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Abstract 

The goal of this dissertation is two-fold: 1) to identify novel biological pathways 

implicating individual differences in reward and threat processing in the emergence of 

risk and resilience for psychopathology, 2) to identify novel genetic and epigenetic 

predictors of the inter-individual variability in these biological pathways.  Four specific 

studies are reported wherein blood oxygen-level dependent functional magnetic 

resonance imaging (BOLD fMRI) was used to measure individual differences in threat-

related amygdala reactivity and reward-related ventral striatum (VS) reactivity; self-

report was used to measure of mood and psychopathology as well as the experience of 

stressful life events.  In addition, DNA was derived from peripheral tissues to identify 

specific genetic and epigenetic markers. 

Results from Study 1 demonstrate that individuals with relatively low reward-

related VS reactivity show stress-related reductions in positive affect, while those with 

high VS reactivity remain resilient to these potentially depressogenic effects. Heightened 

VS reactivity was, however, associated with stress-related increases in problem drinking 

in Study 2.  Importantly, this effect only occurred in individuals showing concomitantly 

reduced threat-related amygdala reactivity. Study 3 demonstrates that using a 

multilocus genetic profile capturing the cumulative impact of five functional 

polymorphic loci on dopamine signaling increases power to explain variability in 
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reward-related VS reactivity relative to an approach considering each locus 

independently. Finally, Study 4 provides evidence that methylation in the proximal 

promoter of the serotonin transporter gene is negatively correlated with gene expression 

and positively correlated with threat-related amygdala reactivity above and beyond the 

effects of commonly studied functional DNA-sequence based variation in the same 

genomic vicinity. 

The results from these studies implicate novel biological pathways, namely 

reward-related VS reactivity and threat-related amygdala reactivity, as predictors of 

relative risk or resilience for psychopathology particularly in response to stressful life 

events.  Moreover, the results suggest that genetic and epigenetic markers may serve as 

easily accessible peripheral tissue proxies for these neural phenotypes and, ultimately, 

risk and resilience. Such markers may eventually be harnessed to identify vulnerable 

individuals and facilitate targeted early intervention or prevention efforts. 
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1. General Introduction  

The processing and integration of information about reward and threat in one’s 

environment is crucial for the planning and execution of context-appropriate approach 

and avoidance behaviors in the service of survival and well-being.  While the adaptive 

functioning of neural circuits dedicated to reward and threat processing facilitates the 

regulation of fundamental aspects of emotion and behavior, maladaptive hypo- or 

hyper-responsiveness of these circuits is associated with various types of 

psychopathology ranging from mood and anxiety disorders (Drevets et al., 1992, Etkin & 

Wager, 2007, Russo & Nestler, 2013) to addiction (Cornelius et al., 2010, Evans et al., 

2006), and psychopathy (Blair, 2008, Buckholtz et al., 2010a). Importantly, significant 

differences in the functioning of reward and threat circuits exist even among healthy 

individuals. Moreover, this variability can be mapped onto individual differences in 

core aspects of behavior such as personality traits as well as relative risk and resilience 

for psychopathology.  

In Chapter 1 of this dissertation, I briefly describe the corticostriatal and 

corticolimbic circuitries, which support reward and threat processing, respectively. In 

doing so, I delineate their functional neuroanatomy, along with the major 

neurotransmitters and neuromodulators that regulate signaling within those circuits. I 

then move on to describe genetic markers associated with variability in the functioning 

of those circuits, which can potentially be used as easily accessible peripheral proxies of 
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neural function. In Chapters 2-5, I present four original research studies drawing 

predictive links between (epi)genetic markers, threat- and reward-related neural circuit 

function and relative risk and resilience for psychopathology. I conclude by outlining 

directions for future work in Chapter 6.  

1.1. Reward Processing 

1.1.1. Basic functional neuroanatomy of the corticostriatal circuit 

Reward processing is subserved by a distributed corticostriatal circuitry (CSC) 

comprising a network of brain regions whose signals are dynamically integrated to 

produce goal-directed behavior in accordance with environmental reward 

contingencies. This network is critically regulated by the neurotransmitter dopamine 

(DA). Dopaminergic neurons residing in the ventral tegmental area (VTA) within the 

midbrain send axonal projections to the ventral striatum (VS), which receives additional 

input from cortical and limbic regions and serves as a hub for this distributed circuitry. 

Importantly, the VS comprises the Nucleus Accumbens (NAcc) – a neural region which 

non-human animal research has implicated in various aspects of reward processing 

ranging from core hedonic reactions to motivation to pursue appetitive stimuli (Berridge 

et al., 2009).  

Theoretical models building upon functional neuroanatomy studies in animal 

models postulate that the VS is a part of a motivational loop, wherein it is instrumental 

in selecting the optimal PFC-generated motor program for achieving a particular 
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behavioral goal by integrating reward-related dopaminergic signals from the VTA, as 

well as relevant sensory and affective input from the amygdala and contextual inputs 

from the hippocampus (Figure 1). Information about the most goal-relevant motor plan 

is then sent back to the PFC for execution, via the VP and the mediodorsal nucleus of the 

thalamus (Grace, 2000). In the presence of reward, dopaminergic input from the VTA 

drives medium spiny neurons of the VS to execute selective inhibition of target 

projection sites with the ultimate goal of maintaining behavior according to the 

currently selected motor plan. When a particular behavior fails to produce a reward, 

decreasing dopaminergic inputs form the VTA to the VS signal the need for a behavioral 

strategy switch, which is enacted via a motor program re-selection as part of the CSC 

motivational loop described above (Sesack & Grace, 2010). 
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Figure 1. Diagram of information flow through the VS. Dotted line indicates 

indirect projections. Note that for the sake of brevity additional CSC nodes are not 

depicted. 

Recent evidence suggests that reward processing is not a monolithic 

phenomenon, but can instead be parsed into distinct psychological, neuroanatomical, 

and neurochemical subcomponents behaviorally characterized as “wanting” 

(anticipatory), ”liking” (consummatory), and “learning” (prediction) (Berridge et al., 

2009). Core hedonic or “liking” reactions have primarily been linked to opioid signaling 

within a subregion of the NAcc (the NAcc shell). Dopamine, in contrast, has been shown 

to play a primary role in mediating “wanting” and “learning” by regulating activity in 
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other subcomponents of the NAcc (e.g., the NAcc core) and interconnected regions of 

the extended CSC. Given the relative inability of currently available research 

methodologies to fully parse these biological and behavioral components of reward 

processing in humans, as well as the large body of research investigating the role of DA 

in regulating VS reactivity, reward learning and reward processing in general, the 

current review focuses on the regulatory role DA plays on CSC functioning more 

broadly and any aspect of reward processing subserved by this circuitry. 

DA is a catecholamine monoamine neurotransmitter involved in a variety of 

functions ranging from lactation and movement to the regulation of crucial aspects of 

emotion and cognition. Of particular relevance to the topic of this review and as 

described above, within the CSC, DA acts as a modulator of reward-related processes. 

Studies have demonstrated the existence of two types of dopaminergic activity of 

particular importance for this regulatory role – tonic and phasic. Tonic activity refers to 

a constant slow “background” firing of dopaminergic neurons, while phasic refers to the 

quick bursts of action potentials, which occur in response to specific environmental 

events (Grace, 1991).  

Early studies linking DA to reward in animal models did not discriminate 

between tonic and phasic activity and have observed that both natural and drug 

rewards result in an extracellular DA surge in the NAcc (Hernandez & Hoebel, 1988). 

Conversely, pharmacological blockade of DA signaling has been shown to result in 
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decreased reward-seeking behavior (Yokel & Wise, 1975). More recent studies have 

begun to delineate a more complex role for DA in reward-related neural function by 

demonstrating that DA release is not merely a correlate of reward consumption or 

reward seeking, but may instead be involved in coding complex information about the 

occurrence of appetitive stimuli in the environment. This research has demonstrated that 

spikes in phasic dopaminergic activity in VTA neurons occur in response to the 

unexpected delivery of a rewarding stimulus (or the delivery of an unexpectedly large 

reward), while, conversely, a dip in phasic activity occurs in response to unexpectedly 

low rewards or the absence of expected reward (Schultz, 2002). Furthermore, as reward-

based learning progresses, these phasic responses transition from the reward itself to the 

stimulus predicting the reward (Schultz, 2002). This transition, coupled with the 

adaptive modulation of DA phasic activity in response to changes in reward 

contingencies (i.e., unexpectedly high/low rewards), which then feeds into the 

motivational CSC loop, suggest that DA may be specifically involved in reward learning 

and anticipation in addition to reward responsiveness more generally. 

1.1.2. CSC dysfunction and psychopathology 

Reward processing and motivation are crucial for the adaptive engagement in 

goal-directed behavior. Importantly, these fundamental cognitive and behavioral 

processes are not only disrupted in, but also built into the diagnostic criteria for, a range 

of psychiatric disorders, including perhaps most notably, major depressive disorder 
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(MDD) and substance use disorders (First, 1996). Extensive behavioral studies of these 

constructs and their role in psychopathology and psychiatric disorder risk have recently 

been complemented by research on the contribution of CSC function to the biological 

basis of these same phenotypes (Pizzagalli, 2014).  

Over the past two decades, advances in blood-oxygenation-level dependent 

functional magnetic resonance imaging (BOLD fMRI) have afforded the opportunity to 

measure activity in the VS and broader CSC reliably and non-invasively in humans. 

BOLD fMRI tasks which activate the VS typically expose participants to primary 

reinforcers, such as food (Demos et al., 2011, Grabenhorst et al., 2010), psychoactive 

substances (Gilman et al., 2012), and, perhaps even more commonly, secondary 

reinforcers such as money (Delgado et al., 2000, Knutson et al., 2000). The BOLD fMRI 

signal recorded in the VS during these paradigms is widely thought to reflect increases 

in phasic DA activity, occurring upon the receipt of unexpected primary rewards or in 

response to a conditioned stimulus previously paired with reward. Lending support to 

this notion, multimodal neuroimaging research combining positron emission 

tomography (PET) and BOLD fMRI has shown that the magnitude of the VS response to 

monetary reward directly correlates with the amount of DA released in the same region 

following pharmacological challenge (Buckholtz et al., 2010a).  

Consistent with the role of the CSC in reward processing, dysregulation in this 

circuit leading to abnormally high or low reward sensitivity has been associated with 
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clinically significant alterations in positive emotion, motivation and/or consummatory 

behaviors, as well as psychopathology risk. In line with the hedonic and motivational 

deficits characteristic of MDD, individuals currently experiencing a major depressive 

episode show blunted striatal response to reward (Epstein et al., 2006, Knutson et al., 

2008, Pizzagalli et al., 2009). Relatively reduced neural responsivity to reward is, 

however, also associated with depression vulnerability following childhood adversity, 

regardless of current diagnosis (Dillon et al., 2009). On the other hand, relative VS hyper-

reactivity is associated with high trait impulsivity (Buckholtz et al., 2010b, Forbes et al., 

2009a), steeper delay discounting (Hariri et al., 2006), and antisocial behavior (Buckholtz 

et al., 2010a), all of which represent risk factors for addiction and other disorders 

characterized by behavioral disinhibition (Alloy et al., 2009, Kreek et al., 2005, Krueger et 

al., 2007). These divergent associations between reward-related VS reactivity and 

disorder risk emphasize the context-specificity of risk and resilience conceptualizations 

within the framework of dimensional approaches to establishing predictive links 

between brain function and clinically relevant behavioral, cognitive and affective 

constructs. 

1.1.3. Genetic variants affecting VS reactivity 

Despite promising links between individual differences in reward-related VS 

reactivity and psychopathology risk, neuroimaging phenotypes of reward processing 

are of limited clinical utility due to the logistic constraints posed by the specifics of 
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human functional neuroimaging technology. BOLD fMRI is a costly and time-

consuming procedure and is thus unlikely to be routinely implemented in clinical 

settings in the foreseeable future. Therefore, identifying easily accessible peripheral 

biological markers of neural circuit function is likely to provide a more practical way of 

determining the relative risk status of an individual. Moreover, identifying such markers 

is likely to yield additional insights into the molecular mechanisms underlying disorder 

risk, which may in turn enable the development of novel and/or individualized 

therapeutic and preventative strategies. By combining molecular genetics and BOLD 

fMRI technology, the field of imaging genetics has begun to map variability in clinically 

relevant brain function onto common genetic variation, which may then serve as a 

relatively accessible proxy of disorder risk and resilience (Hariri, 2009).  

Imaging genetics studies on the functioning of the CSC have focused on the 

neurotransmitter DA, because of the central role it plays in regulating reward-related 

and motivational processing. Functional polymorphisms within genes involved in 

regulating each individual step of DA synthesis, signaling and synaptic clearance are apt 

to create individual variability in CSC reactivity and reward processing on the 

behavioral level. Several commonly studied functional genetic polymorphisms affecting 

CSC function by modulating various steps of the DA signaling cascade are reviewed 

below.  
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1.1.3.1. The dopamine transporter (DAT) 

The dopamine transporter (DAT), encoded by the gene SLC6A3, is a protein with 

a key role in regulating DA neurotransmission. DAT binds DA after its release into the 

synaptic cleft and facilitates reuptake of the neurotransmitter into the pre-synaptic 

neuron.  Thus, DAT helps regulate the duration and intensity of post-synaptic responses 

to dopaminergic inputs as well as the available presynaptic pool of DA (via recycling). 

DAT is expressed predominantly in the striatum, including the VS, where it plays a 

crucial role in modulating dopaminergic inputs from the VTA (Lewis et al., 2001, Sesack 

et al., 1998, Wayment et al., 2001).  

A 40-base pair (bp) variable number tandem repeat (VNTR) polymorphism 

termed DAT1 occurs within the 3’ untranslated region (UTR) of SLC6A3 and results in 

alleles of various lengths ranging from 3 to 13 repeats, with the 9- and 10-repeat alleles 

being most frequent in the majority of world populations studied (Doucette-Stamm et 

al., 1995, Kang et al., 1999, Mitchell et al., 2000). Although not all studies have found an 

effect of the DAT1 40-bp VNTR genotype on DAT expression levels (Martinez et al., 

2001, Mill et al., 2005), several studies have linked the 9-repeat allele to reduced DAT 

availability in vitro (Arinami et al., 1997, Vanness et al., 2005) and in vivo (Cheon et al., 

2005, Heinz et al., 2000). The presence of the 9-repeat allele would then presumably lead 

to less efficient DA reuptake and heightened CSC reactivity through increased synaptic 

levels of DA. Consistent with this notion, individuals carrying at least one copy of the 
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low expressing 9-repeat allele have been shown to have increased VS reactivity to 

positive feedback in a number-guessing BOLD fMRI paradigm, relative to individuals 

homozygous for the 10-repeat allele (Forbes et al., 2009).  

1.1.3.2. Dopamine receptors  

In addition to reuptake mechanisms, DA signaling is also critically dependent on 

the properties of DA receptors. There are two major classes of DA receptors – D1-like 

receptors, which have primarily excitatory functions and include DA receptors D1 and 

D5; and D2-like receptors, which are primarily inhibitory and include DA receptors D2, 

D3 and D4 (Beaulieu & Gainetdinov, 2011).  

The D1 and D5 DA receptors are encoded by the genes DRD1 and DRD5, 

respectively. Partially due to the simpler structure of those genes (e.g., characterized by 

lack of introns), few association studies have investigated the effects of D1-like receptor 

variants on neural function. The molecular, cellular, neural and behavioral effects of 

common polymorphisms within the D2-like family have been studied much more 

extensively. Thus, the rest of the current DA signaling overview focuses on this class of 

receptors. 

Dopamine D2 receptors, encoded by the DRD2 gene, are most densely expressed 

in the VS, where they are located both pre- and post-synaptically (Beaulieu & 

Gainetdinov, 2011). Two alternatively spliced isoforms of D2 receptors exist – short 

(D2S) and long (D2L), which are expressed primarily pre- and post-synaptically, 
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respectively (Giros et al., 1989, Monsma et al., 1989). The pre-synaptic D2S functions as 

an autoreceptor and is part of a negative feedback regulatory mechanism of DA 

signaling, while D2L mediates post-synaptic inhibition.  

Consistent with the inhibitory effect of D2 receptor signaling on DA 

neurotransmission, imaging genetics studies have linked polymorphisms resulting in 

relatively reduced DRD2 expression to heightened VS reactivity. Specifically, the 

Deletion (Del) allele of a one-point Insertion/Deletion polymorphism (rs1799732) 

occurring within the 5’ UTR of DRD2, frequently termed DRD2 -141C Ins/Del, has been 

associated with up to 78% reduction in striatal DRD2 expression in vitro (Arinami et al., 

1997) and increased VS reactivity to positive feedback in a BOLD fMRI number-guessing 

paradigm (Forbes et al., 2009).  

Another commonly studied DRD2 polymorphic locus is the DRD2 Taq1A 

(rs1800497), which is a single nucleotide polymorphism (SNP) located in the adjacent 

ankyrin repeat and kynase domain containing 1 (ANKK1) gene and probably affects 

DRD2 function only indirectly. Its two alleles T (A1) and C (A2) have been linked to 

relatively decreased and increased D2 receptor availability, respectively (Jonsson et al., 

1999, Pohjalainen et al., 1998). However, the C allele has been associated with increased 

striatal glucose metabolism (Noble et al., 1997) and reactivity to reward (Stice et al., 2008). 

This pattern may reflect a specific effect of the DRD2 Taq1A polymorphism on post-

synaptic D2 receptors localized on inhibitory GABA interneurons, which modulate 
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striatal function by inhibiting glutamatergic medium spiny neurons. Thus, the C allele 

may result in increased DA-mediated inhibition of GABAergic interneurons leading to 

disinhibition of excitatory medium spiny neurons and thus, ultimately, increased VS 

reactivity measured with fMRI. Alternatively, recent studies suggest that the DRD2 

Taq1A polymorphism may not affect DA signaling directly, but rather “tag” (i.e., be in 

linkage disequilibrium with) two intronic SNPs within DRD2 associated with 

differential expression of the D2S and D2L receptor isoforms (Moyer et al., 2011, Zhang 

et al., 2007). 

Similarly to the D2 receptor, the DA D4 receptor, encoded by the DRD4 gene, 

mediates both autoreceptor regulation and post-synaptic inhibition of DA signaling. 

Unlike DRD2, however, DRD4 exhibits relatively low expression in the striatum (Jaber et 

al., 1996) and the lowest expression levels in the human brain of all DA receptors 

(Beaulieu & Gainetdinov, 2011, Rondou et al., 2010). Nonetheless, preliminary data 

suggest that the D4 receptor is expressed post-synaptically on striatal neurons, as well as 

pre-synaptically on glutamatergic afferents from the PFC to the striatum (Jaber et al., 

1996, Missale et al., 1998, Tarazi et al., 1998). Thus, D4 receptor stimulation can inhibit 

striatal function either directly or indirectly, via one or both of these independent 

mechanisms. Based on these localization data, genetic variants associated with higher 

levels of D4 function are likely to result in greater DA-mediated inhibition of post-

synaptic target neurons and reduced striatal reactivity. 
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A common 48-bp VNTR within exon 3 of DRD4 results in alleles of different 

length (ranging from 2 to 11 repeats), associated with differential gene transcription and 

protein function (Asghari et al., 1995). Specifically, the 7-repeat allele has been linked to 

reduced D4 receptor sensitivity and reduced postsynaptic inhibition (Asghari et al., 

1995). Consistent with the inhibitory role of D4 receptors on striatal DA, the 7-repeat 

allele has also been linked to higher VS reactivity to positive feedback (Forbes et al., 

2009a). Finally, in line with its putative neurochemical effects, the same allele has been 

associated with increased approach to reward on the behavioral level (Roussos et al., 

2010). Taken together, these findings demonstrate that, despite its relatively low 

expression levels in the striatum, DRD4 may play an important role in regulating the 

reactivity of the CSC and the behaviors associated therewith. 

1.1.3.3. Other variants 

Additional polymorphisms implicated in the regulation of DA signaling in the 

VS and CSC include the catechol-O-methyltransferase (COMT) gene Val158Met (rs4680) 

SNP (Dreher et al., 2009, Yacubian et al., 2007), and the monoamine oxidase A (MAOA) 

rs12843268 SNP (Nymberg et al., 2013). Both of these likely exert their effects on DA 

signaling through modulating the rate and efficiency of DA enzymatic degradation. 

Variants which modulate DA signaling more distally have also been implicated in the 

regulation of VS signaling. Notable examples include the C385A (rs324420) SNP in the 

fatty amino acid hydroxylase gene (FAAH), involved in the enzymatic degradation of 
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endogenous cannabinoid neuromodulators (Hariri et al., 2009), A118G (rs1799971) in the 

mu-opioid receptor (OPRM1) (Ramchandani et al., 2011), as well as rs2513281 within the 

GAL gene encoding the hypothalamic neuropeptide galanin (Nikolova et al., 2013). 

