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Abstract

When simulating multiscale stochastic differential equations (SDEs) in high-dimensions,

separation of timescales and high-dimensionality can make simulations expensive.

The computational cost is dictated by microscale properties and interactions of many

variables, while interesting behavior often occurs on the macroscale with few impor-

tant degrees of freedom. For many problems bridging the gap between the microscale

and macroscale by direct simulation is computationally infeasible, and one would

like to learn a fast macroscale simulator. In this paper we present an unsupervised

learning algorithm that uses short parallelizable microscale simulations to learn prov-

ably accurate macroscale SDE models. The learning algorithm takes as input: the

microscale simulator, a local distance function, and a homogenization scale. The

learned macroscale model can then be used for fast computation and storage of long

simulations. I will discuss various examples, both low- and high-dimensional, as well

as results about the accuracy of the fast simulators we construct, and its dependency

on the number of short paths requested from the microscale simulator.
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1

Introduction

High-dimensional dynamical systems arise in a wide variety of applications, from

the study of macromolecules in biology to finance and climate modeling. In many

cases these systems are stochastic by nature, or are well-approximated by stochastic

processes, for example as a consequence of slow-fast scale phenomena in the sys-

tem. Simulations typically require significant amounts of computation, for several

reasons. Each time step of the numerical scheme is often expensive because of the

large dimensionality of the space, and the large number of interactions that need to

computed. Fast scales and/or stochasticity may force each time step to be extremely

small in order to have the requested accuracy. Finally, large-time behavior of the

system may be dominated by rare transition events between stable regions, requir-

ing very long paths to understand large-time dynamics. A large amount of research

spanning multiple fields tackles the problems above.

Suppose we are given a high dimensional stochastic simulator, and we are faced

with the problem of prohibitively expensive costs to run long simulations; in this

scenario one asks the question “what can be learned from ensembles of short paths?”

Short sample paths can be performed in parallel, and with the advent of distributed
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computing (see S.Larson et al. (2002)) and GPU processors, tasks which can be

parallelized are becoming more valuable. However several crucial problems to be

addressed include: where in state space such short paths should be started? how

many paths should be run locally? for how long? how does the local accuracy

depend on these parameters? and once these local paths are constructed, and perhaps

local simulators constructed, how can they be stitched together reasonable way to

produce a global simulation scheme? What can be guaranteed about the accuracy

of such a global scheme? Some examples, among many, in this direction are Markov

State Models rfrom Bowman et al. (2009) and milestoning from Faradjian and Elber

(2004); these methods discretize the state space into bins, or regions, and ask about

transitions between such bins. Our method can be seen as a higher order approach,

fitting a linear model to each bin.

We build upon existing ideas and methods in model reduction and multiscale

techniques, and combine these with statistical learning and high-dimensional prob-

abilistic ideas. The philosophy of reducing a high-dimensional system to a low-

dimensional surrogate is well-established as enabling the simulation of complex, large,

high-dimensional systems. These include model reduction Moore (1981); Antoulas

et al. (2001); Huisinga et al. (2003), homogenization of PDE’s Hornung (1997);

Gilbert (1998), coarse-grained dynamics of high-dimensional systems Gear et al.

(2005); Kevrekidis et al. (2003a), multiscale modeling of A. J. Majda and Vanden-

Eijnden (2001); Shardlow and Stuart (2000); Kevrekidis et al. (2003a); Vanden-

Eijnden (2003). We refer the reader to Weinan et al. (2007) for a summary of

the motivations and applications of several of these techniques, and to the references

therein.

We take concepts from manifold learning G. Chen (2013); Brand (2002); Z. Zhang

(2002); Saul and Roweis (2003) in order to learn an underlying low-dimensional

manifold around which most trajectories concentrate with high probability. We
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approximate the macroscale manifold with linear low dimensional subspaces locally,

which we call charts. These charts enable us to learn local properties of the system

in low dimensional Euclidean space. Geometric Multi-Resolution Analysis (GMRA

G. Chen (2013)) uses this concept to approximate high dimensional distributions on

manifolds. These techniques perform the model reduction step, mapping the high-

dimensional system from RD down to d-dimensions, yielding a small set of coordinates

describing the effective small number of degrees of freedom of the system.

We combine the above with homogenization theory G. Pavliotis (2008); Gilbert

(1998); Vanden-Eijnden (2003) and learn a local homogenized version of the sim-

ulator. Locally we fit a constant coefficient SDE to each chart. If the macroscale

simulator is well approximated by a smooth SDE, then constant coefficient SDEs will

approximate the system well locally. This smooth SDE is the homogenized version

of the original simulator, and under appropriate conditions (see G. Pavliotis (2008)),

the homogenized version will capture long term dynamics of the original system.

Last, we add an extra ingredient of approximating transition maps between

charts, generating a numerical approximation to an atlas. Learning such transi-

tion maps between charts is necessary to allow us to smoothly combine simulators

on distinct charts into one global simulator on the atlas. Once all these ingredients

combine, we have an atlas equipped with a simulator, which we will call the Atlas

Simulator, or just Atlas for short.

Obtaining fast, accurate samples from the stationary distribution is a valuable

tool in studying dynamical systems. A common tool for studying complex high

dimensional dynamical systems is to obtain so called “reaction coordinates” or a

set of global low dimensional coordinates describing the important states of the

system. In this scenario, one commonly uses diffusion maps (see Coifman and Lafon

(2004); Coifman et al. (2008); Rohrdanz et al. (2011)) which requires many samples

from the stationary distribution to guarantee accuracy. These reaction coordinates

3



allow further analysis of dynamical systems by easily identifying stable states, and

transitions between such states. In fact, the original motivation for this work was

observing that the slowest part of running diffusion maps on such complicated high

dimensional systems was obtaining the samples from the stationary distribution.

The paper is organized as follows: in section 2 we describe at high level our

construction, algorithm, and informally state the main result on the accuracy of the

Atlas for large times; then we illustrate the algorithm on simple examples. In section

3 we discuss the algorithm in detail. In section 4 we state and prove our main result.

In section 5 we present a wide range of examples. We conclude with a discussion in

section 6.

1.1 Review of Related Work

This chapter is intended to give the reader a review of other similar methods which

can be compared to the method presented in this thesis. The heart of the problem we

discuss is having an available microscale simulator which is slow, where the goal is to

create a faster macroscale simulator based on knowledge learned from the available

microscale simulator. There are a few notable methods for attacking this problem

in the literature that we discuss: the equation free methdos (EFM) of Kevrekidis

et al. (2003b), the heterogeneous multiscale method (HMM) of Weinan et al. (2007),

and a scheme for simulating an SDE with multiscale properties from Vanden-Eijnden

(2003). Another motivating work we discuss is Pavliotis and Stuart (2007) on pa-

rameter estimation for multiscale diffusions. Last we discuss Markov State Models

Pande et al. (2010); Bowman et al. (2009), and algorithm from molecular dynamics

which uses short sample paths to approximate the dynamics.

Both EFM and HMM begin by assuming knowledge of a fine and coarse descrip-

tion of each state, and maps between them. So given a fine scale state x, one should

be able to produce a coarse state X “ Rpxq via a restriction operator R. Also given a

4



coarse state X, one must be able to produce one (or more) fine scale states x “ LpXq

using a lifting operator L. These mappings R,L should be consistent in the sense

that R ˝ L “ I.

The EFM runs short bursts of the microscale simulator at each step, then extracts

macroscale information through the restriction operator R. This macroscale infor-

mation is then used in an update rule to extrapolate macroscale data in time (called

coarse-projective integration), space (called gap-tooth scheme), or both (called patch

dynamics). Next the lifting operator can then be used to obtain new initial conditions

for the microscale simulator at the next step. In EFM, they are mainly concerned

with evolving multiscale PDEs, as this is where extrapolation in space comes in

handy. They do not explicitly mention using this scheme in our setting of solving an

SDE.

In HMM, again the main idea is to run short bursts of the microscale simulator

at each step and then extract macroscale information. In Weinan et al. (2007) they

explicitly detail their algorithmic approach to solving an SDE of the following form:

#

9Xε
t “ apXε

t , Y
ε
t , εq, Xε

0 “ x
9Y ε
t “

1
ε
bpXε

t , Y
ε
t , εq `

1?
ε
σpXε

t , Y
ε
t , εq

9Wt, Y ε
0 “ y

(1.1)

In this case RprX, Y sq “ X, and a consistent choice for L could be LpXq “ rX,~0s.

On a timescale of Op1q in ε, the dynamics of Xt behave like

9
ĎXt “ sap sXtq. (1.2)

If sa was known, (1.2) could be solved numerically in Op1q time. Thus, the strategy

presented in HMM is to estimate sa from samples, and then select a macroscale ODE

solver. In their example they use forward Euler, although note that other schemes

could be chosen. Thus their update equation looks like:

5



ran “
1

N

nT`N´1
ÿ

m“nT

apXn, Yn,m, εq (1.3)

Xn`1 “ Xn ` ran∆t (1.4)

where Yn,m is the output of the mth step of the simulation from the microscale

simulator, and nT is the number of initial steps to skip while waiting for Yn to be

sufficiently close to stationary. Provided that N ` nT ăă ε´1, this scheme obtains

an increase in the simulation speed over the original microscale simulator.

Next consider the multiscale ODE

#

9Xε
t “ fpXε

t , Y
ε
t , εq, Xε

0 “ x
9Y ε
t “

1
ε
gpXε

t , Y
ε
t , εq Y ε

0 “ y
(1.5)

with f, g being Op1q and ε a small scale parameter. We give here a short overview of

the work in Vanden-Eijnden (2003), in which they examine the dynamics on the ε´1

time scale. A key assumption is that the dynamics of Yt alone with Xt “ x fixed has

a unique invariant measure µxpdyq. Then the asymptotic behavior of Xt as εÑ 0 is

a rescaled SDE with s “ εt of the form

dXs “ bpXsqdt` σpXsqdWs. (1.6)

See Melbourne and Stuart (2011) for details on the weak convergence of (1.5) to

(1.6).

In order to compute solutions faster than the microscale simulator, one would

like to solve (1.6) rather than (1.5). Thus, one would like to estimate the coefficients

bpxq, σpxq given a value of x. This turns out to be a difficult problem; consider

estimating the drift using the long time average:

Exrf s “
ż

Rn

fpx, y, εqµεx «
1

T

ż T

0

fpx, Y ε
εt, εqdt (1.7)
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It turns out we must estimate Exrf s up to Opεq in order to obtain accurate solutions,

and Varxrf s “ Op1q or else the dynamics of Yt are irrelevant. The variance of the

RHS of (1.7) is Varxrf s{T , thus estimating the Exrf s requires at least T « ε´2; at

this point one may as well run the microscale simulator rather than this estimation

procedure. The scheme proposed by Vanden-Eijnden (2003) gets away from this

difficulty using more extensive knowledge of the system (namely, the knowledge of

the derivatives of f, g, and the ability to rescale the equations by ε).

The scheme presented in Vanden-Eijnden (2003) has an update rule of the form

Xn`1 “ Xn `
pbn∆t` pσn∆Wn (1.8)

with pbn, pσn being estimated from a sample simulation of M steps of Yt. For more

details we refer the reader to the paper itself.

The first important distinction between the work of HMM and EFM and our

work is that our algorithm runs the microscale simulator in a preprocessing stage

rather than inside the inner loop. This allows us to completely decouple the cost of

running microscale simulations from producing long paths from our simulator. This

strategy of learning the unknown macroscale coefficients beforehand works well if

one expects that simulations will return to similar states many times before reaching

equilibrium; this is the case with many ergodic SDEs which we are interested in

improving simulation speeds.

The other main way our work differs from EFM and HMM is that the map-

pings R,L to and from the coarse/fine variables are unknown. Generating R,L

may require intimate knowledge of important “reaction coordinates” (or slow vari-

ables) of the system. Finding such coarse variables may require long runs of the

system. The fact that we do not require knowledge of these functions a priori allows

us to easily apply our methodology to new problems with very little supervision

from the user. Of course we do not get something from nothing, and knowledge

7



about what are good coarse variables to use is learned automatically from a given

distance metric ρ. An example of a good distance metric for the problems (1.1),

(1.5) is ρprX1, Y1s, rX2, Y2sq “ |X1 ´ X2|. An important distinction of these dis-

tance functions is that they are local, and thus easier to choose in a relevant way. A

good distance need only be able to distinguish points well locally, not globally (for

example, see the example presented in section 5.4).

