
Copulas for High Dimensions: Models, Estimation,

Inference, and Applications

by

Dong Hwan Oh

Department of Economics
Duke University

Date:
Approved:

Andrew J. Patton, Supervisor

Tim Bollerslev

George Tauchen

Shakeeb Khan

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Economics

in the Graduate School of Duke University
2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DukeSpace

https://core.ac.uk/display/37749909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Copulas for High Dimensions: Models, Estimation, Inference,

and Applications

by

Dong Hwan Oh

Department of Economics
Duke University

Date:
Approved:

Andrew J. Patton, Supervisor

Tim Bollerslev

George Tauchen

Shakeeb Khan

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Economics

in the Graduate School of Duke University
2014



Copyright c© 2014 by Dong Hwan Oh
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/


Abstract

The dissertation consists of four chapters that concern topics on copulas for high

dimensions. Chapter 1 proposes a new general model for high dimension joint distri-

butions of asset returns that utilizes high frequency data and copulas. The depen-

dence between returns is decomposed into linear and nonlinear components, which

enables the use of high frequency data to accurately measure and forecast linear

dependence, and the use of a new class of copulas designed to capture nonlinear de-

pendence among the resulting linearly uncorrelated residuals. Estimation of the new

class of copulas is conducted using a composite likelihood, making the model feasible

even for hundreds of variables. A realistic simulation study verifies that multistage

estimation with composite likelihood results in small loss in efficiency and large gain

in computation speed.

Chapter 2, which is co-authored with Professor Andrew Patton, presents new

models for the dependence structure, or copula, of economic variables based on a

factor structure. The proposed models are particularly attractive for high dimen-

sional applications, involving fifty or more variables. This class of models generally

lacks a closed-form density, but analytical results for the implied tail dependence

can be obtained using extreme value theory, and estimation via a simulation-based

method using rank statistics is simple and fast. We study the finite-sample properties

of the estimation method for applications involving up to 100 variables, and apply

the model to daily returns on all 100 constituents of the S&P 100 index. We find
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significant evidence of tail dependence, heterogeneous dependence, and asymmetric

dependence, with dependence being stronger in crashes than in booms.

Chapter 3, which is co-authored with Professor Andrew Patton, considers the

estimation of the parameters of a copula via a simulated method of moments type

approach. This approach is attractive when the likelihood of the copula model is

not known in closed form, or when the researcher has a set of dependence measures

or other functionals of the copula that are of particular interest. The proposed ap-

proach naturally also nests method of moments and generalized method of moments

estimators. Drawing on results for simulation based estimation and on recent work in

empirical copula process theory, we show the consistency and asymptotic normality

of the proposed estimator, and obtain a simple test of over-identifying restrictions as

a goodness-of-fit test. The results apply to both iid and time series data. We analyze

the finite-sample behavior of these estimators in an extensive simulation study.

Chapter 4, which is co-authored with Professor Andrew Patton, proposes a new

class of copula-based dynamic models for high dimension conditional distributions,

facilitating the estimation of a wide variety of measures of systemic risk. Our pro-

posed models draw on successful ideas from the literature on modelling high di-

mension covariance matrices and on recent work on models for general time-varying

distributions. Our use of copula-based models enable the estimation of the joint

model in stages, greatly reducing the computational burden. We use the proposed

new models to study a collection of daily credit default swap (CDS) spreads on 100

U.S. firms over the period 2006 to 2012. We find that while the probability of distress

for individual firms has greatly reduced since the financial crisis of 2008-09, the joint

probability of distress (a measure of systemic risk) is substantially higher now than

in the pre-crisis period.
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1

Modelling High Dimension Distributions with High
Frequency Data and Copulas

1.1 Introduction

A multivariate joint distribution for the returns on hundreds of financial assets is

one of the most crucial components in modern risk managements and asset alloca-

tions. Given that the complete information of dependence and marginal behaviors

of assets in portfolios is contained in joint distributions, it is no exaggeration to say

that financial decision makings are completely determined by joint distributions of

constituents of portfolios. Modelling high dimension distributions, however, is not

an easy task mainly due to the “curse of dimensionality,” so only a few models are

available for high dimensions. This is the reason why high dimension Normal distri-

bution is still widely used in practice and academia in spite of its notorious limits,

for example, thin tails and zero tail dependence. This paper proposes a new general

model for high dimension joint distributions of asset returns that utilizes high fre-

quency data and copulas. This model is sufficiently general that non-normal features

of financial data can easily be incorporated, and novel estimation methods enable us

1



to overcome the “curse of dimensionality” in high dimensions.

Over the last decade, there have been two major findings in financial economet-

rics. First, high frequency (HF) intraday data has been proven more superior to

daily data in measuring and forecasting variances and covariances, see Andersen, et

al. (2001, 2004) and Barndorff-Nielsen and Shephard (2004). This implies that linear

dependence represented by covariances is captured quite well by HF data. Second,

copulas can be used to construct high dimension distributions with specified depen-

dence and arbitrary marginal distributions, see Patton (2012) for a comprehensive

review. Separately specifying all marginal distributions and dependence makes con-

structing joint distributions much easier than directly modelling them does. These

two findings naturally leads to a question: how could HF data and copulas be used

to improve the modelling and forecasting of daily return distributions, especially for

high dimensions, say hundreds of random variables?

To address this question is not simple because direct use of HF intraday data

to estimate the copula of daily returns is not straightforward. Given the fact that

daily returns are the sum of intraday returns, it is not reasonable to assume that the

copula of daily returns is a known function of copulas of intraday returns. It is like a

claim that a joint distribution of sum of random variables is a known function of joint

distributions of each variable, which is not generally true except for special cases such

as sum of independent Gaussian random variables. In contrast, Barndorff-Nielsen

and Shephard (2004) prove that the realized covariance matrix nonparametrically

constructed using intraday data converges in probability to the covariance matrix of

daily returns as data frequency goes to infinity. This elegant link between intraday

and daily returns for the second moments does not generally hold for copulas for the

above reason, so alternative approaches are required in order to exploit information

of HF data for modelling dependence.

This paper decomposes the dependence structure into linear and nonlinear com-

2



ponents. This decomposition enables the use of HF data to accurately measure and

forecast linear dependence and the use of a new class of copulas designed to capture

nonlinear dependence between the resulting linearly uncorrelated residuals. This ap-

proach is novel as it enables an enhanced estimation of a joint distribution by sepa-

rately assigning HF data and copula to estimate the linear and nonlinear dependence,

respectively. The literature on joint distributions using HF data mostly ignores non-

linear dependence by focusing only on the second moments or linear dependence, for

example, Chiriac and Voev (2011), Jondeau and Rockinger (2012), Hautsch, et al.

(2013), and Jin and Maheu (2013), among others, whereas the literature on copula

does not use information of HF data to improve modelling dependence, for example,

Chen and Fan (2006), Patton (2006b), and Oh and Patton (2011), among others.

The aforementioned decomposition permits the use of both HF data and copulas to

improve in modelling dependence without further unrealistic assumptions. To model

nonlinear dependence, a new class of copulas designed to capture dependence of lin-

early uncorrelated random variables is necessary. Motivated by the few parametric

copulas available for linearly uncorrelated random variables, for example, t copula

with zero correlations, this paper proposes a new method to construct copulas for

linearly uncorrelated random variables from any given copula. Since this method

is based on simple rotations of a given copula, there is nothing difficult to generate

new copulas. This new class of copulas enables us to examine various features of

nonlinear dependence which might be generally overlooked in the literature.

The major benefits of the proposed models for joint distributions are threefold.

First, the proposed model is sufficiently flexible that almost all kinds of joint models

for the second moment and return distributions in the literature are interpretable

in this framework. We may also rely on the large literature on multivariate second

moments such as BEKK (Engle and Kroner, 1995) and DCC (Engle, 2002) for the

separate models for the second moments. Second, the proposed model can be easily

3



extended to high dimensions, say 100, and the estimation is feasible and fast. Com-

putational problems often arise in high dimension models, and the proposed model

and estimation methods overcome the “curse of dimensionality” by multi-stage es-

timation with composite likelihood, see Varin (2008) and Varin, et al. (2011) for a

comprehensive review. Third, the proposed model allows for the simultaneous use

of high frequency data and copulas to completely capture dependence. HF data is

assigned to capture linear dependence and jointly symmetric copulas are used to cap-

ture nonlinear dependence. Fully exploiting the advantages of HF data and copulas

leads to superior performance of the proposed model.

Similar approaches have already appeared in the literature. First of all, Lee and

Long (2009) consider the decomposition of linear and nonlinear dependence although

their method is more difficult to interpret and cannot be extended to high dimen-

sions.1 Second, the proposed model is related to the literature on copulas for high

dimensions, see Patton (2012) for a review. The standard copula approaches for

modelling joint distributions usually do not take into account the decomposition of

dependence into linear and nonlinear components because the copula captures all

kinds of dependence, including the second moments. Those approaches are not usu-

ally formulated to exploit information of HF data for dependence. Another related

strand of the literature is about modelling the second moments or joint modelling the

second moments and return distributions, see Andersen, et al. (2006) for a review,

Jin and Maheu (2013) and references therein. Since they usually directly model the

joint distributions of standardized residuals rather than relying on copula methods,

the multivariate Normal or Student’s t distributions are used especially for high

dimensions, which implies that nonlinear dependence is mostly ignored.

The remainder of the paper is organized as follows. Section 1.2 provides details

of proposed models for high dimension distributions. Section 1.3 and Section 1.4

1 The details are discussed in Section 1.2
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present the estimation procedure and a simulation study for the proposed models,

respectively. Section 1.5 applies the proposed model to real data and presents in-

sample results and out-of-sample forecasting results for density forecasting and a

portfolio choice problems. Section 1.6 concludes.

1.2 Joint models for covariances and returns

We construct the model of N daily return random variables rt as follows:

rt “ µt `H
1{2
t et (1.1)

et|Ft´1 „ F p¨; ηq (1.2)

where µt ” E rrt|Ft´1s , Ht ” Cov rrt|Ft´1s , Ft “ σ prt, rt´1, . . .q and F p¨; ηq is

a parametric distribution with zero mean and identity covariance matrix. To ob-

tain the square root of a matrix, the spectral decomposition (based on eigenval-

ues and eigenvectors) is used due to its invariance to the order of the variables.

Equation (1.1) implies that returns are specified by conditional mean µt, condi-

tional variance-covariance matrix Ht, and standardized uncorrelated residuals et with

E ret|Ft´1s “ 0 and E rete
1
t|Ft´1s “ I. Equation (1.2) describes that standardized

uncorrelated residuals et follow a conditional joint distribution F p¨q with parameter

η. We may further consider the decomposition of conditional joint distribution F of

et into marginal distributions Fi and copula C by Sklar (1959) and Patton (2006b):

et|Ft´1 „ F p¨; ηq “ C pF1 p¨; ηq , ..., FN p¨; ηq ; ηq (1.3)

Note that the uncorrelated et does not necessarily mean cross-sectional independence.

Except for the independence copula, the elements of et are uncorrelated but have

cross-sectional dependence which is completely described by copula C.

This approach naturally reveals two kinds of dependences of rt: the “linear de-

pendence” captured by conditional variance-covariance matrix Ht and the “nonlinear
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dependence” remaining in the uncorrelated residuals et captured by copula C. The

main aim of this paper is to construct a high dimension flexible forecasting distribu-

tion model which can simultaneously capture both linear and nonlinear dependence

of daily returns and to propose an fast and accurate estimation method taking ad-

vantage of high frequency intraday data.

There are two important advantages in decomposing the joint distribution of rt

in equation (1.1), (1.2), and (1.3). First, it allows the researcher to draw on the large

literature on measuring, modeling and forecasting conditional variance-covariance

matrix Ht with low and high frequency data. For example, GARCH-type obser-

vation driven models such as the multivariate GARCH model by Bollerslev, Engle,

Wooldridge (1988), the structural BEKK model by Engle and Kroner (1995), and the

dynamic conditional correlation (DCC) model by Engle (2002) naturally fit in equa-

tion (1.1) and (1.2), and can be estimated with quasi maximum likelihood methods.

The increasing availability of high frequency data also enables us to use more accu-

rate models for conditional variance-covariance matrix, for example, among others,

Bauer and Vorkink (2011), Chiriac and Voev (2011), and Noureldin, et al. (2011),

and those models are also naturally adapted in equation (1.1) and (1.2). Second,

the model specified by equation (1.1), (1.2), and (1.3) is easily extended to high

dimension applications given that multi-stage separate estimations for conditional

mean, conditional variance-covariance and standardized residuals with marginal dis-

tributions and copula are allowed. The main difficulty of high dimension problem is

the proliferation of parameters and huge computation burden as the dimension in-

creases, known as the curse of dimensionality. The above model, however, overcomes

this obstacle not only by separating estimation stages but also by using composite

likelihood estimation. The details are provided in Sections 1.2.1 and 1.3.3.

To emphasize the prominent features of our model, we contrast our model with

some models in the extant literature. Lee and Long (2009) distinguish and model
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the linear dependence captured by covariance matrix and the nonlinear dependence

remaining in Σ
´1{2
t wt captured by copula of wt :

rt “ µt `H
1{2
t Σ

´1{2
t wt (1.4)

wt|Ft´1 „ G p¨; ηq “ Cw pG1 p¨; ηq , ..., GN p¨; ηq ; ηq

where Σt is covariance matrix implied by G p¨; ηq . Rather than directly modelling

uncorrelated residuals et, Lee and Long (2009) use wt and its covariance Σt to obtain

uncorrelated residuals et. This model is unclear to interpret wt and its covariance

Σt. More importantly, this approach makes them lose a definite advantage of using

copula: multi- stage separating modelling for marginal distributions and dependence.

In order to convert wt into uncorrelated et, they need covariance matrix Σt deter-

mined by both marginal distributions and copula of wt. Consequently, they have to

jointly estimate all parameters η of marginal distributions and copula, which is an

inevitable burden especially for high dimensions.

In contrast to their model, our model is easy to interpret and quite flexible and

manageable in high dimension because we directly model the standardized uncor-

related residuals et to take advantage of benefits from multi-stage separation. The

concern, of course, is that there are a few copulas to ensure zero correlations, for

example, Gaussian copula with identity correlation matrix (i.e. the independence

copula) and t copula with identity correlation matrix combining with symmetric

marginals. We suggest, however, methods to generate various copulas ensuring zero

correlations given any copulas by constructing jointly symmetric copula in Section

1.2.1.

Chen and Fan (2006) and Oh and Patton (2011), among others, differ from this

paper in that they separate only individual variances rather than the entire variance-

covariance matrix and model correlated but de-meaned and de-volitilized returns

rather than uncorrelated residuals. Their approach has an advantage that whole
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dependence information including the second moment such as variance-covariance

matrix is all captured by the copula, and the task boils down to how to construct

flexible copulas to explain various features of dependence in data. In contrast, our

model enables us to use all existing models for the variance-covariance matrix by sep-

arating linear and nonlinear dependence. In particular, more accurate modelling and

forecasting variance-covariance matrix using high frequency data attained widespread

popularity, see Chiriac and Voev (2011), Hansen, et al. (2012), and Noureldin, et al.

(2012) among others. Under our model, we are able to effectively exploit the infor-

mation of high frequency data for linear dependence, e.g. estimating and forecasting

Ht using high frequency data and to estimate the model for uncorrelated but depen-

dent residuals et using low-frequency data. Although recent research on using high

frequency data for copula is growing, most have troubles in appropriately linking

high frequency data and copula mainly because a copula of low frequency data is not

a known function of copulas of high frequency data, which is contrary to the elegant

relationship between high frequency volatility measures and low-frequency counter-

parts. Our model certainly enables us to exploit all information of both high and

low frequency data for linear dependence and nonlinear dependence, respectively.2

Another important feature of our model is that it is a joint model for returns

and covariances like Jondeau and Rockinger (2012), Hautsch, et al. (2013), and

Jin and Maheu (2013), among others. While those papers use Normal or Student’s

t distributions for standardized uncorrelated residuals after modelling covariances,

our model for standardized returns is flexible enough to nest not only Normal or

Student’s t distribution but also various non-standard distributions that ensure zero

correlations. Those uncorrelated residuals still have dependence defined as nonlinear

2 In this paper, we use high-frequency data only for covariance matrix estimation and forecasts.
Recently, De Lira Salvatierra and Patton (2013) use dependence information from high-frequency
data, e.g. realized correlations, for bivariate dynamic copula models. We leave this possbility for
future research.
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dependence in this paper, and our model is designed to fully capture various types

of nonlinear dependence through a new class of copulas for uncorrelated variables.

This makes our model prominent compared to existing models in the literature mostly

neglecting nonlinear dependence. Since the new copulas for uncorrelated variables are

constructed without difficulty from any given copula by simple rotations, our model

can be sufficiently flexible to explain various nonlinear dependence. Through the

empirical analysis in Section 1.5 we find that models capable of capturing nonlinear

dependence significantly outperform models completely or mostly ignoring it such as

Normal or Student’s t distribution.

As mentioned above, we are able to separately model conditional mean, condi-

tional covariance, and standardized uncorrelated residuals. We first focus on models

for uncorrelated residuals et in Section 1.2.1. Next, forecasting models for variance-

covariance matrix Ht are considered in Section 1.2.2.

1.2.1 A model for uncorrelated standardized residuals

To model uncorrelated residuals et, we propose combining a jointly symmetric copula

with a set of symmetric marginal distributions, which guarantees zero correlations

between variables. We first define the symmetry for an univariate random variable

and the jointly symmetry3 for N random variables tXiu
N
i“1.

Definition 1 (Symmetry). An univariate random variable X is symmetric about a

in R if the distribution functions of X ´ a and a´X are the same.

Definition 2 (Joint symmetry, Definition 2.7.1 in Nelsen 2006). Let tXiu
N
i“1 be N

random variables and let taiu
N
i“1 be a point in RN . tXiu

N
i“1 is jointly symmetric

about taiu
N
i“1 if the following 2N sets of N random variables have a common joint

3 Various concepts of symmetry for multivariate random variables are available, for example,
exchangibility and radial symmetry. We refer to Nelsen (2006).
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distribution:
´

rX1, . . . , rXi, . . . , rXN

¯

where rXi “ pXi ´ aiq or pai ´Xiq for i “ 1, ..., N. For N “ 2, for example, pX1, X2q

is jointly symmetric random variables about pa1, a2q if pX1 ´ a1, X2 ´ a2q ,

pa1 ´X1, X2 ´ a2q , pX1 ´ a1, a2 ´X2q , and pa1 ´X1, a2 ´X2q have a common joint

distribution.

For example, if N random variables tXiu
N
i“1 follow the Normal distribution with

a mean vector µ and an identity covariance matrix, then tXiu
N
i“1 is jointly symmetric

about µ. If those random variables are continuous, there exists a unique copula by

Sklar’s theorem, so we naturally think about a copula for those jointly symmetric

random variables. We first define the jointly symmetric copula, and examine the rela-

tionship between jointly symmetric random variables and jointly symmetric copulas

in Theorem 1.

Definition 3 (Jointly symmetric copula). A N dimension copula C pu1, . . . , uNq is

jointly symmetric if it satisfies

@i, C pu1, . . . , ui, . . . , uNq “ C pu1, . . . , 1, . . . , uNq´C pu1, . . . , 1´ ui, . . . , uNq (1.5)

where ui P r0, 1s . C pu1, . . . , 1, . . . , uNq and C pu1, . . . , 1´ ui, . . . , uNq mean that the

i-th element is 1 and 1´ui, respectively, and other elements are tu1, .., ui´1, ui`1, .., uNu.

Theorem 1 (Multivariate analog of Exercise 2.30 in Nelsen 2006). Let tXiu
N
i“1

be N continuous random variables with joint distribution F, marginal distributions

F1, .., FN and copula C. Further suppose each of tXiu
N
i“1 is symmetric about each of

taiu
N
i“1 , respectively. Then,

(i) tXiu
N
i“1 is jointly symmetric about taiu

N
i“1 if and only if C satisfies equation

(1.5)
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(ii) If tXiu
N
i“1 is jointly symmetric about taiu

N
i“1 , then the correlation of any pair

pXi, Xjq is zero for i ‰ j.

The proof is presented in Appendix A.1. The first result of Theorem 1 states

that a jointly symmetric copula satisfying equation (1.5) is the copula for jointly

symmetric random variables when marginal distributions are symmetric. The second

result implies zero correlations of any pair of jointly symmetric random variables.

While numerous copulas have been proposed to explain various features of depen-

dences in the literature, only a few copulas comply with equation (1.5), for example,

the Gaussian and t copulas with the identity correlation matrix. With this limited

choice of copulas, we could not fully account for characteristics of nonlinear depen-

dence. Thus, we suggest a novel way to construct jointly symmetric copulas by

rotating any given copula.

Theorem 2. Assume that N dimension copula C with density c is given.

(i) For any given N dimension copula C, the following copula CJS is jointly

symmetric, i.e. satisfying equation (1.5)

CJS
pu1, . . . , uNq “

1

2N

«

3
ÿ

j1“1

¨ ¨ ¨

3
ÿ

jN“1

p´1qJ ¨C pru1, . . . , rui, . . . , ruNq

ff

(1.6)

where J “
řN
i“1 1 tji “ 2u and rui “

$

&

%

ui for ji “ 1
1´ ui for ji “ 2

1 for ji “ 3

(ii) The probability density function cJS pu1, . . . , uNq of CJS pu1, . . . , uNq is

cJS pu1, . . . , uNq “
B

Bu1 ¨ ¨ ¨ BuN
CJS

pu1, . . . , uNq

“
1

2N

«

2
ÿ

j1“1

¨ ¨ ¨

2
ÿ

jN“1

c pru1, . . . , rui, . . . , ruNq

ff

(1.7)

where rui “

"

ui for ji “ 1
1´ ui for ji “ 2
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The proof is presented in Appendix A.1. Theorem 2 proves that the sum of mirror-

image symmetrical rotations about every axis turns out to be jointly symmetric

copula.4 This theorem tells that any given non-jointly symmetric copulas can be

transformed into jointly symmetric ones by simple rotations and beyond Gaussian

or t copulas, any copula can be used for modelling jointly symmetry.

CJS pu1, . . . , uNq in equation (1.6) involves all marginal copulas of the given cop-

ula whereas the density cJS requires only the densities of the given copula rather

than marginal copulas. This makes it easier to visualize how to construct a jointly

symmetric copula in terms of the copula density cJS than CJS.We further move

the space from unit simplex r0, 1sN to RN using copula with standard Normal

marginal distributions. Figure 1.1 shows 90, 180 and 270 degree rotations of Clay-

ton copula density with standard Normal marginal densities, which corresponds to

c p1´ u1, u2q , c p1´ u1, 1´ u2q , and c pu1, 1´ u2q with the same marginal distribu-

tions. Interpreting equation (1.7) in RN , we find that cJS is the copula density of

a equal weighted sum of rotations of a given copula about every axis. Figure 1.2 is

the density of jointly symmetric copula based on Clayton copula with parameter 1

obtained by equal weighted sum of four densities in Figure 1.1.

In addition, we emphasize that zero correlation does not always imply indepen-

dence. Figure 1.3 highlights the difference between various jointly symmetric copula

constructed by equation (1.7) and the independence copula. The copula for un-

correlated variables can be very different from the independence copula, and this

difference means there may exist nonlinear dependence in uncorrelated variables.

4 Note that while this is not the only way to construct jointly symmetric copulas, it requires the
least number of rotations. Figure 1.1 uses 90, 180, 270, and 360 degree rotations to generate a
jointly symmetric copula following (1.7), but combining 30, 60, 90, ..., 300, 330, and 360 degree
rotations produces another jointly symmetric copula although more rotations are needed.
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1.2.2 Forecasting models for multivariate covariance matrix

Research on forecasting model for multivariate covariance matrix with low-frequency

data is pervasive, see Andersen, et al. (2006) for a review, and recently forecasting

models using widely available high frequency data are growing, e.g. Chiriac and

Voev (2011), Noureldin, et al. (2012) among others. There are two major concerns

about forecasting models for multivariate covariance matrix: parsimony and positive

definiteness. Keeping these two concerns in mind, we suggest a new forecasting

model using high frequency data.

We combine the essential ideas of the DCC model by Engle (2002) and the het-

erogeneous autoregressive (HAR) model by Corsi (2009). Following the DCC model,

we use two separate steps for individual variances and covariances in order to have

a computation advantage and parsimony. We use the HAR model that is known to

successfully explain the long-memory behavior of volatility in a simple AR type way.

Let ∆ be the sampling frequency (e.g., 5 minutes), which yields 1{∆ observations

per trade day. The N ˆ N realized covariance matrix for the interval rt´ 1, ts is

defined by

RV arCov∆
t “

1{∆
ÿ

j“1

rt´1`j¨∆r1t´1`j¨∆ (1.8)

and is re-written in realized variances and realized correlations by

RV arCov∆
t “

b

RV ar∆
t ¨RCorr

∆
t ¨

b

RV ar∆
t (1.9)

where RV ar∆
t “ diag

“

RV arCov∆
t

‰

and RCorr∆
t,ij “

"

RV arCov∆
t,ij?

RV arCov∆
t,ii

?
RV arCov∆

t,jj

*

ij

.
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We firstly apply the HAR model to each realized variance by

logRV ar∆
ii,t “ φ

pconstq
i ` φ

pdayq
i logRV ar∆

ii,t´1 ` φ
pweekq
i

1

4

5
ÿ

k“2

logRV ar∆
ii,t´k (1.10)

` φ
pmonthq
i

1

15

20
ÿ

k“6

logRV ar∆
ii,t´k ` ξit

and those coefficients
!

φ
pconstq
i , φ

pdayq
i , φ

pweekq
i , φ

pmonthq
i

)N

i“1
are estimated by OLS for

each i variable.

Note that we use logarithm of realized variance rather than realized variance

itself for two reasons. First, this model is for forecasts of variance, so positiveness of

forecasts should be guaranteed and we can easily achieve positiveness by transforming

into logarithms. Second, estimation by OLS can be largely affected by outliers, i.e.

some large values of realized variances, and our sample period includes 2008 financial

crisis resulting in substantial changes in variance. Log-transforming plays a role in

dampening down large changes and reduces the impact of outliers in OLS estimation.

Similarly, we model realized correlations using the vech operator5

vech
`

RCorr∆
t

˘

“ CONST ` A ¨ vech
`

RCorr∆
t´1

˘

`B ¨
1

4

5
ÿ

k“2

vech
`

RCorr∆
t´k

˘

` C ¨
1

15

20
ÿ

k“6

vech
`

RCorr∆
t´k

˘

` ξt

where vech
`

RCorr∆
t

˘

and CONST are NpN´1q
2

ˆ 1 vector and A, B, and C are

NpN´1q
2

ˆ
NpN´1q

2
matrix. However, the number of parameters to estimate grows at

the rate of O pN2q which is infeasible to estimate when N is large. We may consider

some restrictions as the DCC model does, substituting A, B, and C with constant

scalar a, b, and c. Then, the number of parameters to estimate is significantly

5 The vech operator vertically stacks the upper triangular elements excluding diagonal elements.
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reduced to NpN´1q
2

` 3 from NpN´1q
2

` 3
´

NpN´1q
2

¯2

. When N is large, constant terms

are still many to estimate, so we lean on the idea of “variance targeting” by Engle

and Mezrich (1996):

vech
`

RCorr∆
t

˘

“ p1´ a´ b´ cqE
“

vech
`

RCorr∆
t

˘‰

` a ¨ vech
`

RCorr∆
t´1

˘

(1.11)

` b ¨
1

4

5
ÿ

k“2

vech
`

RCorr∆
t´k

˘

` c ¨
1

15

20
ÿ

k“6

vech
`

RCorr∆
t´k

˘

` ξt

Substituting E
“

vech
`

RCorr∆
t

˘‰

with its sample mean, we can rewrite the equation

using demeaned RCorr∆
t :

vech
´

ČRCorr∆
t

¯

“ a ¨ vech
´

ČRCorr∆
t

¯

` b ¨
1

4

5
ÿ

k“2

vech
´

ČRCorr∆
t´k

¯

` c ¨
1

15

20
ÿ

k“6

vech
´

ČRCorr∆
t´k

¯

` ξt

where ČRCorr∆
t “ RCorr∆

t ´
1
T

řT
t“1RCorr

∆
t . Now, the coefficients a, b, and c are

easily estimated by OLS and constant terms are recovered back by estimates of a, b,

and c and sample mean of realized correlation.

In order to ensure positive definite forecasts for RV arCov∆
t , some conditions

given in the following Theorem 3 are necessary.

Theorem 3. Assume the following three conditions

1. Pr rx1rt “ 0s “ 0 for any nonzero x P RN , i.e. rt does not have redundant

assets.

2. a, b, and c ě 0

3. a` b` c ă 1
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Then, E
“

RV arCov∆
t |Ft´1

‰

is positive definite. In addition, if E
“

RCorr∆
t

‰

is

estimated by 1
T

řT
t“1RCorr

∆
t and T ě N, then the sample counterpart to

E
“

RV arCov∆
t |Ft´1

‰

is positive definite.

The proof is given in Appendix A.1. Our forecasting model for realized variance-

covariance matrix is simple and fast to estimate and positive definiteness of forecasts

is ensured by Theorem 3. We note that the above theorem is robust to the misspec-

ification of return distributions, i.e. Theorem 3 holds regardless of whether or not

return distribution follows the proposed model specified by equation (1.1), (1.2), and

(1.3).

1.3 Estimation methods and model comparisons

1.3.1 Estimation using composite likelihood estimation

The proposed method to construct jointly symmetric copulas in equation (1.7) re-

quires 2N calculations of the given original copula density. Even for moderate dimen-

sions, say N “ 20, the likelihood evaluation could be too cumbersome to calculate,

as shown in the first row of Table 1.1. For high dimensions, the ordinary maximum

likelihood estimation is not feasible for the jointly symmetric copulas and we suggest

an alternative that can overcome this computation issue. We construct the compos-

ite likelihood rather than the usual full likelihood, and estimate the parameters of

jointly symmetric copulas by maximizing the composite likelihood.

The composite likelihood (CL) (Lindsay, 1988) consists of combinations of the

valid likelihoods of submodels or marginal models under the assumption that those

submodels are independent. See Varin (2008) and Varin, et al. (2011) for overview.

The essential intuition behind CL is that since submodels include partial information

of full dependence governed by parameters of full likelihood, by properly using that

partial information, we can estimate parameters of full likelihood, although with
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some inevitable efficiency loss.

CL can be defined in various ways, but we consider CL with all pairs, adjacent

pairs6 and the first pair of bivariate marginal copula likelihoods of N -dim copula

c pu1, . . . , uN ;ϕ0q

CLall pu1, . . . , uNq “
N´1
ź

i“1

N
ź

j“i`1

ci,j pui, uj;ϕq (1.12)

CLadj pu1, . . . , uNq “
N´1
ź

i“1

ci,i`1 pui, ui`1;ϕq (1.13)

CLfirst pu1, . . . , uNq “ c1,2 pu1, u2;ϕq (1.14)

where cij p¨, ¨q is a bivariate marginal copula of N -dim copula. While there are

many different ways to construct composite likelihoods, those all have some common

features. First of all, they are valid likelihoods since the likelihood of the submodels

or marginal models are involved. Second, the independence assumption for those

submodels causes misspecification and information matrix equality does not hold.

Third, the computation of the composite likelihood is substantially faster than that

of full likelihood. The computation burden, for example, is reduced from O
`

2N
˘

to

O pNq when we use adjacent pairs, and O pN2q when using all pairs, evaluating the

density of the jointly symmetric copula constructed by equation (1.7).

Under mild regularity conditions (see Newey and McFadden, 1994 or White,

1994), Cox and Reid (2004) derives the asymptotic behavior of MCLE. For illustra-

tion purposes, only CL with adjacent pairs is described in Theorem 4 below, although

other CLs could be used.

Theorem 4 (Cox and Reid, 2004). Assume ut is iid over t and N is a fixed number.

6 For a given (arbitrary) order of the variables, the “adjacent pairs” CL uses pairs pui,t, ui`1,tq for
i “ 1, . . . , N ´ 1.
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Consider MCLE defined as

ϕ̂MCLE “ arg max
T
ÿ

t“1

N´1
ÿ

i“1

log ci,i`1 pui,t, ui`1,t;ϕq (1.15)

Under mild regularity conditions, ϕ̂MCLE
p
Ñϕ0 and

?
T pϕ̂MCLE´ϕ0q

d
ÑN

`

0,H pϕ0q
´1 J pϕ0qH pϕ0q

´1
˘

where H pϕ0q “ ´Eϕ0

”

B

BϕBϕ1

řN´1
i“1 log ci,i`1 p¨;ϕq

ı

and

J pϕ0q “ V arϕ0

”

B

Bϕ

řN´1
i“1 log ci,i`1 p¨;ϕq

ı

We refer to Cox and Reid (2004) for the proof. The consistency and asymptotic

normality of ϕ̂MCLE is easily obtained because of the unbiasedness of the score func-

tion of CL, which is a linear combination of valid score functions associated with the

marginal copula densities forming the composite likelihood:

Eϕ0

«

B

Bϕ

N´1
ÿ

i“1

log ci,i`1 p¨;ϕq

ff

“ 0

The asymptotic variance of MCLE is a sandwich form and less efficient than MLE

by missepcification caused by the independence assumption.

We also note that to identify the parameters, the components of composite like-

lihoods must be rich enough to include parameters of full likelihood. Suppose that

the composite likelihood uses only the first pair like equation (1.14), but ϕ does not

affect the dependence between the first pair. With this CL, ϕ would not be identified,

and one would need to look for a richer set of submodels to identify the parameters,

for example, using more pairs, as in equation (1.12) and (1.13) or higher dimension

submodels, e.g. trivariate marginal copulas. Throughout the paper, single parameter

copulas where only one parameter determines dependence of any pairs are used as
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baseline copulas for jointly symmetric copulas. In such cases, we have identification

from just a single pair of variables, although it leads to an inefficient estimator. Thus

we use CL with all pairs or adjacent pairs as well to address issues on inefficiency.

1.3.2 Model selection tests with composite likelihood

In this section, we consider in-sample and out-of-sample model selection tests when

composite likelihood is involved. Tests we discuss here are specialized for our empir-

ical analysis in Section 1.5, so we only consider the case where composite likelihoods

with adjacent pairs are used. We first define the composite Kullback-Leibler infor-

mation criterion (cKLIC) following Varin and Vidoni (2005).

Definition 4. Given a N-dimension random variable Z “pZ1, ..., ZNq with true den-

sity g pzq , the composite Kullback-Leibler information criterion (cKLIC) of a density

h pzq relative to g pzq is

Ic pg, hq “ Egpzq

»

—

—

–

log

N´1
ś

i“1

gi pzi, zi`1q

N´1
ś

i“1

hi pzi, zi`1q

fi

ffi

ffi

fl

where
N´1
ś

i“1

gi pzi, zi`1q and
N´1
ś

i“1

hi pzi, zi`1q are composite likelihood using adjacent

pairs corresponding to true density g pzq and a density h pzq , respectively.

While we focus on CL using adjacent pairs, other composite likelihood such as

CL using all pairs can be defined similarly above. We note that the expectation

is with respect to the true density g pzq rather than the CL of true density, which

makes it possible to interpret cKLIC as a linear combination of the ordinary KLIC
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of submodels consisting of CL function:

Ic pg, hq “ Egpzq

»

—

—

–

log

N´1
ś

i“1

gi pzi, zi`1q

N´1
ś

i“1

hi pzi, zi`1q

fi

ffi

ffi

fl

“

N´1
ÿ

i“1

Egpzq

„

log
gi pzi, zi`1q

hi pzi, zi`1q



“

N´1
ÿ

i“1

Egipzi,zi`1q

„

log
gi pzi, zi`1q

hi pzi, zi`1q



(1.16)

The last equation holds since submodels or marginal distributions of the true den-

sity g pzq are known given the true density g pzq . Since cKLIC can be viewed as a

linear combination of the ordinary KLIC of submodels, we may use in-sample model

selection tests by Vuong (1989) for iid data and Rivers and Vuong (2002) for time

series data. To the best of our knowledge, combining cKLIC with Vuong (1989) or

Rivers and Vuong (2002) tests is new to the literature.

Let hA and hB be two models to be compared. Then the null hypothesis is

H0 : Egpzq
“

CLAt pθ
˚
Aq ´ CL

B
t pθ

˚
Bq
‰

“ 0 (1.17)

vs. H1 : Egpzq
“

CLAt pθ
˚
Aq ´ CL

B
t pθ

˚
Bq
‰

ą 0

H2 : Egpzq
“

CLAt pθ
˚
Aq ´ CL

B
t pθ

˚
Bq
‰

ă 0

where CLjt
`

θ˚j
˘

”
řN´1
i“1 log hji,i`1

`

zi,t, zi`1,t; θ
˚
j

˘

for j “ A,B. It can be shown that a

simple t-statistic on the difference between the sample averages of the log-composite

likelihood has the standard Normal distribution under the null hypothesis:

?
T
!

CL
A

T

´

θ̂A

¯

´ CL
B

T

´

θ̂B

¯)

σ̂T
Ñ N p0, 1q under H0 (1.18)

where CL
j

T

´

θ̂j

¯

” 1
T

řT
t“1

řN´1
i“1 log hji,i`1

´

zi,t, zi`1,t; θ̂j

¯

, for j “ A,B and σ̂T is

some consistent estimator of V
”?

T
!

CL
A

T

´

θ̂A

¯

´ CL
B

T

´

θ̂B

¯)ı

, such as HAC esti-
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mator such as Newey-West (1987). We note that there might be cases where a test

of the null hypothesis based on the full likelihood could give a different answer to one

based on the composite likelihood. We leave the study of this possibility for future

research.

We may also select the best model in terms of out-of-sample (OOS) forecasting

performance measured by some scoring rules. Gneiting and Raftery (2007) introduce

“proper” scoring rules which satisfy the condition that the true density receives higher

average scores than other densities:

Egpzq rS ph pZt`1qqs ď Egpzq rS pg pZt`1qqs

where S is a scoring rule, g pzq is the true density and h pzq is a competing den-

sity. The “natural” scoring rule is the log density evaluated out-of-sample, i.e.

S ph pZt`1qq “ log h pZt`1q , and it can be shown that this scoring rule is proper.

This proper scoring rule is closely related to the KLIC in that equal average scores

of two competing models are equivalent to the equal KLICs of those. Since the KLIC

measures how close the density forecasts to the true density, the proper scoring rule

can be used as a metric to determine which model is more close to the true density.

We may consider a similar scoring rule based on log composite density:

S ph pZt`1qq “

N´1
ÿ

i“1

log hi pZi,t`1, Zi`1,t`1q (1.19)

and it can be shown to be proper by the following theorem.

Theorem 5. Consider the composite likelihood with adjacent pairs. The scoring rule

based on log composite density given in equation (1.19) is proper, i.e.

Egpzq

«

N´1
ÿ

i“1

log hi pZi,t`1, Zi`1,t`1q

ff

ď Egpzq

«

N´1
ÿ

i“1

log gi pZi,t`1, Zi`1,t`1q

ff
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where the expectation is with respect to the true density g pzq, and gi and hi are the

composite likelihoods of the true density and the competing density, respectively.

The proof is in Appendix A.1. This theorem allows us to interpret that OOS tests

based on CL is related to cKLIC just as OOS tests based on full likelihood to KLIC.

We may compare values of log CL evaluated at OOS and test the null hypothesis of

equal forecasting performance evaluated by log CL:

H0 : Egpzq
“

CLAt pθ
˚
Aq ´ CL

B
t pθ

˚
Bq
‰

“ 0

Our empirical analysis in Section 1.5 employs Giacomini and White (2006) test that

incorporates estimation error in the null hypothesis, which punishes a “good” model

that is estimated poorly.

H0 : Egpzq

”

CLAt

´

θ̂˚A,t

¯

´ CLBt

´

θ̂˚B,t

¯ı

“ 0

We refer to Patton (2012) for general treatments of OOS model selection tests and

comparisons under the set-up of Giacomini and White (2006).

1.3.3 Multistage modelling and estimation

In this section, the multistage models for high dimension distributions of returns

rt with concrete models for Ht and copulas are considered. Conditional mean and

conditional variance-covariance matrix in equation (1.1) are assumed to be modeled

using some parametric specification

µt ” µ pYt´1; θmeanq , Yt´1 P Ft´1

Ht ” H pYt´1; θvarq

This assumption allows for a variety of models for conditional mean, for example,

ARMA, VAR, linear and nonlinear regression, and for conditional variance-covariance

matrix, for example, the multivariate GARCH-type models such as DCC, BEKK, and
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DECO, see Andersen, et. al (2006) for a comprehensive review, and the multivariate

stochastic volatility models, see Shephard (2005) for a review, as well as the new

model proposed in Section 1.2.2.

The standardized uncorrelated residuals in equation (1.1) are defined as

et ” H pYt´1; θvarq´1{2
prt ´ µ pYt´1; θmeanqq

such that E ret|Ft´1s “ 0 and E rete
1
t|Ft´1s “ I, and those are assumed to follow a

parametric distribution:

et|Ft´1 „ iid F p¨q “ C
`

F1 p¨; θ
mar
1 q , ..., FN p¨; θ

mar
N q ; θcopula

˘

where marginal distributions Fi are symmetric about zero and the copula C is jointly

symmetric about zero, which together ensures zero correlations of et. For zero mean

and unit variance of eit, marginal distributions Fi should be standardized.

The parametric specification of µt,Ht, Fi and a copula C enables the use of

maximum likelihood (ML) estimation:

θ̂ “ arg max
θ

logLT pθq

where logLT pθq “
T
ÿ

t“1

log lt prt|Ft´1; θq

log lt prt|Ft´1; θq “
N
ÿ

i“1

log fit peit pθ
mean, θvarq ; θmari q

` log c pF1t pe1t pθ
mean, θvarq ; θmar1 q , .., FNt peNt pθ

mean, θvarq ; θmarN q ; θcopq

However, when N is large, this one-stage joint estimation is not feasible, and multi-

stage ML estimation could be an alternative.

To save space and focus on the conditional variance and residuals, θmean is as-

sumed to be known. (For example, a common approach is to assume daily returns

have a zero mean.) Since equation (1.9), (1.10), and (1.11) are used for the specifica-

tion of conditional variance Ht when high frequency data is available and the DCC
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model is used for daily data (see Appendix A.2 for details about the DCC model),

conditional univariate variances and conditional correlations can be separately mod-

eled. θvar can be written as rθvar1 , . . . , θvarN , θcorrs where θvari denotes parameters in

equation (1.10) or (A.5) and θcorr denotes parameters in (1.11) or (A.8). The pa-

rameters to estimate are gathered in θ :

θ ”
“

θ1var1 . . . θ1varN θ1corr θ1mar1 . . . θ1marN θ1cop
‰1

To allow for estimation in separate stages, those parameters are assumed to appear

only in their own stages.

The specific multistage estimation is as follows. The first stage is for individual

variances of rt, and θvari is estimated using demeaned tritu
T
t“1 for each i = 1,...,N.

The second stage is for correlations of rt, and θcorr is estimated using demeaned

and de-volatilized trtu
T
t“1. The third stage is for marginal distributions of estimated

standardized uncorrelated residuals êt ” H
´

Yt´1; θ̂var
¯´1{2

prt ´ µtq , and θmari is es-

timated using têitu
T
t“1 for each i = 1,...,N. The last stage is for copula estimation using

so called “probability integral transforms” of êt, i.e.
!”

F1

´

ê1t; θ̂
mar
1

¯

, . . . , FN

´

êNt; θ̂
mar
N

¯ı)T

t“1
. The estimates of previous stages are sub-

stituted in likelihood functions of next stage and the likelihood function of each stage
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is denoted by lstaget :

θ̂vari ” arg max
θvari

T
ÿ

t“1

log lvarit pθvari q , i “ 1, . . . , N

θ̂corr ” arg max
θcorr

T
ÿ

t“1

log lcorrt

´

θ̂var1 , . . . , θ̂varN , θcorr
¯

θ̂mari ” arg max
θmari

T
ÿ

t“1

log lmarit

´

θ̂var1 , . . . , θ̂varN , θ̂corr, θmari

¯

, i “ 1, . . . , N

θ̂cop ” arg max
θcop

T
ÿ

t“1

log lcopt

´

θ̂var1 , . . . , θ̂varN , θ̂corr, θ̂mar1 , . . . , θ̂marN , θcop
¯

If composite likelihood is used for the last stage as we discussed in Section 1.3.1,

then lcopt is composite likelihood rather than full likelihood, but nothing else changes.

The estimation errors of previous stages do not affect consistency of estimators of

next stages since the consistency of the previous stages guarantees the consistency

of the next stage estimators if the likelihood function of the next stage is smooth

enough around true parameters. However, the estimation errors of previous stages

are accumulated and affect the asymptotic variance of multistage ML estimators and

the following theorem with Appendix A.3 explicitly show how multistage estimations

influence asymptotic variance.

Theorem 6. Assume that conditions of Theorem 6.1 of Newey-McFadden (1994)

are all satisfied, and that θ̂MSML ”

”

θ̂1var1 , . . . , θ̂1varN , θ̂1corr, θ̂1mar1 , . . . , θ̂1marN , θ̂1cop
ı1

is

consistent. Then

?
T
´

θ̂MSML´θ
˚
¯

d
Ñ N p0, V ˚MSMLq as T Ñ 8
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and V̂MSML
p
Ñ V ˚MSML where V̂MSML “ Â´1

T B̂T

´

Â´1
T

¯1

:

B̂T “
1

T

T
ÿ

t“1

ŝtŝ
1
t

where ŝt ”
“

ŝ1var1 . . . ŝ1varN ŝ1corr ŝ1mar1 . . . ŝ1marN ŝ1copula
‰1

ŝ1vari “
B

Bθvari

log lvarit

´

θ̂vari

¯

, i “ 1, 2, . . . , N

ŝ1corr “
B

Bθcorr
log lcorrt

´

θ̂var1 , . . . , θ̂varN , θ̂corr
¯

ŝ1mari “
B

Bθmari

log lmarit

´

θ̂var1 , . . . , θ̂varN , θ̂corr, θ̂mari

¯

, i “ 1, 2, . . . , N

ŝ1copula “
B

Bθcop
log lcopt

´

θ̂var1 , . . . , θ̂varN , θ̂corr, θ̂mar1 , . . . , θ̂marN , θ̂cop
¯

and

ÂT “
1

T

T
ÿ

t“1

P̂t

see Appendix A.3 for the specific form of P̂t.

Since multistage ML estimation can be viewed as multistage GMM estimation,

we refer to Section 6.1 of Newey and McFadden (1994) for detailed discussion and

proofs. For inference, V̂MSML is necessary but calculation is not feasible for high

dimensions even if the analytical form is known as in Theorem 6. For example, the

proposed model used in Section 1.5 for empirical analysis has more than 5000 param-

eters to estimate, and V̂MSML is larger than a 5000ˆ5000 matrix. An alternative is a

bootstrap inference method, see Gonçalves, et al. (2013) for conditions under which

block bootstrap may be used to obtain valid standard errors for multistage GMM es-

timators. Although that bootstrap is not expected to have an asymptotic refinement

relative to the standard approach, it allows us to avoid having to compute a large
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Hessian matrix. The steps are following: (i) generate bootstrap sample of length T

using block bootstrap such as stationary bootstrap, see Politis and Romano (1994)

or other methods which can preserve time-series structure, and estimate parameters

θ with bootstrap samples. Repeat S times (e.g. S “ 500) and use the quantiles

of
!

θ̂i

)S

i“1
as critical values or use α{2 and p1´ α{2q quantiles of

!

θ̂i

)S

i“1
to obtain

p1´ αq confidence intervals for parameters.

1.4 Simulation study

In Section 1.4.1, we study finite sample properties of maximum composite likeli-

hood estimators (MCLEs) defined in equation (1.15) for jointly symmetric copula

constructed by equation (1.7) through an extensive Monte Carlo simulations for up

to one hundred dimensions. In Section 1.4.2, we illustrate the theoretical results of

Section 1.3.3 on multistage estimation through simulations with realistic settings.

1.4.1 Finite sample properties of MCLE for jointly symmetric copulas

In this section, we mainly focus on examining the following. First, how big or small

is the efficiency loss of MCLE compared to MLE. Second, which one is best to

use among three different MCLE constructed in equation (1.12), (1.13) and (1.14)

according to accuracy and computation time. Third, how useful is the cross-sectional

information for copula estimations as dimension increases.

The data generating process is as follows. A vector ru1, u2, .., uN s is generated

from N dimension copula. To make those data jointly symmetric, choose ui or 1´ui

with 1/2 probability for each i = 1,..., N

rũ1, ũ2, .., ũN s , where ũi “

"

ui
1´ ui

with prob 1/2
with prob 1/2

(1.20)

After repeating T times, T by N data is simulated from jointly symmetric copulas.
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We consider two jointly symmetric copulas based on Clayton and Gumbel copulas

and time series length T “ 1000 with dimension N “ 2, 3, 5, 10, 20, ..., 100. Four

different estimation methods are applied to the simulated data: MLE, MCLE with

all pairs in equation (1.12), MCLE with adjacent pairs in equation (1.13), and MCLE

with the first pair in equation (1.14). We repeat these simulations and estimations

five hundred times and report bias and standard deviations of those five hundred

estimates with computation times in Table 1.2. While MLE is not feasible for N ě 20

due to huge computation burdens, the other MCLEs are feasible and very fast even

for N “ 100, see the last four columns of Table 1.2.

The average biases for all dimensions and for all estimation methods are small

relative to the standard deviations except for MCLE with the first pair. The standard

deviations play a role in a measure of estimator accuracy and those show that for the

low dimension pN ď 10q , not surprisingly, MLE has smaller standard deviations than

three MCLEs and the relative efficiency of MCLE with all pairs to MLE is 1.05 to

1.37, which is moderate. Among three MCLEs, MCLE with all pairs has the smallest

standard deviations whereas MCLE with the first pair has the largest, as expected.

Comparing MCLE with adjacent pairs to MCLE with all pairs, we find that loss in

efficiency is 23% for N “ 10, and 5% for N “ 100, and computation speed is two

times faster for N “ 10 and 70 times faster for N “ 100. For high dimensions, it is

confirmed that MCLE with adjacent pairs performs quite well compared to MCLE

with all pairs according to accuracy and computation time, which is similar to results

in Engle, et al. (2008) supporting MCLE with adjacent pairs in the DCC model.

Figure 1.4 indicates biases and standard deviations of four estimations as the

dimension N increases. Biases of MCLE with all and adjacent pairs are very similar

and standard deviations of those two MCLEs quickly decrease and the difference of

those gets smaller as N increases. Compared to the standard deviation of MCLE

with the first pair staying flat, the other two MCLEs exploits efficiency gains from
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cross sectional information, which is intuitive because dependence of any pairs is

informative for estimating copula parameters.

In sum, MCLE is less efficient but feasible and very fast for high dimensions, and

MCLE gets significant efficiency gains as N increases. While the accuracy of MCLE

with adjacent pairs is almost similar to that of MCLE with all pairs, especially for

high dimensions, the increase in computation is quite large. For this reason, we use

MCLE with adjacent pairs for our empirical analysis in Section 1.5.

