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Abstract

This dissertation develops new econometric techniques for use in estimating and

conducting inference on parameters that can be identified from option prices. The

techniques in question extend the existing literature in financial econometrics along

several directions.

The first essay considers the problem of estimating and conducting inference on

the term structures of a class of economically interesting option portfolios. The

option portfolios of interest play the role of functionals on an infinite-dimensional

parameter (the option surface indexed by the term structure of state-price densities)

that is well-known to be identified from option prices. Admissible functionals in

the essay are generalizations of the VIX volatility index, which represent weighted

integrals of options prices at a fixed maturity. By forming portfolios for various

maturities, one can study their term structure. However, an important econometric

difficulty that must be addressed is the illiquidity of options at longer maturities,

which the essay overcomes by proposing a new nonparametric framework that takes

advantage of asset pricing restrictions to estimate a shape-conforming option sur-

face. In a second stage, the option portfolios of interest are cast as functionals of

the estimated option surface, which then gives rise to a new, asymptotic distribution
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theory for option portfolios. The distribution theory is used to quantify the estima-

tion error induced by computing integrated option portfolios from a sample of noisy

option data. Moreover, by relying on the method of sieves, the framework is non-

parametric, adheres to economic shape restrictions for arbitrary maturities, yields

closed-form option prices, and is easy to compute. The framework also permits the

extraction of the entire term structure of risk-neutral distributions in closed-form.

Monte Carlo simulations confirm the framework’s performance in finite samples. An

application to the term structure of the synthetic variance swap portfolio finds size-

able uncertainty around the swap’s true fair value, particularly when the variance

swap is synthesized from noisy long-maturity options. A nonparametric investigation

into the term structure of the variance risk premium finds growing compensation for

variance risk at long maturities.

The second essay, which represents joint work with Jia Li, proposes an econo-

metric framework for inference on parametric option pricing models with two novel

features. First, point identification is not assumed. The lack of identification arises

naturally when a researcher only has interval observations on option quotes rather

than on the efficient option price itself, which implies that the parameters of inter-

est are only partially identified by observed option prices. This issue is solved by

adopting a moment inequality approach. Second, the essay imposes no-arbitrage re-

strictions between the risk-neutral and the physical measures by nonparametrically

estimating quantities that are invariant to changes of measures using high-frequency

returns data. Theoretical justification for this framework is provided and is based

on an asymptotic setting in which the sampling interval of high frequency returns
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goes to zero as the sampling span goes to infinity. Empirically, the essay shows that

inference on risk-neutral parameters becomes much more conservative once the as-

sumption of identification is relaxed. At the same time, however, the conservative

inference approach yields new and interesting insights into how option model param-

eters are related. Finally, the essay shows how the informativeness of the inference

can be restored with the use of high frequency observations on the underlying.

The third essay applies the sieve estimation framework developed in this dis-

sertation to estimate a weekly time series of the risk-neutral return distribution’s

quantiles. Analogous quantiles for the objective-measure distribution are estimated

using available methods in the literature for forecasting conditional quantiles from

historical data. The essay documents the time-series properties for a range of return

quantiles under each measure and further compares the difference between matching

return quantiles. This difference is shown to correspond to a risk premium on binary

options that pay off when the underlying asset moves below a given quantile. A brief

empirical study shows asymmetric compensation for these return risk premia across

different quantiles of the conditional return distribution.
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1

Introduction

Options are derivative securities whose payoffs depend on the behavior of a specified

underlying asset. This dissertation studies estimation and inference problems on

economic models whose parameters can be identified from the prices of options.

Over the last half-century, two major strands of literature have emerged con-

cerning the study of option prices. The first strand of literature, pioneered by the

seminal work of Black and Scholes (1973) and Merton (1973), takes the underlying

asset and relevant risk factors as primitives and then examines the problem of de-

termining prices for options written on that asset.1 In this approach, option prices

are derived from the behavior of other primitives, the underlying asset and relevant

risk factors. The second strand of literature, starting at least since Ross (1976),

treats option prices themselves as primitives. The enormous fruitfulness of the latter

approach is in no small part due to the remarkable theoretical spanning properties of

1 Further examples of papers that fall into this literature include Cox et al. (1985), Hull and White
(1987), Heston (1993), Bakshi et al. (1997), Duffie et al. (2000), Christoffersen et al. (2006), and
Christoffersen et al. (2008).
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options, which play a fundamental role in completing markets by acting as de facto

Arrow–Debreu securities.2

The primary focus of this dissertation is a collection of econometric and empirical

contributions to the second strand of literature. That is, throughout this dissertation,

options and their prices are treated as primitives, in the sense that they are used

to extract information about the underlying asset and relevant risk factors. The

process of extracting information from observed option price data is fundamentally

an econometric problem and requires answers to questions about model identification,

estimation, and inference. The chapters ahead consider variations on these three

types of questions under varying assumptions on the option data generating process,

the structure of the model considered, the dimensionality of parameters, the degree

of identifiability of these parameters, and on functionals of the parameters.