Next we discuss Pavliotis and Stuart (2007) on parameter estimation for multi-

scale diffusions. In this work, they examine the multiscale SDE

dxεptq “ ´α∇V pxεptqqdt´ 1

ε
∇p

ˆ

xεptq

ε

˙

dt`
?

2σdWt, (1.9)

a type of multiscale SDE examined with our algorithm in later examples. Here p is

a periodic function, and ε again the scale parameter. The timesteps one is allowed

to take in this system is ε2 so that the process does not move a significant part of

one oscillation of p. As εÑ 0, xε converges weakly to an SDE of the form

dXt “ ´αK∇V pXtqdt`
?

2σKdWt (1.10)

with K depending exponentially on the relationship between p, σ (see Bensoussan

et al. (2011); Pardoux (1999)). In Pavliotis and Stuart (2007), they begin with long

paths of (1.9), knowledge of V pxq and ε, then try to estimate the parameters A “ αK,

Σ “ 2σK. Knowledge of the potential V pxq may seem unreasonable, however given

long paths one could estimate V pxq. The main difficulty to be overcome in this

problem is that the obvious estimators to use for A,Σ are biased when the whole

paths are used. The solution to this problem is to first downsample the paths by a

temporal parameter δ « ε in order to obtain unbiased estimators for A,Σ. Clearly

once equation (1.10) is learned, one could run simulations faster than (1.9), however

this is impractical for our purposes since estimating (1.10) directly requires long

paths from (1.9) in the first place.

8



Last, we discuss some recent work in molecular dynamics called Markov State

Models (MSM) Pande et al. (2010); Bowman et al. (2009). This method begins by

starting with many configurations, and using k´means to cluster them into k clusters.

Once the clusters are fixed, short sample paths can then be used to estimate transition

probabilities to neighboring clusters. Once these probabilities are computed and

compiled into a matrix, this generates a Markov chain. From there, one can run long

paths quickly, or compute a singular value decomposition. The first way in which

our approach differs from MSM is that we use a δ-net procedure to divide the state

space into clusters. The second and more imporant way in which our approach differs

from MSM is that within each cluster, we fit a first order model rather than a zeroth

order model. Our method will run an estimated linear SDE within each cluster, and

use linear transition maps between clusters.

9



2

Construction and Main Results

The geometric intuition driving our construction is that the dynamics of the stochas-

tic dynamical system pYtqtě0 in RD under consideration is concentrated on or near

an intrinsically low-dimensional manifold M of dimension d, with d ! D. We refer

to M as the effective state space of the system, as opposed to the full state space

RD. This type of model may be appropriate in a wide variety of situations:

(i) the system has d degrees of freedom, and is therefore constrained (under suit-

able smoothness assumptions) to a d-dimensional manifold M;

(ii) as in (i), but possibly with small deterministic or stochastic violations of those

constraints (perhaps at a fast scale), but such that the trajectories stay close

to M at all times.

In these cases it makes sense to approximate M by an efficient low-dimensional

approximation A, such as a union of d-dimensional linear affine sets (charts)Allard

et al. (2012); Maggioni et al. (2013), and the dynamics of Yt by surrogate dynamics

on the atlas A. Learning dynamics on A reduces the problem from learning a high-

dimensional global simulator to a low-dimensional local simulator, together with

10



appropriate transitions between local simulators in different charts. We also gain

computational efficiency by using the structure A: long paths may be more quickly

stored and simulated in lower dimensions. While this approach is useful in a wide

variety of situations, here we will make assumptions about the geometry of the

effective state space, and some smoothness of the underlying macroscale simulator,

in order to prove large time accuracy results for the Atlas.

While in this paper we consider a special class of stochastic dynamical systems,

those well-approximated by low-dimensional SDEs such as those leading to advection-

diffusion equations along a manifold, the framework can be significantly extended,

as we briefly discuss later in section 6, and this will be subject of future work.

2.1 Main Ideas and Steps

Our construction takes as input:

• a simulator S for the stochastic dynamical system pYtqtě0, which may be started

upon request at any specified initial condition and run for a specified amount

of time;

• a distance function ρ which may be used to compare data returned by the

simulator;

• a spatial homogenization parameter δ;

• the dimension d of the effective state space, and a confidence parameter τ

(optional).

We note here that the homogenization scale δ can also be given as a temporal scale

t0, and the two are related by scalings in the underlying dynamical system. Given a

time t0, running paths of length t0 and examining the average distance traveled by

such paths reveals a corresponding natural spatial scale δpt0q (in fact this is done in
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example 5.5). Inversely, given δ, one could choose t0 so that the average distance

traveled by paths is approximiately δ. We later discuss the accuracy of the simulator,

which is a function of the parameter δ.

We remark that while d is here considered as a parameter for the algorithm, in

fact there is a lot of work on estimating the intrinsic dimension of high-dimensional

data sets that would be applicable here. In particular, the techniques of Little

et al. (2012, 2009) have strong guarantees, are robust with respect to noise, and are

computationally efficient. See also Maggioni et al. (2013) for finite sample guarantees

on the approximation of manifolds by local affine approximate tangent spaces. We

will mention again the problem of estimating d again when constructing the local

charts in section 3.2.

The confidence parameter τ sets the probability of success of the algorithm (e´τ
2
),

and is related to the number of sample paths one must use to approximate the local

parameters of the simulator. We have written this as an optional parameter since

using a default Op1q constant is reasonable.

Our construction then proceeds in a few steps:

(i) net construction: find a well-distributed set of of points Γ “ tyku in M,

having a granularity parameter δ;

(ii) learning the atlas: learn local charts Ck near yk which well represent M

locally, and learn transition maps for transport between these charts;

(iii) learning the simulator: run p “ ppδ, τq paths for time t0 “ t0pδq from

each yk and map them to the coordinate chart Ck. Use these low dimensional

representations to estimate a simple simulator on each chart Ck.
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2.1.1 Net construction

The first stage is to produce a δ-net Γ “ tyku, which is a set of points tyku such that

no two points are closer than δ, and every point inM is at least δ close to some yk.

With abuse of notation, the range of k will also be denoted by Γ, so we may also

write the net as tykukPΓ. We say that two points yk and yj are connected, or k „ j,

if yk and yj are within 2δ. The Atlas will traverse the atlas A through neighboring

connections. See section 3.1 for the details.

In real world examples, the spaceMmay be unknown. In this case, one must first

generate many samples txiu ĂM such that balls of radius r ! δ coverM. This first

round of sampling should ideally have the following properties: it can be generated by

a fast exploration method (e.g. see the recent work Zheng et al. (2013) for molecular

dynamics, and references therein - this problem by itself is subject of much research);

its samples do not require a significant number of calls to the simulator, or long runs

of the simulators; different points may be sampled independently so that the process

may be parallelized. We can then downsample these txiu to obtain the desired net

Γ.

It is important to remark that the algorithm we present is easily modified to run

in exploratory mode: whenever configurations outside the explored region of space

are encountered (an event that is quickly detectable using the data structures we

employ), new charts and local simulators may be added on-the-fly. This is subject

of future work.

2.1.2 Learning the Charts

The first step in learning the charts is to generate a set of landmarks Ak for each yk

in the net Γ. In our setting where M is d-dimensional, we can sample m ě d paths

from the simulator of Yt, starting at yk and run until time t0 “ t0pδq. As long as the

diffusion Yt is nondegenerate on the tangent plane, their projections will span the
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Figure 2.1: This figure depicts m “ 4 samples per net point being used to learn
the charts. Large circles represent net points (or projections of net points) and small
circles represent path end points (or projections of the path endpoints). The LMDS
mappings Φk,Φj use all the circles to learn the chart, while the transition maps
Sk,j, Sj,k use only the colored circles.

tangent space.

Next we learn a mapping Φk to a coordinate chart Ck for each yk. In order

that neighboring coordinate charts overlap on a region of size δ, we learn Φk from

Lk “
Ť

j„k Ak, the union of neighboring landmarks. This overlap will allow us to

smoothly transition the simulator from one chart to the next. Each mapping Φk is

constructed using LMDS on Lk, minimizing distortion of pairwise distances between

the landmarks Lk (see section 3.2).

For any k „ j, Lk and Lj have the landmarks Ak Y Aj in common; thus the

charts Ck and Cj overlap on Ak Y Aj. These landmarks span the local charts, and
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are the points used to learn the transition maps between neighboring charts. The

affine transition map Sk,j is chosen as the “best” linear mapping from ΦkpAk Y Ajq

to ΦjpAk Y Ajq described in section 3.3. Figure 2.1 shows a cartoon version of the

points used to learn the atlas.

2.1.3 Learning the Simulator

Once the charts are known, we learn an approximation to the simulator on each

chart. For each yk P Γ, we run p “ ppδ, τq paths via the original simulator S up

to time t0 “ t0pδq starting from yk. Next we project the samples to Ck in order to

estimate local simulation parameters. In this paper we use constant coefficient SDEs

to model the simulator on each chart:

d sXt “
sbkdt` sσkdBt , (2.1)

for some sbk P Rd and some positive definite sσk P Rdˆd. The solution to this constant

coefficient SDE is a Gaussian with mean sbk t0 and covariance sσksσ
T
k t0. Therefore, we

will simply choose sbk and sσk in such a way that these statistics match the sample

mean and sample covariance of the endpoints of the p paths we have run. Finite

sample bounds for these empirical values are easily proved and determine how large

p should be in order to achieve a desired accuracy (δ) with the requested confidence

(τ). Note that this part may also be performed in parallel, both in k (the chart

in which the learning takes place) and within each chart (each of the p paths may

be run independently). At the end of this process we have obtained the family of

parameters psbk, sσkqkPΓ for a family of simulators p pSkqkPΓ.

The local simulators p pSkqkPΓ are extended to a global simulator pS on A using

the transition maps between charts. This is done by alternating between steps from

p pSkqkPΓ, and transition map operations (see 3.5). Our main result guarantees that

the local accuracy of the Atlas in fact yields long time accuracy; more precisely it
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generates long paths with distribution which is Opδ lnp1{δqq close to the stationary

distribution of the original system, see Theorem 2.

The choice of the local SDE’s and the estimator of its parameters is quite simple,

however we will see a collection of these simple simulators combine to reproduce

much more complicated systems. Naturally the ideas may be extended to richer

families of local SDE’s, for which appropriate estimators based on the statistics of

local trajectories may be constructed.

2.2 Theoretical Results

We present here a simplified version of the results contained in section 4. Suppose

the given stochastic dynamical system Yt is driven by an SDE on a d-dimensional

manifold M of the form

dYt “ bpYtqdt` σpYtqdBt (2.2)

with b, σ Lipschitz functions, and σ uniformly nondegenerate on the tangent bundle

T pMq. Let q be the stationary distribution of Yt on M, and q̂ be a measure on A

defined later in equation (4.5) and computed by running the Atlas we construct. Let

G be the inverse mapping from A to M defined in section 4.2. Then if the number

of sample paths is at least Oppd` τ 2q{δ4q, with probability at least 1´ 2e´τ
2
,

||q ´Gppqq||L1pMq ă cδ lnp1{δq (2.3)

for some constant c depending on geometric properties ofM, the Lipschitz constants

of the drift b and diffusion σ, and the lower bound on singular values of σ along the

tangent plane.

Remarks:

One can think of Yt as the underlying homogenized system which we are trying

to learn. Even if the microscale simulator does not satisfy these conditions, it is
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possible the system is well-approximated by a macroscale simulator of the form (2.2)

satisfying the conditions of the theorem on the timescale t0; in this case the error in

approximating the original simulator by Yt is simply added to the right hand side of

(2.3).

The condition that b, σ are Lipschitz is typically assumed for SDEs of the form

(2.2) in order to guarantee existence and uniqueness Øksendal (2003), which is a

sufficient but not necessary condition. In our case, Lipschitz coefficients b, σ play a

key role in allowing us to approximate them locally by constants.

