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Abstract 

“Cognitive control” describes endogenous guidance of behavior in situations 

where routine stimulus-response associations are suboptimal for achieving a desired 

goal. The computational and neural mechanisms underlying this capacity remain poorly 

understood. The present dissertation examines recent advances stemming from the 

application of a statistical, Bayesian learner perspective on control processes. An 

important limitation in current models consists of a lack of a plausible mechanism for 

the flexible adjustment of control over variable environments. I propose that flexible 

cognitive control can be achieved by a Bayesian model with a self-adapting, volatility-

driven learning scheme, which modulates dynamically the relative dependence on 

recent (short-term) and remote (long-term) experiences in its prediction of future control 

demand.  Using simulation data, human behavioral data and human brain imaging data, 

I demonstrate that this Bayesian model does not only account for several classic 

behavioral phenomena observed from the cognitive control literature, but also facilitates 

a principled, model-guided investigation of the neural substrates underlying the flexible 

adjustment of cognitive control. Based on the results, I conclude that the proposed 

Bayesian model provides a feasible solution for modeling the flexible adjustment of 

cognitive control. 
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1. Cognitive Control as Statistical Inference 

“Cognitive control” describes the ability to guide one’s behavior and mental 

states in line with internal goals. A key characteristic of cognitive control is thought to be 

flexibility: control processes must be capable of dynamically adapting (both qualitatively 

and quantitatively) to ongoing changes in the environment. How this type of contextual 

regulation of control occurs (in the absence of an all-knowing homunculus) is a key 

question in current cognitive psychology and neuroscience research. This dissertation 

attempts to address this question using a Bayesian approach, which behaves similar to 

the well-known reinforcement learning algorithms with a flexible learning rate (see 

below). Behavioral and brain imaging studies reported in this dissertation suggest that 

this Bayesian approach is not only able to simultaneously account for some key 

behavioral phenomena in the field of cognitive control, but also capable of guiding 

research to discover neural substrates underlying the flexibility in cognitive control. The 

structure of this dissertation is organized as follows: In chapter 1, I first review recent 

efforts in modeling the control processes using both Bayesian and non-Bayesian 

approaches. Based on the reviews, I then propose that Bayesian methods form a potent 

solution to model flexible cognitive control. Chapter 2 starts with detailed description of 

a novel Bayesian model for simulating flexible cognitive control and an experimental 

design that promotes flexible adjustment of cognitive control. The description is then 

followed by some proof-of-principle validations of the model using computer-generated 
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data based on the experimental design. Chapter 3 documents 3 behavioral studies to 

further validate the Bayesian model’s potential of accounting for several key behavioral 

phenomena. In chapter 4, I present a functional magnetic resonance imaging (fMRI) 

study that employs this Bayesian model to explore the neural basis underlying flexible 

cognitive control. In chapter 5, the key findings in this dissertation are summarized. 

Limitation and directions of future research are also discussed. 

1.1 Cognitive control as ‘guided’ information proce ssing 

In interacting with our environment, we transform sensory input into internal 

representations and select cognitive or motor actions based on these representations and 

our current goals. Given the fact that there is an enormous amount of sensory 

information and many possible actions available in contrast to only a few desired 

responses, appropriate action selection is a difficult task. To simplify this task, stimuli 

and actions that are frequently paired become mnemonically associated (e.g., via 

Hebbian learning) into stimulus-response (S-R) ensembles (or pathways) or more 

complex and extended action schemas (Norman & Shallice, 1986) that facilitate prompt 

reaction. Because much sensory information is processed in different pathways in 

parallel but only few actions can (or should) be taken simultaneously, stimulus 

representations and S-R pathways are believed to compete for being selected to drive 

behavior (Desimone & Duncan, 1995; Miller & Cohen, 2001; Norman & Shallice, 1986). 

The results of this competition are largely driven by the strength of associative 
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pathways: stronger (i.e., more frequently activated) pathways are more likely to win the 

competition than weaker or novel ones. Once selected (and executed), the strength of a 

particular pathway may be reinforced or reduced depending on the assessment of how 

well the selected actions have fulfilled the organism’s intended goals (Balleine & 

Dickinson, 1998). 

This competition mechanism (or “contention scheduling”, see Norman & 

Shallice, 1986) can generate appropriate behavior in many situations, but strong, 

stereotyped pathways can also result in suboptimal and even hazardous actions in some 

situations. For example, a US citizen’s habitual driving on the right side of the road may 

have serious consequences when performed in the UK. In this case, a set of weaker or 

even novel associations (e.g., driving on the left side of the road) must be biased to win 

the competition in order to achieve the organism’s goals. This “top-down” biasing of 

information processing to favor goal-directed stimuli and actions is the essence of 

cognitive control (e.g., Norman & Shallice, 1986; Botvinick et al., 2001; Miller & Cohen, 

2001). In present-day neuroanatomical models, cognitive control is closely tied to the 

prefrontal cortex (PFC), which is proposed to harbor temporary representations of 

current goals, goal-relevant stimuli and strategies (Badre, 2008; M. M. Botvinick, Braver, 

Barch, Carter, & Cohen, 2001; Braver & Barch, 2002; Duncan, 2001; Fuster, 2008; 

Koechlin, Ody, & Kouneiher, 2003; Miller & Cohen, 2001; Norman & Shallice, 1986). To 

implement control, representations of goals, context and related methods (like rules) are 
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thought to be actively maintained in the PFC, which sends biasing signals to posterior 

brain regions to guide the information flowing through the desired pathways and reach 

the selection of appropriate actions (e.g., Miller & Cohen, 2001).  

In the laboratory, cognitive control is traditionally tested in interference (or 

“conflict”) tasks such as the Stroop task (MacLeod, 1991), which entail conditions that 

require subjects to overcome a stronger habitual response in favor of a weaker (but 

correct) response. Consider, for instance, a variant of the Stroop task employed in the 

empirical section of this dissertation (Figure 1). This task requires a subject to respond to 

the gender of a face image, while ignoring a word label (either “male” or “female”) that 

is overlaid on the image and which can be either congruent (e.g., “male” overlaid on a 

male face) or incongruent (e.g., “female” overlaid on a male face) with the face image 

(Egner, Etkin, Gale, & Hirsch, 2008). In order to arrive at the correct response during an 

incongruent trial, the subject has to overcome the highly automatic processing of the 

word-meaning in favor of categorizing the face’s gender. Correct response selection on 

incongruent trials therefore requires the application of cognitive control in the PFC, 

strengthening the information flowing through the task-relevant processing pathway to 

win out over the task-irrelevant (though more habitual) one (M. M. Botvinick et al., 2001; 

Braver & Barch, 2002; Cohen, Dunbar, & McClelland, 1990). Accordingly, many 

neuroimaging studies of these types of tasks have documented higher activation in the 

PFC associated with higher conflict and control levels (Barch et al., 2001; M. M. 
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Botvinick, Cohen, & Carter, 2004; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 

2004), and modulated activity in brain regions related to processing task relevant- and 

irrelevant stimuli (Egner & Hirsch, 2005a; King, Korb, von Cramon, & Ullsperger, 2010; 

Liu, Banich, Jacobson, & Tanabe, 2004; Wittfoth, Buck, Fahle, & Herrmann, 2006). 

 

Figure 1: Example trials of a gender variant of the Stroop task. 

One crucial question regarding this account, however, is how cognitive control 

itself is controlled. For example, when does cognitive control engage to bias competition 

of pathways? How does it change strength when more or less control is needed? And 

how is control withdrawn? In this dissertation, I argue (as have others before me, see 

Botvinick et al., 2001) that the regulation of cognitive control relies on the prediction of 

processing demands (e.g., anticipated conflict or congruency levels), which is derived 

from previous experience. In the following, two influential non-Bayesian models are 

reviewed: the conflict monitoring model (M. M. Botvinick et al., 2001), and the dual 

mechanisms of control model (Braver, 2012). Both models adjust the level of cognitive 
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control based on previous experience. Yet, as described below in detail, none of these 

models can explain how the brain flexibly incorporates and combines information across 

different time scales (short-term and long-term) to predict conflict. As a potential 

solution, this flexibility can be modeled using a Bayesian approach. Then I review basic 

concepts of Bayesian methods and several attempts to model various aspects of 

cognitive control using Bayesian models. 

1.2 Classic Models for Cognitive Control 

1.2.1 The Conflict Monitoring Model 

The conflict monitoring model (M. M. Botvinick et al., 2001) treats the 

intervention of cognitive control as a reactive processing adjustment following the 

detection of conflict. This adjustment is achieved by incorporation of two systems: a 

conflict monitoring system that estimates the levels of conflict and sends signals to a 

control system, which in turn delivers biasing signals to information processing 

pathways. It is not entirely clear in the model whether control is originally recruited for 

dealing with conflict in the ongoing trial or for subsequent trials only (for discussion, see 

Egner, Ely, & Grinband, 2010), but the effects of conflict-driven control that are seen to 

support the model are typically measured by observing performance on the subsequent 

trial(s). 

The specific mechanisms of the conflict monitoring system are made explicit in a 

neural network implementation (M. M. Botvinick et al., 2001), in which reaction time 
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(RT) was simulated as the time-point when the Hopfield energy (Hopfield, 1982) of one 

output node (out of two or more) reached a pre-defined threshold. This neural network 

implementation successfully simulated various landmark behavioral effects found in 

interference tasks. For example, the proportion incongruency effect (see Figure 2a), 

which describes the pattern that the larger the proportion of congruent trials is in a 

block, the higher the average interference effect is in that block  (Logan & Zbrodoff, 

1979; Tzelgov, Henik, & Berger, 1992), and the congruency sequence (or conflict 

adaptation, see Figure 2b) effect - a smaller interference effect (measured by subtracting 

mean RT of congruent trials from mean RT of incongruent or neutral trials) following an 

incongruent trial than after a congruent trial (Gratton, Coles, & Donchin, 1992), have 

both been simulated successfully by the conflict-monitoring model using a 

reinforcement learning algorithm that updates the prediction of congruency by 

incorporating (in)congruency at the current trial via a fixed learning rate α. Specifically, 

the prediction for the forthcoming trial is a linear combination of the (in)congruency at 

the current trial and the prediction concerning the current trial, with the rates of α  and 

(1 - α), respectively. The model further proposes that the conflict monitoring system is 

housed in the anterior cingulate cortex (ACC) and the control system in the lateral PFC. 

These propositions have been supported by neuroimaging findings showing elevated 

activation in the ACC under conditions where conflict is high and control is assumed to 

be low (Barch et al., 2001; M. Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999; Carter 
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et al., 1998; Kerns et al., 2004; MacDonald, Cohen, Stenger, & Carter, 2000; MacLeod & 

MacDonald, 2000) and enhanced activation in lateral PFC under conditions where 

conflict is low and control is assumed to be high (Egner & Hirsch, 2005a; Kerns et al., 

2004; MacDonald et al., 2000), as well as increased functional connectivity between the 

lateral PFC and regions supporting task-relevant stimulus information in the posterior 

brain (Egner & Hirsch, 2005a).  

 

Figure 2: Data showing proportion incongruency (a) and conflict adaptation (b) 

effects. Pre C/Pre I = Preceded by a congruent/incongruent trial; Current C/Current I = 

current trial is congruent/incongruent. 

 Although the conflict monitoring model is able to simulate the phenomena of 

conflict adaptation and proportion incongruency effects (Botvinick et al (2001), 

simulation 2A and 2B) separately, a closer look at the simulation results suggests the 

model is not able to replicate these two effects using the same set of parameters. 

Specifically, in the simulation of conflict adaptation (simulation 2A), the best model has 

a learning rate of 0.5; while the learning rate is dramatically reduced to 0.05 when 
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simulating the decreasing interference effect as the proportion of incongruent trials 

increases in the simulation of proportion incongruency effects (simulation 2B).  The 0.5 

learning rate in simulating conflict adaptation effects essentially represents a phasic or 

transient mechanism relying more on recent experience, as the last trial weighs as much 

as all previous trials combined; while the 0.05 learning rate reflects a more tonic or 

sustained mechanism incorporating temporally more remote or extended information 

that allows for the proportion of incongruent trials to be learnt. The fact that the conflict-

monitoring model cannot simulate both of these effects simultaneously is problematic, 

given that they are supposed to reflect the same basic phenomenon (conflict-driven 

control) and that conflict adaptation and proportion incongruency effects do in fact co-

occur in a single task-setting (e.g., Torres-Quesada et al., 2013; also see section 3.1), a 

finding which the conflict-monitoring model is clearly unable to capture. 

1.2.2 The Dual Mechanisms of Control Model 

The more recent dual-mechanisms of control model may have the potential to 

overcome this problem, as it specifically accommodates control effects that operate over 

different times scales, by incorporating both a “reactive” and a “proactive” control 

mechanism (Braver, 2012; Braver, Gray, & Burgess, 2007; De Pisapia & Braver, 2006). The 

key difference between these two mechanisms lies in their time scales and their relation 

to stimulus onsets. Specifically, the reactive mechanism accounts for transient changes of 

cognitive control after a stimulus has been encountered (e.g., following conflict), 
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whereas the proactive mechanism monitors long-term changes of conflict density and 

applies changes to cognitive control before the onsets of incoming stimuli. Although 

operating on different time scales, these two mechanisms cooperate to modulate 

cognitive control. To test the feasibility of this model, De Pisapia & Braver (2006) 

conducted a color-naming Stroop fMRI study, which included three types of blocks with 

varying proportions of incongruent trials. The authors found that in ACC and left dlPFC 

the conflict-related (i.e. incongruent – congruent, at trial level) activity was highest when 

most trials were congruent (and proactive control presumably low), suggesting a 

reactive, short-term/phasic type of control being applied; whereas in the right dlPFC, the 

sustained, block-wise activation was the highest when most trials were incongruent, 

suggesting the wielding of a proactive, long-term/tonic type of control. The authors 

furthermore found that a model in which both ACC and the dlPFC units had a reactive 

and a proactive component could simulate both the phasic and tonic activation patterns 

found in the fMRI data. This dual mechanisms of control model represents a novel 

approach to understanding cognitive control, but there is presently little empirical 

evidence to support the idea of two conflict monitoring units working on different time 

scales in the ACC. It is also unclear whether this model can simulate both long-term (e.g. 

proportion incongruency) and short-term (e.g. conflict adaptation) regulation of control 

simultaneously, and it would be more parsimonious if both types of control were 
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integrated into a single mechanism. In the following section, I aim to sketch out how 

such integration can be achieved.  

1.2.3 Cognitive Control as Statistical Inference 

In the computer simulations of both conflict-monitoring and dual-mechanism 

models, short-term information (e.g. congruency at the current trial) and long-term 

information (e.g. congruency at earlier trials) were integrated using a fixed weight. 

Other computational cognitive control models using reinforcement learning (Blais, 

Robidoux, Risko, & Besner, 2007) and Hebbian learning (Verguts & Notebaert, 2008, 

2009) have also used fixed parameters in their simulations of various behavioral 

phenomena of conflict-control. Although these simulations matched empirical data well, 

the use of a fixed weight for information integration elicits two important, yet 

unanswered questions: (1) how is the weight determined? And (2) (How) does the 

weight change when the (experimental) environment changes? To answer these 

questions, I argue that the weight should be self-adapting based on how reliable the 

short-term and long-term information is. The idea of a self-adapting learning rate is not 

a new concept:  in classical conditioning, there have been models that use the novelty of 

stimuli to affect learning rate (Jiang, Schmajuk, & Egner, 2012; Pearce & Hall, 1980; 

Rescorla & Wagner, 1972; Schmajuk, Lam, & Gray, 1996). In these models, novelty 

guides changes in learning rate, which in turn updates the association between 

conditioned and unconditioned stimuli. Since there are no conditioned and 
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unconditioned stimuli in typical interference tasks, these models cannot be directly 

applied to simulating cognitive control processes. However, Bayesian models provide a 

natural solution of dynamically updating predictions based on integrating prior, 

temporally remote (long-term information) with recent observations (short-term 

information). Accordingly, several recent studies have employed Bayesian methods to 

model aspects of cognitive control, which are reviewed in the next section, preceded by 

an overview of Bayesian methods.  

1.3 Overview of Bayesian Methods 

Bayes’ theorem can be written as follows: 

 P�Y|X� = P�X|Y�P�Y�P�X�  (Eq 1) 

Where X, Yare random variables (e.g. sensory input, internal states, motor output, 

etc). Unlike conventional variables, the value of a random variable can vary due to 

randomness. Thus, a random variable is often represented in the probabilistic 

distribution of its possible values.  This equation means that the conditional probability 

of Y given X could be calculated using the probabilities of X, Y, and the conditional 

probability of X given Y. This equation is especially useful when P�Y|X� (posterior 

probability) is difficult to estimate but P�X|Y� is relatively easy to obtain. For example, 

when X is an observation and Y is an internal state which cannot be observed directly, 

one can infer the state of Y based on X and P�X|Y�	using the Bayes’ theorem. Thus, Bayes’ 

theorem can be used to infer, for instance, the distributions of conflict-control, based on 
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the congruency observed. The estimated internal states can then be used to predict 

congruency in forthcoming trials. Bayesian methods have been widely applied in 

cognitive neuroscience studies (e.g., (Bach & Dolan, 2012; Vilares & Kording, 2011)), and 

a comprehensive review of studies using Bayesian methods is beyond the scope of this 

dissertation. Instead, I focus on Bayesian models that employed a graphical 

representation, because it provides a natural representation of dependence on previous 

information.  

