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Abstract

The dissertation consists of four chapters that concern topics on copulas for high
dimensions. Chapter 1 proposes a new general model for high dimension joint distri-
butions of asset returns that utilizes high frequency data and copulas. The depen-
dence between returns is decomposed into linear and nonlinear components, which
enables the use of high frequency data to accurately measure and forecast linear
dependence, and the use of a new class of copulas designed to capture nonlinear de-
pendence among the resulting linearly uncorrelated residuals. Estimation of the new
class of copulas is conducted using a composite likelihood, making the model feasible
even for hundreds of variables. A realistic simulation study verifies that multistage
estimation with composite likelihood results in small loss in efficiency and large gain
in computation speed.

Chapter 2, which is co-authored with Professor Andrew Patton, presents new
models for the dependence structure, or copula, of economic variables based on a
factor structure. The proposed models are particularly attractive for high dimen-
sional applications, involving fifty or more variables. This class of models generally
lacks a closed-form density, but analytical results for the implied tail dependence
can be obtained using extreme value theory, and estimation via a simulation-based
method using rank statistics is simple and fast. We study the finite-sample properties
of the estimation method for applications involving up to 100 variables, and apply

the model to daily returns on all 100 constituents of the S&P 100 index. We find
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significant evidence of tail dependence, heterogeneous dependence, and asymmetric
dependence, with dependence being stronger in crashes than in booms.

Chapter 3, which is co-authored with Professor Andrew Patton, considers the
estimation of the parameters of a copula via a simulated method of moments type
approach. This approach is attractive when the likelihood of the copula model is
not known in closed form, or when the researcher has a set of dependence measures
or other functionals of the copula that are of particular interest. The proposed ap-
proach naturally also nests method of moments and generalized method of moments
estimators. Drawing on results for simulation based estimation and on recent work in
empirical copula process theory, we show the consistency and asymptotic normality
of the proposed estimator, and obtain a simple test of over-identifying restrictions as
a goodness-of-fit test. The results apply to both iid and time series data. We analyze
the finite-sample behavior of these estimators in an extensive simulation study.

Chapter 4, which is co-authored with Professor Andrew Patton, proposes a new
class of copula-based dynamic models for high dimension conditional distributions,
facilitating the estimation of a wide variety of measures of systemic risk. Our pro-
posed models draw on successful ideas from the literature on modelling high di-
mension covariance matrices and on recent work on models for general time-varying
distributions. Our use of copula-based models enable the estimation of the joint
model in stages, greatly reducing the computational burden. We use the proposed
new models to study a collection of daily credit default swap (CDS) spreads on 100
U.S. firms over the period 2006 to 2012. We find that while the probability of distress
for individual firms has greatly reduced since the financial crisis of 2008-09, the joint
probability of distress (a measure of systemic risk) is substantially higher now than

in the pre-crisis period.
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1

Modelling High Dimension Distributions with High
Frequency Data and Copulas

1.1 Introduction

A multivariate joint distribution for the returns on hundreds of financial assets is
one of the most crucial components in modern risk managements and asset alloca-
tions. Given that the complete information of dependence and marginal behaviors
of assets in portfolios is contained in joint distributions, it is no exaggeration to say
that financial decision makings are completely determined by joint distributions of
constituents of portfolios. Modelling high dimension distributions, however, is not
an easy task mainly due to the “curse of dimensionality,” so only a few models are
available for high dimensions. This is the reason why high dimension Normal distri-
bution is still widely used in practice and academia in spite of its notorious limits,
for example, thin tails and zero tail dependence. This paper proposes a new general
model for high dimension joint distributions of asset returns that utilizes high fre-
quency data and copulas. This model is sufficiently general that non-normal features

of financial data can easily be incorporated, and novel estimation methods enable us



to overcome the “curse of dimensionality” in high dimensions.

Over the last decade, there have been two major findings in financial economet-
rics. First, high frequency (HF) intraday data has been proven more superior to
daily data in measuring and forecasting variances and covariances, see Andersen, et
al. (2001, 2004) and Barndorff-Nielsen and Shephard (2004). This implies that linear
dependence represented by covariances is captured quite well by HF data. Second,
copulas can be used to construct high dimension distributions with specified depen-
dence and arbitrary marginal distributions, see Patton (2012) for a comprehensive
review. Separately specifying all marginal distributions and dependence makes con-
structing joint distributions much easier than directly modelling them does. These
two findings naturally leads to a question: how could HF data and copulas be used
to improve the modelling and forecasting of daily return distributions, especially for
high dimensions, say hundreds of random variables?

To address this question is not simple because direct use of HF intraday data
to estimate the copula of daily returns is not straightforward. Given the fact that
daily returns are the sum of intraday returns, it is not reasonable to assume that the
copula of daily returns is a known function of copulas of intraday returns. It is like a
claim that a joint distribution of sum of random variables is a known function of joint
distributions of each variable, which is not generally true except for special cases such
as sum of independent Gaussian random variables. In contrast, Barndorff-Nielsen
and Shephard (2004) prove that the realized covariance matrix nonparametrically
constructed using intraday data converges in probability to the covariance matrix of
daily returns as data frequency goes to infinity. This elegant link between intraday
and daily returns for the second moments does not generally hold for copulas for the
above reason, so alternative approaches are required in order to exploit information
of HF data for modelling dependence.

This paper decomposes the dependence structure into linear and nonlinear com-

2



ponents. This decomposition enables the use of HF data to accurately measure and
forecast linear dependence and the use of a new class of copulas designed to capture
nonlinear dependence between the resulting linearly uncorrelated residuals. This ap-
proach is novel as it enables an enhanced estimation of a joint distribution by sepa-
rately assigning HF data and copula to estimate the linear and nonlinear dependence,
respectively. The literature on joint distributions using HF data mostly ignores non-
linear dependence by focusing only on the second moments or linear dependence, for
example, Chiriac and Voev (2011), Jondeau and Rockinger (2012), Hautsch, et al.
(2013), and Jin and Maheu (2013), among others, whereas the literature on copula
does not use information of HF data to improve modelling dependence, for example,
Chen and Fan (2006), Patton (2006b), and Oh and Patton (2011), among others.
The aforementioned decomposition permits the use of both HF data and copulas to
improve in modelling dependence without further unrealistic assumptions. To model
nonlinear dependence, a new class of copulas designed to capture dependence of lin-
early uncorrelated random variables is necessary. Motivated by the few parametric
copulas available for linearly uncorrelated random variables, for example, ¢ copula
with zero correlations, this paper proposes a new method to construct copulas for
linearly uncorrelated random variables from any given copula. Since this method
is based on simple rotations of a given copula, there is nothing difficult to generate
new copulas. This new class of copulas enables us to examine various features of
nonlinear dependence which might be generally overlooked in the literature.

The major benefits of the proposed models for joint distributions are threefold.
First, the proposed model is sufficiently flexible that almost all kinds of joint models
for the second moment and return distributions in the literature are interpretable
in this framework. We may also rely on the large literature on multivariate second
moments such as BEKK (Engle and Kroner, 1995) and DCC (Engle, 2002) for the

separate models for the second moments. Second, the proposed model can be easily
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extended to high dimensions, say 100, and the estimation is feasible and fast. Com-
putational problems often arise in high dimension models, and the proposed model
and estimation methods overcome the “curse of dimensionality” by multi-stage es-
timation with composite likelihood, see Varin (2008) and Varin, et al. (2011) for a
comprehensive review. Third, the proposed model allows for the simultaneous use
of high frequency data and copulas to completely capture dependence. HF data is
assigned to capture linear dependence and jointly symmetric copulas are used to cap-
ture nonlinear dependence. Fully exploiting the advantages of HF data and copulas
leads to superior performance of the proposed model.

Similar approaches have already appeared in the literature. First of all, Lee and
Long (2009) consider the decomposition of linear and nonlinear dependence although
their method is more difficult to interpret and cannot be extended to high dimen-
sions.! Second, the proposed model is related to the literature on copulas for high
dimensions, see Patton (2012) for a review. The standard copula approaches for
modelling joint distributions usually do not take into account the decomposition of
dependence into linear and nonlinear components because the copula captures all
kinds of dependence, including the second moments. Those approaches are not usu-
ally formulated to exploit information of HF data for dependence. Another related
strand of the literature is about modelling the second moments or joint modelling the
second moments and return distributions, see Andersen, et al. (2006) for a review,
Jin and Maheu (2013) and references therein. Since they usually directly model the
joint distributions of standardized residuals rather than relying on copula methods,
the multivariate Normal or Student’s ¢ distributions are used especially for high
dimensions, which implies that nonlinear dependence is mostly ignored.

The remainder of the paper is organized as follows. Section 1.2 provides details

of proposed models for high dimension distributions. Section 1.3 and Section 1.4

L The details are discussed in Section 1.2



present the estimation procedure and a simulation study for the proposed models,
respectively. Section 1.5 applies the proposed model to real data and presents in-
sample results and out-of-sample forecasting results for density forecasting and a

portfolio choice problems. Section 1.6 concludes.
1.2 Joint models for covariances and returns

We construct the model of N daily return random variables r, as follows:

ry = [y + Hi/2et (11)

e Fi1~F(5n) (1.2)

where i, = Er|F_1], Hy = Cov|rFi1], Fi = o(ry,ri-1,...) and F(+;n) is
a parametric distribution with zero mean and identity covariance matrix. To ob-
tain the square root of a matrix, the spectral decomposition (based on eigenval-
ues and eigenvectors) is used due to its invariance to the order of the variables.
Equation (1.1) implies that returns are specified by conditional mean p;, condi-
tional variance-covariance matrix H;, and standardized uncorrelated residuals e; with
E ey Fi—1] = 0 and E [e;e}|F;_1] = I. Equation (1.2) describes that standardized
uncorrelated residuals e; follow a conditional joint distribution F (-) with parameter
7. We may further consider the decomposition of conditional joint distribution F of

e; into marginal distributions F; and copula C by Sklar (1959) and Patton (2006b):
e Fir ~F (5n) = C(FL(5n) 5o Fv (1) 5m) (1.3)

Note that the uncorrelated e; does not necessarily mean cross-sectional independence.
Except for the independence copula, the elements of e; are uncorrelated but have
cross-sectional dependence which is completely described by copula C.

This approach naturally reveals two kinds of dependences of r;: the “linear de-
pendence” captured by conditional variance-covariance matrix H; and the “nonlinear

5



dependence” remaining in the uncorrelated residuals e; captured by copula C. The
main aim of this paper is to construct a high dimension flexible forecasting distribu-
tion model which can simultaneously capture both linear and nonlinear dependence
of daily returns and to propose an fast and accurate estimation method taking ad-
vantage of high frequency intraday data.

There are two important advantages in decomposing the joint distribution of r;
in equation (1.1), (1.2), and (1.3). First, it allows the researcher to draw on the large
literature on measuring, modeling and forecasting conditional variance-covariance
matrix H; with low and high frequency data. For example, GARCH-type obser-
vation driven models such as the multivariate GARCH model by Bollerslev, Engle,
Wooldridge (1988), the structural BEKK model by Engle and Kroner (1995), and the
dynamic conditional correlation (DCC) model by Engle (2002) naturally fit in equa-
tion (1.1) and (1.2), and can be estimated with quasi maximum likelihood methods.
The increasing availability of high frequency data also enables us to use more accu-
rate models for conditional variance-covariance matrix, for example, among others,
Bauer and Vorkink (2011), Chiriac and Voev (2011), and Noureldin, et al. (2011),
and those models are also naturally adapted in equation (1.1) and (1.2). Second,
the model specified by equation (1.1), (1.2), and (1.3) is easily extended to high
dimension applications given that multi-stage separate estimations for conditional
mean, conditional variance-covariance and standardized residuals with marginal dis-
tributions and copula are allowed. The main difficulty of high dimension problem is
the proliferation of parameters and huge computation burden as the dimension in-
creases, known as the curse of dimensionality. The above model, however, overcomes
this obstacle not only by separating estimation stages but also by using composite
likelihood estimation. The details are provided in Sections 1.2.1 and 1.3.3.

To emphasize the prominent features of our model, we contrast our model with
some models in the extant literature. Lee and Long (2009) distinguish and model

6



the linear dependence captured by covariance matrix and the nonlinear dependence

remaining in 3, Y *w, captured by copula of w; :
r, =+ H?SPw, (1.4)

wi|Fi1 ~ G (1) = Cw (G1(55n),..,Gn (55m)5m)

where ¥, is covariance matrix implied by G (-;n). Rather than directly modelling
uncorrelated residuals e;, Lee and Long (2009) use w; and its covariance 3; to obtain
uncorrelated residuals e;. This model is unclear to interpret w; and its covariance
3. More importantly, this approach makes them lose a definite advantage of using
copula: multi- stage separating modelling for marginal distributions and dependence.
In order to convert w; into uncorrelated e;, they need covariance matrix 3; deter-
mined by both marginal distributions and copula of w;. Consequently, they have to
jointly estimate all parameters 7 of marginal distributions and copula, which is an
inevitable burden especially for high dimensions.

In contrast to their model, our model is easy to interpret and quite flexible and
manageable in high dimension because we directly model the standardized uncor-
related residuals e; to take advantage of benefits from multi-stage separation. The
concern, of course, is that there are a few copulas to ensure zero correlations, for
example, Gaussian copula with identity correlation matrix (i.e. the independence
copula) and t copula with identity correlation matrix combining with symmetric
marginals. We suggest, however, methods to generate various copulas ensuring zero
correlations given any copulas by constructing jointly symmetric copula in Section
1.2.1.

Chen and Fan (2006) and Oh and Patton (2011), among others, differ from this
paper in that they separate only individual variances rather than the entire variance-
covariance matrix and model correlated but de-meaned and de-volitilized returns

rather than uncorrelated residuals. Their approach has an advantage that whole
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dependence information including the second moment such as variance-covariance
matrix is all captured by the copula, and the task boils down to how to construct
flexible copulas to explain various features of dependence in data. In contrast, our
model enables us to use all existing models for the variance-covariance matrix by sep-
arating linear and nonlinear dependence. In particular, more accurate modelling and
forecasting variance-covariance matrix using high frequency data attained widespread
popularity, see Chiriac and Voev (2011), Hansen, et al. (2012), and Noureldin, et al.
(2012) among others. Under our model, we are able to effectively exploit the infor-
mation of high frequency data for linear dependence, e.g. estimating and forecasting
H; using high frequency data and to estimate the model for uncorrelated but depen-
dent residuals e; using low-frequency data. Although recent research on using high
frequency data for copula is growing, most have troubles in appropriately linking
high frequency data and copula mainly because a copula of low frequency data is not
a known function of copulas of high frequency data, which is contrary to the elegant
relationship between high frequency volatility measures and low-frequency counter-
parts. Our model certainly enables us to exploit all information of both high and
low frequency data for linear dependence and nonlinear dependence, respectively.?
Another important feature of our model is that it is a joint model for returns
and covariances like Jondeau and Rockinger (2012), Hautsch, et al. (2013), and
Jin and Maheu (2013), among others. While those papers use Normal or Student’s
t distributions for standardized uncorrelated residuals after modelling covariances,
our model for standardized returns is flexible enough to nest not only Normal or
Student’s ¢ distribution but also various non-standard distributions that ensure zero

correlations. Those uncorrelated residuals still have dependence defined as nonlinear

2 In this paper, we use high-frequency data only for covariance matrix estimation and forecasts.
Recently, De Lira Salvatierra and Patton (2013) use dependence information from high-frequency
data, e.g. realized correlations, for bivariate dynamic copula models. We leave this possbility for
future research.



dependence in this paper, and our model is designed to fully capture various types
of nonlinear dependence through a new class of copulas for uncorrelated variables.
This makes our model prominent compared to existing models in the literature mostly
neglecting nonlinear dependence. Since the new copulas for uncorrelated variables are
constructed without difficulty from any given copula by simple rotations, our model
can be sufficiently flexible to explain various nonlinear dependence. Through the
empirical analysis in Section 1.5 we find that models capable of capturing nonlinear
dependence significantly outperform models completely or mostly ignoring it such as
Normal or Student’s t distribution.

As mentioned above, we are able to separately model conditional mean, condi-
tional covariance, and standardized uncorrelated residuals. We first focus on models
for uncorrelated residuals e; in Section 1.2.1. Next, forecasting models for variance-

covariance matrix H; are considered in Section 1.2.2.
1.2.1 A model for uncorrelated standardized residuals

To model uncorrelated residuals e;, we propose combining a jointly symmetric copula
with a set of symmetric marginal distributions, which guarantees zero correlations
between variables. We first define the symmetry for an univariate random variable

and the jointly symmetry® for N random variables {XZ}ZA;1

Definition 1 (Symmetry). An univariate random variable X is symmetric about a

in R if the distribution functions of X —a and a — X are the same.

Definition 2 (Joint symmetry, Definition 2.7.1 in Nelsen 2006). Let {X;}, be N
random variables and let {a;}~ | be a point in RN. {X;}N | is jointly symmetric

about {ai}f\il if the following 2V sets of N random wvariables have a common joint

3 Various concepts of symmetry for multivariate random variables are available, for example,
exchangibility and radial symmetry. We refer to Nelsen (2006).



distribution:

~

(X’lXX'N)

where X; = (X; — a;) or (a; — X;) fori=1,...,N. For N = 2, for ezample, (X1, X>)
is jointly symmetric random variables about (a1, as) if (X7 — a1, Xo — ag),
(ay — X1, Xo —ag), (X1 — a1,as — X3), and (a; — X1, a3 — Xo) have a common joint

distribution.

For example, if N random variables {X;} | follow the Normal distribution with
a mean vector i and an identity covariance matrix, then {Xi},fil is jointly symmetric
about p. If those random variables are continuous, there exists a unique copula by
Sklar’s theorem, so we naturally think about a copula for those jointly symmetric
random variables. We first define the jointly symmetric copula, and examine the rela-
tionship between jointly symmetric random variables and jointly symmetric copulas

in Theorem 1.

Definition 3 (Jointly symmetric copula). A N dimension copula C (uq,...,uy) is

jointly symmetric if it satisfies
Vi, C(uy,...,uj...,uy) =Cl(ug,...,1,...;uny)—C(us,..., 1 —u...,un) (1.5)

where u; € [0,1]. C(ug,...,1,...,uy) and C(uy,...,1 —u;,...,uy) mean that the

i-th element is 1 and 1—u;, respectively, and other elements are {1, .., U;—1, Uiy1, .., UN}-

Theorem 1 (Multivariate analog of Exercise 2.30 in Nelsen 2006). Let {Xi}i]il
be N continuous random variables with joint distribution F, marginal distributions

Fy, ... Fy and copula C. Further suppose each of {Xi}fil is symmetric about each of
{ai}ij\il, respectively. Then,
(i) {Xi}z']\il is jointly symmetric about {&i}f\il if and only if C satisfies equation
(1.5)
10



(i) If {Xi}i]\il is jointly symmetric about {ai}ij\il , then the correlation of any pair

(Xi, X;) is zero fori # j.

The proof is presented in Appendix A.1. The first result of Theorem 1 states
that a jointly symmetric copula satisfying equation (1.5) is the copula for jointly
symmetric random variables when marginal distributions are symmetric. The second
result implies zero correlations of any pair of jointly symmetric random variables.

While numerous copulas have been proposed to explain various features of depen-
dences in the literature, only a few copulas comply with equation (1.5), for example,
the Gaussian and ¢ copulas with the identity correlation matrix. With this limited
choice of copulas, we could not fully account for characteristics of nonlinear depen-
dence. Thus, we suggest a novel way to construct jointly symmetric copulas by

rotating any given copula.

Theorem 2. Assume that N dimension copula C with density c is given.

(i) For any given N dimension copula C, the following copula C”% is jointly
symmetric, i.e. satisfying equation (1.5)
1 3 3

s J ~ ~ ~
c’ (ur, . un) = o Dl =) C@m,. T, Ty (1.6)
=1 jn=1
u; forji=1

where J =N 1{j; =2} and %, =3 1—w; forj; =2
1 for j; =3

(ii) The probability density function ¢’ (uy, ..., uy) of C’% (ui,...,uy) is

0
CJS(Ul,---,UN)chjs(ub---,uzv)
1 2 2
= o | 2o 2o el ) (17)

u; forji=1

where uiz{ L —u; forj; =2

11



The proof is presented in Appendix A.1. Theorem 2 proves that the sum of mirror-
image symmetrical rotations about every axis turns out to be jointly symmetric
copula.* This theorem tells that any given non-jointly symmetric copulas can be
transformed into jointly symmetric ones by simple rotations and beyond Gaussian
or t copulas, any copula can be used for modelling jointly symmetry.

C’% (uq,...,uy) in equation (1.6) involves all marginal copulas of the given cop-
ula whereas the density ¢’ requires only the densities of the given copula rather
than marginal copulas. This makes it easier to visualize how to construct a jointly
symmetric copula in terms of the copula density ¢’/ than C”7°. We further move
the space from unit simplex [0, 1]N to RN using copula with standard Normal
marginal distributions. Figure 1.1 shows 90, 180 and 270 degree rotations of Clay-
ton copula density with standard Normal marginal densities, which corresponds to
c(1—wug,uz),c(l —up, 1 —uy), and ¢ (ug, 1 — uy) with the same marginal distribu-
tions. Interpreting equation (1.7) in R, we find that ¢’ is the copula density of
a equal weighted sum of rotations of a given copula about every axis. Figure 1.2 is
the density of jointly symmetric copula based on Clayton copula with parameter 1
obtained by equal weighted sum of four densities in Figure 1.1.

In addition, we emphasize that zero correlation does not always imply indepen-
dence. Figure 1.3 highlights the difference between various jointly symmetric copula
constructed by equation (1.7) and the independence copula. The copula for un-
correlated variables can be very different from the independence copula, and this

difference means there may exist nonlinear dependence in uncorrelated variables.

4 Note that while this is not the only way to construct jointly symmetric copulas, it requires the
least number of rotations. Figure 1.1 uses 90, 180, 270, and 360 degree rotations to generate a
jointly symmetric copula following (1.7), but combining 30, 60, 90, ..., 300, 330, and 360 degree
rotations produces another jointly symmetric copula although more rotations are needed.

12



1.2.2  Forecasting models for multivariate covariance matriz

Research on forecasting model for multivariate covariance matrix with low-frequency
data is pervasive, see Andersen, et al. (2006) for a review, and recently forecasting
models using widely available high frequency data are growing, e.g. Chiriac and
Voev (2011), Noureldin, et al. (2012) among others. There are two major concerns
about forecasting models for multivariate covariance matrix: parsimony and positive
definiteness. Keeping these two concerns in mind, we suggest a new forecasting
model using high frequency data.

We combine the essential ideas of the DCC model by Engle (2002) and the het-
erogeneous autoregressive (HAR) model by Corsi (2009). Following the DCC model,
we use two separate steps for individual variances and covariances in order to have
a computation advantage and parsimony. We use the HAR model that is known to
successfully explain the long-memory behavior of volatility in a simple AR type way.

Let A be the sampling frequency (e.g., 5 minutes), which yields 1/A observations
per trade day. The N x N realized covariance matrix for the interval [t — 1,¢] is

defined by

1/A
RVarCov® = Z Ty 1 5ATE A (1.8)

J=1

and is re-written in realized variances and realized correlations by

RVarCov® = A/ RVar® - RCorr® - A/ RVarp (1.9)

RVarCovA. .
A . A A i
where RV ar2 = diag | RVarCov=| and RCorrZ,.. = 2 .
t g [ t ] tig \/RVarCov®, \/RVarCov®, . |
, gi )

13



We firstly apply the HAR model to each realized variance by

1 5
Z ogRVarﬁt_k (1.10)

log RVCL’I““t _ ¢£Con5t) + le(day) IOg RvariAi,t_l + qbgweek

»-b |

+ ¢§month Z log RVarut p it
rmr:

N
and those coefficients {qbgwmt), ¢§d“y), ¢§“’€e’“’, ¢§m"”th)} are estimated by OLS for
i=1

each 7 variable.

Note that we use logarithm of realized variance rather than realized variance
itself for two reasons. First, this model is for forecasts of variance, so positiveness of
forecasts should be guaranteed and we can easily achieve positiveness by transforming
into logarithms. Second, estimation by OLS can be largely affected by outliers, i.e.
some large values of realized variances, and our sample period includes 2008 financial
crisis resulting in substantial changes in variance. Log-transforming plays a role in
dampening down large changes and reduces the impact of outliers in OLS estimation.

Similarly, we model realized correlations using the vech operator®

vech (RCorrtA) CONST + A -vech (RCorrt )+ B- Z vech ( RC’orrt k)
1o

IS
+C —52 vech (RCorri ) + &

where vech (RCothA) and CONST are w x 1 vector and A, B, and C are

N(N-1) _ N(N-1)
2 X 2

matrix. However, the number of parameters to estimate grows at
the rate of O (N?) which is infeasible to estimate when N is large. We may consider
some restrictions as the DCC model does, substituting A, B, and C' with constant

scalar a, b, and c¢. Then, the number of parameters to estimate is significantly

5 The vech operator vertically stacks the upper triangular elements excluding diagonal elements.
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2
reduced to w + 3 from w +3 <W) . When N is large, constant terms

are still many to estimate, so we lean on the idea of “variance targeting” by Engle

and Mezrich (1996):

vech (RCorr) = (1 —a—b—c) E [vech (RCorr*)] + a - vech (RCorr®;) (1.11)

|

5 20
+b- Z vech (RCorrtA_k) +c- % Z vech (RCOW‘;:A—k) + &
k=2 k=6

Substituting £ [vech (RCorrtA)] with its sample mean, we can rewrite the equation

using demeaned RCorre :

vech (RC’OTT?) = a - vech <ROOTTtA> +0b- i i vech <R00rrﬁk>
k=2

L .
te Z vech (RCorrtA_k> +&
k=6

where RCorrf® = RCorr® — %Z;‘F:I RCorr®. Now, the coefficients a, b, and c are
easily estimated by OLS and constant terms are recovered back by estimates of a, b,
and ¢ and sample mean of realized correlation.

In order to ensure positive definite forecasts for RVarCov?, some conditions

given in the following Theorem 3 are necessary.

Theorem 3. Assume the following three conditions

1. Pr[x't, = 0] = 0 for any nonzero x € R, i.e. r; does not have redundant

assets.
2. a,b, and ¢ =0

S.a+b+cec<1

15



Then, E[RVarC’ovtA|ft_1] 18 positive definite. In addition, if E [RC’orrtA] 15
estimated by %Zthl RCorr® and T = N, then the sample counterpart to

E [RVarCov|F,_1] is positive definite.

The proof is given in Appendix A.1. Our forecasting model for realized variance-
covariance matrix is simple and fast to estimate and positive definiteness of forecasts
is ensured by Theorem 3. We note that the above theorem is robust to the misspec-
ification of return distributions, i.e. Theorem 3 holds regardless of whether or not
return distribution follows the proposed model specified by equation (1.1), (1.2), and
(1.3).

1.3 Estimation methods and model comparisons

1.3.1 Estimation using composite likelihood estimation

The proposed method to construct jointly symmetric copulas in equation (1.7) re-
quires 2V calculations of the given original copula density. Even for moderate dimen-
sions, say N = 20, the likelihood evaluation could be too cumbersome to calculate,
as shown in the first row of Table 1.1. For high dimensions, the ordinary maximum
likelihood estimation is not feasible for the jointly symmetric copulas and we suggest
an alternative that can overcome this computation issue. We construct the compos-
ite likelihood rather than the usual full likelihood, and estimate the parameters of
jointly symmetric copulas by maximizing the composite likelihood.

The composite likelihood (CL) (Lindsay, 1988) consists of combinations of the
valid likelihoods of submodels or marginal models under the assumption that those
submodels are independent. See Varin (2008) and Varin, et al. (2011) for overview.
The essential intuition behind CL is that since submodels include partial information
of full dependence governed by parameters of full likelihood, by properly using that

partial information, we can estimate parameters of full likelihood, although with
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some inevitable efficiency loss.
CL can be defined in various ways, but we consider CL with all pairs, adjacent

pairs® and the first pair of bivariate marginal copula likelihoods of N-dim copula

C(ula"'qu;SOO)

N-1 N

ClLau (w1, ... uy) = 1_[ C;j (Ui, ujs o) (1.12)
i=1 jit1
N—1

CLadj (Ul, e 7uN) = 1_[ Cii+1 (uiv Ui, SO) (113>
i=1

CLfirst (U1, ..., un) = €12 (U1, u2; @) (1.14)

where ¢;; (+,-) is a bivariate marginal copula of N-dim copula. While there are
many different ways to construct composite likelihoods, those all have some common
features. First of all, they are valid likelihoods since the likelihood of the submodels
or marginal models are involved. Second, the independence assumption for those
submodels causes misspecification and information matrix equality does not hold.
Third, the computation of the composite likelihood is substantially faster than that
of full likelihood. The computation burden, for example, is reduced from O (2N ) to
O (N) when we use adjacent pairs, and O (N?) when using all pairs, evaluating the
density of the jointly symmetric copula constructed by equation (1.7).

Under mild regularity conditions (see Newey and McFadden, 1994 or White,
1994), Cox and Reid (2004) derives the asymptotic behavior of MCLE. For illustra-
tion purposes, only CL with adjacent pairs is described in Theorem 4 below, although

other CLs could be used.

Theorem 4 (Cox and Reid, 2004). Assume u; is iid over t and N is a fized number.

6 For a given (arbitrary) order of the variables, the “adjacent pairs” CL uses pairs (u; ¢, u;+1¢) for
i=1,...,N—1.
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Consider MCLE defined as

N-1

T —
PMCLE = arg maxz log Cii+1 (Ui,t, Ui41,t; <P) (1'15)
=1

t=1 1

Under mild reqularity conditions, Pronp—po and

VT (Prrcrs—po) SN (0,H (20) ™" T (o) H (o))

where H (po) = —Ey, [ﬁ Zfi}l logc; i (- W)] and

J (o) = Varg, [% Sl log e (5 90)]

We refer to Cox and Reid (2004) for the proof. The consistency and asymptotic
normality of pycrp is easily obtained because of the unbiasedness of the score func-
tion of CL, which is a linear combination of valid score functions associated with the

marginal copula densities forming the composite likelihood:
o N=1
| X ok 59

The asymptotic variance of MCLE is a sandwich form and less efficient than MLE
by missepcification caused by the independence assumption.

We also note that to identify the parameters, the components of composite like-
lihoods must be rich enough to include parameters of full likelihood. Suppose that
the composite likelihood uses only the first pair like equation (1.14), but ¢ does not
affect the dependence between the first pair. With this CL, ¢ would not be identified,
and one would need to look for a richer set of submodels to identify the parameters,
for example, using more pairs, as in equation (1.12) and (1.13) or higher dimension
submodels, e.g. trivariate marginal copulas. Throughout the paper, single parameter

copulas where only one parameter determines dependence of any pairs are used as
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baseline copulas for jointly symmetric copulas. In such cases, we have identification
from just a single pair of variables, although it leads to an inefficient estimator. Thus

we use CL with all pairs or adjacent pairs as well to address issues on inefficiency.
1.3.2  Model selection tests with composite likelihood

In this section, we consider in-sample and out-of-sample model selection tests when
composite likelihood is involved. Tests we discuss here are specialized for our empir-
ical analysis in Section 1.5, so we only consider the case where composite likelihoods
with adjacent pairs are used. We first define the composite Kullback-Leibler infor-

mation criterion (cKLIC) following Varin and Vidoni (2005).

Definition 4. Given a N-dimension random variable Z = (Z, ..., Zn) with true den-
sity g (z) , the composite Kullback-Leibler information criterion (¢KLIC) of a density

h(z) relative to g (z) is

N-1
Hl Gi (Zi7zi+1)
]c (ga h) = Eg(z) log ]C_

-1

H h (% Zi+1)
i=1

N-1 N-1
where [ ¢i (zi,2i11) and ] hi (25, 2i01) are composite likelihood using adjacent
i=1 i=1

pairs corresponding to true density g (z) and a density h(z), respectively.

While we focus on CL using adjacent pairs, other composite likelihood such as
CL using all pairs can be defined similarly above. We note that the expectation
is with respect to the true density g (z) rather than the CL of true density, which

makes it possible to interpret cKLIC as a linear combination of the ordinary KLIC
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of submodels consisting of CL function:

N-1

H gi (Zz‘, Zi+1)

]c (ga h) = Eg(z) 1Og Jifill

H hi (Zh Zi+1)

=1
= 1E |:10g Zz7ZZ+1>]
i=1 9 h (ZZ7 ZZJrl)
N—
- ZlE P 1ogM (1.16)
e hi (21 2it1)

The last equation holds since submodels or marginal distributions of the true den-
sity g (z) are known given the true density ¢ (z). Since ¢cKLIC can be viewed as a
linear combination of the ordinary KLIC of submodels, we may use in-sample model
selection tests by Vuong (1989) for iid data and Rivers and Vuong (2002) for time
series data. To the best of our knowledge, combining cKLIC with Vuong (1989) or
Rivers and Vuong (2002) tests is new to the literature.
Let A% and h® be two models to be compared. Then the null hypothesis is
Ho : Ey) [CL} (0%) = CLY (03)] = 0 (1.17)
vs. Hy: By [CL (0%) — CLE (63)] > 0
Hy : By [CL (63) — CLP (03)] <0

where C'L] (07) = Zl og ] is1 (24, Zis1,4:0F) for j = A, B. Tt can be shown that a
simple t-statistic on the difference between the sample averages of the log-composite

likelihood has the standard Normal distribution under the null hypothesis:

VT {7 (64) - L7 (b5) }

or

— N (0,1) under Hy (1.18)

where CLT< ) = th 1Zz 1 loghmJrl (zzt,zzﬂtﬁ) for j = A, B and o7 is

some consistent estimator of V' [\/T {ﬁ? (é A) — ﬁf (é3> }] , such as HAC esti-
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mator such as Newey-West (1987). We note that there might be cases where a test
of the null hypothesis based on the full likelihood could give a different answer to one
based on the composite likelihood. We leave the study of this possibility for future
research.

We may also select the best model in terms of out-of-sample (OOS) forecasting
performance measured by some scoring rules. Gneiting and Raftery (2007) introduce
“proper” scoring rules which satisfy the condition that the true density receives higher

average scores than other densities:

Eg(a) |5 (h(Zi12))] < Eya) 1S (9 (Ze41))]

where S is a scoring rule, g (z) is the true density and h(z) is a competing den-
sity.  The “natural” scoring rule is the log density evaluated out-of-sample, i.e.
S (h(Z¢y1)) = logh(Zs4q1), and it can be shown that this scoring rule is proper.
This proper scoring rule is closely related to the KLIC in that equal average scores
of two competing models are equivalent to the equal KLICs of those. Since the KLIC
measures how close the density forecasts to the true density, the proper scoring rule
can be used as a metric to determine which model is more close to the true density.

We may consider a similar scoring rule based on log composite density:

N-1
S (h(Zys1)) = Z log hi (Zi g1, Zis1,4+1) (1.19)
i—1

and it can be shown to be proper by the following theorem.

Theorem 5. Consider the composite likelihood with adjacent pairs. The scoring rule

based on log composite density given in equation (1.19) is proper, i.e.

N-1 N—1
Eg(z) 2 log h; (Zi,t+1a Zz‘+1,t+1)] < Eg(z) 2 log g; (Zi,t+17 Zi+1,t+1)
i=1 i=1
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where the expectation is with respect to the true density g (z), and g; and h; are the

composite likelihoods of the true density and the competing density, respectively.

The proof is in Appendix A.1. This theorem allows us to interpret that OOS tests
based on CL is related to cKLIC just as OOS tests based on full likelihood to KLIC.
We may compare values of log CL evaluated at OOS and test the null hypothesis of

equal forecasting performance evaluated by log CL:
Ho : Eyg) [CL (03) — CLY (05)] = 0

Our empirical analysis in Section 1.5 employs Giacomini and White (2006) test that
incorporates estimation error in the null hypothesis, which punishes a “good” model

that is estimated poorly.
Hy : Eya) [CLZL‘ (éj:xt) - CLY (é,t)] =0

We refer to Patton (2012) for general treatments of OOS model selection tests and

comparisons under the set-up of Giacomini and White (2006).
1.3.83  Multistage modelling and estimation

In this section, the multistage models for high dimension distributions of returns
r; with concrete models for H; and copulas are considered. Conditional mean and
conditional variance-covariance matrix in equation (1.1) are assumed to be modeled

using some parametric specification
pe = p(Yeo1;0™"), Y€ Fig

Ht =H (Yt—l; 9”‘")

This assumption allows for a variety of models for conditional mean, for example,
ARMA, VAR, linear and nonlinear regression, and for conditional variance-covariance
matrix, for example, the multivariate GARCH-type models such as DCC, BEKK, and
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DECO, see Andersen, et. al (2006) for a comprehensive review, and the multivariate
stochastic volatility models, see Shephard (2005) for a review, as well as the new
model proposed in Section 1.2.2.

The standardized uncorrelated residuals in equation (1.1) are defined as
e = H (Yt—l; gvar)—l/Q (rt — U (Yt—l; gmecm))

such that E [e;|F;—1] = 0 and F [es€e;|F;_1] = I, and those are assumed to follow a

parametric distribution:
| Fio1 ~did F () = C (Fy (07 , ..., F (505°7) ; 6°P1)

where marginal distributions F; are symmetric about zero and the copula C is jointly
symmetric about zero, which together ensures zero correlations of e;. For zero mean
and unit variance of e;;, marginal distributions F; should be standardized.

The parametric specification of s, Hy, F; and a copula C enables the use of

maximum likelihood (ML) estimation:

0 = arg max log Lt (0)

T
where log Ly (0) = ) logl, (v, Fi_1;0)

t=1
N

log Iy (e Fo1;0) = > log fir (eq (07,6 ) ;6"
=1

+ IOgC (F]_t (e]_t (97716(17’1/7 9’!)0/1“) ,QTCW’) - FNt (eNt (emean’ 91)(11”) ’ eﬁar) , 960]3)

However, when N is large, this one-stage joint estimation is not feasible, and multi-
stage ML estimation could be an alternative.

gmean g gs-

To save space and focus on the conditional variance and residuals,
sumed to be known. (For example, a common approach is to assume daily returns
have a zero mean.) Since equation (1.9), (1.10), and (1.11) are used for the specifica-

tion of conditional variance H; when high frequency data is available and the DCC
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model is used for daily data (see Appendix A.2 for details about the DCC model),
conditional univariate variances and conditional correlations can be separately mod-
eled. 6" can be written as [07%",... 0%, 0] where 0Y*" denotes parameters in
equation (1.10) or (A.5) and 0°"" denotes parameters in (1.11) or (A.8). The pa-

rameters to estimate are gathered in 6 :

/
g = [ ellfuar o eﬁar greorr ellmar o 9?\7}1(17" @/cop ]

To allow for estimation in separate stages, those parameters are assumed to appear
only in their own stages.

The specific multistage estimation is as follows. The first stage is for individual
variances of r;, and 6" is estimated using demeaned {th}thl for each 1 = 1,...N.
The second stage is for correlations of r;, and 0°"" is estimated using demeaned

and de-volatilized {rt}thl. The third stage is for marginal distributions of estimated
LN —1/2
standardized uncorrelated residuals &, = H (Yt_l; 9“‘“”) (ry — pg), and 6" is es-

timated using {éit}z;l for each i = 1,...,N. The last stage is for copula estimation using

SO called “probability integral transforms” of &, ie.
N . T
{ [Fl <é1t; 9’;"”) v Fiy (éNt; 9%‘")] } . The estimates of previous stages are sub-
t=1

stituted in likelihood functions of next stage and the likelihood function of each stage
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stage
lt .

is denoted by

T
0; Eargr(%%,leoglit @0y, i=1,...,N

=1

T
ncorr __ corr  pvar Avar pcorr
0 :argmaleoglt (01 e O )
t=1

gecorr

3

T
omar __ mar [ pvar pqvar Acorr pmar .
92 :arg%r}n%)r(ZIOglzt (91 7...,9]\[ ,9 ,92 ), /1/217...,N
bot=1
T
ncop __ cop [ pvar Hvar Acorr pmar aomar pcop
§er = argmax ) log I (91 ... Gar georr gmar - gmar g )
t=1

If composite likelihood is used for the last stage as we discussed in Section 1.3.1,
then [;? is composite likelihood rather than full likelihood, but nothing else changes.
The estimation errors of previous stages do not affect consistency of estimators of
next stages since the consistency of the previous stages guarantees the consistency
of the next stage estimators if the likelihood function of the next stage is smooth
enough around true parameters. However, the estimation errors of previous stages
are accumulated and affect the asymptotic variance of multistage ML estimators and
the following theorem with Appendix A.3 explicitly show how multistage estimations

influence asymptotic variance.

Theorem 6. Assume that conditions of Theorem 6.1 of Newey-McFadden (1994)
~ ~ - ~ ~ ~ ~ /
are all satisfied, and that Oysyr = [9'1“”’, ..., Qpar greorr gmar - QGmar e,cop] is

consistent. Then

VT (éMSML_9*> 4N (0, Virsmr) asT — oo
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see Appendiz A.3 for the specific form of P,.

Since multistage ML estimation can be viewed as multistage GMM estimation,
we refer to Section 6.1 of Newey and McFadden (1994) for detailed discussion and
proofs. For inference, Virsmr is necessary but calculation is not feasible for high
dimensions even if the analytical form is known as in Theorem 6. For example, the
proposed model used in Section 1.5 for empirical analysis has more than 5000 param-
eters to estimate, and VM sur is larger than a 5000 x 5000 matrix. An alternative is a
bootstrap inference method, see Gongalves, et al. (2013) for conditions under which
block bootstrap may be used to obtain valid standard errors for multistage GMM es-
timators. Although that bootstrap is not expected to have an asymptotic refinement

relative to the standard approach, it allows us to avoid having to compute a large
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Hessian matrix. The steps are following: (i) generate bootstrap sample of length T
using block bootstrap such as stationary bootstrap, see Politis and Romano (1994)
or other methods which can preserve time-series structure, and estimate parameters

0 with bootstrap samples. Repeat S times (e.g. S = 500) and use the quantiles

A5 ~1 S
of {91} as critical values or use /2 and (1 — a/2) quantiles of {91} to obtain
1

= =1

(1 — «) confidence intervals for parameters.
1.4 Simulation study

In Section 1.4.1, we study finite sample properties of maximum composite likeli-
hood estimators (MCLESs) defined in equation (1.15) for jointly symmetric copula
constructed by equation (1.7) through an extensive Monte Carlo simulations for up
to one hundred dimensions. In Section 1.4.2, we illustrate the theoretical results of

Section 1.3.3 on multistage estimation through simulations with realistic settings.
1.4.1 Finite sample properties of MCLE for jointly symmetric copulas

In this section, we mainly focus on examining the following. First, how big or small
is the efficiency loss of MCLE compared to MLE. Second, which one is best to
use among three different MCLE constructed in equation (1.12), (1.13) and (1.14)
according to accuracy and computation time. Third, how useful is the cross-sectional
information for copula estimations as dimension increases.

