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Abstract

Classical asymptotic theory deals with models in which the sample size n goes to
infinity with the number of parameters p being fixed. However, rapid advancement of
technology has empowered today’s scientists to collect a huge number of explanatory
variables to predict a response. Many modern applications in science and engineering
belong to the “big data” regime in which both p and n may be very large. A variety
of genomic applications even have p substantially greater than n. With the advent of
MCMC, Bayesian approaches exploded in popularity. Bayesian inference often allows
easier interpretability than frequentist inference. Therefore, it becomes important
to understand and evaluate Bayesian procedures for “big data” from a frequentist
perspective. In this dissertation, we address a number of questions related to solving
large-scale statistical problems via Bayesian nonparametric methods.

It is well-known that classical estimators can be inconsistent in the high di-
mensional regime without any constraints on the model. Therefore, imposing ad-
ditional low-dimensional structures on the high-dimensional ambient space becomes
inevitable. In the first two chapters of the thesis, we study the prediction perfor-
mance of high-dimensional nonparametric regression from a minimax point of view.
We consider two different low-dimensional constraints: 1. the response depends only
on a small subset of the covariates; 2. the covariates lie on a low dimensional manifold
in the original high dimensional ambient space. We also provide Bayesian nonpara-

metric methods based on Gaussian process priors that are shown to be adaptive to
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unknown smoothness or low-dimensional manifold structure by attaining minimax
convergence rates up to log factors. In chapter 3, we consider high-dimensional clas-
sification problems where all data are of categorical nature. We build a parsimonious
model based on Bayesian tensor factorization for classification while doing inferences
on the important predictors.

It is generally believed that ensemble approaches, which combine multiple algo-
rithms or models, can outperform any single algorithm at machine learning tasks,
such as prediction. In chapter 5, we propose Bayesian convex and linear aggrega-
tion approaches motivated by regression applications. We show that the proposed
approach is minimax optimal when the true data-generating model is a convex or
linear combination of models in the list. Moreover, the method can adapt to sparsity
structure in which certain models should receive zero weights, and the method is
tuning parameter free unlike competitors. More generally, under an M-open view
when the truth falls outside the space of all convex/linear combinations, our theory
suggests that the posterior measure tends to concentrate on the best approximation
of the truth at the minimax rate.

Chapter 6 is devoted to sequential Markov chain Monte Carlo algorithms for
Bayesian on-line learning of big data. The last chapter attempts to justify the use
of posterior distribution to conduct statistical inferences for semiparametric estima-
tion problems (the semiparametric Bernstein von-Mises theorem) from a frequentist

perspective.
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1

Introduction

1.1 Motivation

Classical asymptotic theory deals with models in which the sample size n — oo with
the number of parameters p being fixed. However, rapid advancement of technology
has empowered today’s scientists to collect a huge number of explanatory variables
to predict a response. Many modern applications in science and engineering belong
to the “big data” regime in which both p and n may be very large. In finance, market
data comprises high-frequency measurements of hundreds or thousands of financial
instruments over time, leading to many statistical challenges (Fan et al., 2011). A
variety of genomic applications fall into the high-dimensional statistics paradigm in
which p may even be substantially larger than n. For example, in genome-wide
association studies, hundreds of thousands of single-nucleotide polymorphisms are
potentially relevant genetic markers for studying human diseases.

It is of fundamental importance to study under what assumptions a particular
statistical problem is tractable. For example, it is well known that classical estima-

tors become inconsistent in the regime p » n without any additional constraints on



the model. Therefore, a variety of studies try to impose some low-dimensional struc-
tures on the high-dimensional ambient space, and quantify performance of different
estimators. For example, in high-dimensional linear regression literature, people tend
to assume the sparsity condition, under which the response only depends on d = o(n)
important predictors among a list of p predictors. In matrix completion problems,
the true matrix to be estimated is assumed to be of a low-rank. To judge whether a
statistical problem is well-defined, one way is to study its minimax property, which
quantifies the best worst case performance that an estimator can achieve. Minimax
risks are often related to the size of the model space in terms of metric entropies,
which compete with the statistical power of discriminating the truth from others in
the model space. The statistical power usually depends on the available information
characterized by sample size n. Therefore, high-dimensional statistical problems are
solvable if and only if the size of the model space is compatible with the statistical
power based on a sample of size n. This explains the reason for seeking various
reasonable low-dimensional constraints to restrict high-dimensional problems.

The frequentist literature illustrates the success of applying optimization methods
for large scale problems. Many well-known estimators are constructed via penalized
M-estimation, where a regularizer penalizes the deviation of the parameter from the
low-dimensional structure. An optimal choice for the regularization parameter, which
determines the amount of penalization, typically involves some prior knowledge on
the true data generating model, such as the number of important predictors in high-
dimensional linear regression or the true rank in matrix completion problems. In
practice, regularization parameters are often determined via cross-validation. How-
ever, a main disadvantage of cross-validation is that every time only a subset of
observations are used to fit the model.

In recent years, there has been an emergence of interest in conducting statistical
inference for large scale data based on Bayesian procedures. Unlike the optimization

2



focus of usual frequentist methods, typical Bayesian estimators rely on integration.
Performance of Bayesian estimators can be assessed from a frequentist perspective by
viewing the observations as generated from a true underlying distribution. Under this
perspective, it turns out that many Bayesian procedures with properly chosen priors
for large scale problems can accommodate the potential low-dimensional structure
in the data — the estimators can automatically adapt to the unknown sparsity level,
smoothness level or manifold structure and achieve the minimax optimal convergence
rate (van der Vaart and van Zanten, 2009; Rousseau and Mengersen, 2011; Yang
and Dunson, 2013; Castillo and van der Vaart, 2012). Therefore, in contrast to
many frequentist competitors, these Bayesian procedures do not require any prior
knowledge on the truth and are tuning free.

In many applications, the relationship between a response Y and its explanatory
variables X = (X!, ..., X?) € R? may be highly nonlinear and include interaction.
It is of practical importance to develop sensible models with mild assumptions on
the relationship between X and Y. This motivates us to treat the structure of this
relationship nonparametrically. One way of constructing a nonparametric model is
to allow a growing number of parameters to accommodate the complexity of the
data. Examples include mixture models with increasing number of components and
nonparametric sieve regression (Geman and Hwang, 1982; Hansen, 2012). Under this
perspective, high-dimensional parametric models such as linear models can also be
treated as nonparametric. Another class of nonparametric models are models whose
parameter space are infinite-dimensional. For example, consider a regression model
Y = f(X) +¢ ¢ ~ N(0,0%). If the only assumption on the regression function f
is twice differentiable or monotone constraints, then f cannot be characterized by a
finite number of parameters and the resulting regression problem is nonparametric.
Intuitively, such flexible modeling assumptions allow us to learn the structure of f

on a growing resolution scale as more data are collected.

3



Although optimization methods are often good at obtaining sensible point esti-
mators, they do not provide a natural way to conduct statistical inferences, such as
uncertainty quantification. In practice people tend to apply resampling techniques,
such as the bootstrap or subsampling, to approximate the sampling distribution of
their estimators. In contrast, fully model-based Bayesian procedures offer a standard
way to doing inferences based on posterior distributions. It is then of fundamental
importance to justify the validity of Bayesian statistical inferences from a frequen-
tist perspective. This justification is especially important for large scale problems
since it provides a guidance on how many observations one needs to collect in order
to achieve certain estimation accuracy. A well-known result for regular parametric
models is given by the Bernstein von-Mises theorem, which states that the posterior
distribution tend to converge in total variation distance to a normal distribution cen-
tered at a Bayesian estimator 6 with variance the same as the asymptotic variance
of 6. As a result, the coverage of the corresponding Bayesian credible region asymp-
totically coincides with its nominal level. Whether similar frequentist justification
for more complicated Bayesian methods, such as semiparametric/nonparametric or
high-dimensional procedures, can be proved is still an open question.

With the above motivations in mind, we start to introduce the topics considered

in this thesis.
1.2 Research questions and main contributions

Motivated by large scale data, the primary focus of this thesis is on developing
practically efficient Bayesian methodology having strong theoretical guarantees. In
this section, we briefly summarize the central research questions addressed in later

chapters.



Nonparametric regression in high dimensions

The first research question is concerned with the prediction performance of nonpara-
metric regression in the high-dimensional regime from a minimax point of view. Since
parametric models in reality can seldom capture the exact dependence structure, it

is important to develop sensible regression models

y=f(x)+e < N0,0%

to predict the response y under mild assumptions on f in the high dimensional setting
where the sample size n is smaller than the dimensionality p of the covariate vector
T =(T1,...,7).

Good statistical methods for large p small n regression should scale well with the
predictor dimensions and quickly identify any underlying low dimensional structures
to facilitate maximum statistical learning from limited data. They must also allow
flexible estimation of the function shape and capture predictor interaction. Motivated
by these requirements, three types of modeling assumptions are considered: 1. the
regression function f depends on d covariates, and d « min{n, p}, but is otherwise
of an arbitrary form; 2. f still depends on a small subset of the covariates, but
has an additive form as 25:1 fs, where each additive component f; depends on a
small number d; « min{n,p} of covariates which can be different across s; 3. f
can potentially depend on all covariates, but the covariate vector z = (z1,...,z,) is
assumed to lie on a low dimensional manifold M in the ambient space RP.

To assess the performance of high-dimensional nonparametric models, we describe
a general framework to show the minimax risks for regression problems under L, loss.
Our contribution is the construction of a general class of Bayesian sieve estimators,
which are shown to attain the minimax lower bound provided by Fano’s lemma.
By applying this general framework, we study the minimax risks for estimating f

under the first two sparse assumptions. The minimax risks are shown to be the



sum of two terms: estimation risks and variable selection risks. The estimation
risks are the minimax risks of estimating the regression functions as if we knew
which predictors are important and the variable selection risks reflect the variable
selection uncertainty. We also show that Bayesian nonparametric regression based on
Gaussian process (GP) priors and variable selections can not only achieve minimax
optimal rates, but are also adaptive to the unknown smoothness levels and numbers
of important predictors.

Under the third assumption of low dimensional manifold, it is clear that proba-
bilistic models for learning the manifold M face daunting statistical and computa-
tional hurdles. Therefore, we take a very different approach in attempting to define
a simple and computationally tractable model, which bypasses the need to estimate
M but can exploit the lower dimensional manifold structure when it exists. We
prove that a simple GP prior with a random length-scale parameter could lead to
the minimax-optimal rate in estimating f, and the rate is adaptive to the manifold
and smoothness of the regression function. Moveover, we find a counter-intuitive
blessing of dimensionality phenomenon, which suggests that by applying random

projections, large p facilitates reducing the independent additive noise in z.
High-dimensional nonparametric classification for categorical data

In the second research problem, we consider high-dimensional problems where all
data are of categorical nature. The goal is to build a parsimonious model for classi-
fication while doing inferences on the important predictors. With categorical predic-
tors, the conditional probabilities P(Y =y | Xy = 21,..., X, = ) can be cast into
a dy x -+ x d, tensor for each class label y, with d; denoting the number of levels of
the jth categorical predictor X;. We use a carefully-structured Tucker factorization
to define a model that can characterize any conditional probability, while facilitating

variable selections and capturing of higher-order interactions. To overcome the curse



of dimensionality, we make a near low-rank assumption on the conditional proba-
bility tensor, under which the posterior is shown to achieve a convergence rate of
order W up to a logn term in high dimensional settings. The low-rank as-
sumption for categorical predictors resembles the sparsity assumption for continuous
predictors. The real data examples illustrate that this low-rank assumption yields
satisfactory classification performance when our model is compared to the state-
of-the-art classifiers. In Cornelis et al. (2013), an application of conditional tensor
factorization model to crack detection in ultra high resolution multimodal images of

paintings demonstrates its potential in solving real high dimensional problems.
Bayesian aggregation in statistical learning

The third research problem focues on Bayesian ensemble learning procedures via ag-
gregation. In many applications, it is not at all clear how to pick one most suitable
method out of a list of possible models or learning algorithms M = {M, ..., My}.
Each model/algorithm has its own set of implicit or explicit assumptions under which
that approach will obtain at or near optimal performance. However, in practice ver-
ifying which if any of these assumptions hold for a real application is problematic.
Hence, it is of substantial practical importance to have an aggregating mechanism
that can automatically combine the estimators fl, ey f v obtained from the M dif-
ferent approaches My, ..., My, with the aggregated estimator potentially better
than any single one.

Bayesian methods are appealing in providing a probabilistic approach for com-
bining different models together. For example, Bayesian model averaging (BMA)
is a widely used approach in practice. The justification for BMA arises from the
viewpoint that one of the listed models in the ensemble is the correct underlying
model that generates the data. Then, in many cases, as the sample size increases,

the posterior probability on this true model converges to one. If the true model is



not in the list, the model with the minimal KL divergence from the true model will
instead be assigned probability that is converging to one.

To formally allow the true model to fall outside the ensemble in the Bayesian
framework, we propose to aggregate different models instead of averaging them. We
focus on two main aggregation strategies: convex aggregation (CA) and linear aggre-
gation (LA). CA aims at selecting the optimal convex combination of the estimators
and LA focuses on choosing the optimal linear combination. Modeling the model-
specific weights via symmetric Dirichlet distributions, we show that our Bayesian
approach obtains the minimax optimal rate up to a log factor of convex/linear aggre-
gation (Tsybakov, 2003). Even if the true model is not a convex/linear combination
of the models in the ensemble, we show that the posterior would concentrate around

the best approximation of the truth.
Sequential MCMC for on-line learning

The fourth research topic is Bayesian on-line learning for big data. We propose a se-
quential Markov chain Monte Carlo (SMCMC) algorithm to sample from a sequence
of probability distributions {m, : ¢ = 0}, which correspond to posterior distributions
at different times in on-line applications. SMCMC proceeds as in usual MCMC but
with the stationary distribution updated appropriately each time new data arrive.
SMCMC has advantages over sequential Monte Carlo (SMC) in avoiding particle de-
generacy issues. We provide theoretical guarantees for the marginal convergence of
SMCMC under various settings, including both parametric and nonparametric mod-
els. Even in batch situations where a full dataset {yi,...,y,} has been obtained, we
can still consider the sequence of posterior distributions p(6® |y, ..., y) for t < n.
The annealing effect (Chopin, 2002) of adding data sequentially can lead to sub-
stantial improvements over usual MCMC methods, which incorporate all the data at

once and sample serially.



In the theoretical aspect, we prove the ergodicity of a time-inhomogeneous Markov

chain with time varying transition kernel {7} : t = 0}, i.e.

||Ty 0+ 0Ty omy —m|lry — 0, ast — oo,

where 7; is the stationary measure associated with T;, under the assumption that
{m : t = 0} forms a Cauchy sequence, i.e. ||m; — m 1||lry — 0, as t — oo with
|| - ||7v the total variation distance. We propose a novel condition on verifying the
geometric ergodicity of a time-homogenous Markov chain, which greatly simplifies
and is weaker than the commonly used conditions such as the local minorization and
drift condition (Rosenthal, 1995). In addition, we generalize the SMCMC algorithm
and its ergodicity to the case when the dimension of the parameter space is also

growing in time.
Bayesian inference for semi-parametric models

The last research topic consider semiparametric estimation problems, where the sta-
tistical model P = {Py : A = (0,n)} is indexed by two parameters 6 and 7, with
€ R* a finite-dimensional parameter of interest and 7 € H an infinite-dimensional
nuisance parameter. We justify the use of Bayesian credible intervals for 6 by study-
ing its frequentist coverage as the sample size goes to infinity based on the so-called
Bernstein-von Mises (BvM) theorem. For frequentists considering using a Bayes
procedure for uncertainty quantification, it is highly appealing that credible inter-
vals have valid coverage asymptotically. BvM theorems have been established for
the marginal posterior of finite dimensional parameter 6 in semiparametric models
(Shen, 2001; Bickel and Kleijn, 2012; Castillo and van der Vaart, 2012), which state

that under certain conditions,

sup |I1(6 € B|X1,...,X,) — Ny(B; 6 + n 2A,, (ndgyme) )| — 0, (1.1)
A



in Py, n,-probability, where X, ..., X,, are i.i.d observations,
- 1 &~ | 5
ATL = \/_ﬁ Z ]907770l90,77() (XZ)7
i=1

l. is the efficient score function and Iy, the efficient Fisher information. However,
results based merely on the first-order expansion of the marginal posterior of 6 as
(1.1) are unable to reveal how the estimating efficiency of the nuisance parameter
7 impacts the estimation of . Such a delicate relationship can only be revealed by
considering a higher-order expansion.

We consider a fully Bayesian framework by putting a joint prior on (6,7) that is
shown to lead to an adaptive convergence rate in estimating 7. Moreover, we consider
more general cases where the likelihoods are substituted with quasi-likelihoods, which
only require assumptions on the forms of the conditional means of Y given (6, 7) in-
stead of assumptions on the complete information about the conditional distribution
P(Y'|0,n). This general setting includes generalized partial linear models as special
cases. Interestingly, we observe that if independent priors are assigned to 6 and 7,
then even the first-order convergence rate n~'/2 of # would be deteriorated by a bias
term depending on the least favorable direction A of the semiparametric model. To
eliminate this bias, we propose a dependent prior on # and 7 and show that the right
hand side of (1.1) for the resulting posterior becomes O(y/np? + \/np,k,), where k,
is the approximating error of h. Moreover, this prior is shown to be adaptive to the
smoothness of the nuisance part. Therefore, an adaptive second-order efficiency of

estimating 6 is achieved.
1.3 Outline

In Chapter 2, we derive the Minimax L, risks for high dimensional nonparametric

regression under two sparsity assumptions: 1. the true regression surface is a sparse
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function that depends only on d = O(logn) important predictors among a list of p
predictors, with log p = o(n); 2. the true regression surface depends on O(n) predic-
tors but is an additive function where each additive component is sparse but may
contain two or more interacting predictors and may have a smoothness level different
from other components. Broad range general results are presented to facilitate sharp
lower and upper bound calculations on minimax risks in terms of modified packing
entropies and covering entropies, and are specialized to spaces of additive functions.
For either modeling assumption, a practical extension of the widely used Bayesian
Gaussian process regression method is shown to adaptively attain the optimal mini-
max rate (up to logn terms) asymptotically as both n, p — co with logp = o(n).

In Chapter 3, our focus is on developing computationally tractable and theoret-
ically supported Bayesian nonparametric regression methods in the context where
the predictors lie on a D-dimensional surface. When the subspace corresponds to a
locally-Euclidean Riemannian manifold, we show that a Gaussian process regression
approach can be applied that leads to the minimax optimal adaptive rate in estimat-
ing the regression function under some conditions. The proposed model bypasses
the need to estimate the manifold, and can be implemented using standard algo-
rithms for posterior computation in Gaussian processes. Finite sample performance
is illustrated in an example data analysis.

In Chapter 4, we consider a categorical response and high-dimensional categorical
predictors. The goal is to build a parsimonious model for classification while doing
inferences on the important predictors. By using a carefully-structured Tucker fac-
torization, we define a model that can characterize any conditional probability, while
facilitating variable selection and modeling of higher-order interactions. Following a
Bayesian approach, we propose a Markov chain Monte Carlo algorithm for posterior
computation accommodating uncertainty in the predictors to be included. Under
near low rank assumptions, the posterior distribution for the conditional probability

11



is shown to achieve close to the parametric rate of contraction even in ultra high-
dimensional settings. The methods are illustrated using simulation examples and
biomedical applications.

In Chapter 5, we propose Bayesian convex and linear aggregation approaches mo-
tivated by regression applications. We show that the proposed approach is minimax
optimal when the true data-generating model is a convex or linear combination of
models in the list. Moreover, the method can adapt to sparsity structure in which
certain models should receive zero weights, and the method is tuning parameter
free unlike competitors. More generally, under an M-open view when the truth falls
outside the space of all convex/linear combinations, our theory suggests that the
posterior measure tends to concentrate on the best approximation of the truth at
the minimax rate. We illustrate the method through simulation studies and several
applications.

In Chapter 6, we propose a class of sequential Markov chain Monte Carlo (SM-
CMC) algorithms to sample from a sequence of probability distributions, correspond-
ing to posterior distributions at different times in on-line applications. SMCMC pro-
ceeds as in usual MCMC but with the stationary distribution updated appropriately
each time new data arrive. We provide theoretical guarantees for the marginal con-
vergence of SMCMC under various settings, including parametric and nonparametric
models. SMCMC exhibits an encouraging improvement over competitors in a simu-
lation study. We also consider an application to on-line nonparametric regression.

In Chapter 7, we study second order expansion of semiparametric BvM theorems
and show that the right hand side in (1.1) is Op,(y/np2), with p, the estimation
error of the nonparametric part. This second order term motivates us to consider
an adaptive prior for the nonparametric part to achieve second order efficiency. As
has been observed in recent work by Castillo (2012) and Rivoirard and Rousseau
(2012), an adaptive independent prior for parametric and nonparametric parameters

12



tends to cause a bias term, called semiparametric bias, that can even break down
the first-order consistency. We show that by introducing prior dependence, the semi-
parametric bias can be eliminated by shifting the center of the prior for the nuisance
parameter. As a result, a dependent prior can achieve the adaptation to the second
order term under mild conditions. We provide simulations to support our theory.
Technical proofs and details are provided in chapter specific appendices at the

end of this thesis.
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2

High-dimensional sparse nonparametric regression

2.1 Introduction

Rapid advancement of technology has empowered today’s scientists to collect a huge
number of explanatory variables to predict a response (Biilmann and van de Geer,
2011). Because the relationship between a response Y and its explanatory variables
X = (X',..., X?) € R’ may be highly nonlinear and include interaction, there is a

practical need to develop sensible regression models

Y = f(X)+e, e~ N(0,0%),

under mild assumptions on f in the high dimensional setting, especially when p is
much larger than n, the number of observations on (X,Y’) available for estimating
the regression function f. Good statistical methods for such so called “large p small
n regression” should scale well with the predictor dimension and quickly identify any
underlying low dimensional structure to facilitate maximum statistical learning from
limited data. They must also allow flexible estimation of the function shape and
capture predictor interaction.

Efficient statistical learning in high dimensional settings requires strong model

14



assumptions to avoid “the curse of dimensionality”. One attractive assumption is

M1. f potentially depends on all elements of X, but X itself lies in a low dimensional

manifold M? in the ambient space R?.

M1 enables naive nonparametric methods that algorithmically scale well with p to
achieve near optimal performance guarantees (Bickel and Li, 2007; Ye and Zhou,
2008; Yang and Dunson, 2013). However for many high dimensional applications,
such as gene expression studies, a low dimensional manifold assumption on X may
not be tenable or verifiable. In such cases one often assumes a sparse relationship

between Y and X such as
M2. f depends on a small subset of d predictors with d < min{n, p}.

M2 has served as the springboard for many widely used regression methods, includ-
ing high dimensional linear regression approaches, such as the Lasso (Tibshirani,
1996) and the Dantzig selector (Candes and Tao, 2007), and nonparametric regres-
sion methods with variable selection, such as the Rodeo (Lafferty and Wasserman,
2008) and Gaussian process regression (Tokdar, 7777). The latter two allow flexible
estimation of f and is able to capture interactions among the selected important
predictors. However, as will be shown later, when f is allowed to be fully non-
parametric, M2 enables good statistical learning only when d « min{n, p}, i.e. the
regression function is extremely sparse.

To rectify this without completely giving up on nonparametric shape flexibility,

we introduce a third modeling assumption:

M3. f may depend on d = min{n, p} variables but admits an additive structure f =
lezl fs, where each additive component f; depends on a small dy « min{n, p}

number of predictors.
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Clearly, M3 subsumes M2 as a special case and in Theorem 2 we reveal that M2
represents the worst end of the difficulty spectrum of statistical learning under M3
as measured by minimax error rates in estimating f under the Ly loss. At the
other end of the spectrum is the special case of a completely additive structure
f(X) = fi(X®) 4+ .-+ + fy(X%) for which scalable algorithms have been devised
(Hastie and Tibshirani, 1986) and attractive minimax error bounds have been derived
albeit under the strong assumption that all component functions f, have the same
smoothness (Koltchinskii and Yuan, 2010; Meier and Buhlmann, 2009; Ravikumar
et al., 2009; Raskutti et al., 2012).

Compared to either of these two extremes, M3 provides a much more practi-
cally attractive theory of large p small n nonparametric regression. It promises to
offer efficient statistical learning even when the relationship between Y and X is
not extremely sparse. It also avoids the complete additivity assumption and al-
lows explanatory variables to interact with each other. The ability to model and
learn variable interaction is a feature of considerable scientific relevance to modern
statistical applications.

The aim of this chapter is twofold: to derive the minimax L, error rates of
estimating f under M3 and to show existence of practical statistical methods that
offer adaptive, near optimal performance across the entire M3 model space. Toward
the first goal, we present in Theorem 2 sharp upper and lower bounds on the minimax
Ly estimation error under M3 as a function of n, p, component sizes di, ..., d; and
smoothness properties of the component functions fi,..., fx, which are allowed to
have different levels of smoothness than one another. Both Theorem 1 and the results
of Raskutti et al. (2012) follow as corollaries to this general result.

Toward the second goal, we demonstrate that a conceptually straightforward ex-
tension of the widely used Gaussian process regression method (see, e.g., Rasmussen
and Williams, 2006, for a review) adaptively achieves the optimal minimax rate
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across all subclasses of M3 under suitable large p small n asymptotics where p grows
almost exponentially in n. In this paper we restrict only to a theoretical study of
this new approach, which we call the additive Gaussian process regression. A full
fledged methodological development of the same is underway and will be reported
elsewhere.

The rest of this chapter is organized as follows. Section 2.2 introduces the nota-
tion and some basic assumptions. Section 2.3 summarizes our main minimax results
for high dimensional nonparametric regression under M2 and M3. Section 2.4 pro-
vides a general framework for characterizing minimax risks. Section 2.5 details the
application of the results in section 2.4 to M2 and M3. Section 2.6 shows the adap-
tive minimax optimality of Bayesian Gaussian process regression. Technical proofs

appear in Appendix A.

2.2 Notations

Let (X;,Y;), ¢ = 1,...,n denote the observations on (X,Y). We make a stochastic
design assumption that X, ..., X, are independent and identically distributed (IID)
according to some probability measure () on R? and that f € Ly(Q), the linear space
of real valued functions on R? equipped with inner product {f, ) = { f(2)g(x)Q(dz)
and norm | fllg = {f, f)*%. We do not need to know or estimate ) for the purpose of
estimating f, but it is a natural candidate to judge average loss in prediction at future
observations of X drawn from (), as will be the case under simple exchangeability

assumptions. The associated minimax risk r,, (X, @, o) of estimating f under a model

M 1is defined as

r2(,Q,0) = inf sup Erq |f - fI3
feAn fex

where ¥ < Ly(Q) is the function space specified by the model M, A, is the space of

all measurable functions of data to Lo(Q) and Ej g denotes expectation under the
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model: X; ~ Q, Y;|X; ~ N(f(X;),0?), independently across ¢ = 1,--- ,n. When no
risk of ambiguity is present, we will shorten r, (%, @), o) to simply 7, and call r,, the
minimax rate.

We will focus on function spaces characterized by smoothness conditions in ad-
dition to sparsity properties specified by models M2 and M3. Let N denote the
set of natural numbers and Ny = N U {0}. For any d dimensional multi-index
a = (ay,...,aq) € NI define |a| = a; + - - + a4 and let D* denote the mixed partial
derivative operator 0% /9x{" - - - 0z*. For any real number b let |b| denote the largest
integer strictly smaller than b. The Holder class ¥ («, L, d) indexed by the triplet
(o, L, d), is defined as the set of all d-variate [ = |«| times differentiable functions f

on [—1,1]¢ such that:

flloe = max  sup 2@ = D)

—1
al=l z,ye[—1,1]4,z#y |£E - y|a

< L. (2.1)

A d-variate function f will be loosely referred to as an a-smooth function if it belongs
to X(«, L,d) for some L < 0.

We encode sparsity in a p-dimensional space through binary inclusion vectors
be {0,1}F and for any z = (z',...,2P) € R?, let 2® = (27 : b; = 1) denote the vector
of |b] = Z§:1 b; predictors picked by b. For M2, we will focus on “sparse” function

spaces indexed by «, L > 0, d, p € N defined as:
Ss(a, L,d,p) = {z — g(2*) : g€ X(a, L, |b]) with b e {0,1}? and |b| < d}.

Without loss of generality, we assume that each element f in ¥g(a, L, d, p) has zero
mean with respect to @, i.e. { f(2)Q(dx) = 0, since otherwise we can always subtract
the mean from f without changing its smoothness.

For M3, we will consider “additive” function spaces indexed by a, L € (0, o0)F,
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de N k.p,deN defined as:

ZA(Q’L’d’k’p’d) :{.I' — fl(wbl) +--t fk(xbk> : fs € Z(asaLsa |b8|)7
bs € {0, 1}7, [b| < dy, bs & by, byj + -+ - + byy < d,

for s,t = Skis#E g =1,...,p}

i.e., the elements of ¥ 4(a, L, d, k, p,d) decompose into k irreducible components with
a cap ds on the interaction order of component s. Also, each predictor is restricted
to appear in at most d many of the k components. Again, we will assume without
loss of generality that each component function f is zero mean with respect to Q.
Under this assumption, {fs, f;)q # 0 if and only if f; and f; share common important

predictors, i.e., ¥ _. byib; # 0. Consequently for each s, there are at most dy(d — 1
j=1"7577t]

indices ¢ # s such that (fs, fi)g # 0, and hence

1f115 = Z 1 £ll3 + 22<fs,ft>Q

s=1t#s

|fs||Q Z AR

s=1 tit£s (fo, fi)#0

IIM»

k
Z |f8||Q+Zd DIIflG
B k
< {1+dma><(d_1)}2||f8||zgv (2-2)
s=1
where dpax = max(dy, ..., dg). This inequality plays a key role in calculating covering

entropies of the function spaces Y4(a, L, d, k,p,d). These entropy numbers behave

well even when p and k are arbitrarily large, as long as dmayx and d remain small.
The covering number N(e, 3, p) of a function space ¥ equipped with a metric

p is defined as the minimal number of p-balls of radius € needed to cover . It

is customary to call log N(e, X, p) the e covering entropy of ¥ under p. A related
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notion is the packing number of > under p, which is defined as the maximal number
of € separated elements in X. For linear space ¥, we introduce a new concept, the
modified packing number C(e, K, X, p) defined as the maximal number of elements
of X that are e distance apart from each other and each have norm smaller than Ke.
By A(x) ~ B(z) for two functions A(z) and B(z), we mean 0 < lim A(z)/B(z) < 0,

where the limit is either x — 0 or x — oo determined by the specific context.

2.3 Minimax results for large-p small-n nonparametric regression

2.3.1 A brief overview of existing results

The minimax risk under M1 is well known (Bickel and Li, 2007; Ye and Zhou, 2008;
Yang and Dunson, 2013). Bickel and Li (2007) show that multivariate local poly-
nomial regression can adapt to the lower dimensional structure in the sense that it
achieves the minimax rate n~®/(**4 when f is known to be a-smooth and a < 2.
Yang and Dunson (2013) consider Bayesian nonparametric regression with Gaus-
sian process priors and prove that under M1, Gaussian process priors can achieve
the minimax rate n=*2*+4 up to some log factor with additional adaptation to an
unknown « that does not exceed 2.

However under M2 and M3, precise calculations of 7, and theoretical results on
which estimation methods attain the minimax rates are known only under additional
simplifying assumptions on the shape of f, or, for inference tasks that are simpler
than prediction. In the linear model setup, Raskutti et al. (2011) show that with X
taken as the set of functions f(z) = 278 with 8 in an [y ball of RP and under some
regularity conditions on the design matrix,

ri - dlog(p/d)
n
up to some multiplicative constant, where d is the number of important predictors.

As we will see later, this is the typical minimax risk associated with variable selection

20



uncertainty. Note that for ¢ = 0, the [, norm precisely encodes the sparsity condition
of My. Wainwright (2009a) and Wainwright (2009b) consider minimax lower bounds
for support recovery. For a review on various types of minimax risks for high di-
mensional linear models, see Verzelen (2012). Many authors have also obtained near
minimax optimal convergence rates of various methods for linear regression under
the Lo loss, such as Bickel et al. (2009), Candes and Tao (2007), Meinshausen and
Yu (2009) and Zhang and Huang (2008).

As a non-linear, non-parametric generalization of their results, Raskutti et al.
(2012) consider sparse additive models with univariate components, which is a special
case of M3 with each dy; = 1 and with each f; being a-smooth for a common « > 0.
For this model they show

r? = k6% + klogp
n n n )

where k is the component number and §,, = n~ 2+ — the minimax risk of estimating
an a-smooth univariate function. The minimax risk in this case can be decomposed
into two terms, where the first term is the sum of minimax risks of estimating each
component and the second term is the variable selection uncertainty:.

As indicated earlier, an entirely different generalization of the linear model is the
fully sparse nonparametric regression model of M2. To the best of our knowledge, the
only result in this context is Comminges and Dalalyan (2012), who analyze minimax
risks of support recovery under the variable selection framework. They show that if
dlog(p/d)/n is lower bounded by some positive constant «y, then for some constant

c>0,

inf sup P(J, # J;) = ¢,
Jn feS

where J, ranges over all variable selection estimators, i.e., measurable maps of data
to the space of all subsets of {1,...,p}, ¥ is the space of all differentiable functions

21



that depend on only d many predictors and have squared integrable gradients, and
Jr < {1,...,p} is the index set of truly important predictors associated with f. This
result is the reason we call the term dlog(p/d)/n the minimax risk associated with
variable selection uncertainty. In fact, for large p, the numerator dlog(p/d) in the
second term is asymptotically of the same order of the log of (Z), the number of
ways to select d important predictors from p covariates. Therefore, it is reasonable
to expect that any estimation problem related to high dimensional variable selection

should include a variable selection uncertainty term dlog(p/d)/n.
2.3.2  Results on minimaz rates under M2 and M3

In this paper we provide sharp upper and lower bounds to the minimax Ly prediction

risk for both M2 and M3 under the following condition on the predictor distribution
Q:

Assumption Q. @ = @QF where @) is a probability measure on [—1, 1] that admits a

Lebesgue density qo satisfying: infue[1,1)qo(u) > 0 and sup,e;_; 1) qo(u) < .

The main condition we need is independence among the predictors. They do not nec-
essarily need to be identically distributed, though that additional assumption keeps
notations tidier. Also, the independence assumption is needed only for providing a
sharp lower bound to the minimax rate, but is not needed either for calculating a
sharp upper bound or for deriving the posterior convergence rates of the additive

Gaussian process regression method.
Theorem 1 (Minimax risk for M2). Under Assumption @

—2%d 241 d
n) | o dlog(p/d) (2.3)

2 e JE—
Tn(ZS(Oé, La d7p)7QaU) - <O'2 n
As we can see, the minimax risk in Theorem 1 consists of two terms. The first

term corresponds to the minimax risk for estimating a d-variate function fy with the
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knowledge of which d covariates are the important predictors. To make this term
meaningful, d should be smaller compared to logn. The second term is incurred by
variable selection uncertainty, which is consistent with the results of Comminges and

Dalalyan (2012).

Theorem 2 (Minimax risk for M3). Under Assumption @,

A0 ) =l )3 { (1) 5 4 CELECIEIL

)
= (\o n

where ¢(dmax, d) is a number between 1/B and /B with B = 1 + duax(d — 1).

Toward proving these results, we first provide several fundamental results on how
to calculate such sharp bounds over a general nonparametric function space . Lower
bounds are derived by using well known information-theoretic arguments (Yang and
Barron, 1999). For upper bounds, we establish existence of Bayesian estimators with
desired risks. Our construction borrows from Bayesian posterior convergence theory
(Ghosal et al., 2000). We specialize these results to the cases of M2 and M3. It
is more difficult to calculate minimax risk bounds for M3 than for the univariate
additive case of Raskutti et al. (2012) where different components are assumed to
be from the same function space. In the univariate case, zero mean components
depending on different predictors are always orthogonal under the inner product
(-,)q. However, in the general additive case, different components can share the

same predictors and break down the orthogonality.

2.4 General theorems on characterizing minimax risks

2.4.1 Upper bounds for minimax risks

Theorem 3. If (e, :n =1,2,...) satisfies €, — 0, ne2 — oo and ne2 = o?log N(e,, %, ||

llg), then there exists a prior IL,, over ¥ such that for any fo € X,
EfO,QHn(f : ||f — f0||Q > M6n|X1, Yi, Ce. ,Xn, Yn) ad O, (25)
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for some fixed M > 0. Furthermore, sz 1s defined as the maximizer of g — I, (f :
If —gllo < Me,| X1, Y1, ..., X,.Y,) then

meQ(Hf_ Jollg < 2M€n) — 1, asn— oo.

In Theorem 3, we use the subscript n to indicate the dependence of the sample size
on the constructed prior II,,. The quantity €, in this statement can be understood as
the posterior convergence rate, which means that the posterior probability measure
assigns almost all its mass to a sequence of ||-||g-balls in ¥ whose radii shrink towards
fo at rate €,.

Although Theorem 3 ensures the convergence of || f— follg to zero in probability,
it does not characterize the decay rate of the posterior probability of {f € X :
Il f— follog < Me,}. This decay rate of the tail probability is important for estimating
the L,(Q) risk E||f — fo 5 To control this tail probability, we need to constrain the
complexity of ¥ in terms of the uniform covering entropy, which is defined for any
€ > 0 by supglog N(e, %, || ||r), with R ranging over all probability distributions (or

all discrete probability distributions) on the support of 3.

Theorem 4 (Upper bounds for minimax risks II). If (e, : n = 1,2,...) satisfies

) Y

en — 0, ne2 — o0 and ne2 = o*supglog N(e, %, || - ||r), then there exists a prior 11,
over X such that for any fo € X,

EfO:Q{Hn(f : ||f - f0||TL > M€n|X1>Y'17- .. 7Xn7Yn)} = eXp(—CTLEi), (26)

for some fized numbers M and C'. Furthermore, z'ff is defined as either the posterior
expectation of f or the mazimizer of g — IL,(f : [|f —glln < Men| X1, Y1, ..., X0, Y0)
then

Pfo,Q(Hf — folln = 2Me,) < exp(—Chney).

Moreover, if ¥ is uniformly bounded, then for some D > 0,
max {Ep, o (1f = folld), Ene(lf = foll2)} < Del.
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The assumption on the uniform covering entropy is not a strong one and is com-
monly used in many statistical problems involving function spaces, such as Koltchiskii
and Pancheko (2005). In particular, the uniform covering entropies of the function
spaces under M2 and M3 are finite for any ¢ > 0 and have the same order as
log N(e,%,|| - ||g). Therefore, Theorem 4 implies exponentially decay rate of the

posterior probabilities of {f : ||f — fo|lo > Me,} for Xg and X 4.
2.4.2  Review of lower bounds for minimax risks

Theorem 5 (Lower bounds for minimax risks). Let €, to be a positive sequence such

that €, — 0 and ne2 < (2K*)'o?log C(2€,, K, 3, || - |lg) for some K > 0, then

1

inf supr,Q{||f—f||Q > en} > 5
feA, fex

Therefore, the minimaz risk under the L(Q) loss satisfies r2(3, Q,0) = 1e2.

At a first sight, Theorem 3 and Theorem 5 seem to contradict each other since in
the regular parametric models where Bernstein von-Mises theorem holds and €, ~
n~Y/2 the posterior distribution of \/n|| f — fo||o is approximately normal and IL, (|| f —
follo = Me) = exp(—CM?) - 0 for some C' > 0 and any M. In fact, Theorem 3 only

2

apply for nonparametric cases where the condition ne;

— oo rules out the parametric
cases. Therefore, the results imply that when the minimax rate is slower than the

-1/2

parametric rate n~ /<, there is a phase transition in the sense that for some critical

value M,, we have

o ) >0, M < Moy;
lim inf sup P - = Me, 7 ,
im i flelg relllf — fllo € }{ =0, M > M.

n— f

However, since our primary interest is in the asymptotic order of the minimax rate
(2, Q, o), we will not attempt to determine the exact multiplicative constant in it.

By Theorem 3 and Theorem 5, if we can obtain a tight lower bound log C(e) to
log C(e, K, %, ||-||o) for some K > 0 and a tight upper bound log N (¢) to log N (e, %, ||-
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o), such that log C(e) ~ log N(€) as € — 0, then 7,(2, Q,¢) will be determined up
to a multiplicative constant as the solution of the equation log N (e) ~ ne?. With such
an ¢, the corresponding prior II,, in Theorem 3 can be considered as asymptotically

least favorable from a decision-theoretical point of view.
2.4.8 Auziliary results for function spaces with additive structures

Consider a general framework where the additive function space takes the form F =
El—)le Fs={f = Zle fs: fs € Fsys = 1,...,k} for k function spaces Fi, ..., Fg.
In the sequel, K is a fixed constant and logC(e, K, F,|| - ||o), log C(e, K, Fs, || -
o), log N(e, F,|| - |lg) and log N(e, F,|| - ||qg) will be abbreviated as log C(e, K),
log Cs (e, K), log N(€) and log Ny(e).

Next, we study the minimax risks associated with . We make two assumptions:
FL ||fl[5 < BY" | fsllp Yf = 3% | fs € F for some constant B > 0;

F2. For any €y, ..., € > 0, there exist mutually orthogonal modified es-packing sets
Es(es) of size Cy(es, K) for s = 1,... k, i.e. Vs #t, fs € E(es) and f; € E(e),
<fsa ft>Q =0.

Under the near orthogonal condition F1, ||f — g||2Q can be bounded by a multiple

of 25:1 | fs — gs||g2 for any two functions [ = Zle fs and g = lezl gs in F. This
property plays a key role in obtaining an upper bound to the covering entropy of F.
F2 is important for constructing a sufficiently large packing set for F. >4 is close to
(—Dlzzl Ys(a, Ly, dg) up to a negligible subset caused by the non-inclusive constraints
on the additive components. Therefore, the results in this subsection on F can be
easily transferred to X 4.

The following theorem provides lower and upper bounds to log C'(¢/2) and log N (K7€)

in terms of {log Cs(¢)} and {log Ny(€)} under F1 and F2.
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Theorem 6 (Entropies for additive spaces). Under assumption F1 and F2, for any

e >0,
. k
logC(§,\/§K) > Ky ) log Cy(ase, K),
s=1
where Ko > 0 is some universal constant and (au, ..., &) € RE are the solution of
log C1 (€, K) log Ci(oge, K) &
. — .= . = Zlong(ase, K). (2.7)
a; o g
Moreover, for any nonnegative vector (o, ..., qx) satisfying 25:1 a?=1,

log N(v/Be) < Z log N (ae).

s=1
In particular, the above holds for the (ay, ..., ax) in (2.7).

If for each F,, we have a lower bound log C;(¢) and upper bound log N,(e) to
log Cs(€) and log N,(e) so that for any fixed constant a; > 0,ay > 0, log Cs(a€) ~
log NS(CLQE) as € — 0 then by Theorem 6, we can obtain lower and upper bounds
for log C(€) and log N(e) respectively so that log C'(aje) ~ log N(age) as e — 0.
Combining this observation with Theorem 3 and Theorem 5, we have the following

corollary on minimax risks of F.

Corollary 7 (Minimax risks for additive spaces). Under assumptions F1 and F2,
the minimax risk of estimating a function f e F = (—szl Fris €2 =% 82 where

s=1"n,s’

On.s is the solution of log Ny(62) ~ nd? for s =1,... k.
2.5 Applications of the general results to M2 and M3

In this section, we provides tight lower/upper bounds for the modified packing en-
tropies and covering entropies of ¥g and ¥ 4. Then with the help of Theorem 5 and
Theorem 3, we can obtain the minimax risks of g and X 4.
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2.5.1 Minimazx lower bounds for high dimensional regression

In this subsection, we study modified packing entropies of the relevant sparse regres-
sion spaces. With the help of Theorem 5, lower bounds on these quantities provide

lower bounds for the minimax risks.

Lemma 8 (Modified packing entropy lower bounds). Assume assumption (). Then

fore >0, X and N > 0 in any of the following cases:
1. ¥ =Y(a, L,d) and log N = K,(L/e)¥*;
2. % =Yg(a,L,d, p) andlog N = Ki(L/e)¥* + dlog(p/d);

3.5 = Sa((e,. . an), (L, Ly), (dy,....di),p,d) and logN > K>

(Ls/(ag€))? + K, Zle dslog(p/dy), for some Ki > 0, where s = ds/as and

(aq,...,q) solves
L\ 1 L\ 1
2 1 k
Yool Y T 2.8

there exist N + 1 functions { fs éV:O < Y such that
(i). fo="0, |Ifsllg < Kae, 1< s <N,
(ii). d(fs, f) =€, 0<s<t<N,

for some Ky > 0 independent of € and L or {Lg}. This implies

d
L\ @
IOgC(E,KQ,E(O{,L,d), || ) ||Q) = K (_) )

€

d
L\«
10gC(E,K2,25(Oé,L,d,p),||'||Q) >K1(€) +d10g§7

10g0(6/27 \/EKZ)EA((QM s ,Oék), (Lb R Lk)a (dh s 7dk)7p7d)’ || ’ ||Q)

L.\"? k D
>K12(a5€) + K1) dylog

s=1




for B =1+ du(d—1).

The above lemma indicates that the “size” of ¥g(«, L,d) is characterized by
B = d/a, which will be referred to as the complexity index. To appreciate the
above modified packing entropy lower bound for the additive function space ¥ 4, we
consider two special cases. In the first case, all additive components are univariate
with the same smoothness o and magnitude L. The same framework is considered in
Raskutti et al. (2012). In this case, a; = --- = a3 = k2 and the lower bound for
the modified packing entropy becomes Kik(vkL/e)'/* + K klogp. By Theorem 5,
this provides a lower bound to the minimax risk as €2 ~ fn~ 2t 4+ k log p/n, which is
the same as the minimax risk obtained in Raskutti et al. (2012) when the univariate
additive function spaces are a-smooth Holder classes.

In the second case, assume k to be fixed and one additive component to be much
more complex than the rest, i.e. §; = dyfag » Bs = dy/a, for s = 2,... k. In
this case, a; ~ 1 and (ase)™ « e for s > 1. As a result, the lower bound to
the modified packing entropy is dominated by the first component as K;(L;/€)?t +

K Z’;Zl dslog(p/ds). As a result, the lower bound for the minimax risk becomes
2

e ~ n w4+ Y% d,log(p/d,)/n, in which the first term is dominated by the

slowest convergence rate of the additive components, while the second term is still

determined by the overall variable selection uncertainty.
2.5.2  Minimax upper bounds for high dimensional regression

In this subsection, we study the covering entropies, which provide upper bounds for
the corresponding minimax risks by Theorem 5. In the proofs, the distribution @ is
not necessarily the common marginal distribution of the components of X, but can

be any distribution on [—1, 1]?.
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Birman and Solomjak (1967) provide an upper bound for the covering entropy
of ¥(«, L, d) under sup norm, which is of the same order as the lower bound for the
modified packing entropy obtained in Theorem 8. Since || -||g is dominated by ||-||c,
their result also provides an upper bound for the covering entropy of ¥(a, L, d) under
the || - || norm. Based on this, we can obtain upper bounds for the covering entropy
of ¥g(a, L,d, p) and ZA((oq, cooya), (Ly, ..o Ly), (dy, ..., dy), p, d) as the following

lemma shows.

Lemma 9 (Covering entropy upper bounds). For any € > 0, we have

Qe

ot
log ¥ (e, (e, L, d), || - llo) < K(—) |
€

d
L\ @
log N (e.Zsten L) - ) < (7)o,

IOgN(\/EE, ZA((ala cee 70{]€), (Lh cee )Lk)7 (dh cee 7dk)7p7d)7 || ' ||Q)

k Bs k
<Ky ((56) + Y dilog o,

s=1 $

where K is a positive constant independent of € and L or {Ls} and (o, . . ., ) solves

(2.8).

Similar to Lemma 8, as long as B remains small, the lower bounds for the modified
packing entropies and minimax risks are also upper bounds up to multiplicative
constants, i.e. these bounds are sharp. In addition, since the upper bounds in
Lemma 9 do not depend on (), they also serve as upper bounds to the uniform

covering entropies defined before Theorem 4.
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2.6 Adaptive near minimax optimality of Bayesian additive Gaussian
process regression

Although the Bayesian estimator constructed in the proof of Theorem 3 attains the
minimax rate, it is essentially a mathematical construct and its practical implemen-
tation is nearly infeasible. Also, it requires the use of a different prior distribution
for different sample sizes, which may not be attractive in practice. In this section,
we demonstrate the existence of practical Bayesian methods based on single prior
distributions that adapt automatically across various function spaces satisfying M2
and M3.

Gaussian process (GP) priors are widely used in nonparametric regression. Adap-
tivity and near minimax optimality of Bayesian GP regression methods are known for
low dimensional applications (van der Vaart and van Zanten, 2009). We investigate
extensions of these methods to sparse high dimensional settings. We show that with
appropriate point mass mixture priors for Bayesian variable selection, GP priors are

still guaranteed to attain the minimax rates up to some log factors.
2.6.1 GP and its adaptive rate optimality for fixed p

We briefly review the theory developed by van der Vaart and van Zanten (2009)
on adaptive posterior contraction rate of Gaussian Process (GP) priors. Consider
a GP W = (Wy;z € [-1,1]%) on [-1,1]¢ The law GP(m, K) of W is completely
determined by its mean function m(x) = EW, and covariance function K(z,z') =
E(W, —m(x))(W, — m(z")). We consider a zero mean and stationary GP, where
the covariance function K(z,2') = EW,W, only depends on  — 2’. The square
exponential kernel exp(—||z — 2'[|*) is a common choice for K(z,z'). By Bochner’s

theorem,



where the finite Borel measure p on R? is called the spectral measure of W. van der
Vaart and van Zanten (2009) focus on GPs whose spectral measure has exponential

tails: for some 6 > 0,
Je‘”’\du()\) < 0.

van der Vaart and van Zanten (2008a) propose a set of conditions that ensure the

posterior convergence rate of GP priors for estimating the function fy € C[—1,1]¢ in

the regression problem Y| X ~ N(fo(X),0?) to be at least ¢, as:

2

PIW = follw < &) ze ", (2.9)
P(W ¢ B,) <e™*", (2.10)
log N(€n, B, || - Ilo0) <nes, (2.11)

where (B, : n > 1) is a sequence of subsets of C[—1,1]%, called sieves and (&, : n > 1)
is a sequence satisfying €, < €,, lim,_, ngi = 0.

van der Vaart and van Zanten (2008a) show that the prior concentration condition
(2.9) is intimately connected with the concentration function ¢y, (e) since P(||W —
folloo < €n) = €790 where the concentration function is defined as the sum of two
terms:

dp(€) = inf  Jhllg —log P(||W|le < e),

heH:||h—fo||o<e

where (H, || ||g) is the reproducing kernel Hilbert space (RKHS) associated with the
GP W. The first term measures how well fy is approximated by the elements in H.
The second term, the so-called small ball probability, characterizes the probability
mass of W assigned to a e ball around f;. An upper bound for the small ball
probability can be directly obtained by the condition (2.11) (Lemma 4.6 in van der
Vaart and van Zanten (2009)).

To achieve adaptation to unknown smoothness, van der Vaart and van Zanten

(2009) propose to rescale W by a random length scale parameter A as Wy = (W, :
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r € [—1,1]%), where A¢ follows a gamma distribution Ga(a, as) with scale parameter
a; and rate parameter as. For fy € 3(«, L, d), Stone (1982) shows that the minimax
rate of estimating fo is L#(2a+d)p=e/2a+d) (which is also implied by Lemma 8, Lemma
9, Theorem 3 and Theorem 5), where n is the sample size. van der Vaart and van
Zanten (2009) prove that by introducing A, the posterior distribution of W, can
achieve the minimax rate up to some logarithm factors. Hereafter, we use either a
superscript or a subscript a(A) to indicate the dependence on the (random) length
scale. For example, we write the covariance function of W, by K,(x,a’).
To verify condition (2.9), van der Vaart and van Zanten (2008a) show that for
sufficiently large n
P(I[Wa = folle < pa) = e 7, (2.12)
for p, a large multiple of L¥(@atd)p=a/atd)(]og p)(1+d)/(2+d/@) Ty satisfy condition
(2.10) and (2.11), they construct a sequence of sieves taking some specific forms. The
following lemma summarizes their constructions. Since the results in this lemma play

a key role in our later proofs, we provide an outline of a proof extracted from van der

Vaart and van Zanten (2009) for completeness.

Lemma 10. For positive constants M, r,€,0, let

Batres = {(T/5)d/2MH§ + e]B%l} U { U MHY} + eBl}, (2.13)

a<d

where HY is the unit ball of the RKHS H" associated with W, and B, is the unit ball

of C|—1,1]* in sup-norm. Suppose that the prior density g for A satisfies

Bia? exp(—Dya%) < g(a) < Bya? exp(—Dsa?),

for some By, By, Dy, Dy and p > 0, which is true when A? follows a Ga(p + 1, D)
prior. Then there exist some universal positive constants Cy, Cy, Cy, Cs, Cy, ag > 1,
€0 < 1/2, such that for every r > ag,0 < e, M?> > Cori(log(r/e))'*? and 6 =
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¢/(2d*? M), the following inequalities hold:

P(Wa ¢ Bypyes) SCyrP=dte=Cor® 4 o=M/8, (2.14)

M3/24/243/2p\ 14 CyM
By e— + 2log

lOgN(BEa BM,r,e,éa || ’ ||OO) <C’37ﬂd<log €3/2 (215)

€

As a result, for an arbitrary sequence (€, : n > 1) satisfying lim,, , €, = 0 and
lim,,_, né2 = oo, the sequence of sieves (B, = Bus, 1y .cns, : 1 = 1) with r? a large
multiple of né2, M? a large multiple of né2(logn)'*? and 6, = &,/(2|b]>>M,, satisfy
the following inequalities: for some universal positive constants Cy, C5, L,

P(Wy ¢ B,) <e @men,
(2.16)
log N(Léy,, By, || - |le) <Csné(logn)t™.

With the special choice of €, = d,,, van der Vaart and van Zanten (2009) prove that
GP priors with random length scales can achieve posterior contraction rate at least
en = pp(logn)*9/2 which is a large multiple of L¥(2atdp=c/Ca+d)(]ogn)7 with
vy=(1+d)/(2+d/a)+ (1 +d)/2. We would like to emphasize the flexibility of the
choice of €, in (2.16), since it is crucial in the later construction of sieves in the proof

for the adaptive property in terms of variable selection.
2.6.2 GP with high dimensional variable selection

In this subsection, we consider the estimation of f under M2. We extend the GP
prior to include variable selection. Let B € {0,1}? represent a random inclusion
vector and by be the inclusion vector corresponding to fp that generates the data
Yi|X; ~ N(fo(X;),02), i =1,...,n. Use the notation W¢ = (W%, : z* € [0,1]") to
denote the GP with covariance function K?(z?, ).

We consider the following GP variable selection (GPVS) prior to model the un-
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known function, denoted by W:

P(B = b)ocp (1 = p~ 1y P(|p] < dy),
API|B ~ Ga(ay, ay), (2.17)

W = WE|A, B ~ GP(0, K%),

where dj is a prespecified hyperparameter, interpreted as the prior belief on the maxi-
mum number of important predictors. The following provides a posterior contraction

rate ¢, of this prior.

Theorem 11. Assume fo € X(ap, Lo, dp). If p — 00 as n — oo and dy = |by|, then

the posterior contraction rate €, of the GPVS prior is at least

L(C)o/(2+co)n—1/(2+00) (10g n)ﬁl + w(log n)527
n

where ¢y = |bo|/a and By = (1 + |bo|)/(2 + o) + (1 + dp)/2 and 2 = (1 + dy)/2.

By Theorem 11, the contraction rate is adaptive to the unknown smoothness
o and number of important predictors dy, and almost attains the minimax rate
indicated by Theorem 1. The first part in the rate n—20/(eo*lbol) (Jogn)% does not
involve the dimensionality p of the covariates and corresponds to the minimax rate
no0/(aotlbol) of estimating a |dy| variate function up to a logarithmic factor as if we
knew the important predictors. However, for this result to hold, we require dy > |bg|-
Since we do not know |by| in advance, ideally we need to specify dy large enough
to cover |by|. We can allow dy to slowly grow with n such that the logarithmic
factor is still asymptotically smaller compared to n* for any A > 0. For example,
do = (logn)®, where 0 < x < 1. In the second part, since we do not know |bo|
but only an upper bound dy, we have dylog p/n instead of |by|log p/n in the variable

selection uncertainty error.
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2.6.3 Additive GP with high dimensional variable selection

In this subsection, we consider the regression problem under the assumption M3.

Suppose that the true function fy has an additive form:

Jfo(z) = ZO] Jon(a"on), (2.18)

where by 5, is the inclusion vector for the h-th component. Assume the Holder smooth-
ness of the |by | variate function fo) is oy and its magnitude is L. Under such
assumptions, fy € EA((ao,l, ey 00k )s (Lo ooy Lokg)s (doay -y dog)s P, CZ) Since
the number ky of components is unknown, we introduce a prior for the random com-
ponent number K € {1,..., Ky}, where Kj is a sufficiently large but fixed number.
Conditioning on K, each component can be specified by the GPVS prior (2.17).
Denote by,(By,) and ay,(Ay) the (random) inclusion vector and (random) length scale
for the h-th component. As a result, the additive GP variable selection (AGPVS)
prior for the random additive function W has the following hierarchical model: for
S =1, >0,k=0,1,..., Ko,
P(K =k) =py, for k=0,1,..., Ko,

P(By, = by)ocp (1 = p Y= I(|by] < dy), for h < K,
ALLB"HB;L ~ Ga(ay, az), for h < K,
Wior| Ay, By, ~ GP(0, K3"), for h < K,
K
W=y W
h=1

The posterior contraction rate of the AGPVS prior is provided by the following

theorem:

Theorem 12. Assume that f(] € EA((O./OJ, - 7a0,k0)7 (LO,lu . 7L0J€0)7 (dO,h - 7d0,ko);
p,CD. If p - 0 as n — 0, dy = maxi<p<k, |do,| and ko < Ko, then the posterior
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contraction rate €, of the AGPVS prior is at least

N co,n/(2+co,n) | —1/(2+co,n) B1,n Kodg log p B2
Vo Z Loh n " (logn)™" + T(log n)> |,
h=1

where Co.n = |b07h|/oz07h, 517}1 = (1 + |bO,h|)/(2 + CO,h) + (1 + do)/2 and /62 = (1 + do)/2

In practice, in order to accommodate the unknown number kg of components,
which is assumed to be fixed, we can allow Kj to slowly grow with the sample size
n in a slow rate and still attain a near optimal rate. For example, if K is of order
O((logn)”) for some v > 0, then the convergence rate only differs from the minimax
rate up to a logarithmic factor. Again, since we only know upper bounds dy and K
for dy, and ko respectively, we have Kydylog p/n instead of ZIZU:1 |bo.n| log p/n in the

variable selection uncertainty error.
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3

Nonparametric regression on manifolds

3.1 Introduction

Dimensionality reduction in nonparametric regression is of increasing interest given
the routine collection of high-dimensional predictors in many application areas. In

particular, our primary focus is on the regression model
}/;:f(Xl)_{—E’w EiNN(070-2)7 izlv"'ana (31)

where V; € R, X; € RP, f is an unknown regression function, and ¢; is a residual
having variance o2. We face problems in estimating f accurately due to the moderate
to large number of predictors D. Fortunately, in many applications, the predictors
have support that is concentrated near a d-dimensional subspace M. If one can
learn the mapping from the ambient space to this subspace, the dimensionality of
the regression function can be reduced massively from D to d, so that f can be much
more accurately estimated.