A graphical representation of a Bayesian model (Pearl, 1988) consists of a set of 

nodes and a set of edges connecting pairs of nodes. A node represents a variable in a 

Bayesian model, such as conflict, or observed congruency. In addition, a node is 

associated with the probability distributions of the variable represented. An edge 

represents a relation (reflecting conditional independencies) between two nodes and can 

be either directed or undirected. For example, a directed edge from node A to node B 

means that the value of variable B depends on variable A, but not vice versa. The edge is 

also associated with a distribution on which the estimation of parameters and Bayesian 

inference is based. This distribution encodes interactions between the two variables 

connected. Specifically, a directed edge from node A to node B is associated with a 

conditional probability distribution p�B|A�, which encodes how variable A influences 

variable B.  
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For example, the temporal dependency of conflict between trials can be formally 

represented using a Bayesian model (Figure 3). In this model f�, and o� denote predicted 

conflict level and observed congruency at trial i, respectively. f� is quantified as the 

probability that the forthcoming trial is incongruent, ranging from 0 to 1. o� is a binary 

variable in which 0 and 1 encode a congruent and an incongruent trial, respectively. The 

temporal dependency is represented by edges from the states at the current trial to the 

states at the next trial. An edge from predicted conflict level to observation is added to 

estimate f� using Bayesian inference.   

 

Figure 3: A basic Bayesian model of conflict-control. The model entails 2 

variables, conflict (�) and observation (�, shown in grey indicating this variable is 

observable) for each trial. The directed edges indicate the information flow. 

This Bayesian model does not only allow dependency between variables to be 

incorporated, but also significantly reduces the amount of computation needed to infer 

the states of these variables. Based on the structure of the graphical representation and 

the Markov property which states that each variable’s future value is conditionally 

independent of the past, given its present value, the joint distribution in this model of 

cognitive control can be factorized as: 
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p�f���, o���|o� 	… , o�� = �p�f��p�f���|f��p�o���|f���� df� (Eq 2) 

  The conditional probability distribution on the left side contains many 

variables. Without any prior knowledge of the model structure, it is intractable to 

calculate, or even store this distribution. However, the Markov condition decomposes 

this distribution into a product of three much simpler distributions, each of which is 

easy to store and compute. Specifically, the Markov condition shows that the prediction 

(states at trial i + 1) based on all previous information is equivalent to the prediction 

based only on the previous trial. In other words, relevant historical information is 

integrated into the states of the most recent trial. Thus, storage and computation 

involving older trials are not necessary.  

In sum, the graphical representation incorporates dependency between model 

variables; and its structure greatly reduces the computational and storage burden of 

estimating posterior probabilities.  

1.4 Bayesian Models for Cognitive Control 

Recently, Bayesian models with graphical representation have demonstrated 

great potential in modeling cognitive functions using behavioral data (Mozer, 

Colagrosso, & Huber, 2002; Reynolds & Mozer, 2009; Shenoy, Rao, & Yu, 2010; Shenoy & 

Yu, 2011; Tenenbaum, Griffiths, & Kemp, 2006; Tenenbaum & Xu, 2000; Vossel et al., 

2013; Yu, Dayan, & Cohen, 2009) and brain imaging data (Behrens, Woolrich, Walton, & 

Rushworth, 2007; den Ouden, Daunizeau, Roiser, Friston, & Stephan, 2010; Ide, Shenoy, 
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Yu, & Li, 2013). In the following, I review recent studies using Bayesian models with 

graphical representation to model various aspects of cognitive control, including speed-

accuracy trade-off (section 1.4.1), conflict effects in the Eriksen flanker task (section 

1.4.2), and response inhibition (section 1.4.3). The Bayesian models reviewed below all 

attempted to account for decisions/behavior using within-trial and/or inter-trial 

simulations. In the within-trial simulations, those models accumulated evidence from 

independent sources via Bayesian integration. The decision/behavior best supported by 

the evidence was then selected by the models. In the between-trial simulations, 

predictions of stimuli were based on trial-history information integrated via Bayes’ rule. 

The predictions were then used as the initial evidence for within-trial simulations. 

1.4.1 Bayesian Modeling of Speed-accuracy Trade-off  

Some recent studies demonstrate the feasibility of using generative Bayesian 

models to simulate both within-trial dynamics and across-trial sequential effects in 

cognitive control. One such study applied a Bayesian model to explaining the dynamics 

of the speed-accuracy tradeoff and its dependency on trial-history from two speeded 

discrimination tasks (Mozer et al., 2002). Subjects responded to a target letter by pressing 

one button and responded to other letters by either pressing a second button 

(discrimination task) or doing nothing (go/no-go task). The Bayesian model used in this 

study operates at both within- and across-trial levels. At the within-trial level, the 

posterior distribution at a given time point encoded the probability of making one 
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response vs. the other. This posterior distribution of responses depended on the prior 

distribution of responses and the sensory input. At the beginning of each trial, the 

posterior distribution is the same as the prior distribution. This posterior distribution of 

responses is then subject to (Bayesian) updating after each time point to favor the 

response suggested by visual input. Because this updating was performed at every time 

point, the influence of visual input accumulated with time, guiding the posterior 

distribution of response to gradually shift from the prior distribution to a distribution 

which is biased toward the correct response to the visual stimulus. Therefore, the effect 

of cognitive control is reflected by the change of the posterior distribution based on 

accumulation of sensory input. The simulated RT was the time that optimized the cost of 

sensory input accumulation against the probability of an incorrect response. The 

simulated accuracy was estimated from the posterior distribution at the simulated RT. 

For both the discrimination task and the go/no-go task, within-trial simulation 

successfully replicated accuracy and RT patterns from empirical data under different 

target to non-target ratios. Based on these simulations, the authors argued that speed-

accuracy trade-off is optimal in these tasks in that it minimizes a cost that combines time 

pressure and the certainty of perception. At the across-trial level, the initial prior was 

also updated after each trial using a similar rule as used in within-trial simulation to 

account for sequential effects of response priming. The across-trial simulation 

successfully captured complex RT and accuracy patterns when trials were grouped 
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based on the trial history, up to 4 trials preceding the current trial. In this study, then, a 

Bayesian model was used to simulate perceptual decision-making as an integration of 

prior information and visual input, which could naturally be modeled using the prior 

distribution and the likelihood distribution, respectively.  

1.4.2 Bayesian Modeling of the Eriksen Flanker Task  

To investigate different mechanisms that may account for generating conflict in 

the Eriksen flanker task (Eriksen & Eriksen, 1974, also see Figure 4), a study by Yu and 

colleagues (Yu et al., 2009) applied two rival Bayesian models to behavioral data from a 

“deadline version” of the flanker task (Gratton, Coles, Sirevaag, Eriksen, & Donchin, 

1988; Servan-Schreiber, Bruno, Carter, & Cohen, 1998). Here, subjects were pressured to 

make fast responses (in order to beat an experimenter-imposed deadline) to a target 

(center) letter (either “S” or “H”) that is flanked by distractors (either “S” or “H”). Thus a 

trial could be either congruent (e.g. “SSSSS” or “HHHHH”) or incongruent (e.g. 

“HHSHH” or “SSHSS”, see). Bayesian models were used to simulate two different 

potential sources of conflict, namely “compatibility bias” (a prior assuming that more 

than half of the trials were congruent) and “spatial uncertainty” (where perception of 

one letter was interfered with by nearby letters). Both models adopted the same 

hierarchical design with 3 levels: The highest level encoded the (in)congruency of a trial; 

below the congruency level was the stimulus level, in which there were 3 nodes, each 

representing a letter; at the bottom was a level of 3 nodes, each encoding activity of a 
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group of neurons whose receptive fields were centered on a particular letter. The 

difference between the two models lay in how prior knowledge was applied: in the 

compatibility bias model, the prior assumed there were more congruent trials than 

incongruent trials, and each node at the level of neuronal activity was only influenced 

by the letter it represented and random noise. This model simulated a situation in which 

the conflict monitoring process was biased to an expectation of low conflict and 

receptive fields of neuron groups were narrow. By contrast, the prior of the spatial 

uncertainty model assumed a 50/50 distribution of congruent and incongruent trials, but 

here a neuron’s activity was influenced by not only the letter its receptive field centered 

on, but also the neighboring letter(s). This model simulated a situation in which neurons 

have large receptive fields and the interference is caused by the ambiguous neuronal 

signals containing information of different letters.  

 

Figure 4: Example stimuli of an Eriksen fanker task. 

Within-trial and between-trial simulations were then conducted using both 

models. To simulate within-trial dynamics, the simulation was divided into multiple 
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time steps. The two models operated as neural decoders: they estimated visual input 

and congruency based on simulated neuronal activity. Thus, the key part of the 

simulation is the joint posterior distribution of letter and congruency conditioned on 

neuronal activity, which started with the prior distribution of congruency and visual 

input, and was then updated at every time step based on Bayes’ rule. A simulated 

response was made when the marginal posterior distribution of one letter exceeded a 

pre-defined threshold. Both models successfully replicated RT distributions acquired 

from empirical studies using deadline Eriksen flanker tasks. The two models were also 

extended to allow for across-trial updates of the prior distribution of congruency. The 

extended models were able to simulate conflict adaptation and proportion incongruency 

effects in Eriksen flanker tasks (Yu et al., 2009). 

In another study, a Bayesian spotlight diffusion model was proposed to account 

for various aspects of the Eriksen flanker task (White, Brown, & Ratcliff, 2012). 

Specifically, a spotlight diffusion model (White, Ratcliff, & Starns, 2011) was used to 

simulate attentional mechanisms, and Bayesian belief-updating was employed to 

account for the information processing mechanisms involved in task performance (i.e., 

how evidence for response selection was accumulated within a trial). A spotlight was 

used to simulate the locus of attention, within which all information was selected as 

evidence for the decision-making process. At the beginning of a trial, the spotlight 

covered both the center target and the flankers, such that the overall evidence was 
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driven predominantly by the flanker stimuli. The spotlight then gradually narrowed to 

only cover the central letter, resulting in the evidence being biased toward the target 

information. At each time point, beliefs were updated to incorporate new evidence 

about what the correct response was, using Bayesian evidence integration. Accordingly, 

the model predicts that responses are biased to the flankers at the beginning of a trial 

and then gradually shift to be dominated by target information. By fitting the model to 

empirical data, it was shown that this Bayesian spotlight diffusion approach could 

successfully account for the relationship between RT and accuracy in the Eriksen flanker 

task (White et al, 2012).  

1.4.3 Bayesian Modeling of Response Inhibition 

Bayesian models have also been employed in investigating inhibitory control 

(Ide et al., 2013; Shenoy et al., 2010; Shenoy & Yu, 2011). In these studies, subjects 

performed a stop-signal task, in which a habitual response based on a (frequent) go 

signal needed to be suppressed when a (rare) stop signal was presented at varying 

intervals after the go signal. Bayesian models were used to provide a rational account 

(i.e. behavior guided by optimizing a cost function) for various behavioral patterns 

observed in the stop-signal task. Here, one Bayesian model was used to simulate beliefs 

about the appropriate action to take, and a second Bayesian model was used to simulate 

beliefs about perceiving a stop signal. Within each trial, both beliefs started with the 

(true) prior probability of go/stop trials in the task, and were then updated based on 
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visual input using Bayes’ rule at every time step.  For each time step, a cost function was 

calculated based on the beliefs and possible actions available. An action (i.e., button-

press vs. withholding response) was selected by minimizing the cost function. This 

within-trial Bayesian model successfully simulated the pattern of increased error rates as 

the interval between the onset of the go signal and the onset of the stop-signal increased. 

It could also simulate the commonly observed faster responses in error stop trials 

compared to successful go trials (Shenoy et al., 2010; Shenoy & Yu, 2011). A third 

Bayesian model was employed for simulating between-trial effects, predicting the 

likelihood of encountering a stop-signal in the forthcoming trial. This prediction was a 

linear combination of the prior probability of encountering a stop-trial and the posterior 

probability of encountering a stop-trial based on trial history. These two probabilities 

were integrated via fixed weights. The prediction significantly correlated with RTs, 

where high probability of encountering a stop signal predicts slower responses, 

suggesting more inhibitory control being exerted (Ide et al., 2013). Additionally, this 

model successfully simulated post-stop-trial response slowing, and increased RTs and 

error rates when the proportion of stop-trials increased (Shenoy et al., 2010; Shenoy & 

Yu, 2011). Based on these Bayesian predictions, fMRI data recorded during the stop-

signal task (Ide et al., 2013) further revealed that the dorsal ACC encodes prediction 

error (presence/absence of stop signal - prediction).  
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1.5 Towards Modeling the Flexibility of Cognitive C ontrol 

Although the models reviewed above were successful in simulating various 

effects of cognitive control, the fixed parameters used in these simulations raise several 

concerns. First, it is unclear whether the way in which these parameters were 

determined in the models reflects the mechanisms of parameter-selection in the brain. 

This is especially unlikely (or impossible) in cases where optimal parameters were fit 

from data: here, a model determines the parameters after acquiring all data, in contrast 

to the brain having to determine the parameters on the fly. Second, even with a model 

that could potentially provide on-the-fly simulation (e.g. the model in Figure 3), the lack 

of a mechanism for online adjustment of cognitive control would result in sub-optimal 

performance in a non-stationary environment, because without such a mechanism, the 

parameters that determine the level of cognitive control (e.g. the learning rate) have to 

stay constant throughout the experiment. Given the high flexibility required of cognitive 

control, it is unclear that those fixed parameters are globally optimal across various 

experimental configurations. In fact, it has been shown that fixed learning rates are 

suboptimal in non-stationary environments (Behrens et al., 2007; den Ouden et al., 2010; 

Vessel et al., 2013). In the next chapter, I therefore propose a Bayesian model that 

resolves these two concerns. This model simulates the on-the-fly selection of parameters 

in the brain by making estimates only based on previous trial information. It also models 

the flexibility of cognitive control by incorporating a component that accounts for 
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changes in the experimental environment. This Bayesian model has the potential of 

tackling the research question of how a parsimonious, unified mechanism can flexibly 

adjust cognitive control to adapt to various environments. By applying this model to 

empirical data, I demonstrate that it can simulate various key phenomena of cognitive 

control in a Stroop task in Chapter 3. Facilitated by this Bayesian model, I show that 

neural substrates supporting this flexible mechanism and their connections can be 

explored using brain imaging techniques (Chapter 4). 
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2. A Bayesian Model of Cognitive Control 

In this chapter, I propose a Bayesian model that can account for the flexibility of 

cognitive control over conflict in a non-stationary environment. The modeling done 

relies on the ability to perform statistical inference, taking the perspective that the 

regulation of cognitive control should be considered as a process of predicting the 

optimal amount of cognitive control required in a given context. To achieve this 

contextual flexibility, the model estimates future conflict from previous experience and, 

importantly, it does so via a weighed integration of longer-term and short-term 

estimations of conflict distributions, with the integration weights being adjusted on the 

basis of the (belief about) volatility of the environment. For instance, in a stable 

environment (e.g. when most trials are congruent / incongruent), the weights are biased 

to historically remote/long-term information because an occasional oddball trial (e.g., an 

incongruent stimulus in a largely congruent trial history context) is unlikely to reflect a 

true change in the environmental statistics. When the environment is fast-changing (e.g. 

when the proportion of congruent trials varies frequently over time), however, the 

weights are biased to more recent information. This is because older information is likely 

to be outdated, and an unexpected trial type may indicate a true change of conflict 

likelihood in the environment.  In order to assess the stability of the environment, I 

extend the model in Figure 3 by adding a volatility variable (denoted by v), the belief of 

which in turn determines the weights of integration (Figure 5). The structure of this 
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model is identical to the model of Behrens et al., (2007). The mathematical formulation of 

the model is described in details in section 2.1. This model is also an example of a 

hierarchical model, in which the information flows in one direction, that is, there are no 

reciprocal edges from nodes at lower levels to nodes at higher levels.  Hierarchical 

Bayesian models have been widely used in modeling cognitive functions such as 

categorization (Tenenbaum & Xu, 2000; Xu & Tenenbaum, 2007) and visual cognition 

(Lee & Mumford, 2003; Summerfield, Behrens, & Koechlin, 2011). This model yields a 

probability distribution over the predicted conflict level variable. In the implementation 

of this model, predicted conflict level is approximated using the probability of 

encountering an incongruent trial. In other words, the predicted conflict level is higher if 

the next trial is deemed more likely to be incongruent. Both variables are then used to 

determine the amount of control needed, which is reflected in sequential effects such as 

conflict adaptation and longer-term effects like proportion incongruency. Another way 

to understand the relation between volatility and predicted conflict level can be drawn 

from Yu and Dayan (2005): predicted conflict level encodes the probability (distribution) 

that the forthcoming trial is incongruent. The variance of this distribution (i.e. change of 

probability) is determined by the volatility.  This chapter is organized as follows: section 

2.1 describes this model and its implementation in details. Sectoion 2.2 presents proof-

of-principle validations of the proposed model. 
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Figure 5: The graphical representation of the Bayesian model of flexible 

conflict-control. The model uses 3 variables, volatility (�), conflict (�), and observation 

(�, shown in grey indicating this variable is observable) for each trial. The directed 

edges indicate the information flow. 

