAN (7.15) and assumption Assumption 2

imply the second order semiparametric BvM. Here the notation an Á bn means that

a ¥ cb for some c ¡ 0.

Lemma 60. Suppose that X1, . . . , Xn are i.i.d. observations sampled from P0 � P0.If

the following conditions hold:

1. The ILAN as (7.15) holds with a decaying rate Rn such that Rnpn�1{2 log nq �
op1q as nÑ 8;

2. The marginal prior for θ satisfies S1;

3. There exists a sequence pρn : n ¥ 1q satisfying ρn Ñ 0, nρ2
n Á � logRnpn�1{2

log nq and sup|t|¤ρn Rnptq{t2 � opnq, such that for M sufficiently large, assump-

tion Assumption 2 holds,

Then the marginal posterior for θ has the following expansion in total variation,

sup
A

��Πpθ P A|X1, . . . , Xnq�Nk

�
θ0 � n�1{2 r∆n, pnrIθ0,η0q�1

�pAq��
� OP rRnpn�1{2 log nq � δns, (7.33)

where r∆n � n�1{2 °n
i�1

rI�1
θ0,η0

rlθ0,η0pXiq P0ù Nkp0, I�1
θ0,η0

q is defined by (7.2).
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The constraint on Rn in Lemma 60 is mild since a typical Rn has the form of

nt3 � pnρn �
?
nqt2 � pnρ2

n � nρnκn �
?
nρnqt �

?
nρ2

n � δn. Under this form of

Rn, condition 1 requires that ρn � opn�1{4q, which is a common condition obtained

by various authors for proving the first order semiparametric BvM theorems. The

condition ρn � n�α{p2α�dq � opn�1{4q requires that α ¡ d{2 when the nuisance part

η0 is a d-variate α-smooth function.

The log n term appears in the conclusion of Lemma 60 is possible to be suppressed

with more efforts. However, since log n terms commonly appear in the posterior

convergence rate ρn of Bayesian nonparametric models, we exhibit the current result

to avoid more involved conditions and longer proof. Comparing to the results in

Bickel and Kleijn (2012), we replace their ILAN with the stronger condition (7.15)

in order to exchange for a weaker requirement on the marginal convergence rate of

θ as ρn instead of a parametric rate n�1{2.

Theorem 48 is the direct consequence of Lemma 53 and Lemma 60. Theorem 56

can be proved by applying the arguments in Section 7.4.1, Lemma 55, Lemma 53

and Lemma 60.
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Appendix A

Appendix for Chapter 2

A.1 Proofs of technical results in Chapter 2

A.1.1 Proof of Theorem 3

(2.6) describes the posterior convergence rate of the regression model with the con-

structed prior Πn. Commonly, posterior convergence statements can be proved by

applying the results in Ghosal et al. (2000) (Theorem 2.1 for IID observations) and

Ghosal and van der Vaart (2007) (Theorem 1 for non-IID observations), which yields

the following for the regression model:

Ef0,QΠn

�
hpPf,Q, Pf0,Qq ¥Mεn

��X1, Y1, . . . , Xn, Yn
�Ñ 0,

where h is the Hellinger distance. However, h is bounded above by || � ||Q, but is

equivalent to this norm only when the function class Σ is uniformly bounded, which

is less interesting. Therefore, we apply the techniques in Ghosal and van der Vaart

(2007) that allow extensions of h to any distance dn that satisfies the following test

condition:

(T) There exists a sequence of test functions tφnu such that Pf0,Qφn ¤ e�
1
2
nd2
npf1,f0q

and Pf,Qp1�φnq ¤ e�
1
2
nd2
npf1,f0q for all f P Σ such that dnpf1, f0q ¤ 1

18
dnpf1, f0q.
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Suppose that for a sequence εn with εn Ñ 0 and nε2n Ñ 8, constants C and c,

and sets Fn � Σ, we have

logpεn,Fn, c�1dnq ¤ nε2nc
�2, (A.1)

ΠnpΣzFnq ¤ exp
�� nε2nc

�2pC � 4q�, (A.2)

Πn

�
f : KpPf0,Q, Pf,Qq ¤ ε2nc

�2, V2,0pPf0,Q, Pf,Qq ¤ ε2nc
�2
� ¥ expp�nε2nc�2Cq, (A.3)

where KpP,Qq � P logpp{gq is the Kullback-Leibler divergence between two proba-

bility distributions P and Q, and V2,0pP,Qq � P
�

logpp{qq�KpP,Qq�2
. Then under

(T), by combining the proofs of Theorem 4 in Ghosal and van der Vaart (2007) and

Theorem 2.1 in Ghosal et al. (2000), we have

Ef0,QΠn

�
c�1dnpf, f0q ¥Mεn

��X1, Y1, . . . , Xn, Yn
�Ñ 0,

where M is a sufficiently large constant independent with c. Note that (A.1)-(A.3)

generalize the conditions in Theorem 2.1 in Ghosal et al. (2000) by allowing an

arbitrary tuning parameter c. By the results in Birgé (2006), (T) is satisfied with

dnpf, gq � σ||f�g||Q for the regression model with random designXi � Q. Therefore,

by choosing c � σ, our generalized conditions allow us to track the impact of σ on

the posterior convergence rate εn.

Return to our regression problem with an εn satisfying nε2n ¥ σ2 logNpεn, Σ, || �
||Qq. Assume that En is an εn-covering set with Npεn,Σ, || � ||Qq elements. Let Πn

be the discrete uniform probability measure on the finite set En. Let Fn � Σ for all

n. We will prove (2.6) by verifying the conditions (A.1)-(A.3) with c � σ. (A.1) is

satisfied by the constraint on εn and (A.2) is trivially satisfied by the choice of Fn.

So we only need to check (A.3).

The Kullback-Leibler divergence between two regression models Pf,Q and Pf0,Q

indexed by regression functions f and f0 respectively is given by

Pf0,Q

�
log

Pf0,Q

Pf,Q



� 1

2σ2
EX

�
fpXq � f0pXq

�2 � 1

2σ2
||f � f0||2Q.
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Similarly, we have,

Pf0,Q

�
log

Pf0,Q

Pf0,Q

�KpPf0,Q, Pf,Qq

2

� 1

2σ2
||f � f0||2Q.

Therefore, for some universal constant C, 
f : ||f � f0||2Q ¤ ε2n

( �"
f : KpPf0,Q, Pf,Qq ¤ Cε2nσ

�2, V2,0pPf0,Q, Pf,Qq ¤ Cε2nσ
�2

*
.

Since En forms an εn-covering set for Σ, there exists an f̃ such that ||f̃ � f0||Q ¤ εn

for f0 P Σ. Therefore, we have

Πn

�
f : Kf0,Q, Pf,Qq ¤ ε2nσ

�2, V2,0pPf0,Q, Pf,Qq ¤ ε2nσ
�2
�

¥Πnpf � f̃q � 1

|En| � expt� logNpεn,Σ, || � ||Qqu ¥ expt�nε2nσ�2u,

which proves the condition (A.3). Therefore,

Ef0,QΠn

�
f : ||f � f0||Q ¡Mεn|X1, Y1, . . . , Xn, Yn

�Ñ 0.

The second part can be proved similarly as Theorem 2.5 in Ghosal et al. (2000).

A.1.2 Proof of Theorem 4

Unlike the random-design perspective in the proof of Theorem 3, now we treat the

regression model to be fixed-design by conditioning on pX1, . . . , Xnq. As a result, we

use Pf pY |Xq instead of Pf,QpX, Y q for the likelihood function in the proof. We first

states two lemmas. The first lemma strengthens Lemma 8.1 in Ghosal et al. (2000)

under the regression framework.

Lemma 61. Assume Yi|Xi � Npf0pXiq, σ2q and Π to be a probability measure on

the set tf : n�1
°n
i�1KpPf0,Qp�|Xiq, Pf,Qp�|Xiqq ¤ ε2σ�2{2u for a fixed ε ¡ 0. Then
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for any C ¡ 0,

Pf0

�» n¹
i�1

Pf pYi|Xiq
Pf0pYi|XiqdΠpfq ¤ expp � p1� Cqnε2σ�2q

����X1, . . . , Xn



¤ expp�Cnε2σ�2q.

Proof. By Cauchy’s inequality,» n¹
i�1

Pf pYi|Xiq
Pf0pYi|XiqdΠpfq �

» n¹
i�1

Pf0pYi|Xiq
Pf pYi|Xiq dΠpfq ¥ 1.

Combining the above with Markov inequality and Fubini’s theorem yields

Pf0

�» n¹
i�1

Pf pYi|Xiq
Pf0pYi|XiqdΠpfq ¤ expp�p1� Cqnε2σ�2q

����X1, . . . , Xn




¤Pf0

�» n¹
i�1

Pf0pYi|Xiq
Pf pYi|Xiq dΠpfq ¥ exppp1� Cqnε2σ�2q

����X1, . . . , Xn




¤ expp�p1� Cqnε2σ�2q
»
Pf0

�
exp

"
1

2σ2

ņ

i�1

 pfpXiq � f0pXiqq2

� 2εipfpXiq � f0pXiqq
(*����X1, . . . , Xn



dΠnpfq

� expp�p1� Cqnε2σ�2q
»

exp

�
n

σ2
||f � f0||2n



dΠnpfq.

with εi � Yi�fpXiq � Np0, σ2q. In the regression framework, n�1
°n
i�1 KpPf0p�|Xiq,

Pf p�|Xiqq � ||f � f0||2n{p2σ2q, so on the set tf : n�1
°n
i�1 KpPf0p�|Xiq, Pf p�|Xiqq ¤

ε2σ�2{2u, we have

Pf0

�» n¹
i�1

Pf pYi|Xiq
Pf0pYi|XiqdΠpfq ¤ expp � p1� Cqnε2σ�2q

����X1, . . . , Xn



¤ expp�Cnε2σ�2q.

The second lemma compares the || � ||Q norm with the || � ||n norm.

198



Lemma 62. Suppose that Σ is uniformly bounded and εn satisfies

nε2n ¥ σ2 sup
R

logNpεn,Σ, || � ||Rq,

then for some c1, c2, c3, c4, c5 and any η P p0, 1q,

P

�
sup

fPΣ,||f ||Q¥c1εn{η

���� ||f ||n||f ||Q � 1

���� ¥ η



¤ c2 expp�c3nε

2
nq,

P

�
sup

fPΣ,||f ||Q¤c1εn
||f ||n ¥ c5εn



¤ c2 expp�c3nε

2
nq.

Proof. The second inequality is implied by Lemma 5.4 in van de Geer (2000). The

proof of the first inequality is a combination of the proofs of Lemma 5.4 and Lemma

5.16 in van de Geer (2000), with the bracketing entropy condition replaced with the

uniform covering entropy condition.

Return to the proof of Theorem 4. Choose dn � σ|| � ||n in the proof of The-

orem 3. By the results in Birgé (2006), (T) is satisfied with dn for the regression

model with fixed design. Moreover, we use the results in Ghosal and van der Vaart

(2007) for non IID observations since now we have a regression model with fixed

design (Ghosal and van der Vaart, 2007, section 7.7). Let En be an εn-covering

set under || � ||n, which contains Npεn,Σ, || � ||nq elements. Then the first part fol-

lows by adapting the proof of Theorem 4 in Ghosal and van der Vaart (2007) to dn

with the help of Lemma 62 and Lemma 61, where the decay rate of Ef0,QΠn

�
f :

||f � f0||n ¡Mεn|X1, Y1, . . . , Xn, Yn
�

is determined by the decay rate of Pf0

� ³±n
i�1

Pf pYi|Xiq
Pf0 pYi|Xiq

dΠpfq ¤ expp�p1 � Cqnε2σ�2q��X1, . . . , Xn

�
for Π the restriction of Πn on

the set tf : n�1
°n
i�1 KpPf0p�|Xiq, Pf p�|Xiqq ¤ ε2σ�2{2u in Lemma 61. The second

part is implied by Theorem 2.5 in Ghosal et al. (2000). The third part follows by
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noticing the fact that for the posterior expectation f̂ � ³
fdΠnpf |X1, Y1, . . . , Xn, Ynq,

Ef0,Q

�||f̂ � f0||2Q
� À Ef0,Q

�||f̂ � f0||2n
�

¤Ef0,Q

»
||f � f0||2ndΠnpf |X1, Y1, . . . , Xn, Ynq

¤M2ε2n � 4C2
1Ef0,QΠn

�||f � f0||2n ¥Mεn|X1, Y1, . . . , Xn, Yn
� ¤ Dε2n,

where the first step follows by the convexity of || � ||2n.

A.1.3 Proof of Theorem 5

The results of Theorem 5 are standard minimax risk lower bounds for regression. For

self-containment, we sketch a proof, which follows a standard information-theoretic

argument using Fano’s inequality (Yu, 1997; Yang and Barron, 1999; Tsybakov,

2009):

Step 1: Reduction to bounds in probability. By the Markov inequality, for any

τ ¡ 0,

Ef,Q||f̂ � f ||2Q ¥ Pf,Q
 ||f̂ � f ||Q ¥ εn

(
ε2n. (A.4)

Therefore, in order to prove that εn is a lower bound of the minimax risk, it suffices

to show that inf f̂ supfPΣ Pf,Q
 ||f̂ � f ||Q ¥ εn

�
is lower bounded by some universal

constant τ ¡ 0 independent of n.

Step 2: Reduction to a finite number of hypotheses. Since

inf
f̂

sup
fPΣ

Pf,Q
 ||f̂ � f0||Q ¥ εn

� ¥ inf
f̂

sup
fPtf0,...,fN u

Pf,Q
 ||f̂ � f0||Q ¥ εn

�
,

for any finite set tf0, . . . , fNu contained in Σ, we can reduce the original inf involving

infinite number to only N � 1 many well chosen model elements. Intuitively, these

elements should be well-separated in order to represent the entire model space.

Step 3: Choice of 2εn-separated hypotheses. If

||fs � ft||Q ¥ 2εn, @s, t : s � t,
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then for any estimator f̂ ,

Pfs,Q
�||f̂ � fs||Q ¥ εn

� ¥ Pfs,QpZ � sq, s � 0, 1, . . . ,M,

where Z is the value of t for which ||f̂ � ft||Q is minimized.

Therefore, if a random variable S is defined to be uniformly distributed on

t0, 1, . . . , Nu and the observation follows Pfs conditioning on S � s, then

inf
f̂

sup
fPtf0,...,fN u

Pf,Q
 ||f̂ � f0||Q

¥εn
� ¥ inf

f̂

1

N � 1

Ņ

s�0

Pfs,QpZ � sq � inf
Z
P pZ � Sq.

From Fano’s inequality (Cover and Thomas (1991)), we have:

P pZ � S|Xnq ¥ 1� IXnpS;Y nq � log 2

logN
,

where Xn and Y n are the observed covariate and response with sample size n and

IXnpS;Y nq denotes the conditional mutual information between S and Y n given Xn.

Therefore,

inf
f̂

sup
fPΣ

Pf,Q
 ||f̂ � f ||Q ¥ εn

� ¥ 1� EXn

�
IXnpS;Y nq�� log 2

logN
. (A.5)

By definition, this conditional mutual information

IXnpS;Y nq � 1

N � 1

Ņ

s�0

KLpPfs,Q, P̄ q

� 1

N � 1

Ņ

s�0

KLpPfs,Q, P0q �KLpP̄ , P0q ¤ 1

N � 1

Ņ

s�0

KLpPfs,Q, P0q.
(A.6)

where KLpP,Qq � P logpdP {dQq is the Kullback-Leibler divergence between P

and Q, P̄ � 1
N�1

°N
s�0 Pfs and P0 can be an arbitrary model, which is taken to be

Pf0,Q in the following. In the regression settings,

EXnKLpPs, Pf0q �
1

2σ2

ņ

i�1

EXn

�
fspXiq � f0pXiq

�2 � n

2σ2
||fs � f0||2Q. (A.7)
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Therefore, by (A.5), (A.6) and (A.7),

inf
f̂

sup
fPΣ

Ef,Q||f̂ � f ||2Q ¥ ε2n inf
f̂

sup
fPΣ

Pf,Q
 ||f̂ � f ||Q ¥ εn

(
(A.8)

¥ ε2n

"
1� nmaxs ||fs � f0||2Q

σ2 logN

*
. (A.9)

If tfs � f0uNs�1 forms a modified 2εn-packing set, i.e.

||fs � f0||2Q ¤ Kε2n, ||fs � ft|| ¥ 2εn, for all s � t,

then the theorem can be proved by the choice of εn and taking N � Cp2εn, K,Σ, || �
||Qq.

A.1.4 Proof of Theorem 6

Let tα1, . . . , αku be some tuning parameters satisfying
°k
s�1 α

2
s � 1 that will be

determined later. By F2, any two different functions fs and gs in Espαεq satisfy

||fs � gs||Q ¥ αsε and ||fs||Q ¤ Kαsε. In the following, we apply a probabilistic

argument to construct a desired ε{2-packing set Epε{2q for F as a subset of Ω �Àk
s�1 Espαsεq such that the size of the subset is comparable to

±k
s�1Cspαsεq. Then,

by F1,

||
ķ

s�1

fs||2Q ¤ B
ķ

s�1

||fs||2Q ¤ BK2
ķ

s�1

α2
sε

2 � BK2ε2.

Hence, Epε{2q is also a modified ε{2-packing set for F .

For notational convenience, Cspαsε,Kq will be further abbreviated as Cs when

αs, ε and K are fixed. However, Cspαsεq will also be used when we want to emphasize

the dependence of Cs on αs and ε.

Consider the probability space pΩ,Σ, P q, where the Sigma-field Σ is composed

of all subsets of Ω and P is the uniform measure over Ω. If F � pF1, . . . , Fkq is

a random variable on Ω with distribution P , then it is easy to see that F1, . . . , Fk

are independent with marginal distributions P pFs � fsq � 1{Cs, for any fs P Fs,
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s � 1, . . . , k. For M independent copies tF pmquMm�1 of F , where M will be determined

later, our goal is to estimate

P

"
||F piq � F pjq||Q ¥ ε

2
, @1 ¤ i   j ¤M

*
.

If this probability is positive, then we can choose f p1q, . . . , f pMq from the sample space

Ω, such that tf pmquMm�1 forms an ε-packing set of F with M elements. Since

P

"
||F piq � F pjq||Q ¥ ε

2
, @1 ¤ i   j ¤M

*

¥1�
¸

1¤i j¤M
P

"
||F piq � F pjq||Q   ε

2

*

�1� 1

2
MpM � 1q � P

"
||F p1q � F p2q||Q   ε

2

*
,

we want to find the maximal number M so that

P

"
||F p1q � F p2q||Q   ε

2

*
À expp�2 logMq. (A.10)

Let Zs � IpF p1q
s � F

p2q
s q be an indicator variable. By independence of F p1q, . . . , F psq,

Z1, . . . , Zs are also independent with marginal distributions Zs � Bernoullip1�1{Csq.
By the assumptions on Espαsεq, we have

||F p1q � F p2q||2Q �
ķ

s�1

||F p1q
s � F p2q

s ||2Q ¥ ε2
ķ

s�1

α2
sZs.

Therefore

P

"
||F p1q � F p2q||Q   ε

2

*
¤ P

" ķ

s�1

α2
sZs  

1

4

*
.

For a tuning parameter λ ¡ 0, by Markov inequality and independence, we have

P

" ķ

s�1

α2
sZs  

1

4

*
¤P e�λ°ks�1 α

2
sZs ¡ e�

λ
4

( ¤ e
λ
4

k¹
s�1

E
 
e�λα

2
sZs

(

¤eλ4
k¹
s�1

"
1

Cs
� e�λα

2
s

*
� e�

3
4
λ

k¹
s�1

 
1� eλα

2
s�logCs

(
,
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where the last step holds since
°k
s�1 α

2
s � 1. Since for any x P R, 1� ex ¤ 2exIpx¥0q,

we further have

P

" ķ

s�1

α2
sZs  

1

4

*
À exp

"
� 3

4
λ�

¸
s:logCs{α2

s¤λ
pλα2

s � logCsq
*
.

Let pᾱ1, . . . , ᾱkq be the solution of

logC1pα1εq
α2

1

� � � � � logCspαsεq
α2
s

� � � � � logCkpαkεq
α2
k

�
ķ

s�1

logCspαsεq � A.

By setting λ � A, we obtain

P

" ķ

s�1

α2
sZs  

1

4

*
À exp

"
1

4
λ�

ķ

s�1

logCspαsεq
*

� exp

"
� 3

4

ķ

s�1

logCspαsεq
*
.

Therefore, we can choose M ∼
°k
s�1 logCspαsεq in (A.10), which finishes the proof

of the first part.

For the second part, for each s P t1, . . . , ku, let Gspαsεq be the corresponding αsε-

covering set for Fs with Nspαsεq elements, i.e. for any function fs in Fs, there exists

some gs in Gspαsεq such that ||fs� gs||Q ¤ αsε. As a result, for any f � °k
s�1 fs P F ,

we can find g � °k
s�1 gs P ∆ � Àk

s�1 Gspαsεq, such that ||fs � gs||Q ¤ αsε holds for

each s, which yields

||f � g||2Q ¤ B
ķ

s�1

||fs � gs||2Q ¤ B
ķ

s�1

α2
sε

2 � Bε2.

Therefore, ∆ forms an
?
Bε-covering set for F . Moreover, log |∆| � °k

s�1 logNspαsεq.
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A.1.5 Proof of Corollary 7

By Theorem 3, Theorem 5 and Theorem 6, εn is the solution of
°k
s�1 log N̂spᾱsεq �

nε2, with pᾱ1, . . . , ᾱkq P Rk
� satisfying:

log N̂1pα1εq
α2

1

� � � � � log N̂spαsεq
α2
s

� � � � � log N̂kpαkεq
α2
k

� nε2.

If we let δs � αsε, then the above is equivalent to log N̂spδsq � nδ2
s for s � 1, . . . , k,

with ε2 � °k
s�1 α

2
sε

2 � °k
s�1 δ

2
s .

A.1.6 Proof of Lemma 8

We work out a proof though a number of smaller parts.

Modified packing entropy of Σpα,L, dq

We first consider the case when Q is the uniform distribution on r�1, 1s. Let K :

r�1, 1sd Ñ R be a d-variate function satisfying

K P C8pRdq,
» 1

�1

Kpuqduj � 0, for any u�j P r�1, 1sd�1 and j � 1, . . . , d. (A.11)

Note that the last requirement is not need for the current proof for Σpα,L, dq but

will play a key role for the other two cases. Such functions K exist. For example,

we can take

Kpuq � c1K0puq, where K0puq �
d¹
j�1

"
exp

�
� 1

1� |uj|2


� c2

*
Ip|uj| ¤ 1q,

(A.12)

for any u P Rd with c2 �
³1

�1
expt�1{p1 � |t|2qudt and c1 ¡ 0 such that K satisfies

(2.1) with L � 1.

Fix h ¡ 0 as a positive tuning parameter to be determined later. Let m � X
1
h

\
,

M � md and txk : 1 ¤ k ¤ Mu be a sequence of regular grids on r�1, 1sd with the
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form �
k1 � 1{2

m
, . . . ,

kd � 1{2
m



, for all pk1, . . . , kdq P t1, . . . ,mud.

The order in xk can be arbitrary. Define

φkpxq � LhαK

�
x� xk
h



, k � 1, . . . ,M, x P r�1, 1sd. (A.13)

For any multi-index |a|, the mixed partial derivative with respect to a of φk is

Daφkpxq � Lhα�|a|DaK

�
x� xk
h



.

Since the support of φk is rxk � h, xk � hs, we have that for l � tαu,

max
|a|�l

sup
x,yPr�1,1sd,x�y

|Daφkpxq �Daφkpyq|
|x� y|α�l

¤Lmax
|a|�l

sup
x,yPr�1,1sd,x�y

|DaKpxq �DaKpyq|
|x� y|α�l ¤ L,

which implies that φkpxq P Σpα,L, dq for all k.

Denote the set of all binary sequence of length M by Ω �  
ω � pω1, . . . , ωMq :

ωi P t0, 1u
(
. The desired ε-packing set will be chosen from the collection of functions

E �  
fωpxq �

°M
k�1 ωkφkpxq, ω P Ω

(
. Since for any k � k1, φk and φk1 have distinct

support, E is a subset of Σpα,L, dq. Moreover, for all ω, ω1 P Ω, we have

dpfω, fω1q �
� »

r�1,1sd
pfωpxq � fω1pxqq2dx

�1{2

�� M̧

k�1

pωk � ω1kq2
»

∆k

φ2
kpxqdx

�1{2 � Lhα�d{2||K||
a
ρpω, ω1q,

(A.14)

where ∆k is a d-dim square with edge length 1{m centered at xk and ρpω, ω1q �°M
k�1 Ipωk � ω1kq is the Hamming distance between the ω and ω1.
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By Lemma 2.9 in Tsybakov (2009), for M ¥ 8, there exists a subset Ω0 �
tωp0q, . . . , ωpNqu of Ω with N ¥ 2M{8 such that ωp0q � p0, . . . , 0q and

ρpωpkq, ωpk1qq ¥ M

8
, @ 0 ¤ k   k1 ¤ N.