1.2. Threat Processing 

1.2.1. Basic functional neuroanatomy of the corticolimbic circuit 

The neural system which plays a pivotal role in the detection and response to 

threat in the environment is the brain’s corticolimbic circuit (CLC, Figure 2). The CLC 

comprises a distributed network of cortical and subcortical (i.e., limbic) regions, within 

which the amygdala, a small structure in the anterior medial temporal lobe, serves as a 

circuit hub. The basolateral amygdala (BLA) receives rich multi-modal sensory input, 

including nociceptive information, from thalamic and cortical regions. Thus, it is 

uniquely positioned to mediate early perceptual processing of incoming environmental 

input and the detection of salient stimuli indicative of potential threat. Salient sensory 

information associated with the presence of an aversive stimulus can then be carried 

forward to the amygdala’s output nuclei (primarily in the centromedial amygdala, CeA) 

in order to launch physiological and behavioral responses aimed to terminate exposure 

to, or minimize the impact of, noxious or intrinsically unpleasant (i.e., unconditioned) 

stimuli.  

Direct projections from the CeA to the paraventricular nucleus (PVN) of the 

hypothalamus serve to trigger the body’s hypothalamic-pituitary-adrenal (HPA) axis, 
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the activity of which mediates physiological changes associated with the body’s “fight or 

flight” response. Additional amygdala projections to the brainstem can directly regulate 

breathing and heart rate. In addition, the CeA can indirectly affect activity in extensive 

cortical regions via projections to the Nucleus Basalis of Meynert (NBM), a group of 

cholinergic neurons located within the dorsal extended amygdala. Cholinergic input 

from the NBM to the sensory cortices and the PFC, among other regions, serves to 

increase attention, vigilance, and acuity in sensory processing (Sarter et al., 2006).  

 

Figure 2. Diagram of information flow through the amygdala. Note that for the 

sake of brevity additional CLC nodes are not depicted. 
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In addition to triggering physiological and behavioral responses to intrinsically 

noxious stimuli, the amygdala is also critically involved in fear conditioning and 

extinction. Fear conditioning and extinction are associative learning processes whereby 

links between spatially and temporally co-occurring noxious (unconditioned) stimuli 

and neutral (conditioned) stimuli are established or modified, such that (only) 

conditioned stimuli consistently predictive of threat can come to elicit similar responses 

as the primary threatening stimuli themselves.  

The physiological changes effected by the amygdala in response to both 

conditioned and unconditioned stimuli are primarily associated with increased vigilance 

and arousal and are neither directly equivalent to the conscious experience of fear, nor in 

fact sufficient to produce this affective state in humans (Ledoux, 2014) . Nonetheless, 

they are a necessary and indispensable part of the biological basis of fear and negative 

affect (Ochsner et al., 2004, Schaefer et al., 2002). Consistent with this notion, and as 

reviewed in the next section of this chapter, variability in the functioning of the 

amygdala has been associated with pathological, as well as normal-range, negative 

affective states and traits in humans. 

1.2.2. CLC dysfunction and psychopathology 

While the physiological and behavioral changes associated with the amygdala’s 

response to environmental threat are fundamentally adaptive and aid in dealing with 

specific environmental challenges, they can be harmful when excessive, chronic or 
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context-inappropriate (Chrousos, 2009). Based on extensive functional neuroanatomy 

studies in animal models, many forms of pathological affective processing in humans, 

particularly in the context of environmental adversity, have been conceptualized as 

indicative of a reduced capacity for regulation of signaling within the CLC, leading to 

abnormally strong fear conditioning or impaired extinction, and ultimately the 

potentiation and prolongation of negative affective states (Garakani et al., 2006, Gold & 

Chrousos, 2002, Rosen & Schulkin, 1998). 

Similarly to the response of the VS to rewarding stimuli, the reactivity of the 

amygdala to threat can be measured reliably and non-invasively using BOLD fMRI 

technology combined with simple perceptual processing tasks. Amygdala reactivity to 

threat is typically probed with paradigms exposing study participants to pictures of 

human faces expressing anger or fear. These facial expressions engage the amygdala 

particularly strongly, because they represent salient social signals indicative of the 

presence of threat in the environment (Sergerie et al., 2008, Whalen et al., 2001). Faces 

expressing surprise as well as those with neutral expressions have also been shown to 

engage the amygdala (Carre et al., 2013, Somerville et al., 2004), most likely because of 

the novelty and ambiguity they convey, both of which merit an increase in vigilance.  

Despite the fact that these stimuli robustly engage the amygdala, substantial inter-

individual variability exists in the strength of the response they elicit. Importantly, this 

variability has been leveraged to explain variance in emotion processing and expression, 
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ranging from clinical diagnoses of affective illness to normal-range state and trait factors 

of relevance for psychopathology risk and resilience.  

Perhaps least surprisingly, amygdala reactivity to threat is typically elevated in 

patients diagnosed with anxiety disorders characterized by excessive or context-

inappropriate fear, such as simple phobia, post-traumatic stress disorder (PTSD) and 

social anxiety disorder (SAD) (Etkin & Wager, 2007, Evans et al., 2008). Increased 

amygdala activity is also observed in MDD (Abercrombie et al., 1998, Arnone et al., 2012, 

Drevets et al., 1992, Victor et al., 2010, Whalen et al., 2002, Yang et al., 2010), a disorder 

characterized by potentiated negative affect and frequently comorbid with anxiety 

(Moffitt et al., 2007, Sartorius et al., 1996). Some studies indicate that depression-

associated amygdala hyperactivity may correlate with symptom severity (Abercrombie 

et al., 1998, Gaffrey et al., 2011, Peluso et al., 2009) and persist even after remission of a 

major depressive episode (Arnone et al., 2012, Drevets et al., 1992, Victor et al., 2010). The 

observation that this neural trait may be relatively independent of disease state is in line 

with the notion that amygdala hyper-reactivity to threat may be part of a pre-existent 

vulnerability factor for the development of the disorder.  

Consistent with this proposition, an independent line of research has 

demonstrated that the magnitude of threat-related amygdala reactivity in healthy 

individuals is both relatively stable over time (Johnstone et al., 2005, Manuck et al., 2007) 

and positively correlated with anxiety- and negative-affect-related traits (Chan et al., 



 

20 

2009, Fakra et al., 2009, Indovina et al., 2011, Stein et al., 2007, Zhong et al., 2011). Notably, 

these and similar traits are in turn predictive of affective illness susceptibility, 

particularly in the context of stress or environmental challenge (Kendler et al., 2004, 

Sandi & Richter-Levin, 2009). Taken together, these studies suggest that individuals with 

CLC dysregulation leading to relatively heightened amygdala reactivity may be at 

elevated risk for affective illness, especially when faced with environmental adversity. 

At the same time, it is worth noting that CLC dysregulation may also result in 

abnormally low levels of amygdala reactivity, which can in turn increase risk of other 

forms of psychopathology. Specifically, relatively blunted amygdala response has been 

observed in individuals with callous-unemotional traits (Jones et al., 2009), pediatric 

depression (Thomas et al., 2001), as well as depression risk not attributable to 

experiential factors (Wolfensberger et al., 2008). In addition, relatively reduced amygdala 

reactivity to threat is present in individuals with, or at risk for, alcoholism (Glahn et al., 

2007, Marinkovic et al., 2009). In the latter context, amygdala hypo-activity may be 

indicative of a reduced ability to recognize threat or detect salient environmental signals, 

both of which can increase risk of substance abuse.  As with VS reactivity, both 

amygdala hypo- and hyper-reactivity can increase vulnerability to psychopathology, 

which similarly highlights the context-specificity of risk and resilience definitions. 
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1.2.3. Genetic variants affecting amygdala reactivity 

As with the CSC and reward processing, peripheral proxies of amygdala 

reactivity, CLC dysregulation and threat processing can serve as relatively accessible 

indices of disorder risk and resilience. Imaging genetics studies have begun to identify 

genetic variants, which may help explain both normal-range variability and pathological 

extremes of amygdala responsiveness.  

While DA clearly plays a central role in reward processing and learning, there is 

not a single neurotransmitter molecule that plays a similar role in the context of threat 

processing and fear conditioning in the amygdala and the CLC. Instead, multiple 

systems and neuromodulators contribute to variability in the functioning of the circuit. 

Signaling within and by the amygdala relies primarily on the brain’s major excitatory 

and inhibitory neurotransmitters glutamate and GABA, respectively. However, the 

relative sensitivity of amygdala to glutamatergic and GABAergic inputs from additional 

nodes of the CLC can be modulated by monoaminergic projections originating in the 

brainstem. 

Monoaminergic modulation of amygdala function is mediated by serotonin (5-

hydroxytryptamin, 5-HT), DA, and norepinephrine (NE), which are synthesized and 

secreted by neurons residing in the dorsal raphe nucleus (DRN), VTA, and locus 

ceruleus (LC), respectively. Functional neuroanatomy research in animal models and 

human pharmacological challenge studies converge to suggest all three monoamines are 



 

22 

involved in regulating the activity of the amygdala (Bigos et al., 2008, Hariri et al., 2002a, 

Hurlemann et al., 2010, Sadikot & Parent, 1990). However, the modulator whose 

contribution appears most prominent is 5-HT (Sadikot & Parent, 1990). Thus, the vast 

majority of studies which have identified genetic markers of CLC function have focused 

on genes involved in the regulation of 5-HT signaling.  

1.2.3.1. The serotonin transporter 

The serotonin transporter (5-HTT) is a pre-synaptic transmembrane protein, 

which is instrumental in the reuptake of 5-HT following its release into the synaptic 

cleft. Similarly to DAT for DA, 5-HTT is an important regulator of both the duration and 

the intensity of the post-synaptic responses elicited by 5-HT signaling in the CLC. A 

common VNTR polymorphism occurs in the promoter region of the serotonin 

transporter gene (SLC6A4). This polymorphism, commonly referred to as the serotonin 

transporter linked polymorphic region (5-HTTLPR), results in a short (S) and a long (L) 

allele of the gene, which have divergent functional properties. Critically, the S allele has 

been associated with reduced SLC6A4 transcription and reduced capacity for 5-HT 

reuptake in vitro (Lesch et al., 1996). Consistent with these early findings, numerous 

imaging genetics studies have also linked the S allele to relatively heightened amygdala 

reactivity in vivo (Hariri et al., 2002b, Munafo et al., 2008, Murphy et al., 2013). Notably, 

the latter finding constitutes the most widely replicated association in imaging genetics. 

The link between reduced 5-HT reuptake capacity and amygdala hyper-responsivity is 
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also corroborated by studies demonstrating that threat-related amygdala response is 

potentiated in individuals with lower DRN 5-HTT binding (Rhodes et al., 2007) or 

following the acute administration of a selective serotonin reuptake inhibitor (SSRI) 

(Bigos et al., 2008).  

Consistent with animal studies demonstrating that stress results in local 

increases in amygdala 5-HT signaling (Amat et al., 1998), additional BOLD fMRI 

research in humans indicates that the relationship between 5-HT reuptake capacity and 

amygdala reactivity may be potentiated by environmental adversity. Specifically, 

carriers of the S allele show larger increases in amygdala reactivity under acute threat 

(Drabant et al., 2012), as well as stronger fear conditioning, particularly in the context of 

recently experienced stressful life events (Klucken et al., 2013). This synergistic effect of 

exposure to environmental challenge and genetically driven variability in 5-HT reuptake 

capacity, is also consistent with extensive epidemiological evidence linking the S allele 

to increased vulnerability to MDD particularly in the wake of life adversity (Caspi et al., 

2003, Karg et al., 2011).  

1.2.3.2. The serotonin 1A receptor 

The serotonin 1A receptor, encoded by the HTR1A gene, is another key element 

in the regulation of 5-HT signaling in the CLC. Serotonin 1A receptors are found in DRN 

projection target areas, where they mediate post-synaptic inhibition, as well as on DRN 

neurons, where they function as autoreceptors mediating negative feedback inhibition of 
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5-HT release. Multimodal PET-fMRI imaging studies have shown that there is an inverse 

correlation between DRN 5-HT 1A receptor binding and threat-related amygdala 

reactivity, consistent with a reduced capacity for autoreceptor regulation of 5-HT 

signaling in this region (Fisher et al., 2006).  

A common functional SNP (rs6295) resulting in a C->G substitution, occurs in the 

promoter region the human HTR1A gene. The G allele is associated with impaired 

transcriptional repression and consequently relatively increased levels of 1A receptor 

and enhanced capacity for autoreceptor-mediated negative feedback (Lemonde et al., 

2003). Consistent with these in vitro findings, the same allele has been associated with 

relatively decreased threat-related amygdala reactivity in vivo as well as reduced levels 

of trait anxiety (Fakra et al., 2009).  

1.2.3.3. Other variants 

Additional variants impacting 5-HT signaling through divergent biochemical 

mechanisms have also been associated with individual differences in amygdala 

reactivity. Those include the tryptophan hydroxylase 2 (TPH2) rs4570625 SNP (Brown et 

al., 2005, Canli et al., 2005), which likely modulates 5-HT synthesis; and MAOA upstream 

VNTR (u-VNTR) (Buckholtz et al., 2008), which impacts 5-HT enzymatic degradation. 

Additional genetic variants in systems more distally involved in the regulation of 

neurotransmission within the amygdala include the brain-derived neurotrophic factor 

(BDNF) rs6265 (Montag et al., 2008), haplotypes in neuropeptide Y (NPY) (Zhou et al., 
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2008), as well as  rs1064448 within the adenylate cyclase 7 (ADCY7) (Joeyen-Waldorf et 

al., 2012). In recent years, several genome-wide association studies of amygdala 

reactivity (Brown et al., 2012, Ousdal et al., 2012) have identified additional candidates of 

unknown functionality, whose importance has yet to be elucidated.  

1.3. The Present Studies 

The goal of this dissertation was two-fold: 1) to identify novel biological 

pathways implicating individual differences in reward and threat processing in risk and 

resilience for psychopathology (Studies 1 and 2); and 2) to identify biological markers of 

neural reward and threat processing, which may provide clues as to the molecular 

mechanisms underlying this inter-individual vulnerability and serve as easily accessible 

proxies of brain function (Studies 3 and 4). To this end, building on the literature 

reviewed above, in Chapters 2 and 3 (Studies 1 and 2), I explore novel ways in which 

inter-individual variability in VS and amygdala reactivity contributes to 

psychopathology risk and resilience in the context of recent life stress. In Chapters 4 and 

5 (Studies 3 and 4), I identify novel genetic and epigenetic contributions to those same 

neural phenotypes.   

While prior studies have established that relatively reduced neural reactivity to 

reward is a concomitant of current MDD (Knutson et al., 2008, Pizzagalli et al., 2009) or 

risk thereof (Dillon et al., 2009), no study has explicitly examined the potential protective 

effects of the opposite neural phenotype. In Chapter 2, I test the hypothesis that robust 
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reward-related VS reactivity would be associated with resilience to some of the 

depressogenic effects of stress (Nikolova et al., 2012). Specifically, I hypothesize that the 

recent experience of stressful life events would be associated with reductions in self-

reported positive affect only for individuals with relatively low VS reactivity, but not for 

those with high VS reactivity.  

Similarly, prior research has shown that individuals with or at risk for 

alcoholism have reduced threat-related amygdala reactivity (Glahn et al., 2007, 

Marinkovic et al., 2009), but no study has investigated the effects of the opposite 

phenotype on resilience to harmful alcohol use patterns. In Chapter 3, I test the 

hypothesis that threat-related amygdala reactivity may confer resilience to stress-related 

increases in problem drinking (Nikolova & Hariri, 2012). I also explore the moderating 

effect of reward-related VS reactivity on this association, hypothesizing that heightened 

VS reactivity may be an additional risk factor for heightened alcohol use.  

Earlier in this chapter, I summarized findings from imaging genetics research, 

which has begun to map individual differences in brain function onto differences in 

genetic makeup. Most of these studies, however, have each focused on the effects of a 

single polymorphism within a single gene on neural phenotypes pertaining to threat 

and reward processing. Thus, they have identified effects of relatively small size, some 

of which have failed to replicate, particularly in small replication samples. In Chapter 4, 

I demonstrate the utility of a novel approach for compiling multilocus genetic profile 
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scores reflecting the cumulative effects of multiple polymorphisms affecting 

dopaminergic signaling for increasing power to detect significant genetic effects on VS 

reactivity (Nikolova et al., 2011).   

Above, I also summarized findings demonstrating the involvement of 5-HTTLPR 

genotype in the modulation of amygdala reactivity (Hariri et al., 2002b, Munafo et al., 

2008, Murphy et al., 2013). However, in recent years, it has been increasingly recognized 

that non-sequence based variation in DNA and chromatin could affect gene expression 

and downstream processes above and beyond the effects of sequence-based genetic 

polymorphisms (Goldberg et al., 2007). In Chapter 5, I test the hypothesis that epigenetic 

modifications in the promoter region of the human SLC6A4 leading to reduced 

expression of the gene, would be associated with heightened amygdala reactivity and 

that this effect may in fact be stronger than the effect of the low-expressing S allele of 5-

HTTLPR on the same neural phenotype.    

Study-specific background, methods, and results are described in detail in 

Chapters 2-5 below. Chapter 6 summarizes the conclusions drawn from all four studies 

and delineates directions for future work. 
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2. Ventral Striatum Reactivity to Reward and Recent Life 

Stress Interact to Predict Positive Affect1 

2.1. Background 

Stressful life events are among the most reliable predictors of MDD (Brown, 

1978, Van Praag, 2004).  However, while nearly everyone is confronted with stressful life 

events, the majority of the population does not subsequently develop depression.  

Uncovering the neurobiological basis of individual differences in relative vulnerability 

and resilience to the depressogenic effects of stress may provide unique insights into the 

pathophysiology of stress-related MDD. 

Potential clues to the relationship between stress and depression can be garnered 

from extensive non-human animal research (Anisman & Matheson, 2005, Willner, 2005) 

and emerging human work (Berenbaum & Connelly, 1993, Bogdan & Pizzagalli, 2006), 

which converge to reveal that stress can induce anhedonia, a core symptom of MDD 

reflecting an inability to experience pleasure or respond to rewarding stimuli, and a 

general reduction in positive affect (PA).  Since anhedonia is associated with relative 

reductions in reward-related brain function (Epstein et al., 2006, Keedwell et al., 2005, 

Steele et al., 2007, Surguladze et al., 2005), it is reasonable to postulate that relative 

vulnerability to the depressogenic effects of stress is, at least in part, related to 

                                                      

1 This Chapter is based on the following publication:  Nikolova, Y.S., Bogdan, R., Brigidi, B.D. & Hariri, A.R. 

(2012) Ventral Striatum Reactivity to Reward and Recent Life Stress Interact to Predict Positive Affect. Biol. 

Psychiatry, 72, 157-163. 
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individual differences in neural responsiveness to reward.  Accordingly, relatively 

increased responsiveness to reward, especially when robust to the detrimental effects of 

stress, has been hypothesized to confer relative resilience to stress-related psychiatric 

disorders, including MDD (Charney, 2004, Feder et al., 2009). 

While reduced levels of PA are a hallmark of MDD, PA can vary independently 

of negative effect and other depressive symptomatology (Radloff, 1977). At the same 

time, even subclinical reductions in PA can predict the development of full-blown 

depression as well as general psychological well-being, particularly in the face of stress 

(Folkman & Moskowitz, 2000). Consistent with the idea that PA levels reflect the extent 

of one’s pleasurable engagement with the environment (Watson & Clark, 1988), real-

world PA has been found to correlate with the relative reward-related responsiveness of 

the brain’s mesocorticostriatal system across both healthy and depressed individuals 

(Forbes et al., 2009b). Thus, PA and its temporal stability may serve as informative 

psychological markers with tractable biological substrates, which may help distinguish 

individuals at risk for or resilient to this disorder, particularly in the context of stress. 

In the current study, we tested the hypothesis that reward-related reactivity of 

the ventral striatum (VS), a brain structure critically involved in reward processing and 

appetitive behaviors (Berridge et al., 2009, Haber & Knutson, 2010), would moderate the 

relationship between recent life stress and state PA. Specifically, we hypothesized that 

individuals with relatively low VS reactivity would show lower PA in the context of 
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recent life stress, while those with high VS reactivity would display stable PA regardless 

of stress.  A large cohort of non-patient young adults (N = 200) underwent BOLD fMRI 

during a number guessing paradigm previously demonstrated to elicit robust VS 

reactivity (Forbes et al., 2009a, Hariri et al., 2006). The experience of recent stressful life 

events, as well as early childhood trauma, depressive symptoms and PA (state and trait) 

were assessed using self-report questionnaires. 

2.2. Methods 

2.2.1. Participants 

A total of 200 participants were included from the ongoing Duke Neurogenetics 

Study (DNS), which assesses a wide range of behavioral and biological traits among 

nonpatient, young adult, student volunteers.  All participants provided informed 

consent in accord with Duke University guidelines, and were in good general health. 

Twenty-nine participants were excluded from analyses due to signal dropout in VS 

regions of interest (see below) and one participant did not have valid self-report data 

due to programming error, leaving a final sample of 170 individuals (104 women; mean 

age 19.55 ± 1.26). 