2.1The structure of the Bayesian Model 

The graphical representation of the proposed Bayesian model is shown in Figure 

5. Each row represents a variable, namely volatility (v), conflict (f), and observation (o). 

Each column represents the state of the variables in a trial. The generative model (how 

the distribution of each variable is determined by other variable(s) and / or parameter(s)) 

is shown as follows (see below for definition of distribution parameters): 

v���~N�v�, σ"� 
f���~Beta�f&2()*+ , 2f& + 1,,f&2()*+ , 2f& + 2()*+ , 1� 
o���~Bernoulli�E�f����� 

(Eq 3) 

This Bayesian model simulates a trial sequence of an experiment on a trial-by-

trial basis. Within each trial, the simulation takes the form of a predict-update algorithm 

that is used in Kalman filters (Johan Masreliez & Martin, 1977). In other words, the 

simulation of each trial i + 1 contains two steps. The first step makes prediction of the 
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states of v��� and f��� before the stimulus is presented. These predictions are used to 

account for the behavioral patterns observed in the empirical studies reported in chapter 

3 (see below) and brain activity presented in chapter 4 (see below). The second step 

updates / filters the belief of the states of v��� and f��� given the observed congruency 

o���. These two steps are repeated for each trial to generate trial-by-trial estimates. 

       In the first step, the model initially predicts a joint distribution based on the 

model’s previous states and 2 transition distributions: 

p�σ", v���, f���|o�, … , o��
= 2p�v���|v�, σ"� p�f���|f�, v����p�σ", v�, f�|o�, … , o��dv�df� 

 

(Eq 4) 

       Where σ"constrains how fast v can change over time. Specifically, 

p�v���|v�, σ"�~N�v�, σ"�. In other words, the transition distribution p�v���|v�, σ"� is 

Gaussian distribution with the mean of v� and the standard deviation (SD) of σ". This 

transition distribution assumes that v is most likely to remain in its previous states, 

although it can also possibly drift to another state. σ" determines how likely it is for v� to 

shift to a new state. Because in the experiments below the volatility altered between 

conditions and trials, σ" is set as a variable and used the Bayesian model to infer its 

state. Different from other variables, σ" is considered as unchanged throughout an 

experiment. Thus, as can be seen below, it does not have a subscript indicating its 

temporal state or a transition distribution that governs its temporal shift. The update of 
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its estimate at each trial reflects the model ‘s change of its belief of σ", rather than the 

change of the true underlying σ" per se. The transition distribution p�v���|v�, σ"� 
determines how the estimate of v� is used to predict its future state, which is in turn 

employed to compute the predicted conflict level, as described below.  

       p�f���|f�, v���� describes how f can change over time. 

p�f���|f�, v����~Beta�α, β�. This distribution is a beta distribution, with its parameters α 

and β in the following form: 

 5 f� = α , 1α + β , 2v��� = log7�α + β� (Eq 5) 

       There are two main reasons for using a beta distribution: first, the predicted 

conflict level was defined as the probability of encountering an incongruent stimulus in 

the upcoming trial, so the possible value of f��� should be limited to a range of 0 to 1, 

which is also the range of values that a beta distribution is defined on. Second and more 

important, with the current set-up, the probability density function of p�f���|f�, v���� 
takes the following form: 

 p�f���|f�, v���� = constant ∙ f���;<� ∙ �1 , f����=<� (Eq 6) 

       Which can be interpreted as the likelihood function of observing α , 1 

incongruent trials and β , 1 congruent trials with the underlying proportion 

incongruency f�. Thus, a larger p�f���|f�, v���� suggests the prediction of conflict is better 

supported by temporally more-extended trial-history information. Following this 



 

30 

interpretation, according to the equations 5 and 6, v��� controls the length of the trial 

sequences of this likelihood function. A larger v��� suggests a longer trial sequence to 

take into account, which in turn indicates more dependence on long-term information, 

or a more stable condition. In other words, a larger v��� leads to a narrower spread of 

p�f���|f�, v����, which constrains f��� from drifting far from its previous state. Another 

interpretation of p�f���|f�, v���� can be linked to the learning rate used in many 

reinforcement learning models: a narrower spread of p�f���|f�, v���� results in smaller 

difference between f� and f�<� that resembles the effect of a smaller learning rate, 

compared to a wider spread of p�f���|f�, v���� determined by a smaller v���. However, it 

is counterintuitive to have a larger volatility value when the environment is more stable. 

Thus when reporting volatility, a linear transform was used to make more volatile task 

settings correspond to larger volatility estimates while preserving the quantitative 

patterns of the results (see below). Furthermore, f� is the mode of p�f���|f�, v����, 
indicating that the predicted conflict level is most likely to reflect its previous state. 

Thus, ∬p�v���|v�, σ"� p�f���|f�, v����dv�df� can be viewed as how the prediction is made 

by incorporating various learning rates. The third term in the integral, 

p�σ", v�, f�|o�, … , o�<�� is the belief in the previous trial and also represents the weights 

p�σ", v���, f���|o�, … , o�� in making the prediction (Eq. 3). After the joint distribution 

p�σ", v���, f���|o�, … , o�� is calculated, the estimates of volatility and conflict are 

computed as the mean of their corresponding marginalized distributions. The observed 
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congruency o��� is then predicted to have a Bernoulli distribution with a probability of 

E�f���� of incongruency, where E�f���� denotes the mathematical expectation of f���. 

In the first step, I adopted a numeric implementation for this Bayesian model to 

avoid the complexity of developing an analytical implementation: the range of each of 

the variables of σ", v and f was divided into multiple segments with equal length. For 

example, f� was represented using an array ranging from 0 to 1 and with a step size of 

0.02 (that is, 51 cells). The value of each cell represented the probabilistic density at that 

point. Similarly, the joint probabilistic distribution was represented by a 3D array with 3 

dimensions of σ", v��� and f���. p�f���|f�, v���� was represented using a 3D array with 3 

dimensions of f���, f� and v���. And p�v���|v�, σ"� was represented using a 3D array with 

3 dimensions of v���, v� and σ". All the aforementioned calculations were performed on 

these arrays. Specifically, step 1 took the form of: 

p�σ", v���, f���|o�, … , o��
=??p�v���|v�, σ"�@A"A

p�f���|f�, v����p�σ", v�, f�|o�, … , o�� (Eq 7) 

After the first step, p�σ", v���, f���|o�, … , o�� was divided by its sum across σ", v��� 

and f���so that the cells in p�σ", v���, f���|o�, … , o�� summed to 1. The marginalization was 

done by collapsing the other dimensions. The mean was approximated using a weighed 

sum, ∑xp�x�. 
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       In the second step (i.e. after the congruency of trial i + 1 is observed), the 

belief of variables is updated using the observed congruency in the following manner: 

 p�σ", v���, f���|o�, … , o����
= p�σ", v���, f���|o�, … , o��p�f���|o���� (Eq 8) 

       Where 

 p�f���|o���� = D1 , f���, if	o���	is	incongruent	f���, if	o���	is	congruent  (Eq 9) 

       is the prediction error between the predicted conflict level and the true 

congruency.  

In theory, the initial p�σ", v���, f���� (the dependence is removed to reflect that no 

knowledge from the trial sequence has been applied yet) can take any form to reflect the 

prior knowledge of the trial sequence. In the implementation of this model, the initial 

p�σ", v���, f���� was set to a uniform distribution, indicating unbiased belief of the 

statistical characteristics of the task. As the experiment proceeded (i.e., more trials were 

processed), this initial distribution was updated to a distribution that with more 

information of the trial sequence. Note that similar to many models, this initial 

distribution requires sampling from the trial sequence for proper update. Thus a “burn-

in” block is usually added to a trial sequence for this Bayesian model to update its belief 

to adapt to the trial sequence. And the trials in this burn-in period are sometimes 

excluded from analysis. This is because that there is no guarantee that the subjects and 

the Bayesian model share the same prior knowledge. However, after the burn-in period,   
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it is safe to assume that both the subjects and the model have refreshed their belief to 

better approximate the task. Hence the model can then be used to account for behaviors 

and brain activity. 

As mentioned before, the definition of v would result in a counterintuitive 

representation of having a lower v in a more volatile setting. Thus, to avoid confusion, I 

transformed the condition-specific volatility estimates before presenting them: 

 vEF = max�v� + min�v� , vH (Eq 10) 

Where max�v� and min�v� are the maximum and minimum group-level mean of 

volatility estimates across all conditions, respectively. After this transform, more volatile 

conditions have higher vEFs. Note that because all vHs were transformed using the same 

constants, this transform had no bias on the results of analyses reported below. 

2.2 Proof-of-principle Validations 

To test whether this Bayesian model is able to learn from a trial sequence and, 

more importantly, whether it is able to detect changes of volatility in an experimental 

manipulation, I conducted 3 validation studies. In section 2.2.1, I qualitatively describe 

the behavior of this model in learning a single trial sequence. In section 2.2.2, I 

demonstrate that the model is able to detect changes in volatility due to varying 

underlying proportions of (in)congruency. In section 2.2.3, I propose a task design that 

induces trial blocks with varying volatility. Using this design, I show that the Bayesian 

model successfully detects different volatility levels due to various frequencies of 



 

34 

changes in proportion (in)congruency. The performance of this model and 

reinforcement learning models with various fixed learning rates are also compared 

using trial sequences generated under this task design.  

2.2.1Time Courses of Model Variables in Simulating a Trial Sequence 

In order to inspect this Bayesian model’s performance, a sequence of 100 

randomly generated trials (proportion incongruency = 0.8) was fed to the model. The 

time courses of trial-by-trial estimates of predicted conflict level and volatility derived 

from the model are depicted in Figure 6. The first 10 trials were used as burn-in period 

and were thus discarded. As can be seen in Figure 6a, the predicted conflict level in 

general approaches the underlying proportion incongruency, suggesting that the model 

estimates incorporate long-term information. In addition, after a (rare) congruent trial, 

the predicted conflict level is reduced in the subsequent trial, indicating that the 

estimates also incorporate short-term information. The time course of volatility (Figure 

6b) displays an expected pattern: volatility drops in the absence of rare congruent trials, 

suggesting a stable environment. After encountering a congruent trial, the model raises 

its estimate of volatility.  
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Figure 6: Time courses of predicted conflict level (a, blue line) and volatility (b, 

green line) in learning a randomly generated trial sequence that has a proportion 

incongruency of 0.8.  The trial sequence is plotted in red line. Spikes in the red line  

indicate onsets of congruent trials. 

In the Bayesian model, the purpose of the volatility variable is to provide a 

learning-rate modulator: higher volatility should result in a larger learning rate. To test 

this hypothesis, I estimated the trial-by-trial learning rate based on the classic 

reinforcement learning algorithm. Specifically, according to the temporal difference 

(TD(0)) reinforcement learning algorithm (Sutton, 1988), the update of predicted conflict 

level can be expressed as follows: 

f��� = �1 , α�f� + αo� (Eq 11) 
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Thus, given the estimates of predicted conflict level f���and f�, and the 

congruency o�, the learning rate α can be estimated as: 

α = f��� , f�o� , f�  (Eq 12) 

The estimated learning rate exhibits a highly significant positive correlation with 

volatility (Figure 7, I = 0.55, P < 0.0001), indicating that volatility does in fact regulate the 

updating of predicted conflict level. Specifically, because o� represents short-term (most-

recent and only contains a single trial) information, the α indeed represents the 

dependence on short-term information in predicting future conflict level. Accordingly, 

the positive correlation between learning rate and volatility suggests that the Bayesian 

model augments its reliance on short-term information in predicting conflict level when 

the environment becomes more volatile. 
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Figure 7: Estimated learning rate, plotted as a function of volatility. The trend 

line shows a significant positive correlation between these 2 estimates at the trial 

level. 

2.2.2 Modeling Proportion Incongruency Induced Vola tility 

A crucial validation for this Bayesian model is to test its sensitivity to the 

differences in volatility between various experimental settings. To this end, I first tested 

whether the model could distinguish volatility caused by proportion incongruency. 

Recall that one way of understanding volatility is to treat is as the certainty of prediction 

(Yu & Dayan, 2005). From this perspective, a trial sequence with more extreme 

proportion incongruency (e.g., 0.9 or 0.1) should be less volatile compared to a trial 

sequence with a proportion incongruency of 0.5, because in the former the prediction of 

the incongruency is more certain (i.e., the SD of congruency is smaller). Similarly, the 

proportion incongruency of 0.9 and 0.1 should have similar volatility. If the Bayesian 
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model operates as expected, its estimates of volatility should reflect these varying levels 

of volatility across the proportion incongruency conditions. 

For each of three proportion incongruency conditions (0.1, 0.5 and 0.9), fifty trial 

sequences were randomly generated, each containing 100 trials. The trial sequences were 

then processed by the Bayesian model. The resulting estimates of predicted conflict level 

and volatility after the burn-in period (the first 10 trials) were averaged. The condition 

mean predicted conflict level and volatility were then compared across conditions using 

1-way ANOVA and post-hoc 2-sample t-tests. 

As a sanity check, the Bayesian model successfully distinguished the condition-

mean predicted conflict level between the 3 conditions (Figure 1Figure 8a; ANOVA: 

J7,�KL= 62416.24, P < 0.0001; Post-hoc t-tests:  proportion incongruency of 0.9 > proportion 

incongruency of 0.5, MNO = 182.23, P < 0.0001; proportion incongruency of 0.5 > proportion 

incongruency of 0.1, MNO = 171.39, P < 0.0001; proportion incongruency of 0.9 > proportion 

incongruency of 0.1, MNO = 353.39, P < 0.0001). The comparison of volatility also matches 

the predictions: a significant main effect was found in the ANOVA (Figure 8b; ANOVA: 

J7,�KL= 8.22, P < 0.001). Post-hoc t-tests showed that the volatility in the condition with 

0.5 proportion incongruency was significantly higher than those in the conditions with 

0.9 (MNO = 3.63, P < 0.001) and 0.1 (MNO = 3.62, P < 0.001) proportion incongruency. No 

significant difference of volatility was found between the conditions with 0.9 and 0.1 
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proportion incongruency (MNO = 0.40, P > 0.69). Thus, as expected, the Bayesian model 

successfully distinguishes volatility between different experimental settings.   

 

Figure 8: Group mean predicted conflict level (a) and volatility (b) and their 

mean standard error (MSE), plotted as a function of the underlying proportion 

incongruency. Note that in (a) the error bars are too short to become visible.      

2.2.3 Modeling Volatility Induced by the Frequency of Alternating 
Proportion Incongruency 

Another strategy of creating experimental conditions with various volatility is to 

manipulate the frequency of alternating two levels of pre-selected proportion 

incongruency (Behrens et al., 2007). A higher frequency of alternation leads to a faster-

changing environment and in turn makes for condition with higher volatility. Thus, 

distinguishing volatility induced by different frequencies of alternating underlying 

proportions of incongruency can serve as another test for the Bayesian model. 

Following this rationale, two experimental conditions (the “stable” condition and 

the “volatile” condition) were designed. In each condition, a hundred trial sequences 
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were randomly generated. A trial sequence consisted of 100 trials, the first 20 of which 

had a proportion incongruency of 0.5 and served as the burn-in block. The proportion 

incongruency in remaining 80 trials stayed at 0.8 in the stable condition and alternated 

between 0.2 and 0.8 every 20 trials (0.05 Hz) in the volatile condition. The trial sequences 

were then learned by the Bayesian model. The trials in the burn-in block were removed 

from further analysis. The condition-specific time course of predicted conflict level was 

averaged across trial sequences and visualized for sanity check. The sequence mean 

volatility was compared between the 2 conditions to test if the model can successfully 

detect changes of volatility. 

 

Figure 9: Simulation results. (a) Group mean time courses of proportion 

incongruency and predicted conflict level of actual trial sequences and model 
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predictions, respectively. (b) Group mean volatility and MSE, plotted as a function of 

run conditions.  

As depicted in Figure 9a, in both conditions, the predicted conflict level tracks 

(the change of) the underlying proportion incongruency, suggesting that the model 

correctly updated its belief about the task sequences. In particular, in the volatile 

condition, the predicted conflict level adjusted swiftly to reflect the most-recent 

proportion incongruency. More importantly, the volatility estimates in the volatile 

condition were significantly higher than in the stable condition (M�NO = 17.84, P < 0.0001). 

This result strongly supports that the claims the Bayesian model is able to detect 

differences in volatility caused by varying frequencies of alternating underlying 

proportions of incongruency. 

I argued above that a fundamental limitation of reinforcement learning models 

with fixed learning rates is that they are unable to achieve optimal performance across 

experimental settings with various volatility settings. To validate this hypothesis, 

ninety-nine reinforcement learners with (fixed) learning rates from 0.01 to 0.99 (step size 

= 0.01) were trained using the trial sequences described above. To quantify performance, 

the square of prediction error (SPE, defined as the difference between the predicted 

conflict level and observed congruency) was computed for each of the reinforcement 

learners and the Bayesian model for each trial sequence. Two-sample t-tests of SPE 

between the Bayesian model and each of the reinforcement learners were conducted 
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within each condition, as well as across the 2 conditions (trial sequences from the 2 

conditions were randomly paired). 

The results are depicted in Figure 10. Two patterns are revealed here. First, as 

expected, the learning rate achieving optimal performance in stable runs (learning rate = 

0.08, SPE = 14.05) is lower than the optimal learning rate for volatile runs (learning rate = 

0.25, SPE = 17.86), because stable runs require less contribution from the most-recent 

information in making predictions. These results replicated the ones found in Botvinick 

et al (2001), where a larger learning rate was selected to best account for the conflict 

adaptation effect than the proportion incongruency effect. It is also not surprising to find 

that the optimal learning rate for both conditions combined falls between these two 

values (learning rate = 0.18, SPE = 32.55) .  