1.1 Inference on Option Portfolios

The next chapter of this dissertation considers the problem of estimating the term

structures of a class of economically interesting option portfolios. A primary exam-

ple of such an option portfolio is the VIX, or volatility index, which is synthesized

by combining a large number of S&P 500 Index options at a fixed maturity into a

single option portfolio. The Chicago Board Options Exchange, or CBOE, publishes

the value of the VIX portfolio using short-run, 30-day options, and when these are

unavailable, it constructs two VIX portfolios using options that straddle the 30 day

maturity and then performs a linear interpolation to arrive at a 30-day VIX approx-

2 See, for example, Debreu (1959), Arrow (1964), Breeden and Litzenberger (1978), Banz and
Miller (1978), Aı̈t-Sahalia and Lo (1998), Britten-Jones and Neuberger (2000), Bakshi and Madan
(2000), and Andersen et al. (2012).
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Figure 1.1: The daily VIX historical time series, 1996–2014. The Chicago Board
Options Exchange’s 30-day VIX volatility index represents the value of a portfolio
of S&P 500 Index options.

imation. The CBOE’s 30-day VIX has garnered an informal interpretation as an

investor “fear gauge” because of its tendency to rise during periods associated with

high financial market volatility.3 A daily time series of the CBOE’s historical 30-day

VIX is plotted in Figure 1.1.

More formally, the CBOE’s VIX approximates a model-free measure of implied

volatility derived, for example, in Carr and Wu (2009). This measure of implied

volatility (or its square) under certain conditions replicates the price of a volatility

insurance contract (a so-called variance swap) through the construction of a hedging

portfolio consisting of a theoretically infinite number of put and call options on the

S&P 500 Index. The variance swap then pays off when future realized volatility

3 As an example for this use of terminology, see the Wall Street Journal article by Kiernan (2014).
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exceeds the value of the index. Depending on the length of the period for which one

would like to purchase this volatility insurance, a natural term structure of hedging

option portfolios can be formed to value the insurance contract by simply forming the

Carr-Wu portfolio using options at different maturities. Thus, pricing the variance

swap term structure is one economic motivation for being able to compute the term

structure of the VIX portfolio.

The next chapter shows, however, that extending the CBOE’s VIX approximation

to longer maturity options is not straightforward. This is due to the illiquidity of

options at longer maturities, which results in option prices that are more sparse

and noisy at long maturities, possess larger bid-ask spreads, and are subject to

more egregious synchronization errors than their short-maturity counterparts. It

is clear that any VIX portfolio formed from the sparse and noisy long-maturity

options should be subject to some form of estimation error. In other words, the

study of long-run analogs of the CBOE’s 30-day VIX should involve a theory of

inference that can quantify the notion of estimation error in a VIX portfolio, which

the econometrics literature has hitherto neglected to provide. The provision of such

a theory of inference is one of the main contributions of this dissertation.

In particular, the next chapter provides a new nonparametric framework for esti-

mating and conducting inference on the term structure of the VIX and other VIX-like

option portfolios. The illiquidity problem of options at longer maturities is partially

solved by introducing additional structure in the form of asset pricing theory. Specif-

ically, the risk-neutral valuation equation imposes well-known shape constraints on

4



option prices at all maturities.4 To take advantage of these constraints, the next

chapter proposes a sieve estimation framework that can fully incorporate the struc-

ture afforded by the risk-neutral valuation equation and that can, at the same time,

remain fully nonparametric.5 A key step in this framework comes from the ob-

servation that the shape constraints on option prices are driven by an expectation

against a valid density (the so-called state-price density, or SPD), i.e. one that is

nonnegative and integrates to one. The framework proposed below remains nonpara-

metric by treating the term structure of SPDs that generated observed options as an

element of an infinite-dimensional parameter space. The infinite-dimensional param-

eter is then estimated via the method of sieves, which generates shape-conforming

option surfaces. This result extends the existing literature on shape-constrained

nonparametric option pricing to the entire option surface, rather than exploiting the

shape-constraints for single option maturities.6

The resulting nonparametrically estimated option surface is then used as an input

to computing the term structure of the VIX or other VIX-like portfolios. Specifically,

by treating the VIX (an integrated option portfolio) as a functional of the estimated

option surface, I rely on some well-known functional delta methods to derive an

asymptotic distribution theory for the VIX, pointwise along its term structure. The

distribution theory is used to quantify the notion that the noise and sparseness

of options at long maturities should induce an estimation error when forming the

VIX portfolio from an option surface that was estimated from sparse and noisy

4 See Duffie (2001) for an introduction to the notion of risk-neutral valuation.

5 Chen (2007) provides an excellent survey of sieve estimation.

6 See Aı̈t-Sahalia and Duarte (2003), Jiang and Tian (2005), and Figlewski (2008) for examples
of this literature.
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options. Moreover, by computing the VIX term structure off of the estimated option

surface, one can circumvent the issue of interpolating neighboring VIXs, as is done,

for example, in the CBOE’s calculation. The central contributions of the next chapter

are, therefore, a procedure for estimating the term structure of the VIX (or VIX-

like portfolios) at arbitrary maturities without resorting to theoretically unsupported

interpolations, as well as the provision of an asymptotic distribution theory that is

used to construct confidence intervals around the VIX term structure.