There is an increasingly vast literature on the topic of subspace learning, but there
remains a lack of approaches that allow flexible non-linear dimensionality reduction,

are scalable computationally to moderate to large D, have theoretical guarantees
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and provide a realistic characterization of uncertainty. Regarding this last point, we
would like to be able to characterize uncertainty in estimating the regression function
f, in functionals of f of interest and in predictions. Typical two-stage approaches
in which one conducts dimensionality reduction in a first stage, and then plugs the
d-dimensional features into a next stage regression may provide a point estimate with
good properties but do not characterize uncertainty in this estimate.

With this motivation, we focus on Bayesian nonparametric regression methods
that allow M to be an unknown Riemannian manifold. One natural direction is to
choose a prior to allow uncertainty in M, while also placing priors on the mapping
from z; to M, the regression function relating the lower-dimensional features to the
response, and the residual variance. Some related attempts have been made in the
literature. Tokdar et al. (2010) propose a logistic Gaussian process model, which
allows the conditional response density f(y|x) to be unknown and changing flexibly
with x, while reducing dimension through projection to a linear subspace. Their
approach is elegant and theoretically grounded, but does not scale efficiently as D
increases and is limited by the linear subspace assumption. Also making the linear
subspace assumption, Reich et al. (2011) proposed a Bayesian finite mixture model
for sufficient dimension reduction. Page et al. (2013) instead propose a method for
Bayesian nonparametric learning of an affine subspace motivated by classification
problems.

There is also a limited literature on Bayesian nonlinear dimensionality reduction.
Gaussian process latent variable models (GP-LVMs) (Lawrence, 2003) were intro-
duced as a nonlinear alternative to PCA for visualization of high-dimensional data.
Kundu and Dunson (2011) proposed a related approach that defines separate Gaus-
sian process regression models for the response and each predictor, with these models
incorporating shared latent variables to induce dependence. The latent variables can

be viewed as coordinates on a lower dimensional manifold, but daunting problems
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arise in attempting to learn the number of latent variables, the distribution of the la-
tent variables, and the individual mapping functions while maintaining identifiability
restrictions. Chen et al. (2010) instead approximate the manifold through patching
together hyperplanes. Such mixtures of linear subspace-based methods may require
a large number of subspaces to obtain an accurate approximation even when d is
small.

It is clear that probabilistic models for learning the manifold face daunting sta-
tistical and computational hurdles. In this article, we take a very different ap-
proach in attempting to define a simple and computationally tractable model, which
bypasses the need to estimate M but can exploit the lower-dimensional manifold
structure when it exists. In particular, our goal is to define an approach that ob-
tains a minimax-optimal adaptive rate in estimating f, with the rate adaptive to the
manifold and smoothness of the regression function. Surprisingly, we show that this
can be achieved with a simple Gaussian process prior.

Section 3.2 defines the proposed model and gives some basic geometric back-
ground along with a heuristic motivation for the model. Section 3.3 contains sim-
ulation studies of finite sample performance relative to competitors, and Section 7
discusses the results. Appendix B.1 contains a more thorough background of neces-

sary geometric concepts. Appendix B.2 provides the technical proofs.

3.2 Gaussian processes on manifolds

3.2.1 Background

Gaussian processes (GP) are widely used as prior distributions for unknown func-
tions due to tractable posterior computation and strong theoretical guarantees. For

example, in the nonparametric regression (3.1), a GP can be specified as a prior for

the unknown function f. In classification, the conditional distribution of the binary
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response Y; is related to the predictor X; through a known link function h and a
regression function f as Y;|X; ~ Ber[h{f(X;)}], where f is again given a GP prior.
The following developments will mainly focus on the regression case. The GP with
squared exponential covariance is a commonly used prior in the literature. The law
of the centered squared exponential GP {W, : x € X'} is entirely determined by its

covariance function,

K*(z,y) = EW,W, = exp(=a’||lz — y|”), (3:2)

where the predictor domain X is a subset of R, || - || is the usual Euclidean norm
and a is a length scale parameter. Although we focus on the squared exponential
case, our results can be extended to a broader class of covariance functions with
exponentially decaying spectral density, including standard choices such as Matérn,
with some elaboration. We use GP(m, K) to denote a GP with mean m : X - R
and covariance K : X x X — R.

Given n independent observations, the minimax rate of estimating a D-variate
function that is only known to be Hélder s-smooth is n=%(+P) (Stone, 1982). A
function in R” is said to be Holder s-smooth if it has bounded mixed partial deriva-
tives up to order |s| for |s| the largest integer strictly smaller than s with the partial
derivative of order |s| being Lipschitz-continuous of order s — |s]. Surprisingly,
van der Vaart and van Zanten (2009) proved that, for Holder s-smooth functions, a

prior specified as

WAA ~ GP(0, K, AP ~ Ga(ag, by), (3.3)

for Ga(ag, by) the Gamma distribution with pdf p(¢)oct®~te=%! leads to the minimax
rate n~%/(2*D) up to a logarithmic factor (logn)?® with 8 ~ D adaptively over all
s > 0 without knowing s in advance. The superscript in W4 indicates the dependence
on A, which can be viewed as a scaling or inverse bandwidth parameter. Although
the sample paths from this GP prior are almost surely infinitely differentiable, an
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FIGURE 3.1: In this data, 72 size 128 x 128 images were taken for a “lucky cat”
from different angles: one at every 5 degrees of rotation. 36 images are displayed in
this figure.

intuitive explanation for such smoothness adaptibility is that less regular or wiggly
functions can be well approximated by shrinking the long path of a smooth function
by a large factor a.

In many real problems, the predictor X can be represented as a vector in high
dimensional Euclidean space R, where D is called the ambient dimensionality. Due

25+D) will deteriorate rapidly

to the curse of dimensionality, the minimax rate n %/
as D increases. This will become extremely fatal in the notorious small n large
p problem, where D can be much larger than the sample size n. In such high
dimensional situations, there is no hope to accurately estimate the regression function
f without any assumption on the true model. One common assumption requires that
f only depends on a small number d « n of components of the vector X that are

identified as important. In the GP prior framework, Savitsky et al. (2011) proposed to

use “spike and slab” type point mass mixture priors for different scaling parameters
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for each component of X to do Bayesian variable selection. Bhattacharya et al.
(2012) showed that carefully calibrated implementations of this approach can lead
to minimax adaptive rates of posterior concentration. However, variable selection is
a very restrictive notion of dimension reduction. Our focus is on a different notion,
which is that the predictor lies on a manifold M of intrinsic dimension d much
lower than the ambient space dimension D. This manifold can be considered as a
d dimensional hyper surface in RP. A rigorous definition is described in section 3.
A concrete example is shown in Fig.3.1. These data (Nene et al. (1996)) consist
of 72 images of a “lucky cat” taken from different angles 5°,10°,.... The predictor
X e R ig obtained by vectorizing the 128 x 128 image. The response Y is a
continuous function f of the rotation angle 6 € [0,2n] satisfying f(0) = f(27),
such as sin or cos functions. Intuitively, the predictor X concentrates on a circle in
D = 1282-dim ambient space and thus the intrinsic dimension d of X is equal to one,

the dimension of the rotation angle 6.
3.2.2  Our model and rate adaptivity

When X € M with M d-dimensional, a natural question is whether we can achieve
the intrinsic rate n=%(s*4 for f Holder s-smooth without estimating M. Surpris-
ingly, the answer is affirmative. Ye and Zhou (2008) showed that a least squares

regularized algorithm with an appropriate d dependent regularization parameter can

s/(8s+4d) ( 2s/(8s+4d

ensure a convergence rate at least n~ logn) ) for functions with Holder
smoothness s < 1. Bickel and Li (2007) proved that local polynomial regression with
bandwidth dependent on d can attain the minimax rate n~%/(?**+% for functions with
Holder smoothness s < 2. However, similar adaptive properties have not been es-
tablished for a Bayesian procedure. In this paper, we will prove that a GP prior on
the regression function with a proper prior for the scaling parameter can lead to the

minimax rate for functions with Hélder smoothness s < {2,y — 1}, where ~ is the
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smoothness of the manifold M. In the remainder of this section, we first propose the
model, and then provide a heuristic argument explaining the possibility of manifold
adaptivity. Formal definitions and descriptions of important geometric concepts can
be found in the next section.

Analogous to (3.3), we propose the prior for the regression function f as

WAA ~ GP(0, K, A~ Ga(ag, bo), (3.4)

where d is the intrinsic dimension of the manifold M and K is defined as in (3.2)
with || - || the Euclidean norm of the ambient space RP. Although the GP in (3.4) is
specified through embedding in the RP ambient space, we essentially obtain a GP on
M if we view the covariance function K* as a bivariate function defined on M x M.
Moreover, this prior has two major differences with usual GPs or GP with Bayesian

variable selection:

1. Unlike GP with Bayesian variable selection, all predictors are used in the cal-

culation of the covariance function K¢,

2. The dimension D in the prior for inverse bandwidth A is replaced with the

intrinsic dimension d.

Generally, the intrinsic dimension d is unknown and needs to be estimated. Many
estimation methods has been proposed (Carter et al., 2010; Camastra and Vinviarelli,
2002; Levina and Bickel, 2004; Little et al., 2009). For example, Levina and Bickel
(2004) considered a likelihood based approach and Little et al. (2009) relies on sin-
gular value decomposition of local sample covariance matrix. We will use Levina and
Bickel (2004) to obtain an estimator d and then plug in this estimator into our prior
(3.4) to obtain an empirical Bayes approach.

In our model, we only need to estimate the intrinsic dimensionality d rather

than the manifold M. Most algorithms for learning M become computationally
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demanding as the ambient space dimensionality D increases, while estimating d is
fast even when D is tens of thousands. Moreover, although we use the full data in the
calculation of the covariance function, computation is still fast for moderate sample
sizes n regardless of the size of D since only pairwise Euclidean distances among D-
dimensional predictors are involved whose computational complexity scales linearly
in D. This dimensionality scalability provides huge gains over two stage approaches
(section 2.3) in high dimensional regression settings even though they can also achieve
the optimal posterior convergence rate (Theorem 15).

Intuitively, one would expect that geodesic distance should be used in the square
exponential covariance function (3.2). However, there are two main advantages of
using Euclidean distance instead of geodesic distance. First, when geodesic distance
is used, the covariance function may fail to be positive definite. In contrast, with
Euclidean distance in (3.2), K* is ensured to be positive definite. Second, for a given
manifold M, the geodesic distance can be specified in many ways through different
Riemannian metrics on M (section 3.1). According to Lemma 68, all these geodesic
distances are equivalent to each other and the Euclidean distance on R”. Therefore,
by using the Euclidean distance, we bypass the need to estimate geodesic distance,
but still reflect the geometric structure of the observed predictors in terms of pairwise
distances.

We provide heuristic explanations on why the rate can adapt to the predictor
manifold through two observations. The first focuses on the possibility of obtaining
an intrinsic rate for the regression problem (3.1) per se. Although the ambient space
is R”, the support M of the predictor X is a d dimension submanifold of R”. As a
result, the GP prior specified in section 2.1 has all probability mass on the functions
supported on this support, leading the posterior contraction rate to entirely depend

on the evaluations of f on M. More specifically, the posterior contraction rate is
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lower bounded by any sequence {e, : n > 1} such that

H(d(f, fo) > en|X”) — 0, n— oo,

where II(A|X™) is the posterior probability of A and d*(f, fo) = (1/n) X7, (f(2:) —
fo(acl-))2 under fixed design or &*(f, fo) = §,, (f(z) — fo(x))2G(dx) under random
design, with G the marginal distribution for predictor X. Hence, d(f, fo) measures
the discrepancy between f and the truth fy, and only depends on the evaluation of
f on M. Therefore, in a prediction perspective, we only need to fit and infer f on
M. Intuitively, we can consider a special case when the points on manifold M have
a global smooth representation # = ¢(t), where t € R? is the global latent coordinate

of x. Then the regression function

f(2) = flo(0)] = h(t), teR, (3.5)

is essentially a d-variate s-smooth function if ¢ is sufficiently smooth. Then estima-
tion of f on R” boils down to estimation of h on R? and the intrinsic rate would be
attainable. For the general case, we can consider parameterizing a compact manifold
M by a finite number of local charts {(U;, ¢;) : i = 1,...,m} and obtain (3.5) for z
in each local neighborhood U; € M. However, since the parametrization p in (3.5)
is unknown or even does not exist, one possible goal is to develop methods that can
adapt to low dimensional manifold structure.

This motivates the second observation on the possibility of obtaining the in-
trinsic rate via the ambient space GP prior specified in (3.3). With this prior,
the dependence among {f(z;)}", is entirely characterized by the covariance matrix
(K*(x;,7;))nxn, which depends on the pairwise Euclidean distance e among observed
predictors {z;}" ;. Ideally, a distance d, used in the covariance matrix should be
an intrinsic distance, which measures the distance by traveling from one point to
the other without leaving M. More formally, an intrinsic distance is defined as the

infimum of the length of all paths between two points. In the special case of (3.5),
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FIGURE 3.2: Examples of one dimensional submanifolds in R2.

dp(z,2") would be e(¢p™ (), ¢~ (2")) if ¢ is an isometric embedding from R? into
RP. Fig. 3.2 also gives two simple examples where M is a one dimensional sub-
manifold in R?. Although B and C are close in Euclidean distance, they are far
away in terms of intrinsic distance, which is the length of the arc from B to C.
Fortunately, Lemma 68 in the next section suggests that for compact submanifolds,
this bad phenomenon only occurs for remote points — d and d, will become com-
parable as two points move close. Moreover, as two points A and B become closer,
using d to approximate the intrinsic distance dx, only introduces higher order error
(see Proposition 67) proportional to the curvature of M, which characterizes local
distortion. In contrast, in the right plot is a straight segment in R2. In this case
Euclidean distance always matches the intrinsic distance and whether the M itself
is known would make no difference in predicting f since a straight segment is locally
flat and has zero curvature.

A typical nonparametric approach estimates f(x) by utilizing data at points near
x, such as averaging over samples in a d,-ball around z, where the bandwidth d,,
decreases with sample size n. It is expected that as more observations come in,
properly shrinking d,, could suppress both bias and variance, where the former is

caused by local averaging and the latter is due to measurement error. This is only
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possible when f has certain smoothness such that large local fluctuations are not

—1/(2s+d)

allowed. Therefore bandwidth tends to decrease at rate n depending on the

smoothness level s of f. Since the scaling parameter a in the covariance function

K serves as an inverse bandwidth which would grow at rate n'/(2s+

, remote points
tend to have exponentially decaying impact. As a result, one can imagine that
accurate approximation of local intrinsic distance could provide good recovery of f
as if we know the manifold and the associated intrinsic metric dys. Note that for
manifold M, the notion of “closeness” is characterized by the geodesic distances
defined on M. Often geodesic distances on M are not uniquely determined (section
3.1). Fortunately, Lemma 68 implies that for compact submanifolds, all distance
metrics induced by Riemannian metrics on M are equivalent. Therefore we can
choose any valid Riemannian metric as the base metric, which is the one induced

by the ambient Euclidean metric in this paper. The following theorem is our main

result which formalizes the above observations.

Theorem 13. Assume that M is a d-dimensional compact C7 submanifold of R”.
For any fy € C*(M) with s < min{2,~v — 1}, if we specify the prior as (3.3), then
(B.8) will be satisfied for €, a multiple of n=¥**)(logn)* and &, a multiple of

en(logn)® with k1 = (1 +d)/(2+ d/s) and ke = (1 + d)/2. This implies that the

25+d)( d+1

posterior contraction rate will be at least a multiple of n="/ logn)

The ambient space dimension D implicitly influences the rate via a multiplicative
constant. This theorem suggests that the Bayesian model (3.4) can adapt to both the
low dimensional manifold structure of X and the smoothness s < 2 of the regression
function. The reason the near optimal rate can only be allowed for functions with
smoothness s < 2 is the order of error in approximating the intrinsic distance da4
by the Euclidean distance d (Proposition 67). Even if the intrinsic dimensionality d

is misspecified as d’, the following theorem still ensures the rate to be much better
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FIGURE 3.3: (Communicative) diagrams explaining the relationship between original
ambient space and feature space.
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than n~ when d’ is not too small.

Theorem 14. Assume the same conditions as in Theorem 13, but with the prior

specified as (3.3) with d' # d and d' > d*/(2s + d).

1. If d > d, then the posterior contraction rate will be at least a multiple of
n=5/5* ) (logn)*, where k = (1 4+d)/(2 +d'/s);
d? . . . .
2. If 505 < d' < d, then the posterior contraction rate will be at least a multiple

_ (2s+d)d —d?

of n= 2@+0d (logn)®, where k = (d+ d*)/(2d' + dd'/s) + (1 + d)/2.
3.2.8  Dimensionality reduction and diffeomorphism invariance

Tenenbaum et al. (2000) and Roweis and Saul (2000) initiated the area of manifold
learning, which aims to design non-linear dimensionality reduction algorithms to map
high dimensional data into a low dimensional feature space under the assumption
that data fall on an embedded non-linear manifold within the high dimensional am-
bient space. A combination of manifold learning and usual nonparametric regression
leads to a two-stage approach, in which a dimensionality reduction map from the
original ambient space R” to a feature space R is estimated in the first stage and a
nonparametric regression analysis with low dimensional features as predictors is con-
ducted in the second stage. As a byproduct of Theorem 13, we provide a theoretical
justification for this two stage approach under some mild conditions.

Fig. 3.3 describes relationships used in formalizing this theory. The original
predictor manifold M sits in the ambient space RP. A Riemannian metric g
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on M is induced by the embedding map ® and the Euclidean metric e on RP.
U:RP 5 Riis a dimensionality reduction map such that the restriction W, of ¥
on the embedding image ®(M) ~ M is a diffeomorphism, which requires W, to be
injective and both W, and its inverse to be smooth. The former requirement would
imply d > d. Diffeomorphism is the least and only requirement such that both the
intrinsic dimension d of predictor X and smoothness s of regression function f are

invariant. ¥ will naturally induce an embedding

O =Tod: (M, jnm) — R 8), (3.6)

where the new Riemannian metric g is induced by the Euclidean metric € of R4,
Finally I; is an identity map between the same set M with different Riemannian
metrics. Such a map ¥ could also be chosen so that the induced embedding ®
satisfies some good properties, such as the equivariant embedding in shape analysis

(Kent, 1992). Due to the dimensionality reduction, the regression function becomes

flx) = f[Vu@)] = f(@),

where f is a well defined function on the manifold M represented in R? and has
the same smoothness as f. Therefore, by specifying a GP prior (3.3) directly on RJ,
we would be able to achieve a posterior contraction rate at least n=*/(2s*4 (log n)?+1.

The above heuristic can be formalized into the following theorem.

Theorem 15. Assume that M is a d-dimensional compact C7 submanifold of RP.
Suppose that ¥ : RP — R? s an ambient space mapping (dimension reduction)
such that U restricted on ®(M) is a CY -diffeomorphism onto its image. Then by
specifying the prior (3.3) with {¥(X;)}, as observed predictors and FEuclidean norm
of RY as ||-]| in (3.2), for any fo € C*(M) with s < min{2,v—1,4'—1}, (B.8) will be
satisfied for e, = n=/2+D(logn)* and &, = ¢,(logn)"® with k; = (1 +d)/(2 + d/s)
and ke = (1 +d)/2. This implies that the posterior contraction rate will be at least

€y = nfs/(Qerd) (log n)d+1 ]
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3.2.4  Measurement error in the predictors

In applications, predictor X; may not exactly lie on the manifold M. We assume that
X; = Xy + €, where X;p € M falls on the manifold and ¢; ~ Np(0,0%1Ip) are i.i.d
measurement errors. In this case, choosing a linear projection map ¥¥ ¢ R%D a5 the
dimensionality reduction ¥ in the previous section can provide huge gain in terms of
smoothing the data. As long as the elements of ¥ do not have large variations, the
central limit theorem ensures that the noise part ¥'e has order O,(D~Y2), where
€= (e1,...,6,) € RP*™ Tt is not straightforward to deterministically specify a linear
projection ¥” having good properties. Hence, we consider randomly generating W%
by sampling the elements i.i.d from a common distribution. The following multiplier
central limit theorem (van der Vaart and Wellner, 2000, Lemma 2.9.5) provides

support.

Lemma 16. Let Z1, Z,, ... be i.i.d. FEuclidean random vectors with EZ; = 0 and
E||Zi||? < oo independent of the i.i.d. sequence &1,&s, . .., with B¢ =0 and EE? = 1.

Then conditionally on Z1, Zs, . . .,

\/EZ &Z; — N(0, cov(Zy)) in distribution,

i=1
for almost every sequence Zy, Zs, . . ..

For a fixed row ¥/ = ((y,...,(p), its ii.d components (j; can be viewed as
§; in the lemma. Denote the rows of the noise matrix € by €q,...,€p). Viewing
€(j) as the Z;, by Lemma 16, we obtain that the new projected [th predictor vec-
tor UF(X1,..., X,)" € R? has noise Uc = 3)7 | Wy5e; = O,(D~'/?). Therefore, the
noise in the original predictors is reduced by random projection. The question is then
whether the projected predictors can be included in a GP regression without sacri-
ficing asymptotic performance relative to using X;5. The answer is the affirmative
relying on Theorem 15 by the following argument.
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Theorem 15 only requires that U is a diffeomorphism when restricted on M.
Surprisingly, Baraniuk and Wakin (2009) (Theorem 3.1) proved more than this in
the sense that for a compact d-dimensional Riemannian submanifold M of R” and
a column normalized random projection W¥, if the projected dimension d is larger
than O(dé~?1og(CD6~*)log(p™")), where C' is a positive constant depending on M,

then with probability at least 1 — p, for every pair of points x,y € M, the following

holds
d _||[WPz— TPy d
1—on |2 < <(1+on/L
EONDE T SUTOND
where || - || is the Buclidean norm in R” or R?. This theorem implies that U

preserve the ambient distances up to a scaling J/ D on the manifold by choosing
0 « 1. In addition, this distance preservation property can also be extended to
geodesic distances (Baraniuk and Wakin, 2009, Corollary 3.1). Under the noised
case, by normalizing the columns in W' the noise U/¢ has order O,(D~!'), which is
of higher order compare to the scaling O(D~"?) in this theorem. Therefore, even if
noise exists, a combination of the distance preservation property with the fact that
WP is a linear map implies that with large probability, U* would be a diffeomorphism
when restricted on M. Then Theorem 15 ensures that applying random projections
in the first stage and plug in these projected predictors in a second state will not

sacrifice anything asymptotically relative to using X,y in the GP.
3.3 Numerical example

We provide a numerical example using the lucky cat data (Fig. 3.1). This data set has
intrinsic dimensionality one, which is the dimension of the rotation angle 6. Since we
know the true value of 0, we create the truth fo(6) = cosf as a continuous function

on the unit circle. The responses are simulated from Y; = fy(6;) + ¢ by adding
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independent Gaussian noises ¢; ~ N(0,0.1?) to the true values. In this model, the
total sample size N = 72 and the predictors X; € RP with D = 16,384. To assess the
impact of the sample size n on the fitting performance, we randomly divide n = 18,
36 and 64 samples into training set and treat the rest as testing set. Training set
is used to fit a model and testing set to quantify the estimation accuracy. For each
training size n, we repeat this procedure for m = 100 times and calculate the square
root of mean squared prediction error (MSPE) on the testing set,

m 1 )
; N_n Z 1Y; — fo(6:)]]%,

€Ty

where T} is the [th testing set and Y; is an estimation of E[Y|X;] = fo(6;). We
apply three GP based algorithms on this data set: 1. vanilla GP specified by (3.4);
2. Two stage GP (2GP) where the D-dimensional predictors were projected into R?
by using Laplacian eigenmap (Belkin, 2003) in the first stage and then a GP with
projected features as predictors was fitted in the second stage; 3. Random projection
GP (RPGP) where the new predictors were produced by projecting the original
predictors into R with a random projection matrix ¥F = (0;;) e R1000x16384
with ¥;; ~ i.i.d. N(0,1). To assess the prediction performance, we also compare
our GP prior based models (3.4) with lasso (Tibshirani, 1996) and elastic net (EN)
(Zou and Hastie, 2005) under the same settings. We choose these two competing
models because they are among the most widely used methods in high dimensional
regression settings and perform especially good when the true model is sparse. In
the GP models, we set d = 1 since the sample size for this dataset is too small for
most dimension estimation algorithms to reliably estimate d. In addition, for each
simulation, we run 10, 000 iterations with the first 5,000 as burn-in.

The results are shown in Table. 3.1. As we can see, under each training size
n, GP performs the best. Moreover, as n increases, the prediction error of GP

decays much faster than EN and Lasso: when n = 18, the square root of MSPEs
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Table 3.1: Square root of MSPE for the lucky cat data by using three different
approaches over 100 random splitting are displayed. The numbers in the parenthesis

indicate the standard deviations.

n =18 n = 36 n = b4
EN A416(.152) .198(.042) .149(.031)
LASSO | .431(.128) .232(.061) .163(.038)
GP .332(.068) 128(.036) .077(.014)
2GP | .181(.051) .124(.038) .092(.021)
RPGP | .340(0.071) .130(.039) .077(.015)

by using EN and lasso are about 125% of that by using GP; however as n increases
to 54, this ratio becomes about 200%. Moreover, the standard deviation of square
root of MSPEs by using GP are also significantly lower than those by using lasso
and EN. Among GP based methods, RPGP has slightly worse performance than
GP under small training size, but as n grows to 54, they have comparable MSPEs.
It is not surprising that 2GP has better performance than GP when n is small
since the dimensionality reduction map W is constructed using the whole dataset
(the Laplacian eigenmap code we use cannot do interpolations). Therefore when
the training size n become closer to the total data size 72, GP becomes better.
In addition, GP is computationally faster than 2GP due to the manifold learning
algorithm in the first stage of 2GP.

To compare the performances between GP and RPGP in the case when there are
noises in the predictors, we add N (0, oxIp) noises into each predictor vector X; with
noise levels ox = 0, 10, 20,40 and 80, where the range of predictors is 0 ~ 255. We
also change the projected dimension d from 10 to 1,000. The training size n is fixed
at 54. Table. 3.2 displays the results.

As we can see, for small d = 10 or 100, applying GP on the original predictors
appears to be better than RPGP on the projected predictors under any settings. As
d grows to 1,000, GP and RPGP have similar performances in the noise free setting.

However, as noises are added to the predictors, RPGP with d = 1,000 outperforms
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Table 3.2: Square root of MSPE for the lucky cat data with noised predictors. results
over 100 random splitting are displayed. The numbers in the parenthesis indicate

the standard deviations.The numbers after RPGP indicates the projected dimension
d.

ox 0 10 20 40 80
GP 077(.014) 095(.015) .116(.017) .180(.020) .276(.23)
RPGP(10) | 275(.065) .291(.069)  .335(.075)  .452(.085) .606(.102)
RPGP(100) | .106(.023)  .116(.026)  .143(.033)  .225(.043) .360(.065)
RPGP(1000) | .077(.015) .088(.017) .102(.018) .178(.021) .289(.033)

GP. However, as the noise increases to the order comparable to the signals, GP
becomes close to and finally outperforms RPGP. In addition, the standard deviation
of RPGP also grows rapidly as noise increases. This suggests that GP might be more

stable than RPGP under small signal-to-noise ratio scenarios.
3.4 Discussion

In this work, we considered a nonparametric Bayesian prior for high dimensional
regression when the predictors are assumed to be lying on a low dimensional intrinsic
manifold. The proposed prior can be considered as an extension of a Gaussian process
prior on Euclidean space to a general submanifold. We show that this GP prior can
attain near optimal posterior convergence rate that can adapt to both the smoothness
of the true function (s < 2) and the underlying intrinsic manifold M. Our theorem
validates the surprising phenomenon suggested by Bickel in his 2004 Rietz lecture
(Bickel and Li, 2007) under the GP prior scenario:

[13

the procedures used with the expectation that the ostensible
dimension D is correct will, with appropriate adaptation not involving

manifold estimation, achieve the optimal rate for manifold dimension d.”

Moreover, we also provide theoretical guarantees for two stage GP with dimen-
sionality reduction. We suggest the use of random projection GP as a special two
stage GP when noises exist in the predictors.
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One possibility of our future work is to investigate whether the smoothness re-
quirement s < 2 could be relaxed. This extension will be dependent on whether
Lemma 71 could be improved to s > 2. Currently we construct the approximation
function I,(f) in RKHS through convolving f with the covariance function. It is not
clear whether this is the best way to approximate the function f by elements in the
RKHS.

A second possibility is to build a coherent model not only estimating the re-
gression function E[Y|X], but simultaneously learning the dimensionality d of the
intrinsic manifold M. Our current GP prior (3.4) completely ignores the information
contained in the marginal distribution Px of the predictor X. As an alternative, we
can only model part of Py and therefore utilize some of Px’s information, such as

the support or dimensionality of M.
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4

Bayesian conditional tensor factorizations for
high-dimensional classification

4.1 Introduction

(Classification problems involving high-dimensional categorical predictors have be-
come common in a variety of application areas, with the goals being not only to
build an accurate classifier but also to identify a sparse subset of important pre-
dictors. For example, genetic epidemiology studies commonly focus on relating a
categorical disease phenotype to single nucleotide polymorphisms encoding whether
an individual has 0, 1 or 2 copies of the minor allele at a large number of loci across
the genome. In such applications, it is expected that interactions play an important
role, but there is a lack of statistical methods for identifying important predictors
that may act through both main effects and interactions from a high-dimensional set
of candidates. Our goal is to develop nonparametric Bayesian methods for addressing
this gap.

There is a rich literature on methods for prediction and variable selection from

high or ultra high-dimensional predictors with a categorical response. The most
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common strategy would rely on logistic regression with the linear predictor having
the form )3, with z; = (x;1,...,2;)" denoting the predictors and 5 = (51, ...,05,)
regression coefficients. In high-dimensional cases in which p is the same order of n or
even p > n, classical methods such as maximum likelihood break down but there is
a rich variety of alternatives ranging from penalized regression to Bayesian variable
selection. Popular methods include L penalization (Tibshirani, 1996) and the elastic
net (Zou and Hastie, 2005), which combines L; and Ly penalties to accommodate
p » n cases and allow simultaneous selection of correlated sets of predictors. For effi-
cient L, regularization in generalized linear models including logistic regression, Park
and Hastie (2007) proposed a solution path method. Genkin et al. (2007) propose
a related Bayesian approach for high-dimensional logistic regression under Laplace
priors. Wu et al. (2009) applied L; penalized logistic regression to genome wide asso-
ciation studies. Potentially, related methods can be applied to identify main effects
and epistatic interactions (Yang et al., 2010), but direct inclusion of interactions
within a logistic model creates a daunting dimensionality problem limiting attention
to low-order interactions and modest numbers of predictors.

These limitations have motivated a rich variety of nonparametric classifiers, in-
cluding classification and regression trees (CART) (Breiman et al., 1984) and random
forests (RFs) (Breiman, 2001). CART partitions the predictor space so that samples
within the same partition set have relatively homogeneous outcomes. CART can
capture complex interactions and has easy interpretation, but tends to be unsta-
ble computationally and lead to low classification accuracy. RFs extend CART by
creating a classifier consisting of a collection of trees that are all used to vote for
classification. RF's can substantially reduce variance compared to a single tree and
result in high classification accuracy, but provide an uninterpretable machine that
does not yield insight into the relationship between specific predictors and the out-

come. Moreover, through our simulation results in section 6, we found that random
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forests did not behave well in high dimensional low signal-to-noise cases.

Our focus is on developing a new framework for nonparametric Bayes classifi-
cation through tensor factorizations of the conditional probability P(Y = y|X; =
T1,...,Xp =1p,), with Y e {1,...,dp} a categorical response and X = (X3,..., X))
a vector of p categorical predictors. The conditional probability can be expressed as a
dy x - - - x d), tensor for each class label y, with d; denoting the number of levels of the
Jth categorical predictor X;. If p = 2 we could use a low rank matrix factorization of
the conditional probability, while in the general p case we could consider a low rank
tensor factorization. Such factorizations must be non-negative and constrained so
that the conditional probabilities add to one for each possible X, and are fully flexible
in characterizing the classification function for sufficiently high rank. Dunson and
Xing (2009) and Bhattacharya et al. (2012) applied two different tensor decomposi-
tion methods to model the joint probability distribution for multivariate categorical
data. Although an estimate of the joint pmf can be used to induce an estimate of the
conditional probability, there are clear advantages to bypassing the need to estimate
the high-dimensional nuisance parameter corresponding to the marginal distribution
of X.

We address such issues using a Bayesian approach that places a prior over the pa-
rameters in the factorization, and provide strong theoretical support for the approach
while developing a tractable algorithm for posterior computation. Some advantages
of our approach include (i) fully flexible modeling of the conditional probability al-
lowing any possible interactions while favoring a parsimonious characterization; (ii)
variable selection; (iii) a full probabilistic characterization of uncertainty providing
measures of uncertainty in variable selection and predictions; and (iv) strong the-
oretical support in terms of rates at which the full posterior distribution for the
conditional probability contracts around the truth. Notably, we are able to obtain
near a parametric rate even in ultra high-dimensional settings in which the number
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of candidate predictors increases exponentially with sample size. Such a result dif-
fers from frequentist convergence rates in characterizing concentration of the entire
posterior distribution instead of simply a point estimate. Similar contraction rate
results in p diverging with n settings are currently only available in simple parametric
models, such as the normal means problem (Castillo and van der Vaart, 2012) and
generalized linear models (Jiang, 2006). Although our computational algorithms do

not yet scale to massive dimensions, we can accommodate 1,000s of predictors.
4.2 Conditional Tensor Factorizations

In section 2.1, we briefly introduce the tensor factorization techniques and describe
their relevance to high-dimensional classification. In section 2.2 and 2.3, we char-
acterize two desirable properties, which only rely on the structure of our proposed

model.
4.2.1 Tensor factorization of the conditional probability

Although there is a rich literature on tensor decompositions, little is in statistics. The
focus has been on two factorizations that generalize matrix singular value decompo-
sition (SVD). The most popular is parallel factor analysis (PARAFAC) (Harshman,
1970; Harshman and Lundy, 1994; Zhang and Golub, 2001), which expresses a ten-
sor as a sum of r rank one tensors, with the minimal possible r defined as the rank
(Fig.4.1). The second approach is Tucker decomposition or higher-order singular
value decomposition (HOSVD), which was proposed by Tucker (1966) for three-way
data and extended to arbitrary orders by De Lathauwer et al. (2000). HOSVD

expresses dy X -+ X d, tensor A = {ac,....,} as

k1

kp p )
acl...cp = Z Z ghl...hp l_!u%jj)cj, (41)
j=

hi=1  hp=1
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FIGURE 4.1: A diagram describes PARAFAC for 3 dimensional tensor. The lines
in the middle correspond to the mode vectors corresponding to each mode of the
tensor. The rightmost representation draws analogy to the matrix SVD.

where k;(< d;) is the j-rank for j = 1,...,p and G = {gn,..n,} is a core tensor,
with constraints on G such as low rank and sparsity imposed to induce better data
compression and fewer components compared to PARAFAC (Fig.4.2). This is intu-
itively suggested by comparing Fig.4.1 and Fig.4.2: PARAFAC can be considered
as a special case of HOSVD when the core tensor G is restricted to be diagonal. In
HOSVD, the j-rank k; is the rank of the mode j matrix A;), defined by rearranging
elements of the tensor A into a d; x dy ---d;_1d;41 - - - d,, matrix such that each row
consists of all elements a,,...., with the same c¢;. Although k; can be close to d;, low
rank approximations of A can lead to high accuracy and provide satisfactory results
(Eldén and Savas (2009),Vannieuwenhoven et al. (2012)).

For probability tensors, we need nonnegative versions of such decompositions
(Kim and Choi (2007)) and the concept of rank changes accordingly (Cohen and
Rothblum, 1993). In the following, we solely consider nonnegative HOSVD, where
all quantities in (4.1) are nonnegative. We define k = (ky,. .., k,) to be a multirank
of a nonnegative tensor A if: 1. A has a representation (4.1) with k; 2. k has the
minimum possible size, which is defined by |k| = [ /_, k;. Note that the rank in this
definition might not be unique but representations with different multirank k have
the same number of parameters in the core tensors. This suggests that the multirank
k reflects the best possible tensor compression level.

The conditional probability P(Y = y|X; = x1,...,X, = z,,) can be structured as

61



Jmode3
—

mode 2
A || = H

mode 1

FIGURE 4.2: A diagram describes HOSVD for 3 dimensional tensor. The smaller
cube G is the core tensor and the rectangles are the mode matrices u)’s correspond-
ing to each mode of the tensor.

a dy x dy x --- x d, dimensional tensor. We call such tensors conditional probability
tensors. Let Py, .. a, (dp) denote the set of all conditional probability tensors, so that
Pe Pdl,...,dp (do) implies

0
P(ylzy, ..., xp) = 0 Yy, 21,. .., 2, ZP(y|x1,...,3cp) =1V2y,..., 7).

To ensure that P is a valid conditional probability, the elements of the tensor must
be non-negative with constraints on the first dimension for Y. A primary goal is
accommodating high-dimensional covariates, with the overwhelming majority of cells
in the table corresponding to unique combinations of ¥ and X unoccupied. In such
settings, it is necessary to encourage borrowing information across cells while favoring
sparsity.

Our proposed model for the conditional probability has the form:

k1 kp p
P(ylzy,...,x,) = Z Z Mhy. b Hﬂ,(f] z;), (4.2)
7j=1

h1=1 hp=1

with the parameters subject to

Z Ahiho. = 1, for any possible combination of (hy, ha, ..., hy),
ki
Z ng)(xj) = 1, for any possible pair of (7, z;). (4.3)
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Analogous to HOSVD, we preserve the names core tensor for A = {\;,..;,,(y)} and

mode matrices for 7 = {W}(ij)(l‘j)} More specifically, the d; x k; matrix 7(9) with
(u,v)th element ) (u) will refer to the jth mode matrix. Similar to the definition
of multirank for nonnegative tensors, we define k = (kq,. .., k,) to be a multirank of
the conditional probability tensor P if: 1. P has a representation (C.12) satisfying
the constraints (C.10) with k; 2. &k has the minimum possible size |k|. In the rest
of this article, we always consider the representation (C.12) with a multirank k.
Intuitively, (dy — 1)|k| is equal to the degrees of freedom of the core tensor A, and
controls the complexity of the model. By allowing |k| to gradually increase with
sample size, one can obtain a sieve estimator. The value of k; controls the number
of parameters used to characterize the impact of the jth predictor. In the special
case in which k; = 1, the jth predictor is excluded from the model, so sparsity can
be imposed by setting k; = 1 for most j’s.

We format the conditional probability P(y|xy,...,x,) as a dy X --- x d, vector

Vec{P(y|-)} = {P(yll,...,1,1), P(y|1,...,1,2),..., P(y[l,...,1,d,), ...,

Pll,....dpr,dp), ..., P(ylds,...,dp1,dp)}

and Ap,..n,(y) as a ky x --- x k, vector

Vec{A(y)} = {M,..11¥), A.12(y), .-,

!
Aoty (U)o s Mgt ey (U)o Mk, ()}
Let 79 be a d; x k; matrix with ) (u) as the (u,v)th element. It is a stochastic

matrix, so rows sum to one, by constraint (C.10). Then representation (C.12) can

be written in vector form:
Vee{P(y|-)} = (1V@71?P @ - @7 Vec{Ay)}, fory =1,...,dy, (4.4)
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where ® denotes the Kronecker product. Furthermore, if we let Mat(P) and Mat(A)
be two stochastic matrices with the yth column Vec{P(y|—)} and Vec{A(y)} respec-

tively for y = 1,...,dy, then we can write the above d; identities together as:
Mat(P) = ("M @71? @ - @) Mat(A).

The following theorem provides basic support for factorization (C.12)-(C.10) through
showing that any conditional probability has this representation. The proof of this

theorem, which can be found in the appendix, sheds some light on the meaning of

ki, ..., k, and how it is related to a sparse structure of the tensor.
Theorem 17. Every dy x dy x dy x --- x d,, conditional probability tensor P €
Pa,....a,(do) can be decomposed as (C.12), with 1 < k; < d;j for j = 1,...,p. Fur-

thermore, Apihy..n,(y) and Wg) (x;) can be chosen to be nonnegative and satisfy the

constraints (C.10).

We can simplify the representation through introducing p latent class indicators
Z1y..., 2, for Xq,..., X, with Y conditionally independent of (Xj,...,X,) given

(21, ..., 2p). The model can be written as
Yilzit, .-, zip ~ Multinomial({l, coydo} Asy Zz.p),
zii| X; ~ Multinomial({l,...,k:j},ﬂj)(Xj),...,W,ii)(Xj)), (4.5)

where ., ., = {)‘m ,,,,, (1) Az (do)}. Marginalizing out the latent class

indicators, the conditional probability of Y given Xj, ..., X, has the form in (C.12).
4.2.2  Bias-variance trade off

In tensor factorization model (C.12), the multirank & controls the sparsity, charac-
terizing the impact of each predictor X; through the “effective category count” k;.
For example, if the level of X7, say 1,2, 3, can be divided into 2 classes {1} and {2, 3}
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such that P(Y = y|X; =2,...,X, =z,) = P(Y =y| X, =3,..., X, = x,), then k;

is equal to 2. The following illustration suggests that to select k, we can use a hard

clustering approximation by setting W}(ij ) (x;) to be either zero or one (section 4.2).

We initially provide a heuristic argument to demonstrate the tendency of our

model to produce low mean squared error (MSE), which is defined as:

~d

MSE(P) = E(Pylas, ..., 7p) = Po(yly, ..., 2,))°Gldwy, . .., dz,)

J

o

Il
—

Y

r do .
= | Y (EP(lar,....2) — Rolylas, ..., 2,)) G(day, ..., dz,)
y=1

do
+ JZ VarP(y|xy, ..., xy)G(dxy, ..., dx,)

y=1

= Bias?(P) + Var(P), (4.6)

where P is an estimator of the truth Py, G is the joint marginal distribution of the
covariates X and the expectation is taken with respect to the joint distribution of
(X,Y). Our focus is on obtaining accurate estimates of the conditional probabil-
ity P(Y|X); accurate estimates will lead to accurate classification while containing
information on classification uncertainty, of critical importance in medical decision
making among other areas.

For simplicity of exposition, assume the response Y to be binary. Denote by T
the set of all conditional probability tensors parameterized by (C.12). Let 7y be a

subset of T consisting of models with W,(IJ] ) (x;) being either zero or one. Then given

k and 7, 70 uniquely determines a hard clustering of X ;i Xj = x; belongs to the
h;(z;)th cluster, where h;j(x;) is the unique h; such that ng)(xj) = 1. Consider
approximating Py by this subset 75. Intuitively, the best MSE attained within 7,
gives an upper bound on the optimal MSE achievable by the whole model class T .

To demonstrate the bias-variance trade-off in terms of the selection of the multirank

65



k, we compare the MSE of the maximum likelihood estimators (MLE) in model space

To under different £ and the clustering scheme determined by 7. Define

€y = inf ||P — P,
PeTo:|k(P)|<M

where |k(P)| denotes the size of the multirank of the conditional probability tensor
P and

2 1/2
||P — Bl| = {jz |P(y|21, ..., 2p) — Po(ylza, ... 2,)|*G(dxy, . ... ,dxp)} . (4.7)
y=1

€y can be interpreted as the smallest error or bias caused by approximating F, using
P € Ty with size |k(P)| < M, related to compressibility of F.

Under degeneracy of the s, P(y|z1,...,2p) = A (21)..hp(a,) (¥), Where hj(z;) is

defined previously as the unique h; such that W}(ZJJ ) (z;) = 1. Given k and =, the MLE

of Ap,..n, is the sample frequencies of ¥; = y among all observations with covariates

Xi = (Xﬂ, Ce 7Xip) satisfying hj (X”) = hj for each ] = ]_, ..., P

......

P)Ihj(fj):hj Z?:l [(X’Ll =T1y.-. 7Xip = gjp’ }/:L — 7/)
:Ep)hj(lvj):h] Z?:l [(le == :Cl’ e 7X’ip = :L'p)

7i:1727

.....

where 0/0 is defined to be 0 for simplicity. Although given k& and 7 an unbiased
estimator does not exist due to model misspecification, the following lemma shows
that this MLE is still optimal in terms of minimizing the bias. A proof is sketched

in the appendix.

Lemma 18. Gwen k and 7, among all estimators of \’s, the MLE defined above

minimizes the Bias*(P) in (4.6).
This lemma indicates that the €, has another characterization as

min Bias (P(l{:, 7)),

(k,m):|k|<M,m degenerate
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where P(k, ) is the MLE of P given (k, ).
Intuitively, under the degeneracy of 7, n samples are separated into |k| clusters
to estimate the corresponding \’s, and the variance term in (4.6) should be of order

|k|/n. The following lemma formalizes this and a proof is sketched in the appendix.

Lemma 19. Given k and 7, the Var(P) as defined in (4.6) for the MLE P satisfies
Var(ﬁ’(k:,w)) = Olk|/n + O(|k|/n?), (4.8)
where the constant C € [a,b], where a,b > 0 only depends on Py and G.

Combining Lemma 18 and 19, given k and 7, the MSE of MLE P satisfies:

K|

MSE(P(k,m)) = € + -+ O(|k|/n?).

This reflects the so-called bias-variance trade-off for our model: as |k| increases, the
model becomes more complex and thus the bias term decreases; however, the variance
term increases as more parameters are introduced. Therefore, there exists an optimal
model size |k| that solves |k| = nefy; minimizing the MSE. This typical trade-off also
appears in the Assumption B in section 3.2 where the posterior convergence rate is

studied.
4.2.8  Borrowing of information

The previous section discussed the bias-variance trade-off for a subclass of models
specified by (C.12), where 7’s are degenerate at zero and one. In this section, we
illustrate another desirable property by allowing 7’s to be continuous on [0, 1]: bor-
rowing of information across cells corresponding to each combination of X, ..., X,.

Letting wp,, _n, (21, 2p) = | [; W,S? (z;), model (C.12) is equivalent to

PY=ylXi=mz,...,X, =12, = Z Why,o by (T1, -0, Tp) Aty (U) (4.9)
hihyp
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and constraints (C.10) imply >3, Wh,,..h,(T1,...,2p) = 1. In the special case
when 7 is degenerate, Ap,..n, (y) is just the conditional probability of Y = y given
the observations in cluster hy(X;) = hq,...,hy(X,) = h, (for details, refer to the
descriptions in the paragraph before (4.7)). If ’s are allowed to be continuous, then
our model essentially uses a kernel estimate that allows borrowing of information
across clusters via a weighted average of the cluster frequencies.

To illustrate the strength of this, consider a simplified example involving one
covariate X with m categories and a binary response Y. In fact, each category of X
can correspond to a cluster as in the preceding paragraph and the implications can be
extended to our model by changing the notations. Let P; = P(Y = 1|X = j) for j =
1,...,m. Then the MLE for (P, ..., P,) is sample frequencies (s1/n1, ..., Sm/Mm),
denoted by (P,..., Py), where s; = #{i : y; = 1 and x; = j} and n; = #{i : z; = j}.
Instead, kernel estimates (4.9) are

ka{l—ijk}Pk-i-Ew]kP k—l m,

Jj#k Jj#k

where wj;, could be considered as the weight of the contribution to cluster & by cluster
j. MLE corresponds to a special case when w;;, = 0 for all j # k. We use squared

loss to compare these two estimators. After some calculations,
m m
P;(1 - P;)
E{L( p P)} 32 — A R
{L( Z - P) ; .

and E{L(P,P)} = 2 L E(P; — P;)? is a function of w;;’s, whose partial derivative

with respect to w;,(j # k) at zero is

OE{L(P, P)}

P.(1 - P)
8wjk ’

g

=2
wst=0,Vs#t

This implies that E{L(P, P)} will be reduced by 2%;&) for every unit increasing
of wj near zero. Particularly when ny is small, borrowing information from other
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cluster j(# k) will considerably reduce E{L(P, P)} compare to MLE. In the special

case when all w;; are equal, E{L(P, P)} can attain a minimum

EAL(P, P)}[l - (1 - %) E{L(P, P)ﬁﬁ? Pi](P py)? ]

e (%E{L(ﬁ,P)},E{L(P, P)}).

This suggests that when P;’s are similar, the estimate P can reduce the risk up to
only 1/m the risk of estimating P separately. If P;’s are not similar, P can still
reduce the risk considerably when the cell counts {n;} are small.

Another interesting feature of our tensor model is the special structure of the
weights w’s in (4.9). Consider a class of continuous 7’s indexed by a single parameter
c € (0, 1) characterizing the strength of borrowing information,

7 (w) = (1= ko), = hy(a)} + el {h; # ()}

for h; < k; and all possible z;’s. This 7 still satisfies constraint (C.10) and the

weight becomes

p
= T T(1 = ko) ta=hsteal (s #hs(e},
7j=1

When c¢ is small, given x, the weight of the contribution by the cluster indexed by
(h1,...,hy) is approximately equal to ¢*, where s = 7 I{h; # h;(z;)} is the
number of latent classes not shared by (hi, ..., h,) and (hy(x1),. .., hy(z,)), i.e. the
Hamming distances between the latent class indices. This special structure in the

weights suggests that similar clusters should share more information.
4.3 Bayesian Tensor Factorization

In this section, we will provide a Bayesian implementation of the tensor factorization

model and prove the corresponding posterior convergence rate.
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4.3.1 Prior specification

To complete a Bayesian specification of our model, we choose independent Dirich-
let priors for the parameters A = {\,, ., h; = 1,...,k;,7 = 1,...,p} and 7 =

{Wéi)(xj),hj = 1,...,krj,xj = ].,...,dj,j: 1,...,])},

{)\hl,...,hp(l)a Ce 7>\h1,...,hp(d0)} ~ Dlrl(l/do, ceey 1/d0),

(7)), 7))} ~ Diri(l/ky,... 1/k;).j=1,....p. (4.10)

These priors have the advantages of imposing non-negative and sum to one con-
straints, while leading to conditional conjugacy in posterior computation. The hyper-
parameters in the Dirichlet priors are chosen to favor placing most of the probability
on a few elements, inducing near sparsity in these vectors.

If k; = 1 in (C.12), by constraints (C.10) ng)(xj) =1, P(y|xy,...,zp) will not
depend on z; and Y L X;|Xj;, 5 # j. Hence, I(k; > 1) are variable selection
indicators. In addition, k; can be interpreted as the number of latent classes for the
jth covariate. Levels of X are clustered according to their relations with the response
variable in a soft probabilistic manner, with ki,..., &, controlling the complexity of
the latent structure as well as sparsity. Because we are faced with extreme data
sparsity in which the vast majority of combinations of Y, X, ..., X}, are not observed,
it is critical to impose sparsity assumptions. Even if such assumptions do not hold,
they have the effect of massively reducing the variance, making the problem tractable.
A sparse model that discards predictors having less impact and parameters having
small values may still explain most of the variation in the data, resulting in a useful
classifier that has good performance in terms of the bias-variance tradeoff even when
sparsity assumptions are not satisfied.

To embody our prior belief that only a small number of k;’s are greater than one,
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we want

r

ml(k > 1),

P(k; = k) ~ Q(j., k) = (1 . %)m —1)+

for j = 1,...,p, where I(A) is the indicator function for the event A and r is the
expected number of predictors included. This specification accommodates variable
selection. To further include a low rank constraint on the conditional probability
tensor, we impose |k| = H§:1 k; to be less than or equal to M. Intuitively, M
controls the effective number of parameters in the model. This low rank constraint
in turn restricts the maximum number of predictors to be log, M. We note that in
the setting in which p > n some such constraint is necessary.

To summarize, the effective prior on the k;’s is

Plky=l,... ky = 1,)cQ(1, 1) - Q(p,1,) 1{

P
l; < M}. (4.11)

7j=1

Let v = (71,...,7)" be a vector having elements v; = I(k; > 1) indicating inclu-
sion of the jth predictor. Since ]_[?:1 l[; < M implies inclusion of at most log, M
predictors, the induced prior for 7 resembles the prior in Jiang (2006). Potentially,
we can put a more structured prior on the components in the conditional tensor
factorization, including sparsity in A. However, the theory shown in the next part

provides strong support for prior (4.10)-(4.11).
4.3.2  Posterior convergence rates

Before formally describing the sparsity and low rank assumptions, we first introduce
some notations and definitions. Suppose we obtain data for n observations y" =
(y1,-..,Yn)’, which are conditionally independent given X" = (z1,...,x,) with x; =
(i1, ... Tip,), iy € {1,...,d} and p, » n. We exclude the n subscript on p and
other quantities when convenient and assume that d = max;{d;} is finite and does
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not depend on n. An important special case is when all d;’s are the same. Let Fj
denote the true data generating model, which can be dependent on n. Let €, be
a sequence converging to zero while keeping ne? — co. This sequence will serve as
the convergence rate in the sense that under a certain metric d to be defined later,
the posterior of the conditional probability tensor P will asymptotically concentrate
within an €, d-ball centered on the truth F,. We use the notation f < g to mean
f/g — 0 as n — . Next, we describe all the assumptions that are needed for the
main theorem.

To determine the posterior convergence rate, two things are competing with each
other: 1. variable selection among the high dimension covariates; 2. the approxi-
mation abilities of near low rank tensors. The assumption below characterizes the

first.
Assumption A. logp, < ne?/log D,.

Recalling the definition of D,, as the prior upper threshold for the size |k| =
H?:l k;, log D, can be interpreted as the maximum number of predictors to be
selected and cannot exceed logn. As a result, Assumption A implies that the high
dimensional variable selection per se imposes a lower bound for ¢,, as \/m.
As a result, to obtain a convergence rate of n~~%/2 up to some logarithmic factor,
pn is allowed to increase with n as fast as o(e™”).

To characterize the low rank tensor assumption, rather than assume that most
of the predictors have no impact on Y, we consider the situation similar to Jiang
(2006) that most have nonzero but very small influence. Specifically, parameterizing
the true model Fp in our tensor form with k; = d; for j = 1,...,p, (this is always

possible for any Fp), we assume:

Assumption B. D, log(1/e,) < ne? and there exists a multirank sequence
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kD k@) with [kM™]| < D, such that

Pn d; )

J 2
Qumax ), m(@) <€,
: J
Jj=1

hy >k

where f < g means f/g — 0 as n — 0.

This is a near low rank restriction on F,. This assumption intuitively means that
the true tensor Py could be approximated within error €2 by a truncated tensor with
multirank k(™ whose size is less than ne?/log(1/e,). Theoretically, a lower bound

of €, attributed to the low rank approximation could be identified as the minimum

e such that
Pn dj )
1 multirank k, s.t.|k| < ne?/log(1/e) and Z max Z W]gjj_)(xj) <€
7j=1 i hj>k‘j

The overall €, will be the minimum of this lower bound and the one determined by
Assumption A. Assumption B includes the special case when F, is exactly of low
multirank £©. In such case, all k™ could be chosen as k(®) and Assumption B
puts no constraint on ¢,, leading the convergence rate entirely determined by the
variable selection in Assumption A as 4/logp,/n (Corollary 6 below). In section 6 of
real data applications, we will provide empirical evidence of this near low multirank
assumption.

The last assumption can be considered as a regularity condition.
Assumption C. Py(y|z) = €, for any z,y for some €y > 0.

Under this assumption, the Kullback-Leibler divergence would be bounded by
the sup norm up to a constant, where the latter is easier to characterize in case of
our model.

The next theorem states the posterior contraction rate under our prior (4.10)-
(4.11) and Assumption A-C. Recall that r, is the hyperparameters in the prior.
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Theorem 20. Assume the design points xi,...,x, are independent observations
from an unknown probability distribution G, on {1,... d}". Moreover, assume the
prior is specified as in (4.10)-(4.11). Let €, be a sequence with €, — 0, ne2 — o and

> exp(—ne2) < oo, with which Assumptions A, B and C hold. Denote d(P, Py) =

SZZO:l ‘P(y|x1, ooy y) — Polylz, . . ,:L“p)‘Gn(diL'l, ..., dxz,), then
IL{P:d(P,P) = Me,|y", X"} — 0 a.s.Fy,
where T1,(Aly™, X™) stands for the posterior probability of A given the observations.

The following corollary tells us that the posterior convergence rate of our model

can be very close to n~'/? under appropriate near low rank conditions.

Corollary 21. For a € (0,1), €, = n~(=/2logn will satisfy the conditions in
Theorem 20 if M,, < n*logn, p, < exp(n®/logn) and there exists a sequence of

multiranks k™ with size at most M,, such that

Pn dj ()
j —(1-a) 1.2
max Z T (xi) < n log“ n.
Z x h; (x;) &
j=1 hy >k

As mentioned after Assumption B, if the truth is exactly lower multirank, then
with a small modification to the proof of Theorem 20, we can eliminate the log D,

factor in Assumption A and leading to the following result.

Corollary 22. If the truth Py has multirank k with a finite number of components

k; > 1, then with the choice of M, to be a sufficiently large fixed number, the posterior

convergence rate €, could be at least A/logp,/n.

Since (dy—1)M,, could be interpreted as the maximum effective number of param-
eters in the model, which should be at most the same order as the sample size n, we
suggest to set M,, = n as a default for the prior defined in section 3.1 to conceptually
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provide as loose an a prior: upper bound as possible. Results tend to be robust to
the choice of M, as long as it is not chosen to be small. Since M > |k| > 2i7ki>1}
the maximum number of predictors included in the model is log, n. This suggests

that we can choose (log,n)/2 = log, n as a default value for r in the prior.
4.4 Posterior Computation

In section 4.1, we consider fixed k = (ki,...,k,)" and use a Gibbs sampler to draw
posterior samples. Generalizing this Gibbs sampler, we developed a reversible jump
Markov Chain Monte Carlo (RJMCMC) algorithm (Green, 1995) to draw posterior
samples from the joint distribution of k = {k; : j = 1,...,p} and (A, 7, z). However,
for n and p equal to several hundred or more, we were unable to design an RIMCMC
algorithm that was sufficiently efficient to be used routinely. Hence, in section 4.2,

we propose a faster two stage procedure based on approximated marginal likelihood.
4.4.1  Gibbs sampling for fized k

Under (4.10) the full conditional posterior distributions of A, 7 and z all have simple

forms, which we sample from as follows.

n, from the Dirichlet conditional,

.....

(1 &
{>\h1 ..... hp(l)a"'a)‘hl ..... h,,(d)H— ’\'Dll"l(g-i-zl(zil=h1,--->Zip=hp7yi=1),

1 n
"78+21(Zi1:hla"'vzip:hpayi:d))'

=1

2. Update 7U)(k) from the Dirichlet full conditional posterior distribution,

(7). 7Pk} - ~ Diri<f+21(zij=1)1(xij=k3)7
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3. Update z;; from the multinomial full conditional posterior, with

P(Zij = h|_)mﬂ—]sj)('Tij)Azi,l7---,Zi,j—17h72i,j+17---72i,p(yi)'

4.4.2  Two step approrimation

We propose a two stage algorithm, which identifies a good model in the first stage
and then learns the posterior distribution for this model in a second stage via the
Gibbs sampler of section 4.1. We first propose an approximation to the marginal
likelihood. For simplicity in exposition, we focus on binary Y with dy = 2, but
the approach generalizes in a straightforward manner, with the beta functions in
the below expression for the marginal likelihood replaced with functions of the form
I'(a1)l(ag) - - - T'(ag,)/T (a1 + - - - + aq,). To motivate our approach, we first note that
’/T;L]] ) (x;) can be viewed as providing a type of soft clustering of the jth feature Xj,
controlling borrowing of information among probabilities conditional on combina-
tions of predictors. To obtain approximated marginal likelihoods to be used only
in the initial model selection stage, we propose to force 7T,(L]j ) (x;) to be either zero or
one, corresponding to a hard clustering of the predictors. The example in Section
3.2 gives a heuristic argument on the variance-bias tradeoff by using the degener-
ate approximation. Under this approximation, the marginal likelihood has a simple

expression.