Second, in the comparison involving only the volatile runs, the Bayesian model 

(SPE = 17.56) outperformed all 99 reinforcement learners (Figure 10b, P < 0.0001 for all 

paired t-tests). This is attributed to the fact that the Bayesian model adaptively changes 

its dependence on short-term information (e.g., larger dependence when the proportion 

incongruency alternated, versus lower dependence when the model learned the new 

proportion incongruency). Although the Bayesian model was not the best model in 

stable runs, its performance was still better than 78 out of the 99 reinforcement learners 

(Figure 10c, SPE = 14.88, P < 0.05 for each of the 78 paired t-tests). Crucially, when both 

conditions were combined together to form an environment that requires flexibility in 



 

43 

the adjustment of cognitive control, the Bayesian model performed significantly better 

than all 99 reinforcement learners (Figure 10a, SPE = 32.45, P < 0.05 for all paired t-tests). 

When viewing the choice of an optimal learner from all reinforcement learners as a 

model selection process, one can see that even with the unrealistic advantage of selecting 

the best-performing fixed learning rate in a post-hoc manner, the reinforcement learning 

algorithm still fails to outperform the Bayesian model, which predicted forthcoming 

congruency on-the-fly. Moreover, the reinforcement learning algorithm selected 3 

distinct learning rates to best account for 3 experimental settings, while the Bayesian 

model worked in exactly the same way for all settings. Taken together, in this section it 

has been demonstrated that the Bayesian model does not only detect the difference in 

volatility changes between different experimental environments, the detected changes 

also successfully inform the model’s prediction of forthcoming congruency. 

The results also support the notion that the proposed experimental design is 

effective in constructing experimental environments to test the flexible adjustment of 

cognitive control. Compared to the manipulation using proportion incongruency in 

section 2.2.2, this approach is more effective (i.e., more statistically significant in the 

comparison of volatility between conditions). Thus, in the next chapters, this design is 

used as the main approach for manipulating volatility. 
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Figure 10: Comparison of the SPE in predicting forthcoming congruency 

between the Bayesian model and reinforced learning models with various learning 

rates. (a), (b) and (c) depict comparison results based on all runs, only volatile runs 

and only stable runs, respectively. The SPE of the Bayesian model (red) is plotted as a 

baseline to facilitate visual inspection of the results.  
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3. The Computational Mechanisms of Cognitive Contro l 

The aforementioned proof-of-principle validations have demonstrated that the 

Bayesian model is sensitive to changes in volatility. In this chapter, I describe 3 

behavioral studies that further test whether this model can account for behavioral 

patterns observed from tasks involving flexible cognitive control.  

3.1 Simulating the Short-term and Long-term Trial H istory 
Effects of Cognitive Control 

In this section, I first confirm that short-term and long-term trial history effects 

occur simultaneously in a single empirical dataset (e.g., Torres-Quesada et al., 2013). 

Then I demonstrate that both effects can be simulated simultaneously using the Bayesian 

model. Importantly, no post-hoc optimization of parameters was necessary in the 

simulation. 

3.1.1 Subjects 

 Fifty-six healthy volunteers (mean age = 26.1, 30 females) gave informed consent 

in accordance with institutional guidelines. All subjects were native or highly proficient 

English speakers and had normal or corrected-to-normal vision. 

3.1.2 Stimuli and Procedure 

Stimulus delivery and behavioral data collection were carried out using 

Presentation software (http://www.neurobs.com/). Stimuli were presented on a 19 inch 

LCD screen with a refresh rate of 60 Hz. Stimuli consisted of a collection of 24 black and 
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white photographs of male and female faces (12 each) of neutral expression that were 

overlaid with red gender word labels (“male” and “female”), which could be printed in 

lower or upper case lettering. On each trial, one face-word compound stimulus 

(subtending approximately 3° of horizontal and 4° of vertical visual angle) was 

presented against a gray background in the center of the screen. Stimuli were presented 

for 500 ms, followed by a jittered inter-stimulus interval (ISI) ranging from 2 to 3 s in 

uniformly distributed steps of 500 ms, during which a fixation cross remained on screen. 

Subjects performed a speeded button response that categorized the gender of the face 

stimulus with either index finger (for example, left-hand response to male faces, right-

hand response to female faces, counterbalanced across subjects), while trying to ignore 

the task-irrelevant gender labels and stimulus locations. Face stimuli never repeated 

across adjacent trials, and the lettering alternated between lower- and upper-case across 

trial. A practice run was conducted before the main task to ensure subjects 

comprehended the task requirements. 

3.1.3 Experimental Design 

 This task consisted of 7 runs of 4 blocks each. Each block contained 41 trials with 

pseudo-randomized congruency. Across all blocks, the proportion of congruent trials 

followed the order of approximately (deviated by 1 trial, or ~2.4%) 15%, 35%, 65%, 85%, 

75%, 50% and 25%, repeated for 4 times over the 7 runs. Within each block, the 

proportion incongruency remained constant. The starting proportion incongruency and 
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the order of the sequence were counter-balanced across subjects. To model both the 

conflict adaptation and proportion incongruency effects, RT data was analyzed using a 7 

(proportion incongruency) × 2 (previous congruency) × 2 (current congruency) factorial 

design.  

3.1.4 Data Analysis 

For the behavioral data, the mean RT was computed in each subject for each of 

the experimental cells, excluding incorrect and post-error trials, as well as RT values that 

deviated >2 SDs from an individual subject’s grand mean. The trimmed RT values were 

then averaged across subjects and entered into repeated measures 3-way analyses of 

variance (ANOVAs) with the factors described above. For the simulation data, the trial 

sequences observed by the subjects were fed to the model to produce trial-by-trial 

estimates of volatility and predicted conflict level. Then, for each experimental cell, the 

mean volatility and predicted conflict level were computed, excluding trials that were 

excluded in empirical data analysis. Finally, to link model predictions to the empirical 

data, a general linear model (GLM) was constructed using group means of the 

parameter estimates (28 conditions), which were then fit to the group mean of RTs. 

Specifically, this GLM contained 6 regressors (i.e. free parameters), namely the volatility, 

the predicted conflict level, and the grand mean, separately for congruent and 

incongruent trials. Note that this fitting procedure is not geared at finding the optimal 

parameters for the model. Rather, the purpose of this fitting was similar to within-trial 
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simulation, or in other words, to quantify how predictions made prior to a trial influence 

the information processing during that trial, as reflected in the RTs.  

3.1.5 Results and Discussion 

The subjects performed the task with high accuracy (mean = 92.9%). The 3-way 

ANOVA on empirical RTs showed a significant effect of current congruency (F�,QQ = 

57.07,  P < 0.001), due to longer RTs in incongruent trials (592 ± 11 ms) than in congruent 

trials (569 ± 10 ms). An interaction between proportion incongruency and current 

congruency was also found (the proportion congruent effect, F�,QQ = 2.73,  P < 0.03), 

driven by a decrease in interference effects as the proportion of incongruent trials 

increased (Figure 11a). There was also an interaction between previous and current trial 

congruency (the conflict adaptation effect, F�,QQ = 5.03,  P < 0.03), driven by a larger 

interference effect (26 ± 3 ms) in post-congruent trials than in post-congruent trials (16 ± 

3 ms; Figure 11b). Thus, the behavioral results replicated a large literature on the 

proportion incongruency (for review, see Bugg & Crump, 2012) and the conflict 

adaptation effect (for review, see Egner, 2007), as well as previous findings of these two 

effects occurring simultaneously in the same data set (Torres-Quesada et al., 2013). As 

can be seen in Figure 11c, both effects were successfully simulated using theBayesian 

model. Specifically, the model predicted an interference effect (congruent trials: 569 ms; 

incongruent trials: 592 ms), a decreased interference effect as the proportion of 

incongruent trials increased (Figure 11d), and a higher interference effect in post-
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congruent trials (27 ms) than in post-incongruent trials (18 ms). These simulation results 

suggest that the Bayesian model is able to simultaneously account for both long-term 

and short-term effects of cognitive control. These fits were achieved using a single 

control mechanism with a flexible learning rate rather than the dual mechanism 

structure of De Piasapia & Braver (2006) or the separate fits with different learning rates 

as applied by Botvinick and colleagues (2001). Moreover, the data fits were derived from 

on-the-fly simulations and not based post-hoc setting of learning rate parameters.  

 

Figure 11:  Empirical and simulated effects of congruency, proportion 

incongruency, and conflict adaptation. (a) Empirical proportion incongruency effect, 
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with RT plotted as a function current trial congruency and the block-wise proportion 

of incongruent trials. (b) Empirical conflict adaptation effect, with RT plotted as a 

function of current and previous trial congruency. (c) Simulated proportion 

incongruency effect, plotted in the same way as in (a). (d) Simulated conflict 

adaptation effect, plotted in the same way as in (b). Pre C/Pre I = Preceded by a 

congruent/incongruent trial; Current C/Current I = current trial is 

congruent/incongruent. 

 

3.2 Simulating the Flexibility of Conflict-control 

To further demonstrate the model’s ability to simulate the flexibility of cognitive 

control, a second experiment was conducted, in which I created two environments with 

different dependence on short-term and long-term information. I show that the model 

can successfully simulate the behavioral patterns observed in the empirical data. 

3.2.1 Subjects 

 Forty-six healthy volunteers (mean age = 19.9, 33 females) gave informed 

consent in accordance with institutional guidelines. All subjects were native or highly 

proficient English speakers and had normal or corrected-to-normal vision. 

3.2.2 Stimuli and Procedure 

The same stimuli and basic task procedure was used as the one described above 

in section 3.2. 

3.2.3 Experimental Design 

This task consisted of 4 runs of 9 blocks each. Each block contained 20 trials with 

pseudo-randomized congruency. The first block had 50% congruent trials and served as 
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a burn-in block to bring the predictions to the same baseline at the beginning of each 

run. To create experimental environments that differ in their dependence on long-term 

and short-term trial history, a run could be either volatile (the proportion incongruency 

altered between 20% and 80% every block) or stable (the proportion incongruency 

remained either 20% or 80% for all 8 post-reset blocks). The order of volatile and stable 

runs was counter-balanced across subjects. This manipulation resulted in a 2 (volatile / 

stable) × 2 (proportion incongruency) × 2 (current trial congruency) factorial design. 

3.2.4 Data Analysis 

The same analyses were applied as described in section 3.1.4. Note that trials in 

burn-in blocks were also given to the model, so as to also generate a reset of trial-by-trial 

estimates of volatility and predicted conflict level in the model at the beginning of each 

run. However, reset block trials were excluded from further analyses. 

3.2.5 Results and Discussion 

Participants performed the task with high accuracy (mean = 92.8%) in this task. 

The 3-way ANOVA on empirical RTs again revealed a significant effect of current trial 

congruency (F�,KQ = 49.3, P < 0.001), due to longer RTs in incongruent trials (549 ± 13 ms) 

than in congruent trials (522 ± 11 ms). The proportion incongruency effect was also 

found, reflected in a significant interaction between proportion incongruency and 

current trial congruency (F�,KQ = 10.5, P = 0.002). This effect was driven by a larger 

interference effect in 80% congruency blocks (33 ± 5 ms) than in 20% congruency blocks 
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(22 ± 4 ms). Importantly, asignificant main effect of volatility was observed (F�,KQ = 4.5, P 

= 0.04), due to longer RTs in volatile runs (540 ± 12 ms) than in stable runs (531 ± 12 ms). 

Note that this main effect was not driven by “outliers” in experimental cells, because no 

interactions involving volatility and any of the other factors were found. Furthermore, a 

trend for longer RTs in volatile compared to stable environments can be observed in all 4 

current trial congruency × proportion incongruency conditions (Figure 12a).  

 

Figure 12: Empirical and simulated effects of congruency, proportion 

incongruency in an environment of changing volatility. All quantities are plotted as a 

function of volatility, proportion incongruency and congruency at the current trial. (a) 

Empirical reaction times and their standard errors. (b) Simulated reaction time. (c) 

Estimated predicted conflict level from the Bayesian model. (d) Estimated volatility 

from the Bayesian model in arbitrary units. C/I in 20%/80% C = 

congruent/incongruent trials in a block of 20%/80% congruent trials. 
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This pattern of RTs was again successfully simulated using the model (Figure 

12b): firstly, the model recapitulated the main effect of current congruency (congruent 

trials: 522 ms; incongruent trials: 549 ms); secondly, it simulated the proportion 

incongruency effect (inference effect in high proportion incongruency blocks: 33 ms; 

inference effect in low proportion incongruency blocks: 22 ms); and lastly (and most 

importantly), it predicted longer RTs in volatile runs (540 ms) than in stable runs (531 

ms). I contend that this “volatility cost” performance pattern can in fact only be 

accounted for by using a model that estimates the volatility of the environment. 

Consider a model with no information about volatility (e.g. having a fixed learning rate): 

in such a model, each trial’s contribution to the prediction of predicted conflict level is a 

constant. Furthermore, the trial’s contribution to the prediction of all forthcoming trials 

is also a nearly constant, because its influence decays continuously with a constant 

discounting rate after each trial, and approaches zero in a relatively short period of time 

(except for extremely low learning rates, which are unrealistic given  the commonly 

observed short-term effects of cognitive control). As a consequence, using a fixed 

learning rate, two sequences of trials with the same proportion incongruency and 

number of trials will produce the same sum of conflict-level estimates across all trials, 

regardless of the volatility of those sequences. Indeed, even as shown in the model, 

estimates of predicted conflict level displayed an interaction between volatility and 
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proportion incongruency (Figure 12c). Thus, it is impossible to account for the pattern of 

slower RTs in volatile compared to stable runs in the empirical dataset when using only 

predicted conflict level estimates; they would have to be combined with estimates of 

volatility (Figure 12d) to simulate the empirical data pattern. To further illustrate this 

point, I performed an additional analysis to simulate the results in this experiment using 

a reinforcement learning algorithm. Specifically, I created 3 learners with different 

learning rates: 0.05 (high dependence on long-term information), 0.5 (balanced 

dependence on long-term and short-term information) and 0.95 (high dependence on 

short-term information). The learning was conducted using the following equation: 

 f��� = f� × �1 , α� + o� × α (Eq 13) 

Where  f��� is the predicted conflict level at trial i+1, α is the learning rate, and o� 
is the observed congruency. If any of these learners were able to account for the 

behavioral pattern observed in experiment 2, there should be a significant difference in 

f��� between the 2 volatility levels, because f��� is the only output of these learners. 

However, in none of the 3 learners was such significant a difference (all Ps > 0.2) 

observed. Thus, in the absence of a (volatility-modulated) flexible learning rate, the 

model is unable to account for the behavioral patterns obtained across different task 

settings. 

      Note that the predicted conflict levels display the inverse pattern of empirical 

RTs, e.g., for incongruent trials higher estimated (or predicted) conflict levels are 
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predictive of faster RTs. This pattern essentially corresponds to the classic, intuitive 

explanation of the empirical proportion incongruency effect, namely, that control is 

higher in conditions where conflict is frequently encountered (e.g., Carter et al., 1998). 

A few additional points should be noted in the interpretation of these data. First, 

both conflict adaptation and proportion incongruency effects have at times been argued 

to exclusively reflect associative processes related to the particular stimulus and 

response features of the task (e.g., Mayr et al., 2003; Hommel et al., 2004; Schmidt and 

Besner, 2008). By contrast, the present results show that both of these effects can be 

faithfully captured by a model that does not consider specific stimulus or response 

features at all – it only learns about the incidence of congruent and incongruent stimuli. 

This documents that, at least in principle, learning of specific physical stimulus and 

response properties is not a necessary precondition for producing these effects. Second, 

while this main effect of volatility can be quantitatively accounted for by the Bayesian 

model (the manipulation of volatility was captured by the volatility variable, as can be 

seen in Figure 12c), the model architecture itself does not necessitate such an effect. In 

other words, the model could equally well fit behavioral data in the absence of a main 

effect of volatility (as observed in other, unpublished observations).  

Nevertheless, this does of course not mean that the empirical data themselves 

were not potentially subject to such lower-level learning effects. It is unlikely that such 

processes contributed in a substantial manner to the present results, however, for the 
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following reasons. First, in order to prevent trial-by-trial priming effects at the level of 

physical stimulus features (Hommel, Proctor, & Vu, 2004; Mayr, Awh, & Laurey, 2003), 

face stimuli in the present experiments never repeated across successive trials, and the 

lettering of the distracter labels alternated between lower- and upper-case across trials. 

Second, in order to minimize the possibility that proportion incongruency effects in the 

protocol would be mediated by subjects associating specific face stimuli with a 

particular response (e.g., the gender-congruent response in high proportion 

incongruency blocks), the stimuli included a large number (24) of unique facial identities 

(cf. (Bugg & Hutchison, 2013)). Nonetheless, this leaves the possibility that subjects may 

use the contingency between the distracter (in this case, the gender word) and the 

response to guide their action selection (Bugg, 2012; Bugg & Chanani, 2011; Schmidt & 

Besner, 2008). For example, in an environment of high proportion incongruency, the 

gender word is highly predictive of the correct response. However, note that in volatile 

runs, this contingency changes every 10 occurrences for each word (on average), leading 

to a less predictive word-response association than in stable runs, where the contingency 

remains unchanged. Therefore, if distracter-response contingency were a major 

contributing factor to the proportion incongruency effect in the data, this effect should 

be modulated by the contingency’s predictive power (i.e., volatility), resulting in a 3-way 

interaction between volatility, proportion incongruency and current-trial congruency. 