1.4.2 Finite sample properties of multistage estimation

In this section, we study the multistage estimation for the proposed model with

simulated data from the following set up:

rt “ H
1{2
t et (1.21)

Ht ” Cov rrt|Ft´1s

et|Ft´1 „ iid F p¨q “ C pF1 p¨; ν1q , ..., FN p¨; νNq ;ϕq

where the mean part is assumed zero, the variance-covariance part Ht follows the

DCC model with GARCH(1,1), see Appendix A.2 with ζi “ 0, Fi is standardized

Student’s t distribution with νi “ 6 and C is a jointly symmetric copula constructed

by equation (1.6) with Clayton copula with ϕ “ 1. For realistic set up, we use

some estimated parameter values from the results of empirical analysis in Section

1.5. The parameters of equation (A.6) and (A.7) for GARCH and DCC models are

set as rψi, κi, λis “ r0.05, 0.1, 0.85s and rα, βs “ r0.02 0.95s , and Q is set to be the

unconditional correlations of 100 stock returns that used in the next section. We

first simulate data from the jointly symmetric copula following the way described in

the previous section, and then using inverse standardized Student’s t distribution,

transform those data into uncorrelated et. Then we recursively update DCC model by

equation (A.7) and (A.8) to generate correlation matrix, and apply GARCH effects
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by equation (A.6). Then, the simulated et can be easily transformed to rt whose

conditional covariance matrix is following the DCC model.

We follow the multistage estimation described in Section 1.3.3. The parameters

of GARCH for each variables are estimated via QML at the first stage, and the

parameters of the DCC model are estimated via variance targeting and composite

likelihood with adjacent pairs, see Engle, et al. (2008) for details. From those two

stages, the estimated standardized uncorrelated residuals êt are obtained, and those

are used to estimate marginal distributions. At the last stage, the copula parameters

are estimated by MCLE with adjacent pairs explained in Section 1.3.1. We repeat

this scenario 500 times with time series of length T “ 1000 and cross sectional

dimension N “ 10, 50, and 100. Table 1.4 reports all parameter estimates except Q.

The columns for ψi, κi, λi and νi report the summary statistics obtained from 500ˆN

estimates since those parameters set to the same numbers across cross sections.

Table 1.4 reveals that the estimated parameters are centered on the true values

with the average estimated bias being small relative to the standard deviation. As

the dimension size increases, the copula model parameters are more accurately esti-

mated, which is also found in the previous section. Since this copula model keeps the

dependence between any two variables identical, the amount of information on the

unknown copula parameter increases as the dimension grows. The average computa-

tion time is reported in the bottom row of each panel, and it indicates that multistage

estimation is quite fast, for example, it takes five minutes for one hundred dimension

model in which the number of parameters to estimate is more than 5000.

To see the impact of estimation errors from the former stages to copula estima-

tion, we compare the standard deviations of copula estimations in Table 1.4 to the

corresponding results in Table 1.2. The standard deviation increases by about 30%

for N “ 10, and by about 19% for N “ 50 and 100. This loss of accuracy caused by

having to estimate parameters of the marginals is considerably small given that more
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than 5000 parameters are estimated in the former stages. We conclude that multi-

stage estimations with composite likelihoods result in a large gain in computation

and a small loss in estimation error and efficiency.

1.5 Empirical analysis of S&P 100 equity returns

In this section, the proposed multivariate distribution model is applied to equity re-

turns of constituents of S&P 100. The sample period is January 2006 until December

2012, a total of T “ 1761 trade days. All companies listed at least once on S&P100

over the sample period are considered, but only 104 are selected after excluding com-

panies that were not traded during the whole sample period. The stocks are listed

in Table 1.5 with their 3-digit SIC codes. We obtain high frequency transaction data

from NYSE’s TAQ database, clean it following Barndorff-Nielsen, et al. (2009), see

Li (2013) for details, and adjust prices affected by splits and dividends using “ad-

justment” factors from CRSP. Daily returns are calculated by log-difference of the

close prices from high frequency data. For high frequency returns, log-differences of

five minute prices are used and overnight returns are treated as the first return in a

day.

Table 1.6 presents the summary statistics of the data and the estimates of con-

ditional mean model. The top panel presents unconditional sample moments of the

daily returns for each stock. Those numbers broadly match values reported in other

studies, for example, strong evidence for thick tails. In the middle panel, the formal

tests for zero skewness and zero excess kurtosis are conducted. The tests show that

only 3 stocks out of 104 have a significant skewness, and all stocks have a significant

excess kurtosis. The lower panel shows the estimates of the parameters of AR(1)

models. Constant terms are estimated around zero and the estimates of AR(1) co-

efficient are slightly negative, both are consistent with values in other studies.

We estimate two different models for conditional variance-covariance matrix Ht,
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HAR-type model described in Section 1.2.2 and the DCC model in Appendix A.2.

While the latter is estimated with (low frequency) demeaned daily returns, the former

is estimated with (high frequency) 5-min returns. Table 1.7 presents the estimates

of two models in Panel A and Panel B, respectively. The estimates of variance

part for HAR-type models in Panel A are similar to those reported in Corsi (2009):

coefficients on day, week, and month being around 1/3 and coefficient on day being

the largest. In the correlations part, however, the coefficient on month is the largest

followed by week and day. The parameter estimates for the DCC model in Panel

B are close to other studies of daily stock returns: indicated volatility clustering,

asymmetric volatility dynamics, and highly persistent time-varying correlations. The

bootstrap standard errors described in Section 1.3.3 are provided in Table 1.7, and

those take into account the estimation errors of former stages.

Two data sets of standardized uncorrelated residuals are constructed7 and sum-

mary statistics are reported in the top panel of Table 1.8:

êt,HAR ” Ĥ
´1{2
t,HAR prt ´ µ̂tq

êt,DCC ” Ĥ
´1{2
t,DCC prt ´ µ̂tq

The next stage is for the marginal distributions for those residuals. Before specifying

marginal distributions, tests for zero skewness and zero excess kurtosis are conducted

and reported in Panel B of Table 1.8. It is found that only 4 (or 6) out of 104 cross

sectional residuals of êt,HAR (or êt,DCCq are rejected at 5% level for zero skewness test,

motivating the use of symmetric marginal distributions. In addition, all of them are

rejected under 5% level for zero excess kurtosis test, which suggests to use marginal

distributions with thick tails. Thus, standardized Student’s t distributions are used

for marginal distributions of the estimated standardized uncorrelated residuals.

The top panel of Table 1.9 presents the cross-sectional quantiles of 104 estimated

7 For square root of matrix, the spectral decomposition rather than Cholesky decomposition is
employed due to its invariance to the order of the variables.
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degrees of freedom parameters of standardized Student’s t distributions, ranging from

4.1 at 5 % quantile to 6.9 at 95% quantile for êt,HAR and from 4.2 at 5% quantile

to 8.3 at 95% for êt,DCC , indicating excess kurtosis of standardized uncorrelated

residuals.

The last stage is the estimation of copula designed to capture nonlinear depen-

dence. Four jointly symmetric copulas based on t, Clayton, Frank, and Gumbel

copulas are used. While jointly symmetric copulas based on Clayton, Frank and

Gumbel are constructed by equation (1.7), the one based on t copula is simply con-

structed by substituting correlation matrix of t copula with identity matrix. To see

whether those models outperform the existing model in the literature, we use two

benchmark models: the independence copula and the multivariate Student’s t dis-

tribution. The independence copula is a special case of jointly symmetric copula,

and there is no parameter to estimate.8 Since the independence copula completely

ignores nonlinear dependence, we can see if there is substantial nonlinear dependence

by comparing those four jointly symmetric copulas with the independence copula.

In addition, to see whether or not the copula approach outperforms a non-copula

approach incapable of separately specifying marginals and dependence, the multi-

variate Student’s t distribution is employed as another benchmark. The bottom

panel of Table 1.9 reports the parameter estimates for jointly symmetric copulas

and the multivariate (standardized) t distribution with bootstrap standard errors in

parenthesis that incorporate accumulated estimation errors from former stages. We

follow steps explained in Section 1.3.3 to obtain bootstrap standard errors and the

average block length for the stationary bootstrap is set to 100.

To see whether nonlinear dependence exists, we propose formal tests for the null

hypothesis that there is no nonlinear dependence. Since those four jointly symmetric

8 The independence copula is a product of its arguments, i.e. C pu1, ...uN q “ u1 ˆ ¨ ¨ ¨ ˆ uN , and
its density is 1.
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copulas and the multivariate t distribution nest the independence copula, the null

hypotheses are: H0 : 1
θJS t “ 0 for jointly symmetric copulas based on t copula,

H0 : θJS Clayton “ 0 for those based on Clayton copula, H0 : θJS Frank “ 0 for

those based on Frank copula, H0 : θJS Gumbel “ 1 for those based on Gumbel, and

H0 : 1
θMV t “ 0 for the multivariate (standardized) t distribution. The t-statistics for

those tests are reported in the bottom panel of Table 1.9. We note, however, that

the parameters are all on the boundary of the parameter space, which requires a

non-standard t test. The asymptotic distribution of the squared t-statistic no longer

has χ2
1 distribution under the null, rather it follows an equal-weighted mixture of a χ2

1

and χ2
0, see Gouriéroux and Monfort (1996, Ch 21). The 90%, 95%, and 99% critical

values for this distribution are 1.28, 1.64, and 2.33 which correspond to t-statistics of

1.64, 1.96, and 2.58. All of those null hypotheses above are rejected at 1% level, and

we conclude that there is substantial nonlinear cross-sectional dependence in daily

returns.

To compare those models, we consider the multivariate log-likelihood of daily

returns that can be decomposed into three parts by change of variables: log absolute

values of determinant of square root of inverse variance-covariance matrix of daily

returns, sum of log likelihoods of marginal distributions for standardized residuals,

and log composite likelihood of a copula for standardized residuals:

rt “ H
1{2
t et

f pr1t, ..., rNtq “
ˇ

ˇ

ˇ
det

´

H
´1{2
t

¯
ˇ

ˇ

ˇ
g pe1t, . . . , eNtq

“

ˇ

ˇ

ˇ
det

´

H
´1{2
t

¯
ˇ

ˇ

ˇ
ˆ g1 pe1tq ˆ ..ˆ gN peNtq ˆ c pG1 pe1tq , .., GN peNtqq

log f pr1t, ..., rNtq “ log
ˇ

ˇ

ˇ
det

´

H
´1{2
t

¯ˇ

ˇ

ˇ
`

N
ÿ

i“1

log gi peitq ` log c pG1 pe1tq , .., GN peNtqq

Table 1.10 reports those three parts of log likelihoods, summing those to obtain the
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entire log likelihoods for daily return distributions. Comparing the values of the en-

tire log likelihoods, we reasonably expect three findings. First, copula methods seem

to outperform the multivariate t distribution that does not explicitly use a copula,

which can be confirmed by comparing jointly symmetric copulas with the multivari-

ate t distribution. Second, by comparing first four jointly symmetric copula models

with the independence copula model, it can be seen that the models where nonlinear

dependence is captured outperform the models that ignore it. Third, high frequency

data seem to help improve model fits better than daily data. To formally verify those

expectations, we next conduct in-sample and out-of-sample model comparison tests.

1.5.1 In-sample model selection

Table 1.11 presents t-statistics from Rivers and Vuong (2002) (pair-wise) model

comparison tests9 introduced in Section 1.3.2 for composite likelihood. A positive

t-statistic indicates that the model above beat the model to the left, and a negative

one indicates the opposite. We first examine the bottom row of the upper panel to

see whether or not copula approaches outperform non-copula ones represented by the

multivariate t distribution. All t-statistics in that row are positive and larger than

15, which strongly supports that copula approaches significantly outperform non-

copula ones. The independence copula as well as the four jointly symmetric copulas

can separately specify 104 marginal distributions and dependence, which allows for

much more flexibility to the model. In contrast, the multivariate t distribution forces

104 marginal distributions and dependence to be bound to each other,10 which results

in the inferiority of it to the models based on copulas. The multivariate t distribution

is widely used as an alternative to Normal distribution not only in the literature but

9 Those tests can be easily extended for the models combining log likelihoods for marginal dis-
tributions and log composite likelihood for copulas by re-defining Kullback-Leibler information
criterion.

10 The multivariate t distribution can be viewed as univariate t distributions coupled by t copula
with a constraint that all degrees of freedom parameters for margins and copula should be identical.
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also in practice due to its thick tails and non-zero tail dependence. It is, however,

seen that the proposed copula-based models significantly beat the multivariate t

distribution. This outperformance is true whether the HAR model using 5-min data

to forecast Ht is used (see the bottom row of upper panel) or the DCC model using

daily data is used (see the right half of the bottom row of lower panel). Next,

to see whether or not nonlinear dependence improves model fits, we compare four

jointly symmetric copula models designed to capture nonlinear dependence with the

independence copula that completely ignores nonlinear dependence. The second

bottom row of the upper panel and the right half of the second bottom row of the

bottom panel are for those comparisons, and t-statistics in those rows are all positive

and significant under 1% level, which implies that capturing non-linear dependence

is quite useful to improve model fits.

Lastly, to see whether forecasts of Ht using high frequency data results in better

model fits than forecasts of Ht using daily data does, the left half of the bottom

panel is explored. All t-statistics are positive and significant at 1% level, and this

implies that any model using high frequency data for forecasting Ht significantly

outperforms models using daily data for forecasting Ht. We note that even the

multivariate t distribution combined with forecasts of Ht using high frequency data

outperforms any models that use daily data for forecasts of Ht, which means that

information of high frequency data substantially improve performance of models.

In this section we verify the following three findings. First, copula methods that

allow one to separately specify marginal distributions and dependence significantly

outperform non-copula methods. Second, nonlinear dependence is so considerable

and important that it plays a critical role in improving model fits. Third, accurately

measuring and forecasting linear dependence through high frequency data consider-

ably increase performance of models.
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1.5.2 Out-of-sample model selection

The previous section revealed that the proposed models significantly beat benchmark

models in in-sample model comparison tests. However, since it is essentially a fore-

casting model for daily return distributions, it has to be investigated whether it has

superior out-of-sample (OOS) forecasting performance. In this section, we consider

a multivariate density forecasting based on out-of-sample log (composite) likelihoods

to compare models.

We use the period from January 2006 to December 2010 pR “ 1259q as the in-

sample period, and January 2011 to December 2012 pP “ 502q as the out-of-sample

period. Giacomini and White (2006) test described in Section 1.3.2 requires rolling

window or fixed window estimation scheme rather than expanding window one. To

incorporate structural changes, we employ a rolling window rather than a fixed win-

dow. We estimate the whole model using the data in the interval rt´R ` 1, ts and

evaluate the model using the data at t ` 1 with those estimates at each time in

out-of-sample period. We iterate 502 times for these estimations and evaluations.

Out-of-sample density forecast comparisons

Table 1.12 presents t-statistics from pair-wise OOS model comparison tests. Similar

to the results from in-sample tests, we discover three finding again. Copula models

are significantly better than the multivariate t distribution, and jointly symmetric

copula models significantly outperform the independence copula model. Also models

using information of high frequency data significantly beat models using information

of daily data.

These results reveal that three major components of the proposed model, sepa-

rately specifying marginal distribution and dependence, capturing nonlinear depen-

dence and exploiting information of high frequency data lead to improved forecasting

performance.
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Out-of-sample portfolio decision making

To investigate a economic gain of the proposed model, we consider asset allocation

problems in an out-of-sample setting proposed by Patton (2004). The basic idea is

simple: a better forecasting model should lead to a better portfolio decision.

We introduce a hypothetical portfolio of 104 stocks listed in Table 1.5 and assume

that an investor maximizes his expected utility by choosing optimal portfolio weights

on 104 stocks. The utility functions for the investor are the class of CRRA (constant

relative risk averse) utility functions:

U pW q “
"

W 1´ρ

1´ρ
if ρ ‰ 1

log pW q if ρ “ 1

where ρ is a relative risk aversion parameter and W is wealth. Optimal portfolio

weights are determined by maximizing the expected utility under the multivariate

predictive density for rt`1

ω˚t`1 “ arg max
ωPW

Et rU pW0 p1` ω
1rt`1qqs (1.22)

where ω isNˆ1 portfolio weights, W0 is initial wealth andW “

!

ω P r0, 1sN : 11ω ď 1
)

.

For more realistic settings, we only consider an investor with short-sale constraint.

Since the conditional expectation above is taken with respect to conditional dis-

tributions of next period returns rt`1, we may expect a better forecasting model

(conditional distribution) for rt`1 to give better portfolio weights which generate

higher average utilities. By comparing those average utilities, we may pick up better

forecasting models. However, utility is not intuitively interpretable, so we convert

the average utility to a “management fee”, which is a fixed amount that could be

charged (or paid) each period making the investor indifferent between portfolio A
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and portfolio B. The management fee C is the solution to the following equation:

1

P

R`P
ÿ

t“R`1

U
`

1` ω˚1A,t`1rt`1

˘

“
1

P

R`P
ÿ

t“R`1

U
`

1` ω˚1B,t`1rt`1 ´ C
˘

where initial wealth W0 sets to be 1, R is the length of the in-sample period, and P

is the length of the out-of-sample period.

We keep the same R and P as in the previous section, and RRA parameter ρ sets

to be 7. We obtain the conditional expectation in equation (1.22) through Monte

Carlo integrals using simulated data from estimated models in the previous section.

Table 1.13 presents the estimated management fee C in annualized percent be-

tween any two models of twelve competing models. A positive number indicates that

the model above outperforms the model to the left, and a negative one indicates

the opposite. We compare copula models and the multivariate t distribution to see

whether separately specifying marginals and dependence is influential. Portfolio de-

cisions based on the multivariate t distribution yields smaller economic gains than

those from copula based models except one based on Clayton copula. The gains

by changing models from non-copula models to copula models are from 0.48% to

2.42%. Second, we find that models that use high frequency data come up with

higher economic gains than models that do not use high frequency data. The gains

range from 0.4% to 6.3%. This confirms the superiority of models capable of employ-

ing high frequency data to models incapable of using high frequency data. Lastly,

to see how important nonlinear dependence is, we compare copula models with the

independence copula. The copula model based on t copula beats the independence

copula whereas the other copula models do not. This suggests properly capturing

nonlinear dependence generates higher economic gains. Overall, models based on t

copula with high frequency data outperform all other models. As aforementioned,

the model based on t copula substantially differs from the benchmark model, the
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multivariate t distribution in that the latter does not separately specify marginal

distributions and dependence whereas the former does.

In sum, we find the strong evidence of usefulness of high frequency data and

copula approaches and mild evidence of importance of nonlinear dependence under

the portfolio decision problems. Through the realistic portfolio decision problems,

the proposed model proves to have an excellent forecasting capability which in turn

generates large economic gains.

1.6 Conclusion

This paper proposes a new general model for high dimension distributions of daily

asset returns that utilizes high frequency data and copulas. The decomposition of

dependence into linear and nonlinear dependence makes it possible to fully exploit

advantages of high frequency data and copulas. Linear dependence is accurately

measured and forecasted by high frequency data whereas nonlinear dependence can

be captured by a new class of copulas for linearly uncorrelated residuals. By assigning

two different tasks to high frequency data and copulas, this separation significantly

improves the performance of models for joint distributions. In addition, the new

class of copulas for uncorrelated variables is proposed which is a rich set of copu-

las for studying dependence of uncorrelated but dependent variables. Though those

copulas can be easily constructed by simple rotations of any given copulas, those

rotations may cause serious computation burden in high dimensions. We address

computation issues by employing composite likelihoods and multistage estimations.

Via an extensive Monte Carlo study, we show that multistage estimation with com-

posite likelihood results in small loss in efficiency and large gain in computation

speed especially for high dimensions.

We employ our proposed models to study daily return distributions of 104 con-

stituents of the S&P 100 index over the period 2006 to 2012. We confirm the statisti-
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cal superiority through in- and out-of-sample tests, and we find large economic gains

in asset allocation decisions based on the proposed model in an out-of-sample setting.

The excellence of the proposed model can be explained by three keywords: copula

approaches, nonlinear dependence, and high frequency data. The multivariate t or

Normal distribution generally used in the literature is significantly beaten by the

proposed model that utilizes benefits of copulas. Surprisingly, nonlinear dependence

mostly ignored in the literature turns out to have fairly valuable information which

improves the performance of models. Furthermore, linear dependence accurately

measured and forecasted by high frequency data considerably enhances the proposed

model.

1.7 Tables and figures

Table 1.1: Computation time of jointly symmetric copula

N 10 20 50 100

Full likelihood 0.23 sec 4 min 106 years 1017 years
Composite likelihood using all pairs 0.05 sec 0.21 sec 1.52 sec 5.52 sec
Composite likelihood using adj. pairs 0.01 sec 0.02 sec 0.06 sec 0.11 sec

Note: Computation time for one evaluation of the density of jointly symmetric copula
based on Clayton copula.

41



T
ab

le
1.

2:
S
im

u
la

ti
on

re
su

lt
s

fo
r

jo
in

tl
y

sy
m

m
et

ri
c

co
p
u
la

b
as

ed
on

C
la

y
to

n

B
ia

s
S
td

d
ev

A
ve

ra
ge

R
u
n

T
im

e
(i

n
se

c)

N
M
L
E

M
C
L
E

a
ll

M
C
L
E

a
dj

M
C
L
E

f
ir
st

M
L
E

M
C
L
E

a
ll

M
C
L
E

a
dj

M
C
L
E

f
ir
st

M
L
E

M
C
L
E

a
ll

M
C
L
E

a
dj

2
-0

.0
02

7
-0

.0
02

7
-0

.0
02

7
-0

.0
02

7
0.

11
76

0.
11

76
0.

11
76

0.
11

76
0.

15
0.

15
0.

15
3

-0
.0

01
9

-0
.0

02
8

-0
.0

03
1

-0
.0

02
7

0.
07

98
0.

08
39

0.
09

17
0.

11
76

0.
42

0.
50

0.
24

5
-0

.0
01

4
-0

.0
02

2
-0

.0
01

6
-0

.0
02

7
0.

04
97

0.
05

91
0.

07
13

0.
11

76
1.

96
1.

49
0.

43
10

-0
.0

05
1

-0
.0

04
7

-0
.0

03
9

-0
.0

02
7

0.
02

93
0.

04
02

0.
04

95
0.

11
76

11
6

7
1

20
-0

.0
01

8
-0

.0
02

1
-0

.0
02

7
0.

03
65

0.
04

05
0.

11
76

27
2

30
-0

.0
03

6
-0

.0
03

7
-0

.0
02

7
0.

03
36

0.
03

79
0.

11
76

63
3

40
-0

.0
02

8
-0

.0
03

7
-0

.0
02

7
0.

03
11

0.
03

41
0.

11
76

11
7

5
50

-0
.0

01
1

-0
.0

01
4

-0
.0

02
7

0.
02

98
0.

03
29

0.
11

76
19

2
6

60
-0

.0
00

7
-0

.0
00

6
-0

.0
02

7
0.

03
14

0.
03

32
0.

11
76

25
6

7
70

-0
.0

01
3

-0
.0

01
3

-0
.0

02
7

0.
03

06
0.

03
24

0.
11

76
36

4
8

80
-0

.0
03

9
-0

.0
04

1
-0

.0
02

7
0.

03
09

0.
03

32
0.

11
76

47
1

9
90

0.
00

12
0.

00
13

-0
.0

02
7

0.
03

12
0.

03
28

0.
11

76
61

1
11

10
0

-0
.0

00
6

-0
.0

00
3

-0
.0

02
7

0.
02

90
0.

03
05

0.
11

76
74

8
12

N
ot

e:
T

h
is

ta
b
le

p
re

se
n
ts

th
e

re
su

lt
s

fr
om

50
0

si
m

u
la

ti
on

s
of

jo
in

tl
y

sy
m

m
et

ri
c

co
p
u
la

b
as

ed
on

C
la

y
to

n
co

p
u
la

w
it

h
tr

u
e

p
ar

am
et

er
1.

F
ou

r
d
iff

er
en

t
es

ti
m

at
io

n
s

ar
e

u
se

d
:

M
L

E
,

M
C

L
E

w
it

h
al

l
p
ai

rs
,

M
C

L
E

w
it

h
ad

ja
ce

n
t

p
ai

rs
,

M
C

L
E

w
it

h
th

e
fi
rs

t
p
ai

r.
B

ec
au

se
M

L
E

ta
ke

s
to

o
m

u
ch

ti
m

e
fo

r
N
ě

20
,

th
e

re
su

lt
s

fo
r

M
L

E
ar

e
re

p
or

te
d

on
ly

fo
r

lo
w

d
im

en
si

on
p N

ď
10
q

D
im

en
si

on
s

ar
e

fr
om

N
“

2
to
N
“

10
0

an
d

th
e

sa
m

p
le

si
ze

is
T
“

10
00
.

T
h
e

fi
rs

t
fo

u
r

co
lu

m
n
s

re
p

or
t

th
e

av
er

ag
e

d
iff

er
en

ce
b

et
w

ee
n

th
e

es
ti

m
at

ed
p
ar

am
et

er
an

d
it

s
tr

u
e

va
lu

e.
T

h
e

n
ex

t
fo

u
r

co
lu

m
n
s

ar
e

th
e

st
an

d
ar

d
d
ev

ia
ti

on
in

th
e

es
ti

m
at

ed
p
ar

am
et

er
s.

T
h
e

la
st

fo
u
r

co
lu

m
n
s

p
re

se
n
t

av
er

ag
e

ru
n

ti
m

e
of

ea
ch

es
ti

m
at

io
n

m
et

h
o
d
.

42



T
ab

le
1.

3:
S
im

u
la

ti
on

re
su

lt
s

fo
r

jo
in

tl
y

sy
m

m
et

ri
c

co
p
u
la

b
as

ed
on

G
u
m

b
el

B
ia

s
S
td

d
ev

A
ve

ra
ge

R
u
n

T
im

e
(i

n
se

c)

N
M
L
E

M
C
L
E

a
ll

M
C
L
E

a
dj

M
C
L
E

f
ir
st

M
L
E

M
C
L
E

a
ll

M
C
L
E

a
dj

M
C
L
E

f
ir
st

M
L
E

M
C
L
E

a
ll

M
C
L
E

a
dj

2
-0

.0
01

6
-0

.0
01

6
-0

.0
01

6
-0

.0
01

6
0.

07
57

0.
07

57
0.

07
57

0.
07

57
0.

30
0.

13
0.

13
3

-0
.0

02
1

-0
.0

01
8

-0
.0

02
3

-0
.0

01
6

0.
04

84
0.

05
08

0.
05

83
0.

07
57

0.
71

0.
43

0.
29

5
-0

.0
04

1
-0

.0
02

5
-0

.0
02

5
-0

.0
01

6
0.

03
68

0.
04

09
0.

04
70

0.
07

57
3.

52
1.

31
0.

53
10

-0
.0

02
1

-0
.0

02
3

-0
.0

01
6

-0
.0

01
6

0.
02

45
0.

03
28

0.
03

69
0.

07
57

15
3

6
1

20
-0

.0
01

9
-0

.0
02

1
-0

.0
01

6
0.

02
85

0.
03

12
0.

07
57

25
2

30
-0

.0
01

9
-0

.0
02

2
-0

.0
01

6
0.

02
77

0.
02

97
0.

07
57

61
4

40
-0

.0
01

9
-0

.0
02

2
-0

.0
01

6
0.

02
70

0.
02

85
0.

07
57

97
5

50
-0

.0
02

4
-0

.0
02

7
-0

.0
01

6
0.

02
69

0.
02

83
0.

07
57

16
6

7
60

-0
.0

02
1

-0
.0

02
3

-0
.0

01
6

0.
02

67
0.

02
82

0.
07

57
23

6
8

70
-0

.0
02

2
-0

.0
02

4
-0

.0
01

6
0.

02
64

0.
02

76
0.

07
57

32
6

9
80

-0
.0

02
2

-0
.0

02
3

-0
.0

01
6

0.
02

62
0.

02
72

0.
07

57
43

5
11

90
-0

.0
02

1
-0

.0
02

2
-0

.0
01

6
0.

02
62

0.
02

72
0.

07
57

50
9

11
10

0
-0

.0
02

0
-0

.0
02

1
-0

.0
01

6
0.

02
61

0.
02

72
0.

07
57

66
4

13

N
ot

e:
T

h
is

ta
b
le

p
re

se
n
ts

th
e

re
su

lt
s

fr
om

50
0

si
m

u
la

ti
on

s
of

jo
in

tl
y

sy
m

m
et

ri
c

co
p
u
la

b
as

ed
on

G
u
m

b
el

co
p
u
la

w
it

h
tr

u
e

p
ar

am
et

er
2.

F
ou

r
d
iff

er
en

t
es

ti
m

at
io

n
s

ar
e

u
se

d
:

M
L

E
,

M
C

L
E

w
it

h
al

l
p
ai

rs
,

M
C

L
E

w
it

h
ad

ja
ce

n
t

p
ai

rs
,

M
C

L
E

w
it

h
th

e
fi
rs

t
p
ai

r.
B

ec
au

se
M

L
E

ta
ke

s
to

o
m

u
ch

ti
m

e
fo

r
N
ě

20
,

th
e

re
su

lt
s

fo
r

M
L

E
ar

e
re

p
or

te
d

on
ly

fo
r

lo
w

d
im

en
si

on
p N

ď
10
q

D
im

en
si

on
s

ar
e

fr
om

N
“

2
to
N
“

10
0

an
d

th
e

sa
m

p
le

si
ze

is
T
“

10
00
.

T
h
e

fi
rs

t
fo

u
r

co
lu

m
n
s

re
p

or
t

th
e

av
er

ag
e

d
iff

er
en

ce
b

et
w

ee
n

th
e

es
ti

m
at

ed
p
ar

am
et

er
an

d
it

s
tr

u
e

va
lu

e.
T

h
e

n
ex

t
fo

u
r

co
lu

m
n
s

ar
e

th
e

st
an

d
ar

d
d
ev

ia
ti

on
in

th
e

es
ti

m
at

ed
p
ar

am
et

er
s.

T
h
e

la
st

fo
u
r

co
lu

m
n
s

p
re

se
n
t

av
er

ag
e

ru
n

ti
m

e
of

ea
ch

es
ti

m
at

io
n

m
et

h
o
d
.

43



Table 1.4: Simulation results for multistage estimations

Variance Correlation Marginal Copula
Const ARCH GARCH DCC α DCC β t dist JS Clay.

ψi κi λi α β νi ϕ

True 0.05 0.10 0.85 0.02 0.95 6.00 1.00
N “ 10

Bias 0.0123 0.0007 -0.0162 -0.0012 -0.0081 0.1926 -0.0122
Std 0.0442 0.0387 0.0717 0.0060 0.0277 1.1023 0.0650
Med 0.0536 0.0959 0.8448 0.0184 0.9459 5.9837 0.9920
90% 0.1027 0.1478 0.9015 0.0263 0.9631 7.5215 1.0535
10% 0.0271 0.0580 0.7619 0.0119 0.9196 5.0559 0.9165
Diff 0.0756 0.0898 0.1397 0.0144 0.0435 2.4656 0.1370
Time 1 min

N “ 50

Bias 0.0114 0.0012 -0.0149 -0.0018 -0.0051 0.1880 -0.0136
Std 0.0411 0.0412 0.0687 0.0040 0.0111 1.0936 0.0390
Med 0.0529 0.0958 0.8454 0.0179 0.9458 6.0000 0.9880
90% 0.1019 0.1499 0.9025 0.0234 0.9580 7.5223 1.0312
10% 0.0268 0.0567 0.7615 0.0135 0.9313 5.0454 0.9413
Diff 0.0751 0.0931 0.1410 0.0098 0.0267 2.4769 0.0899
Time 2 min

N “ 100

Bias 0.0119 0.0017 -0.0158 -0.0020 -0.0041 0.1813 -0.0133
Std 0.0419 0.0404 0.0691 0.0034 0.0094 1.0748 0.0362
Med 0.0533 0.0966 0.8440 0.0177 0.9467 6.0002 0.9886
90% 0.1025 0.1504 0.9022 0.0223 0.9566 7.4963 1.0244
10% 0.0270 0.0576 0.7607 0.0139 0.9337 5.0492 0.9432
Diff 0.0756 0.0928 0.1415 0.0084 0.0229 2.4471 0.0811
Time 5 min

Note: This table presents the results from 500 simulations of multistage models
described in Section 1.3.3. Sample size is T “ 1000 and cross-sectional dimensions
are N “ 10, 50, and 100. The first row of each panel presents the average difference
between the estimated parameter and its true value. The second row presents the
standard deviation in the estimated parameters. The third, fourth and fifth rows
present the 50th, 90th and 10th percentiles of the distribution of estimated parameters,
and the sixth row presents the difference between the 90th and 10th percentiles. The
final row presents estimation time per each simulation
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Table 1.5: 104 Stocks used in the empirical analysis

Ticker Name Ticker Name Ticker Name

AA Alcoa EMR Emerson Elec NOV National Oil.

AAPL Apple ETR Entergy NSC Norfolk Sou.

ABT Abbott Lab. EXC Exelon NWSA News Corp

AEP American Elec F Ford ORCL Oracle

ALL Allstate Corp FCX Freeport OXY Occidental Pet.

AMGN Amgen Inc. FDX Fedex PEP Pepsi

AMZN Amazon.com GD General Dyna PFE Pfizer

AVP Avon GE General Elec PG P&G

APA Apache GILD Gilead Science QCOM Qualcomm Inc

AXP American Ex GOOG Google Inc RF Regions Fin

BA Boeing GS Gold. Sachs RTN Raytheon

BAC Bank of Am HAL Halliburton S Sprint

BAX Baxter HD Home Depot SBUX Starbucks

BHI Baker Hughes HNZ Heinz SLB Schlumberger

BK Bank of NY HON Honeywell SLE Sara Lee Corp.

BMY Bristol-Myers HPQ HP SO Southern Co.

BRKB Berkshire Hath IBM IBM SPG Simon pro.

C Citi Group INTC Intel T AT&T

CAT Caterpillar JNJ JohnsonJ. TGT Target

CL Colgate JPM JP Morgan TWX Time Warner

CMCSA Comcast KFT Kraft TXN Texas Inst

COF Capital One KO Coca Cola UNH UnitedHealth

COP Conocophillips LLY Lilly Eli UNP Union Pacific

COST Costco LMT Lock’dMartn UPS United Parcel

CPB Campbell LOW Lowe’s USB US Bancorp

CSCO Cisco MCD MaDonald UTX United Tech

CVS CVS MDT Medtronic VZ Verizon

CVX Chevron MET Metlife Inc. WAG Walgreen

DD DuPont MMM 3M WFC Wells Fargo

DELL Dell MO Altria Group WMB Williams Co

DIS Walt Disney MON Monsanto WMT WalMart

DOW Dow Chem MRK Merck WY Weyerhauser

DVN Devon Energy MS Morgan Stan. XOM Exxon

EBAY Ebay MSFT Microsoft XRX Xerox

EMC EMC NKE Nike

Note: This table presents the ticker symbols and names of the 104 stocks used in
Section 1.5.
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Table 1.6: Summary statistics and conditional mean estimates

Panel A: Summary statistics

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Mean 0.0002 -0.0006 0.0001 0.0002 0.0004 0.0006
Std dev 0.0219 0.0120 0.0159 0.0207 0.0257 0.0378
Skewness -0.0693 -0.6594 -0.3167 -0.0318 0.1823 0.5642
Kurtosis 11.8559 6.9198 8.4657 10.4976 13.3951 20.0200
Corr 0.4666 0.3294 0.4005 0.4580 0.5230 0.6335

Panel B: Test for skewness, kurtosis, and correlation

# of rejections
H0 : E rr3

i s “ 0 3 out of 104

H0 :
Err4

i s

Err2
i s

2 “ 3 104 out of 104

H0 : Corr pri, rjq “ 0 5356 out of 5356

Panel C: Conditional mean

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Constant 0.0002 -0.0006 0.0000 0.0002 0.0004 0.0006
AR(1) -0.0535 -0.1331 -0.0794 -0.0553 -0.0250 0.0105

Note: Panel A presents summary statistics such as simple unconditional moments,
correlations and rank correlations of the daily equity returns used in the empirical
analysis. Panel B shows the number of rejections for the test of zero skewness and
zero excess kurtosis of 104 stocks under 5% level. Also the number of rejections for the
test of zero correlations of all 5356 pairs is in the last line of Panel B. Panel C presents
the parameter estimates for AR(1) models of the conditional means of returns. The
columns present the mean and quantiles from the cross-sectional distribution of the
measures or estimates listed in the rows.
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Table 1.7: Conditional variance-covariance estimates

Panel A: HAR-type models for 5-min returns

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Variance part

Constant φ
pconstq
i -0.0019 -0.0795 -0.0375 -0.0092 0.0207 0.1016

HAR day φ
pdayq
i 0.3767 0.3196 0.3513 0.3766 0.3980 0.4414

HAR week φ
pweekq
i 0.3105 0.2296 0.2766 0.3075 0.3473 0.3896

HAR month φ
pmonthq
i 0.2190 0.1611 0.1959 0.2146 0.2376 0.2962

Est Std Err
Correlation part
HAR day paq 0.1224 0.0079
HAR week pbq 0.3156 0.0199
HAR month pcq 0.3778 0.0326

Panel B: DCC models for daily returns

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Variance part
Constant ψi ˆ 10000 0.0864 0.0190 0.0346 0.0522 0.0811 0.2781
ARCH κi 0.0252 0.0000 0.0079 0.0196 0.0302 0.0738
Asym ARCH ζi 0.0840 0.0298 0.0570 0.0770 0.1015 0.1535
GARCH λi 0.9113 0.8399 0.9013 0.9228 0.9363 0.9573

Est Std Err
Correlation part
DCC ARCH pαq 0.0245 0.0055
DCC GARCH pβq 0.9541 0.0119

Note: Panel A presents summaries of the estimated HAR-type models described in
Section 1.2.2 using high frequency 5-min returns. Panel B presents summaries of the
estimated DCC models described in Appendix A.2 using low frequency daily returns.
The estimates for variance parts are summarized in the mean and quantiles from the
cross-sectional distributions of the estimates. The estimates for correlation parts are
reported with bootstrap standard errors which reflect accumulated estimation errors
from former stages
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Table 1.8: Summary statistics of standardized uncorrelated residuals

Panel A: Summary statistics of residuals êt

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Residuals êt,HAR
Mean 0.0023 -0.0122 -0.0042 0.0016 0.0076 0.0214
Std dev 1.0921 0.9647 1.0205 1.0822 1.1423 1.2944
Skewness -0.1613 -1.5828 -0.4682 -0.0837 0.3420 0.7245
Kurtosis 13.1220 5.0578 6.8422 9.8681 16.0303 32.7210
Correlation 0.0026 -0.0445 -0.0167 0.0020 0.0209 0.0502

Residuals êt,DCC
Mean 0.0007 -0.0155 -0.0071 0.0004 0.0083 0.0208
Std dev 1.1871 1.1560 1.1737 1.1859 1.2002 1.2240
Skewness -0.1737 -1.4344 -0.5293 -0.0307 0.2628 0.7920
Kurtosis 12.6920 5.0815 6.7514 10.1619 15.9325 28.8275
Correlation -0.0011 -0.0172 -0.0073 -0.0008 0.0053 0.0145

Panel B: Test for skewness, kurtosis, and correlation

# of rejections
For êt,HAR For êt,DCC

H0 : E re3
i s “ 0 4 out of 104 6 out of 104

H0 :
Ere4i s

Ere2i s
2 “ 3 104 out of 104 104 out of 104

H0 : Corr pei, ejq “ 0 497 out of 5356 1 out of 5356

Note: Panel A presents summary statistics of the estimated standardized uncorre-
lated residuals êt,HAR and êt,DCC , and Panel B shows the number of rejections for
the test of zero skewness and zero excess kurtosis of êt,HAR and êt,DCC under 5%
level. Also the number of rejections for the test of zero correlations of all 5356 pairs
is in the last line of Panel B. In Panel C, the parameter estimates for standardized
Student’s t marginal distributions are summarized in the mean and quantiles from
the cross-sectional distributions of the estimates.
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Table 1.9: Marginal distribution and copula estimates

Panel A: Marginal distributions for residuals êt

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Residuals êt,HAR
Student t pνq 5.3033 4.1233 4.7454 5.1215 5.8684 6.8778

Residuals êt,DCC
Student t pνq 6.0365 4.2280 5.0314 5.9042 7.0274 8.2823

Panel B: Copula for residuals êt

Jointly symmetric copula based on
t Clayton Frank Gumbel Indep MV t dist

Residuals êt,HAR
Copula est

(Std error)

39.4435
p4.3541q

0.0876
p0.0087q

1.2652
p0.0942q

1.0198
p0.0038q

- 6.4326:
p0.1405q

t-stat 8.45* 10.07* 13.43* 5.25* - 45.72*

Residuals êt,DCC
Copula est

(Std error)

28.2068
p5.4963q

0.1139
p0.0155q

1.5996
p0.1540q

1.0312
p0.0071q

- 7.0962:
p0.3586q

t-stat 6.13* 7.36* 10.36* 4.40* - 17.80*

Note: Panel A presents the estimates of the marginal distribution of residuals, (stan-
dardized) univariate t distribution, summarized in the mean and quantiles from the
cross-sectional distributions of the estimates. Panel B presents the estimated param-
eters of four different jointly symmetric copula models based on t, Clayton, Frank,
and Gumbel copulas as well as the estimated parameter of the (standardized) mul-
tivariate t distribution as a benchmark model. The bootstrap standard errors that
reflect accumulated estimation errors from former stages are reported in parenthe-
sis. We test the null hypothesis that there is no nonlinear dependence and report
t-statistics denoted with * if significant at the 1% level. :Note that the parameter of
the multivariate t distribution is not a copula parameter, but it is reported in this
row for simplicity.
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Clayton copula with N(0,1), θ =2
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Figure 1.1: 90, 180, and 270 degree rotations of the density of Clayton copula
pθ “ 2q with N p0, 1q margins
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Jointly symmetric copula based on Clayton
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Figure 1.2: Jointly symmetric copula density constructed from Clayton pθ “ 2q
with N p0, 1q margins
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Independence copula
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Figure 1.3: Contour plots of densities for independence copula and jointly symmet-
ric copulas based on t, Clayton, Gumbel, Frank, and Plackett copula with N p0, 1q
margins
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Figure 1.4: Standard deviation and bias of 500 estimators for jointly symmetric
copula based on Clayton copula. T = 1000 and N = 2, 3,5,10,..., 100. Four different
esimation methods, MLE, MCLE with all pairs, MCLE with adjacent pairs, and
MCLE with the first pair are used
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2

Modelling Dependence in High Dimensions with
Factor Copulas (co-authored with Andrew Patton)

2.1 Introduction

One of the many surprises from the financial crisis of late 2007 to 2008 was the extent

to which assets that had previously behaved mostly independently suddenly moved

together. This was particularly prominent in the financial sector, where poor models

of the dependence between certain asset returns (such as those on housing, or those

related to mortgage defaults) are thought to be one of the causes of the collapse of the

market for CDOs and related securities, see Coval, et al. (2009) and Zimmer (2012)

for example. Many models that were being used to capture the dependence between

a large number of financial assets were revealed as being inadequate during the crisis.

However, one of the difficulties in analyzing risks across many variables is the relative

paucity of econometric models suitable for the task. Correlation-based models, while

useful when risk can be summarized using the second moment, are often built on an

assumption of multivariate Gaussianity, and face the risk of neglecting dependence

between the variables in the tails, i.e., neglecting the possibility that large crashes
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may be correlated across assets.

This paper makes two primary contributions. First, we present new models for

the dependence structure, or copula, of economic variables. The models are based

on a simple factor structure for the copula and are particularly attractive for high di-

mensional applications, involving fifty or more variables.1 These copula models may

be combined with existing models for univariate distributions to construct flexible,

tractable joint distributions for large collections of variables. The proposed copula

models permit the researcher to determine the degree of flexibility based on the num-

ber of variables and the amount of data available. For example, by allowing for a

fat-tailed common factor the model captures the possibility of correlated crashes,

and by allowing the common factor to be asymmetrically distributed the model al-

lows for the possibility that the dependence between the variables is stronger during

downturns than during upturns. By allowing for multiple common factors, it is pos-

sible to capture heterogeneous pair-wise dependence within the overall multivariate

copula. High dimension economic applications will often require some strong sim-

plifying assumptions in order to keep the model tractable, and an important feature

of the class of proposed models is that such assumptions can be made in an easily

understandable manner, and can be tested and relaxed if needed.

Factor copulas do not generally have a closed-form density, but certain properties

can nevertheless be obtained analytically. Using extreme value theory we obtain

theoretical results on the tail dependence properties for general, multi-factor copulas,

and for the specific parametric class of factor copulas that we use in our empirical

work.

The second contribution of this paper is a study of the dependence structure of all

100 constituent firms of the Standard and Poor’s 100 index, using daily data over the

1 For related recent work on high dimensional conditional covariance matrix estimation, see Engle
and Kelly (2012), Engle, et al. (2008), and Hautsch, et al. (2010).
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period 2008-2010. This is one of the highest dimension applications of copula theory

in the econometrics literature. We find significant evidence in favor of a fat-tailed

common factor for these stocks (indicative of non-zero tail dependence), implying

that the Normal, or Gaussian, copula is not suitable for these assets. Moreover,

we find significant evidence that the common factor is asymmetrically distributed,

with crashes being more highly correlated than booms. Our empirical results suggest

that risk management decisions made using the Normal copula may be based on too

benign a view of these assets, and derivative securities based on baskets of these

assets, or related securities such as CDOs, may be mispriced if based on a Normal

copula. The fact that large negative shocks may originate from a fat-tailed common

factor, and thus affect all stocks at once, makes the diversification benefits of investing

in these stocks lower than under Normality.

An additional contribution of this paper is a detailed simulation study of the

properties of the estimation method for the class of factor copulas we propose. This

class does not generally have a closed-form copula likelihood, and we use the SMM

estimator proposed in Oh and Patton (2013a). We consider problems of dimension

3, 10 and 100, and confirm that the estimator and associated asymptotic distribution

theory have satisfactory finite-sample properties.

Certain types of factor copulas have already appeared in the literature. The

models we consider are extensions of Hull and White (2004), in that we retain a

simple linear, additive factor structure, but allow for the variables in the structure to

have flexibly specified distributions. Other variations on factor copulas are presented

in Andersen and Sidenius (2004) and van der Voort (2005), who consider certain non-

linear factor structures, and in McNeil et al. (2005), who present factor copulas for

modelling times-to-default. With the exception of McNeil, et al. (2005), the papers

to date have not considered estimation of the unknown parameters of these copulas,

instead examining calibration and pricing using these copulas. Our formal analysis

60



of the estimation of high dimension copulas via a SMM-type procedure is new to the

literature, as is our application of this class of models to a large collection of asset

returns.

Some methods for modelling high dimension copulas have previously been pro-

posed in the literature, though few consider dimensions greater than twenty.2 The

Normal copula, see Li (2000) amongst many others, is simple to implement and to

understand, but imposes the strong assumption of zero tail dependence, and symmet-

ric dependence between booms and crashes. The (Student’s) t copula, and variants

of it, are discussed in Demarta and McNeil (2005). An attractive extension of the

t copula, the “grouped t” copula, is proposed in Daul et al. (2003), who show that

this copula can be used in applications of up to 100 variables. This copula allows for

heterogeneous tail dependence between pairs of variables, but imposes that upper

and lower tail dependence are equal (a finding we strongly reject for equity returns).

Smith, et al. (2010) extract the copula implied by a multivariate skew t distribu-

tion, and Christoffersen, et al. (2012) combine a skew t copula with a DCC model for

conditional correlations in their study of 33 developed and emerging equity market in-

dices. Archimedean copulas such as the Clayton or Gumbel allow for tail dependence

and particular forms of asymmetry, but usually have only a one or two parameters

to characterize the dependence between all variables, and are thus quite restrictive

when the number of variables is large. Multivariate “vine” copulas are constructed

by sequentially applying bivariate copulas to build up a higher dimension copula,

see Aas, et al. (2009), Heinen and Valdesogo (2009) and Min and Czado (2010) for

example, however vine copulas are almost invariably based on an assumption that is

hard to interpret and to test, see Acar, et al. (2012) for a critique. In our empirical

application we compare our proposed factor models with several alternative existing

2 For general reviews of copulas in economics and finance see Cherubini, et al. (2004) and Patton
(2012).
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models, and show that our model outperforms them all in terms of goodness-of-fit

and in an application to measuring systemic risk.

The remainder of the paper is structured as follows. Section 2.2 presents the

class of factor copulas, derives their limiting tail properties, and considers some

extensions. Section 2.3 considers estimation via a simulation-based method and

presents a simulation study of this method. Section 2.4 presents an empirical study

of daily returns on individual constituents of the S&P 100 equity index over the

period 2008-2010. Appendix B.1 contains all proofs, and Appendix B.2 contains a

discussion of the dependence measures used in estimation.

2.2 Factor copulas

For simplicity we will focus on unconditional distributions in the text below, and

discuss the extension to conditional distributions in the next section. Consider a

vector of N variables, Y, with some joint distribution F, marginal distributions Fi,

and copula C :

rY1, ..., YN s
1
” Y ∼ F “ C pF1, ..., FNq (2.1)

The copula completely describes the dependence between the variables Y1, ..., YN .

We will use existing models to estimate the marginal distributions Fi, and focus

on constructing useful new models for the dependence between these variables, C.

Decomposing the joint distribution in this way has two important advantages over

considering the joint distribution F directly: First, it facilitates multi-stage estima-

tion, which is particularly useful in high dimension applications, where the sparseness

of the data and the potential proliferation of parameters can cause problems. Sec-

ond, it allows the researcher to draw on the large literature on models for univariate

distributions, leaving “only” the task of constructing a model for the copula, which

is a simpler problem.
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2.2.1 Description of a simple factor copula model

The class of copulas we consider are those that can be generated by the following

simple factor structure, based on a set of N ` 1 latent variables:

Xi “ Z ` εi, i “ 1, 2, ..., N

Z ∼ Fz pθq , εi ∼ iid Fε pθq , ZKKεi @ i (2.2)

rX1, ..., XN s
1
” X ∼ Fx“ C pG1 pθq , ..., GN pθq ; θq

The copula of the latent variables X, C pθq , is used as the model for the copula of the

observable variables Y.3 An important point about the above construction is that

the marginal distributions of Xi may be different from those of the original variables

Yi, so Fi ‰ Gi in general. We use the structure for the vector X only for its copula,

and completely discard the resulting marginal distributions. By doing so, we use

C pθq from equation (2.2) to construct a model for the copula of Y, and leave the

marginal distributions Fi to be specified and estimated in a separate step.

The copula implied by the above structure is not generally known in closed form.

The leading case where it is known is when Fz and Fε are both Gaussian distributions,

in which case the variable X is multivariate Gaussian, implying a Gaussian copula,

and with an equicorrelation dependence structure (with correlation between any

pair of variables equal to σ2
z{ pσ

2
z ` σ

2
εq). For other choices of Fz and Fε the joint

distribution of X, and more importantly the copula of X, is not known in closed form.