For a given model indexed by k = {k;,j = 1,..., p}, we assume that the levels of
X are clustered into k; groups Agj), e ,A,(é). For example, with levels {1, 2, 3,4, 5},
AP = {1,2,3} and AP = {4,5}. Then it is easy to see that the marginal likelihood
conditional on k and A is L(y|k, A) =

1 L5 ) ®)
| | Beta(—+ E I(xﬂeAng,...,xipeAhp,yi:1),
e Beta(1/2,1/2) 2 4 P

1 - 1
5‘JF;I(ZL'HeA;Ll),...,l'iPEA;Z),yi :0)>
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Having an expression for the marginal likelihood, we apply a stochastic search MCMC
algorithm (George and McCulloch, 1997) to obtain samples of (ky,...,k,) from the

approximated posterior distribution. This proceeds as follows.

1. For j =1 to p, do the following. Given the current model indexed by k = {k; :
j=1,...,p} and clusters A = {Ag) ch=1...,kj,j=1,...,p}, propose to
increase k; to k; + 1 (if k; < d) or reduce it to k; — 1 (if k; > 1) with equal
probability.

2. If increase, randomly split a cluster of X into two clusters (all splits have equal
probability). For example, if d; = 5, k; = 2 and the levels of X are clustered
as {1,2,3} and {4,5}. There are 4 possible splitting schemes: three ways to
split {1, 2,3} and one way to split {4,5}. We randomly choose one. Accept this

move with acceptance rate based on the approximated marginal likelihood.
3. If decrease, randomly merge two clusters and accept or reject this move.

4. If k; remains 1, propose an additional switching step that switches k; with a
currently “active predictor” j' whose k;; > 1 and randomly divide the cluster

of X, into kj clusters.

Estimating approximated marginal inclusion probabilities of k; > 1 based on this al-
gorithm, we keep predictors having inclusion probabilities great than 0.5; this leads to
selecting the median probability model, which in simpler settings has been shown to
have optimality properties in terms of predictive performance (Barbieri and Berger,

2004).
4.5 Simulation Studies

To assess the performance of the proposed approach, we conducted a simulation study

and calculated the misclassification rate on the testing samples. Each simulated
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dataset consisted of N = 3,000 instances with p of the covariates Xi,...,X,, each
of which has d = 4 levels, and a binary response Y. Two scenarios were considered:
moderate dimension setting where p = 3, 4, 5 and high dimension setting where
p = 20, 100, 500. Note that although p = 20 appears less than the training size
n, the effective number of parameters is equal to 4?°. Similarly, we can call p = 3
moderate since the effective number of parameters is equal to 4> = 64. Fixing p,
four training sizes n = 200, 400, 600 and 800 were considered. In the moderate
(high) dimension settings, 100 (10) datasets were simulated for each combination of
training size n and covariate dimension p. We assumed that the true model had
three important predictors X, Xy and X3, and generated P(Y = 1|X; = 21, X5 =
x9, X3 = x3) independently for each combination of (z1,xs,x3); this was done once
for each simulation replicate prior to generating the data conditionally on P(Y|X).
To obtain an average Bayes error rate (optimal misclassification rate) around 15%
(standard deviation is around 2%), we generated the conditional probabilities from
f(U) = U?*/{U? + (1 — U)?}, where U ~ Unif(0,1). For each dataset, we randomly
chose n samples as training with the remaining N — n as testing. We implemented
the two stage algorithm on the training set and calculated the misclassification rate
on the testing set.

According to our theoretical results, we chose r = [log, n| as the expected num-
ber of important predictors in the prior and M = logn as the maximum model
size, where [z] stands for the minimal integer greater equal than z. We ran 1,000
iterations for the first stage and 2,000 iterations for the second stage, treating the
first half as burn-in. We compared the results applied to the same training-test split
data with classification and regression trees (CART'), random forests (RF) (Breiman,
2001), neural networks (NN) with two layers of hidden units, lasso penalized logistic
regression (LASSO) (Park and Hastie, 2007), support vector machines (SVM) and
Bayesian additive regression trees (BART) (Chipman et al., 2010). All these models
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were fitted by using existed R-packages. The penalizing regularization parameter
for LASSO was chosen by cross validation. The tunable parameters for other meth-
ods were chosen by their default settings. In the moderate dimension scenario, we
enumerated all orders of interactions as input covariates for NN, LASSO and SVM.
NN was not implemented for p = 5 since the available R code was unable to fit the
model with 4° = 1024 covariates. In the high dimension scenario, since the number
of interactions grows exponentially fast, we only included (d—1) x p dummy variables
for the main effects as input covariates for NN, LASSO and SVM. Under p = 5(500)
and n = 800(800), the first stage of our algorithm took about 1s(2s) to draw 40(1)
iterations and the second stage took about 1s(1s) to draw 50(50) iterations in matlab.
The sampler was quite efficient, with a burn-in of 100 iterations in the first stage and
200 iterations in the second stage sufficient and autocorrelations rapidly decreasing

to zero with increasing lag time.

Table 1 displays the results under moderate dimension settings. When p = 3,
the effective number 4 = 64 of parameters is much smaller than the sample size,
resulting in the good performances of all methods, among which LASSO was the
best under n = 200 and 400. Nevertheless, our method had a rapid decreasing
misclassification rate and achieved comparable performance to the best competitors
when n = 400 and 600. As p increases to 4 and 5, irrelevant covariates are included.
As can be seen from table 1, the best methods under p = 3, including NN, LASSO
and SVM, had noticeably worse performance than our method and RF. Especially,
it was interesting that RF had better performance under p = 4 and 5 than under
p = 3. We guess that when all covariates were important, RF tended to overfit the
model and lead to poor classification performance on the test samples. Nonetheless,
our methods still had the best performance and tended to be robust to the inclusion

of irrelevant covariates.
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Table 4.1: Simulation study results for moderate dimension case. RF: random forests,
NN: neural networks, SVM: support vector machine, BART: Bayesian additive re-
gression trees, TF: Our tensor factorization model. Misclassification rates and their

standard deviations over 100 simulations are displayed.

n = 200 n = 400 n = 600 n = 800
CART | 0.371(0.056) 0.357(0.066) 0.341(0.072)  0.335(0.064)
RF | 0.277(0.034) 0.254(0.039) 0.243(0.034)  0.235(0.032)
NN | 0.212(0.033) 0.188(0.038) 0.181(0.043)  0.175(0.037)
p=3| LASSO | 0.206(0.031) 0.178(0.027) 0.169(0.023) 0.167(0.021)
SVM | 0.320(0.065) 0.195(0.065) 0.168(0.023) 0.167(0.026)
BART | 0.354(0.044) 0.311(0.041) 0.279(0.036)  0.266(0.036)
TF | 0.243(0.041) 0.181(0.031) 0.168(0.023) 0.165(0.021)
CART | 0.376(0.055) 0.360(0.066) 0.342(0.072)  0.336(0.071)
RF | 0.278(0.028) 0.223(0.029)  0.195(0.025)  0.189(0.026)
NN | 0.353(0.044) 0.266(0.039) 0.235(0.039)  0.223(0.037)
p=4 | LASSO | 0.323(0.036) 0.256(0.030) 0.219(0.025)  0.201(0.023)
SVM | 0.325(0.032) 0.257(0.024) 0.219(0.025)  0.202(0.023)
BART | 0.378(0.042) 0.329(0.041) 0.282(0.035)  0.269(0.034)
TF | 0.241(0.041) 0.183(0.031) 0.170(0.023) 0.164(0.021)
CART | 0.384(0.054) 0.364(0.067) 0.342(0.071)  0.342(0.063)
RF | 0.324(0.031) 0.267(0.031) 0.230(0.028)  0.218(0.063)
NN - - - -
p=5| LASSO | 0.415(0.046) 0.366(0.048) 0.314(0.032)  0.298(0.025)
SVM | 0.414(0.042) 0.374(0.036) 0.335(0.029)  0.306(0.029)
BART | 0.395(0.027) 0.353(0.036)  0.335(0.031)  0.306(0.029)
TF | 0.242(0.042) 0.184(0.031) 0.168(0.022) 0.164(0.022)

Table 2 displays the results under high dimension settings. The differences be-
come more perceptible. All the competing methods broke down and had worse
performance than TF. In the very challenging case in which the training sample size
was only 200 and p = 500, all methods had poor performance. However, as the
training sample size increased, the proposed conditional tensor factorization method
rapidly approached the optimal 15%, with excellent performance even in the n = 600,
p = 500 case. In contrast, the competitive methods had consistently poor perfor-

mance. In this challenging setting involving a low signal strength, a modest sample

size, and moderately large numbers of candidate predictors, CART appeared to be
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Table 4.2: Simulation study results in the high dimension setting. RF: random
forests, NN: neural networks, SVM: support vector machine, BART: Bayesian addi-
tive regression trees, TF: Our tensor factorization model. Misclassification rates and

their standard deviations over 100 simulations are displayed.

n = 200 n = 400 n = 600 n = 800
CART | 0.448(0.025) 0.367(0.042) 0.342(0.063) 0.337(0.087)
RF | 0.461(0.022) 0.444(0.025) 0.412(0.026)  0.393(0.023)
NN | 0.501(0.009) 0.494(0.008)  0.507(0.043)  0.482(0.021)
p=20 | LASSO | 0.440(0.040) 0.418(0.025) 0.372(0.032)  0.357(0.044)
SVM | 0.503(0.011) 0.485(0.012) 0.494(0.012)  0.472(0.024)
BART | 0.450(0.026) 0.401(0.037) 0.374(0.032)  0.345(0.031)
TF | 0.249(0.036) 0.182(0.036) 0.172(0.026) 0.162(0.022)
CART | 0.478(0.023) 0.428(0.042) 0.389(0.046) 0.361(0.052)
RF | 0.468(0.022) 0.472(0.027) 0.433(0.025)  0.421(0.022)
NN | 0.504(0.010) 0.492(0.008)  0.495(0.015)  0.479(0.013)
p =100 | LASSO | 0.450(0.036) 0.430(0.033)  0.410(0.042)  0.404(0.032)
SVM | 0.507(0.011) 0.483(0.011)  0.490(0.013)  0.463(0.024)
BART | 0.465(0.017)  0.450(0.024)  0.410(0.013)  0.404(0.032)
TF | 0.323(0.120) 0.179(0.027) 0.169(0.021) 0.164(0.024)
CART | 0.489(0.09) 0.461(0.048) 0.404(0.032) 0.380(0.080)
RF | 0.480(0.023) 0.468(0.020) 0.446(0.028)  0.434(0.019)
NN | 0.496(0.013)  0.488(0.021)  0.466(0.028)  0.446(0.019)
p =500 | LASSO | 0.459(0.012) 0.466(0.025)  0.392(0.020)  0.419(0.016)
SVM | 0.492(0.016) 0.493(0.021) 0.482(0.017) 0.468(0.016)
BART | 0.475(0.013)  0.466(0.025) 0.427(0.027)  0.431(0.015)
TF | 0.454(0.105) 0.205(0.083) 0.173(0.022) 0.164(0.021)

the best competing method.

In addition to the clearly superior classification performance, our method had
the advantage of providing variable selection results. Table 3 provides the average
approximated marginal inclusion probabilities for the three important predictors and
remaining predictors in the high dimension settings. Consistently with the results in
Table 2, the method fails to detect the important predictors when p = 500 and the
training sample size is only n = 200. But as the sample size increases appropriately,
TF assigns high marginal inclusion probabilities to the important predictors and low

ones to the unimportant predictors. In addition, to access the fitting performances,
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Table 4.3: Simulation study variable selection results in the high dimensional
case. Rows 1-3 within each fixed p are approximated inclusion probabilities of the
1st,2nd,3rd predictors. Max is the maximum inclusion probability across the re-
maining predictors. Awe is the average inclusion probability across the remaining
predictors. These quantities are averages over 10 trials.

n = 200 n = 400 n = 600 n = 800
X, 1.00 1.00 1.00 1.00
X, 1.00 1.00 1.00 1.00
h—20 | X 1.00 1.00 1.00 1.00
Max 0.00 0.00 0.00 0.00
Ave 0.00 0.00 0.00 0.00
aMSE | 0.074(0.013) 0.025(0.005) 0.014(0.004) 0.009(0.002)
X, 0.74 1.00 1.00 1.00
X, 0.70 1.00 1.00 1.00
X 0.72 1.00 1.00 1.00
p=1001 yrox 0.21 0.00 0.00 0.00
Ave 0.01 0.00 0.00 0.00
aMSE | 0.089(0.026) 0.027(0.003) 0.014(0.002) 0.009(0.002)
X, 0.23 0.91 1.00 1.00
X, 0.24 0.90 1.00 1.00
X, 0.21 0.91 1.00 1.00
P =500 yrox 0.28 0.07 0.00 0.00
Ave 0.00 0.00 0.00 0.00
aMSE | 0.134(0.034) 0.036(0.037) 0.014(0.003) 0.009(0.002)

we calculated the empirical average MSE defined as

1 & .
aMSE = NZ (P(Y = 1|zi1,...,2) — P(Y = 1|zir, ..., )}
i=1
where (z;1,...,x;,) is the vector of covariates of the ith sample and P is the fitted

conditional probability. The aMSE approached to zero rapidly as testing size in-

creased and tended to be robust to the covariate dimension as long as the method

could identify the important predictors.
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4.6 Applications

We compare our method with other competing methods in three data sets from
the UCI repository. The first data set is Promoter Gene Sequences (abbreviated as
promoter data below). The data consists of A, C, G, T nucleotides at p = 57 positions
for N = 106 sequences and a binary response indicating instances of promoters and
non-promoters. We use 5-fold cross validation with n = 85 training samples and
N —n = 21 test samples in each training-test split.

The second data set is the Splice-junction Gene Sequences (abbreviated as splice
data below). These data consist of A, C, G, T nucleotides at p = 60 positions for
N = 3,175 sequences. Each sequence belongs to one of the three classes: exon/intron
boundary (EI), intron/exon boundary (IE) or neither (N). Since its sample size is
much larger than the first data set, we compare our approach with competing meth-
ods in two scenarios: a small sample size and a moderate sample size. In the small
sample size case, each time we randomly select n = 200 instances as training and cal-
culate the misclassification rate on the testing set composed of the remaining 2,975
instances. We repeat this for each method for five training-test splits and report the
average misclassification rate. In the moderate sample size case, we use 5-fold cross
validation so that each time n = 2, 540 instances are treated as training data.

The third data set describes diagnosing of cardiac Single Proton Emission Com-
puted Tomography (SPECT) images. Each of the patients is classified into two
categories: normal and abnormal. The database of 267 SPECT image sets (pa-
tients) has 22 binary feature patterns. This data set has been previously divided
into a training set of size 80 and a testing set of size 187.

We considered the same competitors as those in the simulation part. Among
them, BART was not implemented in the splice data since we were unable to find a

multi-class implementation of their approach.
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Table 4.4: UCI Data Example. RF: random forests, NN: neural networks, SVM:
support vector machine, BART: Bayesian additive regression trees, TF: Our tensor
factorization model. Misclassification rates are displayed.

Data CART RF NN LASSO SVM BART TF
Promoter (n=85) | 0.236 0.066 0.170 0.075 0.151 0.113 0.066
Splice (n=200) 0.161 0.122 0.226 0.141  0.286 - 0.112

Splice (n=2540) | 0.059 0.046 0.165 0.123  0.059 - 0.058
SPECT (n=80) | 0.312 0.235 0.278 0.277 0.246 0.225 0.198

Table 4 shows the results. Our method produced at worst comparable classifica-
tion accuracy to the best of the competitors in each of the cases considered. Among
the competitors, Random Forests (RF) provided the best competitor overall, which is
consistent with our previous experiment under high dimensional settings. We expect
our approach to do particularly well when there is a modest training sample size and
high-dimensional predictors. We additionally have an advantage in terms of inter-
pretability over several of these approaches, including RF and BART, in conducting
variable selection.

Table 5 displays the selected variables along with their associated mode ranks.
As can been seen, in the promoter data and splice data, nearby nucleotide sequences
are selected. These results are reasonable since for nucleotide sequences, nearby
nucleotides form a motif regulating important functions. For the splice data, the
number of variables selected by our model increases from 4 under n = 200 to 6 under
n = 200. This gradually increase in the model size suggests that the splice data
may possess a near low multirank structure characterized by Assumption B, where
the optimal number of selected variables is determined by the bias-variance tradeoff.
As the training size further grows, more important variables would be selected into
the model. In the contrast, the number of selected variables in the SPECT data
remains the same as the training size grows, suggesting that an exact low multirank

assumption maybe valid. It is notable that in each of these cases we obtained excel-
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Table 4.5: Variable selection results. The selected variables are displayed, with their
associated mode ranks k;’s included in the parenthesis.

Important variables selected
Promoter (n=106) 15th(2), 16th(2), 17th(3), 39th(3)
Splice (n=200) 29th(2), 30th(2), 31st(2), 32nd(2)
Splice (n=2540) | 28th(2), 29th(2), 30th(2), 31st(2), 32nd(2), 35th(2)
SPECT (n=80) 11th(2), 13th(2), 16th(2)
SPECT (n=267) 11th(2), 13th(2), 16th(2)

lent classification performance based on a small subset of the predictors. Moreover,
for the nucleotide sequences data, most selected variables have low mode ranks k;
comparing to the full size d; = 4. Therefore, these variable selection results provide

empirical verifications of the near low multirank assumption B in section 3.2.
4.7 Discussion

This article proposes a framework for nonparametric Bayesian classification rely-
ing on a novel class of conditional tensor factorizations. The nonparametric Bayes
framework is appealing in facilitating variable selection and uncertainty about the
core tensor dimensions in the Tucker-type factorization, while avoiding the need for
parameter tuning. In particular, we have recommended a single default prior setting
that can be used in general applications without relying on cross-validation or other
approaches for estimating tuning parameters. One of our major contributions is the
strong theoretical support we provide for our proposed approach. Although it has
been commonly observed that Bayesian parametric and nonparametric methods have
practical gains in numerous applications, there is a clear lack of theory supporting
these empirical gains.

Interesting ongoing directions include developing faster approximation algorithms
and generalizing the conditional tensor factorization model to accommodate broader

feature modalities. In the fast algorithms direction, online variational methods (Hoff-
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man et al., 2010) provide a promising direction. Regarding generalizations, we can
potentially accommodate continuous predictors and more complex object predictors
(text, images, curves, etc) through probabilistic clustering of the predictors in a first

stage, with X; then corresponding to the cluster index for feature j.
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5

Minimax optimal Bayesian aggregation

5.1 Introduction

In many applications, it is not at all clear how to pick one most suitable method
out of a list of possible models or learning algorithms M = {M;, ..., My,}. Each
model /algorithm has its own set of implicit or explicit assumptions under which that
approach will obtain at or near optimal performance. However, in practice verifying
which if any of these assumptions hold for a real application is problematic. Hence,
it is of substantial practical importance to have an aggregating mechanism that
can automatically combine the estimators fl, ey f v obtained from the M different
approaches My, ..., My, with the aggregated estimator potentially better than any
single one.

Towards this goal, three main aggregation strategies receive most attention in
the literature: model selection aggregation (MSA), convex aggregation (CA) and
linear aggregation (LA), as first stated by Nemirovski (2000). MSA aims at selecting
the optimal single estimator from the list; CA considers searching for the optimal

convex combination of the estimators; and LA focuses on selecting the optimal linear
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combination. Although there is an extensive literature (Juditsky and Nemirovski,
2000; Tsybakov, 2003; Wegkamp, 2003; Yang, 2000, 2001, 2004; Bunea and Nobel,
2008; Bunea and Tsybakov, 2007; Guedj and Alquier, 2013; van der Laan et al.,
2007) on aggregation, there has been limited consideration of Bayesian approaches.

In this chapter, we study Bayesian aggregation procedures and their performance

in regression. Consider the regression model

Y; = f(Xz) + €5, 1= 1, e, (51)

where Y; is the response variable, f : X — R is an unknown regression function, X
is the feature space, X;’s are the fixed- or random-designed elements in X and the
errors are iid Gaussian.

Aggregation procedures typically start with randomly dividing the sample D,, =
{(X1,Y1), ..., (X,,,Y,)} into a training set for constructing estimators Fivooo far
and a learning set for constructing f . Our primary interest is in the aggregation
step, so we adopt the convention (Bunea and Tsybakov, 2007) of fixing the training
set and treating the estimators fl, ey fM as fixed functions f1,..., fas. Our results
can also be translated to the context where the fixed functions fi,..., fi; are con-
sidered as a functional basis (Juditsky and Nemirovski, 2000), either orthonormal or
overcomplete, or as “weak learners” (van der Laan et al., 2007). For example, high-
dimensional linear regression is a special case of LA where f; maps an M-dimensional
vector into its jth component.

Bayesian model averaging (BMA) (Hoeting et al., 1999) provides an approach
for aggregation, placing a prior over the ensemble and then updating using available
data to obtain posterior model probabilities. For BMA, f can be constructed as a
convex combination of estimates fl, ey fM obtained under each model, with weights
corresponding to the posterior model probabilities. If the true data generating model

fo is one of the models in the pre-specified list (“M-closed” view), then as the
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sample size increases the weight on fy will typically converge to one. With a uniform
prior over M in the regression setting with Gaussian noise, f coincides with the
exponentially weighted aggregates (Tsybakov, 2003). However, BMA relies on the
assumption that M contains the true model. If this assumption is violated (“M-
open”), then f tends to converge to the single model in M that is closest to the
true model in Kullback-Leibler (KL) divergence. For example, when fj is a weighted
average of fi; and fo, under our regression setting f will converge to f € {fi, fo} that
minimizes ||f — fol|2 = n~' 27, [f(Xi) — fo(X3)[* under fixed design or ||f — fol[3) =
Eolf(X) — fo(X)|* under random design where X ~ . Henceforth, we use the
notation || - || to denote || - ||,, or || - ||¢ depending on the context.

In this chapter, we primarily focus on Bayesian procedures for CA and LA. Let
M
FT={fi=>Nfi:A=(\,..., ) € H}
j=1

be the space of all aggregated estimators for fy, with index set H. For CA, H takes
the form of A = {(Ay,...,Am) 1 X; = 0,5 =1,..., M, Zj]\/il)\j = 1} and for LA,
H=0Q={M,.... A NeRj=1..M 37|\ <L}, where L > 0
can be unknown but is finite. In addition, for both CA and LA we consider sparse
aggregation with s where an extra sparsity structure |[\|o = s is imposed on
the weight A € H, = {\ € H : ||\||o = s}. Here, for a vector § € RM we use
1oll, = (Zﬁl 0;|P)/P to denotes its [,-norm for 0 < p < oo. In particular, [|0]
is the number of nonzero components of 6. The sparsity level s is allowed to be
unknown and expected to be learned from data. In the sequel, we use the notation
fax to denote the best || - ||-approximation of fy in F¥. Note that if fy € F7, then
Jo = Fax.

One primary contribution of this work is to propose a new class of priors, called
Dirichlet aggregation (DA) priors, for Bayesian aggregation. Bayesian approaches
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with DA priors are shown to lead to the minimax optimal posterior convergence rate
over F for CA and LA, respectively. More interestingly, DA is able to achieve the
minimax rate of sparse aggregation (see Section 5.1.1), which improves the minimax
rate of aggregation by utilizing the extra sparsity structure on A*. This suggests that
DA is able to automatically adapt to the unknown sparsity structure when it exists
but also has optimal performance in the absence of sparsity. Such sparsity adaptive
properties have also been observed in Bunea and Tsybakov (2007) for penalized
optimization methods. However, in order to achieve minimax optimality, the penalty
term, which depends on either the true sparsity level s or a function of A*, needs to
be tuned properly. In contrast, the DA does not require any prior knowledge on \*
and is tuning free.

Secondly, we also consider an “M-open” view for CA and LA, where the truth f,
can not only fall outside the list M, but also outside the space of all convex/linear
combinations of the models in M. Under the “M-open” view, our theory suggests
that the posterior measure tends to put all its mass into a ball around the best
approximation fyx of fy with a radius proportional to the minimax rate. The metric
that defines that ball will be made clear later. This is practically important because
the true model in reality is seldom correctly specified and a convergence to fy« is the
best one can hope for. Bayesian asymptotic theory for misspecified models is under
developed, with most existing results assuming that the model class is either known
or is an element of a known list. One key step is to construct appropriate statistical
tests discriminating fy+ from other elements in F*. Our tests borrow some results
from Kleijn and van der Vaart (2006) and rely on concentration inequalities.

The proposed prior on A induces a novel shrinkage structure, which is of inde-
pendent interest. There is a rich literature on theoretically optimal models based on
discrete (point mass mixture) priors (Ishwaran and Rao, 2005; Castillo and van der

Vaart, 2012) that are supported on a combinatorial model space, leading to heavy
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computational burden. However, continuous shrinkage priors avoid stochastic search
variable selection algorithms (George and McCulloch, 1997) to sample from the com-
binatorial model space and can potentially improve computational efficiency. Fur-
thermore, our results include a rigorous investigation on M-dimensional symmetric
Dirichlet distributions, Diri(p, ..., p) when M » 1 and p « 1. Here Diri(ay, ..., ay)
denotes a Dirichlet distribution with concentration parameters aq,...,ay. In ma-
chine learning, Diri(p,...,p) with p « 1 are widely used as priors for latent class
probabilities (Blei et al., 2003). However, little rigorous theory has been developed
for the relationship between its concentration property and the hyperparameter p.
Rousseau and Mengersen (2011) consider a related problem of overfitted mixture
models and show that generally the posterior distribution effectively empties the
extra components. However, our emphasis is to study the prediction performance
instead of model selection. Moreover, in Rousseau and Mengersen (2011) the num-
ber M of components is assumed to be fixed as n increases, while in our setting we
allow M to grow in the order of e®™. In this large-M situation, the general prior
considered in Rousseau and Mengersen (2011) is unable to empty the extra compo-
nents and we need to impose sparsity. In this chapter, we show that if we choose
p ~ M~ with v > 1, then Diri(p, ..., p) could lead to the optimal concentration
rate for sparse weights (Section 5.2.1). Moreover, such concentration is shown to be
adaptive to the sparsity level s.

The rest of the chapter is organized as follows. In Section 1.1, we review the
minimax results for aggregation. In Section 2, we describe the new class of priors for
CA and LA based on symmetric Dirichlet distributions. In Section 3, we study the
asymptotic properties of the proposed Bayesian methods. In Section 4, we show some
simulations and applications. The proofs of the main theorems appear in Section 5
and some technical proofs are deferred to Section 6. We provide details of the MCMC
implementation of our Bayesian aggregation methods in the appendix.
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5.1.1 A brief review of the minimaz risks for aggregation

It is known (Tsybakov, 2003) that for CA, the minimax risk for estimating the best

convex combination fy+ within F» is

sup inf sup E||f — f|]* =
JifueFo [ flrera

{ M/n, if M < y/n, 52)

V/Elog (M/y/n+1), if M > y/n,

where Fo = {f : || ][« < 1} and f ranges over all possible estimators based on n
observations. Here, for any two positive sequences {a,} and {b,}, a, = b, means
that there exists a constant C' > 0, such that a, < Cb, and b, < Ca, for any n.
The norm is understood as the Ls-norm for random design and the || - ||,,-norm for
fixed design. If we have more information that the truth f} also possesses a sparse
structure ||\*[|o = #{j : \; > 0} = s < n, then we would expect a faster convergence
rate of estimating fy. For example, in the “M-closed” case where f{ = f; for some
je{l... M}, A =1I(i = j)and ||X*|lo = 1. Let 7> = {f = 37 \jf; : A e
A Ao = s} be the space of all s-sparse convex aggregations of fi,..., fy. By
extending the results in Tsybakov (2003), it can be shown that when the sparsity
level s satisfies s < 4/n/log M, the minimax risk of estimating an element in F? is

given by

2 M
sup_inf sup_ 17~ f511 = 1og (). 53)
finfmeFo [ fleFh n s

From the preceding results, W serves as the sparsity /non-spasrsity boundary
of the weight \* as there is no gain in the estimation efficiency if s > \/m .
From Tsybakov (2003), the minimax risk for LA with H = R is
sup inf sup E[|f - f{[[* = M/n.
frofu€Fo o preFrM
As a result, general LA is only meaningful when M /n — 0, as n — oo. Similarly, the
above minimax risk can be extended to s-sparse LA FE" — {f = Z]Ail NifitAe
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RM |[AJo = s} for s € {1,..., M} as

. S M
s it sup EIF - 51 = Do ().
fiysfm€F0 f freFrM n S

Note that for sparse LA, the sparsity level s can be arbitrary. A simple explanation is

that the constraint ||\*||; = 1 ensures that every element in F* can be approximated

with error at most \/% log (M/+y/n + 1) by some 4/n/log M-sparse element in F*

(see Lemma 82). However, if we further assume that ||\*|| < A and restrict f** € F%,
then by extending Tsybakov (2003), it can be shown that the minimax risks of LA
of FRY is the same as those of convex aggregation under a non-sparse structure as

(5.2) and a sparse structure as (5.3).

5.2 Bayesian approaches for aggregation

5.2.1 Concentration properties of high dimensional symmetric Dirichlet distribu-
tions

Consider an M-dimensional symmetric Dirichlet distribution Diri(p, ..., p) indexed
by a concentration parameter p > 0, whose pdf at A € A is given by T'(Mp){T'(p)} ™
Hj]\il )\571, where I'(+) is the Gamma function. M-dimensional Dirichlet distributions
are commonly used in Bayesian procedures as priors over the M — 1-simplex. For
example, Dirichlet distributions can be used as priors for probability vectors for latent
class allocation. In this subsection, we investigate the concentration properties of
Diri(p,...,p) when M » 1 and p « 1. Fig. 5.2.1 displays typical patterns for
3-dimensional Dirichlet distributions Diri(p, p, p) with p changing from moderate
to small. As can be seen, the Dirichlet distribution tends to concentrate on the
boundaries for small p, which is suitable for capturing sparsity structures.

To study the concentration of Diri(p, ..., p), we need to characterize the space

of sparse weight vectors. Since Dirichlet distributions are absolutely continuous, the
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(a) p=1. (b) p=0.1. (¢) p=0.01.
FIGURE 5.1: Symmetric Dirichlet distributions with different values for the concen-
tration parameter. Each plot displays 100 independent draws from Diri(p, p, p).

probability of generating an exactly s-sparse vector is zero for any s < M. Therefore,
we need to relax the definition of s-sparsity. Consider the following set indexed by a
tolerance level e > 0 and a sparsity level s € {1,..., M}: F2 = { e A: Zj]\isﬂ AG) <
e}, where A1) = A@) = -+ = A is the ordered sequence of Aj, ..., Ay fé}e consists
of all vectors that can be approximated by s-sparse vectors with [i-error at most e.
The following theorem shows the concentration property of the symmetric Dirichlet
distribution Diri(p, ..., p) with p = a/M”. This theorem is a easy consequence of

Lemma 26 and Lemma 29 in Section 5.5.

Theorem 23. Assume that X\ ~ Diri(p,...,p) with p = o/M" and v > 1. Let
A* e Ay be any s-sparse vector in the M — 1-dimensional simplex A. Then for any

e€ (0,1) and some C > 0,

M
P(|IAN=X¥]2 <€) Zexp{—C’vslog?}, (5.4)

P\ ¢ F) < exp{ —C(y—1)slog %} (5.5)

The proof of (5.5) utilizes the stick-breaking representation of Dirichlet processes
(Sethuraman, 1994) and the fact that Diri(p, ..., p) can be viewed as the joint dis-
tribution of (G([0,1/M)), ..., G([(M — 1)/M,1))) where G ~ Dirichlet process
DP((Mp)U) with U the uniform distribution on [0, 1]. The condition v > 1 in The-

orem 23 reflects the fact that the concentration parameter Mp = aM~0~1 should
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decrease to 0 as M — oo in order for DP((Mp)U) to favor sparsity. (5.5) vali-
dates our observations in Fig. 5.2.1 and (5.4) suggests that the prior mass around
every sparse vector is uniformly large since the total number of s-sparse patterns
(locations of nonzero components) in A is of order exp{Cslog(M/s)}. In fact,
both (5.4) and (5.5) play crucial roles in the proofs in Section 5.5.1 on charac-
terizing the posterior convergence rate €, for the Bayesian method below for CA
(also true for more general Bayesian methods), where {¢,} is a sequence satisfying
P([I]X = M|z < €,) 2 exp(—ne2) and P(A ¢ F2.) < exp(—ne2). Assume the best
approximation fy+ of the truth fy to be s-sparse. (5.5) implies that the posterior
distribution of X\ tends to put almost all its mass in }"ﬁe and (5.4) is required for the
posterior distribution to be able to concentrate around A* at the desired minimax

rate given by (5.2).
5.2.2  Using Dirichlet priors for convex aggregation

In this subsection, we assume X; to be random with distribution @ and f; € Lo(Q).
Here, for a probability measure () on a space X, we use the notation || - ||g to
denote the norm associated with the square integrable function space Ly(Q) = {f :
§4 [f(2)]?dQ(x) < co}. We assume the random design for theoretical convenience and
the procedure and theory for CA can also be generalized to fixed design problems.
Assume the M functions fi, ..., far also belong to Ly(Q). Consider combining these
M functions into an aggregated estimator f = Zj\il j\j fj, which tries to estimate f
by elements in the space F* = {f = Zj\il Nifi A = O,Z;‘il A; = 1} of all convex
combinations of fi,..., fas. The assumption that fi,..., fy are fixed is reasonable
as long as different subsets of samples are used for producing fi,..., fiy and for
aggregation. For example, we can divide the data into two parts and use the first

part for estimating f1,..., fas and the second part for aggregation.
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We propose the following Dirichlet aggregation (DA) prior:
M « «
(DA) f:ZlAjfj, (Al,...,)\M)~Diri<m,...,m),
]:

where (v, a) are two positive hyperparameters. As Theorem 23 and the results
in Section 5.5 suggest, such a symmetric Dirichlet distribution is favorable since
Diri(ay, . .., apr) with equally small parameters oy = ... = ap = a/M?" for v > 1 has
nice concentration properties under both sparse and nonsparse L type conditions,
leading to near minimax optimal posterior contraction rate under both scenarios.
We also mention a related paper (Bhattacharya et al., 2013) that uses Dirichlet
distributions in high dimensional shrinkage priors, where they considered normal
mean estimating problems. They proposed a new class of Dirichlet Laplace priors for
sparse problems, with the Dirichlet placed on scaling parameters of Laplace priors
for the normal means. Our prior is fundamentally different in using the Dirichlet
directly for the weights A, including a power v for M. This is natural for aggregation
problems, and we show that the proposed prior is simultaneously minimax optimal

under both sparse and nonsparse conditions on the weight vector A as long as v > 1.
5.2.3 Using Dirichlet priors for linear aggregation

For LA, we consider a fixed design for X; € R? and write (5.1) into vector form as
Y = Fy + ¢ ¢ ~ N(0,0%1,), where Y = (Y1,...,¥,) is the n x 1 response vector,
Fy = (fo(X1), ..., fo(X,))T is the n x 1 vector representing the expectation of Y and
I, is the n x n identity matrix. Let F' = (F};) = (f;(X,)) be the n x M prediction
matrix, where the jth column of F' consists of all values of f; evaluated at the training
predictors X1, ..., X,,. LA estimates Fy as FAwith A = (A1,..., A\y)T e RM thepx 1
the coefficient vector. Use the notation F} to denote the jth column of /' and F @) the
ith row. Notice that this framework of linear aggregation includes (high-dimensional)
linear models as a special case where d = M and f;(X;) = Xj;.
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Let A = |Ah = X0 Nl o= (o) € A with g = |[\|/A, 2 =
(z1,...,2m) € {—=1,1}M with z; = sgn(\;). This new parametrization is identifiable
and (A, p, z) uniquely determines \. Therefore, there exists a one-to-one correspon-
dence between the prior on (A, i, z) and the prior on A. Under this parametrization,
the geometric properties of A transfer to those of y. For example, a prior on p that

induces sparsity will produce a sparse prior for A\. With this in mind, we propose the

following double Dirichlet Gamma (DDG) prior for A or (A, p, 2):

[« a
(DDG1) A ~ Ga(ag, bo), p ~ D1r1<W, e W)’

21y ..., 2y iid with P(z; = 1) 7

Since p follows a Dirichlet distribution, it can be equivalently represented as

T T . iid o}
< D n”ﬁ)’WIthana(W’]_)

j=1 j=1

Let n = (n,...,num) with n; = z;);. By marginalizing out the z, the prior for p can

be equivalently represented as

Ty T > ) iid <a )
A M) it T ¥ pa (-2 1), (5.6)
(ZM T S 1T Mo

where DG(a, b) denotes the double Gamma distribution with shape parameter a,
rate parameter b and pdf {2'(a)}~'6%|t|>"te~* (¢ € R), where I'(-) is the Gamma
function. More generally, we call a distribution as the double Dirichlet distribution
with parameter (ay,...,ayr), denoted by DD(ay, ..., ap), if it can be represented by

(5.6) with 7; ~DG(a;, 1). Then, the DDG prior for A has an alternative form as

(67 «
(DDGQ) A= AT], A~ Ga(ao, bo), n ~ DD (M, ey W) .

We will use the form (DDG2) for studying the theoretical properties of the DDG
prior and focus on the form (DDG1) for posterior computation.
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5.3 Theoretical properties

In this section, we study the prediction efficiency of the proposed Bayesian aggrega-
tion procedures for CA and LA in terms of convergence rate of posterior prediction.
We say that a Bayesian model F = {P : 6 € O}, with a prior distribution IT over

the parameter space ©, has a posterior convergence rate at least ¢, if

Py,

I(d(6,6*) = De,| X1, ..., Xn) —> 0, (5.7)

with a limit 8* € ©, where d is a metric on © and D is a sufficiently large positive
constant. For example, to characterize prediction accuracy, we use d(A\, X') = || f\ —
fvllo and [|n~Y2F (X — X)||5 for CA and LA, respectively. Let Py = Py, be the truth
under which the iid observations Xy, ..., X,, are generated. If 6y € O, then the model
is well-specified and under mild conditions, 6* = 6,. If 6, ¢ O, then the limit 8* is
usually the point in O so that P has the minimal Kullback-Leibler (KL) divergence
to Py,. (5.7) suggests that the posterior probability measure puts almost all its mass
over a sequence of d-balls whose radii shrink towards 6* at a rate ¢,. In the following,
we make the assumption that ¢ is known, which is a standard assumption adopted
in Bayesian asymptotic proofs to avoid long and tedious arguments. de Jonge and
van Zanten (2013) studies the asymptotic behavior of the error standard deviation
in regression when a prior is specified for o. Their proofs can also be used to justify
our setup when o is unknown. In the rest of the chapter, we will frequently use C'

to denote a constant, whose meaning might change from line to line.
5.83.1 Posterior convergence rate of Bayesian convexr aggregation

Let ¥ = (Eo[fi(X)fj(X)])mxam be the second order moment matrix of (f;(X),...,
fu (X)), where X ~ Q. Let f* = Zj‘il A7 f; be the best Ly(Q)-approximation of fy
in the space FA = {f = Zj\il Nifi i A =0, Z;‘il Aj = 1} of all convex combinations
of fi,..., fu, le. N = argminyen ||f) — f0||2Q. This misspecified framework also
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includes the well-specified situation as a special case where fy = f* € F*. Denote
the jth column of ¥ by ;.

We make the following assumptions:
(A1) There exists a constant 0 < x < oo such that sup; ;< [X55] < k.

(A2) (Sparsity) There exists an integer s > 0, such that ||[\*||p = s < n.

N

(A3) There exists a constant 0 < x < o0 such that sup; ;<) sup,ex | f5(7)| < k.

o If Eg[f;(X)] = 0 for each j, then X is the variance covariance matrix. (Al)
assumes the second moment 3,; of f;(X) to be uniformly bounded. By apply-
ing Cauchy’s inequality, the off-diagonal elements of > can also be uniformly

bounded by the same x.

e (A3) implies (Al). This uniformly bounded condition is only used in Lemma
30 part a. As illustrated by Birgé (2004), such a condition is necessary for
studying the Lo(Q) loss of Gaussian regression with random design, since under
this condition the Hellinger distance between two Gaussian regression models

is equivalent to the Ly(Q) distance between their mean functions.

e Since \* € A, the [; norm of \* is always equal to one, which means that \* is
always [;-summable. (A2) imposes an additional sparse structure on A*. We

will study separately the convergence rates with and without (A2). It turns out

that the additional sparse structure improves the rate if and only if s « , / log .

The following theorem suggests that the posterior of fy concentrates on an || -||o-
ball around the best approximation f* with a radius proportional to the minimax
rate of CA. In the special case when f, = fj, the theorem suggests that the proposed

Bayesian procedure is minimax optimal.
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Theorem 24. Assume (A3). Let (X1,Y1),...,(X,,Y,) be n iid copies of (X,Y)
sampled from X ~ Q, Y|X ~ N(fo(X),0?). If f* = Z]Ni1 Ai fj is the minimizer of

f=f = follo on F2, then under the prior (DA), for some D >0, as n — oo,
M log(M 1

Boatt (1~ #llo > D [y MV DYy ) o
n n

Moreover, if (A2) is also satisfied, then as n — 0,

N /slog(M/s
EO7QH(||f_f ||Q =D # ‘XlayvbaXnaYn) — 0.

5.3.2  Posterior convergence rate of Bayesian linear aggregation

Let A\* = (A\f,...,\};) be the coefficient such that F'A* best approximates Fp in
|| - [l norm, i.e. A\* = argminyegnm ||FA — Fyl[3. Similar to the CA case, such a
misspecified framework also includes the well-specified situation as a special case
where Fy, = FA* € FRY Tt is possible that there exists more than one such a
minimizer and then we can choose \* with minimal nonzero components. This non-
uniqueness will not affect our theorem quantifying the prediction performance of LA
since any minimizers of ||FA — Fp||3 will give the same prediction F'A. Our choice of
A*, which minimizes ||A*||o, can lead to the fastest posterior convergence rate.

We make the following assumptions:
(B1) There exists a constant 0 < x < oo such that \/iﬁ supy<jenr || Fjll2 < K.
(B2a) (Sparsity) There exists an integer s > 0, such that ||[\*||p = s < n.
(B2b) (l;-summability) There exists a constant Ay > 0, such that A* = || \*||; < Ap.

(B3) For my = [4/n ], there exists a constant ko > 0 such that \/iﬁ||F)\||2 = Kol|All1

for all A € RM with [|A||o = me.

100



e (B1) is the column normalizing condition for the design matrix. This assump-
tion is mild since the predictors can always be normalized to satisfy it. This
condition can also be considered as the empirical version of (A1), where the

matrix Y is replaced by its empirical estimator %F TF.

e (B2a) is a counterpart of the sparsity condition (A2) of the aggregation prob-
lem. This assumption is commonly made in the high dimensional linear regres-
sion literature. (B2b) is assumed by Biithlmann (2006) in studying consistency
of boosting for high dimensional linear regression. This condition includes the
sparsity condition (B2a) as a special case while also including the case in which

many components of \* are nonzero but small in magnitude. Similar to the

aggregation problem, under (B2b), the sparsity gains only when s « ,/ g 7

(B2a) also implies a sparsity constraint on n* = A\*/A*, where n* always satis-

fies ||n*||1 = 1.

e (B3) is the same in spirit as the sparse eigenvalue condition made in Raskutti
et al. (2011), which provides identifiability for mg-sparse vectors. This assump-
tion is only made for the [;-summable case, where any [;-summable A € RM
can be approximated by an myg-sparse vector with error at most O(||A1]]€,)
under dp (Lemma 28 part b), with ¢, given in (DA-PC), where dp(\, \) =
[n=Y2F (X — X)|]2. Under this assumption, we show that the posterior prob-
ability of {||A||; < KA*} converges to zero as n — oo for some constant K
and therefore with high posterior probability, A can be approximated by an

myo-sparse vector with error at most O(e,,).

The following theorem is a counterpart of Theorem 24 for LA.

Theorem 25. Assume (B1). LetY be an n-dimensional response vector sampled
fromY ~ N(Fy,0%I,). Let \* be any one of the minimizers of A — ||[FA — Fy||o in
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RM. If (B2b) and (B3) are true, then under the prior (DDG2), for some D > 0, as

n — oo,

E0H<||n—%F(A A2 = Dmin{\/g, i/log(M/er D }‘ Y) 0.

If (B2a) is true, then as n — oo,

1 log(M
EOH(||n—2F(A—A*)I|2 > py)210g(M/s) ‘ y> 50
n

Theorem 25 suggests that in order to obtain the fastest posterior convergence rate

for prediction, we can choose the A* having the minimal ||\*||o among all minimizers
of ||F'A— Fp||2. This suggests that the posterior measure tends to concentrate on the
sparsest A* that achieves the same prediction accuracy, which explains the sparse

adaptivity. The non-uniqueness happens when M > n.

5.4 Experiments

As suggested by Yang (2001), the estimator f. depends on the order of the obser-
vations and one can randomly permute the order a number of times and average
the corresponding estimators. In addition, one can add a third step of estimat-
ing fi,..., fyr with the full dataset as fl, .. .,fM and setting the final estimator
as f = Z;\il j\j fj. We will adopt this strategy and our splitting and aggregation
scheme can be summarized as follows. First, we randomly divide the entire n sam-
ples into two subsets S; and Sy with |S;| = ny and |Ss| = ny. As a default, we set
ny = 0.75n and ny = 0.25n. Using S as a training set, we obtain M base learners

F(n1) Fna

RPN ), Second, we apply the above MCMC algorithms to aggregate these
learners into f(”l) = Z]A/il j\j f;m) based on the no, aggregating samples. Finally,

we use the whole dataset to train these base learners, which gives us f;n), and the

~

final estimator is f (n) — Z]Ail 5\]- ]("). Therefore, one basic requirement on the base
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learners is that they should be stable in the sense that f](") can not be dramatically

different from f](m) (e.g. CART might not be a suitable choice for the base learner).

5.4.1 Bayesian linear aggregation

In this subsection, we apply the Bayesian LA methods to the linear regression Y =
X)X+ ¢ with X € RM and € ~ N(0,021,). Since every linear aggregation problem
can be reformed as a linear regression problem, this is a simple canonical setting
for testing our approach. We consider two scenarios: 1. the sparse case where
the number of nonzero components in the regression coefficient A is smaller than
M and the sample size n; 2. the non-sparse case where A\ can have many nonzero
components, but the /; norm ||A||; = Z]M:1 |A;| remains constant as M changes. We
vary model dimensionality by letting M = 5, 20, 100 and 500.

We compare the Bayesian LA methods with lasso, ridge regression and horse-
shoe. Lasso (Tibshirani, 1996) is widely used for linear models, especially when A is
believed to be sparse. In addition, due to the use of [; penalty, the lasso is also mini-
max optimal when A is /;-summable (Raskutti et al., 2011). Ridge regression (Hoerl
and Kennard, 1970) is a well-known shrinkage estimator for non-sparse settings.
Horseshoe (Carvalho et al., 2010) is a Bayesian continuous shrinkage prior for sparse
regression from the family of global-local mixtures of Gaussians (Polson and Scott,
2010). Horseshoe is well-known for its robustness and excellent empirical perfor-
mance for sparse regression, but there is a lack of theoretical justification. n training

samples are used to fit the models and N — n testing samples are used to calculate

the prediction root mean squared error (RMSE) {(N — n)™ Zi]in+1(gi = yi)Q}l/Q,
where ; denotes the prediction of y;.

The MCMC algorithm for the Bayesian LA method is run for 2,000 iterations,
with the first 1,000 iterations as the burn-in period. We set a« =1, v = 2, a9 = 0.01

and by = 0.01 for the hyperparameters. The tuning parameters in the MH steps are
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chosen so that the acceptance rates are around 40%. The lasso is implemented by
the glmnet package in R, the ridge is implemented by the 1m.ridge function in R and
horseshoe is implemented by the monomvn package in R. The iterations for horseshoe
is set as the default 1,000. The regularization parameters in Lasso and ridge are

selected via cross-validation.
Sparse case

In the sparse case, we choose the number of non-zero coefficients to be 5. The

simulation data are generated from the following model:

(5) y = —0.52; + oy + 0.4w3 — 24 + 0.625 +¢, €~ N(0,0.5%),

with M covariates x1,...,2y ~ ii.d N(0,1). The training size is set to be n =
100 and testing size N —n = 1000. As a result, (S) with M = 5 and 20 can be
considered as moderate dimensional, while M = 100 and M = 500 are relatively
high dimensional.

Table 5.1: RMSE for the sparse linear model (S). The numbers in the parentheses
indicate the standard deviations. All results are based on 100 replicates.

M 5 20 100 500

A 511 513 529 576
(0.016) (0.016) (0.020) (0.023)

Lasso 514 536 574 613
(0.017) (0.020) (0.039) (0.042)

Ridge 514 565 1.23 2.23
(0.017) (0.019) (0.139) (0.146)

Horseshoe 512 519 525 590
(0.016) (0.014) (0.019) (0.022)

From Table 5.1, all the methods are comparable when there is no nuisance pre-
dictor (M = 5). However, as more nuisance predictors are included, the Bayesian
LA method and horseshoe have noticeably better performance than the other two

methods. For example, for M = 100, the Bayesian LA method has 8% and 53%
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improvements over lasso and ridge, respectively. In addition, as expected, ridge
deteriorates more dramatically than the other two as M grows. It appears that
Bayesian LA is more computationally efficient than horseshoe. For example, under
m = 100 it takes horseshoe 50 seconds to draw 1,000 iterations but only takes LA

about 1 second to draw 2,000 iterations.
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FI1GURE 5.2: Traceplots for a non-zero regression coefficient and a zero coefficient.

Fig. 5.2 displays the traceplots after the burn-in for a typical non-zero and a typ-
ical zero regression coefficient respectively under M = 100. The non-zero coefficient
mixes pretty well according to its traceplot. Although the traceplot of the zero coeffi-
cient exhibits some small fluctuations, their magnitudes are still negligible compared
to the non-zero ones. We observe that these fluctuant traceplots like Fig. 5.2(b) only
happens for those \;’s whose posterior magnitudes are extremely small. The typical
orders of the posterior means of those A;’s in LA that correspond to unimportant
predictors range from 107! to 1072. However, the posterior medians of unimpor-
tant predictors are less than 10™* (see Fig. 5.3). This suggests that although the
coefficients are not exactly to zero, the estimated regression coefficients with zero

true values are still negligible compared to the estimators of the nonzero coefficients.
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FIGURE 5.3: 95% posterior credible intervals for Aj,..., Ajgp in sparse regresion.
The solid dots are the corresponding posterior medians.
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FIGURE 5.4: 95% posterior credible intervals for Ay, ..., Ajgg in non-sparse regression.
The solid dots are the corresponding posterior medians.
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In addition, for LA the posterior median appears to be a better and more robust

estimator for sparse regression than the posterior mean.
Non-sparse case

In the non-sparse case, we use the following two models as the truth:

M .
—1)
(NS1) y = Z 3(j2 ) zj+¢e €~ N(0,0.1%),
j=1
el
(NS2) y = lM/Zij—i—e, e ~ N(0,0.1%),

with M covariates x1, ..., 2y ~ i.i.d N(0,1). In (NS1), all the predictors affect the
response and the impact of predictor x; decreases quadratically in j. Moreover, A
satisfies the [;-summability since lim,_,o [|[A|]1 = 7%/3 = 4.9. In (NS2), half of the
predictors have the same influence on the response with ||A||; = 5. The training size
is set to be n = 200 and testing size N —n = 1000 in the following simulations.
From Table 5.2, all the methods have comparable performance when M is mod-
erate (i.e 5 or 20) in both non-sparse settings. In the non-sparse settings, horseshoe
also exhibits excellent prediction performance. In most cases, LA, lasso and horse-
shoe have similar performance. As M increases to an order comparable to the sample
size, LA and horseshoe tend to be more robust than lasso and ridge. As M becomes
much greater than n, LA, lasso and horseshoe remain good in (NS1) while breaking
down in (NS2); ridge breaks down in (NS1) while becoming the best in (NS2). It
might be because in (NS1), although all A;’s are nonzero, the first several predictors
still dominate the impact on y. In contrast, in (NS2), half of \;’s are nonzero and
equally small. Fig. 5.4 plots 95% posterior credible intervals for Aj, ..., Ajgp of (NS2)
under M = 100. According to Section 5.1.1, the spasrse/non-sparse boundary for
(NS2) under M = 100 is +/200/1og 100 ~ 3 « 50. Therefore, the results displayed
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Table 5.2: RMSE for the non-sparse linear models (NS1) and (NS2). All results are
based on 100 replicates.

M 5 20 100 500

A 101 112 116 129

(0.002) (0.003) (0.005) (0.007)

105 110 116 155

NSL| Lasso (0.006) (0.005) (0.005) (0.006)
Ridge 102 107 146 2.42

(0.003) (0.004) (0.008) (0.053)

Horsedhoe | 102 111 114 136
(0.003) (0.003) (0.004) (0.005)

. 101 104 121 326

(0.002) (0.003) (0.005) (0.008)

111 106 131 323

NS2| Lasso (0.006) (0.003) (0.007) (0.008)
Ridge 103 107 140 274

(0.003) (0.003) (0.008) (0.010)

Horseshon | 102 104 124 308
(0.003) (0.003) (0.004) (0.007)

in Fig. 5.4 can be classified into the non-sparse regime. A simple variable selection

based on these credible intervals correctly identifies all 50 nonzero components.
Robustness against the hyperparameters

Since changing the hyperparameter « in the Dirichlet prior is equivalent to changing
the hyperparameter v, we perform a sensitivity analysis for + in the above two
regression settings with M = 100.

From Figure 5.5, the Bayesian LA method tends to be robust against the change
in v at a wide range. As expected, the Bayesian LA method starts to deteriorate
as 7 becomes too small. In particular, when + is zero, the Dirichlet prior no longer
favors sparse weights and the RMSE becomes large (especially for the sparse model)
in all three settings. However, the Bayesian LA methods tend to be robust against

increase in . As a result, we would recommend choosing v = 2 in practice.
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FIGURE 5.5: Robustness of the Bayesian LA methods against the hyperparameter
v. The results are based on 100 replicates.

5.4.2  Bayesian conver aggregation

In this subsection, we conduct experiments for the Bayesian convex aggregation

method.
Sitmulations

The following regression model is used as the truth in our simulations:

Y= +xy+ 375 — 2 +¢, e~ N(0,0.5), (5.8)

with p covariates xy,...,x4 ~ 1.i.d N(0,1). The training size is set to be n = 500
and testing size N —n = 1000 in the following simulations.

In the first simulation, we choose M = 6 base learners: CART, random forest
(RF), lasso, SVM, ridge regression (Ridge) and neural network (NN). The Bayesian
aggregation (BA) is compared with the super learner (SL). SL is implemented by the
SuperLearner package in R. The implementations of the base learners are described
in Table 5.3. The MCMC algorithm for the Bayesian CA method is run for 2,000
iterations, with the first 1,000 iterations as the burn-in period. We set a =1, v =2
for the hyperparameters. The simulation results are summarized in Table 5.4, where

square roots of mean squared errors (RMSE) of prediction based on 100 replicates
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are reported.

Table 5.3: Descriptions of the base learners.

Base learner CART RF Lasso
R package rpart randomForest glmnet
SVM Ridge NN GAM
e1071 MASS nnet gam

Table 5.4: RMSE for the first simulation. All results are based on 100 replicates.

d | CART RF Lasso  SVM  Ridge NN SL BA
5 3.31 3.33 5.12 2.71 5.12 3.89 2.66 2.60
(0.41) (0.42) (0.33) (0.49) (0.33) (0.90) (0.48) (0.48)

20 3.32 3.11 5.18 4.10 5.23 5.10 3.13 3.00
(0.41) (0.49) (0.37) (0.46) (0.38) (1.57) (0.54) (0.48)

100 3.33 3.17 5.17 5.48 5.64 7.12 3.19 3.03
(0.38) (0.45) (0.32) (0.35) (0.33) (1.31) (0.45) (0.45)

In the second simulation, we consider the case when M is moderately large. We
consider M = 26, 56 and 106 by introducing (M — 6) new base learners in the
following way. In each simulation, for j = 1,..., M — 6, we first randomly select a
subset S; of the covariates {z1, ..., 74} with size p = [min{n'/2,d/3}|. Then the jth
base learner f; is fitted by the general additive model (GAM) with the response y
and covariates in S; as predictors. This choice of new learners is motivated by the
fact that the truth is sparse when M is large and brutally throwing all covariates
into the GAM tends to have a poor performance. Therefore, we expect that a base
learner based on GAM that uses a small subset of the covariates containing the
important predictors x1, £ x3 and x4 tends to have better performance than the full
model. In addition, with a large M and moderate p, the probability that one of the
randomly selected (M — 6) models contains the truth is high. In this simulation, we
compare BA with SL and a voting method using the average prediction across all

base learners. For illustration, the best prediction performance among the (M — 6)

random-subset base learners is also reported. Table 5.5 summarizes the results.
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Table 5.5: RMSE for the second simulation study. All results are based on 100
replicates.

d | M Best Voting SL BA
9% 3.14 4.63 3.40 2.78
(0.82)  (0.48)  (0.60)  (0.52)

2 | o5 | 286 1.08 3.33 2.79
(157)  (0.71)  (0.86)  (0.78)

106 2.79 4.95 3.23 2.73
(0.62)  (0.60)  (0.70)  (0.61)

2% 3.14 4.72 3.09 2.78
0.71)  (0.44)  (0.50)  (0.45)

2.95 4.93 3.07 2.78

01561 046y (045)  (0.50)  (0.47)
106 2.84 4.90 2.98 2.69
(045)  (047)  (0.55)  (051)

9% 5.21 5.75 3.77 3.19
(0.75)  (0.50)  (0.650)  (0.59)

4.86 5.92 4.02 3.18

001561 o7g)  (059)  (0.73)  (0.70)
106 4.65 5.98 4.18 3.13
(0.69)  (0.45)  (0.52)  (0.49)

Applications

We apply BA to four datasets from the UCI repository. Table 5.6 provides a brief
description of those datasets. We use CART, random forest, lasso, support vector
machine, ridge regression and neural networks as the base learners. We run 40,000
iterations for the MCMC for the BA for each dataset and discard the first half as
the burn-in. Table 5.7 displays the results. As we can see, for 3 datasets (auto-mpg,
concrete and forest), the aggregated models perform the best. In particular, for the
auto-mpg dataset, BA has 3% improvement over the best base learner. Even for
the slump dataset, aggregations still have comparable performance to the best base
learner. The two aggregation methods SL and BA have similar performance for all

the datasets.
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Table 5.6: Descriptions of the four datasets from the UCI repository. CCS: concrete

compressive strength.

dataset sample size # of predictors I;IeaslPiZ{)llSee
auto-mpg 392 8 mpg
concrete 1030 8 CCS*

slump 103 7 slump

forest 517 12 log(1+area)

Table 5.7: RMSE of aggregations for real data applications. All results are based on
10-fold cross-validations.

dataset Cart RF NN GAM SL BA

auto-mpg | 3.42 2.69 338 268 340 779 271 2.61 2.61
concrete | 940 535 1051 6.65 10.50 16.64 795 5.31 5.33
slump 760 6.69 771 705 867 711 699 717 7.03
forest 670 628 612 612 620 .613 622 .606 .604

Lasso SVM Ridge

5.5  Proofs of the main results

Let K(P,Q) = {log(dP/dQ)dP be the KL divergence between two probability dis-
tributions P and @, and V(P, Q) = {|log(dP/dQ) — K (P, Q)|*dP be a discrepancy

measure.

