
Exploiting Parallelism in GPUs

by

Blake Hechtman

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Daniel Sorin, Supervisor

Benjamin Lee

Andrew Hilton

Jun Yang

Bradford Beckmann

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Electrical and Computer Engineering

in the Graduate School of Duke University
2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DukeSpace

https://core.ac.uk/display/37749884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Exploiting Parallelism in GPUs

by

Blake Hechtman

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Daniel Sorin, Supervisor

Benjamin Lee

Andrew Hilton

Jun Yang

Bradford Beckmann

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Electrical and Computer

Engineering
in the Graduate School of Duke University

2014

Copyright c© 2014 by Blake Hechtman
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Heterogeneous processors with accelerators provide an opportunity to improve per-

formance within a given power budget. Many of these heterogeneous processors

contain Graphics Processing Units (GPUs) that can perform graphics and embar-

rassingly parallel computation orders of magnitude faster than a CPU while using less

energy. Beyond these obvious applications for GPUs, a larger variety of applications

can benefit from a GPU’s large computation and memory bandwidth. However,

many of these applications are irregular and, as a result, require synchronization

and scheduling that are commonly believed to perform poorly on GPUs. The basic

building block of synchronization and scheduling is memory consistency, which is,

therefore, the first place to look for improving performance on irregular applications.

In this thesis, we approach the programmability of irregular applications on GPUs by

thinking across traditional boundaries of the compute stack. We think about archi-

tecture, microarchitecture and runtime systems from the programmers perspective.

To this end, we study architectural memory consistency on future GPUs with cache

coherence. In addition, we design a GPU memory system microarchitecture that can

support fine-grain and coarse-grain synchronization without sacrificing throughput.

Finally, we develop a task runtime that embraces the GPU microarchitecture to per-

form well on fork/join parallelism desired by many programmers. Overall, this thesis

contributes non-intuitive solutions to improve the performance and programmability

of irregular applications from the programmer’s perspective.

iv

This thesis is dedicated to My Sun and Stars.

v

Contents

Abstract iv

List of Tables xi

List of Figures xii

List of Abbreviations and Symbols xiv

Acknowledgements xvi

1 Introduction 1

2 Background 6

2.1 GPUs . 6

2.1.1 Terminology . 6

2.1.2 OpenCL . 8

2.1.3 Platforms . 9

2.1.4 Performance Guidelines . 9

2.2 Memory Consistency . 10

2.2.1 Sequential Consistency . 11

2.2.2 Total Store Order / x86 . 11

2.2.3 Relaxed Memory Order . 11

2.2.4 SC for Data race free . 12

2.2.5 The Debate . 12

2.3 Cache Coherence . 13

vi

3 Memory Consistency for Massively Threaded Throughput-Oriented
Processors 14

3.1 Introduction . 14

3.2 Consistency Differences for MTTOPs 16

3.2.1 Outstanding Cache Misses Per Thread → Potential Memory
Level Parallelism . 16

3.2.2 Threads per Core → Latency Tolerance 16

3.2.3 Threads per System → Synchronization and Contention for
Shared Data . 17

3.2.4 Threads per System → Opportunities for Reordering 17

3.2.5 Register Spills/Fills → RAW Dependencies 18

3.2.6 Algorithms → Ratio of Loads to Stores 18

3.2.7 Intermediate Assembly Languages 19

3.2.8 Threads per System → Programmability 19

3.3 MTTOP Memory Consistency Implementations 20

3.3.1 Simple SC (SCsimple) . 22

3.3.2 SC with Write Buffering (SCwb) 23

3.3.3 Total Store Order (TSO) . 23

3.3.4 Relaxed Memory Ordering (RMO) 23

3.3.5 Graphics Compatibility . 24

3.4 Evaluation . 24

3.4.1 Simulation Methodology . 24

3.4.2 Benchmarks . 25

3.4.3 Performance Results . 26

3.4.4 Implementation Complexity and Energy-Efficiency 27

3.5 Finalizer Programmability . 28

3.6 Caveats and Limitations . 29

vii

3.6.1 System Model . 29

3.6.2 Workloads . 30

3.7 Conclusions . 31

4 QuickRelease 32

4.1 Introduction . 32

4.2 Background and Related Work . 37

4.2.1 Current GPU Global Synchronization 38

4.2.2 Release Consistency on GPUs 39

4.2.3 Supporting Release Consistency 39

4.3 QuickRelease Operation . 41

4.3.1 Detailed Operation . 43

4.3.2 Read/Write Partitioning Trade-offs 47

4.4 Simulation Methodology and Workloads 48

4.4.1 The APU Simulator . 48

4.4.2 Benchmarks . 50

4.4.3 Re-use of the L1 Data Cache 50

4.5 Results . 52

4.5.1 Performance . 52

4.5.2 Directory Traffic . 55

4.5.3 L1 Invalidation Overhead . 57

4.5.4 Total Memory Bandwidth . 59

4.5.5 Power . 59

4.5.6 Scalability of RFO . 60

4.6 Conclusion . 61

viii

5 Task Runtime With Explicit Epoch Synchronization 63

5.1 Introduction . 63

5.2 Fork/join parallelism . 67

5.3 Work-first principle . 68

5.4 Work-together Execution Model . 69

5.4.1 Work-together principle . 70

5.4.2 TVM : Thinking about work-together 72

5.4.3 Current work-together systems 77

5.5 TREES: Work-together on GPUs . 77

5.5.1 TVM to TREES . 77

5.5.2 Initialize . 79

5.5.3 Phase 1 . 79

5.5.4 Phase 2 . 80

5.5.5 Phase 3 . 82

5.5.6 TREES Example . 82

5.6 Experimental Evaluation . 83

5.6.1 Programming the TVM interface 84

5.6.2 Case Study Methodology . 85

5.6.3 Case Study 1: Outperforming CPUs running cilk 85

5.6.4 Case Study 2: Comparison to work lists 88

5.6.5 Case Study 3: Optimization with mappers 91

5.7 Related Work . 93

5.8 Conclusion . 94

6 Conclusions 96

6.1 Summary . 96

ix

6.2 Lessons Learned . 97

6.3 Future Directions . 99

Bibliography 100

Biography 105

x

List of Tables

3.1 Experimental Configurations . 25

3.2 Benchmarks . 26

4.1 Memory System Parameters . 49

5.1 Postorder tree traversal in TREES of Figure 5.3 where taskType of
postorder = 1 and visitAfter = 2 . 83

xi

List of Figures

3.1 Load to store ratio for various MTTOP applications 19

3.2 MTTOP baseline system model without write buffers 20

3.3 MTTOP Implementations of SC, TSO and RMO 22

3.4 Performance comparisons of consistency models on MTTOPs 27

4.1 Example of QuickRelease in a simple one-level graphics memory system. 34

4.2 Baseline accelerated processing unit system. QR-specific parts are all
S-FIFOs, wL1s, wL2, and wL3 (all smaller than rL1, rL2 and L4). . . 38

4.3 L1 read-after-write re-use (L1 read hits in M for RFO memory system). 47

4.4 L1 cache read re-use (read hits per read access in RFO memory system). 51

4.5 Relative run-times of WT, RFO, and QR memory systems compared
to not using an L1 cache. 52

4.6 L2 to directory bandwidth relative to no L1. 55

4.7 Write-through requests seen at DRAM relative to a system with no L1. 56

4.8 Invalidation and data messages received at the QR L1 compared to
WT data messages. 57

4.9 Total DRAM accesses by WT, RFO and QR relative to no L1. 59

4.10 Scalability comparison for increasing problem sizes of reduction. . . . 60

4.11 Scalability comparison for increasing problem sizes of nn. 61

5.1 The Task Vector Machine (TVM) . 72

5.2 Preorder and postorder tree traversal on TVM. 73

5.3 Example binary tree with 6 nodes 83

xii

5.4 Performance of Fibonacci . 86

5.5 Performance of FFT Kernel . 87

5.6 Performance of FFT Whole Program 88

5.7 Performance of BFS . 90

5.8 Performance of SSSP . 91

5.9 Performance of Sort . 92

xiii

List of Abbreviations and Symbols

Abbreviations

GPU Graphics Processing Unit.

GPGPU General-purpose Graphics Processing Unit.

CPU Central Processing Unit.

TLB Translation lookaside Buffer

MLP Memory-level Parallelism.

ILP Instruction-level Parallelism.

TLP Thread-level Parallelism.

MTTOP Massively-Threaded Throughput-Oriented Processor

SC Sequential Consistency.

TSO Total Store Order.

RC Release Consistency.

RMO Relaxed Memory Ordering

DRF Data-race free

RFO Read-for-ownership.

WT Writethrough.

QR QuickRelease.

AMD Advanced Micro Devices.

HSA Heterogeneous Systems Alliance.

TVM Task Vector Machine.

xiv

TV Task Vector.

TMS Task Mask Stack

TREES Task Runtime with Explicit Epoch Synchronization

xv

Acknowledgements

First and foremost I thank my family for their unending support in my academic

pursuits. Without their support, none of this research would be possible. Further,

my committee—Andrew Hilton, Bradford Beckmann, Benjamin Lee, and Jun Yang—

and advisor, Daniel Sorin, were instrumental in the success of my research. I would

also like to thank my colleagues for their encouragement and feedback. Especially

I thank Songchun Fan, Marisabel Guevara, Luwa Matthews, and Ralph Nathan

for their instrumental feedback in the writing of Chapter 5. I would like to thank

Bradford Beckmann, Mark Hill, David Wood, Benedict Gaster, Steve Reinhardt,

Derek Hower, and Shuai Che for their advice and collaboration during my internship

at AMD Research in Bellevue. Finally, I would like to thank the NSF for funding

my research since proposing my thesis.

xvi

1

Introduction

Traditional techniques to achieve performance on a single core CPU have plateaued

and adding more of the same type of core is bounded by a linear performance improve-

ment. To achieve even greater performance improvements, the future of computing

will involve heterogeneity in compute resources. Each of these compute resource can

perform a more narrow set of tasks with greater energy efficiency than a general-

purpose CPU core. Some heterogeneous compute resources in current systems in-

clude GPUs, DSPs, video decoders, and sensor processors that cannot do the same

tasks as a CPU; however, they specialize in doing a single task at least an order of

magnitude faster and while consuming significantly less energy. In this thesis, we

will focus on heterogeneous systems containing GPUs, since they are programmable

and currently in use for some general purpose computation.

Since heterogeneous systems have the opporunity to vastly improve performance

with lower energy consumption, such systems including GPUs that support general

purpose computing are ripe to support a wider variety of computing paradigms.

Obviously, these systems are useful for graphics applications like computer games.

In addition, many data parallel applications look fundamentally similar to graphics

1

where a function is applied to an independent set data with a full global barrier

between each stage. However, we want to expand the use case of the tremendous

parallelism provided by the GPU beyond graphics and graphics-like applications to

less-than-expert programmers.

Extending the programmability of heterogeneous computing requires thinking

about the applications that are currently difficult to program on GPUs. There are

two ways to approach solving the challenges programmers observe while implement-

ing irregular applications. First, it is possible to redesign the hardware to make it

easier to write high-performance programs. Second, software systems that embrace

current hardware capabilities can provide a programmable interface that performs

efficiently. This thesis approaches supporting emerging parallel applications from

both perspectives.

We have found that ideas that seem ludicrous on a CPU seem attractive when

considering systems with a GPU because of the massive number of threads available.

GPUs have a large number of cores and a vast number of threads per core that

can be used to achieve impressive levels of throughput at the cost of increased la-

tency. GPUs are attractive because they efficiently provide a vast degree of memory

level parallelism for embarrassingly parallel workloads like graphics or graphics-like

applications. However, not all workloads are embarrassingly parallel. As a result,

we must consider problems with irregular parallelism when designing future GPUs.

Irregular parallel workloads differ from embarrassingly parallel workloads because

they require scheduling and synchronization to handle varying amounts of paral-

lelism. As a result, this thesis is focused on attacking the problems of scheduling and

synchronization to enable broader use of heterogeneous systems containing GPUs.

To solve scheduling and synchronization problems, we explore and understand

memory consistency on GPUs. Memory consistency forms the basis for scheduling

and synchronization because it enables a programmer to ensure that work is complete

2

before a synchronization operation is performed or a dependent chuck of work can

be scheduled.

To solve the problems of synchronization and scheduling, we first focus on un-

derstanding the implications of memory consistency on systems containing GPUs

on both current and emerging workloads. Based on this information, we propose a

novel memory hierarchy that can gracefully handle fine and coarse grain synchroniza-

tion operations with a low cost compared to current designs. However, even though

fine grain synchronization performs decently with this new memory system, writing

these programs is still difficult. To ease the burden on programmers to schedule

dependencies, we design a runtime that supports task parallelism and shields the

synchronization and scheduling operations from the programmer.

Thesis Statement :

Rethinking architectural, microarchitectural, and runtime systems from the pro-

grammer’s point of view can improve the performance of throughput-oriented systems

with low hardware cost and less programmer effort.

In support of this thesis, there are three major contributions:

• Looking at memory consistency models from a throughput-oriented approach

on a hypothetical cache coherent GPU leads to vastly different results than

found on a cache-coherent CPU.

• Redesigning a GPU memory system to gracefully support fine-grain and coarse-

grain synchronization for irregular parallel applications without penalizing graph-

ics or graphics-like workloads is possible and the resulting system performs well

across a wide variety of current and emerging applications.

• Designing a task parallel runtime system from a throughput-oriented mindset

enables easy programmability while unlocking a GPUs compute potential by

3

converting a CPU friendly scheduling methodology to a GPU friendly schedul-

ing methodology.

Chapter 2 will introduce a background on GPUs and memory consistency that

forms a backbone for the rest of this thesis. The chapter will outline terminology, de-

scribe OpenCL, list target platforms, and describe performance guidelines for GPUs.

In addition, this chapter will describe memory consistency models used in CPUs and

describe past research on how to decide between them.

Chapter 3 lays the groundwork for the thesis by helping to understand how

throughput-oriented software and hardware interact with a strong memory consis-

tency model. In this chapter, we evaluate various CPU-style memory consistency

models on a future cache-coherent GPU-like processors. Overall, this chapter shows

that strong memory consistency models should not be counted out as an option due

to performance reason. However, the scope of this work has a variety of limitations

that are resolved in the next chapters.

Chapter 4 builds on the limitations of Chapter 3 and looks at supporting fine-

grain synchronization operations in a write-through memory system like those in

current GPUs. In this chapter, we assume that the memory system is only required

to implement a weak consistency model. This enables the use of a high-throughput

write-through memory system that only pays for write latencies on synchronization

events. The new memory system, QuickRelease, enables locality in future irregular

parallel applications with fine-grain synchronization while preserving throughput in

current embarrassingly parallel workloads.

Chapter 5 looks at the software limitations posed in Chapter 3 under the realiza-

tion that even if synchronization support existed on GPUs, how one would use that

synchronization in the presence of SIMD. As a result, developing workloads to use

synchronization would likely require a runtime that can abstract away the details of

4

GPU hardware. To this end, we build a runtime, Task Runtime with Explicit Epoch

Synchronization, that enables the programmer to see fork/join parallelism while the

hardware sees an embarrassingly parallel workload. To do this, we enable many fine-

grain synchronization operations to be amortized across an entire GPU with bulk

synchronous operations. We call this idea the work-together principle. This research

shows it is possible to use current GPUs to accelerate task parallel code compared

to popular CPU task parallel runtimes.

Chapter 6 concludes the thesis with overlapping conclusions and insights learned

in the research for this thesis. Further, this chapter outlines future research direc-

tions.

5

2

Background

2.1 GPUs

The entire thesis will depend on a cursory understanding of GPUs and how they

are different from CPUs. First, we define some general terminology. Second, we

introduce OpenCL because it is a platform independent way of programming GPUs.

Finally, we describe performance guidelines that result from the interactions between

OpenCL and the memory system design.

2.1.1 Terminology

This section outlines terminology used in the rest of this thesis. The OpenCL termi-

nology will be used as it can apply to any kind of GPU or parallel system [41, 20].

• Work-Item : a single thread with its own register state.

• Wavefront : a group of work-items that share a single program counter.

• Divergence : when work-items within a wavefront take different control flow

paths.

6

• Coalescing : when memory operations from the same wavefront can merge

to a single cache or memory request if they are to the same block.

• SIMD : Single Instruction Multiple Data like a standard vector unit.

• Lane : a single scalar component of a SIMD vector.

• SMT : Simultaneous Multi-Threading where a single lane can support many

work-items to tolerate latency.

• SIMT : Single Instruction Multiple Threads execution model where the diver-

gent threads in a wavefront are masked off.

• SIMD Engine : a pipeline that has a SIMD-width and a SMT-depth, such

that SMT-depth wavefronts can be scheduled to tolerate long latency events.

The SIMD-width does not necessarily match the wavefront width.

• Compute Unit : one or more execution units that often share a cache and

scratchpad.

• Workgroup : a software defined set of Wavefronts that execute on a single

Compute Unit.

• Barrier : an execution point where all work-items in a workgroup must reach

before any work-items can proceed. Further all prior memory operations must

be visible before it completes. This can optionally include a memory fence.

• NDRange : a multi-dimensional set of workgroups executing a single kernel.

• LdAcq :: Load acquire, a synchronizing load instruction that acts as downward

memory fence such that later operations (in program order) cannot become

visible before this operation.

7

• StRel : Store release, a synchronizing store instruction that acts like an upward

memory fence such that all prior memory operations (in program order) are

visible before this store.

2.1.2 OpenCL

OpenCL is an open standard for heterogeneous parallel computing that explicitly

separates the code executing on the host (CPU) and the device (often GPU). The

host code is written in C/C++ and links to a vendor-specific OpenCL library. The

device code is written in a data parallel kernel that supports a subset of C with some

additional built-in datatypes and functions. Kernels are compiled by the host before

they are executed on the device. Each kernel is launched with a hierarchy of threads.

The hierarchy consists of a single NDRange that contains a three dimensional range

of work-groups that each contain a three dimensional range of work-items.