The condition the σ is uniformly nondegenerate is a condition which ensures that

the noise propagates along all directions of the manifoldM. Another way of thinking

about this condition is that starting at some y0, one should be able to travel to any

point within distance δ in time t0 given an appropriate realization of the noise. This

is not the case for ODEs for example, which have σ “ 0, since starting at y0 there is

only one point that will be traveled to in time t0.

2.3 Examples

Here we present some examples showcasing the usefulness of the Atlas. The exam-

ples shown here have Brownian motion in a potential well, although the theorem

guarantees accuracy for any simulator of the form (2.2). Further examples will be

discussed in section 5.

2.3.1 Brownian Motion on a Manifold

Given a d-dimensional smooth compact manifoldM, one may construct the potential

Uεpxq “
1

ε
distpx,Mq2

and consider the Itô diffusion in RD given by

dYt “ ∇Uεdt` dBt (2.4)
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If one simulates (2.4) numerically for small ε, the timesteps must be at least as

small as Opεq. We can view this thin potential around the manifold as our microscale

interactions which forces our choice of timestep. What we are interested in is the

macroscale behavior determined by the manifold M.

For εÑ 0 this converges to the canonical Brownian motion on the manifold M.

For ε sufficiently small (compared to the curvature of M) Yt is well-approximated

locally by (the low-dimensional) Brownian motion on M, and the stationary dis-

tribution of Yt is close to that of Brownian motion on M. Our results apply to

this setting, yielding an efficient d-dimensional simulator for Yt, without a priori

knowledge of M.

2.3.2 One Dimensional Example

In this numerical example, we start with Brownian motion in a simple double well,

and add a high frequency term to the potential to get Upxq.

Upxq “ 16x2
px´ 1q2 `

1

6
cosp100πxq (2.5)

The high frequency term gives the Lipschitz constant L „ 102, forcing the forward

Euler scheme to use time steps on the order of L´2 „ 10´4 in order to just achieve

stability (using a higher order method would not solve these problems as higher

derivatives of U will be even larger). The first term in U is much smoother, and

homogenization theory (see Pavliotis and Stuart (2007)) leads us to expect that the

system is well-approximated by a smoother system with Lipschitz constant l „ 10

or less; This is the target system we wish to approximate. Running Atlas with

δ “ 0.1 „ l´1, we obtain a smoothed version of the potential homogenizing the high

frequency term (see Figure 2.2).

The Atlas takes time steps which are over 102 times larger than the original sys-

tem, and thus long paths can be simulated 102 times faster. Note that increasing the
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Figure 2.2: Original stiff potential U (shown in blue), and effective potential pU
(shown in red) for the Atlas, learned from short trajectories of the original simulator.

frequency of the oscillating term (thereby increasing L) does not affect the speed of

the Atlas, only the speed of constructing the Atlas. This means that our algorithm

allows for a decoupling of the microscale complexity from the macroscale complexity.

A histogram of the stationary distributions are shown in Figure 2.3 comparing the

Atlas and the original system. See section 5.2.2 for more details about the exper-

iment, and Figures 5.6, 5.7 for the errors in true effective potential vs. estimated

effective potential, and the error in approximating the time evolution of the original

system by the Atlas for a multiscale choice of times.

2.4 Algorithmic Complexity

Suppose that a single call to the original simulator of length t0 is S. The total number

of points in the net Γ contains Opδ´dq points with constant depending on the volume

of the manifoldM. From each point we will see that we must choose p “ Opδ´4q to

estimate the parameters of the Atlas simulator to within accuracy δ. Assuming the

19



−0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

x

Original Simulator

−0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

p
ro

b
a

b
ili

ty

x

Learned Simulator

−0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

Overlaid

x

Figure 2.3: Stationary distribution comparison between the original simulator and
the Atlas with 105 samples for example 2.3.2.

expensive part of the construction algorithm is running the simulations, the total

cost of construction is OpSδ´d´4q.

During each call to the Atlas, we will see from the proof that we must choose

our timestep ∆t “ t0{ logp1{δq. The logp1{δq term is negligible, so we will leave it

from the discussion. At each call to the simulator, we must compute distance to each

neighbor, of which there are Op2dq. Each distance costs d flops, so the total cost of

running the Atlas for time t0 is Opd2dq.

Comparing the running time of the original simulator S with the Atlas amounts

to comparing the cost of S to d2d. The benefit of the Atlas over the original one

then clearly depends upon how expensive the original simulator was, which can

depend on many factors: length of the timestep, cost of evaluating functions, ambient

dimension, etc. One thing is clear - the cost of S depends on microscale properties,

while d2d does not. Since the cost S varies for each problem, in our examples in

section 5 we compare the Atlas cost to the original simulator cost by comparing the

size of the timestep alone.

The running time is not the only benefit of the Atlas. One advantage is that
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long paths of the simulator can be stored using only d dimensions rather than the

ambient dimension where M lives. Another benefit is that some postprocessing has

already been done; suppose you would like to ask the question “how long does Yt

spend near the state Y ˚?” After running the original simulator one would have to

compute a distance to Y ˚ for many data points. After running the Atlas answering

this question requires only computing distances from the few net points near Y ˚ to

Y ˚ to obtain the result with accuracy 2δ, and the Atlas already knows which parts

of the paths are in charts near Y ˚.
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3

Algorithm

In this section we present the algorithm in detail, since the main result will state

properties of the output of the algorithm; pseudo-code is presented in figure 3.1. First

we discuss algorithms that are used during the learning phase. Then we discuss the

full details of the simulator learning phase and the simulation phase. The algorithm

uses several parameters:

δ: We will assume this parameter is given to us and represents the homoge-

nization scale, and is related to the desired accuracy of the simulator via (4.7)

in Theorem 2.

t0: This represents the time short paths will be simulated for. In most examples

in this paper, we choose t0 “ δ2. In practice, one should choose t0 so that

sample paths are an average distance δ from the starting location at time t0.

m: The number of landmarks for each net point for learning the chart and

transition maps. m should be Opdq.

p: The number of sample paths computed for each point in the net. p should
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be Opδ´4q.

∆t: Time step of the Atlas. The proofs lead us to believe ∆t should be

Opδ{ lnp1{δqq. In the examples we used δ{5.

These choices of parameters are informed by the results and proofs in section 4.

We will see that for these choices of parameters, the Atlas produces paths whose

stationary distribution has error Opδ lnp1{δqq.

3.1 Net construction

In a metric space pM, ρq we define a δ-net of points as follows:

Definition 1 (δ-net). A δ-net for a metric space pM, ρq is a set of points tykukPΓ

such that

1. @k1, k2 P Γ ρpyk1 , yk2q ě δ

2. @x PM Dk P Γ ρpx, ykq ď δ

In view of our purposes, the first property ensures that the net points are not

too close together: this is essential so we do not waste time exploring regions of the

space that we have already explored, do not construct many more local simulators

than needed, and do not switch between charts much more often than necessary.

The second property ensures that tBδpykqukPΓ is a cover for M, guaranteeing that

we explore the whole spaceM. We will connect nearby net points: if dpyk1 , yk2q ď 2δ

we say that yk1 and yk2 are neighbors and we write k1 „ k2.

3.1.1 Computational cost

Algorithms for efficiently constructing δ-nets in metric spaces satisfying a doubling

condition exist and are non-trivial, for example by constructing a data structure

called cover trees (see Beygelzimer et al. (2006)): in OpCdn logpnqDq time, where d
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Main Algorithm

pS “ construction phase(txju, ρ,S)
tykukPΓ Ð δ´net(txju)
for k P Γ

% create m` 1 landmarks for LMDS
tak,lul“1..m “ Spyk,m, t0q
Ak “ yk Y tai,lu

end
for k P Γ

% simulate p paths for estimating drift and diffusion
txk,lul“1..p “ Spyk, p, t0q
Lk “

Ť

k„iAk
rL1k, tx

1
k,lul“1..ps “ LMDS(Lk, txk,lul“1..p, ρ)

t pS.ck,ju Ð
Ť

j„k yj in L1k
shift coordinates so ck,k “ 0
pS.sbk Ð

ř

l x
1
k,l{pt0

pS.sσk Ð (Cov(tx1k,luq{t0q
1{2

% compute switching maps
for j „ k, j ă k

Lk,j “ Ak
Ť

Aj
L1k,j “ Lk,j in L1k coordinates
L1j,k “ Lj,k in L1j coordinates
pS.µk,j Ð ErL1k,js
pS.µj,k Ð ErL1j,ks
pS.Tk,j Ð pL1k,j ´ µk,jq

:pL1j,k ´ µj,kq
end

end

Figure 3.1: Main algorithm for constructing the Atlas: it constructs the δ-net,
computes chart embeddings, learns chart simulators from short sample paths, and
transition maps.

is the intrinsic dimension (e.g. doubling dimension), n is the number of points inM,

and D is the cost of computing the distance between a pair of points in M. These

data structures are especially useful for both finding near points to any given point,

and for constructing nets of points at multiple resolutions.

A slower, simpler algorithm for constructing a net is to add points one a time

if they are farther than δ from any point already in the net; finish when no more
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points can be added. For simplicity, this is the algorithm we have used in examples

presented in this paper.

3.2 Landmark Multidimensional Scaling (LMDS)

LMDS takes as input a set of landmarks L ĂM and a set of other points Z ĂM,

and constructs a map Φ : L Y Z Ñ Rd embedding L,Z into Rd. LMDS computes

all pairwise distances between points L and points Z, and returns low dimensional

coordinates which minimize the distortion given by

ÿ

i,j

pρpli, ljq
2
´ ||Φpliq ´ Φpljq||

2
Rdq

2 (3.1)

over all such mappings Φ. Each new point z P Z has coordinates Φpzq which

minimize
ÿ

i

pρpli, zq
2
´ ||Φpliq ´ Φpzq||2Rdq

2 (3.2)

over all d dimensional vectors Φpzq. For a full description of the algorithm, see Silva

and Tenenbaum (2004). If the distance ρ is euclidean, the algorithm reduces to

principal component analysis (PCA).

If the dimension d is unknown, one could learn d at this stage from observing the

eigenvalues of the squared distance matrix obtained during MDS. Eigenvalues which

are of order δ2 correspond to directions along the manifold, and eigenvalues which

are of order δ4 or lower correspond to curvature (or noise). Thus, one could learn

d by choosing a cutoff threshold depending upon δ (in fact this is done in example

5.5).

3.2.1 Computational cost

The computational cost of this algorithm is Opp|L|2 ` |L| ¨ |Z|qDq, where D is the

cost of evaluating ρ.
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3.3 Least-squares switching maps

We will use the pseudoinverse (see Penrose (1956)) to solve a least squares problem

of finding the best linear mapping for the transition map. If X and Y are two mean

zero l ˆ d matrices, then the matrix T “ X:Y minimizes ||XT ´ Y ||2 over all dˆ d

matrices. In the construction algorithm that follows, for each connection k „ j, we

take a set of common landmarks Lk,j and let X “ ΦkpLk,jq and Y “ ΦjpLk,jq. Since

these choices of X, Y are not mean zero, we must also shift by the corresponding

mean. The charts Ck and Cj represent overlapping areas on M, and so there will

exist a matrix T which has small error.

3.3.1 Computational cost

The cost of computing the pseudoinverse isOpld2q since we must compute the singular

value decomposition of X.

3.4 Learning Phase

The first part of the Atlas algorithm is the learning phase, in which we use the sample

paths to learn local chart coordinates, local simulators and transition maps. In this

part of the algorithm, we store all the information necessary for the global simulator

in pS. We will use the notation pS.var to denote the variable var within the simulator

pS. Recall that txju is a dense enough sample of M to produce a net at scale δ. Let

Spy, p, t0q denote running p paths of the simulator starting at y for time t0. We treat

all points on the charts (resulting from LMDS) as row vectors.
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3.4.1 Computational cost

If c « 2d is the maximum number of connections each net point has, the computa-

tional cost of the construction phase, for each chart, is of order

mS
loomoon

landmark simulation

` pS
loomoon

path simulation

` 2dmpD
loomoon

LMDS

“ pm` pqS ` 2dmpD (3.3)

We note that the term 2dmpD can be decreased to dpD since since a d-dimensional

plane may be estimated with only Opdq points. Instead of using all cm points as

landmarks, one could choose a (e.g. random) subset of these landmarks for the initial

embedding (although all these landmarks will be needed later for computing T ). All

these steps are easily parallelized, so the per-chart cost above is also a per-processor

cost if enough processors are available. Finally, observe that there at most Opδ´dq

such charts (this follows from the property of the δ-net, which ensures that balls of

radius δ{2 centered at net points are disjoint).