5.5.1 Concentration properties of Dirichlet distribution and double Dirichlet distri-

bution

According to the posterior asymptotic theory developed in Ghosal et al. (2000) (for
iid observations, e.g. regression with random design, such as the aggregation problem
in section 5.2.2), to ensure a posterior convergence rate of at least €,, the prior has

to put enough mass around 6* in the sense that
(PC1) I(B(6*,¢,)) = e™"4C | with

B(Q*,E) 2{9 €0 K(Pg*,Pg) < 62, V(P@*,Pg) < 62},
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for some C' > 0. For independent but non-identically distributed (noniid) obser-
vations (e.g. regression with fixed design, such as the linear regression problem
in section 5.2.3), where the likelihood takes a product form Pe(n)(Yl,...,Yn) =
[T, Ps:(Y;), the corresponding prior concentration condition becomes (Ghosal and

van der Vaart, 2007)

(PC2) (B, (0%, €,)) = e "4C | with

1 < 1 &
B,(0%,€) ={0€©: =Y K(Pp; Py;)<e, = V(Pps,;, Pp;) <€ ).
S LI WL DEEE WIS N

If a (semi-)metric d,,, which might depend on n, dominates KL and V' on O, then
(PC) is implied by TI(d,(6,6*) < ce,) = e 4C for some ¢ > 0. In the aggrega-
tion problem with a random design and parameter § = X\, we have K(Py«, Py) =
V(Pys, Py) = 55| Zj]\il()\j — X illE = (A = A*)TE(X — A*). Therefore, we can
choose d,(,0%) as ds(\,\*) = ||ZY2(A — A*)||;. In the linear aggregation prob-
lem with a fixed design and 0 = M\, Z;‘:l K(Pyx ;, Pp;) = Z;.Lzl V(Pps i, Ppi) =
55| [F(A = A*)||2, where Py;(Y) = P\(Y|F®). Therefore, we can choose d, (6, 6*) as
dr(\AY) = [P0 = M)

For CA and LA, the concentration probabilities can be characterized by those
of \* € A and n* € Dy_1 = {n € RM ||n||y = 1}. Therefore, it is important to
investigate the concentration properties of the Dirichlet distribution and the double
Dirichlet distribution as priors over A and Dj,;_;. The concentration probabilities
II(ds; (A, A*) < ce) and I(dp(n,n*) < ce) depend on the location of the centers \*
and n*, which are characterized by their geometrical properties, such as sparsity and
[;-summability. The next lemma characterizes these concentration probabilities and

is of independent interest.

Lemma 26. Assume (A1) and (B1).
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o

. Assume (A2). Under the prior (DA), for any v = 1,

M
M(ds(M\,\*) <€) = exp{ - C’vslog—}, for some C' > 0.
€

Under the prior (DA), for any m >0, any A € A and any v = 1,

C M
N<et— ) > - =
H(dz}()\,)\ )<e+ W) exp{ C~ymlog ; },

M
H(ds(M\ ) <€) = exp{ - CyM log—}, for some C > 0.
€

. Assume (B2a). Under the prior for n in (DDG2), for any v > 1,

M
(dp(n,n*) <€) = exp{ — Cvyslog —}, for some C > 0.
€

Under the prior for n in (DDG2), for any m > 0, any n € Dy—1 and any
v =1,

C M
N<et— )= - log — ¢,
ll(dF(n,n ) <e m) exp{ C~ymlog ; }

M
(dp(n,n*) <€) = exp{ — CyM log —}, for some C' > 0.
€

e The lower bound exp{—C"yslog(M/e)} in Lemma 26 can be decomposed into

two parts: exp{—C~vyslog M} and exp{Csloge}. The first part has the same
order as 1/ (]\s/[ ), one over the total number of ways to choose s indices from
{1,...,M}. The second part is of the same order as €*, the volume of an
e-cube in R®. Since usually which s components are nonzero and where the
vector composed of these s nonzero components locates in R® are unknown,

this prior lower bound cannot be improved.

e The priors (DA) and (DDG2) do not depend on the sparsity level s. As a result,

Lemma 26 suggests that the prior concentration properties hold simultaneously
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for all \* or n* with different s and thus these priors can adapt to an unknown

sparsity level.

By the first two parts of Lemma 26, the following is satisfied for the prior (DA)

with D large enough,

D=8 X[l =

(DA-PC) (ds(M\ \*) < €,) = e "4 with e, = DA/ M, if M < /n;
DA MDA >/

This prior concentration property will play a key role in characterizing the posterior
convergence rate of the prior (DA) for Bayesian aggregation.

Based on the prior concentration property of the double Dirichlet distribution
provided in Lemma 26 part ¢ and part d, we have the corresponding property for

the prior (DDG2) by taking into account the prior distribution of A = ||A||;.
Corollary 27. Assume (B1).
a. Assume (B2a). Under the prior (DDG2), for any v = 1,

M
I(dp(A\,A*) <€) = exp{ — C"yslog—}, for some C > 0.
€

b. Assume (B2b). Under the prior (DDG2), for any m > 0, any n € Dy —y and

any v = 1,

C M
1 N <eq— ) > _ log — {
(dp()\,)\ ) <e+ m) exp{ Cymlog ; }

M
H(dp(A\,\*) <€) = exp{ — CyM log—}, for some C > 0.
€

Based on the above corollary, we have a similar prior concentration property for
the prior (DDG2):

(DDG2-PC)  TI(dp(6,6*) < ce,) = e "*C, with the same ¢, in (DA-PC).
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5.5.2  Supports of the Dirichlet distribution and the double Dirichlet distribution

By Ghosal et al. (2000), a second condition to ensure the posterior convergence rate
of 0* € O at least ¢, is that the prior II should put almost all its mass in a sequence
of subsets of © that are not too complex. More precisely, one needs to show that
there exists a sieve sequence {F,} such that * € F, ¢ ©, II(FS) < e "% and
log N (€, Fn,d,) < ne? for each n, where for a metric space F associated with a
(semi-)metric d, N (e, F,d) denotes the minimal number of d-balls with radii e that
are needed to cover F.

For the priors (DA) and (DDG2), the probability of the space of all s-sparse
vectors is zero. We consider the approximate s-sparse vector space .7-";}6 defined in
Section 5.2.1 for CA. For LA, we define 5, = {0 = An:ne DM,l,ZinS+1 6y <
B7'e; 0 < A < B}, where |nuy| = --- = |nan] is the ordered sequence of 7y, ...,y
according to their absolute values.

The following lemma characterizes the complexity of A, D¥ | = {An : n €

Dy—1; 0 < A< B}, ]-"S/}E and Ff . in terms of their covering numbers.
Lemma 28. Assume (A1) and (B1).
a. For any e € (0,1), integer s > 0 and B > 0, we have

log N (e, F2

s,€)

M
dy) < slog —,
€

M
log N(e, F5 . ., dr) < slog — + slog B.
) 6
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b. For any e € (0,1) and integer m > 0, we have

log N(C/v/m, A, ds) < mlog M,
M
log N(¢, A, ds) < Mlog —,
€
log N(CB/v/m, BDy; 1,dr) < mlog M,

M
log N(Be, BDyy 1,dr) < M log —.
€

The next lemma provides upper bounds to the complementary prior probabilities
of F2 and Ff sc- The proof utilizes the connection between the Dirichlet distribution

and the stick-breaking representation of the Dirichlet processes (Sethuraman, 1994).
Lemma 29. a. For any e € (0,1), under the prior (DA) with v > 1, we have

Mg 7)) < exp{ _Os(y— 1>1og%}.
’ €

b. For any € € (0,1), under the prior (DDG2) with v > 1, we have

T(0 ¢ -7:556) < exp{ —Cs(y—1) log% — C'slogB} + exp{—CB}.
7 €

5.5.8 Test construction

For CA, we use the notation P, ¢ to denote the joint distribution of (X,Y"), whenever
X ~Q and Y[X ~ N(Zjﬂil A\ f;(X),0%) for any A € A and E) g the expectation

with respect to Py g. Use P/{"Q)) to denote the n-fold convolution of P, o. Let X" =
(X1,...,X,) and Y™ = (Y3,...,X,,) be n copies of X and Y. Recall that fy is
the true regression function that generates the data. We use [y to denote the
corresponding true distribution of Y. For LA, we use P, to denote the distribution
of Y, whenever Y ~ N(F\,0%I,) and E) the expectation with respect to P.

For both aggregation problems, we use the “M-open” view where f; might not
necessarily belong to F» or FEY We apply the result in Kleijn and van der Vaart
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(2006) to construct a test under misspecification for CA with random design and
explicitly construct a test under misspecification for LA with fixed design. Note that
the results in Kleijn and van der Vaart (2006) only apply for random-designed models.
For LA with fixed design, we construct a test based on concentration inequalities for

Gaussian random variables.
Lemma 30. Assume (A3).

a. Assume that f* = Z]Ail Ak f satisfies Eq(f—f*)(f*—fo) = 0 for every f € FA.
Then there exist C > 0 and a measurable function ¢, of X™ and Y", such that

for any other vector \g € A,
PY0on(X™Y"™) < exp{ — Cndi (Mo, A}

sup P;:g(l — oo (X" Y™) < exp{ — Cnd (A2, A*)}.
AeA: ds(AX2)<idr (A% \z)

b. Assume that \* € R satisfies FT(F\* — Fy) = 0 for every A € RY. Then there
exists a measurable function ¢, of Y and some C > 0, such that for any other
A € RY,

Pypn(Y) < exp{ — Cnd3-(As, )\*)}

sup Py(1—¢,(Y)) < exp{— Cndi (A2, \*)}.

MeRM: dp(XA2)<tdp (A Ag)

e As we discussed in the remark in section 5.3.1, in order to apply Kleijn and
van der Vaart (2006) for Gaussian regression with random design, we need the
mean function to be uniformly bounded. For the convex aggregation space F2,
this uniformly bounded condition is implied by (A3). For the linear regression
with fixed design, we do not need the uniformly bounded condition. This
property ensures that the type I and type II errors in b do not deteriorate as

|| A2]]1 grows, which plays a critical role in showing that the posterior probability
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of {A > C'A*} converges to zero in probability for C' sufficiently large, where
A = ||\||s and A* = ||A\*||;. Similarly, if we consider CA with a fixed design,

then only an assumption like (B1) on the design points is needed.

e The assumption on f* in CA is equivalent to that f* is the minimizer over
f e FYof [|f — folly, which is proportional to the expectation of the KL
divergence between two normal distributions with mean functions fy(X) and
f(X) with X ~ Q. Therefore, f* is the best Ly(Q)-approximation of fy within
the aggregation space F* and the lemma suggests that the likelihood function
under f* tends to be exponentially larger than other functions in F*. Similarly,
the condition on A* in LA is equivalent to that A* is the minimizer over \ €
R? of ||FA — Fy||3, which is proportional to the KL divergence between two

multivariate normal distributions with mean vectors F'A and Fj.
5.5.4  Proof of Theorem 24

The proof follows similar steps as the proof of Theorem 2.1 in Ghosal et al. (2000).
The difference is that we consider the misspecified framework where the asymptotic
limit of the posterior distribution of f is f* instead of the true underlying regression
function fy. As a result, we need to apply the test condition in Lemma 30 part a in
the model misspecified framework. We provide a sketched proof as follows.

Let €, be given by (DA-PC) and IT%(X) = II(A|B(\*, ¢,)) with B(A*,€,) defined
in (PC1). By Jensen’s inequality applied to the logarithm,

= Pro B c Pyq B
log f D x, yym® () > f log 222 (X, v,)dIT? ().
B(A*,en)g 0,Q ; BOk e 1o@

By the definition of B(A*,¢,) and an application of Chebyshev’s inequality, we have
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that for any C' > 0,

{ 2 f (log 29X, V) + K(Pyy.o, PA,Q)) dITP(\)
B(M*,en) Pog

—(1+ O)ne2 + nj

B(M\*en)

K(PAO,Q,PA,QMHB(A)}

{ZJ ( P (XZ’Y;) +K(P)\o Q?P)\Q))dHB(A) < —Onei}
i=1YB(A\*.en) 0,Q

n SB(A*,En) V(Pyr.@ PA,Q)dHB()\) 1

s (Cne2)? < C?ne?

— 0, as n — 0.

Combining the above two yields that on some set A,, with Fy-probability converging

to one,

nop
f A (X, v)dIT(A) = exp(—(1 + OBV, 6,)) = exp(—Cone?),

B(A\*,en) =1 PO,Q
(5.9)

for some Cy > 0, where we have used the fact that II(B(\*,¢,)) = I(ds(A, A*) <
Ce,) = exp(—Cne?) for some C' > 0.
Let F, = F)\

as,en

for some a > 0 if (A2) holds and otherwise F,, = A. Then by
Lemma 28 part a and Lemma 29 part a, for some constants C'; > 0 and Cy > 0,

log N(€n, Frn,ds) < Cines, T\ ¢ F,) < exp(—Cyne?). (5.10)
Because () is increasing with the a in the definition of F,,, we can assume Cy > Cy+1
by properly selecting an a.

For some Dy > 0 sufficiently large, let AT, ..., A% € F,, — {\ : ds(\, \*) < 4Dye,}
with |J| < exp(Cine?) be J points that form an Dge,-covering net of F,, — {\ :
ds (A, A*) < 4Dye,}. Let ¢;, be the corresponding test function provided by Lemma
30 part a with Ay = Af for j = ,J. Set ¢, = max; @j,. Since ds(Af, \*) =

4Dye,, for any j, we obtain

P(n)gbn < Z P0Q¢Jn < |J]exp(—C16Dine?) < exp(—Csne?), (5.11)
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where C3 = 16C' D2 — 1 > 0 for Dy large enough. For any A € F,, — {) : ds(\, \*) <
4Dye,}, by the design, there exists a jo such that ds(\},A) < Doe,. This implies

that ds(\}, \*) = 4Dge, = 4dx (A}, A), therefore

sup P/ngqzﬁn
AeFn: ds(AA*)=4Dgen

< min sup P)(fg(l — ¢n) < exp{ — Cune. }, (5.12)
T XA ds(ANF)<dds(Ax %)

with Cy = 160 D3 > Cy + 1 with Dq sufficiently large. With D = 4Dy, we have
Fooll(ds(\ X*) = Den| X1, Y, ..., X, Ya)I(A,)

Py0dn + Booll(ds (W A*) = Deo| X1, Vi, o, Xo, Vi) I(A) (1= 6,). (5.13)

By (5.9), (5.10) and (5.12), we have
EooII(ds (A, A*) = De,| X1, Y1, ..., X0, V) I(A) (1 — @)

n P
S)\E./—‘n'dg()\ A¥)=Dey, Hz 1 PAQ(X Y)dH(/\)

$pe e Ly 2 (X, Y)dII(N)

< PO — 6,)1(A)

Srgr, [Ty o2 (X, Y)dIT()

S )\* En) Hz 1 I}?\S (Xla Y;)dﬂ()‘)

+ BIOI(A,)

< exp(Cone?) sup P)(\Tg(bn + exp(Cone)II(\ ¢ F,) < 2exp(—ne?).
AeFn: ds(AN*)=4Dgen

(5.14)

Combining the above with (5.11), (5.13), and the fact that Ey oI (AS) — 0 as n — o,

Theorem 24 can be proved.
5.5.5  Proof of Theorem 25

For the sparse case where (B2a) is satisfied, we construct the sieve by F,, = ]:bne? asien

with the €, given in (DDG2-PC), where a > 0, b > 0 are sufficiently large constants.

Then by Lemma 28 part a and Lemma 29 part b, we have
log N (€, Fn,dr) < Cinez, TI(\ ¢ F,) <II(—Cyne?), (5.15)
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where (5 is increasing with a and b. The rest of the proof is similar to the proof of
Theorem 24 with the help of (5.15), Corollary 26 part b and Lemma 30 part b.

Next, we consider the dense case where (B2b) and (B3) are satisfied. By the
second half of Lemma 28 part b, the approximation accuracy of BD);_; degrades
linearly in B. Therefore, in order to construct a sieve such that (5.15) is satisfied
with the ¢, given in (DDG2-PC), we need to show that EGII(A < KA*|Y) — 0 as
n — oo with some constant K > 0. Then by conditioning on the event {A < K A*},
we can choose F,, = BD),_1 with B = K A*, which does not increase with n, and
5.15 will be satisfied. As long as 5.15 is true, the rest of the proof will be similar to
the sparse case.

We only prove that EpII(A < KA*|Y) — 0 as n — o here. By (B1) and (B3),
for any n € Dy—y and A > 0, dp(An, A*n*) = koA — kKA*. As a result, we can
choose K large enough so that dp(An, A*n*) = 4 for all A > KA* and all n € Dy;_;.
Therefore, by Lemma 30 part b, for any Ao = Asne with Ay > KA* and 1, € Dy 4,

there exists a test ¢,, such that
Py, (Y) < exp{ —Cn}

sup Py\(1—¢,(Y)) < exp{—Cn}.

AeRM: dp (X X2)<gdp(A¥,A2)

By choosing K large enough, we can assume that koK A*/8 > k + kA*/4. For any
A = An satisfying dp(n,n9) < ko/8 and |A — Ay| < 1, by (Bl) and Ay > KA* we

have

1
drp(X A2) < dp(An, Aon) + dp(Aan, Agnp) < K+ g’foAz

1
< (/‘ioAQ — KVA*) < de()\*, )\2)

1 =

Combining the above, we have that for any Ay = Aony with Ay > KA* and 1, €
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DM—17
Py, (Y) < exp{ —Cn}

sup Py\(1—¢n(Y)) < exp{—Cn}.

|A—Az|<1,dp(n,m2)<K0/8

Let A},..., A3 be a l-covering net of the interval [K A*, Cne2] with J; < CneZ and
nt, ..., n5, be a ko/8-covering net of Dy with log Jo < CneZ (by Lemma 28 part
b with B = 1). Let ¢; (j = 1,...,.J1J2) be the corresponding tests associated with
each combination of (A%, ny) for s =1,...,J; and t =1,...,J5. Let ¢, = max; ¢;.

Then for n large enough,

Py (Y) < exp { log(nei) + Cnei — Cn} < eXp{ — Cn}

sup Py(1 = ¢,(Y)) < exp{—Cn}.
A=An:Ae[K A* Cne2 ] neDay
(5.16)
Moreover, because A ~ Ga(ag, bp), we have
I\ ¢ Cne2 Dy 1) < (A > Cne?) < exp{—Cne2}. (5.17)

Combining (5.16) and (5.17), we can prove that EII(A < KA*|Y) — 0 as n — o

by the same arguments as in (5.14).
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6

Sequential Markov chain Monte Carlo

6.1 Introduction

The Bayesian paradigm provides a natural formalism for optimal learning from data
in a sequential manner, with the posterior distribution at one time point becoming the
prior distribution at the next. Consider the following general setup. Let {m; : t € N}
be a sequence of probability distributions indexed by discrete time t € N = {0, 1,...}.
Assume that each m; can either be defined on a common measurable space (£, &) or
a sequence of measurable spaces {(Ey, &) : t € N} with non-decreasing dimensions
dy < dy < .... Without loss of generality, we assume that (Ey, &) = (R%, B(R%)),
where B(R%) is the Borel field on R%. Moreover, 7, admits a density m,(6®) with
respect to the Lebesgue measure A% (d6®"), where 0% = (§%=1 5,) is the quantity or
parameter of interest at t and 7, € R%~%-1 ig the additional component other than
6®). This framework can be considered as a generalization of Liu and Chen (1998)
from dynamic systems to arbitrary models or extension of Del Moral et al. (2006)
from fixed space E to time-dependent space Ej.

Many applications can be placed within this setting. In the sequential Bayesian
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inference context, 8¢ corresponds to a vector composed of all the parameters and
other unknowns to sample at time ¢. Similarly, 7, is the posterior distribution of
6 given the data collected until time ¢. For example, in generalized linear models
with fixed number of covariates, 8 includes the regression coefficients and residual
variance and d; is a constant. In finite mixture models, 8®) includes both the pa-
rameters of the mixture components and mixing distribution, and the latent class
indicators for each observation, so that d; is increasing with ¢. In state-space models,
6™ could be a vector composed of static parameters and state space variables, where
the size of the latter grows with ¢. Even in batch situations where a full dataset
{y1,...,yn} has been obtained, we can still consider the sequence of posterior dis-
tributions p(0®|yy, ...,y,) for t < n. The annealing effect (Chopin, 2002) of adding
data sequentially can lead to substantial improvements over usual MCMC methods,
which incorporate all the data at once and sample serially.

Markov Chain Monte Carlo (MCMC) is an important statistical analysis tool,
which is designed to sample from complex distributions. It can not only be used for
Bayesian analysis where a normalizing constant is unknown, but also for frequentist
analysis when the likelihood involves high dimensional integrals such as in missing
data problems and mixed effects models. However, in general, MCMC methods have
several major drawbacks. First, it is difficult to assess whether a Markov chain has
reached its stationary distribution. Second, a Markov chain can be easily trapped
in local modes, which in turn would impede convergence diagnostics. To speed up
explorations of the state space, annealing approaches introduce companion chains
with flattened stationary distributions to facilitate the moves among separated high
energy regions (Geyer, 1991; Earlab and Deema, 2005; Kou et al., 2006).

An alternative to MCMC is sequential Monte Carlo (SMC). The main idea of

SMC is to represent the distribution m; through the empirical distribution 7, =
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V. ws where {(Wt(i),Xt(i)) c 4 = 1,...,N} is a finite set of N weighted

x@>
particles with Zf\il Wt(i) = 1 and 9, is the Dirac measure at x. As a new observation
yr+1 arrives, both weights and states of particles are updated in order to represent
the new posterior 7y, 1. Although SMC can potentially solve many of the drawbacks
of MCMC mentioned above, it suffers from the notorious weight degeneracy issue
where few particles quickly dominate as ¢ increases, causing performance based on 7,
to degrade. Moreover, numerical errors introduced in an early stage can accumulate
for some SMCs when static parameters are present (Storvik, 2002). Although many
variants of SMC, such as adaptive importance sampling (West, 1993), resample-
move strategies (Chopin, 2002) and annealed importance sampling (Neal, 2001), are
proposed to alleviate the weight degeneracy problem, issues remain, particularly in
models involving moderate to high-dimensional unknowns.

In this work, we propose a sequential MCMC algorithm to sample from {m; :
t € N} that is based on parallel sequential approximation algorithms. The proposed
sequential MCMC is a population-based MCMC, where each chain is constructed
via specifying a transition kernel 7, for updating 6®) within time ¢ and a jumping
kernel J; for generating additional component 7,. The annealing effect of sequential
MCMC can substantially boost efficiency of MCMC algorithms with poor mixing
rates with slight modifications. By exploiting multiple processors, SMCMC has
comparable total computational burden as MCMC. For streaming data problems,
SMCMUC distributes this burden over time and allows one to extract current available
information at any time point.

We develop a theoretical justification on the convergence of SMCMC and pro-
vide explicit bounds on the error in terms of a number of critical quantities. The
theory indicates an opposite phenomenon as the weight degeneracy effect of SMC:

the deviations or numerical errors in the early stage decay exponentially fast as ¢
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grows, leading to estimators with increasing accuracy. One of our main theoretical
contribution is to formulate the geometric ergodicity for general state-space Markov
chains. Our conditions are much easier to verify compared to the usual conditions for
geometric erdogic chain, such as the drift and minorization conditions (Rosenthal,
1995). In the special case of uniform ergodic chains, our conditions are weaker than
the minorization condition (Meyn and Tweedie, 1993). We provide two different
proofs for the uniform ergodicity. The first proof is based on the coupling tech-
niques and the second is based on the operator theory. As an easy byproduct of this
formulation, we show that for any geometrically ergodic transition kernel, starting
from any initial distribution, the one step distribution always becomes closer to its
stationary distribution.

This chapter has the following organization. In Section 5.2, we present a generic
SMCMC algorithm to sample from a sequence of distributions {7, : ¢t € N} and discuss
possible variations. In Section 5.3, we study the convergence properties of SMCMC
under various settings, including parametric and nonparametric models. Section 5.4
compares SMCMC with other methods in a finite mixture of normals simulation. In
Section 5.5, we apply SMCMC to an on-line nonparametric regression problem. In
section 5.6, we review and introduce some new results on the convergence of Markov

chains. Technical proofs appear in Appendix D.
6.2 Sequential Markov chain Monte Carlo

We propose a sequential Markov chain Monte Carlo (SMCMC) class of algorithms
in this section. The main idea of SMCMC is to run time-inhomogeneous Markov
chains in parallel with the transition kernels depending on the current available
data. Inferences can be made by using the ensemble composed of the last samples

in those chains.
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6.2.1 Notation and assumptions

Let Y; denote the data coming in at time ¢, Y® = (Y;,...,Y;) the entire data
up to t, #%) the parameters at time ¢, d, the size of 8% and 7®(0®) the prior
distribution, implying that we can add parameters over time. In the sequel, we will
use the same notation to interchangeably denote a probability measure or its density
function with respect to the Lebesgue measure A\. Throughout this chapter, we use
the notation ||p|| = 2sup, [p(A)| = §|p(z)|dz to denote the Li-norm (total variation
norm) for a signed measure p. Although not necessary, for notational simplicity
we assume that the prior is compatible: 7 (0®) = {7EDOO p, YA(dnyyq) with
0@+ = (M n,,1). Under this assumption, we can suppress the superscript ¢ in ().
The compatibility assumption is a consequence of the restriction that if the extra
parameters in the prior at time ¢ + 1 are marginalized out, then we recover the prior
at time ¢. This restriction is trivially satisfied under the special case when d; does not
grow with time, and is also true under more general priors such as hierarchical priors
for mixed effects models and Gaussian process priors for nonparametric regression.
We propose to conduct L Markov chains in parallel exploiting L processors to obtain
samples, 90 = {900 gimetDY for + = 1,2,... and [ = 1,..., L, where m, is
the number of draws obtained at time ¢ for each chain and (%) e R% is the sth
draw obtained in the /th chain at ¢. The ensemble ©, = {#™* : [ =1,..., L} will
be treated as independent draws sampled from the posterior 7,(0®) = 7(0® |y ®)) at

time ¢.
6.2.2 Markov chain construction

At each time ¢, we consider two kernels: a jumping kernel J; proposing the parameter
jumping from t—1 to ¢ at the beginning of time ¢ and a transition kernel T} specifying
the parameter updating process within time ¢. J;(-,-) is defined on R%-1 x R% and is

primarily designed for the situation when the parameter grows at t. In the case when
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d; = d;_1, J; could be chosen as the identity map. T}(, -) is defined on R%* xR so that
the posterior 7, is the stationary measure of the Markov chain with transition kernel
Ty, ie. m(0') = §ga, m(0) T,(0,0)A(df). T, aims at transferring the distribution of
the draws ©;_; from m_; to m;. From standard Markov chain theory (Meyn and
Tweedie, 1993), if the chain with transition kernel T} is an aperiodic recurrent Harris
chain, then ||T}" opy — m;|| — 0 as m; — oo for any initial distribution py. Therefore,
as we repeat applying the transition 7; for enough times, the distribution of ©, will
converge to m;. Theorem 46 in section 6.3.2 quantifies such approximation error with
given my. Section 6.2.5 provides recommendations on choosing m; in practice.

We construct our SMCMC based on J; and T} as follows:

1. Att =0, we set my = 1 and draw L samples from a known distribution, for ex-

ample, the prior 7 = my. The samples at t = 0 are denoted as 80D §L0.L),
2. At t > 0, we first update 90150 to 9(LED through the jumping kernel J; as

P(e(l,t,l)‘e(mt_l,tfl,l)) _ Jt <e(mt_1,tfl,l)79(1,t,l))’

in parallel for [ = 1,..., L. Then, for s = 1,...,m; — 1, 84D is sequentially

transited to A +14Y through the transition kernel 7, as
P(9(8+1,t7l) ‘e(s,tJ)) _ Tt (Q(s,t,l)’ 9(8+1,t,l)) :
in parallel for [ =1,..., L.

With the above updating scheme, the last samples {#(%) : [ =1,... L} at t would
be taken as the ensemble ©, to approximate the posterior m;. Let 7; denote the
common distribution of #(m+*0)’s. Theorem 32 in section 6.3.2 and Theorem 36 in
section 6.3.3 guarantee the error ||; — ;|| decays to zero as ¢ increases to infinity as
long as ||m — m—1|| — 0. When d; is growing, the m; in the L; norm is understood as
the marginal distribution of #¢=1 given by m(6*=V) = { 4,—a,_, m (6“1, n)A(dn,).
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The sequential Monte Carlo sampler (Del Moral et al., 2006) could also be cast
into this framework if the jumping kernel J; is a random kernel that depends on
©;_1. However, as Theorem 32 indicates, with sufficient iterations m; at each time
point ¢, one can guarantee the convergence without the resampling step used in SMC
algorithms as long as the posterior m; does not change too much in ¢.

As the mixture model example in section 6.4 demonstrates, even in batch prob-
lems, the annealing effect of adding data sequentially will lead to substantial im-
provements over usual MCMC algorithms that incorporate all the data at once and
sample serially. This annealing effect has also been observed in the SMC litera-
ture, for example, Chopin (2002). For streaming data problems, SMCMC avoids
the need to restart the algorithm at each time point as new data arrive, and allows
real time updating exploiting multiple processors and distributing the computational
burden over time. For example, the SMCMC for nonparametric probit regression in
section 6.5 has similar total computational burden as running MCMC chains in par-
allel using multiple processors. However, SMCMC distributes this burden over time,
and one can extract current available information at any time point. Moreover, the
samples {#(met) - [ = 1,... L} within each time point are drawn from independent
chains. This independence and the annealing effect can substantially boost efficiency

of MCMC algorithms with poor mixing rates.
6.2.3 Choice of J;

We shall restrict the jumping kernel J; to be a pre-specified transition kernel that

leaves ¢~ unchanged by letting

P((é(t_l), nt)w(t—l)) = J, (e(t—l)’ (é(t—l)ﬂh))[(g(t—l) _ é(t—l))’ (61)

where I(-) denotes the indicator function. Otherwise, J; can always be decomposed

into an updating of 6! followed by a generation of 7, where the former step can be
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absorbed into T;_;. Henceforth, with slight abuse of notation, the jumping kernel J;
will be considered as a map from R%-1 to R%*~%-1 mapping ¢~V to n,.
Intuitively, if #¢~1) is approximately distributed as 7;(#¢~") and 7, is sampled
from the conditional posterior 7 (1,/0®~), then (8%~Y 5,) is approximately dis-
tributed as m (0%~ n,) = 7, (04w, (,]0¢~Y), the exact posterior distribution.
This observation is formalized in Lemma 35 in section 6.3.3, suggesting that the
jumping kernel J; should be chosen close to full conditional 7;(1;|0%~1) at time ¢.

Two types of J; can be used (some examples can be found in Del Moral et al. (2006)):

1. Ezact conditional sampling. When draws from the full conditional 7;(n,|0¢~1)
can be easily sampled, J; can be chosen as this full conditional. For exam-
ple, m,(n,]0% 1) can be recognized as some standard distribution. Even when
7y (1:|0¢~ 1) is unrecognizable, if d; —d,_, is small, then we can apply the accept-

reject algorithm (Robert and Casella, 2004) or slice sampler (Neal, 2003).

2. Approzximate conditional sampling. When sampling from the full conditional of
1, is difficult, we can use other transition kernels, such as blocked Metropolis-
Hastings (MH) or inter-woven MH or Gibbs steps chosen to have m;(n,|6¢~1)

as the stationary distribution.

Theorem 36 in section 6.3.3 provides an explicit expression about the impact of

= sup w0 ) = 20
g(t—1)gR%t—1

on the approximation error of m;, which basically requires 7, — 0 as t — oo. To
achieve 1, — 0, one can run the transition kernel in approximate conditional sampling
case for an increasing number of iterations as ¢t grows. However, we observe good

practical performances for a fixed small number of iterations.
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6.2.4 Choice of Ty

Lemma 43 in section 6.6 suggests that a good T3(6,6") should be close to m(f'). The
transition kernel T; can be chosen as in usual MCMC algorithms. For example, T;
can be the transition kernel associated with blocked or inter-weaved MH or Gibbs
samplers. For conditionally conjugate models, it is particularly convenient to use
Gibbs and keep track of conditional sufficient statistics to mitigate the increase in

storage and computational burden over time.
6.2.5 Choice of my

The number of samples in each chain per time point, m;, should be chosen to be
small enough to meet the computational budget while being large enough so that the
difference between the distribution of samples in ©, and the posterior distribution 7,
goes to zero. Formal definitions of difference and other concepts will be given in the
next section. Intuitively, for a given ¢, if the Markov chain with transition kernel T;
has slow mixing or there are big changes in 7; from m;,_1, then m; should be large.
Theorem 32 in section 6.3.2 provides explicit bounds on the approximation error as
a function of m,’s. Moreover, for a given € € (0,1), Theorem 32 implies that if we
select m; to be the minimal integer k such that r(k) < 1 — €, where 7 is the rate
function associated with T; defined in (??), then the distribution of ©; converges to
m as t — oo under the assumption that ||m; — m_1|] — 0. Typical rate functions
can be chosen as r(k) = p*, for some p*. Since the rate functions r, relate to the
unknown mixing rate of the Markov chain with transition kernel 7;, we estimate
them in an online manner.

To estimate r, we utilize the relationship between the mixing rate of a Markov
chain and its autocorrelation function. By comparing (6.10) and (6.11) in section
6.3.5, the decay rate of the autocorrelation function provides an upper bound for
the mixing rate. Therefore, we can bound the rate function r;(k) with the lag-k
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autocorrelation function

fi(k) = max corr(X](k),X](O)),

Jj=1,...p

where (X](-l), e ,Xj(-p)) is the p-dimensional sample in the kth step of the Markov
chain with transition kernel T;.
For a single Markov chain, the common choice of estimating f;(k) by the sample

average of lag-k differences over the steps from s = sq,..., 55 as

. > (XY - X)(x P - X))
ft(k) = Inax S (s) ]—
J=Lop Sz, (XY = X;)2

s=51

Y

where X; = ¥ XJ(S)/(SQ — 51 + 1), could have large bias even though s, — s; is

large. The reason is that for slow mixing Markov chains, the samples tend to be stuck

in local modes, leading to high variation of f,(k)’s with X J(S) starting from different

regions. Within these local modes, ﬁ(k) might decay fast, inappropriately suggesting
good mixing. In our algorithm, we have L chains running independently in parallel.
Hence, instead of averaging over time, we can estimate the autocorrelation function
fi(k) by averaging across the independent chains as

L k,l (k 0,0 (0
) S (X — Xy (xD — x )

P k1 - (k 1/2 0,1 (0 1/27
e (B (G = X P (S (g - X))

where X](-k’l) is the jth component of the sample in the kth step of the /th chain and
)_(J@ = Zle X;k’l) /L is the ensemble average of the draws in the kth step across

the L Markov chains. ft will be more robust than ft to local modes. Although by
Slutsky’s theorem, both estimators are asymptotically unbiased as s; — s; — o0 and
L — oo respectively, the convergence of f; might be much slower than that of ft due
to potential high correlations among the summands in f;.

In our case, the estimator f,(k) takes the form of

R Zf=1(0§k+1,t,l) . 6_§k+1,t))(0§1,t,l) . é(l,t))

J

i1 L k41,1 A(k+1,t 1/2 L 1,t,0 (1t 1/2°
7= ’p(lel(gj(' D gt ))2) (lel(ej(' )_9§ ))2)

J

(6.2)
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where 8_§k’t) = Zle 9](-k’t’l)/L is the jth component of the ensemble average of the
draws across the L Markov chains in the kth step at time ¢. For each ¢ > 0, we
choose m; to be the minimal integer k such that the sample autocorrelation decreases
below 1 —¢, i.e. my = min{k : f,(k) <1 —e€}. In practice, we can choose € according
to the full sample size n and error tolerance er based on Theorem 32. For example,

for small datasets with n ~ 10%, we recommend e¢ = 0.5 and for large datasets, €

6n+17t

such that 3, =~ < er, where 172

is a typical rate for ||m; — m;_q|| for regular

parametric models (Lemma 33). To summarize, Algorithm 1 provides pseudo code

for SMCMC.

Algorithm 1 Sequential Markov Chain Monte Carlo
mo <— 1
for{=1to L do
Draw 000 ~ 7,
end for
fort=1ton do
my <—
p—1
forl=1to L do
Draw [W(t’l) | Q(mt,l,t—l,l)] ~ Jt((g(mt,l,t—l,l)7 )
PULD  (Gme—rt=LD) (0D
end for
while p > 1 — e do
my «<— my + 1
for i =1to L do
Draw [Q(mt,t,l) | e(mt—l,t,l)] ~ ﬂ(e(mt_l’t’l), )
end for
Calculate fi(m; —1) by (6.2)

p < fi(my —1)
end while
O « {Omet) . =1,... L}
end for

All the loops for [ in the above algorithm can be computed in parallel. Assuming
the availability of a distributed computing platform with multiple processors, Algo-
rithm 1 has comparable computational complexity to running MCMC in parallel on
L processors starting with the full data at time ¢. The only distributed operation
is computation of ft, which can be updated every s iterations to reduce commu-

nication time. Moreover, the ¢t loop can be conducted whenever ¢, (> 1) new data
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points accrue, rather than as each data point arrives, as long as ||m — m—y|| — O
as t — oo. More generally, for any sequence t; < to < ... < ty, = n such that
||, — 7, || = 0 as k — oo, the loop for ¢ can be changed into “for £ =1 to ko do
t <t ...end for”. Since the posterior m; is expected to vary slower as t grows, the
batch sizes t, — tx_1 can be increasing in k, leading to faster computations. To avoid
the SMCMC becoming too complicated, we shall restrict our attention to Algorithm

1 in the rest of the chapter.
6.3 Convergence of SMCMC

In this section, we study the convergence properties of SMCMC as ¢ — oo by applying
the convergence results for Markov chains in Section 6.6.

We introduce some notation that will be used throughout this section. For a tran-
sition kernel T'(z,y), we recursively define its ¢-step transition kernel by T%(z,y) =
§ T (2, 2)T(z,y)A\(dz). Similarly, given an initial density po, we denote by T o py
the probability measure evolved after tth steps with transition kernel 7' from the
initial distribution po, which is related to 7" by T" o po(z) = { T*(z, 2)po(2) A(dz).

SMCMC generates L time-inhomogeneous Markov chains. To investigate its
asymptotic properties, we need a notion of convergence. Existing literature on the
convergence of MCMC or adaptive MCMC focuses on the case when the stationary
distribution does not change with time. A nonadaptive MCMC algorithm is said to
be converging if

Q" opy — || = 0, ast — oo, (6.3)

where || - || is the L; norm, @ is the time homogeneous transition kernel, py is the
initial distribution and 7 is the unique stationary measure. However, for sequential
MCMC, both the stationary distribution 7; and the transition kernel @), is changing

over time. As an extension of (6.3), a stationary-distribution-varying Markov chain
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is said to be convergent if

|Qro---0Qi0opy—m|| = 0, ast— . (6.4)
In our case, Q; = T;" o J;, where T}, J; and m; are defined in section 6.2.2.
6.3.1 Implications of the convergence

In this subsection, we illustrate the annealing effect of the SMCMC. Consider a mul-

timodal example where each distribution 7; = Zle w<5>h§‘9> is a mixture of S com-

ponents {hgs) :s=1,...,S}, where each probability density hgs) = 5—1th(5) (s + ;’;)
converges to a Delta function centered at the mode s of h(®) at rate 8, — 0, as
t — o0. Ast grows, the S modes of 7; tend to be well-separated. For example, in the
case when each h(® is a normal density with different centers, the transition prob-
ability between different modes of a metropolis random walk decays exponentially
fast in ;2. As a result, common MCMC algorithms might take an exponentially
long time to explore the whole state space.

Assume that the goal is to estimate the mixing probabilities (w(®)). For instances,
mixture models and Bayesian model selections can be fit into this framework. As a
result of the multimodality, most commonly used MCMC algorithms for sampling
from 7; tend to be stuck in one of the S local modes for large ¢. This is a main
motivation of applying L Markov chains in parallel in the SMCMC. Even though
any single chain might be stuck in some local mode, the ensemble O, still consists of
nearly independent samples from 7;. Benefitted by the annealing effect, these chains
as an ensemble have been shuffled by the frequent moves among the modes at early
time. As an ensemble, roughly Lw® chains tend to get stuck in the sth local mode
at t. Therefore, an estimator of w(®) can be formulated by counting the numbers of
chains stuck in the sth mode.

More formally, the following lemma suggests that for any Markov chain conver-

gent in the sense of (6.4), the above counting estimator of w(® is consistent.
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Lemma 31. Assume that there exists dy > 0, so that |us — | = 3dy for any
s # t. Let m be an approzimation of m so that |7y — m|] — 0, ast — oo. If
{(u®D 1 =1,... L} are L independent points sampled from #, and wt = #{l :

|t — 1| < do}/L, then as t — oo and L — o0, W — w® in probability.

The definition of wt(s) in Lemma 31 greatly simplifies the proof. In practice, (us)

~(5)

are mostly unknown and one can calculate w,;” as the proportion of points in the sth

clusters of {u(“)}. The corresponding consistency of the estimator can be obtained

by modifying Lemma 31.
6.3.2  Constant parameter dimension d;

We first focus on the case when the parameter size is fixed, i.e. J; is the identity
map. The following theorem provides guarantees for the convergence of SMCMC

under certain conditions. We will use the convention that 3, =0 and [], = 1.
Theorem 32. Assume the following conditions:

1. (Universal ergodicity) There exists €, € (0,1), such that for allt > 0 and z € E,

T (x, ) — m|| < 2p¢.

2. (Stationary convergence) The stationary distribution m of Ty satisfies oy =

%||7Tt—7Tt—1||-

Let €, = p*t. Then for any initial distribution m, as t — o0

|Qeo---0Qrom —m|| < Z{ H €u 1—0zu)}€s%.

=1 u=s+1

Furthermore, if lim;_,o oy = 0 and there exists an € > 0 such that ¢, < 1 — € for any

teN, then ast — o, ||Qi 0+ 0 Q1 0wy — m|| — 0.
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To illustrate the idea, we provide here a short proof for the above theorem with

a weakened conclusion

t t
[|Qro---0Qromy—ml|| < QZ{HQ}QS.
s=1

In fact, by the universally ergodicity condition and Lemma 43 in Section 6.6, for all
t > 0 and any probability distribution p,

Qi op — |l = T3 op — m| < ellp — ml]- (6.5)
A recursive application of (6.5) yields
|Qio--0Qiomy—m|| <&||@Qi10---0Q10m — 7|
<||Qo1 00 Q1 omy — M| + &l|m — m_1]|

t
<< Y TTefim - mall

s=1 \u=s

which completes the proof.

If m; in the algorithm is chosen large enough so that

sup [T/ (z,-) = m|| < 2 < 2(1 —e), (6.6)

and lim;_, oy = 0, then as t — oo,
t t t
1Qio-0Qiom—ml| <2 { net}as <2)(1—¢)" "o, —0.
s=1 \u=s s=1

In practice, we can choose m; as in section 6.2.5, which provides good approxi-
mations to (6.6). Although T} are required to be universally ergodic in the theorem,
it might be possible to weaken the conditions to those in Theorem 46 with direct
application of the coupling techniques in the proofs of Lemma 42 and Lemma 43.
In this section, we focuses on the universally ergodic case for conciseness and easy

exhibition. In Section 6.3.4, we will consider the more general geometrically ergodic
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condition. Condition 2 is intuitively reasonable and can be verified for many prob-
lems. In this subsection, we provide such a verification for regular parametric cases in
Lemma 33 below, where the Bernstein von-Mises theorem holds. In the next subsec-
tion when d; is allowed to grow in ¢, we provide a verification for general models that
may not have n~'/? convergence rate or Gaussian limiting distributions; for example,
nonparametric models.

For simplicity, we illustrate this for a one dimensional case. Let Y7,...,Y,, bei.i.d.
fo, where fy is a density with respect to the Lebesgue measure A\ and 6 € R. Let
I(y,0) = log f(y|@) be the log likelihood function. We consider a regular parametric
model (Lehmann and Casella, 1998), where fy satisfies the following conditions at
the truth 0p: 1. {y : fo(y) > 0} is the same for all 0; 2. I(y,0) is three times
differentiable with respect to 6 in a neighborhood (6y — 0,6y + 0); 3. If i(y,@),

I(y,0) and [(y, #) denotes its first, second and third derivatives, then Ey [(Y,0) and
Eg (Y, 6) are finite and SUD e 005,00 +6) I(y,0)| < M(y) with Eg, M(Y) < o0; 4. The
order of expectation and differentiation of I(y, #) and I(y, 0) at 6, is interchangeable;

5. 1 = B (I(y,0))2 > 0.

Lemma 33. Assume the reqularization conditions on fg. If A; observations are

added at time t, so that the sample size at time t is n; = 22:1 Ag, then ||m —
|| = 0(4 /%—Z). In particular, if Ay = o(ny), the stationary convergence condition

in Theorem 32 holds.

As a special case of Lemma 33, one can add one observation at each time, under
which ¢ is the sample size n and ||7, — m_1|| = O(t~/2). However, in the batch
setting where the total sample size n is fixed, such an updating scheme might not be
optimal when taking the time consumption into account because the additional gain
(1 —&)||m: — m_1|| = (1 — €)O(t~/?) of performing the transition operator T; decays
as n; = t increases. As a result, there exists a trade-off between the increasing rate of
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ny (or A;) and the decaying rate of ay. First, we look for a theoretical upper bound
for n;. Consider the extreme case when a; = « for any ¢t € N. Under such a case, we

have A; = a?(ny_1 + 4A;) and hence

A a? o? n o? A o? n o
t = N1 = ——5MN4—2 T 5 8¢-1 = (7)) Ny—2
1—a2 1—a? 1—a? 1—a? (1 —a?)?
a? o?
:—nt72 — s s = —nl
(1 _ a2)2 (1 _ a2)t—1

This implies that n, = Y| Ay = m[(1 — o®) 7! — (1 — a?)] ~ exp(Dt) with
D = —log(1—a?) > 0. This upper bound cannot be improved. In fact, for any ¢ > 1
and any C' > 0, we can choose n; = (Ct)? so that A; = (Ct)?— (C'(t—1))? < qC%17!
and a; = O(y/qt=1/t1) = O(¢"*t'/?) — 0 as t — oo. Therefore, for any fixed
K € N, we can also choose n; = Zf:o %(C’t)k so that lim;_, oy = 0. Such an n; can

be arbitrarily close to exp(Ct) by choosing a sufficiently large K.
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FIGURE 6.1: A plot of the error upper bound F(n,q,C) as a function of (n,q,C)
provided by Theorem 32.

Consider the batch setting where the total sample size n is fixed. Denote F'(n, ¢, C')

be the error upper bound provided by Theorem 32 when € = % We consider two
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special case: 1. C' = 1 and n, = 19 so that a, = O(¢"/?t7'/?) and the total steps
T = O(n'%); 2. ¢ =1 and n, = Ct so that a; = O(t~'/?) and the total steps
T = O(n/C). The left panel in Figure 6.1 plots F'(n,q,C) as a function of n under
C =1and q € {1,1.2,1.5,2}, where ¢ = 1 corresponds to adding one observation
each time. The right panel in Figure 6.1 plots F(n,q,C) as a function of n under
g =1 and C € {1,5,10,50}, where C' = 1 corresponds to adding one observation
each time. As expected, the error bound decays slower when the batch size A; in-
creases in t than when A; keeps constant. However, the total step T in the former
is smaller than that in the latter. Therefore, there always exists a tradeoff between
the computational complexity and the approximation accuracy.

From Figure 6.1, even in the worst case displayed, the error bound ¢; is less than
0.2. Let 7; denote an approximation of m;. The following lemma suggests that for
regular parametric models, as long as ¢ < 1/2; the error of an point estimator con-
structed by 7 is comparable to the statistical variation of the asymptotically optimal
point estimator, such as the maximum likelihood estimator (MLE). Moreover, the
coverage of the credible intervals created via 7 is of the same order as e, which sug-
gests that the uncertainty magnitude provided by 7 is correct. We will use z, to
denote the a-th quantile of the standard normal distribution. If o < 0 or a@ > 1,

then we define z, = 0.

Lemma 34. Consider estimating the parameter 6 of a regular parametric family

{fo}. Assume ||, — m|| < & < 1/2. Then there exists an estimator 0, based on

1/2 —1/2

7y, such that |ét — 6| = Op(zo_5+L+ant_ ), where © = Op(n; '°) and Oy is the true
underlying parameter that generates the data. Moreover, let A, be any « credible

region created by 7y, then Py(6p € An) = a+ Op(g) + Op(1).

Consider the case when n; is large so that « « €. If ¢ = 0.2, then zy5,. &~ 0.52,

suggesting that in terms of the accuracy of point estimation, using 7, is almost as
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good as using m;. Under the same error level, Py(fy € Aggs) = 0.95 — 0.2 = 0.75,
which is still a satisfactory coverage for a 0.95 credible interval. Therefore, Lemma 34
suggests that excessive reduction in the approximation error ||, —m|| is unnecessary
in improving the estimation accuracy and it is enough to just keep this error below

some pre-specified level, for example, 0.05.
6.3.3 Increasing parameter dimension d,

Recall that the parameter at ¢ can be written as #® = (§¢=1 n,). Consider the J,
satisfying (6.1) in section 6.2.3 and @Q; = J; o T;"™*. The following lemma links the

approximation errors before and after applying the jumping kernel J;.

Lemma 35. For any probability density p(-) for %=1, the following holds:

lm — Jiopll <llm —pll+ sup [m(10) = L840, )],
ft=1eR%—1

where the my in the second term of the right hand side stands for the marginal posterior

of 04~V at time t.

If a Gibbs or slice sampling step is applied as J;, then the last term in the above
lemma vanishes. With Lemma 35, we can prove the following analogue of Theorem

32 for the increasing d; scenario.
Theorem 36. Assuming the following conditions:

1. (Universal ergodicity) There ezists € € (0,1), such that for allt >0 and x € E,

||ﬂ(l’, ) - 7Tt|| < 2,015

2. (Stationary convergence) The stationary distribution m of Ty satisfies oy =

H|m — m_1]|, where m is the marginal posterior of 04~ at time t in o.

3. (Jumping consistency) For a sequence of Ty, SUpy—1egar—s ||me(-|0¢ D)= J, (0D, -

27—t .
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Let ¢, = p;*. Then for any initial distribution o,

Qo0 Quem il < Y { TTefla

s=1 ‘N u=s

Furthermore, if lim;_,oc ay = 0, limy_,o 73 = 0, and there exists an ¢ > 0 such that

¢ <1—e€foranyteN, then ast — oo, ||Qio---0Q1 0omy— m|| — 0.

Similarly, if we choose m; such that sup, ||T}" (z, ") — m|| < 2(1 — €), then ||Q; o
~co0Qromy —m|| = 0, as t — co.

An increasing parameter dimension often occurs in Bayesian nonparametric mod-
els, such as Dirichlet mixture models and Gaussian process regressions. The following
lemma is a counterpart of Lemma 33 for general models that may not have n~1/2
convergence rate or normal as limiting distribution for the parameters. A function

f defined on a Banach space (V|| - ||) is said to be Fréchet differentiable at v € V' if

there exists a bounded linear operator A, : V' — R such that

f(v+h) = f(v) + Au(h) + o([[R]]), as [|h]| = O,

where A, is called the Fréchet derivative of f. For V' being a Euclidean space, Fréchet
differentiability is equivalent to the usual differentiability. The proof utilizes the

notion of posterior convergence rate (Ghosal et al., 2000) and Fréchet differentiability.

Lemma 37. Consider a Bayesian model P = {Fy : 0 € ©} with a prior measure 11 on
a Banach space (O, || - ||), where the parameter space © can be infinite dimensional.
Let pg be the density of Py with respect to some base measure m. Assume the following

conditions:

1. the posterior convergence rate of the Bayesian model is at least €, — 0 as

n — o, i.e. the posterior satisfies
I(||6 — 0o|| > Men|Ya,...,Yn) — 0, in probability,
where Yy, ...,Y, is the observation sequence generated according to Py,, M > 0

15 a constant.
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2. Assume that
max I:E[Q‘Yh'“v)/‘ﬂ] {pG(Y)I(H@ - 90” > METL)}7

Efopyi,... v, {10g pe(Y)I(]|0 — 6o|| > Me,)}| — 0 in probability,

where Y ~ Py, s independent of Yi,...,Y, and the expectation is taken with

respect to the posterior distribution 11(0|Y,...,Y,) for 6.

3. Also assume that the log likelihood function log pe(y) is Fréchet differentiable at
0o with a Fréchet derivative A, ,, satisfying Ey,||A,y]|| < oo, where || - || is the

induced operator norm and the expectation is taken with respect to Y ~ Py, .

Then

||7T(-|}/1,...,Yn) —7T(-|Y'17...,Yn,1)|| —)07 as n — 0.

The second assumption strengthens the first assumption in terms of the tail be-
havior of the posterior distributions and can be implied by the first if both ps(y) and
log pe(y) are uniformly bounded; for example, when © is compact. Since the primary
goal of this chapter is the investigation of the SMCMC, we will not pursue a weakest
conditions for Lemma 37 here.

The following corollary is an easy consequence of the above lemma by using the

incquality | { f(x)A(dr)| < | (2)A(dx).

Corollary 38. Let & be a dy dimensional component of 6. Denote the marginal

posterior of & by me(-|Y1,...,Y,). Then under the conditions in Lemma 37, we have

||me(-[Ya, ..., Yo) —me(-[Yh, ..., Y1) = 0, as n — oo

In the case when T; corresponds to the transition kernel of a Gibbs sampler, we
can consider the marginal convergence of some fixed dy dimensional component & of
0, for example, for 6 in function spaces, £ can be the evaluations (z1,...,x4,) on
dp fixed points 1, ..., 24, in the domain of §. Due to the special structure of the

144



graphical representation for a Gibbs sampler, the process of {& : s = 0} obtained
by marginalizing out other parameters in the Gibbs sampler with transition kernel
T is still a Markov chain with another transition kernel 7 ; defined on R% x R,
Therefore, with this marginalized process for £, we can combine Theorem 32 and
Corollary 38 to prove the marginal convergence of the posterior for the fixed dimen-
sional parameter § under the new transition kernels 7¢ ;’s. To ensure the convergence
of this marginal chain, m; can also be chosen by the procedures in section 6.2.5, but

only including the components of ¢ in the calculations of (6.2).
6.3.4 Weakening the universal ergodicity condition

Both Theorem 32 and 36 rely on the strong condition of universal ergodicity. In
this subsection, we generalize these results to hold under the weaker geometrically
ergodic condition. We will use the following sufficient condition for geometric ergod-
icity (Roberts and Rosenthal, 1997) for an irreducible, aperiodic Markov chain with
transition kernel T": there exists a m-a.e.-finite measurable function V : £ — |1, o],
which may be taken to satisfy 7(V*) < oo for any j € IN, such that for some p < 1,

|T"(2,) —7()lv < V(x)p, z€E, teN, (6.7)

where [|u(-)|[v = supys <y |1(f)| for any signed measure g. When V' = 1, we return
to the uniform ergodic case. The following lemma generalizes Lemma 42 and 43 to

geometrically ergodic chains.

Lemma 39. Let {X;} be a Markov chain on E, with transition kernel T and sta-
tionary distribution 7. If there exists a function V : E — [1,00) and p € (0,1) such

that for all v € F,
1T (z,) = m()llv < V(x)p, (6.8)

then { X} is geometrically ergodic. Moreover, for any initial distribution py, we have

IT" o po — 7llv < p'llpo —7llv, r€E, telN
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By taking ¢ = 1 in (6.7), (6.8) is also a necessary condition for geometric er-
godicity. Therefore, the above lemma provides a necessary and sufficient condition
for geometric ergodicity, which extends Lemma 43. By the above lemma, we can

generalize Theorem 32 as follows, where d; = d, for any ¢.
Theorem 40. Assuming the following conditions:

1. (Geometric ergodicity) There exists a function V : R — [1,0), C > 0 and
pi € (0,1), such that m(V?) = E,V? < C for any t and for all v € R,
1Tz, ) = mO)llv < V(@)pr.

2. (Stationary convergence) The stationary distribution m of T, satisfies oy =
2v/Cdy(my, m_1), where dy is the Hellinger distance defined by d*(p, ') =
S (@) — u'?(2))*M(dz).

Let ¢, = p;i*. Then for any initial distribution o,

||Qto"'OQ107To—7Tt||<Z{Heu}as.

s=1 \ u=s

Furthermore, if lim;_,o oy = 0 and there exists an € > 0 such that ¢, < 1 — € for any

teN, then ast — o, ||Q; 0+ 0 Q1 0my — m|| — 0.

The first condition in the theorem is a uniform geometric ergodic condition on
the collection {7} : t € IN} of transition kernels, where a common potential V' exists.
The second condition is true for those 7;’s in Lemma 33 and 37. In fact, Lemma 33
uses the inequality ||m; — 7 1|| < dg(m, m—1) and proves dy(m, ;1) — 0. Lemma
37 proves ||m; — m—1|| < 24/ K (7, m—1) — 0, where K(p,q) is the Kullback-Leibler
divergence and satisfies dg(p, q)? < K(p,q) for any probability densities p and q.

Similarly, we have the following counterpart for Theorem 36 under geometrically

ergodic condition.
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Theorem 41. Assuming the following conditions:

1. (Geometric ergodicity) For each t, there is a function V; : R%* — [1,00), C >0
and p; € (0,1), such that:
(a) m(V}?) = E., V2 < C for any t;
(8) B [Vi(6)60 0] = Vi (60, where 60) = (609, p,);
(c) for allz e R, [|Ty(x,") — m()llv < Vi(@)pe.

2. (Stationary convergence) The stationary distribution m of Ty satisfies oy =

2\/5dH(7rt,7rt_1), where m, is the marginal posterior of 8¢~V at time t in a.

3. (Jumping consistency) For a sequence of 1, the following holds:

sup ||7Tt('|9(t_1)) - Jt(e(t_l)a )||\7t < Ty
pt—1)eR%t—1

where V; is defined on R%—d-1 py f/t(nt) = SRdFl V(041 n)dot D),

Let €, = p*t. Then for any initial distribution m,

||Qto"'OQ107To—7Tt|| <2{Heu}(a5+n).

s=1 uU=s

Furthermore, if limy;_,, ap = 0, limy_, 77 = 0, and there exists an ¢ > 0 such that
€& <1—e€foranyteN, then ast — oo, ||Qio0---0Q1 0my —m|| — 0.

6.3.5 Relationship between Markov chain convergence rate and the autocorrelation
function

The convergence results in the previous two subsections are primarily based on a
coupling technique, which can provide explicitly quantitative convergence bounds for
computation. The arguments in this subsection will mainly utilize functional analysis

and operator theory, which can reveal the relationship between convergence rate and
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maximal correlation between two states in the Markov chain. For background details,
refer to chapter 12 in Liu (2001).