It is clear from the structure above that the copula will exhibit “equidependence”,

in that each pair of variables will have the same bivariate copula as any other pair.

(This property is known as “exchangeability” in the copula literature.) A similar

assumption for correlations is made in Engle and Kelly (2012).

3 This method for constructing a copula model resembles the use of mixture models, e.g. the
Normal-inverse Gaussian or generalized hyperbolic distributions, where the distribution of interest
is obtained by considering a function of a collection of latent variables, see Barndorff-Nielsen (1978,
1997), Barndorff-Nielsen and Shephard (2009), McNeil, et al. (2005).
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It is simple to simulate from Fz and Fε for many classes of distributions, and from

simulated data we can extract properties of the copula, such as rank correlation,

Kendall’s tau, and quantile dependence. These simulated moments can be used in

simulated method of moments (SMM) estimation of the unknown parameters, which

is studied via simulations in Section 2.3 below.

2.2.2 A multi-factor copula model

The structure of the model in equation (2.2) immediately suggests two directions for

extensions. The first is to allow for weights on the common factor that differ across

variables. That is, let

Xi “ βiZ ` εi, i “ 1, 2, ..., N (2.3)

Z ∼ Fz, εi ∼ iid Fε, ZKKεi @ i

with the rest of the model left unchanged. In this “single factor, flexible weights”

factor copula, the implied copula is no longer equidependent: a given pair of variables

may have weaker or stronger dependence than some other pair. This extension

introduces N ´ 1 additional parameters to this model, increasing its flexibility to

model heterogeneous pairs of variables, at the cost of a more difficult estimation

problem. An intermediate model may be considered, in which sub-sets of variables

are assumed to have the same weight on the common factor, which may be reasonable

for financial applications with variables grouped ex ante using industry classifications,

for example. Such an assumption leads to a “block equidependence” copula, and we

will consider this structure in our empirical application.

A second extension to consider is a multi-factor version of the model, where the
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dependence is assumed to come from a K-factor model:

Xi “

K
ÿ

k“1

βikZk ` εi

εi ∼ iid Fε, ZkKKεi @ i, k (2.4)

rZ1, ..., ZKs
1
” Z ∼ Fz“ Cindep pFz1 , ..., FzK q

In the most general case one could allow Z to have a general copula CZ that allows

dependence between the common factors, however an empirically useful simplification

of this model is to impose that the common factors are independent, and thus remove

the need to specify and estimate CZ . A further simplification of this factor model

may be to assume that each common factor has a weight equal to one or zero, with the

weights specified in advance by grouping variables, for example by grouping stocks

by industry.

The above model can be interpreted as a special case of the “conditional indepen-

dence structure” of McNeil, et al. (2005), which is used to describe a set of variables

that are independent conditional on some smaller set of variables, X and Z in our

notation.4 McNeil, et al. (2005) describe using such a structure to generate some

factor copulas to model times until default.

2.2.3 Tail dependence properties of factor copulas

Using results from extreme value theory, it is possible to obtain analytically results

on the tail dependence implied by a factor copula model despite the fact that we

do not have a closed-form expression for the copula. These results are relatively

easy to obtain, given the simple linear structure generating the factor copula. Recall

the definition of tail dependence for two variables Xi, Xj with marginal distributions

4 The variables Z are sometimes known as the “frailty”, in the survival analysis and credit default
literature, see Duffie, et al. (2009) for example.
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Gi,Gj :

τLij ” lim
qÑ0

Pr
“

Xi ď G´1
i pqq , Xj ď G´1

j pqq
‰

q
(2.5)

τUij ” lim
qÑ1

Pr
“

Xi ą G´1
i pqq , Xj ą G´1

j pqq
‰

1´ q

That is, lower tail dependence measures the probability of both variables lying below

their q quantile, for q limiting to zero, scaled by the probability of one of these

variables lying below their q quantile. Upper tail dependence is defined analogously.

In Proposition 1 below we present results for a general single factor copula model:

Proposition 1 (Tail dependence for a factor copula). Consider the factor copula

generated by equation (2.3). If Fz and Fε have regularly varying tails with a common

tail index α ą 0, i.e.

Pr rZ ą ss “ AUz s
´α and Pr rεi ą ss “ AUε s

´α, as sÑ 8 (2.6)

Pr rZ ă ´ss “ ALz s
´α and Pr rεi ă ´ss “ ALε s

´α as sÑ 8

where ALZ , A
U
Z , A

L
ε and AUε are positive constants. Then, (a) if βj ě βi ą 0 the

lower and upper tail dependence coefficients are:

τLij “
βαi A

L
z

βαi A
L
z ` A

L
ε

, τUij “
βαi A

U
z

βαi A
U
z ` A

U
ε

(2.7)

(b) if βj ď βi ă 0 the lower and upper tail dependence coefficients are:

τLij “
|βi|

αAUz
|βi|

αAUz ` A
L
ε

, τUij “
|βi|

αALz
|βi|

αALz ` A
U
ε

(2.8)

(c) if βiβj “ 0 or (d) if βiβj ă 0, the lower and upper tail dependence coefficients

are zero.

All proofs are presented in Appendix B.1. This proposition shows that when the

coefficients on the common factor have the same sign, and the common factor and
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idiosyncratic variables have the same tail index, the factor copula generates upper

and lower tail dependence. If either Z or ε is asymmetrically distributed, then the

upper and lower tail dependence coefficients can differ, which provides this model

with the ability to capture differences in the probabilities of joint crashes and joint

booms. When either of the coefficients on the common factor are zero, or if they have

differing signs, then it is simple to show that the upper and lower tail dependence

coefficients are both zero.

The above proposition considers the case that the common factor and idiosyn-

cratic variables have the same tail index; when these indices differ we obtain a bound-

ary result: if the tail index of Z is strictly greater than that of ε and βiβj ą 0 then

tail dependence is one, while if the tail index of Z is strictly less than that of ε then

tail dependence is zero.

In our simulation study and empirical work below, we will focus on the skew t

distribution of Hansen (1994) as a model for the common factor and the standardized

t distribution for the idiosyncratic shocks. Proposition 2 below presents the analytical

tail dependence coefficients for a factor copula based on these distributions.

Proposition 2 (Tail dependence for a skew t-t factor copula). Consider the factor

copula generated by equation (2.3). If Fz “ Skew t pν, λq and Fε “ t pνq , then the tail

indices of Z and εi equal ν, and the constants ALz , A
U
z , A

L
ε and AUε from Proposition

1 equal:

ALz “
bc

ν

ˆ

b2

pν ´ 2q p1´ λq2

˙´pν`1q{2

, AUz “
bc

ν

ˆ

b2

pν ´ 2q p1` λq2

˙´pν`1q{2

(2.9)

ALε “ AUε “
c

ν

ˆ

1

ν ´ 2

˙´pν`1q{2

where a “ 4λc pν ´ 2q { pν ´ 1q, b “
?

1` 3λ2 ´ a2, c “ Γ
`

ν`1
2

˘

{

´

Γ
`

ν
2

˘
a

π pν ´ 2q
¯

.

Given Proposition 1 and the expressions for ALz , A
U
z , A

L
ε and AUε above, we then ob-
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tain the tail dependence coefficients for this copula.

In the next proposition we generalize Proposition 1 to allow for a multi-factor

model, which will prove useful in our empirical application in Section 2.4.

Proposition 3 (Tail dependence for a multi-factor copula). Consider the factor cop-

ula generated by equation (2.4). Assume Fε, Fz1 , ..., FzK have regularly varying tails

with a common tail index α ą 0, and upper and lower tail coefficients AUε , A
U
1 , .., A

U
K

and ALε , A
L
1 , .., A

L
K . Then if βik ě 0 @ i, k, the lower and upper tail dependence coef-

ficients are:

τLij “

ÿK

k“1
1 tβikβjk ą 0uALkβ

α
ikδ

α
L,ijk

ALε `
ÿK

k“1
ALkβ

α
ik

(2.10)

τUij “

ÿK

k“1
1 tβikβjk ą 0uAUk β

α
ikδ

α
U,ijk

AUε `
ÿK

k“1
AUk β

α
ik

where

δ´1
L,ijk ”

"

max t1, γL,ijβik{βjku , if βikβjk ą 0
1, if βikβjk “ 0

(2.11)

δ´1
U,ijk ”

"

max t1, γU,ijβik{βjku , if βikβjk ą 0
1, if βikβjk “ 0

γL,ij ”

¨

˝

ALε `
ÿK

k“1
ALkβ

α
jk

ALε `
ÿK

k“1
ALkβ

α
ik

˛

‚

1{α

, γU,ij ”

¨

˝

AUε `
ÿK

k“1
AUk β

α
jk

AUε `
ÿK

k“1
AUk β

α
ik

˛

‚

1{α

(2.12)

The extensions to consider the case that some have opposite signs to the others

can be accommodated using the same methods as in the proof of Proposition 1. In

the one-factor copula model the variables δL,ijk and δU,ijk can be obtained directly

and are determined by min tβi, βju ; in the multi-factor copula model these variables

can be determined using equation (2.11) above, but do not generally have a simple

expression.
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2.2.4 Illustration of some factor copulas

To illustrate the flexibility of this simple class of copulas, Figure 2.1 presents 1000

random draws from bivariate distributions constructed using four different factor

copulas. In all cases the marginal distributions, Fi, are set to N p0, 1q , and the

variance of the latent variables in the factor copula are set to σ2
z “ σ2

ε “ 1, so that

the common factor pZq accounts for one-half of the variance of each Xi. The first

copula is generated from a factor structure with Fz “ Fε “ N p0, 1q , implying that

the copula is Normal. The second sets Fz “ Fε “ t p4q , generating a symmetric

copula with positive tail dependence. The third copula sets Fε “ N p0, 1q and Fz “

skew t p8,´0.25q , corresponding to a skewed Normal distribution. This copula

exhibits asymmetric dependence, with crashes being more correlated than booms, but

zero tail dependence. The fourth copula sets Fε “ t p4q and Fz “ skew t p4,´0.25q ,

which generates asymmetric dependence and positive tail dependence.

Figure 2.1 shows that when the distributions in the factor structure are Normal

or skewed Normal, tail events tend to be uncorrelated across the two variables. When

the degrees of freedom is set to 4, on the other hand, we observe several draws in

the joint upper and lower tails. When the skewness parameter is negative, as in the

lower two panels of Figure 2.1, we observe stronger clustering of observations in the

joint negative quadrant compared with the joint positive quadrant.

An alternative way to illustrate the differences in the dependence implied by these

four models is to use a measure known as “quantile dependence”. This measure

captures the probability of observing a draw in the q-tail of one variable given that

such an observation has been observed for the other variable. It is defined as:

τq ”

" 1
q

Pr rU1 ď q, U2 ď qs , q P p0, 0.5s
1

1´q
Pr rU1 ą q, U2 ą qs , q P p0.5, 1q

(2.13)

where Ui ” Gi pXiq ∼ Unif p0, 1q are the probability integral transforms of the
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simulated Xi variables. As q Ñ 0 pq Ñ 1q this measure converges to lower (upper)

tail dependence, and for values of q “near” zero or one we obtain an estimate of the

dependence “near” the joint tails.

Figure 2.2 presents the quantile dependence functions for these four copulas. For

the symmetric copulas (Normal, and t-t factor copula) this function is symmetric

about q “ 0.5, while for the others it is not. The two copulas with a fat-tailed

common factor exhibit quantile dependence that increases near the tails: in those

cases an extreme observation is more likely to have come from the fat-tailed common

factor pZq than from the thin-tailed idiosyncratic variable pεiq , and thus an extreme

value for one variable makes an extreme value for the other variable more likely.

Figure 2.2 also presents the theoretical tail dependence for each of these copulas

based on Proposition 2 above using a symbol at q “ 0 (lower tail dependence) and

q “ 1 (upper tail dependence). The skew t p4q-t p4q factor copula illustrates the

flexibility of this simple class of models, generating weak upper quantile dependence

but strong lower quantile dependence, a feature that may be useful when modelling

asset returns.

Figure 2.3 illustrates the differences between these copulas using a truly multi-

variate approach: Conditional on observing k out of 100 stocks crashing, we present

the expected number of the remaining p100 ´ kq stocks that will crash, a measure

based on Geluk, et al. (2007):

πq pjq ”
κq pjq

N ´ j
(2.14)

where κq pjq “ E
“

N˚
q |N

˚
q ě j

‰

´ j

N˚
q ”

ÿN

i“1
1 tUi ď qu

For this illustration we define a “crash” as a realization in the lower 1/66 tail, corre-

sponding to a once-in-a-quarter event for daily asset returns. The upper panel shows
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that as we condition on more variables crashing, the expected number of other vari-

ables that will crash, κq pjq , initially increases, and peaks at around j “ 30. At that

point, a skew t p4q-t p4q factor copula predicts that around another 38 variables will

crash, while under the Normal copula we expect only around 12 more variables to

crash. As we condition on even more variables crashing the plot converges to in-

evitably zero, since conditioning on having observed more crashes, there are fewer

variables left to crash. The lower panel of Figure 2.3 shows that the expected pro-

portion of remaining stocks that will crash, πq pjq generally increases all the way to

j “ 99.5 For comparison, this figure also plots the results for a positively skewed

skew t factor copula, where booms are more correlated than crashes. This copula

also exhibits tail dependence, and so the expected proportion of other stocks that

will crash is higher than under Normality, but the positive skew means that crashes

are less correlated than booms, and so the expected proportion is less than when the

common factor is negatively skewed. This figure illustrates some of the features of

dependence that are unique to high dimension applications, and further motivates

our proposal for a class of flexible, parsimonious models for such applications.

2.2.5 Non-linear factor copula models

We can generalize the above linear, additive structure to consider more general factor

structures. For example, consider the following general one-factor structure:

Xi “ h pZ, εiq , i “ 1, 2, ..., N

Z ∼ Fz, εi ∼ iid Fε, ZKKεi @ i (2.15)

rX1, ..., XN s
1
” X ∼ Fx“ C pG1, ..., GNq

for some function h : R2 Ñ R. Writing the factor model in this general form reveals

that this structure nests a variety of well-known copulas in the literature. Some

5 For the Normal copula this is not the case, however this is perhaps due to simulation error: even
with the 10 million simulations used to obtain this figure, joint 1/66 tail crashes are so rare under
a Normal copula that there is a fair degree of simulation error in this plot for j ě 80.
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examples of copula models that fit in this framework are summarized in the table

below:

Copula h pZ, εq FZ Fε

Normal Z ` ε N p0, σ2
zq N p0, σ2

εq

Student’s t Z1{2ε Ig pν{2, ν{2q N p0, σ2
εq

Skew t λZ ` Z1{2ε Ig pν{2, ν{2q N p0, σ2
εq

Gen hyperbolic γZ ` Z1{2ε GIG pλ, χ, ψq N p0, σ2
εq

Clayton p1` ε{Zq´α Γ pα, 1q Exp p1q
Gumbel ´plogZ{εqα Stable p1{α, 1, 1, 0q Exp p1q

where Ig represents the inverse gamma distribution, GIG is the generalized inverse

Gaussian distribution, and Γ is the gamma distribution. The skew t and Generalized

hyperbolic copulas listed here are from McNeil, et al. (2005, Chapter 5), the repre-

sentation of a Clayton copula in this form is from Cook and Johnson (1981) and the

representation of the Gumbel copula is from Marshall and Olkin (1988).

The above copulas all have closed-form densities via judicious combinations of

the function h and the distributions FZ and Fε. Removing this requirement, and

employing simulation-based estimation methods to overcome the lack of closed-form

likelihood, one can obtain a much wider variety of models for the dependence struc-

ture. In this paper we will focus on linear, additive factor copulas, and generate

flexible models by flexibly specifying the distribution of the common factor(s).

2.3 A Monte Carlo study of SMM estimation of factor copulas

As noted above, the class of factor copula models does not generally have a closed-

form likelihood, motivating the study of alternative methods for estimation.6 Oh

6 In ongoing work, Oh and Patton (2013b), we consider the finite-sample properties of a ML
estimator based on a quadrature approximation of the factor copula likelihood. This approach has
its own set of numerical and implementation issues, and we leave the consideration of this method
aside here.
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and Patton (2013a) present a general simulation-based method for the estimation

of copula models, which is ideally suited for the estimation of factor copulas, and

is described in Section 2.3.2 below. In Section 2.3.3 we present an extensive Monte

Carlo study of the finite-sample properties of their SMM estimator in applications

involving up to 100 variables (Oh and Patton, 2013a, considers only up to 10 variables

in their simulation study).

2.3.1 Description of the model for the conditional joint distribution

We consider the same class of data generating processes (DGPs) as Chen and Fan

(2006), Rémillard (2010) and Oh and Patton (2013a). This class allows each variable

to have time-varying conditional mean and conditional variance, each governed by

parametric models, with some unknown marginal distribution. The marginal dis-

tributions are estimated nonparametrically via the empirical distribution function.

The conditional copula of the data is assumed to belong to a parametric family, such

as a parametric factor copula, and is assumed constant,7 making the model for the

joint distribution semiparametric. The DGP we consider is:

Yt “ µt pφ0q ` σt pφ0q ηt (2.16)

where Yt ” rY1t, . . . , YNts
1

µt pφq ” rµ1t pφq , . . . , µNt pφqs
1

σt pφq ” diag tσ1t pφq , . . . , σNt pφqu

ηt ” rη1t, . . . , ηNts
1
„ iid Fη “ C pF1, . . . , FN ; θ0q

where µt and σt are Ft´1-measurable and independent of ηt. Ft´1 is the sigma-field

containing information generated by tYt´1,Yt´2, . . .u. The r ˆ 1 vector of parame-

ters governing the dynamics of the variables, φ0, is assumed to be
?
T -consistently

7 The extension to allow for time-varying conditional copulas is relatively simple empirically,
but the asymptotic theory for the estiamted parameters needs non-trivial adjustment, and is not
considered here.
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estimable. If φ0 is known, or if µt and σt are known constant, then the model be-

comes one for iid data. The copula is parameterized by a pˆ1 vector of parameters,

θ0 P Θ, which is estimated using the SMM approach below.

2.3.2 Simulation-based estimation of copula models

The simulation-based estimation method of Oh and Patton (2013a) is closely related

to SMM estimation, though is not strictly SMM, as the “moments” that are used in

estimation are functions of rank statistics. We will nevertheless refer to the method

as SMM estimation. Our task is to estimate the p ˆ 1 vector of copula parameters,

θ0 P Θ, based on the standardized residual
!

η̂t ” σ´1
t

´

φ̂
¯ ”

Yt ´ µt

´

φ̂
¯ı)T

t“1
and

simulations from the copula model (for example, the factor copula model in equation

(2.2). The SMM copula estimator of Oh and Patton (2011) is based on simulation

from some parametric joint distribution, Fx pθq , with implied copula C pθq .

Let m̃S pθq be a pmˆ 1q vector of dependence measures computed using S simu-

lations from Fx pθq, tXsu
S
s“1 , and let m̂T be the corresponding vector of dependence

measures computed using the standardized residuals tη̂tu
T
t“1. (We discuss the em-

pirical choice of which dependence measures to match in Appendix B.2.) The SMM

estimator then defined as:

θ̂T,S ” arg min
θPΘ

QT,S pθq (2.17)

where QT,S pθq ” g1T,S pθq ŴTgT,S pθq

gT,S pθq ” m̂T ´ m̃S pθq

and ŴT is some positive definite weight matrix, which may depend on the data.

Under regularity conditions, Oh and Patton (2013a) show that if S{T Ñ 8 as
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T Ñ 8, the SMM estimator is consistent and asymptotically normal:8

?
T
´

θ̂T,S ´ θ0

¯

d
Ñ N p0,Ω0q as T, S Ñ 8 (2.18)

where Ω0 “ pG
1
0W0G0q

´1
G10W0Σ0W0G0 pG

1
0W0G0q

´1

Σ0 ” avar rm̂T s, G0 ” ∇θg0 pθ0q , and g0 pθq “p-limT,SÑ8 gT,S pθq . Oh and Patton

(2011) also present the distribution of a test of the over-identifying restrictions (the

“J” test).

The asymptotic variance of the estimator has the same form as in standard GMM

applications, however the components Σ0 and G0 require different estimation meth-

ods than in standard applications. Oh and Patton (2013a) show that a simple iid

bootstrap can be used to consistently estimate Σ0, and that a standard numerical

derivative of gT,S pθq at θ̂T,S, denoted Ĝ, will consistently estimate G0 under the con-

dition that the step size of the numerical derivative goes to zero slower than T´1{2.

In our simulation study we thoroughly examine the sensitivity of the estimated co-

variance matrix to the choice of step size.

2.3.3 Finite-sample properties of SMM estimation of factor copulas

In this section we present a study of the finite sample properties of the simulated

method of moments (SMM) estimator of the parameters of various factor copulas.

In the one case where a likelihood for the copula model is available in closed form we

contrast the properties of the SMM estimator with those of the maximum likelihood

estimator.

8 Oh and Patton (2013a) also consider the case that S{T Ñ 0 as S, T Ñ 8, in which case the
convergence rate is

?
S rather than

?
T . In our empirical application we have S " T, and so we do

not present that case here.
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Simulation design

We initially consider three different factor copulas, all of them of the form:

Xi “ Z ` εi, i “ 1, 2, ..., N

Z ∼ Skew t
`

σ2
z , ν, λ

˘

(2.19)

εi ∼ iid t pνq , and εiKKZ @ i

rX1, ..., XN s
1 ∼ Fx“ C pGx, ..., Gxq

and we use the skewed t distribution of Hansen (1994) for the common factor. In all

cases we set σ2
z “ 1, implying that the common factor pZq accounts for one-half of

the variance of each Xi, implying rank correlation of around 0.5. In the first model

we set ν Ñ 8 and λ “ 0, which implies that the resulting factor copula is simply

the Gaussian copula, with equicorrelation parameter ρ “ 0.5. In this case we can

estimate the model by SMM and also by GMM and MLE, and we use this case to

study the loss of efficiency in moving from MLE to GMM to SMM. In the second

model we set ν “ 4 and λ “ 0, yielding a symmetric factor copula that generates

tail dependence. In the third case we set ν “ 4 and λ “ ´0.5 yielding a factor

copula that generates tail dependence as well as “asymmetric dependence”, in that

the lower tails of the copula are more dependent than the upper tails. We estimate

the inverse degrees of freedom parameter, ν´1
z , so that its parameter space is r0, 0.5q

rather than p2,8s.

We also consider an extension of the above equidependence model which allow

each Xi to have a different coefficient on Z, as in equation (2.3). For identification

of this model we set σ2
z “ 1. For N “ 3 we set rβ1, β2, β3s “ r0.5, 1, 1.5s . For

N “ 10 we set rβ1, β2, ..., β10s “ r0.25, 0.50, ..., 2.5s, which corresponds to pair-wise

rank correlations ranging from approximately 0.1 to 0.8. Motivated by our empirical

application below, for the N “ 100 case we consider a “block equidependence” model,

where we assume that the 100 variables can be grouped ex ante into 10 groups, and
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that all variables within each group have the same βi. We use the same set of values

for βi as in the N “ 10 case.

We consider two different scenarios for the marginal distributions of the variables

of interest. In the first case we assume that the data are iid with standard Normal

marginal distributions, meaning that the only parameters that need to be estimated

are those of the factor copula. This simplified case is contrasted with a second

scenario where the marginal distributions of the variables are assumed to follow an

AR(1)-GARCH(1,1) process:

Yit “ φ0 ` φ1Yi,t´1 ` σitηit, t “ 1, 2, ..., T

σ2
it “ ω ` γσ2

i,t´1 ` ασ
2
i,t´1η

2
i,t´1 (2.20)

ηt ” rη1t, ..., ηNts ∼ iid Fη “ C pΦ,Φ, ...,Φq

where Φ is the standard Normal distribution function and C is the factor copula

implied by equation (2.19). We set the parameters of the marginal distributions as

rφ0, φ1, ω, γ, αs “ r0.01, 0.05, 0.05, 0.85, 0.10s , which broadly matches the values of

these parameters when estimated using daily equity return data. In this scenario

the parameters of the marginal distribution are estimated in a separate first stage,

following which the estimated standardized residuals, η̂it, are obtained and used in

a second stage to estimate the factor copula parameters. In all cases we consider a

time series of length T “ 1000, corresponding to approximately 4 years of daily re-

turn data, and we use S “ 25ˆT simulations in the computation of the dependence

measures to be matched in the SMM optimization. We repeat each scenario 100

times. In all results below we use the identity weight matrix for estimation; corre-

sponding results based on the efficient weight matrix are available in Appendix B.3.9

In Appendix B.2 we describe the dependence measures we use for the estimation of

9 The results based on the efficient weight matrix are generally comparable to those based on
the identity weight matrix, however the coverage rates are worse than those based on the identity
weight matrix.
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these models.

Simulation results

Table 2.1 reveals that for all three dimensions (N “ 3, 10 and 100) and for all

three copula models the estimated parameters are centered on the true values, with

the average estimated bias being small relative to the standard deviation, and with

the median of the simulated distribution centered on the true values. The measures

of estimator accuracy (the standard deviation and the 90-10 percentile difference)

reveal that adding more parameters to the model, ceteris paribus, leads to greater

estimation error, as expected; the σ2
z parameter, for example, is more accurately

estimated when it is the only unknown parameter compared with when it is one of

three unknown parameters. Looking across the dimension size, we see that the cop-

ula model parameters are almost always more precisely estimated as the dimension

grows. This is intuitive, given the equidependence nature of all three models: increas-

ing the dimension of the model does not increase the number of parameters to be

estimated but it does increase the amount of information available on the unknown

parameters.

Comparing the SMM estimator with the ML estimator, which is only feasible for

the Normal copula (as the other two factor copulas do not have a copula likelihood

in closed form) we see that the SMM estimator performs quite well. As predicted by

theory, the ML estimator is always more efficient than the SMM estimator, however

the loss in efficiency is moderate, ranging from around 25% for N “ 3 to around 10%

for N “ 100. This provides some confidence that our move to SMM, prompted by the

lack of a closed-form likelihood, does not come at a cost of a large loss in efficiency.

Comparing the SMM estimator to the GMM estimator provides us with a measure

of the loss in accuracy from having to estimate the population moment function via

simulation. We find that this loss is at most 3% and in some cases pN “ 100q is
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slightly negative. Thus little is lost from using SMM rather than GMM.

Table 2.2 shows results for the block equidependence model for the N “ 100 case

with AR-GARCH marginal distributions,10 which can be compared to the results in

the lower panel of Table 2.1. This table shows that the parameters of these models

are well estimated using the proposed dependence measures described in Appendix

B.2. The accuracy of the “shape” parameters, ν´1 and λ, is slightly lower in the

more general model, consistent with the estimation error from having to estimate

ten factor loadings pβiq being greater than from having to estimate just a single other

parameter pσ2
zq , however this loss is not great.

In Tables 2.3 and 2.4 we present the finite-sample coverage probabilities of 95%

confidence intervals based on the estimated asymptotic covariance matrix described

in Section 2.3.2. As discussed above, a critical input to the asymptotic covariance

matrix estimator is the step size used in computing the numerical derivative matrix

Ĝ. This step size, εT , must go to zero, but at a slower rate than T´1{2. Ignoring

constants, our simulation sample size of T “ 1000 suggests setting εT ą 0.03, which

is much larger than standard step sizes used in computing numerical derivatives.11

We consider a range of values from 0.0001 to 0.1. Table 2.4 shows that when the

step size is set to 0.01, 0.03 or 0.1 the finite-sample coverage rates are close to their

nominal levels. However if the step size is chosen too small (0.003 or smaller) then the

coverage rates are much lower than nominal levels. For example, setting εT “ 0.0001

(which is still 16 times larger than the default setting in Matlab) we find coverage

rates as low as 38% for a nominal 95% confidence interval. Thus this table shows that

the asymptotic theory provides a reliable means for obtaining confidence intervals,

10 The results for iid data, and the results for this model for N “ 3 and 10, are available in
Appendix B.3.

11 For example, the default in many Matlab functions is a step size of ε1{3 « 6ˆ10´6 « 1{p165, 000q,
where ε “ 2.22ˆ 10´16 is machine epsilon. This choice is optimal in certain applications, see Judd
(1998) for example.

79



so long as care is taken not to set the step size too small.

Finally in Table 2.5 we present the results of a study of the rejection rates for

the J test of over-identifying restrictions. Given that we consider W “ I in this

table, the test statistic has a non-standard distribution (see Proposition 4 of Oh

and Patton, 2013a), and we use 10, 000 simulations to obtain critical values. In

this case, the limiting distribution also depends on Ĝ, and we present the rejection

rates for various choices of step size εT . Table 2.5 reveals that the rejection rates are

close to their nominal levels, for both the equidependence models and the “different

loading” models (which is a block equidependence model for the N “ 100 case). The

J test rejection rates are less sensitive to the choice of step size than the coverage

probabilities of confidence intervals, however the best results are again generally

obtained when εT is 0.01 or greater.

2.4 High-dimension copula models for S&P 100 returns

In this section we apply our proposed factor copulas to a study of the dependence

between a large collection of U.S. equity returns. We study all 100 stocks that were

constituents of the S&P 100 index as at December 2010. The sample period is April

2008 to December 2010, a total of T “ 696 trade days. The starting point for our

sample period was determined by the date of the latest addition to the S&P 100

index (Philip Morris Inc.), which has had no additions or deletions since April 2008.

The stocks in our study are listed in Table 2.6, along with their 3-digit SIC codes,

which we will use in part of our analysis below.

Table 2.7 presents some summary statistics of the data used in this analysis. The

top panel presents sample moments of the daily returns for each stock. The means

and standard deviations are around values observed in other studies. The skewness

and kurtosis coefficients reveal a substantial degree of heterogeneity in the shape

of the distribution of these asset returns, motivating our use of a nonparametric
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estimate (the EDF) of this in our analysis.

In the second panel of Table 2.7 we present information on the parameters of the

AR(1)–GJR-GARCH models, augmented with lagged market return information,

that are used to filter each of the individual return series12:

rit “ φ0i ` φ1iri,t´1 ` φmirm,t´1 ` εit (2.21)

σ2
it “ ωi ` βiσ

2
i,t´1 ` αiε

2
i,t´1 ` γiε

2
i,t´11 tεi,t´1 ď 0u

` αmiε
2
m,t´1 ` γmiε

2
m,t´11 tεm,t´1 ď 0u (2.22)

Estimates of the parameters of these models are consistent with those reported in nu-

merous other studies, with a small negative AR(1) coefficient found for most though

not all stocks, and with the lagged market return entering significantly in 37 out of

the 100 stocks. The estimated GJR-GARCH parameters are strongly indicative of

persistence in volatility, and the asymmetry parameter, γ, in this model is positive

for all but three of the 100 stocks in our sample, supporting the wide-spread finding

of a “leverage effect” in the conditional volatility of equity returns. The lagged mar-

ket residual is also found to be important for volatility in many cases, with the null

that αmi “ γmi “ 0 being rejected at the 5% level for 32 stocks.

In the lower panel of Table 2.7 we present summary statistics for four measures

of dependence between pairs of standardized residuals: linear correlation, rank cor-

relation, average upper and lower 1% tail dependence (equal to pτ0.99 ` τ0.01q {2), and

the difference in upper and lower 10% tail dependence (equal to τ0.90 ´ τ0.10). The

two correlation statistics measure the sign and strength of dependence, the third

and fourth statistics measure the strength and symmetry of dependence in the tails.

The two correlation measures are similar, and are 0.42 and 0.44 on average. Across

12 We considered GARCH (Bollerslev, 1986), EGARCH (Nelson, 1991), and GJR-GARCH
(Glosten, et al., 1993) models for the conditional variance of these returns, and for almost all
stocks the GJR-GARCH model was preferred according to the BIC.
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all 4950 pairs of assets the rank correlation varies from 0.37 to 0.50 from the 25th

and 75th percentiles of the cross-sectional distribution, indicating the presence of

mild heterogeneity in the correlation coefficients. The 1% tail dependence measure

is 0.06 on average, and varies from 0.00 to 0.07 across the inter-quartile range. The

difference in the 10% tail dependence measures is negative on average, and indeed is

negative for over 75% of the pairs of stocks, strongly indicating asymmetric depen-

dence between these stocks.

2.4.1 Results from equidependence copula specifications

We now present our first empirical results on the dependence structure of these 100

stock returns: the estimated parameters of eight different models for the copula.

We consider four existing copulas: the Clayton copula, the Normal copula, the Stu-

dent’s t copula, and the skew t copula, with equicorrelation imposed on the latter

three models for comparability, and four factor copulas, described by the distribu-

tions assumed for the common factor and the idiosyncractic shock: t-Normal, Skew

t-Normal, t-t, Skew t-t. All models are estimated using the SMM-type method de-

scribed in Section 2.3.2. The value of the SMM objective function at the estimated

parameters, QSMM , is presented for each model, along with the p-value from the J-

test of the over-identifying restrictions. Standard errors are based on 1000 bootstraps

to estimate ΣT,S, and with a step size εT “ 0.1 to compute Ĝ.

Table 2.8 reveals that the variance of the common factor, σ2
z , is estimated by all

models to be around 0.9, implying an average correlation coefficient of around 0.47.

The estimated inverse degrees of freedom (DoF) parameter in these models is around

1/25, and the standard errors on ν´1 reveal that this parameter is significant13 at

13 Note that the case of zero tail dependence corresponds to ν´1
z “ 0, which is on the boundary of

the parameter space for this parameter, implying that a standard t test is strictly not applicable.
In such cases the squared t statistic no longer has an asymptotic χ2

1 distribution under the null,
rather it is distributed as an equal-weighted mixture of a χ2

1 and χ2
0, see Gourieroux and Monfort

(1996, Ch 21). The 90% and 95% critical values for this distribution are 1.64 and 2.71 (compared
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the 10% level for the three models that allow for asymmetric dependence, but not

significant for the three models that impose symmetric dependence. The asymmetry

parameter, λ, is significantly negative in all models in which it is estimated, with

t-statistics ranging from -2.1 to -4.4. This implies that the dependence structure

between these stock returns is significantly asymmetric, with large crashes being

more likely than large booms. Other papers have considered equicorrelation models

for the dependence between large collections of stocks, see Engle and Kelly (2012) for

example, but empirically showing the importance of allowing the implied common

factor to be fat tailed and asymmetric is novel.

Figure 2.4 presents the quantile dependence function from the estimated Normal

copula and the estimated skew t´t factor copula, along with the quantile dependence

averaged across all pairs of stocks, and pointwise 90% bootstrap confidence intervals

for these estimates based on the theory in Rémillard (2010). (The figure zooms in

on the left and right 20% tails, removing the middle 60% of the distribution as the

estimates and models are all very similar there.) This figure reveals that the Normal

copula overestimates the dependence in the upper tail, and underestimates it in the

lower tail. This is consistent with the fact that the empirical quantile dependence

is asymmetric, while the Normal copula imposes symmetry. The skew t ´ t factor

copula provides a reasonable fit in both tails, though it somewhat overestimates the

dependence in the extreme left tail.

Figure 2.5 exploits the high-dimensional nature of our analysis, and plots the

expected proportion of “crashes” in the remaining p100´ jq stocks, conditional on

observing a crash in j stocks. We show this for a “crash” defined as a once-in-a-

month (1/22, around 4.6%) event and as a once-in-a-quarter (1/66, around 1.5%)

event. For once-in-a-month crashes, the observed proportions track the Skew t-t

factor copula well for j up to around 25 crashes, and again for j of around 70. For

with 2.71 and 3.84 for the χ2
1 distribution), which correspond to t-statistics of 1.28 and 1.65.
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j in between 30 and 65 the Normal copula appears to fit quite well. For once-in-a-

quarter crashes, displayed in the lower panel of Figure 2.5, the empirical plot tracks

that for the Normal copula well for j up to around 30, but for j “ 35 the empirical

plot jumps and follows the skew t´ t factor copula. Thus it appears that the Normal

copula may be adequate for modeling moderate tail events, but a copula with greater

tail dependence (such as the skew t ´ t factor copula) is needed for more extreme

tail events.

The last two columns of Table 2.8 report the value of the objective function

pQSMMq and the p-value from a test of the over-identifying restrictions. The QSMM

values reveal that the three models that allow for asymmetry (skew t copula, and

the two skew t factor copulas) out-perform all the other models, and reinforce the

above conclusion that allowing for a skewed common factor is important for this

collection of assets. The p-values, however, are near zero for all models, indicating

that none of them pass this specification test. One likely source of these rejections

is the assumption of equidependence, which was shown in the summary statistics in

Table 2.7 to be questionable for this large set of stock returns. We relax this in the

next section.

2.4.2 Results from block equidependence copula specifications

In response to the rejection of the copula models based on equidependence, we now

consider a generalization to allow for heterogeneous dependence. We propose a multi-

factor model that allows for a common, market-wide, factor, and a set of factors

related only to specific industries. We use the first digit of Standard Industrial

Classification (SIC) to form seven groups of stocks, see Table 2.6. The model we

consider is the copula generated by the following structure:
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Xi “ βiZ0 ` γiZSpiq ` εi, i “ 1, 2, ..., 100

Z0 ∼ Skew t pν, λq (2.23)

ZS ∼ iid t pνq , S “ 1, 2, ..., 7; ZSKKZ0 @ S

εi ∼ iid t pνq , i “ 1, 2, ..., 100; εiKKZj @ i, j

where S piq is the SIC group for stock i. There are eight latent factors in total in this

model, but any given variable is only affected by two factors, simplifying its structure

and reducing the number of free parameters. Note here we impose that the industry

factors and the idiosyncratic shocks are symmetric, and only allow asymmetry in

the market-wide factor, Z0. It is feasible to consider allowing the industry factors to

have differing levels of asymmetry, but we rule this out in the interests of parsimony.

We impose that all stocks in the same SIC group have the same factor loadings, but

allow stocks in different groups to have different factor loadings. This generates a

“block equidependence” model which greatly increases the flexibility of the model,

but without generating too many additional parameters to estimate. In total, this

copula model has a total of 16 parameters, providing more flexibility than the 3-

parameter equidependence model considered in the previous section, but still more

parsimonious (and tractable) than a completely unstructured approach to this 100-

dimensional problem.14

The results of this model are presented in Table 2.9. The Clayton copula is not

presented here as it imposes equidependence by construction, and so is not compara-

ble to the other models. The estimated inverse DoF parameter, ν´1, is around 1/14,

somewhat larger and more significant than for the equidependence model, indicating

stronger evidence of tail dependence. The asymmetry parameters are also larger (in

14 We also considered a one-factor model that allowed for different factor loadings, generalizing
the equidependence model of the previous section but simpler than this multi-factor copula model.
That model provided a significantly better fit than the equidependence model, but was also rejected
using the J test of over-identifying restrictions, and so is not presented here to conserve space.
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absolute value) and more significantly negative in this more flexible model than in

the equidependence model. It appears that when we add variables that control for

intra-industry dependence, (i.e., industry-specific factors) we find the market-wide

common factor is more fat tailed and left skewed than when we impose a single factor

structure.

Focussing on our preferred skew t´ t factor copula model, the coefficients on the

market factor, βi, range from 0.88 (for SIC group 2, Manufacturing: Food, apparel,

etc.) to 1.25 (SIC group 1, Mining and construction), and in all cases significantly

different from zero at the 5% level, indicating the varying degrees of inter-industry

dependence. The coefficients on the industry factors, γi, measure the degree of

additional intra-industry dependence, beyond that coming from the market-wide

factor. These range from 0.17 to 1.09 for SIC groups 3 and 1 respectively. Even

for the smaller estimates, these are significantly different from zero, indicating the

presence of industry factors beyond a common market factor. The intra- and inter-

industry rank correlations and tail dependence coefficients implied by this model15

are presented in Table 2.10, and reveal the degree of heterogeneity and asymmetry

that this copula captures: rank correlations range from 0.39 (for pairs of stocks

in SIC groups 1 and 5) to 0.72 (for stocks within SIC group 1). The upper and

lower tail dependence coefficients further reinforce the importance of asymmetry in

the dependence structure, with lower tail dependence measures being substantially

larger than upper tail measures: lower tail dependence averages 0.82 and ranges from

0.70 to 0.99, while upper tail dependence averages 0.07 and ranges from 0.02 to 0.74.

With this more flexible model we can test restrictions on the factor coefficients,

to see whether the additional flexibility is required to fit the data. The p-values from

these tests are in the bottom rows of Table 2.9. Firstly, we can test whether all of

15 Rank correlations from this model are not available in closed form, and we use 50,000 simulations
to estimate these. Upper and lower tail dependence coefficients are based on Propositions 2 and 3.
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the industry factor coefficients are zero, which reduces this model to a one-factor

model with flexible weights. The p-values from these tests are zero to four decimal

places for all models, providing strong evidence in favor of including industry factors.

We can also test whether the market factor is needed given the inclusion of industry

factors by testing whether all betas are equal to zero, and predictably this restriction

is strongly rejected by the data. We further can test whether the coefficients on the

market and industry factors are common across all industries, reducing this model

to an equidependence model, and this too is strongly rejected. Finally, we use the J

test of over-identifying restrictions to check the specification of these models. Using

this test, we see that the models that impose symmetry are strongly rejected. The

skew t copula has a p-value of 0.04, indicating a marginal rejection, and the skew t´t

factor copula performs best, passing this test at the 5% level, with a p-value of 0.07.

Thus it appears that a multi-factor model with heterogeneous weights on the

factors, that allows for positive tail dependence and stronger dependence in crashes

than booms, is needed to fit the dependence structure of these 100 stock returns.

2.4.3 Measuring systemic risk: Marginal Expected Shortfall

The recent financial crisis has highlighted the need for the management and measure-

ment of systemic risk, see Acharya et al. (2010) for discussion. Brownlees and Engle

(2011) propose a measure of systemic risk they call “marginal expected shortfall”,

or MES. It is defined as the expected return on stock i given that the market return

is below some (low) threshold:

MESit “ ´Et´1 rrit|rmt ă Cs (2.24)

An appealing feature of this measure of systemic risk is that it can be computed with

only a bivariate model for the conditional distribution of prit, rmtq, and Brownlees and

Engle (2011) propose a semiparametric model based on a bivariate DCC-GARCH
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model to estimate it. A corresponding drawback of this measure is that by using

the market index to identify periods of crisis, it may overlook periods with crashes

in individual firms. With a model for the entire set of constituent stocks, such as

the high dimension copula models considered in this paper, combined with standard

AR-GARCH type models for the marginal distributions, we can estimate the MES

measure proposed in Brownlees and Engle (2011), as well as alternative measures

that use crashes in individual stocks as flags for periods of turmoil. For example, one

might consider the expected return on stock i conditional on k stocks in the market

having returns below some threshold, a “kES”:

kESit “ ´Et´1

”

rit

ˇ

ˇ

ˇ

´

ÿN

j“1
1 trjt ă Cu

¯

ą k
ı

(2.25)

Brownlees and Engle (2011) propose a simple method for ranking estimates of

MES:

MSEi “
1

T

T
ÿ

t“1

prit ´MESitq
2 1 trmt ă Cu (2.26)

RelMSEi “
1

T

T
ÿ

t“1

ˆ

rit ´MESit
MESit

˙2

1 trmt ă Cu

Corresponding metrics immediately follow for estimates of “kES”.

In Table 2.11 we present the MSE and RelMSE for estimates of MES and kES, for

threshold choices of -2% and -4%. We implement the model proposed by Brownlees

and Engle (2011), as well as their implementations of a model based on the CAPM,

and one based purely on rolling historical information. Along with these, we present

results for four copulas: the Normal, Student’s t, skew t, and skew t´t factor copula,

all with the block equidependence structure from Section 2.4.2 above. In the upper

panel of Table 2.11 we see that the Brownlees-Engle model performs the best for both

thresholds under the MSE performance metric, with the skew t´ t factor copula as
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the second-best performing model. Under the Relative MSE metric, the factor copula

is best performing model, for both thresholds, followed by the skew t copula. Like

Brownlees and Engle (2011), we find that the worst-performing methods under both

metrics are the Historical and CAPM methods.

The lower panel of Table 2.11 presents the performance of various methods for

estimating kES, with k set to 30.16 This measure requires an estimate of the condi-

tional distribution for the entire set of 100 stocks, and thus the CAPM and Brownlees-

Engle methods cannot be applied. We evaluate the remaining five methods, and find

that the skew t ´ t factor copula performs the best for both thresholds, under both

metrics. Thus our proposed factor copula model for high dimensional dependence

not only allows us to gain some insights into the structure of the dependence between

this large collection of assets, but also provides improved estimates of measures of

systemic risk.

2.5 Conclusion

This paper presents new models for the dependence structure, or copula, of economic

variables based on a simple factor structure for the copula. These models are particu-

larly attractive for high dimensional applications, involving fifty or more variables, as

they allow the researcher to increase or decrease the flexibility of the model according

to the amount of data available and the dimension of the problem, and, importantly,

to do so in a manner that is easily interpreted. The class of factor copulas presented

in this paper does not generally have a closed-form likelihood. We use extreme value

theory to obtain analytical results on the tail dependence implied by factor copulas,

and we consider SMM-type methods for the estimation of factor copulas. Via an

extensive Monte Carlo study, we show that SMM estimation has good finite-sample

16 We choose this value of k so that the number of identified “crisis” days is broadly comparable
to the number of such days for MES. Results for alternative values of k are similar.
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properties in time series applications involving up to 100 variables.

We employ our proposed factor copulas to study daily returns on all 100 con-

stituents of the S&P 100 index over the period 2008-2010, and find significant evi-

dence of a skewed, fat-tailed common factor, which generates asymmetric dependence

and tail dependence. In an extension to a multi-factor copula, we find evidence of

the importance of industry factors, leading to heterogeneous dependence. We also

consider an application to the estimation of systemic risk, and we show that the pro-

posed factor copula model provides superior estimates of two measures of systemic

risk.