Monte Carlo simulations show that minimizing the Bayesian Information Cri-

terion provides a simple, data-driven method for computing the sieve’s expansion

terms with good finite sample coverage probabilities. The sieve framework is then

tested in three separate empirical applications: the pricing of the term structure of

variance swaps, a comparison with the CBOE’s interpolation method for generat-

ing a VIX term structure, and the estimation of the term structure of the variance

risk premium. The latter application is one of a few existing extensions of the well-

established literature on the variance risk premium to longer horizons.7 The findings

imply larger magnitudes for the term structure of the variance risk premium than

previously found in parametric estimates.8

1.2 Inference on Partially Identified Option Pricing Models

The next essay in this dissertation considers the problem of inference on option

model parameters that are finite-dimensional, but may only be partially identified.

7 Bakshi and Madan (2006), Carr and Wu (2009), Bollerslev and Todorov (2011), Bollerslev et al.
(2011), Bollerslev et al. (2013), and the references therein.

8 See Aı̈t-Sahalia et al. (2012) and Fusari and Gonzalez-Perez (2012).
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This essay represents joint work with Jia Li and builds on earlier findings from

my third-year prospectus. In our setup, the partial identification of option model

parameters arises naturally when observed option data come in the form of bid and

ask quotes instead of efficient prices. That is, since option pricing models make point

predictions on the efficient, equilibrium price of an option, but observed option data

come in pairs of quotes, it is not clear how to identify the option model’s parameters

without specifying a mapping from quotes to efficient prices. This mapping can

be interpreted as a microstructure model that specifies the option market maker’s

price setting schedule relative to the efficient price. Because this mapping is neither

revealed by the option pricing model nor the observed data, a lack of identification

arises naturally.

To address the lack of a microstructure model that maps quotes to efficient prices,

Li and I propose merely bounding the efficient price by the bid and ask quotes. This

assumption substantially relaxes the existing practice in the literature of proxying

unobserved efficient prices by the option mid-quote, i.e. the arithmetic average of

observed bid and ask prices. This is because the mid-quote itself represents one of

the simplest possible microstructure models, which posits that observed bid and ask

quotes are always symmetric about the efficient price, in every state of the world.

While the plausibility of this assumption has been questioned in the literature,9 our

essay represents the first to examine the issue from an identification viewpoint.

We argue that working with bid-ask bounds rather than mid-quotes is especially

relevant with option data, since illiquid deep in-the-money options and long-maturity

9 See Carr and Wu (2009) and Pan (2002).

7



options tend to have nontrivially wide bid-ask spreads. It is intuitively clear that the

wider the bid-ask spread, the stronger the mid-quote assumption becomes. Indeed,

since many efficient prices can potentially fit the observed bid-ask spread, choos-

ing the bid-ask mid-point amounts to selecting an arbitrary element among a set

of admissible prices. The goal, therefore, is to conduct inference on option model

parameters that are set-identified.

Our inference on option pricing models is implemented via a moment inequality

framework. To allow for option quotes that are observed with error, our identifying

restrictions only require efficient option prices to lie between the observed bid-ask

spread on average. The framework relies on methods from the burgeoning moment

inequality literature, including the papers by Andrews and Soares (2010) and An-

drews and Shi (2014). We extend this literature to accommodate features that are

unique to option pricing. In particular, the literature on empirical option pricing

(discussed below) has established the need for incorporating stochastic volatility dy-

namics in order to adequately explain observed patterns in option prices.10 The

implication for option pricing is that a latent spot volatility variable enters into the

option pricing equation, and hence, into the moment functions that constitute the

identifying restrictions.

To overcome the presence of a latent spot volatility variable within the moment

functions, we propose replacing the latent variable with an estimate obtained from

high-frequency data on the underlying. In particular, using the jump-robust estima-

tor from Mancini (2009), we arrive at an end-of-day estimate of spot volatility using

10 SeeHull and White (1987), Heston (1993), and Bakshi et al. (1997) for early stochastic volatility
models.
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the square root of average integrated variance near the closing minutes of trading.

This estimate is then plugged into the option pricer in a second stage and is treated as

though it represents an actual observation on spot volatility. We provide a rigorous

theoretical justification for replacing latent spot volatility with this high-frequency

estimate and further perform Monte Carlo experiments to confirm this practice in

empirically realistic settings.

The option pricing models considered fall under the general framework of Duffie

et al. (2000) and will therefore admit comparisons between our parameter set esti-

mates and the point estimates obtained in the existing empirical options literature.11

In particular, our empirical findings reveal large estimated parameter sets when the

mid-quote assumption is replaced by the bid-ask quote bounds. These parameter sets

reveal new and interesting relationships between option pricing parameters. Finally,

by providing further identifying information using high-frequency data on the un-

derlying, we show that the informativeness of inference can be restored even within

our partially identified option pricing framework.

1.3 A Sieve Application to Estimating Quantile Risk Premia

The final essay in this dissertation takes the sieve estimation framework proposed in

Chapter 2 to examine the time series properties of the option-implied risk-neutral

return distribution. An economic motivation for studying this distribution is that

it can be used to decompose the familiar equity risk premium into its return quan-

tile constituents. That is, by directly comparing the time series of risk-neutral and

11 See Bates (1996, 2000), Bakshi et al. (1997), Pan (2002), Eraker (2004), Broadie et al. (2007),
Andersen et al. (2012), and Andersen et al. (2013).
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objective return distributions, one can shed further light on which features of these

distributions are responsible for the time-varying risk premia observed in the data.