All participants were free of the following study exclusions: (1) medical 

diagnoses of cancer, stroke, diabetes requiring insulin treatment, chronic kidney or liver 

disease, or lifetime history of psychotic symptoms; (2) use of psychotropic, 

glucocorticoid, or hypolipidemic medication; and (3) conditions affecting cerebral blood 
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flow and metabolism (e.g., hypertension).  Diagnosis of any current DSM-IV Axis I 

disorder or select Axis II disorders (Antisocial Personality Disorder and Borderline 

Personality Disorder), assessed with the electronic Mini International Neuropsychiatric 

Interview (Sheehan et al., 1998) and Structured Clinical Interview for the DSM-IV (SCID) 

subtests (First, 1996), respectively, were not an exclusion as the DNS seeks to establish 

broad variability in multiple behavioral phenotypes related to psychopathology.  No 

participants met criteria for either Antisocial or Borderline Personality Disorder, and 29 

participants from our final sample (N = 170) met criteria for at least one Axis I disorder 

(Table 1).  Since the exclusion of these individuals did not substantially alter our results, 

we present data from the entire sample in the main text (see Table 4 for analyses 

excluding individuals with Axis I disorders). 

 

Table 1. Number of participants meeting criteria for DSM-IV Axis I diagnoses. 

 

Disorder Number 

Agoraphobia (no history of Panic Disorder) 1 

Alcohol Dependence 12 

Alcohol Abuse 5 

Cocaine Abuse 1 

Marijuana Abuse 1 

Generalized Anxiety Disorder 2 

Multiple Psychopathologies* 7 

Total 29 
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2.2.2. Ventral Striatum Reactivity Paradigm 

As described previously (Forbes et al., 2009a), our blocked-design number 

guessing paradigm consists of a pseudorandom presentation of three blocks of 

predominantly positive feedback (80% correct guess), three blocks of predominantly 

negative feedback (20% correct guess) and three control blocks.  During each task trial, 

participants have 3 seconds to guess, via button press, whether the value of a visually 

presented card is lower or higher than 5 (index and middle finger, respectively).  The 

numerical value of the card is then presented for 500 milliseconds and followed by 

appropriate feedback (green upward-facing arrow for positive feedback; red downward-

facing arrow for negative feedback) for an additional 500 milliseconds.  A crosshair is 

then presented for 3 seconds, for a total trial length of 7 seconds. During control blocks, 

participants are instructed to simply make button presses during the presentation of an 

“x” (3 seconds), which is followed by an asterisk (500 milliseconds) and a yellow circle 

(500 milliseconds).  Each block is preceded by an instruction of “Guess Number” 

(positive or negative feedback blocks) or “Press Button” (control blocks) for 2 seconds 

resulting in a total block length of 38 seconds and a total task length of 342 seconds. 

Participants are unaware of the fixed outcome probabilities associated with each 

block and are led to believe that their performance will determine a net monetary gain at 

the end of the scanning session.  Instead, all participants receive $10.  We include one 

incongruent trial within each task block (e.g., 1 of 5 trials during positive feedback 
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blocks was incorrect, resulting in negative feedback) to prevent participants from 

anticipating the feedback for each trial and to maintain participants’ engagement and 

motivation to perform well. 

2.2.3. BOLD fMRI Data Acquisition and Analysis 

Each participant was scanned using a research-dedicated GE MR750 3T scanner 

equipped with high-power high-duty-cycle 50-mT/m gradients at 200 T/m/s slew rate, 

and an eight-channel head coil for parallel imaging at high bandwidth up to 1MHz at 

the Duke-UNC Brain Imaging and Analysis Center. A semi-automated high-order 

shimming program was used to ensure global field homogeneity.  A series of 34 

interleaved axial functional slices aligned with the anterior commissure-posterior 

commissure (AC-PC) plane were acquired for full-brain coverage using an inverse-spiral 

pulse sequence to reduce susceptibility artifact (TR/TE/flip angle = 2000 ms/30 ms/60; 

FOV = 240 mm; 3.75 × 3.75 × 4 mm voxels; interslice skip = 0).  Four initial RF excitations 

were performed (and discarded) to achieve steady-state equilibrium.  To allow for 

spatial registration of each participant’s data to a standard coordinate system, high-

resolution three-dimensional structural images were acquired in 34 axial slices co-planar 

with the functional scans (TR/TE/flip angle = 7.7 s/3.0 ms/12; voxel size = 0.9 × 0.9 × 4 

mm; FOV = 240 mm, interslice skip = 0). 

Images for each subject were realigned to the first volume in the time series to 

correct for head motion, spatially normalized into a standard stereotactic space 
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(Montreal Neurological Institute template) using a 12- parameter affine model (final 

resolution of functional images = 2 mm isotropic voxels), and smoothed to minimize 

noise and residual difference in gyral anatomy with a Gaussian filter, set at 6-mm full-

width at half-maximum.  Voxel-wise signal intensities were ratio normalized to the 

whole-brain global mean. 

Variability in single-subject whole-brain functional volumes was determined 

using the Artifact Recognition Toolbox (http://www.nitrc.org/projects/artifact_detect).  

Individual whole-brain BOLD fMRI volumes meeting at least one of two criteria were 

assigned a lower weight in determination of task-specific effects: 1) significant mean-

volume signal intensity variation (i.e., within volume mean signal greater or less than 4 

standard deviations of mean signal of all volumes in time series), and 2) individual 

volumes where scan-to-scan movement exceeded 2 mm translation or 2 rotation in any 

direction.  

The general linear model (GLM) of SPM8 (http://www.fil.ion.ucl.ac.uk/spm) was 

used to conduct fMRI data analyses. Following preprocessing, linear contrasts 

employing canonical hemodynamic response functions were used to estimate 

differential effects of feedback (i.e., reward) from the contrast of Positive Feedback > 

Negative Feedback for each individual.  Individual contrast images were then used in 

second-level random effects models accounting for scan-to-scan and participant-to-

http://www.fil.ion.ucl.ac.uk/spm
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participant variability to determine mean condition-specific regional responses using 

one-sample t-tests. 

Because of the relatively extensive signal dropout and noise typically observed in 

the VS due to magnetic susceptibility associated with the region’s proximity to tissue 

boundaries (Ojemann et al., 1997), only participants with greater than 90% signal 

coverage (N = 170) in a bilateral VS anatomical regions of interest were included in 

analyses.  Whole-brain analyses were then conducted on participants with adequate 

signal to identify reward-related VS reactivity.  A statistical threshold of p < 0.05, FWE 

whole-brain corrected, and ≥ 10 contiguous voxels was applied to the contrast of 

Positive > Negative feedback blocks for this analysis. 

Mean BOLD values from VS clusters exhibiting a main effect of task were 

extracted using the VOI tool in SPM8.  These extracted values were then entered into 

regression models using IBM SPSS Statistics 19.0 (SPSS Inc., Chicago, IL).  Importantly, 

by extracting VS BOLD parameter estimates from the functional clusters activated by 

our paradigm rather than clusters specifically correlated with our independent variables 

of interest (i.e., depressive symptoms and PA), we preclude the possibility of any 

correlation coefficient inflation that may result when an explanatory covariate is used to 

select a region of interest (Viviani, 2010).  We have successfully used this conservative 

strategy in previous reports (Carre et al., 2010, Hyde et al., 2010, Nikolova et al., 2011). 
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2.2.4. Self-Report Measures 

2.2.4.1. Depressive symptoms and PA.   

.  Participants completed the Center for Epidemiologic Studies-Depression (CES-

D) scale (Weissman et al., 1977).  Based on previous factor analytic studies (Leventhal et 

al., 2008, Shafer, 2006), four subscales were computed: 1) positive affect (CES-D PA), 2) 

negative affect (CES-D NA), 3) somatic features (CES-D SF), and 4) interpersonal 

functioning (CES-D IP).  The four items that have previously been identified as loading 

onto a PA factor, were submitted to a confirmatory factor analysis (CFA) in Mplus 6.0 

(Mplus, Los Angeles, CA).  This CFA model fit the data well (χ2 = 301.937, df = 164, p < 

0.05; CFI = 0.90; RMSEA = 0.070).  Note also that in separate analyses, we modeled all 

four factors of the CES-D and this model also fit the data acceptably, confirming past 

factor analytic findings (Leventhal et al., 2008, Shafer, 2006) in our sample and 

strengthening our use of the anhedonia subscale as a separable underlying construct. 

Trait PA was assessed using the Positive Emotions subscale of the Extraversion 

dimension of the NEO personality inventory revised edition (NEO-PI-R) (Costa & 

Mccrae, 1992).  

2.2.4.2. Stressful life events.   

To assess recent life stress we administered a modified version of the Life Events 

Scale for Students [LESS (Clements & Turpin, 1996); see Appendix]  This modified 

version of the scale asks participants to indicate whether they experienced common 
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stressful life events within the past 12 months; in addition, for each event that occurred 

participants reported on the impact it had on their lives on a 1-4 scale (with 4 being the 

highest).  The impact scores were set to zero for events that did not occur.  We derived 

three main variables of interest from the LESS: 1) LESS Total Number of Events; 2) LESS 

Highest Impact, reflecting the highest impact associated with any event which occurred 

within the past year; and 3) LESS Average Impact, capturing the average impact of all 

events which occurred within the past year.  To ensure the specificity of our results to 

current life stress, we assessed early life trauma using the Childhood Trauma 

Questionnaire [CTQ; (Bernstein, 2002)] and used this measure as a covariate in 

regression analyses. 

2.2.5. Statistical Analysis 

Regressions using LESS and VS reactivity as independent variables, and CES-D 

PA scores as a dependent variable were conducted within IBM SPSS Statistics 19 (SPSS 

Inc, Chicago, IL).  Significant interactions were probed using the Johnson-Neyman 

method (Johnson & Fay, 1950), as implemented in the SPSS MODPROBE macro (Hayes 

& Matthes, 2009), to calculate the range of VS reactivity values for which stress is 

significantly correlated with PA. Rather than probing the interactions at specific values 

of the moderator variable (in this case, VS reactivity), the Johnson-Neyman method 

allows for calculating the entire range of moderator variable values for which the focal 

predictor (i.e., the other interacting variable; LESS) is significantly correlated with the 
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dependent variable (CES-D PA; please see Figure S3 for results from analyses probing 

the interaction at VS reactivity values of 1 SD below the mean, mean, and 1 SD above the 

mean). 

2.3. Results 

2.3.1. Sample Demographics 

There were no significant effects of gender or age on any self-report measure.  

However, several trend-level effects emerged (Table 2).  In addition, consistent with 

previous literature (Spreckelmeyer et al., 2009), men had higher right VS reactivity (p = 

0.032) compared to women.  Finally, race/ethnicity had a significant effect on CES-D 

Total and all CES-D subscales except CES-D IP (Table 3).  To account for the potentially 

confounding effects of these demographic variables, all analyses were conducted with 

and without age, gender and race/ethnicity (dummy coded) as covariates in addition to 

current Axis I diagnosis and trait PA.  Analyses with trait PA as a covariate were 

conducted on N=169 participants because of missing NEO-PI-R scores in one individual 

resulting from a programming error. 
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Table 2. Effects of gender and age on self-report variables and VS 

reactivity. Bolded values indicate significant or trend-level effects. 

 

 
Gender Effects Age Effects 

 

Men Women 

    

 

(N=66) (N=104) T(168) p b  p 

CES-D 

         PA 8.92 (2.64) 8.67 (2.96) -0.56 0.58 -0.032 0.68 

   NA* 0.79 (0.78) 0.98 (0.79) -1.58 0.12 0.148 0.054 

   SF 3.83 (3.09) 4.35 (3.38) -1.00 0.32 0.040 0.60 

   IP* 0.36 (0.48) 0.34 (0.49) 0.32 0.76 0.059 0.45 

   Total* 2.13 (0.75) 2.22 (0.77) -0.75 0.45 0.062 0.42 

       Trait PA 20.09 (4.55) 21.17 (5.46) -1.34 0.18 -0.059 0.45 

       CTQ 

Total* 3.50 (0.18) 3.56 (0.24) -1.87 0.064 0.081 0.29 

       LESS 

         Number 4.56 (3.41) 4.63 (3.12) -0.13 0.90 -0.057 0.46 

   HI 2.89 (1.29) 2.91 (1.04) -0.11 0.91 -0.115 0.13 

   AI 2.08 (0.92) 2.22 (0.77) -1.08 0.28 -0.133 0.083 

       rVS (a.u.) 0.13 (0.18) 0.07 (0.18) 2.17 0.032 -0.046 0.55 

lVS (a.u.) 0.12 (0.20) 0.07 (0.19) 1.47 0.14 -0.015 0.85 
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Table 3. Effects of race/ethnicity on self-report measures and VS reactivity. Bolded 

values indicate significant differences between groups. 

 

Caucasian                                                

(N=75) 

African/ 

African 

American                                              

(N=31) 

Asian/ 

Asian  

American                                                                      

(N=45) 

Bi- or 

Multiracial                                

(N=11) 

Other                          

(N=8) 

F  

(4,165) p 

CES-D 

        PA 9.48 (2.66) 8.13 (2.99) 7.78 (2.87) 9.90 (2.21) 8.63 (2.67) 3.60 0.008a 

   NA* 0.67 (0.73) 1.10 (0.87) 1.01 (0.78) 1.16 (0.63) 1.34 (0.70) 3.40 0.011b 

   SF 3.60 (2.77) 5.71 (3.88) 3.64 (3.35) 5.27 (3.50) 4.50 (2.67) 3.05 0.019c 

   IP* 0.31 (0.46) 0.42 (0.54) 0.31 (0.48) 0.41 (0.60) 0.48 (0.42) 0.55 0.70 

   Total* 1.98 (0.75) 2.43 (0.79) 2.25 (0.79) 2.47 (0.51) 2.18 (0.77) 2.88 0.024c 

        

Trait PA 

20.75 

(5.61) 21.65 (4.89) 19.02 (4.43) 22.90 (4.32) 24.13 (3.04) 2.99 0.020d 

        CTQ* 3.43 (0.18) 3.63 (0.20) 3.60 (0.24) 3.61 (0.23) 3.61 (0.22) 8.58 <0.001b 

        LESS 

          

Number 4.56 (2.96) 4.94 (3.08) 3.80 (3.00) 5.64 (4.27) 6.75 (4.86) 2.00 0.097 

   HI 2.87 (1.12) 3.10 (0.83) 2.71 (1.34) 3.36 (1.03) 3.00 (1.15) 1.02 0.40 

   AI 2.10 (0.78) 2.30 (0.62) 2.03 (1.00) 2.52 (0.73) 2.49 (1.08) 1.44 0.22 

        rVS 0.10 (0.18) 0.06 (0.16) 0.11 (0.21) 0.08 (0.13) 0.09 (0.14) 0.35 0.84 

lVS 0.08 (0.21) 0.07 (0.16) 0.09 (0.24) 0.10 (0.12) 0.11 (0.15) 0.11 0.98 

         

aCaucasian>Asian/Asian American and African/African American; 

Bi/Multiracial>Asian/Asian American, p’s<0.024, LSD corrected 

bAll groups>Caucasian, p’s<0.05, LSD corrected 

cAfrican/African American>Caucasian, p=0.002, LSD corrected 

dAfrican/African American>Asian/Asian American, p=0.009, LSD corrected 
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2.3.2. VS Reactivity 

Consistent with previous studies (Forbes et al., 2009a, Hariri et al., 2006), our 

paradigm elicited significant reward-related (i.e., Positive>Negative feedback) bilateral 

VS reactivity (Figure 3).  Because there was a small area of contiguity between the left 

and right VS activation clusters, we extracted BOLD signal values from 5mm spheres 

built around the peak voxels in each hemisphere (left: x = -12, y = 10, z = -10; right: x = 12, 

y = 10, z = -8). 

 

Figure 3. Reward-related VS reactivity.  Statistical parametric map illustrating 

bilateral VS activation clusters for the contrast Positive > Negative Feedback overlaid 

onto a canonical structural brain image in the axial plane. MNI coordinates and 

statistics (p < 0.05, FWE whole-brain corrected and ≥ 10 contiguous voxels): left 

hemisphere: x = -12, y = 10, z = -10, t = 6.19, p = 2.12 x 10-9, right hemisphere: x = 12, y = 

10, z = -8, t = 7.31, p = 4.85 x 10-12; kE = 446. 

2.3.3. VS Reactivity, Stress, and PA 

In support of our hypothesis, there was a significant interaction between right VS 

reactivity and LESS Highest Impact scores (ΔR2 = 0.045, b = 0.500, p = 0.0054; Cohen’s f2 = 
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0.049), such that higher LESS impact was associated with lower CES-D PA for 

participants with relatively low VS reactivity (bottom 28.2%, N = 48), but not for those 

with high VS reactivity (remaining 71.8%, N = 122); Figure 4).  Importantly, the 

interaction term explained significant CES-D PA variance above and beyond the main 

effects of VS reactivity (b = 0.318, p = 0.14) and LESS (b = 0.217, p = 0.26).  Furthermore, 

the interaction remained significant after controlling for age, gender, race/ethnicity, CTQ 

Total, Axis I diagnosis and trait PA (ΔR2 = 0.033, b = 0.450, p = 0.0095, Cohen’s f2 = 0.034).  

In addition, the interaction remained significant when LESS Number of Events and CES-

D non-PA scores, computed by subtracting CES-D PA from CES-D Total, were added to 

the model individually (LESS: ΔR2 = 0.031, b = 0.441, p = 0.011, Cohen’s f2 = 0.032; CES-D: 

ΔR2 = 0.026, b = 0.401, p = 0.012, Cohen’s f2 = 0.027), or simultaneously (ΔR2 = 0.026, b = 

0.403, p = 0.013, Cohen’s f2 = 0.027)).  A similar pattern emerged on the left side (ΔR2 = 

0.035, b = 0.444, p = 0.014; Cohen’s f2 = 0.036), however, the interaction between LESS 

Highest Impact and left VS reactivity was not equally robust to the inclusions of 

covariates and was reduced to a statistical trend after their addition to the model (ΔR2 = 

0.016, b = 0.313, p = 0.075).  

Similarly to LESS Highest Impact, LESS Number of Events also interacted with 

right VS reactivity (ΔR2 = 0.030, b = 0.152, p = 0.024, Cohen’s f2 = 0.03; Figure 4) to predict 

significant variability in CES-D PA above and beyond the main effects of VS reactivity (b 

= 0.327, p = 0.13) and LESS (b = 0.100, p = 0.14).  Specifically, LESS Number of Events was 
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associated with lower PA only for participants with relatively low VS reactivity (bottom 

34.7%, N = 59), but not for those with high VS reactivity (remaining 65.3%, N = 111).  The 

interaction remained significant when age, gender, race/ethnicity, CTQ scores, Axis I 

diagnosis and trait PA were added as covariates (ΔR2 = 0.023, b = 0.138, p = 0.032).  As 

with LESS Highest Impact, we found a similar pattern on the left side (ΔR2 = 0.025, b = 

0.125, p = 0.040, Cohen’s f2 = 0.026), which, however, was reduced to a trend when 

covariates were included in the model (ΔR2 = 0.018, b = 0.111, p = 0.057).  Unlike LESS 

Highest Impact, however, the Number of Events by right VS reactivity interaction was 

not robust to the inclusion of covariates in the sample excluding participants with 

current Axis I diagnosis (Table 5). LESS Average Impact did not interact with VS 

reactivity to predict CES-D PA (p values > 0.20). 
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Figure 4. Reward-related VS reactivity moderates the relationship between 

recent life stress and current levels of positive affect.  Stress (A: LESS Highest Impact, 

B: LESS Number of Events) was associated with lower state PA in participants with 

relatively low (blue line) but not high (red line) right VS reactivity.  Removal of the 
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two participants reporting 17 life events from the analyses did not change the 

significance of the LESS Number of Events by VS reactivity interaction term (ΔR2 = 

0.033, b = 0.207, p = 0.018). The plotted values are adjusted for gender, age and 

race/ethnicity. 

Table 4. Results from regressions predicting CES-D A from LESS Highest 

Impact and VS reactivity, when individuals with any Axis I diagnosis are excluded (N 

= 141). 

LESS Highest 

Impact 
ΔR2 b p 

No Covariates 
   

Left VS 0.032 -0.442 0.034 

Right VS 0.049 -0.552 0.0079 

 
   

With Covariates 
   

Left VS 0.008 -0.228 0.254 

Right VS 0.024 -0.407 0.040 

 
   

 

Table 5. Results from regressions predicting CES-D A from LESS Number of 

Events and VS reactivity, when individuals with any Axis I diagnosis are excluded (N 

= 141). 