Therefore for any different ωpkq, ωpk
1q P Ω0, by (A.14) and the definition of m, we

have

dpfωpkq , fωpk1qq ¥ Lhα�d{2||K||
c
h�d

8
� L||K||

2
?

2
hα.

In addition, by (A.14), we have

||fωpkq ||Q � dpfωpkq , 0q ¤ Lhα�d{2||K||
?
M � L||K||hα.

Therefore by choosing h � �
2
?

2ε{pL||K||q� 1
α , the set E0pεq �

 
fω : ω P Ω0u forms

the desired ε-packing set of Σpα,L, dq with

log |E0pεq| ¥ M

8
¥ 1

8

�
1

h


d

� K1

�
L

ε


 d
α

,

with K1 � 1
8

� ||K||
2
?

2

�d{α
and K2 � 2

?
2. By the construction of K in (A.12), ||K|| �

||K||{||K||Cα is independent of L.

For general Q, φk can still be constructed by (A.13), but with kernel Kk being

dependent on k such that
³1

0
φkpxqdxj � 0 for any x�j P r0, 1sd�1 and j � 1, . . . , d.

This can be achieved by allowing each product component in (A.12) to have different

c2,j. By the assumption on q, ||Kk|| will be both upper and lower bounded by

multiples of ||K|| and (A.14) will still be valid with different multiplicative constant.

Modified packing entropy of ΣSpα,L, d, pq

Similar to the proof for Σpα,L, dq, for notation simplicity, we assume that Q is

the uniform distribution on r�1, 1s. To prove the conclusion, we need to construct

a set of mutually orthogonal modified ε-packing sets Eb0pεq’s for all function space
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Σbpα,L, dq � tfpXbq : f P Σpα,L, dqu with binary inclusion vector b’s satisfying

|b| � d, that is:

(a). For any two inclusion vectors b � b1 with |b| � |b1| � d, Eb0pεq K Eb10 pεq, i.e. if

f P Eb0pεq and f 1 P Eb10 pεq, then

xf, f 1yQ �
»
r�1,1s|bYb1|

fpxbqf 1pxb1qdxbYb1 � 0.

(b). For each inclusion vector b with |b| � d, functions in Eb0pεq satisfies (i) and (ii)

in the lemma. Moreover, |Eb0pεq| ¥ KpL{εqd{α for some K ¡ 0 for each b with

size d.

If this construction is possible, then a desired ε-packing set for ΣSpα,L, d, pq can

be specified as ESpεq �
�
b:|b|�d Eb0pεq, where b in this union ranges from all possible

inclusion vectors with size d. In fact, for any two functions f, f 1 in ESpεq, if they

come from the same Eb0, then by construction of Eb0pεq, ||f � f 1||Q ¥ ε; If they come

from different Eb0pεq’s, then by the orthogonality condition (a) and the fact that 0

belongs to Eb0pεq, ||f � f 1||2Q � ||f � 0||2Q � ||f 1 � 0||2Q ¥ 2ε2. In both situations, we

have ||f�f 1||Q ¥ ε. Combining this result with condition (b), ESpεq forms a modified

ε-packing set for ΣSpα,L, d, pq. Moreover, the size of ESpεq satisfies

log |ESpεq| ¥ K1

�
L

ε


 d
α

� log

�
p

d



� K1

�
L

ε


 d
α

� d log
p

d
.

In the following, we construct such a Eb0pεq satisfying condition (a) and (b). In

this construction, we use the crucial property in (A.11) that»
R
Kpuqduj � 0, for all u�j P r�1, 1sd�1 and @j � 1, . . . , d. (A.15)

For each fixed inclusion vector b with |b| � d, Eb0pεq is constructed as in the proof

for Σpα,L, dq. With this construction, we only need to verify condition (a). Under
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the same notations, it suffices to prove φkpxbq K φk1pxb1q for 1 ¤ k, k1 ¤M and b � b1.

In fact, since k � k1, we can always find a index j0 such that bj0 � 0 and b1j0 � 1.

With this j0, we have

xφkpxbq, φk1pxb1qyQ � L2h2α

»
r�1,1s|bYb1|

K

�
xb � xbk
h



K

�
xb

1 � xb
1

k1

h



dxbYb

1

�L2h2α

»
r�1,1s|bYb1|�1

K

�
xb � xbk
h


"» 1

�1

K

�
xb

1 � xb
1

k1

h



dxj0

* ¹
jPbYb1ztj0u

dxj � 0,

where the second last step follows by Fubini’s theorem and the last step follows from

(A.15).

Modified packing entropy of ΣA

�pα1, . . . , αkq, pL1, . . . , Lkq, pd1, . . . , dkq, p, d̄
�

By definition, the size difference between ΣA

�pα1, . . . , αkq, pL1, . . . , Lkq, pd1, . . . , dkq,
p, d̄

�
and

Àk
s�1 ΣSpαs, Ls, dsq is negligible for large p, so we only need to provide

a construction for the latter. As the condition (a) in the proof for ΣSpα,L, d, pq
suggests, the modified packing sets for different additive components are orthogonal.

Hence, the conclusion is an easy consequence of the second part and Theorem 6.

A.1.7 Proof of Lemma 9

Covering entropy of ΣSpα,L, d, pq

By the discussions before Lemma 9, for any inclusion vector b, we can find an ε

covering set Eb for the subset under || � ||Q consisted of all functions in ΣSpα,L, d, pq
that depend on the d variables selected by the b, such that

logN
�
ε, Eb, || � ||Q

� ¤ K

�
L

ε


 d
α

.

Then an ε covering set for ΣSpα,L, d, pq can be chosen as the union of all such Eb’s

with b ranging over all inclusion vectors with size d. Since there are
�
p
d

�
such inclusion
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vectors b’s, we conclude that

logN
�
ε,ΣSpα,L, d, pq, || � ||Q

� ¤ ¸
b:|b|�d

logN
�
ε, Eb, || � ||Q

�

�K
�
L

ε


 d
α

� d log
p

d
.

Covering entropy of ΣA

�pα1, . . . , αkq, pL1, . . . , Lkq, pd1, . . . , dkq, p, d̄
�

The conclusion follows by the covering entropy upper bound for ΣSpα,L, d, pq and

the second half of Theorem 6.

A.1.8 Proof of Theorem 1

The result follows by applying Theorem 3, Theorem 5, Lemma 8 and Lemma 9.

A.1.9 Proof of Theorem 2

The result follows by applying Corollary 7, Lemma 8 and Lemma 9.

A.1.10 Proof of Lemma 10

The proof is extracted from some key steps in van der Vaart and van Zanten (2009),

which help understand how the sieve construction works and how the parameters

pM, r, ε, δq balance each other.

By Lemma 4.6, Lemma 4.7 in van der Vaart and van Zanten (2009) and Borell’s

inequality, for any a ¤ r,

P pWa R BM,r,ε,δq ¤ e�M
2{8,

for M2 ¡ C0r
dplogpr{εqq1�d, r ¡ 1, ε   ε0, where ε0 is some fixed positive number.

The above inequality provides the complementary probability for a fixed inverse

bandwidth parameter a.

Combining the above complementary probability, the Lemma 4.9 in van der Vaart

and van Zanten (2009) and the exponential tail for the prior density gpaq, we have
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the following complementary probability for a random inverse bandwidth A for all r

larger than another fixed positive constant a0:

P pWA R BM,r,ε,δq ¤P pA ¡ rq �
» r

0

P pW a R BM,r,ε,δqgpaqda

¤C1r
p�d�1e�C2rd � e�M

2{8.

This proves (2.14).

By Lemma 4.8 in van der Vaart and van Zanten (2009), for ε ¡ τδM , where τ is

some positive constant,

N

�
3ε,

¤
a δ

MHa
1 � εB1, || � ||8



¤ 2C4M

ε
.

By Lemma 4.5 in van der Vaart and van Zanten (2009), for some constant K ¡ 0

and any ε   1{2,

logNpε,Ha
1, || � ||8q ¤ Kad

�
log

1

ε


1�d
.

Combining the above two and choosing δ � ε{p2d3{2Mq yields

logNp3ε,BM,r,ε,δ, || � ||8q ¤C3r
d

�
log

M3{2?2d3{2r
ε3{2


1�d
� 2 log

C4M

ε
,

which proves (2.15).

A.1.11 Proof of Theorem 11

To apply the standard procedure in Ghosal et al. (2000) to determine the posterior

convergence rate εn, we need to construct a sequence of sieves pFn : n ¥ 1q such that

logNpεn,Fn, || � ||q ¤ nε2n and P pF cnq ¤ e�Cnε
2
n , which are similar to condition (2.10)

and (2.11). However, in the variable selection context, to keep the complementary

probability small, the entropy number logNpεn,Fdn, || � ||q associated with Fdn, the

sieve corresponding to d variate, often increases exponentially fast in d. This will
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deteriorate the contraction rate to n�α0{p2α0�d0q if the new sieve is simply constructed

as
�
d¤d0
Fdn and d0 is larger than the true number |b0| of important predictors. So

we need to modify Fdn so that its entropy number can be of the same order as F |b0|
n .

Generally, this modification might not be possible. However, for GP, the flexibility in

choosing ε̄n as mentioned in (2.16) enables the sieve sequence to adapt the contraction

rate to true dimension |b0|.
Let pBbn : n ¥ 1q be a b-dependent sequence of sieves associated with ε̄n in (2.16).

The sequence pε̄n : n ¥ 1q will be specified later. We construct the new sieves as

Bn �
¤

bPt0,1up:|b|¤d0

Bbn. (A.16)

Bn can be viewed as a subset of functions depending on at most d0 components of

x P r0, 1sp. Since there are at most pd0 such b in the union, by (2.16), we have the

following bound for the entropy number of this sieve:

logNpLε̄n,Bn, || � ||8q ¤d0 log p� max
bPt0,1up:|b|¤d0

tlogNpLε̄n,Bbn, || � ||8qu

¤d0 log p� C5nε̄
2
nplog nq1�d0 .

(A.17)

By (2.16), we can also bound the complementary probability as:

P pWB
A R Bnq �

¸
bPt0,1up:|b|¤d0

P pW b
A R Bn|B � bqP pB � bq

¤
¸

bPt0,1up:|b|¤d0

P pW b
A R BbnqP pB � bq

¤
¸

bPt0,1up:|b|¤d0

e�nε̄
2
nP pB � bq � e�nε̄

2
n .

(A.18)

Finally, we calculate a lower bound for the prior concentration by (2.12):

P p||WB
A � ω0||8 ¤ ρnq ¥P pB � b0qP p||W b0

A � ω0||8 ¤ ρn|B � b0q

¥
�

1

p


|b0|�
1� 1

p


p�|b0|
e�nρ

2
n ¥ e�nρ

2
n�|b0| log p�2,

(A.19)
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for n sufficiently large, where ρn � L
|b0|{p2α0�|b0|q
0 n�α0{p2α0�|b0|q plog nqγ with γ �

p1� |b0|q{p2� |b0|{α0q and the last inequality holds because p1� 1{pqp�|b0| Ñ e�1 as

pÑ 8.

By choosing ε̄n equal to a large multiple of ρn�
a
d0 log p{n in (A.17)-(A.19), (2.9)-

(2.11) hold with εn a large multiple of ρnplog nqp1�d0q{2�a
d0 log p{n plog nqp1�d0q{2 or

L
|b0|{p2α0�|b0|q
0 n�α0{p2α0�|b0|qplog nqβ1 �a

d0 log p{nplog nqβ2 , where β1 � p1�|b0|q{p2�
|b0|{α0q � p1� d0q{2 and β2 � p1� d0q{2.

A.1.12 Proof of Theorem 12

To study the the posterior contraction rate of AGPVS prior, we again utilize the

flexibility in choosing ε̄n in the sieve constructions in (2.16). Note that conditioning

on K, each component has identical GPVS prior. So we can use the proof of Theorem

11.

Let pBn : n ¥ 1q be the sequence of sieves constructed as (A.16) associated with

ε̄n, where the sequence pε̄n : n ¥ 1q will be determined later. We construct the sieves

pFn : n ¥ 1q for the additive GP models as

Fn �
¤
k¤K0

Fkn , Fkn �
kà

h�1

Bn � tf �
ķ

h�1

fh : ωh P Bnu.

Fkn can be viewed as all functions that can be decomposed into a sum of k functions

in Bn and Fn functions a sum of at most K0. Since NpkLεn,Fkn , ||�||8q ¤ NkpLεn,Bn,

||�||8q and NpK0Lεn,Fn, ||�||8q ¤
°K0

k�0NpkLεn,Fkn , ||�||8q, we have NpK0Lεn,Fn, ||�
||8q ¤

°K0

k�0N
kpLεn,Bn, || � ||8q ¤ NK0pLεn, Bn, || � ||8q.

Combine this with (A.17) in the proof of Theorem 11, we obtain

logNpK0Lεn,Fn, || � ||8q ¤ K0d0 log p�K0C5nε̄
2
nplog nq1�d0 . (A.20)
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By (A.18), we can bound the complementary probability as

P pW R Fnq ¤
K0̧

k�0

P pW R Fkn |K � kqP pK � kq

¤
K0̧

k�0

ķ

h�1

P pWBh
h R BnqP pK � kq

¤
K0̧

k�0

e�nε̄
2
nkP pK � kq � EKe�nε̄

2
n ,

(A.21)

where EK is the expectation of K.

Finally, by (A.19) the prior concentration can be lower bounded as:

P

�
||W � ω0||8 ¤

k0̧

h�1

ρn,h




¥ P pK � k0qP
�
||

k0̧

h�1

WBh
h �

k0̧

h�1

ω0,h||8 ¤
k0̧

h�1

ρn,h




¥ pk0

k0¹
h1�1

P p||WBh
h � ω0,h||8 ¤ ρn,hq

¥ exp

"
� n

k0̧

h�1

ρ2
n,h �

k0̧

h�1

|b0,h| log p� 2k0 � log pk0

*
,

(A.22)

for sufficiently large n, where

ρn,h � L
|b0,h|{p2α0�|b0,h|q
0,h n�α0,h{p2α0,h�|b0,h|qplog nqp1�|b0,h|q{p2�|b0,h|{α0,hq.

By choosing ε̄n equal to a large multiple of
°k0

h�1 ρn,h �
a
K0d0 log p{n in (A.20)-

(A.22), (2.9)-(2.11) will hold with εn a large multiple of

a
K0

k0̧

h�1

ρn,hplog nqp1�d0q{2 �
a
K0

a
K0d0 log p{nplog nqp1�d0q{2

214



or

a
K0

k0̧

h�1

L
|b0,h|{p2α0�|b0,h|q
0,h n�α0,h{p2α0,h�|b0,h|qplog nqβ1,h �

a
K0

a
K0d0 log p{nplog nqβ2 ,

where β1,h � p1� |b0,h|q{p2� |b0,h|{α0,hq �p1� d0q{2 and β2 � p1� d0q{2.
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Appendix B

Appendix for Chapter 3

B.1 Geometric properties

We introduce some concepts and results in differential and Riemannian geometry,

which play an important role in the convergence rate. For detailed definitions and

notations, the reader is referred to do Carmo (1992).

B.1.1 Riemannian manifold

A manifold is a topological space that locally resembles Euclidean space. A d-

dimensional topological manifold M can be described using an atlas, where an at-

las is defined as a collection tpUs, φsqu such that M � �
s Us � and each chart

φs : V Ñ Us is a homeomorphism from an open subset V of d-dimensional Eu-

clidean space to an open subset Us ofM. By constructing an atlas whose transition

functions tτs,β � φ�1
β � φsu are Cγ differentiable, we can further introduce a differ-

entiable structure on M. With this differentiable structure, we are able to define

differentiable functions and their smoothness level s ¤ γ. Moreover, this additional

structure allows us to extend Euclidean differential calculus to the manifold. To
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measure distances and angles on a manifold, the notion of Riemannian manifold is

introduced. A Riemannian manifold pM, gq is a differentiable manifoldM in which

each tangent space TpM is equipped with an inner product x�, �yp � gpp�, �q that varies

smoothly in p. The family gp of inner products is called a Riemannian metric and is

denoted by g. With this Riemannian metric g, a distance dMpp, qq between any two

points p, q PM can be defined as the length of the shortest path on M connecting

them. For a given manifoldM, such as the set P pnq of all n� n positive symmetric

matrices (Moakher and Zéräı, 2011; Hiai and Petz, 2009), a Riemannian metric g

is not uniquely determined and can be constructed in various manners so that cer-

tain desirable properties, such as transformation or group action invariability, are

valid. Although g is not uniquely determined, the smoothness of a given function f

on M only depends on M’s differential structure instead of its Riemannian metric.

Therefore, to study functions on the manifold M, we could endow it with any valid

Riemannian metric. Since a low dimensional manifold structure on the RD-valued

predictor X is assumed in this paper, we will focus on the case in which M is a

submanifold of a Euclidean space.

Definition 63. M is called a Cγ submanifold of RD if there exists an inclusion map

Φ : M ÞÑ RD, called embedding, such that Φ is a diffeomorphism between M and

ΦpMq � RD, which means:

(1) Φ is injective and γ-differentiable;

(2) The inverse Φ�1 : ΦpMq ÑM is also γ-differentiable.

A natural choice of the Riemannian metric g of M is the one induced by the

Euclidean metric e of RD through

gppu, vq � eΦppqpdΦppuq, dΦppvqq � xdΦppuq, dΦppvqyRD , @u, v P TpM,
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for any p P M. Under this Riemannian metric g, dΦp : TpM ÞÑ dΦppTpMq �
TΦppqRD is an isometric embedding. Nash Embedding Theorem (Nash, 1956) implies

that any valid Riemannian metric on M could be considered as being induced from

a Euclidean metric of Rm with a sufficiently large m. Therefore, we would use

this naturally induced g as the Riemannian metric of predictor manifold M when

studying the posterior contraction rate of our proposed GP prior defined on this

manifold. Under such choice of g,M is isometrically embedded in the ambient space

RD. In addition, in the rest of this paper, we will occasionally identify M with

ΦpMq when no confusion arises.

Tangent spaces and Riemannian metric can be represented in terms of local pa-

rameterizations. Let φ : U ÞÑ M be a chart that maps a neighborhood U of the

origin in Rd to a neighborhood φpUq of p P M. In the case that M is a Cγ sub-

manifold of RD, φ itself is γ-differentiable as a function from U P Rd to RD. Given

i P t1, . . . , du and q � φpuq, where u � pu1, . . . , udq P U , define B
Bui pqq to be the linear

functional on CγpMq such that

B
Bui pqqpfq �

dpf � φpu� teiqq
dt

����
t�0

, @f P CγpMq,

where the d-dimensional vector ei has 1 in the i-th component and 0’s in others.

Then B
Bui pqq can be viewed as a tangent vector in the tangent space TqM. Moreover,

t B
Bui pqq : 1 ¤ i ¤ du forms a basis of TqM so that each tangent vector v P TqM can

written as

v �
ḑ

i�1

vi
B
Bui pqq.

Under this basis, the tangent space of M can be identified as Rd and the matrix

representation of differential dΦq at q has a pj, iqth element given by"
dΦq

� B
Bui


*
j

� dpΦj � φpu� teiqq
dt

����
t�0

, i � 1, . . . , d, j � 1, . . . , D,

218



where we use the notation Fj to denote the jth component of a vector-valued function

F . In addition, under the same basis, the Riemannian metric gq at q can be expressed

as

gqpv, wq �
ḑ

i,j�1

viwjg
φ
ijpu1, . . . , udq,

where pv1, . . . , vdq and pw1, . . . , wdq are the local coordinates for v, w P TqM. By the

isometry assumption,

gφijpu1, . . . , udq � xdΦqp BBui q, dΦqp BBuj qyRD .

Riemannian volume measure (form) of a region R contained in a coordinate neigh-

borhood φpUq is defined as

VolpRq �
»
R

dV pqq �
»
φ�1pRq

b
detpgφijpuqqdu1 . . . dud.

The volume of a general compact region R, which is not contained in a coordinate

neighborhood, can be defined through partition of unity (do Carmo, 1992). Vol

generalizes the Lebesque measure of Euclidean spaces and can be used to define the

integral of a function f P CpMq as
³
M fpqqdV pqq. In the special case that f is

supported on a coordinate neighborhood φpUq,
»
M
fpqqdV pqq �

»
U

fpφpuqq
b

detpgφijpuqqdu1 . . . dud. (B.1)

B.1.2 Exponential map

Geodesic curves, generalizations of straight lines from Euclidean spaces to curved

spaces, are defined as those curves whose tangent vectors remain parallel if they

are transported and are locally the shortest path between points on the manifold.

Formally, for p P M and v P TpM, the geodesic γpt, p, vq, t ¡ 0, starting at p
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with velocity v, i.e. γp0, p, vq � p and γ1pt, p, vq � v, can be found as the unique

solution of an ordinary differential equation. The exponential map Ep : TpM ÞÑM
is defined by Eppvq � γp1, p, vq for any v P TpM and p PM. Under this special local

parameterization, calculations can be considerably simplified since quantities such

as Ep’s differential and Riemannian metric would have simple forms.

Although Hopf-Rinow theorem ensures that for compact manifolds the exponen-

tial map Ep at any point p can be defined on the entire tangent space TpM, generally

this map is no longer a global diffeomorphism. Therefore to ensure good properties of

this exponential map, the notion of a normal neighborhood is introduced as follows.

Definition 64. A neighborhood V of p PM is called normal if:

(1) Every point q P V can be joined to p by a unique geodesic γpt, p, vq, 0 ¤ t ¤ 1,

with γp0, p, vq � p and γp1, p, vq � q;

(2) Ep is a diffeomorphism between V and a neighborhood of the origin in TpM.

Proposition 2.7 and 3.6 in do Carmo (1992) ensure that every point in M has

a normal neighborhood. However, if we want to study some properties that hold

uniformly for all exponential maps Eq with q in a small neighborhood of p, we need

a notion stronger than normal neighborhood, whose existence has been established

in Theorem 3.7 in do Carmo (1992).

Definition 65. A neighborhood W of p P M is called uniformly normal if there

exists some δ ¡ 0 such that:

(1) For every q P W , Ep is defined on the δ-ball Bδp0q � TqM around the origin of

TqM. Moreover, EppBδp0qq is a normal neighborhood of q;

(2) W � EppBδp0qq, which implies that W is a normal neighborhood of all its points.
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Moreover, as pointed out by Gine and Koltchinskii (2005) and Ye and Zhou

(2008), by shrinking W and reducing δ at the same time, a special uniformly normal

neighborhood can be chosen.

Proposition 66. For every p PM there exists a neighborhood W such that:

(1) W is a uniformly normal neighborhood of p with some δ ¡ 0;

(2) The closure of W is contained in a strongly convex neighborhood U of p;

(3) The function F pq, vq � pq, Eqpvqq is a diffeomorphism from Wδ � W � Bδp0q
onto its image in M�M. Moreover, |dF | is bounded away from zero on Wδ.

Here U is strongly convex if for every two points in U , the minimizing geodesic joining

them also lies in U .

Throughout the rest of the paper, we will assume that the uniformly normal

neighborhoods also possess the properties in the above proposition. Given a point

p PM, we choose a uniformly normal neighborhood W of p. Let te1, . . . , edu be an

orthonormal basis of TpM. For each q P W , we can define a set of tangent vectors

teq1, . . . , eqdu � TqM by parallel transport (do Carmo, 1992): ei P TpM ÞÑ e
γptq
i P

TγptqM from p to q along the unique minimizing geodesic γptq p0 ¤ t ¤ 1q with

γp0q � p, γp1q � q. Since parallel transport preserves the inner product in the sense

that gγptqpvγptq, wγptqq � gppv, wq, @v, w P TpM, teq1, . . . , eqdu forms an orthonormal

basis of TqM. In addition, the orthonormal frame defined in this way is unique and

depends smoothly on q. Therefore, we obtain on W a system of normal coordinates

at each q P W , which parameterizes x P EqpBδp0qq by

x � Eq
� ḑ

i�1

uie
q
i



� φqpu1, . . . , udq, u � pu1, . . . , udq P Bδp0q. (B.2)
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Such coordinates are called q-normal coordinates. The basis of TqM associated with

this coordinate chart pBδp0q, φqq is given by

B
Bui pqqpfq �

dpf � Eqpteqi qq
dt

����
t�0

� dpf � γpt, q, eqi qq
dt

����
t�0

� eqi pfq, i � 1, . . . , d.