2.6 Tables and figures
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Table 2.1: Simulation results for factor copula models

Normal
MLE GMM SMM Factor t´ t Factor skew t´ t

σ2
z σ2

z σ2
z σ2

z ν´1 σ2
z ν´1 λ

True 1.00 1.00 1.00 1.00 0.25 1.00 0.25 -0.50
N “ 3

Bias 0.0141 -0.0143 -0.0164 -0.0016 -0.0185 0.0126 -0.0199 -0.0517
Std 0.0803 0.1014 0.1033 0.1094 0.0960 0.1205 0.1057 0.1477
Med 1.0095 0.9880 0.9949 0.9956 0.2302 1.0050 0.2380 -0.5213
90% 1.1180 1.1103 1.1062 1.1448 0.3699 1.1772 0.3636 -0.3973
10% 0.9172 0.8552 0.8434 0.8721 0.0982 0.8662 0.0670 -0.7538
Diff 0.2008 0.2551 0.2628 0.2727 0.2716 0.3110 0.2966 0.3565

N “ 10

Bias 0.0113 -0.0099 -0.0119 -0.0025 -0.0137 -0.0039 -0.0161 -0.0119
Std 0.0559 0.0651 0.0666 0.0724 0.0611 0.0851 0.0790 0.0713
Med 1.0125 0.9874 0.9898 0.9926 0.2360 0.9897 0.2376 -0.5084
90% 1.0789 1.0644 1.0706 1.0967 0.3102 1.1095 0.3420 -0.4318
10% 0.9406 0.9027 0.8946 0.9062 0.1704 0.8996 0.1331 -0.5964
Diff 0.1383 0.1617 0.1761 0.1905 0.1398 0.2100 0.2089 0.1645

N “ 100

Bias 0.0167 -0.0068 -0.0080 -0.0011 -0.0138 0.0015 -0.0134 -0.0099
Std 0.0500 0.0554 0.0546 0.0659 0.0549 0.0841 0.0736 0.0493
Med 1.0164 0.9912 0.9956 1.0011 0.2346 0.9943 0.2402 -0.5101
90% 1.0805 1.0625 1.0696 1.0886 0.3127 1.1060 0.3344 -0.4465
10% 0.9534 0.9235 0.9279 0.9112 0.1685 0.8970 0.1482 -0.5734
Diff 0.1270 0.1390 0.1418 0.1773 0.1442 0.2089 0.1861 0.1270

Notes: This table presents the results from 100 simulations of three different factor
copulas, the Normal copula, the t´ t factor copula and the skew t´ t factor copula.
The Normal copula is estimated by ML, GMM, and SMM, and the other two copulas
are estimated by SMM. The marginal distributions of the data are assumed to follow
AR(1)-GARCH(1,1) processes, as described in Section 2.3. Problems of dimension
N “ 3, 10 and 100 are considered, the sample size is T “ 1000 and the number of
simulations used is S “ 25 ˆ T. The first row of each panel presents the average
difference between the estimated parameter and its true value. The second row
presents the standard deviation in the estimated parameters. The third, fourth and
fifth rows present the 50th, 90th and 10th percentiles of the distribution of estimated
parameters, and the final row presents the difference between the 90th and 10th

percentiles.
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Table 2.2: Simulation results for different loadings factor copula model with N=100

ν´1 λz β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

True 0.25 -0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Normal

Bias - - -0.0010 -0.0038 -0.0040 -0.0072 -0.0071 -0.0140 -0.0178 -0.0119 -0.0194 -0.0208

Std - - 0.0128 0.0182 0.0248 0.0322 0.0377 0.0475 0.0651 0.0784 0.1022 0.1291

Med - - 0.2489 0.4970 0.7440 0.9942 1.2421 1.4868 1.7279 1.9918 2.2256 2.4832

90% - - 0.2645 0.5204 0.7787 1.0291 1.2970 1.5470 1.8226 2.0874 2.3609 2.6458

10% - - 0.2304 0.4701 0.7158 0.9502 1.1982 1.4197 1.6526 1.8825 2.0921 2.3090

diff - - 0.0341 0.0503 0.0629 0.0788 0.0987 0.1273 0.1700 0.2049 0.2689 0.3368

Factor t´ t

Bias -0.0120 - 0.0000 0.0009 0.0018 -0.0045 0.0011 -0.0073 -0.0080 -0.0122 -0.0061 -0.0065

Std 0.0574 - 0.0149 0.0236 0.0300 0.0343 0.0443 0.0580 0.0694 0.0867 0.1058 0.1332

Med 0.2384 - 0.2503 0.5056 0.7528 0.9985 1.2550 1.4881 1.7409 1.9820 2.2234 2.4737

90% 0.3056 - 0.2678 0.5255 0.7896 1.0348 1.3052 1.5697 1.8270 2.1012 2.4089 2.6597

10% 0.1683 - 0.2348 0.4689 0.7187 0.9462 1.1965 1.4282 1.6517 1.8744 2.1303 2.3196

diff 0.1373 - 0.0330 0.0566 0.0709 0.0886 0.1086 0.1416 0.1754 0.2268 0.2786 0.3401

Factor skew t´ t

Bias -0.0119 -0.0019 0.0008 0.0001 0.0028 -0.0029 -0.0036 -0.0096 -0.0114 -0.0232 -0.0178 -0.0194

Std 0.0633 0.0451 0.0134 0.0246 0.0320 0.0443 0.0588 0.0806 0.0902 0.1111 0.1373 0.1635

Med 0.2434 -0.5051 0.2477 0.5001 0.7520 0.9986 1.2468 1.4826 1.7417 1.9803 2.2107 2.4786

90% 0.3265 -0.4392 0.2680 0.5309 0.7961 1.0613 1.3028 1.5856 1.8378 2.1094 2.4430 2.7034

10% 0.1550 -0.5527 0.2358 0.4660 0.7155 0.9505 1.1756 1.4042 1.6230 1.8395 2.0494 2.2739

diff 0.1714 0.1134 0.0321 0.0648 0.0807 0.1107 0.1272 0.1814 0.2148 0.2699 0.3936 0.4294

Notes: This table presents the results from 100 simulations of three different factor
copulas: the Normal copula, the t´ t factor copula and the skew t´ t factor copula.
We divide the N “ 100 variables into ten groups and assume that all variables
in the same group have the same loading on the common factor. The marginal
distributions of the data are assumed to follow AR(1)-GARCH(1,1) processes, as
described in Section 2.3. The sample size is T “ 1000 and the number of simulations
used is S “ 25ˆT. The first row of each panel presents the average difference between
the estimated parameter and its true value. The second row presents the standard
deviation in the estimated parameters. The third, fourth and fifth rows present the
50th, 90th and 10th percentiles of the distribution of estimated parameters, and the
final row presents the difference between the 90th and 10th percentiles.
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Table 2.3: Simulation results on coverage rates

Factor Factor
Normal t´ t skew t´ t

σ2
z σ2

z ν´1 σ2
z ν´1 λ

N “ 3
εT
0.1 89 93 97 99 100 96
0.03 90 94 98 99 98 96
0.01 88 92 98 99 96 95
0.003 85 95 95 96 89 95
0.001 83 89 89 92 84 93
0.0003 58 69 69 74 74 74
0.0001 38 49 53 57 70 61

N “ 10
εT
0.1 87 93 99 97 98 99
0.03 87 95 99 97 98 97
0.01 87 94 96 97 98 95
0.003 87 95 95 98 95 96
0.001 87 95 93 96 90 95
0.0003 86 94 87 91 77 93
0.0001 71 87 81 71 81 85

N “ 100
εT
0.1 95 93 95 94 95 94
0.03 95 94 94 94 94 94
0.01 95 93 93 94 94 94
0.003 94 95 93 94 94 94
0.001 94 94 92 94 93 95
0.0003 92 94 92 94 92 93
0.0001 84 94 89 94 88 95

Notes: This table presents the results from 100 simulations of three different factor
copulas, the Normal copula, the t´ t factor copula and the skew t´ t factor copula,
all estimated by SMM. The marginal distributions of the data are assumed to follow
AR(1)-GARCH(1,1) processes, as described in Section 2.3. Problems of dimension
N “ 3, 10 and 100 are considered, the sample size is T “ 1000 and the number of
simulations used is S “ 25ˆT. The rows of each panel contain the step size, εT , used
in computing the matrix of numerical derivatives, ĜT,S. The numbers in the table
present the percentage of simulations for which the 95% confidence interval based on
the estimated covariance matrix contained the true parameter.
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Table 2.4: Coverage rate for different loadings factor copula model with N=100
AR-GARCH data

ν´1 λ β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Normal
εT
0.1 - - 97 91 92 89 95 93 94 95 95 90
0.03 - - 97 91 92 90 95 95 94 95 95 90
0.01 - - 97 91 92 90 95 94 94 96 94 91
0.003 - - 97 90 93 90 95 94 95 96 95 90
0.001 - - 97 90 94 93 94 94 94 96 94 92
0.0003 - - 97 92 93 92 95 94 91 93 92 94
0.0001 - - 94 94 91 88 90 92 94 91 88 86

Factor t´ t
εT
0.1 95 - 94 93 96 96 98 91 93 92 95 93
0.03 94 - 94 91 96 96 98 92 93 92 97 93
0.01 95 - 94 94 97 96 97 93 93 92 98 93
0.003 94 - 94 94 97 96 97 94 94 95 98 95
0.001 94 - 93 93 97 97 97 92 96 94 100 94
0.0003 90 - 94 95 98 97 99 94 95 95 99 93
0.0001 65 - 95 96 96 98 98 92 96 94 97 91

Factor skew t´ t
εT
0.1 93 95 98 95 96 94 94 92 91 91 90 92
0.03 93 95 98 95 95 94 95 92 91 91 89 90
0.01 93 95 97 96 95 94 94 92 92 91 91 91
0.003 93 95 97 96 96 94 95 92 92 92 90 89
0.001 93 94 97 96 95 94 94 91 91 93 89 88
0.0003 84 93 98 95 95 95 95 90 90 88 83 85
0.0001 69 86 98 97 94 91 90 88 87 84 83 80

Notes: This table presents the results from 100 simulations of three different factor
copulas: the Normal copula, the t´ t factor copula and the skew t´ t factor copula.
We divide the N “ 100 variables into ten groups and assume that all variables in the
same group have the same loading on the common factor. The marginal distributions
of the data are assumed to follow AR(1)-GARCH(1,1) processes, as described in
Section 2.3. The sample size is T “ 1000 and the number of simulations used is S “
25ˆT. The rows of each panel contain the step size, εT , used in computing the matrix
of numerical derivatives, ĜT,S. The numbers in the table present the percentage of
simulations for which the 95% confidence interval based on the estimated covariance
matrix contained the true parameter.
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Table 2.5: Rejection frequencies for the test of overidentifying restrictions

Equidependence Different loadings
Factor Factor Factor Factor

Normal t´ t skew t´ t Normal t´ t skew t´ t
N “ 3

εT
0.1 97 97 99 95 97 97
0.03 97 98 99 95 95 96
0.01 97 97 100 93 95 95
0.003 97 98 100 92 95 96
0.001 98 96 100 93 93 97
0.0003 99 97 100 91 92 97
0.0001 99 97 99 92 94 98

N “ 10
εT
0.1 97 97 98 98 95 98
0.03 98 97 97 98 95 99
0.01 96 97 97 97 94 98
0.003 97 96 97 98 92 99
0.001 98 95 97 96 89 100
0.0003 97 94 97 97 93 100
0.0001 97 94 98 98 95 100

N “ 100
εT
0.1 97 95 99 95 95 99
0.03 97 95 98 96 94 99
0.01 97 95 98 96 93 99
0.003 97 95 97 95 94 99
0.001 97 94 99 95 91 100
0.0003 97 94 99 95 89 100
0.0001 98 92 98 93 90 100

Notes: This table presents the results from 100 simulations of three different factor
copulas, the Normal copula, the t´ t factor copula and the skew t´ t factor copula,
all estimated by SMM. The marginal distributions of the data are assumed to follow
AR(1)-GARCH(1,1) processes, as described in Section 2.3. Problems of dimension
N “ 3, 10 and 100 are considered, the sample size is T “ 1000 and the number of
simulations used is S “ 25 ˆ T. The rows of each panel contain the step size, εT ,
used in computing the matrix of numerical derivatives, ĜT,S, needed for the critical
value. The confidence level for the test of over-identifying restrictions is 0.95, and
the numbers in the table present the percentage of simulations for which the test
statistic was greater than its computed critical value.
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Table 2.6: Stocks used in the empirical analysis

Ticker Name SIC Ticker Name SIC Ticker Name SIC

AA Alcoa 333 EXC Exelon 493 NKE Nike 302

AAPL Apple 357 F Ford 371 NOV National Oilwell 353

ABT Abbott Lab. 283 FCX Freeport 104 NSC Norfolk Sth 671

AEP American Elec 491 FDX Fedex 451 NWSA News Corp 271

ALL Allstate Corp 633 GD GeneralDynam 373 NYX NYSE Euronxt 623

AMGN Amgen Inc. 283 GE General Elec 351 ORCL Oracle 737

AMZN Amazon.com 737 GILD GileadScience 283 OXY OccidentalPetrol 131

AVP Avon 284 GOOG Google Inc 737 PEP Pepsi 208

AXP American Ex 671 GS GoldmanSachs 621 PFE Pfizer 283

BA Boeing 372 HAL Halliburton 138 PG Procter&Gamble 284

BAC Bank of Am 602 HD Home Depot 525 QCOM Qualcomm Inc 366

BAX Baxter 384 HNZ Heinz 203 RF Regions Fin 602

BHI Baker Hughes 138 HON Honeywell 372 RTN Raytheon 381

BK Bank of NY 602 HPQ HP 357 S Sprint 481

BMY Bristol-Myers 283 IBM IBM 357 SLB Schlumberger 138

BRK Berkshire Hath 633 INTC Intel 367 SLE Sara Lee Corp. 203

C Citi Group 602 JNJ Johnson&J. 283 SO Southern Co. 491

CAT Caterpillar 353 JPM JP Morgan 672 T AT&T 481

CL Colgate 284 KFT Kraft 209 TGT Target 533

CMCSA Comcast 484 KO Coca Cola 208 TWX Time Warner 737

COF Capital One 614 LMT Lock’dMartn 376 TXN Texas Inst 367

COP Conocophillips 291 LOW Lowe’s 521 UNH UnitedHealth 632

COST Costco 533 MA Master card 615 UPS United Parcel 451

CPB Campbell 203 MCD MaDonald 581 USB US Bancorp 602

CSCO Cisco 367 MDT Medtronic 384 UTX United Tech 372

CVS CVS 591 MET Metlife Inc. 671 VZ Verizon 481

CVX Chevron 291 MMM 3M 384 WAG Walgreen 591

DD DuPont 289 MO Altria Group 211 WFC Wells Fargo 602

DELL Dell 357 PM Philip Morris 211 WMB Williams 492

DIS Walt Disney 799 MON Monsanto 287 WMT WalMart 533

DOW Dow Chem 282 MRK Merck 283 WY Weyerhauser 241

DVN Devon Energy 131 MS MorganStanley 671 XOM Exxon 291

EMC EMC 357 MSFT Microsoft 737 XRX Xerox 357

ETR ENTERGY 491

Notes: This table presents the ticker symbols, names and 3-digit SIC codes of the
100 stocks used in Section 2.4.
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Table 2.7: Summary statistics

Cross-sectional distribution

Mean 5% 25% Med 75% 95%

Mean 0.0004 -0.0003 0.0001 0.0003 0.0006 0.0013
Std dev 0.0287 0.0153 0.0203 0.0250 0.0341 0.0532
Skewness 0.3458 -0.4496 -0.0206 0.3382 0.6841 1.2389
Kurtosis 11.3839 5.9073 7.5957 9.1653 11.4489 19.5939

φ0 0.0004 -0.0004 0.0001 0.0004 0.0006 0.0013
φ1 -0.0345 -0.2045 -0.0932 -0.0238 0.0364 0.0923
φm -0.0572 -0.2476 -0.1468 -0.0719 0.0063 0.1392
ω ˆ 1000 0.0126 0.0024 0.0050 0.0084 0.0176 0.0409
β 0.8836 0.7983 0.8639 0.8948 0.9180 0.9436
α 0.0240 0.0000 0.0000 0.0096 0.0354 0.0884
γ 0.0593 0.0000 0.0017 0.0396 0.0928 0.1628
αm 0.0157 0.0000 0.0000 0.0000 0.0015 0.0646
γm 0.1350 0.0000 0.0571 0.0975 0.1577 0.3787

ρ 0.4155 0.2643 0.3424 0.4070 0.4749 0.5993
ρs 0.4376 0.2907 0.3690 0.4292 0.4975 0.6143
pτ0.99 ` τ0.01q {2 0.0572 0.0000 0.0000 0.0718 0.0718 0.1437
pτ0.90 ´ τ0.10q -0.0922 -0.2011 -0.1293 -0.0862 -0.0431 0.0144

Notes: This table presents some summary statistics of the daily equity returns data
used in the empirical analysis. The top panel presents simple unconditional mo-
ments of the daily return series. The second panel presents summaries of the es-
timated AR(1)–GJR-GARCH(1,1) models estimated on these returns. The lower
panel presents linear correlation, rank correlation, average 1% upper and lower tail
dependence, and the difference between the 10% tail dependence measures, com-
puted using the standardized residuals from the estimated AR–GJR-GARCH model.
The columns present the mean and quantiles from the cross-sectional distribution of
the measures listed in the rows. The top two panels present summaries across the
N “ 100 marginal distributions, while the lower panel presents a summary across
the N pN ´ 1q {2 “ 4950 distinct pairs of stocks.
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Table 2.11: Performance of methods for predicting systemic risk

MSE RelMSE

Cut-off -2% -4% -2% -4%

Marginal Expected Shortfall (MES)

Brownlees-Engle 0.9961 1.2023 0.7169 0.3521
Historical 1.1479 1.6230 1.0308 0.4897
CAPM 1.1532 1.5547 0.9107 0.4623
Normal copula 1.0096 1.2521 0.6712 0.3420
t copula 1.0118 1.2580 0.6660 0.3325
Skew t copula 1.0051 1.2553 0.6030 0.3040
Skew t´ t factor copula 1.0012 1.2445 0.5885 0.2954

k-Expected Shortfall (kES)

Historical 1.1632 1.6258 1.4467 0.7653
Normal copula 1.0885 1.4855 1.3220 0.5994
t copula 1.0956 1.4921 1.4496 0.6372
Skew t copula 1.0898 1.4923 1.3370 0.5706
Skew t´ t factor copula 1.0822 1.4850 1.1922 0.5204

Notes: This table presents the MSE (left panel) and Relative MSE (right panel) for
various methods of estimating measures of systemic risk. The top panel presents
results for marginal expected shortfall (MES ), defined in equation (2.24), and the
lower panel presents results for k-expected shortfall (kES ), defined in equation (2.25),
with k set to 30. Two thresholds are considered, C “ ´2% and C “ ´4%. There are
70 and 21 “event” days for MES under these two thresholds, and 116 and 36 “event”
days for kES. The best-performing model for each threshold and performance metric
is highlighted in bold.
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Figure 2.1: Scatter plots from four bivariate distributions, all with N(0,1) margins
and linear correlation of 0.5, constructed using four different factor copulas.
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Figure 2.3: Conditional on observing j out of 100 stocks crashing, this figure
presents the expected number (upper panel) and proportion (lower panel) of the re-
maining (100-j) stocks that will crash. “Crash” events are defined as returns in the
lower 1/66 tail.
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Figure 2.4: Sample quantile dependence for 100 daily stock returns, along with the
fitted quantile dependence from a Normal copula and from a Skew t-t factor copula,
for the lower and upper tails.
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Figure 2.5: Conditional on observing j out of 100 stocks crashing, this figure
presents the expected proportion of the remaining (100-j) stocks that will crash.
“Crash” events are defined as returns in the lower 1/22 (upper panel) and 1/66
(lower panel) tail. Note that the horizontal axes in these two panels are different,
due to limited information in the joint tails.
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3

Simulated Method of Moments Estimation for
Copula-Based Multivariate Models (co-authored

with Andrew Patton)

3.1 Introduction

Copula-based models for multivariate distributions are widely used in a variety of ap-

plications, including actuarial science and insurance (Embrechts, McNeil and Strau-

mann, 2002; Rosenberg and Schuermann 2006), economics (Brendstrup and Paarsch

2007; Bonhomme and Robin 2009), epidemiology (Clayton 1978; Fine and Jiang

2000), finance (Cherubini, Luciano and Vecchiato 2004; Patton 2006a), geology and

hydrology (Cook and Johnson 1981; Genest and Favre 2007), among many others.

An important benefit they provide is the flexibility to specify the marginal distribu-

tions separately from the dependence structure, without imposing that they come

from the same family of joint distributions.

While copulas provide a great deal of flexibility in theory, the search for copula

models that work well in practice is an ongoing one. This search has spawned a

number of new and flexible models, see Demarta and McNeil (2005), McNeil, Frey
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and Embrechts (2005), Smith, Min, Almeida and Czado (2010), Smith, Gan and

Kohn (2012), and Oh and Patton (2011), among others. Some of these models

are such that the likelihood of the copula is either not known in closed form, or

is complicated to obtain and maximize, motivating the consideration of estimation

methods other than MLE. Moreover, in many financial applications, the estimated

copula model is used in pricing a derivative security, such as a collateralized debt

obligation or a credit default swap (CDO or CDS), and it may be of interest to

minimize the pricing error (the observed market price less the model-implied price of

the security) in calibrating the parameters of the model. In some cases the mapping

from the parameter(s) of the copula to dependence measures (such as Spearman’s or

Kendall’s rank correlation, for example) or to the price of the derivative contract is

known in closed form, thus allowing for method of moments or generalized method

of moments (GMM) estimation. In general, however, this mapping is unknown,

and an alternative estimation method is required. We consider a simple yet widely

applicable simulation-based approach to address this problem.

This paper presents the asymptotic properties of a simulation-based estimator of

the parameters of a copula model. We consider both iid and time series data, and we

consider the case that the marginal distributions are estimated using the empirical

distribution function (EDF). The estimation method we consider shares features

with the simulated method of moments (SMM), see McFadden (1989) and Pakes

and Pollard (1989), for example, however the presence of the EDF in the sample

“moments” means that existing results on SMM are not directly applicable. We

draw on well-known results on SMM estimators, see Newey and McFadden (1994) for

example, and recent results from empirical process theory for copulas, see Fermanian,

Radulović and Wegkamp (2004), Chen and Fan (2006) and Rémillard (2010), to show

the consistency and asymptotic normality of simulation-based estimators of copula

models. To the best of our knowledge, simulation-based estimation of copula models
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has not previously been considered in the literature. An extensive simulation study

verifies that the asymptotic results provide a good approximation in finite samples.

We illustrate the results with an application to a model of the dependence between

the equity returns on seven financial firms during the recent crisis period.

In addition to maximum likelihood, numerous other estimation methods have

been considered for copula-based multivariate models. We describe these here and

contrast them with the SMM approach proposed in this paper. Multi-stage maxi-

mum likelihood, also known as “inference functions for margins” in this literature

(see Joe and Xu (1996) and Joe (2005) for iid data and Patton (2006b) for time

series data) is one of the most widely-used estimation methods. The “maximiza-

tion by parts” (MBP) algorithm of Song, et al. (2005) is an iterative method that

improves the efficiency of multi-stage MLE, and attains full efficiency under some

conditions. Like MLE, both of these methods only apply when the marginal distribu-

tions are parametric. When the marginal distribution models are correctly specified

this improves the efficiency of the estimator, relative to the proposed SMM approach

using nonparametric margins, however it introduces the possibility of mis-specified

marginal distributions, which can have deleterious effects on the copula parameter

estimates, see Kim, et al. (2007).

Semi-parametric maximum likelihood (see Genest, Ghoudi and Rivest (1995) for

iid data and Chen and Fan (2006), Chen et al. (2009) and Chen, Fan and Tsyren-

nikov (2006) for time series data) is also a widely-used estimation method and has a

number of attractive features. Most importantly, with respect to SMM approach pro-

posed here, it yields fully efficient estimates of the copula parameters, whereas SMM

generally does not. Semi-parametric MLE requires, of course, the copula likelihood

and for some more complicated models the likelihood can be cumbersome to derive or

to compute, e.g. the “stochastic copula” model of Hafner and Manner (2012) or the

high dimension factor copula model of Oh and Patton (2011). In such applications
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it may be desirable to avoid the likelihood and use a simpler SMM approach.

A long-standing estimator of the copula parameter is the method of moments

(MM) estimator (see Genest (1987) and Genest and Rivest (1993) for iid data and

Rémillard (2010) for time series data). This estimator exploits the known one-to-

one mapping between the parameters of certain copulas and certain measures of

dependence. For example, a Clayton copula with parameter κ implies Kendall’s

tau of κ{ pκ` 2q , yielding a simple MM estimator of the parameter of this copula as

κ̂ “ 2τ̂{ p1´ τ̂q . This estimator usually has the benefit of being very fast to compute.

The SMM estimator proposed in this paper is a direct generalization of MM in two

directions. Firstly, it allows the consideration of over-identified models: For some

copulas we have more implied dependence measures than unknown parameters (e.g.,

for the Normal copula we have both Kendall’s tau and Spearman’s rank correlation

in closed form). By treating this as a GMM estimation problem we can draw on the

information in all available dependence measures. Secondly, we allow for dependence

measures that are not known closed-form functions of the copula parameters. We

use simulations to obtain the mapping, making this SMM rather than GMM. In

the case that the mapping is known and the number of free parameters equals the

number of dependence measures, our SMM approach simplifies to the well-known

MM approach.

Other, less-widely used, estimation methods considered in the literature include

minimum distance estimation, see Tsukahara (2005), and “expert judgment” estima-

tion, see Britton, Fisher and Whitley (1998). This paper contributes to this literature

by considering the properties of a SMM-type estimator, for both iid and time series

data, nesting GMM and MM estimation of the copula parameter as special cases.
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3.2 Simulation-based estimation of copula models

We consider the same class of data generating processes (DGPs) as Chen and Fan

(2006), Chen, et al. (2009) and Rémillard (2010). This class allows each variable

to have time-varying conditional mean and conditional variance, each governed by

parametric models, with some unknown marginal distribution. As in those papers,

and also earlier papers such as Genest and Rivest (1993) and Genest, Ghoudi and

Rivest (1995), we estimate the marginal distributions using the empirical distribu-

tion function (EDF). The conditional copula of the data is assumed to belong to a

parametric family with unknown parameter θ0. The DGP we consider is:

rY1t, . . . , YNts
1
” Yt “ µt pφ0q ` σt pφ0q ηt (3.1)

where µt pφq ” rµ1t pφq , . . . , µNt pφqs
1

σt pφq ” diag tσ1t pφq , . . . , σNt pφqu

rη1t, . . . , ηNts
1
” ηt „ iid Fη “ C pF1, . . . , FN ; θ0q

where µt and σt are Ft´1-measurable and independent of ηt. Ft´1 is the sigma-field

containing information generated by tYt´1,Yt´2, . . .u. The r ˆ 1 vector of parame-

ters governing the dynamics of the variables, φ0, is assumed to be
?
T -consistently

estimable, which holds under mild conditions for many commonly-used models for

multivariate time series, such as ARMA models, GARCH models, stochastic volatil-

ity models, etc. If φ0 is known, or if µt and σt are known constant, then the model be-

comes one for iid data. Our task is to estimate the pˆ1 vector of copula parameters,

θ0 P Θ, based on the (estimated) standardized residual tη̂t ” σ´1
t pφ̂qrYt ´ µtpφ̂qu

T
t“1

and simulations from the copula model, C p¨; θq.

3.2.1 Definition of the SMM estimator

We will consider simulation from some parametric multivariate distribution, Fx pθq ,

with marginal distributions Gi pθq , and copula C pθq . This allows us to consider
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cases where it is possible to simulate directly from the copula model C pθq (in which

case the Gi are all Unif p0, 1q) and also cases where the copula model is embedded

in some joint distribution with unknown marginal distributions, such as the factor

copula models of Oh and Patton (2011).

We use only “pure” dependence measures as moments since those are affected

not by changes in the marginal distributions of simulated data pXq. For example,

moments like means and variances, are functions of the marginal distributions pGiq

and contain no information on the copula. Measures like linear correlation contain

information on the copula but are also affected by the marginal distributions. De-

pendence measures like Spearman’s rank correlation and quantile dependence are

purely functions of the copula and are unaffected by the marginal distributions, see

Nelsen (2006) and Joe (1997) for example. Spearman’s rank correlation, quantile

dependence, and Kendall’s tau for the pair pηi, ηjq are defined as:

ρij ” 12E rFi pηiqFj pηjqs ´ 3 “ 12

ż ż

uvdCij pu, vq ´ 3 (3.2)

λijq ”

#

P rFi pηiq ď q|Fj pηjq ď qs “
Cijpq,qq

q
, q P p0, 0.5s

P rFi pηiq ą q|Fj pηjq ą qs “
1´2q`Cijpq,qq

1´q
, q P p0.5, 1q

(3.3)

τ ij ” 4E rCij pFi pηiq , Fj pηjqqs ´ 1 (3.4)

where Cij is the copula of pηi, ηjq . The sample counterparts based on the estimated

standardized residuals are defined as:

ρ̂ij ”
12

T

T
ÿ

t“1

F̂i pη̂itq F̂j pη̂jtq ´ 3 (3.5)

λ̂ijq ”

#

1
Tq

řT
t“1 1tF̂i pη̂itq ď q, F̂j pη̂jtq ď qu, q P p0, 0.5s

1
T p1´qq

řT
t“1 1tF̂i pη̂itq ą q, F̂j pη̂jtq ą qu, q P p0.5, 1q

(3.6)

τ̂ ij ” 4
1

T

T
ÿ

t“1

Ĉij

´

F̂i pη̂itq , F̂j pη̂jtq
¯

´ 1 (3.7)
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where F̂i pyq ” pT ` 1q´1 řT
t“1 1tη̂it ď yu, and Ĉij pu, vq ” pT ` 1q´1 řT

t“1 1tF̂i pη̂itq ď

u, F̂j pη̂jtq ď vu. We will denote the counterparts based on simulated data as ρ̃ij pθq,

λ̃ijq pθq and τ̃ ij pθq .

Let m̃S pθq be a pmˆ 1q vector of dependence measures computed using S simu-

lations from Fx pθq, tXsu
S
s“1 , and let m̂T be the corresponding vector of dependence

measures computed using the the standardized residuals tη̂tu
T
t“1. These vectors can

also contain linear combinations of dependence measures, a feature that is useful

when considering estimation of high-dimension models. Define the difference be-

tween these as

gT,S pθq ” m̂T ´ m̃S pθq (3.8)

Our SMM estimator is based on searching across θ P Θ to make this difference as

small as possible. The estimator is defined as:

θ̂T,S ” arg min
θPΘ

QT,S pθq (3.9)

where QT,S pθq ” g1T,S pθqŴTgT,S pθq

and ŴT is some positive definite weight matrix, which may depend on the data.

As usual, for identification we require at least as many moment conditions as there

are free parameters (i.e., m ě p). In the subsections below we establish the consis-

tency and asymptotic normality of this estimator, provide a consistent estimator of

its asymptotic covariance matrix, and obtain a test based on over-identifying restric-

tions. Appendix C.2 presents details on the computation of the objective function.

3.2.2 Consistency of the SMM estimator

The estimation problem here differs in two important ways from standard GMM or

M-estimation: Firstly, the objective function, QT,S pθq is not continuous in θ since

m̃S pθq will be a number in a set of discrete values as θ varies on Θ, for exam-

ple,
!

0, 1
Sq
, 2
Sq
, . . . , S

Sq

)

for a lower quantile dependence. This problem would vanish
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if, for the copula model being considered, we knew the mapping θ ÞÝÑ m0 pθq ”

limSÑ8 m̃S pθq in closed form. The second difference is that a law of large numbers

is not available to show the pointwise convergence of gT,S pθq , as the functions m̂T

and m̃S pθq both involve empirical distribution functions. We use recent develop-

ments in empirical process theory to overcome this difficulty.

We now list some assumptions that are required for our results to hold.

Assumption 1.

(i) The distributions Fη and Fx are continuous.

(ii) Every bivariate marginal copula Cij of C has continuous partial derivatives

with respect to ui and uj.

If the data Yt are iid, e.g. if µt and σt are known constant in equation (3.1), or if

φ0 is known, then Assumption 1 is sufficient to prove Proposition 1 below, using the

results of Fermanian, et al. (2004). If, however, estimated standardized residuals are

used in the estimation of the copula then more assumptions are necessary in order to

control the estimation error coming from the models for the conditional means and

conditional variances. We combine assumptions A1–A6 in Rémillard (2010) in the

following assumption. First, define γ0t “ σ´1
t

´

φ̂
¯

9µt

´

φ̂
¯

and γ1kt “ σ´1
t

´

φ̂
¯

9σkt

´

φ̂
¯

where 9µt pφq “
Bµtpφq
Bφ1

, 9σkt pφq “
Brσtpφqsk-th column

Bφ1
, k “ 1, . . . , N. Define dt as

dt “ ηt ´ η̂t ´

˜

γ0t `

N
ÿ

k“1

ηktγ1kt

¸

´

φ̂´ φ0

¯

where ηkt is k-th row of ηt and both γ0t and γ1kt are Ft´1-measurable.

Assumption 2.
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(i) 1
T

T
ř

t“1

γ0t
p
Ñ Γ0 and 1

T

T
ř

t“1

γ1kt
p
Ñ Γ1k where Γ0 and Γ1k are deterministic for

k “ 1, . . . , N.

(ii) 1
T

T
ř

t“1

E p}γ0t}q ,
1
T

T
ř

t“1

E
`

}γ0t}
2
˘

, 1
T

T
ř

t“1

E p}γ1kt}q , and 1
T

T
ř

t“1

E
`

}γ1kt}
2
˘

are bounded

for k “ 1, . . . , N.

(iii) There exists a sequence of positive terms rt ą 0 so that
ř

tě1 rt ă 8 and such

that the sequence max1ďtďT }dt} {rt is tight.

(iv) max1ďtďT }γ0t} {
?
T “ op p1q and max1ďtďT ηkt }γ1kt} {

?
T “ op p1q for k “

1, . . . , N.

(v)
´

αT ,
?
T
´

φ̂´ φ0

¯¯

weakly converges to a continuous Gaussian process in r0, 1sN

ˆ Rr, where αT is the empirical copula process of uniform random variables:

αT “
1
?
T

T
ř

t“1

"

N
ś

k“1

1 pUkt ď ukq ´ C puq

*

(vi) BFη
Bηk

and ηk
BFη
Bηk

are bounded and continuous on R̄N “ r´8,`8sN for k “

1, . . . , N.

With these two assumptions, sample rank correlation and quantile dependence

converge in probability to their population counterparts, see Theorems 3 and 6 of

Fermanian, Radulović and Wegkamp (2004) for the iid case, and combine with Corol-

lary 1 of Rémillard (2010) for the time series case. (See Lemma 1 of Appendix C.1

for details.) When applied to simulated data this convergence holds pointwise for

any θ. Thus gT,S pθq converges in probability to the population moment functions

defined as follows:

gT,S pθq ” m̂T ´ m̃S pθq
p
ÝÑ g0 pθq ” m0 pθ0q ´m0 pθq , for @θ P Θ as T, S Ñ 8

(3.10)
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We define the population objective function as

Q0 pθq “ g0 pθq
1W0g0 pθq (3.11)

where W0 is the probability limit of ŴT . The convergence of gT,S pθq and ŴT

implies that

QT,S pθq
p
ÝÑ Q0 pθq for @θ P Θ as T, S Ñ 8

For consistency of our estimator we need, as usual, uniform convergence of QT,S pθq ,

but as this function is not continuous in θ and a law of large numbers is not available,

the standard approach based on a uniform law of large numbers is not available. We

instead use results on the stochastic equicontinuity of gT,S pθq , based on Andrews

(1994) and Newey and McFadden (1994).

Assumption 3.

(i) g0 pθq ‰ 0 for θ ‰ θ0

(ii) Θ is compact.

(iii) Every bivariate marginal copula Cij pui,uj; θq of C pθq on pui, ujq P p0, 1qˆp0, 1q

is Lipschitz continuous on Θ.

(iv) ŴT is Op p1q and converges in probability to W0, a positive definite matrix.

Proposition 1. Suppose that Assumptions 1, 2 and 3 hold. Then θ̂T,S
p
ÝÑ θ0 as

T, S Ñ 8

A sketch of all proofs is presented in Section 3.6, and detailed proofs are in Ap-

pendix C.1. Assumption 3(iii) is needed to prove the stochastic Lipschitz continuity

of gT,S pθq , which is a sufficient condition for the stochastic equicontinuity of gT,S pθq,

and can easily be shown to be satisfied for many bivariate parametric copulas. As-

sumption 3(ii) requires compactness of the parameter space, a common assumption,
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and is aided by having outside information (such as constraints from economic ar-

guments) that allow the researcher to bound the set of plausible parameters. While

Pakes and Pollard (1989) and McFadden (1989) show the consistency of SMM es-

timator for T, S diverging at the same rate, Proposition 1 shows that the copula

parameter is consistent at any relative rate of T and S as long as both diverge. If

we know the function m pθq in closed form, then GMM is feasible and is equivalent

to our estimator with S{T Ñ 8 as T, S Ñ 8.

We focus on weak consistency of our estimator because it suffices for our asymp-

totic distribution theory, presented below. A corresponding strong consistency result,

i.e., θ̂T,S
a.s.
ÝÑ θ0, may be obtained by drawing on recent work by Bouzebda and Zari

(2011). The key is to show uniform strong convergence of the sample objective func-

tion, from which strong consistency of the estimator easily follows, see Newey and

McFadden (1994) for example. Uniform strong consistency of the objective function

can be shown by combining minor changes in the above assumptions (eg, ŴT must

converge a.s. to W0) with pointwise strong convergence of the objective function,

which can be obtained using the results of Bouzebda and Zari (2011).

3.2.3 Asymptotic normality of the SMM estimator

As QT,S pθq is non-differentiable the standard approach based on a Taylor expansion

is not available, however the asymptotic normality of our estimator can still be

established with some further assumptions:

Assumption 4.

(i) θ0 is an interior point of Θ

(ii) g0 pθq is differentiable at θ0 with derivative G0 such that G1
0W0G0 is nonsin-

gular.
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(iii) gT,S

´

θ̂T,S

¯1

ŴTgT,S

´

θ̂T,S

¯

ď infθPΘ gT,S pθq
1 ŴTgT,S pθq ` op p1{T ` 1{Sq

The first assumption above is standard, and the third assumption is standard in

simulation-based estimation problems, see Newey and McFadden (1994) for example.

The rate at which the op term vanishes in part (iii) turns out to depend on the

smaller of T or S, as op p1{T ` 1{Sq “ op
`

min pT, Sq´1
˘

, as will become clear from

the proposition below. The second assumption requires the population objective

function, g0, to be differentiable even though its finite-sample counterpart is not,

which is common in simulation-based estimation. The nonsingularity of G1
0W0G0 is

sufficient for local identification of the parameters of this model at θ0, see Hall (2005)

and Rothenberg (1971). With these assumptions in hand we obtain the following

result based on three different relative divergence rates of T and S.

Proposition 2. Suppose that Assumptions 1, 2, 3 and 4 hold. Then

1
a

1{S ` 1{T

´

θ̂T,S ´ θ0

¯

d
ÝÑ N p0,Ω0q as T, S Ñ 8 (3.12)

where Ω0 “ pG
1
0W0G0q

´1 G1
0W0Σ0W0G0 pG

1
0W0G0q

´1 , and Σ0 ” avar rm̂T s .

The rate of convergence is thus shown to equal min pS, T q1{2 . In general, one

would like to set S very large to minimize the impact of simulation error and obtain

a
?
T convergence rate, however if the model is computationally costly to simulate,

then the result for S ! T may be useful. When S and T diverge at different rates the

asymptotic variance of min pS, T q1{2
´

θ̂T,S ´ θ0

¯

is simply Ω0. When S and T diverge

at the same rate, say S{T Ñ k P p0,8q , the asymptotic variance of
?
T
´

θ̂T,S ´ θ0

¯

is p1` 1{kqΩ0, which incorporates efficiency loss from simulation error. As usual we

find that Ω0 “
`

G1
0Σ

´1
0 G0

˘´1
if W0 is the efficient weight matrix, Σ´1

0 .

The proof of the above proposition uses recent results for empirical copula pro-

cesses presented in Fermanian, Radulović and Wegkamp (2004) and Rémillard (2010)
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to establish the asymptotic normality of the sample dependence measures, m̂T ,

and requires us to establish the stochastic equicontinuity of the moment functions,

vT,S pθq “
?
T rgT,S pθq ´ g0 pθqs . These are shown in Lemmas 6 and 7 in Appendix

C.1.

Chen and Fan (2006), Chen, et al. (2009) and Rémillard (2010) show that estima-

tion error from φ̂ does not enter the asymptotic distribution of the copula parameter

estimator for maximum likelihood or (analytical) moment-based estimators, and the

above proposition shows that this surprising result also holds for the SMM-type esti-

mators proposed here. In applications based on parametric models for the marginal

distributions, the asymptotic covariance matrix of the copula parameter is more com-

plicated. In such cases, the model is fully parametric and the estimation approach

here is a form of two-stage GMM (or SMM). In the absence of simulations, this can

be treated using existing methods, see White (1994) and Gourieroux, et al. (1996)

for example. If simulations are used in the copula estimation step, then the lemmas

presented in Appendix C.1 can be combined with existing results on two-stage GMM

to obtain the limiting distribution. This is not difficult and requires some detailed

notation, and so is not presented here.

3.2.4 Consistent estimation of the asymptotic variance

The asymptotic variance of our estimator has the familiar form of standard GMM

applications, however the components Σ0 and G0 require more care in their estima-

tion than in standard applications. We suggest using an iid bootstrap to estimate

Σ0 :

1. Sample with replacement from the standardized residuals tη̂tu
T
t“1 to obtain a

bootstrap sample,
!

η̂
pbq
t

)T

t“1
. Repeat this step B times.

2. Using
!

η̂
pbq
t

)T

t“1
, b “ 1, ..., B, compute the sample moments and denote as m̂

pbq
T ,
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b “ 1, ..., B.

3. Calculate the sample covariance matrix of m̂
pbq
T across the bootstrap replica-

tions, and scale it by the sample size:

Σ̂T,B “
T

B

B
ÿ

b“1

´

m̂
pbq
T ´ m̂T

¯´

m̂
pbq
T ´ m̂T

¯1

(3.13)

For the estimation of G0, we suggest a numerical derivative of gT,S pθq at θ̂T,S,

however the fact that gT,S is non-differentiable means that care is needed in choosing

the step size for the numerical derivative. In particular, Proposition 3 below shows

that we need to let the step size go to zero, as usual, but slower than the inverse of

the rate of convergence of the estimator (i.e., 1{min
`
?
T ,
?
S
˘

). Let ek denote the

k-th unit vector whose dimension is the same as that of θ, and let εT,S denote the

step size. A two-sided numerical derivative estimator ĜT,S of G has k-th column

ĜT,S,k “

gT,S

´

θ̂T,S`ekεT,S

¯

´ gT,S

´

θ̂T,S´ekεT,S

¯

2εT,S
, k “ 1, 2, ..., p (3.14)

Combine this estimator with ŴT to form:

Ω̂T,S,B “

´

Ĝ1
T,SŴT ĜT,S

¯´1

Ĝ1
T,SŴT Σ̂T,BŴT ĜT,S

´

Ĝ1
T,SŴT ĜT,S

¯´1

(3.15)

Proposition 3. Suppose that all assumptions of Proposition 2 are satisfied, and that

εT,S Ñ 0, εT,S ˆ min
`
?
T ,
?
S
˘

Ñ 8, B Ñ 8 as T, S Ñ 8. Then Σ̂T,B
p
ÝÑ Σ0,

ĜT,S
p
ÝÑ G0 and Ω̂T,S,B

p
ÝÑ Ω0 as T, S Ñ 8.

3.2.5 A test of overidentifying restrictions

If the number of moments used in estimation is greater than the number of copula

parameters, then it is possible to conduct a simple test of the over-identifying re-

strictions. When the efficient weight matrix is used in estimation, the asymptotic
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distribution of this test statistic is the usual chi-squared, however the method of

proof is different as we again need to deal with the lack of differentiability of the

objective function. We also consider the distribution of this test statistic for general

weight matrices, leading to a non-standard limiting distribution.

Proposition 4. Suppose that all assumptions of Proposition 2 are satisfied and that

the number of moments pmq is greater than the number of copula parameters ppq .

Then

JT,S ” min pT, SqgT,S

´

θ̂T,S

¯1

ŴTgT,S

´

θ̂T,S

¯

d
ÝÑ u1A1

0A0u as T, S Ñ 8

where u„N p0, Iq

and A0 ” W
1{2
0 Σ

1{2
0 R0, R0” I´Σ

´1{2
0 G0 pG

1
0W0G0q

´1 G1
0W0Σ

1{2
0 . If ŴT “ Σ̂´1

T,B,

then JT,S
d
ÝÑ χ2

m´p as usual.

As in standard applications, the above test statistic has a chi-squared limiting

distribution if the efficient weight matrix (Σ̂´1
T,B) is used. When any other weight

matrix is used, the test statistic has a sample-specific limiting distribution, and

critical values in such cases can be obtained via a simple simulation:

1. Compute R̂ using ĜT,S, ŴT , and Σ̂T,B.

2. Simulate upkq ∼ iid N p0, Iq, for k “ 1, 2, ..., K, where K is large.

3. For each simulation, compute J
pkq
T,S “ upkq1R̂1Σ̂

1{21
T,BŴT Σ̂

1{2
T,BR̂u

pkq

4. The sample p1´ αq quantile of
!

J
pkq
T,S

)K

k“1
is the critical value for this test

statistic.

The need for simulations to obtain critical values from the limiting distribution

is non-standard but is not uncommon; this arises in many other testing problems,
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see Wolak (1989), White (2000) and Andrews (2001) for examples. Given that upkq

is a simple standard Normal, and that no optimization is required in this simulation,

and that the matrix R̂ need only be computed once, obtaining critical values for this

test is simple and fast.

3.2.6 SMM under model mis-specification

All of the above results hold under the assumption that the copula model is correctly

specified. In the event that the specification test proposed in the previous section

rejects a model as mis-specified, one is led directly to the question of whether these

results, or extensions of them, hold for mis-specified models.

In the literature on GMM, there are two common ways to define mis-specification.

Newey (1985) defines a form of “local” mis-specification (where the degree of mis-

specification vanishes in the limit), and in that case it is simple to show that the

asymptotic behavior of the SMM estimator does not change at all except the mean

of limit distribution. Hall and Inoue (2003) consider “non-local” mis-specification.

Formally, a model is said to be mis-specified if there is no value of θ P Θ which satisfies

g0 pθq “ 0. As Hall and Inoue (2003) note, mis-specification is only a concern when

the model is over-identified, and so in this section we assume m ą p. The absence

of a parameter that satisfies the population moment conditions means that we must

instead consider a “pseudo-true” parameter:

Definition 1. The pseudo-true parameter is θ˚ pW0q ” arg minθPΘ g10 pθqW0g0 pθq .

While the true parameter, θ0, when it exists, is determined only by the population

moment condition g0 pθ0q “ 0, the pseudo-true parameter depends on the moment

condition and also on the weight matrix W0, and thus we denote it as θ˚ pW0q . With

the additional assumptions below, the consistency of the SMM estimator under mis-

specification can be proven.
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Assumption 5. (i) (Non-local mis-specification) }g0 pθq} ą 0 for all θ P Θ

(ii) (Identification) There exists θ˚ pW0q P Θ such that

g0 pθ˚ pW0qq
1W0g0 pθ˚ pW0qq ă g0 pθq

1W0g0 pθq for all θ P Θz tθ˚ pW0qu

Proposition 5. Suppose Assumption 1, 2, 3(ii)-3(iv), and 5 holds. Then θ̂T,S
p
ÝÑ

θ˚ pW0q as T, S Ñ 8

The above proposition shows that, under mis-specification, the SMM estimator

θ̂T,S converges in probability to the pseudo true parameter θ˚ pW0q rather than the

true parameter θ0. This extends existing results for GMM under mis-specification in

Hall (2000) and Hall and Inoue (2003), as it is established even under the disconti-

nuity of the moment functions.

While consistency of θ̂T,S under mis-specification is easily obtained, establishing

the limit distribution of θ̂T,S is not straightforward. A key contribution of Hall and

Inoue (2003) was to show that the limit distribution of GMM (with smooth, differ-

entiable moment functions) depends on the limit distribution of the weight matrix,

not merely the probability limit of the weight matrix. In SMM applications, it is

possible to show that the limit distribution will additionally depend on the limit

distribution of the numerical derivative matrix, denoted ĜT,S above. Some results

on the statistical properties of numerical derivatives are presented in Hong, et al.

(2010), but this remains a relatively unexplored topic. In addition to incorporat-

ing the dependence on the distribution of ĜT,S, under mis-specification one needs

an alternative approach to establish the stochastic equicontinuity of the objective

function, which is required for a Taylor series expansion of the population objective

function to be used to obtain the limit distribution of the estimator. We leave the

interesting problem of the limit distribution of θ̂T,S under mis-specification for future

research.
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3.3 Simulation study

In this section we present a study of the finite sample properties of the simulation-

based (SMM) estimator studied in the previous section. We consider two widely-

known copula models, the Clayton and the Gaussian (or Normal) copulas, see Nelson

(2006) for discussion, and the “factor copula” proposed in Oh and Patton (2011),

outlined below. A closed-form likelihood is available for the first two copulas, while

the third copula requires a numerical integration step to obtain the likelihood (details

on this are presented in Appendix C.3). In all cases we contrast the finite-sample

properties of the MLE with the SMM estimator. The first two copulas also have

closed-form cumulative distribution functions, and so quantile dependence (defined in

equation (3.3) is also known in closed form. For the Clayton copula we have Kendall’s

tau in closed form pτ “ κ{ p2` κqq but not Spearman’s rank correlation, see Nelsen

(2006). For the Normal copula we have both Spearman’s rank correlation in closed

form pρS “ 6{π arcsin pρ{2qq and Kendall’s rank correlation pτ “ 2{π arcsin pρqq , see

Nelsen (2006) and Demarta and McNeil (2005). This allows us to also compare GMM

with SMM for these copulas, to quantify the loss in accuracy from having to resort

to simulations.

The factor copula we consider is based on the following structure:

Let Xi “ Z ` εi, i “ 1, 2, ..., N

where Z ∼ Skew t
`

0, σ2, ν´1, λ
˘

, εi ∼ iid t
`

ν´1
˘

, and εiKKZ @ i (3.16)

rX1, ..., XN s
1
” X ∼ Fx“ C pGx, ..., Gxq

where we use the skewed t distribution of Hansen (1994). We use the copula of X

implied by the above structure as our “factor copula” model, and it is parameterized

by pσ2, ν´1, λq . For the factor copula we have neither the likelihood nor any of the

above dependence measures in closed form, and so simulation-based methods are

required. For the simulation we set the parameters to generate rank correlation of
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around 1/2, and so set the Clayton copula parameter to 1, the Gaussian copula

parameter to 1/2, and the factor copula parameters to σ2 “ 1, ν´1 “ 1{4 and

λ “ ´1{2.

We consider two different scenarios for the marginal distributions of the variables

of interest. In the first case we assume that the data are iid with standard Normal

marginal distributions, meaning that the only parameters that need to be estimated

are those of the copula. This simplified case is contrasted with a second scenario

where the marginal distributions of the variables are assumed to follow an AR(1)-

GARCH(1,1) process, which is widely-used in time series applications:

Yit “ φ0 ` φ1Yi,t´1 ` σitηit, t “ 1, 2, ..., T

σ2
it “ ω ` βσ2

i,t´1 ` ασ
2
i,t´1η

2
i,t´1 (3.17)

ηt ” rη1t, ..., ηNts ∼ iid Fη “ C pΦ,Φ, ...,Φq

where Φ is the standard Normal distribution function and C can be Clayton, Gaus-

sian, or the factor copula implied by equation (3.16). We set the parameters of

the marginal distributions as rφ0, φ1, ω, β, αs “ r0.01, 0.05, 0.05, 0.85, 0.10s , which

broadly matches the values of these parameters when estimated using daily equity

return data. In this scenario the parameters of the models for the conditional mean

and variance are estimated, and then the estimated standardized residuals are ob-

tained:

η̂it “
Yit ´ φ̂0 ´ φ̂1Yi,t´1

σ̂it
. (3.18)

These residuals are used in a second stage to estimate the copula parameters. In all

cases we consider a time series of length T “ 1, 000, corresponding to approximately

4 years of daily return data, and we use S “ 25 ˆ T simulations in the compu-

tation of the dependence measures to be matched in the SMM optimization. We

use five dependence measures in estimation: Spearman’s rank correlation, and the
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0.05, 0.10, 0.90, 0.95 quantile dependence measures, averaged across pairs of assets.

We repeat each scenario 100 times, and in the results below we use the identity weight

matrix for estimation. (Corresponding results based on the efficient weight matrix

are comparable, and available in Appendix C.4.) We also report the computation

times (per simulation) for each estimation.

Table 3.1 reveals that for all three dimensions (N “ 2, 3 and 10) and for all

three copula models the estimated parameters are centered on the true values, with

the average estimated bias being small relative to the standard deviation, and with

the median of the simulated distribution centered on the true values. Looking across

the dimension size, we see that the copula model parameters are almost always more

precisely estimated as the dimension grows. This is intuitive, given the exchangeable

nature of all three models.

Comparing the SMM estimator with the ML estimator, we see that the SMM

estimators suffer a loss in efficiency of around 50% for N “ 2 to around 20% for

N “ 10. The loss is greatest for the ν´1 parameter of the factor copula, and moderate

and similar for the remaining parameters. Some loss is of course expected, and this

simulation indicates that the loss is moderate overall. Comparing the SMM estimator

to the GMM estimator provides us with a measure of the loss in accuracy from having

to estimate the population moment function via simulation. We find that this loss

ranges from zero to 3%, and thus little is lost from using SMM rather than GMM.

The simulation results in Table 3.2, where the copula parameters are estimated

after the estimation of AR(1)-GARCH(1,1) models for the marginal distributions in

a separate first stage, are very similar to the case when no marginal distribution

parameters are required to be estimated, consistent with Proposition 2. Thus that

somewhat surprising asymptotic result is also relevant in finite samples.

In Table 3.3 we present the finite-sample coverage probabilities of 95% confi-

dence intervals based on the asymptotic normality result from Proposition 2 and the
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asymptotic covariance matrix estimator presented in Proposition 3. As shown in

that proposition, a critical input to the asymptotic covariance matrix estimator is

the step size used in computing the numerical derivative matrix ĜT,S. This step size,

εT,S, must go to zero, but at a slower rate than 1{
?
T . Ignoring constants, our sim-

ulation sample size of T “ 1, 000 suggests setting εT,S ą 0.001, which is much larger

than standard step sizes used in computing numerical derivatives. (For example, the

default in many functions in MATLAB is a step size of around 6 ˆ 10´6, which is

an optimal choice in certain applications, see Judd (1998) for example.) We study

the impact of the choice of step size by considering a range of values from 0.0001 to

0.1. Table 3.3 shows that when the step size is set to 0.01 or 0.1 the finite-sample

coverage rates are close to their nominal levels. However if the step size is chosen

too small (0.001 or smaller) then the coverage rates are much lower than nominal

levels. For example, setting εT,S “ 0.0001 (which is still 16 times larger than the

default setting in MATLAB) we find coverage rates as low as 2% for a nominal 95%

confidence interval. Thus this table shows that the asymptotic theory provides a

reliable means for obtaining confidence intervals, so long as care is taken not to set

the step size too small.

Table 3.3 also presents the results of a study of the rejection rates for the test

of over-identifying restrictions presented in Proposition 4. Given that we consider

W “ I in this table, the test statistic has a non-standard distribution, and we

use K “ 10, 000 simulations to obtain critical values. In this case, the limiting

distribution also depends on ĜT,S, and we again compute ĜT,S using a step size of

εT,S “ 0.1, 0.01, 0.001 and 0.0001. The rejection rates are close to their nominal levels

95% for the all three copula models.

We finally consider the properties of the estimator under model mis-specification.