 

LESS Number of 

Events 
ΔR2 b p 

No Covariates 
   

Left VS 0.017 -0.137 0.123 

Right VS 0.032 -0.198 0.031 

 
   

With Covariates 
   

Left VS 0.004 -0.072 0.405 

Right VS 0.011 -0.126 0.158 
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2.3.4. Control Analyses 

To ascertain the specificity of our findings to the CES-D PA subscale, we 

conducted a regression using LESS and VS reactivity as predictors of CES-D non-PA 

scores, computed by subtracting CES-D PA from CES-D Total.  As hypothesized, this 

model resulted in a main effect of LESS (Number of Events or Highest Impact) on non-

PA depressive symptoms (b coefficients > 0.090, p values < 0.001), but no significant 

effect of VS reactivity, or VS reactivity by LESS interaction (p values > 0.25).  Further 

demonstrating the specificity of our findings to CES-D PA, no LESS measure interacted 

with VS reactivity to individually predict any specific non-PA CES-D subscale (p values 

> 0.05), 

Underscoring the specificity of our results to recent life stress, CTQ (Total or 

Emotional Neglect subscales) scores did not interact with VS reactivity to predict CES-D 

PA or any of the other CES-D subscales (p values > 0.16).  In addition, neither the LESS 

nor the CTQ or any of their subscales had a direct effect on VS reactivity (p values > 

0.16). 

2.4. Discussion 

Consistent with theoretical predictions that robust responsiveness to reward may 

protect against the depressogenic effects of stress (Feder et al., 2009), we provide 

empirical evidence that recent life stress interacts with reward-related ventral striatum 
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reactivity to predict self-reported state positive affect.  Specifically, we show that recent 

life stress is associated with decreased PA only in individuals with relatively low VS 

reactivity.  In those with relatively high VS reactivity levels of PA did not vary as a 

function of life stress.  This interaction effect was robust to the effects of age, gender, 

race/ethnicity, childhood trauma, trait PA and current psychopathology. 

Despite numerous studies implicating reward system dysfunction in MDD 

(Epstein et al., 2006, Pizzagalli et al., 2009, Steele et al., 2007), little is known about how 

differences in reward-related brain function influence depressive symptomatology in the 

context of environmental adversity.  Results from the current investigation suggest that 

individual differences in reward system reactivity may shape one’s propensity to 

experience reductions in PA in the wake of recent life stress.  Long-term prospective 

studies investigating interactions between life stress and individual differences in VS 

reactivity are needed to evaluate if this pattern is associated with vulnerability for 

developing MDD.  However, the relevance of this putative risk pathway is corroborated 

by extant research demonstrating that reward system reactivity in non-depressed adults 

is shaped by various genetic and environmental factors known to modulate depression 

vulnerability.  Specifically, VS reactivity in healthy adults is regulated by 

polymorphisms within dopaminergic genes (Forbes et al., 2009a, Nikolova et al., 2011), 

that have also been linked to differential depression susceptibility particularly in the 

context of environmental adversity (Elovainio et al., 2007, Haeffel et al., 2008).  In 
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addition, both early life stress and experimentally manipulated acute stress have been 

linked to reductions in reward-related neural reactivity (Bogdan et al., 2011, Dillon et al., 

2009) and increased risk for depression (Heim et al., 1997).  Drawing on our current 

results, we speculate that reward-related VS reactivity may further interact with recent 

life stress to modulate stress-related reductions in PA, and potentially, risk for 

depression. 

Contrary to prior findings demonstrating that early life stress reduces neural 

responses to reward in adults (Dillon et al., 2009), we found that neither early childhood 

trauma, as assessed by the CTQ, nor recent life stress, had a direct effect on VS 

reactivity.  It is worth noting, however, that participants in the current sample were not 

specifically selected for childhood trauma experience and were primarily high 

functioning college students with little endorsed childhood trauma exposure.  Thus, it is 

possible that only severe childhood trauma or chronic stress of a magnitude outside the 

range present in the current sample would result in significant reduction in adult neural 

responsiveness to reward. 

As hypothesized, the interaction between VS reactivity and stress was most 

robust when predicting PA (i.e., CES-D PA), rather than general depressive symptoms 

as measured by the other subscales of the CES-D.  This suggests that VS reactivity may 

be protective against decreases in PA specifically, rather than depression in general, 

possibly by conferring resiliency to stress-related hedonic impairments.  Moreover, 
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because anhedonia and reductions in PA are a defining feature of other stress-related 

psychopathology, such as Post-Traumatic Stress Disorder (PTSD), our findings may not 

be specific to MDD resilience.  In fact, the results we report are also consistent with 

studies suggesting that pre-existing individual differences in neural responsiveness to 

reward correlate with resilience to PTSD in the face of trauma (Vythilingam et al., 2009).  

Nonetheless, since we used a non-clinical sample in this study, direct translation of the 

observed patterns into vulnerability and resilience for psychopathology cannot be 

assumed until confirmed by prospective longitudinal studies mapping the etiology of 

clinical disorders. 

In addition to the specificity of our results to PA, our findings were strongest 

when using the LESS Highest Impact metric, rather than total Number of Events or 

Average Impact.  Importantly, the results involving LESS Highest Impact scores 

remained significant when controlling for number of events, suggesting that the effects 

of the event with the highest impact may override the independent and/or additive 

effects of multiple less impactful stressful events.  Moreover, the results with LESS 

Number of Events did not survive when individuals with current psychopathology 

were removed from analyses.  While the additivity of stressful life events has long been 

the subject of debate in the literature (Paykel, 1983), some empirical support does exist 

for the notion that once a highly impactful event has occurred, the depressogenic effects 

of minor events may become negligible (Brown, 1978).  Future research employing 
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interview-based stress measures (Duggal et al., 2000) embedded within a prospective 

longitudinal design may be necessary to corroborate the credibility of this postulation. 

Finally, while linear regression analyses conducted separately for the right and 

the left VS activation clusters yielded convergent results, the VS reactivity x stress 

interaction effect was more robust in the right hemisphere. Such asymmetries are not 

uncommon in the literature (Jocham et al., 2009, Yacubian et al., 2007) and may reflect 

intrinsic differences in neurotransmitter regulation of VS function across the two 

hemispheres (Besson & Louilot, 1995, Merali et al., 2004, Sullivan & Dufresne, 2006, 

Young & Williams, 2010). However, the precise biological mechanisms mediating such 

lateralized effects are currently unknown.  Alternatively, it is possible that, perhaps due 

to its visuospatial component, our task preferentially recruited the right VS. Although a 

paired-samples t test directly comparing activation in the peak two voxels in the left and 

right VS was not significant in the current sample (p = 0.29), our whole-brain voxel-wise 

analysis showed that the peak activation voxel on the right side was somewhat more 

strongly activated than the peak voxel on the left side (right: t = 7.31, p = 4.85 x 10-12; left: t 

= 6.19, p = 2.12 x 10-9). Consistent with this notion, we have previously found right-

hemisphere specific correlations between reward-related VS reactivity, as assessed by 

the same task, and variability in behavioral measures of impulsivity (Forbes et al., 2009a, 

Hariri et al., 2006).  Further research is necessary to determine the functional significance 

of these lateralized effects. 
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The current study is not without limitations. Most importantly and as 

highlighted above, while trait PA has been found to be predictive of depression risk 

(Folkman & Moskowitz, 2000, Sheeber et al., 2009, Watson, 2005), the direct relevance of 

these findings to understanding depression vulnerability and resilience, particularly 

over long periods, of time is limited. The clinical significance of the findings is also 

limited by the fact that we focused on high-functioning non-patient young adult 

participants, who may be more resilient than the general population. This could at least 

partially explain why we did not find a main effect of recent life stress on either 

depressive symptomatology more generally or PA levels specifically. Thus, caution must 

be used in interpreting the broader clinical significance of these findings until replicated 

in the context of more severe mood pathology. 

Another potential limitation of the present study lies in the instrument we used 

to assess tress. Specifically, we used a self-report retrospective measure of stressful life 

events occurring in the past 12 months.  This questionnaire did not ask participants to 

indicate the specific time when each event occurred, leaving us unable to differentiate 

between more proximal and distal events (Kendler et al., 1998) or evaluate potential 

“kindling” effects (Post, 1992).  However, prior studies have shown that stressful life 

events can have detrimental effects on psychological well-being for up to a year 

following their occurrence (Caspi et al., 2003, Clements & Turpin, 1996). In addition, the 

appraisal of an event’s impact, as conveyed by LESS Highest Impact scores, at the time 
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of study completion (i.e., when VS reactivity and CES-D PA were assessed) provides an 

index of subjective importance of a life event, which may be more informative than its 

proximity in time. Nonetheless, given the retrospective nature of our self-report measure 

of stressful life events, we cannot rule out the possibility that these events affected 

subsequent measures of VS reactivity. However, prior research suggests that VS 

reactivity is a temporally stable neural phenotype. Specifically, studies have shown that 

VS reactivity as assessed by this task correlates with temporally stable personality and 

behavioral traits such as impulsivity (Forbes et al., 2009a) and delay discounting (Hariri 

et al., 2006). In addition, we have previously shown that the same neural phenotype is 

under the direct influence of polymorphisms within several dopaminergic genes, 

suggesting this phenotype may be relatively independent of environmental effects 

(Forbes et al., 2009a, Nikolova et al., 2011). Finally, systematic effects on VS reactivity 

would be expected to manifest as direct correlations between LESS scores and VS 

reactivity in the current sample and all such correlations were non-significant.  

Finally, recent studies have demonstrated that reward processing may not be a 

unitary phenomenon (Berridge et al., 2009), and our task does not allow for 

differentiation between brain function during different phases of reward processing 

(e.g., reward anticipation, outcome and learning).  Relatedly, we focused our analyses on 

state positive affect levels, which capture overall happiness, but do not tap directly into 

motivational aspects of reward processing or reward learning. In light of studies 
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showing reduced reward responsiveness and reward-based learning in the context of 

stress (Bogdan & Pizzagalli, 2006, Pizzagalli et al., 2007), it is possible that the relatively 

low levels of positive affect we observed as a function of recent stressful life events and 

relative hyporesponsiveness of the VS, may in fact be due to stress-related reductions in 

motivation to pursue rewards or a reduced ability to learn from prior reinforcement. 

Future studies using tasks allowing for greater specificity on both the behavioral and 

neural level could identify discrete components of reward-related processes that may 

better explain stress-related variability in positive affect alongside other relevant aspects 

of reward processing. 

These limitations notwithstanding, the current study is the first empirical 

demonstration that robust neural reactivity to reward may protect against stress-related 

reductions in positive affect.  Given that impairments in PA are cardinal features of 

mood disorders in general, and MDD in particular, the current work provides a useful 

framework for future research to investigate the relevance of these pathways in the 

expression of clinical dysfunction.  Additional work establishing molecular adaptations 

in the reward system that may mediate resilience to stress-related hedonic impairments 

holds promise not only to enhance our understanding of vulnerability and resilience to 

depression, but also ultimately inform advances in treatment and prevention strategies 

for MDD and other stress-related psychopathology.  Such research may benefit 

specifically from combining laboratory stress manipulations with multimodal PET/fMRI 
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imaging to measure reward-related brain function alongside dopamine release 

(Buckholtz et al., 2010a), while also taking into account genetic variants affecting 

neurotransmission within the VS (Hariri, 2009).  
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3. Neural Responses to Threat and Reward Interact to 

Predict Stress-Related Problem Drinking: A Novel 

Protective Role of the Amygdala1 

3.1. Background 

Increased amygdala reactivity to threat has been consistently associated with 

heightened risk for mood and anxiety disorders (Stein et al., 2007).  In contrast to this 

heightened risk, a few studies have suggested that threat-related amygdala reactivity 

may buffer risk for drug abuse.  Specifically, one study reported that individuals at high 

familial risk for alcoholism exhibit relatively reduced threat-related amygdala reactivity 

(Glahn et al., 2007).  The authors speculate that this pattern may indicate reduced 

sensitivity to the harmful consequences of excessive alcohol use in those at risk.   

Consistent with these findings, a recent study has linked a genetic variant 

conferring increased risk for drug abuse (Sipe et al., 2002), with relatively decreased 

threat-related amygdala reactivity (Hariri et al., 2009).  Interestingly, the same genetic 

risk variant was associated with heightened reward-related reactivity of the ventral 

striatum (VS), a neural phenotype associated with both risk for and pathophysiology of 

drug abuse (Evans et al., 2006, Forbes et al., 2009a).  These data suggest a potentially 

synergistic effect of threat-related amygdala reactivity and reward-related VS reactivity 

                                                      

1 This Chapter is based on the following publication: Nikolova, Y.S. & Hariri, A.R. (2012) Neural responses 

to threat and reward interact to predict stress-related problem drinking: A novel protective role of the 

amygdala. Biology of mood & anxiety disorders, 2, 19. 
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in precipitating drug abuse risk.  In addition to variability in these neural phenotypes, 

drug abuse risk is moderated by environmental factors, such as recent life stress (Sinha, 

2001).  Both VS and amygdala function also are affected by stress (Rademacher et al., 

2008), suggesting that complex interactions between these neural circuits may contribute 

to variability in stress-related risk for drug abuse. 

Here, we explore the interactions of recent life stress, threat-related amygdala 

and reward-related VS reactivity in predicting variability in self-reported problem 

drinking in a sample of 200 young adults.  We focused on drinking because alcohol is 

the most commonly used and abused drug in adolescents and young adults (Young et 

al., 2002), and its use is often triggered by stress (Sinha, 2001).  Using two well-

characterized BOLD fMRI paradigms, we quantified threat-related amygdala and 

reward-related VS reactivity.  Recent life stress and problem drinking were assessed 

using the Life Events Scale for Students [LESS, (Nikolova et al., 2012)] and the Alcohol 

Use Disorder Identification Test [AUDIT, (Saunders et al., 1993)], respectively.  Based on 

prior research, we predicted that higher threat-related amygdala reactivity would 

protect against increased problem drinking in the context of stress, particularly in those 

whose risk is exaggerated by higher reward-related VS reactivity. 
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3.2. Methods 

3.2.1. Participants 

200 participants were included from the ongoing Duke Neurogenetics Study 

(DNS), which assesses a range of behavioral and biological traits among young adult, 

student volunteers.  DNS exclusionary criteria are described in detail elsewhere 

(Nikolova et al., 2012).  All participants provided informed consent in accord with Duke 

University guidelines, and were in good general health.  Twenty-nine participants who 

completed the study were subsequently excluded from analyses due to poor BOLD 

fMRI signal in VS regions of interest (Nikolova et al., 2012) and one participant did not 

have valid self-report data due to programming error, leaving a final sample of 170 

individuals (104 women; mean age 19.55 ± 1.26).  Twenty-nine of these 170 met criteria 

for at least one Axis I disorder (Table 1).  The significance of all reported results did not 

change when controlling for disorder (p values < 0.030). 

3.2.2. BOLD fMRI Data Acquisition and Analysis 

Amygdala and the VS reactivity paradigms have been described in detail 

previously (Carre et al., 2013, Nikolova et al., 2012).  Briefly, the amygdala paradigm 

consists of 4 blocks of a face-processing task interleaved with 5 blocks of a sensorimotor 

control task.  During task blocks, participants view a trio of faces (with neutral, angry, 

fearful or surprised expressions) and match 1 of 2 faces (bottom) identical to a target face 

(top).  During control blocks, participants match simple geometric shapes. Here, we 
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focus on the contrast of all task blocks versus control blocks (i.e., Faces > Shapes) as we 

are interested in amygdala reactivity to threat broadly, which is conveyed to varying 

degrees by all of our expressions (Costafreda et al., 2008, Sabatinelli et al., 2011). 

Our VS reactivity paradigm consists of a number guessing task wherein 

participants receive predominantly positive feedback (80% correct guess), 

predominantly negative feedback (20% correct guess), or no feedback.  There are three 

pseudorandomly presented blocks of each condition.  Participants are unaware of the 

fixed outcome probabilities associated with each block and are led to believe their 

performance will determine a net monetary gain at the end of the scanning session.  

Instead, all participants receive $10.  Here we focus on differential VS reactivity from 

positive > negative feedback blocks. BOLD fMRI acquisition parameters, preprocessing 

and analytic techniques are described in detail elsewhere (Nikolova et al., 2012). 

3.2.3. Statistical Analysis 

Linear regressions using self-report of recent stress from the Life Events Scale for 

Students Highest Impact score, left and right amygdala reactivity, left and right VS 

reactivity, and their interactions as independent variables, and self-reported drinking 

from the Alcohol Use Disorders Identification Test Total scores (square root transformed 

to normalize distribution) as a dependent variable were conducted within SPSS (SPSS 

Inc, Chicago, IL).  Significant three-way stress x amygdala x VS reactivity interactions 

where examined using two-way stress x amygdala reactivity interactions at low (-1 SD), 
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mean, or high (+1 SD) VS reactivity.  Significant stress x VS reactivity interactions were 

in turn probed by examining the linear relationship of stress and drinking at low (-1 SD), 

mean, and high (+1 SD) VS reactivity. 

3.3. Results 

As expected (Sinha, 2001), there was a significant positive correlation between 

recent stress and problem drinking (r = 0.22, p = 0.004).  Critically, however, this 

relationship was moderated by amygdala and VS reactivity.  Specifically, a three-way 

interaction predicting problem drinking emerged between recent stress, left amygdala 

reactivity, and left VS reactivity (ΔR2 = 0.035, b = -0.26, p = 0.012).  Among participants 

with low VS reactivity (1 SD below mean; Figure 1C), stress did not predict any 

increases in drinking, regardless of amygdala reactivity.  Among participants with high 

VS reactivity (1 SD above mean), who are likely to be at increased risk for drug abuse 

(Evans et al., 2006), stress predicted increased problem drinking only for those who also 

had low amygdala reactivity (1 SD below mean; Figure 1D).  This three-way interaction 

remained significant after controlling for gender, age, and race/ethnicity (ΔR2 = 0.031, b = 

-0.25, p = 0.012).  There was no such interaction for right VS or amygdala reactivity (p 

values > 0.10), and no significant main effects of either amygdala or VS reactivity on 

problem drinking (p values > 0.14). 
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Figure 5. (A) Statistical parametric map illustrating mean bilateral threat-

related amygdala reactivity (left: x = -22, y = -6, z = -18, t = 19.76, p < 0.000001, kE = 173; 

right: x = 28, y = -4, z = -20, t = 20.16, p < 0.000001, kE=199). (B) Statistical parametric map 

illustrating mean bilateral reward-related VS reactivity (left: x = -12, y = 10, z = -10, t = 

6.19, p = 3.07 x 10-7, kE = 357; right: x = 12, y = 10, z = -8, t = 7.31, p = 1.03 x 10-9, kE = 383).  

Activation clusters in (A) and (B) are overlaid onto canonical structural brain images 

in the axial plane. (C) Among participants with low VS reactivity, (1 SD below the 

mean), recent stress (LESS Highest Impact) was not associated with increased 

problem drinking (total scores on the AUDIT; square root transformed) regardless of 

amygdala reactivity.  (D) For participants with high (1 SD above the mean) VS 

reactivity, recent stress predicted significant increases in problem drinking only for 

those who also had relatively low (1 SD below the mean) amygdala reactivity (blue 

line).  Plotted values are adjusted for sex, age and race/ethnicity. 
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Demonstrating the specificity of these findings to recent, as opposed to early, life 

stress, the three-way interaction remained significant when total scores from the 

Childhood Trauma Questionnaire were added as an additional covariate (left VS: R2 = 

0.033, b = -0.25, p = 0.011).  Furthermore, childhood trauma did not interact with 

amygdala or VS reactivity to predict problem drinking (p values > 0.63).  Finally, the 

same three-way interaction emerged in a subsample of participants (N = 85) who 

completed a three-month follow-up assessment of stress and problem drinking (without 

covariates: ΔR2 = 0.085, b = -0.365, p = 0.008; with covariates: ΔR2 = 0.063, b = -0.324, p = 

0.019).  The temporal stability of this interaction suggests that stress-related problem 

drinking reflects rather than affects the relative neural responsiveness to threat and 

reward. 

3.4. Discussion 

In the current study, we report novel evidence that threat-related amygdala 

reactivity and reward-related VS reactivity interact to predict current and future levels 

of problem drinking, such that higher levels of recent life stress are associated with more 

alcohol use only in those individuals with relatively high VS reactivity and relatively 

low amygdala reactivity.  

An important caveat to consider when interpreting these findings is the 

possibility that participants drinking more alcohol may experience more stressful life 



 

62 

events partially as a result of their increased drinking, rather than the other way around. 

Since our measures of stress and problem drinking are based on retrospective self-report 

spanning the past 12 months, the directionality of the association between stress and 

drinking cannot be determined on the basis of these analyses. Thus we cannot rule out 

the alternative interpretation that individuals with high VS reactivity and low amygdala 

reactivity are more likely to experience highly impactful stressful life events in the 

context of problem drinking. This interpretation would be consistent with a heightened 

drive to pursue immediate rewards, coupled with a reduced ability to recognize and 

avoid threat in those individuals. 