Therefore t B
Bui pqq � eqi : 1 ¤ i ¤ du forms an orthonormal basis on TqM. By Proposi-

tion 66, for each x P EqpBδp0qq, there exists a minimizing geodesic γpt, q, vq, 0 ¤ t ¤ 1,

such that γp0, q, vq � q, γ1p0, q, vq � v and γp1, q, vq � x, where v � E�1
q pxq �°d

i�1 uie
q
i P TqM. Hence dMpq, xq �

³1

0
|γ1pt, q, vq|dt � |v| � ||u||, i.e.

dM

�
q, Eq

� ḑ

i�1

uie
q
i




� ||u||, @u P Bδpp0q, (B.3)

where || � || is the Euclidean norm on Rd. The components gqijpuq of the Riemannian

metric in q-normal coordinates satisfy gqijp0q � gqpeqi , eqjq � δij. The following results

(Gine and Koltchinskii, 2005, Proposition 2.2) provide local expansions for the Rie-

mannian metric gqijpuq, the Jacobian
b

detpgφijpuqq and the distance dMpq,
°d
i�1 uie

q
i q

in a neighborhood of p.

Proposition 67. Let M be a submanifold of RD which is isometrically embedded.

Given a point p PM, let W and δ be as in Proposition 66, and consider for each q P
W the q-normal coordinates defined above. Suppose that x � °d

i�1 uie
q
i P EqpBδp0qq.

Then:

(1) The components gqijpuq of the metric tensor in q-normal coordinates admit the

following expansion, uniformly in q P W and x P EqpBδp0qq:

gqijpu1, . . . , udq � δij � 1

3

ḑ

r,s�1

Rq
irsjp0qurus �Opd3

Mpq, xqq, (B.4)

where Rq
irsjp0q are the components of the curvature tensor at q in q-normal

coordinates.
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(2) The Jacobian
b

detpgqijqpuq in q-normal coordinates has the following expan-

sion, uniformly in q P W and x P EqpBδp0qq:

b
detpgqijqpu1, . . . , udq � 1� 1

6

ḑ

r,s�1

Ricqrsp0qurus �Opd3
Mpq, xqq, (B.5)

where Ricqrsp0q are the components of the Ricci tensor at q in q-normal coordi-

nates.

(3) There exists Cp   8 such that

0 ¤ d2
Mpq, xq � ||q � x||2 ¤ Cpd

4
Mpq, xq (B.6)

holds uniformly in q P W and x P EqpBδp0qq.

Note that in Proposition 67, (3) only provides a comparison of geodesic dis-

tance and Euclidean distance in local neighborhoods. Under a stronger compactness

assumption on M, the following lemma offers a global comparison of these two dis-

tances.

Lemma 68. Let M be a connected compact submanifold of RD with a Riemannian

metric g that is not necessarily induced from the Euclidean metric. Then there exist

positive constants C1 and C2 dependent on g, such that

C1||x� y|| ¤ dMpx, yq ¤ C2||x� y||, @x, y PM, (B.7)

where || � || is the Euclidean distance in RD. Moreover, if M is further assumed to

be isometrically embedded, i.e. g is induced from the Euclidean metric of RD, then

C1 could be chosen to be one and C2 ¥ 1.

Proof. We only prove the first half of the inequality since the second half follows by

a similar argument and is omitted here. Assume in the contrary that for any positive
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integer k, there exists pxk, ykq such that ||xk � yk|| ¥ kdMpxk, ykq. Let Φ :MÑ RD

be the embedding. SinceM is compact, txku and tyku have convergent subsequences,

whose notations are abused as txku and tyku for simplicity. Denote the limits of these

two sequences as x0 and y0. By the compactness ofM and continuity of Φ, we know

that ΦpMq is also compact and therefore dMpxk, ykq Ñ 0, as k Ñ 8. This implies

that x0 � y0 � p.

For each j P t1, . . . , pu, the jth component Φj : M Ñ R of Φ is differen-

tiable. Let δp and Wp be the δ and W specified in Proposition 66. Define fpq, vq �
Φ
�
π2pF pq, vqq

� � ΦpEppvqq, where π2 is the projection of M �M on to its sec-

ond component. By Proposition 66, f is differentiable on the compact set W̄δp

and therefore for each l P t1, . . . , du, Bf
Bvl is uniformly bounded on W̄δp . This im-

plies that for some constant C ¡ 0, ||x � y|| � ||fpy, E�1
y pxqq � fpy, E�1

y pyqq|| ¤
C||E�1

y pxq�E�1
y pyq|| � CdMpx, yq for all x, y P Wp with dMpx, yq ¤ δp. Since xk Ñ p

and yk Ñ p, there exists an integer k0 such that for all k ¡ k0, xk, yk P Wp and

dMpxk, ykq ¤ δp. Therefore ||xk � yk|| ¤ CdMpxk, ykq, which contradict our assump-

tion that ||xk � yk|| ¥ kdMpxk, ykq for all k.

Consider the case when Φ is an isometric embedding. For any points x, y PM, we

can cover the compact geodesic path lx,y from x to y by tWpi : i � 1, . . . , nu associated

with a finite number of points tp1, . . . , pnu �M. Therefore we can divide lx,y into�n
s�1 lpxs�1, xsq such that x0 � x, xn � y, and each segment lpxs�1, xsq lies in one of

the Wpi ’s. By Proposition 67 (3), for each s P t1, . . . , nu, dMpxs�1, xsq ¥ ||xs�1�xs||.
Therefore,

dMpx, yq �
ņ

s�1

dMpxs�1, xsq ¥
ņ

s�1

||xs�1 � xs|| ¥ ||x� y||,

where the last step follows from the triangle inequality.

The above lemma also implies that geodesic distances induced by different Rie-
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mannian metrics on M are equivalent to each other.

Fix p PM and let W and δ ¡ 0 be specified as in Proposition 66. Since M is a

submanifold of RD, for any point q PM, the exponential map Eq : Bδp0q ÑM � RD

is a differentiable function between two subsets of Euclidean spaces. Here, we can

choose any orthonormal basis of TqM since the representations of Eq under different

orthonormal bases are the same up to d�d rotation matrices. Under the compactness

assumption onM, the following lemma, which will be applied in the proof of lemma

73, ensures the existence of a bound on the partial derivatives of Eq’s components

tEq,i : i � 1, . . . , Du uniformly for all q in the δ neighborhood of p:

Lemma 69. Let M be a connected Cγ compact submanifold of RD with γ being 8
or any integer greater than two. Let k be an integer such that k ¤ γ. Then:

1. There exists a universal positive number δ0, such that for every p PM, propo-

sition 66 is satisfied with some δ ¡ δ0 and Wp;

2. With this δ0, for any p PM, mixed partial derivatives with order less than or

equal to k of each component of Ep are bounded in Bδ0p0q P TpM by a universal

constant C ¡ 0.

Proof. Note that M � �
pPMW pp, δpq, where δp and W pp, δpq are the correspond-

ing p dependent δ and open neighborhood W in proposition 66. By the com-

pactness of M, we can choose a finite covering tW pp1, δp1q, . . . ,W ppn, δpnqu. Let

δ0 � mintδp1 , . . . , δpnu. Then the first condition is satisfied with this δ0 since for any

p PM, Wp could be chosen as any W ppj, δpjq that contains p.

Next we prove the second condition. For each j, we can define q-normal co-

ordinates on W ppj, δpjq as before such that the exponential map at each point

q P W ppj, δpjq can be parameterized as (B.2). Define Fj : W ppj, δpjq �Bδpj
p0q Ñ RD

by Fjpq, uq � Eqp
°d
i�1 uie

q
i q � φqpuq. Then any order k mixed partial deriva-

tive
Bkφqj

Bui1���Buik puq of Fjpq, uq with respect to u is continuous on the compact set
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W ppj, δpjq � Bδpj
p0q. Therefore these partial derivatives are bounded uniformly in

q P W ppj, δpjq and u P Bδpj
p0q. Since M is covered by a finite number of sets

tW pp1, δp1q, . . . ,W ppn, δpnqu, the second conclusion is also true.

By lemma 69, when a compact submanifoldM has smoothness level greater than

or equal to k, we can approximate the exponential map Ep : Bδ0p0q � Rd Ñ RD at

any point p P M by a local Taylor polynomial of order k with error bound Cδk0 ,

where C is a universal constant that only depends on k and M.

B.2 Posterior contraction rate of the GP on manifold

In the GP prior (3.4), the covariance function Ka :M�MÑ R is essentially defined

on the submanifold M. Therefore, (3.4) actually defines a GP on M and we can

study its posterior contraction rate as a prior for functions on the manifold. In this

section, we combine geometry properties and Bayesian nonparametric asymptotic

theory to prove the theorems in section 2.

B.2.1 Reproducing kernel Hilbert space on manifold

Being viewed as a covariance function defined on r0, 1sD�r0, 1sD, Kap�, �q corresponds

to a reproducing kernel Hilbert space (RKHS) Ha, which is defined as the completion

of H, the linear space of all functions on r0, 1sD with the following form

x ÞÑ
m̧

i�1

aiK
apxi, xq, x P r0, 1sD,

indexed by a1, . . . , am P R and x1, . . . , xm P r0, 1sD, m P N, relative to the norm

induced by the inner product defined through xKapx, �q, Kapy, �qyHa � Kapx, yq. Sim-

ilarly, Kap�, �q can also be viewed as a convariance function defined onM�M, with

the associated RKHS denoted by H̃a. Here H̃a is the completion of H̃, which is the
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linear space of all functions on M with the following form

x ÞÑ
m̧

i�1

aiK
apxi, xq, x PM,

indexed by a1, . . . , am P R and x1, . . . , xm PM, m P N.

Many probabilistic properties of GPs are closely related to the RKHS associated

with its covariance function. Readers can refer to Aronszajn (1950) and van der Vaart

and van Zanten (2008b) for introductions on RKHS theory for GPs on Euclidean

spaces. In order to generalize RKHS properties in Euclidean spaces to submanifolds,

we need a link to transfer the theory. The next lemma achieves this by characterizing

the relationship between Ha and H̃a.

Lemma 70. For any f P H̃a, there exists g P Ha such that g|M � f and ||g||Ha �
||f ||H̃a, where g|M is the restriction of g onM. Moreover, for any other g1 P Ha with

g1|M � f , we have ||g1||Ha ¥ ||f ||H̃a, which implies ||f ||H̃a � infgPHa,g|M�f ||g||Ha.

Proof. Consider the map Φ : H̃Ñ H that maps the function

m̧

i�1

aiK
apxi, �q P H̃, a1, . . . , am P R, x1, . . . , xm PM,m P N

on M to the function of the same form

m̧

i�1

aiK
apxi, �q P H,

but viewed as a function on r0, 1sD. By definitions of RKHS norms, Φ is an isometry

between H̃ and a linear subspace of H. As a result, Φ can be extended to an isometry

between H̃a and a complete subspace of Ha. To prove the first part of this lemma, it

suffices to justify that for any f P H̃a, g � Φpfq|M � f . Assume that the sequence

tfnu P H̃ satisfies

||fn � f ||H̃a Ñ 0, as nÑ 8,
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then by the definition of Φ on H̃, Φpfnq|M � fn. For any x P r0, 1sD, by the

reproducing property and Cauchy-Schwarz inequality,

|Φpfnqpxq � gpxq| � |xKapx, �q,Φpfnq � gyHa |

¤
a
Kapx, xq ||Φpfnq � Φpfq||Ha

� ||fn � f ||H̃a Ñ 0, as nÑ 8,

where the last step is by isometry. This indicates that g can be obtained as a point

limit of Φpfnq on r0, 1sD and in the special case when x PM,

gpxq � lim
nÑ8

Φpfnqpxq � lim
nÑ8

fnpxq � fpxq.

Denote the orthogonal complement of ΦpH̃aq in Ha as ΦpH̃aqK. Since pg1� gq|M � 0,

which means xKapx, �q, g � g1yHa � 0 for all x P M. Therefore by the previous

construction, g � g1 K ΦpH̃aq, i.e. g1 � g P ΦpH̃aqK and using Pythagorean theorem,

we have

||g1||Ha � ||g||Ha � ||g � g1||Ha ¥ ||g||Ha .

This lemma implies that any element f in the RKHS H̃a could be considered as

the restriction of some element g in the RKHS Ha. Particularly, there exists a unique

such element g in Ha such that the norm is preserved, i.e. ||g||Ha � ||f ||H̃a .

B.2.2 Background on posterior convergence rate for GP

As shown in Ghosal et al. (2000), in order to characterize the posterior contraction

rate in a Bayesian nonparametric problem, such as density estimation, fixed/random

design regression or classification, we need to verify some conditions on the prior

measure Π. Specifically, we describe the sufficient conditions for randomly rescaled

GP prior as (3.3) given in van der Vaart and van Zanten (2009). Let X be the
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predictor space and f0 be the true function f0 : X Ñ R, which is the log density

log ppxq in density estimation, regression function ErY |Xs in regression and logistic

transformed conditional probability logitP pY � 1|Xq in classification. We will not

consider density estimation since to specify the density by log density f0, we need to

know the support M so that ef0 can be normalized to produce a valid density. Let

εn and ε̄n be two sequences. If there exist Borel measurable subsets Bn of CpX q and

constant K ¡ 0 such that for n sufficiently large,

P p||WA � f0||8 ¤ εnq ¥ e�nε
2
n ,

P pWA R Bnq ¤ e�4nε2n ,

logNpε̄n, Bn, || � ||8q ¤ nε̄2n,

(B.8)

where WA � Π and || � ||8 is the sup-norm on CpX q, then the posterior contraction

rate would be at least εn_ ε̄n. In our case, X is the d-dimensioanl submanifoldM in

the ambient space RD. To verify the first concentration condition, we need to give

upper bounds to the so-called concentration function (van der Vaart and van Zanten,

2009) φaf0
pεq of the GPW a around truth f0 for given a and ε. φaf0

pεq is composed of two

terms. Both terms depend on the RKHS H̃a associated with the covariance function

of the GP W a. The first term is the decentering function inft||h||2H̃a : ||h�f0||8   εu,
where || � ||H̃a is the RKHS norm. This quantity measures how well the truth f0 could

be approximated by the elements in the RKHS. The second term is the negative log

small ball probability � logP p||W a||8   εq, which depends on the covering entropy

logNpεn, H̃a
1, || � ||8q of the unit ball in the RKHS H̃a. As a result of this dependence,

by applying Borell’s inequality (van der Vaart and van Zanten, 2008b), the second

and third conditions can often be proved as byproducts by using the conclusion on

the small ball probability .

As pointed out by van der Vaart and van Zanten (2009), the key to ensure the

adaptability of the GP prior on Euclidean spaces is a sub-exponential type tail of its
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stationary covariance function’s spectral density, which is true for squared exponen-

tial and Matérn class covariance functions. More specifically, a squared exponential

covariance function K1px, yq � exp
 � ||x � y||2{2( on RD has a spectral represen-

tation as

K1px, yq �
»
RD
e�ipλ,x�yqµpdλq,

where µ is its spectral measure with a sub-Gaussian tail, which is lighter than sub-

exponential tail in the sense that: for any δ ¡ 0,

»
eδ||λ||µpdλq   8. (B.9)

For convenience, we will focus on squared exponential covariance function, since

generalizations to other covariance functions with sub-exponential decaying spectral

densities are possible with more elaboration.

B.2.3 Decentering function

To estimate the decentering function, the key step is to construct a function Iapfq
on the manifold M to approximate a differentiable function f , so that the RKHS

norm ||Iapfq||H̃a can be tightly upper bounded. Unlike in Euclidean spaces where

functions in the RKHS Ha can be represented via Fourier transformations (van der

Vaart and van Zanten, 2009), there is no general way to represent and calculate

RKHS norms of functions in the RKHS H̃a on manifold. Therefore in the next

lemma, we provide a direct way to construct the approximation function Iapfq for

any truth f via convolving f with Ka on manifold M:

Iapfqpxq �
�

a?
2π


d »
M
Kapx, yqfpyqdV pyq

�
�

a?
2π


d »
M

exp

"
� a2||x� y||2

2

*
fpyqdV pyq, x PM, (B.10)
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where V is the Riemannian volume form of M. Heuristically, for large a, the above

integrand only has non-negligible value in a small neighborhood around x. Therefore

we can conduct a change of variable in the above integral with transformation φx :

Bδ Ñ W defined by (B.2) in a small neighborhood W of x:

Iapfqpxq �
�

a?
2π


d »
Rd

exp

"
� a2||φxpuq � φxp0q||2

2

*
f
�
φxpuq�bdetpgφijpuqqdu,

�
�

a?
2π


d »
Rd

exp

"
� a2||u||2

2

*
f
�
φxpuq�du,

� f
�
φxp0q� � fpxq, x PM,

where the above approximation holds since: 1. φxp0q � x; 2. φx preserve lo-

cal distances (Proposition 67 (3)); 3. the Jacobian
b

detpgφijpuqq is close to one

(Proposition 67 (2)). From this heuristic argument, we can see that the approx-

imation error ||Iapwq � f0||8 is determined by two factors: the convolution error��� a?
2π

�d ³
Rd exp

 � a2||u||2
2

(
f
�
φxpuq�du � fpxq�� and the non-flat error caused by the

nonzero curvature ofM. Moreover, we can expand each of these errors as a polyno-

mial of 1{a and call the expansion term related to 1{ak as kth order error.

When M is Euclidean space Rd, the non-flat error is zero, and by Taylor ex-

pansion the convolution error has order s if f0 P CspRdq and s ¤ 2, where CspRdq
is the Holder class of s-smooth functions on Rd. This is because the Gaussian ker-

nel expt�||px � yq||2{2u has a vanishing moment up to first order:
³
x expp�||px �

yq||2{2qdx � 0. Generally, the convolution error could have order up to s � 1 if the

convolution kernel K has vanishing moments up to order s, i.e.
³
xtKpxqdx � 0, t �

1, . . . , s. However, for general manifoldM with non-vanishing curvature tensor, the

non-flat error always has order two (see the proof of Lemma 71). This implies that

even though carefully chosen kernels for the covariance function can improve the con-

volution error to have order higher than two, the overall approximation still tends to
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have second order error due to the deterioration caused by the nonzero curvature of

the manifold. The following lemma formalizes the above heuristic argument on the

order of the approximation error by (B.10) and further provides an upper bound on

the decentering function.

Lemma 71. Assume that M is a d-dimensional compact Cγ submanifold of RD.

Let CspMq be the set of all functions on M with holder smoothness s. Then for

any f P CspMq with s ¤ mint2, γu, there exist constants a0 ¥ 1, C ¡ 0 and B ¡ 0

depending only on µ, M and f such that for all a ¥ a0,

inft||h||2H̃a : sup
xPM

|hpxq � fpxq| ¤ Ca�su ¤ Bad.

Proof. The proof consists of two parts. In the first part, we prove that the approx-

imation error of Iapfq can be decomposed into four terms. The first term T1 is the

convolution error defined in our previous heuristic argument. The second term T2

is caused by localization of the integration, which is negligible due to the exponen-

tial decaying of the squared exponential covariance function. The third and fourth

terms T3, T4 correspond to the non-flat error, with T3 caused by approximating the

geodesic distance with Euclidean distance
��||φqpuq � q||2 � ||u||2��, and T4 by approx-

imating the Jacobian
��bdetpgφijpuqq � 1

��. Therefore the overall approximation error

|Iapfqpxq � fpxq| has order s in the sense that for some constant C ¡ 0 dependent

on M and f :

sup
xPM

|Iapfqpxq � fpxq| ¤ Ca�s, s ¤ mint2, γu. (B.11)

In the second part, we prove that Iapfq belongs to H̃a and has a squared RKHS

norm:

||Iapfq||2H̃a ¤ Bad,

where B is a positive constant not dependent on a.
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Step 1 (Estimation of the approximation error): This part follows similar ideas

as in the proof of Theorem 1 in Ye and Zhou (2008), where they have shown that

(B.11) holds for s ¤ 1. Our proof generalizes their results to s ¤ 2 and therefore

needs more careful estimations.

By Proposition 67, for each p P M, there exists a neighborhood Wp and an

associated δp satisfying the two conditions in Proposition 66 and equations (B.4)-

(B.6). By compactness, M can be covered by YpPPWp for a finite subset P of

M. Then supxPM |Iapfqpxq � fpxq| � suppPPtsupxPWp
|Iapfqpxq � fpxq|u. Let δ� �

minpPPtmintδp, 1{
a

2Cpuu ¡ 0, where Cp is defined as in equation (B.6). Choose

a0 ¥ 1 sufficiently large such that C0

ap2d� 8q log a0{a0   δ�, where C0 is the C2 in

Lemma 68.

Let q P Wp and a ¡ a0. Define Bq
a �

 
x PM : dMpq, xq   C0

ap2d� 8q log a{a(.

Combining equation (B.3) and the fact that Eq is a diffeomorphism on Bδ�p0q,

Bq
a �

 
Eqp

ḑ

i�1

uie
q
i q : u P B̃a

( � EqpBδ�p0qq,

where B̃a �
 
u : ||u||   C0

ap2d� 8q log a{a( � Bδ�p0q.
Denote φqpuq � Eqp

°d
i�1 uie

q
i q. Then Bq

a � φqpB̃aq. By definition (B.1),�
a?
2π


d »
Bqa

Kapx, yqfpyqdV pyq

�
�

a?
2π


d »
B̃a

exp

"
� a2||q � φqpuq||2

2

*
fpφqpuqq

b
detpgqijqpuqdu.

Therefore, by (B.10) we have the following decomposition:

Iapfqpqq � fpqq � T1 � T2 � T3 � T4,
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where

T1 �
�

a?
2π


d »
B̃a

exp

"
� a2||u||2

2

*�
f
�
φqpuq�� f

�
φqp0q��du

T2 �
�

a?
2π


d »
MzBqa

Kapq, yqfpyqdV pyq �
�

a?
2π


d »
RdzB̃a

exp

"
� a2||u||2

2

*
fpqqdu,

T3 �
�

a?
2π


d »
B̃a

"
exp

"
� a2||q � φqpuq||2

2

*
� exp

"
� a2||u||2

2

**
fpφqpuqqdu,

T4 �
�

a?
2π


d »
B̃a

exp

"
� a2||q � φqpuq||2

2

*
fpφqpuqqp

b
detpgqijqpuq � 1qdu.

Step 1.1 (Estimation of T1): Let g � f � φq. Since f P CspMq and pφq, Bδ�p0qq
is a Cγ coordinate chart, we have g P CspRdq and therefore

gpuq � gp0q �
"
Rpu, sq, if 0   s ¤ mint1, γu,°d
i�1

Bg
Bui p0qui �Rpu, sq, if 1   s ¤ mint2, γu,

where the remainder term |Rpu, sq| ¤ C1||u||s for all 0   s ¤ mint2, γu. Since B̃a is

symmetric, »
B̃a

exp

"
� a2||u||2

2

*
uidu � 0, i � 1, . . . , d,

and therefore

|T1| ¤ C1

�
a?
2π


d »
B̃a

exp

"
� a2||u||2

2

*
||u||sdu � C2a

�s.

Step 1.2 (Estimation of T2): Denote T2 � S1 � S2 where S1 and S2 are the first

term and second term of T2, respectively. By Lemma 68, for y PMzBq
a, ||q � y|| ¥
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dMpq, yq{C0 ¥
ap2d� 8q log a{a. Therefore,

|S1| �
����� a?

2π


d »
MzBqa

exp

"
� a2||q � y||2

2

*
fpyqdV pyq

����
¤ ||f ||8VolpMq

�
a?
2π


d

exp

"
� p2d� 8q log a

2

*
� C3a

�4 ¤ C3a
�s.

As for S2, we have

|S2| ¤ ||f ||8
�

a?
2π


d »
||u||¥C0

?
p2d�8q log a{a

exp

"
� a2||u||2

2

*
du

¤ ||f ||8
�

a?
2π


d »
Rd

exp

"
� C2

0p2d� 8q log a

4

*
exp

"
� a2||u||2

4

*
du

� C4a
�C2

0 pd{2�2q ¤ C4a
�s,

since d ¥ 1, C0 ¥ 1 and a ¥ a0 ¥ 1.

Combining the above inequalities for S1 and S2, we obtain

|T2| ¤ pC3 � C4qa�s � C5a
�s.

Step 1.3 (Estimation of T3): By equation (B.6) in Proposition 67 and equation

(B.3), we have

��||u||2 � ||q � φqpuq||2�� � ��d2
Mpq, φqpuqq � ||q � φqpuq||2�� ¤ Cpd

4
Mpq, φqpuqq � Cp||u||4.

(B.12)

Therefore by using the inequality |e�a � e�b| ¤ |a� b|maxte�a, e�bu for a, b ¡ 0, we

have

|T3| ¤||f ||8
�

a?
2π


d

»
B̃a

max

"
exp

"
� a2||q � φqpuq||2

2

*
, exp

"
� a2||u||2

2

**
a2||u||4

2
du.