3.5 The Atlas simulator

In order to define the Atlas, we must describe what a single step of time ∆t looks

like starting at a location x in chart i. Figure 3.2 contains the pseudocode for

the algorithm implementing the strategy we now detail. The following is written

assuming x is a row vector.

The Atlas runs in d dimensions, and does not require calls to the original simula-

tor, so the running time now only depends on the local complexity of the homogenized

problem. The number of simulation steps required to approach stationarity still de-

pends upon the time it takes to converge to equilibrium, but so too did the original

simulator.

If c « 2d is the maximum number of connections each net point has, the compu-
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Atlas Simulator

px, i1q “ simulator steppx, i, pSq
% select new coordinate chart
i1 “ argminj||x´ pS.ci,j||2Rd

if i1 ­“ i
xÐ px´ pS.µi,i1q pS.Ti,i1 ` pS.µi1,i

end

% forward Euler step
η „ N p0, Idq
xÐ x` pS.sbi∆t` η pS.sσi

?
∆t

% prevent escape from local chart
if |x| ą 3δ{2

xÐ x
|x|

`

2δ ´ δ
2

exp
`

3´ 2
δ
|x|

˘˘

end

Figure 3.2: Algorithm for running the Atlas, by combining local diffusions and
linear transition map between charts.

tational cost of each time step of the Atlas is of order

d2d
loomoon

distance computation

` d2
loomoon

forward step

“ p2d ` dqd . (3.4)
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4

Theoretical Results and Guarantees

In this section, we first introduce the minimum amount of material to precisely state

the Theorem in section 4.1. Then we introduce the necessary mathematical objects

to state the Lemmata used during the main proof in section 4.2. In section 4.3, we

prove Theorem 2 and the Lemmata used.

4.1 Theorem Statement

Let tykukPΓ denote the set of net points. For each k we have the mapping Φk from

M to Rd given by LMDS. If the mapping to the tangent plane at yk is invertible on

a ball of radius 2δ, then Φk will also be invertible on a ball of radius 2δ (see the proof

of 6). Let A “ B2δp0qˆΓ equipped with the transition maps tSk,ju denote the atlas.

We note that even though we call A an atlas, it does not quite satisfy the rigorous

definition of an atlas since the transition maps are computed numerically and make

small errors. Recall that the coordinates are shifted so that Φkpykq “ 0, so these are

all points in the chart within 2δ of Φkpykq. Define a mapping back to the original

space by Gpx, iq “ Φ´1
i pxq for each x P A.
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Figure 4.1: The wall func-
tion W .

Next we state some definitions in order to math-

ematically define a step of the Atlas. If i „ j, let

Si,jpxq “ px´ µi,jqTi,j ` µj,i be the transition map be-

tween charts i and j. Let W pxq be the wall function

(which keeps the simulator confined to B2δp0q) defined

by

W pxq “

$

&

%

x |x| ď 3δ
2

2δx
|x|
´ δx

2|x|
exp

`

3´ 2
δ
|x|

˘

|x| ą 3δ
2

There are other possible choices for W , but the main ingredients are: W is C2,

invertible, equal to the identity on a ball with radius in 3δ{2, and takes Rd Ñ B2δp0q.

Let Bt be a standard Brownian motion in Rd. The update rule for the Atlas

starting at px0, i0q is

ik`1 “ argminj
∣∣xk ´ cik,j∣∣ (4.1)

xk`1 “ W
`

Sik,ik`1
pxkq `sbik`1

∆t` sσik`1
B∆t

˘

(4.2)

We show in Lemma 3 that under the conditions of Theorem 2, the Atlas has a unique

stationary distribution µ on A. Next define the continuous time process pXz
t starting

at z “ px, iq P A by

i1 “ argminj
∣∣x´ ci,j∣∣ (4.3)

pXz
t “ W

`

Si,i1pxq `sbi1t` sσi1Bt

˘

(4.4)

Let pPt denote the transition density for pXt on A. Then µ pPt is the distribution of pXt

with initial condition µ. Define a measure pq on A by

pq “

ż ∆t

0

µ pPtdt (4.5)
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Samples of pq can be approximated by the Atlas by running N steps of size ∆t, and

then one step of size τ „ Unifp0,∆tq, where N is large enough to well approximate

µ. Choosing N is not easy and depends on the problem, although this is a difficulty

with the original simulator as well; in practice, one should choose N large enough

that many simulations reach a large fraction of the charts in the simulator.

Theorem 2. Let pYtqtě0 be an Itô diffusion on a smooth compact connected d-

dimensional manifold M with no boundary:

dYt “ bpYtqdt` σpYtqdBt , (4.6)

with b, σ Lipschitz, and σ uniformly elliptic, i.e. there exists λ ą 0 such that for

all x P M and v P TxpMq σpxqσpxqTv ě λ|v|. Let δ be small enough so that for

every x the orthogonal projection MÑ TxpMq is invertible on a ball of radius 2δ on

TxpMq. Let q be the unique stationary distribution of Yt. Let pq be the measure on A

generated by the Atlas, as defined above in (4.5). There exists constants c1, c2 such

that if the number of sample paths satisfies p ą c1pτ,Mq{δ4 then with probability at

least 1´ 2 expp´τ 2q,

||q ´G˚pq||L1pMq ď c2δ lnp1{δq (4.7)

Lipschitz coefficients guarantee existence and uniqueness; strong ellipticity (to-

gether with smoothness and connectivity of M) guarantees that the process Yt has

a unique stationary distribution (this latter assumption may be weakened to include

hypo-elliptic systems).

From a computational perspective, we note that as G appears in the statement

of the Theorem, it would be very useful to compute this mapping G. This is in

general hard in an arbitrary metric spaces, although one can use the approximation

pGpx, iq “ yi which approximates G at scale δ.
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4.2 Preliminaries for Proofs

Before diving into the proof of Theorem 2, we need several definitions. First we

construct an intermediate space N on which to compare the stationary distributions

of the processes to be considered. For this process, and what follows, we restrict

each Φk to a ball of radius 2δ in the range (so the domain of Φk is the set of all

points in M which the original Φk takes inside a ball of radius 2δ.) N is obtained

by smoothly joining together charts in A via the true transition maps (so N is truly

an atlas for M). Define an equivalence relation „ on A (the symbol is the same

for connections between net indices, but by the argument it should always be clear

which one is meant):

px, iq „ py, jq ðñ i „ j and ΦipΦ
´1
j pyqq “ x (4.8)

This definition means that there is a point z PM such that Φipzq “ x and Φjpzq “ y

provided px, iq „ py, jq. This is a natural way of defining an equivalence between

points in neighboring charts. Let N “ A{ „ be the quotient space. Define Φ :MÑ

N by

Φpzq “ tpx, iq : Φipzq “ xu (4.9)

We can see that Φ maps to equivalence classes in N by directly comparing to the

definition of „ in (4.8). For any point z PM, by the construction of the net, there is

a net point yk such that |z ´ yk| ď δ. Let Ψkpx, kq “ tpy, jq : px, kq „ py, jqu be the

mapping that takes points in chart k and maps them to their equivalence class in N .

Then there exists a neighborhood around z on which Φp¨q agrees with ΨkpΦkp¨q, kq.

For each k, Φk is smooth and invertible (proved in lemma 6) on any neighborhood

contained in a ball of radius 2δ. Also for each k, Ψk is smooth and invertible on any

neighborhood contained in a ball of radius 2δ. Since z is arbitrary, Φ agrees with

a smooth invertible mapping on a neighborhood around any point z P M, which
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implies that Φ is smooth and invertible everywhere and thus a diffeomorphism. This

implies N is in fact a smooth manifold because M is.

We define several processes on N . We start with process Xt :“ ΦpYtq; Xt is the

solution of an SDE, most easily written in local coordinates: if X0 “ Ψipx0, iq P N ,

let τ be the time when Xt first leaves Ci (in the sense that Xτ no longer contains

an element with second entry i). We can track the position in Rd on the chart Ci.

With some abuse of notation, in the following equation we will let tXtutďτ represent

the coordinates in chart i, even though Xt should refer to an equivalence class in N .

Let Φi,k denote the kth coordinate of Φi. Then Xt solves for t ď τ , the Itô SDE

dXt “ bipXtqdt` σipXtqdBt (4.10)

pbiqkpxq :“ ∇Φi,kpΦ
´1
i pxqq ¨ bpΦ

´1
i pxqq `

1

2

ÿ

j,l

BΦi,k

BxjBxl
pΦ´1

i pxqqpσσ
T
qj,lpΦ

´1
i pxqq

(4.11)

pσiqk,jpxq :“
ÿ

l

BΦi,k

Bxl
pΦ´1

i pxqqσl,jpΦ
´1
i pxqq (4.12)

Let L be the generator (see Øksendal (2003)) for Xt, and Li its restriction to chart

Ci. L is uniformly elliptic on N , since Yt is uniformly elliptic on M and Φ is a

diffeomorphism.

We will be comparing a number of simulators to bridge the gap between the

simulation scheme and the true simulator. For this reason we will write the Atlas pXt

starting at z “ px, iq as

sXz
t “ Φi1

`

Φ´1
i pxq

˘

`sbi1t` sσi1Bt (4.13)

rXz
t “ Si,i1pxq `sbi1t` sσi1Bt (4.14)

pXz
t “ W

`

rXz
t

˘

(4.15)

where i1 is defined as in (4.3). The processes sXt, rXt are natural stepping stones from

Xt to pXt: sXt is the process on Ci1 which differs from Xt only in that it uses the
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learned drift and diffusion coefficients. rXt differs from sXt only in that it uses the

learned transition map Si,i1 rather than the true transition map Φi1 ˝Φ´1
i . Given any

initial condition z “ px, iq, the three processes sXz
t ,

rXz
t ,

pXz
t are solutions of SDE’s

with generators sLz, rLz, pLz, respectively, on chart i1. These generators clearly depend

on the chart i1, but as we will see in Lemma 6, they will also depend on x, and

we keep track of this by putting z as a subscript on the generators. With similar

notation, we let Lz “ Li1 , the generator of the true process Xt on chart i1. We will

prove that these generators are close to one another for all z P A, and then show

that this is enough to imply long time bounds on the stationary distributions.

Let Zk “
`

X
Zk´1

∆t , ik
˘

denote the Markov chain on A given by running k steps of

the Atlas starting at Z0 P A. The Markov chain Zk is the process which we will show

to be ergodic (see Lemma 3). Note that a continuous time version of Zk would not

be time homogeneous since the process is only allowed to transition between charts

at fixed time intervals.

4.3 Proofs

Before we begin the proof of Theorem 2, we state some Lemmata which we will prove

later, in order to keep the details until the end, while first showing the main ideas of

the proof.

Lemma 3. The process Zk is ergodic with stationary distribution µ.