However, in contrast to previous estimates of higher-order moment risk premia, the

third essay in this dissertation proposes comparisons via the risk-neutral and ob-

jective return quantiles. The differences in these quantiles are shown to have an

interpretation as a risk premium on certain binary options that pay off when the

underlying asset moves below a given quantile.

To study such risk premia, an estimate of P-measure return quantiles is needed.

To this end, I use the CAViaR forecasting model proposed in Engle and Manganelli

(2004) to estimate conditional P-measure return quantiles. However, in order to

obtain 30-day ahead return quantiles, the CAViaR model requires monthly return

data. To mitigate the loss of intra-month return variation, I augment the CAViaR

quantile model with daily (intra-month) realized variance estimates and find that

this procedure aids the nonlinear optimization’s convergence.

Quantile comparisons similar to those discussed in the third essay of this dis-

sertation are found in Metaxoglou and Smith (2013). My approach differs from

theirs primarily through the use of sieves to compute the Q-measure return quan-

tiles, whereas Metaxoglou and Smith (2013) use a mixture of log-normals. The

framework presented here can therefore be viewed as complementary to theirs from

a nonparametrically motivated perspective.

The empirical findings of the quantile-forecasting approach point to the presence

of asymmetric tail risk compensation. This underscores existing findings using mo-

10



ment, rather than quantile, based frameworks.12 In particular, I find that there is

significant compensation for bearing left-tail risk, but that the risk premium changes

sign and has a smaller magnitude for bearing right-tail risk.

12 See, for example, Conrad et al. (2013).
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2

Term Structures, Shape-Constraints, and Inference

for Option Portfolios

2.1 Introduction

This paper is concerned with nonparametrically estimating a shape-conforming op-

tion price surface and quantifying the statistical uncertainty around associated inte-

grated option portfolios. The use of option prices in the extraction of economically

significant quantities is linked to their ability to approximate state-contingent claims.

This observation is due to the fundamental insights of Ross (1976) and Breeden and

Litzenberger (1978), who show that options can be combined into portfolios that

replicate the role of Arrow-Debreu securities in spanning or hedging against uncer-

tain future states. More recently, option prices and their portfolios have been used

to extract state-price densities,1 to learn about the market prices of jump risk and

1 See Jackwerth and Rubinstein (1996), Aı̈t-Sahalia and Lo (1998), Aı̈t-Sahalia et al. (2001),
Bondarenko (2003), Yatchew and Härdle (2006), Figlewski (2008) among others.
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crash fears,2 to estimate investor risk aversion and risk-neutral skewness3, to forecast

returns,4 and to study how investors price and perceive volatility risk.5 The latter

category, in particular, has benefitted from a collection of recently developed model-

free implied volatility measures that are obtained by forming integrated portfolios of

option prices, the most well-known of which is arguably the synthetic variance swap

and its square-root, the VIX volatility index.6

However, a central issue with implementing the above theory is the sparseness

and noise of option data due to illiquidity. For example, in order to construct the

synthetic variance swap portfolio or risk-neutral density at some horizon τ , an infinite

continuum of European options expiring in τ periods is required (Carr and Wu

(2009)). In reality, option prices are discrete and truncated in strikes and maturity,

since there may only be a few dozen observations available from which to infer the

infinite option portfolio. The problem is even more severe when the objective is to

investigate term structures implied by option prices, since the typical option panel has

only a handful of maturities clustered at short horizons. To overcome this mismatch

between data sparseness and theory, it has been customary to numerically interpolate

observed options and then to treat the resulting estimates as though they represent

actual observations on the theoretical object of interest. This approach omits at least

two important considerations: first, the replacement of option prices by estimates

2 See, for example, Bates (2000), Pan (2002), Broadie et al. (2007), and Bollerslev and Todorov
(2011).

3 See Bliss and Panigirtzoglou (2004) and Bakshi et al. (2003).

4 Bakshi et al. (2011) and Bollerslev et al. (2013).

5 Carr and Wu (2009), Bollerslev et al. (2011),Drechsler and Yaron (2011)

6 See Britten-Jones and Neuberger (2000), Jiang and Tian (2005), and Carr and Wu (2009).

13



should induce an estimation error. How quickly does the estimation error vanish

as more options become available? Second, options are frequently observed with

microstructure error arising from synchronization issues, bid-ask spreads, and quote

staleness. Does the presence and variance of these errors affect the precision of the

estimated portfolio, and can this be meaningfully quantified?

To answer these questions, I propose a new nonparametric framework to (1) over-

come the discreteness and truncation of option data in both the strike and maturity

dimension and (2) additionally provide a distribution theory for option portfolios.

The key ingredient in this framework is the nonparametric estimation of an option

surface that satisfies certain shape constraints implied by economic theory. Thus,

in illiquid regions of the option panel where maturities or strikes are only sparsely

available, economic theory guides the estimator to maintain the proper structure.

Moreover, the estimator has a number of appealing properties from an empirical

perspective: first, option prices can be solved in closed-form. Second, because the

option prices are shape-conforming along any maturity of interest, the estimator

yields an entire term structure of valid state-price densities (SPDs) and risk-neutral

CDFs indexed by maturity. That is, for any maturity of interest, the estimated

SPDs always integrate to one, even in finite samples and even off the support of

observed options. Third, the term structures of SPDs and risk-neutral CDFs are

available in closed-form, avoiding the need to consider numerical differentiation or

integration errors. Fourth, while having nonparametric properties, the estimator is

easy to implement.