235



By equation (B.12) and the fact that u P B̃a, ||u||2 ¤ pδ�q2 ¤ 1{p2Cpq and hence��||u||2 � ||q � φqpuq||2�� ¤ 1

2
||u||2, ||q � φqpuq||2 ¥ 1

2
||u||2. (B.13)

Therefore

|T3| ¤ ||f ||8
�

a?
2π


d »
B̃a

exp

"
� a2||u||2

4

*
a2||u||4

2
du � C6a

�2 ¤ C6a
�s,

since a ¥ a0 ¥ 1.

Step 1.4 (Estimation of T4): By equation (B.5) in Proposition 67, there exists a

constant C7 depending on the Ricci tensor of the manifold M, such that

��bdetpgqijqpuq � 1
�� ¤ C7||u||2.

Therefore, by applying equation (B.13) again, we obtain

|T4| ¤ C4||f ||8
�

a?
2π


d »
B̃a

exp

"
� a2||u||2

4

*
||u||2du � C8a

�2 ¤ C8a
�s.

Combining the above estimates for T1, T2, T3 and T4, we have

sup
xPM

|Iapfqpqqpxq � fpqqpxq| ¤ pC2 � C3 � C6 � C8qa�s � Ca�s.

Step 2 (Estimation of the RKHS norm): Since xKapx, �q, Kapy, �qyH̃a � Kapx, yq,
we have

||Iapfq||H̃a �
�

a?
2π


2d »
M

»
M
Kapx, yqfpxqfpyqdV pxqdV pyq

¤ ||f ||28
�

a?
2π


d »
M
dV pxq

�
a?
2π


d »
M
Kapx, yqdV pyq.

Applying the results of the first part to function f � 1, we have

����� a?
2π


d »
M
Kapx, yqdV pyq � 1

���� ¤ Ca�2 ¤ C,
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since a ¥ a0 ¥ 1. Therefore,

||Iapfq||H̃a ¤ p1� Cq||f ||28
�

a?
2π


d

VolpMq � Bad.

B.2.4 Centered small ball probability

As indicated by the proof of Lemma 4.6 in van der Vaart and van Zanten (2009), to

obtain an upper bound on � logP p||W a||8   εq, we need to provide an upper bound

for the covering entropy logNpε, H̃a
1, || � ||8q of the unit ball in the RKHS H̃a on the

submanifold M. Following the discussion in section 4.1, we want to link H̃a to Ha,

the associated RKHS defined on the ambient space RD. Therefore, we need a lemma

to characterize the space Ha (van der Vaart and van Zanten, 2009, Lemma 4.1).

Lemma 72. Ha is the set of real parts of the functions

x ÞÑ
»
eipλ,xqψpλqµapdλq,

when ψ runs through the complex Hilbert space L2pµaq. Moreover, the RKHS norm

of the above function is ||ψ||L2pµaq, where µa is the spectral measure of the covariance

function Ka.

Based on this representation of Ha on RD, van der Vaart and van Zanten (2009)

proved an upper bound KaD
�

log 1
ε

�D�1
for logNpε, H̃a

1, || � ||8q through constructing

an ε-covering set composed of piecewise polynomials. However, there is no straight-

forward generalization of their scheme from Euclidean spaces to manifolds. The

following lemma provides an upper bound for the covering entropy of H̃a
1, where the

D in the upper bounds for Ha
1 is reduced to d. The main novelty in our proof is

the construction of an ε-covering set composed of piecewise transformed polynomials
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(B.19) via analytically extending the truncated Taylor polynomial approximations

(B.16) of the elements in H̃a
1. As the proof indicates, the d in ad relates to the cov-

ering dimension d ofM, i.e. the ε-covering number Npε,M, εq ofM is proportional

to 1{εd. The d in plog 1
ε

�d�1
relates to the order of the number kd of coefficients in

piecewise transformed polynomials of degree k in d variables.

Lemma 73. Assume thatM is a d-dimensional Cγ compact submanifold of RD with

γ ¥ 2. Then for squared exponential covariance function Ka, there exists a constant

K depending only on d, D and M, such that for ε   1{2 and a ¡ maxta0, ε
�1{pγ�1qu,

where δ0 is defined in Lemma 69 and a0 is a universal constant,

logNpε, H̃a
1, || � ||8q ¤ Kad

�
log

1

ε


d�1

.

Proof. By Lemma 70 and Lemma 72, a typical element of H̃a can be written as the

real part of the function

hψpxq �
»
eipλ,xqψpλqµapdλq, for x PM

for ψ : RD Ñ C a function with
³ |ψ|2µapdλq ¤ 1. This function can be extended

to RD by allowing x P RD. For any given point p PM, by (B.10), we have a local

coordinate φp : Bδ0p0q � Rd Ñ RD induced by the exponential map Ep. Therefore,

for x P φppBδ0p0qq, hψpxq can be written in local q-normal coordinates as

hψ,ppuq � hψ
�
φppuq� � »

eipλ,φ
ppuqqψpλqµapdλq, u P Bδ0p0q. (B.14)

Similar to the idea in the proof of Lemma 4.5 in van der Vaart and van Zan-

ten (2009), we want to extend the function hψ,p to an analytical function z ÞÑ³
eipλ,φ

ppzqqψpλqµapdλq on the set Ω � tz P Cd : ||Rez||   δ0, ||Imz||   ρ{au for

some ρ ¡ 0. Then we can obtain upper bounds on the mixed partial derivatives of

238



the analytic extension hψ,p via Cauchy formula, and finally construct an ε-covering

set of H̃a
1 by piecewise polynomials defined on M. Unfortunately, this analytical

extension is impossible unless φppuq is a polynomial. This motivates us to approxi-

mate φppuq by its γth order Taylor polynomial Pp,γpuq. More specifically, by Lemma

76 and the discussion after Lemma 69, the error caused by approximating φppuq by

Pp,γpuq is��hψ�φppuq�� hψ
�
Pp,γpuq

��� ¤ a||φppuq � Pp,γpuq|| ¤ Ca||u||γ. (B.15)

For notation simplicity, fix p as a center and denote the function hψ
�
Pp,γpuq

�
by

rpuq for u P Bδ0 . Since Pp,γpuq is a polynomial of degree γ, view the function r as

a function of argument u ranging over the product of the imaginary axes in Cd, we

can extend

rpuq �
»
eipλ,Pp,γpuqqψpλqµapdλq, u P Bδ0p0q (B.16)

to an analytical function z ÞÑ ³
eipλ,Pp,γpzqqψpλqµapdλq on the set Ω � tz P Cd :

||Rez||   δ0, ||Imz||   ρ{au for some ρ ¡ 0 sufficiently small determined by the

δ   1{2 in (B.9). Moreover, by Cauchy-Schwarz inequality, |rpzq| ¤ C for z P Ω

and C2 � ³
eδ||λ||µpdλq. Therefore, by Cauchy formula, with Dn denoting the partial

derivative of orders n � pn1, . . . , ndq and n! � n1! � � �nd!, we have the following bound

for partial derivatives of r at any u P Bδ0p0q,����Dnrpuq
n!

���� ¤ C

Rn
, (B.17)

where R � ρ{pa?dq. Based on the inequalities (B.15) and (B.17), we can construct

an ε-covering set of H̃a
1 as follows.

Set a0 � ρ{p2δ0

?
dq, then R   2δ0. Since M � r0, 1sD, with C2 defined in

Lemma 68, let tp1, . . . , pmu be an R{p2C2q-net inM for the Euclidean distance, and

let M � �
iBi be a partition of M in sets B1, . . . , Bm obtaining by assigning every
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x PM to the closest pi P tp1, . . . , pmu. By (B.3) and Lemma 68

|pφpiq�1pxq|   C2
R

2C2

� R

2
  δ0, (B.18)

where φpi is the local normal coordinate chart at pi. Therefore, we can consider the

piecewise transformed polynomials P � °m
i�1 Pi,ai1Bi , with

Pi,aipxq �
¸
n.¤k

ai,nrpφpiq�1pxqsn, x P φpi�Bδ0p0q
�
. (B.19)

Here the sum ranges over all multi-index vectors n � pn1, . . . , ndq P pNY t0uqd with

n. � n1 � � � � � nd ¤ k. Moreover, for y � py1, . . . , ydq P Rd, the notation yn used

above is short for yn1
1 yn2

2 � � � yndd . We obtain a finite set of functions by discretizing

the coefficients ai,n for each i and n over a grid of meshwidth ε{Rn-net in the interval

r�C{Rn, C{Rns (by (B.17)). The log cardinality of this set is bounded by

log

�¹
i

¹
n:n.¤k

#ai,n



¤ m log

� ¹
n:n.¤k

2C{Rn

ε{Rn



¤ mkd log

�
2C

ε



.

Since R � ρ{pa?dq, we can choose m � N
�
M, || � ||, ρ{p2C0ad

1{2q� � ad. To complete

the proof, it suffices to show that for k of order logp1{εq, the resulting set of functions

is a Kε-net for constant K depending only on µ.

For any function f P H̃a
1, by Lemma 70, we can find a g P H̃a

1 such that g|M � f .

Assume that rg (the subcript g indicates the dependence on g) is the local polynomial

approximation for g defined as (B.16). Then we have a partial derivative bound on

rg as: ����Dnrgppiq
n!

���� ¤ C

Rn
.

Therefore there exists a universal constant K and appropriately chosen ai in (B.19),

such that for any z P Bi �M,���� ¸
n.¡k

Dnrgppiq
n!

pz � piqn
���� ¤ ¸

n.¡k

C

Rn
pR{2qn ¤ C

8̧

l�k�1

ld�1

2l
¤ KC

�
2

3


k

,
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���� ¸
n.¤k

Dnrgppiq
n!

pz � piqn � Pi,nipzq
���� ¤ ¸

n.¤k

ε

Rn
pR{2qn ¤

ķ

l�1

ld�1

2l
ε ¤ Kε.

Moreover, by (B.15) and (B.18),

|gpzq � rgpzq| ¤ Ca||pφpiq�1pzq||γ ¤ aRγ ¤ Ka�pγ�1q   Kε,

where the last step follows by the condition on a.

Consequently, we obtain

|fpzq�Pi,nipzq| � |gpzq�Pi,nipzq| ¤ |gpzq�rgpzq|�|rgpzq�Pi,nipzq| ¤ KC

�
2

3


k

�2Kε.

This suggests that the piecewise polynomials form a 3Kε-net for k sufficiently large

so that p2{3qk is smaller than Kε.

Similar to Lemma 4.6 in van der Vaart and van Zanten (2009), Lemma 73 implies

an upper bound on � logP p||W a||8   εq.

Lemma 74. Assume thatM is a d-dimensional compact Cγ submanifold of RD with

γ ¥ 2. If Ka is the squared exponential covariance function with inverse bandwidth

a, then for some a0 ¡ 0, there exist constants C and ε0 that only depend on a0, µ,

d, D and M, such that, for a ¥ maxta0, ε
�1{pγ�1qu and ε   ε0,

� logP
�

sup
xPM

|W a
x | ¤ ε

� ¤ Cad
�

log
a

ε


d�1

.

Before proving Theorem 13, we need another two technical lemmas for prepa-

rations, which are the analogues of Lemma 4.7 and 4.8 in van der Vaart and van

Zanten (2009) for RKHS on Euclidean spaces.

Lemma 75. For squared exponential covariance function, if a ¤ b, then
?
aH̃a

1 �?
bH̃b

1.
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Proof. For any f P ?aH̃a
1, by Lemma 70, there exists g P ?aHa

1 such that g|M � f .

By Lemma 4.7 in van der Vaart and van Zanten (2009),
?
aHa

1 � ?
bHb

1, so g P
?
bHb

1. Again by Lemma 70, since g|M � f , ||f ||H̃b ¤ ||g||Hb ¤
?
b, implying that

f P ?bH̃b
1.

Lemma 76. Any h P H̃a
1 satisfies |hpxq| ¤ 1 and |hpxq�hpx1q| ¤ a||x�x1||τ for any

x, x1 PM, where τ 2 � ³ ||λ||2dµpλq.
Proof. By the reproducing property and Cauchy-Schwarz inequality

|hpxq| � |xh,Kapx, �qyH̃a | ¤ ||Kapx, �q||H̃a � 1

|hpxq � hpx1q| � |xh,Kapx, �q �Kapx1, �qyH̃a |

¤ ||Kapx, �q �Kapx1, �q||H̃a

�
a

2p1�Kapx, x1qq.

By the spectral representation Kpx, x1q � ³
eipλ,tqµapdλq and the fact that µa is sym-

metric,

2p1�Kapx, x1qq � 2

»
p1� ipλ, x� x1q � eipλ,x�x

1qqµapdλq

¤ ||x� x1||2
»
||λ||2µapdλq

� a2||x� x1||2
»
||λ||2µpdλq.

B.2.5 Posterior contraction rate of GP on manifold

We provide proofs for Theorem 13 and Theorem 14.

Proof of Theorem 13. Define centered and decentered concentration functions of the
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process W a � pWax : x PMq by

φa0pεq � � logP p|W a|8 ¤ εq,

φaf0
pεq � inf

hPH̃a:|h�f0|8¤ε
||h||2H̃a � logP p|W a|8 ¤ εq,

where |h|8 � supxPM |fpxq| is the sup norm on the manifold M. Then P p|W a|8 ¤
εq � expp�φa0pεqq by definition. Moreover, by the results in Kuelbs and Linde (1994),

P p||W a � f0||8 ¤ 2εq ¥ e�φ
a
f0
pεq. (B.20)

Suppose that f0 P CspMq for some s ¤ mint2, γ � 1u. By Lemma 74 and Lemma

71, for a ¡ a0 and ε ¡ C maxta�pγ�1q, a�su � Ca�s,

φsf0
pεq ¤ Dad � C4a

d

�
log

a

ε


1�d
¤ K1a

d

�
log

a

ε


1�d
.

Since Ad has a Gamma prior, there exists p, C1, C2 ¡ 0, such that C1a
p expp�D2a

dq ¤
gpaq ¤ C2a

p expp�D2a
dq. Therefore by equation (B.20),

P p||WA � f0||8 ¤ 2εq ¥ P p||WA � f0||8 ¤ 2ε, A P rpC{εq1{s, 2pC{εq1{ssq

¥
» 2pC{εq1{s

pC{εq1{s
e�φ

s
f0
pεqgpaqda

¥ C1e
�K2p1{εqd{splogp1{εqq1�d

�
C

ε


p{s�
C

ε


1{s
.

Therefore,

P p||WA � f0||8 ¤ εnq ¥ expp�nε2nq,

for εn a large multiple of n�s{p2s�dqplog nqκ1 with κ1 � p1�dq{p2�d{sq and sufficiently

large n.

Similar to the proof of Theorem 3.1 of van der Vaart and van Zanten (2009), by

Lemma 75,

BM,r,δ,ε �
�
M

c
r

δ
H̃r

1 � εB1



Y
�¤
a δ
pMH̃a

1q � εB1



,
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with B1 the unit ball of CpMq, contains the set MH̃a
1 � εB1 for any a P rδ, rs.

Furthermore, if

M ¥ 4
a
φr0pεq and e�φ

r
0pεq   1{4, (B.21)

then

P pWA R Bq ¤ 2C2r
p�d�1e�D2rd

D2d
� e�M

2{8. (B.22)

By Lemma 74, equation (B.21) is satisfied if

M2 ¥ 16C4r
dplogpr{εqq1�d, r ¡ 1, ε   ε1,

for some fixed ε1 ¡ 0. Therefore

P pWA R Bq ¤ expp�C0nε
2
nq,

for r and M satisfying

rd � 2C0

D2

nε2n, M2 � maxt8C0, 16C4unε2nplogpr{εnqq1�d. (B.23)

Denote the solution of the above equation as rn and Mn.

By Lemma 73, for M
a
r{δ ¡ 2ε and r ¡ a0,

logN

�
2ε,M

c
r

δ
H̃r

1 � εB̃1, || � ||8


¤ logN

�
ε,M

c
r

δ
H̃r

1, || � ||8



¤ Krd
�

log

�
M
a
r{δ
ε



1�d
.

By Lemma 76, every element of MH̃a
1 for a   δ is uniformly at most δ

?
DτM

distant from a constant function for a constant in the interval r�M,M s. Therefore

for ε ¡ δ
?
DτM ,

logN

�
3ε,

¤
a δ
pMH̃a

1q � εB̃1, || � ||8


¤ Npε, r�M,M s, | � |q ¤ 2M

ε
.
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With δ � ε{p2?DτMq, combining the above displays, for B � BM,r,δ,ε with

M ¥ ε, M3{2?2τrD1{4 ¥ 2ε3{2, r ¡ a0,

which is satisfied when r � rn and M �Mn, we have

logN
�
3ε, B, || � ||8

� ¤ Krd
�

log

�
M3{2?2τrD1{4

ε3{2



1�d
� log

2M

ε
. (B.24)

Therefore, for r � rn and M �Mn,

logN
�
3ε̄n, B, || � ||8

� ¤ nε̄2n,

for ε̄n a large multiple of εnplog nqκ2 with κ2 � p1� dq{2.

Proof of Theorem 14. Under d1, the prior concentration inequality becomes:

P p||WA � f0||8 ¤ 2εq ¥ P p||WA � f0||8 ¤ 2ε, A P rpC{εq1{s, 2pC{εq1{ssq

¥
» 2pC{εq1{s

pC{εq1{s
e�φ

s
f0
pεqgpaqda

¥ C1e
�K2p1{εqd_d1{splogp1{εqq1�d

�
C

ε


p{s�
C

ε


1{s
. (B.25)

The complementary probability becomes:

P pWA R Bq ¤ 2C2r
p�d1�1e�D2rd

1

D2

� e�M
2{8, (B.26)

with M2 ¥ 16C4r
dplogpr{εqq1�d, r ¡ 1 and ε   ε1, where ε1 ¡ 0 is a fixed constant.

An upper bound for the covering entropy is unchanged and still given by (B.24).

1. d1 ¡ d: With εn a multiple of n�s{p2s�d
1qplog nqκ1 with κ1 � p1� dq{p2� d1{sq,

ε̄n   εn,

rd
1 � 2C0

D2

nε2n, and M2 � maxt8C0, 16C4unε2nplogpr{εnqq1�d,
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inequalities (B.25), (B.26) and (B.24) become

P p||WA � f0||8 ¤ εnq ¥ expp�nε2nq,

P pWA R Bq ¤ expp�C0nε
2
nq,

logN
�
3ε̄n, B, || � ||8

� ¤nε̄2n.
Comparing the above with (B.8), we arrive at the conclusion that under d1 ¡ d,

the posterior contraction rate will be at least a multiple of n�s{p2s�d
1qplog nqκ with

κ � p1� dq{p2� d1{sq.
2. d2

2s�d   d1   d: With εn a multiple of n�s{p2s�dqplog nqκ1 with κ1 � p1 �

dq{p2 � d{sq, ε̄n a multiple of nd{p2d
1q�1ε

d{d1
n plog nqpd�1q{2 � n

� p2s�dqd1�d2

2p2s�dqd1 plog nqκ2 with

κ2 � pd� d2q{p2d1 � dd1{sq � p1� dq{2,

rd
1 � 2C0

D2

nε2n, and M2 � maxt8C0, 16C4unε2nplogpr{εnqq1�d,

inequalities (B.25), (B.26) and (B.24) become

P p||WA � f0||8 ¤ εnq ¥ expp�nε2nq,

P pWA R Bq ¤ expp�C0nε
2
nq,

logN
�
3ε̄n, B, || � ||8

� ¤nε̄2n.
Comparing the above with (B.8), we arrive at the conclusion that under d1   d,

the posterior contraction rate will be at least a multiple of n
� p2s�dqd1�d2

2p2s�dqd1 plog nqκ with

κ � pd � d2q{p2d1 � dd1{sq � p1 � dq{2. To make this rate meaningful, we need

p2s� dqd1 � d2 ¡ 0, i.e. d1 ¡ d2{p2s� dq.
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Appendix C

Appendix for Chapter 4

C.1 Proofs of technical results in Chapter 4

C.1.1 Proof of Theorem 17

First reshape P py|x1, . . . , xpq according to x1 as a matrix Ap1q of size d1�d0d2d3 . . . dp,

with the hth row a long vector,

 
P p1|h, 1, . . . , 1, 1q, P p1|h, 1, . . . , 1, 2q, . . . , P p1|h, 1, . . . , 1, dpq,

P p1|h, 1, . . . , 2, 1q, . . . , P p1|h, 1, . . . , 2, djq, . . . , P pd0|h, d2, . . . , dp�1, dpq
(
,

denoted Ap1qth, py, x2, . . . , xpqu. Apply nonnegative matrix decomposition for Ap1q,

we obtain

P py|x1, . . . , xpq � Ap1qtx1, py, x2, . . . , xpqu �
k1̧

h1�1

λ
p1q
h1x2...xp

pyqπp1qh1
px1q, (C.1)

where k1 ¤ d1 corresponds to the nonnegative rank of the matrix Ap1q (Cohen and

Rothblum, 1993). Without loss of generality, we can assume that the parameters sat-

isfy the constraints
°d0

y�1 λ
p1q
h1x2...xp

pyq � 1 for each ph1, x2, . . . , xpq,
°k1

h1�1 π
p1q
h1
px1q � 1
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for each x1, λ
p1q
h1x2...xp

pyq ¥ 0, and π
p1q
h1
px1q ¥ 0. Otherwise, we can always define new

λ̃’s and π̃’s satisfying the above constraints with the same k1 through the original

λ’s and π’s as following:

λ̃
p1q
h1x2...xp

pyq � λ
p1q
h1x2...xp

pyq
sh1x2...xp

,

π̃
p1q
h1
px1q � sh1x2...xpπ

p1q
h1
px1q,

where sh1x2...xp �
°d0

y�1 λ
p1q
h1x2...xp

pyq. With this definition, the decomposition (C.1)

for the new pλ̃, π̃q’s and the normalizing constraint
°d0

y�1 λ̃
p1q
h1x2...xp

pyq � 1 are easy to

verify. We only need to check the normalizing constraint for π̃:

k1̧

h1�1

π̃
p1q
h1
px1q �

k1̧

h1�1

d0̧

y�1

λ
p1q
h1x2...xp

pyqπp1qh1
px1q

�
d0̧

y�1

P py|x1, . . . , xpq � 1,

where we have applied (C.1) and the fact that P is a conditional probability.

Taking λ
p1q
h1x2...xp

pyq from (C.1) with argument x2, we can apply the same type of

decomposition to obtain

λ
p1q
h1x2...xp

pyq �
k2̧

h2�1

λ
p2q
h1h2x3...xp

pyqπp2qh2
px2q,

subject to
°d0

y�1 λ
p2q
h1h2...xp

pyq � 1, for each ph1, h2, . . . , xpq,
°k2

h2�1 π
p2q
h2
px2q � 1, for

each x2, λ
p2q
h1h2...xp

pcq ¥ 0, and π
p2q
h2
px2q ¥ 0. Plugging back into equation (C.1),

P py|x1, . . . , xpq �
k1̧

h1�1

k2̧

h2�1

λ
p2q
h1h2x3...xp

pyqπp1qh1
px1qπp2qh2

px2q.
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Repeating this procedure another pp � 2q times, we obtain equation (C.12) with

λh1h2...hppyq � λ
ppq
h1h2...hp

pyq and constraints (C.10).

Remark: As we can seen from the proof, kj can be considered as the nonnegative

matrix rank corresponds to certain transformation of the jth mode matrix of the

tensor P .

C.1.2 Proof of Lemma 18

Given the degeneracy of π, the bias square term can be written as

Bias2 �
2̧

y�1

¸
h1,...,hp

»
Ah1...hp

�
Eλ̃h1...hppyq � P0py|x1, . . . , xpq

�2
Gpdx1, . . . , dxpq,

where Ah1...hp � tpx1, . . . , xpq : hjpxjq � hj, j � 1, . . . , pu and λ̃’s are arbitrary

estimators of λ’s. It can be verified that the above expression is minimized if and

only if:

Eλ̃h1...hppyq �
³
Ah1...hp

P0py|x1, . . . , xpqGpdx1, . . . , dxpq³
Ah1...hp

Gpdx1, . . . , dxpq (C.2)

holds for all possible ph1, . . . , hpq. So we only need to check the the MLE λ̂’s satisfy

this condition.