However, such an interaction was not observed (F�,KQ = 2.9, n.s.). More specifically, the 
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contingency account predicts that contingency with higher predictive power (i.e., the 

stable runs) should evoke larger proportion incongruency effects than low-contingency 

conditions (i.e., the volatile runs). However, numerically, the opposite is true for the 

present data (volatile runs: proportion incongruency effect = 16 ± 5 ms; stable runs: 

proportion incongruency effect = 4 ± 4 ms; tKQ = 1.7, n.s.). Thus, contingency learning 

seems highly unlikely to have contributed to the empirical proportion incongruency 

effects that the model simulated.  

In sum, I showed that a Bayesian model that learns to predict control demand 

using a flexible, volatility-driven learning rate, can account for simultaneously occurring 

conflict adaptation, proportion incongruency, and volatility effects, without the need for 

multiple controllers or post-hoc fit-derived learning rate parameters. I conclude that this 

model represents a promising new application of a Bayesian approach to exploring 

computational mechanisms of cognitive control, in particular with respect to simulating 

the flexibility that is required of control processes wielded in a changing environment.   

3.3 Simulating the Flexibility of Conflict-control Using Model-
based Analysis 

The two studies above have established the validity of the Bayesian model in 

accounting for behavioral data from tasks that requires flexible cognitive control. The 

study presented in this section extends those studies in two ways: (1) replicating the 

experiment in section 3.2 with a different timing setting by adopting jittered ISIs that is 

more suitable for event-related fMRI studies, and (2) by introducing a model-based, 
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trial-based analysis method that overcomes several limitations in the conventional, 

condition-based ANOVA I used above. 

3.3.1 Subjects 

Fifty-five subjects gave informed consent online in accordance with institutional 

guidelines and participated in this study through Amazon Mechanical Turk (AMT), 

which is an online cloud-sourcing platform that can be adapted for fast and efficient 

data acquisition for behavioral tasks (see Appendix A for details). Two subjects were 

excluded from analysis due to chance-level accuracy. The remaining 53 subjects self-

reported demographic information online (36 females; mean age, 32).  

3.3.2 Stimuli and Procedure 

The stimuli used in this study were the same as the ones described above in 

section 3.2.2, except that two more distracter word labels (“man” and “woman”) were 

added, to further reduce the efficacy of employing a contingency learning strategy 

during this task. Stimulus delivery and response recording were carried out by 

JavaScript. The size of face images were fixed at 216 × 270 pixels and always presented 

in the center of the browser window against a grey background. Lower-case and upper-

case distracter words were presented in font sizes of 80 and 60 points respectively to 

match the space they covered on the screen. Stimuli were separated by exponentially 

jittered ISIs (range = 4-6s, step size = 1s). 
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Fifty-five online assignments of this task were posted simultaneously on AMT. 

Potential participants interested in this task were able to first read the online instructions 

and complete a brief practice session consisting of 24 trials. After the practice session, 

they had the option to formally participate in this study (i.e., to take one of the 55 

assignments from AMT). The subjects that agreed to participate in this study then gave 

informed consent and filled out a demographic survey. They then proceeded to the task, 

which was hosted on Dropbox (https://www.dropbox.com/). After the subjects 

completed the task, the JavaScript submitted their responses along with stimulus 

delivery information to AMT. Finally, the subjects were compensated at the rate of ~$3 

per hour through the AMT payment system. In accordance with AMT policy and 

institutional guidelines, a payment was made if (1) a subject finished the task and 

submitted their responses and stimulus delivery information and (2) the performance 

met a pre-specified requirement. 

3.3.3 Experimental Design 

The experimental design was identical to the one described above in section 

3.2.3, except that the experiment consisted of 8 runs, each of which had five blocks, 

including a burn-in block. Both of the first and the last four runs contained two volatile 

and two stable runs (one for each proportion incongruency). The order of volatile and 

stable runs was counter-balanced within and across subjects. 
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3.3.4 Data Analysis 

First, the analysis described above in section 3.2.4 was here repeated as a 

comparison to the previous study. Incorrect trials, post-error trials, outlier trials (RT 

values that deviated >2.5 SDs from an individual subject’s grand mean), and post-outlier 

trials were excluded from further analysis. In addition, a model-based, trial-based 

analysis was performed. Specifically, the sequence of trial congruency (concatenated 

across runs) experienced for each subject was processed by the Bayesian model to 

generate trial-based estimates of volatility and predicted conflict level. Variable 

estimates and congruency for excluded trials were discarded. The remaining estimates 

were grouped into a chronological vector for each model variable. These vectors were 

then normalized and multiplied to form 7 variable vectors (volatility, predicted conflict 

level, congruency, and their 2-way and 3-way interactions). Subsequently, these vectors 

were grouped, along with a constant vector, to form a general linear model (GLM). To 

test the effect of each of the 7 variable vectors while ensuring that effects were not 

confounded by shared variance with any of the other variables, the “test variable” vector 

was first regressed against the other variable vectors. The residual resulting from this 

regression (after removal of all shared variance with the other variables) was then fit as a 

predictor to the RT vector, along with other six variable vectors in the GLM as nuisance 

effects. RTs were normalized within subjects prior to regression to remove potential 

biases due to individual variance in RT magnitude.  The resulting fitting coefficient for 
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the test variable vector was then tested against 0 using a one-sample t-test across 

subjects.  

3.3.5 Results and Discussion 

Participants performed the task with high accuracy (mean = 96.5%). The 3-way 

ANOVA (condition-based analysis) on empirical RTs again revealed a significant effect 

of current trial congruency (F�,Q7 = 89.0, P < 0.001), due to longer RTs in incongruent 

trials (550 ± 19 ms) than in congruent trials (511 ± 18 ms). The proportion incongruency 

effect was also found, reflected in a significant interaction between proportion 

incongruency and current trial congruency (F�,Q7 = 4.79, P = 0.033). This effect was driven 

by a larger interference effect in 80% congruency blocks (43 ± 5 ms) than in 20% 

congruency blocks (34 ± 4 ms).  

Similarly, the trial-based analysis also revealed a significant effect of current trial 

congruency (M7S = 9.1, P < 0.0001) and a significant negative interaction between 

predicted conflict level and current trial congruency (M7S = 2.1, P = 0.04). The negative 

direction of the interaction conforms to the condition-based analysis, suggesting reduced 

interference effect in trials with high predicted conflict level. 

Both analyses revealed significant effects of interference and adjustment of 

cognitive control (proportion incongruency × congruency interaction and predicted 

conflict level × congruency interaction in the condition-based and trial-based analyses, 
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respectively). Thus even with the longer ISIs needed for fMRI scanning, this design is 

still able to elicit these classic behavioral phenomena of cognitive control.  

Despite of the similarity of results from the two analyses, it should be noted that 

the nature of these analyses differs fundamentally. Specifically, compared to the 

conventional condition-based approach, this approach has three advantages: (1) unlike 

the condition-based approach, the trial-based nature of the present approach takes the 

trial-by-trial variance into consideration, thus making it more sensitive in theory; (2) the 

residual analysis ensures that any variance explained can only be attributed to the 

specific variable / interaction tested, because any variance shared with other variable 

vectors has been removed. Thus the trial-based analysis is a more stringent test than the 

condition-based approach; (3) most importantly, one crucial goal in this dissertation is to 

unify different forms of adjustment of cognitive control that rely on different integration 

of short-term (e.g., conflict adaptation effect) and long-term (e.g., proportion 

incongruency effect) information. However, the condition-based approach fails to 

integrate these, because the previous trial congruency and the proportion incongruency 

must be modeled as separate factors in a factorial design. From the perspective of the 

Bayesian model, this integration is natural because the predicted conflict level is already 

an integration of both short-term and long-term information. Its interaction with 

congruency is in turn a joint effect of both the conflict adaptation effect and the 

proportion incongruency effect. 
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Moreover, despite adding two more distracter labels to further discourage the 

use of a contingency learning strategy, the still-significant behavioral effects in both 

analyses suggests that these effects were not due to learning based on features of the 

stimuli but reflected genuine adjustments of cognitive control. To further test this claim, 

I compared the effect of proportion incongruency × congruency interaction between the 

data from section 3.2 and this section. The contingency learning argument would predict 

that this interaction should be higher in the data from section 3.2 than the data from this 

study. However, there was no significant difference of the proportion incongruency × 

congruency interaction between these two datasets (MNN = -0.28, n.s.), again suggesting 

that the effects were mainly driven by the adjustment based on conflict or trial 

congruency.    

Another interesting point to note in the present data set is that the main effect of 

volatility was not significant, as confirmed by both the condition-based and trial-based 

analyses. Because a main effect of volatility was observed in two independent datasets 

(see section 3.2 and the appendix), it is unlikely that this main effect represents a type II 

error. Why did we not observe this main effect of volatility in the present data set then? 

Compared to those two datasets, the present task has two key differences: there were 

two additional distracter labels and longer ISIs. The discussion above has discounted the 

possibility that the former difference induced any change in behavioral patterns. Thus, I 

speculate that the longer ISIs might have caused the absence of the main effect of 
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volatility. Short ISIs may encourage subjects to make faster, premature responses (e.g., 

select an action before sufficient evidence has been accumulated from processing the 

stimulus). Low volatility also indicates better precision of predicted congruency 

(Behrens et al., 2007), thus allowing for less adjustment of cognitive control within a trial, 

which may result in faster RT. Nevertheless, future studies are necessary to examine this 

speculation.  

Taken together, this study has demonstrated that the experimental design is 

suitable for an fMRI study and validated the trial-based analysis.  
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4. The Neural Mechanisms of Flexible Cognitive Cont rol 

Although the neural mechanisms underlying the adjustment of cognitive control 

have been extensively inspected, few studies have targeted the flexibility of such 

adjustment. Most of these studies mainly focused on either the adjustment depending 

on short-term information (e.g., the conflict adaptation effect, (M. Botvinick et al., 1999; 

Durston et al., 2003; Egner & Hirsch, 2005a, 2005b; Kerns, 2006; Kerns et al., 2004)), or the 

adjustment depending on long-term information (e.g., the proportion incongruency 

effect, (Grandjean et al., 2012; Krug & Carter, 2012; Sohn, Ursu, Anderson, Stenger, & 

Carter, 2000; Wilk, Ezekiel, & Morton, 2012) ). The only neuroimaging study that 

investigated both effects modeled these effects separately due to the limitation of 

condition-based analysis and did not find any brain regions significantly displaying 

either effect (Torres-Quesada, Franziska, Funes, Lupianez, & Egner, 2014). Nevertheless, 

many of the studies above found adjustment-related activation in the ACC and dlPFC, 

regardless of whether they investigated the short-term or long-term effects. Thus there 

may be a unified neural mechanism supporting both effects. Or more broadly, this 

mechanism may support flexible adjustment of cognitive control by integrating 

information sampled from various temporal resolutions.  

The Bayesian model provides a natural integration of long-term and short-term 

information and thus represents a novel tool for the quest of exploring the neural 

mechanism of flexible adjustment of cognitive control. Furthermore, the mechanisms of 
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the Bayesian model generates a few specific predictions regarding how this integration 

is carried out: (1) the updating of predicted conflict level is modulated by volatility; (2) 

cognitive control is regulated by the predicted conflict level; (3) the updating of volatility 

is guided by the (unsigned) prediction error of conflict. In the following sections of this 

chapter, I present an fMRI study that investigated the flexible adjustment of cognitive 

control using the Bayesian model and an experimental manipulation that created two 

environments with different reliance on long-term and short-term information (based on 

the task design described above under section 3.3.3).  

4.1 Methods 

4.1.1 Materials 

Twenty-one healthy, right-handed volunteers (8 females, mean age = 26 years) 

gave informed consent in accordance with institutional guidelines. All subjects were 

native or highly proficient English-speakers and had normal or corrected-to-normal 

vision.  

4.1.2 Apparatus and Stimuli 

The stimuli used were identical to those used in section 3.3.2. Stimulus delivery 

and behavioral data collection were carried out using Presentation 

(http://www.neurobs.com/). Visual stimuli were presented on a back projection screen 

viewed via a mirror attached to the scanner headcoil, and responses were collected 
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using an MRI-compatible button box. The stimuli subtended approximately 3° of 

horizontal and 4° of vertical visual angle. 

4.1.3 Procedure and Task Design 

The procedure and task design were the same as the ones used in section 3.3.3, 

except that the length of burn-in blocks were reduced to 16 trials.  

4.1.4 Image Acquisition and Preprocessing 

Images were acquired parallel to the AC-PC line on a 3T GE scanner (Milwaukee, 

WI). Structural images were scanned using a T1-weighted SPGR axial scan sequence 

(146 slices, slice thickness = 1mm, TR = 8.124ms, FoV = 256mm * 256mm, in-plane 

resolution = 1mm * 1mm). Functional images were scanned using a T2*-weighted single-

shot gradient EPI sequence of 39 contiguous axial slices (slice thickness = 3mm, TR = 2s, 

TE = 28ms, flip angle = 90 °, FoV = 192mm * 192mm, in-plane resolution = 3mm * 3mm). 

Functional data were acquired in 8 runs of 240 images each. Preprocessing was done 

using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). After discarding the first five scans of 

each run, the remaining images were realigned to their mean image and corrected for 

differences in slice-time acquisition. Each subject’s structural image was co-registered to 

the mean functional image and normalized to the Montreal Neurological Institute (MNI) 

template brain. The transformation parameters of the structural image normalization 

were then applied to the functional images. Normalized functional images were kept in 

their native resolution.  
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To gauge the trial-wise activation in the fMRI data, a task model was built for 

each run. Similar to the behavioral studies reported above, error trials, post-error trials, 

outliers (i.e., trials with RTs greater than 2.5 standard deviations from the mean), post-

outlier trials, and burn-in trials were excluded from further analyses. A task model 

consisted of regressors representing the onset of each non-excluded trial, along with 5 

nuisance regressors representing the onsets of each type of excluded trials and 2 other 

nuisance regressors separately encoding onsets of left and right button-presses. This task 

model was then convolved with SPM 8’s canonical hemodynamic response function. 

The convolved tasked model was appended by regressors representing head motion 

parameters and the grand mean of the run to form a design matrix, against which the 

normalized functional images were regressed. The resulting activation maps were then 

concatenated across runs. As the final output of preprocessing, each grey matter (GM) 

voxel obtained an activation vector that chronologically represented the activation level 

at each trial. These activation vectors were used for fMRI analyses below. 

4.1.5 Data Analysis 

The trial sequences of congruency exposed to each subject was processed by the 

Bayesian model to generate trial-by-trial estimates of volatility and predicted conflict 

level. These estimates first underwent a sanity check (see next section), and then entered 

the analyses for behavioral data and fMRI data. Estimates corresponding to excluded 

trials were also discarded from further analyses. 
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4.1.5.1 Sanity Check for Model Estimates 

Similar to the analysis in section 2.2.3, to examine whether the Bayesian model is 

sensitive to the manipulation of volatility in this task, the mean volatility in volatile runs 

was compared to the mean volatility in stable runs using a paired t-test across subjects. 

4.1.5.2 Behavioral Analysis 

The behavioral analysis was conducted using both the conventional 3-way 

ANOVA (volatility × proportion incongruency × current trial congruency) described in 

section 3.2.5 and the trial-based analysis using residual of variable vectors as described 

in section 3.3.4.  

4.1.5.3 Searchlight-based Analyses Investigating Neural Representation of Model 

Variables 

For determining the encoding of model variables and (their interactions), we 

examined two possible coding schemes: a “homogeneous”, univariate scheme, where 

information is encoded by local voxel populations with similar response properties (e.g., 

a group of voxels whose fMRI signal magnitudes all scale positively with predicted 

conflict), and a “heterogeneous”, distributed scheme, where information is encoded in 

multivariate activation patterns over local voxel populations(Turk-Browne, 2013). To 

account for these schemes, a univariate analysis and a multi-variate pattern analysis 

(MVPA) were conducted in parallel (Clithero, Carter, & Huettel, 2009). Both analyses 

were carried out with a searchlight approach (Kriegeskorte, Goebel, & Bandettini, 2006) 

that scanned through small clusters (radius: 2 voxels) of GM voxels . Within each 
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searchlight, the univariate analysis assessed homogeneous encoding by amplitude by 

fitting the variable vector to the searchlight mean activation vector. The univariate 

analysis was conducted via a two-fold averaging approach between the first and last 

four scanning runs. Each half contained two volatile runs and two stables runs (one for 

each proportion of incongruent trials) and was tested separately. The results were 

averaged across the two halves to reduce the impact of outliers.  The MVPA quantified 

distributed encoding by the amount of signal variance in a model variable vector that 

could be explained by the mean-centered activation vectors from all voxels in a given 

searchlight through linear regression. The removal of searchlight mean signals renders 

the MVPA independent from the univariate analysis. Over-fitting was controlled for by 

a two-fold cross-validation scheme between the first and last four scanning runs. To 

ensure the unique attribution of fMRI signal to a given variable, all other variable and 

interaction vectors were used as nuisance variables in both analyses.  

For each analysis, the quantification of encoding was mapped to the center voxel 

of each searchlight to form a spatial map of information content. The map was then 

smoothed using a Gaussian kernel of 6mm (2 voxels) radius. One-sample t-tests were 

then conducted on the maps across individual maps to test for group-level effects of 

homogeneous encoding and distributed encoding. 