The aspects of OpenCL most relevant to this thesis are the synchronization mech-

anisms. OpenCL 1.2 provides three mechanisms for synchronization. First, at the

end of a kernel, all stores are visible so that a future kernel launch will be able to use

the values. Second, there are workgroup-wide barriers (but not global barriers) that

act as both a synchronization point and a memory fence for a workgroup. Finally,

there is support for both intra-workgroup and inter-workgroup atomic operations

that enable co-ordination. OpenCL 2.0 formalizes a memory consistency model and

enables more forms of synchronization, but it is not yet known how these will be

used. Despite the memory consistency model and shared virtual memory that could

enable CPU-style synchronization, the SIMD execution model still makes it hard

for programmers to express synchronization. The fundamental problem is that syn-

chronization creates dependencies between workgroups in an NDRange and leads to

busy-waiting and potentially deadlock.

8

2.1.3 Platforms

OpenCL generally targets systems containing a discrete GPU and a CPU, but in this

thesis, we are focused mostly on systems where the GPU and CPU are integrated

on a single chip like the AMD Accelerated Processing Unit (APU). These systems

reduce the overhead of communication and synchronization by sharing memory and

synchronizing with on-chip resources.

Discrete and integrated GPUs have highly-tuned memory systems designed for

throughput at the cost of latency to perform graphics operations. Wavefronts of

threads executing the same instruction will combine reads and writes to a single

cache block or row buffer into a single operation. Generally this coalescing provides

the spatial and temporal locality present in CPU caches. As a result, GPU cache

hierarchies are write-through and often write-no-allocate to optimize the use of caches

for read-only data. The caches are also deeply pipelined and heavily banked leading

to increased access latency and throughput. These caches are designed mostly to filter

and buffer bandwidth to the memory system due to low levels of temporal locality

of coalesced accesses between different cores. In the end, many GPU applications

are constrained by the available memory bandwidth. As a result, if one wants to

improve the performance of a GPU, the first place to look is the memory system in

hardware and the memory operations in software.

2.1.4 Performance Guidelines

The key to achieving good performance with OpenCL software is for the kernel to

exploit two distinctive features of the GPU hardware. First, we want all work-items

in a wavefront to perform the same work. When all work-items in a wavefront

reach a branch instruction and the decision is not unanimous (i.e., some work-items

take the branch and some do not), this situation is called “branch divergence.”

Branch divergence degrades performance because the SIMT hardware must serialize

9

the execution of the work-items that take the branch with respect to the work-items

that do not take the branch (instead of executing them all in parallel).

The second, and more important GPU feature that OpenCL programmers seek to

exploit is memory access coalescing. When a wavefront executes a load or store, ac-

cesses to the same cache block (or row buffer if the GPU has no cache) are combined

into a single memory request. The ideal memory coalescing occurs when all work-

items in a wavefront access memory in a cache-block-aligned unit stride. Memory

coalescing reduces the demand on the memory bandwidth of a SIMD core. Coa-

lescing is critical because memory bandwidth is almost always the bottleneck on

application performance. In fact, the performance degradation due to branch diver-

gence is largely due to branch divergence’s reduction of opportunities for memory

coalescing, rather than due to serialization of computation.

Related to the divergence and coalescing is the performance impacts of synchro-

nization. Synchronization operations can easily degrade performance for two primary

reasons. First, synchronization operations are likely to include loops that increase

register liveness and divergence. The increased liveness will in turn limit the occu-

pancy of the GPU, which will reduce the expected performance. Second, synchro-

nization will require the visibility of other memory operations to be guaranteed with

fences in addition to busy waiting with atomic operations. The atomic operations

performed in the busy-waiting loop will compete with operations making forward

progress for execution resources.

2.2 Memory Consistency

In this section we provide a brief overview on the important aspects of memory

consistency that will be used throughout this thesis. These models were designed

with general-purpose CPU cores in mind. Beyond the descriptions below, there

exist resources with in-depth definitions and working examples in tutorials [1, 54].

10

Overall, consistency models formalize a relationship between the program order of

thread local memory operations and the order write operations to each location in

the system or coherence order. A consistency model results in a set of allowable

orderings of memory operations in many threads and is defined by a processor’s ISA.

2.2.1 Sequential Consistency

Sequential Consistency (SC) requires that the order of memory operations in the

system is the union of the program order of all threads and the coherence order of all

addresses [34]. Alternatively, in SC there is a total order of loads and stores, across

all threads, that respects the program order at each thread. Each load must obtain

the value of the last store in the total order. SC is generally considered the strongest

consistency model.

2.2.2 Total Store Order / x86

Total Store Order (TSO) is the consistency model for the SPARC and x86 architec-

tures [59, 45]. TSO relaxes the order between a store and a subsequent load. This

enables hardware to use a FIFO write buffer to tolerate store latencies. All allowable

ordering in TSO are the union of partial orders: the program order of loads with

respect to other loads; stores with respect to other stores; loads with respect to sub-

sequent stores; and the coherence order of the system. To achieve an SC ordering,

a memory fence can be inserted between a store and a subsequent load. This will

force the ordering of the system to be the union of coherence and program orders.

2.2.3 Relaxed Memory Order

SPARC Relaxed Memory Order (RMO) [59], Alpha [52], and the tutorial XC [54]

represent a weaker set of consistency models that require explicit memory fence

operations to enforce a program order. In these consistency models, only coherence

ordering is required in the absence of memory fences. There are three types of fences,

11

which are full fences, acquire fences, and release fences. Full fences require that all

operations before the full fence appear before the operations after the full fence in

total order. Acquire fences only require that operations after the fence become visible

after operations before the fence. Release fences require that operations before the

fence become visible before operations after the fence.

2.2.4 SC for Data race free

SC, TSO and the relaxed memory models are all capable of achieving an SC exe-

cution with the appropriate fences. However, all of these fences can be expensive

to implement to enforce strong consistency. For a set of parallel programs that do

not have a data race (concurrent access to a location where at least one operation

is a write) with proper synchronization, it is only necessary to insert fence oper-

ations at synchronization boundaries. This consistency model is known as SC for

data-race-free (SC for DRF) [2].

Our recent work has extended SC for DRF to heterogeneous systems with what

are called heterogeneous-race-free memory models [30] that enable synchronization

operations to be specified with a scope. This is useful in GPUs since the programming

models are explicitly hierarchical, which means that global synchronization can be

avoided to improve performance.

2.2.5 The Debate

On CPUs, there was an intense debate about which consistency model was best.

Hardware designers prefer weaker memory models since they are simpler to imple-

ment. Programmers prefer stronger consistency models because it makes it easier for

them to reason about how shared variables could be accessed. The performance gap

between SC and weaker memory models has been shown to differ by around 10%

to 40%, depending on application characteristics. In the end, all consistency models

12

have resolved to supporting SC for DRF. Further, languages like Java and C++ have

adopted the SC for DRF consistency model. In hardware, TSO seems to have been

a good balance between performance and programmability for multicore CPUs.

2.3 Cache Coherence

To maintain memory consistency in a system with caches, it is minimally necessary

for the hardware to maintain a coherence order where each byte in the memory

system has a total order of writes. The most straight forward way to implement

a coherence order in a system with caches is with a cache coherence protocol that

maintains either a single writer or multiple readers for all cache blocks at all times

[54]. Directory-based and snooping cache coherence have been developed explicitly

for this purpose. Snooping protocols rely on broadcast all cache misses to all cores in

a total order. Directory protocols can relax both the broadcast and the total order

by creating a physical ordering point, called a directory, that can multicast cache

misses to relevant caches and require explicit acknowledgements [36].

13

3

Memory Consistency for Massively Threaded
Throughput-Oriented Processors

3.1 Introduction

In this chapter, we evaluate a range of CPU memory consistency on hardware similar

to GPUs but with a few key differences. First, these systems will implement a write-

back cache coherence protocol and support virtual memory to easily integrate into

a heterogeneous chip with GPUs. Second, these systems will have a memory consis-

tency model and only support a single address space. However, these systems will still

support a vast number of threads like GPUs with the use of wide SIMD, deep SMT,

and multiple cores. We will call these systems Massively Threaded Throughput-

Oriented Processors (MTTOPs). The combination of these features suggests that

there is insight to be learned about implementing memory consistency models on

such systems.

Given that MTTOPs differ from multicore CPUs in significant ways and that

they tend to run different kinds of workloads, we believe it is time to re-visit the

issue of hardware memory consistency models for MTTOPs. It is unclear how these

14

differences affect the trade-offs between consistency models, although one might ex-

pect that the extraordinary amount of concurrency in MTTOPs would make the

choice of consistency model crucial. It is widely believed that the most prominent

MTTOPs, GPUs, provide only very weak ordering guarantees, and conventional wis-

dom is that weak ordering is most appropriate for GPUs. We largely agree with this

conventional wisdombut only insofar as it applies to graphics applications.

For GPGPU computing and MTTOP computing, in general, the appropriate

choice of hardware consistency model is less clear. Even though current HLLs for

GPGPUs provide very weak ordering, that does not imply that weakly ordered hard-

ware is desirable. Recall that many HLLs for CPUs have weak memory models (e.g.,

C++ [10], Java [39]), yet that does not imply that all CPU memory models should

be similarly weak [29].

In this chapter, we compare various hardware consistency models for MTTOPs in

terms of performance, energy-efficiency, hardware complexity, and programmability.

Perhaps surprisingly, we show that hardware consistency models have little impact

on the performance of our MTTOP system model running MTTOP workloads. The

MTTOP can be strongly ordered and often incur only negligible performance loss

compared to weaker consistency models. Furthermore, stronger models enable sim-

pler and more energy-efficient hardware implementations and are likely easier for

programmers to reason about.

This chapter makes the following contributions:

• Discuss the issues involved in implementing hardware consistency models for

MTTOPs.

• Explore the trade-offs between hardware consistency models for MTTOPs.

• Experimentally demonstrate that the choice of consistency model often has

negligible impact on performance.

15

This section will first describe the differences between MTTOPs and current

multi-core chips and how that affects consistency. Second, we will describe MTTOP

implementations of Sequential Consistency (SC), Total Store Order (TSO) and Re-

laxed Memory Ordering (RMO). Finally, we will evaluate the MTTOP consistency

implementations and conclude.

3.2 Consistency Differences for MTTOPs

This section describes why it is not simply possible to apply the same conventional

wisdom learned while implementing memory consistency on multicore CPUs. The

key component of this argument is that CPU architectures are latency sensitive and

MTTOPs are latency tolerant. On the software side, MTTOP software contains

TLP while CPU software leaves out parallelism for the hardware to find.

3.2.1 Outstanding Cache Misses Per Thread→ Potential Memory Level Parallelism

A cache and memory hierarchy can only handle a finite number of outstanding mem-

ory operations. Since each MTTOP core is simple and in-order, there is little op-

portunity exploit MLP in an instruction stream. By design MTTOPs can support

many concurrent thread contexts. This means that memory consistency models for

MTTOPs do not need to focus on achieving MLP for a single thread. It is often un-

necessary for MTTOPs to have multiple outstanding memory operations per thread

to saturate the system’s bandwidth. Weak CPU memory consistency models support

more MLP by allowing loads to appear out of program order.

3.2.2 Threads per Core → Latency Tolerance

Each MTTOP core will support a large number of thread contexts to tolerate the

latency necessary to access high bandwidth memory systems. This latency on MT-

TOPs like GPUs can be nearly 50 cycles for an L1 cache access. A memory or L2

16

cache access would be even longer. These latencies occur with contention when the

system is fully loaded. Latency in an MTTOP is more easily accommodated with

more threads rather than structures like a Load-Store Queue to reduce memory la-

tency. The design of Load-Store Queues have been critical in evaluating the costs of

memory consistency in current multicore systems.

3.2.3 Threads per System → Synchronization and Contention for Shared Data

MTTOPs often support thousands of hardware threads, while current multicore CPU

chips support less than a hundred hardware threads. To utilize these threads pro-

grammers will need to split problems into smaller chunks that enable the use of more

hardware resources to solve a given problem. A simple example would be performing

a reduction of a very long list. A CPU implementation would probably have each

thread sum a large chunk sequentially and then the results of those chunks would be

summed sequentially. A MTTOP implementation would give each thread a single

data items and then perform a reduction in log(N) stages. This kind of example

exemplifies first that barriers are likely to be frequent in MTTOP code, and that

each thread performs a relatively small number of operations on a shared piece of

data before sharing it with another thread. Furthermore, contention on coarse-grain

locks, used frequently in CPU code, are likely to have true contention on an MTTOP.

3.2.4 Threads per System → Opportunities for Reordering

On the same vein as the prior point, the number of hardware threads in an MTTOP

means that there will be few independent memory operations in a given thread. In

addition, there are fewer memory operations performed between each synchronization

operation. This means that even if a MTTOP core could extract MLP, it is less likely

to exist due to the massively parallel software.

17

3.2.5 Register Spills/Fills → RAW Dependencies

MTTOPs can hold a large amount of program state in its very large combined register

file. Although each MTTOP hardware thread may have less registers available than

there would be in a CPU hardware thread, the aggregate register capacity should

mean that a program can be completed with fewer fills and spills. Further many

MTTOP support private memory spaces that can be treated independently of the

memory consistency model. An MTTOP compiler would put register fills and spills

in this memory space. Once register spills and fills can be ignored, there are very few

places were a memory location will be written and then read before a synchronization

operation. As a result, MTTOPs are unlikely to benefit from a readable write-buffer

unlike CPUs.

3.2.6 Algorithms → Ratio of Loads to Stores

Stencil and linear algebra are often ported to MTTOPs due to inherent parallelism

and massive memory bandwidth requirements. Both Stencils and linear algebra

involve more reads than writes to memory locations. An n-point stencil requires n

loads before store to memory. Linear algebra requires reading a whole row or column

to perform a single store in a matrix-matrix or matrix-vector multiply. Even if these

problems are chunked, there are still more loads than stores. This observation about

MTTOP software leads to a notion that optimizing for stores is far less important

for MTTOP software than it is for CPU software. As a result, consistency choices

that reduce store latency are not likely to benefit MTTOP software significantly.

18

Figure 3.1: Load to store ratio for various MTTOP applications

3.2.7 Intermediate Assembly Languages

MTTOPs like GPUs have Intermediate Assembly languages that are finalized by

a proprietary compiler to create hardware assembly. This means that even if the

Intermediate Assembly Language has a defined consistency model, it is the job of

both the proprietary compiler and the hardware to maintain that consistency model.

This level of indirection shields the programmer in a way not possible in multicore

CPUs. As a result, hardware consistency models should be considered that make the

job of the proprietary compiler as easy as possible to reduce the latency of launching

a new kernel.

3.2.8 Threads per System → Programmability

Programming a task to run on an MTTOP involves reasoning about various MT-

TOP execution models. Given the hierarchical thread layout, the programmer must

already be aware of the difference between work-items, workgroups, and wavefronts

19

to avoid incorrect producer consumer relationships. By the time the programmer

reasons about where data is located on an MTTOP, understanding memory ordering

seems relatively simple in comparison.

3.3 MTTOP Memory Consistency Implementations

Figure 3.2: MTTOP baseline system model without write buffers

In this section, we will describe the implementations of CPU-like memory consistency

models adapted to MTTOPs. This section will focus mostly on how stores are treated

as that is where most of the debate about CPU consistency models has happened

and where most of the difference between CPU consistency models exist. We will

describe implementations of Sequential Consistency(SC), Total Store Order(TSO)

20

and Relaxed Memory Ordering (RMO). All of these consistency models assume a

writeback cache coherence protocol in the MTTOP. These MTTOPs contain many

Compute Units that contain a single SIMD Engine with an L1 cache. The SIMD

Engines have a SIMD width of 8 and the SMT depth of 64. These L1 caches are

connected in a 2-D Torus to a banked L2 cache that holds directory state.

21

Figure 3.3: MTTOP Implementations of SC, TSO and RMO

3.3.1 Simple SC (SCsimple)

The simplest consistency model implementation, SCsimple, is where each thread can

only have a single outstanding memory operation. With this design shown in figure

22

3.3.a, there is no opportunity for memory operations to be re-ordered. To tolerate

load and store latencies, the SIMD Engine will swap execution to another wavefront.

This simple implementation’s performance can suffer from long store latencies in a

cache coherent memory system.

3.3.2 SC with Write Buffering (SCwb)

CPUs have seen performance improvements by using a write buffer even with SC.

SCwb follows this wisdom and extends SCsimple by adding a FIFO write buffer for

each thread between the SIMD Engine and the L1 cache as in figure 3.3.b. This

write buffer can allow stores to complete instantly. Maintaining SC requires that

a threads store buffer be drained before that thread can execute another load. In

addition, the write buffer must be drained in program order so that the order of

writes is maintained.

3.3.3 Total Store Order (TSO)

The MTTOP TSO implementation, like SCwb, uses a FIFO write buffer to allow

stores to complete instantly as shown in figure 3.3.c. The TSO implementation en-

ables loads to be issued and completed when the store buffer is non-empty. The store

buffer must be empty before issuing an atomic operation or completing a memory

fence. Since RAW dependencies are uncommon, the write buffer is unreadable. To

prevent consistency violations, load addresses must check if that address is in the

write buffer. The load will be delayed until the write buffer has drained the store

with that address.

3.3.4 Relaxed Memory Ordering (RMO)

The MTTOP RMO implementation relaxes both the load and the store ordering. The

RMO implementation uses the L1 cache MSHRs to order and outstanding write and

read to the same address as shown in figure 3.3.d. Further the RMO implementation

23

enables instructions to execute past loads until a data dependency or a memory fence.

All outstanding loads and stores must be completed in order to execute beyond a

memory fence. This implementation of RMO should cover most of the possible

memory ordering behaviors available to in-order cores.

3.3.5 Graphics Compatibility

For the foreseeable future, the most common MTTOP will be a GPU that will

sell primarily for graphics workloads. Graphics workloads do not need a strong or

formal consistency model. In this case, all of the above structures for maintaining

consistency can be ignored to avoid reducing the performance of graphics.

3.4 Evaluation

This section compares the performance and complexity of the MTTOP consistency

models described in the previous section.