Lemma 4. For any smooth test function f : AÑ R and initial condition,

1

n

n
ÿ

k“1

ż ∆t

0

f
`

Zk, pX
Zk
t

˘

dtÑ Eµ
„

E
„
ż ∆t

0

f
`

z, pXz
t

˘

dt



(4.16)

a.s. as n Ñ 8. Here Eµ means taking the expectation over the initial condition

z „ µ, and E is taking the expectation over the transition probabilities of pXz
t .
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Lemma 5. There exists a constant C such that for any test function f , and initial

condition z P A, with probability at least 1´ 4 expp´τ 2q

E
„

1

∆t

ż ∆t

0

`

Lz ´ sLz
˘

f
`

pXz
t

˘

dt



ď Cδτ
a

lnp1{δq||f ||C2 (4.17)

Lemma 6. There exists a constant C such that for any test function f , and initial

condition z P A,

E
„

1

∆t

ż ∆t

0

`

sLz ´ rLz
˘

f
`

pXz
t

˘

dt



ď Cδ lnp1{δq||f ||C2 (4.18)

Lemma 7. There exists a constant C such that for any test function f , and initial

condition z P A,

E
„

1

∆t

ż ∆t

0

`

pLz ´ rLz
˘

f
`

pXz
t

˘

dt



ď Cδ||f ||C2 (4.19)

Proof of Theorem 2. This proof follows the ideas and techniques from Mattingly

et al. (2010) for proving long time convergence of numerical schemes. We present

here a short version of the arguments contained in that paper. By assumption,

the operator L is uniformly elliptic on N (for more details on how to define these

operators on manifolds see Stroock (2008), Hsu (2002)). Let φ : N Ñ R be a smooth

test function on N and define the average sφ by

sφ “

ż

M
φpΦpyqqdqpyq “

ż

N
φpxqdpΦ˚qqpxq , (4.20)

where Φ˚q is the push forward of q through Φ. Defined by:

Φ˚qpAq “

ż

M
1ApΦpxqqdqpxq (4.21)

Φ˚q is stationary for Xt since q is stationary for Yt. Therefore pφ ´ sφq K Null(L˚),

and by the Fredhölm alternative there exists a unique solution ψ to the Poisson

equation Lψ “ φ ´ sφ. Uniform ellipticity implies, via standard estimates Krylov

(1996), ||ψ||C2 ď CM,λ||φ||8.
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For ease of notation, let Ck be the chart associated with the index ik, pLk “ pLZk´1
,

pX
pkq
t “ pX

Zk´1

t , and ψk “ ψ
∣∣
Ck

. Also let
!

B
pkq
t

)8

k“1
denote independent Brownian

motions. The function ψk is smooth on Ck, so by Itô’s formula:

ψk
`

pX
pkq
∆t

˘

´ ψk
`

pX
pkq
0

˘

“

ż ∆t

0

pLkψk
`

pX
pkq
t

˘

dt`

ż ∆t

0

∇ψk
`

pX
pkq
t

˘

pσikdB
pkq
t (4.22)

By Itô’s isometry, letting ||Ap¨q||F,8 :“ || ||Apxq||F ||L8pMq,

E

«

ˆ
ż ∆t

0

∇ψk
`

pX
pkq
t

˘

pσikdB
pkq
t

˙2
ff

ď ∆t||ψ||2C1 ||pσ||2F,8 (4.23)

Define the martingale Mn by

Mn “
1

n∆t

n
ÿ

k“1

ż ∆t

0

∇ψk
`

pX
pkq
t

˘

pσikdB
pkq
t

When calculating the variance of Mn, cross terms vanish by independence. Then

from equation (4.23) we obtain the bound

ErM2
ns ď

1

n∆t
||ψ||2C1 ||pσ||2F,8

which implies Mn Ñ 0 a.s. as n Ñ 8 by the martingale convergence theorem.

Summing equation (4.22) and dividing by n∆t,

1

n∆t
pψkpZnq ´ ψkpZ0qq “Mn `

1

n∆t

n
ÿ

k“1

ż ∆t

0

pLkψk
`

pX
pkq
t

˘

dt

ψ is bounded so ψkpZnq{n∆t Ñ 0. Taking n Ñ 8 on both sides and using Lemma

4,

0 “ Eµ
„

E
„

1

∆t

ż ∆t

0

pLzψz
`

pXz
t

˘

dt



Where if z “ px, iq, ψz “ ψi1 with i1 defined as in equation (4.3). Using Lemma 5, 6

and 7, we have with probability at least 1´ 4 expp´τ 2q,

Eµ
„

E
„

1

∆t

ż ∆t

0

Lzψz
`

pXz
t

˘

dt



ď cδτ lnp1{δq||φ||8
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Define the mapping I : A Ñ N to be the mapping which takes a point in A and

maps it to its equivalence class in N . Since ψ solves the Poisson equation Lψ “ φ´ sφ

and Lzψz agrees with Lψ on the appropriate chart,

ˇ

ˇ

ˇ

ˇ

ż

N
φ dpΦ˚qq ´

ż

N
φ dpI˚pqq

ˇ

ˇ

ˇ

ˇ

ď cδτ lnp1{δq||φ||8

Since equation (4.24) holds for all φ,

||Φ˚q ´ I˚pq||L1pN q ď cδτ lnp1{δq (4.24)

Pushing the measures through Φ´1 yields the result since Φ´1 ˝ I “ G.

Proof of Lemma 3. Now suppose we use the update rule starting at Z0 “ px0, i0q

ik`1 “ argminj
∣∣xk ` ηu´ cik,j∣∣ (4.25)

xk`1 “ W
`

Sik,ik`1
pxkq `sbik`1

∆t` sσik`1
B∆t

˘

(4.26)

Zη
k`1 “ pxk`1, ik`1q (4.27)

with u a uniform random variable, and η ą 0. Note that η “ 0 in the algorithm

detailed in section 3 and in equation (4.1). If η “ 0, the process Z0
n is not Feller

continuous (ErZ0
1 s does not depend continuously on the initial conditions), a common

assumption implying that Zn has a stationary distribution. We start with η ą 0 and

later will take η Ñ 0 and show that the η-dependent stationary measures converge to

a new stationary measure. For now, we drop the superscript η to simplify notation,

but we will come back to it.

First we show that the process Zn is Feller continuous. Let f be a bounded

function on A and px, iq P A. Let pjpx, iq denote the probability of transitioning to

chart j from i starting at x. Note that pj is continuous and bounded provided η ą 0.

If n “ 1,

Epx,iqrfpZ1qs “
ÿ

j„i

pjpx, iqEpx,iqrfpZ1q|i1 “ js (4.28)
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Since pXZ0
t conditioned on i1 is an Itô process, it is Feller continuous (see Øksendal

(2003)). Thus Epx,iqrfp pXZ0
∆tq|i1 “ js is continuous and bounded and then by equa-

tion (4.28), Epx,iqrfpZ1qs is continuous and bounded. By the induction step, assume

upx, iq “ Epx,iqrfpZnqs is continuous and bounded. Then

Epx,iqrfpZn`1qs “ Epx,iq
“

Epy,jqrfpZnqs
ˇ

ˇZ1 “ y, i1 “ j
‰

“ Epx,iqrupZ1qs , (4.29)

which is continuous and bounded. Thus by induction on n, Zn is Feller continuous

for all η ą 0.

Next we show the transition density of Zn is tight for all n. Fix ε ą 0. Let

z “ Zn´1. Then rXz
∆t is Gaussian with mean rbz∆t and variance rσzrσ

T
z ∆t (see equation

(4.52) for their definitions). supzPAbz and supzPArσz are bounded. Thus there exists

an R such that Pr rXz
∆t P BRp0qs ą 1´ ε for all z P A, and thus PrZn P W pBRp0qqs ą

1 ´ ε. W pBRp0qq is compact which implies the transition density of Zn is tight.

The transition density is tight and Feller continuous, so by the Krylov-Bogolyubov

Theorem Zabczyk (1996) there exists an invariant measure.

Now observe that for any px, iq, py, jq P A, if Ay is a neighborhood of y in chart

Cj then PrZn P Ays ą 0 for large enough n. The δ´net is connected since M is

connected. Thus there exists a finite length path tiku with ik „ ik´1, i0 “ i, in “ j.

The probability of such a path occurring is strictly positive since the probability of

jumping from ik´1 to ik is strictly positive for all k. The density of Zn is strictly

positive on the chart in intersected with A, thus PrZn P Ays ą 0. Because the density

of Zn is positive on any open set in A for large enough n, the stationary distribution

is unique, and thus Zn is ergodic.

Now let µη denote the stationary measure for Zη
n for each η ą 0. The family of

measures µη is tight, and so there exists a subsequence tµηku
8
k“1 which converges in

probability to some measure µ (see Billingsley (1999)). It is left to show that µ is

stationary for the process Zn. Let ε ą 0 and let f be a bounded function on A. Let
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µk “ µηk . Then |fµk´ fµ| Ñ 0. Let Pk denote the transition density for the process

with stationary distribution µk. Similarly let P denote the transition kernel of the

process Zn with η “ 0.

|fPµ´ fµ| ď |fPµk ´ fPkµk| ` |fPµ´ fPµk| ` |fµk ´ fµ| (4.30)

The last two terms go to zero as k Ñ 8 because µk converges to µ in probability and

fP is bounded. It is left to show that pP ´ Pkqµk Ñ 0. Let E denote the boundary

set defined by

E “ tpx, iq : Dj with |x| “ |x´ ci,j|u

The chart centers ci,j are a finite set and so E has µ measure zero. Let Ek denote

the set E thickened by ηk:

Ek “
 

px, iq : Dj with
ˇ

ˇ|x| ´ |x´ ci,j|
ˇ

ˇ ă ηk
(

Fix z “ px, iq P A and notice that the probability density starting at z, Pkδz, for any

k is of the form

Pkδz “
ÿ

j„i

pkj pzqνj

with pkj pzq being the probability of transitioning to chart j from i with η “ ηk, and

νj independent of k. For any j, νj is absolutely continuous with respect to lebesgue

measure on Rd, and νjpEkq Ñ 0. Then it follows that

µkpEkq ď sup
zPA

1Ek
Pkδz Ñ 0.

Since P and Pk agree on the set Ec
k, |fPkµk ´ fPµ| Ñ 0. Thus, fPµ “ fµ for all

test functions f , and therefore Pµ “ µ.

Proof of Lemma 4. First let

In “

ż ∆t

0

f
`

Zn, pX
pnq
t

˘

dt (4.31)
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Then define a new Markov chain Qn “ pZn, Zn`1, Inq. Define a family of measures ν

on R by

νpz1, z2, Aq “ PrIn P A|Zn “ z1, Zn`1 “ z2s (4.32)

Let γ be a measure on AˆAˆ R so that

γpAq “

ż

AˆAˆR
1Aprqνpz1, z2, drqP pz1, dz2qµpdz1q (4.33)

Where P is the transition density for Z. Because Zn is ergodic, P npδpx,iq, ¨q Ñ µp¨q

weakly. Then by the dominated convergence theorem as nÑ 8,
ż

AˆAˆR
1Aprqνpz1, z2, drqP pz1, dz2qP

n
pδpx,iq, dz1q Ñ γpAq (4.34)

The last statement shows that the density of Qn converges weakly to γ, and so Q is

ergodic. Pick φpQnq “ In. Then by Birkhoff’s ergodic theorem (see Yuri (1998)),

1

n

n
ÿ

k“1

φpQkq Ñ

ż

φdγ “ Eµ
„

E
„
ż ∆t

0

f
`

z, pXz
t

˘

dt



(4.35)

Proof of Lemma 5. Choose some z “ px, iq P A and f P C2. Then the generators

Lz, sLz are given by

Lzfpyq “
ÿ

j

`

bipyq
˘

j

Bf

Byj
pyq `

1

2

ÿ

j

ÿ

k

`

σipyqσ
T
i pyq

˘

j,k

B2f

ByjByk
pyq

sLzfpyq “
ÿ

j

`

sbi
˘

j

Bf

Byj
pyq `

1

2

ÿ

j

ÿ

k

`

sσisσ
T
i

˘

j,k

B2f

ByjByk
pyq

It suffices to show that bipyq is close to sbi and σipyqσ
T
i pyq is close to sσisσ

T
i for each

y within 2δ of 0 and all i. Let xk “ x1i,k be the projections of our random samples

onto N . These are samples of Xt starting at ci,i “ 0; as pÑ 8,

tsbi Ñ E rXts , tsσisσ
T
i Ñ Cov pXtq
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a.s. by the strong law of large numbers. Next in order to use finite sample bounds,

we show that the random variables xk are sub-gaussian with sub-gaussian norm

t0κp|σ|F,8 ` t0|b|8q for some universal constant κ. To do this, we first show Yt0 is

sub-gaussian.

Rewrite the process Ys by the definition of the Itô integral (see Øksendal (2003)).

Here we use a uniform partition of p0, sq with n subintervals so ∆s “ s{n, sj “ j∆s,

Yj “ Ysj and zj are independent standard random normal vectors in Rd. Then Ys´Y0

can be written

Ys ´ y0 “ lim
nÑ8

1

n

n´1
ÿ

j“0

bpYjq∆s` σpYjq
?