For a time homogeneous Markov chain {X; : t = 0,1...} with transition kernel
T(x,y) and stationary distribution 7, consider the space of all mean zero and finite

variance functions under 7

L) = {h(:c) : f B2 (2)7(2)A(dx) < o and fh(w)ﬂ(x))\(dx) _ o}.

Being equipped with the inner product

Ch, gy = Ex{h(z) - g(x)}, (6.9)

L3(7) becomes a Hilbert space. On L3(r), we can define two operators, called forward

and backward operators, as
Pha) [ ho)T(@.5)Mdy) = E(h(X)|Xo = )

T@,yr@) )

Bh@)éfh@>

The operator F' can be considered as the continuous state generalization of the
transition matrix 7" for finite state Markov chain (with 7'v as the operation on vector
space). Similarly, the operator B can be considered as the generalization of the

transpose of T'. With this definition, we can see that

E{h(X})|Xo =z} = F'h(z) and E{h(X,)|X; =y} = B'h(y).

Define the norm of an operator F' to be the operator norm induced by the L3(m)

norm defined in (6.9). By iterative variance formula

var{h(X1)} = E[var{h(X;|Xo)}] + var[E{h(X1)|Xo}] < var[E{h(X1)|Xo}],

and hence the norm of F' and B are both less than or equal to one. By the Markov

property, F' and B are adjoint to each other, i.e. (Fh,g) = (h, Bg). Since nonzero

148



constant functions are excluded from L3(w), the spectral radius ry of F is strictly
less than one under mild conditions (Liu et al., 1995), which is defined by rp =
limy_,o || F?||* < 1. Lemma 12.6.3 in Liu (2001) provides a Markov chain convergence

bound in terms of the operator norm of F*,

17 0 po = l|z2my < [IFVI - [lp0 = 7|22y, (6.10)

where [lp - w12, = §(p(=) — 7(2))2/w(:)Md=) and |lp — 7| < |lp — 7llz2(r) holds
for any probability measure p. Theorem 2.1 in Roberts and Rosenthal (1997) shows
that if (6.10) is true for a time reversible Markov chain with transition kernel T
then the chain is geometric ergodic with that same rate function, i.e. there exists a
potential function V' : E — [1, 0], such that ||T%(x,-) — 7 (:)|| < V(2)||F||, zeX.
Therefore, (6.10) implies a geometric convergence in L; norm with rate function
r(t) = ||F*|| ~ rt. On the other side, by Lemma 12.6.4 in Liu (2001),

sup corr{g(Xo),h(X:)} = sup (F'h,g)=||F'|| (6.11)
g,heL2(r) llgll=1,]|hl|=1

This suggests the maximal autocorrelation function is of the same decay rate as the
rate function r(¢). In practice, for multidimensional process X; = (Xi4, ..., Xp4),
the above quantity can often be well approximated by max;_;__, [corr{X, o, X;}|.
Therefore, the maximal sample autocorrelation function provides a quantitative de-
scription of the mixing rate of the Markov chain, which provides the rationale for
our choice of m; in section 6.2.5.

If the Markov chain is reversible, then F' = B and hence F' is self-adjoint. Under
the further assumption that F is compact, ||[F*|| = |n|f, where |1| = || = --- are
the discrete eigenvalues of F. Therefore the rate function would be r(t) = |r1|". For
any h(z) € L3(r), define the autocorrelation function as f(t) = corr{h(X;), h(Xo)},t =
1. Let oy (), aa(x), . .. be the corresponding eigenfunctions. Then as long as (h, ;) #
0, we have lim;_,,{|f(t)]}'/* = |71], which implies that the autocorrelation function
and the rate function are very similar, i.e. f(t) ~ r(t) ~ |m]".
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6.4 Simulation with finite Gaussian mixtures

The mixing rate of Gibbs samplers are notoriously slow for mixture models (Jasra
et al., 2005). As an illustrative example, we consider the Bayesian Gaussian mix-
ture model of Richardson and Green (1997), which is also considered by Del Moral
et al. (2006) as a benchmark to test their method. Observations yi, ..., y, are i.i.d.

distributed as

k
i | ks Tk i) ~ D wiN (g, 7y, (6.12)
j=1

where 7., and 71, are the means and inverse variances of k£ Gaussian components
respectively, and wy., are the mixing weights satisfying the constraint Z§:1 w; =
1. The priors for the parameters of each component 5 = 1,...,k are taken to be
exchangeable as p; ~ N(¢,k™Y), 7; ~ Ga(a, B), wiy ~ Diri(d), where Ga(a, )
is the gamma distribution with shape a and rate 8 and Diri(d) is the Dirichlet
distribution with number of categories k and concentration parameter . To enable
a Gibbs sampler for the above model, we introduce for each observation i = 1,...,n

a latent class indicator z; such that
[yz | 2 = j7 H1:ks Tk, wl:k] ~ N(M]a Tj_l)7

P(ZZ = ]|w1k) aC wj.

Then by marginalizing out z;’s, we can recover (6.12). With the above exchangeable
prior, the joint posterior distribution P(u1.x|y1,...,ys) of the k component means
1., has k! modes and the marginal posterior for each p;, j = 1,...,k is the same as
a mixture of k components. Therefore, we can diagnose the performances of various
samplers by comparing the marginal posteriors of puq,...,u,. Standard MCMC al-
gorithms tend to get stuck for long intervals in certain local modes, and even a very

long run cannot equally explore all these modes (Jasra et al., 2005).
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In this simulation, we generate the data with n = 100 samples and choose the
true model as k = 4, uy.q = (=3,0,3,6), 7.4 = (0.5572,0.5572,0.5572,0.5572) and
wyg = (0.25,0.25,0.25,0.25), which has the same settings as in Jasra et al. (2005)
and Del Moral et al. (2006). The hyperparameters for the priors are: ( = 0, k = 0.01,
a=1,5=2and § = 1. We consider a batch setup with batch size (BS) 1,2,4,6,8
and 10, which means that data arrive in batches of size BS. As a result, the algorithms
operate T" = [100/BS]| = 100, 50, 25,17, 13 steps, where |x| stands for the smallest
integer no less than x.

In SMCMC, the dimension of the parameter 8% = (ju1.%, Tip, Wik, 21:0,) at time ¢
is increasing when the latent class indicators z;.; are included, where n, = 0 for t = 0
or 100—BS-(T—t) fort = 1,...,T is the data size at time ¢. We choose the transition
kernel T; to correspond to that for the Gibbs sampler. The jumping kernel .J; is the
conditional distribution for the additional latent indicators of Y, ,+1)m, given 6®
and yi.,,. Note that z; are conditionally independent of z; for 7 # j,4,j < n; given
(H1:ks TLeks Witk Yim,)-

We compare SMCMC with two competitors. The first algorithm is the sequential
Monte Carlo (SMC) sampler in Del Moral et al. (2006), which avoids data augmen-
tation and works directly with the posterior of (1., 714, wi.) using MH kernels.
The second algorithm is the parallel Gibbs sampler (Richardson and Green, 1997)
running on the full data v, ..., y,, with L Gibbs samplers running in parallel, whose
iterations Kpgg equal the total Gibbs steps Zthl my in the SMCMC with batch size
BS. The posterior distribution of each p; with j = 1,2, 3,4 is approximated by the
empirical distribution of the L samples at Kpggth iteration in parallel. To demon-
strate the annealing effect of SMCMC, the initial distributions of the L chains for
both SMCMC and MCMC (parallel Gibbs) are centered at (—3,0,3,6). As a result,
if no pair of labels are switched, the posterior draws will be stuck around the local

mode centered at (—3,0,3,6), which is one of the 4! = 24 local modes.
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To compare the three algorithms, we calculate the averages of sorted estimated
means across 10 trials under each setting as shown in Table 6.1. More specifically, we
sort the estimated posterior means of j;.4 in increasing order for each run and then
average the 4 sorted estimates over 10 replicates. A good algorithm is expected to
provide similar posterior means of y1.4, which is approximately 1.5 in our case. The
purpose for sorting the estimated means is to prevent the differences in the estimated
posterior means being washed away from averaging across 10 replicates.

As can be seen from Table 6.1, SMCMC outperforms both SMC and MCMC
under each setting and has satisfactory performance even when the batch size is 6,
i.e. the number of time steps 1" is 17. Moreover, the performance of SMCMC ap-
pears stable as the batch size grows from 1 to 6, and become worse when the batch
size increases to 8 and 10. A similar phenomenon is observed for SMC, with perfor-
mance starting to deteriorate at batch size 6. MCMC has slightly worse performance
with batch size 1 than SMCMC. However, its performance rapidly becomes bad as
the number of iterations decreases. The comparison between SMCMC and MCMC
illustrates substantial gains due to annealing for our method.

Figure 6.2 displays some summaries for SMCMC with batch size 1. The left plot
shows the number of Gibbs iteration m; versus time ¢ (which is equal to the sample
size at time t). m; increases nearly at an exponential rate, which indicates the slow
mixing rate of the Gibbs sampler used to construct the transition kernels 7. As
a by product of SMCMC, we can assess the convergence rate of the sampler used
to construct T; as a function of the sample size. The automatic mixing diagnostics
procedure guarantees the convergence of the approximated posterior as t — oo. The
right panel shows the “traceplot” for py., for one Markov chain among the L chains.
This is not the usual traceplot since we selected the last samples of py.. at each time
t, where py.; is approximately distributed according to a time changing posterior .

This “traceplot” suggests satisfactory mixing of ., i.e. frequent moves between
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Table 6.1: Averages of sorted estimated means in mixture model by three approaches.
We ran each algorithm 10 times with 1000 Markov chains or particles. We sorted the
estimated means in increasing order for each run and then averaged the sorted esti-
mates over 10 replicates. The last column reports the sample standard deviations of
the first 4 numbers displayed. In the parenthesis following MCMC are the number of
iterations it runs, which is equal to the average iteration the corresponding SMCMC
runs across 10 replicates.

Algorithm description Averages of sorted estimated component means stal.ldz?rd
I Lo 3 4 deviation
SMCMC (batch size 1) 1.38 1.50 1.57 1.67 0.12
SMC (batch size 1) 1.13 1.37 1.60 1.97 0.36
MCMC (8621 iterations) 1.31 1.42 1.56 1.77 0.20
SMCMC (batch size 2) 1.40 1.50 1.56 1.66 0.11
SMC (batch size 2) 1.22 1.46 1.75 1.99 0.34
MCMC (4435 iterations) 0.91 1.12 1.30 2.69 0.81
SMCMC (batch size 4) 1.42 1.50 1.54 1.64 0.09
SMC (batch size 4) 1.57 1.84 2.01 2.32 0.31
MCMC (2367 iterations) 0.23 0.71 1.20 3.34 1.37
SMCMC (batch size 6) 1.36 1.48 1.59 1.65 0.13
SMC (batch size 6) 1.31 1.63 1.93 2.35 0.44
MCMC (1657 iterations) -0.23 0.53 1.32 4.45 2.05
SMCMC (batch size 8) 1.35 1.45 1.54 1.73 0.16
SMC (batch size 8) 1.43 1.69 1.99 2.35 0.40
MCMC (1390 iterations) -0.50 0.53 1.36 4.68 2.24
SMCMC (batch size 10) 1.19 1.32 1.57 2.04 0.37
SMC (batch size 10) 1.36 1.69 1.98 2.38 0.43
MCMC (1069 iterations) -1.00 0.38 1.60 5.11 2.62

the modes.

6.5 Sequential Bayesian estimation for heart disease data

In the following we apply SMCMC to a sequential, growing dimension nonparametric
problem. We consider nonparametric probit regression with a Gaussian process (GP)
prior. Let y1, 4o, ... be a sequence of binary responses and x, xs, . . . the p dimensional
covariates. The model assumes P(y; = 1) = ®(f(z;)), where ® is the cdf of the

standard normal distribution and f is a d-variate nonlinear function. We choose
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FIGURE 6.2: Summaries of SMCMC with batch size 1. The left panel displays the
plot of the number of Gibbs iterations m; versus time ¢ (which is equal to the sample
size at time t). The right panel displays the last samples of u1 at each time ¢ in
one of L Markov chains.

a GP as a prior, f ~ GP(k, K), with mean function £ : R? — R and covariance
function K : RY x R? — R. We consider the squared exponential kernel K,(z, ') =
o2 exp{—a?||z — 2'||*} with a powered gamma prior on the inverse bandwidth, which
leads to an adaptive posterior convergence rate (van der Vaart and van Zanten, 2009).
The computation of the nonparametric probit model can be simplified by intro-
ducing latent variables z; such that
Py, = 1) = I(z > 0),

(6.13)
Z; = f(ZEZ) + €€ ~ N(O, ].)

The model has simple full conditionals so that a Gibbs sampler can be used to sample
the z;’s and F;, = {f(z1),..., f(ze)}.

To alleviate the O(n?) computational burden of calculating inverses and deter-
minants of n x n covariance matrices, we use a discrete prior to approximate the
powered gamma prior for a and pre-compute those inverses and determinants over
the pre-specified grid. We combine the sequential MCMC with the following off-line
sequential covariance matrix updating.

Let ay,...,ay denote a grid of possible inverse bandwidths. For example, ay

h—1

can be chosen as the “7 th quantile of the powered gamma prior and the discrete
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prior as the uniform distribution over ay, ..., ag. Let Cy(z,2') = exp{—a?||x — 2'||*}
and K,, = 0?C,. We use the notation C(A, B) to denote the matrix (c(a;, b;))pq
for a function C' : R x RY — R and matrices A € RP*¢ B e R4 Let X, =
(2F,. . 2T e R Y, = (y1,...,y) and Z;, = (z1,...,2) be the design matrix,
response vector and latent variable vector at time ¢t. At time t, foreach h =1,..., H,

we update the lower triangular matrix Lgt) and (Lgf))*l in the Cholesky decomposi-

tion C’,(f) = LE?(LE?)T of the t x ¢ correlation matrix C’,(f) = Ch(X¢, Xt). The reason is
two-fold: 1. inverse and determinant can be efficiently calculated based on Lg) and
(Lgf))_l; 2. due to the uniqueness of Cholesky decomposition, LSH) and (LSH))_1

can be simply updated by adding (¢4 1)th row and column to LS) and (L;Lt))*l. More

precisely, if LSH) and (Lgfrl))*l are written in block forms as

(t) (-1
el L 0 t+1)y— (L") 0
Lﬁl = ( B}(lt}zrl) dglt+1) ) and (ng )) = ( Egﬁrl) gz(fﬂ) ’

where B }(fﬂ) and E}(Ltﬂ) are t-dimensional row vectors and dgﬂ) and gﬁfﬂ) are scalars,

then we have the following recursive updating formulas: for h =1,..., H,

d%tJrl) :{Ch($t+1, xt+1) _ Oh(xt+1, Xt) (Lgf))fT(Lth))*lch(Xta xt+1)}1/27

B = (w1, X) (L),

gV =),

E}(lt+1) _ g}(LH_l)Ch(It_A,_l, Xt) (Lglt))fT(Lgt))flj

where for a matrix A, A7 is a shorthand for the transpose of A~!. The computation
complexity of the above updating procedure is O(t?).

As t increases to t+1, the additional component 7,1 is (f(2¢41), 2¢-1). Therefore,
in the jumping step of the sequential updating, we repeat drawing f(x;;1) and z;,4
from their full conditionals in turn for r times. In our algorithm, we simply choose
r = 1 as the results do not change much with a large . In the transition step of the
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sequential updating, each full conditional is recognizable under the latent variable
representation (6.13) and we can run a Gibbs sampler at each time ¢. Predicting
draws f(2') on new covariates ' can be obtained based on posterior samples of Fj.

Note that the computational complexity for the off-line updating at time ¢ is
O(t?). Therefore the total complexity due to calculating matrix inversions and de-
terminants is O(>]_, t*) = O(n®), which is the same as the corresponding calcu-
lations in the MCMC with all data. However, the proposed algorithm distributes
the computation over time, allowing real-time monitoring and extracting of current
information.

To illustrate the above approach, we use the south African heart disease data
(Rousseauw et al., 1983; Hastie and Tibshirani, 1987) to study the effects of obesity
and age on the probability of suffering from hypertension. The data contains n = 462
observations on 10 variables, including systolic blood pressure (sbp), obesity and age.
A patient is classified as hypertensive if the systolic blood pressure is higher than
139 mmHg. We use I(sbp > 139) as a binary response with obesity and age as a

two-dimensional covariate x.

m, vs t
300
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FI1GURE 6.3: The iterations m; at time ¢ versus the sample size t is displayed. my
has been smoothed with window width equal to 10.

Fig. 6.3 demonstrates the relationship between the number of iterations m; and

the sample size t. As can be seen, m; keeps fluctuating between 150-200 as ¢t becomes
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FIGURE 6.4: The fitted hypertension probability contours at ¢ = 150, 250, 350, 462.
The circles correspond to hypertensive patients and plus signs correspond to normal

blood pressure people.

greater than 100, indicating that contrary to the mixture model example, the mixing
rate of the above Markov chain designed for the nonparametric probit regression is
robust to the sample size. The total number of iterations >, m; is about 80k.
However, the computation complexity of each SMCMC chain is much less than a
80k iterations full data MCMC since many iterations of SMCMC run with smaller
sample sizes. In addition, we can reduce the iterations needed by increasing block

sizes.

Fig. 6.4 shows the fitted probabilities of hypertension as a function of obesity and
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age at t = 150, 250, 350, 462. With a relatively small sample size, the bandwidth a !
tends to be small and the fitted probability contours are wiggly. As the sample size
t increases, the bandwidth grows. As a result, contours begin to capture some global
features and are less affected by local fluctuations. In addition, at large time point
t = 350, the posterior changes little as the sample size further grows to ¢t = 462. As
expected, the probability of hypertension tends to be high when both obesity index
and age are high. The gradient of the probability P(sbp > 139|obesity,age) as a
function of obesity and age tends to be towards the 45-degree direction. The results
in Fig. 6.4 are indistinguishable from those obtained running a long MCMC at each

time, which are omitted here.
6.6 Convergence of Markov chain

In this section, we review some convergence results for Markov chains and introduce
some new properties, which is applied to study the SMCMC convergence.

A transition kernel T is called uniformly ergodic if there exists a distribution 7
and a sequence r(t) — 0, such that for all x, ||T*(x, ) —7|| < r(t), where ||-|| is the L;
norm. r(t) will be called the rate function. If T" is ergodic, then 7 in the definition
will be the stationary distribution associated with 7. Uniformly ergodic implies
geometric convergence, where r(t) = p' for some p € (0,1) (Meyn and Tweedie,
1993).

We call a transition kernel 7" universally ergodic if there exists a distribution 7 and
a sequence r(t) — 0, such that for any initial distribution py, ||T"opo—7|| < r(t)||po—
w||. 7(t) will also be called rate function. The concept of universal ergodicity plays
an important role in the following study of the convergence properties of SMCMC.
By choosing pg as a Dirac measure at z, one can see that universal ergodicity implies
uniform ergodicity with rate function 2r(¢). In addition, universal ergodicity can
provide tighter bounds on the MCMC convergence than uniform ergodicity especially
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when the initial distribution pq is already close to . The following lemma provides

the converse. The proof is based on coupling techniques.

Lemma 42. If a transition kernel T is uniformly ergodic with rate function r(t),

then it is universally ergodic with the same rate function.

The coupling in the proof of Lemma 42 is constructed through importance weights.
By using the same technique, we can prove the uniform ergodicity for certain T as

in the following lemma.

Lemma 43. If the transition kernel T satisfies

sup [|T'(z,-) — 7|| < 2p, (6.14)

for some p < 1, then T is uniformly ergodic with rate function r(t) = p'.

Note that condition (6.14) in the above lemma is weaker than the minorization
condition (Meyn and Tweedie, 1993) for proving uniform ergodicity with rate func-
tion r(t) = p'. The minorization condition assumes that there exists a probability

measure v such that,

T(x,y) = (1 —pv(y),Yx,y € E. (6.15)

In practice, there is no rule on how to choose such measure v. To see that (6.14) is

weaker, first note that if (6.15) holds, then by the stationarity of 7,

w@)=jT@¢mwwmm»><r—mwwfwwnu@=41—mv@»

Therefore, for any x € E, we have
Tz, ) ==l <[[T(x,-) = (L= p)vil + |Jm = (1 = p)]
= [ [T~ (1= o)) + [ [506) - (1= ) ]A(a)

=1—-(1-p)+1—(1—p)=2p.
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Therefore, condition (6.14) can lead to a tighter MCMC convergence bound than
the minorization condition. Using sup, ||T'(z, ) — || in (6.14) also provides a tighter
bound than using the Dobrushin coefficient 3(T') = sup,., ||T(z,) — T'(y, -)||, which
is another tool used in studying the Markov chain convergence rate via operator

theory. In fact, for any set Ae &£

sup [T'(z, A) — 7(A)[ = sup

T

.L{L”@W”%@—T@wﬂmwﬁmw>

<[ {] sl - 7. fres
< B(T)m(A),

which implies that sup, ||T(x, ) —«|| < B(T). Moreover, comparing to the minoriza-
tion condition and Dobrushin coefficient, (6.14) has a more intuitive explanation that
the closer the transition kernel T'(z, ) is to the stationary distribution, the faster the
convergence of the Markov chain. Ideally, if T'(z,-) = 7(+) for all x € E, then the
Markov chain converges in one step. The converse of Lemma 43 is also true as shown
in the following lemma, which implies that condition (6.14) is also necessary for

uniform ergodicity.

Lemma 44. If T is uniformly ergodic, then there exists p € (0, 1), such that

sup ||T(x, ) — 7|| < 2p. (6.16)

When the condition (6.14) does not hold, we can still get a bound by applying the
above coupling techniques. More specifically, assume {X; : t = 0} is a Markov chain
with state space E, transition kernel 7" and initial distribution py over . Recall that
7 is the stationary measure associated with 7. We define an accompanied transition

kernel 7" as

T(z,y) — min{T(z,y), 7(y)}
o(w) ’

T'(z,y) =
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where 0(z) = L||T(z,-) — ||. Let {X] : ¢ > 0} be another Markov chain with state
space F, transition kernel 7" and the same initial distribution py. The following

lemma characterizes the convergence of X; via Xj,.

Lemma 45. With the above notations and definitions, we have the following result:
17" o po — ] < B{TT,_, 6(X2)}.

The Markov chain X, in the above proof is known as the trapping model in
physics, where before getting trapped, a particle moves according to the transition
kernel 7" on E and every time the particle moves to a new location y, with probability
1 —4(y), it will be trapped there forever. Generally, the upper bound in Lemma 45
is not easy to compute. However, under the drift condition and an analogue of local
minorization assumption (Rosenthal, 1995), we can obtain an explicit quantitative
bound for MCMC convergence as indicated by the following theorem. The proof is
omitted here, which is a combination of the result in Lemma 45 and the proof of

Theorem 5 in Rosenthal (1995).

Theorem 46. Suppose a Markov chain has transition kernel T" and initial distribu-

tion pg. Assume the following two conditions:

1. (Analogue of local minorization condition) There ezists a subset C' € &, such

that for some p < 1, sup,cc ||T(x,-) — || < 2p.

2. (Drift condition) There exist a function V : E — [1,00) and constant b and
7€ (0,1), such that for all x € E, {T(x,2)V(2)A(dz) < 7V (x) + blo(x).
Then for any j, 1 < j <t, ||[T' opo — 7|| < p' + 7BV, where B = 1 + b/T and
V = {V(2)po(2)A(dz).
By optimizing the j in the above theorem, we can obtain the following geomet-
rically decaying bound on ||T" o pg — 7||, which is similar to Rosenthal (1995):
log plog T

T opy — x| < V', with log p = —2—2"—
IT" o po — 7|| < V', with log oz p —los B
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This implies that the Markov chain with transition kernel 7" is geometrically ergodic.
Recall that a chain is geometrically ergodic if there is p < 1, and constants C, for

each x € E, such that for r—a.e. x € E, ||T"(z, ) — ()| < Cup".
6.7 Discussions

In this work, we proposed a sequential MCMC algorithm to sample from a sequence
of probability distributions. Supporting theory is developed and simulations demon-
strate the potential power of this method. The performance of SMCMC is closely
related to the mixing behavior of the transition kernel T; as t — co. If T} tends to
have poor mixing as ¢ increases, then updating the ensemble ©; every time a new
data point arrives can lead to increasing computational burden over time. To allevi-
ate this burden, we have three potential strategies. First, we can make the updating
of O, less frequent as t grows, i.e. updating ©, only at time {t; : k = 1,...} with
ty — o as k — oo and ¢, — t,_; — o0, as long as ||m, —m,_,|| — 0. Second, we
can let the e in Algorithm 1 decrease in ¢ so that the upper bound in Theorem 32
still converges to zero. Third, we can develop ‘forgetting’ algorithms that only use
the data within a window but still guarantee the convergence up to approximate er-
ror. The first two strategies may also be developed in an adaptive/dynamic manner,
where the next step size tp, 1 — t; or decay rate €, is optimized based on some

criterion by using the past data and information.
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7

Semiparametric Bernstein-von Mises Theorem:

Second Order Studies

7.1 Introduction

Semiparametric modelling has provided a flexible and powerful modeling framework
for modern complex data. Semiparametric models are indexed by a Euclidean pa-
rameter of interest # € © — R* and an infinite-dimensional nuisance function 7
belonging to a Banach space H. For example, in the Cox proportional hazards
model, 6 corresponds to the log hazard ratio for the regression covariate vector and
7 is the cumulative hazard function. In the partial linear model, 6 corresponds
to the regression coefficient vector for the linear component and 7 is the nonlinear
component. By introducing a prior I on © x H, we are particularly interested in
making Bayesian inferences for € in semiparametric context. For example, we want
to construt credible intervals for 6 and test its significance using Bayes factors. These
Bayesian inferences are known to be supported by the semiparametric Bernstain-von
Mises (BvM) theorems (Shen, 2001; Bickel and Kleijn, 2012; Castillo and van der

Vaart, 2012), which states that the marginal posterior distribution of 6 converges (in
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total variation norm) to a normal limit:
~ ~ Py
sup |I1(0 € A[X1, ..., X,,) — Nio (60 + n~Y2A,, (nlg, )71 )(A)] 22X 0, (7.1)
A

where A is any measurable subset of O, Ny (u, X) denotes a k-variate normal distribu-
tion with mean vector u € R* and variance-covariance matrix 3 € R***. B, . is the
true underlying distribution generating the data, where 6y and 7, are the true val-
ues. Here, lwgm is the efficient score function and _79777 the efficient Fisher information

evaluated at (0,7) and

= 9 )
Z 0,10 9077]0 ) O g N(O [90:}7]0) (72)

« P 2

Here, the notation “ -~~~ 7 and * £ 7 denote the weak convergence and convergence
in probability, respectively. A brief review of the semiparametric efficiency theory is
provided in Section 7.2.1. We call (7.2) as the first order version of semiparametric
BvM theorem.

The major goal of this chapter is the second order studies of semiparametric
BvM theorem with an attempt to figure out the influence of nonparametric Bayesian
prior on the semiparametric inference. Such results can provide us new theoretical
insight, and can also be used to guide the choice of nonparametric prior. Cheng and
Kosorok (2008a,b, 2009) derived the second order version of a special semiparametric
BvM based on the posterior distribution of the profile likelihood in which the nui-
sance parameter is maximized out. In this case, no nonparametric prior is assigned.
To the best of our knowledge, a comprehensive second order study of the general
semiparametric Bernstein-von Mises theorem in the fully Bayesian setup does not
exist.

The primary goal of this chapter is to formulate a set of necessary conditions for
quantifying the second-order convergence rates of Bayesian semiparametric methods.
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Intuitively, this set of conditions would be stronger than those for first-order BvM
theorems. The first contribution of this chapter is that we derived the convergence
rate (7.1) as Op,  (n'/?p2), with p, the estimation error of the nuisance part. This
second order term suggests that more accurate estimation of the nuisance parameter
7 could lead to better estimation efficiency of the parametric part. This is consistent
with Cheng and Kosorok (2008b) and Cheng and Kosorok (2009) even the non-
parametric prior is not assigned therein. In addition, we consider multi-dimensional
nuisance function in this chapter. For example, in the partially linear model under
penalization, the convergence rate for the nuisance parameter is r = a/(2a + 1),
where « is the known smoothness of the nuisance parameter. The set of conditions
we formulated can also be used to study first order BvM results and appears to be
weaker than that in Bickel and Kleijn (2012), where the very strong condition on the
root-n convergence rate of the parametric part is replaced with a convergence rate
of p,.

Understanding of these conditions can conversely guide the design of the semi-
parametric objective prior, by which we mean a prior that achieves the same second-
order estimation and inference accuracy as frequentist approaches, such as the max-
imum penalized likelihood estimator (Cheng and Kosorok, 2009), could achieve. For
example, a point estimator resulted from a semiparametric objective prior should
match the corresponding frequentist estimators in terms of second order expansion
and the resulted credible intervals/region should have the same accuracy of coverage
compared to the corresponding confidence intervals. Another contribution of this
chapter is to show that a new class of dependent priors for § and 7 are semiparamet-
ric objective and the commonly used independent priors for # and 7 might even break
down the first-order consistency under some situations. The failure of independent
priors has also been observed in a recent work by Castillo (2012), who proposes an

interesting counter-example where the BvM does not hold due to a bias term appear-
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ing in the posterior distribution. We will call such a bias term the semiparametric
bias in the rest of the chapter. Intuitively, a non-negligible semiparametric bias is
caused by a nonzero least favorable direction. Surprisingly, we show that by intro-
ducing prior dependence, the semiparametric bias can be eliminated by shifting the
center of the prior for the nuisance parameter.

What is more surprising is that our adaptive semiparametric objective priors can
be easily made adaptive. This is counted as our third contribution. In the first two
conditions, we assume the smoothness « is known, which is unrealistic in reality.
A third contribution of this chapter is to study the impact of the nonparametric
adaptivity on the second order semiparametric efficiency under from a Bayesian
perspective. Note that such nonparametric adaptive issues can only be investigated
in the second order representation. Rivoirard and Rousseau (2012) propose a counter-
example to rule out the BvM for independent adaptivity priors, where an independent
prior achieves adaptive learning of n but fails to capture the semiparametric bias.
This negative result on adaptive priors is first observed by Castillo (2012). In this
chapter, we investigate sufficient conditions for a prior to be adaptive. Interestingly,
we show that a dependent prior can achieve the adaptation to the second order term

under mild conditions while an independent prior needs very stringent conditions.

7.2 Preliminaries

7.2.1 Semiparametric efficiency review

In this section, we review the semiparametric efficiency theory in a heuristic manner,
and comment its connection to our results.

We briefly review the semiparametric efficiency theory. The score functions for ¢
and n are defined as

0
levn(Xl)7 AQO’nOh(XZ) = A5 levn(t)(Xl)7

t=0g

- ?
laoﬂ?o (XZ) = @

0=09
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where h denotes a direction along which 7(t) € H approaches 7y as t — 6, and
Agyno : H— LY(Py) is the score operator for n with H some closed and linear direction
set, and LY(Py) = {f € La(Py) : Pyf = 0} is a subset of Ly(Py) equipped with the
Ly-norm || - ||o. The efficient score function lg, ,,, is defined as the orthocomplement
projection of igomo onto the tangent space 7T, which is defined as the completion
of the linear span of the tangent set {Ag,,,~h : h € H}. Therefore, the efficient
score function at (Ay,7) can be written as lg, n, = 1'90,,70 = Hol.gomo, where Hol.g()mg =
argmin,er ||7 — gyl 2. The variance of iy, ,, is defined as the efficient information
matrix Iy, ,,, whose inverse attains the Cramér-Rao lower bound for estimating 6
under a semiparametric framework (Bickel et al., 1998).

The main idea of semiparametric inference is to reduce the infinite dimensional
estimation problem to a finite dimensional submodel called the least favorable sub-
model {Py @) : 0 € R*}, where n*(f) is the so-called least favorable curve. The
information matrix of the least favorable submodel attains the Cramér-Rao lower

bound I;!

somo and the least favorable curve 7*(¢) could be evaluated as the unique

minimizer in H of the Kullback-Leibler (KL) divergence with the parametric part ¢
being fixed (Severini and Wong, 1992), i.e.

n*(0) = arg inf K(Py, . Po,y) = arg inf ( — Ppy o log Do ), (7.3)
neH neH

Poo,mo

where K (P, Q) = {log(dP/dQ)dP is the KL divergence between two measures P
and (). The existence of the least favorable submodel is implied by the closedness of
the tangent set.

An intuitive explanation of the least favorable curve in Bayesian regime is that
conditioning on #, the posterior distribution of the nuisance parameter n tends to
allocate all its mass around 7} (Kleijn and van der Vaart, 2006). However, the
posterior distribution of § tends to concentrate around 6y (by Lemma 51 or Lemma
52 below). As a result, we only need to characterize the least favorable curve in a
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small neighborhood of 6y. In the sequel, we denote An(0) = n*(8) — n*(0o).
7.2.2  Model assumptions

Let X; = (U;,V;,Y;), i = 1,...,n, be iid. copies of T = (U,V,Y), where Y € R
is the response variable and T' = (U, V) € [0, 1]* x [0, 1] is the covariance variable.
Let X™ = {X; ..., X,}. In the rest of the chapter, we stick to the notation P,
to indicate the true underlying distribution that generates the data. Assume the

following partially linear structure for a class of semi-parametric models:

mo(t) = Eo(Y|T =1t) = Fg(t)), go(t) = gu+m(v), t=(u,v),

where F : R — R is some known link function, 6, € R* is some unknown parameter
of interest and 7 is some unknown smooth function. Many statistical models can be
included into this general framework. One example is the generalized partially linear
models (Boente et al., 2006), where y|t ~ p(y; mo(t)) for a conditional distribution
p in the exponential family, such as the Guassian distribution for regression and the
binomial distribution for classification. The generalized partially linear model with
a Gaussian response is theoretically easiest to analysis and we will focus on it as one
application of our general theory. Another example is the general partially linear
model (GPLM) (Mammen and van de Geer, 1997), where the only assumption is
made on the relationship between the conditional mean my, = F(gs,) and the con-
ditional variance Var(Y|T') = V(mg,(T)) for some known positive function V. For
GPLM, the parameters (6, 7) can be estimated based on the quasi-likelihood function
Qon(y) = exp{qo,(v)}, with gg,(y) the quasi-log-likelihood function (Wedderburn,
1974)

™o, (t) — s
Gon(y) = J W=5) 4. (7.4)

If V' is chosen as the conditional variance of the response Y and is assumed to

depend only on the conditional mean m of Y, i.e. V = V(m), then the quasi-
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likelihood coincides with the likelihood of the corresponding generalized linear models
(Wedderburn, 1974).

Despite the distinct modeling assumptions, these two classes of statistical models
in the examples share many similarities and from now on, we work with a general
“log-likelihood” function 1,,(6, 1) = > | lp.,(X;), where the general criterion function

lo.;(x) can represent either log p(y; mo(6,n)) or gp.,(y). For GPLM, let

G /0

JO == VF©)

fo = f(go) and ly = l(go). Similar to Mammen and van de Geer (1997), we make the

following assumptions for GPLM:

Assumption 1. [(a)/

1. There exists some positive constant Cy such that Eo(exp(t|W]/Co)|T) < Coe?,

Jor allt >0, i.e. W =Y —mgo(T) is sub-Gaussian.

2. There exist positive constants Cy, Cy, C3 and Cy such that: 1. 1/Cy; <V (s) <
Cy for all s € F(R); 2. 1/Cy < |I(&)| < Cy for all £ € R; 3. |I(&) — 1(&)] <
C3l§ = &ol for all | —=Eo| < mo; 4. [f(§) — f(§o)| < Cul€—&ol for all | —Eo| < no-

The assumption that V' and [ are both bounded could be restrictive and can be
removed in many cases, such as the binary logistic regression model, by applying
empirical process arguments similar to those in Section 7 of Mammen and van de
Geer (1997). Under Assumption 1(2), the following lemma describes the local least

favorable curve of the GPLM when |6 — 6] is small.

Lemma 47. Suppose Assumption 1(2) is met. Then the least favorable curve n*(0),

defined as the minimizer n of

(Y 8 ng,nm (ma,n(T) = 5)

Eolog(Qeg0/Qo,n) = EOJ V(s) V(s)

Mg o (1) Mg, (1)
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as a function of 8, takes the following expression
n*(0) = no + (0 — 00)h* (V) + O(|0 — 6o)?), as |0 — 6| — 0, (7.5)

EUADDIV =]
Eo fo(D)lo(T)|V = 0] -

with  h*(v) = (7.6)

h*(v) is called the least favorable direction as it reflects the change of the least
favorable curve due to a unit change in 6. The following two commonly used models

are special cases of the GPLM.

Example 7.2.1 (Partially linear models). In the partially linear model (PLM), we
have observations {X; = (U;,V;,Y:) : U; e RF Ve RYY; e Ryi = 1,...,n} where the
conditional distribution of Y given (U, V') are described by

Y = UTH() + 7]0(V) + €, (77)

where € ~ N(0,1) is assumed to be independent of (U,V'). For simplicity, we focus
on univariate 0, i.e., k =1, and assume that (U, V') has an unknown distribution P

supported on [0,1]'*%. lp, (x) is given by
1 2
log dPp,,(X) = —5[5 — (0 = 00)U — (n—mo)(V)]", (7.8)

where € =Y — 0oU — no(V') is the random error under (6y,mo). For identifiability,
we further assume P(U — E[U|V])?> > 0. We consider the case that 1y belongs to
a Hélder function class C*([0,1]?) with an unknown smoothness index «. For the
PLM (7.7), the KL divergence between Py and Py, is Pylog(peym/pen) = P ((0 —
6o)U + (n — 770)(1/))2 and the least favorable curve is given by

n*(0)(v) = no(v) = (0 = 6o) E[UV = v], (7.9)

which satisfies assumption SO with the least favorable direction h*(v) = —E[U|V = v]
and An(0)(v) = —(0—00)E[U|V = v]|. This is also a special case of Lemma 47 when
V(s) =1 and F(z) = z.
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Example 7.2.2 (Partially linear logistic models). In the partially linear logistic
model, Y; € 0,1 and the conditional probability of Y given (U, V') can be described by

Py(Y = 1|U,V)

=U"h V). 7.10
Ro(Y = 0[0.V) o+ 1m0(V) (7.10)

log

For this model, f(£) = V(F(£)) = e5(1 +¢%) 2 and I(§) = 1. Therefore, by Lemma
47 its least favorable curve is given by

E[Uf(U, V)|V =]

EffoU VIV =] + U0~ ), (7.11)

n*(0)(v) = no(v) — (6 — bo)

'U}here fo(u, /U) = euT00+770(v)(1 + 6“T00+n0(v))_2,

Example 7.2.3 (Partially linear exponential models). In the partially linear expo-

nential model, the conditional density of Y given (U, V') is

po(y|u, v) = No(u,v) exp(=Ao(u,v)y), y >0, (7.12)

with Xo(u,v) = 1/mg(u,v). For this model, f(§) = €5, V(F(£)) = e % and I(€) =
e~¢. Therefore, by Lemma 47 its least favorable curve is given by

7" (0)(v) = 1m0(v) — (0 = 00) E[UIV = v] + O(10 — 6o[*), (7.13)

where the least favorable direction h*(v) = —E[U|V = v] is the same as that of the

PLM because foly = 1.

7.3 Second order semiparametric BvM theorem

7.8.1 Main results

For a general class of semiparametric models P = {P,,, : 6 € R¥ ne H}, we consider
a prior distribution IT over R* x H for (6, 7). In the sequel, we use I1°(n) and I1()
to denote the conditional prior distribution of n given 6 and the marginal prior
distribution of 0, respectively. Denote [,,(6,7) as the log-likelihood.

We assume the following assumptions.
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Assumption 2 (Localization condition). There ezist two sequences {d,} and {p,}
satisfying 6, — 0, p, — 0 and np? — oo, and a sequence of sets {H,}, such that for

some M >0 asn — oo,
H(||(9 _‘90” < M/Omne Hn‘X1>>Xn) =1 _Opo((sn)'

Define the localized integrated likelihood ratio with respect to {H,} as S, : R¥ — R:

Sn(0) = J exp (1,(0,m) — 1,(60, no) ) dI1’ (n). (7.14)

n

Assumption 3 (Second order integrated local asymptotic normality). There exists

a nondecreasing function R,(-) : R — R such that for every sequence 0,, such that

en = 90 + OPO (pn)7

§n(9n) T n TF
0g — —+/n(6,, — 0 n+ =0, —00)" Ipyn, (0, — 0
gSn(Ho) vn( 0) g 2( 0)" Log.no ( 0)

(7.15)
= OPO(Rn(|9n - ‘90| \'4 n71/2 logn)),

where G, = (1/y/n) 30, lo(X:) % Ni(0, Iy )

Theorem 48. We assume the prior for 0 is thick at 6y. Suppose Xi,..., X, are
1.1.d. observations sampled from Py. Suppose that Assumption 2 & 3 are true. Then

the marginal posterior for 6 has the following expansion,

sup [T1(0 € A|X1,. .., Xp) — Np (6o + 0724, (nlgy n0) ™) (A)] = Ory(Sn),  (7.16)
A

where S, = R,(n""?logn) + 6,,.

For regular parametric models, Johnson (1970) derived the above convergence rate
as Op, (n™1?).

Assumption 2 is the test condition for semiparametric models, which allows us
to focus on the posterior probability conditioning on the set {(0,7n) : ||0 — 6| <
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Mp,,n € H,}. A typical set of sufficient conditions (e.g. Lemma 51) for Assump-
tion 2 already implies a test condition (Ghosal et al., 2000; Ghosal and van der
Vaart, 2007). Therefore, Assumption 2 is stronger than the test condition for the
semiparametric BvM. Further discussions on Assumption 2 are provided in Section
7.3.3.

Assumption 3 is a semiparametric extension of local asymptotic normality re-
quired for parametric BvM theorem (LeCam, 1953, LAN). Note that, by Fubini’s

theorem, the marginal posterior for 6 can be written as

M@ e AlX,,....X,) = L { L exp (1n(6, 1) — 1 (0, no))dﬂe(n)}dﬂ(é’)

(7.17)
S A e ) = 100 ) b,
o UJu
Therefore, the following integrated likelihood ratio S,(0), i.e.,
S0 RE R0 [ e (00.1) — G, )T (7.18)
H

in a semiparametric model plays the same role as the likelihood ratio in a parametric
model. To prove the first order semiparametric BvM theorems, Bickel and Kleijn
(2012) assume that

Sn(e() + n‘1/2hn)
Sy (6o)

~ Ll 7>
log = hlG, — §h£[907,70hn + op, (1), (7.19)

for every random sequence {h,} of order Op,(1).

However, accompanied with ILAN, Bickel and Kleijn (2012) requires a condi-
tion that the marginal posterior distribution of  converges to , at rate n~2.
In many cases, the verification of this parametric rate condition is nontrivial. To
avoid the stringent assumption on the convergence rate of 6 as well as keep track

of the higher-order remainders, we introduce the notion of localized integral likeli-

hood ratio as in (7.14), where {H,} < H is the sequence of subsets of H defined
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in Assumption 2. Note that each H, forms a local neighborhood of 7y such that
II(n € Hpl X1, ..., X5) 1% 1. For example, H,, can be defined as {n:|In—nolln <
Mp,} n Fl, where F! is a sieve sequence for the nuisance parameter defined after
Lemma 51 and ||f||, = n~' >, f2(X;) for a function f. p, usually corresponds to
the marginal posterior convergence rate of the nuisance parameter. By introducing
the localization sequence {H,}, a uniform bound for the corresponding higher order
term in the local asymptotic expansion as (7.19) can be developed with respect to
the local neighborhood H,, instead of the whole space H. Therefore, the additional
information ||n — nol||, < Mp, and n € F! can be utilized when applying the max-
imal inequalities (van der Vaart and Wellner, 1996, Corollary 2.2.5). Moreover, we
no longer need to assume a root-n marginal convergence rate for 6 since we only
need to focus on the posterior distribution over {6 : |0 — 6y|]| < Mp,} and the

posterior probability of {§ : Mn~'/2

logn < |10 — 6|| < Mp,} decays faster than
Sy, for sufficiently large M. (7.15) can be translated into (7.19) by letting the lo-
calization parameter h,, = y/n(6, — 6y). The uniform remainder-bound in (7.15) is
weaker than Op,[R,(||0, — 6| )] because we only require the remainder to be of order

R,(n"*?logn) when 6, is in a n='/2

log n neighborhood of 6. In the sequel, any
mentioning of ILAN refers to (7.15).

The ILAN condition imposes constraints on both the prior through the definition
of the localized integrated likelihood ratio S,, and the semiparametric model { Py}
through the second order LAN expansion in (7.15). Interestingly, Lemma 53 in
Section 7.3.4 suggests that this convoluted condition can separated into the following
condition (A1) on the semiparametric model and condition (A2) on the prior — (A1)

and (A2) implies (7.15) with R, = G,, + G,.

(A1) (Stochastically local asymptotic normality) There exists an increasing func-
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tion G,, : R — [0, 00), such that for every sequence {f,,} such that 0,, = 6y + Op,(pn),

n

sup (1o (6, 7 + An(0,)) — 1a(60,m) — (6, — 6o) Z 0o (

n€Hn i=1

1 ~
+ 50 — 00)" L9y (0n — 60)| = Op |Gy ( max{|0, — Oo|,n *logn})].

In the sequel, we will say that an identity holds uniformly over n € H,, instead of
taking a sup over H,, to ease the exhibition. We call a prior as being thick at 6 if it
has a Lebesgue density that is continuous and strictly positive at 6.

(A2) (Prior stability under perturbation) There exists an increasing function
Gl : R — [0,90), such that for any 6,, = 6y + Op(pn),

$10, ©xP(In(00, 7 — An(6,)))d1™ (n)
SHn exp(ln (6o, n))dI1% ()

1 4+ Op[G’ (max{|, — b|,n 7*logn})].

As we will see, (A2) plays an important role for a prior to be semiparametric
objective. The definition of semiparametric objective priors is provided in Section
7.4. More discussions on (Al) and (A2) can be found in Section 7.3.4 and Section
7.4.

7.3.2  Second order Bayesian inference

In practice, an MCMC algorithm is designed to sample a sequence of draws {6 : | =
1,..., L} approximately from the marginal posterior distribution of 8 = (61, ..., 6y).

Then for each component 6 with 1 < s < k, an estimation 93 such as the posterior

median, and its corresponding a-th credible interval (gsa/2,@s,1-a/2) are obtained
from the samples {le)}, which are approximately drawn from the marginal posterior
distribution of 6,. Then 7 = (05 Loy é’\n ,) forms an point estimator of 6;. Another
way to quantify the estimation uncertainty is to construct the ath highest posterior
density (HPD) region A, , based on {#}, which forms a ath joint credible regions

for the k-dimensional vector 6.
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The following result shows the frequentist validity of this procedure for the point

estimator.

Corollary 49. Consider the semiparametric model and the prior II in Theorem 48.

Under the same assumptions, the estimator gf of By constructed as above satisfies

~

\/ﬁ(ef - 00) = zn + OPO (Sn)7

~ Py 7 ~
where A, 3 N(0,1,"

907770), as n — oo.

The second order term Op,(S,) could be very close to the first order term even
when the sample size n is moderate. For instance, if S,, ~ /np? (which are the case
in the examples) and the nuisance part converges at a cubic rate as p, ~ n= %3 up
to log terms, then S, ~ n~ /6 and \/n(02 — 6y) = Op, (1) + Op,(n~V/%). Therefore, it
is important to quantify the impact of the higher order term on BvM results.

Next we study the frequentist coverage of the individual/joint credible inter-
val /region by the above procedures. For any « € (0,1), we define the a-th marginal
posterior quantile g o, of 85 through the following equation II(0; < 50| X1, ..., X,) =
a. Consider any 1—a« credible region A,, 1, that satisfies [1(0 € Ay, 1_o| X1, ..., Xp) =

1— .

Corollary 50. Consider the semiparametric model and the prior I1 in Theorem /8.

Under the same assumptions, we have
PO(QO,S € ((/]\s,a/Qa as,lfa/Q)) =l—-a+ O(Sn)7 (720)

P0(90 € An,lfa) =1—a+ O(Sn) (721)

From this corollary, we see that the second order term also determines the frequen-
tist coverage of the credible intervals/resions. Therefore, the second order properties
are also important for statistical inferences and developing semiparametric objective

priors that lead to the best second order term is necessary.
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7.3.8  Higher-order results on posterior convergence of nuisance parameter

In this section, we provide a set of sufficient conditions for Assumption 2. We consider
a general framework for investigating the posterior contraction rate based on inde-
pendent but unnecessarily identically distributed observations Y™ = (Y7,...,Y,);
see Ghosal and van der Vaart (2007). In this case, the statistical model in consider-
ation is written as P = {P)E : A€ A}, where P(n (YWY =TT, P.i(Y7) is the joint
distribution of Y with a common parameter \.

Define a semimetric d,, by dz (A, N) = = 33" | §(\/xi—+/Px i) dpi, which averages
the squared Hellinger distances for distributions of Y;. In the above statistical model

P, we say that the posterior convergence rate of A\ is p,, if

where M is a sufficiently large positive constant; see Ghosal et al. (2000) and Ghosal
and van der Vaart (2007). However, our second order studies of BvM theorem
requires an explicit bound, called as decaying rate, characterizing the convergence
rate of (7.22), e.g., Assumption 2.

In the below, we provide a Lemma for deriving a polynomial decaying rate in
general cases, and further improve it to a exponential rate in the case of GPLM. The
first Lemma is an immediate consequence from combining Lemma 10 in Ghosal and
van der Vaart (2007) with the proof of Theorem 2.1 in Ghosal et al. (2000). Hence,
we skip its proof.

For any integer k, define the discrepancy measure Vy (P, Q) = {|log(dP/dQ) —
K(P,Q)|*dP.

Lemma 51. Let p, be a sequence satisfying p, — 0 and np? — oo. If there exists an

increasing sequence of sieves F, < F, such that the following conditions are satisfied:

I(F\F,) < exp(—np2(C +4)) for some C > 0;
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b. log N(pn, Fn,dn) < np?;

¢. TH(B,(PS™, pui k) = exp(—Cnp?),

where Bn(Pén),pn;k) = {P eP: K(Po(n),P(”)) < npfl,Vo,k(Pé"),P(")) < nh/? fl},
then we have

(dn(AN Xo) = Mpo|Xi,..., X,) = Op, (np?) *?). (7.23)

By taking k = 2 in Lemma 51, we recover Theorem 2.1 in Ghosal et al. (2000) for
iid observations without explicit characterizations on the decaying rate. Moreover,
if n=k/2p~F = O(n™) for some vy > 1, then by the Borel-Cantelli lemma and Lemma
51, H(d(P, Py) = Mpn‘Xl, e 7Xn) — 0 almost surely.

A typical sieve construction for semiparametric models involves sieve sequences
{FP} and {F} for the parametric part and nuisance part, respectively. For example,
for the GPLM, the sieve takes a product form as F,, = F! ® F7 = {#Tu+n(v) : 0 €
FP ne Fny.

Lemma 51 provides up to polynomial decaying rates for general cases. However,

for the GPLM, an exponential decaying rate can be attained by the following lemma.

Lemma 52. Consider the GPLM under Assumption 1. If conditions (a) and (b) in

Lemma 51 and the following condition are true,

d. TI(||lg — goln < pn) = exp(=Cnp?),

where g(t) = 0Tu + n(v), then there exists a Cy > 0, so that
H(Hg - g0||n = Mpn‘Xla cee 7Xn) = OPo(eXp(_Cﬁnpi))' (724>

7.8.4  Sufficient conditions for ILAN

In this section, we discuss sufficient conditions (A1) & (A2) for Assumption 3. Condi-
tion (A1) strengthens the stochastically LAN introduced in Bickel and Kleijn (2012).
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If we set n = 1o in (A1), then we obtain the LAN for the least favorable submodel
~ 1 >
ln (ena 77* (en)) - ln(007 7]0) :\/ﬁ(en - QO)Tgn - §n(0n - HO)TIGO,nO (en - 90)
+ Op|Gn(max{|d — o], n "% logn})].

This explains the reason for the inclusion of the An(6,) term in (A1). Note that
(A1) depends on the prior through the localization sequence {H,}, to which the
posterior distribution allocates most mass. Larger the subset H,, greater the high
order leftover in (Al). So we aim to make the H,, as small as possible while keeping
I(H,| Xy, ..., X,) close to one. Motivated by this, we set

Ho={n:1In—molln < Mpu} 0 F, (7.25)

where {F} is the sieve sequence for the nuisance part n constructed in Lemma 51
and p, is the corresponding posterior convergence rate of n. By Assumption 2 and
condition (a) in Lemma 51, we have

(M| X1, .., X,) = 1 = Op, (max{6,, exp(—np>)}),

~#2 or exp(—np?) depends on whether Lemma 51 or Lemma 52

where 6, = (np?)
is satisfied. The remainder term in (A1) can be bounded from above by calculating
the continuity modulus or applying the maximal inequalities from empirical process
theory (van der Vaart and Wellner, 1996). The partially linear model and GPLM
with quasi-likelihood examples later illustrate how to apply these tools to verify (A1).

Based on the above preparations, we can prove the following lemma which pro-

vides a sufficient condition for the ILAN.

Lemma 53. If (A1) and (A2) hold, then we have the following ILAN,

gn(en) T~ n TT
log 2 =1 (00 — 00)T G0 — = (0, — 00)  Tgyy (0 — 0
T oy V0= 07T = 500 = 00 To (0~ 00)

+ Op[R,(max{|0,, — 00|, n=1/2 logn})],

with R, = G, + GI,.
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(A2) characterizes the stability of the prior under a small perturbation in the log
likelihood function caused by the semiparametric bias An(6,,) in the nuisance part.
In the special case that the LFS is given by {F,, : 0 € R*}, i.e., Anp = 0, (A2)
automatically holds when independent priors are specified for # and 7.

However, in general cases where An # 0, since SO implies An(6,,) = O(|0,, — 6]),

we have

exp {ln(eoa n — An(0,)) — (6o, 77)} = Op,(n|0n — Oolpn),

which does not converge to zero as we expect that |0 — 6| = Op(n~"?). Hence
under independent priors for # and 7, i.e. I1? = II for any #, (A2) cannot be simply
proved by bounding the difference between the logarithms of the integrands in the

denominator and the numerator.
7.4 Semiparametric objective priors

According to Cheng and Kosorok (2008a) and Cheng and Kosorok (2009), the maxi-

mum (penalized) profile likelihood estimator é\n for a semiparametric model satisfies

V0, —00) = A, + Op, (M, (pn)), (7.26)

where M, (t) = y/nt* and p,, corresponds to the convergence rate of the nuisance

—o/QRatd) if po is a d-variate function with known

parameter. For example, p, = n
smoothness level a. Similar to the objective prior for regular parametric models
defined via probability matching (Datta and Mukerjee, 2004; Staicu and Reid, 2008),

we call a prior for semiparametric models to be semiparametric objective if:

1. The marginal posterior median 62 of § satisfies \/n(02—6y) = A, +O0p, (M, (pn)).

where Mn is the same as M,, up to logn factors.

2. For any a € (0, 1), the ath marginal posterior quantile g, ,, of the sth component

~

0, satisfies Py(0ps < Gsa) = a + O(M,(py))-
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Different from the parametric probability matching prior where the remainder order

—1/2 the remainder order of a semiparametric model also depends on the

is always n
prior. Therefore, we define semiparametric objective priors in terms of higher-order
matching. From the results in Section 7.3.2, a prior is semiparametric objective if
the S, term in Theorem 48 has the same order as M, (p,) up to logn factors.

In this section, we first investigate the conditions under which an independent
prior is semiparametric objective. These conditions become unrealistic for those in-
dependent priors whose marginal on the nonparametric part 7 is adaptive to the
smoothness of the true function 7y, which is consistent with former negative obser-
vations (Castillo, 2012; Rivoirard and Rousseau, 2012). On the contrary, we show
that a new class of dependent priors can be simultaneously semiparametric objective
and adaptive under mild conditions. Throughout this section, we assume

(A3) (Local expansion for the least favorable curve) There exists a function h* €

Lo(Py) such that as 6 — 6,
15 (v) = 10 + (0 = 60)2* (v) + O — bo|*).

A3 is amild condition. For example, it is satisfied for the GPLM with quasi-likelihood
(Lemma 47).

As we show in Lemma 53, the high-order remainder term S,, depends on G,, and
G/, in (A1) and (A2). (A1) appears to be intrinsic to the semiparametric model. For
example, in many cases G, (t) takes a form of nt® + \/nt* + nt’p, + ntp? + /np?.
Therefore, by Theorem 48, under this situation a prior is semiparametric objective if
it satisfies (A2) with G/, (t) = O(G,(t)) ast — 0. As a weaker requirement compared
to the semiparametric objectiveness, we call a prior to be unbiased if (A2) holds with
G' (n"'?logn) — 0 as n — . Note that (A2) is also a basic requirement for the

root-n convergence rate of 6.
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7.4.1 Independent prior

We illustrate when an independent prior

(PI) 0 ~ H@, n~ HH.

is semiparametric objective. Applying a change of variable n — 7 + An(6,) in the

numerator in (A2) yields

J exp(ln (0o, n — An(6h)))dI1y () = J exp(ln (6o, M)f ()Ml (1), (7.27)

n Hn _A"?(en)

with f(7) = dlly,._ane,)(7)/dl g (7)) the Radon-Nykodym derivative between the two
measures, where Il ._, representing the distribution of W — g if W ~ II. Consider
the following assumption:

(A4) There exists a nondecreasing function G : R — R, such that for any
0, = 6y + Op,(p,) and uniformly over n € H,, |log f(n) — 1| = O[G”(max{|0, —
0ol, n~2log n})].

The following lemma provides sufficient conditions under which (PI) is unbiased.

Lemma 54. Assume A3, Assumption 2 and A4. Then the independent prior satisfies
(A2) with G, = G + §,.

G! (t) in Lemma 54 does not converge to 0 as t — 0. Therefore, we do not require
the remainder term in (Al) to converge to G,(0) = 0 as 6, — 6. Given a prior
for n, A4 indeed puts a restriction on An(f,). For example, when II corresponds to
the Gaunsian process (GP) prior (Rasmussen and Williams, 2006), this restriction
requires An(6,,) € H, where H is the reproducing kernel Hilbert space associated with
the GP, and otherwise | f(n)| = co. When the smoothness « of 7 is known and the co-
variance function of the GP prior is chosen properly, p, can attain n~=®/(2e+d)(log n)?
for some 7 > 0, which is close to the minimax rate An(6,) of estimating an d-variate
a-smooth function, as long as h* is at lease a-smooth. As a result, such an indepen-

dent prior can be unbiased and semiparametric objective. On the other hand, when
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a smoothness-adaptive GP prior with random length scale parameter (van der Vaart
and van Zanten, 2009) is specified for n, the restriction An(6,) € H becomes very

stringent under the same p,. Section 7.5.1 provides a concrete example.
7.4.2  Dependent prior

Since our primary interests is a smoothness adaptive prior for n, the above analysis
implies that we need to consider unbiased and semiparametric objective priors where
f and n are dependent.

Let i be an estimator of the least favorable direction h* that satisfies the following

assumption: for any 6,, = 6y + Op(p,),
(A5) (80,1 — An(8) + (6 — 00)h) — L (6o, 1)

= Op,|G2 (max{|0 — 6y, n~2log n})].