3.4.1 Simulation Methodology

We simulate our generalized MTTOP model with a modified version of the gem5

full-system simulator [8]. The parameters for the simulation are shown in table 3.1

and the system looks like figure 3.2.

24

Table 3.1: Experimental Configurations
Parameter Value
SIMD width 8 threads
SMT depth 64 threads with 32 registers each
SIMD Engine 1GHz clock with Alpha-like ISA
L1 caches L1D, L1I: 16kB, 4-way, 20-cycle hit
L2 caches 4 shared 32kB banks, 50-cycle hit latency
Off-chip memory 2 GB DRAM, hit latency 100 ns
On-chip network 2-D torus, 12GB/s link bandwidth
Consistency Model Parameters Value
write buffer perfect, instant access
CAM for store address matching perfect, instant access

3.4.2 Benchmarks

We consider a wide range of MTTOP benchmarks, listed in table 3.2. A number of

these benchmarks were handwritten microbenchmarks. The rest of the benchmarks

come from the Rodinia GPGPU benchmark suite [16] that we ported. All bench-

marks were written in C/C++ and compiled directly to our MTTOPs Alpha-like

hardware ISA. Because the Alpha consistency model resembles our RMO implemen-

tation, the code is compiled assuming the correct consistency model. Furthermore,

because SC and TSO implementations are stronger than our RMO implementation,

code assuming RMO will always work.

25

Table 3.2: Benchmarks
Handwritten Benchmark Description
barnes-hut N-body simulation
matrix mult matrix by matrix multiplication
dijstra all-pairs shortest path
2D convolution 2D matrix-to-matrix convolution
fft fast fourier transform
Rodinia Benchmark Description
nn k nearest neighbors
hotspot processor temperature simulation
kmeans K-means clustering
bfs breadth-first search

3.4.3 Performance Results

In this section we present performance results, in terms of speedup in figure 3.4. All

speedups are with respect to the performance of SCsimple Across the benchmarks there

is little variation between SCsimple, SCwb, and TSO implementations for MTTOPs.

This implies that a FIFO write buffer would only affect performance within 5%.

The RMO implementation enables multiple outstanding independent loads which

significantly improves its performance for 2D convolution and dijstra. The unordered

write buffer in the RMO was no more beneficial than a FIFO write buffer from the

other consistency implementations.

A few benchmarks, such as kmeans, incur some performance penalty for more

relaxed models. These performance penalties, which are also extremely small, are

due to resource contention during synchronization. The L1 and L2 cache size and

latency configurations will change the absolute performance numbers. However, we

found that the speedup results were insensitive to parameters within an order of

magnitude of the listed configuration. This sensitivity could surprise many archi-

tects accustomed to CPU performance studies, but they are more intuitive after

considering the differences between CPUs and MTTOPs discussed in section 3.2.

26

These results suggests that hardware consistency model has little impact on MT-

TOP performance, despite its importance for CPUs. Thus, a MTTOP hardware

consistency model choice should be based on complexity and energy efficiency or

programmability.

Figure 3.4: Performance comparisons of consistency models on MTTOPs

3.4.4 Implementation Complexity and Energy-Efficiency

Since comparing the consistency models based on performance does not create a

single winner, implementation complexity and energy-efficiency should be the decid-

ing factor. SCsimple would seem to have the simplest hardware implementation. It

requires no write buffer and at most MSHR per thread. SC offers programmability

advantages, but we argue that user programmability at the hardware level is less

critical for MTTOPs than for CPUs. The programmability benefits can be exposed

27

to the writers of compilers, finalizers, and drivers. These kinds of programmers tend

to be experts, but may benefit from SC.

3.5 Finalizer Programmability

We have argued that the programmability criterion is less important for choosing a

MTTOP hardware consistency model than for choosing a CPU consistency model.

This argument rests largely on how current GPGPU programmers are shielded from

the hardware ISA; application programmers write in HLLs and can see only as far

down as the intermediate language.

This argument applies to the vast majority of GPGPU programmers, but it omits

one small yet important class: people who write the finalizers that translate from

the intermediate language to the GPUs native hardware language. The finalizer

has a difficult job in the process of running a GPGPU program. It must allocate

physical registers and generate machine code without syntactic knowledge of the

original source code. On CPUs, many synchronization libraries rely heavily on in-

line assembly code, yet GPGPUs have no such luxury. Many intermediate language

instructions may have a simple one-to-one mapping to hardware instructions, but

some intermediate instructions have synchronization implications (e.g., Fence, Bar-

rier, atomic read- modify-write). It is likely that the intermediate instructions use

heavyweight mechanisms to make sure that all stores ar visible. If these heavyweight

mechanisms thrash data out of the cache, the cache may be rendered useless in code

with synchronization.

A strong or at least explicit memory model enables the finalizer writer to formal-

ize what the hardware does in a way that can be used to facilitate optimizations. At

the very least, a hardware consistency model makes caches with coherence amenable

to code with synchronization. Without a well-specified hardware consistency model,

the finalizer must understand the details of the hardware implementation. The final-

28

izer is thus likely to be overly conservative and make worst-case assumptions about

the hardwares behavior. With an explicit hardware memory model, the hardware

designers can enforce that model as aggressively or conservatively as chosen, and the

finalizer can ignore hardware implementation details. Trying to reason about all of

the possible concurrency issues in a GPGPU implementation, with its vast amounts

of possibly concurrency, is a challenge that we would like to avoid.

3.6 Caveats and Limitations

The analysis we have performed in this paper necessarily makes several assumptions,

and our conclusions are at least somewhat dependent on these assumptions. The two

primary types of assumptions pertain to our system model and workloads, because

it is not feasible to explore all possible system models or workloads. In the next two

chapters we will address many of these caveats and limitations.

3.6.1 System Model

Our results depend on the MTTOP model we described in Section 4. We believe this

MTTOP model is representative of future MTTOPs, yet we are aware that perfectly

predicting the future is unlikely. We now discuss the implications on our results and

conclusions of some possible variations in the MTTOP model.

• Register file size: Our register file is relatively large. A smaller register

file could lead to more register spills/fills and thus to more frequent RAW

dependences through memory.

• Scratchpad memory: Our MTTOP has no scratchpad memory. Including

scratchpads is likely to make the choice of consistency model even less im-

portant, because scratchpads would reduce the number of accesses to shared

memory. However, it is theoretically possible that the performance of this lesser

29

number of accesses to shared memory would be more critical.

• SIMT width: If our MTTOP cores had a wider SIMT width, then there

would likely be more divergence between threads, and such divergence could

increase the impact of memory system performance.

• Write-through caches: We have assumed write-back caches, yet current

GPUs support write-through caching (which is preferable for graphics). It is

possible that write-through caching will persist for many future MTTOPs, al-

though the energy benefits of write-back seem compelling. If write- through

caching persists, then the latency of stores becomes more important and consis-

tency models that take store latency off the critical path may be more attrac-

tive. However, given the relative rarity of stores, even write-through caching

may be insufficient to motivate a weaker model than SC.

• Non-write-atomic memory systems: We have assumed memory systems

that provide write atomicity [6]. However, future systems may not provide

write atomicity, and we would have to adjust our memory consistency model

specifications accordingly. It is unclear if or how such a memory system would

impact the performance results or conclusions.

3.6.2 Workloads

Our results also depend on the workloads. We have developed and ported workloads

that we believe are representative of future MTTOP workloads but, as with expected

system models, it is difficult to predict the future. We now consider the impact of

different workloads.

• CPU-like workloads: We have assumed workloads that have regular be-

haviors and that are particularly well-suited to MTTOPs. If more CPU-like

30

workloads are ported to MTTOPs, these workloads may resemble CPU work-

loads in that they have a smaller load-to-store ratio and/or fewer available

threads to run in parallel.

• Hierarchical threading: We have assumed a programming model with a flat

thread organization, but todays GPGPU programming paradigms provide a

hierarchy of threads. For example, threads may be grouped into warps, and

warps may be grouped into thread blocks. With hierarchical thread grouping,

we may wish to consider consistency models that are aware of this hierarchy

(e.g., consistency models that provide different ordering guarantees within a

warp than across warps).

3.7 Conclusions

After re-visiting the issue of hardware memory consistency models in the context

of MTTOPs, the conventional wisdom on the strength of consistency is refuted.

Weak consistency models, that are typical of current MTTOPs, are unlikely to be

necessary for MLP due to concurrency provided by MTTOP software. As a result,

the results suggest SC can achiever performance comparable to weaker consistency

models on a variety of MTTOP benchmarks. Though the field of MTTOP memory

systems is immature, we can say that SC and strong consistency models should not

be discounted as expensive and limiting performance. Strong consistency is likely to

enable easier programming of concurrent heterogeneous parallelism.

31

4

QuickRelease

4.1 Introduction

Graphics processing units (GPUs) provide tremendous throughput with outstanding

performance-to-power ratios on graphics and graphics-like workloads by specializing

the GPU architecture for the characteristics of these workloads. In particular, GPU

memory systems are optimized to stream through large data structures with coarse-

grain and relatively infrequent synchronization. Because synchronization is rare,

current systems implement memory fences with slow and inefficient mechanisms.

However, in an effort to expand the reach of their products, vendors are pushing

to make GPUs more general-purpose and accessible to programmers who are not

experts in the graphics domain. A key component of that push is to simplify graphics

memory with support for flat addressing, fine-grain synchronization, and coherence

between CPU and GPU threads [31].

However, designers must be careful when altering graphics architectures to sup-

port new features. While more generality can help expand the reach of GPUs, that

generality cannot be at the expense of throughput. Notably, this means that bor-

32

rowing solutions from CPU designs, such as read for ownership (RFO) coherence,

that optimize for latency and cache re-use likely will not lead to viable solutions [51].

Similarly, brute-force solutions, such as making all shared data non-cacheable, also

are not likely to be viable because they severely limit throughput and efficiency.

Meanwhile, write-through (WT) GPU memory systems can provide higher through-

put for streaming workloads, but those memory systems will not perform as well for

general-purpose GPU (GPGPU) workloads that exhibit temporal locality [16]. An

alternative design is to use a write-back or write-combining cache that keeps dirty

blocks in cache for a longer period of time (e.g., until evicted by an LRU replacement

policy). Write-combining caches are a hybrid between WT and write-back caches in

which multiple writes can be combined before reaching memory. While these caches

may accelerate workloads with temporal locality within a single wavefront (warp, 64

threads), they require significant overhead to manage synchronization among wave-

fronts simultaneously executing on the same compute unit (CU) and incur a penalty

for performing synchronization. In particular, write-combining caches require finding

and evicting all dirty data written by a given wavefront, presumably by performing

a heavy-weight iteration over all cache blocks. This overhead discourages fine-grain

synchronization that we predict will be necessary for broader success of GPGPU com-

pute. To this end, no current GPUs use write-combining caches for globally shared

data (however, GPUs do use write-combining caches for graphic specific operations

such as image, texture, and private writes).

In this chapter, we propose a GPU cache architecture called QuickRelease (QR)

that is designed for throughput-oriented, fine-grain synchronization without degrad-

ing GPU memory-streaming performance. In QR, we wrap conventional GPU write-

combining caches with a write-tracking component called the synchronization FIFO

(S-FIFO). The S-FIFO is a simple hardware FIFO that tracks writes that have not

completed ahead of an ordered set of releases. With the S-FIFO, QR caches can

33

maintain the correct partial order between writes and synchronization operations

while avoiding unnecessary inter-wavefront interference cause by cache flushes.

When a store is written into a cache, the address also is enqueued onto the

S-FIFO. When the address reaches the head of the S-FIFO, the cache is forced

to evict the cache block if that address is still present in the write cache. With

this organization, the system can implement a release synchronization operation by

simply enqueueing a release marker onto the S-FIFO. When the marker reaches the

head of the queue, the system can be sure that all prior stores have reached the next

level of memory. Because the S-FIFO and cache are decoupled, the memory system

can utilize aggressive write-combining caches that work well for graphics workloads.

�� LD_Acq A (2)

� LD X (1)

�� ST X (1)
���� ST_Rel A (2)

CU0 CU1

CU0	

L1	
X:	 1	
	

MEM	
X:	 0	
A:	 0	

�

CU1	

L1	
Y:	 3	
	

�

�

CU0	

L1	
X:	 1	
	

MEM	
X:	 1	
A:	 0	

CU1	

L1	
Y:	 3	
	

�

�

CU0	

L1	
	
	

MEM	
X:	 1	
A:	 0	

CU1	

L1	
Y:	 3	
	

�

CU0	

L1	
A:	 2	
	

MEM	
X:	 1	
A:	 2	

CU1	

L1	
Y:	 3	
	

�

�

CU0	

L1	
A:	 2	
	

MEM	
X:	 1	
A:	 2	

CU1	

L1	
	
	

�

�

CU0	

L1	
A:	 2	
	

MEM	
X:	 1	
A:	 2	

CU1	

L1	
A:	 2	
X:	 1	

�
�

Time

Figure 4.1: Example of QuickRelease in a simple one-level graphics memory sys-
tem.

Figure 4.1 shows an example of QR. In the example, we show two threads from

different CUs (a.k.a. NVIDIA streaming multi-processors) communicating a value

34

in a simple GPU system that contains one level of write-combining cache. When

a thread performs a write, it writes the value into the write-combining cache and

enqueues the address at the tail of the S-FIFO (time 1). The cache block then is

kept in the L1 until it is selected for eviction by the cache replacement policy or its

corresponding entry in the FIFO is dequeued. The controller will dequeue an S-FIFO

entry when the S-FIFO fills up or a synchronization event triggers an S-FIFO flush.

In the example, the release semantic of a store/release operation causes the S-FIFO

to flush. The system enqueues a special release marker into the S-FIFO (2), starts

generating cache evictions for addresses ahead of the marker (3), and waits for that

marker to reach the head of the queue (4). Then the system can perform the store

part of the store/release (5), which, once it reaches memory, signals completion of

the release to other threads (6). Finally, another thread can perform a load/acquire

to complete the synchronization (7) and then load the updated value of X (8).

An important feature of the QR design is that it can be extended easily to systems

with multiple levels of write-combining cache by giving each level its own S-FIFO. In

that case, a write is guaranteed to be ordered whenever it has been dequeued from

the S-FIFO at the last level of write-combining memory. We discuss the details of

such a multi-level system in Section 4.3.

Write-combining caches in general, including QR caches, typically incur a signif-

icant overhead for tracking the specific bytes that are dirty in a cache line. This

tracking is required to merge simultaneous writes from different writers to different

bytes of the same cache line. Most implementations use a dirty-byte bitmask for ev-

ery cache line (12.5% overhead for 64-byte cache lines) and write out only the dirty

portions of a block on evictions.

To reduce the overhead of byte-level write tracking, QR separates the read and

write data paths and splits a cache into read-only and (smaller) write-only sub-

caches. This separation is not required, but allows an implementation to reduce

35

the overhead of writes by providing dirty bitmasks only on the write-only cache.

The separation also encourages data path optimizations like independent and lazy

management of write bandwidth while minimizing implementation complexity. We

show that because GPU threads, unlike CPU threads, rarely perform read-after-write

operations, the potential penalty of the separation is low [28]. In fact, this separation

leads to less cache pollution with write-only data.

Experimental comparisons to a traditional GPGPU throughput-oriented WT

memory system and to an RFO memory system demonstrate that QR achieves the

best qualities of each design. Compared to the traditional GPGPU memory system,

bandwidth to the memory controller was reduced by an average of 52% and the

same applications ran 7% faster on average. Further, we show that future applica-

tions with frequent synchronization can run integer factors faster than a traditional

GPGPU memory system. In addition, QR does not harm the performance of current

streaming applications while reducing the memory traffic by 3% compared to a WT

memory system. Compared to the RFO memory system, QR performs 20% faster.

In fact, the RFO memory system generally performs worse than a system with the

L1 cache disabled.

In summary, this chapter makes the following contributions:

• We augment an aggressive, high-throughput, write-combining cache design

with precise write tracking to make synchronization faster and cheaper without

the need for L1 miss status handling registers (MSHRs).

• We implement write tracking efficiently using S-FIFOs that do not require

expensive CAMs or cache walks, which prevent inter-wavefront synchronization

interference due to cache walks.

• Because writes require an additional byte mask in a write-combining cache, we

optionally separate the read and write data paths to decrease state storage.

36

In this chapter, Section 4.2 describes current GPGPU memory systems and prior

work in the area of GPGPU synchronization. Section 4.3 describes QR by describing

its design choices and how it performs memory operations and synchronization. Sec-

tion 4.4 describes the simulation environment for our experiments and the workloads

we used. Section 4.5 evaluates the merits of QR compared to both a traditional

GPU memory system and a theoretical MOESI coherence protocol implemented on

a GPGPU.

4.2 Background and Related Work

This section introduces the GPU system terminology used throughout the paper and

describes how current GPU memory systems support global synchronization. Then

we introduce release consistency (RC), the basis for the memory model assumed in

the next sub-section and the model being adopted by the Heterogeneous System

Architecture (HSA) specification, which will govern designs from AMD, ARM, Sam-

sung, and Qualcomm, among others. We also describe the memory systems of two

accelerated processing units (APUsdevices containing a CPU, GPU, and potentially

other accelerators) that obey the HSA memory model for comparison to QR: a base-

line WT memory system representing todays GPUs, and an RFO cache-coherent

memory system, as typically used by CPUs, extended to a GPU. Finally, in Section

4.2.3, we discuss how QR compares to prior art.

37

4.2.1 Current GPU Global Synchronization

CPU0	

L1	

L2	

CPU1	

L1	

rL2	

CU1	

rL1	

wL2	

wL1	

CU0	

rL1	 wL1	

wL3	

LLC	

Directory	 /	 Memory	

C
PU

G
PU

S-‐
FI
FO

	
S-‐
FI
FO

	
S-‐
FI
FO

	

S-‐
FI
FO

	

Figure 4.2: Baseline accelerated processing unit system. QR-specific parts are all
S-FIFOs, wL1s, wL2, and wL3 (all smaller than rL1, rL2 and L4).