To be specific, given a cross-section of observed options at a fixed point in time,
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I propose solving a sieve least squares problem involving bivariate Hermite polyno-

mial expansions of the joint risk-neutral density in both the return- and maturity-

dimensions. This joint density is divided by its marginal on τ , yielding densities

that are conditional versions of the Gallant and Nychka (1987) type (conditioning

on τ) and are normalized to be nonnegative and to always integrate to one for any

τ . When integrated against the option payoff function, I show that these Hermite

densities yield closed-form option prices, SPD term structures, and risk-neutral CDF

term structures. This result extends the work of León and Sentana (2009) to the bi-

variate case involving the τ expansion. The closed-form option prices are indexed by

Hermite polynomial coefficients that are chosen to minimize a least squares criterion

in a procedure that is numerically equivalent to nonlinear least squares.

The main econometric results of this paper are the consistency of the nonpara-

metric price surface, its rate of convergence, and an asymptotic distribution theory

for integrated portfolios of options. In other words, the latter result can be used to

put confidence intervals on the synthetic variance swap (SVS) or VIX term structure

that quantify the precision of portfolios that are constructed from estimated option

prices. Throughout, the focus of this paper will be on the twin problems of (1)

producing reliable estimates of option term structure objects (e.g. the SVSs, SPDs,

and risk-neutral CDFs), and (2) the quantification of “reliability” as measured by

asymptotically valid standard errors on the portfolio term structures. It should be

emphasized, however, that the methods presented here are of interest even if the

application is not about the option term structure. Indeed, because the present sieve

estimator is shape-conforming for a given maturity across all strikes, it can be used
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to extrapolate option prices into extreme strikes. In light of the recent financial cri-

sis and the renewed interest in studying tails of return distributions, the estimator’s

ability to estimate risk-neutral tails could be helpful in certain applications.

The paper connects with several strands of the literatures in finance and econo-

metrics. The incorporation of asset pricing information relates to an existing litera-

ture on nonparametric shape-constrained estimation for options, which includes the

extant papers by Aı̈t-Sahalia and Duarte (2003), Bondarenko (2003), Yatchew and

Härdle (2006), Figlewski (2008), as well as the numerical procedures to produce ex-

trapolated option smiles in Bliss and Panigirtzoglou (2004), Jiang and Tian (2005),

and Metaxoglou and Smith (2011). This literature has produced estimators that are

shape-conforming for a fixed option maturity. In contrast, the framework presented

here extends these methods in a new direction by generating shape-conforming sur-

faces for arbitrary (and even sparsely observed) maturities, while at the same time

also offering closed-form term structures of valid state-price densities and risk-neutral

CDFs using a single option panel. Finally, the paper’s nonparametric distribution

theory to quantify the estimation error in option portfolios is novel to this literature.

Collectively, these results are obtained by connecting ideas from León and Sentana

(2009) to the ongoing literature on sieve estimation, e.g. Gallant and Nychka (1987),

Shen (1997), Chen and Shen (1998), Chen (2007), and Chen et al. (2013). In par-

ticular, the computationally simple distribution theory for option portfolios in this

paper is adapted from Chen et al. (2013).

Simulations and several examples illustrate the framework’s flexibility. Monte

Carlo simulations show that the sieve estimator can capture the term structure of
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option prices, risk-neutral CDFs, and state-price densities implied by a variety of

continuous-time double jump-diffusion data generating processes (DGPs), including

the processes by Black and Scholes (1973), Heston (1993), and Duffie et al. (2000).

Moreover, additional simulation exercises demonstrate that the portfolio distribution

theory provides good coverage of the term structure of VIX’s, regardless of whether

the DGP has jumps in price and/or stochastic volatility. This flexibility is due to

a key tuning parameter, the number of sieve expansion terms, which is required

to grow with the sample size. The simulations show that minimizing the Bayesian

Information Criterion (BIC) provides a simple but effective method for selecting the

number of expansion terms automatically. Finally, a brief simulation shows that the

method can be employed in an “out-of-sample” sense to generate daily or weekly

balanced panels option portfolios, risk-neutral CDFs, and SPDs by evaluating the

sieve estimator at arbitrary τ .7

My empirical applications of the sieve option estimator study the term structure

of the synthetic variance swap portfolio and the associated variance risk premia us-

ing actual data from S&P 500 Index options from 1996 to 2010. The results show

that sampling variation in noisy option prices induces up to 8% uncertainty around

the fair value of the long-run variance swap contract when the swap is synthesized

from noisy long-maturity options. In contrast, swaps synthesized from short- and

medium-maturity options on the S&P 500 Index appear more precisely estimated,

which supports the validity of the linearly interpolated approximations at short hori-

zons commonly adopted in the literature. The latter observation is underscored in

7 This result is relegated to Appendix A for brevity.
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empirical comparisons of the sieve-estimated VIX term structure and the CBOE’s

discretized analog.

The sieve-estimated variance swap term structures are then used to estimate the

term structure of the variance risk premium. An active literature in financial eco-

nomics has documented the existence of a significant and time-varying risk premium

that investors demand for bearing return variance risk.8 Recently, Aı̈t-Sahalia et al.