Limitations notwithstanding, we provide novel evidence that recent life stress is 

associated with increased problem drinking only in individuals with higher reward-

related VS reactivity and lower threat-related amygdala reactivity.  Consistent with the 

relative temporal stability of amygdala (Manuck et al., 2007) and VS (Plichta et al., 2012) 

reactivity, the interactions between these neural phenotypes and recent life stress 

predicted future problem drinking in a subset of participants.  This finding suggests that 

the pattern we observe spans longer periods of time and may be useful in identifying 

individuals at particularly high risk for developing alcohol and possibly other substance 

use disorders in the wake of stress.  Future research identifying factors that predict the 

observed variability in neural responsiveness to threat and reward (e.g., functional 
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genetic polymorphisms) can inform the development of biomarkers for drug abuse risk 

and interventions targeting these specific intermediate phenotypes. 
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4. Multilocus genetic profile for dopamine signaling 

predicts ventral striatum reactivity1 

4.1. Background 

Two rapidly emerging and highly complementary strategies have accelerated 

progress into biological mechanisms mediating individual differences in behavior and 

related risk for psychopathology: imaging genetics and gene-environment interactions 

research.  Through the systematic mapping of common genetic polymorphisms affecting 

brain chemistry onto variability in brain structure and function, imaging genetics has 

established multiple fundamental mechanisms through which individual differences in 

behavior emerge and bias responses to the environment (Hariri, 2009). In parallel, gene-

environment interactions research has demonstrated how such genetically mediated 

variability in behaviorally relevant brain function translates into individual risk for 

psychopathology upon exposure to environmental stress or adversity (Caspi & Moffitt, 

2006). 

Imaging genetics studies to date, however, have been almost universally limited 

by their reliance on single genetic loci to model variability in complex brain chemistry 

and, subsequently, brain function. Recent studies have begun to recognize the 

importance of considering the simultaneous involvement of multiple genes in the 

                                                      

1 This Chapter is based on the following publication: Nikolova, Y.S., Ferrell, R.E., Manuck, S.B. & Hariri, 

A.R. (2011) Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. 

Neuropsychopharmacology, 36, 1940-1947. 
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regulation of these pathways by taking into account epistatic interactions among 

polymorphic loci (Buckholtz et al., 2007, Nicodemus et al., 2010, Pezawas et al., 2008). 

Nonetheless, studies of this kind have typically focused on no more than two 

genes/polymorphisms at a time and those which have taken more into account have 

done so within the framework of a data-driven approach (Nicodemus et al., 2010, Potkin 

et al., 2009, Seshadri et al., 2007). As multiple functional polymorphisms of various effect 

sizes are likely to shape overall variability in brain function, one strategy for extending 

and expanding the utility of this research is to establish biologically founded multilocus 

genetic profiles that represent the cumulative effect of multiple  polymorphic loci of 

known functionality on a specific signaling mechanism (Plomin et al., 2009).  Individual 

polymorphic loci account for a small proportion of phenotypic variance such that their 

independent effects are unlikely to produce statistically significant effects especially in 

relatively small samples.  The simultaneous consideration of multiple functional loci 

through a multilocus genetic profile score may allow for the inclusion of otherwise non-

significant polymorphisms, which only collectively account for significant proportions 

of variability.  In turn, such genetic profiles may serve as the foundation for gene-

environment interactions research that can establish trajectories of risk for 

psychopathology applicable at the level of the individual. 

In the present study, we sought to establish the utility of multilocus genetic 

profiles representing the cumulative biological impact of multiple functional 



 

66 

polymorphic loci in mapping individual differences in brain function.  The simultaneous 

consideration of multiple polymorphisms has already been successfully used to explain 

variability in antidepressant treatment response (Ising et al., 2009) and to model 

individual differences in sensation seeking (Derringer et al., 2010) and basal ganglia 

response to reward (Dillon et al., 2010).  However, no study to date has created a 

biologically informed multilocus genetic profile representing variability in 

neurotransmitter signaling across multiple genes that can be used to explain individual 

differences in behaviorally relevant brain function. The neural target of our study was 

variability in the responsiveness of the ventral striatum (VS), a central node of a 

distributed corticostriatal circuitry supporting reward-related and appetitive behaviors 

(Gan et al., 2010, Tanaka et al., 2004), which is also implicated in the pathophysiology of 

mood, impulse and substance use disorders (Buckholtz et al., 2010a, Buckholtz et al., 

2010b, Dalley et al., 2007).  The genetic target of our study was dopamine (DA), which 

plays a key role in modulating the responsiveness of the VS (Sesack & Grace, 2010).  We 

hypothesized that multilocus genetic profile scores representing relatively increased DA 

signaling, would significantly predict increased VS reactivity, and that the variance in 

reactivity explained by the profile scores would be significantly greater than that 

associated with any single locus. 

All five loci included in the genetic profile were carefully selected based on their 

prior links with functional changes in DA transmission and/or VS reactivity.  The DAT1 
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9-repeat allele of a 40 base pair (bp) variable number tandem repeat (VNTR) within the 

3’ untranslated region (3’ UTR) of the dopamine transporter gene (SLC6A3) has been 

linked to reduced DA reuptake and increased striatal DA signaling (Heinz et al., 2000, 

Vanness et al., 2005).  Similarly, the Deletion allele of an Insertion/Deletion 

polymorphism (DRD2 -141C Ins/Del; rs1799732) within the promoter region of the DA 

receptor D2 gene (DRD2) has been associated with reduced expression of DRD2 

(Arinami et al., 1997), and has been implicated in increased VS reactivity (Forbes et al., 

2009a).  We also considered the DRD2 Taq1A polymorphism, a C/T SNP (rs1800497) 

located in the ankyrin repeat and kinase-domain containing 1 (ANKK1) gene.  Relative to 

the T (A1) allele, the C (A2) allele has been associated with increased DA signaling 

(Noble et al., 1991), increased striatal glucose metabolism (Noble et al., 1997) and 

reactivity to reward (Stice et al., 2008).  The fourth polymorphism we considered was a 

48 bp VNTR within the DA receptor D4 gene (DRD4).  The 7-repeat allele of this VNTR 

has been previously linked to reduced DRD4-mediated postsynaptic inhibition and 

hence increased DA signaling (Wang et al., 2004) as well as increased VS reactivity 

(Forbes et al., 2009a).  Finally, our genetic profile score incorporated a functional SNP 

(rs4680) within the third exon of the catechol-O-methyltransferase gene (COMT), which 

results in nonsynonymous Val/Met substitution (COMT Val158Met).  The Met allele has 

been associated with decreased enzymatic degradation of dopamine (Egan et al., 2001) 

and increased VS reactivity (Dreher et al., 2009, Yacubian et al., 2007). 
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4.2. Methods 

4.2.1. Participants 

A total of 103 subjects were recruited from a parent study, the Adult Health and 

Behavior (AHAB) project, which assessed a wide range of behavioral and biological 

traits among nonpatient, middle-aged, community volunteers.  All participants 

provided informed consent in accord with local guidelines, and were in good general 

health.  The participants were free of the following study exclusions: (1) medical 

diagnoses of cancer, stroke, diabetes requiring insulin treatment, chronic kidney or liver 

disease, or lifetime history of psychotic symptoms; (2) use of psychotropic, 

glucocorticoid, or hypolipidemic medication; (3) conditions affecting cerebral blood flow 

and metabolism (e.g., hypertension); and (4) diagnosis of any current DSM-IV Axis I 

disorder (First, 1996).  Given the general confounds of population stratification, we 

limited our analyses to sixty-nine Caucasian subjects (37 women; mean age 44.46 ± 6.66 

years) with overlapping reward-related VS data and genotypes at all five loci of interest. 

4.2.2. Genetic Profile Scores 

We compiled individual genetic profile scores reflecting the total number of 

variants that have each been previously associated with relatively increased striatal DA 

signaling and/or VS reactivity across five functional polymorphic loci: SLC6A3 3’ 40bp 

VNTR (DAT1), DRD2 -141C Ins/Del (rs1799732), DRD2 Taq1A (rs1800497), DRD4 exon 3 

48bp VNTR and COMT Val158Met (rs4680) (for Genotyping, see Supplementary 
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Methods). Across all loci, relatively “High” DA genotypes were assigned a score of 1, 

“Low” DA genotypes a score of 0, and “Intermediate” DA genotypes a score of 0.5.  

These scores at each locus were then totaled to create an individual profile score (Table 

6). 

Table 6. Composition and distribution of multilocus genetic profile scores.  

Individual genetic profile scores represent the sum of “High” DA genotypes across 

five functional polymorphic loci.  “High” genotypes received a score of 1, “Low” 

genotypes a score of 0, and “Intermediate” genotypes a score of 0.5.  For example, the 

genetic profile score for an individual with the following five polymorphisms – 

DAT1 9-repeat carrier, DRD4 7-repeat carrier, DRD2 Taq1A T homozygote, DRD2 -

141C Del carrier & COMT heterozygote –  is 3.5 (1 + 1 + 0 + 1 + 0.5). 

 

Polymorphism  Genotypes 
N 

DA Profile 

Score 

 DAT1 VNTR 9-repeat carrier 35 High 

 10/10 34 Low 

 DRD4 VNTR 7-repeat carrier 42 High 

  All others 27 Low 

 DRD2 Taq1A  C/C 43 High 

 C/T 23 Intermediate 

 T/T 3 Low 

 DRD2 -141C Ins/Del Del carrier 14 High 

  Ins/Ins 55 Low 

 COMT Val158Met Met/Met 12 High 

 Val/Met 41 Intermediate 

 Val/Val  16 Low 

 

Consistent with previous research suggesting a dominant role for the 9-repeat 

allele (Heinz et al., 2000, Van De Giessen et al., 2009, Vanness et al., 2005), DAT1 9-repeat 

allele carriers were coded as having a “High” DA genotype, while 10-repeat allele 
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homozygotes were coded as having a “Low” DA genotype.  Drawing on prior reports, 

we also established two genotype groups for the DRD2 -141C locus: -141C deletion 

carriers (Ins/Del) and non-carriers (Ins/Ins), and designated -141C Del carriers as the 

“High” and non-carriers as “Low” DA genotypes.  Since prior studies of DRD2 Taq1A 

have used either T (A1) or C (A2) allele homozygotes as a reference group  (Bakker et al., 

2008, Jonsson et al., 1999, Kwon et al., 2008, Pohjalainen et al., 1998), and other research 

suggests additive effects for the number of DRD2 Taq1A alleles on relative change in 

DRD2 expression levels (Noble et al., 1991), we modeled allele load effects of the DRD2 

Taq1A on overall DA transmission with C allele homozygotes designated as the “High” 

DA genotype, T allele homozygotes as the “Low” DA genotype and heterozygotes as 

“Intermediate” DA genotype.  The DRD4 7-repeat allele carriers were considered 

“High”, while other allele combinations were considered “Low” DA genotypes.  Finally, 

consistent with additive effects of the Met allele of COMT Val158Met (Weinshilboum et 

al., 1999), we established three genotype groups in relation to this locus: Val 

homozygotes, Val/Met heterozygotes and Met homozygotes.  For the purposes of the 

DA profile scores, Met allele homozygotes were considered “High”, Val allele 

homozygotes “Low”, and heterozygotes “Intermediate” genotypes. 

4.2.3. Ventral Striatum (VS) Reactivity Paradigm 

As described previously (Forbes et al., 2009a, Gianaros et al., 2010, Hariri et al., 

2006, Hariri et al., 2009) our blocked-design paradigm consisted of pseudorandom 
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presentation of trials wherein participants played a card guessing game and received 

positive or negative feedback (i.e., correct or incorrect guess) for each trial.  Our task was 

selected primarily with the aim of robustly engaging the VS, so that individual 

differences in VS responsiveness could be recorded and mapped onto genetic 

background.  Participants were told that their performance on the card game would 

determine a monetary reward to be received at the end of the game.  During each trial, 

participants had 3 seconds to guess, via button press, whether the value of a visually 

presented card was higher or lower than 5 (index and middle finger, respectively).  After 

a choice was made, the numerical value of the card was presented for 500 milliseconds 

and followed by appropriate feedback (green upward-facing arrow for positive 

feedback; red downward-facing arrow for negative feedback) for an additional 500 

milliseconds.  A crosshair was then presented for 3 seconds, for a total trial length of 7 

seconds.  Each block was comprised of 5 trials, with 3 blocks each of predominantly 

positive feedback (80% correct) and 3 of predominantly negative feedback (20% correct) 

interleaved with 3 control blocks.  During control blocks, participants were instructed to 

simply make alternating button presses during the presentation of an “x” (3 seconds) 

which was followed by an asterisk (500 milliseconds) and a yellow circle (500 

milliseconds).  Each block was preceded by an instruction of “Guess Number” (positive 

or negative feedback blocks) or “Press Button” (control blocks) for 2 seconds resulting in 

a total block length of 38 seconds and a total task length of 342 seconds.  Participants 
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were unaware of the fixed outcome probabilities associated with each block and were 

led to believe that their performance would determine a net monetary gain at the end of 

the scanning session.  Instead, all participants received $10.  We included one 

incongruent trial within each task block (e.g., 1 of 4 trials during positive feedback 

blocks was incorrect, resulting in negative feedback) to prevent participants from 

anticipating the feedback for each trial and to maintain participants’ engagement and 

motivation to perform well. 

4.2.4. BOLD fMRI Data Acquisition and Analysis 

Each participant was scanned using a Siemens 3T Allegra scanner (Siemens AG, 

Medical Solutions, Erlangen, Germany) developed specifically for advanced brain 

imaging applications and characterized by increased T2* sensitivity and fast gradients 

that minimize echo spacing, thereby reducing echo-planar imaging (EPI) geometric 

distortions and improving image quality.  BOLD functional images were acquired with a 

gradient-echo echo planar imaging sequence (repetition time [TR]/echo time [TE] = 

2000/25 milliseconds, field of view [FOV] = 20 cm, matrix = 64 × 64) that covered 34 

interleaved axial slices (3 mm slice thickness) aligned with the anterior commissure-

posterior commissure (AC-PC) plane and encompassing the entire cerebrum and the 

majority of the cerebellum.  All scanning parameters were selected to optimize the 

quality of the BOLD signal while maintaining a sufficient number of slices to acquire 

whole-brain data.  Before the collection of fMRI data for each participant, we acquired a 
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reference EPI scan that we visually inspected for artifacts (e.g., ghosting) and good 

signal across the entire volume of acquisition, including the VS.  The fMRI data from all 

participants included in this study were cleared of such problems.  Additionally, an 

autoshimming procedure was conducted before the acquisition of BOLD data in each 

subject to minimize field inhomogeneities. 

Whole-brain image analysis was completed using SPM2 

(http://www.fil.ion.ucl.ac.uk/spm).  Images for each participant were realigned to the 

first volume in the time series to correct for head motion.  Data sets were then selected 

for their high quality (scan stability) as demonstrated by small (≤ 2mm and 2°) motion 

correction.  Based on this criterion, data from all 69 participants were included in 

subsequent analyses.  Realigned images were spatially normalized into a standard 

stereotactic space (Montreal Neurological Institute template) using a 12-parameter affine 

model.  These normalized images were then smoothed to minimize noise and residual 

differences in gyral anatomy with a Gaussian filter, set at 6mm full-width at half-

maximum.  Voxel-wise signal intensities were ratio normalized to the whole-brain 

global mean.  Following preprocessing, linear contrasts employing canonical 

hemodynamic response functions were used to estimate differential effects of feedback 

(i.e., reward) from the contrast of Positive Feedback > Negative Feedback for each 

individual.  Individual contrast images were then used in second-level random effects 

models accounting for scan-to-scan and participant-to-participant variability to 

http://www.fil.ion.ucl.ac.uk/spm
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determine mean condition-specific regional responses using one-sample t-tests 

thresholded at p < 0.05, FWE-corrected, and ≥10 contiguous voxels.  Our VS region of 

interest was constructed using the Talairach Daemon option of the WFU PickAtlas Tool, 

version 1.04 (Wake Forest University School of Medicine, Winston-Salem, North 

Carolina).  Two spheres of 10mm radius were created around MNI coordinates x = ±12, y 

= 12 & z = -10 to encompass the VS in the right and left hemisphere, respectively. 

4.2.5. Genotyping 

High molecular weight DNA was isolated from EDTA anticoagulated whole-

blood samples obtained from all participants using the Puregene kit (Gentra Systems, 

Minneapolis, MN, USA).  Each sample was genotyped using allele-specific primers and 

polymerase chain reaction conditions from published protocols: SLC6A3 DAT1 VNTR 

(Vandenbergh et al, 1992); DRD4 third exon 48 bp VNTR (Lichter et al, 1993), DRD2 -

141C Ins/Del (Gelernter et al, 1998) and COMT Val158Met (Lachman et al, 1996).  All 

genotypes were scored by two independent readers by comparison to sequence-verified 

standards.  The DRD2 Taq1A was genotyped on an Illumina 610-Quad BeadChip 

(Illimina Inc, San Diego, CA) platform.  Individual genotypes for DRD2 Taq1A were 

extracted from the master database using the “list” command in PLINK 

(http://pngu.mgh.harvard.edu/purcell/plink/).  Genotype frequencies at all five loci were 

in Hardy-Weinberg Equilibrium (all χ2 < 2.56, all P’s > 0.10). 

http://pngu.mgh.harvard.edu/purcell/plink/
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4.2.6. Variance Analyses 

To compute the relative variance explained by the cumulative genetic profile 

score and each individual genotype, parameter estimates from VS clusters exhibiting a 

main effect of task were extracted using the VOI tool in SPM2 and entered into linear 

and stepwise regression models in SPSS (PASW Statistics 18; SPSS Inc., Chicago, Il).  

Importantly, by extracting VS reactivity values from the entire functional clusters 

activated by our fMRI paradigm rather than clusters specifically correlated with our 

independent variables of interest, we precluded the possibility of any regression 

coefficient inflation that may result from capitalizing on the same data twice (Viviani, 

2010).  We have successfully used this more conservative analytic strategy in recent 

studies (Carre et al., 2010, Hyde et al., 2010).  Consistent with the standards of genetic 

association studies (Dahlman et al., 2002) we applied a Bonferroni-like adjustment to our 

significance level to reflect the total number of regressions conducted (12 regressions 

total: 5 individual loci and 1 profile score conducted independently for the left and right 

VS) resulting in a threshold of p ≤ 0.004 (i.e., 0.05/12). Cook’s distance values were 

computed for all observations and all regression models, and no single data points were 

identified that biased the overall models (i.e., Cook’s distance < 0.195 for all data points) 

(Cook, 1982). 

Based on evidence for significant gender differences in reward-related VS 

reactivity in prior studies (Spreckelmeyer et al., 2009) and in our current sample [males > 
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females; t(67) = 2.55, p = 0.013] as well as an observed gender association with the profile 

scores [males > females; t(67) = 2.12, p = 0.038], all our analyses were conducted with and 

without gender as a covariate.  Thus, when gender was controlled for, the amount of 

variance explained by the genetic profile scores or individual loci was computed as the 

change in R2 resulting from the addition of the genetic variables to a hierarchical 

regression model already containing gender as a predictor of VS reactivity. 

4.3. Results 

In the current sample, there was a significant main effect of task (i.e., Positive 

Feedback > Negative Feedback) in a large VS cluster in the right hemisphere (x = 14, y = 

12, z = -8, T = 5.13, KE = 118, p = 0.00028; Figure 6).  There was also a main effect of task in 

a smaller cluster within the left VS (x = -16, y = 6, z = -8, T = 5.64, KE = 96, p = 0.000043). 

Consistent with our hypothesis, individual multilocus genetic profile scores for 

relatively increased DA signaling predicted higher reward-related reactivity in the right 

VS at our corrected threshold (  = 0.342, p = 0.0038, Figure 6).  Moreover, the profile 

scores accounted for 10.9% of all variability within this VS cluster (ΔR2 = 0.109) above 

and beyond the effects of gender, which accounted for 4.2% of all residual cluster-level 

variability (  = -0.212; ΔR2 = 0.042, p = 0.067).  When not explicitly controlling for gender, 

the dopamine profile scores predicted even greater variability in reward-related VS 

reactivity: 14.3% (  = 0.395; Adj. R2 = 0.143, p = 0.001).  In contrast, none of the individual 
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loci predicted significant variability in reward-related VS reactivity with only one 

(DRD2 -141C Ins/Del) having a marginally significant effect at an uncorrected threshold 

of p ≤ 0.05 (Table 7).  Controlling for gender did not affect any of the associations 

between VS reactivity and individual loci. 

 

Figure 6. Multilocus genetic profile scores for DA signaling predict reward-

related VS reactivity.  (a) Our fMRI task produced significant activation in a large 

right VS cluster (x = 14, y = 12, z = -8, T = 5.13, KE = 118, p = 0.00028).  (b) Individual 

profile scores accounted for 10.9% of the variability within the VS activation cluster 

above and beyond the effects of gender (ΔR2 = 0.109). 
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Table 7. Effects of individual DA loci on reward-related VS reactivity.  

Critically, and as noted in the main text, none of these individual loci accounted for 

significant variability in VS reactivity when appropriately controlling for multiple 

comparisons (i.e., p ≤ 0.004). 