Global synchronization support in todays GPUs is relatively simple compared to

CPUs to minimize microarchitecture complexity and because synchronization primi-

tives currently are invoked infrequently. Figure 4.2 illustrates a GPU memory system

loosely based on current architectures, such as NVIDIAs Kepler [44] or AMDs South-

ern Islands [4], [?]. Each CU has a WT L1 cache and all CUs share a single L2 cache.

Current GPU memory models only require stores to be visible globally after memory

fence operations (barrier, kernel begin, and kernel end) [41]. In the Kepler parts, the

38

L1 cache is disabled for all globally visible writes. Therefore, to implement a memory

fence, that architecture only needs to wait for all outstanding writes (e.g., in a write

buffer) to complete. The Southern Islands parts use the L1 cache for globally visible

writes; therefore, the AMD parts implement a memory fence by invalidating all data

in the L1 cache and flushing all written data to the shared L2 (via a cache walk) [4].

4.2.2 Release Consistency on GPUs

RC [3] has been adopted at least partially by ARM [24], Alpha [17], and Itanium [33]

architectures and seems like a reasonable candidate for GPUs because it is adequately

weak for many hardware designs, but strong enough to reason easily about data races.

In addition, future AMD and ARM GPUs and APUs will be compliant with the HSA

memory model, which is defined to be RC [31]. The rest of this paper will assume

that the memory system implementation must obey RC [48].

The HSA memory model [32] adds explicit LdAcq and StRel instructions. They

will be sequentially consistent. In addition, they will enforce a downward and upward

fence, respectively. Unlike a CPU consistency model, enforcing the HSA memory

model is not strictly the job of the hardware; it is possible to use a finalizer (an

intermediate assembly language compiler) to help enforce consistency with low-level

instructions. In this paper, we consider hardware solutions to enforcing RC.

4.2.3 Supporting Release Consistency

In this section, two possible baseline APU implementations of RC are described. The

first is a slight modification to the system described in Section 4.2.2. The second is

a nave implementation of a traditional CPU RFO cache-coherence protocol applied

to an APU. Both support RC as specified.

39

Realistic Write-through GPU Memory System

The current GPU memory system described in Section 4.2.2 can adhere to the RC

model between the CPU and GPU requests by writing through to memory via the

APU directory. This means that a release operation (kernel end, barrier, or StRel)

will need to wait for all prior writes to be visible globally before executing more

memory operations. In addition, an acquiring memory fence (kernel begin or LdAcq)

will invalidate all clean and potentially stale L1 cache data.

”Read for Ownership” GPU Memory System

Current multi-core CPU processors implement shared memory with write-back cache

coherence [54]. As the RFO name implies, these systems will perform a read to gain

ownership of a cache block before performing a write. In doing so, RFO protocols

maintain the invariant that at any point in time only a single writer or multiple

readers exist for a given cache block.

To understand the benefit an RFO protocol can provide GPUs, we added a direc-

tory to our baseline GPU cache hierarchy. It is illustrated in Figure 4.2, where the

wL2 and wL3 are replaced by a fully mapped directory with full sharer state [37].

The directorys contents are inclusive of the L1s and L2, and the directory maintains

coherence by allowing a single writer or multiple readers to cache a block at any

time. Because there is finite state storage, the directory can recall data from the

L1 or L2 to free directory space. The protocol here closely resembles the coherence

protocol in recent AMD CPU architectures [19].

Related Work

Recent work by Singh et al. in cache coherence on GPUs has shown that a nave

CPU-like RFO protocol will incur significant overheads [51]. This work does not

include integration with CPUs.

40

Chapter 3 also explored memory consistency implementations on GPU-like archi-

tectures and showed that strong consistency is viable for massively threaded archi-

tectures that implement RFO cache coherence [28]. QR relies on a similar insight:

read-after-write dependencies through memory are rare on GPU workloads.

Similar to the evaluated WT protocol for a GPU, the VIPS-m protocol for a CPU

lazily writes through shared data by the time synchronization events are complete

[49]. However, VIPS-m relies on tracking individual lazy writes using MSHRs, while

the WT design does not require MSHRs and instead relies on in-order memory

responses to maintain the proper synchronization order.

Conceptually, QR caches act like store queues (also called load/store queues, store

buffers, or write buffers) that are found in CPUs that implement weak consistency

models [50]. They have a logical FIFO organization that easily enforces ordering

constraints at memory fences, thus leading to fast fine-grain synchronization. Also

like a store queue, QR caches allow bypassing from the FIFO organization for high

performance. This FIFO organization is only a logical wrapping, though. Under

the hood, QR separates the read and write data paths and uses high-throughput,

unordered write-combining caches.

Store-wait-free systems also implement a logical FIFO in parallel with the L1

cache to enforce atomic sequence order [56]. Similarly, implementations of transac-

tional coherence and consistency (TCC) [40] use an address FIFO in parallel with

the L1. However, TCCs address FIFO is used for transaction conflict detection while

QRs address FIFO is used to ensure proper synchronization order.

4.3 QuickRelease Operation

In this section, we describe in detail how a QR cache hierarchy operates in a state-of-

the-art SoC architecture that resembles an AMD APU. Figure 4.2 shows a diagram

of the system, which features a GPU component with two levels of write-combining

41

cache and a memory-side L3 cache shared by the CPU and GPU. For QR, we split

the GPU caches into separate read and write caches to reduce implementation cost

(more detail below). At each level, the write cache is approximately a quarter to

an eighth the size of the read cache. Additionally, we add an S-FIFO structure in

parallel with each write cache.

A goal of QR is to maintain performance for graphics workloads. At a high level, a

QR design behaves like a conventional throughput-optimized write-combining cache:

writes complete immediately without having to read the block first, and blocks stay

in the cache until selected for eviction by a replacement policy. Because blocks are

written without acquiring either permission or data, both write-combining and QR

caches maintain a bitmask to track which bytes in a block are dirty, and use that

mask to prevent loads from reading bytes that have not been read or written.

The QR design improves on conventional write-combining caches in two ways

that increase synchronization performance and reduce implementation cost. First,

QR caches use the S-FIFO to track which blocks in a cache might contain dirty

data. A QR cache uses this structure to eliminate the need to perform a cache

walk at synchronization events, as is done in conventional write-combining designs.

Second, the QR design partitions the resources devoted to reads and writes by using

read-only and write-only caches. Because writes are more expensive than reads (e.g.,

they require a bitmask), this reduces the overall cost of a QR design. We discuss the

benefits of this separation in more detail in Section 4.3.2, and for now focus on the

operation and benefits of the S-FIFO structures.

When a conventional write-combining design encounters a release, it initiates a

cache walk to find and flush all dirty blocks in the cache. This relatively long-latency

operation consumes cache ports and discourages the use of fine-grain synchroniza-

tion. This operation is heavy-weight because many threads share the same L1 cache,

and one thread synchronizing can prevent other threads from re-using data. QR

42

overcomes this problem by using the S-FIFO. At any time, the S-FIFO contains a

superset of addresses that may be dirty in the cache. The S-FIFO contains at least

the addresses present in the write cache, but may contain more addresses that already

have been evicted from the write cache. It is easy to iterate the S-FIFO on a release

to find and flush the necessary write-cache data blocks. Conceptually the S-FIFO

can be split into multiple FIFOs for each wavefront, thread, or work-group, but we

found such a split provides minimal performance benefit and breaks the transitivity

property on which some programs may rely [30]. Furthermore, a strict FIFO is not

required to maintain a partial order of writes with respect to release operations, but

we chose it because it is easy to implement.

In the following sub-sections, we describe in detail how QR performs different

memory operations. First, we document the lifetime of a write operation, describing

how the writes propagate through the write-only memory hierarchy and interact with

S-FIFOs. Second, we document the lifetime of a basic read operation, particularly

how this operation can be satisfied entirely by the separate read-optimized data path.

Third, we describe how the system uses S-FIFOs to synchronize between release and

acquire events. Fourth, we discuss how reads and writes interact when the same

address is found in both the read and write paths, and show how QR ensures correct

single-threaded read-after-write semantics.

4.3.1 Detailed Operation

Normal Write Operation

To complete a normal store operation, a CU inserts the write into the wL1, enqueues

the address at the tail of the L1 S-FIFO, and, if the block is found in the rL1, sets a

written bit in the tag to mark that updated data is in the wL1. The updated data

will stay in the wL1 until the block is selected for eviction by the wL1 replacement

policy or the address reaches the head of the S-FIFO. In either case, when evicted, the

43

controller also will invalidate the block in the rL1, if it is present. This invalidation

step is necessary to ensure correct synchronization and read-after-write operations

(more details in Section 4.3.1). Writes never receive an ack.

The operation of a wL2 is similar, though with the addition of an L1 invalidation

step. When a wL2 evicts a block, it invalidates the local rL2 and broadcasts an

invalidation message to all the rL1s. Broadcasting to eight or 16 CUs is not a huge

burden and can be alleviated with coarse-grain sharer tracking because writing to

temporally shared data is unlikely without synchronization. This ensures that when

using the S-FIFOs to implement synchronization, the system does not inadvertently

allow a core to perform a stale read. For similar reasons, when a line is evicted from

the wL3, the controller sends invalidations to the CPU cluster, the group of CPUs

connected to the directory, before the line is written to the L3 cache or main memory.

Completing an atomic operation also inserts a write marker into the S-FIFO, but

instead of lazily writing through to memory, the atomic is forwarded immediately to

the point of system coherence, which is the directory.

CPUs perform stores as normal with coherent write-back caches. The APU di-

rectory will invalidate the rL2, which in turn will invalidate the rL1 caches to ensure

consistency with respect to CPU writes at each CU. Because read caches never con-

tain dirty data, they never need to respond with data to invalidation messages even

if there is a write outstanding in the wL1/wL2/wL3. This means that CPU invali-

dations can be applied lazily.

Normal Read Operation

To perform a load at any level of the QR hierarchy, the read-cache tags simply are

checked to see if the address is present. If the load hits valid data and the written bit

is clear, the load will complete without touching the write-cache tags. On a read-tag

miss or when the written bit is set, the write cache is checked to see if the load can be

44

satisfied fully by dirty bytes present in the write cache. If so, the load is completed

with the data from the write cache; otherwise, if the read request at least partially

misses in the write cache, the dirty bytes are written through from the write-only

cache and the read request is sent to the next level of the hierarchy.

While the write caches and their associated synchronization FIFOs ensure that

data values are written to memory before release operations are completed, stale data

values in the read caches also must be invalidated to achieve RC. QR invalidates these

stale data copies by broadcasting invalidation messages to all rL1s when there is an

eviction from the wL2. Though this may be a large amount of traffic, invalidations

are much less frequent than individual stores because of significant coalescing in the

wL1 and wL2. By avoiding cache flushes, valid data can persist in the rL1 across

release operations, and the consequential reduction of data traffic between the rL2

and rL1 may compensate entirely for the invalidation bandwidth.

Furthermore, these invalidations are not critical to performance, unlike a tradi-

tional cache-coherence protocol in which stores depend on the acks to complete. In

QR, the invalidations only delay synchronization completion. This delay is bounded

based on the number of entries in the synchronization FIFO when a synchronization

operation arrives. Meanwhile, write evictions and read requests do not stall waiting

for invalidations because the system does not support strong consistency. As a result,

QR incurs minimal performance overhead compared to a WT memory system when

synchronization is rare.

QRs impact on CPU coherence is minimal and the CPUs perform loads as normal.

For instance, a CPU read never will be forwarded to the GPU memory hierarchy

because main memory already contains all globally visible data written by the GPU.

A CPU write requires only invalidation messages to be issued to the GPU caches.

45

Synchronization

While loads and stores can proceed in write-combining caches without coherence ac-

tions, outstanding writes must complete to main memory and stale read-only data

must be invalidated at synchronization events. QR caches implement these opera-

tions efficiently with the help of the S-FIFOs.

To start a release operation (e.g., a StRel or kernel end), a wavefront enqueues

a special release marker onto the L1 S-FIFO. When inserted, the marker will cause

the cache controller to begin dequeuing the S-FIFO (and performing the associated

cache evictions) until the release marker reaches the head of the queue. The StRel

does not require that the writes be flushed immediately; the StRel requires only that

all stores in the S-FIFO hierarchy be ordered before the store of the StRel. The

marker then will propagate through the cache hierarchy just like a normal write.

When the marker finally reaches the head of the wL3, the system can be sure

that all prior writes from the wavefront have reached an ordering point (i.e., main

memory). An acknowledgement is sent to the wavefront to signal that the release is

complete.

When the release operation has an associated store operation (i.e., a StRel), the

store can proceed as a normal store in the write path after the release completes.

However, for performance, the store associated with the StRel should complete as

soon as possible in case another thread is waiting for that synchronization to com-

plete. Therefore, a store from a StRel will also trigger S-FIFO flushes, but it will

not send an acknowledgement message back to the requesting wavefront.

Because QR broadcasts invalidations on dirty evictions, ensuring all stale data

is invalidated before a release operation completes, acquire operations can be imple-

mented as simple, light-weight loads; the acquire itself is a no-op. If a LdAcq receives

the value from a previous StRel, the system can be sure that any value written by the

46

releasing thread will have been written back to main memory and any corresponding

value in a read-only cache has been invalidated.

4.3.2 Read/Write Partitioning Trade-offs

0	

0.002	

0.004	

0.006	

0.008	

0.01	

0.012	

so
rt	 dc

t	

ho
tsp
ot	 nn

	

ba
ckp
rop
	

red
uc
7o
n	

bit
on
ic	

AP
SP
	

lud
	

km
ea
ns
	

his
tog
ram

	

ma
tri
xm
ul	 bfs

	
sra
d	
sp
mv
	

nw
	

Me
an
	

Fr
ac
%o

n	
of
	 lo
ad

s	 h
i/

ng
	 o
n	
w
rr
ite

n	
da

ta
	

Figure 4.3: L1 read-after-write re-use (L1 read hits in M for RFO memory system).

In the QR design, we chose to partition the cache resources for reads and writes.

While this choice reduces implementation complexity, it adds some overhead to read-

after-write sequences. For example, in QR a load that hits in the write cache requires

two tag look-ups and a data look-up: first check the read-cache tags, then check

the write-cache tags, then read from the write-cache data array. We can justify this

overhead by observing that GPGPU applications rarely demonstrate read-after-write

locality.

Figure 4.3 shows the percentage of read requests that hit an L1 cache block that

47

has been written previously (i.e., is in a modified state under RFO). For several

evaluated applications, written L1 cache blocks are never re-accessed. This occurs

due to a common GPU application design pattern in which a kernel streams through

data, reading one data set and writing another. Subsequently, another kernel will

be launched to read the written data, but by this time all that data will have been

evicted from the cache.

The partitioned design has several implementation benefits. First, it reduces

the state overhead needed to support writes in a write-combining cache because the

dirty bitmasks are required only in the write caches. Second, it is easier to build

two separate caches than a single multi-ported read/write cache with equivalent

throughput. Third, the read cache can be integrated closely with the register file to

improve L1 read hit latency. Meanwhile the write cache can be moved closer to the

L2 bus interface and optimized exclusively as a bandwidth buffer.

4.4 Simulation Methodology and Workloads

4.4.1 The APU Simulator

Our simulation methodology extends the gem5 simulator [8] with a microarchitec-

tural timing model of a GPU that directly executes the HSA Intermediate Language

(HSAIL) [31]. To run OpenCL applications, we first generate an x86 binary that links

an OpenCL library compatible with gem5s syscall emulation environment. Mean-

while, the OpenCL kernels are compiled directly into HSAIL using a proprietary

industrial compiler.

Because the simulation of our OpenCL environment is HSA-compliant, the CPU

and GPU share virtual memory and all memory accesses from both the CPU and

GPU are assumed to be coherent. As a result, data copies between the CPU and

GPU are unnecessary.

In this work, we simulate an APU-like system [11] in which the CPU and the

48

GPU share a single directory and DRAM controller. The GPU consists of CUs.

Each CU has a private L1 data cache and all the CUs share an L2 cache. The L2

further is connected to a stateless (a.k.a. null) directory [18] with a memory-side

4-MB L3 cache, which is writeable only in the RFO system. The configurations of

WT, RFO, and QR are listed in Table 4.1.

Table 4.1: Memory System Parameters
Baseline Write-Through(WT)

Frequency 1 GHz
Wavefronts 64 wide, 4 cycle
Compute Units 8, 40 wavefronts each
Memory DDR3, 4 Channels, 400 MHz

banks tag lat. data lat. size
L1 16 1 4 16 kB
L2 16 4 16 256 kB

QuickRelease(QR)
wL1 16 1 4 4 kB
wL2 16 4 16 16 kB
wL3 16 4 16 32 kB
S-FIFO1 64 entries
S-FIFO2 128 entries
S-FIFO3 256 entries
total 80 kB

Read-for-ownership(RFO)
directory 256 kB
MSHRs 1024
total 384 kB kB

As previously noted, the storage overhead of QR compared to WT is similar

to dirty bits for all WT caches. Figure 4.2 summarizes this design with a block

diagram. Overall, QR uses 80 kB of additional storage that is not present in the

WT baseline. To ensure that the comparison with WT is fair, we tested whether

doubling the L1 capacity could benefit the WT design. Further, the RFO design

requires nearly double the storage of the baseline WT memory system. We found

49

that the extra capacity provided little benefit because of the lack of temporal locality

in the evaluated benchmarks. The benefit is reduced further because WTs caches

must be flushed on kernel launches.

4.4.2 Benchmarks

We evaluate QR against a conventional GPU design that uses WT caches and an

idealized GPU memory system that uses RFO coherence. We run our evaluation on a

set of benchmarks with diverse compute and sharing characteristics. The benchmarks

represent the current state-of-the-art for GPU benchmarks. The applications and

compute kernels come from the AMD APP SDK [5], OpenDwarfs [21], Rodinia [16],

and two microbenchmarks that were designed to have increased data re-use and

synchronization. Our microbenchmarks attempt to approximate the behavior of

future workloads, which we expect will have more frequent synchronization and data

re-use. Here is a brief description of the microbenchmarks:

• APSP: Performs a single-source shortest path until converging on an all-pairs

shortest path. This application uses LdAcq and StRel to view updates as soon

as they are available, to speed convergence, and uses multiple kernel launches

to perform frequent communication with the host.