(2012) and Fusari and Gonzalez-Perez (2012) have extended this literature by exam-

ining the variance risk premium at longer horizons using a flexible parametric model

combined with data on variance swaps. The present paper complements their work

from a nonparametric perspective and confirms that the variance risk premium term

structure grows with maturity. Moreover, I find that the shape of the term structure

depends on current volatility levels by applying a set of novel expectation hypothesis

regressions.

The paper is organized as follows. Section 2.2 introduces the sieve least squares

estimator for the shape-conforming option surface. Section 2.3 gives the closed-form

option pricing formulas that are used in the sieve framework, and Section 2.4 estab-

lishes the estimator’s consistency and its rate of convergence. Section 2.5 derives the

asymptotic distribution theory for integrated option portfolios, which are functionals

of the option surface estimated in the preceding sections. The results of Monte Carlo

simulations that examine the sieve estimator’s properties in finite samples is given

in Section 2.6. Section 2.7 studies the term structure of the synthetic variance swap

8 See Bakshi and Madan (2006), Carr and Wu (2009), Bollerslev and Todorov (2011), Bollerslev
et al. (2011), and the related literature exploring parametric estimates of the volatility risk premium,
e.g. Pan (2002), Eraker (2004), and Broadie et al. (2007). Equilibrium models that seek to explain
the existence and size of the variance risk premium from a preference-based point of view are
examined in Bakshi and Madan (2006), Bollerslev et al. (2009), and Drechsler and Yaron (2011).
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portfolio and associated variance risk premia, and Section 2.8 concludes.

2.2 A Nonparametric, Shape-Conforming Option Surface

The goal is to provide model-free confidence intervals for the term structure of the

VIX or VIX-like portfolios. These portfolio term structures can be cast as functionals

of the nonparametric, shape-constrained option surface estimator outlined in this

section.

2.2.1 Setup

Under mild restrictions, the current price P0pκ, τq of a European put option with

strike κ and time-to-maturity τ is given by the well-known risk-neutral valuation

equation9

P0pκ, τq � e�rτEQ
0

��
κ� Sτ

�
�

���V�
� e�rτ

» κ

0

rκ� SsfQ
0 pS|τ,VqdS,

(2.2.1)

where V is a vector of state variables that generate the current information set,

fQ
0 p � |τ,Vq is the unobserved transition or state-price density (SPD), and r is the

risk-free rate. The components of V are left unspecified and can contain any number

of variables relevant to pricing options. The Heston model, for example, specifies V �

pS0, V0q, where S0 is the current underlying price and V0 represents spot volatility

(see Heston (1993), Duffie et al. (2000)).

Since the goal is to estimate a shape-conforming option surface at a single point

in time, V realizes to some fixed value v0, so that the density in (2.2.1) becomes

9 See, for example, Chapters 6 and 8 in Duffie (2001).
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fQ
0 pS|τ,V � v0q. To avoid cumbersome notation, I therefore define fQ

0 pS|τq �

fQ
0 pS|τ,V � v0q, since v0 is static across the option surface. On the other hand,

τ is not static on the option surface because it indexes maturity. In this form, the

risk-neutral valuation formula on a single option cross-section becomes

P0pκ, τq � e�rτ
» κ

0

rκ� SsfQ
0 pS|τqdS. (2.2.2)

Letting Z � pκ, τ, r, qq denote a vector of characteristics containing the contract

variables pκ, τq, the risk-free rate r, and the dividend yield q, the dependence of the

option price on the SPD fQ
0 and the characteristics Z can be expressed as

P0pκ, τq � P pfQ
0 ,Zq.

The no-arbitrage pricing equation (2.2.2) implies shape restrictions on the option

prices. By differentiating P pfQ
0 ,Zq repeatedly with respect to the strike price κ, one

has

BP0

Bκ � e�rτFQ
0 pκ|τq,

B2P0

Bκ2
� e�rτfQ

0 pκ|τq,

where FQ
0 is the CDF of fQ

0 . These conditions immediately imply that P pfQ
0 ,Zq is

monotone and convex in κ for any τ , and additionally has slope e�rτ as κ Ñ 8

and slope 0 as κ Ñ 0. Notice that these shape constraints follow directly from the

nonnegativity of fQ
0 and the property that fQ

0 integrates to one with respect to S for

all τ .10

Since the option price’s shape constraints are implied by the fact that fQ
0 is a PDF,

10 These shape constraints have been exploited elsewhere in the nonparametric option pricing
literature for a single τ . See, for example, Aı̈t-Sahalia and Lo (1998), Aı̈t-Sahalia and Duarte
(2003), Bondarenko (2003), Yatchew and Härdle (2006), and Figlewski (2008).
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the strategy I employ to obtain shape-conforming option price estimates is to use

approximating densities that are valid PDFs within the context of sieve estimation.

However, instead of approximating fQ
0 directly, it turns out to be more convenient

to first transform S by a change of variables, and then find approximating densities

to a Jacobian transformation of fQ
0 . The results of this straightforward change-of-

variables are analytically closed-form option prices that are theoretically informative

and computationally convenient.

2.2.2 Change of Variables

I propose the following change of variables to obtain closed-form expressions of esti-

mates to the option price in Eq. (2.2.2). Let Y be the τ -measurable random variable

that satisfies

log

�
S

S0



� µpZq � σpZqY, (2.2.3)

where Y � f0p � |τq, and µp�q and σp�q ¡ 0 are known functions of the characteristics

Z, and where f0p�|τq is the unknown density to be nonparametrically estimated from

the data.