Genotype ΔR22 β p 

    

DRD2 -141C Ins/Del 0.052 0.241 0.050 

    

DAT1 VNTR 0.037 0.192 0.100 

    

DRD4 VNTR 0.015 0.123 0.295 

    

COMT Val158Met 0.015 0.123 0.298 

    

DRD2 Taq1A 0.002 0.045 0.713 

    

 

Intriguingly, even though none of the individual loci with the exception of DRD2 

-141C Ins/Del accounted for significant variability in VS reactivity  at an uncorrected 

threshold, the genetic profile scores still accounted for 6.3% of VS reactivity (  = 0.298; 

ΔR2 = 0.063, p = 0.026) above and beyond the effects of gender and DRD2 -141C Ins/Del.  

When gender was not used as a covariate, cumulative DA profile score accounted for 

7.3% (  = 0.319; ΔR2 = 0.073, p = 0.019) of the variance above and beyond that accounted 

for by DRD2 -141C Ins/Del.  The above results demonstrate the utility of multilocus 

genetic profiles in capturing the cumulative impact of polymorphisms, whose individual 

effects may be overlooked even at uncorrected statistical thresholds. Importantly, the 
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simultaneous consideration of all predictors in the above regression models did not pose 

significant multicollinearity concerns (Tolerance > 0.680, Variance Inflation Factor < 1.469). 

In contrast to the patterns observed in the right hemisphere, reward-related 

reactivity in the left VS was not significantly associated with the profile scores or any 

individual polymorphism at either the corrected or uncorrected statistical thresholds.  

Controlling for gender did not affect any of these associations. 

4.4. Discussion 

In the current study, we demonstrate that a multilocus genetic profile score 

representing the cumulative impact of five functional polymorphic loci on DA signaling 

predicts 10.9% of the inter-individual variability in reward-related VS reactivity.  In 

contrast, none of the individual loci predict significant variability in VS reactivity.  Thus, 

we provide novel evidence for the utility of biologically founded multilocus genetic 

profiles in mapping individual differences in brain function by demonstrating that 

simultaneous consideration of multiple functional loci accounts for greater variability 

than single loci considered independently.  This finding demonstrates that, given 

sufficient a priori rationale for the consideration of specific functional polymorphic loci, a 

multilocus profiling approach might capture the cumulative impact of polymorphisms 

whose individual effects may otherwise go undetected in small samples. That the 

genetic profile scores in the current sample accounted for a significant proportion of 

variability in a relatively small sample further underscores the potential for this novel 
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biological profiling approach to accurately predict patterns of brain function at the 

individual level. 

Although we selected the polymorphisms investigated herein based on their 

prior association with DA signaling and/or VS reactivity, the precise molecular 

mechanisms through which each locus contributes to variability in reward-related brain 

function are still incompletely understood.  While the DAT1 9-repeat allele and the 

COMT 158Met allele are linked to reduced DA synaptic clearance (Heinz et al., 2000) and 

enzymatic degradation (Egan et al., 2001), respectively, less is known about the direct 

effects of the DRD2 and DRD4 polymorphisms on DA neurotransmission and 

subsequent VS reactivity.  The DRD4 7-repeat allele has been linked to reduced 

postsynaptic inhibition mediated by a decreased number of D4 receptors (Asghari et al., 

1995).  Relatedly, the DRD2 -141C Del allele has been associated with reductions in the 

expression of the D2 receptor, which typically acts to inhibit DA signaling pre- or post-

synaptically (Arinami et al., 1997).  Intriguingly, while prior research has linked the 

DRD2 Taq1A T (A1) allele to similarly reduced D2 receptor binding (Jonsson et al., 1999, 

Pohjalainen et al., 1998), studies investigating the effect of the polymorphism on regional 

blood flow and glucose metabolism have reported decreased striatal reactivity in T (A1) 

allele homozygotes relative to C (A2) allele carriers (Noble et al., 1997, Stice et al., 2008).  

Since our VS reactivity phenotype is more closely related to the neuroimaging measures 

employed in the latter studies, we chose to code the C (A2) allele as the relatively “high” 
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DA allele.  It is important to note, however, that the decreased D2 receptor density and 

the reduced glucose metabolism associated with the T allele need not be mutually 

exclusive.  Given the diverse distribution of D2 receptors on multiple neuronal subtypes 

(Beaulieu & Gainetdinov, 2011), it is conceivable that reductions in D2 receptors 

associated with the T allele may be specific to a subpopulation of D2 heteroreceptors 

located on GABAergic interneurons, which modulate striatal function through inhibition 

of glutamatergic medium spiny neurons.  Thus, the T allele may result in reduced DA-

mediated inhibition of GABAergic interneurons leading to greater inhibition of 

excitatory medium spiny neurons and, ultimately, reduced VS reactivity measured with 

fMRI.  Given the limitations of currently available neuroimaging methodologies, future 

studies incorporating non-human animal models will be required to determine the 

effects of each polymorphism on the cellular and systems levels with greater precision. 

We previously reported that the 9-repeat allele of DAT1, the 7-repeat allele of 

DRD4 and the deletion allele of DRD2 -141C Ins/Del are all significantly associated with 

relatively increased VS reactivity in a sample that partially overlaps with our current 

study (Forbes et al., 2009a).  However, the previous sample was racially heterogeneous, 

as it included approximately 10% non-Caucasians distributed equally across all 

genotype groups.  More importantly, in our prior report we used a less conservative 

approach whereby we only quantified VS reactivity as a function of genotype within 

functional clusters selected on the basis of their correlation with each polymorphic locus, 
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rather than the entire functional cluster activated by our fMRI paradigm.  Moreover, we 

did not apply statistical thresholds that properly accounted for multiple comparisons 

reflecting the number of individual genotypes tested.  Importantly, we replicated the 

associations between VS reactivity and all three loci (i.e., DAT1, DRD2 -141C Ins/Del, 

DRD4 VNTR) when applying more liberal statistical thresholds consistent with our prior 

report (Table 8).
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Table 8. Effects of individual DA loci on reward-related VS reactivity at p < 

0.05, uncorrected, cluster threshold of ≥ 1 voxel.  Critically and as noted in the main 

text, this approach is much less conservative than the one employed in the main 

analyses. Importantly, none of these individual loci accounted for significant 

variability in VS reactivity when appropriately controlling for multiple comparisons 

within SPM (i.e., p ≤ 0.004; cluster extent = 10 voxels).  All cluster maximal voxel 

coordinates reported in MNI space.  KE = cluster extent. 

Genotype x y z KEE T 

      

DAT1 VNTR 16 4 -10 36 3.55 

 12 18 -10 24 2.47 

 -18 12 -4 18 2.43 

      

DRD4 VNTR 16 4 -6 27 3.45 

 22 12 -10 10 2.61 

 -12 20 -10 7 1.95 

      

DRD2 Taq1A 4 14 -8 8 2.84 

 18 18 -12 4 2.15 

 18 10 -12 2 1.68 

 -18 16 -12 2 1.97 

 -2 16 -8 2 1.82 

 -14 20 -10 1 1.73 

      

DRD2 -141C Ins/Del 8 8 -2 73 2.93 

 -14 16 -2 28 2.28 

      

 16 14 -6 18 2.11 

COMT Val158Met -10 22 -10 1 2.58 

 -14 4 -6 1 1.8 
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In addition to the three polymorphisms investigated in our prior report, the 

cumulative genetic profile scores used in the current analysis also incorporated DRD2 

Taq1A and COMT Val158Met.  Previously, we did not find a main effect of COMT 

Val158Met on reward-related VS reactivity (Forbes et al., 2009a).  However, other imaging 

genetics studies have reported significant associations between the 158Met allele and 

increased VS reactivity (Dreher et al., 2009, Schmack et al., 2008, Yacubian et al., 2007).  

Thus, while COMT Val158Met did not by itself predict significant variability in VS 

reactivity in either our prior (Forbes et al., 2009a) or current analysis, it did significantly 

contribute to the predicted utility of the cumulative profile scores.  Removal of the 

COMT Val158Met genotype from the profile score resulted in non-significant effects using 

our corrected threshold. 

A possible limitation to our biological profiling approach is the assumption that 

the selected polymorphisms act additively, as opposed to interactively, to influence DA 

signaling.  Importantly, however, our prior investigation of three polymorphisms 

considered herein (i.e., DAT1, DRD4 VNTR, and DRD2 -141C Ins/Del) did not find any 

two- or three-way interactions among these polymorphisms in predicting VS reactivity 

(Forbes et al., 2009a).  Unlike Yacubian et al (2007) and Dreher et al (2009), we also did not 

find a COMT Val158Met-by-DAT1 interaction in the current sample (p = 0.757).  By 

assigning a score of “1” to “High” DA alleles at all loci, we also assumed all loci had an 

equal impact on VS reactivity.  We believe a more sophisticated approach to compiling 
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genetic profiles is warranted whereby potential multiplicative relationships are taken 

into account and polymorphisms are weighted according to predicted effect size.  

However, given the relatively small sample size (N = 69) and insufficient knowledge 

regarding potential interactions among the targeted polymorphisms and the relative 

magnitude of their impact on VS reactivity (but see Yacubian et al, 2007 and Dreher et al, 

2009), we regard the current investigation as a useful starting point for compiling 

informative multilocus genetic profile scores. Future studies replicating the current 

findings would lend additional credibility to this approach. 

The DA profile we compiled in this study accounted for significant variability in 

reward-related reactivity of the right but not the left VS.  Such asymmetrical findings are 

not uncommon in imaging genetics research in general (Hariri et al., 2002b, Meyer-

Lindenberg et al., 2006) or studies focusing on the VS specifically (Jocham et al., 2009, 

Yacubian et al., 2007). Although a number of studies have reported asymmetries in 

monoaminergic modulation of cortical and subcortical circuits (Besson & Louilot, 1995, 

Merali et al., 2004, Sullivan & Dufresne, 2006, Young & Williams, 2010), the biological 

mechanisms mediating such lateralized effects, particularly in the VS, are difficult to 

ascertain on the basis of the existing literature.  It is possible that our specific task 

differentially recruits the right VS and, subsequently, results in greater DA modulation 

of reactivity in this hemisphere, which is reflected in the right-lateralized significant 

associations.  Consistent with this suggestion, we have previously found right-
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hemisphere specific correlations between reward-related VS reactivity and variability in 

behavioral measures of impulsivity (Forbes et al., 2009a, Hariri et al., 2006).  Future 

research incorporating this genetic profile within a multimodal neuroimaging strategy  

(Fisher et al., 2009, Fisher et al., 2006, Kienast et al., 2008) whereby fMRI is used to 

measure reward-related VS reactivity and PET is used to measure DA release within the 

same sample could shed light on the nature of these functional asymmetries. 

While this proof-of-principle study focused on a single neural target and 

modeled the additive effects of multiple functional loci through a single genetic profile, 

future research can refine genetic profile scores by assigning differential weights to loci 

of potentially different effect sizes and consider functional interactions among loci 

within a profile as well as between profiles for different pathways.  The extension of 

genetic profiling in this manner, particularly in larger samples, offers the opportunity to 

generate increasingly complete information regarding variability in behaviorally 

relevant brain function and related gene-environment interactions. 
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5. Beyond genotype: Epigenetic regulation of the human 

serotonin transporter predicts behaviorally and 

clinically relevant brain function1 

5.1. Background 

The systematic integration of human molecular genetics and in vivo 

neuroimaging have contributed to our increasing understanding of how DNA sequence-

based genetic variation shapes individual differences in brain function, complex 

behavioral traits, and related risk for psychopathology (Hariri, 2009).  Parallel research 

in animal models has highlighted a critical role for non-sequence-based epigenetic 

variation in the emergence of individual differences in brain function and risk-related 

behavior (Meaney & Szyf, 2005).  The importance of similar epigenetic mechanisms for 

behaviorally and clinically relevant brain function in humans has yet to be fully 

explored. 

We used bisulfite sequencing to determine percent methylation of the proximal 

promoter region of SLC6A4 in saliva-derived DNA from a Discovery cohort of 80 young 

adults and blood-derived DNA from an independent Replication cohort of 96 

adolescents.  We targeted SLC6A4 because it encodes the serotonin transporter, which 

                                                      

1 This Chapter is based on the following manuscript currently under review at Nature Neuroscience: 

Nikolova Y.S., Koenen K.C., Galea S., Wang C.M., Seney M.L., Sibille E., Williamson D.E., Hariri A.R. 

Beyond genotype: Epigenetic regulation of the human serotonin transporter predicts behaviorally and 

clinically relevant brain function. 
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plays an important role in modulating brain function and behavior by regulating the 

duration and intensity of synaptic serotonin signaling.  Dysfunction of the serotonin 

transporter is also implicated in the pathophysiology of mood and anxiety disorders 

(Caspi et al., 2010), and pharmacologic blockade of this molecule is the primary mode of 

treating these same disorders. 

We focused our analyses on the 20 CpG sites closest to the transcription start site 

(TSS) of SLC6A4 exhibiting substantial variability across individuals (see Table 11 and 

Table 12).  Additional proximal promoter sites were excluded due to virtually no 

variability across individuals (Table 11).  In light of recent work suggesting methylation 

immediately downstream of the TSS may also impact transcription (Brenet et al., 2011), 

we sampled additional CpG sites up to 119 bp downstream of the TSS, spanning exon 1 

and intron 1 (Table 11), whose effects were investigated in separate control analyses. 

We evaluated the relationship between SLC6A4 proximal promoter methylation 

and amygdala reactivity to emotional facial expressions conveying threat assayed using 

blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI).  

We selected this neural phenotype as a measure of behaviorally and clinically relevant 

brain function because it is clearly involved in the emergence of both normal and 

pathologic emotional behaviors (Abercrombie et al., 1998, Fakra et al., 2009).  

Importantly, these behaviors include responsiveness to environmental and social stress, 

which is associated not only with epigenetic modification (Mehta et al., 2013) but also 
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variability in serotonin signaling (Chaouloff, 2000).  Moreover, there is now ample 

evidence linking variability in serotonin signaling with individual differences in 

amygdala reactivity (Fakra et al., 2009, Fisher et al., 2006, Hariri et al., 2002b). 

5.2. Methods 

5.2.1. Participants 

5.2.1.1. Discovery cohort  

The first 91 Caucasian participants (47 women; mean age 19.66±1.36) to complete 

the ongoing Duke Neurogenetics Study (DNS) were selected for inclusion in analyses 

involving methylation assays. The DNS assesses a range of behavioral and biological 

traits among young adult, student volunteers.  All participants provided informed 

consent in accord with Duke University guidelines, and were in good general health.  

Two participants’ samples displayed wrong sequence patterns for our SLC6A4 promoter 

assays due to unknown mutations or equipment dispensation error and were thus 

excluded for this analysis. Nine additional participants were excluded due to task non-

compliance or response box failure leaving a final sample of 80 individuals (42 women; 

mean age 19.74 ± 1.33).   

All participants were free of the following study exclusions: (1) medical 

diagnoses of cancer, stroke, diabetes requiring insulin treatment, chronic kidney or liver 

disease, or lifetime history of psychotic symptoms; (2) use of psychotropic, 

glucocorticoid, or hypolipidemic medication; and (3) conditions affecting cerebral blood 
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flow and metabolism (e.g., hypertension).  Diagnosis of any current DSM-IV Axis I 

disorder or select Axis II disorders (Antisocial Personality Disorder and Borderline 

Personality Disorder), assessed with the electronic Mini International Neuropsychiatric 

Interview (Sheehan et al., 1998) and Structured Clinical Interview for the DSM-IV (SCID) 

subtests (First, 1996), respectively, were not an exclusion as the DNS seeks to establish 

broad variability in multiple behavioral phenotypes related to psychopathology. 

However, all participants were medication-free at the time of the study. No participants 

met criteria for either Antisocial or Borderline Personality Disorder, and 16 participants 

from our final sample (N = 80) met criteria for at least one Axis I disorder.  Since the 

exclusion of these individuals did not substantially alter our results, we present data 

from the entire sample in the main text (see Table 9 for specific diagnoses). In addition, 

all analyses were conducted both with and without current diagnosis as a covariate 

(dummy coded: 0 = no psychopathology, 1 = meeting criteria for one or more psychiatric 

disorders). 

Table 9. Number of participants meeting criteria for DSM-IV Axis I diagnoses 

in the Discovery cohort (DNS). 

Disorder Number 

Social Anxiety Disorder 1 

Alcohol Dependence 7 

Alcohol Abuse 2 

Cocaine Abuse 0 

Cannabis Abuse 1 

Generalized Anxiety Disorder 0 

Multiple Psychopathologies 5 

Total 16 
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5.2.1.2. Replication cohort 

Our Replication cohort was drawn from among children and adolescents (N = 

323, 11-15 years old) participating in the Teen Alcohol Outcomes Study (TAOS) at the 

University of Texas Health Science Center at San Antonio (UTHSCSA). This ongoing 

longitudinal study aims to investigate how individual differences in genetic 

background, environmental experience, and neural function contribute to the emergence 

of psychopathology, with an emphasis on alcohol use disorders. The current analysis 

focused on 96 participants (48 girls, mean age 13.62 ± 0.99) who were of Caucasian origin 

and who had high quality fMRI data in the first wave of neuroimaging. The study was 

approved by the institutional review board at UTHSCSA. Consent for study 

participation was obtained from participants’ parents or guardians. Under age 

participants provided assent.  

5.2.1.3. Postmortem cohort  

The demographic and clinical parameters of the cohort and technical parameters 

of the samples have been described in detail previously (Sibille et al., 2009). All 

procedures involving this cohort were approved by the University of Pittsburgh’s 

Committee for the Oversight of Research Involving the Dead and Institutional Review 

Board for Biomedical Research. Consent was obtained from each subject’s next of kin. 

For all subjects, consensus DSM-IV diagnoses of MDD were made by an independent 
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committee of experienced clinical research scientists at a case conference utilizing 

information obtained from clinical records, toxicology exam and a standardized 

psychological autopsy (Glantz & Lewis, 1997). The latter incorporates a structured 

interview, conducted by a licensed clinical psychologist with family members of the 

index subject, to assess diagnosis, psychopathology, medical, social and family histories, 

as well as history of substance abuse. All subjects died suddenly without prolonged 

agonal periods. For consistency across samples and to minimize population stratification 

and pharmacologic confounds, we focused our analysis on Caucasian individuals and 

excluded those with ascertained medication use at time of death (ascertained by 

toxicology screen on peripheral tissue), leaving a final sample of 35 (10 women, mean 

age 49.57 ± 11.87, range 22-69). Brains were analyzed for adequate pH (> 6.0) and RNA 

integrity by optical density (RNA ratio; OD ≥ 1.3) and Agilent bioanalyzer analysis 

(Agilent Technologies, Palo Alto, CA; RIN expert scoring system ≥ 7) as described 

(Sibille et al., 2009).  Gender, age, MDD vs. control status, pH, RNA ratio and post 

mortem interval were controlled for in all analyses involving this sample. A square root 

transformation was applied to SLC6A4 mRNA levels to normalize its positively skewed 

and kurtotic distribution (pre-transformation skewness = 1.92, kurtosis = 6.45, post-

transformation skewness = 0.65, kurtosis = 1.43). 
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5.2.2. BOLD fMRI Data Acquisition and Analysis 

As described previously (Carre et al., 2013), the amygdala reactivity paradigm 

used in the Discovery cohort (DNS) consists of 4 blocks of a face-processing task 

interleaved with 5 blocks of a sensorimotor control task.  During task blocks, 

participants view a trio of faces (with neutral, angry, fearful or surprised expressions) 

and match 1 of 2 faces (bottom) identical to a target face (top).  During control blocks, 

participants match simple geometric shapes. In the Replication cohort (TAOS), the task 

consisted only of Angry and Fearful Faces. Thus, for consistency between samples, we 

focused our analyses on the Anger + Fear > Shapes contrast in our Discovery cohort. 

Performance was monitored and participants with accuracy <75% were excluded from 

analysis. 

Participants in the Discovery cohort were scanned using a research-dedicated GE 

MR750 3T scanner equipped with high-power high-duty-cycle 50-mT/m gradients at 200 

T/m/s slew rate, and an eight-channel head coil for parallel imaging at high bandwidth 

up to 1MHz at the Duke-UNC Brain Imaging and Analysis Center.  A semi-automated 

high-order shimming program was used to ensure global field homogeneity.  A series of 

34 interleaved axial functional slices aligned with the anterior commissure-posterior 

commissure (AC-PC) plane were acquired for full-brain coverage using an inverse-spiral 

pulse sequence to reduce susceptibility artifact (TR/TE/flip angle = 2000ms/30ms/60; 

FOV = 240 mm; 3.75 × 3.75 × 4 mm voxels; interslice skip = 0).  Four initial RF excitations 



 

94 

were performed (and discarded) to achieve steady-state equilibrium.  To allow for 

spatial registration of each participant’s data to a standard coordinate system, high-

resolution three-dimensional structural images were acquired in 34 axial slices co-planar 

with the functional scans (TR/TE/flip angle = 7700ms/3.0 ms/12; voxel size = 0.9 × 0.9 × 4 

mm; FOV = 240 mm, interslice skip = 0). 