• sort: Performs a 4-byte radix sort byte by byte. For each byte, the first step

counts the number of elements of each byte; the second step traverses the list

to find the value at the thread ID position; and, the final step moves the correct

value to the correct location and swaps the input and output arrays.

4.4.3 Re-use of the L1 Data Cache

Figure 4.4 shows the measured L1 read hits as a fraction of read requests (i.e., re-use

rate) in the RFO memory system. RFO allows for a longer re-use window than either

50

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

so
rt	 dc

t	

ho
tsp
ot	 nn

	

ba
ckp
rop
	

red
uc
;o
n	

bit
on
ic	

AP
SP
	

lud
	

km
ea
ns
	

his
tog
ram

	

ma
tri
xm
ul	 bfs

	
sra
d	

sp
mv
	

nw
	

Me
an
	

Re
ad

	 h
it	
in
	 L
1	
pe

r	 r
ea
d	
is
su
ed

	

Figure 4.4: L1 cache read re-use (read hits per read access in RFO memory system).

the QR or WT memory systems because cache blocks are written only locally and

synchronization does not force dirty data to a common coherency point. In contrast,

the WT and QR memory systems must ensure all writes are performed to memory

before synchronization completes. In addition, WT will invalidate its L1 cache on

each kernel launch.

The workloads from Section 4.2 exhibit a huge range of reuse rates, capturing

the diverse range of traffic patterns exhibited by GPGPU applications. In either of

the extremes of re-use, we expect that all of the memory systems should perform

equivalently. In applications with a high re-use rate, L1 cache hits will dominate

the run-time. In applications with a low re-use rate, the performance will be bound

by the memory bandwidth and latency. Because L1 cache and memory controller

designs are effectively equivalent in QR, RFO, and WT, the expected performance

51

is also equivalent.

4.5 Results

4.5.1 Performance

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

so
rt	 dc

t	

ho
tsp
ot	 nn

	

ba
ckp
rop
	

red
uc
7o
n	

bit
on
ic	
AP
SP
	
lud
	

km
ea
ns
	

his
tog
ram

	

ma
tri
xm
ul	 bfs

	
sra
d	
sp
mv
	
nw
	

Me
an
	

ru
n$

m
e	
re
la
$v

e	
to
	 n
o	
L1
	

noL1	

WT	

RFO	

QR	

Figure 4.5: Relative run-times of WT, RFO, and QR memory systems compared
to not using an L1 cache.

Figure 4.5 plots the relative run-times of WT, RFO, and QR relative to a system that

disables the L1 cache for coherent traffic, similar to NVIDIAs Kepler architecture.

The applications are ordered across the x-axis by their L1 re-use rate (Figure 4.4).

The final set of bars shows the geometric mean of the normalized run-times. Over-

all, QR gains 7% performance compared to WT, which gains only 5% performance

compared to not using an L1 cache. On the other hand, the RFO memory system

loses 6% performance relative to a memory system with no L1 cache. The RFO

52

performance drop comes from the additional latency imposed to write operations

because they first must acquire exclusive coherence permissions.

Figure 4.5 supports the insight that a QR memory system would outperform a

WT memory system significantly when there is an intermediate amount of L1 re-

use. In particular, QR outperforms WT by 6-42% across six of the seven workloads

(dotted-line box in Figure 4.5) because there is significant L1 re-use across kernel

boundaries and LdAcqs. In these applications, the WT memory system cannot re-

use any data due to the frequency of full cache invalidations. The lone exception is

backprop, which is dominated by pulling data from the CPU caches; thus, QR and

WT see similar performance.

Across the seven highlighted workloads, APSP is particularly noticeable because

of the impressive performance improvement achieved by QR and the even more

impressive performance improvement achieved by RFO. APSP is the only benchmark

that frequently uses LdAcq and StRel instructions within its kernels. While the QR

memory system efficiently performs the LdAcq and StRel operations in a write-

combining memory system, the RFO memory system performs the operations much

faster at its local L1 cache. The resulting memory access timings for the RFO

memory system lead to far less branch divergence and fewer kernel launches compared

to the other memory systems because the algorithm launches kernels until there is

convergence.

The applications bfs, matrixmul, and dct are on the border between intermediate

and high or low re-use. As a result, the performance advantage of QR relative to

WT is muted.

Similar to backprop, kmeans and histogram invoke many kernel launches and

frequently share data between the CPU and GPU. Their performance also is domi-

nated by pulling data in from the CPU, resulting in QR and WT achieving similar

performance.

53

The one application on which QR encounters noticeable performance degradation

is lud. As shown in Figure 4.3, lud exhibits the highest rate of temporal read-after-

writes; thus, the extra latency of moving data between QRs separate read and write

caches is exposed. Furthermore, lud has a high degree of false sharing between CUs,

which lowers the effectiveness of QRs L1 cache compared to WT due to its cache

block granular invalidations. Overall, due to its unique behavior, lud is the only

benchmark on which simply disabling the L1 cache achieves a noticeable performance

improvement relative to the other designs.

The rest of the applications (sort, srad, spmv, and nw) exhibit either very high

or very low L1 re-use, which means we would expect a small performance difference

due to the on-chip memory system. The results confirm this intuition because all

non-RFO memory systems perform similarly.

54

4.5.2 Directory Traffic

0	

0.5	

1	

1.5	

2	

2.5	

so
rt	 dc

t	

ho
tsp
ot	 nn

	

ba
ckp
rop
	

red
uc
5o
n	

bit
on
ic	
AP
SP
	
lud
	

km
ea
ns
	

his
tog
ram

	

ma
tri
xm
ul	 bfs

	
sra
d	
sp
mv
	
nw
	

Me
an
	

Ba
nd

dw
id
th
	 U
se
ed

	 re
la
/v

e	
to
	 n
o	
L1
	

noL1	

WT	

RFO	

QR	

Figure 4.6: L2 to directory bandwidth relative to no L1.

55

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

so
rt	 dc

t	

ho
tsp
ot	 nn

	

ba
ckp
rop
	

red
uc
7o
n	

bit
on
ic	
AP
SP
	
lud
	

km
ea
ns
	

his
tog
ram

	

ma
tri
xm
ul	 bfs

	
sra
d	
sp
mv
	
nw
	

Me
an
	

Re
la
%v

e	
W
rit
et
hr
ou

gh
s	

noL1	

WT	

QR	

Figure 4.7: Write-through requests seen at DRAM relative to a system with no
L1.

Figure 4.6 shows the bandwidth between the GPU cache hierarchy and the APU

directory for WT, RFO, and QR relative to the system without an L1 cache. Due

to aggressive write-combining, QR generates less total write traffic than WT for the

same or better performance.

To explore the directory write traffic, Figure 4.7 shows the effectiveness of the

write-combining performed by a QR memory system. The RFO memory system

includes a memory-side L3 cache, which filters many DRAM writes, so only the

no-L1-memory, WT, and QR designs are shown in Figure 4.7. Most applications

see significantly fewer write requests at the DRAM in QR compared to a WT or

no-L1-memory system due to the write-combining performed at the wL1, wL2, and

wL3. As Figure 4.7 shows, applications with the greatest reduction generally achieve

the greatest performance gains, indicating that good write-combining is critical to

56

performance. In nn and nw, WT and QR have similar DRAM traffic. In these

applications, there is no opportunity to perform additional write-combining in QR

because all of the writes are full-cache-line operations and each address is written

only once.

4.5.3 L1 Invalidation Overhead

0	

0.5	

1	

1.5	

2	

2.5	

3	

so
rt	 dc

t	

ho
tsp
ot	 nn

	

ba
ckp
rop
	

red
uc
6o
n	

bit
on
ic	
AP
SP
	
lud
	

km
ea
ns
	

his
tog
ram

	

ma
tri
xm
ul	 bfs

	
sra
d	
sp
mv
	
nw
	

Me
an
	

By
te
s	 r
ec
ei
ve
d	
Q
R/
by
te
s	 r
ec
ve
d	
W
T	

L1_Probes	

L1_Data	

Figure 4.8: Invalidation and data messages received at the QR L1 compared to
WT data messages.

Figure 4.8 shows both the cost and benefit of broadcasting precise invalidations in

QR. Bars represent the normalized number of bytes that arrive at the L1 cache in

QR compared to WT. Within each bar, segments correspond to the number of bytes

that arrived due to an invalidation probe request or a data response, respectively.

Almost all benchmarks receive equal or fewer L1 data messages in a QR memory

system compared to a WT memory system. The only exception is backprop, in which

57

false sharing created additional cache misses for QR due to invalidations after wL2

evictions.

When invalidation traffic is added, the total bytes arriving at the L1 in a QR

memory system can be up to three times the number of bytes arriving in a WT

system, though on average the number is comparable (103%). Some workloads even

experience a reduction in L1 traffic. APSP saw a significant reduction in overall

traffic because frequent LdAcqs and the subsequent cache invalidations result in a

0% hit rate at the WT L1. In most workloads, QR and WT have comparable traffic at

the L1. QR achieves this comparable traffic despite extra invalidations because it is

able to re-use data across kernel boundaries, whereas WTs full L1 cache invalidation

cause data to be refetched.

Finally, other workloads see a doubling or more of L1 traffic in QR. This is because

they have a significant number of independent writes without re-use between kernels

to amortize the cost of invalidations. In the future, we predict that reducing the data

required from off-chip likely will trump the cost of additional on-chip invalidation

messages, making QR a reasonable design despite this increased L1 traffic.

58

4.5.4 Total Memory Bandwidth

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

so
rt	 dc

t	

ho
tsp
ot	 nn

	

ba
ckp
rop
	

red
uc
7o
n	

bit
on
ic	
AP
SP
	

lud
	

km
ea
ns
	

his
tog
ram

	

ma
tri
xm
ul	 bfs

	
sra
d	

sp
mv
	

nw
	

Me
an
	

DR
AM

	 a
cc
es
se
s	 r
el
a,

ve
	 to

	 n
o	
L1
	

noL1	

WT	

RFO	

QR	

Figure 4.9: Total DRAM accesses by WT, RFO and QR relative to no L1.

Figure 4.9 shows the combined number of read and write memory accesses for each

benchmark relative to the memory accesses performed by the memory system with

no L1. The RFO has fewer memory reads because dirty data is cached across kernel

bounds, which is not possible in the QR or WT memory systems because data

responses to CPU probes are not supported. This is especially effective because

kernels often switch the input and output pointers such that previously written data

in the last kernel is re-used in the next kernel invocation.

4.5.5 Power

Combining the results from Figure 4.8 and Figure 4.9, we can estimate the network

and memory power of QR and WT. Because GPUWattch showed that memory con-

59

sumed 30% of power on modern GPUs and network consumed 10% of power [35],

we can infer that QR should save 5% of memory power and increase network power

by 3%. As a result, it follows that QR should save a marginal amount of power that

may be used by the additional write caches. Further, the improved performance of

QR relative to WT implies less total energy consumption.

4.5.6 Scalability of RFO

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

400000	

450000	

16384	 262144	

G
PU

	 c
yc
le
s	

Problem	 sizes	

Run-‐4me	 of	 reduc4on	

noL1	

WT	

RfO	

QR	

Figure 4.10: Scalability comparison for increasing problem sizes of reduction.

60

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

400000	

450000	

500000	

4	 8	 32	

G
PU

	 c
yc
le
s	

Problem	 sizes	

Run-‐4me	 of	 nn	

noL1	

WT	

RfO	

QR	

Figure 4.11: Scalability comparison for increasing problem sizes of nn.

To support the claim of increased bandwidth scalability compared to an RFO mem-

ory system, nn and reduction are evaluated with smaller inputs to see how well

a latency-oriented RFO memory system could perform compared to a throughput-

oriented WT or QR memory system. Figures 4.10 and 4.11 shows the performance

of reduction and nn for various problem sizes respectively. For small input sets,

all memory systems have similar performance. As the input size increases, the de-

mand on the memory system increases and QRs reduced write overhead improves

the performance relative to RFO and WT.

4.6 Conclusion

This paper demonstrates that QuickRelease can expand the applicability of GPUs by

efficiently executing the fine-grain synchronization required by many irregular par-

61

allel workloads while maintaining good performance on traditional, regular general-

purpose GPU workloads. The QR design improves on conventional write-combining

caches in ways that improve synchronization performance and reduce the cost of

supporting writes. First, QR improves performance by using efficient synchroniza-

tion FIFOs to track outstanding writes, obviating the need for high-overhead cache

walks. Second, QR reduces the cost of write support by partitioning the read- and

write-cache resources, exploiting the observation that writes are more costly than

reads.

The evaluation compares QR to a GPU memory system that simply disables pri-

vate L1 caches for coherent data and a traditional throughput-oriented write-through

memory system. To illustrate the intuitive analysis of QR, it also is compared to an

idealized RFO memory system. The results demonstrate that QR achieves the best

qualities of each baseline design.

62

5

Task Runtime With Explicit Epoch
Synchronization

5.1 Introduction

GPUs support data parallelism efficiently, but not all problems are data parallel.

Non-data parallel problems, which are often called irregular parallel problems, often

stress systems to balance load, resolve dependencies, and enforce memory consis-

tency. There is an open question whether GPGPUs can be liberated from the data

parallel bottleneck to support general irregular parallel workloads [23]. Though work

has achieved good performance on a limited set of irregular parallel workloads on

GPUs [13], such advanced techniques are difficult to program. In this work, we seek

to solve the problem of irregular parallelism more generally. While irregular paral-

lelism has been extensively studied on CPUs, there are few good approaches to this

problem on GPUs.

Irregular parallel programming can be supported with a runtime system that

provides a set of operations for generating new work in chunks called tasks and for

specifying dependencies between tasks. This type of parallelism is known as task

63

parallelism. Though task parallelism is simple to reason about, it is too high-level to

implement directly. To implement an irregular parallel program without a task par-

allel runtime on GPUs, a programmer would need to be an expert in GPU hardware

architectures, parallel programming, and algorithm design. As a result, program-

mers need a task parallel runtime system that can map task parallel code to execute

efficiently on a given platform. Developers of task parallel programs benefit from

a runtime system to schedule tasks, balance load, and enforce consistency between

dependent tasks. Without a runtime system, these applications would be difficult to

program, both in terms of correct functionality and performance. With the runtime

system, the programmer only thinks of how to express parallelism constrained by

algorithmic measures of complexity.

The performance of a task parallel program is a function of two characteristics:

its critical path and its total amount of work to be performed. The work is the

execution time on a single processor, and the critical path is the execution time on

an infinite number of processors. The maximal level of parallelism is the quotient of

the work, T1, and the critical path, T∞. The runtime of a system with P processors

,TP , is bounded by Tp = O(T1

P
) + O(T∞) due to the greedy off-line scheduler bound

[12, 25].

More precisely, we introduce the work overhead,o1, and the critical path overhead,

o∞. When a runtime system’s overhead are included, the execution time becomes

Tp = o1
T1

P
+ o∞T∞. Different implementations of a shared task queue will affect o1

and the o∞ differently. For example, pulling a task from a global task queue could

require a lock before work can be executed, which can create a large value of o1.

Using a local task queue can avoid the lock, but balancing load will increase o∞.

The primary example of a task parallel runtime is cilk [9, 47]. Cilk, which targets

shared memory CPU platforms, uses work-stealing to schedule tasks and balance

load in software. Originally, cilk had no preference for placing runtime overheads for

64

work-stealing on the work or critical path. Cilk-5, however, optimizes performance

with its work-first principle that avoids placing overheads in the work even at the

cost of additional overhead on the critical path [22]. In the equation above, when

T1

P
� T∞, the critical path overhead, o∞, does not significantly affect the runtime,

Tp, compared to the work overhead, o1. The work-first principle gets its name from

optimizing the work overhead first even at the expense of the critical path overhead.

Cilk’s work-first principle applied to a work-stealing scheduler requires fine-grain

communication between threads, which is acceptable on a CPU but expensive on

GPUs. In particular, protecting a local task queue from thieves (threads trying to

steal work) requires locks and fences. Locks and fences degrade the performance of

a GPU’s memory system and thus slow down the execution of work. As a result, the

use of locks and fences on a GPU violates the work-first principle because o1 and

o∞ are coupled. To this end, we need a new way to decouple runtime overheads on

the critical path from work overheads.

We propose the work-together principle to decouple the runtime overheads on

the work and the critical path. The work-together principle extends the work-first

principle to state that the overhead on the critical path should be paid by the entire

system at once and that work overheads should be paid co-operatively. These tenets

contradict the adversarial design of a work-stealing task scheduler. Thus, we propose

an new task scheduling technique that can obey the work-together principle.

Since GPUs are not efficient at the fine-grain communication and synchronization

required for work-stealing schedulers like that of cilk, we must design a non-work-

stealing scheduler that executes efficiently on a GPU. This scheduler should leverage

the work-together principle to balance load, schedule dependent tasks, and maintain

memory consistency. Such a scheduler on a GPU can use hardware mechanisms

and CPU integration to amortize these costs. GPUs, unlike CPUs, offer hardware

techniques for bulk synchronization that enable many threads to work together to

65

pay for scheduling dependencies and memory consistency in hardware and thus obey

the work-together principle.

We implement this work-together principle in a Task Runtime with Explicit

Epoch Synchronization (TREES). In TREES, computation is divided into massively

parallel epochs that are synchronized in bulk. These epochs are the critical path of a

task parallel program in TREES. TREES provides an efficient and high-performing

backend for task parallel programs that works well on current GPUs. We suspect the

performance advantage of TREES on future GPUs and heterogeneous systems will

increase because the bulk synchronization overheads are shrinking and core counts

are increasing. TREES can handle the execution of a vast number of tasks with

complex dependency relationships with a small effect on the expected runtime given

program. To this end, TREES helps to achieve the theoretical speedup (T1

TP
= O(P))

that a P -processor GPU could provide for a task parallel algorithm.