Let Nx1,...,xp � °n
i�1 IpXi1 � x1, . . . , Xip � xpq, N̄h1,...,hp � °

Ah1...hp
Nx1,...,xp ,

X � tX1, . . . , Xpu and Y � tY1, . . . , Ypu. By the iterative expectation formula:

EX,Y λ̂h1...hppyq �
¸

Ah1...hp

EX
Nx1,...,xp

N̄h1,...,hp

P0py|x1, . . . , xpq. (C.3)

Note that

Nx1,...,xp

��N̄h1,...,hp � Bin

�
N̄h1,...,hp ,

Gpx1, . . . , xpq³
Ah1...hp

Gpdx1, . . . , dxpq


. (C.4)
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Combining this and the iterative expectation formula:

EX
Nx1,...,xp

N̄h1,...,hp

P0py|x1, . . . , xpq � Gpx1, . . . , xpq³
Ah1...hp

Gpdx1, . . . , dxpqP0py|x1, . . . , xpq. (C.5)

Combining (C.3) and (C.5) together, we can prove that (C.2) holds for the MLE λ̂.

C.1.3 Proof of Lemma 19

Under the same notation as in Lemma 18,

Var �
2̧

y�1

¸
h1,...,hp

»
Ah1...hp

EX,Y
�
λ̂h1...hp � EX,Y λ̂h1...hp

�2
Gpdx1, . . . , dxpq

�
2̧

y�1

¸
h1,...,hp

»
Ah1...hp

EXV arY |X
�
λ̂h1...hp � EY |X λ̂h1...hp

�2
Gpdx1, . . . , dxpq

�
2̧

y�1

¸
h1,...,hp

»
Ah1...hp

EX
�
EY |X λ̂h1...hp � EX,Y λ̂h1...hp

�2
Gpdx1, . . . , dxpq

�S1 � S2,

where EY |X and V arY |X stand for taking conditional expectation and variance given

X, respectively.

Estimation of S1: First, we estimate the integrand in S1 similar to (C.3):

EXV arY |X
�
λ̂h1...hp � EY |X λ̂h1...hp

�2

�
¸

Ah1...hp

EX
Nx1,...,xp

N̄2
h1,...,hp

P0py|x1, . . . , xpq
�
1� P0py|x1, . . . , xpq

�

�
³
Ah1...hp

P0py|x1, . . . , xpq
�
1� P0py|x1, . . . , xpq

�
Gpdx1, . . . , dxpq³

Ah1...hp
Gpdx1, . . . , dxpq EX

IpN̄h1,...,hp ¡ 0q
N̄h1,...,hp

,

where the last step is by (C.4) and the iterative expectation formula. Since N̄h1,...,hp �
Bin

�
n,
³
Ah1...hp

Gpdx1, . . . , dxpq
�
, by the asymptotic expansion for the expectation of
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reciprocal of Binomial random variables in Stephan (1945),

EX
IpN̄h1,...,hp ¡ 0q

N̄h1,...,hp

� 1

n
³
Ah1...hp

Gpdx1, . . . , dxpq �Opn�2q, (C.6)

we obtain

S1 � C1

2̧

y�1

¸
h1,...,hp

p1{n� opn�2qq � 2C1|k|{n�Op|k|{n2q,

where C1 is some constant with lower and upper bounds independent of n.

Estimation of S2: By (C.5), the integrand in S2 is:

EX
�
EY |X λ̂h1...hp � EX,Y λ̂h1...hp

�2

�EX
� ¸
Ah1...hp

�
Nx1,...,xp

N̄h1,...,hp

� Gpx1, . . . , xpq³
Ah1...hp

Gpdx1, . . . , dxpq


P0py|x1, . . . , xpq


2

.

Similar to (C.4), the joint conditional distribution of Nx1,...,xp given N̄h1,...,hp follows

a multinomial distribution:

tNx1,...,xp : px1, . . . , xpq P Ah1...hpu
��N̄h1,...,hp

� Multi

�
N̄h1,...,hp ,

"
Gpx1, . . . , xpq³

Ah1...hp
Gpdx1, . . . , dxpq : px1, . . . , xpq P Ah1...hp

*

.

As a result, by the iterative expectation formula, EX
�
EY |X λ̂h1...hp �EX,Y λ̂h1...hp

�2
is

also proportional to EX
IpN̄h1,...,hp

¡0q
N̄h1,...,hp

. Therefore, by (C.6)

S2 � C2

2̧

y�1

¸
h1,...,hp

p1{n� opn�2qq � 2C2|k|{n�Op|k|{n2q,

where C2 is some constant with lower and upper bounds independent of n.

Combining the estimation of S1 and S2, we obtain the desired results with C �
2C1 � 2C2.
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C.1.4 Proof of Theorem 20

To prove Theorem 20 we need some preliminaries. The following theorem is a minor

modification of Theorem 2.1 in Ghosal et al. (2000) and the proof is provided in

Appendix C.1.5. For simplicity in notation, we denote the observed data for subject

i as Xi with Xi
iid� P P P , P � Π, and the true model P0.

Theorem 77. Let εn be a sequence with εn Ñ 0, nε2n Ñ 8,
°
n expp�nε2nq   8. Let

d be the total variance distance, C ¡ 0 be a constant and sets Pn � P. Define the

following conditions:

1. logNpεn,Pn, dq ¤ nε2n;

2. ΠnpPzPnq ¤ expt�p2� Cqnε2nu;

3. ΠnpP : || log P
P0
||8   ε2nq ¡ expp�Cnε2nq.

If the above conditions hold for all n large enough, then for M ¡ ?
16� 8C,

ΠntP : dpP, P0q ¥Mεn|X1, . . . , Xnu Ñ 0 a.s.P n
0 .

In our case, Xi include the response yi and predictors xi, P is the random measure

characterizing the unknown joint distribution of pyi, xiq and P0 is the measure char-

acterizing the true joint distribution. As our focus is on the conditional probability,

P py|xq, we fix the marginal distribution of X at it’s true value P0pxq and model the

unknown conditional P py|xq independently of the marginal of X. By doing so, it is

straightforward to show that we can ignore the marginal of X in using Theorem 2

to study posterior convergence. We simply restrict P to the set of joint probabilities

such that P pxq � P0pxq. The total variation distance between the joint probabilities

P and P0 is equivalent to the distance between the conditionals defined in Theorem
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2 by the identity

» d0̧

y�1

��P py, x1, . . . , xpq � P0py, x1, . . . , xpq
��dx1 � � � dxp �

» d0̧

y�1

��P py|x1, . . . , xpq � P0py|x1, . . . , xpq
��dGnpdx1, � � � , dxpq.

Therefore, we will not distinguish the joint probability and the conditional probability

and use P to denote both of them henceforth.

To prove Theorem 2, we also need upper bounds on the distance between two

models specified by (C.12) when the models are the same size and when they are

nested.

Lemma 78. Let P and P̃ be two models specified by (C.10) with parameter pk, λ, πq
and pk̃, λ̃, π̃q, respectively. Assume that P and P̃ have the same multirank k̃ � k �
pk1, . . . , kpq. Then

dpP, P̃ q ¤
d0̧

y�1

max
h1,...,hp

|λh1h2...hppyq � λ̃h1h2...hppyq| � d0

p̧

j�1

max
xj

kj¸
hj�1

|πpjqhj pxjq � π̃
pjq
hj
pxjq|.

Proof. By definition of dpP, P̃ q, we only need to prove that for any y � 1, . . . , d0 and

any combination of px1, . . . , xpq,

|P py|x1, . . . , xpq � P̃ py|x1, . . . , xpq| ¤ max
h1,...,hp

|λh1h2...hppyq � λ̃h1h2...hppyq|

�
p̧

j�1

kj¸
hj�1

|πpjqhj pxjq � π̃
pjq
hj
pxjq|. (C.7)

Actually,

|P py|x1, . . . , xpq � P̃ py|x1, . . . , xpq| ¤ A�
p̧

s�1

Bs,
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where

A �
k1̧

h1�1

� � �
kp¸

hp�1

|λh1h2...hppyq � λ̃h1h2...hppyq|
p¹
j�1

π
pjq
hj
pxjq

¤ max
h1,...,hp

|λh1h2...hppyq � λ̃h1h2...hppyq|
k1̧

h1�1

� � �
kp¸

hp�1

p¹
j�1

π
pjq
hj
pxjq

� max
h1,...,hp

|λh1h2...hppyq � λ̃h1h2...hppyq|,

where the last step is by using the second equation in (C.9), and

Bs �
k1̧

h1�1

� � �
kp¸

hp�1

λ̃h1h2...hppyq |πpsqhs pxsq � π
psq
hs
pxsq|

s�1¹
j�1

π̃
pjq
hj
pxjq

p¹
j�s�1

π
pjq
hj
pxjq

¤
kş

hs�1

|πpsqhs pxsq � π̃
psq
hs
pxsq|,

where the last step is again by using the second equation in (C.10) and the fact that

λh1h2...hppyq ¤ 1. Combining the above inequalities we can obtain (C.7).

Lemma 79. Let P and P̃ be two models as in (C.10) with parameters pk, λ, πq and

pk̃, λ̃, π̃q, respectively. Suppose P is nested in P̃ , i.e. satisfying:

1. kj ¤ k̃j, for j � 1, . . . , p, ;

2. λh1���hp � λ̃h1���hp, for hj ¤ kj, j � 1, . . . , p;

3. π
pjq
hj
pxjq � π̃

pjq
hj
pxjq, for hj   kj, and π

pjq
kj
pxjq �

°
hj¥kj π̃

pjq
hj
pxjq.

Then

dpP, P̃ q ¤ d0

p̧

j�1

max
xj

k̃j¸
hj�kj

π̃
pjq
hj
pxjq.

Proof. By condition (c), P can be considered as model P 1 of size k̃j with π1 � π̃ and

λ1 satisfying:

λ1h1h2���hppyq � λminph1,k1q,minph2,k2q,��� ,minphp,kpqpyq,
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for y � 1, . . . , d0 and hj ¤ k̃j, j � 1, . . . , p.

As a result, by condition (b)

|P py|x1, . . . , xpq � P̃ py|x1, . . . , xpq|

¤
k̃1̧

h1�1

� � �
k̃p¸

hp�1

|λ̃minph1,k1q���minphp,kpqpyq � λ̃h1...hppyq|
p¹
j�1

π̃
pjq
hj
pxjq

�
" k1̧

h1�1

�
k̃1̧

h1�k1�1

* k̃2̧

h2�1

� � �
k̃p¸

hp�1

|λ̃minph1,k1q���minphp,kpqpyq � λ̃h1...hppyq|
p¹
j�1

π̃
pjq
hj
pxjq

¤
k̃1̧

h1�k1�1

k̃2̧

h2�1

� � �
k̃p¸

hp�1

|λ̃minph1,k1q���minphp,kpqpyq � λ̃h1...hppyq|
p¹
j�1

π̃
pjq
hj
pxjq

�
k1̧

h1�1

" k2̧

h2�1

�
k̃2̧

h2�k2�1

*
� � �

k̃p¸
hp�1

|λ̃minph1,k1q���minphp,kpqpyq � λ̃h1...hppyq|
p¹
j�1

π̃
pjq
hj
pxjq

¤ � � �

¤
k̃1̧

h1�k1�1

k̃1̧

h2�1

� � �
k̃p¸

hp�1

|λ̃minph1,k1q���minphp,kpqpyq � λ̃h1...hppyq|
p¹
j�1

π̃
pjq
hj
pxjq

� � � � �
k1̧

h1�1

� � �
kp�1¸

hp�1�1

k̃p¸
hp�kp�1

|λ̃minph1,k1q���minphp,kpqpyq � λ̃h1...hppyq|
p¹
j�1

π̃
pjq
hj
pxjq.

Here the last inequality holds because |λ̃minph1,k1q���minphp,kpqpyq � λ̃h1...hppyq| � 0 if

hj ¤ kj for all j. Hence, the lemma can be proved by noticing the constraints (C.10)

and the fact that λ̃h1...hppyq P r0, 1s.

Proof of Theorem 20. We verify conditions (a)-(c) in Theorem 77. As we described

previously, we do not need to distinguish the joint probability and the conditional

probability under our prior specification. Each model one-to-one corresponds to a

triplet pk, λ, πq, where k � pk1, . . . , kpnq is the multirank, λ � tλh1,...,hpn pyq : y �
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1, . . . , d0, hj ¤ kj, j � 1, . . . , pnu is the core tensor and π � tπpjqhj pxjq : hj ¤ kj, xj �
1, . . . , dj, j � 1, . . . , pnu is the mode matrices. Note that the dimension of λ and π

depend on k. Let the sieve Pn be all conditional probability tensors with multirank

satisfying
±pn

j�1 kj ¤ Dn. Since the inclusion of the jth predictor is equivalent to

kj ¡ 1, models in Pn will depends on at most r̄n � log2Dn predictors.

Condition (a): By the conclusion of lemma 78, we know that an εn-net En of Pn

can be chosen so that for each pk, λ, πq P Pn that satisfies constraints (C.10), there

exists pk̃, λ̃, π̃q P En such that k̃ � k, maxy,h1,...,hpn |λh1h2...hpn pyq � λ̃h1h2...hpn pyq|  
εn

d0pr̄n�1q and maxxj ,hj |πpjqhj pxjq � π̃
pjq
hj
pxjq|   εn

dd0pr̄n�1q for j satisfying kj ¡ 1. Hence,

for fixed k, we can pick εn d-balls of the form

¹
h1,...,hpn ,y

�
λh1h2...hpn pyq �

εn
d0pr̄n � 1q



�

¹
j:kj¡1

kj¹
hj�1

dj¹
xj�1

�
π
pjq
hj
pxjq � εn

dd0pr̄n � 1q


,

where the first product is taken for all integer vector ph1, . . . , hpn , yq satisfying 1 ¤
y ¤ d0 and 1 ¤ hj ¤ kj. For fixed k with

±pn
j�1 kj ¤ Dn in Pn, there are at most

d0Dn such λh1h2...hpn pyq’s and r̄nd
2 π

pjq
hj
pxjq’s. Equally spaced grids for λ and π can be

chosen so that the union of εn d-balls centering on the grids covers the set of all models

in Pn with multirank k. Note that there are at most dr̄np
r̄n
n different multirank k in

Pn. This count follows by first choosing at most r̄n important predictors with kj ¡ 1,

then choosing at most dr̄n for these kj’s. Hence, the log of the minimal number of

size-εn balls needed to cover Pn is at most

log
 
dr̄np

r̄n
n

(� d0Dn log
d0pr̄n � 1q

2εn
� r̄nd

2 log
dd0pr̄n � 1q

2εn
.

By the conditions in the theorem, each term will be bounded by nε2n{3 for n suffi-

ciently large.

Condition (b): Because ΠnpPcnq � 0 in our case, this condition is trivially sat-

isfied. Actually, this condition will still be satisfied as long as Πnp
±pn

j kj ¡ Dnq ¤
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expt�p2 � Cqnε2nu, which implies that the prior probability assigned to complex

models is exponentially small.

Condition (c): As P0 is lower bounded away from zero by ε0, || log P
P0
||8   ε2n is

implied by ||P � P0||8   ε0ε
2
n for n large enough (εn Ñ 0 as n increases). Let pλ̃, π̃q

denote parameters for the true model P0. Consider approximating P0 by model P

with pkpnq, λ, πq, where kpnq is specified in the theorem. Applying lemma 79 to bound

dpP̄ , P0q, where P̄ (regard as the P ) with pkpnq, λ̄, π̄q is nested in P0 (regard as the

P̃ ), and then estimating the difference between P and P̄ by lemma 78, we have

dpP, P0q ¤
d0̧

y�1

max
h1¤kpnq1 ,...,hpn¤kpnqpn

|λh1h2...hpn pyq � λ̄h1......hpn pyq|

� d0

¸
j:k

pnq
j ¡1

max
xj

k
pnq
j¸

hj�1

��πpjqhj pxjq � π̄
pjq
hj
pxjq

��� d0

pņ

j�1

max
xj

¸
hj¡kpnqj

π̃
pjq
hj
pxjq.

(C.8)

Applying (C.7) in lemma 78 and combining (C.8) and condition (iv) in Theorem 20,

|| log P
P0
||8   ε2n is implied by

max
h1¤kpnq1 ,...,hpn¤kpnqpn ,y

|λh1...hppyq � λ̄h1...hpn pyq|  
ε2n

r̄n � 1
,

max
hj¤kpnqj ,xj

|πpjqhj pxjq � π̄
pjq
hj
pxjq|   ε2n

pr̄n � 1qd.

Note that the prior probability P pk � kpnqq is at least prn{pnqr̄nprn{ppndqqr̄np1 �
rn{pnqpn�r̄n . Here p1 � rn{pnqpn�r̄n is defined to be 1 if rn � pn. As rn{pn Ñ 0,

log Πnpk � kpnqq is bounded below by 2r̄n logprn{pnq ¥ �2r̄n log pn.

Moreover, since the Dirp1{dj, . . . , 1{djq and Dirp1{d0, . . . , 1{d0q priors for λh1h2...hpn p�q

and π
pjq
� pxjq have density lower bounded away from zero by a constant not involving
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n,

log Πn

�
P : || log

P

P0

||8   ε2n




¡ �d0Dn log
r̄n � 1

ε2n
� r̄nd

2 log
pr̄n � 1qd

ε2n
� 2r̄n log pn.

By the assumptions in the theorem, for any C ¡ 0, for n sufficiently large, log ΠnpP :

|| log P
P0
||8   ε2nq ¡ �Cnε2n.

C.1.5 Proof of Theorem 77

The following two lemmas are needed to prove this theorem. The proof of Lemma 80

can be found in Jiang (2006), and the proof of Lemma 81 follows the line of Ghosal

et al. (2000) and is given here.

Lemma 80. Let P be a subset of all probability measures of X, P0 P P and d be the

total variance distance, then for each ε ¡ 0 and n ¡ 0, there exists a test φn such

that

P n
0 φn ¤ N

�
ε

4
,P , d



exp

�
� n

8
ε2


,

sup
PPPXtP :dpP,P0q¥εu

P np1� φnq ¤ exp

�
� n

8
ε2


,

where P n is the n�fold of P .

Lemma 81. If ΠnpP : || log P
P0
||8   ε2nq ¡ expp�Cnε2nq, then for any test φn, the

following inequality holds:

EP0ΠnpP : dpP, P0q ¥ εn|X1, . . . , Xnq ¤

P n
0 φn � exppp1� Cqnε2nqΠnpPcnq � exppp1� Cqnε2nq sup

PnXtP :dpP,P0q¥εnu
P np1� φnq.
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Proof. We can divide the l.h.s. into two pieces

EP0ΠnpP : dpP, P0q ¥ εn|X1, . . . , Xnq �

EP0ΠnpP : dpP, P0q ¥ εn|X1, . . . , Xnqφn
�EP0ΠnpP : dpP, P0q ¥ εn|X1, . . . , Xnqp1� φnq. (C.9)

The first term satisfies

EP0ΠnpP : dpP, P0q ¥ εn|X1, . . . , Xnqφn ¤ P n
0 φn. (C.10)

Next we will estimate the second term. By definition, we have

EP0ΠnpP : dpP, P0q ¥ εn|X1, . . . , Xnqp1� φnq �

EP0

³
dpP,P0q¥εn

±n
i�1

P
P0
pXiqdΠnpP qp1� φnq³±n

i�1
P
P0
pXiqdΠnpP q

. (C.11)

Let Kn � tP : || log P
P0
||8   ε2nu. Using the condition ΠnpKnq ¡ expp�Cnε2nq, we

have

» n¹
i�1

P

P0

pXiqdΠnpP q ¥
»
Kn

n¹
i�1

P

P0

pXiqdΠnpP q

¥ ΠnpKnq expp�nε2nq ¥ expp�p1� Cqnε2nq a.s.P n
0 .

By Fubini’s theorem and the fact 0 ¤ φn ¤ 1

EP0

»
dpP,P0q¥εn

n¹
i�1

P

P0

pXiqdΠnpP qp1� φnq

¤ ΠnpPcnq �
»
PnXtP :dpP,P0q¥εnu

P np1� φnqdΠnpP q

¤ ΠnpPcnq � sup
PnXtP :dpP,P0q¥εnu

P np1� φnq.

Combining the above assertions and equation (C.11), we can see that
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EP0ΠnpP : dpP, P0q ¥ εn|X1, . . . , Xnqp1� φnq

¤ exppp1� Cqnε2nqEP0

»
dpP,P0q¥εn

n¹
i�1

P

P0

pXiqdΠnpP qp1� φnq

¤ exppp1� Cqnε2nqΠnpPcnq � exppp1� Cqnε2nq sup
PnXtP :dpP,P0q¥εnu

P np1� φnq.

(C.12)

Combining (C.9), (C.10) and (C.12) will lead to the conclusion.

Proof of Theorem 77. Let the test in the Lemma 81 to be the test φn defined in

Lemma 80 with ε � Mεn and M2 ¡ 16 � 8C. Using the condition (a), (b) in the

Theorem 77, we have

EP0ΠnpP : dpP, P0q ¥Mεn|X1, . . . , Xnq ¤

expp�nε2nq � expp�nε2nq � expp�nε2nq � 3 expp�nε2nq.

So

EP0

¸
n

ΠnpP : dpP, P0q ¥Mεn|X1, . . . , Xnq ¤ 3
¸
n

expp�nε2nq   8.

Thus we have

¸
n

ΠnpP : dpP, P0q ¥Mεn|X1, . . . , Xnq   8 a.s.P n
0 ,

and

ΠnpP : dpP, P0q ¥Mεn|X1, . . . , Xnq Ñ 0 a.s.P n
0 .
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Appendix D

Appendix for Chapter 5

D.1 Posterior computation

In this appendix, we provide details of the MCMC implementation for CA and LA.

The key idea is to augment the weight vector λ � pλ1, . . . , λMq � Diripρ, . . . , ρq by

λj � Tj{pT1�� � ��TMq with Tj
iid� Gapρ, 1q for j � 1, . . . ,M and conduct Metropolis

Hastings updating for log Tj’s. Recall that F � pFjpXiqq is the n �M prediction

matrix.

D.1.1 Convex aggregation

By augmenting the Dirichlet distribution in the prior for CA, we have the following

Bayesian convex aggregation model:

Yi �
M̧

j�1

λjFij � εi, εi � Np0, 1{φq,

λj � Tj
T1 � � � � � TM

, Tj � Gapρ, 1q, φ � Gapa0, b0q.

We apply a block MCMC algorithm that iteratively sweeps through the following

steps, where superscripts “O”, “P” and “N” stand for “old”, “proposal” and “new”
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respectively:

1. Gibbs updating for φ: Updating φ by sampling from rφ|�s � Gapan, bnq with

an � a0 � n

2
, bn � b0 � 1

2

ņ

i�1

�
Yi �

M̧

j�1

λjFij


2

.

2. MH updating for T (λ): For j � 1 to M , propose T Pj � TOj e
βUj , where Uj �

Up�0.5, 0.5q. Calculate λPj � T Pj {p
°M
j�1 T

P
j q and the log acceptance ratio

logR �φ
2

ņ

i�1

�
Yi �

M̧

j�1

λPj Fij


2

� φ

2

ņ

i�1

�
Yi �

M̧

j�1

λOj Fij


2

plog-likelihoodq

�
M̧

j�1

�pρ� 1q log T Pj � T Pj
�� M̧

j�1

�pρ� 1q log TOj � TOj
� plog-priorq

�
M̧

j�1

log T Pj �
M̧

j�1

log TOj plog-transition probabilityq.

With probability mint1, Ru, set TNj � T Pj , j � 1, . . . ,M and with probability

1 � mint1, Ru, set TNj � TOj , j � 1, . . . ,M . Set λNj � TNj {p
°M
j�1 T

N
j q, j �

1, . . . ,M .

In the above algorithm, β serves as a tuning parameter to make the acceptance rate

of T around 40%.

D.1.2 Linear aggregation

By augmenting the double Dirichlet distribution in the prior for LA, we have the

following Bayesian linear aggregation model:

Yi �
M̧

j�1

θjFij � εi, εi � Np0, 1{φq, θj � Azjλj, λj � Tj
T1 � � � � � TM

,

A �Gapc0, d0q, zj � Bernoullip0.5q, Tj � Gapρ, 1q, φ � Gapa0, b0q.
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The MCMC updating of T (or equivalently λ) and φ is the similar as those in the

convex aggregation. In each iteration of the block MCMC algorithm, we add two

additional steps for updating z and A:

3. MH updating for A: Propose AP � AOeβU , where Uj � Up�0.5, 0.5q. Calcu-

late λPj � λOj e
βU and the log acceptance ratio

logR �φ
2

ņ

i�1

�
Yi �

M̧

j�1

λPj Fij


2

� φ

2

ņ

i�1

�
Yi �

M̧

j�1

λOj Fij


2

plog-likelihoodq

� �pc1 � 1q logAP � d1A
P
�� �pc1 � 1q logAO � d1A

O
� plog-priorq

� logAP � logAO plog-transition probabilityq.

With probability mint1, Ru, set AN � AP and with probability 1�mint1, Ru,
set AN � AO. Set λNj � λOj A

N{AO, j � 1, . . . ,M .