Because An(6,) — (0, — Ho)ﬁ = (0, — b)) (h* — ?L) + O(]6, — 6]?), in many cases A5
can be implied by the following condition with G” (t) = nppknt + np,t2:

(A6) 1 = h*||, = Op(kn), Kn — 0.

For example, assumption A6 will be made in the examples in Section 7.5.
Let Ilg be an appropriate marginal prior for # and Il a smoothness adaptive

prior for 7. Consider the following prior for (6,n),

(PD) 0 ~To, nl0 ~W +6h with W ~ II.

The conditional prior of 1 given 6 in (PD) is obtained by shifting the center of 11y by
0h. The idea is simple: we want to compensate for the bias by adjusting the center
of the prior for the nuisance part. With this bias correction, the stringent condition

A4 on the least favorable direction can be avoided.
Lemma 55. If A3, Assumption 2 and A5 are true, then the dependent prior (PD)
satisfies (A2) with G, = G + 6,,.
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Compared to A4, A6 is much weaker because it only requires a satisfactory es-
timator of A*. On the contrary, A4 puts constraints on both the prior Il and h*.
The constraint on Il is too stringent to admit adaptivity. For example, see Section

7.5.1.
7.4.8 Second-order BuM theorems for unbiased priors

Applying Theorem 48 to the priors in the above subsections, we obtain the following

result.

Theorem 56. Suppose Xi,...,X, are i.i.d. observations sampled from Py = F.
Suppose that A3, S1, Assumption 2, (A1) holds. If either A4 for the independent
prior (PI) or A5 for the dependent prior (PD) is true, then the marginal posterior

for 0 has the following expansion in total variation as n — oo,

sup 110 € A|X1,..., X)) =N (60 +n2A,, (n1gy 1) ") (A)]
= Op[G.(n"Y*1ogn) + G"(n"logn) + 8,].
7.5 Examples

Because the PLM is easy to analysis and sufficient for comprehension, we primarily
focus on PLM as an application of the general theory. Then we provide general

results for the GPLM, of which the PLM is a special case.

7.5.1 Partially linear models

Independent prior

First, we consider independent priors for 6 and 7. Theoretically, the prior for 6 can
be any continuous distribution on R* that has a full support. However, for computa-
tional convenience such as conjugacy, we choose a multivariate normal distribution
N(0, I /&) for TI(0), where ¢y is the precision parameter of the prior. For example,
one can choose ¢y = 0.01 for a vague prior for 6.
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The prior II, is a infinite dimensional measure over the d0-variate Holder func-
tion class with unknown smoothness. We consider the Gaussian process (GP) prior
with a random inverse bandwidth parameter (van der Vaart and van Zanten, 2009).
The inverse bandwidth parameter determines the decaying rate of the covariance
function. A GP W% = {W2 : z € R?} with a fixed inverse parameter a is denoted by
We ~ GP(m, K?%), where m : R — R is the mean function and K : R x R? — R is
the covariance function that depends on a. We primarily focus on the squared expo-
nential covariance function, although with slight modifications, the following results
could be generalized to a broader class of covariance functions with exponentially
decaying spectral densities. Let K(z,y) = EWSWS = exp(—a®|lz — y|[*) be the
squared exponential covariance function indexed by a > 0.

Given n independent observations, the minimax rate of estimating a d-variate
function that is known to be Holder a-smooth is n=%/(2+4) van der Vaart and van

Zanten (2009) shows that a hierarchical prior as

WA4A ~ GP(0, K, A~ Ga(ag, bo), (7.28)

for Ga(ag, by) the Gamma distribution with pdf p(t)oct®~le=%! leads to the minimax

rate nfa/(ZoHrd)

up to a logarithmic factor, adaptively over the unknown smoothness
level ar. We slightly modify the prior for A to be a truncated Ga(ag,by) whose pdf
p(t)oct®o=te=bot [ (¢t > t4) for technical reasons and this modification will not sacrifice
the adaptivity of the prior. Choices of the hyperparameters have diminishing impacts
on the posterior as the sample size n grows and therefore we simply set ag = 1/2 and
by = 1/2.

Properties of a GP with a covariance function K are intimately related to the
reproducing kernel Hilbert space (RKHS) associated with K. For the scaling depen-
dent covariance K%, we use H* and ||- ||, to denote the RKHS and the RKHS norm,

respectively. The unit ball in the RKHS H* is denoted by HY.
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By checking the assumptions A3, Assumption 2, (A1), (A2) and A4, we have the

following theorem for the independent prior above for partially linear models.

Theorem 57. Let X; = (U;,V;,Y;)) e R x R4 xR, i = 1,...,n, be n observations
from the partially linear model (7.7). Consider the independent priors for 6 and n

as above. Assume the following conditions:
1. no 1s Holder a-smooth;
2. P(U—-E[UIV])?>0;

3. The conditional expectation E|U|V = v] as a function of v belongs to the RHKS
Hito,

Then the following second order asymptotic expansion holds:

sup [I1(0 € A|X™) — Ny (6p + 024, (nIy"))(A)| = Op(Vnplogn),  (7.29)
A

where A, = n 23" I e(Us — E[UVi]) % Nu(0,1,1), Iy = P(U — E[U|V])?

—a/(2a+d)( )1+d_

and p, =n logn

The above theorem suggests that by choosing an adaptive prior for the nuisance
parameter, the second order estimating efficiency of the parametric part could also be
improved adaptively. However, this theorem requires a strong constraint on the least
favorable direction h * (v) if an independent prior is specified. In fact, a necessary
and sufficient condition for a function f belonging to H® is that it has a Fourier

transform f satisfying

J [FO) e ) < oo,
Rd

for some ¢ > 0 (van der Vaart and van Zanten, 2009). This condition implies the

infinite differentiability of h*. Since H* € H' for all s < ¢ (van der Vaart and van
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Zanten, 2009, Lemma 4.7), Theorem 57 guarantees the second order BvM results
under a weaker constraint on h* with a larger ¢5. To avoid such a strong condition,

we consider the dependent prior as in the next subsection.
Dependent prior

We consider the dependent prior (PD) in section 7.4.2. For partially linear models,
the least favorable direction h*(-) takes the form of —E[U|V = -], which does not
involves (0y, 19) and thus can be estimated as h by using the design points {(U;, Vi)}
directly. For GP prior, shifting the center is equivalent to the translation of the
mean function. Therefore, for partially linear models with the above GP prior, the
dependent prior version (PD) is,
0 ~llo, A%~ Galag,by),
~ (7.30)
n0, A ~ GP(6h, K*).
An intuitive explanation of the above prior is the following. If we reparameterize the
nuisance parameter as { = 7 — Q’f\L, then ¢£|A, 0 ~ GP(0, K#) and the partially linear
model becomes

Y =60[U + h(V)] + (V) + ¢, (7.31)

with the truth 8 = 6y and & = & = g — QoiAz. If we consider U + ?L(V) as a new (7,

then the least favorable direction of the new model becomes

h = E[U|V] = E{U — E[U[V]|V} + h* — h = Op,(kn) 2> 0,

with k,, being defined in assumption A6. As a result, the semiparametric bias of the
new model is negligible.
The following theorem formalizes this observation and provides the seconder order

BvM theorem under this dependent prior.
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Theorem 58. Let X; = (U;,V;,Y:), i = 1,...,n, be a sample from the partially
linear model. Suppose that h is an estimator of the least favorable direction h*(-) =
—E[U|V = -]. Assume the first two conditions in Theorem 57 and A6. Then under

the prior (7.30), the following second order asymptotic expansion holds:

SUp (0 € A|X™)—N, (90+n_1/2ﬁn, (nIy ") (A)| = Op(v/np; log n++/nk,p, logn),
(7.32)

where A, = n V23" I5 e (U; — E[UIV;]) % Ny(0, 1Y), Iy = P(U — E[U|V])?

—a/(2a+d)( I+d

and p, =n logn)

By the above theorem, if k,, = Op(p,), then we can achieve the same adaptive
second order efficiency as Theorem 57, but under a much weaker condition A6. For
example, when h* is at least a times differentiable, then the typical construction of h
as a kernel type estimator with appropriate choices of the kernel and the bandwidth

parameter satisfies A6.
Simulation study

In this part, we conduct a simulation study comparing the dependent prior and the
independent prior. In each setting, we generate 100 replicates from the following

four models:

M1 Y; = 0.5U; + exp(V;) + N(0,0.52), with V; % N(0,1) and U;|V; ~ N(0.5|V;[3, 1);
M2 Y; = 0.5U; + exp(V;) + N(0,0.5%), with V; £ N(0,1) and U;|V; ~ N(0.5V3,1).
M3 Y; = 0.5U; + exp(|[Vi|) + N (0, 0.5%), with V; % N(0,1) and U;|V; ~ N(0.5|V;[3, 1);
M4 Y; = 0.5U; + exp(|[V]) + N(0,0.52), with V; % N(0,1) and U;|V; ~ N(0.5V3,1).

In M1, the least favorable direction h*(v) = 0.5|v|? is twice differentiable in R but not

thrice differentiable at v = 0. In contrast, the least favorable direction h*(v) = 0.503
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in M2 is infinitely differentiable. M3 and M4 are counterparts of M1 and M2 respec-
tively with non-differentiable nuisance parts at v = 0. We consider three procedures
to fit these models: P1. the independent prior (7.28); P2. the dependent prior (7.30)
with ?L("U), which estimates —FE[U|V = v], produced by the Nadaraya-Watson kernel
regression algorithm using the Gaussian kernel with an optimal bandwidth (Bow-
man and Azzalini, 1997, p.31); P3. the dependent prior (7.30) with ?L(U) the same
as the truth h(v). In all of them, we choose the hyperparameters ag = by = 1 in the
Gamma prior for A and a vague prior for 6 as N(0,10%). For each replicate, we run
the MCMC for 10, 000 iterations and treat the first 5,000 as the burn-in.

The results for M1 and M2 are displayed in Table 7.1. M1 and M2 have smooth
nuisance function models. We vary the sample size n from 20 to 400 for model
M1 and M2 and apply the three methods P1, P2 and P3 on each. We record the
root mean squared error (RMSE) for 6 (under the Euclidean norm) and 7 (under the
empirical norm) respectively. The average estimated standard error based on MCMC
(SE) and the empirical coverage of nominal 0.95 credible intervals based on MCMC
(CR95) are also reported. From Table 7.1, as n grows, the estimation accuracy of 6
with the dependent priors improves. However, the RMSE for § with the independent
prior only significantly decreases as n goes from 20 to 50 and keeps around 0.1 as
n further grows. On the other hand, the estimated standard error by P1 decays
as that by P2 and P3. As a result of these, the actual coverage by P1 becomes
significantly smaller than the nominal level as n grows. This phenomenon occurred
with the independent prior empirically justifies the semiparametric bias we discussed
after Lemma 53 and illustrates the necessity of compensating the bias by considering
the dependent priors. As we expected, the RMSE for # intimately depends on the
RMSE for n: a large RMSE for n usually corresponds to a large RMSE for 6. In

most cases, the RMSE for 7 in the less smooth model M1 is greater than that in
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Table 7.1: Simulation results for the partially linear model with a smooth nuisance
part based on 100 replicates.

model | method RMSE(6) SE RMSE(7) CR95

P1 0.277 0.155 0.571 0.91

M1 P2 0.188 0.176 0.454 0.97

" — 90 P3 0.150 0.181 0.392 0.99
P1 0.311 0.162 0.587 0.85

M2 P2 0.195 0.182 0.477 0.95

P3 0.159 0.183 0.390 0.97

P1 0.115 0.078 0.308 0.92

M1 P2 0.085 0.082 0.274 0.96

" — 50 P3 0.083 0.083 0.270 0.95
P1 0.104 0.080 0.298 0.84

M2 P2 0.084 0.085 0.267 0.96

P3 0.082 0.085 0.268 0.96

P1 0.103 0.052 0.225 0.83

M1 P2 0.056 0.056 0.202 0.95

n = 100 P3 0.053 0.056 0.204 0.96
P1 0.096 0.051 0.235 0.85

M2 P2 0.055 0.054 0.209 0.94

P3 0.051 0.055 0.206 0.97

P1 0.106 0.038 0.230 0.62

M1 P2 0.042 0.038 0.197 0.93

" — 200 P3 0.036 0.038 0.187 0.97
P1 0.094 0.036 0.209 0.72

M2 P2 0.038 0.038 0.180 0.95

P3 0.038 0.038 0.183 0.98

P1 0.115 0.035 0.289 0.38

M1 P2 0.030 0.028 0.187 0.93

n — 400 P3 0.025 0.028 0.187 0.98
P1 0.107 0.033 0.268 0.45

M2 P2 0.030 0.027 0.178 0.92

P3 0.027 0.026 0.179 0.98
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the model M2, leading to higher estimation accuracy of 6 in M1 than that in M2.
Another observation from the displayed results is that as n increases, the difference
in the estimation efficiency between P2 and P3 becomes negligible. This might be
attributed to the increasing accuracy of the estimation of h.

Table 7.2: Simulation results for the partially linear model with a nonsmooth nui-
sance part based on 100 replicates.

model | method RMSE(6) SE RMSE(7) CR95
P1 0.404 0.184 0.752 0.76
M3 P2 0.183 0.181 0.410 0.96
= 20 P3 0.156 0.178 0.377 0.97
P1 0.207 0.148 0.495 0.92
M4 P2 0.148 0.180 0.390 0.98
P3 0.144 0.180 0.409 0.99
P1 0.243 0.088 0.499 0.74
M3 P2 0.090 0.085 0.279 0.94
" — 50 P3 0.084 0.087 0.280 0.97
P1 0.194 0.089 0.408 0.80
M4 P2 0.084 0.087 0.270 0.97
P3 0.084 0.087 0.265 0.97
P1 0.217 0.064 0.441 0.67
M3 P2 0.061 0.056 0.233 0.93
n = 100 P3 0.057 0.056 0.231 0.93
P1 0.122 0.052 0.309 0.84
M4 P2 0.059 0.055 0.221 0.96
P3 0.058 0.055 0.219 0.95
P1 0.189 0.036 0.410 0.53
M3 P2 0.042 0.039 0.215 0.94
= 200 P3 0.042 0.039 0.212 0.97
P1 0.106 0.042 0.271 0.77
M4 P2 0.041 0.038 0.204 0.98
P3 0.040 0.038 0.203 0.97
P1 0.194 0.041 0.429 0.21
M3 P2 0.035 0.029 0.207 0.95
P3 0.031 0.028 0.205 0.95
n = 400
P1 0.115 0.033 0.282 0.65
M4 P2 0.033 0.028 0.193 0.94
P3 0.030 0.028 0.193 0.96
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Table 7.2 provides the results for M3 and M4, whose nuisance functions are non-
smooth. As expected, the overall estimation accuracy in Table 7.2 is worse than that
in Table 7.1. However, similar overall trends as those in Table 7.2 can be observed.
For example, the estimation performance of P1 are generally worse than that of P2
and P3 and the semiparametric bias in P1 is more salient under M3 and M4 than
under M1 and M2. In addition, the RMSE for 6 associated with P1 under a non-
smooth h* is significantly worse than that under a smooth h*. This is consistent
with A4 because the semiparametric bias under the independent prior (PI) tends to

be larger when A* is less smooth.
7.5.2  General partially linear models with quasi-likelihood

The corresponding second order semiparametric BvM theorem of GPLM with quasi-
likelihood is similar to that of partially linear models and we only provide the version
for the dependent prior here. Similar to section 7.5.1, we consider a semiparametric
adaptive prior for GPLM. Let h be any estimator of the h given by Lemma 47 that
satisfies assumption A6. We still focus on (7.30) based on the GP prior for the

nuisance part.

Theorem 59. Let X; = (U;,V;,Y:), i = 1,...,n, be a sample from the general
partially linear model with quasi-likelihood (7.4). Suppose that h is an estimator of
h that satisfies A6. Assume Assumption 1. Furthermore, if the following conditions

are satisfied:
1. ny s Holder a-smooth;
2. P(U—-E[UIV])?>0;
Then under the prior (7.30), the following second order asymptotic expansion holds:

sup |I1(6 € A|XM) N, (00+n’1/2ﬁn, (nly ) (A)| = Op(Vnp log n++/nk,py logn),
A
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where

Ay =02 YIS Wilo (T)(Us + h* (Vi) ~% Ni(0, 157,

i=1

Iy =Eo[lo(T) fo(T)(U + R*(V))(U + h*(V)"],

70{/(2a+d)( )1+d'

and p, =n logn

7.6 Proofs of Theorem 48 and Theorem 56

The following lemma shows that the ILAN (7.15) and assumption Assumption 2
imply the second order semiparametric BvM. Here the notation a, = b, means that

a = cb for some ¢ > 0.

Lemma 60. Suppose that X1, ..., X, arei.i.d. observations sampled from Py = Py.If

the following conditions hold:

1. The ILAN as (7.15) holds with a decaying rate R, such that R,(n"'?logn) =

o(1) as n — oo;
2. The marginal prior for 6 satisfies S1;

3. There exists a sequence (p, : n = 1) satisfying p, — 0, np? = —log R, (n/?
logn) and supy <, Rn(t)/t* = o(n), such that for M sufficiently large, assump-

tion Assumption 2 holds,

Then the marginal posterior for 68 has the following expansion in total variation,

sup |[1(0 € A[Xy, ..., X,)—Ni (0 + 2R, (nTp, ) ™) (A)]
A

— Op[Rn(n"?logn) + 8, (7.33)

where A, = n 23" T Ty (X)) ViR Nk(O,IgO’an) is defined by (7.2).

i=1 "00,m0
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The constraint on R, in Lemma 60 is mild since a typical R, has the form of
nt® + (npn + Vn)t2 + (np2 + npukn + A/npn)t + /np2 + 6,. Under this form of
R,,, condition 1 requires that p, = o(n~/*), which is a common condition obtained
by various authors for proving the first order semiparametric BvM theorems. The
condition p, ~ n~a*d) + o(n=1/4) requires that o > d/2 when the nuisance part
Mo is a d-variate a-smooth function.

The log n term appears in the conclusion of Lemma 60 is possible to be suppressed
with more efforts. However, since logn terms commonly appear in the posterior
convergence rate p, of Bayesian nonparametric models, we exhibit the current result
to avoid more involved conditions and longer proof. Comparing to the results in
Bickel and Kleijn (2012), we replace their ILAN with the stronger condition (7.15)
in order to exchange for a weaker requirement on the marginal convergence rate of
6 as p, instead of a parametric rate n=/2.

Theorem 48 is the direct consequence of Lemma 53 and Lemma 60. Theorem 56

can be proved by applying the arguments in Section 7.4.1, Lemma 55, Lemma 53

and Lemma 60.
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Appendix A

Appendix for Chapter 2

A.1 Proofs of technical results in Chapter 2

A.1.1 Proof of Theorem 3

(2.6) describes the posterior convergence rate of the regression model with the con-
structed prior II,,. Commonly, posterior convergence statements can be proved by
applying the results in Ghosal et al. (2000) (Theorem 2.1 for IID observations) and
Ghosal and van der Vaart (2007) (Theorem 1 for non-IID observations), which yields
the following for the regression model:
Ep. ol (M(Prq, Pryq) = Men| X1, Y1, X,,,Y,) — 0,

where h is the Hellinger distance. However, h is bounded above by || - ||g, but is
equivalent to this norm only when the function class ¥ is uniformly bounded, which
is less interesting. Therefore, we apply the techniques in Ghosal and van der Vaart
(2007) that allow extensions of h to any distance d,, that satisfies the following test

condition:
(T) There exists a sequence of test functions {¢,} such that Py, oo, < e~ andn(f1./0)

and Pro(l1—¢,) < e~z (f1.0) for all f € ¥ such that du(f1, fo) < 15du(f1, fo)-
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Suppose that for a sequence ¢, with ¢, — 0 and ne? — oo, constants C' and c,
and sets F,, < X, we have

log(€n, Fy ¢ 'dy) < nese?, (A.1)
IL,(S\F,) < exp( — nerc*(C +4)), (A.2)

Hn(f : K(Pyp0: Prq) < Eic_2a Voo(Prq: Prao) < Eic_z) = exp(—neic_QC’), (A.3)

where K (P, Q) = Plog(p/g) is the Kullback-Leibler divergence between two proba-
bility distributions P and @, and Vao(P, Q) = P(log(p/q) — K (P, Q))Q. Then under
(T), by combining the proofs of Theorem 4 in Ghosal and van der Vaart (2007) and
Theorem 2.1 in Ghosal et al. (2000), we have

Epy ol (¢ du(f, fo) = Men| X1, Y4, ..., X0, Y,) = 0,

where M is a sufficiently large constant independent with c¢. Note that (A.1)-(A.3)
generalize the conditions in Theorem 2.1 in Ghosal et al. (2000) by allowing an
arbitrary tuning parameter c¢. By the results in Birgé (2006), (T) is satisfied with
dn(f,9) = o||f—gl|q for the regression model with random design X; ~ (). Therefore,
by choosing ¢ = o, our generalized conditions allow us to track the impact of o on
the posterior convergence rate ¢,.

Return to our regression problem with an ¢, satisfying ne?2 > o?log N(e,, %, || -
llo)- Assume that &, is an e,-covering set with N(e,, 2, || - ||g) elements. Let II,
be the discrete uniform probability measure on the finite set &,. Let F,, = X for all
n. We will prove (2.6) by verifying the conditions (A.1)-(A.3) with ¢ = 0. (A.1) is
satisfied by the constraint on €, and (A.2) is trivially satisfied by the choice of F,.
So we only need to check (A.3).

The Kullback-Leibler divergence between two regression models P g and Py, ¢

indexed by regression functions f and fy respectively is given by

P 1 1
Paa 108 22} =53 Bx(FX) = SOV’ = 53511f ~ ol
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Similarly, we have,

P, 0 2
Pfo,Q(IOng—O _K(Pfo,Q>Pf,Q)> =T‘2||f—fo||é-

fo,Q

Therefore, for some universal constant C,

{fellf=hllg <t e

{f : K(Ppyq. Prq) < Ceo 2, Vao(Pr, Pro) < 06202}-

Since &, forms an e,-covering set for ¥, there exists an f such that I f- follo < e

for fo € . Therefore, we have
I.(f : Kpo: Pra) < 6,02 Vao(Proq. Pra) < ,07)
~ 1 _
2L (f = f) = Al exp{—1log N(ea, 2, [| - l@)} = exp{-neo~?},
which proves the condition (A.3). Therefore,

EfO,QHTL(f : ||f - f0||Q > M6n|X17 }/17 cee 7Xn; Yn) — 0.
The second part can be proved similarly as Theorem 2.5 in Ghosal et al. (2000).

A.1.2  Proof of Theorem 4

Unlike the random-design perspective in the proof of Theorem 3, now we treat the
regression model to be fixed-design by conditioning on (Xi,...,X,). As a result, we
use P¢(Y|X) instead of Prg(X,Y) for the likelihood function in the proof. We first
states two lemmas. The first lemma strengthens Lemma 8.1 in Ghosal et al. (2000)

under the regression framework.

Lemma 61. Assume Y;|X; ~ N(fo(X;),0%) and 11 to be a probability measure on
the set {f : n=' >0 K(Pr,0(1Xs), Pro(1Xs) < €2072/2} for a fized e > 0. Then
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for any C' > 0,

T (Vi X5) 2 o
Pfo(fnmdﬂ(f) <exp(— (14 C)neo ™)

%)

< exp(—Cné’o™?).

Proof. By Cauchy’s inequality;,
Py (YilXi) Pfo
> 1.
I mo: [T mo
Combining the above with Markov inequality and Fubini’s theorem yields

(Jﬂgj; 1;");( TI(f) < exp(—(1 + C)ne2o2) Xn)

<Py, (jl_[ ?: ;:”;5 II(f) = exp((1 + O)ne*o~?) . ,Xn>

<exp(—(1 + O)ne’o~ )JPfO(EEXp{2 QZ{ — fo(X3))?

—26,(f(X;) — fo(Xz‘))}HXl’ X 7Xn> dIL, ()

~exp(~(1+ Cneto™) [exp (Ll = ol )am ()

with ¢; = Y; — f(X;) ~ N(0,0?). In the regression framework, n=! 37" K (Py, (-] X)
Py(1X0) = |If = foll5/(20%), so on the set {f : n7" 330 K(Pp,(1X3), Pr(-|X3))

e2072/2}, we have
. ,Xn>

1 Pr(YilXs) A
Pfo(fnmdﬂ(f) <exp(— (14 C)ne‘o™?)

< exp(—Cné’o?).

The second lemma compares the || - || norm with the || - ||, norm
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Lemma 62. Suppose that ¥ is uniformly bounded and €, satisfies

nei > g2 suplog N(e,, %, || - ||r),
R

then for some cy, ¢y, c3, ¢4, c5 and any n € (0,1),

P [l
eS| fllg=cien/n

If1lq
P( sup I fl]n = c5en) < ¢y exp(—cane?).
rexs|Iflle<seren

= 1‘ > n) < ey exp(—czne?),

Proof. The second inequality is implied by Lemma 5.4 in van de Geer (2000). The
proof of the first inequality is a combination of the proofs of Lemma 5.4 and Lemma
5.16 in van de Geer (2000), with the bracketing entropy condition replaced with the

uniform covering entropy condition. O]

Return to the proof of Theorem 4. Choose d,, = ol - ||,, in the proof of The-
orem 3. By the results in Birgé (2006), (T) is satisfied with d,, for the regression
model with fixed design. Moreover, we use the results in Ghosal and van der Vaart
(2007) for non IID observations since now we have a regression model with fixed
design (Ghosal and van der Vaart, 2007, section 7.7). Let &, be an ¢,-covering
set under || - ||,,, which contains N(e,,%, || - ||,) elements. Then the first part fol-
lows by adapting the proof of Theorem 4 in Ghosal and van der Vaart (2007) to d,,
with the help of Lemma 62 and Lemma 61, where the decay rate of Ey, olI, ( f:
If = folln > Me,| X1, Y1,..., X,,Y,) is determined by the decay rate of Py, ( {7,

B0 0TI f) < exp(—(1 + C)ne*o~?)| X1, ..., X,) for II the restriction of II, on
Pfo(Y;|Xz)
the set {f : n 1Y | K (P, (-|X;), Ps(:| X)) < €0 2/2} in Lemma 61. The second

part is implied by Theorem 2.5 in Ghosal et al. (2000). The third part follows by
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noticing the fact that for the posterior expectation f = §FdIL,(f1 X0, Y0, .., X0, V),

Eno(lf = foll3) < Eno(lf = foll?)
<Eno j 1f = foll2dIL(f1 X0, Vs ., X, Vo)

SMPe;, +4CT By, oI (|| f = follh = Men| X1, Y1, ..., X0, Ya) < De;

where the first step follows by the convexity of || - ||2.
A.1.8  Proof of Theorem 5

The results of Theorem 5 are standard minimax risk lower bounds for regression. For
self-containment, we sketch a proof, which follows a standard information-theoretic
argument using Fano’s inequality (Yu, 1997; Yang and Barron, 1999; Tsybakov,
2009):

Step 1: Reduction to bounds in probability. By the Markov inequality, for any

T >0,

Erollf — flIb = Pro{llf — fllg = € }er. (A.4)

Therefore, in order to prove that ¢, is a lower bound of the minimax risk, it suffices
to show that inf;sup ey Pro{ll f=fllo = €,) is lower bounded by some universal
constant 7 > 0 independent of n.

Step 2: Reduction to a finite number of hypotheses. Since

nfsup Proflf — o= ) it s Fro{llf - fillo > ).
f fes I fe{fo,fn}

for any finite set { fo, ..., fy} contained in ¥, we can reduce the original inf involving
infinite number to only N 4+ 1 many well chosen model elements. Intuitively, these
elements should be well-separated in order to represent the entire model space.

Step 3: Choice of 2¢,-separated hypotheses. If
| fs — fillo = 2€,, Vs, t:s#t,
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then for any estimator f ,

Pro(lf = fllo=e) = Pro(Z#5), s=0,1,...,M,

where Z is the value of ¢ for which ||f — f;||¢ is minimized.
Therefore, if a random variable S is defined to be uniformly distributed on

{0,1,..., N} and the observation follows Py, conditioning on S = s, then

inf  sup Pf,Q{Hf_fOHQ

o(Z # s) iIZIfP(Z # 5).

an

From Fano’s inequality (Cover and Thomas (1991)), we have:

P(Z#SIX")>1- ,
( 7 | ) log N

where X™ and Y are the observed covariate and response with sample size n and
Ixn(S;Y™) denotes the conditional mutual information between S and Y given X,.

Therefore,

. Exn|Ixn(S;Y™)] +log2
inf sup P — >e€,)=>1— : A5
ifsup rolllf — fllo ) log N (A.5)
By definition, this conditional mutual information
1 _
Ixn(S;Y") = ——— KL(P P
X (57 ) N + 1 ;) ( f87Q7 )
(A.6)
R _ 1 Y
R KL(P P)—-KL(P,P) < —— KL(P;. o, F).
N+1§8 (P, P) (P, Py) N+1§ (P, P)

where K L(P,Q) = Plog(dP/dQ) is the Kullback-Leibler divergence between P
and Q, P = ﬁ Zivzo Py, and Py can be an arbitrary model, which is taken to be

Py, ¢ in the following. In the regression settings,

Ex-KL(P,, Py,) = 22ZExn L0 = foX0)* = g5l f = folly (AD)
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Therefore, by (A.5), (A.6) and (A.7),

infsup By ql|f — fII = € inf sup Pro{|lf — fllo = en} (A.8)
[ fex f fex
nmax,||fs — follg
> 241 — . A9
E”{ o%log N (8.9)

If {f, — fo}2, forms a modified 2¢,-packing set, i.e.

I fs —f0||2Q < Ké, ||fs — fil] = 2¢,, for all s # t,

then the theorem can be proved by the choice of €, and taking N = C(2¢,, K, %, || -

lle)-

A.1.4 Proof of Theorem 6

Let {ay,...,ax} be some tuning parameters satisfying 3% a2 = 1 that will be
determined later. By F2, any two different functions f; and g in E(ae) satisfy
I|fs — gsllo = ase and ||fs|]lo < Kase. In the following, we apply a probabilistic
argument to construct a desired €/2-packing set £(e¢/2) for F as a subset of Q =
(—szl Es(ase) such that the size of the subset is comparable to ]_[];:1 Cs(as€). Then,
by F1,

1S40 < BY A, < B 3 e = I
s=1 s=1 s=1
Hence, £(¢/2) is also a modified €/2-packing set for F.

For notational convenience, Cs(ae, K) will be further abbreviated as Cs when
as, € and K are fixed. However, C(a€) will also be used when we want to emphasize
the dependence of Cy on ay and e.

Consider the probability space (£, %, P), where the Sigma-field ¥ is composed
of all subsets of {2 and P is the uniform measure over Q2. If F' = (Fy,..., F}) is
a random variable on ) with distribution P, then it is easy to see that Fi,..., F}

are independent with marginal distributions P(Fy = f5) = 1/C;, for any fs € F,
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s=1,..., k. For M independent copies { FI™}M_, of F, where M will be determined

later, our goal is to estimate

P{||F<i> —FO|g= -, Vi<i<j< M}.

DO ™

If this probability is positive, then we can choose f(V, ..., f™) from the sample space

Q, such that {f(™}M_| forms an e-packing set of F with M elements. Since

P{||F<i> —FY9|g= -, VI<i<j< M}

DO |

S P{||F<Z‘> —FO)||q < %}

1<i<j<M
1
—1- MO = 1) P{IIFY - PP < £}
we want to find the maximal number M so that

P{||F(1) — FY||g < g} < exp(—2log M). (A.10)

Let Z, = ](Fsgl) # FS(Q)) be an indicator variable. By independence of F() ... F()
24, ..., Zs are also independent with marginal distributions Z; ~ Bernoulli(1—1/Cj).

By the assumptions on E(ase), we have

k k
1F® = FONlG = Y IEY = F2llg > & ), ol 2.
s=1 s=1

Therefore
€ k 1
PUIFD —FO, < b <p 2z < 2%
{ lo< 5} < P{ ez <

For a tuning parameter A > 0, by Markov inequality and independence, we have

k k
P{ Z ang < i} <P{€_/\Z§=1 aiZs > e_%} < 6% | | E{e—/\ang}
s=1

s=1

k k
<€% H {Oi + 6)‘&?} = 67%)‘ H {1 4 e)\aﬁflogcs}’
5 s=1
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where the last step holds since Z]§=1 a? = 1. Since for any z € R, 1 + % < 2e7/(@=0),

we further have

k
1
P{Za§25<1}$exp{—g)\+ Z (Aa?—long)}.
s=1

s:log Cs/a2<A

Let (a4, ...,ax) be the solution of
log C'y (o€ log Cs(ase log C(ave u .
osCilone) _ | _lonCulewe) | IeCilond) S0y
as a2 ai P

By setting A = A, we obtain
k 1 1 k
P{ ;laiZs < 4_1} <exp {Z)\ = ;llog C’S(ase)}
3 &
= exp { ~ 1 ;llog C’S(ase)}.

Therefore, we can choose M ~ Y*_ log C(ae€) in (A.10), which finishes the proof
of the first part.

For the second part, for each s € {1,...,k}, let Gs(cs€) be the corresponding ae-
covering set for Fy with Ng(ase) elements, i.e. for any function f in F, there exists
some g, in Gy(as€) such that ||fs — gsl|lo < cse. As aresult, for any f = 3% f, € F,
we can find g = 3" g, € A = @'_, G.(aye€), such that ||f, — gsllg < e holds for

each s, which yields

k k
1/ =gl <B Y |Ifs — gilly < BY a2é® = B,
s=1

s=1

Therefore, A forms an v/ Be-covering set for F. Moreover, log |A] = 31| log N,(avse€).
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A.1.5 Proof of Corollary 7

By Theorem 3, Theorem 5 and Theorem 6, €, is the solution of Z];:l log NS(@SE) ~

ne?, with (@, ..., a;) € R¥ satisfying:
log N (ae) log N, (cvs€) log Ny (cvge) )
—_— = = —— = s = ——— ~ NE .
of a3 a

If we let 0, = aze, then the above is equivalent to log NS((SS) ~néfors=1,... k,
with €2 = 3F a2 = 3* | 42

s=1"s"

A.1.6 Proof of Lemma 8
We work out a proof though a number of smaller parts.
Modified packing entropy of ¥(«, L, d)

We first consider the case when @ is the uniform distribution on [—1,1]. Let K :

[-1,1]? — R be a d-variate function satisfying

1
K e C*(RY), K(u)du; =0, for any u_; € [-1,1]* ' and j = 1,...,d. (A.11)

-1

Note that the last requirement is not need for the current proof for X(«, L,d) but
will play a key role for the other two cases. Such functions K exist. For example,
we can take

K(u) = a1 Kolu), where Ko(w) = ] | { exp ( - 1_;) - 02}1(|uj| <1),

i Ju; |

(A.12)

for any u € R? with ¢, = Sil exp{—1/(1 — [¢t|*)}dt and ¢; > 0 such that K satisfies
(2.1) with L = 1.

Fix h > 0 as a positive tuning parameter to be determined later. Let m = [%J,

M =m? and {z; : 1 < k < M} be a sequence of regular grids on [—1,1]? with the
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form

ki—1/2 kqg—1/2
(1 /,..., d /),forall(k:l,...,k;d)e{l,...,m}d.
m m

The order in x can be arbitrary. Define

r — T

d)k(x):LhaK( ) k=1,...,M, ze[-1,1]% (A.13)

For any multi-index |a|, the mixed partial derivative with respect to a of ¢y is

Deoy(z) = Lho‘"“D“K(x _hw’“> .

Since the support of ¢y is [zx — h, zx + h], we have that for | = |«],

|D¢x(x) — D¢r(y)]

max  sup -
la=1 z,y€[—1,1]% x4y |I - y|a
DK (x) — D*K
e wp DEO DG
lal=1 z,ye[—1,1]4 24y |l’ - y|a

which implies that ¢x(z) € X(a, L, d) for all k.

Denote the set of all binary sequence of length M by 2 = {w = (wy,...,wy) :
w; € {0,1}}. The desired e-packing set will be chosen from the collection of functions
E = {fw(x) = ZkM:1 wrdk(x),w € Q} Since for any k # k', ¢ and ¢ have distinct

support, £ is a subset of X(a, L, d). Moreover, for all w,w’ € 2, we have

A fr ) =] f (ful@) — fur(w))?d]"”

[_111]d

(A.14)

[ Do —? [ GRa)da]” = LHH K ),

where Ay is a d-dim square with edge length 1/m centered at x; and p(w,w’) =

SV I(wg # W) is the Hamming distance between the w and «'.
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By Lemma 2.9 in Tsybakov (2009), for M > 8, there exists a subset Qp =

(W@ WY of Q with N = 2M/8 guch that w® = (0,...,0) and
p(w® W)y > < VO<k<K <N.

Therefore for any different w®, w*) € Q), by (A.14) and the definition of m, we

h=¢  L||K]|
d W) = Lhota2|| K — = ———h*
(fowr, foun) | ||’\/ 3 22

In addition, by (A.14), we have

have

[ fuwlle = d(fuw,0) < Lh**P||K|[VM = LI K||h®,

Q=

Therefore by choosing h = (2v/2¢/(L||K]))“, the set E(e) = {f. : w € Qo} forms

the desired e-packing set of X(«, L, d) with

M 1/1\¢ L\ &
log |Eo(€)| = 3 > é(ﬁ) = K (z) )

with K, = %(!—f}g)d/a and K, = 2v/2. By the construction of K in (A.12), [|K|| =
||K|/|| K||ce is independent of L.

For general @), ¢ can still be constructed by (A.13), but with kernel K} being
dependent on k such that Sé ¢r(z)dz; = 0 for any z_; € [0,1]% " and j = 1,...,d.
This can be achieved by allowing each product component in (A.12) to have different

c2;. By the assumption on ¢, ||Kx|| will be both upper and lower bounded by

multiples of ||K || and (A.14) will still be valid with different multiplicative constant.
Modified packing entropy of ¥s(c, L, d, p)

Similar to the proof for ¥(«, L,d), for notation simplicity, we assume that @ is
the uniform distribution on [—1,1]. To prove the conclusion, we need to construct
a set of mutually orthogonal modified e-packing sets £2(e)’s for all function space
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Y (o, L,d) = {f(X®) : f € ¥(a,L,d)} with binary inclusion vector b’s satisfying
|b| = d, that is:

(a). For any two inclusion vectors b # b with |b| = |b/| = d, () L &Y (e), i.e. if
fe&(e) and f" e & (¢), then

o fho= f f(:cb)f'(:cb/)da:buy =0.

[_171]|bUbI|

(b). For each inclusion vector b with |b] = d, functions in £8(e) satisfies (i) and (ii)
in the lemma. Moreover, |E5(e)| = K (L/e)¥* for some K > 0 for each b with

size d.

If this construction is possible, then a desired e-packing set for ¥g(«, L,d,p) can
be specified as Es(€) = Uy p—q ES(e), where b in this union ranges from all possible
inclusion vectors with size d. In fact, for any two functions f, f’ in Eg(e), if they
come from the same &, then by construction of &(¢), ||f — f'|lo = € If they come
from different &J(€)’s, then by the orthogonality condition (a) and the fact that 0
belongs to EJ(e), ||f — f'IIg = |If — Ol + [|f — 0]|3 = 2¢%. In both situations, we
have || f— f'||o = e. Combining this result with condition (b), £s(€) forms a modified

e-packing set for Xg(a, L, d, p). Moreover, the size of Es(€) satisfies

d d
LY\~ L\~
log |Es(€)| = K <€> + log <Z> ~ K (z) + dlogg.

In the following, we construct such a £¢(e) satisfying condition (a) and (b). In

this construction, we use the crucial property in (A.11) that

f K (u)du; = 0, for all u_ € [=1,11* " and ¥j = 1,....d. (A.15)
R

For each fixed inclusion vector b with [b| = d, El(e) is constructed as in the proof

for ¥ (o, L,d). With this construction, we only need to verify condition (a). Under
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the same notations, it suffices to prove ¢y (%) L ¢ (2¥) for 1 < k, k' < M and b # V.
In fact, since k # k', we can always find a index jy such that bj, = 0 and b, = 1.

With this jo, we have

/ I‘b — Ib Jjbl — Ib,/ /
<¢k(xb)7¢k’($b )>Q _ L2h2af K k K k dl'bUb
[_171]\bub’\ h h

b b 1 Y Y
ZLQhQGJ K ] J K r Ty dr. dr: =0
[—1,1]bw |1 < h —1 h o n o ’

jebub’\{jo}

where the second last step follows by Fubini’s theorem and the last step follows from

(A.15).
Modified packing entropy of EA<(oz1, ooy ), (Lay ooy L), (dy, .., dg), p, J)

By definition, the size difference between EA((al, ooy ), (Ly, ..oy Ly), (dy, .o dy),
D, CZ) and @];:1 Ys(as, Ls, ds) is negligible for large p, so we only need to provide
a construction for the latter. As the condition (a) in the proof for Ys(«, L, d, p)
suggests, the modified packing sets for different additive components are orthogonal.

Hence, the conclusion is an easy consequence of the second part and Theorem 6.

A.1.7 Proof of Lemma 9

Covering entropy of Ys(c, L, d, p)

By the discussions before Lemma 9, for any inclusion vector b, we can find an e
covering set £Y for the subset under || - || consisted of all functions in Yg(«, L, d, p)

that depend on the d variables selected by the b, such that
d
b L\«
log N(€,E% - ]lo) < K -

Then an e covering set for Yg(a, L, d, p) can be chosen as the union of all such £’s

p

d) such inclusion

with b ranging over all inclusion vectors with size d. Since there are (
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vectors b’s, we conclude that

logN(e,Eg(oz,L,d,p),H-||Q) < Z logN(Eagva'HQ)

b:|b|=d

d

L a
:K(—) +dlog 2.
€ d

Covering entropy of EA((al, cooyap), (L, ooy L),y (dy, - ,dk),p,d)

The conclusion follows by the covering entropy upper bound for Xg(«, L,d, p) and

the second half of Theorem 6.

A.1.8 Proof of Theorem 1

The result follows by applying Theorem 3, Theorem 5, Lemma 8 and Lemma 9.
A.1.9 Proof of Theorem 2

The result follows by applying Corollary 7, Lemma 8 and Lemma 9.

A.1.10 Proof of Lemma 10

The proof is extracted from some key steps in van der Vaart and van Zanten (2009),
which help understand how the sieve construction works and how the parameters
(M,r,€,0) balance each other.

By Lemma 4.6, Lemma 4.7 in van der Vaart and van Zanten (2009) and Borell’s
inequality, for any a < r,

P(Wa ¢ BM,T,E,(S) < €7M2/87

for M? > Cori(log(r/e))**?, r > 1, € < €, where ¢ is some fixed positive number.
The above inequality provides the complementary probability for a fixed inverse
bandwidth parameter a.

Combining the above complementary probability, the Lemma 4.9 in van der Vaart

and van Zanten (2009) and the exponential tail for the prior density g(a), we have
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the following complementary probability for a random inverse bandwidth A for all r

larger than another fixed positive constant ag:

T

P(WA ¢ BM,T,E,(S) <P(A > T) + J P(Wa ¢ BM,T,E,(S)g(a)da
0

_ Oopd a2
<017“p d+1e Cor +e M/8.

This proves (2.14).
By Lemma 4.8 in van der Vaart and van Zanten (2009), for € > 7dM, where 7 is

some positive constant,
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€
a<d

By Lemma 4.5 in van der Vaart and van Zanten (2009), for some constant K > 0

and any € < 1/2,

1 1+d
log N (e, | - 1) < Kad(log—) |
€

Combining the above two and choosing § = ¢/(2d*?M) yields

M3/24/2q3/2p\ 14 C,M
log N (3¢, Barress ||+ ||o0) <Csrd(log Tr) +2log —

6 b
which proves (2.15).
A.1.11 Proof of Theorem 11

To apply the standard procedure in Ghosal et al. (2000) to determine the posterior
convergence rate €,, we need to construct a sequence of sieves (F,, : n > 1) such that
10g N (€n, Fu, || - ||) < ne2 and P(F¢) < e " which are similar to condition (2.10)
and (2.11). However, in the variable selection context, to keep the complementary
probability small, the entropy number log N(e,, F2, || - ||) associated with F¢, the

sieve corresponding to d variate, often increases exponentially fast in d. This will
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ao/(2a0 +d0)

deteriorate the contraction rate to n™ if the new sieve is simply constructed

as Jy<q, Ft and dy is larger than the true number |bo| of important predictors. So

we need to modify F¢ so that its entropy number can be of the same order as Flbol,
Generally, this modification might not be possible. However, for GP, the flexibility in
choosing €, as mentioned in (2.16) enables the sieve sequence to adapt the contraction
rate to true dimension |by|.

Let (B : n > 1) be a b-dependent sequence of sieves associated with €, in (2.16).
The sequence (€, : n = 1) will be specified later. We construct the new sieves as

B.- |/ B (A.16)

n
be{0,1}7:[b|<do
B, can be viewed as a subset of functions depending on at most dy components of

x € [0,1]7. Since there are at most p% such b in the union, by (2.16), we have the

following bound for the entropy number of this sieve:

log N(Lgna Bna || : ||00) <do logp + max {log N(Lgnv Bfw || ' ||00)}
be{0,1}7:[b|<do

(A.17)
<dglog p + Csné(logn)' .
By (2.16), we can also bound the complementary probability as:
PW{¢B,)= ),  PWi¢B.B=bPB=1)
be{0,1}P:|b|<do
< Y PWh¢B)P(B=1) (A1)
be{0,1}P:|b|<do
< > eMiP(B=b) ="
be{0,1}:|b|<do
Finally, we calculate a lower bound for the prior concentration by (2.12):
P(||Wx —wolle < pn) 2P(B = bo) P(|[W} = wollo < pu| B = bo)
(A.19)

1\ .
> <]_)> (1 _ ]_)) e Pn > e—npn—\bo\logp—27
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for n sufficiently large, where p, = L‘OboV(MOHbODn*O‘U/(QaU*'bOD (logn)? with v =
(1 + |bo])/(2 + |bo|/a) and the last inequality holds because (1 — 1/p)P~I1%l — ¢=1 as
p — 0.

By choosing €, equal to a large multiple of p,,++/do log p/n in (A.17)-(A.19), (2.9)-
(2.11) hold with e, a large multiple of p, (logn)**9)/2 4, /dylog p/n (logn)(**4)/2 or
L\ol/Geotibol) , —ao/2aotbol) (10 )P + 4 /dy log p/n(log n)®2, where 81 = (1 + |bo|)/(2 +
|bol/c0) + (1 4 do)/2 and B = (1 + do)/2.

A.1.12  Proof of Theorem 12

To study the the posterior contraction rate of AGPVS prior, we again utilize the
flexibility in choosing €, in the sieve constructions in (2.16). Note that conditioning
on K, each component has identical GPVS prior. So we can use the proof of Theorem
11.

Let (B, : n = 1) be the sequence of sieves constructed as (A.16) associated with
€n, where the sequence (€, : n = 1) will be determined later. We construct the sieves
(F : n = 1) for the additive GP models as

k

k
Fo= | f,’;:@sn:{fz};fh:whegn}.

k<Ky h=1

FF can be viewed as all functions that can be decomposed into a sum of &k functions
in B,, and F,, functions a sum of at most K. Since N(kLe,, F¥, ||]|lx) < N*(Le,, By,
||"|e0) and N(KoLépn, Fu, ||||0) < kK:(’O N(kLén, FE. ||*]|oo), we have N(KoLey, Fu, |-
[leo) < 229 N*¥(Lew, B, || - o) < N*(Lew, Bu, | - []eo)-

Combine this with (A.17) in the proof of Theorem 11, we obtain

log N(KoLépn, Fu, || - l|oo) < Kodologp + KoCsné2(logn)' . (A.20)
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By (A.18), we can bound the complementary probability as

Ko
P(W ¢ F,) <Y P(W ¢ FE|K = k)P(K = k)
k=0
Ko k
<> 2 P(WP ¢ B,)P(K = k) (A.21)
k=0 h=1
Ko
<Dl e " kP(K = k) = EKe ™,
k=0

where F K is the expectation of K.

Finally, by (A.19) the prior concentration can be lower bounded as:

ko
P10V = alle < 3. s
h=1

ko ko
PUK = k)P <|| DILEEEDIIESD) pnvh)
h=1 h=1
(A.22)
0
> pio | | PUWY = wonlles < pun)

h1=1

h=1 h=1

ko ko
= exp { —n Z P — Z |bo,u| log p — 2ko + logpko},

for sufficiently large n, where

o — Ll]b(;;h\/(an-l-‘bo,hDn—ao,h/&ao,h"“bo,h‘)(log n)(1+|b0,h‘)/(2+‘b0,h|/ao,h)‘

By choosing €, equal to a large multiple of Ziozl Prn + A/ Kodologp/n in (A.20)-

(A.22), (2.9)-(2.11) will hold with ¢, a large multiple of

0
VK Z pn(logn)H9)2 4\ /Kon/Kody log p/n(log n) o)/
h=1
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or

ko
VI Y Lyt orDymaon/Caostlond (log p)fin 4 \/Kon/Kody log p/n(logn)™,
h=1

where ﬁ17h = (1 + |b07h|)/(2 + |bO,h|/a0,h) +(1 + dg)/2 and 62 = (1 + do)/2
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Appendix B

Appendix for Chapter 3

B.1 Geometric properties

We introduce some concepts and results in differential and Riemannian geometry,
which play an important role in the convergence rate. For detailed definitions and

notations, the reader is referred to do Carmo (1992).
B.1.1  Riemannian manifold

A manifold is a topological space that locally resembles Euclidean space. A d-
dimensional topological manifold M can be described using an atlas, where an at-
las is defined as a collection {(Us, ¢s)} such that M = |J,Us, = and each chart
¢s : V. — Ug is a homeomorphism from an open subset V' of d-dimensional Eu-
clidean space to an open subset U, of M. By constructing an atlas whose transition
functions {755 = ¢§1 o ¢s} are C7 differentiable, we can further introduce a differ-
entiable structure on M. With this differentiable structure, we are able to define
differentiable functions and their smoothness level s < . Moreover, this additional

structure allows us to extend Euclidean differential calculus to the manifold. To
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measure distances and angles on a manifold, the notion of Riemannian manifold is
introduced. A Riemannian manifold (M, g) is a differentiable manifold M in which
each tangent space 7, M is equipped with an inner product ¢, -», = g,(-, -) that varies
smoothly in p. The family g, of inner products is called a Riemannian metric and is
denoted by g. With this Riemannian metric g, a distance d(p, ¢) between any two
points p, g € M can be defined as the length of the shortest path on M connecting
them. For a given manifold M, such as the set P(n) of all n x n positive symmetric
matrices (Moakher and Zérai, 2011; Hiai and Petz, 2009), a Riemannian metric g
is not uniquely determined and can be constructed in various manners so that cer-
tain desirable properties, such as transformation or group action invariability, are
valid. Although g is not uniquely determined, the smoothness of a given function f
on M only depends on M’s differential structure instead of its Riemannian metric.
Therefore, to study functions on the manifold M, we could endow it with any valid
Riemannian metric. Since a low dimensional manifold structure on the RP-valued
predictor X is assumed in this paper, we will focus on the case in which M is a

submanifold of a Euclidean space.

Definition 63. M is called a C7 submanifold of RP if there exists an inclusion map
d : M — RP, called embedding, such that ® is a diffeomorphism between M and
O(M) < RP, which means:

(1) ® is injective and ~y-differentiable;
(2) The inverse @~ : (M) — M is also y-differentiable.

A natural choice of the Riemannian metric g of M is the one induced by the

Euclidean metric e of R” through

Gp(u,v) = eapy (dPp(u), dd,(v)) = (dP,(u),dPy(v))rp, Yu,ve T,M,
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for any p € M. Under this Riemannian metric g, d®, : T,M — d®,(T,M)
To»RP is an isometric embedding. Nash Embedding Theorem (Nash, 1956) implies
that any valid Riemannian metric on M could be considered as being induced from
a Euclidean metric of R™ with a sufficiently large m. Therefore, we would use
this naturally induced g as the Riemannian metric of predictor manifold M when
studying the posterior contraction rate of our proposed GP prior defined on this
manifold. Under such choice of g, M is isometrically embedded in the ambient space
RP. In addition, in the rest of this paper, we will occasionally identify M with
®(M) when no confusion arises.

Tangent spaces and Riemannian metric can be represented in terms of local pa-
rameterizations. Let ¢ : U — M be a chart that maps a neighborhood U of the
origin in R? to a neighborhood ¢(U) of p € M. In the case that M is a C7 sub-
manifold of RP, ¢ itself is y-differentiable as a function from U € R? to R”. Given
ie{l,...,d} and ¢ = ¢(u), where u = (uq,...,uq) € U, define %(q) to be the linear

functional on C7(M) such that

0 d(f o ¢(u + te;))
2 = e

, Vf e CT(M),

t=0
where the d-dimensional vector e; has 1 in the ¢-th component and 0’s in others.
Then a%i(Q) can be viewed as a tangent vector in the tangent space T; M. Moreover,
{a%i(q) : 1 < i < d} forms a basis of T,M so that each tangent vector v € T, M can

written as

40
i=1 ¢

Under this basis, the tangent space of M can be identified as R? and the matrix

representation of differential d®, at ¢ has a (j,)th element given by

) -2
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where we use the notation F} to denote the jth component of a vector-valued function
F'. In addition, under the same basis, the Riemannian metric g, at ¢ can be expressed
as
gq(v,w) = Z viwjg?}(ul, ey Ug),
ij=1
where (v, ...,vq) and (w1, ..., wy) are the local coordinates for v, w € T,M. By the

isometry assumption,

0 0
9l (ua, ... ug) = {d®, ((?u) dd, (6uj)>RD.

Riemannian volume measure (form) of a region R contained in a coordinate neigh-

borhood ¢(U) is defined as

Vol(R) = JR dV(q) = LI(R) A /det(g?} (w))duy . .. dug

The volume of a general compact region R, which is not contained in a coordinate
neighborhood, can be defined through partition of unity (do Carmo, 1992). Vol
generalizes the Lebesque measure of Euclidean spaces and can be used to define the
integral of a function f € C(M) as §,, f(¢)dV(¢). In the special case that f is

supported on a coordinate neighborhood ¢(U),

J f(@)dV(q ff det(gw( w))duy . .. dug. (B.1)

B.1.2  Ezponential map

Geodesic curves, generalizations of straight lines from Euclidean spaces to curved
spaces, are defined as those curves whose tangent vectors remain parallel if they
are transported and are locally the shortest path between points on the manifold.

Formally, for p € M and v € T, M, the geodesic v(t,p,v),t > 0, starting at p
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with velocity v, i.e. v(0,p,v) = p and 7/(¢,p,v) = v, can be found as the unique
solution of an ordinary differential equation. The exponential map &, : T,M +— M
is defined by &,(v) = v(1, p,v) for any v € T, M and p € M. Under this special local
parameterization, calculations can be considerably simplified since quantities such
as &,’s differential and Riemannian metric would have simple forms.

Although Hopf-Rinow theorem ensures that for compact manifolds the exponen-
tial map &, at any point p can be defined on the entire tangent space 1),/ M, generally
this map is no longer a global diffeomorphism. Therefore to ensure good properties of

this exponential map, the notion of a normal neighborhood is introduced as follows.

Definition 64. A neighborhood V' of p e M 1is called normal if:

N

(1) Every point q € V' can be joined to p by a unique geodesic y(t,p,v),0 <t <1,

with v(0, p,v) = p and v(1,p,v) = ¢;
(2) &, is a diffeomorphism between V' and a neighborhood of the origin in T,M.
Proposition 2.7 and 3.6 in do Carmo (1992) ensure that every point in M has
a normal neighborhood. However, if we want to study some properties that hold
uniformly for all exponential maps &, with ¢ in a small neighborhood of p, we need

a notion stronger than normal neighborhood, whose existence has been established

in Theorem 3.7 in do Carmo (1992).

Definition 65. A neighborhood W of p € M is called uniformly normal if there

exists some 6 > 0 such that:

(1) For every ge W, &, is defined on the 0-ball Bs(0) < T, M around the origin of
T, M. Moreover, £,(Bs(0)) is a normal neighborhood of q;

(2) W < &,(Bs(0)), which implies that W is a normal neighborhood of all its points.
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Moreover, as pointed out by Gine and Koltchinskii (2005) and Ye and Zhou
(2008), by shrinking W and reducing ¢ at the same time, a special uniformly normal

neighborhood can be chosen.

Proposition 66. For every p e M there exists a neighborhood W such that:
(1) W is a uniformly normal neighborhood of p with some 6 > 0;
(2) The closure of W is contained in a strongly convex neighborhood U of p;

(3) The function F(q,v) = (q,&(v)) is a diffeomorphism from W5 = W x Bs(0)

onto its image in M x M. Moreover, |dF| is bounded away from zero on Wi.

Here U is strongly convex if for every two points in U, the minimizing geodesic joining

them also lies in U.

Throughout the rest of the paper, we will assume that the uniformly normal
neighborhoods also possess the properties in the above proposition. Given a point
p € M, we choose a uniformly normal neighborhood W of p. Let {eq,...,e4} be an
orthonormal basis of 7),M. For each ¢ € W, we can define a set of tangent vectors
{ef,...,el} < T,M by parallel transport (do Carmo, 1992): ¢; € T,M — ez@) €
TypyM from p to ¢ along the unique minimizing geodesic v(t) (0 < ¢t < 1) with
7(0) = p, (1) = g. Since parallel transport preserves the inner product in the sense
that g, (Y, W) = g,(v,w),Yo,w € T,M, {ef,...,el} forms an orthonormal
basis of T; M. In addition, the orthonormal frame defined in this way is unique and
depends smoothly on g. Therefore, we obtain on W a system of normal coordinates

at each ¢ € W, which parameterizes x € £,(B5s(0)) by

d
T = Eq(Zuieg) = ¢Nuy, ..., uq), u=(uy,...,uq) € Bs(0). (B.2)
i=1
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Such coordinates are called g-normal coordinates. The basis of T, M associated with

this coordinate chart (Bs(0), ¢?) is given by

J _d(fo&(te))|  _d(for(tg.€))| o
5Ui(Q)(f)_Tt=0_ o tzo—ef(f), i=1,...,d

Therefore {a%i(q) = e} : 1 <1 < d} forms an orthonormal basis on T, M. By Proposi-
tion 66, for each x € £,(B;(0)), there exists a minimizing geodesic (¢, ¢,v),0 <t < 1,
such that ~(0,¢,v) = ¢,7(0,¢,v) = v and v(1,q,v) = z, where v = Sq_l(x) =

Sy wief € TM. Hence da(g, ) = §; 17/ (8¢, 0)ldt = [of = [[ul], i.e.

dm (q,é’q(iuie?)) = ||lu||, Vue Bs,(0), (B.3)

where || - || is the BEuclidean norm on R?. The components g;(u) of the Riemannian
metric in g-normal coordinates satisfy gj;(0) = g,(ef, ¢]) = d;;. The following results

(Gine and Koltchinskii, 2005, Proposition 2.2) provide local expansions for the Rie-

mannian metric gj;(u), the Jacobian det(gg- (u)) and the distance dp(q, 0, u;e?)

in a neighborhood of p.