Under this change of variables, the valuation equation (2.2.2) becomes

P pfQ
0 ,Zq � e�rτ

» κ

0

�
κ� S

�
fQ

0 pS|τqdS

� e�rτ
» dpZq

0

�
κ� S0e

µpZq�σpZqY
	
f0pY |τqdY (2.2.4)

� PY pf0,Zq,
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where

dpZq � logpκ{Sq � µpZq
σpZq . (2.2.5)

The original SPD of interest evaluated at an arbitrary point s in the domain of S,

fQ
0 ps|Zq, can then be obtained by the Jacobian transformation

fQ
0 ps|τq � psσpZqq�1f0ps|τq. (2.2.6)

The sieve framework outlined below will produce consistent estimates pfn of f0. By

a continuous mapping theorem, pgn defined pointwise by pgnps|τq � psσpZqq�1 pfnps|τq
will also converge to fQ

0 .

If only the option price and not pgn is needed, then one does not have to perform

the Jacobian transformation, since Eq. (2.2.4) says P pfQ
0 ,Zq � PY pf0,Zq. This

allows the analysis to focus on option pricing equations of the form

PY pf,Zq � e�rτ
» dpZq

0

�
κ� S0e

µpZq�σpZqY
	
fpY |τqdY. (2.2.7)

It is easy to verify that Eq. (2.2.7) contains the same shape restrictions as Eq. (2.2.2)

for any f with
³
fpy|τqdy � 1. Proposition 1 below solves this integral in closed-form

when f represents a sieve approximation.

2.2.3 Sieve Least Squares Regression

The goal is to obtain a shape-conforming option surface by directly using the struc-

ture implied by Eq. (2.2.7). Notice that the true option price PY pf0,Zq is not

observed because of the presence of the unknown infinite-dimensional parameter f0,

which is assumed to reside in some general function space F . The space F consists of
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a very large class of smooth conditional densities fpy|τq and will be described shortly.

Thus, given a random sample tPi,Ziuni�1 on put option prices Pi and characteristics

Zi, the idea is to solve problems of the form

f̂ � arg inf
fPF

#
1

n

ņ

i�1

�
Pi � PY pf,Ziq

�2

Wi

+
, (2.2.8)

where PY p�q is the known pricing functional from equation (2.2.7), Zi is the vector

of observables, and Wi � W pZiq are known weights as a function of Zi.
11

The main difficulty with solving the optimization problem in equation (2.2.8) is

the infinite dimension of the function space F . In general, optimizing over an infinite-

dimensional function space may not be feasible or could even be ill-posed. Instead,

it is typical to proceed by the method of sieves, which involves approximating F by

a sequence of finite-dimensional function spaces (the “sieve” spaces)

FK � FK�1 � � � � � F (2.2.9)

[see Chen (2007), Chen and Shen (1998), and Shen (1997)]. The crucial property

of sieve spaces is that they are much simpler than F but are sufficiently rich to

eventually become dense in F . That is, given any f P F and any ε ¡ 0, there is an

M such that for all K ¡M , there exists fK P FK such that ‖f � fK‖   ε.

The sieve space properties – along with mild regularity conditions – ensure that

solutions to

pfKn � arg min
fPFKn

#
1

n

ņ

i�1

�
Pi � PY pf,Ziq

�2

Wi

+
(2.2.10)

11 Call options can be handled analogously in what follows, but for brevity I focus on puts.
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are consistent for f0. I provide conditions in Section 2.4 that ensure that the con-

vergence of pfKn to f0 also implies the convergence of PY p pf,Zq to PY pf0,Zq under

suitable norms. Also note that the minimum in (2.2.10) is taken over the subspace

FKn � F , where Kn Ñ 8 slowly as n Ñ 8. The requirement that Kn Ñ 8 slowly

is crucial and can be interpreted as the sieve analog of a bandwidth selection in

kernel estimation and has an intuitive interpretation: as the sample size grows, the

approximating spaces FKn increasingly resemble the parent space F . The regularity

conditions then ensure that optima on FKn indeed converge to f0.

2.2.4 The Definition of F and its Sieve Spaces FK

For an option surface to conform to the theoretical shape restrictions of Eq. (2.2.7),

F must be a function space consisting of conditional densities fpY |τq in the sense

that
³
fpy|τqdy � 1 for all τ . I construct such functions by first defining a collection

of joint densities FY,τ with elements fY,τ py, τq, and then defining F to consist of those

functions fpy|τq such that fpy|τq � fY,τ py, τq{ ³ fY,τ py, τqdy for some fY,τ P FY,τ .

Gallant and Nychka (1987) show that if FY,τ is a Sobolev subspace and tFY,τK u8K�0

is a collection of squared and scaled Hermite functions, then tFY,τK u8K�0 is a valid sieve

for FY,τ . I show that the conditional approximating spaces tFKu8K�0 consisting of

those functions fK for which fKpy|τq � fY,τK py, τq{ ³ fY,τK py, τqdy for some fY,τK P FY,τK

is also a valid sieve for the conditional parent space F , although the topologies differ.