To achieve this performance with the work-together principle, TREES amortizes

the cost of fine-grain fork and join operations using hardware mechanisms for bulk

synchronization. Further, TREES leverages tight coupling with the CPU to remove

work overhead due to software scheduling on the GPU. To limit the critical path

overhead of communication between the CPU and GPU, TREES summarizes the fork

and join operations in stages of computations called epochs. The GPU communicates

the number of forks and join using a single cache block of data transferred back to the

CPU. The CPU schedules a stack of epochs that represent a breadth-first expression

of the dynamic task dependency graph generated by a task parallel program. These

design decisions enable the GPU hardware to perform load-balancing, the software

to lazily enforce memory consistency at epoch boundaries, and the CPU to schedule

dependent tasks in bulk on the GPU’s behalf. As a result TREES obeys the work-

together principle, and provides the programmability of fork/join parallelism with

the power of a GPU.

66

In this work we make the following contributions:

• We propose the work-together principle to guide the design of irregular paral-

lelism on GPUs

• We develop a new runtime system, TREES, that efficiently supports task par-

allelism on GPUs using the work-together principle.

• We show how TREES can provide competitive performance to CPU task par-

allel runtimes.

• We experimentally evaluate the performance of TREES and show that its gen-

erality comes at a very low cost.

The remainder of this chapter first describes fork/join parallelism in Section

5.2. Sections 5.3 and 5.4 delve into detail on the work-first principle and work-

together principle respectively. Section 5.5 describes how TREES implements the

work-together principle in detail. Section 5.6 presents a series of case studies that

motivate TREES and the work-first principle.

5.2 Fork/join parallelism

Fork/join parallelism makes it easy to turn a recursive algorithm into a parallel

algorithm where independent recursive calls can be forked to execute in parallel.

Often forks apply directly to the divide stage in a divide-and-conquer algorithm. Any

task parallel runtime will incur overhead for the implementation of a fork operation

in the work and critical path of the program. Optimizing fork operations is important

because all work that is performed must first be created.

Join operations wait for forked tasks to complete before executing. Joins often

perform the conquer in a divide-and-conquer algorithm where a reduction needs to

67

be performed on the results of independently forked tasks. Joins must be sched-

uled after all forked operations complete. Scheduling a join will incur overhead to

ensure the completion and memory consistency of forked tasks. This consistency

and notification of completion has the potential to add overhead to the work of an

algorithm.

One can use the master theorem to understand the complexity of the the work

and the critical path [38]. When calculating the critical path latency we only look

at operations that cannot be executed concurrently. When calculating the work, we

ignore the fork operations and assume they execute sequentially.

Dividing the work and the critical path gives the maximum available parallelism of

an algorithm. It is important to balance this available processing between processors

in a balanced manner to avoid unecessary serialization of execution. However, it is

important that the runtime does not impose a large overhead on the work (o1) of the

algorithm in order to balance the load since the runtime (Tp) on P -processors can

be estimated by Tp = o1
T1

P
+ o∞T∞.

5.3 Work-first principle

The work-first principle states that overhead should be on the critical path instead

of the work of the algorithm. The reason here is that the algorithm’s parallelism

(T1

T∞
) is generally much greater than the hardware can provide (P). As a result,

applying overhead (o1) to this parallelism is extremely costly. However, overhead to

balance load (o∞T∞) will be incurred on the critical path [22] and be proportional

to the number of processors in the system because steal operations that balance load

are proportional to PT∞. To this end, the critical path can afford a much higher

overhead than the work to maintain linear speedups with increasing core counts

(approximately T1

P
) as long as o1

T1

P
� o∞T∞.

The work-first principle enables nearly linear speedups with increasing core counts,

68

although these speedups are bounded by the critical path. The bounded linear

speedup is competitive with a greedy offline schedule (Tp = O(T1

P
) + O(T∞)). Since

the work-first principle applies to an online system, the greedy offline schedule is an

optimal lower bound on the execution time.

In a work-stealing algorithm, the work-first principle places the overhead on

thieves attempting to steal more work . Placing the overhead on the thieves is de-

rived from the fact that it can be shown that number of steal operations is bounded

by the product of the number of processors and the critical path (O(PT∞)). This

overhead is performed in parallel and thus the overhead for stealing is bounded by

the critical path (O(T∞)). Moreover, synchronization overheads of the fork and join

operations should be only be incurred if a thief can contend with a local worker.

Cilk-5 does this with the THE synchronization protocol where pushing a task to a

local task queue requires only a non-atomic increment and pulling a task from a local

task queue only uses a lock if a thief is competing for the same task [22].

5.4 Work-together Execution Model

The work-together principle, like the work-first principle, is intended for runtime

systems that support fork/join parallelism. However, unlike the work-first principle

—which is primarily intended for CPUs—the work-together principle leverages a

GPU’s ability to synchronize in bulk and co-operate on memory operations to reduce

runtime overheads. The critical difference between CPUs and GPUs is that memory

fences can degrade the performance of the entire GPU. As a result, memory fences

will not only lengthen the critical path, they will interfere with the performance of the

work. To correct the work-first principle for interference and support task parallelism

on GPUs, the work-together principle considers the overhead of the runtime due to

interference from memory fences.

The work-together principle can be stated in two tenets:

69

• Pay critical path overheads at one time to avoid interfering with the execution

of work.

• Co-operatively incur the runtime system’s work overhead to reduce the impact

on execution time.

To visualize the work-together principle, we present an abstract machine, the

Task Vector Machine (TVM), that creates a formal model for fork/join parallelism

on GPUs. As a result, the TVM helps reason about the computational and space

complexity of a task parallel program executing with the work-together principle.

Further, we use the TVM as the basis for implementing TREES which obeys the

work-together principle.

5.4.1 Work-together principle

The work-together principle extends the work-first principle to consider a GPU’s

strong coupling between threads with the two tenets listed above. Without extending

the work-first principle, it is easy to not fully consider the challenges of supporting

fork/join parallelism on GPUs that have vastly differernt execution characteristics

to a CPU. The first tenet leverages hardware support for global synchronization and

the second tenant leverages SIMD and support for memory coalescing. Many of the

challenges associated with programming a GPU would apply in implementing a task

parallel runtime for other accelerators.

A requirement of the first tenet is that the overhead on the critical path does

not vary with number of cores or effect the work. To apply this tenet to fork/join

parallelism, a runtime will expand parallelism in a breadth-first manner and execute

each level of the generated task dependency graph in a bulk-synchronous manner.

This will be more precisely described in Section 5.4.2 with an abstract machine to

reason about a work-together interpretation of a task parallel program. By executing

70

a task parallel program in this manner, the GPU hardware can handle load balancing

and memory consistency in the same way it does for graphics operations, in bulk;

further, the CPU can resolve task dependencies in bulk on the GPU’s behalf. The

aforementioned operations are all paid at once along the critical path.

A requirement of the second tenet of the work-together principle is that the work

overhead is reduced by performing the same operation at the same time. To apply

this tenet, a runtime should leverage SIMD operations to reduce the overhead of

fork and join operations by the SIMD width. A well designed runtime will make

a best effort to ensure that forking, joining, and finding tasks leverage memory

coalescing and avoid branch divergence. Further, atomic operations should be kept

to a minimum and SIMD units should combine atomic operations using a GPU’s

local memory.

The two tenets of the work-together principle provide the same performance

bound as the work-first principle (Tp = o1
T1

P
+ o∞T∞). However, the critical path

overhead is no longer proportional to the number of processors as it is with work-

stealing; in fact, the critical path is constant with both work and number of proces-

sors. Since the work-together principle does not require fine-grain synchronization,

a work-together runtime avoids work overheads due to interference caused by the

memory fences. On GPUs, interference results from the implementations of memory

fences that flush caches and halt core execution for work-items that share a compute

unit.

The work-together principle enables task parallelism on a GPU because the hard-

ware provides efficient mechanisms for bulk-synchronous operations (first tenet) and

coalescing memory operations (second tenet). The bulk-synchronous operations, fur-

ther, can be used to guarantee memory consistency and the completion dependent

of tasks level-by-level. Load balancing can be performed efficiently by built-in hard-

ware. Finding tasks, forking a new task, and scheduling joins can leverage the SIMD

71

width and memory coalescing to reduce the overhead incurred by these operations

on the work.

5.4.2 TVM : Thinking about work-together

The Task Vector Machine (TVM) is an abstract machine with N cores that enables

directly understanding the execution of a task parallel program using the work-

together principle. The TVM contains a N -wide vector of tasks (function name and

arguments), or Task Vector (TV), whose execution is predicated by a stack of N -wide

execution masks, or Task Mask Stack (TMS) as shown in Figure 5.1. Each execution

mask in the TMS is what will be called an epoch of an algorithm’s critical path and

the nubmer of valid bits to ever be in the TMS represent the work of an algorithm.

C1 C2 CN

memory

Cores

Task1 Task2 TaskN Task Vector (TV)

Task Mask Stack (TMS)

head of TMSMask1 Mask2 MaskN

Figure 5.1: The Task Vector Machine (TVM)

72

TVM interface Program

void v i s i t (node) {
//DO VISIT

}
task void preorder (node) {

i f (node != n i l) {
v i s i t (node)
fork preorder (node . r i g h t) ;
fork preorder (node . l e f t) ;

}
}
task void pos to rder (node) {

i f (node != n i l) {
fork pos to rder (node . r i g h t) ;
fork pos to rder (node . l e f t) ;
join v i s i t A f t e r (node) ;

}
}
task void v i s i t A f t e r (node) {

v i s i t (node) ;
}

Figure 5.2: Preorder and postorder tree traversal on TVM.

Figure 5.2 gives an example of programming to the TVM interface that traverses a

TREES in preorder or postorder. The key operations are fork, join, and emit that

create a new task, wait for created tasks to complete, and return a value respectively.

Currently TVM interface programs require explicit continuation passing [55] like

the original cilk [9]. In the future, we would expect that a variety of task parallel

programming languages could be compiled into the TVM interface.

Data Parallel Tasks :

A TVM interface cannot entirely work-together without the ability to leverage

the SIMD nature of a target platform. Since GPUs have a high-bandwidth and

low-latency local memory available to work-groups, a data parallel map operation

will launch a workgroup to execute part of a task parallel program. Using map can

incur a much smaller overhead per amount of computation performed than a fork

operation.

73

TVM execution model

Each epoch of TVM execution can be divided into three parts and an initialization

stage.

Initialize:

When the TVM is constructed, it is parameterized by N , and an initial task to

start executing. The TMS and TV start out empty (full of zeros) and an index to

next available entry in both the TV and TMS is set to zero. When the initial task is

added to the TVM: the next available entry is incremented to one; a new execution

mask is pushed on to the TMS containing a one at index zero and a 0 in the rest

of the mask; and index zero of the TV is filled with the function and arguments for

the initial task (postorder(root) in figure 5.2). At this point the TVM will proceed

to execute phase 1.

Phase 1:

When the TVM enters phase 1: an execution mask is popped from the head of

the TMS; a mask for fork operations (i.e. fork mask) is reset to all zeros; and a

mask for join operations (i.e. join mask) is reset to all zeros. At this point the TVM

proceeds to phase 2. If the TMS was empty when popped, execution is complete and

the TVM is destructed instead of proceeding to phase 2.

Phase 2:

When the TVM enters phase 2 each core checks the execution mask for a value

of one. If a core reads a value of one then it executes the task specified in the TV

(for example postorder(root)). During the execution of a task a core may: fork an

new task (i.e. fork postorder(node.right)); schedule a join to continue after forked

task have completed (i.e. join visitAfter(node)); return a value to a parent task with

emit; schedule a data parallel task with map; and access memory. After all cores

have check their execution mask and ,if valid, executed the task in their indexes into

74

the TV the TVM continues to phase 3.

Fork:

When a core calls fork, that core atomically increments the index to the next

available index into the TV and TMS. The return value of the atomic, or fork index,

of the atomic operation is associated with a core that has an empty TV and TMS

entry. To complete the fork operation: the fork mask at the fork index is set to

one; the TV entry at fork index is filled with the specified function and arguments

(postorder(node.right)).

Join:

When a core calls join: the core resets its entry in the TV to a new task to

execute after any forked task (i.e. visitAfter(node)); the core sets the index into the

join mask at its index to be one; and the core terminates execution of the current

task.

Emit:

When a core calls emit, the core resets its entry in the TV to hold the return

value of that task and terminates execution of the current task.

Map:

When a core calls map, a data parallel task is executed asynchronously before

the next epoch begins.

Phase 3:

When the TVM enters phase 3: the TVM performs a population count on the

join mask and if the count is non-zero, the join mask is pushed on to the TMS; then

the TVM performs a population count on the fork mask and if the count is non-zero,

the fork mask is pushed onto the TMS; and finally, the TVM executes any map

operations specified during phase 2. The TVM proceeds back to phase 1 to begin

the next epoch.

75

Time Complexity

The time complexity of the execution of a program on the TVM can, like a task par-

allel program, can be broken into the critical path (T∞) and work (T1). The critical

path is the number of epochs. On an ideal TVM with O(T1) cores, the execution

time is O(T∞). The work of the algorithm is the sum of all times the execution Mask

has a non-zero value. Since the TVM targets a GPU, the runtime on system with

P -processors that are each W -wide SIMD would be a decent approximation of a

GPU. Such a system would yield an execution time to be TP,W = o1
log(W)T1

PW
+ o∞T∞,

because we pessimistically expect an average divergence penalty to be log(W). The

best case execution time is when the SIMD width executes without divergence and

TP,W = o1
T1

PW
) + o∞T∞. Alternatively, the execution can be upper bounded by the

maximum nesting of branches (D) where (2D < W) to be TP,W = o1
2DT1

PW
+ o∞T∞.

Space Complexity

Each core in the TVM requires space for a function, arguments, and a stack of bits.

As a result, the space complexity of an algorithm running on the TVM is upper-

bounded by the work (O(T1)) and lower bounded by the parallelism (Ω(T1

T∞
)) of an

algorithm. The upper bound holds because each task can only use one function, one

set of arguments, and one stack of bits that each require memory to compute the

work. The lower bound holds because there needs to be at least one function, one set

of arguments, and one stack of bits for each active task (parallelism). The TV must

be sized to the work of the problem for divide and conquer problems, because there

are O(T1) join operations to perform the conquer operations. The lower-bound occurs

when there are no join operations like in a graph traversal. This means that, there

only need to be enough TV entries for the maximal amount of the graph traversed.

76

5.4.3 Current work-together systems

Recent work in irregular parallel programs on GPUs can be interpreted to abide by

the work-together principle. These programs take a data-driven rather than topology

driven approach to graph algorithms [42] where there is an input worklist and an

output worklist. The input worklist is read in a coalesced fashion and synchronization

of completing writes to the output worklist is paid at kernel boundaries. Since this

data-driven technique performs competitively with a topological approach, this bodes

well for the applicability of the work-together principle for a wider array of graph

problems.

5.5 TREES: Work-together on GPUs

The work-together principle has the ability to enable efficient fork/join parallelism

on GPUs. In this section, we show how to implement a runtime that obeys the

work-together principle. The Task Runtime with Explicit Epoch Synchronization

(TREES) implements the TVM execution model described in Section 5.4.2. A source

to source compiler converts a TVM interface program into a OpenCL program that

contains the TREES runtime. Technically, TREES could be implemented in another

heterogeneous programming language, but OpenCL provides portability.

TREES gets its name from from the use of the same epochs from the TVM. Each

epoch runs to completion before another epoch is executed. As a result, the use of

epochs explicitly synchronizes all dependent tasks without individually updating task

dependencies by using the last-in-first-out behavior of the TMS. TREES executes

each epoch in the same set of phases as the TVM and TREES initializes the TVM

in the same way.

5.5.1 TVM to TREES

Task Vector:

77

Structurally, TREES represents the task vector with a structure of N -wide arrays

of integers. The functions are represented as an array of N enumerations of the tasks

in a TVM interface program. The arguments are split in to 4 byte chunks as an array

of N integers. The arrangement in a structure of arrays enables memory coalescing

when reading or writing any of the arrays in the TV. The arrays are allocated in the

GPU’s memory space.

Task Mask Stack:

TREES replaces the TMS with an epoch number (EN) that is used to encode

the enumerations in the array of functions in the TV to created an array of epoch

encoded functions or entries (entry = function + EN ∗NumFunctions). When an

entry is decoded (entry−EN ∗NumFunctions) only valid functions are executed on

the GPU. The host CPU takes on the role of managing which epoch number needs

to be executed, where the CPU uses a kernel argument to pass the epoch number to

the GPU. Instead of a TMS, the CPU maintains a stack of epoch numbers, or join

stack.

Cores:

TREES represents each TVM core as an OpenCL work-item and each epoch as a

kernel launch with an NDRange that holds at least the TVM cores that can execute

their TV entry in the current epoch. The work-items are split into work-groups of

256 work-items that are scheduled to GPU compute units with a GPU hardware

scheduler. The NDRange of each epoch depends on fork, join and map operations

and is maintained in an NDRange stack that parallels the join stack.

Forks, Joins, and Maps:

To handle forks, joins, and maps, TREES maintains three shared values that are

transferred to the GPU between phase 1 and phase 2. After phase 2 completes, these

values are transferred back to the CPU. One value is the next available slot in the task

vector, nextFreeCore. Another is whether a join was scheduled in the last epoch,

78

joinScheduled. The third value is whether any data parallel map operations were

scheduled in the last epoch, mapScheduled. To fully represent fork operations, the

value of nextFreeCore is saved in phase 1 to oldNextFreeCore.

5.5.2 Initialize

To initially fill to TV, the CPU launches a single task to the GPU to fill the TV

with the first task specified by the TVM interface program (i.e. postorder(root)).

Using a kernel on the GPU prevents the entire TV from being copied from the CPU

memory space into the GPU memory space.

At this point the epoch number is zero, nextFreeCore is one, oldNextFreeCore

is zero, the join stack is empty, joinScheduled is zero, and mapScheduled is zero.

TREES pushes epoch number 0 onto the join stack and pushes and NDRange con-

taining work-items 0 through 1 onto the NDRange stack. TREES proceeds to phase

1 of execution.