The data generating process is as follows. A vector [uy,us, .., uy] is generated
from N dimension copula. To make those data jointly symmetric, choose u; or 1 — u;
with 1/2 probability for each i = 1,...; N

w;  with prob 1/2

1 —u; with prob 1/2 (1.20)

[111,112, ..,’ZjN] s where sz = {

After repeating T times, T by N data is simulated from jointly symmetric copulas.
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We consider two jointly symmetric copulas based on Clayton and Gumbel copulas
and time series length 7' = 1000 with dimension N = 2,3,5,10, 20, ...,100. Four
different estimation methods are applied to the simulated data: MLE, MCLE with
all pairs in equation (1.12), MCLE with adjacent pairs in equation (1.13), and MCLE
with the first pair in equation (1.14). We repeat these simulations and estimations
five hundred times and report bias and standard deviations of those five hundred
estimates with computation times in Table 1.2. While MLE is not feasible for N > 20
due to huge computation burdens, the other MCLEs are feasible and very fast even
for N = 100, see the last four columns of Table 1.2.

The average biases for all dimensions and for all estimation methods are small
relative to the standard deviations except for MCLE with the first pair. The standard
deviations play a role in a measure of estimator accuracy and those show that for the
low dimension (N < 10), not surprisingly, MLE has smaller standard deviations than
three MCLEs and the relative efficiency of MCLE with all pairs to MLE is 1.05 to
1.37, which is moderate. Among three MCLEs, MCLE with all pairs has the smallest
standard deviations whereas MCLE with the first pair has the largest, as expected.
Comparing MCLE with adjacent pairs to MCLE with all pairs, we find that loss in
efficiency is 23% for N = 10, and 5% for N = 100, and computation speed is two
times faster for N = 10 and 70 times faster for N = 100. For high dimensions, it is
confirmed that MCLE with adjacent pairs performs quite well compared to MCLE
with all pairs according to accuracy and computation time, which is similar to results
in Engle, et al. (2008) supporting MCLE with adjacent pairs in the DCC model.

Figure 1.4 indicates biases and standard deviations of four estimations as the
dimension N increases. Biases of MCLE with all and adjacent pairs are very similar
and standard deviations of those two MCLESs quickly decrease and the difference of
those gets smaller as N increases. Compared to the standard deviation of MCLE
with the first pair staying flat, the other two MCLEs exploits efficiency gains from
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cross sectional information, which is intuitive because dependence of any pairs is
informative for estimating copula parameters.

In sum, MCLE is less efficient but feasible and very fast for high dimensions, and
MCLE gets significant efficiency gains as N increases. While the accuracy of MCLE
with adjacent pairs is almost similar to that of MCLE with all pairs, especially for
high dimensions, the increase in computation is quite large. For this reason, we use

MCLE with adjacent pairs for our empirical analysis in Section 1.5.
1.4.2  Finite sample properties of multistage estimation

In this section, we study the multistage estimation for the proposed model with

simulated data from the following set up:
r, = H,%e, (1.21)
H,; = Cov [ry| F_1]

et|ft71 ~ id F () =C (Fl (, 1/1) , -~-7FN (, I/N) ; QD)

where the mean part is assumed zero, the variance-covariance part H; follows the
DCC model with GARCH(1,1), see Appendix A.2 with (; = 0, F; is standardized
Student’s ¢ distribution with 1; = 6 and C is a jointly symmetric copula constructed
by equation (1.6) with Clayton copula with ¢ = 1. For realistic set up, we use
some estimated parameter values from the results of empirical analysis in Section
1.5. The parameters of equation (A.6) and (A.7) for GARCH and DCC models are
set as [¢y, ki, A;] = [0.05,0.1,0.85] and [, 8] = [0.02 0.95], and Q is set to be the
unconditional correlations of 100 stock returns that used in the next section. We
first simulate data from the jointly symmetric copula following the way described in
the previous section, and then using inverse standardized Student’s ¢ distribution,
transform those data into uncorrelated e;. Then we recursively update DCC model by

equation (A.7) and (A.8) to generate correlation matrix, and apply GARCH effects
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by equation (A.6). Then, the simulated e; can be easily transformed to r; whose
conditional covariance matrix is following the DCC model.

We follow the multistage estimation described in Section 1.3.3. The parameters
of GARCH for each variables are estimated via QML at the first stage, and the
parameters of the DCC model are estimated via variance targeting and composite
likelihood with adjacent pairs, see Engle, et al. (2008) for details. From those two
stages, the estimated standardized uncorrelated residuals €; are obtained, and those
are used to estimate marginal distributions. At the last stage, the copula parameters
are estimated by MCLE with adjacent pairs explained in Section 1.3.1. We repeat
this scenario 500 times with time series of length 7" = 1000 and cross sectional
dimension N = 10, 50, and 100. Table 1.4 reports all parameter estimates except Q.
The columns for ¢;, k;, \; and v; report the summary statistics obtained from 500 x N
estimates since those parameters set to the same numbers across cross sections.

Table 1.4 reveals that the estimated parameters are centered on the true values
with the average estimated bias being small relative to the standard deviation. As
the dimension size increases, the copula model parameters are more accurately esti-
mated, which is also found in the previous section. Since this copula model keeps the
dependence between any two variables identical, the amount of information on the
unknown copula parameter increases as the dimension grows. The average computa-
tion time is reported in the bottom row of each panel, and it indicates that multistage
estimation is quite fast, for example, it takes five minutes for one hundred dimension
model in which the number of parameters to estimate is more than 5000.

To see the impact of estimation errors from the former stages to copula estima-
tion, we compare the standard deviations of copula estimations in Table 1.4 to the
corresponding results in Table 1.2. The standard deviation increases by about 30%
for N = 10, and by about 19% for N = 50 and 100. This loss of accuracy caused by
having to estimate parameters of the marginals is considerably small given that more
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than 5000 parameters are estimated in the former stages. We conclude that multi-
stage estimations with composite likelihoods result in a large gain in computation

and a small loss in estimation error and efficiency.
1.5 Empirical analysis of S&P 100 equity returns

In this section, the proposed multivariate distribution model is applied to equity re-
turns of constituents of S&P 100. The sample period is January 2006 until December
2012, a total of T' = 1761 trade days. All companies listed at least once on S&P100
over the sample period are considered, but only 104 are selected after excluding com-
panies that were not traded during the whole sample period. The stocks are listed
in Table 1.5 with their 3-digit SIC codes. We obtain high frequency transaction data
from NYSE’s TAQ database, clean it following Barndorff-Nielsen, et al. (2009), see
Li (2013) for details, and adjust prices affected by splits and dividends using “ad-
justment” factors from CRSP. Daily returns are calculated by log-difference of the
close prices from high frequency data. For high frequency returns, log-differences of
five minute prices are used and overnight returns are treated as the first return in a
day.

Table 1.6 presents the summary statistics of the data and the estimates of con-
ditional mean model. The top panel presents unconditional sample moments of the
daily returns for each stock. Those numbers broadly match values reported in other
studies, for example, strong evidence for thick tails. In the middle panel, the formal
tests for zero skewness and zero excess kurtosis are conducted. The tests show that
only 3 stocks out of 104 have a significant skewness, and all stocks have a significant
excess kurtosis. The lower panel shows the estimates of the parameters of AR(1)
models. Constant terms are estimated around zero and the estimates of AR(1) co-
efficient are slightly negative, both are consistent with values in other studies.

We estimate two different models for conditional variance-covariance matrix Hy,
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HAR-type model described in Section 1.2.2 and the DCC model in Appendix A.2.
While the latter is estimated with (low frequency) demeaned daily returns, the former
is estimated with (high frequency) 5-min returns. Table 1.7 presents the estimates
of two models in Panel A and Panel B, respectively. The estimates of variance
part for HAR-type models in Panel A are similar to those reported in Corsi (2009):
coefficients on day, week, and month being around 1/3 and coefficient on day being
the largest. In the correlations part, however, the coefficient on month is the largest
followed by week and day. The parameter estimates for the DCC model in Panel
B are close to other studies of daily stock returns: indicated volatility clustering,
asymmetric volatility dynamics, and highly persistent time-varying correlations. The
bootstrap standard errors described in Section 1.3.3 are provided in Table 1.7, and
those take into account the estimation errors of former stages.

Two data sets of standardized uncorrelated residuals are constructed” and sum-
mary statistics are reported in the top panel of Table 1.8:

€ HAR = ﬂ;}fiR (ry — fir)

A

&, pcc = H;;)/(ic (re — fie)

The next stage is for the marginal distributions for those residuals. Before specifying
marginal distributions, tests for zero skewness and zero excess kurtosis are conducted
and reported in Panel B of Table 1.8. It is found that only 4 (or 6) out of 104 cross
sectional residuals of &; g (or &; poc) are rejected at 5% level for zero skewness test,
motivating the use of symmetric marginal distributions. In addition, all of them are
rejected under 5% level for zero excess kurtosis test, which suggests to use marginal
distributions with thick tails. Thus, standardized Student’s ¢ distributions are used
for marginal distributions of the estimated standardized uncorrelated residuals.

The top panel of Table 1.9 presents the cross-sectional quantiles of 104 estimated

" For square root of matrix, the spectral decomposition rather than Cholesky decomposition is
employed due to its invariance to the order of the variables.
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degrees of freedom parameters of standardized Student’s ¢ distributions, ranging from
4.1 at 5 % quantile to 6.9 at 95% quantile for &; gar and from 4.2 at 5% quantile
to 8.3 at 95% for & poc, indicating excess kurtosis of standardized uncorrelated
residuals.

The last stage is the estimation of copula designed to capture nonlinear depen-
dence. Four jointly symmetric copulas based on ¢, Clayton, Frank, and Gumbel
copulas are used. While jointly symmetric copulas based on Clayton, Frank and
Gumbel are constructed by equation (1.7), the one based on ¢ copula is simply con-
structed by substituting correlation matrix of ¢ copula with identity matrix. To see
whether those models outperform the existing model in the literature, we use two
benchmark models: the independence copula and the multivariate Student’s ¢ dis-
tribution. The independence copula is a special case of jointly symmetric copula,
and there is no parameter to estimate.® Since the independence copula completely
ignores nonlinear dependence, we can see if there is substantial nonlinear dependence
by comparing those four jointly symmetric copulas with the independence copula.
In addition, to see whether or not the copula approach outperforms a non-copula
approach incapable of separately specifying marginals and dependence, the multi-
variate Student’s ¢ distribution is employed as another benchmark. The bottom
panel of Table 1.9 reports the parameter estimates for jointly symmetric copulas
and the multivariate (standardized) ¢ distribution with bootstrap standard errors in
parenthesis that incorporate accumulated estimation errors from former stages. We
follow steps explained in Section 1.3.3 to obtain bootstrap standard errors and the
average block length for the stationary bootstrap is set to 100.

To see whether nonlinear dependence exists, we propose formal tests for the null

hypothesis that there is no nonlinear dependence. Since those four jointly symmetric

8 The independence copula is a product of its arguments, i.e. C (u1,...un) = u; X --- x uy, and
its density is 1.
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copulas and the multivariate ¢ distribution nest the independence copula, the null

hypotheses are: Hy : 3 A+ = 0 for jointly symmetric copulas based on ¢ copula,

Hy : 975Clayton — () for those based on Clayton copula, H, : §75-F7e% — ( for

those based on Frank copula, Hy : §79-Gumbel

= 1 for those based on Gumbel, and
Hy : W = 0 for the multivariate (standardized) ¢ distribution. The ¢-statistics for
those tests are reported in the bottom panel of Table 1.9. We note, however, that
the parameters are all on the boundary of the parameter space, which requires a
non-standard ¢ test. The asymptotic distribution of the squared t-statistic no longer
has x? distribution under the null, rather it follows an equal-weighted mixture of a x?
and x2, see Gouriéroux and Monfort (1996, Ch 21). The 90%, 95%, and 99% critical
values for this distribution are 1.28, 1.64, and 2.33 which correspond to t-statistics of
1.64, 1.96, and 2.58. All of those null hypotheses above are rejected at 1% level, and
we conclude that there is substantial nonlinear cross-sectional dependence in daily
returns.

To compare those models, we consider the multivariate log-likelihood of daily
returns that can be decomposed into three parts by change of variables: log absolute
values of determinant of square root of inverse variance-covariance matrix of daily

returns, sum of log likelihoods of marginal distributions for standardized residuals,

and log composite likelihood of a copula for standardized residuals:

r; = Hi/2et
f (Tlt, ...,TNt) = ‘det (H;1/2> ‘ g (elt, Ce >€Nt)

= ‘det (Ht_m)‘ X g1 (e1) x .. x gy (ent) x ¢(Gy (exr),..,Gn (ent))

N
10g f (ries s xe) = log [det (H; )| + Y log gi (ea) + log e (Gr (ex) -, Gy (e))

i=1
Table 1.10 reports those three parts of log likelihoods, summing those to obtain the
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entire log likelihoods for daily return distributions. Comparing the values of the en-
tire log likelihoods, we reasonably expect three findings. First, copula methods seem
to outperform the multivariate ¢ distribution that does not explicitly use a copula,
which can be confirmed by comparing jointly symmetric copulas with the multivari-
ate t distribution. Second, by comparing first four jointly symmetric copula models
with the independence copula model, it can be seen that the models where nonlinear
dependence is captured outperform the models that ignore it. Third, high frequency
data seem to help improve model fits better than daily data. To formally verify those

expectations, we next conduct in-sample and out-of-sample model comparison tests.
1.5.1 In-sample model selection

Table 1.11 presents t-statistics from Rivers and Vuong (2002) (pair-wise) model
comparison tests? introduced in Section 1.3.2 for composite likelihood. A positive
t-statistic indicates that the model above beat the model to the left, and a negative
one indicates the opposite. We first examine the bottom row of the upper panel to
see whether or not copula approaches outperform non-copula ones represented by the
multivariate ¢ distribution. All ¢-statistics in that row are positive and larger than
15, which strongly supports that copula approaches significantly outperform non-
copula ones. The independence copula as well as the four jointly symmetric copulas
can separately specify 104 marginal distributions and dependence, which allows for
much more flexibility to the model. In contrast, the multivariate ¢ distribution forces
104 marginal distributions and dependence to be bound to each other,' which results
in the inferiority of it to the models based on copulas. The multivariate ¢ distribution

is widely used as an alternative to Normal distribution not only in the literature but

9 Those tests can be easily extended for the models combining log likelihoods for marginal dis-
tributions and log composite likelihood for copulas by re-defining Kullback-Leibler information
criterion.

10 The multivariate t distribution can be viewed as univariate t distributions coupled by t copula
with a constraint that all degrees of freedom parameters for margins and copula should be identical.
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also in practice due to its thick tails and non-zero tail dependence. It is, however,
seen that the proposed copula-based models significantly beat the multivariate ¢
distribution. This outperformance is true whether the HAR model using 5-min data
to forecast H; is used (see the bottom row of upper panel) or the DCC model using
daily data is used (see the right half of the bottom row of lower panel). Next,
to see whether or not nonlinear dependence improves model fits, we compare four
jointly symmetric copula models designed to capture nonlinear dependence with the
independence copula that completely ignores nonlinear dependence. The second
bottom row of the upper panel and the right half of the second bottom row of the
bottom panel are for those comparisons, and ¢-statistics in those rows are all positive
and significant under 1% level, which implies that capturing non-linear dependence
is quite useful to improve model fits.

Lastly, to see whether forecasts of H; using high frequency data results in better
model fits than forecasts of H; using daily data does, the left half of the bottom
panel is explored. All ¢-statistics are positive and significant at 1% level, and this
implies that any model using high frequency data for forecasting H; significantly
outperforms models using daily data for forecasting H;. We note that even the
multivariate ¢ distribution combined with forecasts of H; using high frequency data
outperforms any models that use daily data for forecasts of H;, which means that
information of high frequency data substantially improve performance of models.

In this section we verify the following three findings. First, copula methods that
allow one to separately specify marginal distributions and dependence significantly
outperform non-copula methods. Second, nonlinear dependence is so considerable
and important that it plays a critical role in improving model fits. Third, accurately
measuring and forecasting linear dependence through high frequency data consider-

ably increase performance of models.
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1.5.2  Out-of-sample model selection

The previous section revealed that the proposed models significantly beat benchmark
models in in-sample model comparison tests. However, since it is essentially a fore-
casting model for daily return distributions, it has to be investigated whether it has
superior out-of-sample (OOS) forecasting performance. In this section, we consider
a multivariate density forecasting based on out-of-sample log (composite) likelihoods
to compare models.

We use the period from January 2006 to December 2010 (R = 1259) as the in-
sample period, and January 2011 to December 2012 (P = 502) as the out-of-sample
period. Giacomini and White (2006) test described in Section 1.3.2 requires rolling
window or fixed window estimation scheme rather than expanding window one. To
incorporate structural changes, we employ a rolling window rather than a fixed win-
dow. We estimate the whole model using the data in the interval [t — R + 1,¢] and
evaluate the model using the data at ¢ + 1 with those estimates at each time in

out-of-sample period. We iterate 502 times for these estimations and evaluations.
Out-of-sample density forecast comparisons

Table 1.12 presents t-statistics from pair-wise OOS model comparison tests. Similar
to the results from in-sample tests, we discover three finding again. Copula models
are significantly better than the multivariate ¢ distribution, and jointly symmetric
copula models significantly outperform the independence copula model. Also models
using information of high frequency data significantly beat models using information
of daily data.

These results reveal that three major components of the proposed model, sepa-
rately specifying marginal distribution and dependence, capturing nonlinear depen-
dence and exploiting information of high frequency data lead to improved forecasting

performance.
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Out-of-sample portfolio decision making

To investigate a economic gain of the proposed model, we consider asset allocation
problems in an out-of-sample setting proposed by Patton (2004). The basic idea is
simple: a better forecasting model should lead to a better portfolio decision.

We introduce a hypothetical portfolio of 104 stocks listed in Table 1.5 and assume
that an investor maximizes his expected utility by choosing optimal portfolio weights
on 104 stocks. The utility functions for the investor are the class of CRRA (constant

relative risk averse) utility functions:

Wl*p .
1
uwy=1 1= e
log (W) if p=1
where p is a relative risk aversion parameter and W is wealth. Optimal portfolio
weights are determined by maximizing the expected utility under the multivariate

predictive density for ry 4

Wy, = arg max E U (Wo (14 w'riyr))] (1.22)

where w is N x 1 portfolio weights, W} is initial wealth and W = {w e[0,1]V : 1w < 1} :
For more realistic settings, we only consider an investor with short-sale constraint.
Since the conditional expectation above is taken with respect to conditional dis-
tributions of next period returns r;,;, we may expect a better forecasting model
(conditional distribution) for ryy; to give better portfolio weights which generate
higher average utilities. By comparing those average utilities, we may pick up better
forecasting models. However, utility is not intuitively interpretable, so we convert
the average utility to a “management fee”, which is a fixed amount that could be

charged (or paid) each period making the investor indifferent between portfolio A
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and portfolio B. The management fee C is the solution to the following equation:

| ReP | RtP
2 Z U(l+wh Ti) = 2 Z U1+ wg T —C)
t=R+1 t=R+1

where initial wealth W, sets to be 1, R is the length of the in-sample period, and P
is the length of the out-of-sample period.

We keep the same R and P as in the previous section, and RRA parameter p sets
to be 7. We obtain the conditional expectation in equation (1.22) through Monte
Carlo integrals using simulated data from estimated models in the previous section.

Table 1.13 presents the estimated management fee C in annualized percent be-
tween any two models of twelve competing models. A positive number indicates that
the model above outperforms the model to the left, and a negative one indicates
the opposite. We compare copula models and the multivariate ¢ distribution to see
whether separately specifying marginals and dependence is influential. Portfolio de-
cisions based on the multivariate ¢ distribution yields smaller economic gains than
those from copula based models except one based on Clayton copula. The gains
by changing models from non-copula models to copula models are from 0.48% to
2.42%. Second, we find that models that use high frequency data come up with
higher economic gains than models that do not use high frequency data. The gains
range from 0.4% to 6.3%. This confirms the superiority of models capable of employ-
ing high frequency data to models incapable of using high frequency data. Lastly,
to see how important nonlinear dependence is, we compare copula models with the
independence copula. The copula model based on ¢ copula beats the independence
copula whereas the other copula models do not. This suggests properly capturing
nonlinear dependence generates higher economic gains. Overall, models based on ¢
copula with high frequency data outperform all other models. As aforementioned,

the model based on t copula substantially differs from the benchmark model, the
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multivariate ¢ distribution in that the latter does not separately specify marginal
distributions and dependence whereas the former does.

In sum, we find the strong evidence of usefulness of high frequency data and
copula approaches and mild evidence of importance of nonlinear dependence under
the portfolio decision problems. Through the realistic portfolio decision problems,
the proposed model proves to have an excellent forecasting capability which in turn

generates large economic gains.

1.6 Conclusion

This paper proposes a new general model for high dimension distributions of daily
asset returns that utilizes high frequency data and copulas. The decomposition of
dependence into linear and nonlinear dependence makes it possible to fully exploit
advantages of high frequency data and copulas. Linear dependence is accurately
measured and forecasted by high frequency data whereas nonlinear dependence can
be captured by a new class of copulas for linearly uncorrelated residuals. By assigning
two different tasks to high frequency data and copulas, this separation significantly
improves the performance of models for joint distributions. In addition, the new
class of copulas for uncorrelated variables is proposed which is a rich set of copu-
las for studying dependence of uncorrelated but dependent variables. Though those
copulas can be easily constructed by simple rotations of any given copulas, those
rotations may cause serious computation burden in high dimensions. We address
computation issues by employing composite likelihoods and multistage estimations.
Via an extensive Monte Carlo study, we show that multistage estimation with com-
posite likelihood results in small loss in efficiency and large gain in computation
speed especially for high dimensions.

We employ our proposed models to study daily return distributions of 104 con-

stituents of the S&P 100 index over the period 2006 to 2012. We confirm the statisti-

40



cal superiority through in- and out-of-sample tests, and we find large economic gains
in asset allocation decisions based on the proposed model in an out-of-sample setting.
The excellence of the proposed model can be explained by three keywords: copula
approaches, nonlinear dependence, and high frequency data. The multivariate ¢ or
Normal distribution generally used in the literature is significantly beaten by the
proposed model that utilizes benefits of copulas. Surprisingly, nonlinear dependence
mostly ignored in the literature turns out to have fairly valuable information which
improves the performance of models. Furthermore, linear dependence accurately
measured and forecasted by high frequency data considerably enhances the proposed

model.

1.7 Tables and figures

Table 1.1: Computation time of jointly symmetric copula

N 10 20 20 100

Full likelihood 0.23 sec 4 min  10° years 107 years
Composite likelihood using all pairs 0.05 sec 0.21 sec 1.52 sec 5.52 sec
Composite likelihood using adj. pairs 0.01 sec 0.02 sec  0.06 sec 0.11 sec

Note: Computation time for one evaluation of the density of jointly symmetric copula
based on Clayton copula.
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Table 1.4: Simulation results for multistage estimations

Variance Correlation Marginal Copula
Const ARCH GARCH DCC a DCC g t dist JS Clay.

i K Ai o B Vi ¥

True  0.05 0.10 0.85 0.02 0.95 6.00 1.00

N =10
Bias 0.0123 0.0007 -0.0162 -0.0012 -0.0081 0.1926 -0.0122
Std 0.0442 0.0387 0.0717 0.0060 0.0277 1.1023 0.0650
Med 0.0536 0.0959 0.8448 0.0184 0.9459 5.9837 0.9920
90%  0.1027 0.1478 0.9015 0.0263  0.9631 7.5215 1.0535
10%  0.0271  0.0580 0.7619 0.0119 0.9196 5.0559 0.9165
Diff  0.0756 0.0898 0.1397 0.0144 0.0435 2.4656 0.1370
Time 1 min

N =50
Bias 0.0114 0.0012 -0.0149 -0.0018 -0.0051 0.1880 -0.0136
Std 0.0411 0.0412 0.0687 0.0040 0.0111 1.0936 0.0390
Med 0.0529 0.0958 0.8454 0.0179  0.9458 6.0000 0.9880
90%  0.1019 0.1499 0.9025 0.0234 0.9580 7.5223 1.0312
10%  0.0268 0.0567 0.7615 0.0135 0.9313 5.0454 0.9413
Diff  0.0751 0.0931 0.1410 0.0098  0.0267 2.4769 0.0899
Time 2 min

N =100
Bias 0.0119 0.0017  -0.0158 -0.0020 -0.0041 0.1813 -0.0133
Std 0.0419 0.0404 0.0691 0.0034 0.0094 1.0748 0.0362
Med 0.0533 0.0966 0.8440 0.0177  0.9467 6.0002 0.9886
90%  0.1025 0.1504 0.9022 0.0223  0.9566 7.4963 1.0244
10%  0.0270 0.0576 0.7607 0.0139 0.9337 5.0492 0.9432
Diff  0.0756 0.0928 0.1415 0.0084  0.0229 2.4471 0.0811

Time 5 min

Note: This table presents the results from 500 simulations of multistage models
described in Section 1.3.3. Sample size is T' = 1000 and cross-sectional dimensions
are N = 10,50, and 100. The first row of each panel presents the average difference
between the estimated parameter and its true value. The second row presents the
standard deviation in the estimated parameters. The third, fourth and fifth rows
present the 50, 90" and 10*" percentiles of the distribution of estimated parameters,
and the sixth row presents the difference between the 90" and 10** percentiles. The
final row presents estimation time per each simulation
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Table 1.5: 104 Stocks used in the empirical analysis

Ticker Name Ticker Name Ticker Name

AA Alcoa EMR Emerson Elec NOV National Oil.
AAPL Apple ETR Entergy NSC Norfolk Sou.
ABT Abbott Lab. EXC Exelon NWSA News Corp
AEP American Elec F Ford ORCL  Oracle

ALL Allstate Corp FCX Freeport 0),:4 Occidental Pet.
AMGN  Amgen Inc. FDX Fedex PEP Pepsi

AMZN  Amazon.com GD General Dyna PFE Pfizer

AVP Avon GE General Elec PG P&G

APA Apache GILD  Gilead Science QCOM Qualcomm Inc
AXP American Ex GOOG Google Inc RF Regions Fin
BA Boeing GS Gold. Sachs RTN Raytheon
BAC Bank of Am HAL Halliburton S Sprint

BAX Baxter HD Home Depot SBUX  Starbucks
BHI Baker Hughes HNZ Heinz SLB Schlumberger
BK Bank of NY HON Honeywell SLE Sara Lee Corp.
BMY Bristol-Myers HPQ HP SO Southern Co.
BRKB Berkshire Hath IBM IBM SPG Simon pro.

C Citi Group INTC  Intel T AT&T

CAT Caterpillar JNJ JohnsonlJ. TGT Target

CL Colgate JPM JP Morgan TWX Time Warner
CMCSA Comcast KFT Kraft TXN Texas Inst
COF Capital One KO Coca Cola UNH UnitedHealth
cop Conocophillips LLY Lilly Eli UNP Union Pacific
COST Costco LMT Lock’dMartn UPS United Parcel
CPB Campbell LOW Lowe’s USB US Bancorp
CSCO Cisco MCD MaDonald UTx United Tech
CVS CVS MDT Medtronic VZ Verizon

CvX Chevron MET Metlife Inc. WAG Walgreen

DD DuPont MMM 3M WEC Wells Fargo
DELL Dell MO Altria Group WMB  Williams Co
DIS Walt Disney MON Monsanto WMT  WalMart
DOW Dow Chem MRK Merck WY Weyerhauser
DVN Devon Energy MS Morgan Stan. XOM Exxon

EBAY Ebay MSFT  Microsoft XRX Xerox

EMC EMC NKE Nike

Note: This table presents the ticker symbols and names of the 104 stocks used in

Section 1.5.

45



Table 1.6: Summary statistics and conditional mean estimates

Panel A: Summary statistics

Cross-sectional distribution
Mean 5% 25%  Median 75% 95%

Mean 0.0002 -0.0006 0.0001 0.0002 0.0004 0.0006
Std dev 0.0219 0.0120 0.0159 0.0207  0.0257  0.0378
Skewness -0.0693 -0.6594 -0.3167 -0.0318  0.1823  0.5642
Kurtosis  11.8559  6.9198  8.4657 10.4976 13.3951 20.0200
Corr 0.4666 0.3294 0.4005 0.4580  0.5230  0.6335

Panel B: Test for skewness, kurtosis, and correlation

# of rejections

Hy: E[r}] = 3 out of 104
rd

H, 2 104 out of 104

Hy : Corr(ri,r;) =0 5356 out of 5356

Panel C: Conditional mean

Cross-sectional distribution
Mean 5% 25%  Median  75% 95%

Constant ~ 0.0002 -0.0006  0.0000  0.0002  0.0004 0.0006
AR(1) -0.0535 -0.1331 -0.0794 -0.0553 -0.0250  0.0105

Note: Panel A presents summary statistics such as simple unconditional moments,
correlations and rank correlations of the daily equity returns used in the empirical
analysis. Panel B shows the number of rejections for the test of zero skewness and
zero excess kurtosis of 104 stocks under 5% level. Also the number of rejections for the
test of zero correlations of all 5356 pairs is in the last line of Panel B. Panel C presents
the parameter estimates for AR(1) models of the conditional means of returns. The
columns present the mean and quantiles from the cross-sectional distribution of the
measures or estimates listed in the rows.
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Table 1.7: Conditional variance-covariance estimates

Panel A: HAR-type models for 5-min returns

Cross-sectional distribution

Mean 5% 25%  Median  75% 95%
Variance part
Constant ¢§Con8t) -0.0019 -0.0795 -0.0375 -0.0092 0.0207 0.1016
HAR day ¢\") 0.3767 0.3196 0.3513  0.3766 0.3980 0.4414
HAR week ¢§week) 0.3105 0.2296 0.2766  0.3075 0.3473 0.3896
HAR month ¢{™"™ 02190 0.1611 0.1959 0.2146 0.2376 0.2962

Est Std Err
Correlation part
HAR day (a) 0.1224  0.0079
HAR week (b) 0.3156  0.0199
HAR month (c) 0.3778  0.0326

Panel B: DCC models for daily returns
Cross-sectional distribution
Mean 5% 25%  Median  75% 95%

Variance part
Constant 1; x 10000 0.0864  0.0190 0.0346  0.0522 0.0811 0.2781
ARCH k; 0.0252  0.0000 0.0079  0.0196 0.0302 0.0738
Asym ARCH ¢ 0.0840  0.0298 0.0570 0.0770 0.1015 0.1535
GARCH )\, 09113 0.8399 0.9013 0.9228 0.9363 0.9573

Est Std Err
Correlation part
DCC ARCH («) 0.0245  0.0055
DCC GARCH (pB) 0.9541  0.0119

47

Note: Panel A presents summaries of the estimated HAR-type models described in
Section 1.2.2 using high frequency 5-min returns. Panel B presents summaries of the
estimated DCC models described in Appendix A.2 using low frequency daily returns.
The estimates for variance parts are summarized in the mean and quantiles from the
cross-sectional distributions of the estimates. The estimates for correlation parts are
reported with bootstrap standard errors which reflect accumulated estimation errors
from former stages



Table 1.8: Summary statistics of standardized uncorrelated residuals

Panel A: Summary statistics of residuals &,

Cross-sectional distribution
Mean 5% 25%  Median 75% 95%

Residuals €, yar

Mean 0.0023 -0.0122 -0.0042 0.0016 0.0076  0.0214
Std dev 1.0921  0.9647 1.0205 1.0822  1.1423 1.2944
Skewness -0.1613 -1.5828 -0.4682 -0.0837  0.3420  0.7245
Kurtosis 13.1220  5.0578  6.8422  9.8681 16.0303 32.7210
Correlation 0.0026 -0.0445 -0.0167  0.0020  0.0209  0.0502

Residuals &, pcc

Mean 0.0007 -0.0155 -0.0071  0.0004 0.0083  0.0208
Std dev 1.1871 1.1560 1.1737 1.1859  1.2002  1.2240
Skewness -0.1737 -1.4344 -0.5293 -0.0307  0.2628  0.7920
Kurtosis 12.6920 5.0815 6.7514 10.1619 15.9325 28.8275
Correlation -0.0011 -0.0172 -0.0073 -0.0008  0.0053  0.0145

Panel B: Test for skewness, kurtosis, and correlation

# of rejections

For ét,HAR For ét,DCC’
Hy: Ele}] =0 4 out of 104 6 out of 104
el
Hy - 5[[ ;]]2 - 104 out of 104 104 out of 104
Ho : Corr (e:, ) = 0 497 out of 5356 1 out of 5356

Note: Panel A presents summary statistics of the estimated standardized uncorre-
lated residuals &, zar and &, pcc, and Panel B shows the number of rejections for
the test of zero skewness and zero excess kurtosis of & yar and &, pcc under 5%
level. Also the number of rejections for the test of zero correlations of all 5356 pairs
is in the last line of Panel B. In Panel C, the parameter estimates for standardized
Student’s ¢ marginal distributions are summarized in the mean and quantiles from
the cross-sectional distributions of the estimates.
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Table 1.9: Marginal distribution and copula estimates

Panel A: Marginal distributions for residuals é;

Cross-sectional distribution
Mean 5% 25% Median 5% 95%

Residuals €, yar
Student t (v) 5.3033  4.1233  4.7454 5.1215 5.8684  6.8778

Residuals &, pcc
Student t (v) 6.0365  4.2280 5.0314 5.9042 7.0274  8.2823

Panel B: Copula for residuals &,

Jointly symmetric copula based on
t Clayton  Frank Gumbel Indep MYV ¢t dist

Residuals é; yar

Copula est 39.4435 0.0876  1.2652 1.0198 - 6.43261
(Std error) (4.3541)  (0.0087)  (0.0942) (0.0038) (0.1405)
t-stat 8.45*% 10.07* 13.43* 5.25% - 45.72%*

Residuals é; pcc

Copula est 28.2068 0.1139  1.5996 1.0312 - 7.09621
(Std error) (5.4963) (0.0155) (0.1540) (0.0071) (0.3586)
t-stat 6.13* 7.36* 10.36* 4.40% - 17.80%*

Note: Panel A presents the estimates of the marginal distribution of residuals, (stan-
dardized) univariate ¢ distribution, summarized in the mean and quantiles from the
cross-sectional distributions of the estimates. Panel B presents the estimated param-
eters of four different jointly symmetric copula models based on t, Clayton, Frank,
and Gumbel copulas as well as the estimated parameter of the (standardized) mul-
tivariate ¢ distribution as a benchmark model. The bootstrap standard errors that
reflect accumulated estimation errors from former stages are reported in parenthe-
sis. We test the null hypothesis that there is mo nonlinear dependence and report
t-statistics denoted with * if significant at the 1% level. "Note that the parameter of
the multivariate ¢ distribution is not a copula parameter, but it is reported in this
row for simplicity.
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Ficure 1.1: 90, 180, and 270 degree rotations of the density of Clayton copula
(0 = 2) with N (0,1) margins

o4



Jointly symmetric copula based on Clayton
2 T T T T T

-2 -15 -1 -0.5

FIGURE 1.2: Jointly symmetric copula density constructed from Clayton (0 = 2)
with N (0,1) margins
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Independence copula Jointly sym. t copula,p =0 and v =3

2 2
1 1 r'
~1 \ 1 k
R 0 1 2 I (I) 1 2
Jointly sym. Clayton, 6 =2 Jointly sym. Gumbel, 6 =2

F1GURE 1.3: Contour plots of densities for independence copula and jointly symmet-
ric copulas based on t, Clayton, Gumbel, Frank, and Plackett copula with N (0, 1)
margins

56



Standard deviation of 500 estimates
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FIGURE 1.4: Standard deviation and bias of 500 estimators for jointly symmetric
copula based on Clayton copula. T = 1000 and N = 2, 3,5,10,..., 100. Four different
estmation methods, MLE, MCLE with all pairs, MCLE with adjacent pairs, and
MCLE with the first pair are used
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2

Modelling Dependence in High Dimensions with
Factor Copulas (co-authored with Andrew Patton)

2.1 Introduction

One of the many surprises from the financial crisis of late 2007 to 2008 was the extent
to which assets that had previously behaved mostly independently suddenly moved
together. This was particularly prominent in the financial sector, where poor models
of the dependence between certain asset returns (such as those on housing, or those
related to mortgage defaults) are thought to be one of the causes of the collapse of the
market for CDOs and related securities, see Coval, et al. (2009) and Zimmer (2012)
for example. Many models that were being used to capture the dependence between
a large number of financial assets were revealed as being inadequate during the crisis.
However, one of the difficulties in analyzing risks across many variables is the relative
paucity of econometric models suitable for the task. Correlation-based models, while
useful when risk can be summarized using the second moment, are often built on an
assumption of multivariate Gaussianity, and face the risk of neglecting dependence

between the variables in the tails, i.e., neglecting the possibility that large crashes
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may be correlated across assets.

This paper makes two primary contributions. First, we present new models for
the dependence structure, or copula, of economic variables. The models are based
on a simple factor structure for the copula and are particularly attractive for high di-
mensional applications, involving fifty or more variables.! These copula models may
be combined with existing models for univariate distributions to construct flexible,
tractable joint distributions for large collections of variables. The proposed copula
models permit the researcher to determine the degree of flexibility based on the num-
ber of variables and the amount of data available. For example, by allowing for a
fat-tailed common factor the model captures the possibility of correlated crashes,
and by allowing the common factor to be asymmetrically distributed the model al-
lows for the possibility that the dependence between the variables is stronger during
downturns than during upturns. By allowing for multiple common factors, it is pos-
sible to capture heterogeneous pair-wise dependence within the overall multivariate
copula. High dimension economic applications will often require some strong sim-
plifying assumptions in order to keep the model tractable, and an important feature
of the class of proposed models is that such assumptions can be made in an easily
understandable manner, and can be tested and relaxed if needed.

Factor copulas do not generally have a closed-form density, but certain properties
can nevertheless be obtained analytically. Using extreme value theory we obtain
theoretical results on the tail dependence properties for general, multi-factor copulas,
and for the specific parametric class of factor copulas that we use in our empirical
work.

The second contribution of this paper is a study of the dependence structure of all

100 constituent firms of the Standard and Poor’s 100 index, using daily data over the

! For related recent work on high dimensional conditional covariance matrix estimation, see Engle
and Kelly (2012), Engle, et al. (2008), and Hautsch, et al. (2010).
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period 2008-2010. This is one of the highest dimension applications of copula theory
in the econometrics literature. We find significant evidence in favor of a fat-tailed
common factor for these stocks (indicative of non-zero tail dependence), implying
that the Normal, or Gaussian, copula is not suitable for these assets. Moreover,
we find significant evidence that the common factor is asymmetrically distributed,
with crashes being more highly correlated than booms. Our empirical results suggest
that risk management decisions made using the Normal copula may be based on too
benign a view of these assets, and derivative securities based on baskets of these
assets, or related securities such as CDOs, may be mispriced if based on a Normal
copula. The fact that large negative shocks may originate from a fat-tailed common
factor, and thus affect all stocks at once, makes the diversification benefits of investing
in these stocks lower than under Normality.

An additional contribution of this paper is a detailed simulation study of the
properties of the estimation method for the class of factor copulas we propose. This
class does not generally have a closed-form copula likelihood, and we use the SMM
estimator proposed in Oh and Patton (2013a). We consider problems of dimension
3, 10 and 100, and confirm that the estimator and associated asymptotic distribution
theory have satisfactory finite-sample properties.

Certain types of factor copulas have already appeared in the literature. The
models we consider are extensions of Hull and White (2004), in that we retain a
simple linear, additive factor structure, but allow for the variables in the structure to
have flexibly specified distributions. Other variations on factor copulas are presented
in Andersen and Sidenius (2004) and van der Voort (2005), who consider certain non-
linear factor structures, and in McNeil et al. (2005), who present factor copulas for
modelling times-to-default. With the exception of McNeil, et al. (2005), the papers
to date have not considered estimation of the unknown parameters of these copulas,
instead examining calibration and pricing using these copulas. Our formal analysis
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of the estimation of high dimension copulas via a SMM-type procedure is new to the
literature, as is our application of this class of models to a large collection of asset
returns.

Some methods for modelling high dimension copulas have previously been pro-
posed in the literature, though few consider dimensions greater than twenty.? The
Normal copula, see Li (2000) amongst many others, is simple to implement and to
understand, but imposes the strong assumption of zero tail dependence, and symmet-
ric dependence between booms and crashes. The (Student’s) ¢ copula, and variants
of it, are discussed in Demarta and McNeil (2005). An attractive extension of the
t copula, the “grouped ¢” copula, is proposed in Daul et al. (2003), who show that
this copula can be used in applications of up to 100 variables. This copula allows for
heterogeneous tail dependence between pairs of variables, but imposes that upper
and lower tail dependence are equal (a finding we strongly reject for equity returns).
Smith, et al. (2010) extract the copula implied by a multivariate skew ¢ distribu-
tion, and Christoffersen, et al. (2012) combine a skew ¢ copula with a DCC model for
conditional correlations in their study of 33 developed and emerging equity market in-
dices. Archimedean copulas such as the Clayton or Gumbel allow for tail dependence
and particular forms of asymmetry, but usually have only a one or two parameters
to characterize the dependence between all variables, and are thus quite restrictive
when the number of variables is large. Multivariate “vine” copulas are constructed
by sequentially applying bivariate copulas to build up a higher dimension copula,
see Aas, et al. (2009), Heinen and Valdesogo (2009) and Min and Czado (2010) for
example, however vine copulas are almost invariably based on an assumption that is
hard to interpret and to test, see Acar, et al. (2012) for a critique. In our empirical

application we compare our proposed factor models with several alternative existing

2 For general reviews of copulas in economics and finance see Cherubini, et al. (2004) and Patton
(2012).
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models, and show that our model outperforms them all in terms of goodness-of-fit
and in an application to measuring systemic risk.