Statistical results were corrected for multiple comparisons at P < 0.05 for 

combined searchlight classification accuracy and cluster extent thresholds, using the 
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AFNI ClusterSim algorithm.  10,000 Monte Carlo simulations determined that an 

uncorrected voxelwise p value threshold of < 0.01 in combination with a searchlight 

cluster size 30 to 35 searchlights (depending on the specific contrast) ensured a false 

discovery rate of < 0.05. 

4.1.5.4 Inspecting the Modulation of Volatility on the Learning Rates of Predicted 

Conflict Level 

The function of volatility in the Bayesian model suggests that the volatility belief 

modulates the updating (or learning) of the neural coding of predicted conflict level. To 

test this hypothesis, I first extracted the neural coding of predicted conflict level with no 

assumption from the Bayesian model. For each searchlight in the caudate ROI (see 

below),  its GM voxels’ activation vectors were applied to fit the variable vector of 

congruency using linear regression, and the fitted activation vector (i.e., the regression 

coefficient-weighted sum of activation vectors) was used as the model-free activation 

vector of predicted conflict level. This is because that the linear regression minimized the 

sum of square error between the observed congruency and the predicted conflict level, 

and hence the fitted activation vector can be considered as the best approximation of 

congruency (or prediction of conflict level) based on activation vectors in the searchlight. 

Consistent with the Bayesian model, in the linear regression, congruent and incongruent 

trials were represented as 0 and 1 respectively. To constrain the predicted conflict level 

between the range of 0 and 1, off-limit values (< 0 or > 1) were set to their closest limits in 

the fitted activation vector.. Finally, the ROI mean model-free activation vector of 
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predicted conflict level averaged was used to estimate learning rates using the 

reinforcement learning algorithm.  

The prediction error at each trial in the fitted activation vector was then 

calculated as T& , UVW, where UVW is the activation in the fitted activation vector at trial X. The 

updating was calculated as UV��Y , UVW. The learning rate α can then be estimated across 

trials by a linear regression of: 

UV��Y , UVW = Z�T& , UVW� (Eq 14) 

To compare the learning rates between trials with high volatility and trials with 

low volatility, the ROI mean model-free activation vector of predicted conflict level was 

divided into 2 vectors based on a mean-split of the volatility estimates. For each vector, 

the learning rate was estimated using the method described above. The estimated 

learning rates were then compared between the two vectors across subjects via a paired 

t-test. 

To further test the modulation of volatility on learning rates, an updated linear 

model was applied to the neural coding of predicted conflict level: 

  

UV��Y , UVW = Z[T& , UVW\ 
α = 1 + 	β]&�� 

(Eq 15) 

This new linear model defines a linear correlation between the learning rate α 

and the volatility ]&��. Importantly, the sign of modulation index β is predicted to be 
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positive by the Bayesian model, indicating a larger learning rate in a more volatile 

environment. This linear model was then applied to estimating β, which was further 

tested against 0 using a one-sample t-test across subjects. 

4.1.5.5 Using the Interaction between Predicted Conflict Level and Congruency as a 

Measure of Prediction Error of Congruency 

After normalization, the congruent and incongruent trials were represented as -1 

and 1, respectively. The normalized predicted conflict level f� represents the (belief of 

the) probability of encountering an incongruent trial. Assuming f� is centered as re-

scaled between -1 and 1, the unsigned prediction error of congruency can then be 

quantified using the negative of the interaction term between predicted conflict level 

and congruency, ,f� × o�.The unsigned prediction error of congruency, formally 

formulated as: 

D 1 , U&, XU	T& = 11 + U&, XU	T& = ,1 (Eq 16) 

can be further re-formulated to 1 , f� × o�. In the context of a regression analysis, 

the constant 1 can furthermore be discarded without affecting the results. In fact, 

although the normalized f� was not re-scaled between -1 and 1 in the analyses, ,f� × o� 
can still be used as prediction error multiplied by the re-scaling factor. 

4.2 Results 

In the present study, the model was employed to generate trial-by-trial variable 

parameter estimates that allow following analyses to delineate the neural substrates 
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mediating these putative control computations. Specifically, I gauged neural dynamics 

relating to three core hypothesized mechanisms inherent in the model: (1) updating of 

predicted conflict level should be modulated by beliefs about volatility (2) predicted 

conflict level drives cognitive control, and therefore modulates the effect of congruency 

on neural processing; (3) congruency prediction error drives the adjustment of volatility 

estimates. 

4.2.1 The Bayesian Model Captures Behavioral Patter ns in Flexible 
Adjustment of Cognitive Control 

Subjects performed the task with high accuracy (mean accuracy = 94.2%). A 

three-way ANOVA (volatility × proportion of incongruent trials × current trial 

congruency) revealed a main effect of proportion of incongruent trials (J�,7S = 4.77, P = 

0.041) due to better accuracy in blocks of 20% incongruent trials (94.8% ± 1.0) than blocks 

of 80% incongruent trials (93.2% ± 1.2), and a main effect of current trial congruency 

(J�,7S = 9.15, P = 0.007), caused by better accuracy in congruent (94.9% ± 1.2) than 

incongruent (93.1% ± 1.0) trials. In RT, a three-way ANOVA detected a significant main 

effect of current trial congruency (F�,7S = 20.4, P < 0.0001), driven by a slower RT in 

incongruent trials (456ms) than congruent trials (416ms). The Bayesian model was then 

used to simulate behavioral data on a trial-by-trial basis (Figure 13b). In brief, the 

individual subjects’ trial sequences were processed by the model to produce trial-by-trial 

estimates of volatility and predicted conflict level.  The estimates of predicted conflict 

level tracked the time course of the underlying proportion congruency very closely 
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(Figure 13c), and the model estimate of volatility was higher for the volatile than the 

stable runs (Figure 13d, paired t-test, F7S = 16.38, P < 0.0001). These results indicate that 

the model beliefs successfully tracked the experimental manipulations. I next employed 

the three model variables (trial-wise estimates of volatility and predicted conflict level, 

and the observed congruency) and their interactions (i.e., a total of seven variables, 

resembling a three-way ANOVA) to account for the variance in RT using the regression 

analysis described above in sections 3.3.4 and 4.1.5.2. The trial-based analysis showed 

co-variance between RTs and observed congruency, with slower responses associated 

with incongruent trials (M7S = 5.75, P < 0.0001, Figure 13e). In addition, this analysis 

found a significant positive correlation between prediction error of congruency 

(quantified as ,U& × o&) and RT  (t7S = -3.28, P < 0.005, Figure 13f), showing that superior 

conflict level prediction was associated with faster responses.  
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Figure 13: Experimental task, Bayesian model, and simulation and behavioral 

results. (a) Example stimuli and timing of the present task. This example depicts an 

incongruent trial, followed by a congruent trial. (b) The graphical representation of 

the Bayesian model of flexible conflict-control. The model uses 3 variables, volatility 

(�), conflict (�), and observation (�, shown in grey indicating this variable is 

observable) for each trial. The directed edges indicate the information flow. (c) Time 

course of the estimated predicted conflict level (in red) and the underlying proportion 

congruency level (in black) in an example session. (d) Group mean model belief of 

volatility and its mean standard error (MSE), plotted as a function of run type. (e) 

Group mean normalized RT, plotted as a function of congruency (Cog = congruent 

trials; Inc = incongruent trials). (f) Group mean of normalized RT, plotted as a 

function of prediction error of congruency. 
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4.2.2 Encoding of Model Variables in the Brain 

The most basic assumption of our model is that the three model variables 

(volatility, predicted conflict, congruency) are represented in the brain. Thus, before 

validating the hypotheses that concern specific dynamic interactions between model 

components, I first tested this fundamental hypothesis using the searchlight-based 

analyses described above in section 4.1.5.3.   

 

Figure 14: A graphical representation of the hierarchy of information 

processing in a single trial, between model variables (left) and brain areas showing 

significant co-variation (P < 0.05, corrected) between fMRI activation and these model 

variables (right, from top to bottom: volatility, predicted conflict level, and 

congruency). Select brain regions encoding the model variables are shown in the box 

linked to the corresponding variable. 
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The test for neural representation of each of the model variables found the 

estimated volatility of control-demand to be tracked by activity in the bilateral insula 

and adjacent inferior frontal gyri, amygdala, putamen, and right parahippocampal 

gyrus and precuneus (Figure 14; P < 0.05, corrected) via a homogenous (univariate) 

coding scheme. Predicted conflict levels were encoded in the right caudate (Figure 14; P 

< 0.05, corrected) via a heterogeneous (multivariate) coding scheme. Additionally, 

predicted conflict levels were encoded in a homogeneous fashion in the left inferior 

parietal lobule, right paracentral lobule and superior frontal gyrus. Finally, observed 

congruency was tracked by signals in medial frontal cortex, in particular the 

supplementary motor area (SMA), as well as in bilateral inferior frontal gyri and 

superior parietal lobule, left inferior parietal lobule (IPL) and precuneus (Figure 14; P < 

0.05, corrected; univariate coding). The latter results broadly replicate previous findings 

from studies of Stroop-type conflict effects (Jiang & Egner, 2013).  

In sum, the initial analyses portray a distributed network of frontal, parietal and 

subcortical regions that encode volatility of control demand and observed congruency, 

while the caudate nucleus appears to play a central role in the prediction of conflict 

(control-demand). In the following, specific model-derived hypotheses concerning 

dynamic interactions between model nodes are tested.  
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4.2.3 Volatility-modulated Updating of Predicted Co nflict Level in the 
Caudate 

Prior to stimulus presentation in a given trial, the Bayesian model updates 

predicted conflict level by integrating the most recently observed congruency, 

modulated by the model’s belief of volatility (Figure 15a). As described above, the model 

assumes that high volatility drives up the learning rate to allow for a stronger weighting 

of short-term information in predicting forthcoming congruency. To test this hypothesis, 

I performed a learning rate estimation analysis on the caudate searchlights that have 

been shown to encode the predicted conflict level (see section 4.1.5.4). For each 

searchlight in each subject, I mean-split the data into low-volatility versus high-volatility 

trials, and estimated the learning rate for each half employing a traditional RL algorithm 

(Sutton, 1988). Across subjects, it was found that the ROI mean estimated learning rate 

was significantly higher in trials with higher volatility (Figure 15b, M7S = 4.51, P = 0.0002). 

I further tested the modulation of volatility on learning rate in the activation vectors in 

the caudate. A significant positive modulation (i.e., learning rate increases with volatility) 

was observed (Figure 15c, M7S = 6.31, P < 0.0001). These results provide strong evidence 

that volatility modulates the updating of neural representations in the caudate that 

encode the anticipated demand on cognitive control. 
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Figure 15: Modulation of volatility on brain activity encoding predicted 

conflict level. (a) A graphical representation of the Bayesian model, highlighting in 

red the information processing mechanisms related to the modulation of volatility on 

predicted conflict level. (b) Comparison of caudate activity-derived learning rates 

between high and low volatility trials. Each line represents a participant. (c) Group 

mean modulation of volatility on caudate activity-derived learning rate and its mean 

standard error (MSE). (d) Visualization of caudate searchlights showing encoding of 

predicted conflict level (red, P < 0.05 corrected) and caudate searchlights showing 

interaction between volatility and prediction error of congruency (green, P < 0.05 

corrected) and their overlap (yellow). (e) Histogram of t-values measuring group level 

univariate effect of volatility × prediction error of congruency interaction. The t-

values were calculated from searchlights in the caudate ROI. The red vertical line 

denotes the threshold for statistical significance (P < 0.05). (f) Activation in the 

caudate ROI, plotted as a function of volatility and prediction error of congruency. 

If the belief of volatility regulates the updating of predicted conflict level, as 

suggested by the present and previous behavioral and modeling results, then it can be 

predicted that volatility also modulates the neural representation of prediction error of 
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congruency, which is another driving factor in the updating of predicted conflict level. 

Compared to a volatile condition, a stable condition should down-regulate the 

representation of short-term trial history information (in this case, the prediction error of 

congruency) to reduce its weight in predicting conflict level, resulting in a negative 

modulation. At trial i, this modulation can be formulated as a three-way interaction 

vector ,v� × f� × o�, which is the product of volatility and the prediction error of 

congruency ,f� × o� (see section 4.1.5.5). Using the univariate analysis described above, I 

found negative three-way interaction in 63 (P < 0.05) out of the 73 caudate searchlights 

that displayed distributed encoding of predicted conflict level (Figure 15d,e). 

Accordingly, across these caudate searchlights, the mean effect of the three-way 

interaction was significantly negative (t7S = -4.63, P = 0.0002). The pattern of this 

interaction confirmed the prediction of increased suppression of prediction error in 

more stable conditions (Figure 15f). Importantly, the distinct coding schemes between 

volatility’s modulation on prediction error (homogeneous encoding) and predicted 

conflict level (distributed encoding) suggest that the results are unlikely to be caused by 

intrinsic correlation between the variable and the 3-way interaction vectors.  

4.2.4 Predicted Conflict Level-mediated Cognitive C ontrol in the PFC 

In our model, after predicted conflict level is updated following the most-recent 

observation, conflict prediction guides the application of cognitive control (Figure 16a), 

i.e., titrating attentional selectivity based on the anticipated conflict level. This process 
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should be reflected in a negative two-way interaction between predicted conflict level 

and observed congruency, due to higher activation when observed conflict was higher 

than predicted. In other words, the more unexpected an incongruent trial is (e.g., 

incongruent trials following a congruent trial (M. Botvinick et al., 1999), incongruent 

trials in a block of mostly congruent trials (Sohn et al., 2000)), the more control effort 

should be required for resolving conflict. Thus, we hypothesize that within unexpected 

incongruent trials (where predicted conflict level, or the estimated probability that the 

forthcoming trial was incongruent, was less than 0.5), the predicted conflict level should 

mediate cognitive control in a manner that trials with higher predicted conflict levels 

(i.e., a better match between predicted and observed conflict) should elicit less activation 

than trials with lower predicted conflict levels (i.e., a poor match between anticipated 

and observed conflict), resulting in a negative co-variation between predicted conflict 

level and activation level. We observed this signature of cognitive control in the right 

dorsal ACC and left caudal dlPFC (Figure 16b, c, P < 0.05, corrected). Of note, these 

results are unlikely to be caused by encoding of the predicted conflict level per se, 

because no encoding of predicted conflict level was found in the reported regions in the 

previous analyses (see above), and the direction of the negative co-variance is opposite 

to that of the activation patterns reported above, where higher activation was associated 

with higher predicted conflict level and higher conflict (Niendam et al., 2012) (e.g., 

incongruent trials). 
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Figure 16: Modulation of predicted conflict level on cognitive control. (a) A 

graphical representation of the Bayesian model, highlighting in red the information 

processing mechanisms related to the mediation of predicted conflict level on 

cognitive control. (b) Centers of searchlights in the ACC (left) and dlPFC (right) 

regions showing significant (P < 0.05, corrected) negative co-variation between 

predicted conflict level and activation elicited by unexpected incongruent trials. (c) 

Activation in the ACC ROI (left) and the dlPFC ROI (right), plotted as a function of 

predicted conflict level.  The dotted lines show the linear trend lines. (d) The 

individual co-variation coefficient between predicted conflict level and RT, plotted as 

a function of individual co-variation coefficient between predicted conflict level and 

activation level in the dlPFC cluster in (b). 

It also follows from our model that the modulation of predictive conflict level on 

cognitive control should be reflected in behavioral performance data: participants who 

compensate better for the underestimated conflict level in unexpected incongruent trials 

in neural terms (i.e., showing a stronger negative co-variation between predicted conflict 

level and neural “control” activation level) should also show less behavioral conflict  in 
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unexpected incongruent trials (i.e., less negative co-variation between predicted conflict 

level and RT). This predicts a data pattern where the co-variation coefficient between 

predicted conflict level and neural activation level is negatively correlated with the co-

variation coefficient between predicted conflict level and RT across subjects. Consistent 

with this hypothesis, we observed such a negative correlation in the left caudal dlPFC 

cluster identified above  (Fig. 4d, r = -0.57, P = 0.007) . This correlation was not significant 

in the ACC cluster (r = 0.06, n.s.), however. 

4.2.5 Prediction Error-driven Updating of Volatilit y in the Insula 

After current-trial congruency is observed, the model’s volatility estimate needs 

to be updated to further guide the adjustment of predicted conflict level (Figure 17a). 

The model updates volatility based on the prediction error of congruency. Hence, 

according to our model, brain regions encoding volatility should also be expected to 

represent congruency prediction error. As noted above, the representation of the 

prediction error of congruency was tested for using the interaction vector of predicted 

conflict level and observed congruency	,f& × T&. Compatible with the above prediction, a 

cluster of searchlights showing significant predicted conflict level × congruency effect 

was found in the left insula (Figure 17b, corrected). This cluster overlaps the insula 

cluster of searchlights encoding volatility (Figure 14), within which 24 out of 73 

searchlights also showed encoding of prediction error of congruency (Fig. 5c, P < 0.05). 

Accordingly, across the searchlights in the left insula ROI encoding belief of volatility 
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(Figure 14), the mean representation of congruency prediction error was significant (t7S 

= -2.13, P = 0.045).  