In Table 3.4 we consider two scenarios: one where the true copula is Clayton but

the model is Normal, and one where the true copula is Normal but the model is
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Clayton. The pseudo-true parameters for these two scenarios are not known in

closed form, and we use a simulation of length 10 million to estimate it. They vary

across the dimension of the problem, and we report them in the top row of each

panel of Table 3.4. The remainder of Table 3.4 has the same structure as Tables 3.1

and 3.2. Similar to those tables, in this mis-specified case we see that the estimated

parameters are centered on the pseudo-true values, with the average estimated bias

being small relative to the standard deviation. Looking across the dimension size, we

see that the copula model parameters are almost always more precisely estimated as

the dimension grows. These mis-specified scenarios also provide some insight into the

power of the specification test based on over-identifying restrictions. We find that

for all three dimensions and for both iid and AR-GARCH data, the J-test rejected

the null of correct specification across all 100 simulations, indicating this test has

power to detect model mis-specification.

These simulation results provide support for the proposed estimation method:

for empirically realistic parameter values and sample size, the estimator is approx-

imately unbiased, with estimated confidence intervals that have coverage close to

their nominal level when the step size for the numerical derivative is chosen in line

with our theoretical results, and the test for model mis-specification has finite-sample

rejection frequencies that are close to their nominal levels when the model is correctly

specified, and has good power to reject mis-specified models.

3.4 Application to the dependence between financial firms

This section considers models for the dependence between seven large financial firms.

We use daily stock return data over the period January 2001 to December 2010, a

total of T “ 2515 trade days, on Bank of America, Bank of New York, Citigroup,

Goldman Sachs, J.P. Morgan, Morgan Stanley and Wells Fargo. Summary statistics

for these returns are presented in Table C.4 of Appendix C.4, and indicate that all
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series are positively skewed and leptokurtotic, with kurtosis ranging from 16.0 (J.P.

Morgan) to 119.8 (Morgan Stanley).

To capture the impact of time-varying conditional means and variances in each of

these series, we estimate the following autoregressive, conditionally heteroskedastic

models:

rit “ φ0i ` φ1iri,t´1 ` φ2irm,t´1 ` εit, εit “ σitηit

where σ2
it “ ωi ` βiσ

2
i,t´1 ` α1iε

2
i,t´1 ` γ1iε

2
i,t´1 ¨ 1rεi,t´1ď0s (3.19)

` α2iε
2
m,t´1 ` γ2iε

2
m,t´1 ¨ 1rεm,t´1ď0s

where rit is the return on one of these seven firms and rmt is the return on the

S&P 500 index. We include the lagged market index return in both the mean and

variance specifications to capture any influence of lagged information in the model for

a given stock, and in the model for the market index itself we set φ1 “ α1 “ γ1 “ 0.

Estimated parameters from these models are presented in Table C.5 of Appendix

C.4, and are consistent with the values found in the empirical finance literature,

see Bollerslev, Engle and Nelson (1994) for example. From these models we obtain

the estimated standardized residuals, η̂it, which are used in the estimation of the

dependence structure.

In Table 3.5 we present measures of dependence between these seven firms. The

upper panel reveals that rank correlation between their standardized residuals is

0.63 on average, and ranges from 0.55 to 0.76. The lower panel of Table 3.5 presents

measures of dependence in the tails between these series. The upper triangle presents

the average of the 1% and 99% quantile dependence measures presented in equation

(3.6), and we see substantial dependence here, with values ranging between 0.16 and

0.40. The lower triangle presents the difference between the 90% and 10% quantile

dependence measures, as a gauge of the degree of asymmetry in the dependence
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structure. These differences are mostly negative (14 out of 21), indicating greater

dependence during crashes than during booms.

Table 3.6 presents the estimation results for three different copula models of these

series. The first model is the well-known Clayton copula, the second is the Normal

copula and the third is a “factor copula” as proposed by Oh and Patton (2011). The

first copula allows for lower tail dependence, but imposes that upper tail dependence

is zero. The second copula implies zero tail dependence in both directions. The third

copula allows for tail dependence in both tails, and allows the degree of dependence

to differ across positive and negative realizations.

For all three copulas we implent the SMM estimator proposed in Section 3.2, with

the identity weight matrix and the efficient weight matrix, using five dependence

measures: Spearman’s rank correlation, and the 0.05, 0.10, 0.90, 0.95 quantile depen-

dence measures, averaged across pairs of assets. We also implement the MLE for

comparison. The value of the SMM objective function at the estimated parameters

is presented for each model, along with the p-value from a test of the over-identifying

restrictions based on Proposition 4. We use Proposition 3 to compute the standard

errors, with B “ 1, 000 bootstraps used to estimate ΣT,S, and εT,S “ 0.1 used as the

step size to compute ĜT,S.

The parameter estimates for the Normal and factor copula models are similar

for ML and SMM, while they are quite different for the Clayton copula. This may

be explained by the results of the test of over-identifying restrictions: the Clayton

copula is strongly rejected (with a p-value of less than 0.001 for both choices of weight

matrix), while the Normal is less strongly rejected (p-values of 0.043 and 0.001). The

factor copula is not rejected using this test for either choice of weight matrix. The

improvement in fit from the factor copula appears to come from its ability to capture

tail dependence: the parameter that governs tail dependence pν´1q is significantly
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greater than zero, while the parameter that governs asymmetric dependence pλq is

not significantly different from zero.

Given that our sample period spands the financial crisis, one may wonder whether

the copula is constant throughout the period. To investigate this, we implement

the copula structrual break test proposed by Rémillard (2010). This test uses a

Kolmogorov-Smirnov type test statistic to compare the empirical copula before and

after a given point in the sample, and then searches across all dates in the sample. We

implement this test using 1000 simulations for the “multiplier” method, and find a

p-value of 0.001, indicating strong evidence of a change in the copula over this period.

Running this test on just the last two years of our sample period (January 2009 to

December 2010) results in a p-value of 0.191, indicating no evidence of a change in

the copula over this sub-period. We re-estimate our three copula models using data

from this sub-period, and present the results in the lower panel of Table 3.6. The

estimated parameters all indicate a (slight) increase in dependence in this sub-sample

relative to the full sample. Perhaps the largest change is in the ν parameter of the

factor copula, which goes from around 8.8 (across the three estimation methods) to

around 4.4, indicating a substantial increase in the degree of tail dependence between

these firms. The results of the specification tests over this sub-sample are comparable

to the full sample results: the Clayton copula is strongly rejected, the Normal copula

is rejected but less strongly, and the factor copula is not rejected, using either weight

matrix.

Figure 3.1 sheds some further light on the relative performance of these copula

models, over the full sample. This figure compares the empirical quantile dependence

function with those implied by the three copula models. An iid bootstrap with

B “ 1, 000 replications is used to construct pointwise confidence intervals for the

sample quantile dependence estimates. We see here that the Clayton copula is “too

asymmetric” relative to the data, while both the Normal and the factor copula models
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appear to provide a reasonable fit.

3.5 Conclusion

This paper presents the asymptotic properties of a new simulation-based estimator

of the parameters of a copula model, which matches measures of rank dependence

implied by the model to those observed in the data. The estimation method shares

features with the simulated method of moments (SMM), see McFadden (1989) and

Newey and McFadden (1994), for example, however the use of rank dependence

measures as “moments” means that existing results on SMM cannot be used. We

extend well-known results on SMM estimators using recent work in empirical pro-

cess theory for copula estimation, see Fermanian, Radulović and Wegkamp (2004),

Chen and Fan (2006) and Rémillard (2010), to show the consistency and asymptotic

normality of SMM-type estimators of copula models. To the best of our knowledge,

simulation-based estimation of copula models has not previously been considered in

the literature. We also provide a method for obtaining a consistent estimate of the

asymptotic covariance matrix, and a test of the over-identifying restrictions. Our

results apply to both iid and time series data, and an extensive simulation study

verifies that the asymptotic results provide a good approximation in finite samples.

We illustrate the results with an application to a model of the dependence between

the equity returns on seven financial firms, and find evidence of statistically signifi-

cant tail dependence, and some evidence that the dependence between these assets

is stronger in crashes than booms.

3.6 Sketch of proofs

Detailed proofs are available in Appendix C.1.
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Proof of Proposition 1. First note that: (a) Q0 pθq is uniquely minimized at θ0 by

Assumption 3(i) and positive definite W0 of Assumption 3(iv), (b) Θ is compact

by Assumption 3(ii); (c) Q0 pθq consists of linear combinations of rank correlations

and quantile dependence measures that are functions of pair-wise copula functions,

so Q0 pθq is continuous by Assumption 3(iii). The main part of the proof requires

establishing that QT,S uniformly converges in probability to Q0, which we show using

five lemmas in Appendix C.1: Pointwise convergence of gT,S pθq to g0 pθq and stochas-

tic Lipschitz continuity of gT,S pθq is shown using results from Fermanian, Wegkamp

and Radulović (2004) and Rémillard (2010), combined with Assumption 3(iii). This

is sufficient for the stochastic equicontinuity of gT,S and for the uniform convergence

in probability of gT,S to g0 by Lemmas 2.8 and 2.9 of Newey and McFadden (1994).

Using the triangle and Cauchy-Schwarz inequalities this implies that QT,S uniformly

converges in probability to Q0. We have thus verified that the conditions of Theorem

2.1 of Newey and McFadden (1994) hold, and we have θ̂
p
Ñ θ0 as claimed.

Proof of Proposition 2. We prove this proposition by verifying the five conditions

of Theorem 7.2 of Newey and McFadden (1994) for our problem: (i) g0 pθ0q “ 0

by construction of g0 pθq “ m pθ0q ´ m pθq. (ii) g0 pθq is differentiable at θ0 with

derivative G0 such that G1
0W0G0 is nonsingular by Assumption 4(ii). (iii) θ0 is

an interior point of Θ by Assumption 4(i). (iv) This part requires showing the

asymptotic normality of
?
TgT,S pθ0q . We will present the result only for S{T Ñ k P

p0,8q . The results for the cases that S{T Ñ 0 or S{T Ñ 8 are similar. In Lemma

6 of Appendix C.1, we show that
?
T pm̂T ´m0 pθ0qq

d
Ñ N p0,Σ0q as T Ñ 8 and

?
S pm̃S pθ0q ´m0 pθ0qq

d
Ñ N p0,Σ0q as S Ñ 8 using Theorem 3 and Theorem 6

of Fermanian, Radulović and Wegkamp (2004) and Corollary 1, Proposition 2 and
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Proposition 4 of Rémillard (2010). This implies that

?
TgT,S pθ0q “

?
T pm̂T ´m0 pθ0qq

looooooooooomooooooooooon

d
ÑNp0,Σ0q

´

c

T

S
loomoon

Ñ1{
?
k

?
S pm̃S pθ0q ´m0 pθ0qq

loooooooooooooomoooooooooooooon

d
ÑNp0,Σ0q

and so
?
TgT,S pθ0q

d
Ñ N p0, p1` 1{kqΣ0q as T, S Ñ 8. (v) This part requires show-

ing that sup}θ´θ0}ăδ
?
T }gT,S pθq ´ gT,S pθ0q ´ g0 pθq} {

“

1`
?
T }θ ´ θ0}

‰ p
Ñ 0. The

main part of this proof involves showing the stochastic equicontinuity of vT,S pθq “
?
T rgT,S pθq ´ g0 pθqs . This is shown in Lemma 7 of Appendix C.1 by showing that

tg¨,¨ pθq : θ P Θu is a type II class of functions in Andrews (1994), and then using that

paper’s Theorem 1.

Proof of Proposition 3. If µt and σt are known constant, or if φ0 is known, then

the consistency of Σ̂T,B follows from Theorems 5 and 6 of Fermanian, Radulović

and Wegkamp (2004). When φ0 is estimated, the result is obtained by combining

the results in Fermanian, et al. with those of Rémillard (2010): For simplicity, as-

sume that only one dependence measure is used. Let ρ̂ij and ρ̂
pbq
ij be the sample

rank correlations constructed from the standardized residuals
 

η̂it, η̂
j
t

(T

t“1
and from

the bootstrap counterpart
!

η̂
pbqi
t , η̂

pbqj
t

)T

t“1
. Also, define the corresponding estimates,

:ρij and :ρ
pbq
ij , using the true innovations

 

ηit, η
j
t

(T

t“1
and the bootstrapped true inno-

vations
!

η
pbqi
t , η

pbqj
t

)T

t“1
(where the same bootstrap time indices are used for both

!

η̂
pbqi
t , η̂

pbqj
t

)T

t“1
and

!

η
pbqi
t , η

pbqj
t

)T

t“1
). Define true ρ as ρ0. Theorem 5 of Fermanian,

Radulović and Wegkamp (2004) shows that

?
T p:ρij ´ ρ0q “

?
T
´

:ρ
pbq
ij ´ :ρij

¯

` op p1q
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Corollary 1 and Proposition 4 of Rémillard (2010) shows, under Assumption 2, that

?
T pρ̂ij ´ :ρijq “ op p1q and

?
T
´

ρ̂
pbq
ij ´ :ρ

pbq
ij

¯

“ op p1q

Combining those three equations, we obtain

?
T pρ̂ij ´ ρ0q “

?
T
´

ρ̂
pbq
ij ´ ρ̂ij

¯

` op p1q , as T,B Ñ 8

and so equation (3.13) is a consistent estimator of Σ0. Consistency of the numerical

derivatives ĜT,S can be established using a similar approach to Theorem 7.4 of

Newey and McFadden (1994), and since ŴT
p
Ñ W0 by Assumption 3(iv), we thus

have Ω̂T,S,B
p
Ñ Ω0.

Proof of Proposition 4. We consider only the case where S{T Ñ 8 or S{T Ñ k ą 0.

The case for k “ 0 is analogous. A Taylor expansion of g0

´

θ̂T,S

¯

around θ0 yields

?
Tg0

´

θ̂T,S

¯

“
?
Tg0 pθ0q `G0 ¨

?
T
´

θ̂T,S´θ0

¯

` o
´?

T
›

›

›
θ̂T,S´θ0

›

›

›

¯

and since g0 pθ0q “ 0 and
?
T
›

›

›
θ̂T,S´θ0

›

›

›
“ Op p1q

?
Tg0

´

θ̂T,S

¯

“ G0 ¨
?
T
´

θ̂T,S´θ0

¯

` op p1q (3.20)

Then consider the following expansion of gT,S

´

θ̂T,S

¯

around θ0

?
TgT,S

´

θ̂T,S

¯

“
?
TgT,S pθ0q ` ĜT,S ¨

?
T
´

θ̂T,S´θ0

¯

`RT,S

´

θ̂T,S

¯

(3.21)

where the remaining term is captured by RT,S

´

θ̂T,S

¯

. Combining equations (3.20)

and (3.21) we obtain

?
T
”

gT,S

´

θ̂T,S

¯

´ gT,S pθ0q ´ g0

´

θ̂T,S

¯ı

“

´

ĜT,S´G0

¯

¨
?
T
´

θ̂T,S´θ0

¯

`RT,S

´

θ̂T,S

¯

`op p1q
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The stochastic equicontinuity of vT,S pθq “
?
T rgT,S pθq ´ g0 pθqs is established in

the proof of Proposition 2, which implies (see proof of Proposition 2) that

?
T
”

gT,S

´

θ̂T,S

¯

´ gT,S pθ0q ´ g0

´

θ̂T,S

¯ı

“ op p1q

By Proposition 3, ĜT,S´G0 “ op p1q , which implies RT,S

´

θ̂T,S

¯

“ op p1q . Thus, we

obtain the expansion of gT,S

´

θ̂T,S

¯

around θ0 :

?
TgT,S

´

θ̂T,S

¯

“
?
TgT,S pθ0q ` ĜT,S ¨

?
T
´

θ̂T,S´θ0

¯

` op p1q (3.22)

The remainder of the proof is the same as in standard GMM applications, see Hall

(2005) for example.

Proof of Proposition 5. Lemma 1, 2, 3 and 4 are not affected by mis-specification.

Lemma 5 (i) is replaced by Assumption 5 (ii). Therefore, θ̂T,S
p
Ñ θ˚ pW0q .

3.7 Tables and figures
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Notes to Table 3.1: This table presents the results from 100 simulations of Clayton,
the Normal copula, and a factor copula. In the SMM and GMM estimation all three
copulas use five dependence measures, including four quantile dependence measures
(q “ 0.05, 0.10, 0.90, 0, 95). The Normal and factor copulas also use Spearman’s rank
correlation, while the Clayton copula uses either Kendall’s (GMM and SMM) or
Spearman’s (SMM˚) rank correlation. The marginal distributions of the data are
assumed to be iid N p0, 1q. Problems of dimension N “ 2, 3 and 10 are considered,
the sample size is T “ 1, 000 and the number of simulations used is S “ 25 ˆ T.
The first row of each panel presents the average difference between the estimated
parameter and its true value. The second row presents the standard deviation of
the estimated parameters. The third and fourth rows present the median and the
difference between the 90th and 10th percentiles of the distribution of estimated pa-
rameters. The last row in each panel presents the average time in seconds to compute
the estimator.

Notes to Table 3.2: This table presents the results from 100 simulations of Clayton,
the Normal copula, and a factor copula. In the SMM and GMM estimation all three
copulas use five dependence measures, including four quantile dependence measures
(q “ 0.05, 0.10, 0.90, 0, 95). The Normal and factor copulas also use Spearman’s
rank correlation, while the Clayton copula uses either Kendall’s (GMM and SMM)
or Spearman’s (SMM˚) rank correlation. The marginal distributions of the data
are assumed to follow AR(1)-GARCH(1,1) processes, as described in Section 3.3.
Problems of dimension N “ 2, 3 and 10 are considered, the sample size is T “ 1, 000
and the number of simulations used is S “ 25 ˆ T. The first row of each panel
presents the average difference between the estimated parameter and its true value.
The second row presents the standard deviation of the estimated parameters. The
third and fourth rows present the median and the difference between the 90th and
10th percentiles of the distribution of estimated parameters. The last row in each
panel presents the average time in seconds to compute the estimator.
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Table 3.3: Simulation results on coverage rates

Clayton Normal Factor copula

κ J ρ J σ2 ν´1 λ J

N “ 2
εT,S
0.1 91 98 94 98 94 100 95 98
0.01 46 99 92 98 94 99 96 100
0.001 2 99 76 98 76 79 74 99
0.0001 1 99 21 98 54 75 57 97

N “ 3
εT,S
0.1 97 99 89 97 99 100 96 99
0.01 63 98 88 97 99 96 95 100
0.001 11 98 83 98 92 84 93 100
0.0001 2 100 38 99 57 70 61 99

N “ 10
εT,S
0.1 96 99 87 97 97 97 95 98
0.01 88 99 87 96 96 97 97 97
0.001 18 100 87 98 97 95 88 97
0.0001 0 98 71 97 73 85 81 98

Notes: This table presents the results from 100 simulations of Clayton copula, the
Normal copula, and a factor copula, all estimated by SMM. The marginal distribu-
tions of the data are assumed to follow AR(1)-GARCH(1,1) processes, as described
in Section 3.3. Problems of dimension N “ 2, 3 and 10 are considered, the sample
size is T “ 1, 000 and the number of simulations used is S “ 25 ˆ T. The rows of
each panel contain the step size, εT,S, used in computing the matrix of numerical

derivatives, ĜT,S. The numbers in column κ, ρ, σ2, ν´1, and λ present the percentage
of simulations for which the 95% confidence interval based on the estimated covari-
ance matrix contained the true parameter. The numbers in column J present the
percentage of simulations for which the test statistic of over-identifying restrictions
test described in Section 3.2 was smaller than its computed critical value under 95%
confidence level.
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Table 3.4: Simulation results for mis-specified models

iid AR-GARCH

True copula Normal Clayton Normal Clayton
Model Clayton Normal Clayton Normal

N “ 2
Pseudo-true 0.542 0.599 0.543 0.588
Bias -0.013 0.111 -0.007 0.046
St dev 0.050 0.173 0.035 0.120
Median 0.526 0.659 0.539 0.617
90-10% 0.130 0.433 0.091 0.265
Time 4 72 1 70
J test prob. 0 0 0 0

N “ 3
Pseudo-true 0.543 0.599 0.542 0.607
Bias 0.003 0.077 -0.002 0.006
St dev 0.039 0.164 0.027 0.088
Median 0.544 0.629 0.540 0.609
90-10% 0.107 0.432 0.072 0.198
Time 5 90 1 86
J test prob. 0 0 0 0

N “ 10
Pseudo-true 0.544 0.602 0.544 0.603
Bias 0.001 0.059 -0.001 0.047
St dev 0.033 0.118 0.016 0.116
Median 0.546 0.622 0.540 0.618
90-10% 0.086 0.307 0.043 0.314
Time 20 206 4 207
J test prob. 0 0 0 0

Notes: This table presents the results from 100 simulations when the true copula
and the model are different (i.e., the model is mis-specified). The parameters of
the copula models are estimated using SMM based on rank correlation and four
quantile dependence measures (q “ 0.05, 0.10, 0.90, 0, 95). The marginal distributions
of the data are assumed to be either iid N p0, 1q or AR(1)-GARCH(1,1) processes,
as described in Section 3.3. Problems of dimension N “ 2, 3 and 10 are considered,
the sample size is T “ 1, 000 and the number of simulations used is S “ 25ˆT. The
pseudo-true parameter is estimated using 10 million observations. The last row in
each panel presents the proportion of tests of over-identifying restrictions that are
smaller than the 95% critical value.
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Table 3.5: Sample dependence statistics

Bank of Bank of Citi Goldman JP Morgan Wells
America N.Y. Group Sachs Morgan Stanley Fargo

BoA 0.586 0.691 0.556 0.705 0.602 0.701
BoNY 0.551 0.574 0.578 0.658 0.592 0.595
Citi 0.685 0.558 0.608 0.684 0.649 0.626
Goldman 0.564 0.565 0.609 0.655 0.759 0.548
JPM 0.713 0.633 0.694 0.666 0.667 0.683
Morgan S 0.604 0.587 0.650 0.774 0.676 0.578
Wells F 0.715 0.593 0.636 0.554 0.704 0.587

BoA 0.219 0.239 0.219 0.398 0.298 0.358
BoNY -0.048 0.179 0.199 0.159 0.219 0.199
Citi -0.045 -0.004 0.199 0.318 0.219 0.199
Goldman -0.068 0.000 0.032 0.239 0.378 0.199
JPM -0.024 -0.056 -0.012 0.012 0.239 0.358
Morgan S -0.060 -0.020 -0.064 -0.036 -0.008 0.219
Wells F 0.020 -0.052 0.044 -0.028 0.024 0.000

Notes: This table presents measures of dependence between the seven financial firms
under analysis. The upper panel presents Spearman’s rank correlation (upper trian-
gle) and linear correlation (lower triangle), and the lower panel presents the difference
between the 10% tail dependence measures (lower triangle) and average 1% upper
and lower tail dependence (upper triangle). All dependence measures are computed
using the standardized residuals from the models for the conditional mean and vari-
ance.
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Figure 3.1: This figure plots the probability of both variables being less than their q
quantile (qă0.5) or greater than the q quantile (qą0.5). For the data this is averaged
across all pairs, and a bootstrap 90% (pointwise) confidence interval is presented.
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4

Time-Varying Systemic Risk: Evidence from a
Dynamic Copula Model of CDS Spreads

(co-authored with Andrew Patton)

4.1 Introduction

Systemic risk can be broadly defined as the risk of distress in a large number of

firms or institutions. It represents an extreme event in two directions: a large loss

(e.g., corresponding to a large left-tail realization for stock returns), across a large

proportion of the firms. There are a variety of methods for studying risk and depen-

dence for small collections of assets, see Patton (2012) for a review of copula-based

approaches, but a relative paucity of methods for studying dependence between a

large collection of assets, which is required for a general analysis of systemic risk.

Some existing methods for estimating systemic risk simplify the task by reducing

the dimension of the problem to two: an individual firm and a market index. The

“CoVaR” measure of Adrian and Brunnermeier (2009), for example, uses quantile

regression to estimate a lower tail quantile (e.g., 0.05) of market returns conditional

on a given firm having a returns equal to its lower tail quantile. The “marginal
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expected shortfall” proposed by Brownlees and Engle (2011) estimates the expected

return on a firm conditional on the market return being below some low threshold.

These methods have the clear benefit of being parsimonious, but by aggregating the

“non firm i” universe to a single market index, useful information about systemic

risk may be missed. The objective of this paper is to provide models that can be

used to handle large collections of variables, which enables the estimation of a wider

variety of systemic risk measures.

We use Sklar’s theorem (see Nelsen, 2006), with an extension to conditional

distributions from Patton (2006), to decompose the conditional joint distribution of

a collection of N variables into their marginal distributions and a conditional copula:

Yt|Ft´1 ∼ Ft “ Ct pF1t, ..., FNtq (4.1)

We propose new models for the time-varying conditional copula, Ct, that can be

used to link models of the conditional marginal distributions (e.g., ARMA-GARCH

models) to form a dynamic conditional joint distribution. Of central relevance to

this paper are cases where N is relatively large, around 50 to 250. In such cases,

models that have been developed for low dimension problems (say, N ă 5) are often

not applicable, either because no generalization beyond the bivariate model exists,

or because such generalizations are too restrictive (e.g., Archimedean copulas have

just one or two free parameters regardless of N, which is clearly very restrictive in

high dimensions), or because the obvious generalization of the bivariate case leads to

a proliferation of parameters and unmanageable computational complexity. In high

dimension applications, the challenge is to find a balance of flexibility and parsimony.

This paper makes two contributions. First, we propose a flexible and feasible

model for capturing time-varying dependence in high dimensions. Our approach

draws on successful ideas from the literature on dynamic modeling of high dimension

covariance matrices and on recent work on models for general time-varying distri-
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butions. In particular, we combine the “GAS” model of Creal, et al. (2011, 2013),

parameter restrictions and “variance targeting” ideas from Engle (2002) and Engle

and Kelly (2012), and the factor copula model of Oh and Patton (2011) to obtain

a flexible yet parsimonious dynamic model for high dimension conditional distribu-

tions. A realistic simulation study confirms that our proposed models and estimation

methods have satisfactory properties for relevant sample sizes.

Our second contribution is a detailed study of a collection of 100 daily credit de-

fault swap (CDS) spreads on U.S. firms. The CDS market has expanded enormously

over the last decade, growing 40-fold from $0.6 trillion of gross notional principal in

2001 to $25.9 trillion at the end of 2011 according to the International Swaps and

Derivatives Association (ISDA), yet it has received relatively little attention in the

econometrics literature. (Interest is growing, however, see Conrad, et al. (2011),

Lucas, et al. (2011), Creal, et al. (2012) and Christoffersen, et al. (2013) for re-

cent work on CDS data.) We use our model of CDS spreads to provide insights

into systemic risk, as CDS spreads are tightly linked to the health of the underlying

firm. We find that systemic risk rose during the financial crisis, unsurprisingly. More

interestingly, we also find that systemic risk remains high relative to the pre-crisis

period, even though idiosyncratic risk as fallen.

The remainder of the paper is structured as follows. Section 4.2 presents a dy-

namic copula model for high dimension applications, and Section 4.3 presents a simu-

lation study for the proposed model. In Section 4.4 we present estimation results for

various models of CDS spreads. Section 4.5 presents estimates of time-varying sys-

temic risk, and Section 4.6 concludes. Technical details and some additional results

are presented in Appendix D.
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4.2 A dynamic copula model for high dimensions

In this section we describe our approach for capturing dynamics in the dependence

between a relatively large number of variables. A review of alternative methods

from the (small) extant literature is presented in Section 4.2.3. We consider a class

of data generating processes (DGPs) that allow for time-varying conditional marginal

distributions, e.g., dynamic conditional means and variances, and also possibly time-

varying higher-order moments:

Yt ” rY1t, ..., YNts
1 (4.2)

where Yit “ µitpφi,0q ` σitpφi,0qηit, i “ 1, 2, ..., N

ηit|Ft´1 ∼ Fitpφi,0q

where µit is the conditional mean of Yit, σit is the conditional standard deviation,

and Fitpφi,0q is a parametric distribution with zero mean and unit variance. We

will denote the parameters of the marginal distributions as φ ” rφ11, ..., φ
1
N s
1 , the pa-

rameters of the copula as γ, and the vector of all parameters as θ ” rφ1, γ1s1 . We

assume that Fit is continuous and strictly increasing, which fits our empirical appli-

cation, though this assumption can be relaxed. The information set is taken to be

Ft “ σ pYt,Yt´1, ...q . Define the conditional probability integral transforms of the

data as:

Uit ” Fit

ˆ

Yit ´ µitpφi,0q

σitpφi,0q
;φi,0

˙

, i “ 1, 2, ..., N (4.3)

Then the conditional copula of Yt|Ft´1 is equal to the conditional distribution of

Ut|Ft´1:

Ut|Ft´1 ∼ Ctpγ0q (4.4)

By allowing for a time-varying conditional copula, the class of DGPs characterized

by equations (4.2) to (4.4) is a generalization of those considered by Chen and Fan
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(2006), for example, however the cost of this flexibility is the need to specify para-

metric marginal distributions. In contrast, Chen and Fan (2006), Rémillard (2010)

and Oh and Patton (2013a) allow for nonparametric estimation of the marginal dis-

tributions. The parametric margin requirement arises as the asymptotic distribution

theory for a model with nonparametric margins and a time-varying copula is not

yet available in the literature. We attempt to mitigate this requirement in our em-

pirical work by using flexible models for the marginal distributions, and conducting

goodness-of-fit tests to verify that they provide a satisfactory fit to the data.

4.2.1 Factor copulas

In high dimension applications a critical aspect of any model is imposing some form of

dimension reduction. A widely-used method to achieve this in economics and finance

is to use some form of factor structure. Oh and Patton (2011) propose using a factor

model with flexible distributions to obtain a flexible class of “factor copulas.” A one-

factor version of their model is the copula for the (latent) vector random variable

Xt ” rX1t, ..., XNts
1 implied by the following structure:

Xit “ λit pγλqZt ` εit, i “ 1, 2, ..., N (4.5)

where Zt ∼ Fzt pγzq , εit ∼ iid Fεt pγεq , ZKKεi @ i

where Fzt pγzq and Fεt pγεq are flexible parametric univariate distributions for the

common factor and the idiosyncratic variables respectively, and λit pγλq is a poten-

tially time-varying weight on the common factor. The conditional joint distribution

for Xt can be decomposed into its conditional marginal distributions and its condi-

tional copula via Sklar’s theorem (see Nelsen (2006)) for conditional distributions,

see Patton (2006b):

Xt ∼ Fxt“ Ct pG1t pγq , ..., GNt pγq ; γq (4.6)
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where γ ” rγ1z, γ
1
ε, γ

1
λs
1 . Note that the marginal distributions of Xt need not be the

same as the marginal distributions of the observed data. Only the copula of these

variables, denoted Ct pγq , is used as a model for the copula of the observable data

Yt. If we impose that the marginal distributions of the observable data are also

driven by the factor structure in equation (4.5), then this becomes a standard factor

model for a vector of variables. However, Oh and Patton (2011) suggest imposing the

factor structure only on the component of the multivariate model where dimension

reduction is critical, namely the copula, and allow the marginal distributions to be

modeled using a potentially different approach. In this case, the factor structure in

equation (4.5) is used only for the copula that it implies, and this becomes a “factor

copula” model.

The copula implied by equation (4.5) is known in closed form for only a few

particular combinations of choices of Fz and Fε (the most obvious example being

where both of these distributions are Gaussian, in which case the implied copula

is also Gaussian). For general choices of Fz and Fε the copula of X will not be

known in closed form, and thus the copula likelihood is not known in closed form.

Numerical methods can be used to overcome this problem. Oh and Patton (2013a)

propose simulated method of moments-type estimation of the unknown parameters,

however their approach is only applicable when the conditional copula is constant.

A key objective of this paper is to allow the conditional copula to vary through time

and so an alternate estimation approach is required. We use a simple numerical

integration method, described in Appendix D.2, to overcome the lack of closed-form

likelihood. This numerical integration exploits the fact that although the copula isN -

dimensional, we need only integrate out the common factor, which is one-dimensional

in the structure above.

Dynamics in the factor copula model in equation (4.5) arise by allowing the

loadings on the common factor, λit, to vary through time, and/or by allowing the
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distributions of the common factor and the idiosyncratic variables to change through

time. For example, holding Fzt and Fεt fixed, an increase in the factor loadings

corresponds to an increase in the level of overall dependence (e.g., rank correlation)

between the variables. Holding the factor loadings fixed, an increase in the thickness

of the tails of the distribution of the common factor increases the degree of tail

dependence. In the next section we describe how we model these dynamics.

4.2.2 “GAS” dynamics

An important feature of any dynamic model is the specification for how the param-

eters evolve through time. Some specifications, such as stochastic volatility models

(see Shephard (2005) for example) and related stochastic copula models (see Hafner

and Manner (2012) and Manner and Segers (2011)) allow the varying parameters to

evolve as a latent time series process. Others, such as ARCH-type models for volatil-

ity (see Engle, 1982) and related models for copulas (see Patton (2006b), Jondeau

and Rockinger (2006), and Creal, et al. (2013) for example) model the varying pa-

rameters as some function of lagged observables. An advantage of the latter approach

over the former, in particular for high dimension applications, is that it avoids the

need to “integrate out” the innovation terms driving the latent time series processes.

Within the class of ARCH-type models (“observation driven”, in the terminology

of Creal, et al. (2013)), the question of which function of lagged observables to

use as a forcing variable in the evolution equation for the varying parameter arises.

For models of the conditional variance, an immediate choice is the lagged squared

residual, as in the ARCH model, but for models with parameters that lack an obvious

interpretation the choice is less clear. We adopt the generalized autoregressive score

(GAS) model of Creal, et al. (2013) to overcome this problem. (Harvey (2013) and

Harvey and Sucarrat (2012) propose a similar method for modeling time-varying

parameters, which they call a “dynamic conditional score,” or “DCS,” model.) These
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authors propose using the lagged score of the density model (copula model, in our

application) as the forcing variable. Specifically, for a copula with time-varying

parameter δt, governed by fixed parameter γ, we have:

Let Ut|Ft´1 ∼ Cpδt pγqq

then δt “ ω `Bδt´1 ` Ast´1 (4.7)

where st´1 “ St´1∇t´1

∇t´1 “
B log cput´1; δt´1q

Bδt´1

and St is a scaling matrix (e.g., the inverse Hessian or its square root). While this

specification for the evolution of a time-varying parameter is somewhat arbitrary,

Creal, et al. (2013) provide two motivations for it. Firstly, this model nests a

variety of popular and successful existing models: GARCH (Bollerslev (1986)) for

conditional variance; ACD (Engle and Russell (1998)) for models of trade durations

(the time between consecutive high frequency observations); Davis, et al.’s (2003)

model for Poisson counts. Secondly, the recursion above can be interpreted as the

steepest ascent direction for improving the model’s fit, in terms of the likelihood,

given the current value of the model parameter δt, similar to numerical optimization

algorithms such as the Gauss-Newton algorithm. Harvey (2013) further motivates

this specification as an approximation to a filter for a model driven by a stochastic

latent parameter, or an “unobserved components” model.

GAS dynamics for high dimension factor copulas

We employ the GAS model to allow for time variation in the factor loadings in the

factor copula implied by equation (4.5), but to keep the model parsimonious we

impose that the parameters governing the “shape” of the common and idiosyncratic

variables (γz and γε) are constant. We use the skewed t distribution of Hansen

(1994) as the model for Fz, and the (symmetric) standardized t distribution as the
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model for Fε. The skewed t distribution has two shape parameters, a degrees of

freedom parameter pνz P p2,8sq and an asymmetry parameter pψz P p´1, 1qq . This

distribution simplifies to the standardized t distribution when ψ “ 0. We impose

symmetry on the distribution of the idiosyncratic variables for simplicity.

In the general GAS framework in equation (4.7), the N time-varying factor load-

ings would have N ` 2N2 parameters governing their evolution, which represents

an infeasibly large number for even moderate values of N. To keep the model par-

simonious, we impose that the coefficient matrices (B and A) are diagonal with a

common parameter on the diagonal, as in the DCC model of Engle (2002). To avoid

the estimation of N ˆN scaling matrix we set St “ I. This simplifies our model to

be (in logs):

log λit “ ωi ` β log λi,t´1 ` αsi,t´1, i “ 1, 2, ..., N (4.8)

where sit ” B log cput;λt, νz, ψz, νεq{Bλit and λt ” rλ1t, ..., λNts
1 . The dynamic copula

model implied by equations (4.5) and (4.8) thus contains N ` 2 parameters for

the GAS dynamics, 3 parameters for the shape of the common and idiosyncratic

variables, for a total of N ` 5 parameters.

Equidependence vs. heterogeneous dependence

To investigate whether we can further reduce the number of free parameters in this

model we consider two restrictions of the model in equation (4.8), motivated by

the “dynamic equicorrelation” model of Engle and Kelly (2012). If we impose that

ωi “ ω @ i, then the pair-wise dependence between each of the variables will be

identical, leading to a “dynamic equidependence” model. (The copula implied by this

specification is “exchangeable” in the terminology of the copula literature.) In this

case we have only 6 parameters to estimate independent of the number of variables

N , vastly reducing the estimation burden, but imposing a lot of homogeneity on the

model.
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An intermediate step between the fully flexible model in equation (4.8) and the

equidependence model is to group the assets using some ex ante information (e.g.,

by industry for stock returns or CDS spreads) and impose homogeneity only within

groups. This leads to a “block equidependence” model, with

Xit “ λgpiq,tZt ` εit, i “ 1, 2, ..., N (4.9)

log λg,t “ ωg ` β log λg,t´1 ` αsg,t´1, g “ 1, 2, ..., G

where g piq is the group to which variable i belongs, and G is the number of groups. In

this case the number of parameters to estimate in the copula model is G`2`3. In our

empirical application we have N “ 100 and we consider grouping variables into G “ 5

industries, meaning this model has 10 parameters to estimate rather than 105. In our

empirical analysis below, we compare these two restricted models pG “ 1 and G “ 5q

with the “heterogeneous dependence” model which allows a different factor for each

variable pG “ Nq .

A “variance targeting” method

Estimating the fully flexible model above involves numerically searching over N ` 5

parameters, and for N “ 100 this represents quite a computational challenge. We

propose a method to overcome this challenge by adapting an idea from the DCC

model of Engle (2002). Specifically, we use a “variance targeting” (Engle and Mezrich

(1996)) method to replace the constant ωi in the GAS equation with a transformation

of a sample dependence measure. The nature of our GAS specification means that

the variance targeting approach needs to be modified for use here.

The evolution equation for λit in equation (4.8) can be re-written as

log λit “ E rlog λits p1´ βq ` β log λi,t´1 ` αsi,t´1

using the result from Creal, et al. (2013) that Et´1 rsits “ 0, and so E rlog λits “

ωi{ p1´ βq . The proposition below provides a method for using sample rank corre-
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lations to obtain an estimate of E rlog λits , thus removing the need to numerically

optimize over the intercept parameters, ωi. The proposition is based on the following

assumption.

Assumption 1. (a) The conditional copula of Yt|Ft´1 is the time-varying factor

copula given in equations (4.5) and (4.8).

(b) The process tλtu generated by equation (4.8) is strictly stationary.

(c) Let ρt,X ” vech pRankCorrt´1 rXtsq . Then log λt is a linear function of ρt,X .

(d) Let ρij,X ” RankCorr rXi, Xjs and ρLij,X ” Corr rXi, Xjs. Then, for fixed

values of pγz, γεq , the mapping ρij “ ϕpρLijq is strictly increasing.

Part (a) of this assumption makes explicit that the copula of the data is the

GAS-factor copula model, and so the conditional copula of Yt|Ft´1 is the same as

that of Xt|Ft´1. Blasques, et al. (2012) which provide conditions under which uni-

variate GAS models satisfy stationarity conditions; corresponding theoretical results

for the multivariate case are not yet available in the literature, and thus in part (b)

we simply assume that stationarity holds. Part (c) formalizes the applicability of a

Taylor series expansion of the function mapping ρt to λt. In practice this assumption

will hold only approximately, and its applicability needs to be verified via simulation,

which we discuss further in Section 4.3. Part (d) enables us to map rank correla-

tions to linear correlations. Note that we can take pγz, γεq as fixed, as we call this

mapping for each evaluation of the log-likelihood, which provides us with a value

for pγz, γεq . Importantly, this mapping can be computed prior to estimation, and

then just called during estimation, rather than re-computed each time the likelihood

function is evaluated.

Proposition 1. Let Assumption 1 hold, and denote the vech of the rank correlation

matrix of the standardized residuals as ρ̄Sη and its sample analog as ρ̂Sη . Then:

(i) E rlog λts “ H
`

ρ̄Sη
˘

, where H is defined in equation (D.3).
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(ii) zlog λ “ H
`

ρ̂Sη
˘

is a GMM estimator of E rlog λts.

Part (i) of the above proposition provides the mapping from the population rank

correlation of the standardized residuals to the mean of the (log) factor loadings,

which is the basis for considering a variance-targeting type estimator. Part (ii)

shows that the sample analog of this mapping can be interpreted as a standard

GMM estimator. This is useful as it enables us to treat the estimation of the entire

conditional joint distribution model as multi-stage GMM, and draw on results for

such estimators to conduct inference, see White (1994), Engle and Sheppard (2001)

and Gonçalves et al. (2013). The latter paper provides conditions under which a block

bootstrap may be used to obtain valid standard errors on parameters estimated via

multi-stage GMM. The resulting standard errors are not higher-order efficient, like

some bootstrap inference methods, but they do enable us to avoid having to handle

Hessian matrices of size on the order of 2Nˆ2N. Note that sample rank correlations

cannot in general be considered as moment-based estimators, as they depend on the

sample ranks of the observed data, and studying their estimation properties requires

alternative techniques. However, we exploit the fact that the marginal distributions

of the data are known up to an unknown parameter vector, and thus rank correlation

can be computed as a sample moment of a nonlinear function of the data.

4.2.3 Other models for dynamic, high dimension copulas

As noted above, the literature contains relatively few models for dynamic, high di-

mension copulas. Exceptions to this are discussed here. Lucas, et al. (2011) combine

GAS dynamics with a skewed t copula to model ten sovereign CDS spreads. A similar

model, though with an alternative skew t specification and with Engle’s (2002) DCC

dynamics, is used by Christoffersen, et al. (2012, 2013). The former of these two

papers analyzes equity returns on up to 33 national stock indices, while the latter

studies weekly equity returns and CDS spreads on 233 North American firms (and is
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the largest time-varying copula model in the extant literature). Almeida et al. (2012)

use “vine” copulas to model the dependence between 30 German stock return series,

with dynamics captured through a stochastic volatility-type equation for the param-

eters of the copula. Stöber and Czado (2012) also use vine copulas, combined with

a regime-switching model for dynamics, to model dependence between ten German

stock returns.

4.3 Simulation study

This section presents an analysis of the finite sample properties of maximum likeli-

hood estimation for factor copulas with GAS dynamics. Factor copulas do not have

a closed-form likelihood, and we approximate the likelihood using some standard

numerical integration methods, details of which can be found in Appendix D.2. Oh

and Patton (2013a) propose SMM-type estimation for factor copulas to overcome

the lack of a closed-form likelihood, but a likelihood approach allows us to exploit

the GAS model of Creal, et al. (2013) and so we pursue that here.

We consider three different copula models described for the Monte Carlo simu-

lation: a dynamic equidependence model pG “ 1q, a dynamic block equidependence

model pG “ 10q, and a dynamic heterogeneous dependence model pG “ Nq, all of

them governed by:

Xit “ λgpiq,tZt ` εit, i “ 1, 2, ..., N (4.10)

log λg,t “ ωg ` β log λg,t´1 ` αsg,t´1, g “ 1, 2, ..., G

Z „ Skew t pνz, ψzq

εi „ iid t pνεq , and εiKKZ @ i

We set N “ 100 to match the number of series in our empirical application below.

For simplicity, we impose that νz “ νε, and we estimate ν´1 rather than ν, so that

Normality is nested at ν´1 “ 0 rather than ν Ñ 8. Broadly matching the parameter
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estimates we obtain in our empirical application, we set ω “ 0, β “ 0.98, α “ 0.05,

ν “ 5, and ψz “ ´0.1 for the equidependence model. The block equidependence

model uses the same parameters but sets ω1 “ ´0.03 and ω10 “ 0.03, and with ω2

to ω9 evenly spaced between these two bounds, and the heterogeneous dependence

model similarly uses ω1 “ ´0.03 and ω100 “ 0.03, with ω2 to ω99 evenly spaced

between these two bounds. Rank correlations implied by these values range from

0.1 to 0.7. With these choices of parameter values and dependence designs, various

dynamic dependence structures are covered, and asymmetric tail dependence, which

is a common feature of financial data, is also allowed. We use a sample size of

T “ 500 and we repeat each simulation 100 times.

The results for the equidependence model presented in Panel A of Table 4.1 re-

veal that the average estimated bias for all parameters is small, and the estimates

are centered on true values. The results for the block equidependence model, pre-

sented in Panel B, are also satisfactory, and, as expected, the estimation error in the

parameters is generally slightly higher for this more complicated model.

The heterogeneous dependence model is estimated using the variance targeting-

type approach for the intercepts, ωi, described in Section 4.2.2, combined with numer-

ical optimization for the remaining parameters. Appendix D.4 contains simulations

that verify the applicability of Assumption 1 for this model, and the results pre-

sented in Panel C confirm that the approach leads to estimators with satisfactory

finite-sample properties. (Panel C reports only every fifth intercept parameter, in

the interests of space. The complete set of results is available in Appendix D.3.) The

standard errors on the estimated intercept parameters are approximately twice as

large, on average, as in the block equidependence case, however this model has seven

times as many parameters as the block equidependence (104 vs. 14) and so some

loss in accuracy is inevitable. Importantly, all estimated parameters are approxi-

mately centered on their true values, confirming that the assumptions underlying

158



Proposition 1 are applicable for this model.

4.4 Data description and estimation results

4.4.1 CDS spreads

We apply the dynamic copula model described in the previous section to daily credit

default swap (CDS) spreads, obtained from Markit. In brief, a CDS is a contract in

which the seller provides insurance to the buyer against any losses resulting from a

default by the “reference entity” within some horizon. We focus on North American

corporate CDS contracts, and the reference entities are thus North American firms.

The CDS spread, usually measured in basis points and payable quarterly by the

buyer to the seller, is the cost of this insurance. See Duffie and Singleton (2003) and

Hull (2012) for more detailed discussions of CDS contracts, and see Barclays “CDS

Handbook” (2010) for institutional details.

A key reason for interest in CDS contracts is sensitivity of CDS spreads to changes

in market perceptions of the probability of default, see Conrad, et al. (2011), Creal,

et al. (2012) and Christoffersen, et al. (2013) for recent empirical studies of implied

default probabilities. Under some simplifying assumptions (such as a constant risk

free rate and default hazard rate) see Carr and Wu (2011) for example, it can be

shown that the CDS spread in basis points is:

Sit “ 1002PQ
itLit (4.11)

where Lit is the loss given default (sometimes shortened to “LGD,” and often assumed

to equal 0.6 for U.S. firms) and PQ
it is the implied probability of default. The same

formula obtains as a first-order approximation at PQ
it « 0 for other more complicated

pricing equations. This expression can be written in terms of the objective probability

of default, P P
it :

Sit “ 1002P P
itMitLit (4.12)
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where Mit is the market price of risk (stochastic discount factor). An increase in a

CDS spread can be driven by an increase in the LGD, an increase in the market price

of default risk for this firm, or an increase in the objective probability of default. Any

one of these three effects is indicative of a worsening of the health of the underlying

firm.

In the analysis below we work with the log-difference of CDS spreads, to mitigate

their autoregressive persistence, and under this transformation we obtain:

Yit ” ∆ logSit “ ∆ logP P
it `∆ logMit `∆ logLit (4.13)

If the loss given default is constant then the third term above vanishes, and if we

assume that the market price of risk is constant (as in traditional asset pricing

models) or evolves slowly (for example, with a business cycle-type frequency) then

daily changes in CDS spreads can be attributed primarily to changes in the objective

probability of default. We will use this to guide our interpretation of the empirical

results below, but we emphasize here that an increase in any of these three terms

represents “bad news” for firm i, and so the isolation of the objective probability of

default is not required for our interpretations to follow.

4.4.2 Summary statistics

Our sample period spans January 2006 to April 2012, a total of 1644 days. We study

the 5-year CDS contract, which is the most liquid horizon (see Barclays (2010)), and

we use “XR” (“no restructuring”) CDS contracts, which became the convention for

North America following the CDS market standardization in 2009 (the so-called “Big

Bang”). To obtain a set of active, economically interesting, CDS data, we took all

125 individual firms in the CDS index covering our sample period (CDX Series 17).

Of these, 90 firms had data that covered our entire sample period, and ten firms had

no more than three missing observations. We use these 100 firms for our analysis.
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(Of the remaining 25 firms, six are not U.S.-based firms and one firm stopped trading

because of a firm split. None of the firms defaulted over this sample period.) A plot

of these CDS spreads is presented in Figure 4.1, which reveals that the average CDS

spread was around 100 basis points (bps), and it varied from a low (averaged across

firms) of 24 bps on February 22, 2007, to a high of 304 bps on March 9, 2009.

The levels of our CDS spread data are suggestive of a large autoregressive root,

with the median first-order autocorrelation across all 100 series being 0.996 (the

minimum is 0.990). Further, augmented Dickey-Fuller tests reject the null hypothesis

of a unit root at the 0.05 level for only 12 series. Like interest rate time series, these

series are unlikely to literally obey a random walk, as they are bounded below,

however we model all series in log differences to avoid the need to consider these

series as near unit root processes.

Table 4.2 presents summary statistics on our data. Of particular note is the

positive skewness of the log-differences in CDS spreads (average skewness is 1.087,

and skewness is positive for 89 out of 100 series) and the excess kurtosis (25.531 on

average, and greater than 3 for all 100 firms). Ljung-Box tests for autocorrelation

at up to the tenth lag find significant (at the 0.05 level) autocorrelation in 98 out of

100 of the log-differenced CDS spreads, and for 89 series significant autocorrelation

is found in the squared log-differences. This motivates specifying models for the

conditional mean and variance to capture this predictability.

4.4.3 Conditional mean and variance models

Daily log-differences of CDS spreads have more autocorrelation than is commonly

found for daily stock returns (e.g., the average first-order autocorrelation is 0.161)

and so the model for the conditional mean of our data needs more structure than the

commonly-used constant model for daily stock returns. We use an AR(5) augmented

with one lag of the market variable (an equal-weighted average of all 100 series), and
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we show below that this model passes standard specification tests:

Yit “ φ0i `

5
ÿ

j“1

φjiYi,t´j ` φmiYm,t´1 ` eit (4.14)

For the market return we use the same model (omitting, of course, a repeat of the

first lag of the market return). We need a model for the market return as we use the

residuals from the market return model in our conditional variance specification.