∆szj (4.36)

Note that we can always think of equations (4.6),(4.36) as being in RD by the

Whitney Embedding Theorem. If one is concerned about how to make sense of

equation (4.36) on a manifold in RD, see Hsu (2002). Using proposition 5.10 in

Vershynin (2012) on the right hand side of equation (4.36), we can see that there is

a universal constant c so that for each n,

P

«ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n´1
ÿ

j“0

bpYjq∆s` σpYjq
?

∆szj

ˇ

ˇ

ˇ

ˇ

ˇ

ą α

ff

ď exp

ˆ

´cα2

sp|σ|F,8 ` s|b|8q

˙

(4.37)

Taking n Ñ 8 we conclude that the sub-gaussian norm of Yt0 is bounded by
a

t0κp|σ|F,8 ` t0|b|8q for a universal constant κ. Then Xt0 is also sub-gaussian with

the same sub-gaussian norm since Φi is a projection. Then |t0sbi ´ t0Ersbis| can be

written as a sum of mean zero sub-gaussians and by Vershynin (2012) there exists a

c1 such that,

Pr |sbi ´ Ersbis| ă εs ě 1´ e ¨ exp
`

´c1ε
2pt0

˘

(4.38)

Again by Vershynin (2012) bounds on finite sample covariance estimation yields for
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some c2,

P
”

ˇ

ˇ

ˇ

ˇ

sσisσ
T
i ´ E

“

sσisσ
T
i

‰ ˇ

ˇ

ˇ

ˇ

2
ă ε

ˇ

ˇ

ˇ

ˇE
“

sσisσ
T
i

‰ ˇ

ˇ

ˇ

ˇ

2

ı

ě 1´ 2e´c2dα
2

(4.39)

provided p ą dα2{ε2. Notice that t0 appears in the bound in equation (4.38), but

not in equation (4.39). This is due to the fact that for t0 ! 1, the mean is much

smaller than the standard deviation (and thus harder to estimate). Estimating the

covariance to within accuracy ε takes Opd{ε2q samples, but estimating the drift to

within accuracy ε takes Op1{t0ε
2q samples. Assuming t0 “ δ2 ! 1{d, the mean will

be more difficult to estimate. For simplicity we will assume that the covariance has

the same bound as the drift.

Next we must ensure that the probabilistic bound holds for all indices i P Γ.

Since the volume ofM is fixed, |Γ| “ c3p1{δq
d for some c3. Next set the accuracy to

ε “ δ lnp1{δq, and the confidence τ 2 “ c1ε
2pt0 ´ p1 ` lnpc3q ` d lnp1{dqq. When we

take a union bound over i P Γ we have with probability at least 1´ 2e´τ
2
,

|sbi´Ersbis| ă δ lnp1{δq and
ˇ

ˇ

ˇ

ˇ

sσisσ
T
i ´ E

“

sσisσ
T
i

‰
ˇ

ˇ

ˇ

ˇ

2
ă δ lnp1{δq (4.40)

if p ą
c1

t0δ2

ˆ

τ 2 ` 1` lnpc3q

lnp1{δq2
`

d

lnp1{δq

˙

(4.41)

We can think of equation (4.41) as telling us p ą c4{δ
4 since t0 “ δ2 and τ, d, lnp1{δq

all behave like Op1q constants.

Φi is smooth, so bi, σi are Lipschitz and bounded since b, σ are Lipschitz and

bounded, by some constant M . By the Cauchy-Schwarz inequality and Itô’s isometry,

Er|Xt0 |
2
s ďM2t0 `Opt0

3{2
q , E

„
ż t0

0

|Xs|
2ds



ď
1

2
M2t0

2
`Opt0

5{2
q (4.42)

Let A “
şt0
0
bipXsq ´ bip0qds and B “

şt0
0
σipXsqdBs. Then by Jensen’s inequality,

|ErXt0s ´ t0bp0q|
2
ď Er|A|2s ď E

„

t0

ż t0

0

|bipXsq ´ bip0q|
2ds



ď
1

2
C2M2t0

3
`Opt0

7{2
q

(4.43)
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Dividing by t0 and taking a square root,

|Ersbis ´ bip0q| ď
c

t0
2
MC `Opt0

3{4
q (4.44)

By Itô’s isometry we have

Er|B|2s ďM2t0 (4.45)

Combining equations (4.45) and (4.43),

|CovpA`Bq ´ CovpBq|2 ď Er|A|2s ` 2Er|A|2s1{2Er|B|2s1{2 ď
?

2CM2t0
2
`Opt0

9{4
q

(4.46)

Using Itô isometry and the Lipschitz condition on σi,

|CovpBq ´ t0σip0qσ
T
i p0q|2 “

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

ˆ
ż t0

0

σipXsq ´ σip0qdBs

˙ˆ
ż t0

0

σipXsqdBs

˙T

(4.47)

`

ˆ
ż t0

0

σip0qdBs

˙ˆ
ż t0

0

σipXsq ´ σip0qdBs

˙T
ff
ˇ

ˇ

ˇ

ˇ

ˇ

(4.48)

ď
?

2KMt0
3{2
`Opt0

7{4
q (4.49)

Combine equations (4.44) with the concentration inequality (4.40) along with t0 “ δ2

implies for some c5 with probability at least 1´ 2e´τ
2
,

|sbi ´ bip0q| ď c5δ lnp1{δq (4.50)

Combine equations (4.46), (4.49) with the concentration inequality (4.40) to find

for some c6 with probability 1´ 2e´τ
2
,

ˇ

ˇ

ˇ

ˇ

sσisσ
T
i ´ σip0qσ

T
i p0q

ˇ

ˇ

ˇ

ˇ

2
ď c6δ lnp1{δq (4.51)

Lipschitz conditions on bi and σi yield the result.
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Proof of Lemma 6. Fix a starting location z “ px, iq P A. We can write an SDE for

rXz
t starting at Φi1

`

Φ´1
i pxq

˘

in the next chart i1 by

d rXz
t “

rbzdt` rσzdBt (4.52)

rbz “
1

∆t

`

Si,i1pxq ´ Φi1
`

Φ´1
i pxq

˘ ˘

`sbi

rσz “ sσi1

Writing this equation in this form spreads the transition error out over the course

of one timestep of length ∆t. Thus, proving rLz is close to sLz reduces to showing

that the transition error is sufficiently small after dividing by ∆t (so that it can be

combined in the drift term). Allowing the transition error to affect the drift forces

us to have the drift rb (and thus rL) depend on the starting location z.

By the Whitney embedding theorem,M can be smoothly embedded into RD for

D ě 2d. In RD, the LMDS mapping Φi reduces to principal component analysis,

which is simply a projection onto the top d eigenvectors of the covariance matrix

of the landmarks. Thus we can think of Φi as a matrix acting on vectors. To be

consistent with the algorithm, vectors will be written as row vectors and the matrix

Φi will act on the left.

Fix k P Γ. Let Πk P RDˆd denote the projection from M onto Tyk , the tangent

plane ofM at yk. Then Πk is invertible on a ball of radius 2δ on Tyk by assumption.

Also since M is smooth, Taylor’s theorem tells us that for some c1 and all x PM

near yk,

|xΠk ´ x| ď c1|x´ yk|
2 (4.53)

Let Lk “ tlk,iu denote the collection of landmarks associated with the neighbors of

yk, and µk denote their mean. The matrix Φk minimizes the squared error on the

landmarks given by:
ÿ

i

|lk,iΦk ´ lk,i|
2 (4.54)
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Inserting Πk into equation (4.54) yields a bound of c2δ4. The landmarks are

well spread through the space by construction and the ellipticity condition. Thus,

L will have covariance at least δ along each direction in the tangent plane. Then

rL “ pL ´ µqΠ “ trliu must have smallest singular value at least δ, and thus any

vector v in the tangent plane can be written v “ arL with a “ vrL:. The bound on

the singular values imply |a| ď δ´1|v|. Then using Cauchy-Schwarz,

|vΦk ´ v| ď |v|c1δ (4.55)

Since Φk, Πk are projections, this implies that ||Φk ´Πk||2 ď c1δ. Let j P Γ such

that j „ k. By a Taylor expansion, ||Πk ´ Πj|| ď c2δ for some c2. Thus there exists

a constant c3 such that

||Φk ´ Φj||2 ď c3δ (4.56)

The properties (4.55) (4.56) allow us to treat Φk like Πk, the projection onto the

tangent plane. Also since ||Φk´Πk||2 ď c1δ and δ ! 1, Φk will be invertible whenever

Πk is since Πk has singular values equal to 1.

Next let A “ Ak,j “ tak,iu Y taj,iu be the collection of landmarks common to Lk

and Lj. Let µ “ µk,j be the mean of A. Now we can write Ti,j as

Ti,j “ rpA´ µqΦis
:
pA´ µqΦj (4.57)

By definition of the pseudoinverse, Ti,j minimizes

||pA´ µqΦiT ´ pA´ µqΦj||2 (4.58)

over all choices of T P Rdˆd. Choose T to be the restriction of Φj onto chart Ci.

Then T P Rd ˆ Rd and

||pA´ µqΦiT ´ pA´ µqΦj||2 “ ||ppA´ µqΦi ´ pA´ µqqpΦj ´ Φiq|| ď c1c2δ
3 (4.59)
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Since T is a possible choice for Ti,j,

||pA´ µqΦiTi,j ´ pA´ µqΦj||2 ď c1c3δ
3 (4.60)

The matrix of landmarks pA ´ µq spans the chart Ci, so there is a constant c4 such

that for any x in the chart Ci,

|Si,jpxq ´ ΦjpΦ
´1
i pxqq| ď c4δ

3 (4.61)

Using ∆t “ δ{ lnp1{δq and equation (4.61), the result follows.

Proof of Lemma 7. Fix a starting location z “ px, iq P A. Then the process rXz
t is

the solution of an SDE on chart i1 with smooth coefficients. Thus, pXz
t “ W

`

rXz
t

˘

is

also the solution of an SDE on chart i1 with smooth coefficients.

d pXt “
pbpz, pXz

t qdt` pσpz, pXz
t qdBt (4.62)

(4.63)

Using Itô’s formula on W p rXq,

pbjpz, pX
z
t q “

ÿ

k

BWj

Bxk
p rXz

t q
rbkpzq `

1

2

ÿ

k

ÿ

l

B2Wj

BxkBxl
p rXz

t qprσrσ
T
qk,lpzq (4.64)

pσj,lpz, pX
z
t q “

ÿ

k

BWj

Bxk
rσk,lpzq (4.65)

with rbpzq, rσpzq defined as in Lemma 6. Note that since W is invertible, we could

replace rXz
t with W´1p pXz

t q so that pb, pσ can be thought of as a function of z and pXz
t .

Direct computation shows that for some c1, c2,

ÿ

k

ˆ

BWj

Bxk
p rXtq

˙2

ď c1 ,
ÿ

k

ÿ

l

ˆ

B2Wj

BxkBxl
p rXtq

˙2

ď
c2

δ2

Let Et denote the set

"

t : | rXz
t | ą

3δ

2

*

. By definition of W , pb and rb agree on Ec
t .

| rXz
0 | ď δ ` Opδ2q so the Brownian motion must push the process at least Opδq in

time t. In other words there are constants c3, c4 such that,

Ezr1Ets ď Pr|Bt| ą c3δs ď expp´c4δ
2
{4tq (4.66)
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Next we can bound the effect of the boundary function W on the drift and diffusion

terms:

E
„
ż ∆t

0

ˇ

ˇ

ˇ

pb´rb
ˇ

ˇ

ˇ

2
`

z, pXz
t

˘

dt



“ E
„
ż ∆t

0

1Et

ˇ

ˇ

ˇ

pb´rb
ˇ

ˇ

ˇ

2
`

z, pXz
t

˘

dt



ď
c5∆t

δ2
exp

ˆ

´c4
δ2

∆t

˙

for some new constant c5. By equations (4.65), (4.66) and the fact that pσ agrees

with rσ on Ec
t ,

E
„
ż ∆t

0

ˇ

ˇ

ˇ

ˇ

pσpσT ´ rσrσT
ˇ

ˇ

ˇ

ˇ

2

F

`

z, pXz
t

˘

dt



ď ∆tc6 exp

ˆ

´c4
δ2

∆t

˙

(4.67)

The result follows for ∆t “ δ{ lnp1{δq.
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5

Examples

5.1 Simulator Comparison

In order to see how well the Atlas is doing we will need to have a criterion for

comparing simulators. Since we are interested in the behavior of the system over

multiple timescales, we will simulate 10,000 paths from each simulator and record

the positions at times ttk :“ 2ku. The smallest time scale will be at the size of

one step of the original simulator and the largest time scale will be at some time T

(example dependent) at which point systems have reached equilibrium.