The remainder of the paper is structured as follows. Section 2.2 presents the
class of factor copulas, derives their limiting tail properties, and considers some
extensions. Section 2.3 considers estimation via a simulation-based method and
presents a simulation study of this method. Section 2.4 presents an empirical study
of daily returns on individual constituents of the S&P 100 equity index over the
period 2008-2010. Appendix B.1 contains all proofs, and Appendix B.2 contains a

discussion of the dependence measures used in estimation.
2.2 Factor copulas

For simplicity we will focus on unconditional distributions in the text below, and
discuss the extension to conditional distributions in the next section. Consider a
vector of N variables, Y, with some joint distribution F, marginal distributions Fj},
and copula C :

Yi,..Yn]' =Y ~F =C(F,..., Fy) (2.1)

The copula completely describes the dependence between the variables Y7, ..., Yy.
We will use existing models to estimate the marginal distributions Fj, and focus
on constructing useful new models for the dependence between these variables, C.
Decomposing the joint distribution in this way has two important advantages over
considering the joint distribution F directly: First, it facilitates multi-stage estima-
tion, which is particularly useful in high dimension applications, where the sparseness
of the data and the potential proliferation of parameters can cause problems. Sec-
ond, it allows the researcher to draw on the large literature on models for univariate
distributions, leaving “only” the task of constructing a model for the copula, which

is a simpler problem.
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2.2.1 Description of a simple factor copula model

The class of copulas we consider are those that can be generated by the following

simple factor structure, based on a set of N 4 1 latent variables:
XZ' = Z+€i7 1= 1,2,...,N
Z~F,0), ¢,~iid F.(0), Zle; Yi (2.2)

[X1,... Xn] =X ~F,=C(G,(0),....Gn (0);0)

The copula of the latent variables X, C (6) , is used as the model for the copula of the
observable variables Y.?> An important point about the above construction is that
the marginal distributions of X; may be different from those of the original variables
Y;, so F; # G; in general. We use the structure for the vector X only for its copula,
and completely discard the resulting marginal distributions. By doing so, we use
C (0) from equation (2.2) to construct a model for the copula of Y, and leave the
marginal distributions F; to be specified and estimated in a separate step.

The copula implied by the above structure is not generally known in closed form.
The leading case where it is known is when F, and F. are both Gaussian distributions,
in which case the variable X is multivariate Gaussian, implying a Gaussian copula,
and with an equicorrelation dependence structure (with correlation between any
pair of variables equal to 02/ (02 + 02)). For other choices of F, and F. the joint
distribution of X, and more importantly the copula of X, is not known in closed form.
It is clear from the structure above that the copula will exhibit “equidependence”,
in that each pair of variables will have the same bivariate copula as any other pair.
(This property is known as “exchangeability” in the copula literature.) A similar

assumption for correlations is made in Engle and Kelly (2012).

3 This method for constructing a copula model resembles the use of mixture models, e.g. the
Normal-inverse Gaussian or generalized hyperbolic distributions, where the distribution of interest
is obtained by considering a function of a collection of latent variables, see Barndorff-Nielsen (1978,
1997), Barndorff-Nielsen and Shephard (2009), McNeil, et al. (2005).
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It is simple to simulate from F, and F. for many classes of distributions, and from
simulated data we can extract properties of the copula, such as rank correlation,
Kendall’s tau, and quantile dependence. These simulated moments can be used in
simulated method of moments (SMM) estimation of the unknown parameters, which

is studied via simulations in Section 2.3 below.
2.2.2 A multi-factor copula model

The structure of the model in equation (2.2) immediately suggests two directions for
extensions. The first is to allow for weights on the common factor that differ across

variables. That is, let
Xi = BZZ + &i, 1= ]_,2, ,N (23)

ZNFZ, €$NZZd Fm ZJ_LZEZVZ

with the rest of the model left unchanged. In this “single factor, flexible weights”
factor copula, the implied copula is no longer equidependent: a given pair of variables
may have weaker or stronger dependence than some other pair. This extension
introduces N — 1 additional parameters to this model, increasing its flexibility to
model heterogeneous pairs of variables, at the cost of a more difficult estimation
problem. An intermediate model may be considered, in which sub-sets of variables
are assumed to have the same weight on the common factor, which may be reasonable
for financial applications with variables grouped ex ante using industry classifications,
for example. Such an assumption leads to a “block equidependence” copula, and we
will consider this structure in our empirical application.

A second extension to consider is a multi-factor version of the model, where the
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dependence is assumed to come from a K-factor model:
K
X = Zﬁzkzk t&
k=1

[Z17 ) ZK], =7Z~F.= Cindep (Fz17 "'7FZK)

In the most general case one could allow Z to have a general copula Cy that allows
dependence between the common factors, however an empirically useful simplification
of this model is to impose that the common factors are independent, and thus remove
the need to specify and estimate Cz. A further simplification of this factor model
may be to assume that each common factor has a weight equal to one or zero, with the
weights specified in advance by grouping variables, for example by grouping stocks
by industry.

The above model can be interpreted as a special case of the “conditional indepen-
dence structure” of McNeil, et al. (2005), which is used to describe a set of variables
that are independent conditional on some smaller set of variables, X and Z in our
notation.? McNeil, et al. (2005) describe using such a structure to generate some

factor copulas to model times until default.
2.2.3 Tail dependence properties of factor copulas

Using results from extreme value theory, it is possible to obtain analytically results
on the tail dependence implied by a factor copula model despite the fact that we
do not have a closed-form expression for the copula. These results are relatively
easy to obtain, given the simple linear structure generating the factor copula. Recall

the definition of tail dependence for two variables X;, X; with marginal distributions

4 The variables Z are sometimes known as the “frailty”, in the survival analysis and credit default
literature, see Duffie, et al. (2009) for example.
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GZ',G]' :
PriX; <G/ (0). X; <G; (d)]

L _ 1 i J
U i [Xi > G (q), X; > G (g)]
Yo gl 1—gq

That is, lower tail dependence measures the probability of both variables lying below
their ¢ quantile, for ¢ limiting to zero, scaled by the probability of one of these
variables lying below their ¢ quantile. Upper tail dependence is defined analogously.

In Proposition 1 below we present results for a general single factor copula model:

Proposition 1 (Tail dependence for a factor copula). Consider the factor copula
generated by equation (2.3). If F, and F. have regularly varying tails with a common
tail index o > 0, 1.e.

Pr[Z >s] = AYs™ and Prle; >s]=AYs™, ass— o (2.6)

Pr[Z < —s] = ALs™ and Prle; < —s] = Abs™ ass — o

where AL, AY, AL and AV are positive constants. Then, (a) if B; = B; > 0 the

lower and upper tail dependence coefficients are:

(b) if B; < B; < 0 the lower and upper tail dependence coefficients are:
| AU > AL
7'-L |ﬁl| z U |BZ| z (28)

9T BTAU + AL T T BT AL 1 AU

(c) if BiB; = 0 or (d) if B;; < 0, the lower and upper tail dependence coefficients

are zero.

All proofs are presented in Appendix B.1. This proposition shows that when the

coefficients on the common factor have the same sign, and the common factor and
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idiosyncratic variables have the same tail index, the factor copula generates upper
and lower tail dependence. If either Z or € is asymmetrically distributed, then the
upper and lower tail dependence coefficients can differ, which provides this model
with the ability to capture differences in the probabilities of joint crashes and joint
booms. When either of the coefficients on the common factor are zero, or if they have
differing signs, then it is simple to show that the upper and lower tail dependence
coefficients are both zero.

The above proposition considers the case that the common factor and idiosyn-
cratic variables have the same tail index; when these indices differ we obtain a bound-
ary result: if the tail index of Z is strictly greater than that of € and 3;8; > 0 then
tail dependence is one, while if the tail index of Z is strictly less than that of € then
tail dependence is zero.

In our simulation study and empirical work below, we will focus on the skew ¢
distribution of Hansen (1994) as a model for the common factor and the standardized
t distribution for the idiosyncratic shocks. Proposition 2 below presents the analytical

tail dependence coefficients for a factor copula based on these distributions.

Proposition 2 (Tail dependence for a skew ¢-t factor copula). Consider the factor
copula generated by equation (2.3). If F, = Skew t (v, \) and F. =t (v), then the tail
indices of Z and &; equal v, and the constants AL, AV, AL and AU from Proposition
1 equal:

AL b_C ( b2 )—(V+1)/2 e % ( b2 >—(V+1)/2 (2 9)
: (v—2) (1= N> T v \(v=2)(1+ ) '

—(v+1)/2
c 1
AstAgzz (V_2>

where a =4 c(v—2) /(v —1),b = \/1+3)\2—a2,c=F(”TH)/<F(§) 7T(1/—2)).
Given Proposition 1 and the expressions for AL, AY AL and AY above, we then ob-
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tain the tail dependence coefficients for this copula.

In the next proposition we generalize Proposition 1 to allow for a multi-factor

model, which will prove useful in our empirical application in Section 2.4.

Proposition 3 (Tail dependence for a multi-factor copula). Consider the factor cop-
ula generated by equation (2.4). Assume F., F.,, ..., F,,  have regularly varying tails
with a common tail index o > 0, and upper and lower tail coefficients AV, AV, .., AY.
and AL AL DAL Then if By = 0V i, k, the lower and upper tail dependence coef-

ficients are:

K
1{BuB > 0} ALgo 5o
T.L,:Zkzl { kPjk } kMikYLyijk (210)

) K
L
AL+ ) ARBg

K
I Zk:ll {BuBjr > 0} AL B Uijk

Tij - U K U pa
Al + ZkzlAk Bix
where
v _ ) max{1,v24Bi/Bixt s if BBk >0
Opijk = { 1, if BirBix = 0 (2.11)
5oL | max {1, .8/ Bk}, if BiwBirx > 0
Uijk = 1, if BirBik =0
AL ZK AL 1/ AU ZK AU 1/e
Ly ‘-“ e T i
VLij = kot RO , Vg = ey’ B (2.12)

K K
L U
AL + E oy AR Bik AU+ E et Ak ik

The extensions to consider the case that some have opposite signs to the others
can be accommodated using the same methods as in the proof of Proposition 1. In
the one-factor copula model the variables 6y, ;;, and 0y ;jr can be obtained directly
and are determined by min {f;, §,}; in the multi-factor copula model these variables
can be determined using equation (2.11) above, but do not generally have a simple
expression.
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2.2.4 llustration of some factor copulas

To illustrate the flexibility of this simple class of copulas, Figure 2.1 presents 1000
random draws from bivariate distributions constructed using four different factor
copulas. In all cases the marginal distributions, Fj, are set to N (0,1), and the
variance of the latent variables in the factor copula are set to 02 = 02 = 1, so that
the common factor (Z) accounts for one-half of the variance of each X;. The first
copula is generated from a factor structure with F, = F. = N (0, 1), implying that
the copula is Normal. The second sets F, = F. = t(4), generating a symmetric
copula with positive tail dependence. The third copula sets F. = N (0,1) and F, =
skew t (o0, —0.25), corresponding to a skewed Normal distribution. This copula
exhibits asymmetric dependence, with crashes being more correlated than booms, but
zero tail dependence. The fourth copula sets F. =t (4) and F, = skew t (4,—0.25),
which generates asymmetric dependence and positive tail dependence.

Figure 2.1 shows that when the distributions in the factor structure are Normal
or skewed Normal, tail events tend to be uncorrelated across the two variables. When
the degrees of freedom is set to 4, on the other hand, we observe several draws in
the joint upper and lower tails. When the skewness parameter is negative, as in the
lower two panels of Figure 2.1, we observe stronger clustering of observations in the
joint negative quadrant compared with the joint positive quadrant.

An alternative way to illustrate the differences in the dependence implied by these
four models is to use a measure known as “quantile dependence”. This measure
captures the probability of observing a draw in the ¢-tail of one variable given that

such an observation has been observed for the other variable. It is defined as:

PrUy <q.Us<q], qe(0,05
qu{_rr[l Gk e (2.13)

[Ul > q, U2 > q], q €< (05,1)

where U; = G; (X;) ~ Unif (0,1) are the probability integral transforms of the
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simulated X; variables. As ¢ — 0 (¢ — 1) this measure converges to lower (upper)
tail dependence, and for values of ¢ “near” zero or one we obtain an estimate of the
dependence “near” the joint tails.

Figure 2.2 presents the quantile dependence functions for these four copulas. For
the symmetric copulas (Normal, and t-t factor copula) this function is symmetric
about ¢ = 0.5, while for the others it is not. The two copulas with a fat-tailed
common factor exhibit quantile dependence that increases near the tails: in those
cases an extreme observation is more likely to have come from the fat-tailed common
factor (Z) than from the thin-tailed idiosyncratic variable (g;), and thus an extreme
value for one variable makes an extreme value for the other variable more likely.
Figure 2.2 also presents the theoretical tail dependence for each of these copulas
based on Proposition 2 above using a symbol at ¢ = 0 (lower tail dependence) and
g = 1 (upper tail dependence). The skew t(4)-t (4) factor copula illustrates the
flexibility of this simple class of models, generating weak upper quantile dependence
but strong lower quantile dependence, a feature that may be useful when modelling
asset returns.

Figure 2.3 illustrates the differences between these copulas using a truly multi-
variate approach: Conditional on observing k out of 100 stocks crashing, we present
the expected number of the remaining (100 — k) stocks that will crash, a measure
based on Geluk, et al. (2007):

K7 (7)
N—j

7 (j) = (2.14)
where k7(j) = E|NJ|N; = j] —j
. N
Nq = Zizll {Uz < Q}

For this illustration we define a “crash” as a realization in the lower 1/66 tail, corre-

sponding to a once-in-a-quarter event for daily asset returns. The upper panel shows
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that as we condition on more variables crashing, the expected number of other vari-
ables that will crash, k7 (j), initially increases, and peaks at around j = 30. At that
point, a skew t (4)-t (4) factor copula predicts that around another 38 variables will
crash, while under the Normal copula we expect only around 12 more variables to
crash. As we condition on even more variables crashing the plot converges to in-
evitably zero, since conditioning on having observed more crashes, there are fewer
variables left to crash. The lower panel of Figure 2.3 shows that the expected pro-
portion of remaining stocks that will crash, 77 (j) generally increases all the way to
j = 99.5 For comparison, this figure also plots the results for a positively skewed
skew t factor copula, where booms are more correlated than crashes. This copula
also exhibits tail dependence, and so the expected proportion of other stocks that
will crash is higher than under Normality, but the positive skew means that crashes
are less correlated than booms, and so the expected proportion is less than when the
common factor is negatively skewed. This figure illustrates some of the features of
dependence that are unique to high dimension applications, and further motivates

our proposal for a class of flexible, parsimonious models for such applications.
2.2.5 Non-linear factor copula models

We can generalize the above linear, additive structure to consider more general factor

structures. For example, consider the following general one-factor structure:

Xi = h/(Z,Ei), 1= 1,2,...,N
Z~F, e ~iidF., Zle Vi (2.15)
[Xl, ...,XN]/ =X~ sz C (Gl, ceay GN)

for some function h : R? — R. Writing the factor model in this general form reveals

that this structure nests a variety of well-known copulas in the literature. Some

5 For the Normal copula this is not the case, however this is perhaps due to simulation error: even
with the 10 million simulations used to obtain this figure, joint 1/66 tail crashes are so rare under
a Normal copula that there is a fair degree of simulation error in this plot for j > 80.
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examples of copula models that fit in this framework are summarized in the table

below:

Copula h(Z,e) Fy F.
Normal Z+e N (0,02) N (0,02)
Student’s t ARE Ig(v/2,v/2) N (0,02)
Skew t N+ 7V Ig(v/2,v/2) N (0,02)
Gen hyperbolic ~Z + Z'Y?¢  GIG (\, x,v) N (0,02)
Clayton (1+¢e/2)"" T(a,1) Exzp (1)
Gumbel — (log Z/e)*  Stable (1/a,1,1,0) Exp(1)

where [g represents the inverse gamma distribution, GIG is the generalized inverse
Gaussian distribution, and I' is the gamma distribution. The skew t and Generalized
hyperbolic copulas listed here are from McNeil, et al. (2005, Chapter 5), the repre-
sentation of a Clayton copula in this form is from Cook and Johnson (1981) and the
representation of the Gumbel copula is from Marshall and Olkin (1988).

The above copulas all have closed-form densities via judicious combinations of
the function h and the distributions F; and F.. Removing this requirement, and
employing simulation-based estimation methods to overcome the lack of closed-form
likelihood, one can obtain a much wider variety of models for the dependence struc-
ture. In this paper we will focus on linear, additive factor copulas, and generate

flexible models by flexibly specifying the distribution of the common factor(s).
2.3 A Monte Carlo study of SMM estimation of factor copulas

As noted above, the class of factor copula models does not generally have a closed-

form likelihood, motivating the study of alternative methods for estimation.® Oh

6 In ongoing work, Oh and Patton (2013b), we consider the finite-sample properties of a ML
estimator based on a quadrature approximation of the factor copula likelihood. This approach has
its own set of numerical and implementation issues, and we leave the consideration of this method
aside here.
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and Patton (2013a) present a general simulation-based method for the estimation
of copula models, which is ideally suited for the estimation of factor copulas, and
is described in Section 2.3.2 below. In Section 2.3.3 we present an extensive Monte
Carlo study of the finite-sample properties of their SMM estimator in applications
involving up to 100 variables (Oh and Patton, 2013a, considers only up to 10 variables

in their simulation study).
2.3.1 Description of the model for the conditional joint distribution

We consider the same class of data generating processes (DGPs) as Chen and Fan
(2006), Rémillard (2010) and Oh and Patton (2013a). This class allows each variable
to have time-varying conditional mean and conditional variance, each governed by
parametric models, with some unknown marginal distribution. The marginal dis-
tributions are estimated nonparametrically via the empirical distribution function.
The conditional copula of the data is assumed to belong to a parametric family, such
as a parametric factor copula, and is assumed constant,” making the model for the

joint distribution semiparametric. The DGP we consider is:
Y = p (o) + 0v (Do) e (2.16)
where Y, = [Yiy,. .. ,YNt]’
pe (0) = [ (9) -, pone (9)]
01 (¢) = diag{ow (@), one (0)}
e = [N, - - - ,nNt]/ ~idid F, = C(F,...,Fn;0)
where p; and o; are JF;_j-measurable and independent of n;. F;_; is the sigma-field

containing information generated by {Y;_1,Y; o,...}. The r x 1 vector of parame-

ters governing the dynamics of the variables, ¢y, is assumed to be v/T-consistently

7 The extension to allow for time-varying conditional copulas is relatively simple empirically,
but the asymptotic theory for the estiamted parameters needs non-trivial adjustment, and is not
considered here.
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estimable. If ¢g is known, or if u; and o, are known constant, then the model be-
comes one for 7id data. The copula is parameterized by a p x 1 vector of parameters,

6y € ©, which is estimated using the SMM approach below.
2.3.2  Simulation-based estimation of copula models

The simulation-based estimation method of Oh and Patton (2013a) is closely related
to SMM estimation, though is not strictly SMM, as the “moments” that are used in
estimation are functions of rank statistics. We will nevertheless refer to the method

as SMM estimation. Our task is to estimate the p x 1 vector of copula parameters,

A N1 T
0y € O, based on the standardized residual {ﬁt =o;' <¢> [Yt = Mt <¢>]} and

t=1

simulations from the copula model (for example, the factor copula model in equation

(2.2). The SMM copula estimator of Oh and Patton (2011) is based on simulation
from some parametric joint distribution, F, (#), with implied copula C (0).

Let mg (0) be a (m x 1) vector of dependence measures computed using S simu-

lations from F (0), {XS}SS:1 , and let my be the corresponding vector of dependence

measures computed using the standardized residuals {ﬁt}tT:l. (We discuss the em-

pirical choice of which dependence measures to match in Appendix B.2.) The SMM

estimator then defined as:

fr. = argmin Q7.5 (6) (2.17)
0c®

where Qr.s (0) = gr.5(0) WTgT,S (0)

grs (0) = hr —mg (0)

and Wy is some positive definite weight matrix, which may depend on the data.

Under regularity conditions, Oh and Patton (2013a) show that if S/T° — oo as
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T — oo, the SMM estimator is consistent and asymptotically normal:®
\/T <éT,S — 90) —d> N (0, Qo) as T, S — (218)

where Qg = (GGWOGo)_l GBWOEOWOGO (GE)W()Go)_l

Yo = avar [r], Gy = Vg (6p) , and go (0) =p-limr s grs (¢). Oh and Patton
(2011) also present the distribution of a test of the over-identifying restrictions (the
“J7 test).

The asymptotic variance of the estimator has the same form as in standard GMM
applications, however the components Yy and G require different estimation meth-
ods than in standard applications. Oh and Patton (2013a) show that a simple iid
bootstrap can be used to consistently estimate Yy, and that a standard numerical
derivative of gr ¢ () at éT,S, denoted G , will consistently estimate Gy under the con-
dition that the step size of the numerical derivative goes to zero slower than 7/2.

In our simulation study we thoroughly examine the sensitivity of the estimated co-

variance matrix to the choice of step size.
2.3.3  Finite-sample properties of SMM estimation of factor copulas

In this section we present a study of the finite sample properties of the simulated
method of moments (SMM) estimator of the parameters of various factor copulas.
In the one case where a likelihood for the copula model is available in closed form we
contrast the properties of the SMM estimator with those of the maximum likelihood

estimator.

8 Oh and Patton (2013a) also consider the case that S/T — 0 as S,T — oo, in which case the
convergence rate is v/S rather than v/7". In our empirical application we have S » T, and so we do
not present that case here.
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Simulation design

We initially consider three different factor copulas, all of them of the form:
Xi=Z+¢g, 1=12,..,.N
Z ~ Skew t (02,v,\) (2.19)
gi~tidt(v), and gl 7 Vi

[X1, ..., Xn] ~ F,= C(G,,...,G,)

and we use the skewed ¢ distribution of Hansen (1994) for the common factor. In all
cases we set 02 = 1, implying that the common factor (Z) accounts for one-half of
the variance of each X;, implying rank correlation of around 0.5. In the first model
we set v — o0 and A = 0, which implies that the resulting factor copula is simply
the Gaussian copula, with equicorrelation parameter p = 0.5. In this case we can
estimate the model by SMM and also by GMM and MLE, and we use this case to
study the loss of efficiency in moving from MLE to GMM to SMM. In the second
model we set ¥ = 4 and A = 0, yielding a symmetric factor copula that generates
tail dependence. In the third case we set v = 4 and A = —0.5 yielding a factor
copula that generates tail dependence as well as “asymmetric dependence”, in that
the lower tails of the copula are more dependent than the upper tails. We estimate
the inverse degrees of freedom parameter, v, !, so that its parameter space is [0, 0.5)
rather than (2, oo].

We also consider an extension of the above equidependence model which allow
each X; to have a different coefficient on Z, as in equation (2.3). For identification
of this model we set 0> = 1. For N = 3 we set [, s, 83] = [0.5,1,1.5]. For
N = 10 we set (1, B2, ..., f10] = [0.25,0.50, ...,2.5], which corresponds to pair-wise
rank correlations ranging from approximately 0.1 to 0.8. Motivated by our empirical
application below, for the N = 100 case we consider a “block equidependence” model,
where we assume that the 100 variables can be grouped ez ante into 10 groups, and
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that all variables within each group have the same ;. We use the same set of values
for §; as in the N = 10 case.

We consider two different scenarios for the marginal distributions of the variables
of interest. In the first case we assume that the data are iid with standard Normal
marginal distributions, meaning that the only parameters that need to be estimated
are those of the factor copula. This simplified case is contrasted with a second

scenario where the marginal distributions of the variables are assumed to follow an

AR(1)-GARCH(1,1) process:

}/it = ¢0 + qsl}/i,t—l + OitNit, = 1727 7T

2 2 2 9
O =W+ Y0, 1+ Q04 11 (2.20)

N = [ - Mve] ~iid Fpy=C(®,9,..,0)

where ® is the standard Normal distribution function and C is the factor copula
implied by equation (2.19). We set the parameters of the marginal distributions as
[¢0, ¢1,w, 7, ] = [0.01,0.05,0.05,0.85,0.10], which broadly matches the values of
these parameters when estimated using daily equity return data. In this scenario
the parameters of the marginal distribution are estimated in a separate first stage,
following which the estimated standardized residuals, 7);;, are obtained and used in
a second stage to estimate the factor copula parameters. In all cases we consider a
time series of length 7" = 1000, corresponding to approximately 4 years of daily re-
turn data, and we use S = 25 x T' simulations in the computation of the dependence
measures to be matched in the SMM optimization. We repeat each scenario 100
times. In all results below we use the identity weight matrix for estimation; corre-
sponding results based on the efficient weight matrix are available in Appendix B.3.7

In Appendix B.2 we describe the dependence measures we use for the estimation of

9 The results based on the efficient weight matrix are generally comparable to those based on
the identity weight matrix, however the coverage rates are worse than those based on the identity
weight matrix.
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these models.
Simulation results

Table 2.1 reveals that for all three dimensions (N = 3, 10 and 100) and for all
three copula models the estimated parameters are centered on the true values, with
the average estimated bias being small relative to the standard deviation, and with
the median of the simulated distribution centered on the true values. The measures
of estimator accuracy (the standard deviation and the 90-10 percentile difference)
reveal that adding more parameters to the model, ceteris paribus, leads to greater
estimation error, as expected; the o2 parameter, for example, is more accurately
estimated when it is the only unknown parameter compared with when it is one of
three unknown parameters. Looking across the dimension size, we see that the cop-
ula model parameters are almost always more precisely estimated as the dimension
grows. This is intuitive, given the equidependence nature of all three models: increas-
ing the dimension of the model does not increase the number of parameters to be
estimated but it does increase the amount of information available on the unknown
parameters.

Comparing the SMM estimator with the ML estimator, which is only feasible for
the Normal copula (as the other two factor copulas do not have a copula likelihood
in closed form) we see that the SMM estimator performs quite well. As predicted by
theory, the ML estimator is always more efficient than the SMM estimator, however
the loss in efficiency is moderate, ranging from around 25% for N = 3 to around 10%
for N = 100. This provides some confidence that our move to SMM, prompted by the
lack of a closed-form likelihood, does not come at a cost of a large loss in efficiency.
Comparing the SMM estimator to the GMM estimator provides us with a measure
of the loss in accuracy from having to estimate the population moment function via

simulation. We find that this loss is at most 3% and in some cases (N = 100) is
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slightly negative. Thus little is lost from using SMM rather than GMM.

Table 2.2 shows results for the block equidependence model for the N = 100 case
with AR-GARCH marginal distributions,'® which can be compared to the results in
the lower panel of Table 2.1. This table shows that the parameters of these models
are well estimated using the proposed dependence measures described in Appendix

B.2. The accuracy of the “shape” parameters, v—1

and ), is slightly lower in the
more general model; consistent with the estimation error from having to estimate
ten factor loadings (/3;) being greater than from having to estimate just a single other
parameter (02), however this loss is not great.

In Tables 2.3 and 2.4 we present the finite-sample coverage probabilities of 95%
confidence intervals based on the estimated asymptotic covariance matrix described
in Section 2.3.2. As discussed above, a critical input to the asymptotic covariance
matrix estimator is the step size used in computing the numerical derivative matrix
G. This step size, ep, must go to zero, but at a slower rate than 72, Ignoring
constants, our simulation sample size of T' = 1000 suggests setting €7 > 0.03, which
is much larger than standard step sizes used in computing numerical derivatives.!!
We consider a range of values from 0.0001 to 0.1. Table 2.4 shows that when the
step size is set to 0.01, 0.03 or 0.1 the finite-sample coverage rates are close to their
nominal levels. However if the step size is chosen too small (0.003 or smaller) then the
coverage rates are much lower than nominal levels. For example, setting e = 0.0001
(which is still 16 times larger than the default setting in Matlab) we find coverage
rates as low as 38% for a nominal 95% confidence interval. Thus this table shows that

the asymptotic theory provides a reliable means for obtaining confidence intervals,

10 The results for iid data, and the results for this model for N = 3 and 10, are available in
Appendix B.3.

1 For example, the default in many Matlab functions is a step size of /3 ~ 6x 1076 ~ 1/(165,000),
where € = 2.22 x 10716 is machine epsilon. This choice is optimal in certain applications, see Judd
(1998) for example.
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so long as care is taken not to set the step size too small.

Finally in Table 2.5 we present the results of a study of the rejection rates for
the J test of over-identifying restrictions. Given that we consider W = [ in this
table, the test statistic has a non-standard distribution (see Proposition 4 of Oh
and Patton, 2013a), and we use 10,000 simulations to obtain critical values. In
this case, the limiting distribution also depends on G’, and we present the rejection
rates for various choices of step size . Table 2.5 reveals that the rejection rates are
close to their nominal levels, for both the equidependence models and the “different
loading” models (which is a block equidependence model for the N = 100 case). The
J test rejection rates are less sensitive to the choice of step size than the coverage
probabilities of confidence intervals, however the best results are again generally

obtained when e is 0.01 or greater.
2.4 High-dimension copula models for S&P 100 returns

In this section we apply our proposed factor copulas to a study of the dependence
between a large collection of U.S. equity returns. We study all 100 stocks that were
constituents of the S&P 100 index as at December 2010. The sample period is April
2008 to December 2010, a total of T" = 696 trade days. The starting point for our
sample period was determined by the date of the latest addition to the S&P 100
index (Philip Morris Inc.), which has had no additions or deletions since April 2008.
The stocks in our study are listed in Table 2.6, along with their 3-digit SIC codes,
which we will use in part of our analysis below.

Table 2.7 presents some summary statistics of the data used in this analysis. The
top panel presents sample moments of the daily returns for each stock. The means
and standard deviations are around values observed in other studies. The skewness
and kurtosis coefficients reveal a substantial degree of heterogeneity in the shape

of the distribution of these asset returns, motivating our use of a nonparametric
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estimate (the EDF) of this in our analysis.
In the second panel of Table 2.7 we present information on the parameters of the
AR(1)-GJR-GARCH models, augmented with lagged market return information,

that are used to filter each of the individual return series'?:

Tit = Goi + P1iTit—1 + PmiTmi—1 + Eit (2.21)
05 = wi + Biop_y + g,y + Vg1 {gi—1 < 0}

+ amiefn,t_l + ’7mi5$n,t—11 {emi—1 < 0} (2.22)

Estimates of the parameters of these models are consistent with those reported in nu-
merous other studies, with a small negative AR(1) coefficient found for most though
not all stocks, and with the lagged market return entering significantly in 37 out of
the 100 stocks. The estimated GJR-GARCH parameters are strongly indicative of
persistence in volatility, and the asymmetry parameter, «, in this model is positive
for all but three of the 100 stocks in our sample, supporting the wide-spread finding
of a “leverage effect” in the conditional volatility of equity returns. The lagged mar-
ket residual is also found to be important for volatility in many cases, with the null
that a,,; = v = 0 being rejected at the 5% level for 32 stocks.

In the lower panel of Table 2.7 we present summary statistics for four measures
of dependence between pairs of standardized residuals: linear correlation, rank cor-
relation, average upper and lower 1% tail dependence (equal to (7999 + 70.01) /2), and
the difference in upper and lower 10% tail dependence (equal to 7590 — 7o.10). The
two correlation statistics measure the sign and strength of dependence, the third
and fourth statistics measure the strength and symmetry of dependence in the tails.

The two correlation measures are similar, and are 0.42 and 0.44 on average. Across

12 We considered GARCH (Bollerslev, 1986), EGARCH (Nelson, 1991), and GJR-GARCH
(Glosten, et al., 1993) models for the conditional variance of these returns, and for almost all
stocks the GJR-GARCH model was preferred according to the BIC.
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all 4950 pairs of assets the rank correlation varies from 0.37 to 0.50 from the 25"
and 75" percentiles of the cross-sectional distribution, indicating the presence of
mild heterogeneity in the correlation coefficients. The 1% tail dependence measure
is 0.06 on average, and varies from 0.00 to 0.07 across the inter-quartile range. The
difference in the 10% tail dependence measures is negative on average, and indeed is
negative for over 75% of the pairs of stocks, strongly indicating asymmetric depen-

dence between these stocks.
2.4.1 Results from equidependence copula specifications

We now present our first empirical results on the dependence structure of these 100
stock returns: the estimated parameters of eight different models for the copula.
We consider four existing copulas: the Clayton copula, the Normal copula, the Stu-
dent’s t copula, and the skew ¢ copula, with equicorrelation imposed on the latter
three models for comparability, and four factor copulas, described by the distribu-
tions assumed for the common factor and the idiosyncractic shock: ¢-Normal, Skew
t-Normal, t-t, Skew t-t. All models are estimated using the SMM-type method de-
scribed in Section 2.3.2. The value of the SMM objective function at the estimated
parameters, Qsarar, is presented for each model, along with the p-value from the J-
test of the over-identifying restrictions. Standard errors are based on 1000 bootstraps
to estimate X7 g, and with a step size er = 0.1 to compute G.

Table 2.8 reveals that the variance of the common factor, o2, is estimated by all
models to be around 0.9, implying an average correlation coefficient of around 0.47.
The estimated inverse degrees of freedom (DoF') parameter in these models is around

1

1/25, and the standard errors on v~! reveal that this parameter is significant!3 at

13 Note that the case of zero tail dependence corresponds to v, 1 = 0, which is on the boundary of
the parameter space for this parameter, implying that a standard ¢ test is strictly not applicable.
In such cases the squared t statistic no longer has an asymptotic x? distribution under the null,
rather it is distributed as an equal-weighted mixture of a 7 and x2, see Gourieroux and Monfort
(1996, Ch 21). The 90% and 95% critical values for this distribution are 1.64 and 2.71 (compared
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the 10% level for the three models that allow for asymmetric dependence, but not
significant for the three models that impose symmetric dependence. The asymmetry
parameter, A, is significantly negative in all models in which it is estimated, with
t-statistics ranging from -2.1 to -4.4. This implies that the dependence structure
between these stock returns is significantly asymmetric, with large crashes being
more likely than large booms. Other papers have considered equicorrelation models
for the dependence between large collections of stocks, see Engle and Kelly (2012) for
example, but empirically showing the importance of allowing the implied common
factor to be fat tailed and asymmetric is novel.

Figure 2.4 presents the quantile dependence function from the estimated Normal
copula and the estimated skew ¢t —t factor copula, along with the quantile dependence
averaged across all pairs of stocks, and pointwise 90% bootstrap confidence intervals
for these estimates based on the theory in Rémillard (2010). (The figure zooms in
on the left and right 20% tails, removing the middle 60% of the distribution as the
estimates and models are all very similar there.) This figure reveals that the Normal
copula overestimates the dependence in the upper tail, and underestimates it in the
lower tail. This is consistent with the fact that the empirical quantile dependence
is asymmetric, while the Normal copula imposes symmetry. The skew ¢ — ¢ factor
copula provides a reasonable fit in both tails, though it somewhat overestimates the
dependence in the extreme left tail.

Figure 2.5 exploits the high-dimensional nature of our analysis, and plots the
expected proportion of “crashes” in the remaining (100 — j) stocks, conditional on
observing a crash in j stocks. We show this for a “crash” defined as a once-in-a-
month (1/22, around 4.6%) event and as a once-in-a-quarter (1/66, around 1.5%)
event. For once-in-a-month crashes, the observed proportions track the Skew t-t

factor copula well for 7 up to around 25 crashes, and again for j of around 70. For

with 2.71 and 3.84 for the x? distribution), which correspond to t-statistics of 1.28 and 1.65.
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J in between 30 and 65 the Normal copula appears to fit quite well. For once-in-a-
quarter crashes, displayed in the lower panel of Figure 2.5, the empirical plot tracks
that for the Normal copula well for j up to around 30, but for j = 35 the empirical
plot jumps and follows the skew ¢t —t factor copula. Thus it appears that the Normal
copula may be adequate for modeling moderate tail events, but a copula with greater
tail dependence (such as the skew t — t factor copula) is needed for more extreme
tail events.

The last two columns of Table 2.8 report the value of the objective function
(Qsarar) and the p-value from a test of the over-identifying restrictions. The Qsnras
values reveal that the three models that allow for asymmetry (skew ¢ copula, and
the two skew ¢ factor copulas) out-perform all the other models, and reinforce the
above conclusion that allowing for a skewed common factor is important for this
collection of assets. The p-values, however, are near zero for all models, indicating
that none of them pass this specification test. One likely source of these rejections
is the assumption of equidependence, which was shown in the summary statistics in
Table 2.7 to be questionable for this large set of stock returns. We relax this in the

next section.
2.4.2 Results from block equidependence copula specifications

In response to the rejection of the copula models based on equidependence, we now
consider a generalization to allow for heterogeneous dependence. We propose a multi-
factor model that allows for a common, market-wide, factor, and a set of factors
related only to specific industries. We use the first digit of Standard Industrial
Classification (SIC) to form seven groups of stocks, see Table 2.6. The model we

consider is the copula generated by the following structure:
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Xi = BZZO—F’YZZS(Z) + &, 1= 1,2,,100
Zy ~ Skew t (v, \) (2.23)
ZSNiidt(V), S = 1,2,...,7; ZS_J.LZO V.S

E; ZZdt(V) > 1= 1,2, ceoy 100, €Z'_J.|_Zj v Z,j

where S (7) is the SIC group for stock i. There are eight latent factors in total in this
model, but any given variable is only affected by two factors, simplifying its structure
and reducing the number of free parameters. Note here we impose that the industry
factors and the idiosyncratic shocks are symmetric, and only allow asymmetry in
the market-wide factor, Zj. It is feasible to consider allowing the industry factors to
have differing levels of asymmetry, but we rule this out in the interests of parsimony.
We impose that all stocks in the same SIC group have the same factor loadings, but
allow stocks in different groups to have different factor loadings. This generates a
“block equidependence” model which greatly increases the flexibility of the model,
but without generating too many additional parameters to estimate. In total, this
copula model has a total of 16 parameters, providing more flexibility than the 3-
parameter equidependence model considered in the previous section, but still more
parsimonious (and tractable) than a completely unstructured approach to this 100-
dimensional problem.

The results of this model are presented in Table 2.9. The Clayton copula is not
presented here as it imposes equidependence by construction, and so is not compara-
ble to the other models. The estimated inverse DoF parameter, v}, is around 1/14,

somewhat larger and more significant than for the equidependence model, indicating

stronger evidence of tail dependence. The asymmetry parameters are also larger (in

14 We also considered a one-factor model that allowed for different factor loadings, generalizing
the equidependence model of the previous section but simpler than this multi-factor copula model.
That model provided a significantly better fit than the equidependence model, but was also rejected
using the J test of over-identifying restrictions, and so is not presented here to conserve space.

85



absolute value) and more significantly negative in this more flexible model than in
the equidependence model. It appears that when we add variables that control for
intra-industry dependence, (i.e., industry-specific factors) we find the market-wide
common factor is more fat tailed and left skewed than when we impose a single factor
structure.

Focussing on our preferred skew t —t factor copula model, the coefficients on the
market factor, 3;, range from 0.88 (for SIC group 2, Manufacturing: Food, apparel,
etc.) to 1.25 (SIC group 1, Mining and construction), and in all cases significantly
different from zero at the 5% level, indicating the varying degrees of inter-industry
dependence. The coefficients on the industry factors, ~;, measure the degree of
additional intra-industry dependence, beyond that coming from the market-wide
factor. These range from 0.17 to 1.09 for SIC groups 3 and 1 respectively. Even
for the smaller estimates, these are significantly different from zero, indicating the
presence of industry factors beyond a common market factor. The intra- and inter-
industry rank correlations and tail dependence coefficients implied by this model'®
are presented in Table 2.10, and reveal the degree of heterogeneity and asymmetry
that this copula captures: rank correlations range from 0.39 (for pairs of stocks
in SIC groups 1 and 5) to 0.72 (for stocks within SIC group 1). The upper and
lower tail dependence coefficients further reinforce the importance of asymmetry in
the dependence structure, with lower tail dependence measures being substantially
larger than upper tail measures: lower tail dependence averages 0.82 and ranges from
0.70 to 0.99, while upper tail dependence averages 0.07 and ranges from 0.02 to 0.74.

With this more flexible model we can test restrictions on the factor coefficients,
to see whether the additional flexibility is required to fit the data. The p-values from

these tests are in the bottom rows of Table 2.9. Firstly, we can test whether all of

15 Rank correlations from this model are not available in closed form, and we use 50,000 simulations
to estimate these. Upper and lower tail dependence coefficients are based on Propositions 2 and 3.
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the industry factor coefficients are zero, which reduces this model to a one-factor
model with flexible weights. The p-values from these tests are zero to four decimal
places for all models, providing strong evidence in favor of including industry factors.
We can also test whether the market factor is needed given the inclusion of industry
factors by testing whether all betas are equal to zero, and predictably this restriction
is strongly rejected by the data. We further can test whether the coefficients on the
market and industry factors are common across all industries, reducing this model
to an equidependence model, and this too is strongly rejected. Finally, we use the J
test of over-identifying restrictions to check the specification of these models. Using
this test, we see that the models that impose symmetry are strongly rejected. The
skew t copula has a p-value of 0.04, indicating a marginal rejection, and the skew t—t
factor copula performs best, passing this test at the 5% level, with a p-value of 0.07.

Thus it appears that a multi-factor model with heterogeneous weights on the
factors, that allows for positive tail dependence and stronger dependence in crashes

than booms, is needed to fit the dependence structure of these 100 stock returns.
2.4.8 Measuring systemic risk: Marginal Expected Shortfall

The recent financial crisis has highlighted the need for the management and measure-
ment of systemic risk, see Acharya et al. (2010) for discussion. Brownlees and Engle
(2011) propose a measure of systemic risk they call “marginal expected shortfall”,
or MES. It is defined as the expected return on stock ¢ given that the market return

is below some (low) threshold:
MESZt = _Et—l [Tit|rmt < C] (224)

An appealing feature of this measure of systemic risk is that it can be computed with
only a bivariate model for the conditional distribution of (r;;, 7, ), and Brownlees and

Engle (2011) propose a semiparametric model based on a bivariate DCC-GARCH
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model to estimate it. A corresponding drawback of this measure is that by using
the market index to identify periods of crisis, it may overlook periods with crashes
in individual firms. With a model for the entire set of constituent stocks, such as
the high dimension copula models considered in this paper, combined with standard
AR-GARCH type models for the marginal distributions, we can estimate the MES
measure proposed in Brownlees and Engle (2011), as well as alternative measures
that use crashes in individual stocks as flags for periods of turmoil. For example, one
might consider the expected return on stock i conditional on k stocks in the market

having returns below some threshold, a “kES”:

kESy; = —Fi [Tit

(Zill {ri<C}) > k] (2.25)

Brownlees and Engle (2011) propose a simple method for ranking estimates of

MES:
1 T
MSE; = ?; (ri — MESy)* 1 {rm, < C} (2.26)
1 L Tit — MESH/ 2

Corresponding metrics immediately follow for estimates of “kES”.

In Table 2.11 we present the MSE and RelMSE for estimates of MES and kES, for
threshold choices of -2% and -4%. We implement the model proposed by Brownlees
and Engle (2011), as well as their implementations of a model based on the CAPM,
and one based purely on rolling historical information. Along with these, we present
results for four copulas: the Normal, Student’s ¢, skew ¢, and skew t —t factor copula,
all with the block equidependence structure from Section 2.4.2 above. In the upper
panel of Table 2.11 we see that the Brownlees-Engle model performs the best for both

thresholds under the MSE performance metric, with the skew ¢t — ¢ factor copula as
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the second-best performing model. Under the Relative MSE metric, the factor copula
is best performing model, for both thresholds, followed by the skew t copula. Like
Brownlees and Engle (2011), we find that the worst-performing methods under both
metrics are the Historical and CAPM methods.