Our model for the conditional variance is the asymmetric volatility model of

Glosten, et al. (1993), the “GJR-GARCH” model. The motivation for the asym-

metry in this model is that “bad news” about a firm increases its future volatility

more than good news. For stock returns, bad news comes in the form of a negative

residual. For CDS spreads, on the other hand, bad news is a positive residual, and

so we reverse the direction of the indicator variable in the GJR-GARCH model to

reflect this. In addition to the standard GJR-GARCH terms, we also include terms

relating to the lagged market residual:

Vt´1 reits ” σ2
it “ ωi ` βiσ

2
i,t´1 ` αie

2
i,t´1 ` δie

2
i,t´11 tei,t´1 ą 0u (4.15)

` αime
2
m,t´1 ` δime

2
m,t´11 tem,t´1 ą 0u

Finally, we specify a model for the marginal distribution of the standardized

residuals, ηit. We use the skewed t distribution of Hansen (1994), which allows for

non-zero skewness and excess kurtosis:

ηit ”
eit
σit

∼ iid Skew t pνi, ψiq (4.16)

Table 4.3 summarizes the results of estimating the above models on the 100 time

series. For the conditional mean model, we find strong significance of the first three

AR lags, as well as the lagged market return. The conditional variance models reveal

only mild statistical evidence of asymmetry in volatility, however the point estimates
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suggest that “bad news” (a positive residual) increases future volatility about 50%

more than good news. The average estimated degrees of freedom parameter is 3.508,

suggestive of fat tails, and the estimated skewness parameter is positive for 94 firms,

and significantly different from zero for 41 of these, indicating positive skewness.

We now discuss goodness-of-fit tests for the marginal distribution specifications.

We firstly use the Ljung-Box test to check the adequacy of these models for the con-

ditional mean and variance, and we are able to reject the null of zero autocorrelation

up to the tenth lag for only nine of the residual series, and only two of the squared

standardized residual series. We conclude that these models provide a satisfactory fit

to the conditional means and variances of these series. Next, we use the Kolmogorov-

Smirnov test to investigate the fit of the skewed t distribution for the standardized

residuals, using 100 simulations to obtain critical values that capture the parameter

estimation error, and we reject the null of correct specification for just eleven of the

100 firms. This is slightly higher than the level of the test (0.05), but we do not

pursue the use of a more complicated marginal distribution model for those eleven

firms in the interests of parsimony and comparability.

4.4.4 The CDS “Big Bang”

On April 8, 2009, the CDS market underwent changes driven by a move towards

more standardized CDS contracts. Details of these changes are described in Markit

(2009). It is plausible that the changes to the CDS market around the Big Bang

changed the dynamics and distributional features of CDS time series, and we test for

that possibility here. We do so by allowing the parameters of the mean, variance,

and marginal distribution models to change on the date of the Big Bang, and we

test the significance of these changes. We have 591 pre-break observations and 1053

post-break observations.

We find that the conditional mean parameters changed significantly (at the 0.05
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level) for 39 firms, and the conditional variance and marginal density shape param-

eters changed significantly for 66 firms. In what follows, the results we report are

based on models that allow for a structural break in the mean, variance and distri-

bution parameters. Given the prevalence of these changes, all of the copula models

we consider allow for a break at the date of the Big Bang.

4.4.5 Comparing models for the conditional copula

The class of high dimension dynamic copula models described in Section 4.2 includes

a variety of possible specifications: static vs. GAS dynamics; normal vs. skew t-t

factor copulas; equidependence vs. block equidependence vs. heterogeneous depen-

dence.

Table 4.4 presents results for six different dynamic models (a corresponding table

for the six static copula models is in Table D.2). Bootstrap standard errors are pre-

sented in parentheses below the estimated parameters. (We use the stationary block

bootstrap of Politis and Romano (1994) with an average block length of 120 days,

applied to the log-difference of the CDS spreads, and we use 100 bootstrap replica-

tions.) Similar to other applications of GAS models (see, Creal et al. (2011, 2013))

we find strong persistence, with the β parameter ranging from 0.85 to 0.99. (Note

that the β parameter in GAS models plays the same role as α`β in a GARCH(1,1)

model, see Example 1 in Creal, et al. (2013)). We also find that the inverse degrees

of freedom parameters are greater than zero (i.e., the factor copula is not Normal),

which we test formally below. We further find that the asymmetry parameter for

the common factor is positive, indicating greater dependence for joint upward moves

in CDS spreads. This is consistent with financial variables being more correlated

during bad times: for stock returns bad times correspond to joint downward moves,

which have been shown in past work to be more correlated than joint upward moves,

while for CDS spreads bad times correspond to joint upward moves.
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Table 4.4 shows that the estimated degrees of freedom parameter for the common

factor is larger than that for the idiosyncratic term. Oh and Patton (2011) show

that when these two parameters differ the tail dependence implied by this factor

copula is on the boundary: either zero (νz ą νε) or one (νz ă νε); only when these

parameters are equal can tail dependence lie inside p0, 1q . We test the significance

of the difference between these two parameters by estimating a model with them

imposed to be equal and then conducting a likelihood ratio test, the log-likelihoods

from these two models are reported in Table 4.5. The results strongly suggest that

νz ą νε, and thus that extreme movements in CDS spreads are uncorrelated. The

average gain in the log likelihood from estimating just this one extra parameter is

around 200 points. This does not mean, of course, that “near extreme” movements

must be uncorrelated, only that they are uncorrelated in the limit.

Table 4.5 also shows a comparison of the Skew t-t factor copula with the Normal

copula, which is obtained by using a Normal distribution for both the common factor

and the idiosyncratic factor. We see very clearly that the Normal copula performs

worse than the Skew t-t factor copula, with the average gain in the log likelihood of

the more flexible model being over 2000 points. This represents yet more evidence

against the Normal copula model for financial time series; the Normal copula is

simply too restrictive.

Finally, Table 4.5 compares the results from models with three different degrees

of heterogeneity equidependence vs. block equidependence vs. heterogeneous depen-

dence. We see that the data support the more flexible models, with the block equide-

pendence model improving the equidependence model by around 200 points, and the

heterogeneous model improving on the block equidependence model by around 800

points. It should be noted that our use of industry membership to form the “blocks”

is just one method, and alternative grouping schemes may lead to better results. We

do not pursue this possibility here.
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Given the results in Table 4.5, our preferred model for the dependence structure

of these 100 CDS spread series is a skew t-t factor copula, with separate degrees of

freedom for the common and idiosyncratic variables, allowing for a separate loading

on the common factor for each series (the “heterogeneous dependence” model) and

allowing for dynamics using the GAS structure described in the previous section.

Figure 4.2 presents the time-varying factor loadings implied by this model, and Fig-

ure 4.3 presents time-varying rank correlations. To summarize these results, Figure

4.2 averages the loadings across all firms in the same industry, and Figure 4.3 aver-

ages all pair-wise correlations between firms in the same pairs of industries. (Thus

the plotted factor loadings and rank correlations are smoother than any individual

rank correlation plot.) Also presented in Figure 4.3 are 60-day rolling window rank

correlations, again averaged across pairs of the firms in the same pair of industries.

This figure reveals a secular increase in the correlation between CDS spreads, ris-

ing from around 0.1 in 2006 to around 0.5 in 2013. Interestingly, rank correlations

do not appear to spike during the financial crisis, unlike individual volatilities and

probabilities of default; rather they continue a mostly steady rise through the sample

period.

4.5 Time-varying systemic risk

In this section we use the dynamic multivariate model presented above to obtain esti-

mates of measures of systemic risk. A variety of measures of systemic risk have been

proposed in the literature to date. One influential measure is “CoVaR,” proposed

by Adrian and Brunnermeier (2009), which uses quantile regression to estimate the

lower tail (e.g., 0.05) quantile of market returns conditional on a given firm having

a returns equal to its lower tail quantile. This measure provides an estimate of how

firm-level stress spills over to the market index. An alternative measure is “marginal

expected shortfall” (MES) proposed by Brownlees and Engle (2011), which estimates
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the expected return on a firm conditional on the market return being below some low

threshold. Segoviano and Goodhart (2009) and Giesecke and Kim (2009) propose

measuring systemic risk via the probability that a “large” number of firms are in

distress. Lucas, et al. (2011) use the same measure applied to European sovereign

debt. Huang, et al. (2009) suggest using the price of a hypothetical contract insuring

against system-wide distress, valued using a mix of CDS and equity data, as a mea-

sure of systemic risk. Schwaab (2010) presents a review of these and other measures

of systemic risk.

We consider two different estimates of systemic risk, defined in detail in the

following two sub-sections. In all cases we use the dynamic copula model that per-

formed best in the previous section, namely the heterogeneous dependence factor

copula model.

4.5.1 Joint probability of distress

The first measure of systemic risk we implement is an estimate of the probability

that a large number of firms will be in distress, similar to the measure considered by

Segoviano and Goodhart (2009), Giesecke and Kim (2009) and Lucas, et al. (2011).

We define distress as a firm’s one-year-ahead CDS spread lying above some threshold:

Di,t`250 ” 1 tSi,t`250 ą c˚u (4.17)

We choose the threshold as the cross-sectional average of the 99% quantiles of the

individual CDS spreads:

c˚ “
1

N

N
ÿ

i“1

c˚i (4.18)

where Pr rSit ď c˚i s “ 0.99

In our sample, the 99% threshold corresponds to a CDS spread of 339 basis points.

Using equation (4.11) above, this threshold yields an implied probability of default
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(assuming LGD is 0.6) of 5.7%. (The average CDS spread across all firms is 97 basis

points, yielding an implied PD of 1.6%.) We also considered a threshold quantile

of 0.95, corresponding to a CDS spread of 245 basis points, and the results are

qualitatively similar.

We use the probability of a large proportion of firms being in distress as a measure

of systemic risk. Define the “joint probability of distress” as:

JPD t,k ” Prt

«˜

1

N

N
ÿ

i“1

Di,t`250

¸

ě
k

N

ff

(4.19)

where k is a user-chosen threshold for what constitutes a “large” proportion of the

N firms. We use k “ 30, and the results corresponding to k “ 20 and k “ 40 are

qualitatively similar.

With a fixed threshold for distress, such as that in equation (4.18), the average

individual probability of distress will vary through time. It may thus be of interest,

given our focus on systemic risk, to consider a scaled version of the JPD, to remove

the influence of time variation in individual probabilities of distress. To this end,

define:

SJPDt,k ”
JPD t,k

AvgIPD t

(4.20)

where AvgIPD t ”
1

N

N
ÿ

i“1

Et rDi,t`250s (4.21)

The JPD and SJPD estimates must be obtained via simulations from our model,

and we obtain these using 10,000 simulations. Given the computational burden, we

compute estimates only every 20 trading days (approximately once per month).

The estimated joint probability of distress and scaled joint probability of distress

are presented in Figure 4.4. We see from the left panel that the JPD rose dramatically

during the financial crisis of late 2008–mid 2009, with the probability of at least 30
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firms being in distress reaching around 80%. This panel also reveals that a large

part of this increase in JPD is attributable to an increase in the average individual

probability of distress, which rose to nearly 50% in the peak of the financial crisis.

In the right panel we report the ratio of these two lines and obtain the scaled

probability of distress. This can be thought of as a “multiplier” of individual distress,

as it shows the ratio of joint distress to average individual distress. This ratio reached

nearly two in the financial crisis. Interestingly, while this ratio fell in late 2009, it

rose again in 2010 and in late 2011, indicating that the level of systemic risk implied

by observed CDS spreads is substantially higher now than in the pre-crisis period.

4.5.2 Expected proportion in distress

Our second measure of systemic risk more fully exploits the ability of our dynamic

copula model to capture heterogeneous dependence between individual CDS spread

changes. For each firm i, we compute the expected proportion of stocks in distress

conditional on firm i being in distress:

EPDi,t ” Et

«

1

N

N
ÿ

j“1

Dj,t`250

ˇ

ˇ

ˇ

ˇ

ˇ

Di,t`250 “ 1

ff

(4.22)

The minimum value this can take is 1{N, as we include firm i in the sum, and the

maximum is one. We use the same indicator for distress as in the previous section

(equation (4.17)). This measure of systemic risk is similar in spirit to the CoVaR

measure proposed by Adrian and Brunnermeier (2009), in that it looks at distress

“spillovers” from a single firm to the market as a whole.

In Figure 4.5 below we summarize the results from the EPD estimates, and

present the average, and 10% and 90% quantiles of this measure across the 100

firms in our sample. We observe that the average EPD is around 30% in the pre-

crisis period, rising to almost 60% in late 2008, and returning to around 40% in the
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last year of our sample. Thus this figure, like the JPD and SJPD plot in Figure 4.4,

is also suggestive of a large increase in systemic risk around the financial crisis, and

higher level of systemic risk in the current period than in the pre-crisis period.

The expected proportion in distress measure enables us to identify firms that are

more strongly correlated with market-wide distress than others. When the EPD is

low for a given firm, it reveals that distress for that firm is not a signal of widespread

distress, i.e., firm i is more idiosyncratic. Conversely, when the EPD is high, it

reveals that distress for this firm is a sign of widespread distress, and so this firm

is a “bellwether” for systemic risk. To illustrate the information from individual

firm EPD estimates, Table 4.6 below presents the top five and bottom five firms

according to their EPD on three dates in our sample period, the first day (January

2, 2006), a middle day (January 26, 2009) and the last day (April 17, 2012). We

note that SLM Corporation (“Sallie Mae”, in the student loan business) appears in

the “least systemic” group on all three dates, indicating that periods in which it is in

distress are, according to our model, generally unrelated to periods of wider distress.

Marsh and McLennan (which owns a collection of risk, insurance and consulting

firms) and Baxter International (a bioscience and medical firm) each appear in the

“most systemic” group for two out of three dates.

Table 4.6 also provides information on the spread of EPD estimates across firms.

At the start of our sample the least systemic firms had EPDs of 2 to 3, indicating

that only one to two other firms are expected to be in distress when they are in

distress. At the end of our sample the least systemic firms had EPDs of 8 to 12,

indicating a wider correlation of distress even among the least correlated. A similar

finding is true for the most systemic firms: the EPDs for the most systemic firms rise

from 48–53 at the start of the sample to 84–94 at the end. Thus there is a general

increase in the correlation between firm distress over this sample period.
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4.6 Conclusion

Motivated by the growing interest in measures of the risk of systemic events, this

paper proposes new flexible yet parsimonious models for time-varying high dimension

distributions. We use copula theory to combine well-known models for conditional

means, variances, and marginal distributions with new models of the conditional

dependence structure (copula) to obtain dynamic joint distributions. Our proposed

new dynamic copula models draw on successful ideas from the literature on dynamic

modeling of high dimension covariance matrices, see Engle (2002) and Engle and

Kelly (2012) for example, and on recent work on models for general time-varying

distributions, see Creal, et al. (2011, 2013), along with the “factor copula” of Oh

and Patton (2012).

We use the proposed models to undertake a detailed study of a collection of 100

credit default swap (CDS) spreads on U.S. firms, which provide an relatively novel

view of the health of these firms. We find, unsurprisingly, that systemic risk was

highest during the financial crisis of 2008–09. More interestingly, we also find that

systemic risk has remained relatively high, and is substantially higher now than in

the pre-crisis period.

4.7 Tables and figures
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Table 4.1: Simulation results

True Bias Std Median 90% 10% Diff
(90%-10%)

Panel A: Equidependence
ω 0.000 0.005 0.015 0.001 0.027 -0.003 0.030
α 0.050 0.000 0.003 0.050 0.051 0.048 0.003
β 0.980 0.002 0.004 0.980 0.989 0.979 0.010
ν´1 0.200 0.001 0.006 0.200 0.206 0.195 0.010
ψz 0.100 0.005 0.017 0.100 0.118 0.097 0.021

Panel B: Block equidependence
ω1 -0.030 0.000 0.005 -0.030 -0.025 -0.035 0.010
ω2 -0.023 -0.001 0.004 -0.024 -0.020 -0.030 0.010
ω3 -0.017 0.000 0.005 -0.017 -0.011 -0.023 0.012
ω4 -0.010 0.000 0.004 -0.011 -0.005 -0.016 0.011
ω5 -0.003 0.001 0.004 -0.002 0.004 -0.007 0.011
ω6 0.003 0.001 0.004 0.004 0.009 0.000 0.009
ω7 0.010 0.002 0.005 0.012 0.018 0.007 0.012
ω8 0.017 0.001 0.005 0.017 0.025 0.012 0.013
ω9 0.023 0.001 0.005 0.024 0.030 0.018 0.012
ω10 0.030 0.003 0.006 0.033 0.040 0.024 0.015
α 0.050 0.001 0.005 0.051 0.057 0.045 0.012
β 0.980 -0.001 0.002 0.978 0.981 0.976 0.004
ν´1 0.200 -0.005 0.008 0.196 0.202 0.184 0.018
ψz 0.100 0.004 0.025 0.103 0.138 0.071 0.068

Notes: This table presents results from the simulation study described in Section 4.3.
Panel A contains results for the equidependence model and Panel B for the “block
equidependence” model.
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Table 4.1: Simulation results

True Bias Std Median 90% 10% Diff
(90%-10%)

Panel C: Heterogeneous dependence

ω1 -0.030 0.004 0.017 -0.022 -0.005 -0.052 0.047
ω5 -0.028 0.004 0.016 -0.020 -0.005 -0.046 0.041
ω10 -0.025 0.002 0.016 -0.019 -0.005 -0.041 0.036
ω15 -0.022 0.002 0.013 -0.019 -0.004 -0.043 0.039
ω20 -0.019 0.002 0.011 -0.015 -0.003 -0.033 0.030
ω25 -0.016 0.000 0.010 -0.014 -0.003 -0.030 0.027
ω30 -0.012 0.001 0.008 -0.010 -0.002 -0.022 0.020
ω35 -0.009 0.000 0.008 -0.008 -0.002 -0.020 0.018
ω40 -0.006 -0.001 0.005 -0.006 -0.002 -0.015 0.014
ω45 -0.003 -0.001 0.005 -0.003 0.000 -0.010 0.010
ω50 0.000 -0.002 0.004 -0.002 0.001 -0.007 0.008
ω55 0.003 -0.001 0.004 0.001 0.007 -0.003 0.010
ω60 0.006 -0.002 0.005 0.003 0.010 0.000 0.010
ω65 0.009 -0.002 0.006 0.005 0.013 0.000 0.013
ω70 0.012 -0.004 0.007 0.007 0.017 0.001 0.016
ω75 0.015 -0.004 0.008 0.009 0.019 0.002 0.017
ω80 0.018 -0.004 0.009 0.012 0.026 0.002 0.024
ω85 0.021 -0.006 0.011 0.014 0.032 0.002 0.030
ω90 0.024 -0.006 0.012 0.016 0.036 0.003 0.033
ω95 0.027 -0.006 0.014 0.018 0.040 0.004 0.036
ω100 0.030 -0.007 0.016 0.021 0.040 0.004 0.036
α 0.050 -0.006 0.015 0.045 0.062 0.023 0.039
β 0.980 0.002 0.012 0.983 0.997 0.966 0.031
ν´1 0.200 -0.002 0.009 0.199 0.209 0.186 0.023
ψz 0.100 0.008 0.032 0.111 0.152 0.064 0.088

Notes: This table presents results from the simulation study described in Section 4.3.
Panel C contains results for the “heterogeneous dependence” model. In the interests
of space, Panel C only reports every fifth intercept parameter pωiq rather than the
complete set of 100 such parameters; the complete table is available in Appendix
D.3.
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Table 4.2: Summary statistics for daily CDS spreads and log-differences of daily CDS
spreads

Mean 5% 25% Median 75% 95%

Panel A: Cross-sectional distribution of CDS spreads
Mean 96.953 37.212 53.561 74.957 123.785 200.346
Std dev 69.950 17.344 27.245 47.508 84.336 180.618
1st autocorr 0.996 0.992 0.995 0.997 0.998 0.998
Skewness 1.203 0.095 0.695 1.280 1.587 2.488
Kurtosis 5.113 2.198 2.943 4.937 6.477 9.486
5% 23.883 9.021 11.741 18.926 29.851 60.538
25% 42.274 20.373 25.212 35.314 47.473 104.704
Median 85.310 35.098 50.105 69.399 113.762 166.208
75% 122.061 46.250 65.862 93.622 154.729 251.112
95% 245.497 72.514 102.554 168.500 313.585 631.924
99% 338.676 80.414 122.885 231.295 435.224 827.098

Panel B: Cross-sectional distribution of log-differences of CDS spreads
Mean 5.589 -1.634 2.559 5.529 8.521 13.817
Std dev 378.892 308.636 347.627 373.460 400.385 476.533
1st autocorr 0.161 0.030 0.121 0.164 0.217 0.267
Skewness 1.087 -0.285 0.354 0.758 1.488 3.629
Kurtosis 25.531 7.717 10.286 14.557 25.911 74.843
5% -514.574 -622.282 -551.334 -509.554 -474.027 -415.651
25% -144.195 -172.319 -155.635 -145.415 -134.820 -111.993
Median -2.324 -9.045 -3.644 -0.726 0.000 0.000
75% 132.127 95.168 120.514 131.019 144.363 174.645
95% 570.510 457.775 537.093 568.331 612.769 684.984

Panel C: Autocorrelation in CDS spreads

# of reject. Level Log-diff Squared log-diff
ADF test 12 100 –
LB test – 98 89

Notes: This table presents summary statistics of daily CDS spreads (upper panel)
and log-differences of CDS spreads (middle panel), measured in basis points in both
cases. The columns present the mean and quantiles from the cross-sectional dis-
tribution of the measures listed in the rows. These two panels present summaries
across the N = 100 marginal distributions. The bottom panel shows the number of
rejections (at the 0.05 level) across the 100 firms for augmented Dickey-Fuller tests
of the null of a unit root, as well as Ljung-Box tests for autocorrelation up to 10 lags.
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Table 4.3: Marginal distribution parameter estimates

Cross-sectional distribution

Mean 5% 25% Median 75% 95%

φ0 3.029 -3.760 0.247 3.116 5.861 10.165
φ1 0.005 -0.179 -0.062 0.010 0.082 0.153
φ2 0.025 -0.039 -0.001 0.025 0.050 0.084
φ3 -0.002 -0.058 -0.028 -0.004 0.021 0.064
φ4 0.006 -0.046 -0.014 0.006 0.033 0.054
φ5 0.004 -0.055 -0.022 0.005 0.027 0.060
φm 0.387 0.163 0.303 0.372 0.480 0.638

ω{1000 5.631 1.401 3.111 5.041 7.260 13.381
β 0.741 0.595 0.699 0.746 0.794 0.845
α 0.114 0.052 0.087 0.106 0.141 0.181
δ 0.022 0.000 0.000 0.000 0.042 0.086
αm 0.223 0.037 0.137 0.206 0.297 0.494
δm 0.072 0.000 0.000 0.059 0.114 0.233

ν 3.620 2.877 3.293 3.571 3.921 4.496
ψ 0.043 -0.003 0.024 0.042 0.062 0.089

# of rejections
LB test for standardized residuals 9
LB test for squared standardized residuals 2
KS test for skew t dist of std. residuals 11

Notes: The table presents summaries of the estimated AR(5)-GJR-GARCH(1,1)-
Skew t pν, ψq models estimated on log-difference of daily CDS spreads. The columns
present the mean and quantiles from the cross-sectional distribution of the parame-
ters listed in the rows. The bottom panel shows the number of rejections (at the 0.05
leve) across 100 firms from Ljung-Box tests for serial correlation up to 10 lags. The
first row is for standardized residuals of log-difference of daily CDS spreads and the
second row for squared standardized residuals. The bottom panel shows the number
of rejections across 100 firms from the Kolmogorov–Smirnov test of the Skew t pν, ψq
distribution used for the standardized residuals.
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Figure 4.1: The upper panel plots the mean and 10%, 25%, 75% and 90% quantiles
across the CDS spreads for 100 U.S. firms over the period January 2006 to April
2012. The lower panel reports the average (across firms) percent change in CDS
spreads for the same time period.
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Figure 4.2: This figure plots the estimated factor loadings pλtq from the heteroge-
neous dependence factor copula model, averaged across firms in the same industry.
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Figure 4.4: The left panel shows the joint probability of distress (JPD) in a solid
line and the average individual probability of distress (Avg IPD) in a dashed line.
The right panel shows the scaled joint probability of distress (SJPD). Both panels
cover the period January 2006 to April 2012.
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Figure 4.5: This figure shows the expected proportion (in percent) of firms in dis-
tress, given firm i in distress, averaged across all 100 firms. The cross-sectional 10%
and 90% quantiles are also reported. The sample period is January 2006 to April
2012.
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Appendix A

Appendix to Chapter 1

A.1 Proofs

The following two lemmas are needed to prove Theorem 1.

Lemma 1. Let tXiu
N
i“1 be N continuous random variables with joint distribution F,

marginal distributions F1, .., FN . Then tXiu
N
i“1 is jointly symmetric about taiu

N
i“1 if

and only if

@i, F pa1 ` x1, . . . , ai ` xi, . . . , aN ` xNq “ F pa1 ` x1, . . . ,8, . . . , aN ` xNq (A.1)

´ F pa1 ` x1, . . . , ai ´ xi, . . . , aN ` xNq

F pa1 ` x1, . . . ,8, . . . , aN ` xNq and F pa1 ` x1, . . . , ai ´ xi, . . . , aN ` xNq mean that

only i-th element is 8 and ai ´ xi, respectively, and other elements are

ta1 ` x1, . . . , ai´1 ` xi´1, ai`1 ` xi`1, . . . , aN ` xNu.

Proof. ñq By Definition 2, the joint symmetry implies that the following holds for

any i,

Pr rX1 ´ a1 ď x1, . . . , Xi ´ ai ď xi, . . . , XN ´ aN ď xN s (A.2)

“ Pr rX1 ´ a1 ď x1, . . . , ai ´Xi ď xi, . . . , XN ´ aN ď xN s
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and with a simple calculation, the right hand side is written as

Pr rX1 ´ a1 ď x1, . . . , ai ´Xi ď xi, . . . , XN ´ aN ď xN s (A.3)

“ Pr rX1 ´ a1 ď x1, . . . , Xi ď 8, . . . , XN ´ aN ď xN s

´ Pr rX1 ´ a1 ď x1, . . . , Xi ď ai ´ xi, . . . , XN ´ aN ď xN s

“ F pa1 ` x1, . . . ,8, . . . , aN ` xNq

´ F pa1 ` x1, . . . , ai ´ xi, . . . , aN ` xNq

and the left hand side of equation (A.2) is

Pr rX1 ´ a1 ď x1, . . . , Xi ´ ai ď xi, . . . , XN ´ aN ď xN s

“ F pa1 ` x1, . . . , ai ` xi, . . . , aN ` xNq

ðq Equation (A.1) can be written as

@i, Pr rX1 ´ a1 ď x1, . . . , Xi ´ ai ď xi, . . . , XN ´ aN ď xN s

“ Pr rX1 ´ a1 ď x1, . . . , Xi ď 8, . . . , XN ´ aN ď xN s

´ Pr rX1 ´ a1 ď x1, . . . , Xi ď ai ´ xi, . . . , XN ´ aN ď xN s

and by equation (A.3), the right hand side becomes

Pr rX1 ´ a1 ď x1, . . . , ai ´Xi ď xi, . . . , XN ´ aN ď xN s

Therefore, for any i

Pr rX1 ´ a1 ď x1, . . . , Xi ´ ai ď xi, . . . , XN ´ aN ď xN s

“ Pr rX1 ´ a1 ď x1, . . . , ai ´Xi ď xi, . . . , XN ´ aN ď xN s

and this satisfies the definition of joint symmetry.

Lemma 2. Consider two scalar random variables Z1 and Z2, and some constant

b1 in R1. If pZ1 ´ b1, Z2q and pb1 ´ Z1, Z2q have a common joint distribution, then

Cov pZ1, Z2q “ 0
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Proof. Z1´b1 and b1´Z1 have the same marginal distribution and the same moments,

so

E rZ1 ´ b1s “ E rb1 ´ Z1s

E rZ1s “ b1

pZ1 ´ b1, Z2q and pb1 ´ Z1, Z2q have the same moment, so

E rpZ1 ´ b1qZ2s “ E rpb1 ´ Z1qZ2s

E rZ1Z2s “ b1E rZ2s

Covariance of Z1 and Z2 is

Cov pZ1, Z2q “ E rZ1Z2s ´ E rZ1sE rZ2s

“ b1E rZ2s ´ b1E rZ2s

“ 0

Proof of Theorem 1. (i) ñq We follow Lemma 1 and rewrite equation (A.1) as

@i,C pF1 pa1 ` x1q , . . . , Fi pai ` xiq , . . . , FN paN ` xNqq

“ C pF1 pa1 ` x1q , . . . , 1, . . . , FN paN ` xNqq

´C pF1 pa1 ` x1q , . . . , Fi pai ´ xiq , . . . , FN paN ` xNqq

and we know Fi pai ` xiq “ 1 ´ Fi pai ´ xiq due to the assumption of the symmetry

of each Xi. Therefore,

@i,C pu1, . . . , ui, . . . , uNq “ C pu1, . . . , 1, . . . , uNq ´C pu1, . . . , 1´ ui, . . . , uNq

where ui ” Fi pai ` xiq .

ðq Following the reverse way above, equation (1.5) becomes equation (A.1), and

the proof is done by Lemma 1.

(ii) This is trivial by Definition 2 for joint symmetry and Lemma 2.
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Proof of Theorem 2. If we prove that CJS pu1, . . . , uNq in equation (1.6) satisfies

equation (1.5), the proof is done:

@i, CJS
pu1, . . . , ui, . . . , uNq “ CJS

pu1, . . . , 1, . . . , uNq ´CJS
pu1, . . . , 1´ ui, . . . , uNq

We first prove this for i “ N. Rewriting equation (1.6) as

CJS
pu1, . . . , uNq “

1

2N
rC´N pu1, . . . , uN´1, uNq ´C´N pu1, . . . , uN´1, 1´ uNq

`C´N pu1, . . . , uN´1, 1qs

where C´N pu1, . . . , uN´1, uNq “
3
ÿ

j1“1

¨ ¨ ¨

3
ÿ

jN´1“1

p´1qJ´N ¨C pru1, . . . , ruN´1, uNq

J´N ”
N´1
ÿ

i“1

1 tji “ 2u and rui “

$

&

%

ui for ji “ 1
1´ ui for ji “ 2

1 for ji “ 3

and calculating CJS pu1, . . . , uN´1, 1q and CJS pu1, . . . , uN´1, 1´ uNq result in

CJS
pu1, . . . , uN´1, 1q ´CJS

pu1, . . . , uN´1, 1´ uNq

“
1

2N

»

–C´N pu1, . . . , uN´1, 1q ´C´N pu1, . . . , uN´1, 0q
loooooooooooomoooooooooooon

“0

`C´N pu1, . . . , uN´1, 1q

fi

fl

´
1

2N
rC´N pu1, . . . , uN´1, 1´ uNq ´C´N pu1, . . . , uN´1, uNq `C´N pu1, . . . , uN´1, 1qs

“
1

2N
rC´N pu1, . . . , uN´1, uNq ´C´N pu1, . . . , uN´1, 1´ uNq `C´N pu1, . . . , uN´1, 1qs

“ CJS
pu1, . . . , uNq

Similarly, this equation holds for i “ 1, . . . , N ´ 1, so the proof is done.

To prove Theorem 3, we need the following lemma which guarantees that a sample

covariance matrix is positive definite if T is large enough relative to dimension N.
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Lemma 3. Consider T vectors rt P RN for t “ 1, . . . , T. If rankrr1, . . . , rT s ě

N, then
řT
t“1 rtr

1
t is positive definite.

Proof. Assume that
řT
t“1 rtr

1
t is positive semi-definite. Then there exists a nonzero

vector x P RN such that x1
´

řT
t“1 rtr

1
t

¯

x “ 0, and this implies x1 ¨ rt “ 0 for any t.

On the other hand, if rankrr1, . . . , rT s ě N, then rr1, . . . , rT s span RN, which implies

there exist tαiu
T
i“1 such that

α1r1 ` ...` αT rT “ x

Premultiplying by x1 gives

α1x
1r1 ` ...` αTx1rT “ x1x

and the left hand side is zero by x1 ¨ rt “ 0 for any t, which contradicts that x is a

nonzero vector.

Proof of Theorem 3. (i) From equation (1.11), we write the conditional expectation

of realized correlation in matrix form:

E
“

RCorr∆
t |Ft´1

‰

“ p1´ a´ b´ cq ¨ E
“

RCorr∆
t

‰

` a ¨RCorr∆
t´1

` b ¨
1

4

5
ÿ

k“2

RCorr∆
t´k ` c ¨

1

15

20
ÿ

k“6

RCorr∆
t´k

p1´ a´ b´ cq¨E
“

RCorr∆
t

‰

is positive definite by assumptions 1 and 3, and the other

three terms are positive semi-definite by assumption 2 and positive semi-definiteness

of RCorr∆
t´k, k “ 1, ..., 20. Given the fact that the sum of positive definite and posi-

tive semi-definite matrices is positive definite, E
“

RCorr∆
t |Ft´1

‰

is positive definite.

Since E
“

RV ar∆
t |Ft´1

‰

is diagonal matrix with positive elements, it is proven that

E
“

RV arCov∆
t |Ft´1

‰

is positive definite.

188



(ii) The sample counterpart to E
“

RCorr∆
t |Ft´1

‰

is

Ê
“

RCorr∆
t |Ft´1

‰

“

´

1´ â´ b̂´ ĉ
¯

¨
1

T

T
ÿ

i“1

RCorr∆
i ` â ¨RCorr

∆
t´1

` b̂ ¨
1

4

5
ÿ

k“2

RCorr∆
t´k ` ĉ ¨

1

15

20
ÿ

k“6

RCorr∆
t´k

where â, b̂, and ĉ satisfy assumptions 2 and 3. 1
T

řT
i“1RCorr

∆
i is positive definite by

Lemma 3. The remaining proof is similar to the above proof for (i).

Proof of Theorem 5. By applying log pyq ď y ´ 1 to
hipZi,t`1,Zi`1,t`1q

gipZi,t`1,Zi`1,t`1q
, the following is

shown

N´1
ÿ

i“1

Egpzq

„

log
hi pZi,t`1, Zi`1,t`1q

gi pZi,t`1, Zi`1,t`1q



ď

N´1
ÿ

i“1

„

Egpzq

„

hi pZi,t`1, Zi`1,t`1q

gi pZi,t`1, Zi`1,t`1q



´ 1



“

N´1
ÿ

i“1

„

Egipzi,zi`1q

„

hi pZi,t`1, Zi`1,t`1q

gi pZi,t`1, Zi`1,t`1q



´ 1



“

N´1
ÿ

i“1

„
ż

gi pzi, zi`1q
hi pzi, zi`1q

gi pzi, zi`1q
dzidzi`1 ´ 1



“ 0

where the second line holds since only submodel for pZi,t`1, Zi`1,t`1q is needed to

evaluate the above expectation, and the third line holds since hi is a valid density.

Thus, we prove that

Egpzq

«

N´1
ÿ

i“1

log hi pZi,t`1, Zi`1,t`1q

ff

ď Egpzq

«

N´1
ÿ

i“1

log gi pZi,t`1, Zi`1,t`1q

ff
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A.2 Dynamic conditional correlation (DCC) model

The DCC model by Engle (2002) specifies the conditional covariance matrix Ht in

equation (1.1) by

Ht “ DtRtDt (A.4)

Dt “ diag

ˆ

!
b

σ2
i,t

)N

i“1

˙

(A.5)

σ2
i,t “ ψi ` κi pri,t´1 ´ µi,t´1q

2
` ζi pri,t´1 ´ µi,t´1q

2 1tpri,t´1´µi,t´1qă0u ` λiσ
2
i,t´1 (A.6)

εt “ D´1
t pri,t ´ µi,tq

Qt “ p1´ α ´ βqQ` α
`

εt´1ε
1
t´1

˘

` βQt´1 (A.7)

Rt “ diag pQtq
´1{2 Qtdiag pQtq

´1{2 (A.8)

The dynamics of each conditional variance is governed by GJR-GARCH, see

Glosten, et al. (1993) and Q is substituted with sample correlation matrix of εt

as in Engle (2002). The restrictions 0 ď α, β ď 1 and α ` β ď 1 are imposed for

positive definiteness of Qt and so Ht. The number of parameters to estimate is

4N `N pN ´ 1q {2` 2.

To estimate the DCC model, QMLE based on the quasi-likelihood using normality

assumption is feasible as in Engle (2002)

rt “ µt `H
1{2
t et

et|Ft´1 „ N p0, INˆNq

and the log likelihood for those estimator can be described as

rt|Ft´1 „ N pµt,Htq

logL “ ´
1

2

T
ÿ

t“1

`

N log p2πq ` log |Ht| ` prt ´ µtq
1H´1

t prt ´ µtq
˘

Engle, et al. (2008), however, indicate that when N is large, bias of estimators for

α and β could be substantial due to the impact of estimation error from estimating
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large matrix Q by sample correlations of εt, and they suggest the composite likelihood

based estimator. Therefore we follow their estimation method rather than QMLE in

Sections 1.4.2 and 1.5.

A.3 Hessian matrix for multistage estimations

The specific form of estimated Hessian matrix in Theorem 6 is following. For illus-

tration purpose, we assume N “ 2, but it is easy to extend to general N

P̂t “

»

—

—

—

—

—

—

–

5var
var1,var1 0 0 0 0 0

0 5var
var2,var2 0 0 0 0

5corr
var1,corr 5corr

var2,corr 5corr
corr,corr 0 0 0

5mar
var1,mar1 5mar

var2,mar1 5mar
corr,mar1 5mar

mar1,mar1 0 0
5mar
var1,mar2 5mar

var2,mar2 5mar
corr,mar2 0 5mar

mar2,mar2 0
5cop
var1,cop 5cop

var2,cop 5cop
corr,cop 5cop

mar1,cop 5cop
mar2,cop 5cop

cop,cop

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

5var
var i,var i “

B2

Bθvari Bθvar1i

log lvarit

´

θ̂vari

¯

, i “ 1, 2, . . . , N,

5corr
var i,corr “

B2

BθcorrBθvar1i

log lcorrt

´

θ̂var1 , . . . , θ̂varN , θ̂corr
¯

5corr
corr,corr “

B2

BθcorrBθcorr1
log lcorrt

´

θ̂var1 , . . . , θ̂varN , θ̂corr
¯

191



5mar
var j,mar i “

B2

Bθmari Bθvar1j

log lmarit

´

θ̂var1 , . . . , θ̂varN , θ̂corr, θ̂mari

¯

, i, j “ 1, . . . , N

5mar
corr,mar i “

B2

Bθmari Bθcorr1
log lmarit

´

θ̂var1 , . . . , θ̂varN , θ̂corr, θ̂mari

¯

, i “ 1, . . . , N

5mar
mar i,mar i “

B2

Bθmari Bθmar1i

log lmarit

´

θ̂var1 , . . . , θ̂varN , θ̂corr, θ̂mari

¯

, i “ 1, . . . , N

5cop
var i,cop “

B2

BθcopBθvar1i

log lcopt

´

θ̂var1 , .., θ̂varN , θ̂corr, θ̂mar1 , .., θ̂marN , θ̂cop
¯

, i “ 1, .., N

5cop
corr,cop “

B2

BθcopBθcorr1
log lcopt

´

θ̂var1 , . . . , θ̂varN , θ̂corr, θ̂mar1 , . . . , θ̂marN , θ̂cop
¯

5cop
mar i,cop “

B2

BθcopBθmar1i

log lcopt

´

θ̂var1 , .., θ̂varN , θ̂corr, θ̂mar1 , .., θ̂marN , θ̂cop
¯

, i “ 1, .., N

5cop
cop,cop “

B2

BθcopBθcop1
log lcopt

´

θ̂var1 , .., θ̂varN , θ̂corr, θ̂mar1 , . . . , θ̂marN , θ̂cop
¯
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Appendix B

Appendix to Chapter 2

B.1 Proofs

Proof of Proposition 1. Consider a simple case first: β1 “ β2 “ β ą 0. This implies

that Xi ∼ G, for i “ 1, 2, and so we can use the same threshold for both X1 and X2.

Then the upper tail dependence coefficient is:

τU “ lim
sÑ8

Pr rX1 ą s,X2 ą ss

Pr rX1 ą ss

From standard extreme value theory, see Hyung and de Vries (2007) for example, we

have the probability of an exceedence by the sum as the sum of the probabilities of

an exceedence by each component of the sum, as the exceedence threshold diverges:

Pr rXi ą ss “ Pr rβZ ` εi ą ss

“ Pr rβZ ą ss ` Pr rεi ą ss ` o
`

s´α
˘

as sÑ 8

« AUz ps{βq
´α
` AUε s

´α

“ s´α
`

AUz β
α
` AUε

˘
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Further, we have the probability of two sums of variables both exceeding some di-

verging threshold being driven completely be the common component of the sums:

Pr rX1 ą s,X2 ą ss “ Pr rβZ ` ε1 ą s, βZ ` ε2 ą ss

“ Pr rβZ ą s, βZ ą ss ` o
`

s´α
˘

as sÑ 8

« s´αAUz β
α

So we have

τU “ lim
sÑ8

s´αAUz β
α

s´α pAUz β
α ` AUε q

“
AUz β

α

AUz β
α ` AUε

(a) Now we consider the case that β1 ‰ β2, and wlog assume β2 ą β1 ą 0.

This complicates the problem as the thresholds, s1 and s2, must be set such that

G1 ps1q “ G2 ps2q “ q Ñ 1, and when β1 ‰ β2 we have G1 ‰ G2 and so s1 ‰ s2. We

can find the link between the thresholds as follows:

Pr rXi ą ss “ Pr rβiZ ` εi ą ss « s´α
`

AUz β
α
i ` A

U
ε

˘

for sÑ 8

so find s1, s2 such that s´α1

`

AUz β
α
1 ` A

U
ε

˘

“ s´α2

`

AUz β
α
2 ` A

U
ε

˘

, which implies:

s2 “ s1

ˆ

AUz β
α
2 ` A

U
ε

AUz β
α
1 ` A

U
ε

˙1{α

Note that s1 and s2 diverge at the same rate. Below we will need to know which of

s1{β1 and s2{β2 is larger. Note that β2 ą β1, which implies the following:

ñ βα2 ą βα1 since xα is increasing for x, α ą 0

ñ AUε β
α
2 ` A

U
z β

α
1 β

α
2 ą AUε β

α
1 ` A

U
z β

α
1 β

α
2

ñ

ˆ

β2

β1

˙α

ą
AUε ` A

U
z β

α
2

AUε ` A
U
z β

α
1

ñ
β2

β1

ą

ˆ

AUε ` A
U
z β

α
2

AUε ` A
U
z β

α
1

˙1{α

“
s2

s1

ñ
s1

β1

ą
s2

β2
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Then the denominator of the tail dependence coefficient is Pr rXi ą sis «

s´αi
`

AUz β
α
i ` A

U
ε

˘

, and the numerator becomes:

Pr rX1 ą s1, X2 ą s2s “ Pr rβ1Z ` ε1 ą s1, β2Z ` ε2 ą s2s

« Pr rβ1Z ą s1, β2Z ą s2s as s1, s2 Ñ 8

“ Pr rZ ą max ts1{β1, s2{β2us

“ Pr rZ ą s1{β1s “ s´α1 AUz β
α
1

Finally, using either Pr rX1 ą s1s or Pr rX2 ą s2s in the denominator we obtain:

τU “
s´α1 AUz β

α
1

s´α1 pAUz β
α
1 ` A

U
ε q
“

βα1A
U
z

βα1A
U
z ` A

U
ε

, as claimed.

(b) Say β2 ă β1 ă 0. Then:

Pr rXi ą ss “ Pr rβiZ ` εi ą ss

« Pr rβiZ ą ss ` Pr rεi ą ss for sÑ 8

“ Pr r|βi| p´Zq ą ss ` Pr rεi ą ss

“ s´α
`

ALz |βi|
α
` AUε

˘

Next we find the thresholds s1, s2 such that Pr rX1 ą s1s “ Pr rX2 ą s2s :

s´α1

`

ALz |β1|
α
` AUε

˘

“ s´α2

`

ALz |β2|
α
` AUε

˘

so s2 “ s1

ˆ

ALz |β2|
α
` AUε

ALz |β1|
α
` AUε

˙1{α

Using the same steps as for part (a), we find that s2 ą s1 but s1{ |β1| ą s2{ |β2| .
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Thus the numerator becomes:

Pr rX1 ą s1, X2 ą s2s “ Pr rβ1Z ` ε1 ą s1, β2Z ` ε2 ą s2s

« Pr rβ1Z ą s1, β2Z ą s2s for s1, s2 Ñ 8

“ Pr r|β1| p´Zq ą s1, |β2| p´Zq ą s2s

“ Pr rp´Zq ą max ts1{ |β1| , s2{ |β2|us

“ Pr rp´Zq ą s1{ |β1|s “ ALz s
´α
1 |β1|

α

so τU “
|β1|

αALz
|β1|

αALz ` A
U
ε

(c) If β1 or β2 equal zero, then the numerator of the upper tail dependence coefficient

limits to zero faster than the denominator. Say β2 ą β1 “ 0 :

Pr rX1 ą s1s “ s´α1

`

AUz β
α
1 ` A

U
ε

˘

“ s´α1 AUε “ O
`

s´α
˘

and Pr rX2 ą s2s “ s´α2

`

AUz β
α
2 ` A

U
ε

˘

“ O
`

s´α
˘

but Pr rX1 ą s1, X2 ą s2s “ Pr rε1 ą s1, β2Z ` ε2 ą s2s

“ Pr rε1 ą s1sPr rβ2Z ` ε2 ą s2s

“ AUε s
´α
1

`

AUz β
α
2 ` A

U
ε

˘

s´α2 as sÑ 8

“ O
`

s´2α
˘

so
Pr rX1 ą s1, X2 ą s2s

Pr rX1 ą s1s
“ O

`

s´α
˘

Ñ 0 as sÑ 8.

(d) Say β1 ă 0 ă β2. Then the denominator will be order O ps´αq , but the numerator

will be of a lower order:

Pr rX1 ą s1, X2 ą s2s “ Pr rβ1Z ` ε1 ą s1, β2Z ` ε2 ą s2s

“ Pr rβ1Z ą s1, β2Z ą s2s ` o
`

s´α
˘

as sÑ 8

“ o
`

s´α
˘

since Pr rβ1Z ą s1, β2Z ą s2s “ 0 as s1, s2 ą 0 (Ñ 8) and sgn pβ1Zq “ ´sgn pβ2Zq .
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Thus τU “ o ps´αq {O ps´αq “ o p1q Ñ 0 as s Ñ 8. All of the results for parts (a)

through (d) apply for lower tail dependence, mutatis mutandis.

Proof of Proposition 2. It is more convenient to work with the density than the dis-

tribution function for skew t random variables. Note that if Fz has a regularly varying

tails with tail index α ą 0, then

Fz psq ” Pr rZ ď ss “ 1´ Pr rZ ą ss “ 1´ AUz s
´α as sÑ 8

fz psq ”
BFz psq

Bs
“ ´

B

Bs
Pr rZ ą ss “ αAUz s

´α´1 as sÑ 8

so AUz “ lim
sÑ8

fz psq

αs´α´1

This representation of the extreme tails of a density function is common in EVT, see

Embrechts, et al. (1997) and Dańıelsson, et al. (2012) for example. For ν P p2,8q

and λ P p´1, 1q , the skew t distribution of Hansen (1994) has density:

fz ps; ν, λq “

$

’

&

’

%

bc
´

1` 1
ν´2

`

bz`a
1´λ

˘2
¯´pν`1q{2

, z ă ´a{b

bc
´

1` 1
ν´2

`

bz`a
1`λ

˘2
¯´pν`1q{2

, z ě ´a{b

where a “ 4λc

ˆ

ν ´ 2

ν ´ 1

˙

, b “
?

1` 3λ2 ´ a2, c “
Γ
`

ν`1
2

˘

Γ
`

ν
2

˘
a

π pν ´ 2q

and its tail index is equal to the degrees of freedom parameter, so α “ ν. Using

computational algebra software such as Mathematica, it is possible to show that

AUz “ lim
sÑ8

fz psq

νs´ν´1
“
bc

ν

ˆ

b2

pν ´ 2q p1` λq2

˙´pν`1q{2
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For the left tail we have

fz psq ”
BFz psq

Bs
“
B

Bs
ALz p´sq

´α as sÑ ´8

“ αALz p´sq
´α´1

and so ALz “ lim
sÑ´8

fz psq

ν p´sq´ν´1

And this can be shown to equal

ALz “ lim
sÑ´8

fz psq

α p´sq´α´1 “
bc

ν

ˆ

b2

pν ´ 2q p1´ λq2

˙´pν`1q{2

When λ “ 0 we recover the non-skewed, standardized Student’s t distribution. In

that case we have a “ 0, b “ 1 (and c unchanged), and so we have AUε “ ALε “

c
ν

`

1
ν´2

˘´pν`1q{2
.

Proof of Proposition 3. First consider the denominator of the upper tail dependence

coefficient:

Pr rXi ą sis “ Pr
”

ÿK

k“1
βikZk ` εi ą si

ı

« Pr rεi ą sis `
ÿK

k“1
Pr rβikZk ą sis for si Ñ 8

“ s´αi

´

AUε `
ÿK

k“1
AUk β

α
ik

¯

We need to choose si, sj Ñ 8 such that Pr rXi ą sis “ Pr rXj ą sjs , which implies

sj “ si

¨

˝

AUε `
ÿK

k“1
AUk β

α
jk

AUε `
ÿK

k“1
AUk β

α
ik

˛

‚

1{α

” siγU,ij

Note again that si and sj diverge at the same rate.
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When βikβjk “ 0, the factor Zk does not contribute to the numerator of the tail

dependence coefficient, as it appears in at most one of Xi and Xj. Thus we need only

keep track of factors such that βikβjk ą 0. In this case, we again need to determine

the larger of si{βik and sj{βjk for each k “ 1, 2, ..., K. Unlike the one-factor model,

a general ranking cannot be obtained. To keep notation compact we introduce δijk.

Note

max

"

si
βik

,
sj
βjk

*

“ max

"

si
βik

,
si
βjk

γU,ij

*

“
si
βij

max

"

1,
βik
βjk

γU,ij

*

”
si

βikδijk

where δ´1
ijk ” max

"

1,
βik
βjk

γU,ij

*

To cover the case that βikβjk “ 0, we generalize the definition of δijk so that it is

well defined in that case. The use of any finite number here will work (as it will be

multiplied by zero in this case) and we set it to one:

δ´1
ijk ”

"

max t1, γU,ijβik{βjku , if βikβjk ą 0
1, if βikβjk “ 0

Now we can consider the numerator

Pr rXi ą si, Xj ą sjs “ Pr
”

ÿK

k“1
βikZk ` εi ą si,

ÿK

k“1
βjkZk ` εj ą sj

ı

«
ÿK

k“1
Pr rβikZk ą si, βjkZk ą sjs for si, sk Ñ 8

“
ÿK

k“1
1 tβikβjk ą 0uPr rβikZk ą si, βjkZk ą sjs

“
ÿK

k“1
1 tβikβjk ą 0uPr

„

Zk ą max

"

si
βik

,
sj
βjk

*

”
ÿK

k“1
1 tβikβjk ą 0uPr

„

Zk ą
si

βikδijk



“ s´αi
ÿK

k“1
1 tβikβjk ą 0uAUk β

α
ikδ

α
ijk
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And so we obtain

τUij “ lim
sÑ8

Pr rXi ą si, Xj ą sjs

Pr rXi ą sis
“

ÿK

k“1
1 tβikβjk ą 0uAUk β

α
ikδ

α
ijk

AUε `
ÿK

k“1
AUk β

α
ik

The results for lower tail dependence can be obtained using similar derivations to

those above.