Participants in the Replication cohort were scanned on a Siemens 3T Trio Scanner 

at the UTHSCSA. BOLD fMRI data were acquired with a gradient-echo echo planar 

imaging (EPI) sequence (TR/TE/flip angle = 2000ms/25ms/70; FOV = 256 mm, 2.00 x 2.00 

x 3.00 mm voxels, interslice skip = 0) covering 34 interleaved 3 mm-thick axial slices. As 

in the Discovery cohort, high-resolution three-dimensional structural images were 

acquired in 34 axial slices co-planar with the functional scans (TR/TE/flip angle = 

5610ms/72ms/150; voxel size = 0.8 × 0.8 × 3 mm; FOV = 220 mm x 320 mm, interslice skip 

= 0). 

The same data preprocessing steps were applied to both the Discovery and the 

Replication cohort. Briefly, images for each subject were realigned to the first volume in 

the time series to correct for head motion, spatially normalized into a standard 

stereotaxic space (Montreal Neurological Institute template) using a 12-parameter affine 

model (final resolution of functional images = 2 mm isotropic voxels), and smoothed to 

minimize noise and residual difference in gyral anatomy with a Gaussian filter, set at 6-
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mm full-width at half-maximum.  Voxel-wise signal intensities were ratio normalized to 

the whole-brain global mean. 

Variability in single-subject whole-brain functional volumes was determined 

using the Artifact Recognition Toolbox (http://www.nitrc.org/projects/artifact_detect).  

Individual whole-brain BOLD fMRI volumes meeting at least one of two criteria were 

assigned a lower weight in determination of task-specific effects: 1) significant mean-

volume signal intensity variation (i.e., within volume mean signal greater or less than 4 

standard deviations of mean signal of all volumes in time series), and 2) individual 

volumes where scan-to-scan movement exceeded 2 mm translation or 2 rotation in any 

direction.  

The general linear model (GLM) of SPM8 (http://www.fil.ion.ucl.ac.uk/spm) was 

used to conduct fMRI data analyses. Linear contrasts employing canonical 

hemodynamic response functions were used to estimate differential effects of condition 

from the contrast of Faces > Shapes for each individual.  Individual contrast images were 

then used in second-level random effects models accounting for scan-to-scan and 

participant-to-participant variability to determine mean condition-specific regional 

responses using one-sample t-tests.  Regions of interest (ROIs) masks for the bilateral 

amygdala were constructed using the automatic anatomical labeling (AAL) within WFU 

PickAtlas Tool, version 1.04. A statistical threshold of p<0.05, FWE corrected, and ≥10 

contiguous voxels was applied to amygdala analyses within each hemisphere.  BOLD 

http://www.fil.ion.ucl.ac.uk/spm
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values from voxels within the amygdala exhibiting strongest main effect of task were 

extracted using the VOI tool in SPM8.   

These extracted values were then entered into regression models using IBM SPSS 

Statistics 20.0 (SPSS Inc., Chicago, IL).  Importantly, by extracting amygdala BOLD 

parameter estimates from the voxels activated by our paradigm rather than clusters 

specifically correlated with our independent variables of interest, we preclude the 

possibility of any regression coefficient inflation that may result from capitalizing on the 

same data twice (Viviani, 2010).  We have successfully used this conservative strategy in 

previous reports (Carre et al., 2012, Nikolova et al., 2011, Nikolova & Hariri, 

2012)_ENREF_5. 

5.2.3. RNA Processing and Quantitative Real-time PCR 

Total RNA was isolated from TRIzol homogenates of the amygdala in all 

postmortem subjects. The samples were purified using RNeasy spin columns (Qiagen; 

Valencia, CA), and RNA integrity was assessed using the Agilent 2100 Bioanalyzer 

(Agilent Technologies, Walbronn, Germany). cDNA was generated by mixing 1 μg total 

RNA with oligo-dT primers and SuperScript II reverse transcriptase (Invitrogen, 

Carlsbad, CA) per the manufacturer’s protocol. PCR products were amplified in 

quadruplets on a Mastercycler real-time PCR machine (Eppendorf, Hamburg, Germany) 

using universal PCR conditions, as described previously (Tripp et al., 2012). Results were 

calculated as the geometric mean of threshold cycles of SLC6A4 transcript amplification 
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normalized to three validated internal controls (actin, glyceraldehyde-3-phosphate 

dehydrogenase, and cyclophilin G). Although performed in serotonergic projection 

areas, SLC6A4 transcripts are readily detectable by qPCR. 

5.2.4. DNA Extraction and 5-HTTLPR/rs25531 Genotyping 

Saliva samples from Discovery cohort participants were collected using Oragene 

kits and DNA was extracted in accordance with the manufacturer’s guidelines (Oragene, 

Genotek, Toronto, Ontario). In the Replication cohort, DNA was extracted from whole 

blood. Postmortem brain DNA was isolated using the DNeasy Blood and Tissue kit 

(Qiagen, Valencia, CA), using a protocol that was modified from manufacturers’ 

instructions (additional proteinase K and RNase A).  

The same 5-HTTLPR/rs25531 genotyping protocol was applied to DNA samples 

from all three cohorts. Primer sequences for genotyping 5-HTTLPR are described 

previously (Gelernter et al., 1997), the forward primer having the sequence (5'- 

ATGCCAGCACCTAACCCCTAATGT-3') and the reverse (5'-

GGACCGCAAGGTGGGCGGGA-3'). PCR was conducted using the following cycling 

conditions: initial 15-min denaturing step at 95°C, followed by 35 cycles of 94°C for 30 

sec, 66°C for 30 sec and 72°C for 40 sec, and a final extension phase of 72°C for 15 min. 

Reactions were performed in 10X reaction Buffer IV (ABgene), 1.5mM MgCl2, 50ng of 

genomic DNA, 5pmols of each primer, 0.3mM dNTPs and 1 unit of Native Taq 

(Promega). PCR products were subsequently digested by MspI restriction enzyme for 4 
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hours at 37°C. The digestion products were separated on a 3% agarose gel 

(MultiABgarose, ABgene) supplemented with Ethidium bromide (0.03%, BDH) and 

visualised by ultraviolet transillumination. Genotype calls were made by three 

independent raters, who reached consensus on 100% of the Discovery and Replication 

cohort samples. Genotype could not be determined accurately for one postmortem 

sample. Thus, it was removed from analysis, leaving a final sample of 34 individuals (10 

women, mean age 49.44 ± 12.02). 

5.2.5. DNA Methylation Analyses 

DNA methylation levels of the proximal promoter of the serotonin transporter 

gene in the Discovery cohort were determined using quantitative bisulfite 

Pyrosequencing by EpigenDx Inc (Worcester, MA). Briefly, the human SLC6A4 proximal 

promoter methylation assays analyze  20 CpG dinucleotides in the promoter region from 

-213 to -69 bps of the transcriptional start site (TSS), based on Ensembl Gene ID 

ENSG00000108576 and the Transcript ID ENST00000394821.  The SLC6A4 promoter 

assays (ADS580-FS1 and ADS580-FS2) are targeted to the antisense sequence of SLC6A4 

gene. The target sequences (genomic DNA and bisulfite converted DNA) from the 

Pyrosequencing assays are listed in Table 10.   Table 11 and Table 12 present the targeted 

CpG loci (with respect to TSS, the translational start site, and genomic location) by 

Pyrosequencing for this gene. 
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For each analysis, the bisulfite conversion was performed with 500 ng provided 

genomic DNA using the EZ DNA methylation kit (ZymoResearch, Inc., CA). The PCR 

reaction was performed based on recommended assay conditions (EpigenDx, MA) using 

0.2 μM of each primer with one of the PCR primers being biotinylated in order to purify 

the final PCR product using Sepharose beads.  The PCR product was bound to 

Streptavidin Sepharose HP (Amersham Biosciences, Uppsala, Sweden), and the 

Sepharose beads containing the immobilized PCR product were purified, washed and 

denatured using 0.2 M NaOH solution and rewashed using the Pyrosequencing Vacuum 

Prep Tool (Pyrosequencing, Qiagen) as recommended by the manufacturer.  10 µl of the 

PCR products were sequenced by Pyrosequencing PSQ96 HS System (Pyrosequencing, 

Qiagen) following the manufacturer’s instructions (Pyrosequencing, Qiagen).  The 

methylation status of each CpG site was analyzed individually as an artificial T/C SNP 

using QCpG software (Pyrosequencing, Qiagen). 
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Table 10. SLC6A4 proximal promoter methylation assays for the Discovery 

cohort. 

Assay ID Genomic Target Sequence 
Bisulfite Converted Target 

Sequence 

Pyrosequencing 

Dispensation 

order 

ADS580-FS1 

cgccgccaaagagctcttgaagaatttt

tgcgtcactttgaggcgaataaacttaa

tgcttccc 

YGTYGTTAAAGAGTTTTTGA

AGAATTTTTGYGTTATTTTG

AGGYGAATAAATTTAATGT

TTTTT 

GTCTGTCGCTAG

AGTTGAGATTAG

TCGTATTGATGT

CGAT 

ADS580-FS2 

cttccccgcggccgcggctccgcgctc

ccgctggatggggttgcgctcgccag

ggaggggccgcgctacggggcggg

gtgcgcgcccgaccccagagccagga

ggggaggga 

TTTTTTYGYGGTYGYGGTTTY

GYGTTTTYGTTGGATGGGGT

TGYGTTYGTTAGGGAGGGG

TYGYGTTAYGGGGYGGGGT

GYGYGTTYGATTTTAGAGTT

AGGAGGGGAGGGA 

GTTCTGTCAGTC

TGTCAGTTCTGT

CAGTTCGTCGAT

GGTAGTCTGTCG

CTAGAGGTCAGT

CGTGATCGGTCG

GTAGTCTGTCAG

TCGAT 



 

101 

 

Table 11. Coordinates and mean percent methylation levels for SLC6A4 CpG 

sites assayed in the Discovery cohort. Number of participants with 0% methylation is 

indicated for each site. All promoter sites are in the proximal promoter. 

 

Fro

m 

TSS 

GRCh37/hg19 

chr17 
Region Mean SD 

Participants 

with 0% 

methylation 

ADS1818FS2 
+497 28562219 intron 1 19.48 5.43 0 (0.00%) 

+495 28562221 intron 1 28.28 7.73 0 (0.00%) 

ADS1818FS1 

+451 28562265 intron 1 18.62 5.2 1 (1.25%) 

+426 28562290 intron 1 27.69 6.66 1 (1.25%) 

+381 28562335 intron 1 8.19 2.89 1 (1.25%) 

ADS579FS1 

+119 28562597 exon 1 0.038 0.34 79 (98.75%) 

+111 28562605 exon 1 2.19 1.38 21 (26.25%) 

+106 28562610 exon 1 7.82 2.02 1 (1.25%) 

+93 28562623 exon 1 8.41 2.01 0 (0.00%) 

ADS579FS2 

+73 28562643 exon 1 6.95 2.51 5 (6.25%) 

+71 28562645 exon 1 6.06 2.54 8 (10.00%) 

+56 28562660 exon 1 1.79 2.39 50 (62.50%) 

+43 28562673 exon 1 10.12 1.93 1 (1.25%) 

+32 28562684 exon 1 7.66 1.72 1 (1.25%) 

+30 28562686 exon 1 4.17 2.36 17 (21.25%) 

+24 28562692 exon 1 1.32 2.27 59 (73.75%) 

+15 28562701 exon 1 1.76 2.45 52 (65.00%) 

+12 28562704 exon 1 3.09 2.94 37 (46.25%) 

+9 28562707 exon 1 0.45 1.3 71 (88.75%) 

-3 28562718 promoter 1.58 2.27 53 (66.25%) 

-11 28562726 promoter 0 0 80 (100.00%) 

-14 28562729 promoter 0.21 1.1 77 (96.25%) 

-17 28562732 promoter 0 0 80 (100.00%) 

-19 28562734 promoter 0 0 80 (100.00%) 

-23 28562738 promoter 0 0 80 (100.00%) 

-35 28562750 promoter 0.07 0.64 79 (98.75%) 

-37 28562752 promoter 0 0 80 (100.00%) 
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Table 12. Coordinates and Discovery cohort mean percent methylation levels for 

proximal promoter SLC6A4 CpG sites assayed in all cohorts. Number of participants 

with 0% methylation is indicated for each site.  

 

From 

TSS 

GRCh37/hg19 

chr17 
Region Mean SD 

Participants 

with 0% 

methylation 

ADS580FS1 

-69 28562784 promoter 1.79 0.54 1 (1.25%) 

-72 28562787 promoter 1.44 0.81 3 (3.75%) 

-99 28562814 promoter 1.06 0.54 11 (13.75%) 

-112 28562827 promoter 1.55 0.63 7 (8.75%) 

ADS580FS2 

-133 28562848 promoter 2.87 0.45 1 (1.25%) 

-135 28562850 promoter 1.1 0.33 1 (1.25%) 

-139 28562854 promoter 1.21 0.36 2 (2.50%) 

-141 28562856 promoter 0.92 0.34 5 (6.25%) 

-147 28562862 promoter 2.24 0.45 1 (1.25%) 

-149 28562864 promoter 1.02 0.34 3 (3.75%) 

-155 28562870 promoter 1.89 0.38 1 (1.25%) 

-170 28562885 promoter 3.57 0.82 1 (1.25%) 

-174 28562889 promoter 1.59 0.47 2 (2.50%) 

-188 28562903 promoter 1.74 0.38 1 (1.25%) 

-190 28562905 promoter 0.76 0.53 22 (27.50%) 

-195 28562910 promoter 0.74 0.62 30 (37.50%) 

-200 28562915 promoter 0.88 0.67 26 (32.50%) 

-207 28562922 promoter 1.25 0.48 7 (8.75%) 

-209 28562924 promoter 0.66 0.6 34 (42.50%) 

-213 28562928 promoter 0.97 0.65 22 (27.50%) 

 

 

The methylation level at each CpG site was calculated as the percentage of the 

methylated alleles over the sum of methylated and unmethylated alleles. The mean 

methylation level was calculated using methylation levels of all measured CpG sites 
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within each targeted region.  For quality control, each experiment included non-CpG 

cytosines as internal controls to verify efficient sodium bisulfite DNA conversion. We 

also included low, medium, high methylated standards (EpigenDx, MA) as controls in 

each run. In light of the low methylation values observed at some CpG sites (< 2%) in the 

Discovery cohort, additional PCR bias testing was performed using pyrosequencing by 

mixing the unmethylated DNA control and in vitro methylated DNA at different ratios 

(0, 20, 40 up to 100%) followed by bisulfite modification, PCR and pyrosequencing 

analysis. There was a high correlation between the percent methylation obtained from 

the mixing study and expected methylation percentages (r2 = 0.99), which confirms the 

quality of our data. 

In the Replication and postmortem cohorts, methylation analysis on the same 

SLC6A4 proximal promoter 20 CpG sites as targeted by the ADS580FS1 and ADS580FS2 

assays (Table 10) was carried out at the Core for Advanced Translational Technologies 

(UTHSCSA). The protocol used was the same as in the Discovery cohort, except with 

independently designed PCR and sequencing primers (see Table S10). Results were 

analyzed using PyroMark Q96 MD and PyroMark CpG 1.0 software (Qiagen, Valencia, 

CA). 

Control analyses conducted by EpigenDx only in the Discovery cohort used 

additional methylation assays in exon 1 and intron 1 of SLC6A4 (Table S2), as well as 
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the promoter region of the COMT gene (Table S3). Detailed assay information is 

available upon request. 

5.2.6. Self-Report Measures 

To assess recent life stress we administered a modified version of the Life Events 

Scale for Students [LESS; (Nikolova et al., 2012)]. This modified version of the scale asks 

participants to indicate whether they experienced common stressful life events within 

the past 12 months; in addition, for each event that occurred participants reported on the 

impact it had on their lives on a 1-4 scale (with 4 being the highest).  The impact scores 

were set to zero for events that did not occur.  Based on prior research (Nikolova et al., 

2012, Nikolova & Hariri, 2012), we focused on the LESS Highest Impact metric, 

reflecting the highest impact associated with any event which occurred within the past 

year. We assessed early life trauma using the Childhood Trauma Questionnaire [CTQ; 

(Bernstein, 2002)].  

5.2.7. Statistical Analysis 

Percent methylation was computed as the ratio of methylation cytosines over the 

sum of all methylation and unmethylated cytosines. Our main analyses focused on two 

SLC6A4 promoter assays covering a total of 20 CpG sites sampled across all three 

cohorts (Table 12). No single nucleotide polymorphisms (SNPs) resulting in CpG site 

gain or loss were identified within the assayed regions. In addition to analysis using 

average percent methylation across the 20 CpG sites in our region of interest, we applied 
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principal component analysis (PCA) to these 20 CpG sites in both the Discovery and 

Replication cohorts. The unrotated correlation matrix was analyzed to output principal 

component scores. An eigenvalue greater than 1 indicates that PCs account for more 

variance than accounted by one of the original variables in standardized data. PCA 

resulted in five PCs with eigenvalues>1 in both samples. The directionality and 

significance of the effects of the first PC on amygdala reactivity were the same as those 

associated with SLC6A4 promoter methylation values averaged across all 20 CpG sites in 

both the Discovery and the Replication cohort and are thus not visualized here. In light 

of the smaller number of datapoints (n = 34 final sample), no PCA was performed in the 

postmortem cohort, where CpG sites were analyzed individually. 

Linear regression models, as implemented in IBM SPSS Statistics 20.0 (Chicago, 

IL), were used to investigate the linear effect of methylation values (independent 

variable) on amygdala reactivity or SLC6A4 mRNA levels (dependent variables). Results 

from two-tailed tests are reported for all analyses.  

5.3. Results 

In our Discovery cohort, percent methylation of the SLC6A4 proximal promoter 

was positively correlated with threat-related amygdala reactivity in the left hemisphere 

(Adj. R2 = 0.067, b = 0.282, p = 0.011; Figure 7).  This effect was observed at a trend level in 

the right hemisphere (Adj. R2 = 0.032, b = 0.211, p = 0.060).  Percent methylation continued 

to account for significant variability in left amygdala reactivity even when controlling 
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for possible effects of gender, age, early and recent life stress, and current psychiatric 

disorder (left hemisphere: ΔR2 = 0.084, b = 0.292, p = 0.009; right hemisphere: ΔR2 = 0.045, 

b = 0.214, p = 0.060).  Similar results were obtained when using the top principal 

component (PC) capturing 24% of the methylation variance in the same region (Table 

13).  In an exploratory follow-up analysis we probed the effects of individual CpG site 

methylation levels on these same phenotypes and found that CpG 14 (188 bp upstream 

of TSS) showed strongest association effects across both hemispheres (Table 14). 

Table 13. Results from regression analyses using amygdala reactivity as a 

dependent variable and the first principal component capturing 24.06% of all SLC6A4 

proximal promoter methylation variance as an independent variable in the Discovery 

cohort. Covariates include age, gender, LESS Highest Impact, CTQ Total, 5-

HTTLPR/rs25531 genotype, and current Axis I diagnosis (dummy coded: 0=no, 1=yes). 

SLC6A4 promoter 

methylation (PC 1) 
ΔR2 b p 

    

No Covariates 
   

Left amygdala 0.070 0.264 0.018 

Right amygdala 0.042 0.204 0.070 

 
   

    

With Covariates 
   

Left amygdala 0.079 0.284 0.012 

Right amygdala 0.043 0.210 0.066 
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Figure 7. Effects of SLC6A4 promoter methylation on amygdala reactivity.  

Statistical parametric map illustrating mean bilateral threat-related amygdala 

reactivity across all participants in the (A) Discovery cohort (left: x = -24, y = -8, z = -16, 

t = 10.29, p = 2.0095 x 10-14, kE=180; right: x = 30, y = -4, z = -20, t = 11.13, p < 0.00001, kE = 

203) and (C) Replication cohort (left: x = -20, y = -4, z = -18, t = 11.29, p < 0.00001, kE = 

197; right: x = 20, y = -4, z = -16, t = 11.80, p = 1.29 x 10-13, kE = 205).  Activation clusters 

are overlaid onto canonical structural brain images in the coronal plane (Y = -2).  

Average percent SLC6A4 proximal promoter methylation was positively correlated 

with reactivity of the left amygdala in both the Discovery (B) and Replication cohort 

(D). 

a.u.= arbitrary units. 

*p<0.05 
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Table 14. Summary of results from linear regression models predicting in vivo 

amygdala reactivity and amygdala tissue SLC6A4 mRNA from percent methylation 

levels at each of the 20 individual proximal promoter CpG sites sampled across the 

Discovery, Replication and postmortem cohorts.  Results from the in vivo imaging 

cohorts are not adjusted for covariates.  In light of gender, age, pH, postmortem 

interval, and RNA ratio effects in the postmortem cohort, the results for the 

postmortem findings are adjusted for covariates.  The CpG site numbering scheme 

reflects the ordering of CpG site within this proximal promoter region and has no 

relation to any unique CpG site numerical identifiers. *CpG site with strongest 

association for each phenotype.  