The lower panel of Table 2.11 presents the performance of various methods for
estimating kES, with k set to 30.1% This measure requires an estimate of the condi-
tional distribution for the entire set of 100 stocks, and thus the CAPM and Brownlees-
Engle methods cannot be applied. We evaluate the remaining five methods, and find
that the skew ¢t — t factor copula performs the best for both thresholds, under both
metrics. Thus our proposed factor copula model for high dimensional dependence
not only allows us to gain some insights into the structure of the dependence between
this large collection of assets, but also provides improved estimates of measures of

systemic risk.
2.5 Conclusion

This paper presents new models for the dependence structure, or copula, of economic
variables based on a simple factor structure for the copula. These models are particu-
larly attractive for high dimensional applications, involving fifty or more variables, as
they allow the researcher to increase or decrease the flexibility of the model according
to the amount of data available and the dimension of the problem, and, importantly,
to do so in a manner that is easily interpreted. The class of factor copulas presented
in this paper does not generally have a closed-form likelihood. We use extreme value
theory to obtain analytical results on the tail dependence implied by factor copulas,
and we consider SMM-type methods for the estimation of factor copulas. Via an

extensive Monte Carlo study, we show that SMM estimation has good finite-sample

16 'We choose this value of & so that the number of identified “crisis” days is broadly comparable
to the number of such days for MES. Results for alternative values of k are similar.
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properties in time series applications involving up to 100 variables.

We employ our proposed factor copulas to study daily returns on all 100 con-
stituents of the S&P 100 index over the period 2008-2010, and find significant evi-
dence of a skewed, fat-tailed common factor, which generates asymmetric dependence
and tail dependence. In an extension to a multi-factor copula, we find evidence of
the importance of industry factors, leading to heterogeneous dependence. We also
consider an application to the estimation of systemic risk, and we show that the pro-
posed factor copula model provides superior estimates of two measures of systemic

risk.

2.6 Tables and figures
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Table 2.1: Simulation results for factor copula models

Normal
MLE GMM SMM Factor ¢t — ¢ Factor skew t — ¢t
o? o? o? o2 vl o? v A
True  1.00 1.00 1.00 1.00 0.25 1.00 0.25 -0.50
N=3
Bias 0.0141 -0.0143 -0.0164 -0.0016 -0.0185 0.0126 -0.0199 -0.0517
Std  0.0803 0.1014 0.1033 0.1094  0.0960 0.1205 0.1057  0.1477
Med 1.0095 0.9880 0.9949 0.9956  0.2302 1.0050 0.2380 -0.5213
90% 1.1180 1.1103 1.1062 1.1448  0.3699 1.1772  0.3636 -0.3973
10% 0.9172 0.8552 0.8434 0.8721  0.0982 0.8662  0.0670 -0.7538
Diff  0.2008 0.2551 0.2628 0.2727 0.2716 0.3110  0.2966  0.3565
N =10
Bias 0.0113 -0.0099 -0.0119 -0.0025 -0.0137 -0.0039 -0.0161 -0.0119
Std  0.0559 0.0651 0.0666 0.0724 0.0611 0.0851 0.0790 0.0713
Med 1.0125 0.9874 0.9898 0.9926  0.2360 0.9897 0.2376 -0.5084
90% 1.0789 1.0644 1.0706 1.0967 0.3102 1.1095 0.3420 -0.4318
10% 0.9406 0.9027 0.8946 0.9062 0.1704 0.8996 0.1331 -0.5964
Diff 0.1383 0.1617 0.1761 0.1905 0.1398 0.2100  0.2089 0.1645
N =100

Bias 0.0167 -0.0068 -0.0080 -0.0011 -0.0138 0.0015 -0.0134 -0.0099
Std  0.0500 0.0554 0.0546 0.0659  0.0549 0.0841 0.0736  0.0493
Med 1.0164 0.9912 0.9956 1.0011  0.2346 0.9943 0.2402 -0.5101
90% 1.0805 1.0625 1.0696 1.0886  0.3127 1.1060 0.3344 -0.4465
10% 0.9534 0.9235 0.9279 0.9112 0.1685 0.8970 0.1482 -0.5734
Diff 0.1270 0.1390 0.1418 0.1773 0.1442 0.2089 0.1861 0.1270

Notes: This table presents the results from 100 simulations of three different factor
copulas, the Normal copula, the ¢ — ¢ factor copula and the skew t — t factor copula.
The Normal copula is estimated by ML, GMM, and SMM, and the other two copulas
are estimated by SMM. The marginal distributions of the data are assumed to follow
AR(1)-GARCH(1,1) processes, as described in Section 2.3. Problems of dimension
N = 3, 10 and 100 are considered, the sample size is T" = 1000 and the number of
simulations used is S = 25 x T. The first row of each panel presents the average
difference between the estimated parameter and its true value.
presents the standard deviation in the estimated parameters. The third, fourth and
fifth rows present the 50, 90" and 10*" percentiles of the distribution of estimated
parameters, and the final row presents the difference between the 90" and 10
percentiles.
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Table 2.2: Simulation results for different loadings factor copula model with N=100

-1
v A B B2 B3 By  Ps Bse Bz DBs Ba  Bio
True 0.25 -0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
Normal
Bias - - -0.0010 -0.0038 -0.0040 -0.0072 -0.0071 -0.0140 -0.0178 -0.0119 -0.0194 -0.0208
Std - - 0.0128 0.0182 0.0248 0.0322 0.0377 0.0475 0.0651 0.0784 0.1022 0.1291
Med - - 0.2489 0.4970 0.7440 0.9942 1.2421 1.4868 1.7279 1.9918 2.2256 2.4832
90% - - 0.2645 0.5204 0.7787 1.0291 1.2970 1.5470 1.8226 2.0874 2.3609 2.6458
10% - - 0.2304 0.4701 0.7158 0.9502 1.1982 1.4197 1.6526 1.8825 2.0921 2.3090
diff - - 0.0341 0.0503 0.0629 0.0788 0.0987 0.1273 0.1700 0.2049 0.2689 0.3368
Factor t — ¢
Bias -0.0120 - 0.0000 0.0009 0.0018 -0.0045 0.0011 -0.0073 -0.0080 -0.0122 -0.0061 -0.0065
Std 0.0574 - 0.0149 0.0236 0.0300 0.0343 0.0443 0.0580 0.0694 0.0867 0.1058 0.1332
Med 0.2384 - 0.2503 0.5056 0.7528 0.9985 1.2550 1.4881 1.7409 1.9820 2.2234 2.4737
90% 0.3056 - 0.2678 0.5255 0.7896 1.0348 1.3052 1.5697 1.8270 2.1012 2.4089 2.6597
10% 0.1683 - 0.2348 0.4689 0.7187 0.9462 1.1965 1.4282 1.6517 1.8744 2.1303 2.3196
diff 0.1373 - 0.0330 0.0566 0.0709 0.0886 0.1086 0.1416 0.1754 0.2268 0.2786 0.3401
Factor skew t —t
Bias -0.0119 -0.0019 0.0008 0.0001 0.0028 -0.0029 -0.0036 -0.0096 -0.0114 -0.0232 -0.0178 -0.0194
Std 0.0633 0.0451 0.0134 0.0246 0.0320 0.0443 0.0588 0.0806 0.0902 0.1111 0.1373 0.1635
Med 0.2434 -0.5051 0.2477 0.5001 0.7520 0.9986 1.2468 1.4826 1.7417 1.9803 2.2107 2.4786
90% 0.3265 -0.4392 0.2680 0.5309 0.7961 1.0613 1.3028 1.5856 1.8378 2.1094 2.4430 2.7034
10% 0.1550 -0.5527 0.2358 0.4660 0.7155 0.9505 1.1756 1.4042 1.6230 1.8395 2.0494 2.2739
diff 0.1714 0.1134 0.0321 0.0648 0.0807 0.1107 0.1272 0.1814 0.2148 0.2699 0.3936 0.4294

Notes: This table presents the results from 100 simulations of three different factor
copulas: the Normal copula, the ¢ — ¢ factor copula and the skew t — t factor copula.
We divide the N = 100 variables into ten groups and assume that all variables

in the same group have the same loading on the common factor.

The marginal

distributions of the data are assumed to follow AR(1)-GARCH(1,1) processes, as
described in Section 2.3. The sample size is 7' = 1000 and the number of simulations
used is S = 25 x T The first row of each panel presents the average difference between
the estimated parameter and its true value. The second row presents the standard
deviation in the estimated parameters. The third, fourth and fifth rows present the
50", 90" and 10" percentiles of the distribution of estimated parameters, and the
final row presents the difference between the 90 and 10" percentiles.
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Table 2.3: Simulation results on coverage rates

Factor Factor
Normal t—t skew t —t
o? o2 vt o2 vt oA
N =3
Er
0.1 89 93 97 99 100 96
0.03 90 94 98 99 98 96
0.01 88 92 98 99 96 95
0.003 85 95 95 9 89 95
0.001 83 89 89 92 84 93
0.0003 58 69 69 4 T4 T4
0.0001 38 49 53 57 70 61
N =10
Er
0.1 87 93 99 97 98 99
0.03 87 95 99 97 98 97
0.01 87 94 96 97 98 95
0.003 87 95 95 98 95 96
0.001 87 95 93 9% 90 95
0.0003 86 94 87 91 77 93
0.0001 71 87 81 71 81 &85
N =100

Er
0.1 95 93 95 94 95 94
0.03 95 94 94 94 94 94
0.01 95 93 93 94 94 94
0.003 94 95 93 94 94 94
0.001 94 94 92 94 93 95
0.0003 92 94 92 94 92 93
0.0001 84 94 89 94 88 95

Notes: This table presents the results from 100 simulations of three different factor
copulas, the Normal copula, the ¢ — t factor copula and the skew t — t factor copula,
all estimated by SMM. The marginal distributions of the data are assumed to follow
AR(1)-GARCH(1,1) processes, as described in Section 2.3. Problems of dimension
N = 3, 10 and 100 are considered, the sample size is T = 1000 and the number of
simulations used is S = 25 x T. The rows of each panel contain the step size, e, used
in computing the matrix of numerical derivatives, Gr . The numbers in the table

present the percentage of simulations for which the 95% confidence interval based on
the estimated covariance matrix contained the true parameter.
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Table 2.4: Coverage rate for different loadings factor copula model with N=100
AR-GARCH data

vV XN B Be B3 Bi Bs Bs Br Bs Bo Do

Normal

Er

0.1 - - 97 91 92 89 95 93 94 95 95 90
0.03 - - 97 91 92 90 95 95 94 95 95 90
0.01 - - 97 91 92 90 95 94 94 96 94 91
0.003 - - 97 90 93 90 9 94 95 96 95 90
0.001 - - 97 90 94 93 94 94 94 96 94 92
0.0003 - - 97 92 93 92 95 94 91 93 92 94
0.0001 - - 94 94 91 88 90 92 94 91 88 86

Factor t — ¢

Er

0.1 99 - 94 93 96 96 98 91 93 92 95 93
0.03 94 - 94 91 96 96 98 92 93 92 97 93
0.01 95 - 94 94 97 96 97 93 93 92 98 93
0.003 94 - 94 94 97 96 97 94 94 95 98 95
0.001 94 - 93 93 97 97 97 92 96 94 100 94
0.0003 90 - 94 95 98 97 99 94 95 95 99 93
0.0001 65 - 95 96 96 98 98 92 96 94 97 91

Factor skew t — ¢t

Er

0.1 93 95 98 95 96 94 94 92 91 91 90 92

0.03 93 95 98 95 95 94 95 92 91 91 89 90
0.01 93 95 97 96 95 94 94 92 92 91 91 91
0.003 93 95 97 96 96 94 95 92 92 92 90 &9
0.001 93 94 97 96 95 94 94 91 91 93 89 88
0.0003 8 93 98 95 95 95 95 90 90 83 83 85
0.0001 69 86 98 97 94 91 90 88 &7 84 83 &0

Notes: This table presents the results from 100 simulations of three different factor
copulas: the Normal copula, the ¢ — ¢ factor copula and the skew t — t factor copula.
We divide the N = 100 variables into ten groups and assume that all variables in the
same group have the same loading on the common factor. The marginal distributions
of the data are assumed to follow AR(1)-GARCH(1,1) processes, as described in
Section 2.3. The sample size is T' = 1000 and the number of simulations used is S =
25 xT'. The rows of each panel contain the step size, 7, used in computing the matrix

of numerical derivatives, CA?TVS. The numbers in the table present the percentage of

simulations for which the 95% confidence interval based on the estimated covariance
matrix contained the true parameter. 04



Table 2.5: Rejection frequencies for the test of overidentifying restrictions

Equidependence Different loadings
Factor Factor Factor Factor
Normal t—t skewt—t Normal ¢—t skewt—t
N =3

Er

0.1 97 97 99 95 97 97
0.03 97 98 99 95 95 96
0.01 97 97 100 93 95 95
0.003 97 98 100 92 95 96
0.001 98 96 100 93 93 97
0.0003 99 97 100 91 92 97
0.0001 99 97 99 92 94 98

N =10

Er

0.1 97 97 98 98 95 98
0.03 98 97 97 98 95 99
0.01 96 97 97 97 94 98
0.003 97 96 97 98 92 99
0.001 98 95 97 96 89 100
0.0003 97 94 97 97 93 100
0.0001 97 94 98 98 95 100

N =100

Er

0.1 97 95 99 95 95 99
0.03 97 95 98 96 94 99
0.01 97 95 98 96 93 99
0.003 97 95 97 95 94 99
0.001 97 94 99 95 91 100
0.0003 97 94 99 95 89 100
0.0001 98 92 98 93 90 100

Notes: This table presents the results from 100 simulations of three different factor
copulas, the Normal copula, the ¢ — t factor copula and the skew t — t factor copula,
all estimated by SMM. The marginal distributions of the data are assumed to follow
AR(1)-GARCH(1,1) processes, as described in Section 2.3. Problems of dimension
N = 3, 10 and 100 are considered, the sample size is T" = 1000 and the number of
simulations used is S = 25 x T. The rows of each panel contain the step size, e,
used in computing the matrix of numerical derivatives, G'r s, needed for the critical
value. The confidence level for the test of over-identifying restrictions is 0.95, and
the numbers in the table present the percentage of simulations for which the test
statistic was greater than its computed critical value.

95



Table 2.6: Stocks used in the empirical analysis

Ticker Name SIC Ticker Name SIC Ticker Name SIC
AA Alcoa 333 EXC Exelon 493 NKE Nike 302
AAPL Apple 357 F Ford 371 NOV National Oilwell 353
ABT Abbott Lab. 283 FCX Freeport 104 NSC Norfolk Sth 671
AEP American Elec 491 FDX Fedex 451 NWSA News Corp 271
ALL Allstate Corp 633 GD GeneralDynam 373 NYX NYSE Euronxt 623
AMGN Amgen Inc. 283 GE General Elec 351 ORCL Oracle 737
AMZN Amazon.com 737 GILD GileadScience 283 OXY OccidentalPetrol 131
AVP Avon 284 GOOG Google Inc 737 PEP Pepsi 208
AXP American Ex 671 GS GoldmanSachs 621 PFE Pfizer 283
BA Boeing 372 HAL Halliburton 138 PG Procter&Gamble 284
BAC Bank of Am 602 HD Home Depot 525 QCOM Qualcomm Inc 366
BAX Baxter 384 HNZ Heinz 203 RF Regions Fin 602
BHI Baker Hughes 138 HON Honeywell 372 RTN Raytheon 381
BK Bank of NY 602 HPQ HP 357 S Sprint 481
BMY Bristol-Myers 283 IBM IBM 357 SLB Schlumberger 138
BRK Berkshire Hath 633 INTC Intel 367 SLE Sara Lee Corp. 203
C Citi Group 602 INJ Johnson&J. 283 SO Southern Co. 491
CAT Caterpillar 353 JPM JP Morgan 672 T AT&T 481
CL Colgate 284 KFT Kraft 209 TGT Target 533
CMCSA Comcast 484 KO Coca Cola 208 TWX Time Warner 737
COF Capital One 614 LMT Lock’dMartn 376 TXN Texas Inst 367
COP Conocophillips 291 LOW Lowe’s 521 UNH UnitedHealth 632
COST Costco 533 MA Master card 615 UPS United Parcel 451
CPB Campbell 203 MCD MaDonald 581 USB US Bancorp 602
CSCO Cisco 367 MDT Medtronic 384 uTx United Tech 372
CVSs CVSs 591 MET Metlife Inc. 671 VZ Verizon 481
CVX Chevron 291 MMM 3M 384 WAG ‘Walgreen 591
DD DuPont 289 MO Altria Group 211 WFC ‘Wells Fargo 602
DELL Dell 357 PM Philip Morris 211 WMB Williams 492
DIS Walt Disney 799 MON Monsanto 287 WMT ‘WalMart 533
DOW Dow Chem 282 MRK Merck 283 WY Weyerhauser 241
DVN Devon Energy 131 MS MorganStanley 671 XOM Exxon 291
EMC EMC 357 MSFT Microsoft 737 XRX Xerox 357
ETR ENTERGY 491

Notes: This table presents the ticker symbols, names and 3-digit SIC codes of the
100 stocks used in Section 2.4.
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Table 2.7: Summary statistics

Cross-sectional distribution

Mean 5% 25% Med 75% 95%

Mean 0.0004 -0.0003 0.0001 0.0003  0.0006 0.0013
Std dev 0.0287 0.0153 0.0203 0.0250 0.0341  0.0532
Skewness 0.3458 -0.4496 -0.0206 0.3382  0.6841  1.2389
Kurtosis 11.3839  5.9073  7.5957  9.1653 11.4489 19.5939
oo 0.0004 -0.0004 0.0001 0.0004 0.0006 0.0013
»1 -0.0345 -0.2045 -0.0932 -0.0238  0.0364  0.0923
Om -0.0572  -0.2476 -0.1468 -0.0719  0.0063  0.1392
w x 1000 0.0126  0.0024 0.0050 0.0084  0.0176  0.0409
I6] 0.8836 0.7983 0.8639 0.8948 09180  0.9436
o) 0.0240  0.0000 0.0000 0.0096  0.0354  0.0884
v 0.0593 0.0000 0.0017 0.0396 0.0928  0.1628
Q, 0.0157  0.0000  0.0000 0.0000  0.0015 0.0646
Ym 0.1350  0.0000 0.0571 0.0975  0.1577  0.3787
p 0.4155 0.2643 0.3424 04070  0.4749  0.5993
Ps 0.4376 0.2907 0.3690 0.4292  0.4975 0.6143
(T0.90 + T0.01) /2 0.0572  0.0000 0.0000 0.0718  0.0718  0.1437
(T0.90 — T0.10) -0.0922 -0.2011 -0.1293 -0.0862 -0.0431  0.0144

Notes: This table presents some summary statistics of the daily equity returns data
used in the empirical analysis. The top panel presents simple unconditional mo-
ments of the daily return series. The second panel presents summaries of the es-
timated AR(1)-GJR-GARCH(1,1) models estimated on these returns. The lower
panel presents linear correlation, rank correlation, average 1% upper and lower tail
dependence, and the difference between the 10% tail dependence measures, com-
puted using the standardized residuals from the estimated AR-GJR-GARCH model.
The columns present the mean and quantiles from the cross-sectional distribution of
the measures listed in the rows. The top two panels present summaries across the
N = 100 marginal distributions, while the lower panel presents a summary across
the N (N — 1) /2 = 4950 distinct pairs of stocks.
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Table 2.11: Performance of methods for predicting systemic risk

MSE RelMSE

Cut-off  -2% 4% -2% 4%

Marginal Expected Shortfall (MES)

Brownlees-Engle 0.9961 1.2023 0.7169  0.3521
Historical 1.1479  1.6230 1.0308  0.4897
CAPM 1.1532  1.5547 0.9107 0.4623
Normal copula 1.0096  1.2521 0.6712  0.3420
t copula 1.0118  1.2580 0.6660  0.3325
Skew t copula 1.0051  1.2553 0.6030  0.3040

Skew t — ¢ factor copula  1.0012  1.2445 0.5885 0.2954

k-Ezxpected Shortfall (kES)

Historical 1.1632  1.6258 1.4467  0.7653
Normal copula 1.0885  1.4855 1.3220  0.5994
t copula 1.0956  1.4921 1.4496  0.6372
Skew t copula 1.0898  1.4923 1.3370  0.5706

Skew t — ¢t factor copula 1.0822 1.4850 1.1922 0.5204

Notes: This table presents the MSE (left panel) and Relative MSE (right panel) for
various methods of estimating measures of systemic risk. The top panel presents
results for marginal expected shortfall (MES), defined in equation (2.24), and the
lower panel presents results for k-expected shortfall (kES), defined in equation (2.25),
with k set to 30. Two thresholds are considered, C' = —2% and C' = —4%. There are
70 and 21 “event” days for M E'S under these two thresholds, and 116 and 36 “event”

days for kE'S. The best-performing model for each threshold and performance metric
is highlighted in bold.
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Normal copula t(4)-t(4) factor copula

FIGURE 2.1: Scatter plots from four bivariate distributions, all with N(0,1) margins
and linear correlation of 0.5, constructed using four different factor copulas.
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Quantile dependence for four factor copulas
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FIGURE 2.2: Quantile dependence implied by four factor copulas, all with linear
correlation of 0.5.
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Expected number of remaining stocks that will crash,
conditional on observing j crashes, q=1/66
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FIGURE 2.3: Conditional on observing j out of 100 stocks crashing, this figure
presents the expected number (upper panel) and proportion (lower panel) of the re-
maining (100-j) stocks that will crash. “Crash” events are defined as returns in the
lower 1/66 tail.
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Sample and fitted quantile dependence
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FIGURE 2.4: Sample quantile dependence for 100 daily stock returns, along with the
fitted quantile dependence from a Normal copula and from a Skew t-t factor copula,
for the lower and upper tails.
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Expected proportion of remaining stocks that will crash,
conditional on observing j crashes, q=1/22
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Ficure 2.5: Conditional on observing j out of 100 stocks crashing, this figure
presents the expected proportion of the remaining (100-j) stocks that will crash.
“Crash” events are defined as returns in the lower 1/22 (upper panel) and 1/66
(lower panel) tail. Note that the horizontal azes in these two panels are different,
due to limited information in the joint tails.
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3

Simulated Method of Moments Estimation for
Copula-Based Multivariate Models (co-authored
with Andrew Patton)

3.1 Introduction

Copula-based models for multivariate distributions are widely used in a variety of ap-
plications, including actuarial science and insurance (Embrechts, McNeil and Strau-
mann, 2002; Rosenberg and Schuermann 2006), economics (Brendstrup and Paarsch
2007; Bonhomme and Robin 2009), epidemiology (Clayton 1978; Fine and Jiang
2000), finance (Cherubini, Luciano and Vecchiato 2004; Patton 2006a), geology and
hydrology (Cook and Johnson 1981; Genest and Favre 2007), among many others.
An important benefit they provide is the flexibility to specify the marginal distribu-
tions separately from the dependence structure, without imposing that they come
from the same family of joint distributions.

While copulas provide a great deal of flexibility in theory, the search for copula
models that work well in practice is an ongoing one. This search has spawned a

number of new and flexible models, see Demarta and McNeil (2005), McNeil, Frey
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and Embrechts (2005), Smith, Min, Almeida and Czado (2010), Smith, Gan and
Kohn (2012), and Oh and Patton (2011), among others. Some of these models
are such that the likelihood of the copula is either not known in closed form, or
is complicated to obtain and maximize, motivating the consideration of estimation
methods other than MLE. Moreover, in many financial applications, the estimated
copula model is used in pricing a derivative security, such as a collateralized debt
obligation or a credit default swap (CDO or CDS), and it may be of interest to
minimize the pricing error (the observed market price less the model-implied price of
the security) in calibrating the parameters of the model. In some cases the mapping
from the parameter(s) of the copula to dependence measures (such as Spearman’s or
Kendall’s rank correlation, for example) or to the price of the derivative contract is
known in closed form, thus allowing for method of moments or generalized method
of moments (GMM) estimation. In general, however, this mapping is unknown,
and an alternative estimation method is required. We consider a simple yet widely
applicable simulation-based approach to address this problem.

This paper presents the asymptotic properties of a simulation-based estimator of
the parameters of a copula model. We consider both #id and time series data, and we
consider the case that the marginal distributions are estimated using the empirical
distribution function (EDF). The estimation method we consider shares features
with the simulated method of moments (SMM), see McFadden (1989) and Pakes
and Pollard (1989), for example, however the presence of the EDF in the sample
“moments” means that existing results on SMM are not directly applicable. We
draw on well-known results on SMM estimators, see Newey and McFadden (1994) for
example, and recent results from empirical process theory for copulas, see Fermanian,
Radulovi¢ and Wegkamp (2004), Chen and Fan (2006) and Rémillard (2010), to show
the consistency and asymptotic normality of simulation-based estimators of copula
models. To the best of our knowledge, simulation-based estimation of copula models
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has not previously been considered in the literature. An extensive simulation study
verifies that the asymptotic results provide a good approximation in finite samples.
We illustrate the results with an application to a model of the dependence between
the equity returns on seven financial firms during the recent crisis period.

In addition to maximum likelihood, numerous other estimation methods have
been considered for copula-based multivariate models. We describe these here and
contrast them with the SMM approach proposed in this paper. Multi-stage maxi-
mum likelihood, also known as “inference functions for margins” in this literature
(see Joe and Xu (1996) and Joe (2005) for iid data and Patton (2006b) for time
series data) is one of the most widely-used estimation methods. The “maximiza-
tion by parts” (MBP) algorithm of Song, et al. (2005) is an iterative method that
improves the efficiency of multi-stage MLE, and attains full efficiency under some
conditions. Like MLE, both of these methods only apply when the marginal distribu-
tions are parametric. When the marginal distribution models are correctly specified
this improves the efficiency of the estimator, relative to the proposed SMM approach
using nonparametric margins, however it introduces the possibility of mis-specified
marginal distributions, which can have deleterious effects on the copula parameter
estimates, see Kim, et al. (2007).

Semi-parametric maximum likelihood (see Genest, Ghoudi and Rivest (1995) for
iid data and Chen and Fan (2006), Chen et al. (2009) and Chen, Fan and Tsyren-
nikov (2006) for time series data) is also a widely-used estimation method and has a
number of attractive features. Most importantly, with respect to SMM approach pro-
posed here, it yields fully efficient estimates of the copula parameters, whereas SMM
generally does not. Semi-parametric MLE requires, of course, the copula likelihood
and for some more complicated models the likelihood can be cumbersome to derive or
to compute, e.g. the “stochastic copula” model of Hafner and Manner (2012) or the

high dimension factor copula model of Oh and Patton (2011). In such applications
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it may be desirable to avoid the likelihood and use a simpler SMM approach.

A long-standing estimator of the copula parameter is the method of moments
(MM) estimator (see Genest (1987) and Genest and Rivest (1993) for iid data and
Rémillard (2010) for time series data). This estimator exploits the known one-to-
one mapping between the parameters of certain copulas and certain measures of
dependence. For example, a Clayton copula with parameter s implies Kendall’s
tau of k/ (k + 2), yielding a simple MM estimator of the parameter of this copula as
k =27/ (1 — 7). This estimator usually has the benefit of being very fast to compute.
The SMM estimator proposed in this paper is a direct generalization of MM in two
directions. Firstly, it allows the consideration of over-identified models: For some
copulas we have more implied dependence measures than unknown parameters (e.g.,
for the Normal copula we have both Kendall’s tau and Spearman’s rank correlation
in closed form). By treating this as a GMM estimation problem we can draw on the
information in all available dependence measures. Secondly, we allow for dependence
measures that are not known closed-form functions of the copula parameters. We
use simulations to obtain the mapping, making this SMM rather than GMM. In
the case that the mapping is known and the number of free parameters equals the
number of dependence measures, our SMM approach simplifies to the well-known
MM approach.

Other, less-widely used, estimation methods considered in the literature include
minimum distance estimation, see Tsukahara (2005), and “expert judgment” estima-
tion, see Britton, Fisher and Whitley (1998). This paper contributes to this literature
by considering the properties of a SMM-type estimator, for both 7¢d and time series

data, nesting GMM and MM estimation of the copula parameter as special cases.
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3.2 Simulation-based estimation of copula models

We consider the same class of data generating processes (DGPs) as Chen and Fan
(2006), Chen, et al. (2009) and Rémillard (2010). This class allows each variable
to have time-varying conditional mean and conditional variance, each governed by
parametric models, with some unknown marginal distribution. As in those papers,
and also earlier papers such as Genest and Rivest (1993) and Genest, Ghoudi and
Rivest (1995), we estimate the marginal distributions using the empirical distribu-
tion function (EDF). The conditional copula of the data is assumed to belong to a

parametric family with unknown parameter 6,. The DGP we consider is:

[Yie, .o Y] = Yo = e (¢0) + 01 (o) e (3.1)
where g (¢) = [ (@), -+, e (0)]
Ot <¢) = diag {Ult (925) 7+ ONt ((b)}

[n1t7--->77Nt]/E77t~'iid Fn:C(Fla"'aFN;e())

where 1; and o; are F;_i-measurable and independent of 7,. F;_ is the sigma-field
containing information generated by {Y;_1,Y; o,...}. The r x 1 vector of parame-
ters governing the dynamics of the variables, ¢y, is assumed to be v/T-consistently
estimable, which holds under mild conditions for many commonly-used models for
multivariate time series, such as ARMA models, GARCH models, stochastic volatil-
ity models, etc. If ¢q is known, or if 4, and o; are known constant, then the model be-
comes one for izd data. Our task is to estimate the p x 1 vector of copula parameters,
0y € O, based on the (estimated) standardized residual {; = o7 (¢)[Y: — pe(d)}L,

and simulations from the copula model, C (+;0).
3.2.1 Definition of the SMM estimator

We will consider simulation from some parametric multivariate distribution, F (6),
with marginal distributions G; (6), and copula C (#). This allows us to consider
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cases where it is possible to simulate directly from the copula model C () (in which
case the G; are all Unif (0,1)) and also cases where the copula model is embedded
in some joint distribution with unknown marginal distributions, such as the factor
copula models of Oh and Patton (2011).

We use only “pure” dependence measures as moments since those are affected
not by changes in the marginal distributions of simulated data (X). For example,
moments like means and variances, are functions of the marginal distributions (G})
and contain no information on the copula. Measures like linear correlation contain
information on the copula but are also affected by the marginal distributions. De-
pendence measures like Spearman’s rank correlation and quantile dependence are
purely functions of the copula and are unaffected by the marginal distributions, see
Nelsen (2006) and Joe (1997) for example. Spearman’s rank correlation, quantile

dependence, and Kendall’s tau for the pair (1;,7;) are defined as:

p”? = 12E[F; (n;) F; (n;)] — 3 = 12quvd01-j (u,v) — 3 (3.2)
NI = PLF (i) < q|Fj (n;) < 4q] = @, q € (0,0.5] (33)
! P[F;(m) > q|F; () > q] = 225589 g e (05,1

74 = 4AF [Cij (F5 (i) Fy (n;))] — 1 (34)

where C;; is the copula of (1;,7;). The sample counterparts based on the estimated

standardized residuals are defined as:

i 2 d - ~ - ~
PP = =) Fi () By () = 3 (3.5)

N = R J 3.6
= e X5 U G > 0. () > @), ae05,1) OO
7 = 4= 3 Gy (B () By (i) ) — 1 (3.7)
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where Fi (y) = (T +1)7' 2, 1 <y}, and Cyj (u,0) = (T+ 1) 22, 1{E (7)<
u, F; (1) < v}. We will denote the counterparts based on simulated data as 5 (6),
N (0) and 7 (9) .

Let mg (f) be a (m x 1) vector of dependence measures computed using S simu-
lations from F (6), {XS}SS:1 , and let My be the corresponding vector of dependence
measures computed using the the standardized residuals {ﬁt}thl. These vectors can
also contain linear combinations of dependence measures, a feature that is useful
when considering estimation of high-dimension models. Define the difference be-

tween these as
gr1,s (9) = fflT — ffls (9) (38)
Our SMM estimator is based on searching across # € ® to make this difference as

small as possible. The estimator is defined as:

fr.s = argmin Qr.g (6) (3.9)
0c®

g5 (0) Wrgrs (0)

where Qr.s (0)

and Wy is some positive definite weight matrix, which may depend on the data.
As usual, for identification we require at least as many moment conditions as there
are free parameters (i.e., m > p). In the subsections below we establish the consis-
tency and asymptotic normality of this estimator, provide a consistent estimator of
its asymptotic covariance matrix, and obtain a test based on over-identifying restric-

tions. Appendix C.2 presents details on the computation of the objective function.
3.2.2  Consistency of the SMM estimator

The estimation problem here differs in two important ways from standard GMM or
M-estimation: Firstly, the objective function, Q7 () is not continuous in 6 since

mg (0) will be a number in a set of discrete values as 6 varies on O, for exam-

ple, {O, s%p S%]’ ce S%} for a lower quantile dependence. This problem would vanish
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if, for the copula model being considered, we knew the mapping 6 — my (0) =
limg_,, mg (A) in closed form. The second difference is that a law of large numbers
is not available to show the pointwise convergence of gr s (), as the functions my
and mg (f) both involve empirical distribution functions. We use recent develop-
ments in empirical process theory to overcome this difficulty.

We now list some assumptions that are required for our results to hold.

Assumption 1.

(i) The distributions F,, and F,, are continuous.

(1t) Every bivariate marginal copula C;; of C has continuous partial derivatives

with respect to u; and u;.

If the data Y, are iid, e.g. if y; and o, are known constant in equation (3.1), or if
¢ is known, then Assumption 1 is sufficient to prove Proposition 1 below, using the
results of Fermanian, et al. (2004). If, however, estimated standardized residuals are
used in the estimation of the copula then more assumptions are necessary in order to
control the estimation error coming from the models for the conditional means and

conditional variances. We combine assumptions A1-A6 in Rémillard (2010) in the

following assumption. First, define vy, = o, " <g§> 9, (q@) and v = o7 ' <95> 9, ((5)

where 9, (¢) = a’g—qﬁ(ﬁb),ﬁkt (¢p) = W‘W, k=1,...,N. Define d; as

N
di =mn — N — (70t + Z Ukt%kt) (Qg - ¢0>

k=1
where 7 is k-th row of 1, and both vy, and vy, are F;_1-measurable.

Assumption 2.
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Yike — L1 where Ty and Ty are deterministic for

Nl

T
(i) %Z’YOt 2 Ty and %
=1

k=1,...,N.

t=1

t=1

T T T
(i) $SE (o) + S (1al®) + 5 (howl) s and S (Jual?) are bounded
fork=1,...,N.

(iii) There exists a sequence of positive terms r, > 0 so that Y, 1y < o and such

that the sequence maxi<;<r ||dy| /¢ is tight.

(iv) max;<i<r H%tH /\/T = Op(l) and mMaxi<t<T Mt H%kt” /\/T = Op(l) Jor k =

1 N.

(v) <aT, VT (q@ — ¢0>> weakly converges to a continuous Gaussian process in [0, 1]N
x R", where ar is the empirical copula process of uniform random variables:

= %til {ﬁl (Une <) — C (u)}

(vi) aa% and nk% are bounded and continuous on RN = [—o0,+00]™ for k =

1,...,N.

With these two assumptions, sample rank correlation and quantile dependence
converge in probability to their population counterparts, see Theorems 3 and 6 of
Fermanian, Radulovi¢ and Wegkamp (2004) for the iid case, and combine with Corol-
lary 1 of Rémillard (2010) for the time series case. (See Lemma 1 of Appendix C.1
for details.) When applied to simulated data this convergence holds pointwise for
any 0. Thus grs (#) converges in probability to the population moment functions

defined as follows:

gr.s (0) =y —1mg (0) 2> gy (0) = mg (6p) —myg (0), for Ve © as T, S — o
(3.10)
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We define the population objective function as

Qo (6) = 8o (8) Wogo (6) (3.11)

where W is the probability limit of Wr. The convergence of gr g (0) and W
implies that
Qr.s(0) 2> Qo (0) for Ve ® asT,S —

For consistency of our estimator we need, as usual, uniform convergence of Qrs (0),
but as this function is not continuous in # and a law of large numbers is not available,
the standard approach based on a uniform law of large numbers is not available. We
instead use results on the stochastic equicontinuity of gr s (), based on Andrews

(1994) and Newey and McFadden (1994).

Assumption 3.

(i) g0 (0) # 0 for 0 # 0,
(ii) © is compact.

(1it) Every bivariate marginal copula Cyj (u;u;;0) of C(0) on (u;,u;) € (0,1) x (0, 1)

s Lipschitz continuous on ©.
(iv) Wy is O, (1) and converges in probability to W, a positive definite matriz.

Proposition 1. Suppose that Assumptions 1, 2 and 8 hold. Then 9AT75 25 6y as
T,5— o

A sketch of all proofs is presented in Section 3.6, and detailed proofs are in Ap-
pendix C.1. Assumption 3(iii) is needed to prove the stochastic Lipschitz continuity
of gr s (6), which is a sufficient condition for the stochastic equicontinuity of gr s (),
and can easily be shown to be satisfied for many bivariate parametric copulas. As-
sumption 3(ii) requires compactness of the parameter space, a common assumption,
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and is aided by having outside information (such as constraints from economic ar-
guments) that allow the researcher to bound the set of plausible parameters. While
Pakes and Pollard (1989) and McFadden (1989) show the consistency of SMM es-
timator for 7,5 diverging at the same rate, Proposition 1 shows that the copula
parameter is consistent at any relative rate of 7" and S as long as both diverge. If
we know the function m () in closed form, then GMM is feasible and is equivalent
to our estimator with S/T"— o as T, S — 0.

We focus on weak consistency of our estimator because it suffices for our asymp-
totic distribution theory, presented below. A corresponding strong consistency result,
ie., 9AT7S 2%, y, may be obtained by drawing on recent work by Bouzebda and Zari
(2011). The key is to show uniform strong convergence of the sample objective func-
tion, from which strong consistency of the estimator easily follows, see Newey and
McFadden (1994) for example. Uniform strong consistency of the objective function
can be shown by combining minor changes in the above assumptions (eg, W7 must
converge a.s. to Wy) with pointwise strong convergence of the objective function,

which can be obtained using the results of Bouzebda and Zari (2011).
3.2.8  Asymptotic normality of the SMM estimator

As Qr.s (0) is non-differentiable the standard approach based on a Taylor expansion
is not available, however the asymptotic normality of our estimator can still be

established with some further assumptions:
Assumption 4.
(i) Oy is an interior point of ©
(i1) go (0) is differentiable at 8y with derivative Go such that GyW oGy is nonsin-

gular.
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~ / A~ A~ A~
(ZZZ) gT,S <9T,S> WTgT,S (QT,S> < infge@ gT,S (Q)IWTgTﬁ (9) + Op (1/T + 1/3)

The first assumption above is standard, and the third assumption is standard in
simulation-based estimation problems, see Newey and McFadden (1994) for example.
The rate at which the o, term vanishes in part (iii) turns out to depend on the
smaller of T or S, as 0, (1/T + 1/S) = o, (min (T S)_l) , as will become clear from
the proposition below. The second assumption requires the population objective
function, gy, to be differentiable even though its finite-sample counterpart is not,
which is common in simulation-based estimation. The nonsingularity of GfW Gy is
sufficient for local identification of the parameters of this model at 6y, see Hall (2005)
and Rothenberg (1971). With these assumptions in hand we obtain the following

result based on three different relative divergence rates of 7" and S.

Proposition 2. Suppose that Assumptions 1, 2, 3 and 4 hold. Then

1

V1S +1/T

where Qy = (GHWGo) ™ GLW ZoW (G (GiWGo) ", and g = avar [1iy] .

(éT,S - 90> L N(0,) asT,S — o (3.12)

The rate of convergence is thus shown to equal min (S, T)l/ . In general, one
would like to set S very large to minimize the impact of simulation error and obtain
a VT convergence rate, however if the model is computationally costly to simulate,

then the result for S « 7" may be useful. When S and 7" diverge at different rates the

asymptotic variance of min (5, T)l/ 2 <§T75 — 90> is simply €. When S and T' diverge

at the same rate, say S/T — k € (0,0), the asymptotic variance of /T (GAT,S — 90)
is (1 4+ 1/k) g, which incorporates efficiency loss from simulation error. As usual we
find that Qg = (G{)EalGo)fl if W, is the efficient weight matrix, ;.

The proof of the above proposition uses recent results for empirical copula pro-
cesses presented in Fermanian, Radulovi¢ and Wegkamp (2004) and Rémillard (2010)
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to establish the asymptotic normality of the sample dependence measures, mr,
and requires us to establish the stochastic equicontinuity of the moment functions,
vrs (0) = VT [gr.s (0) — go ()] . These are shown in Lemmas 6 and 7 in Appendix
C.1.

Chen and Fan (2006), Chen, et al. (2009) and Rémillard (2010) show that estima-
tion error from 923 does not enter the asymptotic distribution of the copula parameter
estimator for maximum likelihood or (analytical) moment-based estimators, and the
above proposition shows that this surprising result also holds for the SMM-type esti-
mators proposed here. In applications based on parametric models for the marginal
distributions, the asymptotic covariance matrix of the copula parameter is more com-
plicated. In such cases, the model is fully parametric and the estimation approach
here is a form of two-stage GMM (or SMM). In the absence of simulations, this can
be treated using existing methods, see White (1994) and Gourieroux, et al. (1996)
for example. If simulations are used in the copula estimation step, then the lemmas
presented in Appendix C.1 can be combined with existing results on two-stage GMM
to obtain the limiting distribution. This is not difficult and requires some detailed

notation, and so is not presented here.
3.2.4  Consistent estimation of the asymptotic variance

The asymptotic variance of our estimator has the familiar form of standard GMM
applications, however the components ¥y and Gg require more care in their estima-

tion than in standard applications. We suggest using an iid bootstrap to estimate

202

1. Sample with replacement from the standardized residuals {7;},_, to obtain a

T
bootstrap sample, {f)t(b)} . Repeat this step B times.
t=1

T
2. Using {ﬁgb)} ,b=1,..., B, compute the sample moments and denote as rhgf),
t=1
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b=1,.. B.