B.2 Choice of dependence measures for estimation

To implement the SMM estimator of these copula models we must first choose which

dependence measures to use in the SMM estimation. We draw on “pure” measures

of dependence, in the sense that they are solely affected by changes in the copula,

and not by changes in the marginal distributions. For examples of such measures,

see Joe (1997, Chapter 2) or Nelsen (2006, Chapter 5). Our preliminary studies

of estimation accuracy and identification lead us to use pair-wise rank correlation,

and quantile dependence with q “ r0.05, 0.10, 0.90, 0.95s , giving us five dependence

measures for each pair of variables.

Let δij denote one of the dependence measures (i.e., rank correlation or quantile

dependence at different levels of qq between variables i and j, and define the “pair-

wise dependence matrix”:

D “

»

—

—

—

–

1 δ12 ¨ ¨ ¨ δ1N

δ12 1 ¨ ¨ ¨ δ2N
...

...
. . .

...
δ1N δ2N ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

fl

(B.1)

Where applicable, we exploit the (block) equidependence feature of the models

in defining the “moments” to match. For the initial set of simulation results and
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for the first model in the empirical section, the model implies equidependence, and

we use as “moments” the average of these five dependence measures across all pairs,

reducing the number of moments to match from 5N pN ´ 1q {2 to just 5:

δ̄ ”
2

N pN ´ 1q

N´1
ÿ

i“1

N
ÿ

j“i`1

δ̂ij (B.2)

For a model with different loadings on the common factor (as in equation 2.3)

equidependence does not hold. Yet the common factor aspect of the model implies

that there are O pNq , not O pN2q, parameters driving the pair-wise dependence

matrices. In light of this, we use the N ˆ 1 vector
“

δ̄1, ..., δ̄N
‰1
, where

δ̄i ”
1

N

N
ÿ

j“1

δ̂ij

and so δ̄i is the average of all pair-wise dependence measures that involve variable i.

This yields a total of 5N moments for estimation.

For the block-equidependence version of this model (used for the N “ 100 case

in the simulation, and in the second set of models for the empirical section), we

exploit the fact that (i) all variables in the same group exhibit equidependence, and

(ii) any pair of variables pi, jq in groups pr, sq has the same dependence as any other

pair pi1, j1q in the same two groups pr, sq . This allows us to average all intra- and

inter-group dependence measures. Consider the following general design, where we

have N variables, M groups, and km variables per group, where ΣM
m“1km “ N . Then

decompose the pN ˆNq matrix D into sub-matrices according to the groups:

D
pNˆNq

“

»

—

—

—

–

D11 D112 ¨ ¨ ¨ D11M
D12 D22 ¨ ¨ ¨ D12M

...
...

. . .
...

D1M D2M ¨ ¨ ¨ DMM

fi

ffi

ffi

ffi

fl

, where Dij is pki ˆ kjq (B.3)
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Then create a matrix of average values from each of these matrices, taking into

account the fact that the diagonal blocks are symmetric:

D˚
pMˆMq

“

»

—

—

—

–

δ˚11 δ˚12 ¨ ¨ ¨ δ˚1m
δ˚12 δ˚22 ¨ ¨ ¨ δ˚2m
...

...
. . .

...
δ˚1m δ˚2m ¨ ¨ ¨ δ˚mm

fi

ffi

ffi

ffi

fl

(B.4)

where δ˚ss ”
2

ks pks ´ 1q

ÿÿ

δ̂ij, avg of all upper triangle values in Dss

δ˚rs “
1

krks

ÿÿ

δ̂ij, avg of all elements in matrix Drs, r ‰ s

Finally, similar to the previous model, create the vector of average measures
“

δ̄˚1 , ..., δ̄
˚
M

‰

, where

δ̄˚i ”
1

M

M
ÿ

j“1

δ˚ij (B.5)

This gives as a total of M moments for each dependence measure, so 5M in total.

B.3 Additional tables
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Table B.1: Simulation results for different weights factor copula model with N=10,
W=I

ν´1
z λz β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

True 0.25 -0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Normal

Bias – – -0.0001 -0.0033 -0.0085 0.0004 0.0034 0.0119 0.0075 -0.0031 0.0071 -0.0902

Std – – 0.0337 0.0448 0.0535 0.0753 0.0991 0.1089 0.1243 0.1669 0.2061 0.2243

Med – – 0.2500 0.4920 0.7466 0.9831 1.2365 1.5021 1.7509 1.9932 2.2281 2.3963

90% – – 0.2949 0.5588 0.8032 1.1013 1.3919 1.6698 1.9289 2.1878 2.5385 2.6649

10% – – 0.2064 0.4369 0.6727 0.9180 1.1513 1.3938 1.6059 1.7796 1.9910 2.1087

Diff – – 0.0886 0.1219 0.1305 0.1833 0.2407 0.2761 0.3229 0.4081 0.5476 0.5562

t(4)-Normal

Bias -0.0032 – -0.0008 0.0089 0.0022 0.0089 0.0118 0.0133 0.0004 0.0107 0.0195 0.0487

Std 0.0474 – 0.0468 0.0596 0.0798 0.0874 0.1111 0.1482 0.1991 0.2068 0.3063 0.3472

Med 0.2468 – 0.2490 0.5046 0.7344 1.0104 1.2639 1.4930 1.7313 1.9750 2.2259 2.5285

90% 0.2941 – 0.3079 0.5869 0.8475 1.0968 1.4107 1.6629 1.9567 2.2495 2.5667 2.7873

10% 0.1845 – 0.1879 0.4394 0.6692 0.9085 1.1244 1.3755 1.5623 1.7729 1.9852 2.2032

Diff 0.1096 – 0.1200 0.1475 0.1782 0.1883 0.2863 0.2874 0.3943 0.4766 0.5815 0.5841

Skew t(4,-0.5)-Normal

Bias -0.0020 -0.0032 0.0042 0.0034 0.0024 0.0175 0.0293 0.0187 0.0308 0.0355 0.0739 0.1035

Std 0.0481 0.0594 0.0527 0.0593 0.0812 0.1215 0.1270 0.1404 0.1857 0.2292 0.3335 0.3639

Med 0.2474 -0.5017 0.2507 0.4962 0.7430 1.0137 1.2635 1.5152 1.7547 2.0018 2.2757 2.5508

90% 0.3119 -0.4283 0.3226 0.5830 0.8570 1.1679 1.4554 1.7246 2.0268 2.3648 2.7511 3.0743

10% 0.1825 -0.5868 0.1863 0.4340 0.6522 0.8765 1.1469 1.3595 1.5586 1.7609 2.0021 2.2101

Diff 0.1293 0.1586 0.1363 0.1491 0.2048 0.2914 0.3085 0.3651 0.4682 0.6039 0.7490 0.8642
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Table B.2: Simulation results for different weights factor copula model with N=10,
W=optimal

ν´1
z λz β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

True 0.25 -0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Normal

Bias - - -0.0304 -0.0253 -0.0197 -0.0242 -0.0325 -0.0315 -0.0454 -0.0581 -0.0596 -0.0871

Std - - 0.0535 0.0410 0.0525 0.0605 0.0641 0.0788 0.0857 0.0978 0.0953 0.1192

Med - - 0.2227 0.4794 0.7290 0.9794 1.2114 1.4779 1.7018 1.9403 2.1812 2.4031

90% - - 0.2762 0.5185 0.7938 1.0515 1.3109 1.5692 1.8301 2.0783 2.3176 2.5703

10% - - 0.1722 0.4209 0.6638 0.9057 1.1395 1.3620 1.5948 1.8123 2.0809 2.2665

Diff - - 0.1040 0.0976 0.1300 0.1458 0.1714 0.2072 0.2353 0.2660 0.2367 0.3038

t(4)-Normal

Bias -0.0405 - -0.0241 -0.0224 -0.0351 -0.0408 -0.0530 -0.0684 -0.0712 -0.0971 -0.1210 -0.1195

Std 0.0607 - 0.0466 0.0601 0.0715 0.0931 0.1193 0.1352 0.1881 0.1756 0.2046 0.2203

Med 0.2086 - 0.2286 0.4727 0.7082 0.9394 1.1816 1.4083 1.6381 1.8670 2.0894 2.3503

90% 0.2629 - 0.2811 0.5515 0.8116 1.0613 1.3281 1.5826 1.9200 2.1332 2.3521 2.6717

10% 0.1438 - 0.1642 0.4111 0.6367 0.8515 1.0602 1.2982 1.4833 1.7163 1.9083 2.1203

Diff 0.1191 - 0.1169 0.1404 0.1749 0.2098 0.2679 0.2844 0.4367 0.4169 0.4438 0.5514

Skew t(4,-0.5)-Normal

Bias -0.0086 -0.0389 -0.0084 -0.0128 -0.0067 0.0075 0.0014 -0.0029 -0.0127 -0.0184 -0.0095 0.0051

Std 0.0496 0.0675 0.0480 0.0551 0.0816 0.1108 0.1209 0.1289 0.1956 0.2079 0.2680 0.2788

Med 0.2482 -0.5326 0.2404 0.4814 0.7390 0.9928 1.2295 1.4721 1.7087 1.9537 2.1688 2.4487

90% 0.2898 -0.4605 0.2993 0.5586 0.8256 1.1433 1.3845 1.6769 1.9767 2.2569 2.5245 2.8424

10% 0.1791 -0.6349 0.1865 0.4268 0.6506 0.8752 1.1275 1.3569 1.5622 1.7658 2.0016 2.2634

Diff 0.1107 0.1744 0.1128 0.1318 0.1750 0.2681 0.2570 0.3199 0.4145 0.4911 0.5229 0.5790
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Table B.3: Simulation results for different weights factor copula model with N=100,
W=optimal

ν´1
z λz β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

True 0.25 -0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Normal

Bias - - -0.0099 -0.0172 -0.0229 -0.0319 -0.0389 -0.0481 -0.0586 -0.0612 -0.0768 -0.0836

Std - - 0.0128 0.0184 0.0242 0.0322 0.0372 0.0454 0.0502 0.0590 0.0622 0.0753

Med - - 0.2414 0.4844 0.7259 0.9665 1.2129 1.4507 1.6918 1.9428 2.1678 2.4170

90% - - 0.2554 0.5037 0.7574 1.0121 1.2577 1.5105 1.7527 2.0149 2.2589 2.5083

10% - - 0.2244 0.4594 0.6970 0.9304 1.1606 1.3983 1.6246 1.8676 2.0960 2.3241

Diff - - 0.0311 0.0443 0.0603 0.0818 0.0971 0.1122 0.1281 0.1473 0.1629 0.1842

t(4)-Normal

Bias -0.0683 - -0.0208 -0.0403 -0.0601 -0.0812 -0.1052 -0.1248 -0.1481 -0.1674 -0.1934 -0.2194

Std 0.0524 - 0.0160 0.0287 0.0402 0.0524 0.0674 0.0802 0.0952 0.1058 0.1220 0.1299

Med 0.1820 - 0.2277 0.4567 0.6842 0.9106 1.1377 1.3694 1.5795 1.8226 2.0378 2.2733

90% 0.2452 - 0.2511 0.4982 0.7402 0.9932 1.2320 1.4817 1.7291 1.9630 2.2169 2.4542

10% 0.1183 - 0.2096 0.4208 0.6476 0.8534 1.0665 1.2843 1.5051 1.7154 1.9190 2.1357

Diff 0.1268 - 0.0415 0.0774 0.0926 0.1398 0.1655 0.1974 0.2240 0.2476 0.2979 0.3185

Skew t(4,-0.5)-Normal

Bias -0.0335 -0.0391 -0.0139 -0.0273 -0.0403 -0.0556 -0.0713 -0.0868 -0.1022 -0.1149 -0.1330 -0.1500

Std 0.0363 0.0482 0.0150 0.0251 0.0370 0.0476 0.0598 0.0729 0.0825 0.0969 0.1099 0.1221

Med 0.2263 -0.5434 0.2367 0.4719 0.7105 0.9381 1.1796 1.4150 1.6414 1.8823 2.1237 2.3574

90% 0.2582 -0.4719 0.2568 0.5059 0.7567 1.0007 1.2524 1.5053 1.7545 2.0035 2.2631 2.5148

10% 0.1693 -0.6029 0.2168 0.4424 0.6611 0.8823 1.1015 1.3199 1.5542 1.7725 1.9882 2.1904

Diff 0.0889 0.1310 0.0400 0.0634 0.0956 0.1185 0.1509 0.1854 0.2003 0.2311 0.2749 0.3245
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Table B.4: 95% Coverage rate for different weights factor copula model with N=10
AR-GARCH data W=I

ν´1
z λz β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Normal
εT
0.1 - - 96 93 91 95 93 96 96 95 97 89
0.03 - - 96 92 91 94 93 97 96 96 96 89
0.01 - - 96 92 91 94 92 97 96 96 96 89
0.003 - - 96 91 90 94 89 94 97 92 95 88
0.001 - - 96 93 90 93 90 93 92 84 87 79
0.0003 - - 90 83 85 75 75 76 74 67 74 67
0.0001 - - 81 70 70 65 65 66 66 57 65 59

t(4)-Normal
εT
0.1 96 - 92 97 98 95 94 96 92 94 92 95
0.03 92 - 92 97 97 94 93 97 94 93 94 96
0.01 93 - 92 97 97 93 94 97 92 95 94 96
0.003 91 - 87 94 95 95 91 95 94 90 95 95
0.001 81 - 86 92 91 91 88 89 91 88 84 87
0.0003 76 - 80 82 78 86 76 84 79 71 78 77
0.0001 76 - 81 65 74 77 74 76 64 65 65 79

Skew t(4,-0.5)-Normal
εT
0.1 96 94 92 97 95 93 98 98 95 94 97 97
0.03 93 95 91 97 95 93 97 98 95 94 95 98
0.01 91 91 91 96 95 92 96 97 94 93 91 91
0.003 88 91 91 96 94 88 92 96 91 88 87 85
0.001 83 86 86 93 94 85 88 88 82 73 72 81
0.0003 73 70 75 86 81 73 80 73 72 60 65 71
0.0001 68 57 68 77 68 66 69 67 68 61 65 74
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Table B.5: 95% Coverage rate for different weights factor copula model with N=10
AR-GARCH data W=optimal

ν´1
z λz β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Normal
εT
0.1 - - 80 80 81 79 81 80 80 85 91 80
0.03 - - 80 80 81 79 81 81 80 83 91 80
0.01 - - 77 80 81 78 80 80 79 82 90 76
0.003 - - 77 78 80 77 78 78 78 75 90 75
0.001 - - 73 74 77 70 74 76 69 72 76 62
0.0003 - - 63 62 67 66 63 70 62 56 71 58
0.0001 - - 50 53 59 47 57 57 58 57 71 69

t(4)-Normal
εT
0.1 74 - 81 80 74 77 69 63 70 71 73 71
0.03 69 - 82 80 72 75 65 62 64 66 69 67
0.01 57 - 78 78 68 70 64 56 56 63 62 62
0.003 46 - 78 76 65 62 59 50 51 52 56 54
0.001 38 - 75 69 55 51 51 50 41 43 43 47
0.0003 35 - 66 55 43 42 39 43 32 35 39 39
0.0001 32 - 62 47 38 44 45 41 36 36 46 49

Skew t(4,-0.5)-Normal
εT
0.1 88 81 90 89 89 89 95 93 89 90 94 96
0.03 82 77 88 88 84 83 89 89 81 84 85 89
0.01 80 75 89 88 80 78 82 86 76 79 84 82
0.003 69 68 84 86 74 71 78 79 69 69 68 74
0.001 61 51 78 83 71 62 70 74 64 62 59 63
0.0003 55 36 67 70 62 57 55 65 57 46 54 62
0.0001 50 37 67 64 57 50 54 57 60 52 59 65
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Table B.6: 95% Coverage rate for different weights factor copula model with N=100
AR-GARCH data W=optimal

ν´1
z λz β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Normal
εT
0.1 - - 78 67 62 55 60 60 57 58 51 54
0.03 - - 78 67 62 55 60 60 56 58 51 53
0.01 - - 77 67 62 52 59 61 55 56 49 52
0.003 - - 77 67 61 51 56 52 52 53 47 50
0.001 - - 76 63 58 50 56 48 47 50 42 47
0.0003 - - 71 58 49 37 42 36 37 40 35 33
0.0001 - - 67 50 39 34 33 27 33 33 26 25

t(4)-Normal
εT
0.1 48 - 58 44 37 37 36 36 32 37 34 33
0.03 46 - 54 42 36 35 30 32 29 33 29 29
0.01 44 - 54 40 33 30 27 29 27 32 26 26
0.003 30 - 51 36 29 24 22 20 19 25 22 20
0.001 21 - 47 32 25 21 17 16 14 19 15 14
0.0003 12 - 44 27 22 17 12 10 13 13 11 8
0.0001 6 - 38 21 17 14 11 9 10 8 9 8

Skew t(4,-0.5)-Normal
εT
0.1 75 73 79 76 70 69 68 65 67 68 69 65
0.03 75 71 78 72 69 63 62 62 63 62 64 63
0.01 71 68 75 63 66 60 58 60 59 60 58 57
0.003 57 60 70 56 55 46 47 46 45 47 49 43
0.001 51 44 67 49 43 35 33 32 28 30 27 30
0.0003 45 25 63 40 33 27 21 22 14 19 18 21
0.0001 34 15 58 36 27 22 16 16 12 10 13 15
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Table B.7: Overidentifying restriction test with W=optimal

t(4)- Skew t(4,-0.5)- t(4)- Skew t(4,–0.5)-
Normal Normal Normal Normal Normal Normal

Equidependce, N=3 Different loading, N=3

90% 92 92 93 93 96 97
95% 95 95 99 97 98 98
99% 100 98 100 98 100 99

Equidependce, N=10 Different loading, N=10

90% 96 92 93 91 95 97
95% 97 94 96 93 98 98
99% 99 96 100 95 99 99

Equidependce, N=100 Different loading, N=100

90% 90 89 93 94 90 96
95% 95 92 98 94 95 99
99% 97 96 100 98 99 100
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Appendix C

Appendix to Chapter 3

C.1 Proofs

In order to prove Proposition 1, we use the following five lemmas. First, we recall

the definition of stochastic equicontinuity.

Definition 1. (Andrews (1994)) The empirical process thT p¨q : T ě 1u is stochasti-

cally equicontinuous if @ ε ą 0 and η ą 0, D δ ą 0 such that

lim sup
TÑ8

P

«

sup
}θ1´θ2}ăδ

}hT pθ1q ´ hT pθ2q} ą η

ff

ă ε (C.1)

Lemma 1. Under Assumptions 1 and 2,

(i) 1
T

řT
t“1 F̂i pη̂itq F̂j pη̂jtq

p
Ñ

ş ş

uvdCηi,ηj pu, v; θ0q as T Ñ 8

(ii) 1
T

řT
t“1 1

!

F̂i pη̂itq ď q, F̂j pη̂jtq ď q
)

p
Ñ Cηi,ηj pq, q; θ0q as T Ñ 8

(iii) 1
S

řS
s“1 Ĝi pxis pθqq Ĝj pxjs pθqq

p
Ñ

ş ş

uvdCηi,ηj pu, v; θq for @ θP Θ as S Ñ 8
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(iv) 1
S

řS
s“1 1

!

Ĝi pxis pθqq ď q, Ĝj pxjs pθqq ď q
)

p
Ñ Cηi,ηj pq, q; θq for @ θP Θ

as S Ñ 8

(v) 1
S

řS
s“1Gi pxis pθqqGj pxjs pθqq

p
Ñ

ş ş

uvdCηi,ηj pu, v; θq for @ θP Θ as S Ñ 8

(vi) 1
S

řS
s“1 1 tGi pxis pθqq ď q,Gj pxjs pθqq ď qu

p
Ñ Cηi,ηj pq, q; θq for @ θP Θ

as S Ñ 8

Proof of Lemma 1. Under Assumption 1, parts (iii) and (iv) of Lemma 1 can be

proven by Theorem 3 and Theorem 6 of Fermanian, Radulović and Wegkamp (2004).

Under Assumption 2, Corollary 1 of Rémillard (2010) proves that the empirical

copula process constructed by the standardized residuals η̂t weakly converges to the

limit of that constructed by the innovations ηt, which combined with Theorem 3 and

Theorem 6 of Fermanian, Radulović and Wegkamp (2004) yields parts (i) and (ii)

above. In the case where it is possible to simulate directly from the copula rather

than the joint distribution, e.g. Clayton/Gaussian copula in Section 3.3 or where we

only can simulate from the joint distribution but know the marginal distribution Gi

in closed form, it is not necessary to estimate marginal distribution Gi. In this case,

instead of (iii) and (iv), (v) and (vi) are used for the later proofs. (v) and (vi) are

proven by the standard law of large numbers.

Lemma 2. (Lemma 2.8 of Newey and McFadden (1994)) Suppose Θ is compact

and g0 pθq is continuous. Then supθPΘ }gT,S pθq ´ g0 pθq}
p
Ñ 0 as T, S Ñ 8 if and

only if gT,S pθq
p
Ñ g0 pθq for any θ P Θ as T, S Ñ 8 and gT,S pθq is stochastically

equicontinuous.

Lemma 2 states that sufficient and necessary conditions for uniform convergence

are pointwise convergence and stochastic equicontinuity. The following lemma shows

that uniform convergence of the moment functions gT,S pθq implies uniform conver-

gence of the objective function QT,S pθq .
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Lemma 3. If supθPΘ }gT,S pθq ´ g0 pθq}
p
Ñ 0 as T, S Ñ 8, then

supθPΘ |QT,S pθq ´Q0 pθq|
p
Ñ 0 as T, S Ñ 8.

Proof of Lemma 3. By the triangle inequality and Cauchy-Schwarz inequality

|QT,S pθq ´Q0 pθq| ď
ˇ

ˇ

ˇ
rgT,S pθq ´ g0 pθqs

1 ŴT rgT,S pθq ´ g0 pθqs
ˇ

ˇ

ˇ
(C.2)

`

ˇ

ˇ

ˇ
g0 pθq

1
´

ŴT`Ŵ
1

T

¯

rgT,S pθq ´ g0 pθqs
ˇ

ˇ

ˇ
(C.3)

`

ˇ

ˇ

ˇ
g0 pθq

1
´

ŴT´W0

¯

g0 pθq
ˇ

ˇ

ˇ

ď }gT,S pθq ´ g0 pθq}
2
›

›

›
ŴT

›

›

›
` 2 }g0 pθq} }gT,S pθq ´ g0 pθq}

›

›

›
ŴT

›

›

›

` }g0 pθq}
2
›

›

›
ŴT´W0

›

›

›

Then note that g0 pθq is bounded, ŴT is Op p1q and converges to W0 by Assumption

3(iv), and supθPΘ }gT,S pθq ´ g0 pθq} “ op p1q is given. So

sup
θPΘ

|QT,S pθq ´Q0 pθq| ď

ˆ

sup
θPΘ

}gT,S pθq ´ g0 pθq}

˙2

Op p1q (C.4)

` 2O p1q sup
θPΘ

}gT,S pθq ´ g0 pθq}Op p1q ` op p1q “ op p1q

Lemma 4. Under Assumption 1, Assumption 2, and Assumption 3(iii),

(i) gT,S pθq is stochastic Lipschitz continuous, i.e.

DBT,S “ Op p1q such that for all θ1, θ2 P Θ, }gT,S pθ1q ´ gT,S pθ2q} ď BT,S ¨

}θ1 ´ θ2}

(ii) There exists δ ą 0 such that

lim sup
T,SÑ8

E
`

B2`δ
T,S

˘

ă 8 for some δ ą 0
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Proof of Lemma 4. Without loss of generality, assume that gT,S pθq is scalar. By

Lemma 1, we know that

m̃S pθq “ m0 pθq ` op p1q (C.5)

Also, by Assumption 3(iii) and the fact that m pθq consists of a function of Lipschitz

continuous Cij pθq, m0 pθq is Lipschitz continuous, i.e. DK such that

|m0 pθ1q ´m0 pθ2q| ď K }θ1 ´ θ2} (C.6)

Then,

|gT,S pθ1q ´ gT,S pθ2q| “ |m̃S pθ1q ´ m̃S pθ2q| “ |m0 pθ1q ´m0 pθ2q ` op p1q| (C.7)

ď |m0 pθ1q ´m0 pθ2q| ` |op p1q|

ď K }θ1 ´ θ2} ` |op p1q|

“

ˆ

K `
|op p1q|

}θ1 ´ θ2}

˙

loooooooooomoooooooooon

“Opp1q

}θ1 ´ θ2}

and let BT,S “ K `
|opp1q|

}θ1´θ2}
. Then for some δ ą 0

lim sup
T,SÑ8

E
`

B2`δ
T,S

˘

“ lim sup
T,SÑ8

E

ˆ

K `
|op p1q|

}θ1 ´ θ2}

˙2`δ

ă 8 (C.8)

Lemma 5. (Theorem 2.1 of Newey and McFadden 1994) Suppose that (i) Q0 pθq is

uniquely minimized at θ0; (ii) Θ is compact; (iii) Q0 pθq is continuous;

(iv) supθPΘ

ˇ

ˇ

ˇ
Q̂T pθq ´Q0 pθq

ˇ

ˇ

ˇ

p
Ñ 0. Then θ̂

p
Ñ θ0

Proof of Proposition 1. We prove this proposition by checking the conditions of Lemma

5.

(i) Q0 pθq is uniquely minimized at θ0 by Assumption 3(i) and Assumption 3(iv).
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(ii) Θ is compact by Assumption 3(ii).

(iii) Q0 pθq consists of linear combinations of rank correlations and quantile depen-

dence measures that are functions of pair-wise copula functions. Therefore, Q0 pθq is

continuous by Assumption 3(iii).

(iv) The pointwise convergence of gT,S pθq to g0 pθq and the stochastic Lipschitz

continuity of gT,S pθq are shown by Lemma 1 and by Lemma 4(i), respectively. By

Lemma 2.9 of Newey and McFadden (1994), the stochastic Lipschitz continuity of

gT,S pθq ensures the stochastic equicontinuity of gT,S pθq, and under Assumption 3,

Θ is compact and g0 pθq is continuous in θ. Therefore, gT,S uniformly converges

in probability to g0 by Lemma 2. This implies that QT,S uniformly converges in

probability to Q0 by Lemma 3.

The proof of Proposition 2 uses the following three lemmas.

Lemma 6. Let the dependence measures of interest include rank correlation and

quantile dependence measures, and possibly linear combinations thereof. Then under

Assumptions 1 and 2,

?
T pm̂T ´m0 pθ0qq

d
Ñ N p0,Σ0q as T Ñ 8 (C.9)

?
S pm̃S pθ0q ´m0 pθ0qq

d
Ñ N p0,Σ0q as S Ñ 8 (C.10)

Proof of Lemma 6. Follows from Theorem 3 and Theorem 6 of Fermanian, Radulović

and Wegkamp (2004) and Corollary 1, Proposition 2 and Proposition 4 of Rémillard

(2010).

We use Theorem 7.2 of Newey & McFadden (1994) to establish the asymptotic

normality of our estimator, and this relies on showing the stochastic equicontinuity

of vT,S pθq defined below.
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Lemma 7. Suppose that Assumptions 1, 2, and 3(iii) hold. Then when S{T Ñ 8 or

S{T Ñ k P p0,8q , vT,S pθq “
?
T rgT,S pθq ´ g0 pθqs is stochastically equicontinuous

and when S{T Ñ 0, vT,S pθq “
?
S rgT,S pθq ´ g0 pθqs is stochastically equicontinuous.

Proof of Lemma 7. By Lemma 4(i), tg¨,¨ pθq : θ P Θu is a type II class of functions

in Andrews (1994). By Theorem 2 of Andrews (1994), tg¨,¨ pθq : θ P Θu satisfies

Pollard’s entropy condition with envelope 1 _ supθ }g¨,¨ pθq} _ B¨,¨, so Assumption

A of Andrews (1994) is satisfied. Since g¨,¨ pθq is bounded and by the condition of

lim supT,SÑ8E
`

B2`δ
T,S

˘

ă 8 for some δ ą 0 by Lemma 4(ii), the Assumption B of

Andrews (1994) is also satisfied. Therefore, vT,S pθq is stochastically equicontinuous

by Theorem 1 of Andrews (1994).

Lemma 8. (Theorem 7.2 of Newey & McFadden (1994)) Suppose that

gT,S

´

θ̂
¯1

ŴTgT,S

´

θ̂
¯

ď infθPΘ gT,S pθq
1 ŴTgT,S pθq ` op pT

´1q , θ̂
p
Ñ θ0 and ŴT

p
Ñ

W0,W0 is positive semi-definite, where there is g0 pθq such that (i) g0 pθ0q “ 0,(ii)

g0 pθq is differentiable at θ0 with derivative G0 such that G1
0W0G0 is nonsingu-

lar,(iii) θ0 is an interior point of Θ,(iv)
?
TgT,S pθ0q

d
Ñ N p0,Σ0q ,(v) Dδ such that

sup}θ´θ0}ďδ
?
T }gT,S pθq ´ gT,S pθ0q ´ g0 pθq} {

“

1`
?
T }θ ´ θ0}

‰ p
Ñ 0. Then

?
T
´

θ̂ ´ θ0

¯

d
Ñ N

`

0, pG1
0W0G0q

´1 G1
0W0Σ0W0G0 pG

1
0W0G0q

´1
˘

.

Proof of Proposition 2. We prove this proposition by checking conditions of Lemma

8.

(i) g0 pθ0q “ 0 by construction of g0 pθq “ m0 pθ0q ´m0 pθq

(ii) g0 pθq is differentiable at θ0 with derivative G0 such that G1
0W0G0 is nonsin-

gular by Assumption 4(ii).

(iii) θ0 is an interior point of Θ by Assumption 4(i).
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(iv) If S{T Ñ 8 as T, S Ñ 8,

?
TgT,S pθ0q “

?
T pm̂T´m̃S pθ0qq (C.11)

“
?
T pm̂T´m0 pθ0qq ´

?
T pm̃S pθ0q ´m0 pθ0qq

“
?
T pm̂T´m0 pθ0qq

loooooooooomoooooooooon

d
ÑNp0,Σ0q by Lemma 6

´

?
T

?
S

loomoon

“op1q

ˆ
?
S pm̃S pθ0q ´m0 pθ0qq

loooooooooooooomoooooooooooooon

d
ÑNp0,Σ0q by Lemma 6

Therefore,
?
TgT,S pθ0q

d
Ñ N p0,Σ0q as T, S Ñ 8.

If S{T Ñ k P p0,8q as T, S Ñ 8,

?
TgT,S pθ0q “

?
T pm̂T´m0 pθ0qq

loooooooooomoooooooooon

d
ÑNp0,Σ0q by Lemma 6

´

?
T

?
S

loomoon

Ñ1{
?
k

ˆ
?
S pm̃S pθ0q ´m0 pθ0qq

loooooooooooooomoooooooooooooon

d
ÑNp0,Σ0q by Lemma 6

Therefore,

?
TgT,S pθ0q

d
Ñ N

ˆ

0,

ˆ

1`
1

k

˙

Σ0

˙

as T, S Ñ 8.

If S{T Ñ 0 as T, S Ñ 8,

?
SgT,S pθ0q “

?
S

?
T

loomoon

“op1q

ˆ
?
T pm̂T´m0 pθ0qq

loooooooooomoooooooooon

d
ÑNp0,Σ0q by Lemma 6

´
?
S pm̃S pθ0q ´m0 pθ0qq

loooooooooooooomoooooooooooooon

d
ÑNp0,Σ0q by Lemma 6

Therefore,
?
SgT,S pθ0q

d
Ñ N p0,Σ0q as T, S Ñ 8

Consolidating these results across all three combinations of divergence rates for S

and T we obtain:

1
a

1{S ` 1{T
gT,S pθ0q

d
Ñ N p0,Σ0q as T, S Ñ 8.
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(v) We established the stochastic equicontinuity of vT,S pθq “
?
T rgT,S pθq ´ g0 pθqs

when S{T Ñ 8 or S{T Ñ k by Lemma 7, i.e. for @ε ą 0, η ą 0, Dδ such that

lim sup
TÑ8

P

«

sup
}θ´θ0}ăδ

}vT,S pθq ´ vT,S pθ0q} ą η

ff

(C.12)

“ lim sup
TÑ8

P

«

sup
}θ´θ0}ăδ

?
T }gT,S pθq ´ gT,S pθ0q ´ g0 pθq} ą η

ff

ă ε

and from the following inequality

?
T }gT,S pθq ´ gT,S pθ0q ´ g0 pθq}

1`
?
T }θ ´ θ0}

ď
?
T }gT,S pθq ´ gT,S pθ0q ´ g0 pθq} (C.13)

we know that

lim sup
TÑ8

P

«

sup
}θ´θ0}ăδ

?
T }gT,S pθq ´ gT,S pθ0q ´ g0 pθq}

1`
?
T }θ ´ θ0}

ą η

ff

ď lim sup
TÑ8

P

«

sup
}θ´θ0}ăδ

?
T }gT,S pθq ´ gT,S pθ0q ´ g0 pθq} ą η

ff

ă ε (C.14)

Similarly, it can be shown that when S{T Ñ 0,

lim sup
SÑ8

P

«

sup
}θ´θ0}ăδ

?
S }gT,S pθq ´ gT,S pθ0q ´ g0 pθq}

1`
?
S }θ ´ θ0}

ą η

ff

ă ε (C.15)

Proof of Proposition 3. First, we prove the consistency of the numerical derivatives

ĜT,S. This part of the proof is similar to that of Theorem 7.4 in Newey and McFad-

den (1994). We will consider one-sided derivatives first, with the same arguments

applying to two-sided derivatives. First we consider the case where S{T Ñ 8 or

S{T Ñ k ą 0 as T, S Ñ 8. We know that
›

›

›
θ̂T,S ´ θ0

›

›

›
“ Op

`

T´1{2
˘

by the con-
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clusion of Proposition 2. Also, by assumption we have εT,S Ñ 0 and εT,S
?
T Ñ 8,

so

›

›

›
θ̂T,S`ekεT,S ´ θ0

›

›

›
ď

›

›

›
θ̂T,S ´ θ0

›

›

›
` }ekεT,S} “ Op

`

T´1{2
˘

`O pεT,Sq “ Op pεT,Sq

(Recall that ek is the kth unit vector.) In the proof of Proposition 2, it is shown that

Dδ such that

sup
}θ´θ0}ďδ

?
T }gT,S pθq ´ gT,S pθ0q ´ g0 pθq} {

”

1`
?
T }θ ´ θ0}

ı

“ op p1q

Substituting θ̂T,S`ekεT,S for θ, then for T, S large, it follows that

?
T
›

›

›
gT,S

´

θ̂T,S`ekεT,S

¯

´ gT,S pθ0q ´ g0

´

θ̂T,S`ekεT,S

¯
›

›

›

”

1`
?
T
›

›

›
θ̂T,S`ekεT,S ´ θ0

›

›

›

ı ď op p1q

and
›

›

›
gT,S

´

θ̂T,S`ekεT,S

¯

´ gT,S pθ0q ´ g0

´

θ̂T,S`ekεT,S

¯
›

›

›

ď

»

—

—

—

–

1`
?
T
›

›

›
θ̂T,S`ekεT,S ´ θ0

›

›

›

loooooooooomoooooooooon

“OppεT,Sq

fi

ffi

ffi

ffi

fl

op

ˆ

1
?
T

˙

“
?
TOp pεT,Sq op

ˆ

1
?
T

˙

“ Op pεT,Sq op p1q

“ op pεT,Sq (C.16)

On the other hand, since g0 pθq is differentiable at θ0 with derivative G0 by Assump-

tion 4(ii), a Taylor expansion of g0

´

θ̂T,S`ekεT,S

¯

around θ0 is

g0

´

θ̂T,S`ekεT,S

¯

“ g0 pθ0q `G0 ¨

´

θ̂T,S`ekεT,S ´ θ0

¯

` o
´
›

›

›
θ̂T,S`ekεT,S ´ θ0

›

›

›

¯
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with g0 pθ0q “ 0. Then divide by εT,S,

g0

´

θ̂T,S`ekεT,S

¯

{εT,S “G0 ¨

´

θ̂T,S`ekεT,S ´ θ0

¯

{εT,S

` o
´

ε´1
T,S

›

›

›
θ̂T,S`ekεT,S ´ θ0

›

›

›

¯

and

g0

´

θ̂T,S`ekεT,S

¯

{εT,S ´G0ek “G0 ¨

´

θ̂T,S ´ θ0

¯

{εT,S

` o
´

ε´1
T,S

›

›

›
θ̂T,S`ekεT,S ´ θ0

›

›

›

¯

The triangle inequality implies that

›

›

›
g0

´

θ̂T,S`ekεT,S

¯

{εT,S ´G0ek

›

›

›
ď

›

›

›
G0 ¨

´

θ̂T,S ´ θ0

¯

{εT,S

›

›

›
(C.17)

` o
´

ε´1
T,S

›

›

›
θ̂T,S`ekεT,S ´ θ0

›

›

›

¯

“
1

?
TεT,S

›

›

›
G0 ¨

?
T
´

θ̂T,S ´ θ0

¯›

›

›
(C.18)

` ε´1
T,S

›

›

›
θ̂T,S`ekεT,S ´ θ0

›

›

›
o p1q

“o p1qOp p1q ` ε
´1
T,SOp pεT,Sq o p1q (C.19)

“op p1q

Combining the inequalities in equations (C.16) and (C.19) gives

¨

˝

gT,S

´

θ̂T,S`ekεT,S

¯

´ gT,S pθ0q

εT,S
´G0ek

˛

‚

“

¨

˝

gT,S

´

θ̂T,S`ekεT,S

¯

´ gT,S pθ0q ´ g0

´

θ̂T,S`ekεT,S

¯

εT,S

˛

‚

`

´

g0

´

θ̂T,S`ekεT,S

¯

{εT,S ´G0ek

¯
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›

›

›

›

›

›

gT,S

´

θ̂T,S`ekεT,S

¯

´ gT,S pθ0q

εT,S
´G0ek

›

›

›

›

›

›

ď

›

›

›

›

›

›

gT,S

´

θ̂T,S`ekεT,S

¯

´ gT,S pθ0q ´ g0

´

θ̂T,S`ekεT,S

¯

εT,S

›

›

›

›

›

›

`

›

›

›
g0

´

θ̂T,S`ekεT,S

¯

{εT,S ´G0ek

›

›

›

ď op p1q

Then,

gT,S

´

θ̂T,S`ekεT,S

¯

´ gT,S pθ0q

εT,S

p
Ñ G0ek

and the same arguments can be applied to the two-sided derivative:

gT,S

´

θ̂T,S`ekεT,S

¯

´ gT,S

´

θ̂T,S´ekεT,S

¯

2εT,S

p
Ñ G0ek

This holds for each column k “ 1, 2..., p. Thus ĜT,S
p
Ñ G0.

In the case where S{T Ñ 0 as T, S Ñ 8, the proof for the consistency of ĜT,S is

done in the similar way using the following facts:

›

›

›
θ̂T,S ´ θ0

›

›

›
“ Op

`

S´1{2
˘

(C.20)

and Dδ

sup
}θ´θ0}ďδ

?
S }gT,S pθq ´ gT,S pθ0q ´ g0 pθq} {

”

1`
?
S }θ ´ θ0}

ı

“ op p1q (C.21)

Next, we show the consistency of Σ̂T,B. If µt and σt are known constant, or if φ0

is known, then the result follows from Theorems 5 and 6 of Fermanian, Radulović
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and Wegkamp (2004). When φ0 is estimated, the result is obtained by combining

the results in Fermanian, et al. with those of Rémillard (2010), see the Proof of

Proposition 3 in the paper for details.

Proof of Proposition 4. First consider S{T Ñ 8 or S{T Ñ k ą 0. A Taylor expan-

sion of g0

´

θ̂T,S

¯

around θ0 yields

?
Tg0

´

θ̂T,S

¯

“
?
Tg0 pθ0q `G0 ¨

?
T
´

θ̂T,S´θ0

¯

` o
´?

T
›

›

›
θ̂T,S´θ0

›

›

›

¯

(C.22)

and since g0 pθ0q “ 0 and
?
T
›

›

›
θ̂T,S´θ0

›

›

›
“ Op p1q

?
Tg0

´

θ̂T,S

¯

“ G0 ¨
?
T
´

θ̂T,S´θ0

¯

` op p1q (C.23)

Then consider the following expansion of gT,S

´

θ̂T,S

¯

around θ0

?
TgT,S

´

θ̂T,S

¯

“
?
TgT,S pθ0q ` ĜT,S ¨

?
T
´

θ̂T,S´θ0

¯

`RT,S

´

θ̂T,S

¯

(C.24)

where the remaining term is captured by RT,S

´

θ̂T,S

¯

. Combining equations (C.23)

and (C.24) we obtain

?
T
”

gT,S

´

θ̂T,S

¯

´ gT,S pθ0q ´ g0

´

θ̂T,S

¯ı

“

´

ĜT,S´G0

¯

¨
?
T
´

θ̂T,S´θ0

¯

`RT,S

´

θ̂T,S

¯

` op p1q

Lemma 7 shows the stochastic equicontinuity of vT,S pθq , which implies (see proof of

Proposition 2) that

?
T
”

gT,S

´

θ̂T,S

¯

´ gT,S pθ0q ´ g0

´

θ̂T,S

¯ı

“ op p1q
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By Proposition 3, ĜT,S´G0 “ op p1q , which implies RT,S

´

θ̂T,S

¯

“ op p1q . Thus, we

obtain the expansion of gT,S

´

θ̂T,S

¯

around θ0 :

?
TgT,S

´

θ̂T,S

¯

“
?
TgT,S pθ0q ` ĜT,S ¨

?
T
´

θ̂T,S´θ0

¯

` op p1q (C.25)

The remainder of the proof is the same as in standard GMM applications: From

the proof of Proposition 2, we have
?
TgT,S pθ0q

d
Ñ N p0,Σ0q and rewrite this

as ´Σ
´1{2
0

?
TgT,S pθ0q ” uT,S

d
Ñ u „N p0, Iq , and from Proposition 2, we have

?
T
´

θ̂T,S´θ0

¯

“ pG1
0W0G0q

´1 G1
0W0Σ

1{2
0 uT,S ` op p1q . By these two equations and

Proposition 3, equation (C.25) becomes

?
TgT,S

´

θ̂T,S

¯

“ ´Σ̂
1{2
T,BuT,S ` ĜT,S

´

Ĝ1
T,SŴT ĜT,S

¯´1

Ĝ1
T,SŴT Σ̂

1{2
T,BuT,S ` op p1q

(C.26)

“ ´Σ̂
1{2
T,BR̂uT,S ` op p1q

where R̂ ”

ˆ

I´ Σ̂
´1{2

T,B ĜT,S

´

Ĝ1
T,SŴT ĜT,S

¯´1

Ĝ1
T,SŴT Σ̂

1{2
T,B

˙

. The test statistic is

TgT,S

´

θ̂T,S

¯1

ŴTgT,S

´

θ̂T,S

¯

“ u1T,SR̂1Σ̂
1{21
T,BŴT Σ̂

1{2
T,BR̂uT,S ` op p1q (C.27)

“ u1R1
0Σ

1{21
0 W0Σ

1{2
0 R0u` op p1q

where R0 ”

´

I´Σ
´1{2
0 G0 pG

1
0W0G0q

´1 G1
0W0Σ

1{2
0

¯

. When ŴT“ Σ̂
´1

T,B, R̂ is sym-

metric and idempotent with rank
´

R̂
¯

“ tr
´

R̂
¯

“ m ´ p, and the test statistic

converges to a χ2
m´p random variable, as usual. In general, the asymptotic distribu-

tion is a sample-dependent combination ofm independent standard Normal variables,

namely that of u1R1
0Σ

1{21
0 W0Σ

1{2
0 R0u where u „N p0, Iq .
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When S{T Ñ 0, a similar proof can be given using Taylor expansion of g0

´

θ̂T,S

¯

?
Sg0

´

θ̂T,S

¯

“
?
Sg0 pθ0q `G0 ¨

?
S
´

θ̂T,S´θ0

¯

` o
´?

S
›

›

›
θ̂T,S´θ0

›

›

›

¯

(C.28)

C.2 Implementation of the SMM estimator

This section provides further details on the constricution of the SMM objective func-

tion and the estimation of the parameter.

Our estimator is based on matching sample dependence measures (rank correla-

tion, quantile dependence, etc) to measures of dependence computed on simulated

data from the model evaluated at a given parameter θ. The sample dependence mea-

sures are stacked into a vector m̂T , and the corresponding measures on the simulated

data are stacked into a vector m̃S pθq . Re-stating equation (3.9) from the paper, our

estimator is:

θ̂T,S ” arg min
θPΘ

g1T,S pθqŴTgT,S pθq (C.29)

where gT,S pθq ” m̂T ´ m̃S pθq .

We now describe the construction of the SMM objective function. All dependence

measures used in this paper are based on the estimated standardized residuals, which

are constructed as:

η̂t ”
Yt ´ µtpφ̂q

σtpφ̂q
(C.30)

We then compute pair-wise dependence measures such as those in equations

(4) and (5) of the paper, eg, ρ̂ij and λ̂ijq . For quantile dependence we set q P

t0.05, 0.10, 0.90, 0.95u .

The copula models we consider all satisfy an “exchangeability” property, and we
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use that when constructing the moments to use in the estimator. Specifically, we

calculate moments m̂T as:

m̂T “
2

N pN ´ 1q

N´1
ÿ

i“1

N
ÿ

j“i`1

“

ρ̂ij λ̂ij0.05 λ̂ij0.10 λ̂ij0.90 λ̂ij0.95

‰1
(C.31)

Next we simulate data tXs pθqu
S
s“1 from distribution Fx pθq , and compute the

vector of dependence measures m̃S pθq . It is critically important in this step to keep

the random number generator seed fixed across simulations, see Gouriéroux and

Monfort (1996, Simulation-Based Econometric Methods, Oxford University Press).

Failing to do so makes the simulated data “jittery” across function evaluations, and

the numerical optimization algorithm will fail to converge.

Finally, we specify the weight matrix. In this paper we choose either ŴT “ I

or ŴT “ Σ̂´1
T,B. Note that for our estimation problem the estimated efficient weight

matrix, Σ̂´1
T,B, depends on the covariance matrix of the vector of sample dependence

measures, and not on the parameters of the model. Thus unlike some GMM or

SMM estimation problems, this estimator does not require an initial estimate of the

unknown parameter.

We use numerical optimization procedure to find θ̂T,S. As our objective function

is not differentiable we cannot use procedures that rely on analytical or numeri-

cal derivatives (such as familiar Newton or “quasi-Newton” algorithms). We use

“fminsearch” in Matlab, which is a simplex search algorithm that does not require

derivatives. As with all numerical optimization procedures, some care is required

to ensure that a global optimum has been found. In each estimation, we consider

many different starting values for the algorithm, and choose the resulting parameter

estimate that leads to the smallest value of the objective function. The models con-

sidered here are relatively small, with up to three unknown parameters, but when
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the number of unknown parameters is large more care is required to ensure that a

global optimum has been found, see Judd (1998, Numerical Methods in Economics,

MIT Press) for more discussion.

C.3 Implementation of MLE for factor copulas

Consider a simple factor model:

Xi “ Z ` εi, i “ 1, 2, ..., N

Z ∼ FZ , εi ∼ iid Fε, εiKKZ @ i

rX1, ..., XN s
1
” X ∼ Fx“ C pG, ..., Gq

To obtain the copula density c we must first obtain the joint density, fx, and the

marginal density, g. These can be obtained using numerical integration to “integrate

out” the latent common factor, Z. First, note that

fxi|z pxi|zq “ fε pxi ´ zq

Fxi|z pxi|zq “ Fε pxi ´ zq

and fx|z px1, . . . , xN |zq “
źN

i“1
fε pxi ´ zq

Then the marginal density and marginal distribution of Xi are:

g pxq “

ż 8

´8

fx,z px, zq dz “

ż 8

´8

fx|z px|zq fz pzq dz “

ż 8

´8

fε px´ zq fz pzq dz

G pxq “

ż 8

´8

Pr rX ď x|Z “ zs fz pzq dz “

ż 8

´8

Fε px´ zq fz pzq dz

The joint density is similarly obtained:

fx px1, . . . , xNq “

ż 8

´8

fx|z px1, . . . , xN |zq fz pzq dz “

ż 8

´8

źN

i“1
fε pxi ´ zq fz pzq dz
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From these, we obtain the copula density:

c pu1, . . . , uNq “
fx pG

´1 pu1q , . . . , G
´1 puNqq

śN
i“1 g pG

´1 puiqq

We approximate the above integrals using Gauss-Legendre quadrature, see Judd

(1998) for details and discussion. We use the probability integral transformation of

Z to convert the above unbounded integals to integrals on r0, 1s , for example:

g pxq “

ż 8

´8

fε px´ zq fz pzq dz “

ż 1

0

fε
`

x´ F´1
z puq

˘

du

A key choice in quadrature methods is the number of “nodes” to use in approximating

the integral. We ran simulations using 50, 150, and 250 nodes, and found that the

accuracy of the resulting MLE was slightly better for 150 than 50 nodes, and not

different for 250 compared with 150 nodes. Thus in the paper we report results for

MLE based on quadrature using 150 nodes.