Proposition 67. Let M be a submanifold of R which is isometrically embedded.
Given a point pe M, let W and § be as in Proposition 66, and consider for each q €
W the g-normal coordinates defined above. Suppose that © = Y ue! € £,(B5(0)).
Then:

(1) The components gi;(u) of the metric tensor in q-normal coordinates admit the

following expansion, uniformly in g € W and x € £,(B5(0)):

1l
gi; (U, - ug) = 65 — 3 Z Ry, (0)u,u, + O(d34(q, 7)), (B.4)

r,s=1

where R?

45;(0) are the components of the curvature tensor at q in g-normal

coordinates.
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(2) The Jacobian 4 /det(g;)(u) in g-normal coordinates has the following erpan-

sion, uniformly in g€ W and x € £,(Bs(0)):

Jdet(gh) (s ug) = 1 —é S Rict (0)uyus + O(d(q, 7)), (B.5)

r,s=1

where Ricl (0) are the components of the Ricci tensor at q in g-normal coordi-

nates.

(3) There exists C, < oo such that
0 < diy(g,2) — [lg — =[] < Cpdju(g,2) (B.6)
holds uniformly in ¢ € W and x € £,(Bs(0)).

Note that in Proposition 67, (3) only provides a comparison of geodesic dis-
tance and Euclidean distance in local neighborhoods. Under a stronger compactness
assumption on M, the following lemma offers a global comparison of these two dis-

tances.

Lemma 68. Let M be a connected compact submanifold of RP with a Riemannian
metric g that is not necessarily induced from the Fuclidean metric. Then there exist

positive constants Cy and Cy dependent on g, such that

where || - || is the Euclidean distance in RY. Moreover, if M is further assumed to
be isometrically embedded, i.e. g is induced from the Euclidean metric of RP, then

Cy could be chosen to be one and Cy = 1.

Proof. We only prove the first half of the inequality since the second half follows by

a similar argument and is omitted here. Assume in the contrary that for any positive
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integer k, there exists (z, yx) such that ||z — yi|| = kdm(zr, yx). Let @ : M — RP
be the embedding. Since M is compact, {x} and {y,} have convergent subsequences,
whose notations are abused as {z;} and {y;} for simplicity. Denote the limits of these
two sequences as xg and 1y. By the compactness of M and continuity of ®, we know
that ®(M) is also compact and therefore dp(xy,yr) — 0, as k — oo. This implies
that o = yg = p.

For each j € {1,...,p}, the jth component ®; : M — R of ® is differen-
tiable. Let d, and W), be the ¢ and W specified in Proposition 66. Define f(g,v) =
®(m(F(q,v))) = ®(&,(v)), where 7y is the projection of M x M on to its sec-
ond component. By Proposition 66, f is differentiable on the compact set W(;p
and therefore for each [ € {1,...,d}, g—gl is uniformly bounded on W(;p. This im-
plies that for some constant C' > 0, [lz — y|| = [|f(y, &, (x)) — f(y, &, W)l <
CllE (@) = &7 W) = Cdp(z,y) for all z,y € W, with dp(z,y) < 6. Since 3 — p
and y, — p, there exists an integer ko such that for all & > ko, xx, yp € W, and
dm(zr, yp) < 6p. Therefore ||z — yi|| < Cdpm(zk, yx), which contradict our assump-
tion that ||z — yk|| = kdm(xg, yx) for all k.

Consider the case when @ is an isometric embedding. For any points x,y € M, we
can cover the compact geodesic path [, , from x to y by {W,, : i = 1, ..., n} associated
with a finite number of points {p1,...,p,} © M. Therefore we can divide [, , into
U, l(zs-1,25) such that zy = z, z,, = y, and each segment (z;_;, z;) lies in one of

the W,,’s. By Proposition 67 (3), for each s € {1,...,n}, dpm(s—1,T5) = ||Ts—1 — 5] |-

Therefore,
due,y) = Y dules 1,20 = Y llas 1 — asll = [l — ]l
s=1 s=1
where the last step follows from the triangle inequality. O]

The above lemma also implies that geodesic distances induced by different Rie-
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mannian metrics on M are equivalent to each other.

Fix pe M and let W and § > 0 be specified as in Proposition 66. Since M is a
submanifold of R”, for any point ¢ € M, the exponential map &, : Bs(0) - M < RP
is a differentiable function between two subsets of Euclidean spaces. Here, we can
choose any orthonormal basis of T, M since the representations of £, under different
orthonormal bases are the same up to d x d rotation matrices. Under the compactness
assumption on M, the following lemma, which will be applied in the proof of lemma
73, ensures the existence of a bound on the partial derivatives of &,’s components

{€,i:1=1,..., D} uniformly for all ¢ in the § neighborhood of p:

Lemma 69. Let M be a connected C7 compact submanifold of RP with v being oo

or any integer greater than two. Let k be an integer such that k < . Then:

1. There exists a universal positive number oy, such that for every p € M, propo-
sition 60 is satisfied with some 0 > oy and W;

2. With this g, for any p € M, mized partial derivatives with order less than or
equal to k of each component of €, are bounded in Bs,(0) € T,,M by a universal

constant C' > 0.

Proof. Note that M = e, W (p, ), where §, and W(p,d,) are the correspond-
ing p dependent 6 and open neighborhood W in proposition 66. By the com-
pactness of M, we can choose a finite covering {W(p1,0p,), ..., W(pn,0p,)}. Let
do = min{d,,, ..., d,,}. Then the first condition is satisfied with this dy since for any
p € M, W, could be chosen as any W(p;,d,,) that contains p.

Next we prove the second condition. For each j, we can define g-normal co-
ordinates on W(p;,d,,) as before such that the exponential map at each point

q € W(pj,dp,) can be parameterized as (B.2). Define F; : W (p;, d,,) X By, (0) » RP

by Fi(qu) = &, ue!) = ¢%(u). Then any order k mixed partial deriva-

)
k 44

. o . . .
tive ﬁ(u) of Fj(¢q,u) with respect to w is continuous on the compact set
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W(pj,0p,) % By, (0). Therefore these partial derivatives are bounded uniformly in
q € W(pj;0p,) and u € Bs, (0). Since M is covered by a finite number of sets

{W(p1,9p,)s- .- W(pn,dp,)}, the second conclusion is also true. O

By lemma 69, when a compact submanifold M has smoothness level greater than
or equal to k, we can approximate the exponential map &, : Bj,(0) = R? — RP at
any point p € M by a local Taylor polynomial of order k with error bound C6f,

where C' is a universal constant that only depends on k£ and M.
B.2 Posterior contraction rate of the GP on manifold

In the GP prior (3.4), the covariance function K* : M x M — R is essentially defined
on the submanifold M. Therefore, (3.4) actually defines a GP on M and we can
study its posterior contraction rate as a prior for functions on the manifold. In this
section, we combine geometry properties and Bayesian nonparametric asymptotic

theory to prove the theorems in section 2.
B.2.1 Reproducing kernel Hilbert space on manifold

Being viewed as a covariance function defined on [0, 1]” x [0, 1], K°(-, ) corresponds
to a reproducing kernel Hilbert space (RKHS) H, which is defined as the completion

of H, the linear space of all functions on [0, 1]” with the following form
T Z a;K*(z;,2), 7 € [0,1]",
i—1

indexed by ai,...,a, € R and xy,...,1, € [0,1]P, m € N, relative to the norm
induced by the inner product defined through (K*(x,-), K*(y, -))me = K*(x,y). Sim-
ilarly, K*(+,-) can also be viewed as a convariance function defined on M x M, with

the associated RKHS denoted by H®. Here H® is the completion of A, which is the
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linear space of all functions on M with the following form

€T = ZCL,L‘KG(CUZ‘,ZE),QT € M7

i=1
indexed by aq,...,a, € R and z1,...,2,, € M, me IN.

Many probabilistic properties of GPs are closely related to the RKHS associated
with its covariance function. Readers can refer to Aronszajn (1950) and van der Vaart
and van Zanten (2008b) for introductions on RKHS theory for GPs on Euclidean
spaces. In order to generalize RKHS properties in Euclidean spaces to submanifolds,
we need a link to transfer the theory. The next lemma achieves this by characterizing

the relationship between H® and He.

Lemma 70. For any f € H, there exists g € H* such that g|p = f and ||g||m= =

|| f|lga, where g|am is the restriction of g on M. Moreover, for any other g € H* with

9lm= [, we have [|¢'||ae = ||f]lge, which implies || fg. = infoesa gl=r |||l

Proof. Consider the map ® : % — H that maps the function
ZaiKa(a:i,-) eH, ar,...,am R, zy,....,2m e M,meN
i=1

on M to the function of the same form
m
Z (liKa(.Z'i, ) € H,
i=1

but viewed as a function on [0, 1]”. By definitions of RKHS norms, ® is an isometry
between H and a linear subspace of H. As a result, ® can be extended to an isometry
between H* and a complete subspace of H®. To prove the first part of this lemma, it
suffices to justify that for any f € H*, g = O(f)|m = f. Assume that the sequence
{fn} € H satisfies

£ = Fllze — 0, as n — oo,
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then by the definition of ® on H, ®(fu)|rm = fo. For any x € [0,1]°, by the

reproducing property and Cauchy-Schwarz inequality,

|[@(fn)(2) — g()] (KK (), @(fn) = g)ue|
VE(z, x) [[S(fn) — S(f)]ae

= [lfa = fllga =0, as n — o0,

N

where the last step is by isometry. This indicates that g can be obtained as a point

limit of ®(f,) on [0,1]” and in the special case when x € M,

g(x) = lim S(f)(x) = lim fu(x) = [(x).

n—o0

Denote the orthogonal complement of ®(H*) in H* as ®(H*)*. Since (¢' — g)|r = 0,
which means (K%(z,-),g — ¢>)me = 0 for all x € M. Therefore by the previous
construction, g — ¢' L @(]I:]I“), ie. ¢ —ge€ (IJ(]ﬁI“)L and using Pythagorean theorem,
we have

'l = llglle= + llg — g'llme = 9|l

]

This lemma implies that any element f in the RKHS H* could be considered as
the restriction of some element ¢ in the RKHS H®. Particularly, there exists a unique

such element g in H? such that the norm is preserved, i.e. ||g||ge = || f]|za-
B.2.2  Background on posterior convergence rate for GP

As shown in Ghosal et al. (2000), in order to characterize the posterior contraction
rate in a Bayesian nonparametric problem, such as density estimation, fixed /random
design regression or classification, we need to verify some conditions on the prior
measure II. Specifically, we describe the sufficient conditions for randomly rescaled

GP prior as (3.3) given in van der Vaart and van Zanten (2009). Let X be the
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predictor space and fy be the true function f; : X — R, which is the log density
log p(z) in density estimation, regression function F[Y|X] in regression and logistic
transformed conditional probability logitP(Y = 1]/X) in classification. We will not
consider density estimation since to specify the density by log density fy, we need to
know the support M so that e/ can be normalized to produce a valid density. Let
€, and €, be two sequences. If there exist Borel measurable subsets B,, of C'(X’) and

constant K > 0 such that for n sufficiently large,

2

P([WA = folloo < €n) = €7,
PW4¢ B,) < e ', (B.8)

log N (€, B, || - |loo) < ne:

n’

where W4 ~ II and || - || is the sup-norm on C(X), then the posterior contraction
rate would be at least €, v €,. In our case, X is the d-dimensioanl submanifold M in
the ambient space R”. To verify the first concentration condition, we need to give
upper bounds to the so-called concentration function (van der Vaart and van Zanten,

2009) ¢4, (€) of the GP W* around truth f; for given a and €. ¢% (¢) is composed of two

terms. Both terms depend on the RKHS H* associated with the covariance function
of the GP W*. The first term is the decentering function inf{||h||2, : [|h— follx < €},
where || - ||g. is the RKHS norm. This quantity measures how well the truth f; could
be approximated by the elements in the RKHS. The second term is the negative log
small ball probability —log P(||[W*|| < €), which depends on the covering entropy
log N (€, H?, || -||oo) of the unit ball in the RKHS H®. As a result of this dependence,
by applying Borell’s inequality (van der Vaart and van Zanten, 2008b), the second
and third conditions can often be proved as byproducts by using the conclusion on
the small ball probability .

As pointed out by van der Vaart and van Zanten (2009), the key to ensure the
adaptability of the GP prior on Euclidean spaces is a sub-exponential type tail of its
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stationary covariance function’s spectral density, which is true for squared exponen-
tial and Matérn class covariance functions. More specifically, a squared exponential
covariance function Ki(z,y) = exp { — ||z — y||*/2} on R” has a spectral represen-

tation as

Ky(z,y) = f 00 (),

RD
where p is its spectral measure with a sub-Gaussian tail, which is lighter than sub-

exponential tail in the sense that: for any 6 > 0,

Je‘s’\u(d)\) < 0. (B.9)

For convenience, we will focus on squared exponential covariance function, since
) )
generalizations to other covariance functions with sub-exponential decaying spectral

densities are possible with more elaboration.
B.2.3  Decentering function

To estimate the decentering function, the key step is to construct a function I,(f)
on the manifold M to approximate a differentiable function f, so that the RKHS
norm ||,(f)||g. can be tightly upper bounded. Unlike in Euclidean spaces where
functions in the RKHS H® can be represented via Fourier transformations (van der
Vaart and van Zanten, 2009), there is no general way to represent and calculate
RKHS norms of functions in the RKHS H® on manifold. Therefore in the next
lemma, we provide a direct way to construct the approximation function I,(f) for

any truth f via convolving f with K* on manifold M:

a

L) (@) = (—) [ m s

V2r

_ (\/%)WM exp{ _ M}f@)dwy), veM,  (B.10)

230



where V' is the Riemannian volume form of M. Heuristically, for large a, the above
integrand only has non-negligible value in a small neighborhood around x. Therefore

we can conduct a change of variable in the above integral with transformation ¢* :

Bs — W defined by (B.2) in a small neighborhood W of x:

LN - (o
~(35

~
~

) exp{ ||¢x(u)2_ ¢m(0)|| }f(&(u)) det(g;@(u))du,

) [ { Y

) flz), xeM,

03

/-\

f(o"(
where the above approximation holds since: 1. ¢*(0) = z; 2. ¢ preserve lo-

cal distances (Proposition 67 (3)); 3. the Jacobian det(g?}(u)) is close to one

(Proposition 67(2)). From this heuristic argument, we can see that the approx-
imation error ||/,(w) — fol|e is determined by two factors: the convolution error
‘(\/%)dsw exp{ — M}f((bx(u))du — f(z)| and the non-flat error caused by the
nonzero curvature of M. Moreover, we can expand each of these errors as a polyno-
mial of 1/a and call the expansion term related to 1/a* as kth order error.

When M is Euclidean space R?, the non-flat error is zero, and by Taylor ex-
pansion the convolution error has order s if fo € C*(RY) and s < 2, where C*(R%)
is the Holder class of s-smooth functions on R¢. This is because the Gaussian ker-
nel exp{—||(z — y)||*/2} has a vanishing moment up to first order: {zexp(—||(z —
y)|[?/2)dz = 0. Generally, the convolution error could have order up to s + 1 if the
convolution kernel K has vanishing moments up to order s, i.e. {z'K(x)dz = 0,t =
1,...,s. However, for general manifold M with non-vanishing curvature tensor, the
non-flat error always has order two (see the proof of Lemma 71). This implies that
even though carefully chosen kernels for the covariance function can improve the con-

volution error to have order higher than two, the overall approximation still tends to
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have second order error due to the deterioration caused by the nonzero curvature of
the manifold. The following lemma formalizes the above heuristic argument on the
order of the approximation error by (B.10) and further provides an upper bound on

the decentering function.

Lemma 71. Assume that M is a d-dimensional compact C"7 submanifold of RP.
Let C*(M) be the set of all functions on M with holder smoothness s. Then for
any f € C*(M) with s < min{2,~}, there exist constants ag > 1, C >0 and B > 0

depending only on u, M and f such that for all a = ay,

inf{[|h%, : SBE \h(z) — f(z)| < Ca™*} < Ba®.

Proof. The proof consists of two parts. In the first part, we prove that the approx-
imation error of I,(f) can be decomposed into four terms. The first term T3 is the
convolution error defined in our previous heuristic argument. The second term 75
is caused by localization of the integration, which is negligible due to the exponen-
tial decaying of the squared exponential covariance function. The third and fourth
terms T3, T correspond to the non-flat error, with T3 caused by approximating the

geodesic distance with Euclidean distance [||¢7(u) — g||* — |Jul|?

, and Ty by approx-

imating the Jacobian |4 /det(g;-@ (u)) — 1|. Therefore the overall approximation error
|I.(f)(z) — f(x)] has order s in the sense that for some constant C' > 0 dependent
on M and f:

sup [1o(f)(z) — f(2)|

zeM

N

Ca™, s <min{2,~}. (B.11)

In the second part, we prove that I,(f) belongs to H* and has a squared RKHS
norm:

11a(f. < Ba?,
where B is a positive constant not dependent on a.
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Step 1 (Estimation of the approximation error): This part follows similar ideas
as in the proof of Theorem 1 in Ye and Zhou (2008), where they have shown that
(B.11) holds for s < 1. Our proof generalizes their results to s < 2 and therefore
needs more careful estimations.

By Proposition 67, for each p € M, there exists a neighborhood W, and an
associated 9, satisfying the two conditions in Proposition 66 and equations (B.4)-
(B.6). By compactness, M can be covered by uU,epW, for a finite subset P of
M. Then sup,en [La(f)(x) = f(z)] = supep{sup,ew, [a(f)(x) = f(2)[}. Let 6* =
minpep{min{d,, 1/4/2C,}} > 0, where C, is defined as in equation (B.6). Choose
ag = 1 sufficiently large such that C’O\/mmo < 0%, where Cj is the (5 in
Lemma 68.

Let ¢ € W, and a > ag. Define BS = {z € M : dp(q, ) < Cor/(2d + 8) loga/a}.
Combining equation (B.3) and the fact that &, is a diffeomorphism on Bsx«(0),

d

B = {&,(> wiel) s ue By} = £,(Bs«(0)),

i=1

where B, = {u:||u]| < Cor/(2d + 8)loga/a} = Bsx(0).

Denote ¢?(u) = (X%, ue?). Then B¢ = ¢9(B,). By definition (B.1),

%

(\%r)df% K*(z,y) f(y)dV(y)
()

Therefore, by (B.10) we have the following decomposition:

[ o] = A= gy faent )

B

L(f)(q) — flg) =T + To + T3 + T},
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r=() [ eof - ) - s
S A R
r= () [ e - O gy et - D

Step 1.1 (Estimation of Ty): Let g = f o ¢% Since f € C*(M) and (¢, Bs«(0))

is a C7 coordinate chart, we have g € C*(R?) and therefore

o) — R(u, s), if 0 < s < min{1, 7},
g(u) —g(0) = N 22 (0)u; + R(u,s), if 1< s < min{2,7},

where the remainder term |R(u, s)| < Cy||u||® for all 0 < s < min{2,~}. Since B, is

201,112
f exp{—m}uiduzo, 1=1,...,d,
Ba 2

symmetric,

and therefore

d 2 2
a a*||ul| } B
T\ <C — — Sdu = Cha*°.
| 1| 1( 271_) Lanp{ 2 ||U|| u 20

Step 1.2 (Estimation of Ty): Denote Ty = Sy + Sy where S and Sy are the first

term and second term of T, respectively. By Lemma 68, for y € M\BY, ||¢ —y|| =
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Mm(q,y)/Co = A/(2d + 8) log a/a. Therefore,

1=/ Lo s

< ||l Vol(M) (ﬁ)xp{ . %}

= Cga74 < Cgais

As for S, we have
d 2 2
a |||
s <l =) | exp { — S b
? “\v2r /) Jjizcoy/@irs ogata 2

d
a C§(2d+8)loga} { a2||u||2}
< o0 - - d
e () [ e UL L) P gL

_ C4ang(d/2+2) < C4a75

?

sinced>1,Cyp>=1and a>ag > 1.

Combining the above inequalities for S7 and S,, we obtain

|T2| < (03 + 04)6675 = C5Cl78.

Step 1.8 (Estimation of T3): By equation (B.6) in Proposition 67 and equation
(B.3), we have

ull? = llg — ¢ (w)[1?| = |dAi(g, ¢7(w) — [lg — ¢ (w)[]| < Cpdiy(g, 9% (w)) = Cpllul]*.
(B.12)

—a __ 67b|

Therefore by using the inequality |e < |a — bl max{e~® e*} for a,b > 0, we

have
N
T3 < —
73l <111 (5=

2|l — A4 2 2 2 2 4
[ m{p{_ o= 66 }ﬂp{_a | }} lul,,
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By equation (B.12) and the fact that u € By, ||ul|*> < (6*)? < 1/(2C,) and hence

1 1
[[ul> = 1lg — 7 (u)]]?] < 5I|u||2, llg — ¢(w)||* = §||u||2- (B.13)
Therefore
a \* a?||ul[* ) a?|]u]* *2 .
T5] < [|floo NGTS _Xpy T 5 du = Cga™* < Cga™?,
Bg

since a = ag = 1.
Step 1.4 (Estimation of Ty): By equation (B.5) in Proposition 67, there exists a

constant C; depending on the Ricci tensor of the manifold M, such that

[y Jdet(g) () — 1] < Cillul P

Therefore, by applying equation (B.13) again, we obtain

Tl < Gl ( N[ e d = I gy — G < Cra
4| = Uy ol T — X - = CUsg & Ug .
V2T Ba 4

Combining the above estimates for 17, T, T3 and Ty, we have

sup [La(F)(@)(x) = f(@)(@)] < (C2+ C5 + C6 + Cg)a* = Ca*.

Step 2 (Estimation of the RKHS norm): Since {(K“(x,-), K(y, ) g. = K*(z,y),

we have

()5 = (E) [ | wwas@rmae)

<lfi(5) [ ave (E) [ mwni.

Applying the results of the first part to function f = 1, we have

‘(\/%)dfM K(z,y)dV (y) — 1‘ <Ca2<C,
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since a = ag = 1. Therefore,

a

V2r

L)l < (14 C)||f||§o< ) Vol(M) — Bat.

B.2.4 Centered small ball probability

As indicated by the proof of Lemma 4.6 in van der Vaart and van Zanten (2009), to
obtain an upper bound on —log P(||IW*||, < €), we need to provide an upper bound
for the covering entropy log N(e, HY, || - ||) of the unit ball in the RKHS H® on the
submanifold M. Following the discussion in section 4.1, we want to link H” to He,
the associated RKHS defined on the ambient space RP. Therefore, we need a lemma

to characterize the space H* (van der Vaart and van Zanten, 2009, Lemma 4.1).

Lemma 72. H® is the set of real parts of the functions

N f DY (N a(dN),

when 1 runs through the complex Hilbert space La(p,). Moreover, the RKHS norm
of the above function is ||)||L,(u,), where pq is the spectral measure of the covariance

function K®.

Based on this representation of H® on R, van der Vaart and van Zanten (2009)
proved an upper bound Ka® (log %)DH for log N (e, H%, || - ||s) through constructing
an e-covering set composed of piecewise polynomials. However, there is no straight-
forward generalization of their scheme from FEuclidean spaces to manifolds. The
following lemma provides an upper bound for the covering entropy of H‘f, where the
D in the upper bounds for H{ is reduced to d. The main novelty in our proof is

the construction of an e-covering set composed of piecewise transformed polynomials
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(B.19) via analytically extending the truncated Taylor polynomial approximations
(B.16) of the elements in H?. As the proof indicates, the d in a? relates to the cov-
ering dimension d of M, i.e. the e-covering number N (e, M, €) of M is proportional
to 1/e?. The d in (log %)dﬂ relates to the order of the number k¢ of coefficients in

piecewise transformed polynomials of degree k in d variables.

Lemma 73. Assume that M is a d-dimensional C? compact submanifold of RP with
v = 2. Then for squared exponential covariance function K%, there exists a constant
K depending only on d, D and M, such that for e < 1/2 and a > max{ag, e /0~1},

where 0y is defined in Lemma 69 and aqg is a universal constant,
R 1 d+1
g N .- ]) < Ka?(Tog )
€

Proof. By Lemma 70 and Lemma 72, a typical element of H* can be written as the

real part of the function
ho(x) = J 0D () (), for 2 € M

for ¢ : RP” — C a function with §|¢|*14(d\) < 1. This function can be extended
to R? by allowing z € RP. For any given point p € M, by (B.10), we have a local
coordinate ¢ : Bs,(0) € R? — R” induced by the exponential map &,. Therefore,

for z € ¢,(Bs,(0)), hy(z) can be written in local g-normal coordinates as

T p () = hy (67 (u)) = J NN YN pa(dN), w e By, (0). (B.14)

Similar to the idea in the proof of Lemma 4.5 in van der Vaart and van Zan-
ten (2009), we want to extend the function hy, to an analytical function z —
§ AP (N) o (dX) on the set Q = {z € C? : [[Rez|| < do,|[Imz|| < p/a} for
some p > 0. Then we can obtain upper bounds on the mixed partial derivatives of
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the analytic extension hy,, via Cauchy formula, and finally construct an e-covering
set of ]ﬁl‘f by piecewise polynomials defined on M. Unfortunately, this analytical
extension is impossible unless ¢?(u) is a polynomial. This motivates us to approxi-
mate ¢P(u) by its yth order Taylor polynomial P, . (u). More specifically, by Lemma
76 and the discussion after Lemma 69, the error caused by approximating ¢”(u) by

P, (u) is

[ (67 () = hos (Ppy ()| < all6? (u) — By ()] < Clal Jul [ (B.15)

For notation simplicity, fix p as a center and denote the function hy (Pp,,(u)) by
r(u) for u € Bs,. Since P,,(u) is a polynomial of degree 7, view the function r as
a function of argument u ranging over the product of the imaginary axes in C9, we

can extend

r(u) = Jei(’\’PP”(“))w()\)ua(d)\), u € By, (0) (B.16)

to an analytical function z > e @E(N\),(dN) on the set Q = {z € C? :
||Rez|| < do, |[Imz|| < p/a} for some p > 0 sufficiently small determined by the
d < 1/2 in (B.9). Moreover, by Cauchy-Schwarz inequality, |r(z)| < C for z € 2
and C? = {e?lMly(dN). Therefore, by Cauchy formula, with D™ denoting the partial
derivative of orders n = (nq,...,ny) and n! = ny!---n,!, we have the following bound

for partial derivatives of r at any u € By, (0),

C
< —_—, B.17
R» ( )

‘ Drr(w)

n!

where R = p/(av/d). Based on the inequalities (B.15) and (B.17), we can construct
an e-covering set of H? as follows.

Set ag = p/(200V/d), then R < 28,. Since M < [0,1]7, with C, defined in
Lemma 68, let {p1,...,pn} be an R/(2C3)-net in M for the Euclidean distance, and
let M = |, B; be a partition of M in sets By, ..., B,, obtaining by assigning every
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x € M to the closest p; € {p1,...,pm}. By (B.3) and Lemma 68

R R

(@) @) < Cozer
where ¢y, is the local normal coordinate chart at p;. Therefore, we can consider the

piecewise transformed polynomials P = " | P, ,.1p,, with

Pola) = 3 aal(@") @), x € 6" By 0)). (B.19)

n. <k

Here the sum ranges over all multi-index vectors n = (ny,...,n4) € (N U {0})¢ with
n.=mn;+ -+ ng < k. Moreover, for y = (y1,...,94) € R, the notation y" used
above is short for yi'y5? - --y}*. We obtain a finite set of functions by discretizing

the coefficients a; ,, for each i and n over a grid of meshwidth ¢/R™-net in the interval

[-C/R",C/R"| (by (B.17)). The log cardinality of this set is bounded by

log <]_[ I #am) < mlog< 1 2:%5) < mk?log <¥)

i nn <k nn <k

Since R = p/(av/d), we can choose m = N (M, ||-||, p/(2Coad"/?)) ~ a®. To complete
the proof, it suffices to show that for k of order log(1/e), the resulting set of functions
is a Ke-net for constant K depending only on pu.

For any function f € ]I:]I‘f7 by Lemma 70, we can find a g € IF]I‘{ such that g = f.
Assume that 7, (the subcript g indicates the dependence on g) is the local polynomial
approximation for g defined as (B.16). Then we have a partial derivative bound on
rg as:

C

D"r, (Pz)
Rn

n!

Therefore there exists a universal constant K and appropriately chosen a; in (B.19),

such that for any z € B; ¢ M,

|
n.>k n:

C O -1 k
<Z (R/2)" 0221 <§>

n,>k l=k+1
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Moreover, by (B.15) and (B.18),
l9(2) = 14(2)] < Call(@™) 7 (2)]]" < aR” < Ka™07Y < Ke,

where the last step follows by the condition on a.

Consequently, we obtain

1Rl = 96)~ P )] € 9(2) = ()P 21| < 1€ (3 ) 2t

This suggests that the piecewise polynomials form a 3Ke-net for k sufficiently large
so that (2/3)" is smaller than Ke. O

Similar to Lemma 4.6 in van der Vaart and van Zanten (2009), Lemma 73 implies

an upper bound on —log P(||WW*|s < €).

Lemma 74. Assume that M is a d-dimensional compact C7 submanifold of RP with
v = 2. If K* is the squared exponential covariance function with inverse bandwidth

a, then for some ag > 0, there exist constants C' and €y that only depend on agy, p,

d, D and M, such that, for a = max{ag, e YO0V} and € < ¢,

d+1
—log P( sup |W2| <) <C’ad<logg) :
reM €

Before proving Theorem 13, we need another two technical lemmas for prepa-
rations, which are the analogues of Lemma 4.7 and 4.8 in van der Vaart and van

Zanten (2009) for RKHS on Euclidean spaces.

Lemma 75. For squared exponential covariance function, if a < b, then ﬁ]ﬂlﬁ” c

NG
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Proof. For any f € ﬁHi‘, by Lemma 70, there exists g € y/aH? such that gy = f.
By Lemma 4.7 in van der Vaart and van Zanten (2009), y/aH¢ < +/bHS, so g €
VBHS. Again by Lemma 70, since glp = f, |f|lge < [|gllze < Vb, implying that
f e VoS, O
Lemma 76. Any h € H? satisfies |h(z)| < 1 and |h(x) — h(z')| < a||x —2'||7 for any
z, ' € M, where 7% = {||\]|?du(N).

Proof. By the reproducing property and Cauchy-Schwarz inequality
()] = [Chy K, ) e | < [ K (2,0) g = 1
|h(x) = h(z)] = Kh, K*(x,-) = K*(2", ) )gaa
< ||K%(z, ) = K2, )| e

=4/2(1 — Ka(z,2')).

By the spectral representation K (z,2') = e/, (d\) and the fact that p, is sym-

metric,

201 — Kz, 2')) = 2 f (14 (0 2 — 2') — 0= (dN)
< o= [ 1Pa(d)

=amx—fijwmu».

B.2.5 Posterior contraction rate of GP on manifold
We provide proofs for Theorem 13 and Theorem 14.

Proof of Theorem 13. Define centered and decentered concentration functions of the
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process W = (W, : x € M) by

¢5(€) = —log P([W* <€),

¢5,(6) = inf  hl[f. —log P(IW*|x <),

heHe:|h— fo|oxn<e
where |hle = sup,er |f(2)] is the sup norm on the manifold M. Then P(|W9|, <
€) = exp(—a¢(€)) by definition. Moreover, by the results in Kuelbs and Linde (1994),

P([[W® = follo < 2€) = e %), (B.20)

Suppose that fy € C*(M) for some s < min{2,y — 1}. By Lemma 74 and Lemma

71, for a > ag and € > Cmax{a~ Y, 0=} = Ca~*,

1+d 1+d
¢%,(€) < Da + C’4ad(log g) < Kya® ( log %) :

Since A? has a Gamma prior, there exists p, C;, Cy > 0, such that C)a? exp(—Dsa?) <
g(a) < Csya? exp(—Dya?). Therefore by equation (B.20),
P(|[W* = follo < 2¢) = P([W* = follo < 26, A€ [(C/e)V*,2(C/e)"*])

2(C/e)Y/s .
> f e % 9g(a)da
(

p/s 1/s
>OleKz(l/e)‘f/saog(l/e))w(Q) (g) |

€ €
Therefore,
P(IW4 = follo < €0) = exp(—ne},),

for €, alarge multiple of n=2+9 (log n)** with x; = (1+d)/(2+d/s) and sufficiently
large n.

Similar to the proof of Theorem 3.1 of van der Vaart and van Zanten (2009), by

BM,T,E,E = (M\/§~§ + EBl) u (U(MH({) + €B1)7

a<d

Lemma 75,
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with B; the unit ball of C(M), contains the set MH? + B, for any a € [4,7].

Furthermore, if

M = 4+/¢p(e) and e %00 < 1/4,

then

p—d+1,—Dor?

Dod

P(W4¢ B) <
By Lemma 74, equation (B.21) is satisfied if
M? = 16Cr%(log(r/e))' ™, r>1, e<e,
for some fixed €; > 0. Therefore
P(W4 ¢ B) < exp(—Cone?),

for r and M satisfying

2C)

rt=""ne,  M? = max{8Cy, 160, }ne2 (log(r/e,)) .

D,

Denote the solution of the above equation as r,, and M,,.

By Lemma 73, for M4/r/§ > 2¢ and r > aq,

IOgN(2€7M\/§~§ +€]I~B17|| ’ ||oo) < logN(G,M\/gﬁq,H ’ ||00)

< Krd(log (@)) Hd.

(B.21)

(B.22)

(B.23)

By Lemma 76, every element of M I[:]I‘f for a < ¢ is uniformly at most dv/ DM

distant from a constant function for a constant in the interval [—M, M]. Therefore

for € > (5\/bTM,

logN(?)e, |J(MES) + By, || - ||Oo) < N(e,[-M, M],|-]) < —.

a<d
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With § = ¢/(2v/D7M), combining the above displays, for B = By, 5. with
M = e, M32\/2rrDY* > 263/2, r > ag,

which is satisfied when r = r,, and M = M,,, we have

M32\/2rr DYA\ \ 1T 2M
1ogN(3e,B,||-||oo)<Krd(1og( o )) vos M B2y
€ €

Therefore, for r = r,, and M = M,,

log N (3€,, B, || - ||) < né.

for €, a large multiple of ¢, (logn)" with ke = (1 + d)/2. O
Proof of Theorem 14. Under d’, the prior concentration inequality becomes:
P(|[W* = follsw < 2¢) = P([W* = follw < 2¢, A€ [(C/e)'V*,2(C/e)""))

AC/OVs
> J e ?19g(a)da
(Croe

/ p/s 1/s
S Cleng(l/e)dVd/S(log(l/e))1+d (g) (g> . <B25)

€ €

The complementary probability becomes:

20 p—d' +1 —Dg’l‘d/
P(WAg B) <« = e M, (B.26)
2

with M? = 16Cyr¢(log(r/e))* ™4, r > 1 and € < €;, where €; > 0 is a fixed constant.
An upper bound for the covering entropy is unchanged and still given by (B.24).
1. d' > d: With ¢, a multiple of n=¥2+?)(logn)" with k; = (1 +d)/(2 + d'/s),

€p < €y,

;2
rt = %nei, and M? = max{8Cy, 16Cy}ne? (log(r/e,))* ™,
2
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inequalities (B.25), (B.26) and (B.24) become
P(I[W* = folleo < €n) = exp(—ne),
P(W* ¢ B) <exp(—Cyne,),

log N (3€,, B, || - ||0) <né..

Comparing the above with (B.8), we arrive at the conclusion that under d' > d,

=s/(2s+d) (J]og n)* with

the posterior contraction rate will be at least a multiple of n
k=14+d)/2+d/s).

2. Qﬁd < d'" < d: With ¢, a multiple of n=/Z*d(logn)" with x; = (1 +

_ (2s+d)d’—d?

d)/(2 + d/s), €, a multiple of nd/ )14 (logn)@+1/2 = = 2@+ (logn)"2 with

ke = (d+d?)/(2d' + dd'/s) + (1 + d)/2,

, 2C,
r? = D—Onei, and M? = max{8Cy, 160, }ne> (log(r/e,)) %,
2

inequalities (B.25), (B.26) and (B.24) become
P(I[W* = folleo < €a) = exp(—ne),
POV ¢ B) <exp(—Cone?),
log N (3€,, B, || - ||0) <né.

Comparing the above with (B.8), we arrive at the conclusion that under d' < d,

_ (2s+d)d’ —d?
the posterior contraction rate will be at least a multiple of n~ 2@s+dd" (logn)* with

k = (d+ d*)/2d + dd'/s) + (1 + d)/2. To make this rate meaningful, we need
(25 + d)d' —d*> > 0, i.e. d' > d*/(2s + d). O

246



Appendix C

Appendix for Chapter 4

C.1 Proofs of technical results in Chapter 4

C.1.1 Proof of Theorem 17

First reshape P(y|z1, ..., z,) according to z; as a matrix AW of size d; x dydads . . . d,,

with the A" row a long vector,

{P(1|h,1,...,1,1), P(1]h,1,...,1,2),..., P(1|h,1,...,1,d,),

P(1)h,1,...,2,1),...,P(1|h,1,...,2,d}),..., P(do|h,da, ... ,dyp1,dp)},

denoted AM{h, (y,xa,...,7,)}. Apply nonnegative matrix decomposition for A1),

we obtain
k1
1 1
P(yloy,....xp) = AMay, (y. 20,2k = DAY L @)l (@), (C)
h1=1

where k; < d; corresponds to the nonnegative rank of the matrix A (Cohen and

Rothblum, 1993). Without loss of generality, we can assume that the parameters sat-

isfy the constraints 250:1 AL (y) = 1 for each (hy, xa,...,xp), 211:1 W}(lll) (1) =1

hiza...zp
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for each x1, ALV (y) =0, and ﬂ,(lll) (1) = 0. Otherwise, we can always define new

h1xa...xp
Ns and 7’s satisfying the above constraints with the same k; through the original

A's and 7’s as following;:

. YR ()
1 hixza...x
Ail)xQ...mp(y)Z—;hz 2,
122...Zp

~(1 1
7 (@1) = Shyayay o) (1),

where sp 2.0, = Zdo /\211)332 2,(y). With this definition, the decomposition (C.1)

AW

for the new (X, 7)’s and the normalizing constraint Z Nhya.y

(y) = 1 are easy to

verify. We only need to check the normalizing constraint for 7

k‘l ( ) k‘1 d() ( )

~(1 1 1
Z Thy 'Tl Z Z )\h1:1?2 Zp y T(;Ll)(xl)
h1 1 h1 1y 1

do
:ZP(y|x1,...,xp) =1,
y=1

where we have applied (C.1) and the fact that P is a conditional probability.

Taking AL p(y) from (C.1) with argument x5, we can apply the same type of

hizo...x

decomposition to obtain

(2)
h1:D2 xp Z )\h1h2$3 Tp y Trhg (1’2)
ha=1
subject to Zz(’:l)\i)h%xp(y) = 1, for each (hy,ho,...,2,), ZhQ 17rh2 (xg) = 1, for

each s, /\5121) (¢) =0, and 7r,(122) (x2) = 0. Plugging back into equation (C.1),

ho..xp

k1
P(yloy,... ) = Y. Z M sn e T (1) 72 (1),
hi1=1 ho=1
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Repeating this procedure another (p — 2) times, we obtain equation (C.12) with
Ahiho.hy (Y) = )\gi)hz)”_hp(y) and constraints (C.10).

Remark: As we can seen from the proof, k; can be considered as the nonnegative
matrix rank corresponds to certain transformation of the jth mode matrix of the

tensor P.
C.1.2  Proof of Lemma 18

Given the degeneracy of 7, the bias square term can be written as

2
Bias® = Z Z (E:\hl._hp (y) — Po(y|zy, - .. ,mp))2G(dx1, oy day),

y=1hy,...hy ¥ Ay hp

where Ap, .p, = {(x1,...,2p) + hj(x;) = h;;j = 1,...,p} and N's are arbitrary
estimators of \’s. It can be verified that the above expression is minimized if and
only if:

SAhlu_hp Po(ylzy, ..., 2p)G(dxy, . . ., dxy)
G(dfﬂl, e ,dxp)

EXpy ., (y) = (C.2)

SAhlmhp

holds for all possible (hy, ..., h,). So we only need to check the the MLE Ns satisfy

this condition.

N NJ?1 ..... Tp
ExyAny..n,(y) = Z EXN Po(ylze, ... 2p). (C.3)
Any . hp haseeeshp
Note that
G(l’l, e, X )
Nay,...wp|Nh,...on, ~ Bin (Nm ..... hp s L (C.4)
1 SAhl‘“hp G(dxl, 7dxp)
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Combining this and the iterative expectation formula:

.......

G(xy,...,x
Po(ylzi, ..., zp) (21 )

= Py(ylxy, ..., xp). C.5
Nh1 77777 hp SAhlu.hp G(dl'l,._,’dxp) 0(y| 1 P) ( )

Combining (C.3) and (C.5) together, we can prove that (C.2) holds for the MLE .
C.1.3 Proof of Lemma 19

Under the same notation as in Lemma 18,

Var = Z Z J EXY )\hl EX,YS\hl._,hp)2G(de'1, o ,d:L‘p)

y=1hq,..., Apy.. -hp

= Z Z EXvCM"yp( (S\hl..‘hp — Ey|X5\hl_”hp)2G(dl'1, RN ,dl'p)

y=1hy,...hp Ahy..hp

+ Z Z Ex (EY|X;\h1...hp — EX,Y;\hl...hp)zG(dxlu oy day)

where Ey x and Vary x stand for taking conditional expectation and variance given
X, respectively.

Estimation of Sy: First, we estimate the integrand in Sy similar to (C.3):