)

3. Calculate the sample covariance matrix of rhé? across the bootstrap replica-

tions, and scale it by the sample size:
¢ T 0 (0 (b) ’
S5 = % b; (mT - mT) (mT - mT> (3.13)

For the estimation of Gy, we suggest a numerical derivative of gr ¢ (0) at 9}75,
however the fact that gr g is non-differentiable means that care is needed in choosing
the step size for the numerical derivative. In particular, Proposition 3 below shows
that we need to let the step size go to zero, as usual, but slower than the inverse of
the rate of convergence of the estimator (i.e., 1/min (v/T,v/S)). Let e denote the
k-th unit vector whose dimension is the same as that of 8, and let ep ¢ denote the
step size. A two-sided numerical derivative estimator G‘T7S of G has k-th column

. gr.s (HT,S+ek€T,S) — 81,5 <9T,S—ek€T,s>
Grsr =

k=12, .. 3.14
2€T’S ) ) Y 7p ( )

Combine this estimator with WT to form:
R . . -1, . . . A -1
Qrsp = (G/T,SWTGT,S) G sWrXr gWrGr g (G}’SWTGT,S) (3.15)

Proposition 3. Suppose that all assumptions of Proposition 2 are satisfied, and that
ers — 0, ers x min (VT,+/S) — w0, B — w0 as T, S — . Then S5 2 2,

CA;'T,S > Gy and QT,s,B 2 Qpas T, S — .
3.2.5 A test of overidentifying restrictions

If the number of moments used in estimation is greater than the number of copula
parameters, then it is possible to conduct a simple test of the over-identifying re-
strictions. When the efficient weight matrix is used in estimation, the asymptotic
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distribution of this test statistic is the usual chi-squared, however the method of
proof is different as we again need to deal with the lack of differentiability of the
objective function. We also consider the distribution of this test statistic for general

weight matrices, leading to a non-standard limiting distribution.

Proposition 4. Suppose that all assumptions of Proposition 2 are satisfied and that
the number of moments (m) is greater than the number of copula parameters (p) .

Then
~ / A~ ~
Jr,s =min (T, S) gr.s (QT,S> Wrgrs <9T,s> L wAjApu as T, S — ©

where u~N (0,1)

and Ay = WS Ro, Ro=1- £,"°Gg (GyW,Go) ' oW, E¢%. [f Wy = 271,

d
then Jr.s — Xp,_, as usual.

As in standard applications, the above test statistic has a chi-squared limiting
distribution if the efficient weight matrix (2%}3) is used. When any other weight
matrix is used, the test statistic has a sample-specific limiting distribution, and

critical values in such cases can be obtained via a simple simulation:

1. Compute R using GT,S, WT, and ZA]T,B.
2. Simulate u® ~ iid N (0,I), for k = 1,2,..., K, where K is large.

A el /Uxar 12 (K
3. For each simulation, compute J;k; = u(k)’R’E;‘F{%WTElT{ZBRu( :

K
4. The sample (1 —«a) quantile of {Jj(ﬂk;} is the critical value for this test
) k=1

statistic.

The need for simulations to obtain critical values from the limiting distribution
is non-standard but is not uncommon; this arises in many other testing problems,
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see Wolak (1989), White (2000) and Andrews (2001) for examples. Given that u®
is a simple standard Normal, and that no optimization is required in this simulation,
and that the matrix R need only be computed once, obtaining critical values for this

test is simple and fast.
3.2.6 SMM under model mis-specification

All of the above results hold under the assumption that the copula model is correctly
specified. In the event that the specification test proposed in the previous section
rejects a model as mis-specified, one is led directly to the question of whether these
results, or extensions of them, hold for mis-specified models.

In the literature on GMM, there are two common ways to define mis-specification.
Newey (1985) defines a form of “local” mis-specification (where the degree of mis-
specification vanishes in the limit), and in that case it is simple to show that the
asymptotic behavior of the SMM estimator does not change at all except the mean
of limit distribution. Hall and Inoue (2003) consider “non-local” mis-specification.
Formally, a model is said to be mis-specified if there is no value of # € ® which satisfies
go () = 0. As Hall and Inoue (2003) note, mis-specification is only a concern when
the model is over-identified, and so in this section we assume m > p. The absence
of a parameter that satisfies the population moment conditions means that we must

instead consider a “pseudo-true” parameter:
Definition 1. The pseudo-true parameter is 0, (W) = arg mingee g, (6) Wogo (0) .

While the true parameter, 6y, when it exists, is determined only by the population
moment condition gg (fy) = 0, the pseudo-true parameter depends on the moment
condition and also on the weight matrix Wy, and thus we denote it as 0, (Wy) . With
the additional assumptions below, the consistency of the SMM estimator under mis-

specification can be proven.
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Assumption 5. (i) (Non-local mis-specification) |go (0)| > 0 for all 0 € ©
(i) (Identification) There ezists 0, (Wy) € © such that
£o (9* (Wo))/WOgD (0* (Wo)) < 8o (9)/W0g0 (9) fOT all 0 € @\ {9* (Wo)}

Proposition 5. Suppose Assumption 1, 2, 3(ii)-3(iv), and 5 holds. Then 075 —-
0. (Wy) asT,S —

The above proposition shows that, under mis-specification, the SMM estimator
9AT7S converges in probability to the pseudo true parameter 6, (W) rather than the
true parameter 6y. This extends existing results for GMM under mis-specification in
Hall (2000) and Hall and Inoue (2003), as it is established even under the disconti-
nuity of the moment functions.

While consistency of 9AT7 s under mis-specification is easily obtained, establishing
the limit distribution of 9T75 is not straightforward. A key contribution of Hall and
Inoue (2003) was to show that the limit distribution of GMM (with smooth, differ-
entiable moment functions) depends on the limit distribution of the weight matrix,
not merely the probability limit of the weight matrix. In SMM applications, it is
possible to show that the limit distribution will additionally depend on the limit
distribution of the numerical derivative matrix, denoted G above. Some results
on the statistical properties of numerical derivatives are presented in Hong, et al.
(2010), but this remains a relatively unexplored topic. In addition to incorporat-
ing the dependence on the distribution of GT,S, under mis-specification one needs
an alternative approach to establish the stochastic equicontinuity of the objective
function, which is required for a Taylor series expansion of the population objective
function to be used to obtain the limit distribution of the estimator. We leave the
interesting problem of the limit distribution of §T7 s under mis-specification for future

research.
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3.3 Simulation study

In this section we present a study of the finite sample properties of the simulation-
based (SMM) estimator studied in the previous section. We consider two widely-
known copula models, the Clayton and the Gaussian (or Normal) copulas, see Nelson
(2006) for discussion, and the “factor copula” proposed in Oh and Patton (2011),
outlined below. A closed-form likelihood is available for the first two copulas, while
the third copula requires a numerical integration step to obtain the likelihood (details
on this are presented in Appendix C.3). In all cases we contrast the finite-sample
properties of the MLE with the SMM estimator. The first two copulas also have
closed-form cumulative distribution functions, and so quantile dependence (defined in
equation (3.3) is also known in closed form. For the Clayton copula we have Kendall’s
tau in closed form (7 = k/ (2 + k)) but not Spearman’s rank correlation, see Nelsen
(2006). For the Normal copula we have both Spearman’s rank correlation in closed
form (ps = 6/m arcsin (p/2)) and Kendall’s rank correlation (7 = 2/ arcsin (p)) , see
Nelsen (2006) and Demarta and McNeil (2005). This allows us to also compare GMM
with SMM for these copulas, to quantify the loss in accuracy from having to resort
to simulations.
The factor copula we consider is based on the following structure:
Let X;=Z+¢;, i=1,2,.,N
where Z ~ Skew t (0,02, 1/_1,)\) , g ~iidt (1/_1) , and g llZ Vi (3.16)
[X1,...Xn] =X ~F,=C(G,,...,G,)

where we use the skewed ¢ distribution of Hansen (1994). We use the copula of X
implied by the above structure as our “factor copula” model, and it is parameterized
by (o2, 7 \). For the factor copula we have neither the likelihood nor any of the
above dependence measures in closed form, and so simulation-based methods are
required. For the simulation we set the parameters to generate rank correlation of
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around 1/2, and so set the Clayton copula parameter to 1, the Gaussian copula

parameter to 1/2, and the factor copula parameters to 02 = 1, v~! = 1/4 and

A=—1/2.

We consider two different scenarios for the marginal distributions of the variables
of interest. In the first case we assume that the data are i2d with standard Normal
marginal distributions, meaning that the only parameters that need to be estimated
are those of the copula. This simplified case is contrasted with a second scenario
where the marginal distributions of the variables are assumed to follow an AR(1)-

GARCH(1,1) process, which is widely-used in time series applications:
Yie = ¢o + 01Yie 1 + ounie, t=1,2,..,T
O =W+ Baitfl + 0“71‘2,15717712,1‘,71 (3.17)

M= [y Mve] ~ did F,y = C (0, ®, ..., D)

where @ is the standard Normal distribution function and C can be Clayton, Gaus-
sian, or the factor copula implied by equation (3.16). We set the parameters of
the marginal distributions as [¢q, ¢1,w, 3,«] = [0.01,0.05,0.05,0.85,0.10], which
broadly matches the values of these parameters when estimated using daily equity
return data. In this scenario the parameters of the models for the conditional mean
and variance are estimated, and then the estimated standardized residuals are ob-

tained:

. Yu—do— 1Y

Nit =

(3.18)

it
These residuals are used in a second stage to estimate the copula parameters. In all
cases we consider a time series of length T = 1,000, corresponding to approximately
4 years of daily return data, and we use S = 25 x T simulations in the compu-
tation of the dependence measures to be matched in the SMM optimization. We

use five dependence measures in estimation: Spearman’s rank correlation, and the

125



0.05,0.10,0.90,0.95 quantile dependence measures, averaged across pairs of assets.
We repeat each scenario 100 times, and in the results below we use the identity weight
matrix for estimation. (Corresponding results based on the efficient weight matrix
are comparable, and available in Appendix C.4.) We also report the computation
times (per simulation) for each estimation.

Table 3.1 reveals that for all three dimensions (N = 2, 3 and 10) and for all
three copula models the estimated parameters are centered on the true values, with
the average estimated bias being small relative to the standard deviation, and with
the median of the simulated distribution centered on the true values. Looking across
the dimension size, we see that the copula model parameters are almost always more
precisely estimated as the dimension grows. This is intuitive, given the exchangeable
nature of all three models.

Comparing the SMM estimator with the ML estimator, we see that the SMM
estimators suffer a loss in efficiency of around 50% for N = 2 to around 20% for
N = 10. The loss is greatest for the v~ parameter of the factor copula, and moderate
and similar for the remaining parameters. Some loss is of course expected, and this
simulation indicates that the loss is moderate overall. Comparing the SMM estimator
to the GMM estimator provides us with a measure of the loss in accuracy from having
to estimate the population moment function via simulation. We find that this loss
ranges from zero to 3%, and thus little is lost from using SMM rather than GMM.
The simulation results in Table 3.2, where the copula parameters are estimated
after the estimation of AR(1)-GARCH(1,1) models for the marginal distributions in
a separate first stage, are very similar to the case when no marginal distribution
parameters are required to be estimated, consistent with Proposition 2. Thus that
somewhat surprising asymptotic result is also relevant in finite samples.

In Table 3.3 we present the finite-sample coverage probabilities of 95% confi-

dence intervals based on the asymptotic normality result from Proposition 2 and the
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asymptotic covariance matrix estimator presented in Proposition 3. As shown in
that proposition, a critical input to the asymptotic covariance matrix estimator is
the step size used in computing the numerical derivative matrix GT75. This step size,
er.g, must go to zero, but at a slower rate than 1/ V/T. Ignoring constants, our sim-
ulation sample size of T = 1,000 suggests setting 7 > 0.001, which is much larger
than standard step sizes used in computing numerical derivatives. (For example, the
default in many functions in MATLAB is a step size of around 6 x 107, which is
an optimal choice in certain applications, see Judd (1998) for example.) We study
the impact of the choice of step size by considering a range of values from 0.0001 to
0.1. Table 3.3 shows that when the step size is set to 0.01 or 0.1 the finite-sample
coverage rates are close to their nominal levels. However if the step size is chosen
too small (0.001 or smaller) then the coverage rates are much lower than nominal
levels. For example, setting er ¢ = 0.0001 (which is still 16 times larger than the
default setting in MATLAB) we find coverage rates as low as 2% for a nominal 95%
confidence interval. Thus this table shows that the asymptotic theory provides a
reliable means for obtaining confidence intervals, so long as care is taken not to set
the step size too small.

Table 3.3 also presents the results of a study of the rejection rates for the test
of over-identifying restrictions presented in Proposition 4. Given that we consider
W = I in this table, the test statistic has a non-standard distribution, and we
use K = 10,000 simulations to obtain critical values. In this case, the limiting
distribution also depends on (A}TS, and we again compute (A}T,g using a step size of
er,s = 0.1,0.01,0.001 and 0.0001. The rejection rates are close to their nominal levels
95% for the all three copula models.

We finally consider the properties of the estimator under model mis-specification.
In Table 3.4 we consider two scenarios: one where the true copula is Clayton but

the model is Normal, and one where the true copula is Normal but the model is
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Clayton. The pseudo-true parameters for these two scenarios are not known in
closed form, and we use a simulation of length 10 million to estimate it. They vary
across the dimension of the problem, and we report them in the top row of each
panel of Table 3.4. The remainder of Table 3.4 has the same structure as Tables 3.1
and 3.2. Similar to those tables, in this mis-specified case we see that the estimated
parameters are centered on the pseudo-true values, with the average estimated bias
being small relative to the standard deviation. Looking across the dimension size, we
see that the copula model parameters are almost always more precisely estimated as
the dimension grows. These mis-specified scenarios also provide some insight into the
power of the specification test based on over-identifying restrictions. We find that
for all three dimensions and for both iid and AR-GARCH data, the J-test rejected
the null of correct specification across all 100 simulations, indicating this test has
power to detect model mis-specification.

These simulation results provide support for the proposed estimation method:
for empirically realistic parameter values and sample size, the estimator is approx-
imately unbiased, with estimated confidence intervals that have coverage close to
their nominal level when the step size for the numerical derivative is chosen in line
with our theoretical results, and the test for model mis-specification has finite-sample
rejection frequencies that are close to their nominal levels when the model is correctly

specified, and has good power to reject mis-specified models.
3.4 Application to the dependence between financial firms

This section considers models for the dependence between seven large financial firms.
We use daily stock return data over the period January 2001 to December 2010, a
total of T' = 2515 trade days, on Bank of America, Bank of New York, Citigroup,
Goldman Sachs, J.P. Morgan, Morgan Stanley and Wells Fargo. Summary statistics
for these returns are presented in Table C.4 of Appendix C.4, and indicate that all

128



series are positively skewed and leptokurtotic, with kurtosis ranging from 16.0 (J.P.
Morgan) to 119.8 (Morgan Stanley).

To capture the impact of time-varying conditional means and variances in each of
these series, we estimate the following autoregressive, conditionally heteroskedastic

models:

Tit = Qoi + PriTit—1 + G2iTmi—1 + Eit, Eit = TitNit

2 2 2 2
where o = w; + ﬂiai,t—l + 1€+ V1€ 1 e _1<0] (3.19)

2 2
+ i€, 1+ V2iCme—1 Lemio1<0]

where r; is the return on one of these seven firms and 7, is the return on the
S&P 500 index. We include the lagged market index return in both the mean and
variance specifications to capture any influence of lagged information in the model for
a given stock, and in the model for the market index itself we set ¢; = a3 = y3 = 0.
Estimated parameters from these models are presented in Table C.5 of Appendix
C.4, and are consistent with the values found in the empirical finance literature,
see Bollerslev, Engle and Nelson (1994) for example. From these models we obtain
the estimated standardized residuals, 7);;, which are used in the estimation of the
dependence structure.

In Table 3.5 we present measures of dependence between these seven firms. The
upper panel reveals that rank correlation between their standardized residuals is
0.63 on average, and ranges from 0.55 to 0.76. The lower panel of Table 3.5 presents
measures of dependence in the tails between these series. The upper triangle presents
the average of the 1% and 99% quantile dependence measures presented in equation
(3.6), and we see substantial dependence here, with values ranging between 0.16 and
0.40. The lower triangle presents the difference between the 90% and 10% quantile

dependence measures, as a gauge of the degree of asymmetry in the dependence
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structure. These differences are mostly negative (14 out of 21), indicating greater
dependence during crashes than during booms.

Table 3.6 presents the estimation results for three different copula models of these
series. The first model is the well-known Clayton copula, the second is the Normal
copula and the third is a “factor copula” as proposed by Oh and Patton (2011). The
first copula allows for lower tail dependence, but imposes that upper tail dependence
is zero. The second copula implies zero tail dependence in both directions. The third
copula allows for tail dependence in both tails, and allows the degree of dependence
to differ across positive and negative realizations.

For all three copulas we implent the SMM estimator proposed in Section 3.2, with
the identity weight matrix and the efficient weight matrix, using five dependence
measures: Spearman’s rank correlation, and the 0.05,0.10,0.90,0.95 quantile depen-
dence measures, averaged across pairs of assets. We also implement the MLE for
comparison. The value of the SMM objective function at the estimated parameters
is presented for each model, along with the p-value from a test of the over-identifying
restrictions based on Proposition 4. We use Proposition 3 to compute the standard
errors, with B = 1,000 bootstraps used to estimate X7 g, and ey ¢ = 0.1 used as the
step size to compute (A}Tﬁ.

The parameter estimates for the Normal and factor copula models are similar
for MLL and SMM, while they are quite different for the Clayton copula. This may
be explained by the results of the test of over-identifying restrictions: the Clayton
copula is strongly rejected (with a p-value of less than 0.001 for both choices of weight
matrix), while the Normal is less strongly rejected (p-values of 0.043 and 0.001). The
factor copula is not rejected using this test for either choice of weight matrix. The
improvement in fit from the factor copula appears to come from its ability to capture

tail dependence: the parameter that governs tail dependence (v~1) is significantly
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greater than zero, while the parameter that governs asymmetric dependence () is
not significantly different from zero.

Given that our sample period spands the financial crisis, one may wonder whether
the copula is constant throughout the period. To investigate this, we implement
the copula structrual break test proposed by Rémillard (2010). This test uses a
Kolmogorov-Smirnov type test statistic to compare the empirical copula before and
after a given point in the sample, and then searches across all dates in the sample. We
implement this test using 1000 simulations for the “multiplier” method, and find a
p-value of 0.001, indicating strong evidence of a change in the copula over this period.
Running this test on just the last two years of our sample period (January 2009 to
December 2010) results in a p-value of 0.191, indicating no evidence of a change in
the copula over this sub-period. We re-estimate our three copula models using data
from this sub-period, and present the results in the lower panel of Table 3.6. The
estimated parameters all indicate a (slight) increase in dependence in this sub-sample
relative to the full sample. Perhaps the largest change is in the v parameter of the
factor copula, which goes from around 8.8 (across the three estimation methods) to
around 4.4, indicating a substantial increase in the degree of tail dependence between
these firms. The results of the specification tests over this sub-sample are comparable
to the full sample results: the Clayton copula is strongly rejected, the Normal copula
is rejected but less strongly, and the factor copula is not rejected, using either weight
matrix.

Figure 3.1 sheds some further light on the relative performance of these copula
models, over the full sample. This figure compares the empirical quantile dependence
function with those implied by the three copula models. An iid bootstrap with
B = 1,000 replications is used to construct pointwise confidence intervals for the
sample quantile dependence estimates. We see here that the Clayton copula is “too

asymmetric” relative to the data, while both the Normal and the factor copula models
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appear to provide a reasonable fit.
3.5 Conclusion

This paper presents the asymptotic properties of a new simulation-based estimator
of the parameters of a copula model, which matches measures of rank dependence
implied by the model to those observed in the data. The estimation method shares
features with the simulated method of moments (SMM), see McFadden (1989) and
Newey and McFadden (1994), for example, however the use of rank dependence
measures as “moments” means that existing results on SMM cannot be used. We
extend well-known results on SMM estimators using recent work in empirical pro-
cess theory for copula estimation, see Fermanian, Radulovié¢ and Wegkamp (2004),
Chen and Fan (2006) and Rémillard (2010), to show the consistency and asymptotic
normality of SMM-type estimators of copula models. To the best of our knowledge,
simulation-based estimation of copula models has not previously been considered in
the literature. We also provide a method for obtaining a consistent estimate of the
asymptotic covariance matrix, and a test of the over-identifying restrictions. Our
results apply to both 72d and time series data, and an extensive simulation study
verifies that the asymptotic results provide a good approximation in finite samples.
We illustrate the results with an application to a model of the dependence between
the equity returns on seven financial firms, and find evidence of statistically signifi-
cant tail dependence, and some evidence that the dependence between these assets

is stronger in crashes than booms.

3.6 Sketch of proofs

Detailed proofs are available in Appendix C.1.

132



Proof of Proposition 1. First note that: (a) (o (@) is uniquely minimized at 6y by
Assumption 3(i) and positive definite Wy of Assumption 3(iv), (b) © is compact
by Assumption 3(ii); (c) Qo (f) consists of linear combinations of rank correlations
and quantile dependence measures that are functions of pair-wise copula functions,
so Qo (#) is continuous by Assumption 3(iii). The main part of the proof requires
establishing that Q)7 ¢ uniformly converges in probability to ()y, which we show using
five lemmas in Appendix C.1: Pointwise convergence of gr s () to go (#) and stochas-
tic Lipschitz continuity of gz ¢ () is shown using results from Fermanian, Wegkamp
and Radulovi¢ (2004) and Rémillard (2010), combined with Assumption 3(iii). This
is sufficient for the stochastic equicontinuity of gr ¢ and for the uniform convergence
in probability of gr ¢ to go by Lemmas 2.8 and 2.9 of Newey and McFadden (1994).
Using the triangle and Cauchy-Schwarz inequalities this implies that Q)7 ¢ uniformly
converges in probability to ()g. We have thus verified that the conditions of Theorem

2.1 of Newey and McFadden (1994) hold, and we have 6 % 6, as claimed. O

Proof of Proposition 2. We prove this proposition by verifying the five conditions
of Theorem 7.2 of Newey and McFadden (1994) for our problem: (i) go(fp) = 0
by construction of gg (6) = m(6y) — m(0). (ii) go (#) is differentiable at 6, with
derivative Gy such that G{WGy is nonsingular by Assumption 4(ii). (iii) 6y is
an interior point of ® by Assumption 4(i). (iv) This part requires showing the
asymptotic normality of v/T'grs (fy) . We will present the result only for S/T — k €

(0,00) . The results for the cases that S/T"— 0 or S/T — o are similar. In Lemma
6 of Appendix C.1, we show that /T (rhy — myg (6))) 4N (0,%0) as T — o and

VS (g (6) — mg (6)) > N (0,%) as S — oo using Theorem 3 and Theorem 6

of Fermanian, Radulovi¢ and Wegkamp (2004) and Corollary 1, Proposition 2 and
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Proposition 4 of Rémillard (2010). This implies that

. T -

\/TgT,s (90) = }/T (mT — My (90)2 - § }/E (mS (90) — Mg (90)2
d — d -
—>N(0,20) —>1/\/E —>N(0720)

i

and so \/T'gr.s (6o) 4N (0,(1+1/k)3Xg) as T, S — oo. (v) This part requires show-
ing that supjs_g,j-5 V7 lgr.s (6) — gr.s (60) — 9o (8)] /1 + VT |9 — 6]] 2 0. The
main part of this proof involves showing the stochastic equicontinuity of vy g (0) =
VT [gr.s (0) — go (0)]. This is shown in Lemma 7 of Appendix C.1 by showing that
{g..(0): 0 € ©} is a type II class of functions in Andrews (1994), and then using that

paper’s Theorem 1. O

Proof of Proposition 3. If u, and o, are known constant, or if ¢y is known, then
the consistency of ET,B follows from Theorems 5 and 6 of Fermanian, Radulovié
and Wegkamp (2004). When ¢, is estimated, the result is obtained by combining
the results in Fermanian, et al. with those of Rémillard (2010): For simplicity, as-

sume that only one dependence measure is used. Let p;; and ,65?) be the sample

. . . i i T
rank correlations constructed from the standardized residuals {772,77,? } ., and from

. T
the bootstrap counterpart {ﬁf’”, n,fb)] } . Also, define the corresponding estimates,
t=1

T

., and the bootstrapped true inno-

pi; and ﬁgjb-), using the true innovations {né, ng}

4 NT
vations {nﬁb)z,nlgb” } (where the same bootstrap time indices are used for both
t=1

NN OT A C I (R OT OV :
N, and {n, ", n, ). Define true p as pg. Theorem 5 of Fermanian,
t=1 t=1

Radulovi¢ and Wegkamp (2004) shows that

VT (pij = po) = VT (;5@ - ﬁz’j) +0p (1)

ij
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Corollary 1 and Proposition 4 of Rémillard (2010) shows, under Assumption 2, that
VT (g = i) = 0, (1) and VT (5 = 5%) = 0, (1)
Combining those three equations, we obtain

\/T(ﬁij—Po)Z\/T(P() ﬁzg)JrOp(l)a as T, B —

ij

and so equation (3.13) is a consistent estimator of 3. Consistency of the numerical

derivatives (AS}T,S can be established using a similar approach to Theorem 7.4 of
Newey and McFadden (1994), and since Wy % W by Assumption 3(iv), we thus

have Qr 5 5 Q. O

Proof of Proposition 4. We consider only the case where S/T" — o0 or S/T — k > 0.

The case for k = 0 is analogous. A Taylor expansion of g (9}3) around 6, yields
ﬁgo (éT,S> = \/Tgo (6o) + Go - VT (éT,S—90> +o <ﬁ HéT,S—QoH)
and since go (6p) = 0 and /T "§T75—90” =0, (1)
VTeo (0r.s) = Go - VT (Dr.5-60) + 0, (1) (3.20)
Then consider the following expansion of gz g (9},5) around 6,
VTgrs (éT,S> = VTgrs(0o) + Grs - VT <éT,S_€0> + Rrs (éT,S> (3.21)

where the remaining term is captured by Rr g <§T75) . Combining equations (3.20)

and (3.21) we obtain

VT [gT,S (éT,S> —gr.s (6) — 8o (%,s)] = <GT,5—GO)-\/T <§T75—00> +Rrs <§T75> +o, (1)
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The stochastic equicontinuity of v (0) = VT [gr.s (0) — g0 (0)] is established in

the proof of Proposition 2, which implies (see proof of Proposition 2) that
VT [gT,S <§T,s> —gr.s (6) — 8o (éT,S>] = 0, (1)

By Proposition 3, (A}T,S—GO = 0, (1), which implies Ry g (éﬂs) = 0, (1). Thus, we

obtain the expansion of gr g <§T75) around 6 :

VTgrs (9}75) — VTgrs (0y) + Grs VT (9},5—00) +o,(1) (3.22)

The remainder of the proof is the same as in standard GMM applications, see Hall

2005) for example. O]
(2005) p

Proof of Proposition 5. Lemma 1, 2, 3 and 4 are not affected by mis-specification.

Lemma 5 (i) is replaced by Assumption 5 (ii). Therefore, HAT,S 20, (W) . ]

3.7 Tables and figures
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Notes to Table 3.1: This table presents the results from 100 simulations of Clayton,
the Normal copula, and a factor copula. In the SMM and GMM estimation all three
copulas use five dependence measures, including four quantile dependence measures
(¢ = 0.05,0.10,0.90,0,95). The Normal and factor copulas also use Spearman’s rank
correlation, while the Clayton copula uses either Kendall’s (GMM and SMM) or
Spearman’s (SMM*) rank correlation. The marginal distributions of the data are
assumed to be iid N (0,1). Problems of dimension N = 2, 3 and 10 are considered,
the sample size is T = 1,000 and the number of simulations used is S = 25 x T.
The first row of each panel presents the average difference between the estimated
parameter and its true value. The second row presents the standard deviation of
the estimated parameters. The third and fourth rows present the median and the
difference between the 90" and 10" percentiles of the distribution of estimated pa-
rameters. The last row in each panel presents the average time in seconds to compute
the estimator.

Notes to Table 3.2: This table presents the results from 100 simulations of Clayton,
the Normal copula, and a factor copula. In the SMM and GMM estimation all three
copulas use five dependence measures, including four quantile dependence measures
(¢ = 0.05,0.10,0.90,0,95). The Normal and factor copulas also use Spearman’s
rank correlation, while the Clayton copula uses either Kendall’s (GMM and SMM)
or Spearman’s (SMM*) rank correlation. The marginal distributions of the data
are assumed to follow AR(1)-GARCH(1,1) processes, as described in Section 3.3.
Problems of dimension N = 2, 3 and 10 are considered, the sample size is T" = 1, 000
and the number of simulations used is S = 25 x T. The first row of each panel
presents the average difference between the estimated parameter and its true value.
The second row presents the standard deviation of the estimated parameters. The
third and fourth rows present the median and the difference between the 90" and
10*" percentiles of the distribution of estimated parameters. The last row in each
panel presents the average time in seconds to compute the estimator.
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Table 3.3: Simulation results on coverage rates

Clayton Normal Factor copula

€r,s

0.1 91 98 94 98 94 100 95 98
0.01 46 99 92 98 94 99 96 100
0.001 2 99 76 98 % 79 T4 99
0.0001 1 99 21 98 54 75 57 97

N =3

TS

0.1 97 99 89 97 99 100 96 99
0.01 63 98 88 97 99 96 95 100
0.001 11 98 83 98 92 84 93 100
0.0001 2 100 38 99 57 70 61 99

N =10

€TS8

0.1 96 99 87 97 97 97 95 98
0.01 88 99 87 96 9 97 97 97
0.001 18 100 87 98 97 95 88 97
0.0001 0 98 71 97 73 8 81 98

Notes: This table presents the results from 100 simulations of Clayton copula, the
Normal copula, and a factor copula, all estimated by SMM. The marginal distribu-
tions of the data are assumed to follow AR(1)-GARCH(1,1) processes, as described
in Section 3.3. Problems of dimension N = 2, 3 and 10 are considered, the sample
size is T' = 1,000 and the number of simulations used is S = 25 x T. The rows of
each panel contain the step size, er g, used in computing the matrix of numerical

derivatives, Gr,s. The numbers in column &, p, 0%, v, and \ present the percentage

of simulations for which the 95% confidence interval based on the estimated covari-
ance matrix contained the true parameter. The numbers in column J present the
percentage of simulations for which the test statistic of over-identifying restrictions
test described in Section 3.2 was smaller than its computed critical value under 95%
confidence level.
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Table 3.4: Simulation results for mis-specified models

iid AR-GARCH

True copula  Normal Clayton Normal  Clayton
Model Clayton Normal Clayton Normal

N =2
Pseudo-true 0.542 0.599 0.543 0.588
Bias -0.013 0.111 -0.007 0.046
St dev 0.050 0.173 0.035 0.120
Median 0.526 0.659 0.539 0.617
90-10% 0.130 0.433 0.091 0.265
Time 4 72 1 70
J test prob. 0 0 0 0

N =3
Pseudo-true 0.543 0.599 0.542 0.607
Bias 0.003 0.077 -0.002 0.006
St dev 0.039 0.164 0.027 0.088
Median 0.544 0.629 0.540 0.609
90-10% 0.107 0.432 0.072 0.198
Time 5 90 1 86
J test prob. 0 0 0 0

N =10
Pseudo-true 0.544 0.602 0.544 0.603
Bias 0.001 0.059 -0.001 0.047
St dev 0.033 0.118 0.016 0.116
Median 0.546 0.622 0.540 0.618
90-10% 0.086 0.307 0.043 0.314
Time 20 206 4 207
J test prob. 0 0 0 0

141

Notes: This table presents the results from 100 simulations when the true copula
and the model are different (i.e., the model is mis-specified). The parameters of
the copula models are estimated using SMM based on rank correlation and four
quantile dependence measures (¢ = 0.05,0.10,0.90, 0,95). The marginal distributions
of the data are assumed to be either 7id N (0,1) or AR(1)-GARCH(1,1) processes,
as described in Section 3.3. Problems of dimension N = 2, 3 and 10 are considered,
the sample size is T' = 1,000 and the number of simulations used is S = 25 x T. The
pseudo-true parameter is estimated using 10 million observations. The last row in
each panel presents the proportion of tests of over-identifying restrictions that are
smaller than the 95% critical value.



Table 3.5: Sample dependence statistics

Bank of Bank of Citi Goldman JP Morgan Wells

America N.Y. Group Sachs Morgan Stanley Fargo
BoA 0.586  0.691 0.556 0.705 0.602 0.701
BoNY 0.551 0.574 0.578 0.658 0.592  0.595
Citi 0.685 0.558 0.608 0.684 0.649 0.626
Goldman 0.564 0.565  0.609 0.655 0.759  0.548
JPM 0.713 0.633  0.694 0.666 0.667 0.683
Morgan S 0.604 0.587  0.650 0.774 0.676 0.578
Wells F 0.715 0.593  0.636 0.554 0.704 0.587
BoA 0.219  0.239 0.219 0.398 0.298 0.358
BoNY -0.048 0.179 0.199 0.159 0.219 0.199
Citi -0.045  -0.004 0.199 0.318 0.219 0.199
Goldman -0.068 0.000  0.032 0.239 0.378 0.199
JPM -0.024  -0.056 -0.012 0.012 0.239 0.358
Morgan S -0.060  -0.020 -0.064 -0.036  -0.008 0.219
Wells F 0.020  -0.052 0.044 -0.028 0.024 0.000

Notes: This table presents measures of dependence between the seven financial firms
under analysis. The upper panel presents Spearman’s rank correlation (upper trian-
gle) and linear correlation (lower triangle), and the lower panel presents the difference
between the 10% tail dependence measures (lower triangle) and average 1% upper
and lower tail dependence (upper triangle). All dependence measures are computed

using the standardized residuals from the models for the conditional mean and vari-
ance.
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Sample and fitted quantile dependence
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Fi1GURE 3.1: This figure plots the probability of both variables being less than their q
quantile (q¢<0.5) or greater than the q quantile (¢>0.5). For the data this is averaged
across all pairs, and a bootstrap 90% (pointwise) confidence interval is presented.
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4

Time-Varying Systemic Risk: Evidence from a

Dynamic Copula Model of CDS Spreads
(co-authored with Andrew Patton)

4.1 Introduction

Systemic risk can be broadly defined as the risk of distress in a large number of
firms or institutions. It represents an extreme event in two directions: a large loss
(e.g., corresponding to a large left-tail realization for stock returns), across a large
proportion of the firms. There are a variety of methods for studying risk and depen-
dence for small collections of assets, see Patton (2012) for a review of copula-based
approaches, but a relative paucity of methods for studying dependence between a
large collection of assets, which is required for a general analysis of systemic risk.
Some existing methods for estimating systemic risk simplify the task by reducing
the dimension of the problem to two: an individual firm and a market index. The
“CoVaR” measure of Adrian and Brunnermeier (2009), for example, uses quantile
regression to estimate a lower tail quantile (e.g., 0.05) of market returns conditional

on a given firm having a returns equal to its lower tail quantile. The “marginal
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expected shortfall” proposed by Brownlees and Engle (2011) estimates the expected
return on a firm conditional on the market return being below some low threshold.
These methods have the clear benefit of being parsimonious, but by aggregating the
“non firm ¢” universe to a single market index, useful information about systemic
risk may be missed. The objective of this paper is to provide models that can be
used to handle large collections of variables, which enables the estimation of a wider
variety of systemic risk measures.

We use Sklar’s theorem (see Nelsen, 2006), with an extension to conditional
distributions from Patton (2006), to decompose the conditional joint distribution of

a collection of N variables into their marginal distributions and a conditional copula:
Yt‘ft,1 NFt = Ct (Flta--wFNt) (41)

We propose new models for the time-varying conditional copula, C;, that can be
used to link models of the conditional marginal distributions (e.g., ARMA-GARCH
models) to form a dynamic conditional joint distribution. Of central relevance to
this paper are cases where N is relatively large, around 50 to 250. In such cases,
models that have been developed for low dimension problems (say, N < 5) are often
not applicable, either because no generalization beyond the bivariate model exists,
or because such generalizations are too restrictive (e.g., Archimedean copulas have
just one or two free parameters regardless of N, which is clearly very restrictive in
high dimensions), or because the obvious generalization of the bivariate case leads to
a proliferation of parameters and unmanageable computational complexity. In high
dimension applications, the challenge is to find a balance of flexibility and parsimony.

This paper makes two contributions. First, we propose a flexible and feasible
model for capturing time-varying dependence in high dimensions. Our approach
draws on successful ideas from the literature on dynamic modeling of high dimension
covariance matrices and on recent work on models for general time-varying distri-
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butions. In particular, we combine the “GAS” model of Creal, et al. (2011, 2013),
parameter restrictions and “variance targeting” ideas from Engle (2002) and Engle
and Kelly (2012), and the factor copula model of Oh and Patton (2011) to obtain
a flexible yet parsimonious dynamic model for high dimension conditional distribu-
tions. A realistic simulation study confirms that our proposed models and estimation
methods have satisfactory properties for relevant sample sizes.

Our second contribution is a detailed study of a collection of 100 daily credit de-
fault swap (CDS) spreads on U.S. firms. The CDS market has expanded enormously
over the last decade, growing 40-fold from $0.6 trillion of gross notional principal in
2001 to $25.9 trillion at the end of 2011 according to the International Swaps and
Derivatives Association (ISDA), yet it has received relatively little attention in the
econometrics literature. (Interest is growing, however, see Conrad, et al. (2011),
Lucas, et al. (2011), Creal, et al. (2012) and Christoffersen, et al. (2013) for re-
cent work on CDS data.) We use our model of CDS spreads to provide insights
into systemic risk, as CDS spreads are tightly linked to the health of the underlying
firm. We find that systemic risk rose during the financial crisis, unsurprisingly. More
interestingly, we also find that systemic risk remains high relative to the pre-crisis
period, even though idiosyncratic risk as fallen.

The remainder of the paper is structured as follows. Section 4.2 presents a dy-
namic copula model for high dimension applications, and Section 4.3 presents a simu-
lation study for the proposed model. In Section 4.4 we present estimation results for
various models of CDS spreads. Section 4.5 presents estimates of time-varying sys-
temic risk, and Section 4.6 concludes. Technical details and some additional results

are presented in Appendix D.
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4.2 A dynamic copula model for high dimensions

In this section we describe our approach for capturing dynamics in the dependence
between a relatively large number of variables. A review of alternative methods
from the (small) extant literature is presented in Section 4.2.3. We consider a class
of data generating processes (DGPs) that allow for time-varying conditional marginal
distributions, e.g., dynamic conditional means and variances, and also possibly time-

varying higher-order moments:
Y, = Yoo, Vo] (4.2)
Where }/z't = ,uit(gzﬁi,o) + Uit(¢i,0>7]z’t7 1= 1, 2, ey N

Nit) Fie1 ~ Fit(dio)

where p;; is the conditional mean of Yj;, 0;; is the conditional standard deviation,
and Fj(¢;0) is a parametric distribution with zero mean and unit variance. We
will denote the parameters of the marginal distributions as ¢ =[¢/, ..., ¢y], the pa-
rameters of the copula as v, and the vector of all parameters as 6 = [¢,7']". We
assume that Fj; is continuous and strictly increasing, which fits our empirical appli-
cation, though this assumption can be relaxed. The information set is taken to be
Fi =0 (Y, Yi1,...). Define the conditional probability integral transforms of the

data as:

Uit = E (%t(guo))¢l,0> ) 1= 1727 7N (43)

Then the conditional copula of Y;|F;_; is equal to the conditional distribution of
Ut’]‘—t—li
Ut|~7:t—1 ~ Ct(%) (4-4)

By allowing for a time-varying conditional copula, the class of DGPs characterized

by equations (4.2) to (4.4) is a generalization of those considered by Chen and Fan
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(2006), for example, however the cost of this flexibility is the need to specify para-
metric marginal distributions. In contrast, Chen and Fan (2006), Rémillard (2010)
and Oh and Patton (2013a) allow for nonparametric estimation of the marginal dis-
tributions. The parametric margin requirement arises as the asymptotic distribution
theory for a model with nonparametric margins and a time-varying copula is not
yet available in the literature. We attempt to mitigate this requirement in our em-
pirical work by using flexible models for the marginal distributions, and conducting

goodness-of-fit tests to verify that they provide a satisfactory fit to the data.
4.2.1 Factor copulas

In high dimension applications a critical aspect of any model is imposing some form of
dimension reduction. A widely-used method to achieve this in economics and finance
is to use some form of factor structure. Oh and Patton (2011) propose using a factor
model with flexible distributions to obtain a flexible class of “factor copulas.” A one-
factor version of their model is the copula for the (latent) vector random variable
X; = [Xy, ..., Xn¢] implied by the following structure:

Xit =it (W) Ze + €, 1=1,2,..,N (4.5)

where Z; ~ F, (7V.), i ~iid Fy(ve), Z1le; Vi

where F; (v,) and F.; (v.) are flexible parametric univariate distributions for the
common factor and the idiosyncratic variables respectively, and A (7)) is a poten-
tially time-varying weight on the common factor. The conditional joint distribution
for X; can be decomposed into its conditional marginal distributions and its condi-
tional copula via Sklar’s theorem (see Nelsen (2006)) for conditional distributions,

see Patton (2006b):

Xy ~Fu=Ci (G (7)., Grne () 57) (4.6)
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where v =[7.,7.,74] . Note that the marginal distributions of X; need not be the
same as the marginal distributions of the observed data. Only the copula of these
variables, denoted C; (), is used as a model for the copula of the observable data
Y;. If we impose that the marginal distributions of the observable data are also
driven by the factor structure in equation (4.5), then this becomes a standard factor
model for a vector of variables. However, Oh and Patton (2011) suggest imposing the
factor structure only on the component of the multivariate model where dimension
reduction is critical, namely the copula, and allow the marginal distributions to be
modeled using a potentially different approach. In this case, the factor structure in
equation (4.5) is used only for the copula that it implies, and this becomes a “factor
copula” model.

The copula implied by equation (4.5) is known in closed form for only a few
particular combinations of choices of F, and F. (the most obvious example being
where both of these distributions are Gaussian, in which case the implied copula
is also Gaussian). For general choices of F, and F. the copula of X will not be
known in closed form, and thus the copula likelihood is not known in closed form.
Numerical methods can be used to overcome this problem. Oh and Patton (2013a)
propose simulated method of moments-type estimation of the unknown parameters,
however their approach is only applicable when the conditional copula is constant.
A key objective of this paper is to allow the conditional copula to vary through time
and so an alternate estimation approach is required. We use a simple numerical
integration method, described in Appendix D.2, to overcome the lack of closed-form
likelihood. This numerical integration exploits the fact that although the copula is V-
dimensional, we need only integrate out the common factor, which is one-dimensional
in the structure above.