 

Figure 17: Congruency prediction error drives the updating of volatility. (a) A 

graphical representation of the Bayesian model, highlighting in red the information 

processing mechanisms related to the updating of volatility. (b) Visualization of 

searchlights showing encoding of volatility (red, P < 0.05 corrected) and searchlights 

showing interaction between predicted conflict level and congruency (green, P < 0.05 

corrected) and their overlap (yellow). (c) Histogram of t-values measuring group level 

univariate effect of volatility × predicted error of congruency interaction. The t-values 

were calculated from searchlights in the volatility-encoding cluster shown in (b). The 

red vertical line denotes the threshold for statistical significance (P < 0.05). 

4.3 Discussion  

In the present fMRI study, the Bayesian model was employed to guide the 

investigation of the neural substrates underlying the flexible adjustment of cognitive 

control. Specifically, the neural encoding of the three model variables (volatility, 

predicted conflict level and congruency) were inspected, then three model predictions 

(volatility modulates the updating of predicted conflict level; predicted conflict level 

mediates cognitive control, and the prediction error of congruency drives the updating 

of volatility) were examined using the estimates of model variables and fMRI data. 
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The conflict monitoring theory claims that the brain tracks the conflict level via 

reinforcement learning with a fixed learning rate (M. M. Botvinick et al., 2001). As 

shown above, reinforcement learning is unable to account for the flexible adjustment of 

cognitive control. Facilitated by the Bayesian model, I found that the model estimates of 

predicted conflict level were represented in the caudate. Crucially, the predicted conflict 

level was encoded by a distributed coding scheme, which suggests that the predicted 

conflict level is represented by its statistical distribution across neuronal groups, with 

each group’s activation encoding the current belief of the predicted conflict level at a 

specific level. This finding opens the possibility that the predicted conflict level is 

monitored by a more sophisticated statistical approach (i.e., by its statistical distribution) 

compared to the claim that the conflict level is encoded using only one scalar value. The 

parallel circuits in the caudate provide the structural and functional foundations of 

estimating and updating a representation of statistical distribution (G. E. Alexander & 

Crutcher, 1990; Frank & O'Reilly, 2006). Moreover, the results support the hypothesis 

that volatility modulates the updating of predicted conflict level in the caudate. 

Specifically, volatility belief regulates the dependence on short-term information (e.g., 

the learning rate in a reinforcement learning algorithm) and modulates the 

representation of short-term information (e.g., the prediction error of congruency). These 

findings shed light on the mechanisms of flexibly predicting the conflict level (or 

control-demand), which is then employed to adaptively guide cognitive control. 
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Previous studies defined the adjustment of cognitive control as a function of 

change in a specific context, such as the previous trial congruency (M. Botvinick et al., 

1999; Durston et al., 2003; Egner & Hirsch, 2005a, 2005b; Kerns, 2006; Kerns et al., 2004) 

and the proportion incongruency (Grandjean et al., 2012; Krug & Carter, 2012; Sohn et 

al., 2000; Wilk et al., 2012). The present study defines the adjustment of cognitive control 

as a function of change in predicted conflict level, which is an integration of both 

contexts, and more broadly, of both short-term and long-term information regarding 

demands on cognitive control. The predicted conflict level was found to mediate the 

interference effect in ACC and dlPFC. Similar to the conflict adaptation and proportion 

incongruency effects, the activation profiles of these regions suggest augmented 

cognitive control (reflected by reduced interference effect) as the predicted conflict level 

increases. As key regions in monitoring conflict and adaptively applying top-down 

biasing to posterior regions, trial history-based modulation on interference effects have 

commonly been reported in ACC (Barch et al., 2001; M. Botvinick et al., 1999; Carter et 

al., 1998; Kerns et al., 2004; MacDonald et al., 2000; MacLeod & MacDonald, 2000) and 

dlPFC (Egner & Hirsch, 2005a; Kerns et al., 2004; MacDonald et al., 2000). The model-

based analysis further suggests that the source of the modulation in ACC and dlPFC 

might be a prediction of conflict level signal, which originates in the caudate and is 

estimated adaptively across changing contexts via a sophisticated statistical learning 

mechanism.  
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The encoding of volatility was found in bilateral anterior insula cortices and 

adjacent inferior frontal gyri. A previous study has shown that the anterior insula cortex 

displayed higher activation in decision-making involving ambiguity (unknown 

probabilistic distribution of reward) than that involving known probabilistic distribution 

of reward (Huettel, Stowe, Gordon, Warner, & Platt, 2006). Ambiguity (or uncertainty) 

of underlying probabilistic distribution is similar to volatility in that volatility quantifies 

the likelihood the underlying probabilistic distribution varies (in other words, become 

uncertain). The model further predicts that the updating of volatility relies on the 

predicted error of congruency, which was also found encoded in the left anterior insula 

cortex in this study. Prediction-error related activation in the anterior insula was also 

reported in another study of risky decision making (Preuschoff, Quartz, & Bossaerts, 

2008) in the anterior insula. Moreover, a recent theory of the function of anterior insula 

cortex also supports the encoding of volatility and its updating: Craig (2009) claims that 

a generic function of anterior insular is to integrate salience across various factors (e.g., 

the structure of the task) to form a representation of awareness at a given moment. 

According to that model, the salience of any factor is determined by its contribution to 

the homeostasis of factors. Thus, volatility and prediction error of congruency, as 

measures reflecting potential violation of homeostasis of one’s belief of the probabilistic 

distribution of conflict level, would feasibly be encoded in the anterior insula according 

to this model. Moreover, Craig (2009) proposes that a representation of awareness in a 
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“finite present” (a present-centered period of time) is generated from the representations 

of awareness via temporal integration, which can potentially support the temporal 

updating of volatility.   

In sum, facilitated by the Bayesian model, the present fMRI study extends the 

classic conflict monitoring model (M. M. Botvinick et al., 2001; M. M. Botvinick et al., 

2004) to account for the flexible adjustment of cognitive control. Instead of estimating a 

fixed learning strategy to predict conflict level, the present model-based analyses 

revealed the involvement of anterior insula in encoding control-demand volatility, 

which modulates the updating of predicted conflict level, and the involvement of the 

caudate, which provides a flexible learning system to predict conflict level. These 

findings depict an orchestra of various systems that adaptively adjust cognitive control 

to maintain optimal behavior. 
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5. Summary 

In this section, I first summarize the major findings of the present dissertation in 

section 5.1, organized according to the relationship between 4 factors: the experimental 

design, the Bayesian model, the behavioral data and the fMRI data. Related works and 

their links to this dissertation are also discussed. I then point out some limitations of this 

dissertation and some open topics that future studies might tackle in section 5.2. 

5.1 General Discussion 

In this dissertation, I investigated potential mechanisms supporting the flexibility 

of adjustments in cognitive control, allowing us to adapt to environments with varying 

patterns of conflict (and thus, varying control-demand). I argue that this flexibility can 

be explained by a mechanism that gauges volatility, which determines how information 

sampled from various temporal scales should be integrated to optimally predict the 

demand of cognitive control. This mechanism was then formulated in a Bayesian model 

that simulated control processes and task performance on a trial-by-trial basis. Prior to 

the onset of the stimulus at each trial, volatility regulates the prediction of conflict level, 

which is in turn involved in determining the demand for cognitive control. After the 

stimulus is presented, the perceived congruency of the stimulus updates the belief of 

volatility and predicted conflict level. This prediction-update loop repeats for each trial 

and produces trial-by-trial estimates of volatility and predicted conflict level.  
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Figure 18: An illustration showing the order of different “components” being 

integrated into this dissertation to investigate flexible adjustment of cognitive 

control. 

Starting with this model, I conducted a series of studies to investigate the 

mechanism of flexible adjustment of cognitive control by successively including 

additional “components” in each chapter (Figure 18). These added components validate 

the model and/or provide new evidence of the mechanisms underlying the flexibility of 

the adjustment of cognitive control. The model was first validated using an experimental 

design that manipulated the reliability of short-term and long-term information by 
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varying the frequency of alternating two underlying proportion incongruency 

distributions (section 2.2.3). Then I demonstrated that the proposed model 

simultaneously accounts for two classic behavioral phenomena in cognitive control that 

are believed to have different reliance on short-term and long-term trial-history (section 

3.1). In particular, the behavioral studies in sections 3.2 and 3.3 indicated that (1) the 

experimental design was able to elicit behavioral change related to flexible adjustment of 

cognitive control and (2) that the behavioral changes could be accounted for by the 

Bayesian model. They also lay the foundations for an fMRI study (chapter 4), which 

employed the Bayesian model and the same experimental design to guide the 

exploration of neural substrates of flexible cognitive control. Compared to the conflict 

monitoring model and the dual mechanisms model of cognitive control, the Bayesian 

model is more parsimonious (e.g., using a single mechanism to account for different 

behavioral phenomena) and more appropriate (e.g., using one-the-fly simulation rather 

than post-hoc fitting). Taken together, the success of the Bayesian model provides 

evidence to support the existence of a unified system for flexible adjustment of cognitive 

control. In the following sections, I extend these findings and discuss their potential 

relation to other works. 

5.1.1 How “Bayesian” is Cognitive Control? 

According to Bowers & Davis (2012), there are three levels at which one can use 

Bayesian methods in modeling cognitive processes: as computational tools, for 
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generating “optimal” benchmarks for cognitive processes, and for modeling the actual 

neural computations carried out by the brain. The Bayesian models reviewed above in 

this dissertation, along with the proposed Bayesian model, all operate at the second 

level: these Bayesian models were treated as “optimal observers”, and produced optimal 

predictions, which in turn were used to account for behavior and neuroimaging data. 

Using the estimates generated by the “optimal observer”, behavioral data and neural 

activity involved in the flexible adjustment of cognitive control can be accounted for. For 

example, volatility and predicted conflict level were represented in the dlPFC and 

caudate, respectively (chapter 4). The neuroimaging results further revealed a chain of 

modulation from volatility to predicted conflict level, and then to impact of observed 

congruency. These results support the argument that the brain adjusts cognitive control 

through the information flow as envisaged in the proposed Bayesian model. 

If the brain processes information related to cognitive control in a Bayesian (or 

more broadly, a predictive statistical) approach, two more premises must be met. First, 

the variables (e.g., volatility, predicted conflict level) should be represented as 

probabilistic variables. In other words, the encoding of these variables should be in the 

form of probabilistic distributions rather than a scalar value. Second, the updating of 

variable states should be computed on probabilistic distributions. The first premise 

requires neurons encoding the variables to either perform distributed encoding (e.g., 

each neuron represents the probabilistic density at a given value) or to have the ability of 
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swiftly change tuning curves to accommodate the updating of the probabilistic 

distribution. Regarding the second premise, the updating on probabilistic distribution 

requires at least two variables (e.g., a variable to be updated, and other variable(s) 

providing the information to update) and hence is performed on a joint probabilistic 

distribution that has a dimension of at least two (one for each variable). Because 

homogeneous encoding can only represent one-dimensional information, the second 

premise predicts distributed encoding.   

Following this logic, the distributed representation of predicted conflict level 

found in the fMRI study supports both of these premises, and thus the proposal of 

Bayesian implementation of cognitive control in the brain. Yet, fMRI findings of 

homogeneous (univariate) encoding may not represent unambiguous support for 

homogeneous coding due to the coarse spatial resolution of fMRI. For instance, it is 

possible that a voxel covers a population of neurons that encodes a statistical variable 

and in a distributed fashion, and thus the fMRI signal of that voxel exhibits a pattern of 

homogeneous encoding. Neuronal recording or other techniques with higher spatial 

resolution than fMRI are needed for a more accurate test of these premises. 

Previous studies are promising in this regard. At the neuronal level, it has been 

shown that Bayesian models can account for neural firing rate data in decision making 

(Beck et al., 2008) and attention (Rao, 2005)  tasks. Thus the brain might adopt the neural 

implementation of those Bayesian models to support flexible cognitive control. 
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5.1.2 Actor-critic Models 

Several prior computational models have employed an “actor-critic” architecture 

to simulate neural responses in the ACC (W. H. Alexander & Brown, 2011; Silvetti, 

Alexander, Verguts, & Brown, 2013; Silvetti, Seurinck, & Verguts, 2011, 2013).  The 

“actor-critic” architecture consists of two components, an “actor” component and a 

“critic” component. During the simulation in a time-step, these models first make 

prediction of the stimulus/outcome using the actor component. The discrepancy 

between the prediction and the actual stimulus/outcome is processed by the critic 

component to update the actor component’s prediction in the next time-step. Using the 

reinforcement learning algorithm driven by unsigned prediction error, these models are 

able to account for ACC activity in a variety of tasks.  

The Actor-critic models and the proposed Bayesian model are similar in a few 

ways: Firstly, they share the two-step algorithm that first predicts the stimulus/outcome 

and then updates the prediction based on prediction error. Secondly, they all assume 

that this update (or learning) should be flexible. Specifically, the predicted response-

outcome (PRO) model (W. H. Alexander & Brown, 2011) adjusts the learning rate based 

on prediction error. The reward value prediction model (Silvetti et al., 2011; Silvetti, 

Seurinck, et al., 2013), although adopting a fixed learning rate, argues that the 

adjustment of learning rate may occur in the locus coeruleus. The proposed Bayesian 

model regulates learning via volatility. Lastly, all of the models predict larger prediction 
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error-related activity in the ACC in more volatile conditions. This prediction was 

validated by the finding of significant positive 3-way interaction in the ACC reported in 

the fMRI study above.  

Despite these similarities, the actor-critic models and the proposed Bayesian 

model also differ in some essential aspects. One key difference is the explicit 

consideration of volatility. The actor-critic models argue that a dedicated variable of 

volatility is unnecessary, because learning can be modulated directly via prediction 

error. On the contrary, Bayesian model explicitly includes a variable of volatility to 

modulate the update of predicted conflict level. In support of the contention that the 

brain computes the volatility of control-demand, the fMRI study presented in this 

dissertation found an anterior insula/IFG region that represented the time course of 

volatility estimates produced by the Bayesian model, as well as an interaction between 

volatility estimate and prediction error of congruency. Additionally, the PRO model 

predicts that learning rate increases as prediction error increases, whereas in the 

proposed Bayesian model the opposite is true. Future studies are needed to reconcile 

this discrepancy.   

5.1.3 Predictive Coding 

The predict-update approach used in the Bayesian model also relates it to the 

predictive coding theory of information processing in the brain (Friston, 2005; Mumford, 

1992; Rao & Ballard, 1999), which states that information processing is facilitated by top-
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down modulation based on prediction, and that prediction error is transmitted bottom-

up to update the prediction to improve its accuracy. The updating of prediction is a 

crucial part in the predictive coding theory, because the efficiency of the update directly 

affects the performance of future information processing. It has been shown that this 

update can be modulated by attention, which boosts prediction error to enhance the 

efficiency of learning (Jiang, Summerfield, & Egner, 2013). The Bayesian model, with the 

variable of volatility, may suggest an additional mechanism that could improve learning 

in the predictive coding framework. Specifically, volatility reflects the likelihood that 

prediction error is due to a fundamental change in the environment and it thus 

determines the influence of prediction error on the updating. In the implementation of 

the Bayesian model, volatility regulates the update from prediction error by modulating 

the likelihood of the new prediction deviating from its previous state, which has a 

similar effect as modulating learning rates in a reinforcement learning model, as 

demonstrated both in the validation (section 2.2.1) and neural data (section 4.3). Thus, in 

addition to attention amplifying prediction error, the effect of volatility demonstrates a 

complementary mechanism that can facilitate the updating from prediction error by 

modulating its utility.  

5.1.4 Volatility vs. Other 2 nd-order Measures 

In the proposed Bayesian model, the function of volatility is to determine how 

likely the new predicted conflict level is to deviate from its previous state. Thus it can be 
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considered as a quantity of second-order uncertainty (e.g. the deviation of probability, 

see (Yu & Dayan, 2005)) that reflects the variance or SD of the distribution of predicted 

conflict level (although strictly speaking, volatility is not equivalent to SD in the 

Bayesian model because the SD of p�f���|f�, v���� also depends on the previous state of 

predicted conflict level). Deviation of reward from its mean has been found to be 

encoded in posterior cingulate cortex neurons (McCoy & Platt, 2005). Another study has 

shown that in the primate anterodorsal septum, neural firing rates display an “inverted-

U” shape as a function of the probability of reward, peaking at 50% (Monosov & 

Hikosaka, 2013). Given that the SD of reward increases starting from 0 reward 

probability, then peaks at 50%, and finally drops until the probability of reward reaches 

100%, this inverted-U pattern of neural firing may also represent potential neural 

substrates of deviation and/or volatility. A similar neural firing pattern was also found 

in the midbrain (Fiorillo, Tobler, & Schultz, 2003) and the ventral striatum (Preuschoff, 

Bossaerts, & Quartz, 2006) in monkeys.  

Volatility is also associated with confidence (or uncertainty). For example, in a 

stable environment, prediction of conflict is usually more confident because the 

expectation is less likely to be violated. Previous studies have shown that confidence of 

decision is encoded in the lateral intraparietal cortex (Kiani & Shadlen, 2009) as well as 

ventral medial and rostrolateral prefrontal cortices (De Martino, Fleming, Garrett, & 

Dolan, 2013).  
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Finally, high volatility also arguably renders decision-making more ambiguous; 

hence neural substrates of ambiguity, as found in orbital frontal cortex (Hsu, Bhatt, 

Adolphs, Tranel, & Camerer, 2005) and the lateral PFC (Huettel et al., 2006) may also 

contribute to encoding volatility.  