ExVary x (5\h1...hp - EY\XS\hl...hp)Q

= Z EX 1’ ’”Pg(y|a:1,...,a:p)(1—Po(y|a:1,...,xp))

~~~~~~

SAhl...hp Po(ylza, ... zp) (1 = Po(ylas, ..., x,))G(dan, . .., dz,) I(Ny,
B G(dwy,. .., dz,)

SAhl...hp

where the last step is by (C.4) and the iterative expectation formula. Since Ny,

Bin (n, SAhl...hp G(dxy, . .. ,dajp)), by the asymptotic expansion for the expectation of
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reciprocal of Binomial random variables in Stephan (1945),

I(Ny,..p, > 0) 1 -2
E — P = +O0O(n™7), C.6
N h n SAhl...hp G(dml, - ,dxp) ( ) ( )

we obtain
Si=C1 ), > (I/n+o(n?) = 2C|k|/n + O(|k|/n?),

where (' is some constant with lower and upper bounds independent of n.

Estimation of Sy: By (C.5), the integrand in Sy is:

Ex (Byix .y — ExyAngny)’

Ny Glxy, ..., x,) ) )2
—FE 2 A R R 4 Py(ylzy,...,x .
X< Z (Nhl b San, L, Gl dry) o(yl71 p)

-----

..........

G(l’h .. ,ZL“p)
(- A ‘
G(dzy,...,dx,) (@1, 3p) € Apy,

SAhl.A.hp

As a result, by the iterative expectation formula, Ey (EY‘X;\hl_._hp — EX,Y;\hl,__hp)Q is

also proportional to EXI . Therefore, by (C.6)

Sp=Co Y, > (I/n+o(n?)) = 2Cs|k|/n + O(|k|/n?),

where (5 is some constant with lower and upper bounds independent of n.
Combining the estimation of S; and Sy, we obtain the desired results with C' =
2CT + 205,
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C.1.4 Proof of Theorem 20

To prove Theorem 20 we need some preliminaries. The following theorem is a minor
modification of Theorem 2.1 in Ghosal et al. (2000) and the proof is provided in
Appendix C.1.5. For simplicity in notation, we denote the observed data for subject

1 as X; with X “Wpe P, P ~ 11, and the true model Fj.

Theorem 77. Let €, be a sequence with €, — 0, ne2 — oo, ¥, exp(—ne2) < oo. Let
d be the total variance distance, C' > 0 be a constant and sets P, < P. Define the

following conditions:
1. logN (€., Pp,d) < ne;
2. 1L, (P\P,) < exp{—(2 + C)ne2};
3. TL(P : [|log F 1w < €2) > exp(=Cne}).
If the above conditions hold for all n large enough, then for M > /16 + 8C,
ILAP :d(P,Py) = Me,| X1,..., Xy} — 0 a.s.Py.

In our case, X; include the response y; and predictors x;, P is the random measure
characterizing the unknown joint distribution of (y;, x;) and Py is the measure char-
acterizing the true joint distribution. As our focus is on the conditional probability,
P(y|z), we fix the marginal distribution of X at it’s true value Py(x) and model the
unknown conditional P(y|z) independently of the marginal of X. By doing so, it is
straightforward to show that we can ignore the marginal of X in using Theorem 2
to study posterior convergence. We simply restrict P to the set of joint probabilities
such that P(z) = Py(z). The total variation distance between the joint probabilities

P and P, is equivalent to the distance between the conditionals defined in Theorem
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2 by the identity
do
JZ Py, @1, ..., xp) — Po(y, @1, ..., 2)|dxy -+ - doy, =
y=1

do
JZ |P(y|z1, ... 2p) — Polylzi, ..., 2p)|[dGy(day, - -+, day).
y=1

Therefore, we will not distinguish the joint probability and the conditional probability
and use P to denote both of them henceforth.

To prove Theorem 2, we also need upper bounds on the distance between two
models specified by (C.12) when the models are the same size and when they are

nested.

Lemma 78. Let P and P be two models specified by (C.10) with parameter (k,\, )

and (/;, ), respectively. Assume that P and P have the same multirank k = k =

A
(k1,...,kp). Then

do P k;
5 3 (7) ~(7)
d(P, P) < ;hrlf}%p | Atiha.hy () = Aniho.n, ()] + do;ffthZl ) (25) — T (25)].
= = p=

Proof. By definition of d(P, ]5), we only need to prove that for any y = 1,...,dy and

any combination of (z1,...,x,),

\P(yley, ... xp) — I5(y|x1, o) < max | Abihg..n, (Y) — 5\hIhQ...hp(Z/)|

Pk A
+ 300 W) = m @)l (C)
j=1 hj=1
Actually,
~ P
|P(y|$1> 7xp)_P(y|x17 >xp)| <A+ZB&
s=1



where

k1 kp p .
A - Z Tt Z |)\h1h2.“hp (y) - Ah1h«2~~~hfp (y)| n 71'}(1‘7]) (.T])
hi=1  hp=1 J=1
R T
< EII&X |)\h1h2 hp (y) )\hth hp (y)| Z Hﬂ—hjf (.Z'])
77777 P hi1=1 hp=1j=1

= max [Anp, o, (Y) = Ntz ()],
Tyeens P

where the last step is by using the second equation in (C.9), and

k1 kp s—=1 p )
Bo= )" 3 Mmoo, @) 70 (@) = i @) [ |70 @) || =)
hi=1 hp=1 j=1 j=s+1

ks

< O e (s) — 7 (@),

hs=1

where the last step is again by using the second equation in (C.10) and the fact that

Ahihs..h, (y) < 1. Combining the above inequalities we can obtain (C.7). O

Lemma 79. Let P and P be two models as in (C.10) with parameters (k, A\, ) and
(/;:,:\,7?), respectively. Suppose P is nested in P, i.e. satisfying:
1. k;j g];:j,forj =1,...,p,;
2. >\h1--~hp = S\hln-hp; fOT hj < ]Cj,j = 1, N
9 Doy — =0, he < k. d (j)( ):Z ~(j)( )
- T (z;) T, (z;), for hj < kj, an T (2 hy=ky Ty (T5)-

Then

P k; .
d(P, P) < d Z max Z ﬁgjj_)(xj).

j=1 hj=k;
Proof. By condition (c), P can be considered as model P’ of size k; with 7/ = 7% and
M\ satisfying:

)‘Ihl ha-+hyp (y) = >\min(h1,kl),min(hg,kg),--- ;min(hp,kp) (y)>
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foryzl,...,doandhj<lgj,j=1,...,p.

As a result, by condition (b)

|P(y|xy, ..., xp) — f’(y|$1, ce )|

k1 kp P
Z Z [N o) () — Mooty )] [ [ 75 (2)

1=1  hi=k1+1

S ~ 5 T -0)

Z Z Z |)\m1n hi,k1)-- min(hp,kp) (y) - )\hl...hp (y)| n 7Ai-hjj (QIJ)
h1=k1+1 ho=1 hp 1 7=1

SRS 33 Pt ) = 3, 0 [ ] 715

h1=1 \ ho=1 ho=ko+1

N

Eal

P

k1 p
Z Z [ Amin i ky ) min(hp kp) (U) = Aoy ()] nﬁf(fj) ()

h1=k14+1 ho=1 hp 1 7j=1

k1 kp—1 ~ P ;
+ -4 Z Z Z |>‘m1n(h1 k1)~ min(hyp, kp)( ) )\hl...hp (y)| 1_[ ﬂ-}(L]J') (JC])

h1=1 hp—1=1 hp=kp+1 Jj=1

Here the last inequality holds because |5\min(h17k1)...min(hwkp)(y) — :\hl...hp (y)| = 0 if
h; < k; for all j. Hence, the lemma can be proved by noticing the constraints (C.10)

and the fact that :\hl...hp (y) € [0,1].

Proof of Theorem 20. We verify conditions (a)-(c) in Theorem 77. As we described

previously, we do not need to distinguish the joint probability and the conditional

probability under our prior specification. Each model one-to-one corresponds to a

triplet (k, A, m), where k = (ki,...,kp,) is the multirank, A = {\, 5, (y) 1y =
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1,....do,h; <kj,j=1,...,p,} is the core tensor and 7 = {7?,(1]])(95]) hy < kjxy =
1,...,d;,7 =1,...,p,} is the mode matrices. Note that the dimension of A\ and =
depend on k. Let the sieve P, be all conditional probability tensors with multirank
satisfying H?il k; < D,. Since the inclusion of the jth predictor is equivalent to
k; > 1, models in P,, will depends on at most 7,, = log, D,, predictors.

Condition (a): By the conclusion of lemma 78, we know that an €,-net E,, of P,
can be chosen so that for each (k, A\, 7) € P, that satisfies constraints (C.10), there
exists (/%,5\,7?) € B, such that k = F, MAaXy by, hy | Mriho.hy, (V) — :\hlhz...hpn (y)| <

and max, |W§Li)(x]) — W,S])(xj)| <

€n

do (Fn-i—l)

€n

ddo(rnt 1) for j satisfying k; > 1. Hence,

for fixed k, we can pick €, d-balls of the form

1 (s geen) T (260 )

jikj>1hj=1z;=1

where the first product is taken for all integer vector (hy,...,h,,,y) satisfying 1 <
y < dyand 1 < h; < kj. For fixed k& with H?L k; < D, in P, there are at most

doD,, such Ap .. .1, (y)'s and Fd? W]Si) (z;)’s. Equally spaced grids for A and 7 can be
chosen so that the union of €, d-balls centering on the grids covers the set of all models
in P, with multirank k. Note that there are at most dr,pl» different multirank k in
P,,. This count follows by first choosing at most ,, important predictors with k; > 1,
then choosing at most dr, for these k;’s. Hence, the log of the minimal number of
size-¢,, balls needed to cover P, is at most

do (T, 1 ddy (T, 1
0(rn+ ) +Fnd2]-og 0(gn+ )
€n €n

log {dfnpzn} + doD,, log

By the conditions in the theorem, each term will be bounded by ne?/3 for n suffi-
ciently large.

Condition (b): Because II,(PS) = 0 in our case, this condition is trivially sat-
isfied. Actually, this condition will still be satisfied as long as IL,([[}" k; > Dy) <
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exp{—(2 + C)ne2}, which implies that the prior probability assigned to complex
models is exponentially small.

Condition (c): As Py is lower bounded away from zero by €, || log & oo < €
implied by ||P — Pyl|e < €o€? for n large enough (e, — 0 as n increases). Let (X, 7)
denote parameters for the true model Fy. Consider approximating P, by model P
with (k™ X, 7), where k(™ is specified in the theorem. Applying lemma 79 to bound
d(P, Py), where P (regard as the P) with (k™ )\, %) is nested in Py (regard as the
]5), and then estimating the difference between P and P by lemma 78, we have

do

d(P7 PO) < Z ( )HlaX (n) |)\h1h2,..hpn (y) - 5\h1 ...... hpn (Z/)|
y—1 h<ky™ o hp, <k,
K" (C.8)
Z max Z ‘ﬂ'h x] — 7rh :cj + do Z Hlax 2 )(:c])
k(n)>1 " k(")

Applying (C.7) in lemma 78 and combining (C.8) and condition (iv) in Theorem 20,

||log £ oo < €2 is implied by

2
\ €
A -\ < _n
hlgkgn)f'I'lvizgkl(,z)’y | hi..hp (y) hi...hp, (y)| P+ s
max |7Ti(zj-) (z;) — (J)( z)| < _i
hyk ey (7fn + 1)d

Note that the prior probability P(k = k(™) is at least (7,/pn)™ (rn/(pnd))™(1 —
Tn/Pn)P" ™. Here (1 — r,/p,)Pr~" is defined to be 1 if r, = p,. As r,/p, — 0,
log IL,, (k = k™) is bounded below by 27, log(r,/pn) = —27, log p,.

Moreover, since the Dir(1/d;, ..., 1/d;) and Dir(1/dy, . .., 1/dy) priors for Ay py..n,, ()
(j)(

and 7.”’(x;) have density lower bounded away from zero by a constant not involving
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P
loan(P: ||logF||OO < ei)
0

Fn + 1 rn, + 1)d
> —dyD,, log % — 7pd®log w — 27, log p,.
67’1 ETL

By the assumptions in the theorem, for any C' > 0, for n sufficiently large, log IL,, (P :

[log £ 1w < €2) > —Chey,. O
C.1.5 Proof of Theorem 77

The following two lemmas are needed to prove this theorem. The proof of Lemma 80
can be found in Jiang (2006), and the proof of Lemma 81 follows the line of Ghosal
et al. (2000) and is given here.

Lemma 80. Let P be a subset of all probability measures of X, Py € P and d be the
total variance distance, then for each ¢ > 0 and n > 0, there exists a test ¢, such

that

Pgﬁbn <N<iapad) exp(_%EQ)a

sup P*(1 —¢,) <exp (—
PePn{P:d(P,Py)=e}

where P™ is the n—fold of P.

Lemma 81. If I1,(P : ||log p%”oo < €2) > exp(—Cne2), then for any test ¢, the

following inequality holds:

EpJL(P:d(P,Py) = €,|X1,...,X,) <

Py oy, +exp((1 + CYne ), (PS) + exp((1 + C)ne?) sup P"(1—¢,).
Prnn{P:d(P,Po)=en}
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Proof. We can divide the Lh.s. into two pieces

EPOH (P d(P PO) €n|X17'--7Xn) =
EpIL,(P: d(P,Py) = .| X1, ..., X)) ¢

+EP0H (P d(P PO) €n|X17'--7Xn)(1_¢n)'
The first term satisfies

EpT1

0

nW(P:d(P, Py) = €| X1, ..., X0)on < B n.
Next we will estimate the second term. By definition, we have

EpIL(P : d(P, Py) = €| X1, ..., X0)(1 — ¢,) =

Sd(P,P0)>en H? 1 P%(X')dn (P)(l - (bn)

i TTIC, Z (X, (P)

(C.9)

(C.10)

(C.11)

Let K, = {P: ||log £ 7 llo < €7}, Using the condition TI,(K,) > exp(—Cne;), we

have

n
Kn j=1

[TT50x

=1

mw
Mw

> I,(K,)exp(—ne2) = exp(—(1 + C)ne?) a.s.Py.

By Fubini’s theorem and the fact 0 < ¢, < 1

S
En | (XL (PY(1 6,
d(P,Py)zen j—1 L0

I, (P9) + j PP(1 = 6,)dI1, (P)
Prnn{P:d(P,Po)=en}

IL,(Py) + sup P"(1 — ¢,).

Prn{P:d(P,Py)=en}

Combining the above assertions and equation (C.11), we can see that
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Ep L, (P : d(P, Py) = €,|X1,..., Xp)(1 — ¢ép)

P
<exp((1 + C)né)E J —(X,)dIL,(P)(1 — ¢,
(1 + C)ne;,) Er, e, L 7, (X)L (P)( ) (C.12)
< exp((1 + C)ne)I,(PS) + exp((1 + C)ne2) sup P™(1 — ¢p).
Prn{P:d(P,Py)=en}
Combining (C.9), (C.10) and (C.12) will lead to the conclusion. O

Proof of Theorem 77. Let the test in the Lemma 81 to be the test ¢, defined in
Lemma 80 with € = Me, and M? > 16 + 8C. Using the condition (a), (b) in the

Theorem 77, we have

EpJL,(P: d(P,Py) = Men| X1, ..., X,,) <

exp(—ne2) + exp(—ne2) + exp(—ne2) = 3exp(—ne?).
So

Ep, Y \IL(P: d(P,Py) > Me,|Xi,..., X,) <3) exp(—ne2) < 0.

Thus we have

DL (P d(P, Py) = Me,|Xy,..., X,) < 0 a.s.F,

n

and

IL,(P:d(P,Py) = Me,| Xy, ..., X,) > 0a.s.Py.
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Appendix D

Appendix for Chapter 5

D.1 Posterior computation

In this appendix, we provide details of the MCMC implementation for CA and LA.
The key idea is to augment the weight vector A\ = (Ay,..., Ay) ~ Diri(p, ..., p) by
N =T;/(Ty + - - - +Ty) with T “ Ga(p,1) for j = 1,..., M and conduct Metropolis
Hastings updating for log T;’s. Recall that F' = (Fj(X;)) is the n x M prediction

matrix.
D.1.1  Convex aggregation

By augmenting the Dirichlet distribution in the prior for CA, we have the following
Bayesian convex aggregation model:
M
3/1‘ = Z )\jFij + €, € ~ N(O, ]./Qﬁ),
j=1

T
! T‘] ~ Ga(pa ]-)a Qb ~ Ga(CLOa bO)

A=,
i+ + Ty

J

We apply a block MCMC algorithm that iteratively sweeps through the following

steps, where superscripts “O”, “P” and “N” stand for “old”, “proposal” and “new”
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respectively:

1. Gibbs updating for ¢: Updating ¢ by sampling from [¢|—] ~ Ga(a,,b,) with

1 n M 2
anzao—i-g, bn=b0+§Z<Y;—Z)\]EJ)
i=1
2. MH updating for T'(\): For j = 1 to M, propose T = TPe’Vs, where U; ~

U(=0.5,0.5). Calculate A" = TP/(Z] T and the log acceptance ratio
log R _¢ Y; 3 N'F, 2 AN )\OF log-likelihood
og —§Z i_Z 5 i 52 Z ij (log-likelihood)
M
+ Z ((p=1D)logT/ —T) - A ((p—1)1og TP —T?)  (log-prior)

M M
+ Z log TjP — Z log T]-O (log-transition probability).
j=1 j=1
With probability min{1, R}, set TjN = ij ,j=1,..., M and with probability
1 — min{1, R}, set TjN = Tjo, jg=1,...,M. Set )\é-V = @N/(ijlﬂN), j =
1,.... M.

In the above algorithm, S serves as a tuning parameter to make the acceptance rate

of T around 40%.
D.1.2 Linear aggregation

By augmenting the double Dirichlet distribution in the prior for LA, we have the

following Bayesian linear aggregation model:

T.

J

M
Y=Y 0,F; +e, & ~N(0,1/¢), 0; = Azj);, A T Ty 1Ty

j=1

Y

A ~Galco, dy), zj ~ Bernoulli(0.5), T; ~ Ga(p,1), ¢ ~ Ga(ag, by).
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The MCMC updating of T' (or equivalently \) and ¢ is the similar as those in the
convex aggregation. In each iteration of the block MCMC algorithm, we add two

additional steps for updating z and A:

3. MH updating for A: Propose A" = A%V, where U; ~ U(—0.5,0.5). Calcu-

late A" = A9ePV and the log acceptance ratio

Qb n M 2 ¢ n M 2
log R =2 > (n - AfFij) -5 > (Y; - A?Fij) (log-likelihood)
i=1 Jj=1 i=1 j=1

+ ((c1 = 1) log A" — d; A") — ((e1 — 1) log A® — d1 A®)  (log-prior)

+ log A” —log A°  (log-transition probability).

With probability min{1, R}, set AN = A" and with probability 1 — min{1, R},
sett AN = A9 Set A\ = XNPAN/AC j=1,... M.

4. MH updating for z: For j = 1 to M, propose zf = z{V;, where P(V; = +1) =

0.5. Calculate )\P )\OV and the log acceptance ratio
o5 pp ) 0 ol
log R =— Z ZA Fy Z ZA F,] (log-likelihood).
With probability min{1, R}, set z)' = 2z, j = 1,..., M and with probability
1—min{l, R}, set z) =29, j=1,..., M. Set AN =\§21"/20, j=1,..., M.
D.2 Proofs of technical results in Chapter 5

D.2.1 Proof of Lemma 26

The following lemma suggests that for any m > 0, each point in A or Djy,;_; can be

approximated by an m-sparse point in the same space with error at most /2x/m.

Lemma 82. Fix an integer m > 1. Assume (A1) and (B1).

a. For any \* € A, there exists a A € A, such that ||||o < m and ds(X\, A*) < /2.
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b. For any n* € Dy_y, there exists an 77 € Dy;_y, such that ||7|lo < m and

Proof. (Proof of a) Consider a random variable J € {1,..., M} with probability
distribution P(J = j) = A}, j = 1,...,M. Let Ji,...,J,, be m iid copies of J
and n; be the number of ¢ € {1,...,n} such that (J; = j). Then (nq,...,ny) ~
MN(m, (A}, ..., A};), where MN denotes the multinomial distribution. Let V =
(n1/m,...,ny/m) € A. Then the expectation E[V] of the vector V' is A*. Therefore,

we have

M
* 1 ® Ny *
Ed3(V,\") = ) zjkE(Ej —Aj) (E —)\k)

j.k=1

! iz A1 =A%) 2 D SN
= — jiNG\L T A )T — JkNG Nk

mj:l m1<j<k<M

A . o 2K - 2K
2AA=X)+— > A< =

j=1 m 1<j<k<M

where we have used (A1), the fact that |2, < E%QE}JS and Z]Ail A = 1. Since the

expectation of d4(V, \*) is less than or equal to 2x/m, there always exists a A € A
such that ds(\, \*) < 4/2k/m.

(Proof of b) The proof is similar to that of a. Now we define J € {1,..., M} as
a random variable with probability distribution P(J = j) = |n}], j = 1,..., M and
let V' = (sgn(ni)ni/m, ..., sgu(ni)na/m) € Dyr—q. The rest follows the same line

as part a. under assumption (B1). O

Now, we can proceed to prove Lemma 26.
(Proof of a) Without loss of generality, we may assume that the index set of

all nonzero components of \* is Sq = {1,2,...,s — 1, M}. Since sup; 2j; < k and
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1/2w1/2

M
ds (A A7) = 7 S — XDk — Af) < Kl IA = M*[]5.
k=

j7 1

Therefore, for any € > 0, {||A = \*||; < k7%¢} < {ds(\, \*) < €}. Since [A\y — A%, | <
Z]Agl |Aj — A%, for 6 = k%€/(4M — 4s) and 8y = 1~ 2¢/(4s), we have
Ae = {)\EAZ)\J'E (0,51],]658, |)\]—)\;k| < 50,j€S0—{M}}

< {JIA = N1 < w126,

Combining the above conclusions yields

H(ds (X, A*) <€) = II(A,)

oz/MV 8 M- i M—1 o/M7—1
:L T (/M) H - 21 A dAv---dAva,

where I'(+) denotes the gamma function. By the facts that I'(z)I'(1 —z) = 7/ sin(7wz)
for z € (0,1) and ¢ = T’(1) is finite, we have {z['(z)}"' = 1 — cx + O(z?) for
x € (0,1/2). Combining this with the fact that \; < 1, we have

F(a/Mv—l){ J T ot }
M(ds(A ) < o) > /M) by d\;
( E( ) ) FM(O(/M'Y) min{0,\;—do} ’ !

jeSo—{p}

(T1[ o

> a MMM 5! (a—le(;;v/M”)M—

c s—1 c aM~(=1(1—s/M)
1 —y(s=1)=1
s=1 =2 (s=1)-1( €

M
> exp{—C”yslogM—Cslogf} = exp{—C”yslog—},
€ €

v

where we have used the assumption v > 1 and the fact s < M.
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(Proof of b) For any integer m > 0, let A be the m-sparse approximation of \*
provided in Lemma 82 part a. Then ds (), A*) < C'm'/2. By the conclusion of Lemma

26 part a, we have

_ M
{ds(\A) <€) 2 exp{ = C’ymlog—}.
€

Therefore, by the triangle inequality, we have

C M
II ) < — ] = — log — ;.
<d2()\,)\ ) <e+ m) exp{ Cvymlog ; }

(Proof of ¢) For the double Dirichlet distribution, the prior mass allocated to
each orthant of RM is 2™ A direct application of part a will result a lower bound

UM which is too small compare to our conclusion. Therefore, we need to

of order e~
adapt the proof of part a.
Let Sy = {1,2,...,s — 1, M} be the index set of all nonzero components of n*.

Similar to the proof of part a, with the same d; and g we define

Qc = {neDuy_1:|n| <01,5€SG |nj—nil <bo,jeSo—{M}}.

Similarly, it can be shown that Q. < {dr(n,n*) < €}. So by the fact that |n;| < 1,
we have
1 T(a/M1
{dr(n,n*) < €) = M{

73+ /M7 —1
> Jo/MY=1 g
20 T (o] M) Lj% I "J}

01 8
{ 11 J 5 ;| ‘ldm}

JES§

jeSo—{p}

1 M
2_Ma71M'yflaMM7'yM(250)sfl (QOéflM’y(S(ll/M )M

s—1 aM~O=D(1—s/M)
> Oésfle'y(sfl)fl (E) ( € )
s M —s

M
by exp{ — Cvslog—}.
€

4%
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As we can seen, now each 7, contributes an additional factor of 2 to the prior con-
centration probability comparing to that of A; in the proof of part a. This additional
factor compensates for the 2™ factor in the normalizing constant of the double
Dirichlet distribution.

(Proof of d) The proof is similar to that of part b by instead combining the proof

of part ¢ and Lemma 82 part b. Therefore, we omit the proof here.
D.2.2  Proof of Corollary 27

By the triangle inequality and assumption (B1), we have

dr(\A) < dp(An, A*n) + dp(A™n, A*n*) < k|A — A*| + A*dp(n,n").

As aresult, {|A — A*| <k e; dr(n, n*) < (A*) e} < {dp(\, \*) < 2¢} and
{dr(A,A%) < €) = TI(|A = A*| < Ce) - T(dp (n,77) < Ce).

Since log IT(|A — A*| < Ce) = loge, the conclusions can be proved by applying part

¢ and part d in Lemma 26.
D.2.3  Proof of Lemma 28

(Proof of a) For any A e F2_, let S(A) be the index set of the s largest ;’s. For any
e FA

s,€?

if ' € A satisfies \; = 0, for j € S¢(\) and |, — \;| < ¢/s, for j € S()), then
ds(\, N) < K||N — A||1 < 2kre. Therefore, for a fixed index set S < {1,..., M} with
size s, the set of all grid points in [0, 1]* with mesh size €/s forms an 2ke-covering set

for all A such that S(A\) = S. Since there are at most (]\f) such an S, the minimal

2ke-covering set for ]:;}6 has at most (]‘84 ) X (f)S elements, which implies that

M M
logN(ine,]:ﬁE,||-||1)<log( )—i—slogfﬁslog—.
: s € €

This proves the first conclusion.

For any n € F} . ., let S(n) be the index set of the s largest |n;|’s. Similarly, for

7876’

any A = Ane Fg ., ifn' € Dy satisties )} = 0, for j € S°(n) and |n;—n;| < €¢/(Bs),

S,€?

267



for j € S(n), and A’ < B satisfies |A' — A| < ¢, then dp(A'r, An) < k||A'n — Anl]; <

k|A — A'| + Br|ln' — n||1 < 3ke. Similar to the arguments for F2., we have

S,€9

M B B M
log N(3re, F . |l - 1) < log( ) —i—slog—s + log — < slog — + slog B.
. s € € €

(Proof of b) By Lemma 82, any A € A and n € BD); 1 can be approximated by
an m-sparse vector in the same space with error Cm =2 and C Bm~/? respectively.

Moreover, by the proof of Lemma 82, all components of such m-sparse vectors are

multiples of 1/m. Therefore, a minimal C'/y/m-covering set of A has at most (M;TI_ 1)
elements, which is the total number of nonnegative integer solutions (ns, ..., ny) of

the equation: ny + --- + ny = m. Therefore,

M+m-—1

log N(C/v/m, A, ds) <10g( ) < mlog M,

M+m-—1
m—1

B
log N(CB/v/m, A, dsx) <log< ) + log < mlog M.

B/ym ™
D.2.4  Proof of Lemma 29

(Proof of a) Consider a random probability P drawn from the Dirichlet process (DP)
DP((a/M"~")U) with concentration parameter a/M?~* and the uniform distribu-
tion U on the unit interval [0, 1]. Then by the relationship between the DP and the

Dirichlet distribution, we have

Aty A ~ (P(Ay), ..., P(Aw)),

with Ay = [(k — 1)/M,k/M) for k = 1,..., M. The stick-breaking representation

for DP (Sethuraman, 1994) gives Q = Y, wyd,, a.s. where &, U and
k-1

wy = w, n(l — W), with w) % Beta(1,a/M" ).

=1
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For each k, let i(k) be the unique index such that & € A;uy. Let Aqy = -+ = A

be an ordering of A\q,..., Ay, then
Ywze(Udo)= T wzYu
j=1 j=1 k:ékeu‘;zl Az(g) k=1

Combining the above with the definition of wy provides

M s k—1 s
Z )‘(j)gl_zw;en(l—wg):nl—wk nvka
k=1 1=1 k=1

j=s+1

, ud

where v, = 1 — Beta(a/M?~',1). Since v, € (0,1), we have (FJ)° =

{ZJ s+1 6} {Hk 1”k 6} Because

(67

— < on_(”_l)s_l,
a+ Mr1s

1
Euj = f e
o M1

an application of Markov’s inequality yields

H{ nvk > 6} <€’ n Ev; < M5O Dg=scs,
k=1

k=1

As a result,
A - M
(A ¢ 7o) <1 ||Uk>€ <exp| —Cs(y—1)log— ).
’ €
k=1

(Proof of b) The proof is similar to that of a since (||, ..., |num]) ~ (A1, .., An)
and II(A > B) < e 9B for A ~ Ga(ag, by).

D.2.5 Proof of Lemma 30

(Proof of a) Under (A3), the conclusion can be proved by applying Lemma 2.1 and
Lemma 4.1 in Kleijn and van der Vaart (2006) by noticing the fact that || Z]M:1 Nifi—

g = ds(AA%).
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(Proof of b) Let ¢9(X,Y) = 55 ||Y —FA|[3. We construct the test function as ¢, (Y) =
I(p(A*Y) — (A, Y) = 0). By the choice of A*, under Py we can decomposition
the response Y as Y = FA* + ( + ¢, where ¢ ~ N(0,0%I,) and ( = F — FA* € R?
satisfying F'7'¢ = 0. By Markov’s inequality, for any ¢ < 0, we have

PA*an(Y) = P)\* (et{w(A*7y)_¢(>\27Y)} > 1)

t x
< Bwexp{ 5o (I = 17O = 30) + ¢+ )}

t t
= By exp{ (Mg — )\*)TFTE} exp{ — —ndp(As, A*)}

o? 20
= exp { — 1(20%) 7 'nd} (A2, \*) + 0 ndh(Aa, A*) },

= exp{ — (160%) 'ndp (X, A")}, (D.1)

with ¢ = + > 0, where we have used the fact that e ~ N(0,0%I,) under Pyx and

1
1
FT¢ = 0. Similarly, for any A € R, under Py we have Y = F\ + ¢ with € ~

N(0,021I,). Therefore, for any t > 0 we have

Py(1 — ¢, (V) = Py(etvR2X)=v 05 Y)) 5 1)

t
< FJ’)\GXP{T‘_2

(lle = FOa = NIE— [le - PO — A)II%)}
= E, exp{ — %(AQ — /\*)TFTe} (D.2)

exp { — %‘Qn(d%()\, M) — dR (), Ag))}

= exp{ — t(20%) " 'n(dn (N, N*) — di(\, \2)) + 202 ndh (Mo, AF) },

(d3(\, ) — d2(\, Aa)) } (D.3)

= — (160%)7"
exp{ (160°) n O )

with ¢ = £ (d2(\, A*) — dZ (A, X)) /dZ (Ao, A*) > 0 i dp(A, M%) > dp(A, Aa).
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Combining (D.1) and (D.3) yields
Py (Y) < exp{ — (160%) 'ndh (X2, A*)}

sup P\(1—¢n(Y)) < exp{— (640°) 'nd7 (X, \*) }.

AeRM: dp(XA2)<3dp(A¥ A2)
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Appendix E

Appendix for Chapter 6

E.1 Proofs of technical results in Chapter 6

E.1.1  Proof of Lemma 31

Consider a fixed s. Let Ay = {z : |t — us| < dp}. Then by the definition of total
variation norm and ||7; — m|| — 0, we have |7, (As) — m(As)] — 0 as t — oo.
Because { h()(z)A(dz) = 1 and &, — 0, h{”(A%) — 0 uniformly for s € {1,...,S} as
t — o0. As a result, lim;_,o |7 (As) — w§5)| = 0. By the weak law of large numbers,
| ~(s)

w, " — m(As)| — 0 in probability as L — co. Combining the above, we reach the

conclusion.
E.1.2  Proof of Lemma 42

There exists a short proof for this lemma and Lemma 43, which is based on the
operator theory and can be considered as a special case of the proof for Lemma 39
with V' = 1. But for illustration and possible future generalization, we also provide
the following proof based on coupling technique.

Denote § = 3|[po — 7||. Let {X; : ¢ = 0} and {X] : ¢ > 0} be two Markov chains
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defined as follows:
1. Xo ~ po;

2. Given X, = z, with probability min{l, %}, set X} = z; with probability

1 — min{1, %}, draw

;™) —min{r (), po()}
Xy ~ 5 ;

3. For t = 1, if Xy = X[, draw X; = X] ~ T(X;_1,-), else draw X; and X]
independently from X; ~ T(X;_1,-) and X; ~ T(X,_,, -) respectively.

Note that ﬂ(')_min{;(')’p 00} is a valid probability density since: 1. it is nonnegative:
2. its integral on E is equal to one by the definition of 4.

From the above construction, it is easy to see that the marginal distribution of
Xy is T" o pg. Next we will prove that the marginal distribution of X] is 7 for all .
Since the stationary distribution of 7" is 7, we only need to show that the marginal

distribution of X is 7. First,

P(Xo = X1) = J min{1, ]%}po(x)/\(dx)

(E.1)

=1—0.
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Then, for any A € B(E),
P(XLe A) =P(X) e A, Xy # XJ) + P(X} € A, Xo = X))

+ L P(Xy = X(| X = ) P(X{ = 2)\(dx)

s [ e mmintete ol

:f m(x)A(dx).
A
By uniform ergodicity, for any probability measure p, we have

A(dzx)

(E.2)

By the above inequality, (E.1) and our construction of X; and Xj, for any A €
B(£), we have

1T o po(A) — 7(A)

=|P(X; € A) — P(X, € A)|
=|P(Xy # X, X, € A) — P(Xo # X{, X € A)|
<P(Xo # X{) {|P(X; € A|Xo # X() — 7 (A)]
+|P(X; € AlXy # X{) —m(A)|}
<or(t),
where the last line follows by the fact that |[p — ¢|| = 2sup,4 |[p(A) — ¢(A)| and (E.2)
with p(+) = P(Xo = | Xo # X{) and p(-) = P(X{ = -|Xo # X{)). Therefore,

1T o — ] = 25up [7* o po(4) = m(A)| < r(t) lpo — ]
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E.1.3 Proof of Lemma 43

Let 6(z) = 3||T(z, ) —n|| < p. Given an initial point =, we can construct two Markov

chains {X; : ¢ = 0} and {X] : t > 0} as follows:
1. Xo=u, X{j ~m;

2. Fort > 1, given X; 1 =x and X] | =2,

(a) if x = ', choose X; = X| ~ T'(z,-);

(b) else, first choose X{ =y ~ T(2',-), then with probability min{1, T;Zf)’)},

set X; = y, with probability 1 — min{1, T(ch,z)/)}, draw

™

T(x,-) — min{T'(x,-),7(-)}

Xt ~ (5(1‘) )

Then similar to the proof of Lemma 42, the above procedure is valid and the two
Markov chains X; and X have the same transition kernel 7', but have initial distri-

bution ¢, and 7, respectively. Moreover,

T
P(X, # X X1, X0, X1, X1 ) <sup {1 _ Jmin{l, (fg’?) }W(y))\(dy)}
. m(y

=supd(zr) < p.
Therefore, we have
||Tt(x> ) _7T|| < P(X1 7 X{? .- 7Xt 7 Xz) < pt'
E.1.4 Proof of Lemma 44

By Lemma 42, T' is uniformly ergodic. Therefore by Theorem 1.3 in Mengersen and
Tweedie (1996), (6.15) holds for some p € (0, 1) and probability measure v. Then by

the arguments after Lemma 43, (6.16) holds with the same p.
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E.1.5 Proof of Lemma 45
We construct a new Markov chain {X, : t > 0} as follows:
1. The state space of X, is E = E U {c}, where ¢ is an extended “coffin” state.

2. Fort > 0: if X;_; # ¢, then with probability d(z), X, = X/ and with probability

1—6(x), X; = ¢; if X;_1 = ¢, then X, = ¢. Therefore, ¢ is an absorbing state.

3. XO is distributed according to py.

!

Then by identifying the coupling (X; = X]) in the proof of Lemma 43 as going to

the absorbing state ¢, we have

t
|T" o po — 7|| < P(X; # ) = E{| [ 6(X])},
s=1

since before being coupled, X, in the proof of Lemma 43 is a Markov chain with

transition kernel 7".
E.1.6 Proof of Theorem 32

We will construct two time inhomogeneous Markov chains {X;:s=1,...,my, t =
0} and {X{,:s=1,...,my, t = 0}, where a double index is used as the step indicator
under the following order (0,1) — --- — (0,mg) — (1,1) - -+ - (1,my) —
(2,1) — -+ > (2,mg) — ---. Let &(z) = ||Ti(z,) — m||. The two chains are

constructed as follows: (note that my = 1)
1. XO,l ~ T, X(l),l ~ T3
2. Fort > 1,

(a) s =1. Let X} 1, , =z and X]

t—1,m¢—1

= 2. Set X;; = x. With prob-

ability min{1, =2} et X, = x; with probability 1 — min{1 mile) 3

me—1(x) ) m—1(x)
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draw

X1, ~ m() = min{m (), 1 ()}

oy ’
(b) 1<s<my Let Xy,1=xand X;, , =2
i. if 2 =1’ choose X;, = X{  ~ Ty(z,-);
ii. else, first choose X{, = y ~ Ty(2',-), then with probability min{1,

%}, set X; s =y, with probability 1 — min{1, %}, draw

Ti(x,-) — min{Ty(z, ), m(-)}
6¢(x) ’

Xt,s ~

The above construction combines those in Lemma 42 and 43. By the argument in
the proof of Lemma 42, the construction for s = 1 is valid. Moreover, if (X; 1, , =

XI

t—1,m¢—1

), then the probability of (X;; # X/ ;) is a;. Similarly, by the argument in
the proof of Lemma 43, the construction for s > 1 is valid. Moreover, conditioning
on Xy, and X/, ;, the conditional probability of (X;; # X/ ;) does not exceed p;.

It can been seen that the marginal distribution of X, is T 0 Q1 0---0 Q) oy,
while the marginal distribution of X7 _ is m;, for s = 1,...,m;. Therefore,

Q¢ o 0Qromy —m|| < P(Xim, # Xim,)-

Furthermore, we have

P(Xim, # Xin,) = PXec1me s # Xi iy Xeme # Xin,)

+ P(Xi—1my, = X,

t—1,m¢—1°

Xt,'rnt # th,mt)

< P(thlymtfl # thfl,mt_l)p;nt

+ 1= P(Xitmey # Xy, ) |uepi™
= (€ + Et(l - Oét)P(Xt—l,mt,1 # X£717mt71)
t t
< - < Z { n eu(l — au)}esas.
s=1 “u=s+1

Combining the above two inequalities, the theorem can be proved.
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E.1.7 Proof of Lemma 33

Under the regularization conditions on fy, the following second order Berstein Von-

Mises theorem holds (for a proof, see, for example, Datta and Mukerjee (2004)):

T — N(ént,nlll)H = Op (\/%) (E.3)
t t

where N(p, ) is the multivariate normal distribution with mean p and covariance

>, ént is the maximum likelihood estimator, m; is the posterior distribution with n;,

observations Yi,...,Y,, and I is the Fisher information matrix.

VAL,

Next, we show that under the same regularity conditions, |0, —6,, .| = O p( -

In fact, an application of Taylor’s expansion for » ", l (Y;,0) around ént_l yields that

for # in a small neighborhood around ént_l,

Zl Y;79 Z 2 nt 1 Zl Yuent 1 o énz—1) + O(nt(9 o ént—l)Q)

Plugging in § with 0,,, and using the facts that 37, ((Y;, 0,,) = 0, 77 (Y}, 0,,,) =

0 and Y™, [(Y;, 0, ,) — n,d in probability, we obtain

Atfl
- Z Z(Ym—i’ ent71) = n](em - Hnt71) +op (nt|0nz - ent—l |) (E4)

Finally we reach

A—1
. . L A
10, = O, | = —[1 4 0p(1)] (ned)~ Z [(Yni—is Ony ) Op( t).

Uz

Return to the proof of the theorem. Note that the L, distance ||p—q|| between any
two densities p and ¢ is bounded by H(p, ¢)/v/2, where H(p, q) = { |\/p— /4|* is the
square of the Hellinger distance. Moreover, for two normal distributions, N (u1,0%)

and N (u9,03), we have

H2(N(M1,U%)a N(/@,U;)) =1~
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Therefore, by combining (E.3) and (E.4), we have

~ 1 A 1
el s
Uz N1
1 .
+ ||N| O, —1 - N Gnt_l,
Uz
1 1
=0p| — ) +0p| ——
P(W) P( nt—At)

1/4,,1/4 1/2
+ (1 . ny / nt 1 e*ntOP(At/n%)
(1

|7y — ma]] <

— AJ2)1?

_ 1 AR Ay
_OP(\/nt)+OP< nt)—Op( ”t)'
E.1.8 Proof of Lemma 3

Without loss of generality, we consider one dimensional case because otherwise, we
can estimate each component of 6’~j by considering the marginal distribution of 7
along the jth dimension. Combining (E.3) in the proof of Lemma 33 (under the

same notation) and the assumption ||7; — m|| < &, we have

A 1
Fp— N(Hm, —11) H =1i+e¢, (E.5)
Uz

where ¢+ = Op(n, 1/2). Let 6, be the median of #;. By the definition of the total

variation norm || - || and 7, (0 € (—oo, ét]) = 0.5, we obtain
~ A 1 1 1
Q(m](et - Hm)) - 5 =L+e= (I)(ZO.5+L+5) - 5 = 5 - CD(ZO.5—L—€)7

where @ is the cdf of the standard normal distribution. Therefore |0, — 6,,| =
Op (z0.5+L+€nt_1/2). Because fy is regular, the MLE satisfies |ém — G| = Op( _1/2).

As a result, |ét — by = Op (z0_5+b+5nt_1/2), which completes the first part.
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For the second part, we do not restrict # € R? to be one dimensional. An appli-

cation of E.5 with A,, we obtain

1Py (8o +ny A, + 0] PITVAN € Ay) —al = 0+ e,

where N is a random vector that follows N(0, I;) with I, the d dimensional identity
matrix and A, = nz/ *(0,, — 00) — N(0,I71) in distribution. Therefore, for
B, = n,”T"*(A, — 60 — n, A,
we have P(N € B;) = a+ Op(¢) + Op(e). Therefore,
Py(0o € Aa) = Polbo € 0o +n, PA,, + 1, PT72B,)

— Py(I'?A,, € —B,)

= P(N S —Bt) + O(?’Ltil/Q)

=a+Op(t) + Op(e),
where the third step follows by the fact that I'2A,, — N(0,1,;) in distribution

and the Edgeworth expansion, and the last step follows by the symmetry of the
distribution of N(0, I).

E.1.9 Proof of Lemma 35
By factorization of joint probability, we have

[l = Jy o Al = f |7 (04 D) 7 (| 047) = p(OFD) L (04, 1) [dO D\ (k)
s Jﬁt(e(tl))ht(ntw(tl)) — J(0% D, ) M (dn) A (a6 V)

+ J |7Tt(9(t71)) - P(e(tfl)) |Jt(9(t71)a nt)A(de(tfl)))‘(dﬁt)

< sup [Jm(1097D) = L0V, )] + |lm — pl.
ft—1eR¥—1
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E.1.10 Proof of Theorem 36

The proof is almost the same as that of Theorem 32. The only difference occurs in

the constructions of X;, and Xj for s = 1, which is provided in the following.

When t > 1 and s = 1, let Xy 1,,,, = v and X;_,,,, , = 2’. Draw X;; ~
Ji(z,). With probability mm{l,%} set X{, = x; with probability 1 —
min{1, JtOT:t(xl ) draw

() —min{m (), Jr o w1 (2)()}
Xt,l ~ ~ I

ay

where &y = i||m — J, o m_y]| is the probability of (X;; # X;) conditioning on
(Xt—l,mt 1 X/

 1.m,_,)- Moreover, by Lemma 35, we have &; < a; + 7.

E.1.11 Proof of Lemma 37

Recall that the Kullback-Leibler (KL) divergence is defined as

K(p.q) = [ (0 1og%m<de>,

where f and g are two pdfs on ©. We will use the following relationship between KL

divergence and L; norm:

lp —qll < 2+/K(p,q)- (E.6)

Use the shorthand 7, for the posterior density 7(-|Y1,...,Y,) for 6. By definition,

exp{>i, Li(0)}m(0)

) = T oS, L(8)}n(O)m(d6)

where [;(6) = log py(Y;) is the log likelihood for the ith observation and 7 is the prior

for . Moreover,

rall) ) eSO o
jog 210 zn<9>+1g{ [ S = ryo e ) <de>}

= —1,(0) +log Epov,....v, 11 €xpiln(0)},

281



where Elgy, .. v,_,) is the expectation with respect to the posterior distribution

.....

I1(0|Y1,...,Y, 1). Therefore, we obtain:

K(mp—1,m,) = L) mn—1(0) log W;nzg)g)

=log Eoy;,...v,_1] exXP{Un(0)} — Efopyi....v_ i ()} (E.7)

m(db)

By the third condition, we have that for any ||0 — 6y|| < Me,,
1,(0) = 1.(60) + Op,, (€n)-

Combining the above with the second condition, we have

=exp{ln(fo)} + op,, (1).

Similarly, we have

Ergyi,.. v 11l (0)} = 1.(60) + op, (1).

Combining the above two with (E.6) and (E.7), we obtain
[ (-|Y1, ..., Yn) = 7(-[Y1, ..., Y1) = 0, as n — oo.

E.1.12  Proof of Lemma 39

For a kernel K(x,y) on E x E, we define

1K (2, )llv (K ) ()]
|| K[|y = sup = sup sup :
zeR4 V(l’) zeR4 | fI<V V(f)
It is easy to verify that ||| - ||| satisfies the triangle inequality. By viewing 7(z,y) =

m(y) as a kernel on E x E, we have |||T" — |||y < p. Moreover, for any ¢ € IN, we

have,

C = sun su (T —m) (T — ) f} ()]
[T° = =lly = Sup sup V)

=|[|T*t = 7|||y sup sup :
] ] Sup sup, V()
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with gp(x) = {(T" ' — 7) fH(x)/|||T* ' — 7|||v. By the definition of ||| - |||y, we have
lgf| <V for any f satisfying |f| < V. Combining the above arguments, we obtain
T = =llly <NT = lllv - 1T = =lllv
<pll|IT" " = lllv

<---<ph

This implies geometric ergodicity, i.e.

|7z, ) =7O)lly < V(@)p', weE, tel

For the second part, by the stationarity of 7w, we have

17" o po — ||y = sup f {po(x) = m(@)H(T" — ) f}(x) \(dx)
[fl<sV IX

< [ Im(a) = (03] Vo) sup K2

<p'llpo — 7llv-
E.1.13 Proof of Theorem 40

By Lemma 39, for any distribution py on R? and any ¢ € IN, we have

NT7™ o po — millv < o |lpo — ellv-
Therefore, we have
Qo+ 0Qromy —mlly <€||Qi-10-+-0Q1om—mllv
<€||Qior0---0Qromy — m_i|ly + &l|m — Tl
By Cauchy’s inequality,
I = meally = fRd |me(x) = e (2)|V (2) A(dx)

1/2

<dg(my, T 1) [ fRd{th/Q (x) + 7rt1£21 (2)1V2(2)A(dz)

<2\/6dH(7Tt, 7Tt,1) = (.
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Combining the above two inequalities, we obtain

|Qto---0Qromy— ||y <&||Qi—10--0Q10my — M1y + e

Finally, the theorem can be proved by noticing that

|| = sup |u(f)| < sup [u(f)] = [|pllv
11l I1£ll<v

for any signed measure pu.
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Appendix F

Appendix for Chapter 7

F.1 Proofs of technical results in Chapter 7

F.1.1  Proof of Lemma 52

Use @ to denote a generic quasi-likelihood and @)y the quasi-likelihood corresponds
to the true parameter (6y,7m0). Let P, be the true distribution that generates the

observations X1, ..., X,. Let II, be any probability measure that supported on the

set {Q : ||g — go||n < pn}. By the Cauchy inequality,
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Combining the above with Markov inequality and Fubini’s theorem, we obtain that
for any C' > 0,

n( ﬂ (), Q) < expl-Crg?)

< [ n D) Q) = exp(Cngd))

(F.1)
o [T Qo -
<exp(—Cnp2) | | | P E(Xi) I, (Q).
i=1

By the definition of quasi-likelihood function and assumption (A2), we have

Fgo(T:))  q F9o(T3) (¢ — F(an(T:
log Qo(X,) — log Q(X,) = — W, s [ e,

) V) Jrmy) Vi(s)

< CUWi| - 9(T3) = go(To)| + Cu(9(T3) — 90(T2))?,

where C is some positive constant. Applying assumption Assumption 1(1) to the
above inequality, we obtain

[17(%00) = ex0 {0 Ya(m) = ()2 = exp(Conll = ).

for some Cy > 0. Combining the above and (F.1) and choosing C' > Cy + 1, we
obtain

n( | H 2 (), Q) < expl-Crng)

< exp(—Cng?) j exp(Canllg — goll2)dT(Q) < exp(—np?), (F.2)

where the last step follows by the fact that II,, is supported on the set {Q : ||g—gol|n <
Pn}-

Using (F.2) to replace the Lemma 8.1 (Ghosal et al., 2000) in the proof of Theorem
2.1 (Ghosal et al., 2000), we can finish the proof.
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F.1.2  Proof of Lemma 60
Let B, = {||0 — 0o|| < Mp,, n € H,}. Then by Assumption 2 and the definition of
H, in (7.25), H(B,|X™) =1~ Op(6,). For any measurable A = R¥,

(6 € A|X™, B,) —11(0 € A|X™)]

(9 € AIX™)[1 - I(B,|X™)] — I(9 € A, B5|X.,)
- (B, [X™)

<2[1 — I(B, | X™)| /TL(B,| X ™)

—Op(6,,).

Take the supreme over A, we obtain

sup [I1(0 € AIX™, B,) —T1(0 € A|X"™)| = Op(d,).
A

Therefore, to prove (7.33), we only need to prove that

sup (0 € A|Xy,..., X0, By) — Ni (A, (ng00) ™) (A)| = Op[Ru(n™ Y logn)],

(F.3)
where,
(0 e AlX,,...,X,, By) :f N”(H) dH(G)/f :g”(g) dI1(9).
An{]|0—60||<Mpn} Sn(0o) l16—00l|<Mpn Sn(6o)
(F.4)

Recall the definition of A, by (??). Since the pdf of a normal random variable

with mean 6y +nY2A, and variance (nlgy )+ evaluated at 6 is proportional to

n

. T~
exp{ 0 00 Z 0o, 770 6) 90) 1907770 (9 - 60) - §AZIQOaWOAn}’
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it suffices to prove

L exp {(9 00)" z:;z” o (X3) — g(e — 00) Ty (0 — 90)}d9

_ f nl6) dl‘[(@)‘
An{]18—60||<Mpn} Sn(60)

(F.5)

n

:Op[Rn(n_l/Q log n)] J exp { 9 90 Z 0o 770
Rk

0 80) Ty 6 eo>}d9,

In fact, one can plug in the above equation with A = A and A = R* respectively,
and simple algebra could lead to (F.3).
By np? = —log R,(n""?logn) — oo in condition 3 and Z?:lzgom = Op(y/n),

with M sufficiently large,

n

exp{ (6 — 6,) Z b0 ( 9 0o) Tgw(e—eo)}de

JAﬁ{|6_60||>1\/fﬂn}

:Op[Rn(nl/Zlogn)]f exp{ (60— 6y) Z Bo.m0 ( H 6) 7907770(0—90)}619.
RE

(F.6)

By a subsequence argument, the ILAN (7.15) implies that

Su(6) C
sSup log ~ bo, 0
||0700H<M,0n‘ Sn((%) Z !
n
5(6’ 00)" [90 NCEI) \/R (16 — 6o|) = Op(1). (F.7)

For every  such that ||0 — 6y|| < Mn~'?logn with M sufficiently large, by the
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above, we have

exp {(9 —00)" Zrlvgomo (X;) — g(g _ HO)TT%,no = 90)} B n(0)

n - n -
<exp {(9 —00)" > gy (Xi) — 50— 00) " Tgy o (0 — 90)}
i=1

| exp {Op[R.(n"*1ogn)]} — 1]

:Op[Rn(nl/Qlogn)]exp{G 6) Z Bo.m0 (

(0 80) Ty 0 - %)},

(F.8)
where the last step follows by R, (n""?logn) = o(1).

Therefore, for every § such that Mn~='2logn < ||0 — 6o|| < Mp, with M suffi-

ciently large, the assumption that a, = supy,<,, Rn(t)/(nt*) = o(1) and (F.7) imply

R,(|60 — 6y]) = o[n(0 — HO)TINQMO (0 — 6y)]. Hence, we have,

n

J exp{@ o) Z Bo.mo
An{Mn~12logn<||0—0o||<Mpp}

~ S.(0
= 200~ 00 T (0~ 00) s | =)
2 An{Mn=12logn<||0—0o||<Mpn} Sn(go)
:op(1)f exp{ (6 — 6,) Z 6o ( 9 0o) Tgm(e—eo)}de
[|0—00||>Mn—1/2logn i=1

~Op(e ) [ exp ] (0= 007 Y o 2) = 50— 0T 0 = 0) |
R* i=1

n

—Op[R,(n1? logn)]J exp{ (60— b)) 2 Bo.m0 ( 9 o) TQO’HO(G_QO)}CZQ,
Rk

(F.9)
for M sufficiently large, where ¢ > 0 is a constant dependent on INQO n and the last

step follows by the fact that §exp{at — bt?}dt «~ b=1/2 for b » min(a, 1)
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Finally, (F.6),(F.8) and (F.9) imply (F.5).
F.1.3  Proof of Corollary 49

For each s = 1,... Kk, taking A =R x --- x A; x --- x R in (7.16), where the s-th

component is A, and the rest are R, we obtain

sup ‘H(@S € Al Xq,. ..., X)) — N(GQS + nfl/zﬁnys, n*lfgjm)(As)\ = Op(Sy),

AscR

where ﬁn,s is the sth component of A, and ngm the (s, s)th element of the matrix

7—1

o - Let 0B to be the median of the marginal posterior distribution of #,. Then
07"70 n78

taking A, = (—o0,65,) in the above formula yields

»Vn,s

(M2 (I52, ) TV2(08, — 05, — n7 2R, ) — 1/2| = Op(S,),

where @ is the cdf of the standard normal distribution. By the continuity of &=,

we have

n (I3 ) TVR08, — b0 — PR, ) = Opy(Sy).

~

Concatenating 02, s = 1,...,k, into a vector provides the desired @Ef

F.1.4  Proof of Corollary 50
We only prove (7.21) here. The proof of (7.20) is similar by noticing the fact that
(05 € (Gs,a/2: Tsp—a2)| X5 - X)) = 1 — .
By (7.16) and the definition of A,, ;_,, we have

‘P(GO T Y2, 4 n’lpfg;lﬁN € Am,a) —(1- a)‘ = Op(Sy),

where N is a random vector that follows Ny (0, I;), with I}, the k-by-k identity matrix.

Therefore, for

Bn = nl/Qf;O/’Zno (An,l—a - 90 - n_l/an)a

290



we have
P(NeB,) =1—a+ Op(S,). (F.10)
Note that
Po(Bo € Ani—a) = Po(b € 0+ n~V?A, + 021, ' B))

60,10

= Ry(I,/> A, e -B,)

= P(Ne—-B,) +0(n™?

=1—a+0(S,),

where the third step follows by the fact that

,\1/2 N" Z Iy, 1/2l90 770 i VVQ” N(O’ [k’)

90 10 60,70
and the Edgeworth expansion, and the last step follows by (F.10), the symmetry of
the distribution of Ny (0, I,), and the fact that n=%/2 = 0(S,,).
F.1.5  Proof of Lemma 5/

Under A3, An(6,) = O(|6,, — 6p]) = O(pn). If M is sufficiently large, then

SanAn(en) eln(eom)dn(n) - SHrAn(en) eln(eom)dn(n) S?—t eln o) qT1 ()
5 en@ondll(n) — {, eln@ondll(n) 5,0, €CondII(n)

I(H, — An(6,)| X1, ..., X,)

=1+0p(5,), (F.11
(M| X1, ..., X)) + Op(0n) (F.11)

where I1%(-| X1, ..., X,,) is the posterior of n when 6 is fixed at §; and the the last

step uses Assumption 2. If A4 is true, then by the above observation and (7.27),
(A2) holds with G!, = GV + §,.
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F.1.6  Proof of Lemma 55

Applying a change of variable n — 7 + (0,, — 90)};, we obtain

J el"(e“"_mw"))dﬂen(n)

= In(00,1=2An(0n)+(On—00)h) JT70n A( )
‘ U
L{n(eneo)ﬁ ~—(0rn—00)h

_ J e (00100} On=00)B) g0 (1)
Hn—(0n—00)h

=(1+ Op |Gy (max{|0 — 6|, n~"Y?log n})l) J etn@om) qr1fo ()

n—(6n,—60)1

=(1+ Op, |G}, (max{|8 — bo|,n" " logn})]) j e omdiI® (),

n

where the second step follows by the definition of II, the third step by A5 and the

last step by the same argument as (F.11).

F.1.7 Proof of Lemma 53

With the definition of §n and the conditions in the lemma, we have

Sn (‘9) = J el”(e’")*ln(‘)o,no)dne (77)

~ 1 >
= €exp {\/ﬁ(en - QO)Tgn - 5”(971 - QO)TIGO,UO (Qn - 80)
+ Op|Gy(max{|d — 6|, n Y 1og n})]} J et (Gon=2n(0)=Ln(B0.m0) gT10 (1))
~ 1 >
= €exXp {\/ﬁ(en - QO)Tgn - 5”(971 - GO)TIGO,nO (9n - 60)

+ Op[R,(max{|§ — 6|, n"/?log n})])}gn(%)

ILAN follows by taking a logarithm of the above.
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F.1.8 Proof of Theorem 57

Verification of Assumption 2: We apply Lemma 51 with a modified sieve construction
of the nuisance parameter 7 as van der Vaart and van Zanten (2009), so that the
sieve has an upper bound for every e-covering entropy.

Let N denote the set of natural numbers and Ng = Nu{0}. For any d dimensional
multi-index a = (ay,...,a4) € Nd define |a| = a; + -+ + a4 and let D® denote the
mixed partial derivative operator 0!%/0z{" ---d2%¢. For any real number b let |b]
denote the largest integer strictly smaller than b. The Holder class C7([0,1]%) is

defined as the set of all d-variate k = || times differentiable functions f on [0, 1]¢

such that:
D? — DB
|fllcw = max sup |D?f(z)| + maxsup D7 (x) k(y)| - o
[B]<k 2e[0,1]4 Bl=k paty |IE —_ y|,y,
We use C] to denote the unit ball in C7 under the norm || - ||c+.

We choose the sieve F,, as Fo @ F/1, with
Fg = [_C nac\/ﬁ]ka

= (MM [T s pncf) O (U OLED) +p.07),  (R12)

a<<dn

with ¢ sufficiently large, p,, = n=*/(2**)(logn)¥*!, and

d 2 —d+1 Conp2
Dyry = 2Conp;,, ke < et

M? = 8Conp?, 6, = Cipn/(2VdM).

The only difference between F! and the sieve in van der Vaart and van Zanten (2009)
is the remainder term, which is C] in our case and By = {f € Lo([0,1]%) : || f||-0} in
van der Vaart and van Zanten (2009).

Similar to van der Vaart and van Zanten (2009), we can verify that JF,, satisfies
condition a and condition b in Lemma 51 as follows:
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By Lemma 4.5 in van der Vaart and van Zanten (2009), for a fixed scaling pa-

rameter a and any € < 1/2,
1\ 1
log N (e, | - 1) < Kad(log—) |
€

For squared exponential kernel, all elements in H{ are infinitely differentiable. With
some modifications of their proof, the above can be strength to the following: for

any smoothness index v > 0,
a” 1\*
log N(e, H{, || - ||cv) <Kad(log—)<log—) . (F.13)
€ €

Therefore, by the relation between the covering entropy of the unit ball of RKHS
and small ball probability (Li and Linde, 1999) and similar proof as Lemma 4.6 in

van der Vaart and van Zanten (2009) , we have that for any v > 0,

1+d
—log P(||[W%|c~ <€) < Kad(log 9) : (F.14)
€

Denote the right hand side of the above by ¢§(€). Then by Borell’s inequality (van der
Vaart and van Zanten, 2008c),

P(W¢ MH? + eC7) <1 —®(d(e=98)) + M),

where ® is the c.d.f. of standard normal distribution. For M > 44/¢%(¢) and
¢ (€) < 1/4, the above is bounded by e M*/%. Combining the above conclusions, our
sieve construction and the covering entropy for C], we have the following bound for

the e-covering entropy for any e > 0,

+
Y
SR
N——

<
3
+
o
5}
0Q
/?\
N——

1+d
log N(4e, Fo, || - |oo) < np?(log n)’(d“) (log (n))

€

and the following complement probability
P(Fy) < exp(—=Conpy,). (F.16)
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Next we verify condition ¢ in Lemma 51:
For the partially linear model, we have,

K(P™

6o,m0”

Py,)"™ =Eo{ log(dR" " /dpgﬁ; )}

li 0~ 00)U; + (1 — mo) (VT2

l\')

and for any k > 2,
Vio(P"

0o0,m0?

Py =Eof{|log(dPy", JdPM) — K (P Ps)[F)

=Eo{| Y eil(0 — 00)U; + (n —no) (V)| |U™, V™)

i=1

i 0 — 00)Us + (n— o) (Vi)]?) ™2,

where the expectation is taken with respect to Y™ and the last step follows by the fact
that > | e;[(6 — 00)U; + (n —no)(V;)] has a normal distribution with mean zero and

variance equal to (X" [(0 — 60)U; + (n — ng)(‘/})]Z)I/Q. C'is a constant independent

of n and € (but depends on k). Therefore, for any k > 2

P(”)) 7"L€ ‘/}CO(P( n)

6o,m0°

B, (P, e k) ={(0,n) : K(By"

0o0,m0?

P(”)) < k/2€k}

={(0,m) : K(P)") . PY) < Cne?).

00,m0°

By similar proof as Theorem 3.3 in Ghosal and van der Vaart (2007), we have for

some constant C',

Po(Bu(BS", pui k) = Po(K (P, Py™) < Cnp?) = exp(—Cinp?).

00,m0°

Combining the above conclusions and Lemma 51, we prove Assumption 2 and

conclude that for any r» > 0,

H{ <%ZZ"; ((0—=00) Ui + (n - 770)(‘/2))2) - < Mp,

X17...,Xn} =1 _O((Sn)a

(F.17)
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where 6,, = n~"

. In the sequel, we always fix r at a value such that 8, = o(y/np?),
for example, at 1/2.

Next, we show that under the condition 2 in the theorem, (F.17) implies II(||6 —
Ool| < Mpn,||In = molln < Mp,|X™) =1—0p(,). For exposition simplicity, we

focus on the case that k = 1 and for £ > 1, the proof is essentially the same. In fact,

by the central limited theorem conditioning on V;’s, we have

3|>—‘

3 (U~ EWIV) - (1 - m) (V) + 60— ) EQUV)) | = 0p(n )1,

with 12 =" ((n—no) (Vi) + (H—QO)E[UAVZ])Q. Therefore,

%Z ((0 = 0)U; + (1 — m0) (Vi)

Z%Zn] <(9 —00) (Ui = E[Ui|V;]) + ((1n = 10) (Vi) + (0 — HO)E(Uim)))
:(P(U - E[U|V])2 + Op, (n—1/2))(g - 90) + Op(n _1/2)(9 0o) I, + n_ll2

Combining the above with (F.17), we obtain

Again applying (F.17) and using the inequality (a + b)? > b*/2 — a?, we have that

for M sufficiently large,

({7 —nolln < Mpp|Xy,..., Xn) =1—0p(6,).
Combining the above two yields
I1(]160 — fol| < Mpn, |In — nolln < Mp,|X™) =1 —Op(6y).

Therefore, if we define H,, = {n e F:||n — nol|ln < Mp,}, then

I(||6 — 6ol] < Mpn,ne Ho|X™) =1 0p(5,). (F.18)
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Verification of A3: A3 is true with h*(v) = —E[U|V = v].

Verification of (A1): We verify assumption (A1) with the above choice of H,,. In
fact, for the partially linear model, An() = —(6 —6,)T E[U|V]. We use the notation
P, = n tY>"  dx, to denote the empirical measure and G,, = n=/23"_ (§x, — P)

the empirical process. By the expression of log likelihood (7.8),

1%§%g%@u@»=—§Z&rwwwmwa—w—m%m—Ewmnf
5D~ = w) ()]
=(0 — ) i bo.mo ( 9 00)" 1o(0 — o)

+ %\/ﬁ(Q —00)’ G (U — E[U|V])2

00" Y (U~ VI - m0) (V).

where go(X) = e(U — E[U|V]) and I, = P(U — E[U|V])2 = Faynoga(X).

By central limit theorem, the third term is Op(y/n]6 — 6,]?).

A bound of the last term could be achieved by applying the maximal inequality
conditioning on V;’s. A key step is the bound (F.15) for the covering entropy of the
space {n—mno : n € H,}. Since ||n —nol|n < pn for any n € H,, and U; conditioning on
V; are i.i.d. with E{U; — E|U|V;]|V;} = 0, an application of the maximal inequality

o)

(van der Vaart and Wellner, 1996) yields

E%w¢\ZU'EWWWUUMW‘

neH,

Pn F19
gf T+ Tog N(e, By || - [la)de (F.19)
0

SVRPL + pn o V/npd.
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Hence

sup (0 — 60)"| > (Us = E[UIVi]) (n = fo) (Vi)
i=1

neH,

zop{n|9—90|p3}.

Therefore, (A1) is true with G,,(t) = \/nt? + npt.

Verification of A4: Since I1(A,|X™) = 1 — 0(3,) with 4, = {A < Cnp?} for
C sufficiently large, where A is the random inverse bandwidth parameter in the GP
prior. We can always assume A < Cnp? by conditioning on the event A,,. By Lemma
4.7 in van der Vaart and van Zanten (2009) and the assumption that E[U|V] € H,
for any a = to, ||E[U|V = -]||l« < Civ/a, where C, = ||E[U|V = -], is a constant
not depending on a. Denote the conditional law of f given (A = a) by I1I*. Do a
change of variable n — n — (0 — 6y) E|U|V]. Since the Radon-Nykodym derivative
A e /dII4(W) = exp(Uh* — ||p*]|2/2) and VarU(E[U|V]) = [|E[U|V = ‘]||2 <

Cia < Cinp? (van der Vaart and van Zanten, 2008c, Lemma 3.1), we have

log f(n) = log dIl?, . /dII*(W)

= (0= 00)U(E[UIV]) + (0 = 0)*|| E[UIV = 1lla/2 = Op(G7(1l0 = 6ul1)).

with G(t) = v/nput + np2t*.
Finally, applying Theorem 56 yields the second order semiparametric BvM the-

orem with a remainder term

Gn(n?logn) + G"(n Y*logn) + 6, ~ n/?p* logn.
F.1.9 Proof of Theorem 58

Most of the proof is similar to that of Theorem 57. The only difference is that instead
of applying the arguments in section 7.4.1, now we apply assumption A5 and Lemma

95.
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Verification of assumption A5: By A6 and the form of h, we have

An(02) = (00 = 00)Op (n)-

Then for n € H,, and 6 such that |0,, — 6| = Op(pn),

L (00,1 + (0 — 00) (R — 1)) — 1, (69, m)

1< . 2 1¢ 2
=g LGt om0+ (6, — 60) (h — ) ) 45 (Gt = m)(W)
N 7 * n 7 *

(6n = 00) 25 (ci+ (=) (VA)) (= WY (VE) = 5O = B0 = Pl

By Cauchy’s inequality
| 2300 = m) (V) (h = ) (Vi)| < nlln = ol allh — ¥l = Op(npar).
i—1

Since

n ~ . 9
E‘ZGi(h—h YVA)|™ = nlln = moll2 = Op(np}),
im1

we have

|25 eilh = h)(V)| = Op(vpn).

Combining the above three, we have

L (60,1 + (B — 00) (h — 1*)) — 1, (B0, m) = Op(G"(16n — 60))),

with G (t) = v/nppt + Nk ppt + nk,t>.
Combining the above with the proof of Theorem 57 yields the second order semi-

parametric BvM theorem with a remainder term

Ru(t) = nknt? + /nt* + v/nput + npit + nppkint + 6p,

which implies that R, (n""?logn) « n'/?p2 logn + n'/?k,p, log n.
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F.1.10 Proof of Lemma 47

By Assumption 1(2), for any (6, 7n), we have
Eo 1og(Qo,/Qao.m0)

< — O Eo(moy(T) — miy (1))

< = (C1C2) ™ Eolga.n — gol?

< —2(C7C2) (10 = 6o|* + Eoln — nol?),
where the third line follows by the mean value theorem and the fact that |f(£)| =
11&)]-|V(F ()] € [1/(C1Cy), C1Cs] and the forth line follows by the assumption that
U € [0,1]*. Similarly, we have

Eo log(Qo,n/Qe0.n)

>~ CEGE (0= 00)"U + (V) = mo(V))"
Let 7(0)(v) = no(v) — (0 — 6p) E[U|V = v]. Then by definition of n*(6), we have

By 10g(Qo,nx(8)/ Qao.mo) = Eo10g(Qo.5(6)/ Qao,mo)-

Combining the above inequalities, we obtain
—2(CEC2) 1 (10 — bol* + Eoln*(6) — nol*)
> — CICEy (0 — 00)"U + n(0)(V) = mo(V)”
= — C7CyE (U — E[UIV])?0 — 60]?,

which implies

n*(0) =m0 = O(|6 — bo|)- (F.20)
For an arbitrary function h(V') with ||h|| small, consider
Go.n*(0)t = Jon(0) + th,
for t in a neighborhood of 0. Thus,

d
EEO 1085(6200,770/@9,77)‘15:0 =0,

300



which implies
0 =Eo[(Y = F(gom=9))(go.m0)) (V)]

= Eo{ Eo| (F(980.m0) — F(90.0%0)))1(go.%(0)) |V ]2 (V) }.

Since the above equality holds for any h, we have

Eo[(F(g60.0) — F(ge,n*(e)))l(ge,n*(e))‘V =v]| =0, as.

The above, (F.20) and Assumption 1(2) imply
Eo| fo(T)lo(T)(6 — 60)"U|V = v]+Eo| fo(T)lo(T)|V = v]|(n*(6) — m0)(v)

= 0(10 — 6o]?), a.s.

Thus

" (0)(v) = no(v) = (0 — o) A" (v) + O(|0 — 6ol*), as |0 — 6o| — 0,
with h* defined by (7.6).

F.1.11 Proof of Theorem 59

To check Assumption 2, we apply the framework of Kleijn and van der Vaart (2006),
where the posterior of a misspecified infinite-dimensional Bayesian model is shown
to concentrate its mass near the points in the support of the prior that minimize
the Kullback-Leibler (KL) divergence with respect to Fy. In the GPLM setting with
quasi-likelihood (7.4), the KL divergence minimizer is exactly (6o, 9. To study the
contraction rate, we can apply the Theorem 2.1 in Kleijn and van der Vaart (2006)
(use the fact that Ni(e, F,d) < N(e,F,d) < N(¢,F,|| - ||) with d the Hellinger
distance) with some small modifications similar to the proof of (F.18). The following

lemma shows the result.

Lemma 83. Let H, = {n e F! : ||n —nolln < Mp,}, with F)! the function space
defined by (F.12) in the proof of Theorem 57 and p, = n~*?*+*)(logn)?*'. Then
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the posterior of the Bayesian model specified in the previous subsection satisfies: for

any r > 0, there exists a sufficiently large M, such that

I1(|0 — 6] < Mp,,m e Hn‘X(”)) =1 — Op(exp(—np?)).

Next, we prove (Al). By Lemma 83, the posterior of 1 concentrates its mass
in a small neighborhood H,, of ny. Write ¢,(6,n) = >, | qo.,(Y;) and recall that
An(0) = n*(0) =m0 = (6 — o)A (V) + O(|0 — bo|*).

Lemma 84. Assume Assumption 1. Then

Gn (0, 1+ 27(0,)) — G (60,1) = (6 — HO)TZn: Wilo(T;)(U; + h*(V7))

i—1
_ l _aNTT _ _ —1/2
2n(9n 00)" Ioyno (0 — 0) + Op| Ry, (max{|0 — 6|, n~7*logn})],

(F.21)

for every sequence {0,} such that 0,, = 6y + Op(p,) in Py and uniformly for every

n e H,, with

Tpgny = Eo[lo(T) fo(T)(U + h*(V))(U + h*(V))"],

and
Ru(t) = nt® + v/nt* + np,t? + np’t +/np?.
Similar to Theorem 58, Theorem 59 can be proved by applying Lemma 47, Lemma
83, Lemma 84, Theorem 60 and Theorem 56.
F.1.12  Proof of Lemma 83

The verification of condition a and condition b in Lemma 51 is the same as the
corresponding proof in Theorem 57. This time we apply Lemma 52. For GP priors,
we have I1(||[n — nollw < pn) = exp(—Cnp?) (van der Vaart and van Zanten, 2009,

Lemma 4.6). Since ||-||s is stronger than ||-||,, condition e in Lemma 52 is satisfied.
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F.1.13  Proof of Lemma 84

Using the definition of ¢, and gy, we get

M6, n+ A ](0)

ds

. (0,1 + An(0)) — g.(60,7) Z w; f

Mgy, 2(Ti) )

n J\mgm_yAn(G)(Ti) (S — mo(ﬂ))d A ] ]]
J— T B ’

V{(s)

i=1Ymoy,n(Ti)

with W; = Y; — m(T;) satisfying EoW; = 0 and Assumption 1(1).
By applying Taylor expansions and Assumption 1(2), we have for any &g, &, & €
R,

F(&2)
J L) =1(&) (& — &) + e (&) (& — &)+ 0((& — &)%)
Py V(s)

=1(&) (& — &) + e1(&o) (& — £1)° + e2(&0) (& — &) (&1 — &)

+O0{(&— &)’ + (& —&)* & — &) + (& — &) (& — &)%),
(F.22)

F(&2) ¢ _ 0 9
[t e (e - P 6 - 6) + i@ @6 - )

+ O{(& — &)+ (&L — &) (& - 50)}
~UE) (E0) (6 — £0)(6 — &) + SHE) (@& — &)

+O0{(& = &)’ + (& — &)X & — &) + (& — &) (& — &)*},
(F.23)

with e1(§) and ey(&) fixed bounded functions.

By the definition of gy, and An(f), we have
900.0(T) = g0(T) = (1 = 10) (V)

o.0+800) (1) = goo.n(T) =(0 — 00)"h1(T) + O(|0 — 6o ]?),
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with hy(T') = U + h*(V). Combining the above and the definition of ly, fo and my,,

and (F.22) with & = go, &1 = 9oy, and & = go.nran(0), We get

I=(0-06,) szo Vi (T;)

i=1
+ (0= 00)" ), Wiea(g0(T3)) b1 (T3) (7 = mo) (Vi) + Op(v/n]0 — bo*),
i=1
where the last term is obtained by combining the central limit theorem and the fact
that EyW; = 0 and EOVVZ«2 < 0.
Since Egmeg(go(ﬂ))hl (E) = Eo[eg(gg(ﬂ))hl (,_TZ)E()(VVAT;)] = O, similar to (F]_g),

by applying the maximal inequality, we get

{ sup — Z Wiea(go(T5))ha (1) (n — 770)(‘/;)‘

7]€Hn

Pn
I+ Tog N(e . || Tw)de
0

<SPl + pn o Vnp}.

Combining the above two, we get

I=(0—6) ZWZO DhL(TY) + Op{v/nlf — bo|> + 1|6 — 6o[p2}. (F.24)

i=1

Similarly, using (F.23) and the same choices for &, & and &, we get

(00 i L)W+ W (V) — m)(V))

5 LT (@ ) ()’

+ Op{nl — b|° + n|0 — Oo|?p,, + 1|0 — |3},

where hy(t) = u — E[U|V = v]. By definition of h*, we have
Eo[lo(T3) fo(T)(Us + h* (Vi) (n — mo) (Vi)
=Eo[(n = 10) (Vo) Eo(lo(T3) fo(T) (Ui + R*(Vi)|Vi)| =
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Therefore, by applying the maximal inequality, we get

{ sup — zzo )(Us + h™(V2) (1 = mo) (V)

neHn

Pn
< \/1+10gN(6,Hn,||-||oo)de
0
Vg + pu o Vg,
By the central limit theorem, we have

Z lo(T) fo(T3) (8 — 60) T ha(T3))

Vi,...

=g(9 00)" Eo|lo(T) fo(T)ha (T) (h1(T))" (0 — o) + Op(v/nlf — o)

Combining the above, we have

=20 — 00)" Eo[lo(T) folT) b (T) (i (1)) (6 = 60)

+O0p{n|0 — o] + v/nl|0 — 0o* + |0 — 0o pn + |0 — Oolp;, + vnpy}. (F.25)

By (F.24) and (F.25), the lemma is proved.
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