4. MH updating for z: For j � 1 to M , propose zPj � zOj Vj, where P pVj � �1q �
0.5. Calculate λPj � λOj Vj and the log acceptance ratio

logR �φ
2

ņ

i�1

�
Yi �

M̧

j�1

λPj Fij


2

� φ

2

ņ

i�1

�
Yi �

M̧

j�1

λOj Fij


2

plog-likelihoodq.

With probability mint1, Ru, set zNj � zPj , j � 1, . . . ,M and with probability

1�mint1, Ru, set zNj � zOj , j � 1, . . . ,M . Set λNj � λOj z
P
j {zOj , j � 1, . . . ,M .

D.2 Proofs of technical results in Chapter 5

D.2.1 Proof of Lemma 26

The following lemma suggests that for any m ¡ 0, each point in Λ or DM�1 can be

approximated by an m-sparse point in the same space with error at most
a

2κ{m.

Lemma 82. Fix an integer m ¥ 1. Assume (A1) and (B1).

a. For any λ� P Λ, there exists a λ̄ P Λ, such that ||λ̄||0 ¤ m and dΣpλ̄, λ�q ¤
b

2κ
m

.
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b. For any η� P DM�1, there exists an η̄ P DM�1, such that ||η̄||0 ¤ m and

dF pη̄, η�q ¤
b

2κ
m

.

Proof. (Proof of a) Consider a random variable J P t1, . . . ,Mu with probability

distribution P pJ � jq � λ�j , j � 1, . . . ,M . Let J1, . . . , Jm be m iid copies of J

and nj be the number of i P t1, . . . , nu such that pJi � jq. Then pn1, . . . , nMq �
MNpm, pλ�1 , . . . , λ�Mq, where MN denotes the multinomial distribution. Let V �
pn1{m, . . . , nM{mq P Λ. Then the expectation ErV s of the vector V is λ�. Therefore,

we have

Ed2
ΣpV, λ�q �

M̧

j,k�1

ΣjkE

�
nj
m
� λ�j


�
nk
m
� λ�k




� 1

m

M̧

j�1

Σjjλ
�
j p1� λ�j q �

2

m

¸
1¤j k¤M

Σjkλ
�
jλ

�
k

¤ κ

m

M̧

j�1

λ�j p1� λ�j q �
2κ

m

¸
1¤j k¤M

λ�jλ
�
k ¤ 2κ

m
,

where we have used (A1), the fact that |Σjk| ¤ Σ
1{2
jj Σ

1{2
kk and

°M
j�1 λ

�
j � 1. Since the

expectation of d2
ΣpV, λ�q is less than or equal to 2κ{m, there always exists a λ̄ P Λ

such that dΣpλ̄, λ�q ¤
a

2κ{m.

(Proof of b) The proof is similar to that of a. Now we define J P t1, . . . ,Mu as

a random variable with probability distribution P pJ � jq � |η�j |, j � 1, . . . ,M and

let V � psgnpη�1 qn1{m, . . ., sgnpη�MqnM{mq P DM�1. The rest follows the same line

as part a. under assumption (B1).

Now, we can proceed to prove Lemma 26.

(Proof of a) Without loss of generality, we may assume that the index set of

all nonzero components of λ� is S0 � t1, 2, . . . , s � 1,Mu. Since supj Σjj ¤ κ and
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|Σjk| ¤ Σ
1{2
jj Σ

1{2
kk ¤ κ,

dΣpλ, λ�q �
M̧

j,k�1

Σjkpλj � λ�j qpλk � λ�kq ¤ κ||λ� λ�||21.

Therefore, for any ε ¡ 0, t||λ�λ�||1 ¤ κ�1{2εu � tdΣpλ, λ�q ¤ εu. Since |λM �λ�M | ¤°M�1
j�1 |λj � λ�j |, for δ1 � κ�1{2ε{p4M � 4sq and δ0 � κ�1{2ε{p4sq, we have

Λε �
 
λ P Λ : λj P p0, δ1s, j P Sc0; |λj � λ�j | ¤ δ0, j P S0 � tMu(

� t||λ� λ�||1 ¤ κ�1{2εu.

Combining the above conclusions yields

ΠpdΣpλ, λ�q ¤ εq ¥ ΠpΛεq

�
»

Λε

Γpα{Mγ�1q
ΓMpα{Mγq

M�1¹
j�1

λ
α{Mγ�1
j

�
1�

M�1̧

j�1

λj


α{Mγ�1

dλ1 � � � dλM�1,

where Γp�q denotes the gamma function. By the facts that ΓpxqΓp1�xq � π{ sinpπxq
for x P p0, 1q and c � Γ1p1q is finite, we have txΓpxqu�1 � 1 � cx � Opx2q for

x P p0, 1{2q. Combining this with the fact that λj ¤ 1, we have

ΠpdΣpλ, λ�q ¤ εq ¥ Γpα{Mγ�1q
ΓMpα{Mγq

" ¹
jPS0�tpu

» maxt1,λj�δ0u

mint0,λj�δ0u
λ
α{Mγ�1
j dλj

*
" ¹
jPSc0

» δ1

0

λ
α{Mγ�1
j dλj

*

Á α�1Mγ�1αMM�γMδs�1
0

�
α�1Mγδ

α{Mγ

1

�M�s

Á αs�1M�γps�1q�1

�
ε

s


s�1�
ε

M � s


αM�pγ�1qp1�s{Mq

Á exp

"
� Cγs logM � Cs log

s

ε

*
Á exp

"
� Cγs log

M

ε

*
,

where we have used the assumption γ ¥ 1 and the fact s ¤M .

265



(Proof of b) For any integer m ¡ 0, let λ̄ be the m-sparse approximation of λ�

provided in Lemma 82 part a. Then dΣpλ̄, λ�q ¤ Cm1{2. By the conclusion of Lemma

26 part a, we have

ΠpdΣpλ, λ̄q ¤ εq Á exp

"
� Cγm log

M

ε

*
.

Therefore, by the triangle inequality, we have

Π

�
dΣpλ, λ�q ¤ ε� C?

m



Á exp

"
� Cγm log

M

ε

*
.

(Proof of c) For the double Dirichlet distribution, the prior mass allocated to

each orthant of RM is 2�M . A direct application of part a will result a lower bound

of order e�CM , which is too small compare to our conclusion. Therefore, we need to

adapt the proof of part a.

Let S0 � t1, 2, . . . , s � 1,Mu be the index set of all nonzero components of η�.

Similar to the proof of part a, with the same δ1 and δ0 we define

Ωε �
 
η P DM�1 : |ηj| ¤ δ1, j P Sc0; |ηj � η�j | ¤ δ0, j P S0 � tMu(.

Similarly, it can be shown that Ωε � tdF pη, η�q ¤ εu. So by the fact that |ηj| ¤ 1,

we have

ΠpdF pη, η�q ¤ εq ¥ 1

2M
Γpα{Mγ�1q
ΓMpα{Mγq

" ¹
jPS0�tpu

» ηj�δ0

ηj�δ0
|ηj|α{Mγ�1dηj

*
" ¹
jPSc0

» δ1

�δ1
|ηj|α{Mγ�1dηj

*

Á 1

2M
α�1Mγ�1αMM�γMp2δ0qs�1

�
2α�1Mγδ

α{Mγ

1

�M�s

Á αs�1M�γps�1q�1

�
ε

s


s�1�
ε

M � s


αM�pγ�1qp1�s{Mq

Á exp

"
� Cγs log

M

ε

*
.
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As we can seen, now each ηj contributes an additional factor of 2 to the prior con-

centration probability comparing to that of λj in the proof of part a. This additional

factor compensates for the 2�M factor in the normalizing constant of the double

Dirichlet distribution.

(Proof of d) The proof is similar to that of part b by instead combining the proof

of part c and Lemma 82 part b. Therefore, we omit the proof here.

D.2.2 Proof of Corollary 27

By the triangle inequality and assumption (B1), we have

dF pλ, λ�q ¤ dF pAη,A�ηq � dF pA�η, A�η�q ¤ κ|A� A�| � A�dF pη, η�q.

As a result, t|A� A�| ¤ κ�1ε; dF pη, η�q ¤ pA�q�1εu � tdF pλ, λ�q ¤ 2εu and

ΠpdF pλ, λ�q ¤ εq ¥ Πp|A� A�| ¤ Cεq � ΠpdF pη, η�q ¤ Cεq.

Since log Πp|A � A�| ¤ Cεq � log ε, the conclusions can be proved by applying part

c and part d in Lemma 26.

D.2.3 Proof of Lemma 28

(Proof of a) For any λ P FΛ
s,ε, let Spλq be the index set of the s largest λj’s. For any

λ P FΛ
s,ε, if λ1 P Λ satisfies λ1j � 0, for j P Scpλq and |λ1j�λj| ¤ ε{s, for j P Spλq, then

dΣpλ, λ1q ¤ κ||λ1 � λ||1 ¤ 2κε. Therefore, for a fixed index set S � t1, . . . ,Mu with

size s, the set of all grid points in r0, 1ss with mesh size ε{s forms an 2κε-covering set

for all λ such that Spλq � S. Since there are at most
�
M
s

�
such an S, the minimal

2κε-covering set for FΛ
s,ε has at most

�
M
s

�� �
s
ε

�s
elements, which implies that

logNp2κε,FΛ
s,ε, || � ||1q ¤ log

�
M

s



� s log

s

ε
À s log

M

ε
.

This proves the first conclusion.

For any η P FηB,s,ε, let Spηq be the index set of the s largest |ηj|’s. Similarly, for

any λ � Aη P FηB,s,ε, if η1 P DM�1 satisfies η1j � 0, for j P Scpηq and |η1j�ηj| ¤ ε{pBsq,
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for j P Spηq, and A1 ¤ B satisfies |A1�A| ¤ ε, then dF pA1η1, Aηq ¤ κ||A1η1�Aη||1 ¤
κ|A� A1| �Bκ||η1 � η||1 ¤ 3κε. Similar to the arguments for FΛ

s,ε, we have

logNp3κε,FηB,s,ε, || � ||1q ¤ log

�
M

s



� s log

Bs

ε
� log

B

ε
À s log

M

ε
� s logB.

(Proof of b) By Lemma 82, any λ P Λ and η P BDM�1 can be approximated by

an m-sparse vector in the same space with error Cm�1{2 and CBm�1{2 respectively.

Moreover, by the proof of Lemma 82, all components of such m-sparse vectors are

multiples of 1{m. Therefore, a minimal C{?m-covering set of Λ has at most
�
M�m�1
m�1

�
elements, which is the total number of nonnegative integer solutions pn1, . . . , nMq of

the equation: n1 � � � � � nM � m. Therefore,

logNpC{?m,Λ, dΣq ¤ log

�
M �m� 1

m� 1



À m logM,

logNpCB{?m,Λ, dΣq ¤ log

�
M �m� 1

m� 1



� log

B

B{?m À m logM.

D.2.4 Proof of Lemma 29

(Proof of a) Consider a random probability P drawn from the Dirichlet process (DP)

DP
�pα{Mγ�1qU� with concentration parameter α{Mγ�1 and the uniform distribu-

tion U on the unit interval r0, 1s. Then by the relationship between the DP and the

Dirichlet distribution, we have

pλ1, . . . , λMq �
�
P pA1q, . . . , P pAMq

�
,

with Ak � rpk � 1q{M,k{Mq for k � 1, . . . ,M . The stick-breaking representation

for DP (Sethuraman, 1994) gives Q � °8
k�1wkδξk , a.s. where ξk

iid� U and

wk � w1
k

k�1¹
i�1

p1� w1
iq, with w1

k
iid� Betap1, α{Mγ�1q.
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For each k, let ipkq be the unique index such that ξk P Aipkq. Let λp1q ¥ � � � ¥ λpMq

be an ordering of λ1, . . . , λM , then

ş

j�1

λpjq ¥ Q

� s¤
j�1

Aipjq



�

¸
k:ξkP

�s
j�1 Aipjq

wk ¥
ş

k�1

wk.

Combining the above with the definition of wk provides

M̧

j�s�1

λpjq ¤ 1�
ş

k�1

w1
k

k�1¹
i�1

p1� w1
iq �

s¹
k�1

p1� w1
kq �

s¹
k�1

vk,

where vk � 1 � w1
k

iid� Betapα{Mγ�1, 1q. Since vk P p0, 1q, we have pFΛ
s,εqc � °M

j�s�1 λpjq ¥ ε
( �  ±s

k�1 vk ¥ ε
(
. Because

Evsk �
» 1

0

α

Mγ�1
tα{M

γ�1�s�1dt � α

α �Mγ�1s
¤ αM�pγ�1qs�1,

an application of Markov’s inequality yields

Π

" s¹
k�1

vk ¥ ε

*
¤ ε�s

s¹
k�1

Evsk ÀM�spγ�1qs�sε�s.

As a result,

Πpλ R Fλs,εq ¤ Π

" s¹
k�1

vk ¥ ε

*
¤ exp

�
� Cspγ � 1q log

M

ε



.

(Proof of b) The proof is similar to that of a since p|η1|, . . . , |ηM |q � pλ1, . . . , λMq
and ΠpA ¡ Bq ¤ e�CB for A � Gapa0, b0q.

D.2.5 Proof of Lemma 30

(Proof of a) Under (A3), the conclusion can be proved by applying Lemma 2.1 and

Lemma 4.1 in Kleijn and van der Vaart (2006) by noticing the fact that ||°M
j�1 λjfj�

f�||Q � dΣpλ, λ�q.
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(Proof of b) Let ψpλ, Y q � 1
2σ2 ||Y �Fλ||22. We construct the test function as φnpY q �

Ipψpλ�, Y q � ψpλ2, Y q ¥ 0q. By the choice of λ�, under P0 we can decomposition

the response Y as Y � Fλ� � ζ � ε, where ε � Np0, σ2Inq and ζ � F0 � Fλ� P Rd

satisfying F T ζ � 0. By Markov’s inequality, for any t   0, we have

Pλ�φnpY q � Pλ�pettψpλ�,Y q�ψpλ2,Y qu ¥ 1q

¤ Eλ� exp

"
t

2σ2

�||ζ � ε||22 � ||F pλ� � λ2q � ζ � ε||22
�*

� Eλ� exp

"
t

σ2
pλ2 � λ�qTF T ε

*
exp

"
� t

2σ2
nd2

F pλ2, λ
�q
*

� exp
 � tp2σ2q�1nd2

F pλ2, λ
�q � t2σ�2nd2

F pλ2, λ
�q(,

� exp
 � p16σ2q�1nd2

F pλ2, λ
�q(, (D.1)

with t � 1
4
¡ 0, where we have used the fact that ε � Np0, σ2Inq under Pλ� and

F T ζ � 0. Similarly, for any λ P RM , under Pλ we have Y � Fλ � ε with ε �
Np0, σ2Inq. Therefore, for any t ¡ 0 we have

Pλp1� φnpY qq � Pλpettψpλ2,Y q�ψpλ�,Y qu ¥ 1q

¤ Eλ exp

"
t

2σ2

�||ε� F pλ2 � λq||22 � ||ε� F pλ� � λq||22
�*

� Eλ exp

"
� t

σ2
pλ2 � λ�qTF T ε

*
(D.2)

exp

"
� t

2σ2
npd2

F pλ, λ�q � d2
F pλ, λ2qq

*
� exp

 � tp2σ2q�1n
�
d2
F pλ, λ�q � d2

F pλ, λ2q
�� t2σ�2nd2

F pλ2, λ
�q(,

� exp

"
� p16σ2q�1n

�
d2
F pλ, λ�q � d2

F pλ, λ2q
�2

d2
F pλ2, λ�q

*
, (D.3)

with t � 1
4

�
d2
F pλ, λ�q � d2

F pλ, λ2q
�{d2

F pλ2, λ
�q ¡ 0 if dF pλ, λ�q ¡ dF pλ, λ2q.
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Combining (D.1) and (D.3) yields

Pλ�φnpY q ¤ exp
 � p16σ2q�1nd2

F pλ2, λ
�q(

sup
λPRM : dF pλ,λ2q  1

4
dF pλ�,λ2q

Pλp1� φnpY qq ¤ exp
 � p64σ2q�1nd2

F pλ2, λ
�q(.
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Appendix E

Appendix for Chapter 6

E.1 Proofs of technical results in Chapter 6

E.1.1 Proof of Lemma 31

Consider a fixed s. Let As � tx : |x � µs| ¤ d0u. Then by the definition of total

variation norm and ||π̂t � πt|| Ñ 0, we have |π̂tpAsq � πtpAsq| Ñ 0 as t Ñ 8.

Because
³
hpsqpxqλpdxq � 1 and δt Ñ 0, h

psq
t pAcsq Ñ 0 uniformly for s P t1, . . . , Su as

t Ñ 8. As a result, limtÑ8 |π̂tpAsq � w
psq
s | � 0. By the weak law of large numbers,

|ŵpsq
t � π̂tpAsq| Ñ 0 in probability as L Ñ 8. Combining the above, we reach the

conclusion.

E.1.2 Proof of Lemma 42

There exists a short proof for this lemma and Lemma 43, which is based on the

operator theory and can be considered as a special case of the proof for Lemma 39

with V � 1. But for illustration and possible future generalization, we also provide

the following proof based on coupling technique.

Denote δ � 1
2
||p0 � π||. Let tXt : t ¥ 0u and tX 1

t : t ¥ 0u be two Markov chains
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defined as follows:

1. X0 � p0;

2. Given X0 � x, with probability mint1, πpxq
p0pxqu, set X 1

0 � x; with probability

1�mint1, πpxq
p0pxqu, draw

X 1
0 �

πp�q �mintπp�q, p0p�qu
δ

;

3. For t ¥ 1, if X0 � X 1
0, draw Xt � X 1

t � T pXt�1, �q, else draw Xt and X 1
t

independently from Xt � T pXt�1, �q and X 1
t � T pX 1

t�1, �q respectively.

Note that πp�q�mintπp�q,p0p�qu
δ

is a valid probability density since: 1. it is nonnegative;

2. its integral on E is equal to one by the definition of δ.

From the above construction, it is easy to see that the marginal distribution of

Xt is T t � p0. Next we will prove that the marginal distribution of X 1
t is π for all t.

Since the stationary distribution of T is π, we only need to show that the marginal

distribution of X 1
0 is π. First,

P pX0 � X 1
0q �

»
mint1, πpxq

p0pxqup0pxqλpdxq

�
»

mintp0pxq, πpxquλpdxq

�1� δ.

(E.1)
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Then, for any A P BpEq,
P pX 1

0 P Aq �P pX 1
0 P A,X0 � X 1

0q � P pX 1
0 P A,X0 � X 1

0q

�P pX 1
0 P A|X0 � X 1

0qP pX0 � X 1
0q

�
»
A

P pX0 � X 1
0|X 1

0 � xqP pX 1
0 � xqλpdxq

�δ
»
A

πpxq �mintπpxq, p0pxqu
δ

λpdxq �
»
A

min

"
1,
πpxq
p0pxq

*
p0pxqλpdxq

�
»
A

πpxqλpdxq.

By uniform ergodicity, for any probability measure p, we have

||T t � p� π|| �
» ���� » T tpz, xqppzqλpdzq � »

πpxqppzqλpdzq
����λpdxq

¤
»
||T tpz, �q � πp�q||ppzqλpdzq

¤rptq.

(E.2)

By the above inequality, (E.1) and our construction of Xt and X 1
t, for any A P

BpEq, we have

|T t � p0pAq � πpAq| �|P pXt P Aq � P pX 1
t P Aq|

�|P pX0 � X 1
0, Xt P Aq � P pX0 � X 1

0, X
1
t P Aq|

¤P pX0 � X 1
0q

 |P pXt P A|X0 � X 1
0q � πpAq|

� |P pX 1
t P A|X0 � X 1

0q � πpAq|(
¤δrptq,

where the last line follows by the fact that ||p� q|| � 2 supA |ppAq � qpAq| and (E.2)

with pp�q � P pX0 � �|X0 � X 1
0q and pp�q � P pX 1

0 � �|X0 � X 1
0q. Therefore,

||T t � p0 � π|| � 2 sup
A
|T t � p0pAq � πpAq| ¤ rptq||p0 � π||.
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E.1.3 Proof of Lemma 43

Let δpxq � 1
2
||T px, �q�π|| ¤ ρ. Given an initial point x, we can construct two Markov

chains tXt : t ¥ 0u and tX 1
t : t ¥ 0u as follows:

1. X0 � x, X 1
0 � π;

2. For t ¥ 1, given Xt�1 � x and X 1
t�1 � x1,

(a) if x � x1, choose Xt � X 1
t � T px, �q;

(b) else, first choose X 1
t � y � T px1, �q, then with probability mint1, T px,yq

πpyq u,

set Xt � y, with probability 1�mint1, T px,yq
πpyq u, draw

Xt � T px, �q �mintT px, �q, πp�qu
δpxq ;

Then similar to the proof of Lemma 42, the above procedure is valid and the two

Markov chains Xt and X 1
t have the same transition kernel T , but have initial distri-

bution δx and π, respectively. Moreover,

P pXt � X 1
t|X1, X

1
1, . . . , Xt�1, X

1
t�1q ¤ sup

x

"
1�

»
mint1, T px, yq

πpyq uπpyqλpdyq
*

� sup
x
δpxq ¤ ρ.

Therefore, we have

||T tpx, �q � π|| ¤ P pX1 � X 1
1, . . . , Xt � X 1

tq ¤ ρt.

E.1.4 Proof of Lemma 44

By Lemma 42, T is uniformly ergodic. Therefore by Theorem 1.3 in Mengersen and

Tweedie (1996), (6.15) holds for some ρ P p0, 1q and probability measure ν. Then by

the arguments after Lemma 43, (6.16) holds with the same ρ.
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E.1.5 Proof of Lemma 45

We construct a new Markov chain tX̃t : t ¥ 0u as follows:

1. The state space of X̃t is Ẽ � E Y tcu, where c is an extended “coffin” state.

2. For t ¡ 0: if X̃t�1 � c, then with probability δpxq, X̃t � X 1
t and with probability

1� δpxq, X̃t � c; if X̃t�1 � c, then X̃t � c. Therefore, c is an absorbing state.

3. X̃0 is distributed according to p0.

Then by identifying the coupling pXt � X 1
tq in the proof of Lemma 43 as going to

the absorbing state c, we have

||T t � p0 � π|| ¤ P pX̃t � cq � E
 t¹
s�1

δpX 1
sq
(
,

since before being coupled, X 1
t in the proof of Lemma 43 is a Markov chain with

transition kernel T 1.

E.1.6 Proof of Theorem 32

We will construct two time inhomogeneous Markov chains tXt,s : s � 1, . . . ,mt, t ¥
0u and tX 1

t,s : s � 1, . . . ,mt, t ¥ 0u, where a double index is used as the step indicator

under the following order p0, 1q Ñ � � � Ñ p0,m0q Ñ p1, 1q Ñ � � � Ñ p1,m1q Ñ
p2, 1q Ñ � � � Ñ p2,m2q Ñ � � � . Let δtpxq � 1

2
||Ttpx, �q � πt||. The two chains are

constructed as follows: (note that m0 � 1)

1. X0,1 � π0, X 1
0,1 � π0;

2. For t ¥ 1,

(a) s � 1. Let Xt�1,mt�1 � x and X 1
t�1,mt�1

� x1. Set Xt,1 � x. With prob-

ability mint1, πtpxq
πt�1pxqu, set X 1

t,1 � x; with probability 1 � mint1, πtpxq
πt�1pxqu,
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draw

X 1
t,1 �

πtp�q �mintπtp�q, πt�1p�qu
αt

;

(b) 1   s ¤ mt. Let Xt,s�1 � x and X 1
t,s�1 � x1.

i. if x � x1, choose Xt,s � X 1
t,s � Ttpx, �q;

ii. else, first choose X 1
t,s � y � Ttpx1, �q, then with probability mint1,

Ttpx,yq
πtpyq u, set Xt,s � y, with probability 1�mint1, Ttpx,yq

πtpyq u, draw

Xt,s � Ttpx, �q �mintTtpx, �q, πtp�qu
δtpxq ;

The above construction combines those in Lemma 42 and 43. By the argument in

the proof of Lemma 42, the construction for s � 1 is valid. Moreover, if pXt�1,mt�1 �
X 1
t�1,mt�1

q, then the probability of pXt,1 � X 1
t,1q is αt. Similarly, by the argument in

the proof of Lemma 43, the construction for s ¡ 1 is valid. Moreover, conditioning

on Xt,s�1 and X 1
t,s�1, the conditional probability of pXt,1 � X 1

t,1q does not exceed ρt.

It can been seen that the marginal distribution of Xt,s is T st �Qt�1 � � � � �Q1 � π0,

while the marginal distribution of X 1
t,s is πt, for s � 1, . . . ,mt. Therefore,

||Qt � � � � �Q1 � π0 � πt|| ¤ P pXt,mt � X 1
t,mtq.