Dynamics in the factor copula model in equation (4.5) arise by allowing the
loadings on the common factor, Ay, to vary through time, and/or by allowing the
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distributions of the common factor and the idiosyncratic variables to change through
time. For example, holding F,; and F_; fixed, an increase in the factor loadings
corresponds to an increase in the level of overall dependence (e.g., rank correlation)
between the variables. Holding the factor loadings fixed, an increase in the thickness
of the tails of the distribution of the common factor increases the degree of tail

dependence. In the next section we describe how we model these dynamics.
4.2.2  “GAS” dynamics

An important feature of any dynamic model is the specification for how the param-
eters evolve through time. Some specifications, such as stochastic volatility models
(see Shephard (2005) for example) and related stochastic copula models (see Hafner
and Manner (2012) and Manner and Segers (2011)) allow the varying parameters to
evolve as a latent time series process. Others, such as ARCH-type models for volatil-
ity (see Engle, 1982) and related models for copulas (see Patton (2006b), Jondeau
and Rockinger (2006), and Creal, et al. (2013) for example) model the varying pa-
rameters as some function of lagged observables. An advantage of the latter approach
over the former, in particular for high dimension applications, is that it avoids the
need to “integrate out” the innovation terms driving the latent time series processes.

Within the class of ARCH-type models (“observation driven”, in the terminology
of Creal, et al. (2013)), the question of which function of lagged observables to
use as a forcing variable in the evolution equation for the varying parameter arises.
For models of the conditional variance, an immediate choice is the lagged squared
residual, as in the ARCH model, but for models with parameters that lack an obvious
interpretation the choice is less clear. We adopt the generalized autoregressive score
(GAS) model of Creal, et al. (2013) to overcome this problem. (Harvey (2013) and
Harvey and Sucarrat (2012) propose a similar method for modeling time-varying

parameters, which they call a “dynamic conditional score,” or “DCS,” model.) These
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authors propose using the lagged score of the density model (copula model, in our
application) as the forcing variable. Specifically, for a copula with time-varying
parameter d;, governed by fixed parameter v, we have:
Let Ui|Fi—1 ~ C(3 (7))
then 6; = w + Bd;_1 + As;_1 (4.7)
where s;_1 = 5;_1Vi_1

dlogc(u_1;6;,-1)

Vi1 = %9

and S; is a scaling matrix (e.g., the inverse Hessian or its square root). While this
specification for the evolution of a time-varying parameter is somewhat arbitrary,
Creal, et al. (2013) provide two motivations for it. Firstly, this model nests a
variety of popular and successful existing models: GARCH (Bollerslev (1986)) for
conditional variance; ACD (Engle and Russell (1998)) for models of trade durations
(the time between consecutive high frequency observations); Davis, et al.’s (2003)
model for Poisson counts. Secondly, the recursion above can be interpreted as the
steepest ascent direction for improving the model’s fit, in terms of the likelihood,
given the current value of the model parameter ¢;, similar to numerical optimization
algorithms such as the Gauss-Newton algorithm. Harvey (2013) further motivates
this specification as an approximation to a filter for a model driven by a stochastic

latent parameter, or an “unobserved components” model.
GAS dynamics for high dimension factor copulas

We employ the GAS model to allow for time variation in the factor loadings in the
factor copula implied by equation (4.5), but to keep the model parsimonious we
impose that the parameters governing the “shape” of the common and idiosyncratic
variables (7, and 7.) are constant. We use the skewed ¢ distribution of Hansen
(1994) as the model for F,, and the (symmetric) standardized ¢ distribution as the
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model for F.. The skewed t distribution has two shape parameters, a degrees of
freedom parameter (v, € (2,0]) and an asymmetry parameter (¢, € (—1,1)). This
distribution simplifies to the standardized t distribution when 1 = 0. We impose
symmetry on the distribution of the idiosyncratic variables for simplicity.

In the general GAS framework in equation (4.7), the N time-varying factor load-
ings would have N + 2N? parameters governing their evolution, which represents
an infeasibly large number for even moderate values of N. To keep the model par-
simonious, we impose that the coefficient matrices (B and A) are diagonal with a
common parameter on the diagonal, as in the DCC model of Engle (2002). To avoid
the estimation of N x N scaling matrix we set S; = I. This simplifies our model to
be (in logs):

log \it = w; + Blog A\jy—1 + asip—1, 1 =1,2,..., N (4.8)

where s; = dlog c(ug; A\, vz, U2, ve) /0N and Ay = [A1y, ..., Awe]” . The dynamic copula
model implied by equations (4.5) and (4.8) thus contains N + 2 parameters for
the GAS dynamics, 3 parameters for the shape of the common and idiosyncratic

variables, for a total of N + 5 parameters.
FEquidependence vs. heterogeneous dependence

To investigate whether we can further reduce the number of free parameters in this
model we consider two restrictions of the model in equation (4.8), motivated by
the “dynamic equicorrelation” model of Engle and Kelly (2012). If we impose that
w; = w Y 1, then the pair-wise dependence between each of the variables will be
identical, leading to a “dynamic equidependence” model. (The copula implied by this
specification is “exchangeable” in the terminology of the copula literature.) In this
case we have only 6 parameters to estimate independent of the number of variables
N, vastly reducing the estimation burden, but imposing a lot of homogeneity on the

model.
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An intermediate step between the fully flexible model in equation (4.8) and the
equidependence model is to group the assets using some ez ante information (e.g.,
by industry for stock returns or CDS spreads) and impose homogeneity only within
groups. This leads to a “block equidependence” model, with

Xit = )\g(i),tZt + Eit, 1= 1, 2, ceey N (49)

log \gt = wy + BlogAg1—1 +asgi—1, g=1,2,...,G

where g (7) is the group to which variable i belongs, and G is the number of groups. In
this case the number of parameters to estimate in the copula model is G+2+3. In our
empirical application we have N = 100 and we consider grouping variables into G = 5
industries, meaning this model has 10 parameters to estimate rather than 105. In our
empirical analysis below, we compare these two restricted models (G = 1 and G = 5)
with the “heterogeneous dependence” model which allows a different factor for each

variable (G = N).
A “variance targeting” method

Estimating the fully flexible model above involves numerically searching over N + 5
parameters, and for N = 100 this represents quite a computational challenge. We
propose a method to overcome this challenge by adapting an idea from the DCC
model of Engle (2002). Specifically, we use a “variance targeting” (Engle and Mezrich
(1996)) method to replace the constant w; in the GAS equation with a transformation
of a sample dependence measure. The nature of our GAS specification means that
the variance targeting approach needs to be modified for use here.

The evolution equation for A; in equation (4.8) can be re-written as
log )\it =F [lOg )‘zt] (1 — ﬁ) + B log )\iﬂf—l + Oé8i7t_1

using the result from Creal, et al. (2013) that E; 4 [sy] = 0, and so F [log \i] =

w;/ (1 = ). The proposition below provides a method for using sample rank corre-
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lations to obtain an estimate of E [log A;;], thus removing the need to numerically
optimize over the intercept parameters, w;. The proposition is based on the following

assumption.

Assumption 1. (a) The conditional copula of Y| Fi_1 is the time-varying factor
copula given in equations (4.5) and (4.8).
(b) The process {\:} generated by equation (4.8) is strictly stationary.
(c¢) Let pr x = vech (RankCorr,_y [Xy]). Then log \; is a linear function of py x.
(d) Let pjx = RankCorr|[X;, X;] and pf; x = Corr[X;, X;]. Then, for fired

values of (Vz,7:) , the mapping p;; = go(p{}) is strictly increasing.

Part (a) of this assumption makes explicit that the copula of the data is the
GAS-factor copula model, and so the conditional copula of Y;|F;_; is the same as
that of X;|F;—1. Blasques, et al. (2012) which provide conditions under which uni-
variate GAS models satisfy stationarity conditions; corresponding theoretical results
for the multivariate case are not yet available in the literature, and thus in part (b)
we simply assume that stationarity holds. Part (c) formalizes the applicability of a
Taylor series expansion of the function mapping p; to A;. In practice this assumption
will hold only approximately, and its applicability needs to be verified via simulation,
which we discuss further in Section 4.3. Part (d) enables us to map rank correla-
tions to linear correlations. Note that we can take (v,,7.) as fixed, as we call this
mapping for each evaluation of the log-likelihood, which provides us with a value
for (v.,7:). Importantly, this mapping can be computed prior to estimation, and
then just called during estimation, rather than re-computed each time the likelihood

function is evaluated.

Proposition 1. Let Assumption 1 hold, and denote the vech of the rank correlation

matrix of the standardized residuals as ﬁg and its sample analog as ﬁ;j . Then:
(i) Elog \]] = H (p;) , where H is defined in equation (D.3).
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(i) log A = H (p;) is a GMM estimator of E [log A].

Part (i) of the above proposition provides the mapping from the population rank
correlation of the standardized residuals to the mean of the (log) factor loadings,
which is the basis for considering a variance-targeting type estimator. Part (ii)
shows that the sample analog of this mapping can be interpreted as a standard
GMM estimator. This is useful as it enables us to treat the estimation of the entire
conditional joint distribution model as multi-stage GMM, and draw on results for
such estimators to conduct inference, see White (1994), Engle and Sheppard (2001)
and Gongalves et al. (2013). The latter paper provides conditions under which a block
bootstrap may be used to obtain valid standard errors on parameters estimated via
multi-stage GMM. The resulting standard errors are not higher-order efficient, like
some bootstrap inference methods, but they do enable us to avoid having to handle
Hessian matrices of size on the order of 2/NV x 2N. Note that sample rank correlations
cannot in general be considered as moment-based estimators, as they depend on the
sample ranks of the observed data, and studying their estimation properties requires
alternative techniques. However, we exploit the fact that the marginal distributions
of the data are known up to an unknown parameter vector, and thus rank correlation

can be computed as a sample moment of a nonlinear function of the data.
4.2.83  Other models for dynamic, high dimension copulas

As noted above, the literature contains relatively few models for dynamic, high di-
mension copulas. Exceptions to this are discussed here. Lucas, et al. (2011) combine
GAS dynamics with a skewed t copula to model ten sovereign CDS spreads. A similar
model, though with an alternative skew ¢ specification and with Engle’s (2002) DCC
dynamics, is used by Christoffersen, et al. (2012, 2013). The former of these two
papers analyzes equity returns on up to 33 national stock indices, while the latter

studies weekly equity returns and CDS spreads on 233 North American firms (and is
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the largest time-varying copula model in the extant literature). Almeida et al. (2012)
use “vine” copulas to model the dependence between 30 German stock return series,
with dynamics captured through a stochastic volatility-type equation for the param-
eters of the copula. Stéber and Czado (2012) also use vine copulas, combined with
a regime-switching model for dynamics, to model dependence between ten German

stock returns.
4.3 Simulation study

This section presents an analysis of the finite sample properties of maximum likeli-
hood estimation for factor copulas with GAS dynamics. Factor copulas do not have
a closed-form likelihood, and we approximate the likelihood using some standard
numerical integration methods, details of which can be found in Appendix D.2. Oh
and Patton (2013a) propose SMM-type estimation for factor copulas to overcome
the lack of a closed-form likelihood, but a likelihood approach allows us to exploit
the GAS model of Creal, et al. (2013) and so we pursue that here.

We consider three different copula models described for the Monte Carlo simu-
lation: a dynamic equidependence model (G = 1), a dynamic block equidependence
model (G = 10), and a dynamic heterogeneous dependence model (G = N), all of

them governed by:
Xit = Mgy Le +€ity, 1=1,2,..., N (4.10)
log A\t = wy + Blog A\gi—1 +asgi1, g=1,2,....G
Z ~ Skew t (v,,1,)

gi~idid t(v.), and g, 1L Z Vi

We set N = 100 to match the number of series in our empirical application below.

1

For simplicity, we impose that v, = 1., and we estimate v~ rather than v, so that

Normality is nested at v~! = 0 rather than v — o0. Broadly matching the parameter
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estimates we obtain in our empirical application, we set w = 0, 5 = 0.98, a = 0.05,
v =5, and ¥, = —0.1 for the equidependence model. The block equidependence
model uses the same parameters but sets w; = —0.03 and wyy = 0.03, and with ws
to wy evenly spaced between these two bounds, and the heterogeneous dependence
model similarly uses w; = —0.03 and wigg = 0.03, with ws to wgg evenly spaced
between these two bounds. Rank correlations implied by these values range from
0.1 to 0.7. With these choices of parameter values and dependence designs, various
dynamic dependence structures are covered, and asymmetric tail dependence, which
is a common feature of financial data, is also allowed. We use a sample size of
T = 500 and we repeat each simulation 100 times.

The results for the equidependence model presented in Panel A of Table 4.1 re-
veal that the average estimated bias for all parameters is small, and the estimates
are centered on true values. The results for the block equidependence model, pre-
sented in Panel B, are also satisfactory, and, as expected, the estimation error in the
parameters is generally slightly higher for this more complicated model.

The heterogeneous dependence model is estimated using the variance targeting-
type approach for the intercepts, w; described in Section 4.2.2, combined with numer-
ical optimization for the remaining parameters. Appendix D.4 contains simulations
that verify the applicability of Assumption 1 for this model, and the results pre-
sented in Panel C confirm that the approach leads to estimators with satisfactory
finite-sample properties. (Panel C reports only every fifth intercept parameter, in
the interests of space. The complete set of results is available in Appendix D.3.) The
standard errors on the estimated intercept parameters are approximately twice as
large, on average, as in the block equidependence case, however this model has seven
times as many parameters as the block equidependence (104 vs. 14) and so some
loss in accuracy is inevitable. Importantly, all estimated parameters are approxi-

mately centered on their true values, confirming that the assumptions underlying
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Proposition 1 are applicable for this model.

4.4 Data description and estimation results

4.4.1 CDS spreads

We apply the dynamic copula model described in the previous section to daily credit
default swap (CDS) spreads, obtained from Markit. In brief, a CDS is a contract in
which the seller provides insurance to the buyer against any losses resulting from a
default by the “reference entity” within some horizon. We focus on North American
corporate CDS contracts, and the reference entities are thus North American firms.
The CDS spread, usually measured in basis points and payable quarterly by the
buyer to the seller, is the cost of this insurance. See Duffie and Singleton (2003) and
Hull (2012) for more detailed discussions of CDS contracts, and see Barclays “CDS
Handbook” (2010) for institutional details.

A key reason for interest in CDS contracts is sensitivity of CDS spreads to changes
in market perceptions of the probability of default, see Conrad, et al. (2011), Creal,
et al. (2012) and Christoffersen, et al. (2013) for recent empirical studies of implied
default probabilities. Under some simplifying assumptions (such as a constant risk
free rate and default hazard rate) see Carr and Wu (2011) for example, it can be

shown that the CDS spread in basis points is:
Sy = 1002P2 Ly, (4.11)

where L, is the loss given default (sometimes shortened to “LLGD,” and often assumed
to equal 0.6 for U.S. firms) and P;? is the implied probability of default. The same
formula obtains as a first-order approximation at P;% ~ ( for other more complicated
pricing equations. This expression can be written in terms of the objective probability
of default, PL:

Sy = 100° P, M L (4.12)
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where M, is the market price of risk (stochastic discount factor). An increase in a
CDS spread can be driven by an increase in the LGD, an increase in the market price
of default risk for this firm, or an increase in the objective probability of default. Any
one of these three effects is indicative of a worsening of the health of the underlying
firm.

In the analysis below we work with the log-difference of CDS spreads, to mitigate

their autoregressive persistence, and under this transformation we obtain:
Yy = Alog Sy = Alog P, + Alog My, + Alog L (4.13)

If the loss given default is constant then the third term above vanishes, and if we
assume that the market price of risk is constant (as in traditional asset pricing
models) or evolves slowly (for example, with a business cycle-type frequency) then
daily changes in CDS spreads can be attributed primarily to changes in the objective
probability of default. We will use this to guide our interpretation of the empirical
results below, but we emphasize here that an increase in any of these three terms
represents “bad news” for firm ¢, and so the isolation of the objective probability of

default is not required for our interpretations to follow.
4.4.2  Summary statistics

Our sample period spans January 2006 to April 2012, a total of 1644 days. We study
the b-year CDS contract, which is the most liquid horizon (see Barclays (2010)), and
we use “XR” (“no restructuring”) CDS contracts, which became the convention for
North America following the CDS market standardization in 2009 (the so-called “Big
Bang”). To obtain a set of active, economically interesting, CDS data, we took all
125 individual firms in the CDS index covering our sample period (CDX Series 17).
Of these, 90 firms had data that covered our entire sample period, and ten firms had

no more than three missing observations. We use these 100 firms for our analysis.
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(Of the remaining 25 firms, six are not U.S.-based firms and one firm stopped trading
because of a firm split. None of the firms defaulted over this sample period.) A plot
of these CDS spreads is presented in Figure 4.1, which reveals that the average CDS
spread was around 100 basis points (bps), and it varied from a low (averaged across
firms) of 24 bps on February 22, 2007, to a high of 304 bps on March 9, 2009.

The levels of our CDS spread data are suggestive of a large autoregressive root,
with the median first-order autocorrelation across all 100 series being 0.996 (the
minimum is 0.990). Further, augmented Dickey-Fuller tests reject the null hypothesis
of a unit root at the 0.05 level for only 12 series. Like interest rate time series, these
series are unlikely to literally obey a random walk, as they are bounded below,
however we model all series in log differences to avoid the need to consider these
series as near unit root processes.

Table 4.2 presents summary statistics on our data. Of particular note is the
positive skewness of the log-differences in CDS spreads (average skewness is 1.087,
and skewness is positive for 89 out of 100 series) and the excess kurtosis (25.531 on
average, and greater than 3 for all 100 firms). Ljung-Box tests for autocorrelation
at up to the tenth lag find significant (at the 0.05 level) autocorrelation in 98 out of
100 of the log-differenced CDS spreads, and for 89 series significant autocorrelation
is found in the squared log-differences. This motivates specifying models for the

conditional mean and variance to capture this predictability.
4.4.8  Conditional mean and variance models

Daily log-differences of CDS spreads have more autocorrelation than is commonly
found for daily stock returns (e.g., the average first-order autocorrelation is 0.161)
and so the model for the conditional mean of our data needs more structure than the
commonly-used constant model for daily stock returns. We use an AR(5) augmented

with one lag of the market variable (an equal-weighted average of all 100 series), and
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we show below that this model passes standard specification tests:

5
Yit = ¢oi + Z GjiYit—j + PmiYmi—1 + €it (4.14)
j=1

For the market return we use the same model (omitting, of course, a repeat of the
first lag of the market return). We need a model for the market return as we use the

residuals from the market return model in our conditional variance specification.
Our model for the conditional variance is the asymmetric volatility model of
Glosten, et al. (1993), the “GJR-GARCH” model. The motivation for the asym-
metry in this model is that “bad news” about a firm increases its future volatility
more than good news. For stock returns, bad news comes in the form of a negative
residual. For CDS spreads, on the other hand, bad news is a positive residual, and
so we reverse the direction of the indicator variable in the GJR-GARCH model to
reflect this. In addition to the standard GJR-GARCH terms, we also include terms

relating to the lagged market residual:
Vi [eit] = O'Z»Qt = w; + Bio_iz,t—l + aieit_l + 5i612,t—11 {62‘7,5_1 > O} (415)

2 2
+ QWi it 1+ Oimry p 11 {€m -1 > 0}

Finally, we specify a model for the marginal distribution of the standardized
residuals, 7;. We use the skewed ¢ distribution of Hansen (1994), which allows for
non-zero skewness and excess kurtosis:

i = 2%~ did Skew t (v;, ;) (4.16)

Ot

Table 4.3 summarizes the results of estimating the above models on the 100 time
series. For the conditional mean model, we find strong significance of the first three
AR lags, as well as the lagged market return. The conditional variance models reveal

only mild statistical evidence of asymmetry in volatility, however the point estimates
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suggest that “bad news” (a positive residual) increases future volatility about 50%
more than good news. The average estimated degrees of freedom parameter is 3.508,
suggestive of fat tails, and the estimated skewness parameter is positive for 94 firms,
and significantly different from zero for 41 of these, indicating positive skewness.
We now discuss goodness-of-fit tests for the marginal distribution specifications.
We firstly use the Ljung-Box test to check the adequacy of these models for the con-
ditional mean and variance, and we are able to reject the null of zero autocorrelation
up to the tenth lag for only nine of the residual series, and only two of the squared
standardized residual series. We conclude that these models provide a satisfactory fit
to the conditional means and variances of these series. Next, we use the Kolmogorov-
Smirnov test to investigate the fit of the skewed ¢ distribution for the standardized
residuals, using 100 simulations to obtain critical values that capture the parameter
estimation error, and we reject the null of correct specification for just eleven of the
100 firms. This is slightly higher than the level of the test (0.05), but we do not
pursue the use of a more complicated marginal distribution model for those eleven

firms in the interests of parsimony and comparability.
4.4.4  The CDS “Big Bang”

On April 8, 2009, the CDS market underwent changes driven by a move towards
more standardized CDS contracts. Details of these changes are described in Markit
(2009). It is plausible that the changes to the CDS market around the Big Bang
changed the dynamics and distributional features of CDS time series, and we test for
that possibility here. We do so by allowing the parameters of the mean, variance,
and marginal distribution models to change on the date of the Big Bang, and we
test the significance of these changes. We have 591 pre-break observations and 1053
post-break observations.

We find that the conditional mean parameters changed significantly (at the 0.05
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level) for 39 firms, and the conditional variance and marginal density shape param-
eters changed significantly for 66 firms. In what follows, the results we report are
based on models that allow for a structural break in the mean, variance and distri-
bution parameters. Given the prevalence of these changes, all of the copula models

we consider allow for a break at the date of the Big Bang.
4.4.5 Comparing models for the conditional copula

The class of high dimension dynamic copula models described in Section 4.2 includes
a variety of possible specifications: static vs. GAS dynamics; normal vs. skew ¢-¢
factor copulas; equidependence vs. block equidependence vs. heterogeneous depen-
dence.

Table 4.4 presents results for six different dynamic models (a corresponding table
for the six static copula models is in Table D.2). Bootstrap standard errors are pre-
sented in parentheses below the estimated parameters. (We use the stationary block
bootstrap of Politis and Romano (1994) with an average block length of 120 days,
applied to the log-difference of the CDS spreads, and we use 100 bootstrap replica-
tions.) Similar to other applications of GAS models (see, Creal et al. (2011, 2013))
we find strong persistence, with the 5 parameter ranging from 0.85 to 0.99. (Note
that the 5 parameter in GAS models plays the same role as o +  in a GARCH(1,1)
model, see Example 1 in Creal, et al. (2013)). We also find that the inverse degrees
of freedom parameters are greater than zero (i.e., the factor copula is not Normal),
which we test formally below. We further find that the asymmetry parameter for
the common factor is positive, indicating greater dependence for joint upward moves
in CDS spreads. This is consistent with financial variables being more correlated
during bad times: for stock returns bad times correspond to joint downward moves,
which have been shown in past work to be more correlated than joint upward moves,

while for CDS spreads bad times correspond to joint upward moves.
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Table 4.4 shows that the estimated degrees of freedom parameter for the common
factor is larger than that for the idiosyncratic term. Oh and Patton (2011) show
that when these two parameters differ the tail dependence implied by this factor
copula is on the boundary: either zero (v, > v.) or one (v, < v.); only when these
parameters are equal can tail dependence lie inside (0,1). We test the significance
of the difference between these two parameters by estimating a model with them
imposed to be equal and then conducting a likelihood ratio test, the log-likelihoods
from these two models are reported in Table 4.5. The results strongly suggest that
v, > v., and thus that extreme movements in CDS spreads are uncorrelated. The
average gain in the log likelihood from estimating just this one extra parameter is
around 200 points. This does not mean, of course, that “near extreme” movements
must be uncorrelated, only that they are uncorrelated in the limit.

Table 4.5 also shows a comparison of the Skew ¢-t factor copula with the Normal
copula, which is obtained by using a Normal distribution for both the common factor
and the idiosyncratic factor. We see very clearly that the Normal copula performs
worse than the Skew t-t factor copula, with the average gain in the log likelihood of
the more flexible model being over 2000 points. This represents yet more evidence
against the Normal copula model for financial time series; the Normal copula is
simply too restrictive.

Finally, Table 4.5 compares the results from models with three different degrees
of heterogeneity equidependence vs. block equidependence vs. heterogeneous depen-
dence. We see that the data support the more flexible models, with the block equide-
pendence model improving the equidependence model by around 200 points, and the
heterogeneous model improving on the block equidependence model by around 800
points. It should be noted that our use of industry membership to form the “blocks”
is just one method, and alternative grouping schemes may lead to better results. We
do not pursue this possibility here.
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Given the results in Table 4.5, our preferred model for the dependence structure
of these 100 CDS spread series is a skew t-t factor copula, with separate degrees of
freedom for the common and idiosyncratic variables, allowing for a separate loading
on the common factor for each series (the “heterogeneous dependence” model) and
allowing for dynamics using the GAS structure described in the previous section.
Figure 4.2 presents the time-varying factor loadings implied by this model, and Fig-
ure 4.3 presents time-varying rank correlations. To summarize these results, Figure
4.2 averages the loadings across all firms in the same industry, and Figure 4.3 aver-
ages all pair-wise correlations between firms in the same pairs of industries. (Thus
the plotted factor loadings and rank correlations are smoother than any individual
rank correlation plot.) Also presented in Figure 4.3 are 60-day rolling window rank
correlations, again averaged across pairs of the firms in the same pair of industries.
This figure reveals a secular increase in the correlation between CDS spreads, ris-
ing from around 0.1 in 2006 to around 0.5 in 2013. Interestingly, rank correlations
do not appear to spike during the financial crisis, unlike individual volatilities and
probabilities of default; rather they continue a mostly steady rise through the sample

period.
4.5 Time-varying systemic risk

In this section we use the dynamic multivariate model presented above to obtain esti-
mates of measures of systemic risk. A variety of measures of systemic risk have been
proposed in the literature to date. One influential measure is “CoVaR,” proposed
by Adrian and Brunnermeier (2009), which uses quantile regression to estimate the
lower tail (e.g., 0.05) quantile of market returns conditional on a given firm having
a returns equal to its lower tail quantile. This measure provides an estimate of how
firm-level stress spills over to the market index. An alternative measure is “marginal

expected shortfall” (MES) proposed by Brownlees and Engle (2011), which estimates
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the expected return on a firm conditional on the market return being below some low
threshold. Segoviano and Goodhart (2009) and Giesecke and Kim (2009) propose
measuring systemic risk via the probability that a “large” number of firms are in
distress. Lucas, et al. (2011) use the same measure applied to European sovereign
debt. Huang, et al. (2009) suggest using the price of a hypothetical contract insuring
against system-wide distress, valued using a mix of CDS and equity data, as a mea-
sure of systemic risk. Schwaab (2010) presents a review of these and other measures
of systemic risk.

We consider two different estimates of systemic risk, defined in detail in the
following two sub-sections. In all cases we use the dynamic copula model that per-
formed best in the previous section, namely the heterogeneous dependence factor

copula model.
4.5.1 Joint probability of distress

The first measure of systemic risk we implement is an estimate of the probability
that a large number of firms will be in distress, similar to the measure considered by
Segoviano and Goodhart (2009), Giesecke and Kim (2009) and Lucas, et al. (2011).

We define distress as a firm’s one-year-ahead CDS spread lying above some threshold:
D tv950 = 1{S 14250 > €*} (4.17)

We choose the threshold as the cross-sectional average of the 99% quantiles of the

individual CDS spreads:
| X
where Pr[S; < ¢f] =0.99

In our sample, the 99% threshold corresponds to a CDS spread of 339 basis points.

Using equation (4.11) above, this threshold yields an implied probability of default
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(assuming LGD is 0.6) of 5.7%. (The average CDS spread across all firms is 97 basis
points, yielding an implied PD of 1.6%.) We also considered a threshold quantile
of 0.95, corresponding to a CDS spread of 245 basis points, and the results are
qualitatively similar.

We use the probability of a large proportion of firms being in distress as a measure

of systemic risk. Define the “joint probability of distress” as:

1 & k
JPD . = Pr, [(N ;Di,t+250> = N] (4.19)

where k is a user-chosen threshold for what constitutes a “large” proportion of the
N firms. We use k& = 30, and the results corresponding to £ = 20 and k& = 40 are
qualitatively similar.

With a fixed threshold for distress, such as that in equation (4.18), the average
individual probability of distress will vary through time. It may thus be of interest,
given our focus on systemic risk, to consider a scaled version of the JPD, to remove

the influence of time variation in individual probabilities of distress. To this end,

define:
JPD .
PD,, = —— 4.2
STP D AvgIPD, (4.20)
N
here AvgIPD, = iZE [D; +-250] (4.21)
w g t= N t [, t+250 .

=1

The JPD and SJPD estimates must be obtained via simulations from our model,
and we obtain these using 10,000 simulations. Given the computational burden, we
compute estimates only every 20 trading days (approximately once per month).
The estimated joint probability of distress and scaled joint probability of distress
are presented in Figure 4.4. We see from the left panel that the JPD rose dramatically

during the financial crisis of late 2008-mid 2009, with the probability of at least 30
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firms being in distress reaching around 80%. This panel also reveals that a large
part of this increase in JPD is attributable to an increase in the average individual
probability of distress, which rose to nearly 50% in the peak of the financial crisis.
In the right panel we report the ratio of these two lines and obtain the scaled
probability of distress. This can be thought of as a “multiplier” of individual distress,
as it shows the ratio of joint distress to average individual distress. This ratio reached
nearly two in the financial crisis. Interestingly, while this ratio fell in late 2009, it
rose again in 2010 and in late 2011, indicating that the level of systemic risk implied

by observed CDS spreads is substantially higher now than in the pre-crisis period.
4.5.2  Ezpected proportion in distress

Our second measure of systemic risk more fully exploits the ability of our dynamic
copula model to capture heterogeneous dependence between individual CDS spread
changes. For each firm 7, we compute the expected proportion of stocks in distress

conditional on firm ¢ being in distress:

LN
EPD;, = E, [N Z Dy s 1250

J=1

D050 = 1] (4.22)

The minimum value this can take is 1/N, as we include firm i in the sum, and the
maximum is one. We use the same indicator for distress as in the previous section
(equation (4.17)). This measure of systemic risk is similar in spirit to the CoVaR
measure proposed by Adrian and Brunnermeier (2009), in that it looks at distress
“spillovers” from a single firm to the market as a whole.

In Figure 4.5 below we summarize the results from the EPD estimates, and
present the average, and 10% and 90% quantiles of this measure across the 100
firms in our sample. We observe that the average EPD is around 30% in the pre-

crisis period, rising to almost 60% in late 2008, and returning to around 40% in the
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last year of our sample. Thus this figure, like the JPD and SJPD plot in Figure 4.4,
is also suggestive of a large increase in systemic risk around the financial crisis, and
higher level of systemic risk in the current period than in the pre-crisis period.

The expected proportion in distress measure enables us to identify firms that are
more strongly correlated with market-wide distress than others. When the EPD is
low for a given firm, it reveals that distress for that firm is not a signal of widespread
distress, i.e., firm ¢ is more idiosyncratic. Conversely, when the EPD is high, it
reveals that distress for this firm is a sign of widespread distress, and so this firm
is a “bellwether” for systemic risk. To illustrate the information from individual
firm EPD estimates, Table 4.6 below presents the top five and bottom five firms
according to their EPD on three dates in our sample period, the first day (January
2, 2006), a middle day (January 26, 2009) and the last day (April 17, 2012). We
note that SLM Corporation (“Sallie Mae”, in the student loan business) appears in
the “least systemic” group on all three dates, indicating that periods in which it is in
distress are, according to our model, generally unrelated to periods of wider distress.
Marsh and McLennan (which owns a collection of risk, insurance and consulting
firms) and Baxter International (a bioscience and medical firm) each appear in the
“most systemic” group for two out of three dates.

Table 4.6 also provides information on the spread of EPD estimates across firms.
At the start of our sample the least systemic firms had EPDs of 2 to 3, indicating
that only one to two other firms are expected to be in distress when they are in
distress. At the end of our sample the least systemic firms had EPDs of 8 to 12,
indicating a wider correlation of distress even among the least correlated. A similar
finding is true for the most systemic firms: the EPDs for the most systemic firms rise
from 48-53 at the start of the sample to 84-94 at the end. Thus there is a general

increase in the correlation between firm distress over this sample period.
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4.6 Conclusion

Motivated by the growing interest in measures of the risk of systemic events, this
paper proposes new flexible yet parsimonious models for time-varying high dimension
distributions. We use copula theory to combine well-known models for conditional
means, variances, and marginal distributions with new models of the conditional
dependence structure (copula) to obtain dynamic joint distributions. Our proposed
new dynamic copula models draw on successful ideas from the literature on dynamic
modeling of high dimension covariance matrices, see Engle (2002) and Engle and
Kelly (2012) for example, and on recent work on models for general time-varying
distributions, see Creal, et al. (2011, 2013), along with the “factor copula” of Oh
and Patton (2012).

We use the proposed models to undertake a detailed study of a collection of 100
credit default swap (CDS) spreads on U.S. firms, which provide an relatively novel
view of the health of these firms. We find, unsurprisingly, that systemic risk was
highest during the financial crisis of 2008-09. More interestingly, we also find that
systemic risk has remained relatively high, and is substantially higher now than in

the pre-crisis period.

4.7 Tables and figures
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Table 4.1: Simulation results

True Bias  Std Median 90%  10% Diff
(90%-10%)
Panel A: Equidependence
w  0.000 0.005 0.015 0.001  0.027 -0.003  0.030
a  0.050 0.000 0.003 0.050 0.051 0.048  0.003
I5; 0.980 0.002 0.004 0.980 0.989 0979  0.010
v~10.200 0.001 0.006 0.200 0.206 0.195  0.010
¥, 0.100 0.005 0.017 0.100 0.118 0.097  0.021
Panel B: Block equidependence

w;  -0.030 0.000 0.005  -0.030 -0.025 -0.035  0.010
wy -0.023 -0.001 0.004 -0.024 -0.020 -0.030  0.010
ws -0.017 0.000 0.005 -0.017 -0.011 -0.023  0.012
wy -0.010 0.000 0.004 -0.011 -0.005 -0.016  0.011
ws -0.003 0.001 0.004 -0.002 0.004 -0.007  0.011
we  0.003 0.001 0.004 0.004 0.009 0.000  0.009
wry 0.010 0.002 0.005 0.012 0.018 0.007  0.012
wg  0.017 0.001 0.005 0.017 0.025 0.012  0.013
wyg  0.023 0.001 0.005 0.024 0.030 0.018  0.012
wie  0.030 0.003 0.006 0.033 0.040 0.024  0.015
a  0.050 0.001 0.005 0.0561  0.057 0.045 0.012
B 0.980 -0.001 0.002 0.978 0.981 0.976  0.004
v~ 0.200 -0.005 0.008 0.196 0.202 0.184  0.018
v,  0.100 0.004 0.025 0.103 0.138 0.071  0.068

Notes: This table presents results from the simulation study described in Section 4.3.
Panel A contains results for the equidependence model and Panel B for the “block
equidependence” model.
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Table 4.1: Simulation results

True Bias Std  Median  90% 10% Diff

(90%-10%)

Panel C: Heterogeneous dependence

w; -0.030 0.004 0.017 -0.022 -0.005 -0.052  0.047
ws -0.028 0.004 0.016 -0.020 -0.005 -0.046  0.041
wip -0.025 0.002 0.016 -0.019 -0.005 -0.041  0.036
wis  -0.022  0.002 0.013 -0.019 -0.004 -0.043  0.039
wgo -0.019 0.002 0.011  -0.015 -0.003 -0.033  0.030
wes -0.016 0.000 0.010 -0.014 -0.003 -0.030  0.027
wzo -0.012  0.001 0.008 -0.010 -0.002 -0.022  0.020
wss  -0.009 0.000 0.008 -0.008 -0.002 -0.020  0.018
wy -0.006 -0.001 0.005 -0.006 -0.002 -0.015  0.014
wgs  -0.003 -0.001 0.005 -0.003 0.000 -0.010  0.010
wso  0.000 -0.002 0.004 -0.002 0.001 -0.007  0.008
wss  0.003 -0.001 0.004 0.001  0.007 -0.003  0.010
weo  0.006 -0.002 0.005 0.003 0.010 0.000  0.010
wes  0.009 -0.002 0.006 0.005 0.013 0.000  0.013
wro  0.012 -0.004 0.007 0.007 0.017 0.001  0.016
wzs  0.015 -0.004 0.008 0.009 0.019 0.002  0.017
wgo  0.018 -0.004 0.009 0.012 0.026 0.002  0.024
wgs  0.021 -0.006 0.011 0.014 0.032 0.002  0.030
wgo  0.024 -0.006 0.012 0.016 0.036 0.003  0.033
wgs  0.027 -0.006 0.014 0.018 0.040 0.004  0.036
wigo  0.030 -0.007 0.016 0.021 0.040 0.004  0.036
o} 0.050 -0.006 0.015 0.045 0.062 0.023  0.039
I6] 0.980 0.002 0.012 0.983 0.997 0966  0.031
v~ 0.200 -0.002 0.009 0.199 0.209 0.186  0.023
Y,  0.100 0.008 0.032 0.111 0.152 0.064  0.088

Notes: This table presents results from the simulation study described in Section 4.3.
Panel C contains results for the “heterogeneous dependence” model. In the interests
of space, Panel C only reports every fifth intercept parameter (w;) rather than the

complete set of 100 such parameters; the complete table is available in Appendix
D.3.
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Table 4.2: Summary statistics for daily CDS spreads and log-differences of daily CDS
spreads

Mean 5% 25% Median 5% 95%

Panel A: Cross-sectional distribution of CDS spreads

Mean 96.953 37.212 53.561 74.957 123.785  200.346
Std dev 69.950 17.344 27.245 47.508 84.336  180.618
1%t autocorr 0.996 0.992 0.995 0.997 0.998 0.998
Skewness 1.203 0.095 0.695 1.280 1.587 2.488
Kurtosis 5.113 2.198 2.943 4.937 6.477 9.486
5% 23.883 9.021 11.741 18.926 29.851 60.538
25% 42.274 20.373 25.212 35.314 47473 104.704
Median 85.310 35.098 50.105 69.399 113.762 166.208
5% 122.061 46.250 65.862 93.622 154.729 251.112
95% 245.497 72.514  102.554 168.500 313.585 631.924
99% 338.676 80.414  122.885 231.295 435.224 827.098

Panel B: Cross-sectional distribution of log-differences of CDS spreads

Mean 5.589 -1.634 2.559 5.529 8.521 13.817
Std dev 378.892  308.636 347.627 373.460 400.385 476.533
1% autocorr 0.161 0.030 0.121 0.164 0.217 0.267
Skewness 1.087 -0.285 0.354 0.758 1.488 3.629
Kurtosis 25.531 7717 10.286 14.557 25911 74.843
5% -514.574 -622.282 -551.334 -509.554 -474.027 -415.651
25% -144.195 -172.319 -155.635 -145.415 -134.820 -111.993
Median -2.324 -9.045 -3.644 -0.726 0.000 0.000
5% 132.127 95.168 120.514 131.019 144.363 174.645
95% 570.510 457.775 537.093 568.331 612.769 684.984

Panel C: Autocorrelation in CDS spreads

# of reject. Level Log-diff =~ Squared log-diff
ADF test 12 100 -
LB test = 98 89

Notes: This table presents summary statistics of daily CDS spreads (upper panel)
and log-differences of CDS spreads (middle panel), measured in basis points in both
cases. The columns present the mean and quantiles from the cross-sectional dis-
tribution of the measures listed in the rows. These two panels present summaries
across the N = 100 marginal distributions. The bottom panel shows the number of
rejections (at the 0.05 level) across the 100 firms for augmented Dickey-Fuller tests
of the null of a unit root, as well as Ljung-Box tests for autocorrelation up to 10 lags.
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Table 4.3: Marginal distribution parameter estimates

Cross-sectional distribution

Mean 5% 25%  Median 75% 95%

Do 3.029 -3.760 0.247 3.116 5.861 10.165
01 0.005 -0.179 -0.062 0.010 0.082 0.153
103 0.025 -0.039 -0.001 0.025 0.050 0.084
O3 -0.002 -0.058 -0.028  -0.004 0.021 0.064
o 0.006 -0.046 -0.014 0.006 0.033 0.054
05 0.004 -0.055 -0.022 0.005 0.027 0.060
Om 0.387 0.163 0.303 0.372  0.480 0.638
w/1000 5.631 1.401 3.111 5.041 7.260 13.381
6] 0.741 0.595 0.699 0.746 0.794 0.845
a 0.114 0.052 0.087 0.106 0.141 0.181
) 0.022  0.000  0.000 0.000 0.042 0.086
Qo 0.223 0.037 0.137 0.206 0.297 0.494
Om 0.072  0.000  0.000 0.059 0.114 0.233
v 3.620 2.877 3.293 3.571 3.921 4.496
P 0.043 -0.003 0.024 0.042 0.062 0.089
# of rejections
LB test for standardized residuals 9
LB test for squared standardized residuals 2
KS test for skew t dist of std. residuals 11

Notes: The table presents summaries of the estimated AR(5)-GJR-GARCH(1,1)-
Skew ¢ (v, 1) models estimated on log-difference of daily CDS spreads. The columns
present the mean and quantiles from the cross-sectional distribution of the parame-
ters listed in the rows. The bottom panel shows the number of rejections (at the 0.05
leve) across 100 firms from Ljung-Box tests for serial correlation up to 10 lags. The
first row is for standardized residuals of log-difference of daily CDS spreads and the
second row for squared standardized residuals. The bottom panel shows the number
of rejections across 100 firms from the Kolmogorov—Smirnov test of the Skew t (v, )
distribution used for the standardized residuals.
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CDS spreads

T

Mean
600 | v 25% and 75% quantile
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FIGURE 4.1: The upper panel plots the mean and 10%, 25%, 75% and 90% quantiles
across the CDS spreads for 100 U.S. firms over the period January 2006 to April
2012. The lower panel reports the average (across firms) percent change in CDS
spreads for the same time period.
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FIGURE 4.2: This figure plots the estimated factor loadings (N;) from the heteroge-
neous dependence factor copula model, averaged across firms in the same industry.
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FIGURE 4.4: The left panel shows the joint probability of distress (JPD) in a solid
line and the average individual probability of distress (Avg IPD) in a dashed line.
The right panel shows the scaled joint probability of distress (SJPD). Both panels

Scaled Joint prob. of distress

<
~

SJPD: k=30

[—s)

n

_‘_L_._.
- M o @

e <
[ )

o
)

0 ! ! ! ! ! !
06 07 08 09 10 11 12
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Expected proportion in distress, given firm i in distress
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FIGURE 4.5: This figure shows the expected proportion (in percent) of firms in dis-
tress, given firm i in distress, averaged across all 100 firms. The cross-sectional 10%

and 90% quantiles are also reported. The sample period is January 2006 to April
2012.
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Appendix A

Appendix to Chapter 1

A.1 Proofs

The following two lemmas are needed to prove Theorem 1.