5.5.3 Phase 1

Determine Epoch Number and NDRange:

To determine the epoch number, TREES pops the join stack. To determine the

NDRange associated with that epoch, TREES pops the NDRange stack. If the join

stack is empty, the TVM interface program is complete.

Prepare Shared Variables:

Before TREES can enter phase 2: mapScheduled and joinScheduled are set

to zero; oldNextFreeCore is set to the current value of nextFreeCore; and the

values of oldNextFreeCore, joinScheduled, and mapScheduled are transferred

to the GPU. TREES then enters phase 2.

79

5.5.4 Phase 2

CPU

TREES sets up an OpenCL kernel to execute the current state of the task vector

with the epoch number and NDRange determined in phase 1. The CPU enqueues

the kernel and waits for the GPU to complete the execution of the epoch. After

waiting for the GPU to complete the execution of an epoch, the CPU enqueues a

transfer of nextFreeCore, joinScheduled, and mapScheduled from the GPU

memory space back the CPU memory space. At this point the CPU waits for the

GPU to complete the execution of the enqueued kernel.

GPU

Each work-item in the current NDRange loads its entry from the Task Vector and

decodes the entry with the epoch number to determine what function to execute with

an if-else tree. These work-items will execute a non-recursive function that can access

memory, fork a new task, join a continuation, return a value, and schedule a data

parallel task. When all 256 work-items in a workgroup complete, a new workgroup is

launched on that compute unit with the hardware scheduler. The hardware scheduler

provides load balancing at very little cost to the work. Entering the driver to launch

the kernel and transferring the shared variables create the critical path overhead.

Trends in GPU hardware and drivers suggest that these overheads will become ever

smaller.

Fork:

When a core calls a fork: the core atomically increments nextFreeCore using

a local memory reduction to ensure a single atomic operation per wavefront; each

core uses the return value of the atomic to index into a new slot in the task vector;

each core uses a coalesced write to the TV to set the entry to a function enumeration

encoded with the current epoch number plus one (entry = function + (EN + 1) ∗

80

NumFunctions); and each uses a coalesced write for each argument in the TV to

set all of the arguments to the function that was forked.

Join:

When a core calls a join: the core sets joinScheduled to one that is coalesced

automatically across the wavefront; each core uses its own index to write the task

vector; each core uses a coalesced write to the TV to set the entry to a function

enumeration encoded with the current epoch number (entry = function + EN ∗

NumFunctions); and each uses a coalesced write for each argument in the TV to

set all of the arguments to the function that will continue after forked tasks execute.

Emit:

When a core calls a join: each core uses its own index to write the task vector;

each core uses a coalesced write to the TV to set the entry to zero; and each uses a

coalesced write for each return value in the TV to set all of the arguments slots so

that a parent’s join can use those values.

Map:

When a core calls a map: the core atomically increments nextFreeCore using

a local memory reduction to ensure a single atomic operation per wavefront; each

core also sets mapScheduled to one so that can be read later; each core uses the

return value of the atomic to index into a new slot in the task vector; each core uses

a coalesced write to the TV to set the entry to a function enumeration encoded to

only be valid in a kernel that launches map operations (entry = mapfunction −

NumFunctions); and each uses a coalesced write for each argument in the TV to

set all of the arguments to the function that was forked. Currently it would seem

trivial to include fork, join, emit, and map operations, but future implementations

can use dynamic parallelism for this operation which would separate the execution

of these tasks from the execution of the TVM.

81

5.5.5 Phase 3

TREES checks the value of joinScheduled; if the value is one, the current epoch

number and NDRange is pushed onto join stack and the NDRange stack respectively.

TREES then compares oldNextFreeCore and nextFreeCore; if the values differ

an epoch number one greater than the current is pushed onto the join stack and an

NDRange from oldNextFreeCore to nextFreeCore is pushed onto the NDRange

stack. TREES checks the value of mapScheduled and, if it is one, launches a kernel

consisting of the data parallel map operations scheduled during the last epoch. This

kernel runs to completion before TREES returns to phase 1.

5.5.6 TREES Example

This section steps through the state of TREES running a TVM interface program

traversing a tree in postorder. The tree is shown in Figure 5.3. Table 5.1 shows the

state of TREES as the epochs progress. The TV and TMS column bolds the entries

valid to execute in the epoch specified on that row due to a one in the execution

mask. Initially the system performs a postorder traversal of the root node, A. This

will fork the postorder traversal of nodes B and C and join a visit to node A. The

traversal will execute on the GPU which will atomically increment the counter to the

next free slot in the TV and initialize each of those entries to do a traversal of B and

C. Further, the execution also writes the schedule join variable to true which tells

the CPU push epoch 0 onto its stack of join operations. This same process occurs

until epoch 3. At this point, no new tasks are forked and no joins were scheduled.

As a result, the next free entry can be moved back to slot 7 and the head of the

stack of joins can be popped to determine the next epoch. This process continues

until the stack of joins is empty and the program is complete.

82

A

C

F

∅∅

E

∅∅

B

∅D

Figure 5.3: Example binary tree with 6 nodes

Table 5.1: Postorder tree traversal in TREES of Figure 5.3 where taskType of pos-
torder = 1 and visitAfter = 2
Epoch TV and TMS = 2∗epoch+taskType

node
next free entry schedule join? stack of joins

0 | 1
A
| 1→ 3 false→ true []→ [0]

1 | 2
A
| 3
B
| 3
C
| 3→ 7 false→ true [0]→ [1, 0]

2 | 2
A
| 4
B
| 4
C
| 5
D
| 5
E
|5∅ |

5
F
| 7→ 13 false→ true [1, 0]→ [2, 1, 0]

3 | 2
A
| 4
B
| 4
C
| 6
D
| 6
E
|6∅ |

6
F
|7∅ |

7
∅ |

7
∅ |

7
∅ |

7
∅ |

7
∅ | 13→ 7 false→ false [2, 1, 0]→ [2, 1, 0]

2 | 2
A
| 4
B
| 4
C
| 6
D
| 6
E
|6∅ |

6
F
| 7→ 3 false→ false [2, 1, 0]→ [1, 0]

1 | 2
A
| 4
B
| 4
C
| 3→ 1 false→ false [1, 0]→ [0]

0 | 2
A
| 1→ 0 false→ false [0]→ []

5.6 Experimental Evaluation

The goal of this results section is to show that GPUs can be used for a set of

applications conventionally believed to be a bad idea for GPUs. The proof of TREES

impressive performance is exemplified when comparing to current GPU and CPU

parallel programming techniques. The benefits of TREES are exemplified in three

case studies that point out the flexibility and performance of TREES implementing

the TVM. We focus on building intuition rather than a large number of benchmarks

that show the exact same point. Other workloads were implemented and show no

more interesting behavior than the ones shown here. Further, we anecdotally analyze

how easy it is to program the TVM interface.

The first case study shows that fork/join parallelism in TREES outperforms

83

fork/join parallelism in the cilk-5 runtime on CPUs while being limited to the same

power and memory constraints. The second case study shows that support for task

parallelism in TREES enables competitive performance on emerging graph algo-

rithms based on work-lists. Finally, the third case study shows that TREES can

perform similar to native OpenCL on regular data parallel operations with the use

of data parallel map operations. In the end, this evaluation shows that the TVM

provides an expressive interface that is efficiently implemented with TREES.

5.6.1 Programming the TVM interface

Beyond these case studies, we anecdotally analyzed the expressiveness of a program

using the TVM interface with undergraduate programmers with no parallel program-

ming experience. Many of the undergrads had only taken undergraduate computer

architecture and introduction to data structures and algorithms. We found that

undergrads were able to write a task parallel nqueens, matrix multiply, traveling

salesman, breadth-first search, and simulated annealing. Many of these programs

were done with 10-20 hours of work. Most of this work was understanding the al-

gorithm. Implementation on the GPU generally took less than 2-4 hours depending

on the state of the runtime. The original undergrads needed to write code directly

in OpenCL. After creating a compiler from the TVM interface, programming sped

up dramatically. By comparison, I took around 20 hours to create the first TREES

prototype application that computed Fibonacci numbers. The next program which

was a simple merge sort took me about 1 hours to modify the OpenCL from the

Fibonacci. The FFT, bfs, and sssp in case studies 1 and 2 each took less than 1 hour

to implement after figuring out the algorithms.

84

5.6.2 Case Study Methodology

Case studies 1 through 3 will be evaluated with the AMD A10-7850k APU the

exemplifies the type of system that is the best case for TREES. This is the first

chip to support shared virtual that allows for low latency kernel launch and memory

transfers. All experiments are run with the Catalyst 14.1 drivers on the Linux 3.10

kernel with OpenCL 1.2.

5.6.3 Case Study 1: Outperforming CPUs running cilk

In this section, we compare the TVM and TREES on GPU with both a sequential

CPU and a CPU running cilk. We will look into two extreme cases, the first is a

naive implementation of calculating Fibonacci numbers and the latter is calculating

an FFT. The Fibonacci example contains many tasks with almost no work to do,

while the FFT contains many tasks that actually perform a significant amount of

computations. We will present results for both, the time spent in computation as

well as the time spent running the entire program (including OpenCL compilation

and initialization overheads).

Figure 5.4 shows results for Fibonacci because it stresses a runtime system to con-

sist almost entirely of overhead. When excluding the initial OpenCL overheads in

TREES, we find that the GPU can outperform the parallel performance of cilk with

4 processor. Excluding the OpenCL overheads is reasonable since it is not related

to the benefits TREES provides. Since the relative performance does not vary with

problem size, TREES balances load similarly to the cilk-5 runtimes. When consider-

ing the OpenCL overheads TREES does perform worse than cilk. To overcome the

initialization overheads we evaluate a task parallel program with more computation.

FFT performs a significant amount of computation and we evaluate a sequential,

cilk, and TREES implementation of FFT. In all cases we separate the computational

section of the code from the entire program runtime in Figure 5.5. We also show

85

the entire runtime of the program in Figure 5.6. In this case study we do not use

data parallel map operations. When excluding initialization costs, TREES always

outperforms the sequential and cilk implementation. When including initialization

costs, an FFT must be larger than 1M to see a benefit from using the GPU.

These experimental results are particularly compelling because both the CPU

and GPU in this example are constrained to the same memory bandwidth and power

supply. In fact, the GPU and CPU use up similar die area on the APU. Since the

speedup using only the GPU for this task parallel computation exceeds 8x over the

sequential version, it is useful to have placed the GPU on the chip.

Figure 5.4: Performance of Fibonacci

86

Figure 5.5: Performance of FFT Kernel

87

Figure 5.6: Performance of FFT Whole Program

5.6.4 Case Study 2: Comparison to work lists

Emerging work in GPU graph algorithms have begun to use work-lists to exploit the

irregular parallelism in graph algorithms. In many ways the techniques used in this

work are a subset of the TREES implementation. The Lonestar GPU benchmark

suite uses work-lists to implement bfs (breadth-first search) and sssp (single-source

shortest-path). These benchmarks use an input and output work-list to allow efficient

push and pull operations. The pull operation is data parallel on the input work-

list. Pushing to the output work-list uses a single tail pointer that is atomically

incremented with new vertices to explore. After a kernel execution has completed,

the host transfers a single int to see if a new relaxation kernel is necessary. If a

new relaxation kernel is necessary, the input and output work-lists will be swapped

88

and the launch bounds of the next kernel will be determined by the size of the old

output worklist. This execution continues until no new nodes are explored during a

relaxation kernel. Fundamentally, this is what occurs in the TREES runtime, with

the exception of using separate work-lists. Unsurprisingly, TREES performs nearly

the same as an OpenCL port of Lonestar’s work-list based bfs and sssp. Both TREES

and the work-list techniques perform worse than a topology driven execution.

Figures 5.7 and 5.8 show the performance of TREES versus an OpenCL port of the

worklist versions of bfs and sssp form the Lonestar GPU benchmark suite. We can see

that TREES is never more than 6% slower than the Lonestar equivalent benchmark.

The performance difference likely comes from the extra load to determine the task

type of the bfs and sssp. Overall, these results show that we are paying minimal cost

for the generality of TREES. In these experiments we consider only the portion of

the program executing on the GPU to show the worst case for TREES.

89

Figure 5.7: Performance of BFS

90

Figure 5.8: Performance of SSSP

5.6.5 Case Study 3: Optimization with mappers

In this section, we study the use of data parallel map operations to optimize a task

parallel merge sort. This case study does not represent the typical use of TREES

since the parallelism available is highly regular. However, it does show that TREES

still enables near-native OpenCL performance with programmer effort.

We note that the basic implementation of merge sort in TREES performs sig-

nificantly worse than the data parallel native OpenCL bitonic sort. To overcome

this difference we implemented an equivalent algorithm in TREES. The TREES im-

plementation has double the kernel launches, additional memory copies, and reads

arguments from global memory instead of parameter space. After all of these over-

heads, the performance of TREES is only half of that of the native OpenCL kernel.

91

From this analysis, it is likely that a worst case performance loss between a native

data parallel program and TREES would be 2-3x.

Figure 5.9 confirms that the performance of a Naive implementation of merge

sort on TREES will perform vastly worst than an native OpenCL implementation

using data parallel kernels. We show that we can easily bridge this gap using data

parallelism in TREES. In both the naive version and the data parallel extension, we

show consistent performance across many list sizes. Though is disappointing that

there is a performance hit for TREES in this case. The upshot is that the overheads

of TREES are scalable and independent of the problem size

Figure 5.9: Performance of Sort

92

5.7 Related Work

There have been two avenues of prior work in providing some aspects of our desired

programming model for GPUs. First, both CUDA 5.0 and the recently announced

OpenCL 2.0 support “dynamic parallelism,” in which a GPU kernel can directly

launch a new kernel [44, 57]. Dynamic parallelism thus facilitates task-parallel pro-

gramming, but with three significant drawbacks. First, there is a tradeoff between

programmability and performance. If one writes a task with a single thread, which

is how CPU programmers write task-parallel software, the kernel will have a single

thread and will suffer from poor performance on the GPU. The second drawback

to dynamic parallelism is potential deadlock: if a parent task is waiting for a child

task to complete and the parent task suffers any branch divergence, then deadlock

can occur [27]. The third drawback is hardware cost and portability: dynamic paral-

lelism requires a modification of the GPU hardware, and the vast majority of current

GPUs do not support dynamic parallelism.

The other avenue of prior work in providing task parallelism on GPUs is based

on persistent threads [26]. A persistent thread, unlike a typical GPU thread, loops

instead of running to completion. Although the original paper [26] did not specifically

propose using persistent threads to support task-parallel programming, subsequent

work has done just this [15, 58]. That is, in each loop iteration, each persistent thread

finds a task to execute, executes the task, and then optionally adds one or more new

tasks to a queue. Like dynamic parallelism, this prior work in using persistent threads

for task parallelism achieves poor performance on the single-threaded tasks used in

CPU programming models, due to an inability to exploit the GPU hardware. The

performance of persistent threads also suffers when persistent threads are idle yet

contending for resources (e.g., the global memory holding the task queue). Persistent

threads also suffers from being extremely difficult to debug, because GPUs require a

93

kernel to complete before providing any access to debugging information (e.g., host

or GPU printf). Furthermore, not all hardware supports interrupting execution, in

which case a buggy persistent threads program can require a hard reboot.

The StarPU runtime [7] supports task parallelism on heterogeneous systems, in-

cluding CPU/GPU systems, but it has a somewhat different goal than TREES or the

previously discussed related work. StarPU seeks to provide a uniform and portable

high-level runtime that schedules tasks (with a focus on numerical kernels) on the

most appropriate hardware resources. StarPU offers a much higher level interface to

a system, with the corresponding advantages and disadvantages.

The OmpSs programming model [46] extends OpenMP to support heterogeneous

tasks executing on heterogeneous hardware. OmpSs, like most prior work, would

only achieve good performance on GPUs if the tasks themselves are data-parallel.

Inspiring all prior work on task parallelism for GPUs is the large body of work

on task parallelism for CPUs. Cilk [47] and X10 [14] are two notable examples in

this space, and both prior work and TREES borrow many ideas and goals from this

work. The TVM, in particular, strives to provide a programming model that is as

close to the CPU task programming model as possible.

Other researchers have explored the viability of running non-data-parallel, irreg-

ular algorithms on GPUs [13, 43]. This work has shown that GPUs can potentially

achieve good performance on irregular workloads. Interestingly, Nasre et al. [42] have

looked into irregular parallel algorithms from a data-driven rather than topology-

driven approach, and this approach uses a task queue to manage work. TREES

could complement this work by providing portable support for this task queue.

5.8 Conclusion

TREES provides a new use case for emerging heterogeneous systems, where an in-

tegrated GPU can be used to greatly improve the performance of irregular parallel

94

workloads. Further, the TVM proposes a new way to easily reason about the perfor-

mance of these irregular workloads. As the TVM effectively exposes task parallelism

to the programmer and TREES implements this task parallelism efficiently, this work

helps break the data parallel bottleneck that limits the use of GPUs. TREES em-

braces increased coupling between heterogeneous computing to offload dependency

scheduling, memory consistency, and load-balancing to the CPU and built-in hard-

ware mechanisms. Thus, we enable greater GPU occupancy by avoiding those chal-

lenges in software running on the GPU. We believe that such techniques can be used

for other specialized but programmable hardware.

95

6

Conclusions

The conclusion of this thesis will summarize the tangible results, the intangible

lessons learned, and future directions suggested. This format is useful because it

can inspire future researchers to look at parallelism in a different light without the

requirement for absolute correctness.

6.1 Summary

In this thesis, we showed it is often possible to rethink throughput-oriented archi-

tectures from the programmers prospective to achieve high performance and easy

programmability. First, we showed that write-buffers were essentially useless on

a future cache coherent massively-threaded accelerator. This observation enables

strong consistency models with little performance overhead. Second, we showed that

it is possible to design a GPU memory system that seamlessly supports future ap-

plications with fine-grain synchronization and current workloads with coarse-grain

synchronization, which enables programmers to over-synchronize code without a loss

in performance. Finally, we showed it is possible for the programmer to reason about

fine-grain synchronization operations, but present bulk-synchronization operations to

96

the GPU hardware, which enables highly efficient performance on task parallelism

on a GPU.