Furthermore, we have

P pXt,mt � X 1
t,mtq � P pXt�1,mt�1 � X 1

t�1,mt�1
, Xt,mt � X 1

t,mtq

� P pXt�1,mt�1 � X 1
t�1,mt�1

, Xt,mt � X 1
t,mtq

¤ P pXt�1,mt�1 � X 1
t�1,mt�1

qρmtt
� �

1� P pXt�1,mt�1 � X 1
t�1,mt�1

q�αtρmtt
� αtεt � εtp1� αtqP pXt�1,mt�1 � X 1

t�1,mt�1
q

¤ � � � ¤
ţ

s�1

" t¹
u�s�1

εup1� αuq
*
εsαs.

Combining the above two inequalities, the theorem can be proved.
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E.1.7 Proof of Lemma 33

Under the regularization conditions on fθ, the following second order Berstein Von-

Mises theorem holds (for a proof, see, for example, Datta and Mukerjee (2004)):��������πt �N

�
θ̂nt ,

1

nt
I�1


�������� � OP

�
1?
nt



, (E.3)

where Npµ,Σq is the multivariate normal distribution with mean µ and covariance

Σ, θ̂nt is the maximum likelihood estimator, πt is the posterior distribution with nt

observations Y1, . . . , Ynt and I is the Fisher information matrix.

Next, we show that under the same regularity conditions, |θ̂nt�θ̂nt�1 | � OP

�?
∆t

nt

�
.

In fact, an application of Taylor’s expansion for
°nt
i�1

9lpYi, θq around θ̂nt�1 yields that

for θ in a small neighborhood around θ̂nt�1 ,

nţ

i�1

9lpYi, θq �
nţ

i�1

9lpYi, θ̂nt�1q �
nţ

i�1

:lpYi, θ̂nt�1qpθ � θ̂nt�1q �O
�
ntpθ � θ̂nt�1q2

�
Plugging in θ with θ̂nt and using the facts that

°nt
i�1

9lpYi, θ̂ntq � 0,
°nt�1

i�1
9lpYi, θ̂nt�1q �

0 and
°nt
i�1

:lpYi, θ̂nt�1q Ñ ntI in probability, we obtain

�
∆t�1¸
i�0

9lpYnt�i, θ̂nt�1q � nIpθ̂nt � θ̂nt�1q � oP
�
nt|θ̂nt � θ̂nt�1 |

�
. (E.4)

Finally we reach

|θ̂nt � θ̂nt�1 | � �r1� oP p1qs pntIq�1
∆t�1¸
i�0

9lpYnt�i, θ̂nt�1q � OP

�?
∆t

nt



.

Return to the proof of the theorem. Note that the L1 distance ||p�q|| between any

two densities p and q is bounded by Hpp, qq{?2, where H2pp, qq � ³ |?p�?q|2 is the

square of the Hellinger distance. Moreover, for two normal distributions, Npµ1, σ
2
1q

and Npµ2, σ
2
2q, we have

H2
�
Npµ1, σ

2
1q, Npµ2, σ

2
2q
� �1�

d
2σ1σ2

σ2
1 � σ2

2

e
� 1

4
pµ1�µ2q

2

σ2
1�σ

2
2 .
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Therefore, by combining (E.3) and (E.4), we have

||πt � πt�1|| ¤
��������πt �N

�
θ̂nt ,

1

nt
I�1


��������� ��������πt�1 �N

�
θ̂nt�1 ,

1

nt�1

I�1


��������
�
��������N�

θ̂nt ,
1

nt
I�1



�N

�
θ̂nt�1 ,

1

nt�1

I�1


��������
� OP

�
1?
nt



�OP

�
1?

nt �∆t




�
�

1� nt
1{4n1{4

t�1

pnt �∆t{2q1{2 e
�ntOP p∆t{n2

t q

1{2

� OP

�
1?
nt



�OP

�c
∆t

nt



� OP

�c
∆t

nt



.

E.1.8 Proof of Lemma 34

Without loss of generality, we consider one dimensional case because otherwise, we

can estimate each component of θ̃j by considering the marginal distribution of π̂

along the jth dimension. Combining (E.3) in the proof of Lemma 33 (under the

same notation) and the assumption ||π̂t � πt|| ¤ ε, we have��������π̂t �N

�
θ̂nt ,

1

nt
I�1


�������� � ι� ε, (E.5)

where ι � OP pn�1{2
t q. Let θ̃t be the median of π̂t. By the definition of the total

variation norm || � || and π̂t
�
θ P p�8, θ̃ts

� � 0.5, we obtain����Φ�?ntIpθ̃t � θ̂ntq
�� 1

2

���� � ι� ε � Φpz0.5�ι�εq � 1

2
� 1

2
� Φpz0.5�ι�εq,

where Φ is the cdf of the standard normal distribution. Therefore |θ̃t � θ̂nt | �
OP

�
z0.5�ι�εn

�1{2
t

�
. Because fθ is regular, the MLE satisfies |θ̂nt � θ0| � OP

�
n
�1{2
t

�
.

As a result, |θ̂t � θ0| � OP

�
z0.5�ι�εn

�1{2
t

�
, which completes the first part.
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For the second part, we do not restrict θ P Rd to be one dimensional. An appli-

cation of E.5 with Aα, we obtain��P0

�
θ0 � n

�1{2
t ∆̂nt � n

�1{2
t I�1{2N P Aα

�� α
�� � ι� ε,

where N is a random vector that follows Np0, Idq with Id the d dimensional identity

matrix and ∆̂nt � n
1{2
t pθ̂nt � θ0q Ñ Np0, I�1q in distribution. Therefore, for

Bt � n
1{2
t I1{2pAα � θ0 � n

�1{2
t ∆̂ntq,

we have P pN P Btq � α �OP pιq �OP pεq. Therefore,

P0pθ0 P Aαq � P0pθ0 P θ0 � n
�1{2
t ∆̂nt � n

�1{2
t I�1{2Btq

� P0pI1{2∆̂nt P �Btq

� P pN P �Btq �Opnt�1{2q

� α �OP pιq �OP pεq,

where the third step follows by the fact that I1{2∆̂nt Ñ Np0, Idq in distribution

and the Edgeworth expansion, and the last step follows by the symmetry of the

distribution of Np0, Ikq.

E.1.9 Proof of Lemma 35

By factorization of joint probability, we have

||πt � Jt � π̂t�1|| �
»
|πtpθpt�1qqπtpηt|θpt�1qq � ppθpt�1qqJtpθpt�1q, ηtq|dθpt�1qλpdηtq

¤
»
πtpθpt�1qq|πtpηt|θpt�1qq � Jtpθpt�1q, ηtq|λpdηtqλpdθpt�1qq

�
»
|πtpθpt�1qq � ppθpt�1qq|Jtpθpt�1q, ηtqλpdθpt�1qqλpdηtq

¤ sup
θpt�1qPRdt�1

||πtp�|θpt�1qq � Jtpθpt�1q, �q|| � ||πt � p||.
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E.1.10 Proof of Theorem 36

The proof is almost the same as that of Theorem 32. The only difference occurs in

the constructions of Xt,s and X 1
t,s for s � 1, which is provided in the following.

When t ¥ 1 and s � 1, let Xt�1,mt�1 � x and X 1
t�1,mt�1

� x1. Draw Xt,1 �

Jtpx, �q. With probability mint1, πtpxq
Jt�πt�1pxqu, set X 1

t,1 � x; with probability 1 �

mint1, πtpxq
Jt�πt�1pxqu, draw

X 1
t,1 �

πtp�q �mintπtp�q, Jt � πt�1pxqp�qu
α̃t

,

where α̃t � 1
2
||πt � Jt � πt�1|| is the probability of pXt,1 � X 1

t,1q conditioning on

pXt�1,mt�1 � X 1
t�1,mt�1

q. Moreover, by Lemma 35, we have α̃t ¤ αt � τt.

E.1.11 Proof of Lemma 37

Recall that the Kullback-Leibler (KL) divergence is defined as

Kpp, qq �
»
ppθq log

ppθq
qpθqmpdθq,

where f and g are two pdfs on Θ. We will use the following relationship between KL

divergence and L1 norm:

||p� q|| ¤ 2
a
Kpp, qq. (E.6)

Use the shorthand πn for the posterior density πp�|Y1, . . . , Ynq for θ. By definition,

πnpθq � expt°n
i�1 lipθquπpθq³

Θ
expt°n

i�1 lipθquπpθqmpdθq
,

where lipθq � log pθpYiq is the log likelihood for the ith observation and π is the prior

for θ. Moreover,

log
πn�1pθq
πnpθq � � lnpθq � log

"»
Θ

expt°n�1
i�1 lipθquπpθq³

Θ
expt°n�1

i�1 lipθquπpθqdθ
exptlnpθqumpdθq

*
�� lnpθq � logErθ|Y1,...,Yn�1s exptlnpθqu,
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where Erθ|Y1,...,Yn�1s is the expectation with respect to the posterior distribution

Πpθ|Y1, . . . , Yn�1q. Therefore, we obtain:

Kpπn�1, πnq �
»

Θ

πn�1pθq log
πn�1pθq
πnpθq mpdθq

� logErθ|Y1,...,Yn�1s exptlnpθqu � Erθ|Y1,...,Yn�1stlnpθqu. (E.7)

By the third condition, we have that for any ||θ � θ0|| ¤Mεn,

lnpθq � lnpθ0q �OPθ0
pεnq.

Combining the above with the second condition, we have

Erθ|Y1,...,Yn�1s exptlnpθqu �Erθ|Y1,...,Yn�1s
 

exptlnpθquIp||θ � θ0|| ¤Mεnq
(� oPθ0 p1q

� exptlnpθ0qu � oPθ0 p1q.

Similarly, we have

Erθ|Y1,...,Yn�1stlnpθqu � lnpθ0q � oPθ0 p1q.

Combining the above two with (E.6) and (E.7), we obtain

||πp�|Y1, . . . , Ynq � πp�|Y1, . . . , Yn�1q|| Ñ 0, as nÑ 8.

E.1.12 Proof of Lemma 39

For a kernel Kpx, yq on E � E, we define

|||K|||V � sup
xPRd

||Kpx, �q||V
V pxq � sup

xPRd
sup
|f |¤V

|pKfqpxq|
V pxq .

It is easy to verify that ||| � |||V satisfies the triangle inequality. By viewing πpx, yq �
πpyq as a kernel on E � E, we have |||T � π|||V ¤ ρ. Moreover, for any t P N, we

have,

|||T t � π|||V � sup
xPE

sup
|f |¤V

��tpT � πqpT t�1 � πqfupxq��
V pxq

�|||T t�1 � π|||V sup
xPE

sup
|f |¤V

|tpT � πqgfupxq|
V pxq ,
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with gf pxq � tpT t�1 � πqfupxq{|||T t�1 � π|||V . By the definition of ||| � |||V , we have

|gf | ¤ V for any f satisfying |f | ¤ V . Combining the above arguments, we obtain

|||T t � π|||V ¤|||T t�1 � π|||V � |||T � π|||V
¤ρ|||T t�1 � π|||V
¤ � � � ¤ ρt.

This implies geometric ergodicity, i.e.

||T tpx, �q � πp�q||V ¤ V pxqρt, x P E, t P N.

For the second part, by the stationarity of π, we have

||T t � p0 � π||V � sup
|f |¤V

»
X

tp0pxq � πpxqutpT t � πqfupxqλpdxq

¤
»
X

|p0pxq � πpxq| V pxq sup
|f |¤V

|tpT t � πqfupxq|
V pxq λpdxq

¤ρt||p0 � π||V .

E.1.13 Proof of Theorem 40

By Lemma 39, for any distribution p0 on Rd and any t P N, we have

||Tmtt � p0 � πt||V ¤ ρmtt ||p0 � πt||V .

Therefore, we have

||Qt � � � � �Q1 � π0 � πt||V ¤εt||Qt�1 � � � � �Q1 � π0 � πt||V
¤εt||Qt�1 � � � � �Q1 � π0 � πt�1||V � εt||πt � πt�1||V .

By Cauchy’s inequality,

||πt � πt�1||V �
»
Rd
|πtpxq � πt�1pxq|V pxqλpdxq

¤dHpπt, πt�1q
� »

Rd
tπ1{2

t pxq � π
1{2
t�1pxqu2V 2pxqλpdxq

�1{2

¤2
?
CdHpπt, πt�1q � αt.
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Combining the above two inequalities, we obtain

||Qt � � � � �Q1 � π0 � πt||V ¤εt||Qt�1 � � � � �Q1 � π0 � πt�1||V � αtεt

¤ � � � ¤
ţ

s�1

" t¹
u�s

εu

*
αs.

Finally, the theorem can be proved by noticing that

||µ|| � sup
||f ||¤1

|µpfq| ¤ sup
||f ||¤V

|µpfq| � ||µ||V

for any signed measure µ.
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Appendix F

Appendix for Chapter 7

F.1 Proofs of technical results in Chapter 7

F.1.1 Proof of Lemma 52

Use Q to denote a generic quasi-likelihood and Q0 the quasi-likelihood corresponds

to the true parameter pθ0, η0q. Let P0 be the true distribution that generates the

observations X1, . . . , Xn. Let Π̄n be any probability measure that supported on the

set tQ : ||g � g0||n ¤ ρnu. By the Cauchy inequality,» n¹
i�1

Q

Q0

pXiqdΠ̄npQq �
» n¹

i�1

Q0

Q
pXiqdΠ̄npQq ¥ 1.
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Combining the above with Markov inequality and Fubini’s theorem, we obtain that

for any C ¡ 0,

P0

�» n¹
i�1

Q

Q0

pXiqdΠ̄npQq ¤ expp�Cnρ2
nq



¤P0

�» n¹
i�1

Q0

Q
pXiqdΠ̄npQq ¥ exppCnρ2

nq



¤ expp�Cnρ2
nq
» n¹

i�1

P0

�
Q0

Q
pXiq



dΠ̄npQq.

(F.1)

By the definition of quasi-likelihood function and assumption (A2), we have

logQ0pXiq � logQpXiq � �Wi

» F pg0pTiqq

F pgpTiqq

1

V psqds�
» F pg0pTiqq

F pgpTiqq

ps� F pg0pTiqq
V psq ds

¤ C1|Wi| � |gpTiq � g0pTiq| � C1pgpTiq � g0pTiqq2,

where C1 is some positive constant. Applying assumption Assumption 1(1) to the

above inequality, we obtain

n¹
i�1

P0

�
Q0

Q
pXiq



¤ exp

"
C2

ņ

i�1

pgpTiq � g0pTiqq2
*
� exppC2n||g � g0||2nq,

for some C2 ¡ 0. Combining the above and (F.1) and choosing C ¡ C2 � 1, we

obtain

P0

�» n¹
i�1

Q

Q0

pXiqdΠ̄npQq ¤ expp�Cnρ2
nq



¤ expp�Cnρ2
nq
»

exppC2n||g � g0||2nqdΠ̄npQq ¤ expp�nρ2
nq, (F.2)

where the last step follows by the fact that Π̄n is supported on the set tQ : ||g�g0||n ¤
ρnu.

Using (F.2) to replace the Lemma 8.1 (Ghosal et al., 2000) in the proof of Theorem

2.1 (Ghosal et al., 2000), we can finish the proof.
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F.1.2 Proof of Lemma 60

Let Bn � t||θ � θ0|| ¤ Mρn, η P Hnu. Then by Assumption 2 and the definition of

Hn in (7.25), ΠpBn|Xpnqq � 1�OP pδnq. For any measurable A � Rk,��Πpθ P A|Xpnq, Bnq � Πpθ P A|Xpnqq��
�
����Πpθ P A|Xpnqq�1� ΠpBn|Xpnqq�� Πpθ P A,Bc

n|Xnq
ΠpBn|Xpnqq

����
¤2

��1� ΠpBn|Xpnqq��LΠpBn|Xpnqq

�OP pδnq.

Take the supreme over A, we obtain

sup
A

��Πpθ P A|Xpnq, Bnq � Πpθ P A|Xpnqq�� � OP pδnq.

Therefore, to prove (7.33), we only need to prove that

sup
A

��Πpθ P A|X1, . . . , Xn, Bnq �Nk

�r∆n, pnIθ0,η0q�1
�pAq�� � OP rRnpn�1{2 log nqs,

(F.3)

where,

Πpθ P A|X1, . . . , Xn, Bnq �
»
AXt||θ�θ0||¤Mρnu

rSnpθqrSnpθ0q
dΠpθq

N»
||θ�θ0||¤Mρn

rSnpθqrSnpθ0q
dΠpθq.

(F.4)

Recall the definition of r∆n by (??). Since the pdf of a normal random variable

with mean θ0 � n�1{2 r∆n and variance pnIθ0,η0q�1 evaluated at θ is proportional to

exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq � n

2
pθ � θ0qT rIθ0,η0pθ � θ0q � 1

2
r∆T
n
rIθ0,η0

r∆n

*
,
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it suffices to prove

���� »
A

exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq � n

2
pθ � θ0qT rIθ0,η0pθ � θ0q

*
dθ

�
»
AXt||θ�θ0||¤Mρnu

rSnpθqrSnpθ0q
dΠpθq

����
�OP rRnpn�1{2 log nqs

»
Rk

exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq

� n

2
pθ � θ0qT rIθ0,η0pθ � θ0q

*
dθ,

(F.5)

In fact, one can plug in the above equation with A � A and A � Rk respectively,

and simple algebra could lead to (F.3).

By nρ2
n Á � logRnpn�1{2 log nq Ñ 8 in condition 3 and

°n
i�1

rlθ0,η0 � OP p
?
nq,

with M sufficiently large,

���� »
AXt||θ�θ0||¡Mρnu

exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq � n

2
pθ � θ0qT rIθ0,η0pθ � θ0q

*
dθ

�OP rRnpn�1{2 log nqs
»
Rk

exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq � n

2
pθ � θ0qT rIθ0,η0pθ � θ0q

*
dθ.

(F.6)

By a subsequence argument, the ILAN (7.15) implies that

sup
||θ�θ0||¤Mρn

�� log
rSnpθqrSnpθ0q

� pθ � θ0qT
ņ

i�1

rlθ0,η0pXiq

� n

2
pθ � θ0qT rIθ0,η0pθ � θ0q

��LRnp|θ � θ0|q � OP p1q. (F.7)

For every θ such that ||θ � θ0||   Mn�1{2 log n with M sufficiently large, by the
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above, we have

���� exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq � n

2
pθ � θ0qT rIθ0,η0pθ � θ0q

*
�

rSnpθqrSnpθ0q

����
¤ exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq � n

2
pθ � θ0qT rIθ0,η0pθ � θ0q

*
�� exp

 
OP rRnpn�1{2 log nqs(� 1

��
�OP rRnpn�1{2 log nqs exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq � n

2
pθ � θ0qT rIθ0,η0pθ � θ0q

*
,

(F.8)

where the last step follows by Rnpn�1{2 log nq � op1q.
Therefore, for every θ such that Mn�1{2 log n ¤ ||θ � θ0||   Mρn with M suffi-

ciently large, the assumption that αn � sup|t|¤ρn Rnptq{pnt2q � op1q and (F.7) imply

Rnp|θ � θ0|q � ornpθ � θ0qT rIθ0,η0pθ � θ0qs. Hence, we have,

���� »
AXtMn�1{2 logn¤||θ�θ0|| Mρnu

exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq

� n

2
pθ � θ0qT rIθ0,η0pθ � θ0q

*
dθ �

»
AXtMn�1{2 logn¤||θ�θ0|| Mρnu

rSnpθqrSnpθ0q
dΠpθq

����
�OP p1q

»
||θ�θ0||¡Mn�1{2 logn

exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq � n

4
pθ � θ0qT rIθ0,η0pθ � θ0q

*
dθ

�OP pe�Mcplognq2q
»
Rk

exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq � n

8
pθ � θ0qT rIθ0,η0pθ � θ0q

*
dθ

�OP rRnpn�1{2 log nqs
»
Rk

exp

"
pθ � θ0qT

ņ

i�1

rlθ0,η0pXiq � n

2
pθ � θ0qT rIθ0,η0pθ � θ0q

*
dθ,

(F.9)

for M sufficiently large, where c ¡ 0 is a constant dependent on rIθ0,η0 and the last

step follows by the fact that
³

exptat� bt2udt v b�1{2 for b " minpa, 1q.
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Finally, (F.6),(F.8) and (F.9) imply (F.5).

F.1.3 Proof of Corollary 49

For each s � 1, . . . , k, taking A � R � � � � � As � � � � � R in (7.16), where the s-th

component is As and the rest are R, we obtain

sup
As�R

��Πpθs P As|X1, . . . , Xnq �N
�
θ0,s � n�1{2 r∆n,s, n

�1rIssθ0,η0

�pAsq�� � OP pSnq,

where r∆n,s is the sth component of r∆n and rIssθ0,η0
the ps, sqth element of the matrix

rI�1
θ0,η0

. Let pθBn,s to be the median of the marginal posterior distribution of θs. Then

taking As � p�8, pθBn,sq in the above formula yields��Φ�n1{2prIssθ0,η0
q�1{2ppθBn,s � θ0,s � n�1{2 r∆n,sq

�� 1{2�� � OP pSnq,

where Φ is the cdf of the standard normal distribution. By the continuity of Φ�1,

we have

n1{2prIssθ0,η0
q�1{2ppθBn,s � θ0,s � n�1{2 r∆n,sq � OP0pSnq.

Concatenating pθBn,s, s � 1, . . . , k, into a vector provides the desired pθBn .

F.1.4 Proof of Corollary 50

We only prove (7.21) here. The proof of (7.20) is similar by noticing the fact that

Πpθs P ppqs,α{2, pqs,1�α{2q|X1, . . . , Xnq � 1� α.

By (7.16) and the definition of An,1�α, we have��P�θ0 � n�1{2 r∆n � n�1{2rI�1{2
θ0,η0

N P An,1�α
�� p1� αq�� � OP pSnq,

where N is a random vector that follows Nkp0, Ikq, with Ik the k-by-k identity matrix.

Therefore, for

Bn � n1{2rI1{2
θ0,η0

�
An,1�α � θ0 � n�1{2 r∆n

�
,
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we have

P pN P Bnq � 1� α �OP pSnq. (F.10)

Note that

P0pθ0 P An,1�αq � P0pθ0 P θ0 � n�1{2 r∆n � n�1{2rI�1{2
θ0,η0

Bnq

� P0prI1{2
θ0,η0

r∆n P �Bnq

� P pN P �Bnq �Opn�1{2q

� 1� α �OpSnq,

where the third step follows by the fact that

rI1{2
θ0,η0

r∆n � 1?
n

ņ

i�1

rI�1{2
θ0,η0

rlθ0,η0pXiq P0ù Np0, Ikq

and the Edgeworth expansion, and the last step follows by (F.10), the symmetry of

the distribution of Nkp0, Ikq, and the fact that n�1{2 � opSnq.

F.1.5 Proof of Lemma 54

Under A3, ∆ηpθnq � Op|θn � θ0|q � Opρnq. If M is sufficiently large, then³
Hn�∆ηpθnq e

lnpθ0,ηqdΠpηq³
Hn
elnpθ0,ηqdΠpηq �

³
Hn�∆ηpθnq e

lnpθ0,ηqdΠpηq³
H e

lnpθ0,ηqdΠpηq �
³
H e

lnpθ0,ηqdΠpηq³
Hn
elnpθ0,ηqdΠpηq

�ΠpHn �∆ηpθnq|X1, . . . , Xnq
ΠpHn|X1, . . . , Xnq � 1�OP pδnq, (F.11)

where Πθ0p�|X1, . . . , Xnq is the posterior of η when θ is fixed at θ0 and the the last

step uses Assumption 2. If A4 is true, then by the above observation and (7.27),

(A2) holds with G1
n � G2

n � δn.
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F.1.6 Proof of Lemma 55

Applying a change of variable η Ñ rη � pθn � θ0qph, we obtain»
Hn

elnpθ0,η�∆ηpθnqqdΠθnpηq

�
»
Hn�pθn�θ0qph

elnpθ0,η�∆ηpθnq�pθn�θ0qphqdΠθn
��pθn�θ0qphpηq

�
»
Hn�pθn�θ0qph

elnpθ0,η�∆ηpθnq�pθn�θ0qphqdΠθ0pηq

��1�OP0rG2
npmaxt|θ � θ0|, n�1{2 log nuqs� »

Hn�pθn�θ0qph
elnpθ0,ηqdΠθ0pηq

��1�OP0rG1
npmaxt|θ � θ0|, n�1{2 log nuqs� »

Hn

elnpθ0,ηqdΠθ0pηq,

where the second step follows by the definition of Π, the third step by A5 and the

last step by the same argument as (F.11).