Lemma 1. Let {Xi}f\il be N continuous random variables with joint distribution F,
marginal distributions Fy, .., F. Then {Xi}z']\il is jointly symmetric about {ai}f\il if
and only if
Vi, F(ay +x1,...,a; + x;...,an + zn) = F (a1 + 21,...,0,...,ay + xy) (A.1)
—F (a1 +x1,...,0; — x4, ...,ay + Tp)
F (a1 +21,...,0,...;ay +xy) and F (a1 + x1,...,a; — x;,...,an + xn) mean that

only i-th element is o0 and a; — x;, respectively, and other elements are

{ar + 21, 01 + Ti1, 041 + Tign, ..., an + TN}

Proof. =) By Definition 2, the joint symmetry implies that the following holds for
any i,
PriXy—a <z,...,Xi—a; <zyy..., Xy —ay < 2] (A.2)

:PI'[Xl—Cllg.’lﬂ'l,...,ai—Xi<$Z‘,...,XN—CLN<IEN]
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and with a simple calculation, the right hand side is written as

Pr(Xy—a <a,...,0; — X; <zy,..., Xy —ay < zy] (A.3)
=Pr[Xy—a <m,...,X;<00,..., Xy —ay < ap]
—Pr(Xi—a<zy,..., X;<a;— ..., Xy —any < ap]

=F(ay +x,...,0,...,ay + xn)

—F (a1 +x1,...,0; — x4, ...,ay + TN)

and the left hand side of equation (A.2) is
Pr[Xl—al <x1,...,Xi—ai SIi,...,XN—CLN <$N]

=F(ay +x1,...,04; +x4,...,an + TN)

<) Equation (A.1) can be written as

Vi, Pr(X;—a; <zy,...,X;—a; <zy,..., Xy —ay < xp]
IPI‘[Xl—Cbl<$1,...,XZ'gOO,...,XN—CLNgl’N]
—Pr[Xi—a <xzy,..., X;<a;—x;,..., Xy —an < xp]

and by equation (A.3), the right hand side becomes
PI'[Xl—G,l <x1,...,ai—Xi <£L’i,...,XN—CZN <.TN]

Therefore, for any ¢

Pr[Xl—al <$17---7X’i_ai <xi,...,XN—GN<.TN]
:PI'[Xl—Cll <x1,...,ai—Xi<xi,...,XN—aNSxN]
and this satisfies the definition of joint symmetry. ]

Lemma 2. Consider two scalar random wvariables Z1 and Zs, and some constant
by in RY. If (Zy — by, Z5) and (by — Z1, Z3) have a common joint distribution, then
Cov (Zl, ZQ) =0
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Proof. Z1—0by and by —Z; have the same marginal distribution and the same moments,

SO

(Z1 — by, Zy) and (by — Zy, Zy) have the same moment, so
E[(Zy —b) Zy] = E[(by — Z1) Zs]

EZ1Z5] = b E [ Zs]
Covariance of Z; and Z, is
Cov (Zl7 ZQ) =F [Z1Z2] —F [Zl] FE [Zg]
=0 E|Zy] — b E[Z5]

=0

Proof of Theorem 1. (i) =) We follow Lemma 1 and rewrite equation (A.1) as

Vi,C(Fy(ay +x1),...,Fi(a; +x;),...,Fy(an + zn))
=C(Fl(al+ZE1),...,1,...,FN(CLN+CL’N))
—C(Fi(ay+z1),...,Fi(a; —x;),...,Fy (an + zn))

and we know Fj (a; + z;) = 1 — F; (a; — x;) due to the assumption of the symmetry

of each X;. Therefore,
Vi, C (uy, ... uiy .. uy) =C(up, ..., 1,...;uny) — C(ug, ..., 1 —uy, ..., uy)

where u; = F; (a; + x;) .
<) Following the reverse way above, equation (1.5) becomes equation (A.1), and

the proof is done by Lemma 1.

(ii) This is trivial by Definition 2 for joint symmetry and Lemma 2. ]
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Proof of Theorem 2. If we prove that C”° (uy,...,uy) in equation (1.6) satisfies

equation (1.5), the proof is done:
Vi, C7% (uy, ... ug .. un) = C7% (uy, ..., 1, uy) — C7¥ (ug, . 1 — g, )
We first prove this for ¢ = N. Rewriting equation (1.6) as

CJS (ul, e ,UN> = — [C,N (ul, e ,uN,l,uN) — C,N (ul, oo, UN—T, 1— U,N)

+C_N (ul, e, UN—T, 1)]

3 3
where C_y (U1, ..., un_1,Un) = Z Z (—1)J‘N - C (U, ..., Un_1,UN)
Jji=1 JN-1=1
N-1 W, for j; =1
J—NEZI{]ZZ2} andiiiz 1—1/4 fOI‘jiZQ
i=1 1 for 5, =3
and calculating C”* (uy,...,uy_1,1) and C”9 (uy,...,uy_1,1 — uy) result in
C’% (uy, ..., un_1,1) = C’¥ (uy, ..., un_1,1 — uy)
1
= 2—N C_n (Ul, <y UN-1, 1) - ng (Ub e ,UNA,OJ) + C_n (ula -y UN-1, 1)
20
1
T oN [C_n (w1, ;un—1,1 —uy) — C_y (u1,...,un—1,un) + C_n (ur,...,un_1,1)]
1
= on [C_wn (u1,...,un—1,un) — C_n (u1,...,un—1,1 —uy) + C_n (u1,...,un—1,1)]
= CJS(“la"'7uN)
Similarly, this equation holds for ¢ = 1,..., N — 1, so the proof is done. O]

To prove Theorem 3, we need the following lemma which guarantees that a sample

covariance matrix is positive definite if 7" is large enough relative to dimension V.
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Lemma 3. Consider T vectors v, € RY for t = 1,...,T. If ranklry,... , v7] >
N, then ZtT:1 r,r, is positive definite.

Proof. Assume that Zle r,r} is positive semi-definite. Then there exists a nonzero
vector x € RN such that x’ (Zthl rtr;) x = 0, and this implies x" - r; = 0 for any ¢.

On the other hand, if rank[ry,...,ry] = N, then [ry, ..., r7] span RN, which implies

there exist {a;},_, such that
oir] + ... tarryr = X
Premultiplying by x’ gives
X'ty 4 ... + arx'ry = xX'x

and the left hand side is zero by x’ - r; = 0 for any ¢, which contradicts that x is a

nonzero vector. O

Proof of Theorem 3. (i) From equation (1.11), we write the conditional expectation

of realized correlation in matrix form:

K [RCOWtA’]:tfl] =(1l-a—-b—-c)-E [RCorrtA] +a- RCorrtA_l

+b-i§RC’or7’tAk+c~%§RCorrtAk

k=2 =
(1—-a—b—c)E [RCorrtA] is positive definite by assumptions 1 and 3, and the other
three terms are positive semi-definite by assumption 2 and positive semi-definiteness
of RCorr2, ,k =1,...,20. Given the fact that the sum of positive definite and posi-
tive semi-definite matrices is positive definite, £ [RCorrﬂ}}_l] is positive definite.
Since £ [RVarﬂft_l] is diagonal matrix with positive elements, it is proven that

E [RVarCovtALFt_l] is positive definite.
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(ii) The sample counterpart to E [RCorr{*|F_q] is

. . 1<
E[RCorrp|Fioi] = <1 —a—b— é) T Z RCorr® + a- RCorr? |
i—1

20

. 1 1
+b-ZkZ::2RC’0rrtA_k+c-1—5];6RCorrﬁk

where @, b, and ¢ satisfy assumptions 2 and 3. %Z;‘le RCorr® is positive definite by

Lemma 3. The remaining proof is similar to the above proof for (i). O

hi(Zit41,Zi41,t4+1)
— 1 to =t
9i(Zit41,Zi11,641) "

Proof of Theorem 5. By applying log (y) <y the following is

shown
N_lE 1 hi (Zigs1, Ziv1441) <N_1 _E hi (Zigs1, Zis1441) .
2, By |log S S 9@ | (7 7 -
i=1 gl( i,t+1, 2+1,t+1) i1 L gz( it+1, Z+1,t+1)
N [z [hi (Zigsr, Z>] B 1}
i1 L gilnzin) gi (Zi,t+1>Zi+1,t+1)
N-1rp
hi (2, 2
= ng‘ (2, 2it1) Md%d%ﬂ — 1} =0
i=1 L gi (Ziazi+1>

where the second line holds since only submodel for (Z; 41, Ziy144+1) is needed to
evaluate the above expectation, and the third line holds since h; is a valid density.

Thus, we prove that

N-1
Eq(z) Z log hi (Z; 141, Zi+1,t+1)] < By
i=1

N-1
Z log g; (Zz',t+17 Zi-‘rl,t—i—l)]

i=1
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A.2 Dynamic conditional correlation (DCC) model

The DCC model by Engle (2002) specifies the conditional covariance matrix H; in
equation (1.1) by
Ht - DthDt (A4)

D, = diag ({ agt}il) (A.5)

O'Qt =+ K (Ti0-1 — ,um_l)2 + G (rig—1 — Mi,t—1)2 L{(ris1—pse1)<0} + )\iait_l (A.6)
g0 =Dy (rig — pig)

Q=01-a-8)Q+al(eg_) + BQi (A7)
R, = diag Q)" Qudiag (Q,) ™" (A8)

The dynamics of each conditional variance is governed by GJR-GARCH, see
Glosten, et al. (1993) and Q is substituted with sample correlation matrix of ¢,
as in Engle (2002). The restrictions 0 < o, < 1 and o + § < 1 are imposed for
positive definiteness of Q; and so H;. The number of parameters to estimate is
AN + N(N —1)/2+2.

To estimate the DCC model, QMLE based on the quasi-likelihood using normality
assumption is feasible as in Engle (2002)

=l + Hi/ 2et

et‘ftfl ~N (OuINxN)

and the log likelihood for those estimator can be described as

re| Fio1 ~ N (ue, Hy)
T
log L = — Z (Nlog (2m) + log [Hy| + (v, — u) H; ' (v, — ju1))

Engle, et al. (2008), however, indicate that when N is large, bias of estimators for

a and f could be substantial due to the impact of estimation error from estimating
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large matrix Q by sample correlations of €;, and they suggest the composite likelihood

based estimator. Therefore we follow their estimation method rather than QMLE in

Sections 1.4.2 and 1.5.

A.3 Hessian matrix for multistage estimations

The specific form of estimated Hessian matrix in Theorem 6 is following. For illus-

tration purpose, we assume N = 2, but it is easy to extend to general N

var
VUarl,varl

0

corr
Vfuarl,corr
mar
VUarl,marl
mar
Vvarl,mar?
cop
VUarl,cop

var

Vvar,i,var,i -
corr
VUG,T‘J;,COTT' -

corr

VCorr,corr = a@corraecm’w

0

var
VUQTQ,vaTQ
corr
VUarZ,corr
mar
VUa’rQ,marl
mar
V’UCL’I‘Q,maTQ
cop
VUCLTQ,CO])

aecorr (3‘92)(17”/

0
0

corr
VCorr,corr
mar
VCorr,marl
mar
VCOT‘T‘,W’LGTQ

cop
V corT,cop

2

2

2
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0
0
0

mar
Vmarl,marl

0

cop
Vmarl,cop

log 122" (9) i

=1,2

0 0

0 0

0 0

0 0

VAP
vggsﬂ,cop Vggg,cop _

N,

3 P

corr ( pvar Avar Acorr
log ¢ (91 Ot )

corr ( pvar Avar Acorr
log (91 O )



2

0 ~ ~ ~ A~
mar _ mar var var pcorr pmar s
Vvar,j,mar,i - aemaraepaw 10g it (61 Yot 79N 79 791' ) y L) = 17 ce 7N
? J

2

0 A A A A

mar _ mar ( guar var pcorr pmar —

Vcorr,mar,i - ppmar pgcorr! 1Og it <‘91 Y 70N 70 701' > y 1= 17 R N
i

2

0 A A A A
mar _ mar var var corr mar ;o
Ve smars = sy 08 L (8L B, 0 BT ) L i = 1, N
i i

2
0 “ PO ~ . R
cop _ cop var var pcorr pmar mar [cop s
VWar,i,cop - aecopaepar/ IOg lt (91 PR 9N ) 9 ) 01 PR 9N ) 9 ) y = 17 ) N
i

2

cop _ cop [ pvar Hvar AHcorr Hmar Amar pcop
VCorr,cop - aecopaecmar, IOg lt (61 9t 79N 7‘9 791 A >9N 79 )

2

cop o cop [ pvar pvar AHcorr Amar nmar jcop .
Vit icon = g 108 1 (01, O3, 07 B L O B7) | i = 1, N
i

2

cop o cop ( pvar qvar AHcorr AHpmar amar pcop
VCop,cop - ofcop pfcop! IOg lt (61 (S ] QN 78 791 P 79N 70 >
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Appendix B

Appendix to Chapter 2

B.1 Proofs

Proof of Proposition 1. Consider a simple case first: 5, = 85 = 8 > 0. This implies
that X; ~ G, for ¢ = 1,2, and so we can use the same threshold for both X; and X5.

Then the upper tail dependence coeflicient is:

7_U ~ lim Pr [X1 > S,XQ > S]

§—0 Pr [X1 > 8]

From standard extreme value theory, see Hyung and de Vries (2007) for example, we
have the probability of an exceedence by the sum as the sum of the probabilities of

an exceedence by each component of the sum, as the exceedence threshold diverges:
Pr[X; > s| =Pr[8Z +¢; > s|
=Pr[BZ>s]+Prle;>s]+o0(s*) ass—wx
~ AY (s/B) " + AVs™™

5o (AVB” + AY)
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Further, we have the probability of two sums of variables both exceeding some di-

verging threshold being driven completely be the common component of the sums:
PriX;>s,Xo>s|=Pr[fZ +e1> 5,02 +e3> 5|
=Pr(BZ >s,Z>s]+0(s®) ass—w
~ S—aAZUBa
So we have

7_U — lim SiaAgﬁa Agﬁa

s—w 5 (AUBe  AU) ~ AUBa 4 AU

(a) Now we consider the case that 5, # (2, and wlog assume [ > (1 > 0.

This complicates the problem as the thresholds, s; and sy, must be set such that

G1(s1) = Gy (s2) = ¢ — 1, and when ) # fs we have G; # G5 and so s; # s3. We
can find the link between the thresholds as follows:

Pr(X;>s]|=Pr[8iZ+¢e >s]~s*(AUp} + AY) fors >

so find s1, 55 such that s (AYBy + AY) = 53 (AYBs + AY) , which implies:

AYBg + AU\
Sg =8 | =——-X
2o\ AUpe 4 AU
Note that s; and sy diverge at the same rate. Below we will need to know which of

s1/P1 and s/, is larger. Note that Sy > (1, which implies the following:
= B3 > By since x“ is increasing for x,a > 0

= A7 By + ATBrBs > AL BY + AT B A

(BT AV AYsY By (AVAUBNYT s
B AV +AUpy B \AV + AUBp

S1 S9o

BB

51
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Then the denominator of the tail dependence coefficient is Pr[X; > s;] ~

s;® (AYBe + AY), and the numerator becomes:
Pr[X; > s1, X9 > 89| =Pr[B1Z + &1 > s1, 027 + €3 > 59|
~ Pr[fiZ > s1,027 > s3] as s1,89 — @©
= Pr[Z > max {s1/51, 52/ 52}]

=Pr[Z > s1/B] = s7“ AL B}
Finally, using either Pr[X; > s;1] or Pr[X, > s3] in the denominator we obtain:

U SfaAzUﬁfl - B?AzU

= = , as claimed.
s " (AUBy + AT) ~ BrAU + AU

(b) Say 8» < 1 < 0. Then:
Pr[X;>s| =Pr[8:Z +e > s
~Pr[BZ > s]+Prle; > s] fors— o
=Pr[|8i] (=Z) > s] + Pr[e; > 5]

- (AL + AY)

Next we find the thresholds sy, s such that Pr[X; > s1] = Pr[Xs > so] :

51 (AL A" + AY) = 53 (AL |Bo]" + AY)

AL |By|" + AY e
"0 TS AL BT 1 AU

Using the same steps as for part (a), we find that sy > s but s1/|51| > so/|f2] .
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Thus the numerator becomes:
Pr[X) > s1, X9 > so] =Pr[B1Z + &1 > 81,027 + €3 > 59|
~ Pr[51Z > s1,0:7Z > s3] for s1,89 — 0
= Pr{|pi| (=2) > s1,[0a] (=2) > s2]
= Pr{(=2) > max{s1/ |, 52/ | 2]}]
=Pr[(=2) > s1/|Bi]] = AZsy* 8]

v_ &[T AL
61" AL + AY

SO T

(c) If By or B equal zero, then the numerator of the upper tail dependence coefficient

limits to zero faster than the denominator. Say By > 1 =0 :
Pr(X; > 1] =57 (AVBy + AY) = s7°AY = O (s7%)
and  Pr[X, > so] = s;* (AVB5 + AV) = O (s79)
but Pr[X; > s1, Xy > s9] = Pre; > 81,527 + €3 > s9]
= Prle; > s1|Pr[5aZ 4 €3 > 59|
= AVs7* (AYBS + AEU) 55% as s —
_0(s)

Pr [Xl > Sl,XQ > 82] _
—O(s%) >0 as s — .
SO Pr [Xl = 51] (S ) as S 00]

(d) Say 1 < 0 < f35. Then the denominator will be order O (s~), but the numerator

will be of a lower order:
Pr [X1 > Sl,XQ > 82] = Pr [512 +e&1 > Sl,/BQZ + &9 > 82]

=Pr[81Z > s1,0:Z > s3] + o (s_a) as s —
=0 (sfa)

since Pr (317 > s1, 527 > s3] = 0 as s1,89 > 0 (— ) and sgn (£12) = —sgn (B22) .
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Thus 7V =0(s7) /O (s7%) = 0(1) > 0 as s — o0. All of the results for parts (a)

through (d) apply for lower tail dependence, mutatis mutandis. ]

Proof of Proposition 2. It is more convenient to work with the density than the dis-
tribution function for skew ¢t random variables. Note that if F), has a regularly varying

tails with tail index o > 0, then

F,(s)=Pr[Z<s]=1-Pr[Z>s]=1-AYs™ as s - x

an(S)* _ U —a—1
i gPr[Z>s]—ozAzs as s — ©

so AY = lim J: ()

s—o s~ 1

f=(s)

This representation of the extreme tails of a density function is common in EVT, see
Embrechts, et al. (1997) and Danielsson, et al. (2012) for example. For v € (2, 0)
and A € (—1,1), the skew ¢ distribution of Hansen (1994) has density:

—(v+1)/2

bz+a\2

I (s;v,0) = bc(1+$(1+>\)> , z2<—a/b

R be (14 L (bzta)? —(v+1)/2 ol
¢ +11—2(1+/\) , 2= a/

v—2
v—1

r (5

2

F(%) (v —2)

where a=4)\c( ),b=v1+3>\2—a2,c=

and its tail index is equal to the degrees of freedom parameter, so o = v. Using

computational algebra software such as Mathematica, it is possible to show that

2 —(v+1)/2
AY = lim 1 (s) :b_c( b 2)
smovs™VL v (= 2) (14 ))
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For the left tail we have

0F, (s 0 o
f.(s) = 63( ) = %Aﬁ (—s) as § —> —
— aAL (=)™
and so AX = lim J: ((i)yfl

=y (<)

And this can be shown to equal

Ag . A_)_l _ % < b2 2)—(1/—%-1)/2
s——0 o (—s) v \(r—2)(1-X\)

When A = 0 we recover the non-skewed, standardized Student’s t distribution. In

that case we have a = 0, b = 1 (and ¢ unchanged), and so we have AV = AL =

E(L)_(V—‘rl)/Q.

v \v—2

]

Proof of Proposition 3. First consider the denominator of the upper tail dependence

coefficient:
K
Pr[X; > s;] =Pr [Zkzlﬁika +eg; > si]
~ Prle; > s +ZK Pr(BixZr > s;] for s; > o
i i kel ik 4k i i
= s (A4 Y AVss)
i € pe1 Kk ik

We need to choose s;, s; — o such that Pr[X; > s;] = Pr[X; > s;], which implies
1/

K
U U
AU+, AUB
K
AU+ AYBS

= SiU,ij

Note again that s; and s; diverge at the same rate.
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When Bi8;r = 0, the factor Z;, does not contribute to the numerator of the tail
dependence coefficient, as it appears in at most one of X; and X;. Thus we need only
keep track of factors such that 3;,8;; > 0. In this case, we again need to determine
the larger of s;/B;; and s;/B;; for each k = 1,2, ..., K. Unlike the one-factor model,
a general ranking cannot be obtained. To keep notation compact we introduce ;.

Note
R R (B
max = max — YU max Vi =
Bir” Bk Bie’ Biw Y @] "Bir T Bk

where (5”,1C = max {1, @wa]}
Bjk

To cover the case that ;3 = 0, we generalize the definition of ;5 so that it is
well defined in that case. The use of any finite number here will work (as it will be

multiplied by zero in this case) and we set it to one:

5 1 __

ijk —

max {1, v Bir/Bik} » if BixBix > 0
1, if BirBr =0

Now we can consider the numerator

K K
Pr [Xl > Si,Xj > Sj] = Pr [Zkzlﬁlka +é& > Si,2k=1ﬁjkzk + € > Sj]
~ Zk ) v ([BikZi > si, Bl > s;]  for s;, s, — 0

K
= Zk:ll {BixBjr > O} Pr[BinZi > si, BijZi, > 5]

S

= Y (BB > 0} Pr [Z’f g max{m @jk}]

= Zk 1{Binfje > 0} Pr [Zk ~ &ksézjk]

= SZQZK 1 {sz’ﬂ]k > 0} AUﬁk ijk
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And so we obtain

K
li Pr [Xz > Si,Xj > Sj] Zk:ll {ﬁlkﬁjk > O} Allcj io.;ﬂ iajk
T;; = 1m =

€ k=1 v

The results for lower tail dependence can be obtained using similar derivations to

those above. O

B.2 Choice of dependence measures for estimation

To implement the SMM estimator of these copula models we must first choose which
dependence measures to use in the SMM estimation. We draw on “pure” measures
of dependence, in the sense that they are solely affected by changes in the copula,
and not by changes in the marginal distributions. For examples of such measures,
see Joe (1997, Chapter 2) or Nelsen (2006, Chapter 5). Our preliminary studies
of estimation accuracy and identification lead us to use pair-wise rank correlation,
and quantile dependence with ¢ = [0.05,0.10,0.90,0.95] , giving us five dependence
measures for each pair of variables.

Let ;; denote one of the dependence measures (i.e., rank correlation or quantile
dependence at different levels of ¢) between variables ¢ and j, and define the “pair-

wise dependence matrix”:

1 512 e 51N
5 1 5
p=| """ . = (B.1)
N oy -1

Where applicable, we exploit the (block) equidependence feature of the models

in defining the “moments” to match. For the initial set of simulation results and
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for the first model in the empirical section, the model implies equidependence, and
we use as “moments” the average of these five dependence measures across all pairs,

reducing the number of moments to match from 5N (N — 1) /2 to just 5:

9 N—-1 N R
N(N—l).zl, L % (B2)
i=1j5=1+1

)

For a model with different loadings on the common factor (as in equation 2.3)
equidependence does not hold. Yet the common factor aspect of the model implies
that there are O (N), not O (N?), parameters driving the pair-wise dependence

matrices. In light of this, we use the N x 1 vector [51, - 5N]I, where

0

1.
2
j=1

and so §; is the average of all pair-wise dependence measures that involve variable i.
This yields a total of 5N moments for estimation.

For the block-equidependence version of this model (used for the N = 100 case
in the simulation, and in the second set of models for the empirical section), we
exploit the fact that (i) all variables in the same group exhibit equidependence, and
(ii) any pair of variables (7, j) in groups (7, s) has the same dependence as any other
pair (7,7’) in the same two groups (r,s). This allows us to average all intra- and
inter-group dependence measures. Consider the following general design, where we
have N variables, M groups, and k,, variables per group, where ¥¥_ k,, = N. Then

decompose the (N x N) matrix D into sub-matrices according to the groups:

Dy D'12 .. DllM
Dy Dy -+ Djy, '

(NxN) - : : : , where D;; is (k; x kj) (B.3)
Dine Doy -+ Dy
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Then create a matrix of average values from each of these matrices, taking into

account the fact that the diagonal blocks are symmetric:

o Oy oo Ofy
pr = | ® oo (B.4)
(M x M) : : : :
0T Oom " Omm
where 0%, = %EZSW’ avg of all upper triangle values in D
ks (ks — 1)

1 o
oy = MZZ(SU’ avg of all elements in matrix D,,, 7 # s

Finally, similar to the previous model, create the vector of average measures

[Si“, ...,67}(4] , where
1M
§F =) 6% (B.5)
3 24%

This gives as a total of M moments for each dependence measure, so 5M in total.

B.3 Additional tables
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Table B.1: Simulation results for different weights factor copula model with N=10,
W=I

v, A, B B B3 Ba Bs Be B Bs Bo  Bio

True 0.25 -0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
Normal

Bias -0.0001 -0.0033 -0.0085 0.0004 0.0034 0.0119 0.0075 -0.0031 0.0071 -0.0902
Std — — 0.0337 0.0448 0.0535 0.0753 0.0991 0.1089 0.1243 0.1669 0.2061 0.2243
Med — — 0.2500 0.4920 0.7466 0.9831 1.2365 1.5021 1.7509 1.9932 2.2281 2.3963
90% — — 0.2949 0.5588 0.8032 1.1013 1.3919 1.6698 1.9289 2.1878 2.5385 2.6649
10% - — 0.2064 0.4369 0.6727 0.9180 1.1513 1.3938 1.6059 1.7796 1.9910 2.1087
Diff - - 0.0886 0.1219 0.1305 0.1833 0.2407 0.2761 0.3229 0.4081 0.5476 0.5562

t(4)-Normal

Bias -0.0032 - -0.0008 0.0089 0.0022 0.0089 0.0118 0.0133 0.0004 0.0107 0.0195 0.0487
Std 0.0474 - 0.0468 0.0596 0.0798 0.0874 0.1111 0.1482 0.1991 0.2068 0.3063 0.3472
Med 0.2468 - 0.2490 0.5046 0.7344 1.0104 1.2639 1.4930 1.7313 1.9750 2.2259 2.5285
90% 0.2941 - 0.3079 0.5869 0.8475 1.0968 1.4107 1.6629 1.9567 2.2495 2.5667 2.7873
10% 0.1845 — 0.1879 0.4394 0.6692 0.9085 1.1244 1.3755 1.5623 1.7729 1.9852 2.2032
Diff 0.1096 — 0.1200 0.1475 0.1782 0.1883 0.2863 0.2874 0.3943 0.4766 0.5815 0.5841

Skew t(4,-0.5)-Normal

Bias -0.0020 -0.0032 0.0042 0.0034 0.0024 0.0175 0.0293 0.0187 0.0308 0.0355 0.0739 0.1035
Std 0.0481 0.0594 0.0527 0.0593 0.0812 0.1215 0.1270 0.1404 0.1857 0.2292 0.3335 0.3639
Med 0.2474 -0.5017 0.2507 0.4962 0.7430 1.0137 1.2635 1.5152 1.7547 2.0018 2.2757 2.5508
90% 0.3119 -0.4283 0.3226 0.5830 0.8570 1.1679 1.4554 1.7246 2.0268 2.3648 2.7511 3.0743
10% 0.1825 -0.5868 0.1863 0.4340 0.6522 0.8765 1.1469 1.3595 1.5586 1.7609 2.0021 2.2101

Diff 0.1293 0.1586 0.1363 0.1491 0.2048 0.2914 0.3085 0.3651 0.4682 0.6039 0.7490 0.8642
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Table B.2: Simulation results for different weights factor copula model with N=10,

W=optimal
-1
v, A, B B2 B3 B Bs Be Br Bs Bo Bio
True 0.25 -0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
Normal
Bias - - -0.0304 -0.0253 -0.0197 -0.0242 -0.0325 -0.0315 -0.0454 -0.0581 -0.0596 -0.0871
Std - - 0.0535 0.0410 0.0525 0.0605 0.0641 0.0788 0.0857 0.0978 0.0953 0.1192
Med - - 0.2227 0.4794 0.7290 0.9794 1.2114 1.4779 1.7018 1.9403 2.1812 2.4031
90% - - 0.2762 0.5185 0.7938 1.0515 1.3109 1.5692 1.8301 2.0783 2.3176 2.5703
10% - - 0.1722 0.4209 0.6638 0.9057 1.1395 1.3620 1.5948 1.8123 2.0809 2.2665
Diff - - 0.1040 0.0976 0.1300 0.1458 0.1714 0.2072 0.2353 0.2660 0.2367 0.3038
t(4)-Normal
Bias -0.0405 - -0.0241 -0.0224 -0.0351 -0.0408 -0.0530 -0.0684 -0.0712 -0.0971 -0.1210 -0.1195
Std 0.0607 - 0.0466 0.0601 0.0715 0.0931 0.1193 0.1352 0.1881 0.1756 0.2046 0.2203
Med 0.2086 - 0.2286 0.4727 0.7082 0.9394 1.1816 1.4083 1.6381 1.8670 2.0894 2.3503
90% 0.2629 - 0.2811 0.5515 0.8116 1.0613 1.3281 1.5826 1.9200 2.1332 2.3521 2.6717
10% 0.1438 - 0.1642 0.4111 0.6367 0.8515 1.0602 1.2982 1.4833 1.7163 1.9083 2.1203
Diff 0.1191 - 0.1169 0.1404 0.1749 0.2098 0.2679 0.2844 0.4367 0.4169 0.4438 0.5514
Skew t(4,-0.5)-Normal

Bias -0.0086 -0.0389 -0.0084 -0.0128 -0.0067 0.0075 0.0014 -0.0029 -0.0127 -0.0184 -0.0095 0.0051
Std 0.0496 0.0675 0.0480 0.0551 0.0816 0.1108 0.1209 0.1289 0.1956 0.2079 0.2680 0.2788
Med 0.2482 -0.5326 0.2404 0.4814 0.7390 0.9928 1.2295 1.4721 1.7087 1.9537 2.1688 2.4487
90% 0.2898 -0.4605 0.2993 0.5586 0.8256 1.1433 1.3845 1.6769 1.9767 2.2569 2.5245 2.8424
10% 0.1791 -0.6349 0.1865 0.4268 0.6506 0.8752 1.1275 1.3569 1.5622 1.7658 2.0016 2.2634
Diff 0.1107 0.1744 0.1128 0.1318 0.1750 0.2681 0.2570 0.3199 0.4145 0.4911 0.5229 0.5790
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Table B.3: Simulation results for different weights factor copula model with N=100,

W=optimal
-1
v, A, B B2 B3 B Bs Be Br Bs Bo Bio
True 0.25 -0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
Normal
Bias - - -0.0099 -0.0172 -0.0229 -0.0319 -0.0389 -0.0481 -0.0586 -0.0612 -0.0768 -0.0836
Std - - 0.0128 0.0184 0.0242 0.0322 0.0372 0.0454 0.0502 0.0590 0.0622 0.0753
Med - - 0.2414 0.4844 0.7259 0.9665 1.2129 1.4507 1.6918 1.9428 2.1678 2.4170
90% - - 0.2554 0.5037 0.7574 1.0121 1.2577 1.5105 1.7527 2.0149 2.2589 2.5083
10% - - 0.2244 0.4594 0.6970 0.9304 1.1606 1.3983 1.6246 1.8676 2.0960 2.3241
Diff - - 0.0311 0.0443 0.0603 0.0818 0.0971 0.1122 0.1281 0.1473 0.1629 0.1842
t(4)-Normal
Bias -0.0683 - -0.0208 -0.0403 -0.0601 -0.0812 -0.1052 -0.1248 -0.1481 -0.1674 -0.1934 -0.2194
Std 0.0524 - 0.0160 0.0287 0.0402 0.0524 0.0674 0.0802 0.0952 0.1058 0.1220 0.1299
Med 0.1820 - 0.2277 0.4567 0.6842 0.9106 1.1377 1.3694 1.5795 1.8226 2.0378 2.2733
90% 0.2452 - 0.2511 0.4982 0.7402 0.9932 1.2320 1.4817 1.7291 1.9630 2.2169 2.4542
10% 0.1183 - 0.2096 0.4208 0.6476 0.8534 1.0665 1.2843 1.5051 1.7154 1.9190 2.1357
Diff 0.1268 - 0.0415 0.0774 0.0926 0.1398 0.1655 0.1974 0.2240 0.2476 0.2979 0.3185
Skew t(4,-0.5)-Normal

Bias -0.0335 -0.0391 -0.0139 -0.0273 -0.0403 -0.0556 -0.0713 -0.0868 -0.1022 -0.1149 -0.1330 -0.1500
Std 0.0363 0.0482 0.0150 0.0251 0.0370 0.0476 0.0598 0.0729 0.0825 0.0969 0.1099 0.1221
Med 0.2263 -0.5434 0.2367 0.4719 0.7105 0.9381 1.1796 1.4150 1.6414 1.8823 2.1237 2.3574
90% 0.2582 -0.4719 0.2568 0.5059 0.7567 1.0007 1.2524 1.5053 1.7545 2.0035 2.2631 2.5148
10% 0.1693 -0.6029 0.2168 0.4424 0.6611 0.8823 1.1015 1.3199 1.5542 1.7725 1.9882 2.1904
Diff 0.0889 0.1310 0.0400 0.0634 0.0956 0.1185 0.1509 0.1854 0.2003 0.2311 0.2749 0.3245
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Table B.4: 95% Coverage rate for different weights factor copula model with N=10
AR-GARCH data W=I

vbN B Bo B3 Ba Bs Bs Br Bs Bo P

Normal

€T

0.1 - - 96 93 91 95 93 96 96 95 97 89
0.03 - - 96 92 91 94 93 97 96 96 96 89
0.01 - - 96 92 91 94 92 97 96 96 96 89
0.003 - - 96 91 90 94 89 94 97 92 95 88
0.001 - - 96 93 90 93 90 93 92 84 87 79
0.0003 - - 90 83 8 75 75 76 T4 67 T4 67
0.0001 - - 81 70 70 65 65 66 66 57 65 59

t(4)-Normal

er

0.1 96 - 92 97 98 95 94 96 92 94 92 95
0.03 92 - 92 97 97 94 93 97 94 93 94 96
0.01 93 - 92 97 97 93 94 97 92 95 94 96
0003 91 - 87 94 95 95 91 95 94 90 95 95
0.001 81 - 8 92 91 91 88 89 91 88 84 &7
0.0003 7 - 80 8 78 8 76 8 79 T1 T8 77
0.0001 76 - 81 65 T4 77 T4 76 64 65 65 79

Skew t(4,-0.5)-Normal

Er

0.1 9 94 92 97 95 93 98 98 95 94 97 97

0.03 93 95 91 97 95 93 97 98 95 94 95 98
0.01 91 91 91 96 95 92 96 97 94 93 91 091
0.003 8 91 91 96 94 88 92 96 91 88 87 85
0.001 8 8 8 93 94 8 88 88 82 T3 T2 81
0.0003 73 70 75 8 81 73 80 73 72 60 65 71
0.0001 68 57 68 77 68 66 69 67 68 61 65 T4
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Table B.5: 95% Coverage rate for different weights factor copula model with N=10
AR-GARCH data W=optimal

vbN B Bo B3 Ba Bs Bs Br Bs Bo P

Normal

€T

0.1 - - 80 8 81 79 81 80 8 8 91 &0
0.03 - - 8 8 81 79 81 81 80 83 91 &0
0.01 - - 77 8 81 78 80 80 79 82 90 76
0.003 - - 77T 78 80 77T 78 78 78 75 90 75
0.001 - - 73 74 77T 70 T4 76 69 T2 76 62
0.0003 - - 63 62 67 66 63 70 62 56 71 58
0.0001 - - 50 53 59 47 57 57 58 57 71 69

t(4)-Normal

er

0.1 74 - 81 8 74 77 69 63 70 71 73 71
0.03 69 - 82 80 72 75 65 62 64 66 69 67
0.01 57 - 78 78 68 70 64 56 56 63 62 62
0.003 46 - 78 76 65 62 59 50 51 52 56 H4
0.001 38 - 75 69 55 51 51 50 41 43 43 47
0.0003 35 - 66 55 43 42 39 43 32 35 39 39
0.0001 32 - 62 47 38 44 45 41 36 36 46 49

Skew t(4,-0.5)-Normal

Er

0.1 88 81 90 89 89 89 95 93 89 90 94 96

0.03 82 77 88 88 84 83 89 & 81 &4 8 89
0.01 80 75 89 8 80 78 82 8 76 79 84 82
0.003 69 68 8 8 74 71 78 79 69 69 68 74
0.001 61 51 78 8 71 62 70 74 64 62 59 63
0.0003 55 36 67 70 62 57 55 65 57 46 54 62
0.0001 50 37 67 64 57 50 5H4 57 60 52 59 65
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Table B.6: 95% Coverage rate for different weights factor copula model with N=100
AR-GARCH data W=optimal

vbN B Bo B3 Ba Bs Bs Br Bs Bo P

Normal

Er

0.1 - - T8 67 62 55 60 60 57 58 51 54
0.03 - - T8 67 62 55 60 60 56 58 51 53
0.01 - - 77 67 62 52 59 61 55 56 49 52
0.003 - - 77 67 61 51 56 52 52 53 47 50
0.001 - - 76 63 58 50 56 48 47 50 42 47
0.0003 - - 71 58 49 37 42 36 37 40 35 33
0.0001 - - 67 50 39 34 33 27 33 33 26 25

t(4)-Normal

Er

0.1 48 - B8 44 37 37 36 36 32 37 34 33
0.03 46 - 54 42 36 35 30 32 29 33 29 29
0.01 44 - 54 40 33 30 27 29 27 32 26 26
0.003 30 - 51 36 29 24 22 20 19 25 22 20
0.001 21 - 47 32 25 21 17 16 14 19 15 14
0.0003 12 - 44 27 22 17 12 10 13 13 11 8
0.0001 6 - 38 21 17 14 11 9 10 &8 9 8

Skew t(4,-0.5)-Normal

Er

0.1 75 73 79 76 70 69 68 65 67 68 69 65

0.03 771 78 72 69 63 62 62 63 62 64 63
0.01 71 68 75 63 66 60 58 60 59 60 58 57
0.003 57 60 70 56 55 46 47 46 45 47 49 43
0.001 51 44 67 49 43 35 33 32 28 30 27 30
0.0003 45 25 63 40 33 27 21 22 14 19 18 21
0.0001 34 15 58 36 27 22 16 16 12 10 13 15
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Table B.7: Overidentifying restriction test with W=optimal

£(4)-

Normal Normal

Skew t(4,-0.5)-
Normal

Normal

t(4)-
Normal

Skew t(4,-0.5)-
Normal

Equidependce, N=3

Different loading, N=3

90% 92 92 93 93 96 97
95% 95 95 99 97 98 98
99% 100 98 100 98 100 99
Equidependce, N=10 Different loading, N=10
90% 96 92 93 91 95 97
95% 97 94 96 93 98 98
99% 99 96 100 95 99 99
Equidependce, N=100 Different loading, N=100
90% 90 89 93 94 90 96
95% 95 92 98 94 95 99
99% 97 96 100 98 99 100
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Appendix C

Appendix to Chapter 3

C.1 Proofs

In order to prove Proposition 1, we use the following five lemmas. First, we recall

the definition of stochastic equicontinuity.

Definition 1. (Andrews (1994)) The empirical process {hr (-) : T = 1} is stochasti-

cally equicontinuous if V. e >0 andn > 0,34 0 > 0 such that

lim sup P [ sup |hr (61) —hr (62)] > 77] <e (C.1)

T—o0 [61—02]<d

Lemma 1. Under Assumptions 1 and 2,
(i) 7 Xr B () £y () > § §uvdCiy, (u,0:00) as T — o0
(ii) =31 {F (M) < ¢, Fy (je) < CJ} = Coomy (4,¢:00) as T — oo

(iii) L35 G2 (0)) Gy (245 (0)) B § SuvdCy, . (u,v30) for ¥ fe © as S — o
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~

(i) £ 335, 1{Gi @i (0)) < .G (032 (0)) < a} 2 Cy, (4,459) for ¥ 0 ©

as S — o
(v) %Zil Gi (745 (0)) G (4 (0)) B §§uvdC,, ), (u,v;0) for ¥ e © as S —

(vi) & 30y H{Gi (255 (0)) < 4, G, (255 (8)) < @} > Copy (0, 456) for ¥ 0 ©

as S — o

Proof of Lemma 1. Under Assumption 1, parts (iii) and (iv) of Lemma 1 can be
proven by Theorem 3 and Theorem 6 of Fermanian, Radulovi¢ and Wegkamp (2004).
Under Assumption 2, Corollary 1 of Rémillard (2010) proves that the empirical
copula process constructed by the standardized residuals 7); weakly converges to the
limit of that constructed by the innovations 7;, which combined with Theorem 3 and
Theorem 6 of Fermanian, Radulovi¢ and Wegkamp (2004) yields parts (i) and (ii)
above. In the case where it is possible to simulate directly from the copula rather
than the joint distribution, e.g. Clayton/Gaussian copula in Section 3.3 or where we
only can simulate from the joint distribution but know the marginal distribution G;
in closed form, it is not necessary to estimate marginal distribution G;. In this case,
instead of (iii) and (iv), (v) and (vi) are used for the later proofs. (v) and (vi) are

proven by the standard law of large numbers. O]

Lemma 2. (Lemma 2.8 of Newey and McFadden (1994)) Suppose © is compact
and g (0) is continuous. Then supsee ||lgr.s (0) — g0 (0)] 2 0 as T, S — oo if and
only if gr.s (0) 2 go (0) for any 0 € © as T, S — © and gr.s (0) is stochastically

equicontinuous.

Lemma 2 states that sufficient and necessary conditions for uniform convergence
are pointwise convergence and stochastic equicontinuity. The following lemma shows
that uniform convergence of the moment functions gz s (¢) implies uniform conver-
gence of the objective function Qr g (6).
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Lemma 3. If supyg |gr.s (0) — g0 (0)]| > 0 as T, S — oo, then

SUPgeo | Q7,5 (0) — Qo (0)] 2> 0 as T,S — 0.