Although the brain regions supporting volatility-related encoding and 

modulation found in this dissertation (e.g., encoding of volatility in the anterior insula, 

and modulation involving volatility in the caudate) do not correspond closely to these 

previous findings, this dissertation extends those prior works in two ways: first, 

compared to previous studies that usually predicted the outcome of a particular 

stimulus-response ensemble, the current model was employed to predict the demand of 

cognitive control and thus extends the previous findings. Second, the trial-based 

analysis employed in this dissertation extends the time-resolution of the aforementioned 

studies from block- or condition-level to trial level. Thus the findings in this dissertation 

may reveal neural substrates underlying learning (of the predicted conflict level) at a 

finer temporal resolution.  Nevertheless, given the conceptually similarity between 

volatility and other 2nd-order statistical measures, these types of estimates might be 

supported by a generic mechanism that operates independent from specific task-

settings. This dissertation provides new materials for the exploration of this generic 

mechanism. 
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5.2 Limitation and Future Directions 

Although this Bayesian model has shown great potential in accounting for classic 

behavioral phenomena and exploring the neural substrates of flexible cognitive control, 

there are a few caveats that can be addressed in future studies. There are also some 

novel routes that are potentially interesting to take as follow-up investigations. In the 

following sections I discuss them in details. 

5.2.1 Within-trial Simulation 

In the studies reported in this dissertation, the Bayesian model only simulated 

cognitive control in an across-trial manner. Thus the dynamics of cognitive control 

within a trial remain unclear. It would be interesting to examine how the predicted 

conflict level modulates the resolution of conflict, and how the prediction error 

accumulates and guides the update of predicted conflict level and volatility within a 

trial, in particular when the prediction deviates from the actual congruency. Several 

considerations should be taken into account prior to embarking on such a project, 

however. Firstly, from the perspective of the Bayesian model, there may not be any 

change of the environment within a trial. Thus, a simplified model (e.g., without the 

variable of volatility or replacing the variable with a constant for volatility, assuming it 

stays the same during a trial) could feasibly be used for simulation. However, this is not 

to say that volatility has no effect on within-trial dynamics – only that this effect may not 

change within a single trial. Indeed, one could extract quantitative characteristics from 
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within-trial dynamics (e.g., speed of information accumulation, starting bias, and so on), 

and analyze them across trials as a function of volatility.  

Secondly, from the perspective of behavioral data analysis, within-trial modeling 

usually depends on distributions of RTs, which in turn requires large number of trials to 

ensure that the sample accurately reflects the underlying distribution (Brown & 

Heathcote, 2005; Ratcliff, Van Zandt, & McKoon, 1999). This would increase the 

difficulty of data acquisition. Fortunately, data acquisition could be facilitated by AMT 

(see Appendix), as documented in section 3.3.  

Finally, from the perspective of the imaging methodology, the fMRI approach 

employed in this dissertation would be sub-optimal for studying the dynamics of 

within-trial brain activity at high temporal resolution compared to 

electroencephalography (EEG), magnetoencephalography (MEG) and invasive neural 

recordings. Future studies may therefore consider using these techniques in conjunction 

with the new Bayesian model to study flexible within-trial cognitive control at 

millisecond resolution. 

5.2.2 Meta-volatility? 

In the Bayesian model proposed here, the transition distribution of volatility 

depends on a parameter σ", which stays constant throughout the experiment. One way 

of comprehending the function of (̂ is that it controls how fast volatility changes 

temporally. For example, volatility can remain high for a long time (low (̂, e.g., remain 
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at 50% proportion incongruency for 200 trials) or volatility can vary between different 

values at low levels (high (̂, e.g., alternate between 80% and 90% proportion 

incongruency every 20 trials). Thus (̂ could also be considered an index of “meta-

volatility”. The proposed Bayesian model simply assumes that (̂ is a constant within an 

experiment. However, in theory, to account for possible changes of speed of volatility, 

the model could include another variable of (̂ that would depend on yet another 

variable to control the temporal change of (̂, and so forth, ad infinitum. Consequently, 

this approach opens the door to a potential infinite regress, rendering a “complete” 

modeling the flexibility of cognitive control impossible.   

The key to this issue lies in how flexible cognitive control needs to be. The brain 

makes decision promptly, thus sometimes it sacrifices flexibility for efficiency (cf., the 

habitual S-R mappings described in chapter 1). Thus, although in theory the variables of 

volatility, meta-volatility and meta-meta-volatility (etc.) can be expanded to infinite 

levels, the brain does not need to implement all of these levels. To empirically test to 

which level the brain encodes information about control, a model comparison between 

the present Bayesian model and a Bayesian model that incorporates (̂ as a variable 

could be conducted on data acquired using a task that manipulates the speed of the 

shifting of volatility. If adding the variable of meta-volatility cannot significantly 

improve the performance of the model in accounting for human data, it may be the case 

that the brain does not encode (̂ as a variable. 
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5.2.3 Accounting for the Cost and Benefit of Cognit ive Control 

The present Bayesian model simply assumes that the amount of control applied 

is linearly correlated with the predicted conflict level. Nevertheless, Shenhav, Botvinick 

& Cohen (2013) propose that the amount of control applied also depends on 

considerations the cost and benefit brought by engaging cognitive control. For example, 

in the gender Stroop task, one could apply little control in incongruent trials if the cost of 

applying control overweighs the gain of correctly responding to a stimulus. Given the 

high accuracy in the present studies, I assume that the subjects considered the cost-

benefit function to justify applying cognitive control at a sufficient level for performing 

near-perfectly in this relatively simple task. However, future studies could expand the 

Bayesian model by incorporating an optimization problem involving the predicted 

conflict level, as well as estimated costs and benefits of engaging cognitive control to test 

the relationship between predicted conflict level and applied control level under 

different difficulty/motivation settings. 

This route of future research can also help explain performance variability in 

cognitive control that exists between motivational states (Locke & Braver, 2008), between 

emotional states (Braem et al., 2013; Egner et al., 2008; Etkin, Egner, Peraza, Kandel, & 

Hirsch, 2006; Reeck & Egner, 2011) and across individuals (Burgess & Braver, 2010).  The 

current Bayesian model succeeded in modeling the mean behavior and brain activity in a 

group of subjects. Nevertheless, it is unable to account for the variance above because its 
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estimated states of variables are only based on the congruency variable. By introducing 

the costs and benefits of applying cognitive control, and thus dissociate the assessment 

of cognitive control from the prediction of conflict level, the extended model would have 

the potential to explain intra- and inter- individual variance. Similar to estimating the 

states of volatility and conflict level, the Bayesian model could in theory infer the states 

of the added variables, and inferred states can be applied to explore the mechanisms 

underlying behavioral and brain data. 

I speculate that, in a healthy population, most of the performance variance arises 

from the difference in the mapping from predicted conflict level to the amount of 

cognitive control applied. In other words, the predicted conflict level may be highly 

consistent across task-settings and subjects (e.g., people have similar estimates of the 

predicted conflict level), and the variance is more likely due to different cost functions 

(e.g., people differ in making decision of how much control to exert from the same 

predicted conflict level). 

5.2.4 Assessing the Causal Roles of Model Variables  Using 
Transcranial Magnetic Stimulation (TMS)  

One common limitation in neuroimaging study is the lack of a measure of the 

causal involvement of a given brain region in bringing about the subjects’ behavior. For 

example, from the fMRI study reported in chapter 4, one could only infer that volatility 

is encoded in the dlPFC because of the co-variation between brain activity in the dlPFC 

and the vector of volatility estimates. However, co-variation does not guarantee 
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causality. One way of showing causality is through TMS, which can temporarily inhibit 

a brain’s activation by applying a transient magnetic field over that region. Thus a 

possible future study could aim at impairing computations in the dlPFC using TMS and 

inspecting if this intervention compromise subjects’ performance in flexibly adjusting 

cognitive control.  

5.3 Conclusions 

In this dissertation, I propose a formal Bayesian model to account for the flexible 

adjustment of cognitive control in conflict tasks. Endowed by a volatility variable that 

adaptively regulates the influence of long-term and short-term trial history on the 

prediction of conflict level, this model successfully simulates several classic behavioral 

phenomena observed from the cognitive control literature, and furthermore facilitates a 

principled, model-guided investigation of the neural substrates underlying the flexible 

adjustment of cognitive control. Extended versions of the Bayesian model may also 

facilitate future investigations to reveal more details of the neuro-computational 

architecture of cognitive control, such as its within-trial dynamics, the relationship 

between prediction of conflict level and the implementation of cognitive control, and so 

on. Thus, I conclude that the Bayesian model provides a feasible solution to explain the 

mechanisms underlying the flexible adjustment of cognitive control.
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Appendix  A 

A.1 An Introduction to Amazon Mechanical Turk (AMT)  

One major limitation in conducting behavioral studies in the lab is the long data 

acquisition time. This can be attributed to three reasons: First, the size of subject pool is 

typically relatively small (e.g., a few hundreds of potential participants) and subject to 

fluctuation (e.g., student subject pools are often unavailable during breaks). Second, the 

capacity of simultaneously testing several participants is often limited. Third, the hours 

during a day one can run behavioral studies are limited. As a result, a researcher often 

needs weeks or even months to recruit enough subjects for a single study. 

This inefficient data acquisition problem can be greatly mitigated by using AMT 

(https://www.mturk.com), an online cloud-sourcing platform. In the context of 

conducting a behavioral study, AMT serves as a “subject pool” where experimenters (or 

“requesters”, as AMT define them) can recruit volunteers to perform behavioral tasks 

online and compensate them via the AMT payment system. In 2011, the number of 

registered online subjects (or “workers”, as AMT define them) reached 500,000, 

providing a huge and stable source for subject recruitment. The online subjects perform 

tasks on their own web browsing devices, thus multiple subjects can work on the same 

task independently and simultaneously. The subjects are located across different time 

zones (http://techlist.com/mturk/global-mturk-worker-map.php) and can participate in a 

study anytime in the absence of direct interactions with the experimenter, so the data 
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acquisition can occur at any time. Overall, AMT can be utilized to vastly accelerate data 

acquisition for behavioral tasks. 

Despite of AMT’s great potential in facilitating behavioral studies, several 

concerns have been raised by researchers. Many of these concerns stem from two core 

issues, either regarding the subjects or the techniques implementing the behavioral 

tasks.  

A major concern about the subjects is how well they perform the tasks. This 

concern can be further decomposed into two more specific ones, namely: (1) Do the 

subjects understand the instructions? And (2) are they motivated enough to follow the 

instructions throughout a task? For (1), most AMT workers are located in the United 

States and India (Ipeirotis, 2010), both of whose primary languages are English. Thus 

most subjects should be able to understand instructions written in English. One can also 

add country of residence to the recruitment criteria to further filter out non-English 

speakers from participation. Moreover, AMT encourages requesters to provide previews 

of their tasks for workers to decide if they would like to sign up. The preview can also be 

used as a practice session to test if the subjects follow the instructions. For (2), AMT 

workers are generally motivated to follow the instructions and finish a task once they 

sign up, because they are paid by the quality of their work (i.e., they may not be 

compensated if they perform poorly), according to AMT’s payment policy (Institutional 

Review Board at Duke also honors this policy).  In addition, rejection of payment may 
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also impede a worker’s qualification of performing future tasks. There have also been 

some studies (see the studies reviewed below, as well as the study reported in section 

3.2) showing that most online subjects follow the instructions and complete behavioral 

tasks with high accuracy. 

 A second common concern is that the demographics of the subjects may differ 

from that of the general population. In fact, a recent study points out that the AMT 

online subjects population has demographics similar to that of the whole American 

online population (http://www.behind-the-enemy-lines.com/2009/03/turker-

demographics-vs-internet.html). Compared to the student subject pools many 

researchers use, AMT subjects form a more diverse group in terms of age, education, 

races, ethics, and so on. Thus, in theory the AMT results should in fact be more 

generalizable. 

Because the rules of most behavioral tasks are relatively simple, one may worry 

that some workers can use some software to perform the task rather that doing it 

themselves. This is a highly unlikely scenario, because most cognitive tasks (e.g., 

identify the gender of a face image) are still too difficult for computer programs to 

accomplish. Furthermore, the rules and stimulus sets vary significantly across tasks, 

making it almost impossible to develop a generic software package for all behavioral 

tasks. Even developing a computer program that solves a single task may require 

significantly more time than needed in completing that task in person. 
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Another concern regarding the subjects is how to prevent one subject from 

participating in the same task more than once. AMT’s policy restricts that each worker 

account can only sign up for a task once. However, it is possible that some workers with 

multiple worker accounts perform some relatively profitable tasks more than once. To 

reduce this possibility, one can record the IP address for each participant and block 

multiple participants from one IP address. 

Many behavioral tasks rely on precise timing of stimuli presentation and 

response recording, so some researchers may worry that running tasks online may 

compromise the precision of timing. The precision of timing depends on the 

implementation of the behavioral task. For example, in the implementation of the gender 

variant of the Stroop task (see below), subjects downloaded all stimuli and programs 

and run the task locally in their web browsers. Thus the timing was not affected by the 

speed of internet connection. Current industry standard requires modern web browsers 

to support timing that is “accurate to a thousandth of a millisecond” 

(http://www.w3.org/TR/hr-time/#sec-DOMHighResTimeStamp). Hence it is possible to 

achieve highly precise timing.  

One last concern is the uncontrolled apparatus. For example, a task can be 

performed by online subjects using various screen/window sizes, and input devices with 

different lags. The subjects may even be distracted from the task. These uncontrolled 

factors may cause a larger amount of noise in data acquired via AMT than in controlled 
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lab settings. This caveat can be alleviated by including more subjects. More important, 

from a different perspective, these uncontrolled factors indeed eliminates the possibility 

that some significant effects are caused by nuisance factors such as the size of the 

stimuli, specific hardware, or even the way the experimenter gives instructions. In other 

words, significant effects observed from AMT data should be no less (if not more) 

generalizable compared to data acquired in the lab. 

To sum up, it has been shown that AMT is a legitimate tool for conducting 

behavioral studies in general. A couple of studies have further validated AMT 

specifically for cognitive control tasks. Crump, McDonnell, & Gureckis  (2013) examined 

online workers’ performance on Stroop, task-switching and Flanker tasks. Each task 

contained 96 trials and lasted approximately 5 minutes. Sixty subjects participated in 

each task. Subject attrition rate ranged from 10% to 33%. Both the error rate and RT 

showed at least marginally significant interference effects in Stroop and Flanker tasks. In 

the task-switching task, there are significant switching effects (repeat < switch) in both 

error rate and RT. These patterns replicate their classic versions of these 3 tasks. 

Weissman, Jiang & Egner (submitted) investigated the conflict adaptation effect using a 

prime-probe task conducted on AMT. The task contained 388 trials and lasted around 20 

minutes. Forty-five subjects were included. The subject attrition rate is low (4%). They 

also found significant interference effects. In addition, RT showed a significant conflict 
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adaptation effect, which is similar to another study conduct in the lab using the same 

design (Schmidt & Weissman, Submitted). 

These two studies paved the road to investigating effects in cognitive control via 

AMT. To further illustrate that AMT is also suitable to inspect the flexibility of cognitive 

control, the next section reports a behavioral study conducted via AMT using the same 

design as the study reported in section 3.2. 

A.2 Running the Flexible Cognitive Control Task on AMT 

A.2.1 Subjects 

Ninety subjects gave informed consent online in accordance with institutional 

guidelines and participated in this study through AMT. Six subjects were excluded from 

analysis due to random level accuracy. The remaining 84 subjects self-reported 

demographic information online (46 females; mean age, 31).  

A.2.2 Stimuli and Procedure 

The stimuli and procedure used in this study were used as the ones described 

above in section 3.3.2.  

A.2.3 Experimental Design 

The task and its design were used as the ones described above in section 3.2.3. 

A.2.4 Data Analysis 

The data analysis was as the ones described above in section 3.2.4. 
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A.3 Comparison between Lab Data and AMT Data 

The online subjects achieved high accuracy during this task (mean accuracy = 

0.948 ± 0.005), suggesting the followed the instructions. As can be seen in Table 3, both 

the mean accuracy and mean RT were comparable between this study and the 

laboratory-based study described in section 3.2.5. Statistical analysis on RT further 

revealed that the AMT data yielded comparable results on several effects, including 

significant interference effect (J�,O_ = 81.1, P < 0.001) due to longer RTs in incongruent 

trials (568 ± 18 ms) than in congruent trials (523 ± 16 ms), and proportion incongruency 

effect (J�,O_ = 18.0, P < 0.001) driven by a larger interference effect in 80% congruency 

blocks (57 ±7 ms) than in 20% congruency blocks (32 ± 5 ms), and marginally significant 

main effect of volatility in RT (J�,O_ = 3.6, P = 0.06), driven by slower RT in volatile runs 

(553 ± 19 ms) than in stable runs (539 ± 16 ms).  

Finally, in the 3-way ANOVA on RT, non-significant effects in the data from 

section 3.2 were also non-significant in the AMT data. These results strongly support 

that AMT is capable of acquiring legitimate behavioral data for tasks on flexible 

cognitive control.  

Table 1: Comparison of results between AMD data and lab data 

 AMT data Data from section 3.2 

Number of subjects 84 46 

Mean accuracy 94.8% 92.8% 

Mean RT 545 ms 535 ms 

RT: interference effect 44 ms (P < 0.001) 28 ms (P < 0.001) 

RT: proportion incongruency effect 25 ms (P < 0.001) 10 ms (P = 0.002) 
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RT: main effect of volatility 6 ms (P = 0.06) 10 ms (P = 0.04) 
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