C.4 Additional tables
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Table C.1: Simulation results for iid data with optimal weight matrix

Clayton Normal Factor copula

GMM SMM SMM˚ GMM SMM SMM

κ κ κ ρ ρ σ2 ν´1 λ

True 1.00 1.00 1.00 0.5 0.5 1.00 0.25 -0.50

N “ 2

Bias -0.018 -0.020 -0.018 -0.001 0.000 0.016 -0.026 -0.094
St dev 0.085 0.092 0.091 0.025 0.026 0.144 0.119 0.189
Median 0.984 0.977 0.981 0.497 0.500 0.999 0.200 -0.557
90-10% 0.224 0.247 0.233 0.070 0.069 0.374 0.332 0.447
Time 0.07 515 51 0.41 0.67 112

N “ 3

Bias 0.008 0.010 0.006 -0.003 -0.003 0.022 -0.009 -0.057
St dev 0.063 0.073 0.068 0.021 0.022 0.110 0.103 0.146
Median 0.996 1.008 1.002 0.495 0.498 1.006 0.238 -0.540
90-10% 0.160 0.172 0.165 0.054 0.061 0.294 0.261 0.366
Time 0.12 1398 59 0.29 1.60 138

N “ 10

Bias -0.003 -0.004 -0.005 -0.004 -0.004 0.019 -0.010 -0.023
St dev 0.047 0.049 0.050 0.014 0.015 0.097 0.078 0.085
Median 0.993 0.997 0.997 0.497 0.495 1.006 0.251 -0.514
90-10% 0.121 0.126 0.127 0.036 0.037 0.248 0.189 0.165
Time 1 22521 170 0.34 3 358

Notes: The simulation design is the same as that of Table 3.1 in Chapter 3 except
that we use the optimal weight matrix for W.
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Table C.2: Simulation results for AR-GARCH data with optimal weight matrix

Clayton Normal Factor copula

GMM SMM SMM˚ GMM SMM SMM

κ κ κ ρ ρ σ2 ν´1 λ

True 1.00 1.00 1.00 0.5 0.5 1.00 0.25 -0.50

N “ 2

Bias -0.021 -0.017 -0.014 -0.002 -0.001 0.018 -0.022 -0.083
St dev 0.087 0.097 0.097 0.026 0.026 0.154 0.121 0.188
Median 0.980 0.989 0.987 0.498 0.498 0.997 0.209 -0.553
90-10% 0.225 0.247 0.258 0.070 0.069 0.399 0.346 0.485
Time 0.06 531 60 0.39 0.69 119

N “ 3

Bias 0.002 -0.004 -0.001 -0.003 -0.003 0.021 -0.009 -0.061
St dev 0.063 0.066 0.068 0.021 0.023 0.114 0.106 0.151
Median 0.995 0.990 0.991 0.495 0.497 1.018 0.243 -0.548
90-10% 0.153 0.166 0.164 0.052 0.058 0.299 0.278 0.336
Time 0.12 1613 76 0.33 1.50 135

N “ 10

Bias -0.006 -0.005 -0.007 -0.005 -0.005 0.014 -0.013 -0.027
St dev 0.047 0.051 0.050 0.014 0.015 0.093 0.078 0.097
Median 0.991 0.997 0.993 0.496 0.494 1.000 0.250 -0.513
90-10% 0.120 0.136 0.134 0.037 0.040 0.229 0.193 0.187
Time 2 25492 175 0.41 4 361

Notes: The simulation design is the same as that of Table 3.2 in Chapter 3 except
that we use the optimal weight matrix for W.
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Table C.3: Simulation results on coverage rates with optimal weight matrix

Clayton Normal Factor copula

κ J ρ J σ2 ν´1 λ J

N “ 2
εT,S
0.1 89 95 93 99 97 99 96 96
0.01 56 93 95 99 97
0.001 9 80 77 79 80
0.0001 1 16 40 54 56

N “ 3
εT,S
0.1 91 98 88 95 98 99 97 99
0.01 70 88 98 99 96
0.001 10 82 88 86 86
0.0001 0 41 51 59 48

N “ 10
εT,S
0.1 93 100 87 97 95 96 94 100
0.01 79 87 94 94 93
0.001 20 87 89 84 92
0.0001 5 64 70 70 73

Notes: The simulation design is the same as that of Table 3.3 in Chapter 3 except
that we use the optimal weight matrix for W. The numbers in column J present the
percentage of simulations for which the test statistic of over-identifying restrictions
test described in Section 3.3 was smaller than its critical value from chi square
distribution under 95% confidence level (this test does not require a choice of step
size for the numerical derivative, εT,S, and so we have only one value per model).
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Table C.4: Summary statistics on the daily stock returns

Bank of Bank of Citi Goldman JP Morgan Wells
America N.Y. Group Sachs Morgan Stanley Fargo

Mean 0.038 0.015 -0.020 0.052 0.041 0.032 0.047
Std dev 3.461 2.797 3.817 2.638 2.966 3.814 2.965
Skewness 1.048 0.592 1.595 0.984 0.922 4.982 2.012
Kurtosis 28.190 18.721 43.478 18.152 16.006 119.757 30.984

Notes: This table presents some summary statistics of the seven daily equity returns
data used in the empirical analysis.

Table C.5: Parameter estimates for the conditional mean and variance models

BoA BoNY Citi GS JPM MS WF

Constant pφ0q 0.038 0.017 -0.019 0.058 0.043 0.031 0.051
ri,t´1 0.020 -0.151 0.053 -0.156 -0.035 0.004 -0.078
rm,t´1 -0.053 -0.011 0.029 0.282 -0.141 0.063 -0.099

Constant pωq 0.009 0.069 0.019 0.034 0.014 0.036 0.008
σ2
i,t´1 0.931 0.895 0.901 0.953 0.926 0.922 0.926
ε2
i,t´1 0.031 0.017 0.036 0.000 0.025 0.002 0.021

ε2
i,t´1 ¨ 1tεi,t´1ď0u 0.048 0.079 0.123 0.077 0.082 0.135 0.108

ε2
m,t´1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ε2
m,t´1 ¨ 1tεm,t´1ď0u 0.068 0.266 0.046 0.012 0.064 0.077 0.013

Notes: This table presents the estimated models for the conditional mean (top panel)
and conditional variance (lower panel).
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Appendix D

Appendix to Chapter 4

D.1 Proofs

Proof of Proposition 1. (i) Consider the evolution equation for λit :

log λit “ ωi ` β log λi,t´1 ` αsi,t´1, i “ 1, 2, ..., N

where si,t´1 ” B log cput´1;λt´1, νz, ψz, νεq{Bλi,t´1. Creal, et al. (2013) show Et´1 rsi,ts “

0, so:

E rlog λits “ ωi ` βE rlog λi,t´1s “
ωi

1´ β

under stationarity of tλtu , which holds by assumption 1(b). So we have ωi “

E rlog λits p1´ βq , and we can re-write our GAS equation in “variance targeting”

form:

log λit “ E rlog λits p1´ βq ` β log λi,t´1 ` αsi,t´1

The objective of this proposition is to find an estimate of E rlog λits based on ob-

servable data.
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Note that the linear correlation between pXi, Xjq is

ρLij,X ” Corr rXi, Xjs “
λiλj

b

p1` λ2
i q
`

1` λ2
j

˘

” g pλi, λjq (D.1)

and RL
X ” Corr rXs “ G pλq

By assumption 1(a), this is an exactly- (N “ 3q or over- (N ą 3q identified system,

as we have N parameters λ ” rλ1, ..., λN s
1 and N pN ´ 1q {2 correlations. Note that

by Assumption 1(d) we have a corresponding exactly- or over-identified system for

the rank correlation matrix:

RX “ ϕ
`

RL
X

˘

“ ϕ pG pλqq (D.2)

(In a slight abuse of notation, we let ϕ
`

RL
X

˘

map the entire linear correlation matrix

to the rank correlation matrix.) Define the (exponential of the) inverse of the function

ϕ ˝ G as H, so that log λ “ H pρXq, where ρX ” vech pRXq. The function H is not

known in closed form but it can be obtained by a simple and fast optimization

problem:

H pρXq “ arg min
a

pvech tϕ pG paqqu ´ ρXq
1
pvech tϕ pG paqqu ´ ρXq (D.3)

This is the GMM analog to the usual method-of-moments estimator used in variance

targeting.

Under Assumption 1(c) the function H pρXq is linear, so

E rlog λts “ ErHpρt,Xqs “ Hpρ̄Xq

where ρ̄X”Erρt,Xs.

Finally, we exploit the fact that RankCorr rXs is identical to RankCorr rηs by
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Assumption 1(a) and Theorem 5.1.6 of Nelsen (2006). So we obtain:

E rlog λts “ Hpρ̄Xq “ Hpρ̄ηq

(ii) We use as our “VT estimator” the sample analog of the above expression:

zlog λ “ Hpρ̂ηq

First note that, since the marginal distributions of ηt are known, sample rank corre-

lations are a linear functions of a sample moment, see Nelsen (2006, Chapter 5) for

example:

ρ̂Sij,η “ ´3`
12

T

T
ÿ

t“1

Fi pηi,tqFj pηj,tq

Our estimate of E rlog λits is obtained in equation (D.3) as:

zlog λ “ arg min
a

m̄T paq
1 m̄T paq

where m̄T paq ” vechtϕ pG paqqu ´ ρ̂Sη

The element of m̄T corresponding to the pi, jq element of the correlation matrix is:

m̄
pi,jq
T paq “ rϕ pG paqqs

pi,jq ` 3´
12

T

T
ÿ

t“1

Fi pηi,tqFj pηj,tq

Thus zlog λ is a standard GMM estimator for N ě 3.

D.2 Obtaining the factor copula likelihood

The factor copula introduced in Oh and Patton (2012) does not have a likelihood in

closed form, it is relatively simple to obtain the likelihood using numerical integra-

tion. Consider the factor structure in equation (4.5) and (4.6). Our objective is to
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obtain the copula density of Xt.

ct pu1, ..., uNq “
fxt

`

G´1
1t pu1q , ..., G

´1
Nt puNq

˘

g1t

`

G´1
1t pu1q

˘

¨ ¨ ¨ ¨ ¨ gNt
`

G´1
Nt puNq

˘ (D.4)

where fxt px1, ..., xNq is the joint density of Xt, git pxiq is the marginal density of

Xi, and ct pu1, ..., uNq is the copula density. To construct copula density, we need

each of the functions that appear on the right-hand side above: git pxiq , Git pxiq ,

fxt px1, ..., xNq and G´1
it puiq .

The independence of Z and εi implies that:

fXi|Z,t pxi|zq “ fεi pxi ´ λitzq

FXi|Z,t pxi|zq “ Fεi pxi ´ λitzq

fX|Z,t px1,...,xN |zq “
N
ź

i“1

fεi pxi ´ λitzq

With these conditional distributions, one dimensional integration gives the marginals:

git pxiq “

ż 8

´8

fXi,Z,t pxi, zq dz “

ż 8

´8

fXi|Z,t pxi|zq fZ,t pzq dz

“

ż 8

´8

fεi pxi ´ λitzq fZ,t pzq dz

and similarly

Git pxiq “

ż 8

´8

Fεi pxi ´ λitzq fZ,t pzq dz

fxt px1, ..., xNq “

ż 8

´8

N
ź

i“1

fεi pxi ´ λitzq fZ,t pzq dz
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We use a change of variables, U ” FZ,t pzq , to convert these to bounded integrals:

git pxiq “

ż 1

0

fεi
`

xi ´ λitF
´1
Z,t puq

˘

du

Git pxiq “

ż 1

0

Fεi
`

xi ´ λitF
´1
Z,t puq

˘

du

fxt px1, ..., xNq “

ż 1

0

N
ź

i“1

fεi
`

xi ´ λitF
´1
Z,t puq

˘

du

Thus the factor copula density requires the computation of just one-dimensional

integrals. (For a factor copula with J common factors the integral would be J-

dimensional.) We use Gauss-Legendre quadrature for the integration, usingQ “nodes,”

(see Judd (1998) for details) and we choose Q on the basis of a small simulation study

described below.

Finally, we need a method to invert Git pxiq , and note from above that this is a

function of both x and the factor loading λit, with Git “ Gjs if λit “ λjs. We estimate

the inverse of Git by creating a grid of 100 points for x in the interval rxmin, xmaxs and

50 points for λ in the interval rλmin, λmaxs , and then evaluating G at each of those

points. We then use two-dimensional linear interpolation to obtain G´1 pu;λq given u

and λ. This two-dimensional approximation substantially reduces the computational

burden, especially when λ is time-varying, as we can evaluate the function G prior

to estimation, rather than re-estimating it for each likelihood evaluation.

We conducted a small Monte Carlo simulation to evaluate the accuracy of this nu-

merical approximation. We use quadrature nodesQ P t10, 50, 150u and rxstart, xends “

r´30, 30s, rλstart, λends “ r0, 6s for the numerical inversion. For this simulation, we

considered the factor copula implied by the following structure:

Xi “ λ0Zt ` εi, i “ 1, 2 (D.5)

where Zt ∼ Skew t pν0, ψ0q , εit ∼ iid t pν0q , ZKKεi @ i
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where λ0 “ 1, ν´1
0 “ 0.25 and ψ0 “ ´0.5.At each replication, we simulate X “ rX1, X2s

1000 times, and apply empirical distribution functions to transform X to U “ rU1, U2s.

With this rU1, U2s we estimate rλ, ν´1, ψs by numerically approximated maximum

likelihood method.

Table D.3 in Appendix D.3 contains estimation results for 100 replications. We

find that estimation with only 10 nodes introduces a relatively large bias, in particular

for ν´1, consistent with this low number of nodes providing a poor approximation

of the tails of this density. Estimation with 50 nodes gives accurate results, and is

comparable to those with 150 nodes in that bias and standard deviation are small.

We use 50 nodes throughout the paper.

D.3 Additional tables
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Table D.1: Simulation results for the “heterogeneous dependence” model

True Bias Std Median 90% 10% Diff
(90%-10%)

ω1 -0.030 0.004 0.017 -0.022 -0.005 -0.052 0.047
ω2 -0.029 0.004 0.018 -0.022 -0.005 -0.048 0.043
ω3 -0.029 0.004 0.016 -0.021 -0.005 -0.043 0.038
ω4 -0.028 0.003 0.017 -0.023 -0.005 -0.047 0.042
ω5 -0.028 0.004 0.016 -0.020 -0.005 -0.046 0.041
ω6 -0.027 0.004 0.016 -0.020 -0.003 -0.044 0.040
ω7 -0.026 0.003 0.016 -0.022 -0.004 -0.042 0.038
ω8 -0.026 0.003 0.016 -0.020 -0.005 -0.043 0.038
ω9 -0.025 0.003 0.015 -0.019 -0.005 -0.041 0.036
ω10 -0.025 0.002 0.016 -0.019 -0.005 -0.041 0.036
ω11 -0.024 0.002 0.015 -0.018 -0.004 -0.038 0.033
ω12 -0.023 0.003 0.013 -0.018 -0.004 -0.037 0.032
ω13 -0.023 0.003 0.014 -0.018 -0.004 -0.038 0.033
ω14 -0.022 0.003 0.012 -0.018 -0.004 -0.035 0.031
ω15 -0.022 0.002 0.013 -0.019 -0.004 -0.043 0.039
ω16 -0.021 0.002 0.013 -0.016 -0.003 -0.034 0.031
ω17 -0.020 0.003 0.011 -0.015 -0.003 -0.032 0.029
ω18 -0.020 0.002 0.013 -0.015 -0.003 -0.033 0.030
ω19 -0.019 0.002 0.012 -0.016 -0.003 -0.031 0.028
ω20 -0.019 0.002 0.011 -0.015 -0.003 -0.033 0.030
ω21 -0.018 0.003 0.010 -0.013 -0.003 -0.028 0.025
ω22 -0.017 0.002 0.010 -0.013 -0.003 -0.028 0.025
ω23 -0.017 0.003 0.009 -0.013 -0.003 -0.025 0.022
ω24 -0.016 0.002 0.010 -0.013 -0.003 -0.024 0.021
ω25 -0.016 0.000 0.010 -0.014 -0.003 -0.030 0.027
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Table D.1: Simulation results for the “heterogeneous dependence” model

True Bias Std Median 90% 10% Diff
(90%-10%)

ω26 -0.015 0.001 0.010 -0.012 -0.003 -0.028 0.025
ω27 -0.014 0.000 0.011 -0.011 -0.003 -0.028 0.025
ω28 -0.014 0.001 0.009 -0.011 -0.002 -0.023 0.021
ω29 -0.013 0.000 0.009 -0.011 -0.002 -0.025 0.023
ω30 -0.012 0.001 0.008 -0.010 -0.002 -0.022 0.020
ω31 -0.012 0.000 0.008 -0.010 -0.002 -0.022 0.020
ω32 -0.011 0.001 0.008 -0.008 -0.002 -0.019 0.017
ω33 -0.011 0.001 0.007 -0.009 -0.002 -0.017 0.015
ω34 -0.010 -0.001 0.008 -0.009 -0.002 -0.021 0.019
ω35 -0.009 0.000 0.008 -0.008 -0.002 -0.020 0.018
ω36 -0.009 0.000 0.007 -0.008 -0.002 -0.018 0.016
ω37 -0.008 0.001 0.005 -0.006 -0.001 -0.014 0.013
ω38 -0.008 0.001 0.006 -0.005 -0.001 -0.016 0.015
ω39 -0.007 0.001 0.005 -0.005 -0.001 -0.013 0.012
ω40 -0.006 -0.001 0.005 -0.006 -0.002 -0.015 0.014
ω41 -0.006 -0.003 0.007 -0.007 -0.002 -0.019 0.017
ω42 -0.005 0.000 0.004 -0.005 -0.001 -0.010 0.009
ω43 -0.005 0.001 0.004 -0.003 0.000 -0.009 0.008
ω44 -0.004 0.000 0.004 -0.003 0.000 -0.010 0.010
ω45 -0.003 -0.001 0.005 -0.003 0.000 -0.010 0.010
ω46 -0.003 0.001 0.003 -0.002 0.002 -0.007 0.008
ω47 -0.002 -0.001 0.003 -0.002 0.000 -0.006 0.006
ω48 -0.002 -0.001 0.003 -0.001 0.001 -0.006 0.008
ω49 -0.001 -0.001 0.004 -0.001 0.002 -0.006 0.008
ω50 0.000 -0.002 0.004 -0.002 0.001 -0.007 0.008
ω51 0.000 -0.002 0.003 -0.001 0.001 -0.006 0.007
ω52 0.001 -0.001 0.004 0.000 0.004 -0.003 0.007
ω53 0.002 0.000 0.004 0.000 0.006 -0.003 0.009
ω54 0.002 -0.003 0.004 -0.001 0.002 -0.005 0.007
ω55 0.003 -0.001 0.004 0.001 0.007 -0.003 0.010
ω56 0.003 -0.002 0.003 0.001 0.007 -0.002 0.009
ω57 0.004 0.000 0.004 0.003 0.010 0.000 0.010
ω58 0.005 -0.002 0.004 0.001 0.008 -0.001 0.009
ω59 0.005 -0.002 0.003 0.003 0.008 0.000 0.008
ω60 0.006 -0.002 0.005 0.003 0.010 0.000 0.010
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Table D.1: Simulation results for the “heterogeneous dependence” model

True Bias Std Median 90% 10% Diff
(90%-10%)

ω61 0.006 -0.002 0.005 0.003 0.010 0.000 0.010
ω62 0.007 -0.001 0.005 0.004 0.013 0.001 0.012
ω63 0.008 -0.003 0.005 0.003 0.012 0.000 0.011
ω64 0.008 -0.002 0.005 0.004 0.013 0.001 0.012
ω65 0.009 -0.002 0.006 0.005 0.013 0.000 0.013
ω66 0.009 -0.003 0.005 0.006 0.014 0.001 0.013
ω67 0.010 -0.004 0.006 0.005 0.013 0.000 0.013
ω68 0.011 -0.004 0.006 0.005 0.013 0.001 0.013
ω69 0.011 -0.002 0.007 0.008 0.022 0.002 0.020
ω70 0.012 -0.004 0.007 0.007 0.017 0.001 0.016
ω71 0.012 -0.003 0.007 0.009 0.019 0.001 0.017
ω72 0.013 -0.005 0.007 0.007 0.016 0.001 0.015
ω73 0.014 -0.004 0.008 0.008 0.020 0.001 0.019
ω74 0.014 -0.004 0.009 0.008 0.023 0.002 0.021
ω75 0.015 -0.004 0.008 0.009 0.019 0.002 0.017
ω76 0.016 -0.005 0.009 0.008 0.025 0.002 0.023
ω77 0.016 -0.003 0.009 0.011 0.026 0.002 0.024
ω78 0.017 -0.004 0.009 0.010 0.024 0.002 0.022
ω79 0.017 -0.004 0.010 0.011 0.032 0.002 0.030
ω80 0.018 -0.004 0.009 0.012 0.026 0.002 0.024
ω81 0.019 -0.006 0.009 0.011 0.024 0.002 0.022
ω82 0.019 -0.005 0.010 0.012 0.026 0.003 0.024
ω83 0.020 -0.005 0.010 0.012 0.029 0.002 0.027
ω84 0.020 -0.004 0.012 0.013 0.033 0.004 0.030
ω85 0.021 -0.006 0.011 0.014 0.032 0.002 0.030
ω86 0.022 -0.006 0.011 0.014 0.029 0.003 0.026
ω87 0.022 -0.006 0.013 0.015 0.032 0.003 0.029
ω88 0.023 -0.006 0.011 0.014 0.032 0.004 0.028
ω89 0.023 -0.006 0.012 0.016 0.033 0.003 0.030
ω90 0.024 -0.006 0.012 0.016 0.036 0.003 0.033
ω91 0.025 -0.005 0.014 0.017 0.036 0.004 0.033
ω92 0.025 -0.005 0.014 0.018 0.039 0.003 0.036
ω93 0.026 -0.007 0.012 0.018 0.038 0.003 0.035
ω94 0.026 -0.006 0.015 0.018 0.040 0.004 0.036
ω95 0.027 -0.006 0.014 0.018 0.040 0.004 0.036
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Table D.1: Simulation results for the “heterogeneous dependence” model

True Bias Std Median 90% 10% Diff
(90%-10%)

ω96 0.028 -0.007 0.015 0.019 0.042 0.004 0.038
ω97 0.028 -0.006 0.015 0.019 0.042 0.004 0.038
ω98 0.029 -0.006 0.015 0.020 0.045 0.004 0.041
ω99 0.029 -0.008 0.013 0.020 0.038 0.004 0.034
ω100 0.030 -0.007 0.016 0.021 0.040 0.004 0.036
α 0.050 -0.006 0.015 0.045 0.062 0.023 0.039
β 0.980 0.002 0.012 0.983 0.997 0.966 0.031
ν´1 0.200 -0.002 0.009 0.199 0.209 0.186 0.023
ψz 0.100 0.008 0.032 0.111 0.152 0.064 0.088

Notes: This table presents results from the simulation study described in Section 4.3
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D.4 “Variance targeting” assumptions

In Figure D.1 we present simulation evidence supporting the applicability of the as-

sumptions underlying Proposition 1 of the paper. In both panels we use a simulation

with 50,000 observations to estimate the true functions. The left panel shows the

mapping from rank correlation to linear correlation. This mapping changes slightly

with the shape parameters pθz, θεq , but we see that for all choices presented the func-

tion is indeed strictly increasing, supporting assumption (d). We further see that for

all three shape parameter choices the function ϕ is close to being the identity func-

tion, and we invoke this approximation in our estimation to increase computational

speed. The right panel plots the mapping from rank correlation to log factor load-

ings, and we see that the true mapping is reasonably approximated by a straight line,

particularly for values of rank correlation near the sample average rank correlation

in our application, which is around 0.4, supporting assumption (c).
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Figure D.1: The left panel plots the mapping from rank correlation to linear corre-
lation for various choices of shape parameters in the factor copula. The right panel
compares the true mappings from rank correlation to log-lambda with a linear approx-
imation.

243



Bibliography

Aas, K., Czado, C., Frigessi, A., and Bakken, H. (2009), “Pair-copula constructions
of multiple dependence,” Insurance: Mathematics and Economics, 44, 182–198.

Acar, E., Genest, C., and Nelehov, J. (2012), “Beyond simplified pair-copula con-
structions,” Journal of Multivariate Analysis, 110, 74–90.

Adrian, T. and Brunnermeier, M. (2009), “CoVaR,” Staff Report 348, Federal Re-
serve Bank of New York.

Almeida, C., Czado, C., and Manner, H. (2012), “Modeling high dimensional time-
varying dependence using D-vine SCAR models,” working paper.

Amisano, G. and Giacomini, R. (2007), “Comparing density forecasts via weighted
likelihood ratio tests,” Journal of Business and Economic Statistics, 25, 177–190.

Andersen, L. and Sidenius, J. (2004), “Extensions to the Gaussian copula: random
recovery and random factor loadings,” Journal of Credit Risk, 1, 29–70.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2001), “The dis-
tribution of realized stock return volatility,” Journal of Financial Economics, 61,
43–76.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003), “Modeling
and forecasting realised volatility,” Econometrica, 71, 579–625.

Andersen, T. G., Bollerslev, T., Christoffersen, P. F., and Diebold, F. X. (2006),
“Volatility and correlation forecasting,” in Handbook of Economic Forecasting, eds.
G. Elliott, C. Granger, and A. Timmermann, vol. 1, chap. 15, pp. 777–878, Else-
vier, Oxford.

Andersen, T. G., Bollerslev, T., Frederiksen, P., and Nielsen, M. O. (2010),
“Continuous-time models, realized volatilities, and testable distributional impli-
cations for daily stock returns,” Journal of Applied Econometrics, 25, 233–261.

Andrews, D. (1994), “Empirical process methods in econometrics,” in Handbook of
Econometrics, eds. R. Engle and D. McFadden, vol. 4, chap. 37, pp. 2247–2294,
Elsevier, Oxford.

244



Andrews, D. (2001), “Testing when a parameter is on the boundary of the maintained
hypothesis,” Econometrica, 69, 683–734.

Barndorff-Nielsen, O. and Shephard, N. (2004), “Econometric analysis of realised
covariation: high frequency based covariance, regression and correlaion in financial
economics,” Econometrica, 72, 885–925.

Barndorff-Nielsen, O. and Shephard, N. (2013), Financial Volatility in Continuous
Time, Cambridge University Press.

Barndorff-Nielsen, O., Hansen, P. R., Lunde, A., and Shephard, N. (2009), “Realized
kernels in practice: trades and quotes,” Econometrics Journal, 12, 1–32.

Barndorff-Nielsen, O., Hansen, P. R., Lunde, A., and Shephard, N. (2011), “Mul-
tivariate realised kernels: consistent positive semi-definite estimators of the co-
variation of equity prices with noise and non-synchronous trading,” Journal of
Econometrics, 162, 149–169.

Barndorff-Nielsen, O. E. (1978), “Hyperbolic distributions and distributions on hy-
perbolae,” Scandinavian Journal of Statistics, 5, 151–157.

Barndorff-Nielsen, O. E. (1997), “Normal inverse Gaussian distributions and stochas-
tic volatility modelling,” Scandinavian Journal of Statistics, 24, 1–13.

Bauer, G. and Vorkink, K. (2011), “Forecasting multivariate realized stock market
volatility,” Journal of Econometrics, 160, 93–101.

Blasques, F., Koopman, S., and Lucas, A. (2012), “Stationarity and ergodicity of uni-
variate generalized autoregressive score processes,” Tinbergen Institute Discussion
Paper TI 2012-059/4.

Bollerslev, T. (1986), “Generalized autoregressive conditional heteroskedasticity,”
Journal of Econometrics, 31, 307–327.

Bollerslev, T. (1990), “Modelling the coherence in short-run nominal exchange rates:
a multivariate generalized ARCH approach,” Review of Economics and Statistics,
72, 498–505.

Bollerslev, T., Engle, R. F., and Wooldridge, J. M. (1988), “A capital asset pricing
model with time varying covariances,” Journal of Political Economy, 96, 116–131.

Bollerslev, T., Engle, R. F., and Nelson, D. B. (1994), “ARCH models,” in Handbook
of Econometrics, eds. R. F. Engle and D. McFadden, vol. 4, chap. 49, pp. 2959–
3038, Elsevier, Oxford.

Bonhomme, S. and Robin, J.-M. (2009), “Assessing the equalizing force of mobility
using short panels: france, 1990-2000,” Review of Economic Studies, 76, 63–92.

245



Bouzebda, S. and Zari, T. (2011), “Strong approximation of empirical copula pro-
cesses by gaussian processes,” working paper.

Brendstrup, B. and Paarsch, H. (2007), “Semiparametric identification and estima-
tion in multi-object english auctions,” Journal of Econometrics, 141, 84–108.

Brownlees, C. and Engle, R. (2011), “Volatility, correlation and tails for systemic risk
measurement,” working paper, Stern School of Business, New York University.

Capital, B. (2010), Standard Corporate CDS Handbook, Barclays Capital.

Carr, P. and Wu, L. (2011), “A simple robust link between american puts and credit
protection,” Review of Financial Studies, 24, 473–505.

Chan, N.-H., Chen, J., Chen, X., Fan, Y., and Peng, L. (2009), “Statistical inference
for multivariate residual copula of garch models,” Statistica Sinica, 19, 53–70.

Chen, X. and Fan, Y. (2006), “Estimation and model selection of semiparametric
copula-based multivariate dynamic models under copula misspecification,” Journal
of Econometrics, 135, 125–154.

Chen, X., Fan, Y., and Tsyrennikov, V. (2006), “Efficient estimation of semiparamet-
ric multivariate copula models,” Journal of the American Statistical Association,
101, 1228–1240.

Cherubini, U., Luciano, E., and Vecchiato, W. (2004), Copula Methods in Finance,
John Wiley & Sons.

Chiriac, R. and Voev, V. (2011), “Modelling and forecasting multivariate realized
volatility,” Journal of Applied Econometrics, 26, 922–947.

Christoffersen, P., Errunza, V., Jacobs, K., and Langlois, H. (2012), “Is the potential
for international diversification disappearing?” Review of Financial Studies, 25,
3711–3751.

Christoffersen, P., Jacobs, K., Jin, X., and Langlois, H. (2013), “Dynamic depen-
dence in corporate credit,” working paper, Bauer College of Business, University
of Houston.

Clayton, D. (1978), “A model for association in bivariate life tables and its applica-
tion in epidemiological studies of familial tendency in chronic disease incidence,”
Biometrika, 65, 141–151.

Conrad, J., Dittmar, R., and Hameed, A. (2011), “Cross-market and cross-firm effects
in implied default probabilities and recovery values,” working paper, Kenan-Flagler
Business School, University of North Carolina.

246



Cook, R. and Johnson, M. (1981), “A family of distributions for modelling non-
elliptically symmetric multivariate data,” Journal of the Royal Statistical Society,
43, 210–218.

Corsi, F. (2009), “A simple approximate long-memory model of realized volatility,”
Journal of Financial Econometrics, 7, 174–196.

Coval, J., Jurek, J., and Stafford, E. (2009), “The economics of structured finance,”
Journal of Economic Perspectives, 23, 3–25.

Cox, D. R. and Reid, N. (2004), “A note on pseudolikelihood constructed from
marginal densities,” Biometrika, 91, 729–737.

Creal, D., Koopman, S., and Lucas, A. (2011), “A dynamic multivariate heavy-
tailed model for time-varying volatilities and correlations,” Journal of Business
and Economic Statistics, 29, 552–563.

Creal, D., Gramercy, R., and Tsay, R. (2012), “Market-based credit ratings,” working
paper, Booth School of Business, University of Chicago.

Creal, D., Koopman, S., and Lucas, A. (2013), “Generalized autoregressive score
models with applications,” Journal of Applied Econometrics, 28, 777–795.

Danelsson, J., Jorgensen, B., Samorodnitsky, G., Sarma, M., and de Vries, C. (2013),
“Fat tails, VaR and subadditivity,” Journal of Econometrics, 172, 283–291.

Daul, S., Giorgi, E. D., Lindskog, F., and McNeil, A. (2003), “The grouped t-copula
with an application to credit risk,” RISK, 16, 73–76.

Davis, R. A., Dunsmuir, W. T. M., and Streett, S. (2003), “Observation driven
models for Poisson counts,” Biometrika, 90, 777–790.

De Lira Salvatierra, I. and Patton, A. J. (2013), “Dynamic copula models and high
frequency data,” working paper, Duke University.

Demarta, S. and McNeil, A. J. (2005), “The t copula and related copulas,” Interna-
tional Statistical Review, 73, 111–129.

Diks, C., Panchenko, V., and van Dijk, D. (2010), “Out-of-sample comparison of
copula specifications in multivariate density forecasts,” Journal of Economic Dy-
namics & Control, 34, 1596–1609.

Diks, C., Panchenko, V., and van Dijk, D. (2011), “Likelihood-based scoring rules
for comparing density forecasts in tails,” Journal of Econometrics, 163, 215–230.

Diks, C., Panchenko, V., Sokolinskiy, O., and van Dijk, D. (2013), “Comparing
the accuracy of copula-based multivariate density forecasts in selected regions of
support,” working paper.

247



Ding, Z. and Engle, R. (2001), “Large scale conditional covariance matrix modeling,
estimation and testing,” Academia Economic Papers, 29, 157–184.

Duffie, D. and Singleton, K. (2003), Credit Risk: Pricing, Measurement, and Man-
agement, Princeton University Press, New Jersey.

Duffie, D., Eckner, A., Horel, G., and Saita, L. (2009), “Frailty correlated default,”
Journal of Finance, 64, 2089–2123.

Embrechts, P., Klppelberg, C., and Mikosch, T. (1997), Modelling Extremal Events,
Springer-Verlag.

Embrechts, P., McNeil, A., and Straumann, D. (2002), “Correlation and dependence
properties in risk management: properties and pitfalls,” in Risk Management:
Value at Risk and Beyond, ed. M. Dempster, Cambridge University Press.

Engle, R. F. (1982), “Autoregressive conditional heteroscedasticity with estimates of
the variance of uk inflation,” Econometrica, 50, 987–1007.

Engle, R. F. (2002), “Dynamic conditional correlation: a simple class of multivari-
ate generalized autoregressive conditional heteroskedasticity models,” Journal of
Business and Economic Statistics, 20, 339–351.

Engle, R. F. and Kelly, B. (2012), “Dynamic equicorrelation,” Journal of Business
and Economic Statistics, 30, 212–228.

Engle, R. F. and Mezrich, J. (1996), “GARCH for groups,” Risk, 9, 36–40.

Engle, R. F. and Russell, J. R. (1998), “Autoregressive conditional duration: a new
model for irregularly spaced transaction data,” Econometrica, 66, 1127–1162.

Engle, R. F. and Sheppard, K. (2001), “Theoretical and empirical properties of
dynamic conditional correlation multivariate garch,” working paper, University of
California, San Diego.

Engle, R. F., Shephard, N., and Sheppard, K. (2008), “Fitting and testing vast di-
mensional time-varying covariance models,” working paper, Oxford-Man Institute
of Quantitative Finance.

Fan, J., Li, Y., and Ke, Y. (2012), “Vast volatility matrix estimation using high
frequency data for portfolio selection,” Journal of the American Statistical Asso-
ciation, 107, 412–428.

Fermanian, J., Radulovi, D., and Wegkamp, M. (2004), “Weak convergence of em-
pirical copula process,” Bernoulli, 10, 847–860.

Fine, J. and Jiang, H. (2000), “On association in a copula with time transformations,”
Biometrika, 87, 559–571.

248



Gao, X. and Song, P. X.-K. (2010), “Composite likelihood Bayesian information
criteria for model selection in high-dimensional data,” Journal of the American
Statistical Association, 105, 1531–1540.

Geluk, J., de Haan, L., and de Vries, C. (2007), “Weak and strong financial fragility,”
Tinbergen Institute Discussion Paper TI 2007-023/2.

Genest, C. (1987), “Frank’s family of bivariate distributions,” Biometrika, 74, 549–
555.

Genest, C. and Favre, A.-C. (2007), “Everything you always wanted to know about
copula modeling but were afraid to ask,” Journal of Hydrologic Engineering, 12,
347–368.

Genest, C. and Rivest, L.-P. (1993), “Statistical inference procedures for bivariate
archimedean copulas,” Journal of the American Statistical Association, 88, 1034–
1043.

Genest, C., Ghoudi, K., and Rivest, L.-P. (1995), “A semiparametric estimation
procedure of dependence parameters in multivariate families of distributions,”
Biometrika, 82, 543–552.

Giacomini, R. and White, H. (2006), “Tests of conditional predictive ability,” Econo-
metrica, 74, 1545–1578.

Giesecke, K. and Kim, B. (2011), “Systemic risk: What defaults are telling us,”
Management Science, 57, 1387–1405.

Glosten, R. T., Jagannathan, R., and Runkle, D. (1993), “On the relation between
the expected value and the volatility of the nominal excess return on stocks,”
Journal of Finance, 48, 1779–1801.

Gneiting, T. and Raftery, A. (2007), “Strictly proper scoring rules, prediction, and
estimation,” Journal of the American Statistical Association, 102, 359–378.

Gonalves, S. and White, H. (2002), “The bootstrap of the mean for dependent het-
erogeneous arrays,” Econometric Theory, 18, 1367–1384.

Gonalves, S., Hounyo, U., Patton, A., and Sheppard, K. (2013), “Bootstrapping two-
stage extremum estimators,” working paper, Oxford-Man Institute of Quantitative
Finance.

Gouriroux, C. and Monfort, A. (1996), Statistics and Econometric Models, Volume
2, translated from the French by Q. Vuong, Cambridge University Press.

Group, M. (2009), “The CDS big bang: understanding the changes to the global
CDS contract and North American conventions,” research report.

249



Hafner, C. M. and Manner, H. (2012), “Dynamic stochastic copula models: estima-
tion, inference and applications,” Journal of Applied Econometrics, 27, 269–295.

Hall, A. (2000), “Covariance matrix estimation and the power of the overidentifying
restrictions test,” Econometrica, 68, 1517–1528.

Hall, A. (2005), Generalized Method of Moments, Oxford University Press, Oxford.

Hall, A. and Inoue, A. (2003), “The large sample behaviour of the generalized method
of moments estimator in misspecified models,” Journal of Econometrics, 114, 361–
394.

Hansen, B. E. (1994), “Autoregressive conditional density estimation,” International
Economic Review, 35, 705–730.

Hansen, P., Huang, Z., and Shek, H. (2012), “Realized GARCH: a joint model for
returns and realized measures of volatility,” Journal of Applied Econometrics, 27,
877–906.

Harvey, A. (2013), Dynamic Models for Volatility and Heavy Tails, Econometric
Society Monograph 52, Cambridge University Press, Cambridge.

Harvey, A. and Sucarrat, G. (2012), “EGARCH models with fat tails, skewness and
leverage,” working paper CWPE 1236, Cambridge University.

Hautsch, N., Kyj, L. M., and Oomen, R. C. A. (2012), “A blocking and regularization
approach to high-dimensional realized covariance estimation,” Journal of Applied
Econometrics, 27, 625–645.

Hautsch, N., Kyj, L., and Malec, P. (2013), “Do high-frequency data improve high-
dimensional portfolio allocations?” working paper.

Heinen, A. and Valdesogo, A. (2009), “Asymmetric CAPM dependence for large
dimensions: the canonical vine autoregressive model,” working paper, Univerisidad
Carlos III.

Hong, H., Mahajan, A., and Nekipelov, D. (2010), “Extremum estimation and nu-
merical derivatives,” working paper, Stanford University.

Huang, X., Zhou, H., and Zhu, H. (2009), “A framework for assessing the systemic
risk of major financial institutions,” Journal of Banking and Finance, 33, 2036–
2049.

Hull, J. (2012), Risk Management and Financial Institutions, Third Edition, John
Wiley & Sons, New Jersey.

Hull, J. and White, A. (2004), “Valuation of a CDO and an n-th to default CDS
without Monte Carlo simulation,” Journal of Derivatives, 12, 8–23.

250



Hyung, N. and de Vries, C. (2007), “Portfolio selection with heavy tails,” Journal of
Empirical Finance, 14, 383–400.

Jin, X. and Maheu, J. M. (2013), “Modeling realized covariances and returns,” Jour-
nal of Financial Econometrics, 11, 335–369.

Joe, H. (1997), Multivariate Models and Dependence Concepts, Chanpman and Hall.

Joe, H. (2005), “Asymptotic efficiency of the two-stage estimation method for copula-
based models,” Journal of Multivariate Analysis, 94, 401–419.

Joe, H. and Xu, J. (1996), “The estimation method of inference functions for margins
for multivariate models,” working paper, Department of Statistics, University of
British Columbia.

Jondeau, E. and Rockinger, M. (2006), “The copula-GARCH model of conditional
dependencies: An international stock market application,” Journal of Interna-
tional Money and Finance, 25, 827–853.

Jondeau, E. and Rockinger, M. (2012), “On the importance of time variability in
higher moments for asset allocation,” Journal of Financial Econometrics, 10, 84–
123.

Judd, K. (1998), Numerical Methods in Economics, MIT Press.

Kim, G., Silvapulle, M. J., and Silvapulle, P. (2007), “Comparison of semiparametric
and parametric methods for estimating copulas,” Computational Statistics & Data
Analysis, 51, 2836–2850.

Lee, T. and Long, X. (2009), “Copula-based multivariate GARCH model with un-
correlated dependent errors,” Journal of Econometrics, 150, 207–218.

Li, D. X. (2000), “On default correlation: A copula function approach,” Journal of
Fixed Income, 9, 43–54.

Li, S. Z. (2013), “Continuous beta, discontinuous beta and the cross-section of ex-
pected stock returns,” working paper, Duke University.

Lucas, A., Schwaab, B., and Zhang, X. (2011), “Conditional probabilities for
euro area sovereign default risk,” Tinbergen Institute discussion paper, 11-
176/2/DSF29.

Maheu, J. M. and McCurdy, T. H. (2011), “Do high-frequency measures of volatility
improve forecasts of return distributions?” Journal of Econometrics, 160, 69–76.

Manner, H. and Segers, J. (2011), “Tails of correlation mixtures of elliptical copulas,”
Insurance: Mathematics and Economics, 48, 153–160.

251



Marshall, A. W. and Olkin, I. (1988), “Families of multivariate distributions,” Jour-
nal of the American Statistical Association, 83, 834–841.

McFadden, D. (1989), “A method of simulated moments for estimation of discrete
response models without numerical integration,” Econometrica, 47, 995–1026.

McNeil, A. J., Frey, R., and Embrechts, P. (2005), Quantitative Risk Management,
Princeton University Press.

Min, A. and Czado, C. (2010), “Bayesian inference for multivariate copulas using
pair-copula constructions,” Journal of Financial Econometrics, 8, 511–546.

Nelsen, R. (2006), An Introduction to Copulas, Springer.

Nelson, D. (1991), “Conditional heteroskedasticity in asset returns: A new ap-
proach,” Econometrica, 59, 347–370.

Newey, W. (1985), “Generalized method of moments specification testing,” Journal
of Econometrics, 29, 229–256.

Newey, W. and McFadden, D. (1994), “Large sample estimation and hypothesis
testing,” in Handbook of Econometrics, eds. R. Engle and D. McFadden, vol. 4,
chap. 36, pp. 2111–2245, Elsevier, Oxford.

Newey, W. and West, K. D. (1987), “A simple, positive semi-definite, heteroskedastic-
ity and autocorrelation consistent covariance matrix,” Econometrica, 55, 703–708.

Noureldin, D., Shephard, N., and Sheppard, K. (2012), “Multivariate high-frequency-
based volatility (HEAVY) models,” Journal of Applied Econometrics, 27, 907–933.

Oh, D.-H. and Patton, A. J. (2011), “Modelling dependence in high dimensions with
factor copulas,” working paper, Duke University.

Oh, D.-H. and Patton, A. J. (2013a), “Simulated method of moments estimation for
copula-based multivariate models,” Journal of the American Statistical Associa-
tion, 108, 689–700.

Oh, D.-H. and Patton, A. J. (2013b), “Time-varying systemic risk: evidence from a
dynamic copula model of CDS spreads,” working paper, Duke University.

Pakes, A. and Pollard, D. (1989), “Simulation and the asymptotics of optimization
estimators,” Econometrica, 47, 1027–1057.

Palm, F. and Urbain, J.-P. (2011), “Factor structures for panel and multivariate time
series data,” Journal of Econometrics, 163, 1–3.

Patton, A. J. (2004), “On the out-of-sample importance of skewness and asymmetric
dependence for asset allocation,” Journal of Financial Econometrics, 2, 130–168.

252



Patton, A. J. (2006a), “Estimation of multivariate models for time series of possibly
different lengths,” Journal of Applied Econometrics, 21, 147–173.

Patton, A. J. (2006b), “Modelling asymmetric exchange rate dependence,” Interna-
tional Economic Review, 47, 527–556.

Patton, A. J. (2012), “A review of copula models for economic time series,” Journal
of Multivariate Analysis, 110, 4–18.

Patton, A. J. (2013), “Copula methods for forecasting multivariate time series,” in
Handbook of Economic Forecasting, eds. G. Elliott and A. Timmermann, vol. 2,
chap. 16, pp. 899–960, Elsevier, Oxford.

Politis, D. and Romano, J. (1994), “The Stationary bootstrap,” Journal of the Amer-
ican Statistical Association, 89, 1303–1313.

Rivers, D. and Vuong, Q. H. (2002), “Model selection tests for nonlinear dynamic
models,” Econometrics Journal, 5, 1–39.

Rosenberg, J. and Schuermann, T. (2006), “A general approach to integrated risk
management with skewed, fat-tailed risks,” Journal of Financial Economics, 79,
569–614.

Rothenberg, T. (1971), “Identification of parametric models,” Econometrica, 39,
577–591.

Rmillard, B. (2010), “Goodness-of-fit tests for copulas of multivariate time series,”
working paper, McGill University.

Schwaab, B. (2010), “New quantitative measures of systemic risk,” Financial Stabil-
ity Review Special Feature E, European Central Bank.

Segioviano, M. and Goodhart, C. (2009), “Banking stability measures,” IMF Work-
ing Paper WP/09/4.

Shephard, N. (2005), Stochastic Volatility: Selected Readings, Oxford University
Press, Oxford.

Sklar, A. (1959), “Fonctions de repartition a n dimensions et leurs marges,” Publi-
cations de Institut Statistique de Universite de Paris 8, pp. 229–231.

Smith, M., Min, A., Almeida, C., and Czado, C. (2010), “Modeling longitudinal data
using a pair-copula decomposition of serial dependence,” Journal of the American
Statistical Association, 105, 1467–1479.

Smith, M., Gan, Q., and Kohn, R. (2012), “Modeling dependence using skew t
copulas: Bayesian inference and applications,” Journal of Applied Econometrics,
27, 500–522.

253



Song, P., Fan, Y., and Kalbfleisch, J. (2005), “Maximization by parts in likelihood
inference,” Journal of the American Statistical Association, 100, 1145–1158.

Stber, J. and Czado, C. (2012), “Detecting regime switches in the dependence struc-
ture of high dimensional financial data,” working paper, Technische Universitt
Mnchen.

van der Voort, M. (2005), “Factor copulas: totally external defaults,” working paper,
Erasmus University Rotterdam.

Varin, C. (2008), “On composite marginal likelihoods,” Advances in Statistical Anal-
ysis, 92, 1–28.

Varin, C. and Vidoni, P. (2005), “A note on composite likelihood inference and model
selection,” Biometrika, 92, 519–528.

Varin, C., Reid, N., and Firth, D. (2011), “An overview of composite likelihood
methods,” Statistica Sinica, 21, 5–42.

Vuong, Q. H. (1989), “Likelihood ratio tests for model selection and non-nested
hypotheses,” Econometrica, 57, 307–333.

White, H. (1994), Estimation, Inference and Specification Analysis, Cambridge Uni-
versity Press.

White, H. (2000), “A reality check for data snooping,” Econometrica, 68, 1097–1126.

Wolak, F. (1989), “Testing inequality contraints in linear econometic models,” Jour-
nal of Econometrics, 41, 205–235.

Zimmer, D. (2012), “The role of copulas in the housing crisis,” Review of Economics
and Statistics, 94, 607–620.

254



Biography

Dong Hwan Oh was born in Republic of Korea on April 16, 1980. He earned his B.A.

in economics with Summa Cum Laude in February 2003, and M.A. in economics

from Seoul National University, in September 2008. He began his graduate studies

at Duke University in August 2008. He plans on graduating from Duke University

with a doctorate in economics in the spring of 2014.

255


	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Modelling High Dimension Distributions with High Frequency Data and Copulas
	1.1 Introduction
	1.2  Joint models for covariances and returns
	1.2.1 A model for uncorrelated standardized residuals
	1.2.2 Forecasting models for multivariate covariance matrix

	1.3 Estimation methods and model comparisons
	1.3.1 Estimation using composite likelihood estimation
	1.3.2 Model selection tests with composite likelihood
	1.3.3 Multistage modelling and estimation

	1.4 Simulation study
	1.4.1 Finite sample properties of MCLE for jointly symmetric copulas
	1.4.2 Finite sample properties of multistage estimation

	1.5 Empirical analysis of S&P 100 equity returns
	1.5.1 In-sample model selection
	1.5.2 Out-of-sample model selection

	1.6 Conclusion
	1.7 Tables and figures

	2 Modelling Dependence in High Dimensions with Factor Copulas (co-authored with Andrew Patton)
	2.1 Introduction
	2.2 Factor copulas
	2.2.1 Description of a simple factor copula model
	2.2.2 A multi-factor copula model
	2.2.3 Tail dependence properties of factor copulas
	2.2.4 Illustration of some factor copulas
	2.2.5 Non-linear factor copula models

	2.3 A Monte Carlo study of SMM estimation of factor copulas
	2.3.1 Description of the model for the conditional joint distribution
	2.3.2 Simulation-based estimation of copula models
	2.3.3 Finite-sample properties of SMM estimation of factor copulas

	2.4 High-dimension copula models for S&P 100 returns
	2.4.1 Results from equidependence copula specifications
	2.4.2 Results from block equidependence copula specifications
	2.4.3 Measuring systemic risk: Marginal Expected Shortfall

	2.5 Conclusion
	2.6 Tables and figures

	3 Simulated Method of Moments Estimation for Copula-Based Multivariate Models (co-authored with Andrew Patton)
	3.1 Introduction
	3.2 Simulation-based estimation of copula models
	3.2.1 Definition of the SMM estimator
	3.2.2 Consistency of the SMM estimator
	3.2.3 Asymptotic normality of the SMM estimator
	3.2.4 Consistent estimation of the asymptotic variance
	3.2.5 A test of overidentifying restrictions
	3.2.6 SMM under model mis-specification

	3.3 Simulation study
	3.4 Application to the dependence between financial firms
	3.5 Conclusion
	3.6 Sketch of proofs
	3.7 Tables and figures

	4 Time-Varying Systemic Risk: Evidence from a Dynamic Copula Model of CDS Spreads (co-authored with Andrew Patton)
	4.1 Introduction
	4.2 A dynamic copula model for high dimensions
	4.2.1 Factor copulas
	4.2.2 “GAS” dynamics
	4.2.3 Other models for dynamic, high dimension copulas

	4.3 Simulation study
	4.4 Data description and estimation results
	4.4.1 CDS spreads
	4.4.2 Summary statistics
	4.4.3 Conditional mean and variance models
	4.4.4 The CDS “Big Bang”
	4.4.5 Comparing models for the conditional copula

	4.5 Time-varying systemic risk
	4.5.1 Joint probability of distress
	4.5.2 Expected proportion in distress

	4.6 Conclusion
	4.7 Tables and figures

	A Appendix to Chapter 1
	A.1 Proofs
	A.2 Dynamic conditional correlation (DCC) model
	A.3 Hessian matrix for multistage estimations

	B Appendix to Chapter 2
	B.1 Proofs
	B.2 Choice of dependence measures for estimation
	B.3 Additional tables

	C Appendix to Chapter 3
	C.1 Proofs
	C.2 Implementation of the SMM estimator
	C.3 Implementation of MLE for factor copulas
	C.4 Additional tables

	D Appendix to Chapter 4
	D.1 Proofs
	D.2 Obtaining the factor copula likelihood
	D.3 Additional tables
	D.4 “Variance targeting” assumptions

	Bibliography
	Biography