F.1.7 Proof of Lemma 53

With the definition of rSn and the conditions in the lemma, we have

rSnpθq � »
Hn

elnpθ,ηq�lnpθ0,η0qdΠθpηq

� exp

"?
npθn � θ0qTrgn � 1

2
npθn � θ0qT rIθ0,η0pθn � θ0q

�OP rGnpmaxt|θ � θ0|, n�1{2 log nuqs
*»

Hn

elnpθ0,η�∆ηpθqq�lnpθ0,η0qdΠθpηq

� exp

"?
npθn � θ0qTrgn � 1

2
npθn � θ0qT rIθ0,η0pθn � θ0q

�OP rRnpmaxt|θ � θ0|, n�1{2 log nuqsq
*rSnpθ0q.

ILAN follows by taking a logarithm of the above.
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F.1.8 Proof of Theorem 57

Verification of Assumption 2: We apply Lemma 51 with a modified sieve construction

of the nuisance parameter η as van der Vaart and van Zanten (2009), so that the

sieve has an upper bound for every ε-covering entropy.

Let N denote the set of natural numbers and N0 � NYt0u. For any d dimensional

multi-index a � pa1, . . . , adq P Nd
0 define |a| � a1 � � � � � ad and let Da denote the

mixed partial derivative operator B|a|{Bxa1
1 � � � Bxadd . For any real number b let tbu

denote the largest integer strictly smaller than b. The Hölder class Cγpr0, 1sdq is

defined as the set of all d-variate k � tγu times differentiable functions f on r0, 1sd

such that:

||f ||Cγ � max
|β|¤k

sup
xPr0,1sd

|Dβfpxq| �max
|β|�k

sup
x�y

|Dβpxq �Dβpyq|
|x� y|γ�k   8.

We use Cγ
1 to denote the unit ball in Cγ under the norm || � ||Cγ .

We choose the sieve Fn as F θn ` Fηn , with

F θn � r�c?n, c?nsk,

Fηn �
�
Mn

c
rn
δn

Hrn
1 � ρnC

γ
1



Y � ¤

a¤δn
pMnHa

1q � ρnC
γ
1

�
, (F.12)

with c sufficiently large, ρn � n�α{p2α�1qplog nqd�1, and

D2r
d
n ¥ 2C0nρ

2
n, rp0�d�1

n ¤ eC0nρ2
n ,

M2
n ¥ 8C0nρ

2
n, δn � C1ρn{p2

?
dMq.

The only difference between Fηn and the sieve in van der Vaart and van Zanten (2009)

is the remainder term, which is Cγ
1 in our case and B1 � tf P L2pr0, 1sdq : ||f ||8u in

van der Vaart and van Zanten (2009).

Similar to van der Vaart and van Zanten (2009), we can verify that Fn satisfies

condition a and condition b in Lemma 51 as follows:
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By Lemma 4.5 in van der Vaart and van Zanten (2009), for a fixed scaling pa-

rameter a and any ε   1{2,

logNpε,Ha
1, || � ||8q ¤ Kad

�
log

1

ε


1�d
.

For squared exponential kernel, all elements in Ha
1 are infinitely differentiable. With

some modifications of their proof, the above can be strength to the following: for

any smoothness index γ ¡ 0,

logNpε,Ha
1, || � ||Cγ q ¤ Kad

�
log

aγ

ε


�
log

1

ε


d

. (F.13)

Therefore, by the relation between the covering entropy of the unit ball of RKHS

and small ball probability (Li and Linde, 1999) and similar proof as Lemma 4.6 in

van der Vaart and van Zanten (2009) , we have that for any γ ¡ 0,

� logP p||W a||Cγ ¤ εq ¤ Kad
�

log
a

ε


1�d
. (F.14)

Denote the right hand side of the above by φa0pεq. Then by Borell’s inequality (van der

Vaart and van Zanten, 2008c),

P pW a RMHa
1 � εCγ

1 q ¤ 1� ΦpΦ�1pe�φa0pεqq �Mq,

where Φ is the c.d.f. of standard normal distribution. For M ¡ 4
a
φa0pεq and

φa0pεq   1{4, the above is bounded by e�M
2{8. Combining the above conclusions, our

sieve construction and the covering entropy for Cγ
1 , we have the following bound for

the ε-covering entropy for any ε ¡ 0,

logNp4ε,Fn, || � ||8q À nρ2
nplog nq�pd�1q

�
log

�
n

ε



1�d
�
�
ρn
ε


d{γ
� c log

�
n

ε



,

(F.15)

and the following complement probability

P pF cnq À expp�C0nρ
2
nq. (F.16)
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Next we verify condition c in Lemma 51:

For the partially linear model, we have,

KpP pnq
θ0,η0

, Pθ,ηqpnq �E0

 
logpdP pnq

θ0,η0
{dP pnq

θ,η q
(

�1

2

ņ

i�1

rpθ � θ0qUi � pη � η0qpViqs2,

and for any k ¥ 2,

Vk,0pP pnq
θ0,η0

, P
pnq
θ,η q �E0

 | logpdP pnq
θ0,η0

{dP pnq
θ,η q �KpP pnq

θ0,η0
, P

pnq
θ,η q|k

(
�E0

 �� ņ

i�1

eirpθ � θ0qUi � pη � η0qpViqs
��k��Un, V n

(

�C� ņ

i�1

rpθ � θ0qUi � pη � η0qpViqs2
�k{2

.

where the expectation is taken with respect to Y n and the last step follows by the fact

that
°n
i�1 eirpθ� θ0qUi� pη� η0qpViqs has a normal distribution with mean zero and

variance equal to
�°n

i�1rpθ� θ0qUi � pη � η0qpViqs2
�1{2

. C is a constant independent

of n and ε (but depends on k). Therefore, for any k ¥ 2,

Bn

�
P
pnq
0 , ε; kq � pθ, ηq : KpP pnq

θ0,η0
, P

pnq
θ,η q ¤ nε2, Vk,0pP pnq

θ0,η0
, P

pnq
θ,η q ¤ nk{2εk

(
� pθ, ηq : KpP pnq

θ0,η0
, P

pnq
θ,η q ¤ Cnε2u.

By similar proof as Theorem 3.3 in Ghosal and van der Vaart (2007), we have for

some constant C1,

P0pBn

�
P
pnq
0 , ρn; kqq � P0pKpP pnq

θ0,η0
, P

pnq
θ,η q ¤ Cnρ2

nq ¥ expp�C1nρ
2
nq.

Combining the above conclusions and Lemma 51, we prove Assumption 2 and

conclude that for any r ¥ 0,

Π

"�
1

n

ņ

i�1

�pθ � θ0qTUi � pη � η0qpViq
�2


1{2
¤Mρn

����X1, . . . , Xn

*
� 1�Opδnq,

(F.17)
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where δn � n�r. In the sequel, we always fix r at a value such that δn � op?nρ2
nq,

for example, at 1{2.

Next, we show that under the condition 2 in the theorem, (F.17) implies Π
�||θ�

θ0|| ¤ Mρn, ||η � η0||n ¤ Mρn
��Xpnq� � 1 � OP pδnq. For exposition simplicity, we

focus on the case that k � 1 and for k ¡ 1, the proof is essentially the same. In fact,

by the central limited theorem conditioning on Vi’s, we have���� 1n
ņ

i�1

�
Ui � EpUi|Viq

� � �pη � η0qpViq � pθ � θ0qEpUi|Viq
����� � OP pn�1{2qIn,

with I2
n �

°n
i�1

�pη � η0qpViq � pθ � θ0qErUi|Vis
�2

. Therefore,

1

n

ņ

i�1

�pθ � θ0qUi � pη � η0qpViq
�2

� 1

n

ņ

i�1

�
pθ � θ0qpUi � ErUi|Visq �

�pη � η0qpViq � pθ � θ0qEpUi|Viq
�
2

��P pU � ErU |V sq2 �OP0pn�1{2q�pθ � θ0q2 �OP pn�1{2qpθ � θ0qIn � n�1I2
n.

Combining the above with (F.17), we obtain

Πp||θ � θ0|| ¤Mρn|X1, . . . , Xnq � 1�OP pδnq.

Again applying (F.17) and using the inequality pa � bq2 ¥ b2{2 � a2, we have that

for M sufficiently large,

Πp||η � η0||n ¤Mρn|X1, . . . , Xnq � 1�OP pδnq.

Combining the above two yields

Π
�||θ � θ0|| ¤Mρn, ||η � η0||n ¤Mρn

��Xpnq� � 1�OP pδnq.

Therefore, if we define Hn � tη P Fηn : ||η � η0||n ¤Mρnu, then

Π
�||θ � θ0|| ¤Mρn, η P Hn

��Xpnq� � 1�OP pδnq. (F.18)
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Verification of A3: A3 is true with h�pvq � �ErU |V � vs.
Verification of (A1): We verify assumption (A1) with the above choice of Hn. In

fact, for the partially linear model, ∆ηpθq � �pθ�θ0qTErU |V s. We use the notation

Pn � n�1
°n
i�1 δXi to denote the empirical measure and Gn � n�1{2 °n

i�1pδXi � P q
the empirical process. By the expression of log likelihood (7.8),

log
dPθ,η�∆ηpθq
dPθ0,η

pXpnqq � � 1

2

ņ

i�1

�
εi � pη � η0qpViq � pθ � θ0qT pUi � ErU |Visq

�2

� 1

2

ņ

i�1

�
εi � pη � η0qpViq

�2

�pθ � θ0qT
ņ

i�1

l̃θ0,η0pXiq � n

2
pθ � θ0qT I0pθ � θ0q

� 1

2

?
npθ � θ0q2Gn

�
U � ErU |V s�2

� pθ � θ0qT
ņ

i�1

�
Ui � ErU |Vis

�pη � η0qpViq,

where g0pXq � ε
�
U � ErU |V s� and I0 � P

�
U � ErU |V s�2 � Eθ0,η0g

2
0pXq.

By central limit theorem, the third term is OP

�?
n|θ � θ0|2

�
.

A bound of the last term could be achieved by applying the maximal inequality

conditioning on Vi’s. A key step is the bound (F.15) for the covering entropy of the

space tη� η0 : η P Hnu. Since ||η� η0||n À ρn for any η P Hn and Ui conditioning on

Vi are i.i.d. with EtUi � ErU |Vis|Viu � 0, an application of the maximal inequality

(van der Vaart and Wellner, 1996) yields

E

"
sup
ηPHn

1?
n

�� ņ

i�1

�
Ui � ErU |Vis

�pη � η0qpViq
������V1, . . . , Vn

*

À
» ρn

0

a
1� logNpε,Hn, || � ||8qdε

À?nρ2
n � ρn v

?
nρ2

n.

(F.19)
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Hence

sup
ηPHn

pθ � θ0qT
�� ņ

i�1

�
Ui � ErU |Vis

�pη � f0qpViq
��

�OP

"
n|θ � θ0|ρ2

n

*
.

Therefore, (A1) is true with Gnptq �
?
nt2 � nρ2

nt.

Verification of A4: Since ΠpAn|Xpnqq � 1 � Opδnq with An � tA ¤ Cnρ2
nu for

C sufficiently large, where A is the random inverse bandwidth parameter in the GP

prior. We can always assume A ¤ Cnρ2
n by conditioning on the event An. By Lemma

4.7 in van der Vaart and van Zanten (2009) and the assumption that ErU |V s P Ht0 ,

for any a ¥ t0, ||ErU |V � �s||a ¤ C1

?
a, where C1 � ||ErU |V � �s||t0 is a constant

not depending on a. Denote the conditional law of f given pA � aq by Πa. Do a

change of variable η Ñ η � pθ � θ0qErU |V s. Since the Radon-Nykodym derivative

dΠa
��h�{dΠa

� pW q � exppUh� � ||h�||2a{2q and VarU
�
ErU |V s� � ||ErU |V � �s||2a ¤

C1a ¤ C1nρ
2
n (van der Vaart and van Zanten, 2008c, Lemma 3.1), we have

log fpηq � log dΠa
��h�{dΠa

� pW q

� pθ � θ0qU
�
ErU |V s�� pθ � θ0q2||ErU |V � �s||2a{2 � OP pG2

np||θ � θ0||qq,

with G2
nptq �

?
nρnt� nρ2

nt
2.

Finally, applying Theorem 56 yields the second order semiparametric BvM the-

orem with a remainder term

Gnpn�1{2 log nq �G2
npn�1{2 log nq � δn � n1{2ρ2

n log n.

F.1.9 Proof of Theorem 58

Most of the proof is similar to that of Theorem 57. The only difference is that instead

of applying the arguments in section 7.4.1, now we apply assumption A5 and Lemma

55.
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Verification of assumption A5: By A6 and the form of h, we have

p∆ηpθnq � pθn � θ0qOP pκnq.

Then for η P Hn and θ such that |θn � θ0| � OP pρnq,

ln
�
θ0, η � pθn � θ0qpph� h�q�� ln

�
θ0, η

�
�� 1

2

ņ

i�1

�
εi � pη � η0qpViq � pθn � θ0qpph� h�qqpViq

�2 � 1

2

ņ

i�1

�
εi � pη � η0qpViq

�2

�� pθn � θ0q
ņ

i�1

�
εi � pη � η0qpViq

�pph� h�qpViq � n

2
pθn � θ0q2||ph� h�||n.

By Cauchy’s inequality

�� ņ

i�1

pη � η0qpViqpph� h�qpViq
�� ¤ n||η � η0||n||ph� h�||n � OP pnρnκnq.

Since

E
�� ņ

i�1

εipph� h�qpViq
��2 � n||η � η0||2n � OP pnρ2

nq,

we have �� ņ

i�1

εipph� h�qpViq
�� � OP p

?
nρnq.

Combining the above three, we have

ln
�
θ0, η � pθn � θ0qpph� h�q�� ln

�
θ0, η

� � OP pG2
np|θn � θ0|qq,

with G2
nptq �

?
nρnt� nκnρnt� nκnt

2.

Combining the above with the proof of Theorem 57 yields the second order semi-

parametric BvM theorem with a remainder term

Rnptq � nκnt
2 �?

nt2 �?
nρnt� nρ2

nt� nρnκnt� δn,

which implies that Rnpn�1{2 log nq v n1{2ρ2
n log n� n1{2κnρn log n.
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F.1.10 Proof of Lemma 47

By Assumption 1(2), for any pθ, ηq, we have

E0 logpQθ,η{Qθ0,η0q

¤ � C�1
1 E0

�
mθ,ηpT q �mθ0,η0pT q

�2

¤� pC2
1C2q�1E0|gθ,η � g0|2

¤� 2pC2
1C2q�1

�|θ � θ0|2 � E0|η � η0|2
�
,

where the third line follows by the mean value theorem and the fact that |fpξq| �
|lpξq| � |V pF pξqq| P r1{pC1C2q, C1C2s and the forth line follows by the assumption that

U P r0, 1sk. Similarly, we have

E0 logpQθ,η{Qθ0,η0q

¥ � C2
1C2E0

�pθ � θ0qTU � ηpV q � η0pV q
�2
.

Let η̄pθqpvq � η0pvq � pθ � θ0qErU |V � vs. Then by definition of η�pθq, we have

E0 logpQθ,η�pθq{Qθ0,η0q ¥ E0 logpQθ,η̄pθq{Qθ0,η0q.

Combining the above inequalities, we obtain

� 2pC2
1C2q�1

�|θ � θ0|2 � E0|η�pθq � η0|2
�

¥� C2
1C2E0

�pθ � θ0qTU � η̄pθqpV q � η0pV q
�2

�� C2
1C2E0pU � ErU |V sq2|θ � θ0|2,

which implies

η�pθq � η0 � Op|θ � θ0|q. (F.20)

For an arbitrary function hpV q with ||h|| small, consider

pgθ,η�pθq,t � gθ,η�pθq � th,

for t in a neighborhood of 0. Thus,

d

dt
E0 logpQθ0,η0{Qθ,ηq

��
t�0

� 0,
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which implies

0 �E0

�pY � F pgθ,η�pθqqqlpgθ,η�pθqqhpV q
�

�E0

 
E0

�pF pgθ0,η0q � F pgθ,η�pθqqqlpgθ,η�pθqq
��V �hpV q(.

Since the above equality holds for any h, we have

E0

�pF pgθ0,η0q � F pgθ,η�pθqqqlpgθ,η�pθqq
��V � v

� � 0, a.s.

The above, (F.20) and Assumption 1(2) imply

E0

�
f0pT ql0pT qpθ � θ0qTU

��V � v
��E0

�
f0pT ql0pT q

��V � v
�pη�pθq � η0qpvq

� Op|θ � θ0|2q, a.s.

Thus

η�pθqpvq � η0pvq � pθ � θ0qh�pvq �Op|θ � θ0|2q, as |θ � θ0| Ñ 0,

with h� defined by (7.6).

F.1.11 Proof of Theorem 59

To check Assumption 2, we apply the framework of Kleijn and van der Vaart (2006),

where the posterior of a misspecified infinite-dimensional Bayesian model is shown

to concentrate its mass near the points in the support of the prior that minimize

the Kullback-Leibler (KL) divergence with respect to P0. In the GPLM setting with

quasi-likelihood (7.4), the KL divergence minimizer is exactly pθ0, η0. To study the

contraction rate, we can apply the Theorem 2.1 in Kleijn and van der Vaart (2006)

(use the fact that Ntpε,F , dq ¤ Npε,F , dq ¤ Npε,F , || � ||8q with d the Hellinger

distance) with some small modifications similar to the proof of (F.18). The following

lemma shows the result.

Lemma 83. Let Hn � tη P Fηn : ||η � η0||n ¤ Mρnu, with Fηn the function space

defined by (F.12) in the proof of Theorem 57 and ρn � n�α{p2α�1qplog nqd�1. Then

301



the posterior of the Bayesian model specified in the previous subsection satisfies: for

any r ¡ 0, there exists a sufficiently large M , such that

Π
�|θ � θ0| ¤Mρn, η P Hn

��Xpnq� � 1�OP pexpp�nρ2
nqq.

Next, we prove (A1). By Lemma 83, the posterior of η concentrates its mass

in a small neighborhood Hn of η0. Write qnpθ, ηq �
°n
i�1 qθ,ηpYiq and recall that

∆ηpθq � η�pθq � η0 � pθ � θ0qhpV q �Op|θ � θ0|2q.

Lemma 84. Assume Assumption 1. Then

qn
�
θn, η�∆ηpθnq

�� qnpθ0, ηq � pθn � θ0qT
ņ

i�1

Wil0pTiqpUi � h�pViqq

� 1

2
npθn � θ0qT rIθ0,η0pθn � θ0q �OP rRnpmaxt|θ � θ0|, n�1{2 log nuqs,

(F.21)

for every sequence tθnu such that θn � θ0 � OP pρnq in P0 and uniformly for every

η P Hn, with

rIθ0,η0 � E0

�
l0pT qf0pT qpU � h�pV qqpU � h�pV qqT �,

and

Rnptq � nt3 �?
nt2 � nρnt

2 � nρ2
nt�

?
nρ2

n.

Similar to Theorem 58, Theorem 59 can be proved by applying Lemma 47, Lemma

83, Lemma 84, Theorem 60 and Theorem 56.

F.1.12 Proof of Lemma 83

The verification of condition a and condition b in Lemma 51 is the same as the

corresponding proof in Theorem 57. This time we apply Lemma 52. For GP priors,

we have Πp||η � η0||8 ¤ ρnq ¥ expp�Cnρ2
nq (van der Vaart and van Zanten, 2009,

Lemma 4.6). Since || � ||8 is stronger than || � ||n, condition e in Lemma 52 is satisfied.
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F.1.13 Proof of Lemma 84

Using the definition of qn and qθ,η, we get

qn
�
θ, η �∆ηpθq�� qnpθ0, ηq �

ņ

i�1

Wi

» mθ,η�∆ηpθqpTiq

mθ0,ηpTiq

1

V psqds

�
ņ

i�1

» mθ,η�∆ηpθqpTiq

mθ0,ηpTiq

ps�m0pTiqq
V psq ds � I � II,

with Wi � Yi �m0pTiq satisfying E0Wi � 0 and Assumption 1(1).

By applying Taylor expansions and Assumption 1(2), we have for any ξ0, ξ1, ξ2 P
R, » F pξ2q

F pξ1q

1

V psqds �lpξ1qpξ2 � ξ1q � e1pξ0qpξ2 � ξ1q2 �Oppξ2 � ξ1q3q

�lpξ0qpξ2 � ξ1q � e1pξ0qpξ2 � ξ1q2 � e2pξ0qpξ2 � ξ1qpξ1 � ξ0q

�O
 pξ2 � ξ1q3 � pξ2 � ξ1q2pξ1 � ξ0q � pξ2 � ξ1qpξ1 � ξ0q2

(
,

(F.22)» F pξ2q

F pξ1q

s� F pξ0q
V psq ds �lpξ1q

�
F pξ1q � F pξ0q

�pξ2 � ξ1q � 1

2
lpξ1qfpξ1qpξ2 � ξ1q2

�O
 pξ2 � ξ1q3 � pξ2 � ξ1q2pξ1 � ξ0q

(
�lpξ0qfpξ0qpξ2 � ξ1qpξ1 � ξ0q � 1

2
lpξ0qfpξ0qpξ2 � ξ1q2

�O
 pξ2 � ξ1q3 � pξ2 � ξ1q2pξ1 � ξ0q � pξ2 � ξ1qpξ1 � ξ0q2

(
,

(F.23)

with e1pξq and e2pξq fixed bounded functions.

By the definition of gθ,η and ∆ηpθq, we have

gθ0,ηpT q � g0pT q �pη � η0qpV q,

gθ,η�∆ηpθqpT q � gθ0,ηpT q �pθ � θ0qTh1pT q �Op|θ � θ0|2q,

303



with h1pT q � U � h�pV q. Combining the above and the definition of l0, f0 and mθ,η,

and (F.22) with ξ0 � g0, ξ1 � gθ0,η and ξ2 � gθ,η�∆ηpθq, we get

I � pθ � θ0qT
ņ

i�1

Wil0pTiqh1pTiq

� pθ � θ0qT
ņ

i�1

Wie2pg0pTiqqh1pTiqpη � η0qpViq �OP p
?
n|θ � θ0|2q,

where the last term is obtained by combining the central limit theorem and the fact

that E0Wi � 0 and E0W
2
i   8.

Since E0Wie2pg0pTiqqh1pTiq � E0re2pg0pTiqqh1pTiqE0pWi|Tiqs � 0, similar to (F.19),

by applying the maximal inequality, we get

E0

"
sup
ηPHn

1?
n

�� ņ

i�1

Wie2pg0pTiqqh1pTiqpη � η0qpViq
������V1, . . . , Vn

*

À
» ρn

0

a
1� logNpε,Hn, || � ||8qdε

À?nρ2
n � ρn v

?
nρ2

n.

Combining the above two, we get

I � pθ � θ0qT
ņ

i�1

Wil0pTiqh1pTiq �OP

 ?
n|θ � θ0|2 � n|θ � θ0|ρ2

n

(
. (F.24)

Similarly, using (F.23) and the same choices for ξ0, ξ1 and ξ2, we get

II �pθ � θ0qT
ņ

i�1

l0pTiqf0pTiqpUi � h�pViqqpη � η0qpViq

� 1

2

ņ

i�1

l0pTiqf0pTiq
�pθ � θ0qTh2pTiq

�2

�OP

 
n|θ � θ0|3 � n|θ � θ0|2ρn � n|θ � θ0|ρ2

n

(
,

where h2ptq � u� ErU |V � vs. By definition of h�, we have

E0

�
l0pTiqf0pTiqpUi � h�pViqqpη � η0qpViq

�
�E0

�pη � η0qpViqE0pl0pTiqf0pTiqpUi � h�pViqq|Viq
� � 0.
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Therefore, by applying the maximal inequality, we get

E0

"
sup
ηPHn

1?
n

�� ņ

i�1

l0pTiqf0pTiqpUi � h�pViqqpη � η0qpViq
������V1, . . . , Vn

*

À
» ρn

0

a
1� logNpε,Hn, || � ||8qdε

À?nρ2
n � ρn v

?
nρ2

n.

By the central limit theorem, we have

1

2

ņ

i�1

l0pTiqf0pTiq
�pθ � θ0qTh2pTiq

�2

�n
2
pθ � θ0qTE0

�
l0pT qf0pT qh1pT qph1pT qqT

�pθ � θ0q �OP p
?
n|θ � θ0|2q

Combining the above, we have

II �n
2
pθ � θ0qTE0

�
l0pT qf0pT qh1pT qph1pT qqT

�pθ � θ0q

�OP

 
n|θ � θ0|3 �

?
n|θ � θ0|2 � n|θ � θ0|2ρn � n|θ � θ0|ρ2

n �
?
nρ2

n

(
. (F.25)

By (F.24) and (F.25), the lemma is proved.
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