In order to understand motivation for how to compare simulators, we start with

a 1-d example. For a fixed tj ď T , we can bin samples into equal spaced bins, and

compare them. Next we would like to compare the probabilities of landing in each

bin as in figure 5.1 by overlaying them. We can next vary k (and thus tk) to obtain

overlaid bar graphs for multiple time scales as in figure 5.2. We see that the real

quantity of interest is the difference between these two histograms, and we will sum

the absolute values of their difference to approximate the L1 distance between the

measures.
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Figure 5.1: Comparing distributions obtained from two simulators at time T “ 0.2
(orginal and Atlas) in example 5.2.2.
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Figure 5.2: Comparing overlaid distributions obtained from two simulators at mul-
tiscale times 2k (orginal and Atlas) in example 5.2.2.

Our next goal is to generalize this to high dimensional spaces. Here the bins we

will use can be given naturally by the Atlas we construct. Instead of using a “hard”

binning procedure by assigning each point to the closest bin, we will assign smooth

weights to the nearest neighbors. This smooth binning procedure will help to wash

out the small scale errors we make, so that we can measure the large scale errors.

The first step is to explain the smooth map which takes a distribution ν on

txiu
n
i“1 to a distribution µ on a set tyju. We think of tyju as a coarser binning of the
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distribution ν on txiu. First assign weights wi,j to each pxi, yjq pair given by:

wij “

$

’

&

’

%

exp
´

´|xi´yj |
2

δ2

¯

|yi ´ xj| ă 2δ

0 otherwise

Then we normalize the weights so that they sum to 1 when summed over j.

µj “
ÿ

i

νi
wi,j

ř

j wi,j
(5.1)

Fix a time slice tk, then assign equal weights νi “ 1{n to the set of samples txiu
n
i“1

given by a the original simulator, and map them to a distribution µ on the net Γ

using (5.1),(5.1) and the distance function in the ambient space. Next we will assign

equal weights to the samples tpxiu
n
i“1 and map them to weights pµ on the net Γ using

the euclidean chart distances.

Once we have µ, pµ, we could compare them directly. However, we know that

the Atlas makes errors on this spatial scale, and so we would like to smooth these

distributions out to a coarser net with δc ě δ. This will also allow us to compare

simulators with varying δ while keeping the number of bins fixed. For each exam-

ple, we will fix a coarse grained δc equal to the largest δ used for that example,

and obtain a net tzlu. Then we can push µ, pµ to distributions p, pp on tzlu again

using (5.1),(5.1) and the distance function in the ambient space. This gives us two

probability distributions, one for each simulator, at time tk on the coarse net.

Given a single initial condition, we will calculate the L1 distance between p and

pp for each time slice tk. Then we will repeat this procedure for 10 fixed initial

conditions (randomly chosen) to compare the transition densities over a wide range

of time scales and initial conditions. In examples where only one Atlas is used, we

plot one thin colored line for each initial condition, then a thick line representing the

mean ˘ one standard deviation (see figures 5.7, 5.11, 5.14, 5.19). In examples where
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Figure 5.3: Sample trajectory of Xt for the two well example 5.2.1.

we compare multiple Atlas’s, we just plot the thick line representing the mean ˘ one

standard deviation (see figures 5.5, 5.10, 5.13, 5.18).

5.2 One dimensional Example

5.2.1 Smooth Potential

The first example presented is a simple one dimensional two-well example. We will

use the potential

U1pxq “ 16x2
px´ 1q2

and use a simulator which approximates

dXt “ ´∇U1pXtqdt` dBt

using an Euler-Maruyama scheme which takes timesteps of size 0.005. A sample

path of this system is shown in figure 5.3. The initial point set we use to generate

the δ-net is linearly spaced points with spacing 0.01. It is important to note that the

distribution of the initial point set does not play an important role in the resulting

Atlas. The Atlas algorithm performs equally well on any initial point set that has

no holes of size order δ. We subsample this initial point set to obtain a δ-net with δ

parameter 0.1 using the brute force method described in section 3.1.

Once we run the Atlas algorithm in this case, it is simple to map estimated drift

vectors from the chart coordinates back to the original space. In general for an
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Figure 5.4: Left: original potential U (shown in blue) and effective potential of the

Atlas pU (shown in red). Right: comparing original diffusion coefficient (blue) with
that of the Atlas(red) with δ “ 0.1 in example 5.2.1.

arbitrary metric space this is a hard problem, but in 1-d we need only multiply by

˘1 to undo MDS. In 1-d, the estimated drift vectors can easily be integrated to

obtain an effective potential pU for the system. We can also bring back the diffusion

coefficients and see how they compare to the truth. Inverting MDS and comparing

the coefficients we obtain with the true coefficients of the underlying system is a

procedure we will only be able to do for this 1-d system, but it gives interesting

insight into the working of the homogenizing nature of the Atlas. See Figure 5.4

showing the resulting comparisons between drift and diffusion coefficients.

Next we generate four nets (and four Atlas simulators) with δ values 0.05, 0.10,

0.15 and 0.20 by subsampling from a fine mesh. In each example we have used

p “ 10, 000 simulations per net point, and t0 “ δ2. The number of landmarks

is irrelevant because as long as m ě 1, there will be enough landmarks to exactly

recover the local space. When simulating, we set the simulation time step ∆t “ δ2{5.

Then for each of 10 randomly chosen staring locations, we run 10, 000 long paths

up to time T “ 50. Using the simulator comparison method from section 5.1, we

obtain figure 5.5. As we expect from theorem 2, the long time error is decreasing as

δ decreases. Figure 5.5 shows that the transition kernels are close for all time scales,
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Figure 5.5: Simulator comparison for example 5.2.1. Each line represents the
average simulator error for a single net of the specified δ value.

which is a stronger experimental result than given by theorem 2. Theorem 2 only

tells us that the stationary distributions are Opδ logp1{δqq far from each other.

5.2.2 Rough Potential

In order to make a more interesting example, we add high frequency ridges to the

potential well to emulate microscale interactions. This example is a case where it

is of interest to approximate a homogenized system which behaves like the original

system above a certain temporal/spatial scale. Define

V1pxq “ U1pxq `
1

6
cosp100πxq (5.2)

where U1pxq is defined in example 5.2.1. For our initial point set, we could again use

evenly spaced grid points as in example 5.2.1. Since one might wonder if this is a

“fair” input we run each grid point through the simulator for a small time t “ 0.01

to obtain our initial point set. As long as these points have no holes of size order δ,

the Atlas will return a robust result with high probability.
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Figure 5.6: Left: original potential U (shown in blue) and effective potential of the

Atlas pU (shown in red). Right: comparing original diffusion coefficient (blue) with
that of the Atlas(red) with δ “ 0.1 in example 5.2.2.

Even though the new potential well is infinitely differentiable, the Lipschitz con-

stant of the drift in this example is 625. In order to accurately simulate Brownian

motion in this potential well, we decrease the time step to 0.00005. These microscale

interactions are determining our timestep, and thus becoming a bottleneck for run-

ning long time simulations.

If we were to apply theorem 2 directly to this example, it will guarantee a rel-

atively useless error bound on the stationary distribution (since the error bound

depends on the Lipschitz constant). Instead, the way we think of theorem 2 apply-

ing to this problem is that there is a time scale t0 at which the system with potential

well V1 behaves like a homogenized version with smooth potential and small Lips-

chitz constant. Multiscale systems of this form have been studied (see Pavliotis and

Stuart (2007) and references therein), and it is known that such systems behave like

an SDE with smooth parameters at a large scale. If we only observe samples at time

t0, then we can pretend our samples come from the homogenized system rather than

the microscale simulator.

In this example, we learn the Atlas using the parameters δ “ 0.1, t0 “ 2δ2 “ 0.02,

p “ 10, 000, and ∆t “ t0{5. Again we can map the drift and diffusion back to
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Figure 5.7: Comparing true simulator with the Atlas with δ “ 0.1 on example
5.2.2.

the original space and compare with the true simulator. Figure 5.6 shows that

the resulting drift is a homogenized version of the original system. The time scale

the local simulator uses is 100 times larger than that of the original system. This

will result in long simulations being about 100 times faster than using the original

simulator.

Next we have run 10,000 long paths from the Atlas with δ “ 0.1 shown above

in figure 5.6. Figure 5.7 shows that again the distribution of paths is similar over

multiple timescales, indicating that transition rates are preserved between states.

In this example we only show results for δ “ 0.1 because that is the spatial scale

where it makes sense to homogenize. For smaller values of δ, the Atlas becomes

less stable as the estimated drift becomes less smooth. For larger values of δ, the

macroscale features of the system begin to wash out, and the two wells merge into

one.
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Figure 5.8: Left: Potential for three well example. Right: δ “ 0.2 net overlaid.
Circles represent net points, black lines represent connections between net points.

5.3 Two Dimensional Example

5.3.1 Smooth Potential

In this example, consider the 2-d potential well U2pxq shown below.

U2pxq “ ´ln

ˆ

exp

ˆ

´||x´ p1||
2

c1

˙

` exp

ˆ

´||x´ p2||
2

c2

˙

` exp

ˆ

´||x´ p3||
2

c3

˙˙

p1 “

„

0
0



, p2 “

„

1.5
0



, p3 “

„

0.8
1.05



, c “

„

1

5
,
1

5
,
1

6



The stationary distribution is a mixture of Gaussians given by expp´U2{2q. There

are three clearly defined minima near p1, p2, p3. The parameters of the problem were

chosen in such a way that the transition regions between wells lie on different level

sets of the potential (see figure 5.8).

We will see a simulator which approximates the process Xt given by

dXt “ ´∇U2pXtqdt` dBt. (5.3)
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Figure 5.9: Sample trajectory for three well example

Figure 5.9 shows a sample trajectory of the process Xt using a simple Euler-

Maruyama scheme with timestep 0.005. This is the simulator given to the Atlas

algorithm. The initial point set we use is a grid spaced by 0.01, discarding points

with U2pxq ě 10. Figure 5.8 shows an example net for δ “ 0.2.

When generating the Atlas in this example, we use p “ 10, 000, t0 “ δ2, ∆t “ t0{5.

Again the number of landmarks does not matter since LMDS will return the exact

result (up to machine precision) every time. Next for each of 10 randomly chosen

starting locations we run 10,000 paths from each simulator. Then we compare them

using a common coarse grained net with δc “ 0.2 as in section 5.1. The output is

shown in figure 5.10. Again we notice that the errors are small for all times, including

the range of timescales where transitions occur. This means we must be accurately

capturing transition rates from each of the 10 randomly chosen starting locations.

5.3.2 Rough Potential

In the next example we take U2pxq and add a fast oscillating component to simulate

small scale interactions as in example 5.2.2. The new potential well is

V2pxq “ U2pxq `
1

6
cosp100πx1q `

1

6
cosp100πx2q. (5.4)

And again see a simulator which approximates the process Xt.

dXt “ ´∇V2pXtqdt` dBt (5.5)
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Figure 5.10: Comparison of Atlas’s with original simulator in the smooth three
well potential from example 5.3.1.

As a result of the high frequency oscillations, the the timesteps will be of size

0.00005. This example will show that our algorithm is robust to fast oscillations of

the potential even in a more complicated system. In this example we will again avoid

using evenly spaced points as input, and run the grid points through the simulator

for a short time t “ 0.01. These are samples we could obtain from running the

original simulator for a long time, or using some kind of fast exploration technique.

Again, the distribution of this point set is irrelevant as long as there are no holes of

size δ.