Proof of Lemma 3. By the triangle inequality and Cauchy-Schwarz inequality

Qr.s (0) = Qo (8)] < |[g1.5 () — 80 (O)] W [g15 (6) — g0 (0)] (€.2)
+ g0 00 (Wi +W7) [grs (6) — g0 (6)]] (C3)
+ ‘go (6) (WT—W0> go (9)‘

< lgrs (6) — g0 ()1 | W + 2 g0 (0) g5 (6) — o (0)]

Wi
+ g ()1 | Wr—Wo|

Then note that g, (8) is bounded, Wy is O, (1) and converges to W by Assumption

3(iv), and supyeg |I87,5 (0) — 8o (0)] = 0, (1) is given. So

sup|Qr.s (6) — Qo (6)] < (333 lgrns (6) — o <e>r) 0, (1) (C.4)

0e®

+20 (1)sup |15 (0) — 80 (0) 0, (1) + 0, (1) = 0, (1)

Lemma 4. Under Assumption 1, Assumption 2, and Assumption 3(iii),

(1) gr,s(0) is stochastic Lipschitz continuous, i.e.

ABrs = O, (1) such that for all 6,,05 € O,|grs (61) —grs (62)]| < Brs -
1601 — 02

(i) There exists 6 > 0 such that

lim sup K (B%Jgs) < oo for some 6 >0
T,S—0 ’
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Proof of Lemma 4. Without loss of generality, assume that gr g (f) is scalar. By
Lemma 1, we know that

ﬁls (9) = 1my (9) + Op (1) (05)

Also, by Assumption 3(iii) and the fact that m (6) consists of a function of Lipschitz

continuous Cj; (#), my () is Lipschitz continuous, i.e. 3K such that
[my (61) — my (62)] < K [|6h — 0, (C.6)

Then,
875 (01) — gr.s (02)| = Mg (01) — Mg (02)] = [mg (61) — mg (62) + 0, (1)]  (C.7)
< [my (61) — my (62)] + [0, (1)]

< K01 = ba] + [op (1)]

|0p (1)] )
QI S I
\( Hel _ 92“ ” 1 2”

:Op(l)

J

and let Brg = K + H';ffz)?'“. Then for some ¢ > 0

1 246
lim sup F (B3Y) =lim sup E (K + M) < (C.8)
T,5—0 ’ T,8—00 Hel - 02”

0
Lemma 5. (Theorem 2.1 of Newey and McFadden 1994) Suppose that (i) Qo (0) is
uniquely minimized at Oy; (i) © is compact; (iii) Qo (0) is continuous;
(iv) supyee |Qr (6) — Qo ()| & 0. Then 6 5 6,
Proof of Proposition 1. We prove this proposition by checking the conditions of Lemma

d.

(i) Qo (#) is uniquely minimized at 6y by Assumption 3(i) and Assumption 3(iv).
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(ii) © is compact by Assumption 3(ii).

(iii) Qo (@) consists of linear combinations of rank correlations and quantile depen-
dence measures that are functions of pair-wise copula functions. Therefore, Qg () is
continuous by Assumption 3(iii).

(iv) The pointwise convergence of gr s (6) to go (f) and the stochastic Lipschitz
continuity of gr s (¢) are shown by Lemma 1 and by Lemma 4(i), respectively. By
Lemma 2.9 of Newey and McFadden (1994), the stochastic Lipschitz continuity of
gr,s (0) ensures the stochastic equicontinuity of gr s (#), and under Assumption 3,
© is compact and gp (f) is continuous in #. Therefore, gy ¢ uniformly converges
in probability to gy by Lemma 2. This implies that (7¢ uniformly converges in

probability to @y by Lemma 3. m

The proof of Proposition 2 uses the following three lemmas.

Lemma 6. Let the dependence measures of interest include rank correlation and
quantile dependence measures, and possibly linear combinations thereof. Then under

Assumptions 1 and 2,
VT (thy —mg (6p)) > N (0, %) as T — o (C.9)

VS (g (6) — mg (6p)) > N (0, %) as S — (C.10)

Proof of Lemma 6. Follows from Theorem 3 and Theorem 6 of Fermanian, Radulovi¢
and Wegkamp (2004) and Corollary 1, Proposition 2 and Proposition 4 of Rémillard
(2010). O

We use Theorem 7.2 of Newey & McFadden (1994) to establish the asymptotic
normality of our estimator, and this relies on showing the stochastic equicontinuity
of vr g (6) defined below.
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Lemma 7. Suppose that Assumptions 1, 2, and 3(iii) hold. Then when S/T — oo or
S)T — ke (0,0), vrs(0) = VT [gr.s (0) — go (0)] is stochastically equicontinuous
and when S)T — 0, vrs (0) = VS [gr.s (0) — g0 (0)] is stochastically equicontinuous.

Proof of Lemma 7. By Lemma 4(i), {g..(f) : 0 € O} is a type II class of functions
in Andrews (1994). By Theorem 2 of Andrews (1994), {g..(0): 6 € ©} satisfies
Pollard’s entropy condition with envelope 1 v supy |g.. (0)| v B.., so Assumption
A of Andrews (1994) is satisfied. Since g..(#) is bounded and by the condition of
limsupy g ., & (B%J[q‘s) < oo for some § > 0 by Lemma 4(ii), the Assumption B of
Andrews (1994) is also satisfied. Therefore, vy g () is stochastically equicontinuous

by Theorem 1 of Andrews (1994). O

Lemma 8. (Theorem 7.2 of Newey & McFadden (1994)) Suppose that

g1 <9A),VAVTgT,S <§) < infpeo 8.5 (9)'WTgT,S 0) + 0, (T7) 050y and Wy B
Wo, W, is positive semi-definite, where there is go (0) such that (i) go (6p) = 0, (ii)
g0 (0) is differentiable at 6y with derivative Gg such that GyWoGq is nonsingu-
lar, (iii) 0y is an interior point of ©, () \Tgr.s (6o) 4 N (0,3%0) ,(v) 36 such that
SUD|9—p, <5 \/T“gT,S (0) — gr.s (o) — 80 ()] / [1 +VT 0 - 90“] = 0. Then

VT (é _ 90) N (0, (G W Go) ™! GiW, S W Go (G WoGo) ) .

Proof of Proposition 2. We prove this proposition by checking conditions of Lemma
8.

(i) go (o) = 0 by construction of gy () = mg (6y) — myg (0)

(ii) go (0) is differentiable at 6y with derivative Gg such that GyWGy is nonsin-
gular by Assumption 4(ii).

(iii) 6y is an interior point of ® by Assumption 4(i).
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(iv) If /T - w0 asT,S — oo,

VTgrs (6) = VT (tap—1hg (6))) (C.11)
— /T (fap—my (6y)) — VT (1hg (Ay) — my (6,))
- VT i () - % < VS (s (0) — mo (0)

4 N(0,20) by Lemma 6 =OV(1) 4 N(0,50) by Lemma 6

Therefore,

VTgrs (0) 5 N (0,%) as T, 8 — oo.

If S/T - ke (0,0)asT,S — w,

5 VT .
VTgr,s (6o) = VT (tvp—my (6o)) — il V'S (1s (6o) — mo (6)))
il>N(O,Z)0) by Lemma 6 YV E»N(O,Eo) by Lemma 6

Therefore,

1
\/TgT,S (6o) 4N <0, (1 + E) Zo) as T, S — o0.

It S/T—->0asT,S — o,

VS X i
Vgrs (00) = = x VT (g -y (60)) = V'S (s (0) — ma ()
—o(1) iN(O,ZO) by Lemma 6 iN(U,ZO) by Lemma 6

Therefore,
VSgrs (6) 5 N (0,50) as T, S — oo

Consolidating these results across all three combinations of divergence rates for S

and T we obtain:

1 d
s (B) S N(0,%) as T, S — .
1/S + 1/TgT’S< 0) (0, %o)
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(v) We established the stochastic equicontinuity of vr.5 (6) = v/T [gr.s (0) — go (0)]
when S/T — o or S/T — k by Lemma 7,i.e. for Ve > 0, n > 0,39 such that

lim sup P | sup |vrs(0) = vrs(6o)] > 77] (C.12)
T— [6—00]<d
=lim sup P | sup VT lgr.s (6) — gr.5 (60) — go (0)] > n] <e
T | [0—60]<s

and from the following inequality

VT |grs (0) — gr,s (60) — go (9)]

1L+/T0 — 6o <VT|grs(0) —grs (o) —go (0)]  (C.13)

we know that

lim sup P

T—o0

sup VT |lgrs (0) — grs (60) — go (0)] -
00| <5 L+ VT 0 — 6|

< lim sup P
T—0o0

Hesgﬁ 5ﬁ lgr.s (0) — gr.s (00) — go (9)|| > n] <e (C.14)

Similarly, it can be shown that when S/T" — 0,

(C.15)

VS |gr.s (0) — gr.s (6o) — go (0)]
lim sup P| su : : > <e€
St leeoﬁ)«s 1++/S [0 — 6, 7

Proof of Proposition 3. First, we prove the consistency of the numerical derivatives
CA}T,S. This part of the proof is similar to that of Theorem 7.4 in Newey and McFad-
den (1994). We will consider one-sided derivatives first, with the same arguments

applying to two-sided derivatives. First we consider the case where S/T — o or
S/T - k > 0asT,S — oo. We know that HéT’S — HOH = 0, (T*1/2) by the con-
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clusion of Proposition 2. Also, by assumption we have e7.¢ — 0 and 5T,S\/T — 00,

SO

éT,S+ek5T,S - 90” < HéT,S - 00H + |exers| = O, (T‘l/Q) + O (ers) = O, (ers)

(Recall that ey, is the k' unit vector.) In the proof of Proposition 2, it is shown that

39 such that

s VT lirs (0) ~ o (00) =80 O]/ [1+VT 10~ 00l] = 0y (1)

Substituting éT,g—l—ekeT, s for 6, then for T, S large, it follows that

VT HgT,s (9T,s+ek€T,s> —grs (0o) — 8o (éT,S+ek5T,S> H

[1 + \/T HéT,S_'_ekgT,S — QOH]

<op(1)

and

HgT,s (éT,S+ek5T,S> —gr,s (6o) — 8o <9T,s+ek€T,s> H

< |1+ \/THHAT,S%—eksT,S — QOH Op (\/LT)

"

=Op (€T,S)

=VTO, (e1.5) 0 (\/LT) = Oy (e15) 0y (1)

=0, (e7.5) (C.16)

On the other hand, since g (#) is differentiable at 6y with derivative Gg by Assump-

tion 4(ii), a Taylor expansion of g (@T,5+ek5¢p,5> around 6, is
20 (éT,S+ek5T,S> = 8o (6h) + Go - (éT,S+ek5T,S - 90) +o0 <’)9T,S+ek5T,S - 90”)
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with go (6p) = 0. Then divide by e7.g,
g0 (éT,S"‘ekgT,S) Jer.s =Gy - (éT,S+ek5T,S - 90) /er,s
+o0 <€;,IS H9T7S+ek6T75 - QOH)
and
20 (éT,S+ek5T,S> Jers — Goer, =Gy - <éT,S - 90) JeT.s
+o0 (87_1’15 HéT,S—'_ekgT,S — 90H>
The triangle inequality implies that
Hgo <éT,S+ek5T,S> JeT.s — G()ekH < HGO : <éT,S - 90) /ST,SH (C.17)

+ o0 (&?ils Héﬂg—i-ek&'p’s — 90H>

e (i w)| e

+ 8;715 HéT,SJrekaT,g - GOH o(1)
=0(1) Op (1) + €750, (er,s) 0 (1) (C.19)
=0, (1)
Combining the inequalities in equations (C.16) and (C.19) gives

gr.s (éT,s+ek€T,s) —gr.s (6)
— Ggek

€TS8

gr.s (éT,S+ek5T,S> —gr.s (6o) — 8o (éT,S+ek5T,S)

€r.S

+ (go (éT,S+ek€T,S) Jers — Goek>
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gr.s (éT,S+ek5T,S> —gr.s (6o)

— Goey,
€r,S

gr.s (éT,ereké?T,s) —gr.s (6o) — 8o (éT,S+ek5T,S)

N

€r,S

+ ‘go (éT,S+ek5T,S) Jer,s — GoekH
<o, (1)

Then,

gr.s <éT,S+ek5T,S> —grs (6o)

- Goey,
ET.S

and the same arguments can be applied to the two-sided derivative:

gr.s <9T,s+ek€T,s> — 87,5 <9T,S_ek5T,S>

— Goey,
2€T,S

This holds for each column k£ = 1, 2...,p. Thus CA%T7S 2 Gy.
In the case where S/T — 0 as T, S — o0, the proof for the consistency of CA%T,S is

done in the similar way using the following facts:
07,5 = 85 = 0, (577) (C.20)
and 3¢

sup VS ligrs (0) — gr.s (60) — &0 O /[ 1+ V510~ bl | =0, (1) (C21)

16—80]<6

Next, we show the consistency of EAJT, . If y; and o, are known constant, or if ¢g

is known, then the result follows from Theorems 5 and 6 of Fermanian, Radulovi¢
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and Wegkamp (2004). When ¢y is estimated, the result is obtained by combining
the results in Fermanian, et al. with those of Rémillard (2010), see the Proof of

Proposition 3 in the paper for details. O

Proof of Proposition 4. First consider S/T — oo or S/T — k > 0. A Taylor expan-

sion of g (9,5 ) around dy yields
VTgo (rs) = VTeo (60) + Go VT (Ir.s—00) +0 (VT |rs—60] ) (C.22)
and since g (60) = 0 and VT | .50y | = O, (1)
VTgy (brs) = Go VT (Brs—00) + 0, (1) (C.23)
Then consider the following expansion of gr.s (7r,s) around f
VTgrs (Ors) = VTers (00) + Grs VT (Irs—60) + Res (Irs)  (C.20)

where the remaining term is captured by Rz g (9T75> . Combining equations (C.23)

and (C.24) we obtain
VT [gT,S (éT,S> —grs (6o) — 8o (éT,S)] = (GT,S_G0> T (éT,S_90>

+ Rrg <éT,S> +0, (1)

Lemma 7 shows the stochastic equicontinuity of vr g (#), which implies (see proof of

Proposition 2) that

VT [grs (0rs) — grs (00) — 20 (r.5) | = 0, (1)
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By Proposition 3, CA}T,S—GO = 0, (1), which implies Ry ¢ (0}75) =0, (1). Thus, we

obtain the expansion of gr g <§T75) around 6 :

VTgrs (9},5) — VTgrs () + Grs VT (éT,s—eo) +0,(1) (C.25)

The remainder of the proof is the same as in standard GMM applications: From
the proof of Proposition 2, we have v/T'grs (6o) LR N (0,%y) and rewrite this
as —Eal/Qx/TgT75 (6o) = urg % u ~N (0,I), and from Proposition 2, we have
VT (9},5—60) = (GE)WOGO)_1 GgWoZé/zuT,s + 0, (1) . By these two equations and

Proposition 3, equation (C.25) becomes

\/TgT,S (éT,S>

~ ~ ~ a A -1, A a
~Sifhuns + Grs (GhsWrGrs) - GhLsWrSihurs + o, (1)
(C.26)

— —i;{?gf{um + 0, (1)

A —1/2 A

L~ N PN -1 4 PO
where R = (I — 375 Grs (G’TSWTGT’S) G,T,SWTle/,zB) . The test statistic is

~ , ~ ~ A A ~ A A
TgT,S <‘9T,S) WTgT,S <0T,S) = u/7~7SR/2;<?B/WT2¥;RuT7S + Op (1) <C27)

— uR,E* WS *Rou + 0, (1)

where Ry = (I — 251/2(}0 (Gf)WOGO)_l G{)WOEém) . When Wp= EAJ;}B, R is sym-

metric and idempotent with rank <R> = tr <f{> = m — p, and the test statistic

converges to a Xﬁ%p random variable, as usual. In general, the asymptotic distribu-
tion is a sample-dependent combination of m independent standard Normal variables,

namely that of WR,XL? Wy’ Rou where u ~N (0,1).
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When S/T — 0, a similar proof can be given using Taylor expansion of g (éT S)

VSgo (Br.s) = V/Sgo (60) + Go - VS (Ors—00) + 0 (VS |drs—0o ) (C.28)
L]
C.2 Implementation of the SMM estimator

This section provides further details on the constricution of the SMM objective func-
tion and the estimation of the parameter.

Our estimator is based on matching sample dependence measures (rank correla-
tion, quantile dependence, etc) to measures of dependence computed on simulated
data from the model evaluated at a given parameter 6. The sample dependence mea-
sures are stacked into a vector my, and the corresponding measures on the simulated
data are stacked into a vector mg () . Re-stating equation (3.9) from the paper, our

estimator 1is:

Org = arg I(Sm gr,s (0) Wrgrs (0) (C.29)
€

where gr g (0) = my — mg (0) .
We now describe the construction of the SMM objective function. All dependence
measures used in this paper are based on the estimated standardized residuals, which

are constructed as:
~ Y, — Mt(¢)

C.30
o () ( )

We then compute pair-wise dependence measures such as those in equations
(4) and (5) of the paper, eg, p and S\Zj . For quantile dependence we set q €
{0.05,0.10,0.90,0.95} .

The copula models we consider all satisfy an “exchangeability” property, and we
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use that when constructing the moments to use in the estimator. Specifically, we

calculate moments m as:
2 Y e,
thy = — 5 Ny My Ny A (C.31)
N<N_1);j;'+l[ 0.05 0.10  “0.90 095]

Next we simulate data {X, (#)}>_, from distribution F, (6), and compute the
vector of dependence measures mg (6) . It is critically important in this step to keep
the random number generator seed fized across simulations, see Gouriéroux and
Monfort (1996, Simulation-Based Econometric Methods, Oxford University Press).
Failing to do so makes the simulated data “jittery” across function evaluations, and
the numerical optimization algorithm will fail to converge.

Finally, we specify the weight matrix. In this paper we choose either Wr =1

or Wrp = 2}’13. Note that for our estimation problem the estimated efficient weight

matrix, f)ilB, depends on the covariance matrix of the vector of sample dependence
measures, and not on the parameters of the model. Thus unlike some GMM or
SMM estimation problems, this estimator does not require an initial estimate of the
unknown parameter.

We use numerical optimization procedure to find QAT,S. As our objective function
is not differentiable we cannot use procedures that rely on analytical or numeri-
cal derivatives (such as familiar Newton or “quasi-Newton” algorithms). We use
“fminsearch” in Matlab, which is a simplex search algorithm that does not require
derivatives. As with all numerical optimization procedures, some care is required
to ensure that a global optimum has been found. In each estimation, we consider
many different starting values for the algorithm, and choose the resulting parameter
estimate that leads to the smallest value of the objective function. The models con-

sidered here are relatively small, with up to three unknown parameters, but when
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the number of unknown parameters is large more care is required to ensure that a
global optimum has been found, see Judd (1998, Numerical Methods in Economics,

MIT Press) for more discussion.
C.3 Implementation of MLE for factor copulas

Consider a simple factor model:
Xi = Z+€Z‘, 1= 1,2,...,N
4~ Fz, E; ~ 1id F€7 €ZJ_|_Z Vi
[X1,...Xy] =X ~F,=C(G,..,G)
To obtain the copula density ¢ we must first obtain the joint density, f,, and the

marginal density, g. These can be obtained using numerical integration to “integrate

out” the latent common factor, Z. First, note that

Juile (zi]2) = fe (xi — 2)
Fri (zilz) = Fe (v — 2)

and fo. (o, anlz) = [ oo

Then the marginal density and marginal distribution of X; are:

f ﬁzxzm—f Fupe (2]2) £ 2 M—f fola—2) . (2) dz

0

G<x>=f Pr[X <alZ =L ()de= | R f()d:

—00

The joint density is similarly obtained:

fo (1, .. J fops (@1, an]2) fo (2 dz-f l_Lle i —2) [ (2)dz
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From these, we obtain the copula density:

[ (G (w), ., G (uy)
[T 9 (G (w))

We approximate the above integrals using Gauss-Legendre quadrature, see Judd
(1998) for details and discussion. We use the probability integral transformation of

Z to convert the above unbounded integals to integrals on [0, 1], for example:

J felz=2)f. (2 dz—ffgx— ' (w) du

A key choice in quadrature methods is the number of “nodes” to use in approximating
the integral. We ran simulations using 50, 150, and 250 nodes, and found that the
accuracy of the resulting MLE was slightly better for 150 than 50 nodes, and not
different for 250 compared with 150 nodes. Thus in the paper we report results for

MLE based on quadrature using 150 nodes.

C.4 Additional tables
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Table C.1: Simulation results for iid data with optimal weight matrix

Clayton Normal Factor copula
GMM SMM SMM* GMM SMM SMM
K K K p p o? ! A
True 1.00 1.00 1.00 0.5 0.5 1.00  0.25 -0.50
N =2
Bias -0.018 -0.020 -0.018 -0.001  0.000 0.016 -0.026 -0.094

St dev  0.085 0.092  0.091 0.025 0.026 0.144 0.119 0.189
Median  0.984 0.977  0.981 0.497  0.500 0.999  0.200 -0.557
90-10%  0.224 0.247  0.233 0.070  0.069 0.374 0.332  0.447
Time 0.07 515 o1 0.41 0.67 112

N =3

Bias 0.008 0.010  0.006 -0.003 -0.003 0.022 -0.009 -0.057
St dev ~ 0.063 0.073  0.068 0.021  0.022 0.110 0.103 0.146
Median  0.996 1.008  1.002 0.495 0.498 1.006  0.238 -0.540
90-10%  0.160 0.172  0.165 0.054 0.061 0.294 0.261 0.366

Time 0.12 1398 29 0.29 1.60 138
N =10
Bias -0.003 -0.004 -0.005 -0.004 -0.004 0.019 -0.010 -0.023

St dev  0.047 0.049  0.050 0.014 0.015 0.097 0.078 0.085
Median  0.993 0.997  0.997 0.497  0.495 1.006 0.251 -0.514
90-10%  0.121 0.126  0.127 0.036  0.037 0.248 0.189 0.165
Time 1 22521 170 0.34 3 358

Notes: The simulation design is the same as that of Table 3.1 in Chapter 3 except
that we use the optimal weight matrix for W.
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Table C.2: Simulation results for AR-GARCH data with optimal weight matrix

Clayton Normal Factor copula
GMM SMM SMM* GMM SMM SMM
K K K p p o? ! A
True 1.00 1.00 1.00 0.5 0.5 1.00  0.25 -0.50
N =2
Bias -0.021 -0.017 -0.014 -0.002 -0.001 0.018 -0.022 -0.083

St dev  0.087 0.097  0.097 0.026  0.026 0.154 0.121 0.188
Median 0.980 0.989  0.987 0.498  0.498 0.997  0.209 -0.553
90-10%  0.225 0.247  0.258 0.070  0.069 0.399 0.346 0.485
Time 0.06 531 60 0.39 0.69 119

N =3

Bias 0.002 -0.004 -0.001 -0.003 -0.003 0.021 -0.009 -0.061
St dev ~ 0.063 0.066  0.068 0.021  0.023 0.114 0.106 0.151
Median  0.995 0.990  0.991 0.495 0.497 1.018  0.243 -0.548
90-10%  0.153 0.166  0.164 0.052  0.058 0.299 0.278 0.336

Time 0.12 1613 76 0.33 1.50 135
N =10
Bias -0.006 -0.005 -0.007 -0.005 -0.005 0.014 -0.013 -0.027

St dev  0.047 0.051  0.050 0.014 0.015 0.093 0.078 0.097
Median  0.991 0.997  0.993 0.496 0.494 1.000  0.250 -0.513
90-10% 0.120 0.136  0.134 0.037  0.040 0.229 0.193 0.187
Time 2 25492 175 0.41 4 361

Notes: The simulation design is the same as that of Table 3.2 in Chapter 3 except
that we use the optimal weight matrix for W.
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Table C.3: Simulation results on coverage rates with optimal weight matrix

Clayton Normal Factor copula

Kk J p J o> vtoXN T

N =2
€r,s
0.1 89 95 93 99 97 99 96 96
0.01 516) 93 95 99 97
0.001 9 80 779 80
0.0001 1 16 40 54 56
N=3
€TS8
0.1 91 98 88 95 98 99 97 99
0.01 70 88 98 99 96
0.001 10 82 88 86 86
0.0001 O 41 51 59 48
N =10
Er.s
0.1 93 100 87 97 95 96 94 100
0.01 79 87 94 94 93
0.001 20 87 89 &84 92
0.0001 5 64 70 70 73

Notes: The simulation design is the same as that of Table 3.3 in Chapter 3 except
that we use the optimal weight matrix for . The numbers in column J present the
percentage of simulations for which the test statistic of over-identifying restrictions
test described in Section 3.3 was smaller than its critical value from chi square
distribution under 95% confidence level (this test does not require a choice of step
size for the numerical derivative, er g, and so we have only one value per model).
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Table C.4: Summary statistics on the daily stock returns

Bank of Bank of Citi Goldman JP Morgan Wells

America N.Y. Group Sachs Morgan Stanley Fargo
Mean 0.038 0.015 -0.020 0.052 0.041 0.032  0.047
Std dev 3.461 2797 3.817 2.638 2.966 3.814  2.965
Skewness 1.048 0.592  1.595 0.984 0.922 4.982  2.012
Kurtosis 28.190  18.721 43.478 18.152  16.006 119.757 30.984

Notes: This table presents some summary statistics of the seven daily equity returns
data used in the empirical analysis.

Table C.5: Parameter estimates for the conditional mean and variance models

BoA BoNY Citi GS JPM  MS WF

Constant (¢) 0.038 0.017 -0.019 0.058 0.043 0.031 0.051
Tit—1 0.020 -0.151 0.053 -0.156 -0.035 0.004 -0.078
Trt—1 -0.053 -0.011 0.029 0.282 -0.141 0.063 -0.099

Constant (w) 0.009 0.069 0.019 0.034 0.014 0.036 0.008
aZt,l 0931 0.895 0.901 0953 0.926 0.922 0.926
éit,l 0.031 0.017 0.036 0.000 0.025 0.002 0.021

8?7,571 1, 1<0) 0.048 0.079 0.123 0.077 0.082 0.135 0.108
<‘53n,t—1 0.000  0.000 0.000 0.000 0.000 0.000 0.000

2, -1l <y 0.068 0266 0.046 0.012 0.064 0.077 0.013

m

Notes: This table presents the estimated models for the conditional mean (top panel)
and conditional variance (lower panel).
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Appendix D

Appendix to Chapter 4

D.1 Proofs

Proof of Proposition 1. (i) Consider the evolution equation for A; :
log \it = w; + Blog N\iy—1 + asiy—1, 1 =1,2,..., N

where s;;—1 = dlogc(u_1; \i—1, Vs, ¥, Ve) /0N t—1. Creal, et al. (2013) show Ey_; [si¢] =

0, so:
Wi

Ellog Ait] = wi + BE [logAi 1] = =3

under stationarity of {\;}, which holds by assumption 1(b). So we have w; =
Elog \it] (1 — ), and we can re-write our GAS equation in “variance targeting”
form:

IOg )\it =F [log )\zt] (1 — 6) + ﬁlog )\i,t—l + O[Siﬂg_l

The objective of this proposition is to find an estimate of F [logA;] based on ob-

servable data.
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Note that the linear correlation between (X;, X;) is
Aidj
\/(1 + A7) (1+ 22

and R% = Corr[X] =G ())

=g(A) (D)

piL%X = Corr [X;, X;] =

By assumption 1(a), this is an exactly- (N = 3) or over- (N > 3) identified system,
as we have N parameters A = [\, ..., A\y]" and N (N — 1) /2 correlations. Note that
by Assumption 1(d) we have a corresponding exactly- or over-identified system for

the rank correlation matrix:
Ry = o (R) = 0 (G (V) (D2

(In a slight abuse of notation, we let ¢ (Rg() map the entire linear correlation matrix
to the rank correlation matrix.) Define the (exponential of the) inverse of the function
wo G as H, so that log A = H (px), where px = vech (Rx). The function H is not
known in closed form but it can be obtained by a simple and fast optimization

problem:
H (px) = argmin  (vech { (G (a))} — px)' (vech{p (G (a))} — px) (D.3)

This is the GMM analog to the usual method-of-moments estimator used in variance
targeting.

Under Assumption 1(c) the function H (px) is linear, so
Ellog ] = E[H(pi.x)] = H(px)

where px=FE|p; x|

Finally, we exploit the fact that RankCorr [X] is identical to RankCorr[n] by
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Assumption 1(a) and Theorem 5.1.6 of Nelsen (2006). So we obtain:
Elog ] = H(px) = H(py)

(ii) We use as our “VT estimator” the sample analog of the above expression:

—

log A = H(p,)

First note that, since the marginal distributions of 7, are known, sample rank corre-
lations are a linear functions of a sample moment, see Nelsen (2006, Chapter 5) for

example:

) 12 o
Pl = =34 7 2T ) Fy ()
t=1

Our estimate of E [log A;] is obtained in equation (D.3) as:

—

log A\ = argmin my (a)’ my (a)
where 1y (a) = vech{p (G (a)} -

The element of my corresponding to the (i, ) element of the correlation matrix is:

i) () = [ (G (@)] )+ 3~ 22 O F ) Fy ()

—

Thus log A is a standard GMM estimator for N > 3. [
D.2 Obtaining the factor copula likelihood

The factor copula introduced in Oh and Patton (2012) does not have a likelihood in
closed form, it is relatively simple to obtain the likelihood using numerical integra-

tion. Consider the factor structure in equation (4.5) and (4.6). Our objective is to
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obtain the copula density of Xj.

(D.4)

¢ (uy,.yuy) = EG i () G (un))

g1t (G 1t (Ul)) " gNt (GNt (UN))

where f; (21,...,2y) is the joint density of X;, gy (x;) is the marginal density of
X;, and ¢ (uq,...,uy) is the copula density. To construct copula density, we need

each of the functions that appear on the right-hand side above: g; (z;), Gi (x;),
fot (1, ..., 2x) and G (u;) .

The independence of Z and ¢; implies that:

Ixize (@i 2) = fe, (20 — Aae2)
FXi‘Z,t (xz|z) = I, (% - )\itz)

With these conditional distributions, one dimensional integration gives the marginals:

it (r:) = J_ fxizi (i, 2) dz = J_ Ixiz4 (xil2) fz:(2) dz
= JOO feo (@i = Nuz) [z (2) dz

and similarly

G (1) = fc F (01 — A2 fru (2) d2

—0Q0

fwt L1y, T J Hfsz Ti — g% th( )dZ

D =1
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We use a change of variables, U = Fy; (%), to convert these to bounded integrals:

rl

it () = .Jo fei (2 — /\itFZ_; (v)) du

rl

rl N

fat (@1, saw) = | [/ (2= NiFyz) (w) du
i=1

Thus the factor copula density requires the computation of just one-dimensional
integrals. (For a factor copula with J common factors the integral would be J-
dimensional.) We use Gauss-Legendre quadrature for the integration, using ¢ “nodes,”
(see Judd (1998) for details) and we choose ) on the basis of a small simulation study
described below.

Finally, we need a method to invert G (z;), and note from above that this is a
function of both x and the factor loading Ai;, with G = G, if Aix = Aj5. We estimate
the inverse of Gy; by creating a grid of 100 points for x in the interval [Zyin, Zmax] and
50 points for A in the interval [Amin, Amax], and then evaluating G at each of those
points. We then use two-dimensional linear interpolation to obtain G~ (u; \) given u
and A. This two-dimensional approximation substantially reduces the computational
burden, especially when \ is time-varying, as we can evaluate the function G prior
to estimation, rather than re-estimating it for each likelihood evaluation.

We conducted a small Monte Carlo simulation to evaluate the accuracy of this nu-
merical approximation. We use quadrature nodes @ € {10, 50, 150} and [Zstart, Tend| =
[—30,30], [Astarts Aena] = [0, 6] for the numerical inversion. For this simulation, we

considered the factor copula implied by the following structure:
Xi = )\()Zt + &4, 1= 1, 2 (D5)

where 7, ~ Skew t (vg,v0), €i ~ididt(vy), Zlle; Vi

235



where \g = 1, 5" = 0.25 and ¢y = —0.5. At each replication, we simulate X = [X}, X,]
1000 times, and apply empirical distribution functions to transform X to U = [Uy, Us].
With this [Uy, Us] we estimate [\, v~1 ] by numerically approximated maximum
likelihood method.

Table D.3 in Appendix D.3 contains estimation results for 100 replications. We
find that estimation with only 10 nodes introduces a relatively large bias, in particular

for v!

, consistent with this low number of nodes providing a poor approximation
of the tails of this density. Estimation with 50 nodes gives accurate results, and is
comparable to those with 150 nodes in that bias and standard deviation are small.

We use 50 nodes throughout the paper.

D.3 Additional tables
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Table D.1: Simulation results for the “heterogeneous dependence” model

True Bias Std Median 90% 10% Diff

(90%-10%)

w; -0.030 0.004 0.017 -0.022 -0.005 -0.052  0.047
we -0.029 0.004 0.018 -0.022 -0.005 -0.048  0.043
ws -0.029 0.004 0.016 -0.021 -0.005 -0.043  0.038
wy -0.028 0.003 0.017  -0.023 -0.005 -0.047  0.042
ws -0.028 0.004 0.016 -0.020 -0.005 -0.046  0.041
we -0.027 0.004 0.016 -0.020 -0.003 -0.044  0.040
wry -0.026 0.003 0.016 -0.022 -0.004 -0.042  0.038
wg -0.026 0.003 0.016 -0.020 -0.005 -0.043  0.038
wyg -0.025 0.003 0.015 -0.019 -0.005 -0.041  0.036
wip -0.025 0.002 0.016 -0.019 -0.005 -0.041  0.036
wip -0.024 0.002 0.015 -0.018 -0.004 -0.038  0.033
wiz -0.023 0.003 0.013 -0.018 -0.004 -0.037  0.032
wig -0.023 0.003 0.014 -0.018 -0.004 -0.038  0.033
wig -0.022 0.003 0.012 -0.018 -0.004 -0.035  0.031
wis -0.022 0.002 0.013 -0.019 -0.004 -0.043  0.039
wie -0.021 0.002 0.013 -0.016 -0.003 -0.034  0.031
wyr -0.020 0.003 0.011  -0.015 -0.003 -0.032  0.029
wig -0.020 0.002 0.013 -0.015 -0.003 -0.033  0.030
wig -0.019 0.002 0.012 -0.016 -0.003 -0.031  0.028
wy -0.019 0.002 0.011 -0.015 -0.003 -0.033  0.030
wer -0.018 0.003 0.010 -0.013 -0.003 -0.028  0.025
wee -0.017 0.002 0.010 -0.013 -0.003 -0.028  0.025
weg -0.017 0.003 0.009 -0.013 -0.003 -0.025  0.022
wey -0.016 0.002 0.010 -0.013 -0.003 -0.024  0.021
wes -0.016 0.000 0.010 -0.014 -0.003 -0.030  0.027
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Table D.1: Simulation results for the “heterogeneous dependence” model

True Bias Std  Median  90% 10% Diff

(90%-10%)

wee -0.015 0.001 0.010 -0.012 -0.003 -0.028  0.025
wey -0.014 0.000 0.011  -0.011 -0.003 -0.028  0.025
weg -0.014 0.001 0.009 -0.011 -0.002 -0.023  0.021
wag -0.013  0.000 0.009 -0.011 -0.002 -0.025  0.023
wso -0.012  0.001 0.008  -0.010 -0.002 -0.022  0.020
wgr -0.012  0.000 0.008  -0.010 -0.002 -0.022  0.020
wse -0.011  0.001 0.008  -0.008 -0.002 -0.019  0.017
wsg -0.011  0.001 0.007  -0.009 -0.002 -0.017  0.015
wzg -0.010 -0.001 0.008  -0.009 -0.002 -0.021  0.019
wss -0.009  0.000 0.008  -0.008 -0.002 -0.020  0.018
wzes  -0.009 0.000 0.007  -0.008 -0.002 -0.018  0.016
wgy -0.008 0.001 0.005 -0.006 -0.001 -0.014  0.013
wsg -0.008 0.001 0.006 -0.005 -0.001 -0.016  0.015
wsg -0.007 0.001 0.005  -0.005 -0.001 -0.013  0.012
wgo -0.006 -0.001 0.005 -0.006 -0.002 -0.015  0.014
wyr -0.006 -0.003 0.007  -0.007 -0.002 -0.019  0.017
wge -0.005 0.000 0.004  -0.005 -0.001 -0.010  0.009
wgg  -0.005 0.001 0.004  -0.003 0.000 -0.009  0.008
wag -0.004  0.000 0.004 -0.003 0.000 -0.010  0.010
wgs -0.003 -0.001 0.005 -0.003 0.000 -0.010  0.010
wge  -0.003 0.001 0.003 -0.002 0.002 -0.007  0.008
wgr -0.002 -0.001 0.003  -0.002 0.000 -0.006  0.006
wgg  -0.002 -0.001 0.003 -0.001 0.001 -0.006  0.008
wgg -0.001 -0.001 0.004 -0.001 0.002 -0.006  0.008
wso  0.000 -0.002 0.004 -0.002 0.001 -0.007  0.008
ws1  0.000 -0.002 0.003 -0.001 0.001 -0.006  0.007
wse  0.001 -0.001 0.004 0.000 0.004 -0.003  0.007
wss  0.002  0.000 0.004 0.000 0.006 -0.003  0.009
wsg  0.002 -0.003 0.004 -0.001 0.002 -0.005  0.007
wss  0.003 -0.001 0.004 0.001  0.007 -0.003  0.010
wse  0.003 -0.002 0.003 0.001  0.007 -0.002  0.009
wsy  0.004 0.000 0.004 0.003 0.010 0.000  0.010
wsg  0.005 -0.002 0.004 0.001  0.008 -0.001  0.009
wsg  0.005 -0.002 0.003 0.003 0.008 0.000  0.008
weo  0.006 -0.002 0.005 0.003 0.010 0.000  0.010
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Table D.1: Simulation results for the “heterogeneous dependence” model

True Bias Std  Median 90%  10% Diff

(90%-10%)

wer  0.006 -0.002 0.005 0.003 0.010 0.000  0.010
wez 0.007 -0.001 0.005 0.004 0.013 0.001  0.012
wez  0.008 -0.003 0.005 0.003 0.012 0.000  0.011
wes 0.008 -0.002 0.005 0.004 0.013 0.001  0.012
wes  0.009 -0.002 0.006 0.005 0.013 0.000  0.013
wes  0.009 -0.003 0.005 0.006 0.014 0.001  0.013
wer 0.010 -0.004 0.006 0.005 0.013 0.000  0.013
wes 0.011 -0.004 0.006 0.005 0.013 0.001  0.013
weg 0.011 -0.002 0.007 0.008 0.022 0.002  0.020
wro  0.012 -0.004 0.007 0.007 0.017 0.001  0.016
wrp 0.012 -0.003 0.007 0.009 0.019 0.001  0.017
wre  0.013 -0.005 0.007 0.007 0.016 0.001  0.015
wrg  0.014 -0.004 0.008 0.008 0.020 0.001  0.019
wrg 0.014 -0.004 0.009 0.008 0.023 0.002  0.021
wrs  0.015 -0.004 0.008 0.009 0.019 0.002  0.017
wrg  0.016 -0.005 0.009 0.008 0.025 0.002  0.023
wrr  0.016  -0.003 0.009 0.011 0.026 0.002  0.024
wrg  0.017 -0.004 0.009 0.010 0.024 0.002  0.022
wrg 0.017 -0.004 0.010 0.011 0.032 0.002  0.030
wgo 0.018 -0.004 0.009 0.012 0.026 0.002  0.024
wgr  0.019 -0.006 0.009 0.011 0.024 0.002  0.022
wgz  0.019 -0.005 0.010 0.012 0.026 0.003  0.024
wgz 0.020 -0.005 0.010 0.012 0.029 0.002  0.027
wgg 0.020 -0.004 0.012 0.013 0.033 0.004  0.030
wgs 0.021 -0.006 0.011 0.014 0.032 0.002  0.030
wge 0.022 -0.006 0.011 0.014 0.029 0.003  0.026
wgy 0.022 -0.006 0.013 0.015 0.032 0.003  0.029
wgg 0.023 -0.006 0.011 0.014 0.032 0.004  0.028
wgg 0.023 -0.006 0.012 0.016 0.033 0.003  0.030
wgo 0.024 -0.006 0.012 0.016 0.036 0.003  0.033
wor 0.025 -0.005 0.014 0.017 0.036 0.004  0.033
wgz 0.025 -0.005 0.014 0.018 0.039 0.003  0.036
wgz 0.026 -0.007 0.012 0.018 0.038 0.003  0.035
wos 0.026 -0.006 0.015 0.018 0.040 0.004  0.036
wos 0.027 -0.006 0.014 0.018 0.040 0.004  0.036

239



Table D.1: Simulation results for the “heterogeneous dependence” model

True Bias Std  Median 90%  10% Diff

(90%-10%)

wgs  0.028 -0.007 0.015 0.019 0.042 0.004 0.038
wyr 0.028 -0.006 0.015 0.019 0.042 0.004  0.038
wog  0.029 -0.006 0.015 0.020 0.045 0.004  0.041
wgg 0.029 -0.008 0.013 0.020 0.038 0.004  0.034
wieo 0.030 -0.007 0.016 0.021 0.040 0.004  0.036
a 0.050 -0.006 0.015 0.045 0.062 0.023  0.039
g 0980 0.002 0.012 0.983 0.997 0.966  0.031
v~ 0.200 -0.002 0.009 0.199 0.209 0.186  0.023
v, 0.100 0.008 0.032 0.111 0.152 0.064  0.088

Notes: This table presents results from the simulation study described in Section 4.3
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D.4 “Variance targeting” assumptions

In Figure D.1 we present simulation evidence supporting the applicability of the as-
sumptions underlying Proposition 1 of the paper. In both panels we use a simulation
with 50,000 observations to estimate the true functions. The left panel shows the
mapping from rank correlation to linear correlation. This mapping changes slightly
with the shape parameters (6., 6.) , but we see that for all choices presented the func-
tion is indeed strictly increasing, supporting assumption (d). We further see that for
all three shape parameter choices the function ¢ is close to being the identity func-
tion, and we invoke this approximation in our estimation to increase computational
speed. The right panel plots the mapping from rank correlation to log factor load-
ings, and we see that the true mapping is reasonably approximated by a straight line,
particularly for values of rank correlation near the sample average rank correlation

in our application, which is around 0.4, supporting assumption (c).

nu=5, psi=0.1 o/ 0.4} nu=5, psi=0.1
= = =nu=4, psi=0.25 /s = = =nu=4, psi=0.25
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F1GURE D.1: The left panel plots the mapping from rank correlation to linear corre-
lation for various choices of shape parameters in the factor copula. The right panel
compares the true mappings from rank correlation to log-lambda with a linear approz-
imation.
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