It is useful to understand that the underlying tenets of all of these areas of re-

search have the same foundation in thinking about problems across levels of the

computation stack from the programmers perspective. When considering multiple

layers of the stack concurrently, it is more clear what to optimize and why. When

considering the many cores in a GPU, memory-level parallelism is most importantly

achieved with thread-level parallelism rather than exposing instruction-level paral-

lelism. When designing a write-through memory system with fences, assume the

programmer needs to be overly careful. As a result, it is possible to design a high-

throughput system whose performance is not killed by synchronization. However,

after thinking about ways to implement synchronization, it is often better to re-

think what the programmer wants from a synchronization operation. In general the

programmer is attempting to schedule dependent events. When designing synchro-

nization, we give the programmer what he wants while providing a sensible interface

to hardware.

6.2 Lessons Learned

Through the research process many lessons are learned and this is a non-exhaustive

list of what future researchers in GPUs and memory consistency should know. As

an architect, the first goal in research was to think about how to make the hardware

better. However, if one ignores the software, it is very easy just to optimize some-

thing entirely useless. As a result, it is necessary to truly understand Amdahl’s law

when thinking about parallelism. The obvious problem then becomes understanding

the common case. The common case is good parallel code where corner cases in

coherence and consistency do not occur. In general systems will naturally execute in

sequentially consistent order due to the lack of data races. However, significant effort

97

is spent on the performance and correctness of corner cases where non-sequentially

consistent executions are possible.

To this end, it is best to think about consistency and coherence from the per-

spective of what it provides rather than how complex it is or how much it costs.

For example, cache coherence and shared memory enable the use of work-stealing

schedulers. Such schedulers efficiently balance the load of a task parallelism. Fur-

ther, coherence is useful because the performance to access private data is as fast as

a cache access, while fine-grain sharing only slightly degrades that performance.

Memory consistency is important when scheduling dependent operations. How-

ever, this is a very difficult problem on a throughput architecture since the sys-

tem needs to both write a result and inform the scheduling system the write is

done. By definition, this requires strong consistency or a fence operation. In

a throughput-oriented system, strong consistency and fence operations will limit

throughput. Such scheduling systems will also require busy-waiting for dependen-

cies to complete. Throughput architectures should not busily wait for dependent

operations to complete to enable the maximal throughput.

Never think that a GPU has enough threads and memory to solve an NP-complete

problem in parallel. The brute force answer is still way too complex for thousands

of threads to make a dent. This is more obvious when thinking about the number of

cores in a system. Often CPU based systems have dozens of cores or log(n), while

GPU system may have at best thousands of cores of log2(n). When considering a

problem that is 2n, a logarithmic factor does not help much. Clearly, randomized

algorithms are the only way forward, but generating random numbers in parallel is

either expensive or less random.

Finally, don’t be afraid to go against conventional wisdom or research inertia.

Sometimes the old problem is old because it has been solved.

98

6.3 Future Directions

Hardware Support for synchronization:

GPUs could likely benefit from hardware support for synchronization operations.

Building support in hardware for TREES-like fork and join operations could signifi-

cantly improve the performance. Further, if hardware is aware of locks and condition

variables writing correct irregular code could become much easier.

TVM on FPGA/ASIC:

The TVM is an interesting formal abstract machine and is a good candidate for

direct implementation. The cost of fork, join, and communication with the host can

be almost entirely factored out of the system. The hardware implementation would

not reduce the space complexity of the TVM and TREES, but we could imagine

storing the Task Vector in a large low power memory because its access pattern is

highly predictable.

System calls on TREES:

The design of TREES enables multiple types of specialized kernels to interact

as well as resolve any dependencies in bulk. This type of design could work for IO

operations and other various system calls. This use of TREES would enable new

levels of programmability without requiring hardware support. However, it would

be possible to use hardware support to gracefully improve performance.

Apply work-first/work-together to out-of-order core design:

Instruction-level parallelism is not all that different from task parallelism at a

fundamental level. One way to think about an out-of-order core currently, is that

out-of-order cores obey the work-first principle. Out-of-order cores create a longer

pipeline (i.e. critical path) in order to keep the pipeline as full as possible (i.e. work).

In fact, it is possible to think of Multiscalar [53] as the work-together principle applied

to out-of-order core design.

99

Bibliography

[1] S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A tu-
torial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996.

[2] S. V. Adve and M. D. Hill, “Weak ordering: A new definition,” in Proceedings
of the 17th Annual International Symposium on Computer Architecture, 1990,
pp. 2–14.

[3] S. V. Adve and M. D. Hill, “A unified formalization of four shared-memory
models,” IEEE Transactions on Parallel and Distributed Systems, Jun. 1993.

[4] AMD, Southern Islands Series Instruction Set Architecture, 2012.

[5] AMD, Accelerated Parallel Processing (APP) SDK, 2013.

[6] Arvind and J.-W. Maessen, “Memory model = instruction reordering + store
atomicity,” in Proceedings of the 33rd Annual International Symposium on Com-
puter Architecture, Jun. 2006, pp. 29–40.

[7] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A unified
platform for task scheduling on heterogeneous multicore architectures,” Con-
currency and Computation: Practice and Experience, Special Issue: Euro-Par
2009, pp. 187–198, 2011.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Com-
put. Archit. News, p. 17, Aug. 2011.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou, “Cilk: An efficient multithreaded runtime system,” Journal of
parallel and distributed computing, vol. 37, no. 1, 1996.

[10] H.-J. Boehm and S. V. Adve, “Foundations of the c++ concurrency memory
model,” in Proceedings of the Conference on Programming Language Design and
Implementation, Jun. 2008.

100

[11] A. Branover, D. Foley, and M. Steinman, “AMD’s llano fusion APU,” IEEE
Micro, 2011.

[12] R. P. Brent, “The parallel evaluation of general arithmetic expressions,” Journal
of the ACM (JACM), vol. 21, no. 2, 1974.

[13] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on GPUs,” in IEEE International Symposium on Workload Charac-
terization, 2012, pp. 141–151.

[14] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar, “X10: An object-oriented approach to non-uniform
cluster computing,” in Proceedings of the 20th Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming, Systems, Languages, and Applications,
2005, pp. 519–538.

[15] S. Chatterjee, M. Grossman, A. Sb̂ırlea, and V. Sarkar, “Dynamic task paral-
lelism with a GPU work-stealing runtime system,” in Languages and Compilers
for Parallel Computing, ser. Lecture Notes in Computer Science, S. Rajopadhye
and M. Mills Strout, Eds. Springer Berlin Heidelberg, 2013, vol. 7146, pp.
203–217.

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in Proceedings of
the IEEE International Symposium on Workload Characterization, 2009, pp.
44–54.

[17] Compaq, Alpha 21264 Microprocessor Hardware Reference Manual, Jul. 1999.

[18] P. Conway and B. Hughes, “The AMD opteron northbridge architecture,” IEEE
Micro, vol. 27, no. 2, pp. 10–21, Apr. 2007.

[19] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes, “Cache
hierarchy and memory subsystem of the AMD opteron processor,” IEEE Micro,
vol. 30, no. 2, pp. 16–29, Apr. 2010.

[20] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, “From
CUDA to OpenCL: towards a performance-portable solution for multi-platform
GPU programming,” Parallel Computing, 2011.

[21] W.-c. Feng, H. Lin, T. Scogland, and J. Zhang, “Opencl and the 13 dwarfs: a
work in progress,” in Proceedings of the third joint WOSP/SIPEW international
conference on Performance Engineering. ACM, 2012.

101

[22] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the Cilk-5
multithreaded language,” ACM Sigplan Notices, vol. 33, no. 5, 1998.

[23] B. Gaster and L. Howes, “Can gpgpu programming be liberated from the data-
parallel bottleneck?” Computer, vol. 45, no. 8, pp. 42–52, August 2012.

[24] J. Goodacre and A. N. Sloss, “Parallelism and the ARM instruction set archi-
tecture,” IEEE Computer, vol. 38, no. 7, pp. 42–50, Jul. 2005.

[25] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM Journal
on Applied Mathematics, vol. 17, no. 2, 1969.

[26] K. Gupta, J. Stuart, and J. Owens, “A study of persitent threads style GPU
programming for GPGPU workloads,” in Proceedings of InPar, May 2012.

[27] M. Harris, “Many-core GPU computing with NVIDIA CUDA,” in Proceedings
of the 22nd Annual International Conference on Supercomputing, 2008, p. 11.

[28] B. A. Hechtman and D. J. Sorin, “Exploring memory consistency for massively-
threaded throughput-oriented processors,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, 2013.

[29] M. D. Hill, “Multiprocessors should support simple memory consistency mod-
els,” IEEE Computer, vol. 31, no. 8, pp. 28–34, Aug. 1998.

[30] D. R. Hower, Hechtman, Blake A., Beckmann, Bradford M., Gaster, Benedict
R., Hill, Mark D., Reinhardt, Steven K., and Wood, David A., “Heterogeneous-
race-free memory models,” in ASPLOS ’14, 2014.

[31] HSA Foundation, “Deeper look into HSAIL and it’s runtime,” Jul. 2012.

[32] HSA Foundation, “Standards,” 2013.

[33] Intel, A Formal Specification of Intel Itanium Processor Family Memory Order-
ing, 2002.

[34] L. Lamport, “How to make a multiprocessor computer that correctly executes
multiprocess programs,” IEEE Transactions on Computers, pp. 690–691, Sep.
1979.

[35] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt,
and V. J. Reddi, “GPUWattch: enabling energy optimizations in GPGPUs,” in
proc. of ISCA, vol. 40, 2013.

102

[36] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, The
Directory-based Cache Coherence Protocol for the DASH Multiprocessor. ACM,
1990, vol. 18, no. 3a.

[37] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. Lam, “The stanford DASH multiprocessor,” IEEE Com-
puter, vol. 25, no. 3, pp. 63–79, Mar. 1992.

[38] P. A. MacMahon, “Combinatory Analysis,” Press, Cambridge, 1915.

[39] J. Manson, W. Pugh, and S. V. Adve, “The java memory model,” in Proceedings
of the 32nd Symposium on Principles of Programming Languages, Jan. 2005.

[40] A. McDonald, J. Chung, H. Chafi, C. C. Minh, B. D. Carlstrom, L. Ham-
mond, C. Kozyrakis, and K. Olukotun, “Characterization of TCC on chip-
multiprocessors,” in Parallel Architectures and Compilation Techniques, 2005.
PACT 2005. 14th International Conference on, 2005, p. 6374.

[41] A. Munshi, “OpenCL,” Parallel Computing on the GPU and CPU, SIGGRAPH,
2008.

[42] R. Nasre, M. Burtscher, and K. Pingali, “Data-Driven Versus Topology-driven
Irregular Computations on GPUs,” in IEEE 27th International Symposium on
Parallel and Distributed Processing (IPDPS), 2013.

[43] R. Nasre, M. Burtscher, and K. Pingali, “Morph Algorithms on GPUs,” in
Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 2013.

[44] NVIDIA, “NVIDIA’s next generation CUDA compute architecture: Kepler
GK110.”

[45] S. Owens, S. Sarkar, and P. Sewell, “A Better x86 Memory Model: x86-TSO,”
ser. TPHOLs ’09. Berlin, Heidelberg: Springer-Verlag, 2009, p. 391407.

[46] J. Planas, L. Martinell, X. Martorell, J. Labarta, R. M. Badia, E. Ayguade,
and A. Duran, “OmpSs: A proposal for programming heterogeneous multi-core
architectures,” Parallel Processing Letters, vol. 21, no. 02, pp. 173–193, 2011.

[47] K. H. Randall, “Cilk: Efficient multithreaded computing,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1998.

[48] M. Raynal and A. Schiper, “From causal consistency to sequential consistency
in shared memory systems,” 1995, pp. 180–194.

103

[49] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,” in Proceed-
ings of the 21st International Conference on Parallel Architectures and Compi-
lation Techniques, 2012.

[50] T. Sha, M. M. K. Martin, and A. Roth, “Scalable store-load forwarding via
store queue index prediction,” in Proceedings of the 38th Annual IEEE/ACM
International Symposium on Microarchitecture, Nov. 2005, pp. 159–170.

[51] I. Singh, A. Shriraram, W. W. L. Fung, M. O’Connor, and T. M. Aamodt,
“Cache coherence for GPU architectures,” in Proceedings of the 19th IEEE In-
ternational Symposium on High-Performance Computer Architecture, Feb. 2013,
pp. 578–590.

[52] R. L. Sites, Ed., Alpha Architecture Reference Manual. Digital Press, 1992.

[53] G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar processors,” in Proceedings
of the 22nd Annual International Symposium on Computer Architecture, Jun.
1995, pp. 414–425.

[54] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory consistency and
cache coherence,” Synthesis Lectures on Computer Architecture, vol. 6, no. 3,
pp. 1–212, May 2011.

[55] G. J. Sussman and G. L. Steele Jr., “Scheme: An interpreter for extended
lambda calculus,” in MEMO 349, MIT AI LAB, 1975.

[56] A. A. Thomas F. Wenisch and A. Moshovos, “Mechanisms for store-wait-free
multiprocessors,” in Proceedings of the 34th Annual International Symposium
on Computer Architecture, Jun. 2007.

[57] R. Tsuchiyama, T. Nakamura, T. Iizuka, A. Asahara, S. Miki, and S. Tagawa,
“The opencl programming book,” Fixstars Corporation, vol. 63, 2010.

[58] S. Tzeng, B. Lloyd, and J. Owens, “A GPU Task-Parallel Model with Depen-
dency Resolution,” IEEE Computer, vol. 45, no. 8, 2012.

[59] D. L. Weaver and T. Germond, Eds., SPARC Architecture Manual (Version 9).
PTR Prentice Hall, 1994.

104

Biography

Blake Alan Hechtman was born on October 6, 1988 in Miami, FL. He has earned a

BS, MS, and PhD at Duke University in the Department of Electrical and Computer

Engineering in 2010, 2012, and 2014 respectively. He first published work in logical

time cache coherence in WDDD 2012. He then published a poster at ISPASS 2013

on cache-coherent shared virtual memory for chips with heterogeneous cores. The

follow-on to that work was published in ISCA 2013 and studies the memory consis-

tency for massively-threaded throughput-oriented processors. While at AMD, Blake

worked on the theory and implementation (QuickRelease) of heterogeneous-race-free

memory models which were published in ASPLOS 2014 and HPCA 2014 respectively.

105

	Abstract
	List of Tables
	List of Figures
	List of Abbreviations and Symbols
	Acknowledgements
	1 Introduction
	2 Background
	2.1 GPUs
	2.1.1 Terminology
	2.1.2 OpenCL
	2.1.3 Platforms
	2.1.4 Performance Guidelines

	2.2 Memory Consistency
	2.2.1 Sequential Consistency
	2.2.2 Total Store Order / x86
	2.2.3 Relaxed Memory Order
	2.2.4 SC for Data race free
	2.2.5 The Debate

	2.3 Cache Coherence

	3 Memory Consistency for Massively Threaded Throughput-Oriented Processors
	3.1 Introduction
	3.2 Consistency Differences for MTTOPs
	3.2.1 Outstanding Cache Misses Per Thread Potential Memory Level Parallelism
	3.2.2 Threads per Core Latency Tolerance
	3.2.3 Threads per System Synchronization and Contention for Shared Data
	3.2.4 Threads per System Opportunities for Reordering
	3.2.5 Register Spills/Fills RAW Dependencies
	3.2.6 Algorithms Ratio of Loads to Stores
	3.2.7 Intermediate Assembly Languages
	3.2.8 Threads per System Programmability

	3.3 MTTOP Memory Consistency Implementations
	3.3.1 Simple SC (SCsimple)
	3.3.2 SC with Write Buffering (SCwb)
	3.3.3 Total Store Order (TSO)
	3.3.4 Relaxed Memory Ordering (RMO)
	3.3.5 Graphics Compatibility

	3.4 Evaluation
	3.4.1 Simulation Methodology
	3.4.2 Benchmarks
	3.4.3 Performance Results
	3.4.4 Implementation Complexity and Energy-Efficiency

	3.5 Finalizer Programmability
	3.6 Caveats and Limitations
	3.6.1 System Model
	3.6.2 Workloads

	3.7 Conclusions

	4 QuickRelease
	4.1 Introduction
	4.2 Background and Related Work
	4.2.1 Current GPU Global Synchronization
	4.2.2 Release Consistency on GPUs
	4.2.3 Supporting Release Consistency

	4.3 QuickRelease Operation
	4.3.1 Detailed Operation
	4.3.2 Read/Write Partitioning Trade-offs

	4.4 Simulation Methodology and Workloads
	4.4.1 The APU Simulator
	4.4.2 Benchmarks
	4.4.3 Re-use of the L1 Data Cache

	4.5 Results
	4.5.1 Performance
	4.5.2 Directory Traffic
	4.5.3 L1 Invalidation Overhead
	4.5.4 Total Memory Bandwidth
	4.5.5 Power
	4.5.6 Scalability of RFO

	4.6 Conclusion

	5 Task Runtime With Explicit Epoch Synchronization
	5.1 Introduction
	5.2 Fork/join parallelism
	5.3 Work-first principle
	5.4 Work-together Execution Model
	5.4.1 Work-together principle
	5.4.2 TVM : Thinking about work-together
	5.4.3 Current work-together systems

	5.5 TREES: Work-together on GPUs
	5.5.1 TVM to TREES
	5.5.2 Initialize
	5.5.3 Phase 1
	5.5.4 Phase 2
	5.5.5 Phase 3
	5.5.6 TREES Example

	5.6 Experimental Evaluation
	5.6.1 Programming the TVM interface
	5.6.2 Case Study Methodology
	5.6.3 Case Study 1: Outperforming CPUs running cilk
	5.6.4 Case Study 2: Comparison to work lists
	5.6.5 Case Study 3: Optimization with mappers

	5.7 Related Work
	5.8 Conclusion

	6 Conclusions
	6.1 Summary
	6.2 Lessons Learned
	6.3 Future Directions

	Bibliography
	Biography