For this system we will use δ “ 0.2 which will return δ nets with « 230 net

points. We will again use use p “ 10, 000, t0 “ δ2, ∆t “ t0{5 for consistency,

even though p could be chosen smaller (since δ is larger). Again, the timestep of

the Atlas is ∆t “ 0.004 which is over 100 times larger than the timesteps of the

original simulator, and thus the Atlas runs about 100 times faster. For the simulator

comparison with this example see figure 5.11.
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Figure 5.11: Comparison of original simulator with the Atlas (δ “ 0.2) in the
rough three well potential from example 5.3.2.

5.4 Random Walk on Images

Next we will embed the two dimensional three well examples from sections 5.3.1 and

5.3.2 into D “ 12, 500 dimensions. The high dimensional embedding is given by the

following algorithm given a two dimensional point x:

1. Generate a mesh tzju on r´1.5, 3.5sˆr´1.5, 2.5s with evenly spaced grid points

and spacing 0.04.

2. The output vector v at position j is 1 if |zj ´ x| ă 1{2 and 0 otherwise.

See figure 5.12 for an example image generated by this algorithm run on the

point p0, 0q. The natural distance to use in this space is the hamming distance,

which counts the number of different entries. It induces a norm, which we call ||v||1

since this is the same as the 1-norm of the vector on RD. Given a binary vector v,

we can write the ”inverse“ rx
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rx “ ||v||´1
1

ÿ

j

vjzj (5.6)

This just averages the positions of the pixels tzju, which should roughly return

the center of the circle in the image. Any two dimensional simulator now can be

mapped to a simulator on RD in the following way:

1. Given input v P RD and a time t0, calculate the two dimensional point rx from

the approximate inverse mapping.

2. Run the 2-d simulator for time t0 with initial condition x0 “ rx.

3. Take the output of the simulator, Xt0 and map it to RD with the high dimen-

sional embedding.

Next, we rescale the distance function by the constant p0.04q2{2 so that the new

norm is locally equivalent to the original distance. In so doing, we can continue

using values of δ that made sense to us in the original space. This high dimensional

mapping is nontrivial, and all the possible vectors v we could see span the entire

12, 500 dimensional space. The space can be locally approximated by a 2-d plane

for a ball of radius r ă 1{2, and so we expect the Atlas to find the appropriate local

spaces to estimate the dynamics.

5.4.1 Smooth Potential

First we will apply the high dimensional mapping to the simulator with smooth

potential well U2 from example 5.3.1. Next we start with a set of points in RD which

cover the known state space (the same covering set from before only mapped to RD).

The Atlas algorithm is given the rescaled hamming distance function for computing

distances between vectors, and it is given the simulator which takes points in RD and
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Figure 5.12: Circle image corresponding to the point [0,0].
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Figure 5.13: Comparison of Atlas’s with original simulator for example 5.4.1.

a time t0 and returns points in RD. Because distances are now 12, 500 times more

expensive to compute, for this example we set p “ 1000 and m “ 20 landmarks per

point. Again keep t0 “ δ2 and ∆t0 “ t{5.

After constructing multiple Atlas’s for varying values of δ, we find that the dis-

tributions are well approximating the original given simulator. See figure 5.13 for

details. The small number of samples, along with the width of the pixels limits the

accuracy for small values of δ. In fact we can see that δ “ 0.05 returns a simulator
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Figure 5.14: Comparison of the Atlas δ “ 0.2 with original simulator for example
5.4.2.

which is worse than δ “ 0.1.

5.4.2 Rough Potential

In the next example of this paper, we will apply the high dimensional transformation

to the rough potential well V2 from example 5.3.2. Again, we give the algorithm the

same set of initial points from example 5.3.2 mapped to RD along with the simulator

using V2 embedded in high dimensions. In this example we use δ “ 0.2, p “ 2000,

m “ 40, t0 “ δ2 and ∆t “ t0{5. Again the simulation timescale of the local simulator

is 100 times larger than that of the original simulator. The Atlas has a running time

which depends only on the local dimensionality of the system, and so the ambient

dimension only enters in the construction phase. After simulating 10, 000 paths for

each of 10 different initial conditions, we can test the simulator error (see figure 5.14).

Because running the original simulator is very expensive for this system, we used the

same original simulator samples (mapped to RD) for comparison as in figure 5.11.
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Figure 5.15: Three typical outputs of the simulator from section 5.5.

5.5 Random walk on Functions

In this last example, we are given a dynamical system in the form of a random walk

on functions on r0, 1s with endpoints fixed at zero. These functions are represented by

values on a grid of 100 evenly spaced points (including the ends). Typical functions

seen as output from the simulator are shown in figure 5.15. The distance we will use

is euclidean distance in R100, rescaled by 1/100 to approximate the L2 distance on

functions. A single step of the simulator is done by adding a Brownian path fixed

at the endpoints, then smoothing the result and renormalizing. The pseudocode is

shown in figure 5.16.

This behavior of this system in characterized by large dwelling times near the

smoothest functions (f1 and f2 from figure 5.15) with rare transitions (103 ´ 104

steps) across functions like that of f3 in figure 5.15. The three constraints fp0q “

0, fp1q “ 0, ||f || “ ||f0|| force the functions to live on S97, a 97 dimensional sphere

with radius ||f0||. Although we expect these functions to lie near a low dimensional

submanifold M Ă S97 because of the smoothing step, a single step of the simulator

could take us anywhere on S97; this means the outputs of our simulator are never

exactly on M. This is an important aspect of this example, as real world data
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Function Simulator

function f “ Spfq

% simulate Brownian bridge
W “ cumsum(randn(1,100))
W “ W ´W p1q
W “ W ´ x ˚W p100q

% Add bridge to f, smooth and renormalize
f “ f ` p1{100q ˚W
f “ smoothpfq
f “ f ˚ pfnorm{normpfqq

Figure 5.16: Pseudocode for a single step of the simulator used in example 5.5.
fnorm “ ||sin(πx)|| = 0.0704. The function smooth is MATLAB’s default smoothing
algorithm.

typically will have small noise in the ambient space.

One can think of this simulator as a discretization of the SDE on S97

dXt “ F pXtqdt` σpXtqdWt (5.7)

For an appropriate choice of F, σ. One can also think of this as a discretization

scheme for a stochastic partial differential equation of the form

B

Bt
ft “

B2

Bx2
ft ` bpftq `

8
ÿ

j“1

gjpftqdW
j
t (5.8)

for an appropriate choice of drift b and orthogonal functions tgju. One can think of

(5.8) as an infinite dimensional analogue to (5.7) with each coordinate Xj
t “ xft, gjy

being driven by a one dimensional brownian motion.

In order to generate the Atlas, first we must generate an initial sampling of the

space. In order to do this, we start with 50, 000 renormalized gaussian vectors, the

uniform distribution on S97. Next we want to ”heal“ these samples by running them

through the simulator. One can see with some observation that 250 steps is large

enough that the noise is killed; samples with 250 steps of healing are similar to those
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Figure 5.17: Example ”healing“ starting from random normal initial conditions.
Color indicates the number of steps taken through the simulator.

with 500 steps of healing. See figure 5.17 to see an example simulation starting at

random normal initial conditions, run for 250 steps.

Next we wish to select parameters δ, t0. We expect that the system may be

homogenized at a time scale of t0 “ 250 steps for the following reasons: t0 is an

order of magnitude below the scale of major events of the system, t0 is an order of

magnitude above the scale of the noise. The parameter δ is closely tied to the choice

of t0. We measure the average distance moved by paths of length t0 starting from

our healed samples to be 0.3 “ δ. Next we choose the minor parameters p,m, d. In

these experiments, we use p “ 5000 and m “ 40. As discussed in section 3.2, we can

choose d based upon the singular values obtained through LMDS. Choosing a cutoff

of pδ{4q2 for the eigenvalues yeilds d “ 3 over 99% of the time. Using d “ 3 and

comparing with the original simulator in the usual way yeilds figure 5.18.
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Figure 5.18: Comparison of the Atlas with original simulator for example 5.5.
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Figure 5.19: Comparison for example 5.5 varying d, the dimension of the Atlas.

66



In general, it is better to overestimate d than underestimate; underestimating d

may lose important degrees of freedom causing failure, while overestimating d will

only affect the computational cost mildly. In fact the algorithm is robust to the

choice of d, provided d is large enough to capture the important degrees of freedom.

See figure 5.19 to see results for varying values of the choice of d.

The Atlas constructed for this example again captures the important aspects of

the original simulator. The Atlas is again faster in this example due to two factors:

decreased dimensionality and increased timestep. The dimensionality of the Atlas is

3 as compared to the original 100, and the timestep of the simulator is equivalent to

50 of the original steps (250/5 since ∆t “ t0{5).
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6

Extensions and Discussion

There are many open problems related to this work, some of which we mention here.

Theorem 2 reveals that the local learning algorithm works well on compact SDEs

with Lipschitz drift and diffusion. We consider only bounded domains in the proof to

make thing simpler, although the same framework can be applied to the unbounded

case with tight transition density. In this case, one has to worry about parts of the

space which are unexplored, but seldomly reached. Indeed we see that some of our

examples have unbounded state spaces, and the algorithm performs as desired.

The framework we introduced may be generalized to richer families of local sim-

ulators, enabling the approximation of larger classes of stochastic systems. Proving

large time accuracy may be difficult for such systems, so it is an open problem how

much one is allowed to change these local simulators. Many molecular dynamics

(MD) systems remember the velocity of atoms and so do not follow an SDE of the

form (4.6) which is memoryless. A subject of ongoing research is to use more complex

models locally to be able to capture dynamics of typical MD systems.

Another subject of future work is efficient computation of the function G, which

is the inverse MDS mapping. In some cases, such as when ρ is the root mean square
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distance (RMSD), it is possible to create an inverse mapping which has error of order

δ2 instead of order δ.

Using the Atlas as a basis for generating samples from the stationary distribution

is useful for quickly computing diffusion maps for these systems. A subject of interest

is to understand how the errors made by the Atlas propagate through diffusion maps.

How similar do diffusion maps look generated by samples from the Atlas as compared

to diffusion maps generated directly from the original simulator?

In some problems, choosing δ and t0 is difficult. Another subject of ongoing

research is a robust way of choosing these parameters based on short simulations.

For simplicity in this paper we have assumed that δ and t0 is constant for each k P Γ,

but it is possible to have these parameters depend on the location yk (and perhaps

statistics of short sample paths).

Last but not least, this construction as described here still requires a large number

of steps to sample rare events and reach stationarity, i.e. it does not address the

problem of accelerating the sampling of rare events or overcoming energy barriers.

In many important applications, e.g. molecular dynamics, such barriers force the

simulations to be extremely long (e.g. 1012 ´ 1014 time-steps is common). The

point of this work is to produce a simulator that is much faster (in real world time)

than the original fine scale simulator. It is important to note that any of the many

techniques developed over the years to attempt to overcome this problem may be

used in conjunction with our construction, i.e. it can be run on our Atlas, instead of

the original expensive fine scale simulator. This yields a double gain in simulation

speed, combining the gains of a faster simulator with those of an importance sampler

that efficiently samples rare events.
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cloaking via non-smooth transformation optics and ray tracing,” Physics Letters
A, 375, 1903–1911.

70



Faradjian, A. and Elber, R. (2004), “Computing time scales from reaction coordi-
nates by milestoning,” The Journal of Chemical Physics, 120.

G. Chen, A. Little, M. M. (2013), “Multi-Resolution Geometric Analysis for Data
in High Dimensions,” in Excursions in Harmonic Analysis, Volume 1, eds. T. D.
Andrews, R. Balan, J. J. Benedetto, W. Czaja, and K. A. Okoudjou, Applied and
Numerical Harmonic Analysis, pp. 259–285, Birkhuser Boston.

G. Pavliotis, A. S. (2008), Multiscale Methods, Springer.

Gear, C., Kaper, T., Kevrekidis, I., and Zagaris, A. (2005), “Projecting to a Slow
Manifold: Singularly Perturbed Systems and Legacy Codes,” SIAM Journal on
Applied Dynamical Systems, 4, 711–732.

Gilbert, A. (1998), “A comparison of multiresolution and classical one-dimensional
homogenization schemes,” Applied and Computational Harmonic Analysis, 5, 1–
35.

Hornung, U. (1997), Homogenization and Porous Media, Springer.

Hsu, E. (2002), Stochastic Analysis on Manifolds, American Mathematical Society.
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