   Discovery Cohort (DNS) Replication Cohort (TAOS) Postmortem 

 

 

Left Amygdala 
Right 

Amygdala 
Left Amygdala 

Right 

Amygdala 

Amygdala 

SLC6A4 

mRNA 

CpG 

site 

From 

TSS 
b p b p b p b p b p 

1 -69 0.163 0.149 0.180 0.11 0.112 0.278 -0.061 0.556 -0.073 0.707 

2 -72 0.263 0.018 0.125 0.269 0.207 0.043 0.068 0.511 -0.043 0.837 

3 -99 0.094 0.409 0.052 0.647 0.119 0.248 0.148 0.15 0.118 0.540 

4 -112 0.224 0.046 0.279 0.012 0.107 0.297 0.130 0.208 -0.079 0.752 

5 -133 0.102 0.368 0.138 0.223 0.229 0.025 0.070 0.500 -0.128 0.601 

6 -135 0.224 0.046 0.260 0.02 0.129 0.209 -0.106 0.306 0.104 0.630 

7 -139 0.069 0.544 0.191 0.089 0.164 0.109 -0.019 0.856 -0.271 0.169 

8 -141 0.026 0.818 0.048 0.672 0.010 0.921 0.020 0.846 -0.006 0.975 

9 -147 0.128 0.258 0.058 0.608 0.196 0.056 -0.056 0.587 0.022 0.920 

10 -149 0.280 0.012* 0.225 0.045 0.134 0.193 0.085 0.411 0.070 0.708 

11 -155 0.186 0.099 0.240 0.032 0.214 0.037 0.133 0.195 0.088 0.683 

12 -170 0.162 0.151 0.144 0.204 0.264 0.009 0.070 0.496 -0.223 0.301 

13 -174 0.245 0.028 0.219 0.051 0.273 0.007 0.213 0.037 0.071 0.702 

14 -188 -0.029 0.799 0.287 0.010* 0.305 0.003* 0.219 0.032* -0.378 0.039* 

15 -190 0.157 0.164 0.164 0.146 0.218 0.033 0.097 0.345 -0.013 0.943 

16 -195 0.094 0.407 -0.103 0.363 0.226 0.027 0.037 0.722 0.177 0.407 

17 -200 0.006 0.955 -0.107 0.343 0.082 0.424 0.004 0.965 0.166 0.495 

18 -207 0.148 0.189 0.091 0.423 0.226 0.027 0.014 0.893 -0.032 0.865 

19 -209 0.119 0.294 -0.059 0.602 0.235 0.021 0.029 0.782 -0.082 0.671 

20 -213 0.100 0.376 -0.057 0.616 0.115 0.263 -0.116 0.261 -0.729 0.472 
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Given prior work establishing predictive links between genetic variation and 

amygdala reactivity (Hariri, 2009), we next compared the effect of SLC6A4 proximal 

promoter methylation on amygdala reactivity to that of the serotonin transporter linked 

polymorphic region (5-HTTLPR) and rs25531, which together define a functional tri-

allelic polymorphism previously associated with variability in amygdala reactivity as 

well as responsiveness to stress (Caspi et al., 2010).  SLC6A4 methylation continued to 

predict amygdala reactivity even when 5-HTTLPR/rs25531 genotype was accounted for 

alongside all other covariates (left hemisphere: ΔR2 = 0.086, b = 0.296, p = 0.009; right 

hemisphere: ΔR2 = 0.043, b = 0.211, p = 0.066).  This suggests preponderance of epigenetic 

variation over sequence-based variation in regulatory regions of the same gene. 

As a negative control, we examined the correlation between amygdala reactivity 

and methylation in other regions of SLC6A4 as well as the COMT gene, which codes for 

an enzyme responsible for regulating catecholamine but not serotonin signaling.  As 

expected, there were no significant correlations between left or right amygdala reactivity 

and percent methylation of either intron 1 or exon 1 of SLC6A4 (p > 0.10).  Similarly, 

there were also no significant associations between reactivity and percent promoter 

methylation of COMT (p > 0.50).  Thus, these data reveal a specific effect of SLC6A4 

proximal promoter methylation on amygdala reactivity.  Given the specificity of these 
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findings, we followed up the effects of these same 20 CpG sites in our Replication 

cohort. 

Consistent with the findings from our Discovery cohort, we found that percent 

promoter methylation of SLC6A4, this time assayed in DNA derived from peripheral 

blood, was positively correlated with left amygdala reactivity in our Replication cohort 

(Adj. R2 = 0.113, b = 0.336, p = 0.001; Figure 7).  In fact, this effect of percent methylation 

was larger than that accounted for in our Discovery cohort (11.3% vs 6.7%).  The effect 

was again weaker in the right hemisphere (Adj. R2 = 0.007, b = 0.084, p = 0.42).  Such 

hemispheric asymmetries are not uncommon in the imaging genetics literature (Fisher et 

al., 2006, Hariri et al., 2002b) and may reflect task-specific characteristics (Baas et al., 2004) 

or intrinsic differences in monoamine signaling between the two hemispheres (Young & 

Williams, 2010). 

Notably, the effects in our Replication cohort remained unchanged when 

controlling for age, gender, early life stress, risk for psychiatric disorder, and 5-

HTTLPR/rs25531 genotype (left hemisphere: ΔR2 = 0.090, b = 0.312, p = 0.005; right 

hemisphere: ΔR2 = 0.002, b = 0.049, p = 0.662).  These results were confirmed using the 

first PC capturing 30.41% of all methylation variance in the region (Table 15). Finally, as 

in the Discovery cohort, the single site showing strongest associations with amygdala 

reactivity across hemispheres was CpG 14 (Table 14).  
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Table 15. Results from regression analyses using amygdala reactivity as a 

dependent variable and the first principal component capturing 30.41% of all SLC6A4 

proximal promoter methylation variance as an independent variable in the 

Replication cohort.  Covariates include age, gender, psychopathology risk, CTQ Total, 

and 5-HTTLPR/rs25531 genotype. 

SLC6A4 promoter 

methylation (PC 1) 
ΔR2 b p 

    

No Covariates 
   

Left amygdala 0.101 0.318 0.002 

Right amygdala 0.009 0.096 0.354 

 
   

    

With Covariates 
   

Left amygdala 0.076 0.287 0.009 

Right amygdala 0.003 0.055 0.623 

 
   

 

The direction of the effects we observe in our in vivo data (higher reactivity with 

greater percent methylation) is remarkably consistent with that of prior imaging genetics 

(Fakra et al., 2009, Hariri et al., 2002b), multi-modal PET/fMRI (Fisher et al., 2006, Rhodes 

et al., 2007), and pharmacologic fMRI (Bigos et al., 2008, Di Simplicio et al., 2013) studies 

linking relatively increased serotonin signaling with increased amygdala reactivity,  as 

well as observations that methylation within or near promoter regions generally inhibits 

gene transcription (Brenet et al., 2011).  In light of these data and to gain further 

mechanistic insight into our in vivo findings, we examined the impact of percent 

methylation of the same 20 CpG sites sampled in our imaging cohorts on serotonin 
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transporter mRNA levels in postmortem amygdala tissue from a third independent 

cohort of 34 individuals.  

As expected, clinical and biochemical parameters (i.e., diagnostic status, pH, and 

RNA ratio) influenced mRNA levels (p values < 0.091). Thus, those were included as 

covariates alongside age, gender and postmortem interval in all analyses involving 

postmortem data. When controlling for the effects of these parameters, there was no 

significant association between overall percent methylation and mRNA in amygdala 

tissue (p = 0.699).  However, a site-specific investigation revealed a significant negative 

correlation between mRNA levels and percent methylation at CpG 14, which exhibited 

the strongest association with amygdala reactivity in both our imaging cohorts (Table 

14, Figure 8).  As with our in vivo imaging data, this epigenetic effect was further 

independent of 5-HTTLPR/rs25531 genotype (p = 0.031), despite nominally lower mRNA 

levels in S/LG allele carriers (p = 0.291). 
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Figure 8. Scatterplot depicting the negative correlation between percent 

methylation at CpG 14 and SLC6A4 mRNA levels in amygdala tissue. 
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5.4. Discussion 

Collectively, our results converge to provide evidence that methylation of the 

proximal promoter of human SLC6A4 predicts threat-related amygdala reactivity 

possibly reflecting decreased serotonin transporter gene expression and, consequently, 

reduced regional serotonin reuptake.  Moreover, theses epigenetic effects are 

independent of, and greater than, the effects of the 5-HTTLPR/rs25531 functional 

polymorphism near the same genomic region.  Further demonstrating the independence 

of these genetic and epigenetic effects, none of the 20 proximal promoter CpG sites 

surveyed across the three cohorts overlap the 5-HTTLPR, which is located 1,400 base 

pairs upstream of the TSS and primarily impacts the distal promoter.  In addition, 5-

HTTLPR/rs25531 genotype had no effect on proximal promoter methylation in any 

cohort (p’s > 0.30). 

While we do not directly map methylation in peripheral tissues onto methylation 

levels in brain within the same cohort, cross-cohort convergence among tissues (saliva, 

blood, brain) is consistent with recent work demonstrating a significant correlation 

between the blood and brain methylomes (Tylee et al., 2013).  Furthermore, this cross-

tissue convergence provides evidence that two distinct types of readily assayed 

peripheral tissues (blood and saliva) could potentially be used as equally valid proxies 

of neural tissue.  A notable limitation of the current work is that, due to practical 
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constraints, the postmortem tissue analysis was limited to the amygdala, while 

informative differences in SLC6A4 transcript levels are more likely to emerge in the 

dorsal raphe nucleus, where the serotonin transporter is more densely expressed.  This 

limitation notwithstanding, our current results demonstrate that meaningful 

associations between the human epigenome and brain can be mapped using DNA 

derived from readily assayed peripheral tissues.  In addition to encouraging careful 

consideration of the effects of promoter methylation in SLC6A4 on behaviorally and 

clinically relevant brain function, we hope that our current work will advance broader 

research on epigenetic mechanisms in the emergence of individual differences in human 

behavior and related risk for psychopathology. 
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6. General Discussion and Future Directions 

Neural circuits for reward and threat processing are dysregulated in a range of 

psychiatric disorders. Moreover, individual differences in neural reward and threat 

processing may reflect stable trait-like constructs which transcend current diagnostic 

state and can therefore be harnessed to identify vulnerable and resilient individuals. In 

this dissertation, I implicate reward-related VS and threat-related amygdala reactivity in 

novel biological pathways of risk and resilience for psychopathology and identify novel 

genetic and epigenetic predictors of inter-individual variability within those pathways. 

Extensive prior research suggests that stress-induced deficits in reward 

processing may be part of a mechanism underlying the causal link between stress and 

depression (Pizzagalli, 2014). Parallel theoretical models have advanced the notion that 

reward processing robust to such stress-related disruptions, may be part of a resilience 

mechanism against psychopathology in the wake of adversity (Charney, 2004). In 

support of this proposition, Chapter 2 demonstrates that individuals with relatively 

robust reward-related VS reactivity show stable levels of state positive affect in the 

context of recent life stress. Those with low VS reactivity, by contrast, show stress-

related reductions in positive affect (Nikolova et al., 2012). These findings suggest that 

robust VS reactivity to reward may be part of a neural mechanism conferring resilience 

against stress-related affective illness.  
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Highlighting the context-specificity of risk and resilience conceptualizations, 

Chapter 3 demonstrates that this same neural phenotype is associated with increased 

problem drinking in the wake of stress, thus predisposing to disorder risk of a different 

kind. Importantly, this effect only occurred in individuals who also had relatively low 

amygdala reactivity. These findings suggest that a heightened reward drive coupled 

with reduced threat sensitivity may predispose to risky behavior, particularly following 

recent stress, and that high threat-related amygdala reactivity may serve a protective 

role against some forms of addiction. These findings are consistent with developmental 

models of addiction vulnerability (Doremus-Fitzwater et al., 2010) and prior imaging 

genetics research (Hariri et al., 2009). Moreover, Chapter 3 provides evidence that this 

combination of neural traits can predict stress-related problem drinking three months 

following initial assessment (Nikolova & Hariri, 2012). The latter finding lends support 

to the notion that neural reactivity to threat and reward could indeed be leveraged to 

predict both current and future vulnerability and resilience. 

Such predictions of risk and resilience would be made easier if BOLD fMRI 

imaging can in fact be supplanted by more easily accessible peripheral measures of 

neural function, which can serve as proxies of reward and threat processing. While prior 

research has begun to link specific genetic variants to variability in both amygdala and 

VS reactivity (Hariri, 2009), few studies had investigated the combined effects of 

multiple variants. In Chapter 4, I demonstrate the utility of multilocus genetic profile 
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approaches for accounting for variability in neural function using a specific example 

capturing variability in DA signaling and VS reactivity (Nikolova et al., 2011). 

Specifically, I show that a multilocus genetic profile reflecting the cumulative effects of 

five distinct polymorphic loci on DA signaling not only predicts VS reactivity more 

robustly than each locus taken individually, but it accounts for nearly 11% of all 

variability in VS reactivity. Results from this study have spurred multiple follow-up 

investigations extending this approach to additional phenotypes and systems (Davis et 

al., 2013, Kohannim et al., 2012, Stice et al., 2012). Ideally, similar scores capturing 

variability in other neurotransmitter systems could be used to allow for a more 

comprehensive account of genetically driven inter-individual variability in neural 

function and, ultimately, clinically informative measures of risk and resilience attainable 

without dependence on BOLD fMRI. 

While genetic factors are likely to account for a large proportion of the 

measurable variability in brain function, they are unlikely to account for all of it for two 

inter-related reasons: 1) there are multiple intervening steps between the assembly of a 

DNA sequence and its expression as a functional protein, all of which are subject to 

intricate non-DNA-sequence based regulation; and 2) environmental factors may 

moderate the effects on genetic variation on many behaviorally relevant neural 

phenotypes (Klucken et al., 2013). Epigenetic modifications of DNA and chromatin may 

help account for both sources of variability, as these modifications are not only involved 
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in regulating gene expression without altering the basic DNA sequence, but are also 

heritable and subject to environmental modulation (Goldberg et al., 2007). Thus, the 

study of the epigenetic landscape may yield much needed insight into the mechanisms 

that link genetic variation to complex phenotypes.  

In strong support of this notion, in Chapter 5, I report data demonstrating that 

relatively high levels of methylation in the proximal promoter region of SLC6A4 predict 

greater amygdala reactivity in two independent samples. Providing additional cues as to 

the molecular mechanisms underlying this effect, methylation in the same region was 

associated with reduced gene expression in postmortem amygdala tissue. Critically, all 

of these effects persist even after accounting for 5-HTTLPR/rs25531 genotype. 

These findings critically implicate epigenetic modifications in the regulation of 

brain function and suggest their effects may in fact override those of functional DNA-

sequence based variation. Thus, epigenetics should ideally be considered in all studies 

aiming to identify genetic influences on neural functioning, particularly in cases of 

suspected or established environmental moderation. With the increasing availability of 

methods for assaying the human epigenome in its entirety and reasonable blood-

peripheral tissue methylome convergence (Tylee et al., 2013), such considerations would 

hopefully become increasingly easy to meet.  

The current studies provide intriguing evidence for the involvement of threat 

and reward processing in novel biological pathways of risk and resilience for 
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psychopathology. However, they are not without limitations. First and foremost, the 

studies included here assess disorder risk using non-clinical continuous trait or state 

measures extending into the normative range. Moreover, they largely focus on healthy 

and high-functioning populations with few individuals meeting diagnostic criteria for a 

current or lifetime psychiatric disorder. While such a dimensional approach is likely to 

be more biologically valid than one focused on diagnostic categories (Morris & Cuthbert, 

2012), the possibility should be acknowledged that the data reported here may not have 

captured the extreme ends of the continuum along which the behaviors and traits of 

interest are assessed. Future studies preferentially recruiting at-risk individuals (e.g., 

due to family history of MDD) or individuals with current or past psychiatric diagnoses 

may be needed to generalize these results beyond the circumscribed behavioral and 

clinical phenotype range afforded by the samples used here.  

Equally importantly, the results reported here are correlational in nature. True 

risk and resilience can only be fully appreciated in the context of prospective 

longitudinal designs with the power to delineate vulnerability and resilience trajectories 

over time. Thus, prospective longitudinal studies would be necessary to confirm the 

predictive power of these and other neural and genetic markers of risk and resilience. 

Repeated-sampling designs would also be particularly well-suited for elucidating the 

epigenetic correlates of environmental experience, which could in turn provide insight 

into the molecular basis of risk and resilience. Such knowledge could not only facilitate 
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the early identification of vulnerable individuals, but also foster the development of 

novel individually tailored modes of intervention. 

An exciting avenue for future research into the molecular basis of risk and 

resilience lies in uncovering the relative contributions of heritable and experiential 

factors in shaping the epigenetic landscape across the lifespan. Using an animal model 

of fear conditioning, a prominent recent study demonstrated that novel epigenetic 

modifications associated with fear learning may in fact be transmitted to offspring, 

along with acquired conditioned responses (Dias & Ressler, 2014). This raises the 

intriguing possibility that there may be similar epigenetic mechanisms of 

transgenerational transmission of risk and resilience in humans. This possibility can be 

explored in future studies sampling DNA not only from study populations of interest, 

but also from parents or children of study participants. 

Finally, the BOLD fMRI measures of VS and amygdala reactivity used here 

reflect cumulative signaling in those neural regions and can serve as useful indices for 

the overall functioning of the CSC and CLC, respectively. However, by themselves, they 

provide little direct insight into the specific molecular mechanisms that may underlie 

differences in reward and threat-related brain function. Future studies combining 

molecular genetics tools with multimodal PET and fMRI technology would be better 

suited to provide insight into the precise molecular mechanisms of risk and resilience. 

Ideally, these studies should attempt to integrate multilocus genetic and epigenetic data 
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into a repeated-measures prospective longitudinal design aimed to delineate personal 

and perhaps transgenerational risk and resilience trajectories with the ultimate goal of 

developing targeted early interventions to prevent psychopathology in vulnerable 

individuals.  



 

123 

Appendix 

Life Events Scale for Students (LESS) 

The responses to the occurrence IN THE LAST YEAR of the following LESS items were 

used in analyses: 

1 Death of a parent (1- No, 2- Yes) 

2  Major personal injury or illness (1- No, 2- Yes) 

3  Major argument with parents (1- No, 2- Yes) 

4  Beginning an undergraduate program at university (1- No, 2- Yes) 

5  Moving away from home (1- No, 2- Yes) 

6  Failing a number of courses (1- No, 2- Yes) 

7  Minor violation of the law (e.g., speeding ticket) (1- No, 2- Yes) 

8  Getting kicked out of college (1- No, 2- Yes) 

9  Pregnancy (either yourself or being the father) (1- No, 2- Yes) 

10  Minor car accident (1- No, 2- Yes) 

11  Major violation of the law (e.g., sentenced with Jail term (self))  

12  Moving out of town with parents (1- No, 2- Yes) 

13  Spouse or boy/girlfriend died (1- No, 2- Yes) 

14  Establishing new steady relationship with partner (1- No, 2- Yes) 

15  Finding a part-time job (1- No, 2- Yes) 

16  Sex difficulties with boy/girlfriend (1- No, 2- Yes) 
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17  Failing a course (1- No, 2- Yes) 

18  Major change of health in close family member (1- No, 2- Yes) 

19  Major car accident (car wrecked, people injured) (1- No, 2- Yes) 

20  Death of your best or very close friend (1- No, 2- Yes) 

21  Serious illness of your best or very close friend (1- No, 2- Yes) 

22 

 Serious personal crisis experienced by family member or very good friend (1- No, 2- 

Yes) 

23  Major Housing Problems (1- No, 2- Yes) 

24  Breaking up of parent's marriage/divorce (1- No, 2- Yes) 

25  Losing a part-time or a full-time job (1- No, 2- Yes) 

26  Major and/or chronic financial problems (1- No, 2- Yes) 

27  Major argument with boy/girlfriend or spouse (1- No, 2- Yes) 

28  Parent losing a job (1- No, 2- Yes) 

29  Switch in program within same college or university (1- No, 2- Yes) 

30  Losing a good friend (1- No, 2- Yes) 

31  Change of job (1- No, 2- Yes) 

32  Break-up with boy/girlfriend or spouse (1- No, 2- Yes) 

33  Minor financial problems (1- No, 2- Yes) 

34  Major Conflict with a Family Member or very close friend (1- No, 2- Yes) 

35  Assault, rape, or mugging (1- No, 2- Yes) 
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36  Major Difficulties at work (1- No, 2- Yes) 

37  Lost driver's license (1- No, 2- Yes) 

38  Pet died (1- No, 2- Yes) 

39  Was robbed (1- No, 2- Yes) 

40  Infidelity on the behalf of the spouse / significant other (1- No, 2- Yes) 

41  Birth of a child (1- No, 2- Yes) 

42  Abortion (1- No, 2- Yes) 

43  Miscarriage (1- No, 2- Yes) 

44  Found out that cannot have children (1- No, 2- Yes) 

45  Child died (1- No, 2- Yes) 
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