A formal discussion of these technical details is postponed until Section 2.4, when

the asymptotic properties of the estimator are examined. For now, it is sufficient to

note that when FK is constructed from a ratio of two Gallant-Nychka densities, then

there exists a norm under which FK is a valid sieve for F .
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The Gallant-Nychka sieve spaces tFY,τK u8K�0 consist of functions of the form

fY,τK py, τq �
�
Ky¸
k�0

�
Kτ̧

j�0

βkjHjpτq
�
Hkpyq

�2

e�τ
2{2e�y

2{2

�
�
Ky¸
k�0

αkpB, τqHkpyq
�2

e�τ
2{2e�y

2{2,

(2.2.11)

where Hk are Hermite polynomials of degree k, and where B is a matrix of coefficients

with kj-entry βkj and K � pKy�1qpKτ �1q.12 This function is clearly non-negative.

Then, using orthogonality properties of Hermite polynomials, it can be shown that

in order for
´
fY,τK py, τqdydτ � 1 for any K, it suffices to impose

°Ky
k�0

°Kτ
j�0 β

2
kj � 1.

The conditional sieve spaces FK will then consist of functions of the form

fKpy|τq � fY,τK py, τq
O»

fY,τK py, τqdy (2.2.12)

for some joint density fY,τK P FY,τK . Notice that because the sieve joint densities

fY,τK py, τq are completely determined by the parameter matrix of coefficients B, then

so are the conditional densities in FK . Therefore, for β � vecpBq, the least squares

12 The Hermite polynomials are orthogonalized polynomials. They are defined, for scalars x, by

HKpxq � xHK�1pxq �
?
K � 1HK�2pxq?
K

, K ¥ 2

where H0pxq � 1, and H1pxq � x [see, for example, León and Sentana (2009)]. Note that HKpxq is
a polynomial in x of degree K.
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problem in (2.2.10) becomes

pβn � arg min
βPRKn

#
1

n

ņ

i�1

�
Pi � PY pβ,Ziq

�2

Wi

+

s.t.

Kypnq¸
k�0

Kτ pnq¸
j�0

β2
kj � 1,

(2.2.13)

which is numerically equivalent to nonlinear least squares estimation for fixed Kn.

As written, PY pβ,Ziq is identical to PY pfK ,Ziq from Eq. (2.2.7), which still

requires an integration to obtain a candidate option price. Section 2.3 shows that

in fact, PY pfK ,Ziq is available in closed-form for any fK P FK , which considerably

facilitates implementation.

2.2.5 The Sieve Satisfies the Required Shape Constraints

The sieve option prices produce highly structured option surfaces because the re-

sulting option prices are shape-conforming for each τ . To see this, one differentiates

with respect to κ to obtain

erτ
BPY pfK ,Zq

Bκ �
» dpZq

0

fKpY |τqdY τ � FK

�
logpκ{S0q � µpZq

σpZq

�����τ
�

(2.2.14)

where FKp�|τq is the cumulative distribution function of fK . Hence, because fK ¥ 0

and integrates to one, one observes that (a) PY pfK ,Zq is increasing in the κ dimension

(since FK ¡� 0 as a CDF), (b) PY pfK ,Zq is convex (since BFK{Bκ is fK{pκσpZqq

and fK ¥ 0), and (c)

lim
κÕ�8

erτ
BPY pfK ,Zq

Bκ � 1, lim
κ×0

erτ
BPY pfK ,Zq

Bκ � 0. (2.2.15)
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This shows that the sieve option prices satisfy the shape constraints implied by

economic theory, for any τ .

2.3 Closed-form Option Prices

I now provide closed-form expressions for the sieve option prices PY pfK ,Zq to be used

in the regression (2.2.10) and show that µpZq and σpZq can be chosen so that the sieve

option prices have a natural interpretation as expansions around the Black-Scholes

model.

2.3.1 Closed-Form Option Prices

To obtain closed-form option prices, it is convenient to first obtain a closed-form

expression for the conditional sieve densities fK of Eq. (2.2.12). This is done by

expanding the squared polynomial term in the joint densities of Eq. (2.2.11) using

techniques similar to those in León and Sentana (2009).

Lemma 2.3.1. Any fK P FK can be expressed in the form

fKpy|τq �
2Ky¸
k�0

γkpB, τqHkpyqφpyq, (2.3.1)

where

γkpB, τq � αpB, τq1AkαpB, τq
αpB, τq1αpB, τq ,

Ak is a known matrix of constants, and αpB, τq is a pKy � 1q � 1 column vector

obtained by stacking the αkpB, τq in Eq. (2.2.11).

Proof. Appendix A.2.
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The use of densities fKpy|τq that are linear combinations of functions in y helps

with the derivation of closed-form option prices. The following result is an extension

of Proposition 9 in León and Sentana (2009) to the case allowing for conditioning on

τ .

Proposition 1. For a candidate SPD fKpx|τq P FK of the form given in equation

(2.3.1), the put option price PY pfK ,Zq from equation (2.2.7) is given by

PY pfK ,Zq � κe�rτ
�

ΦpdpZqq �
2Ky¸
k�1

γkpB, τq?
k

Hk�1pdpZqqφpdpZqq
�

� S0e
�rτ�µpZq

�
eσpZq

2{2ΦpdpZq � σpZqq �
2Ky¸
k�1

γkpB, τqI�k pdpZqq
�

(2.3.2)

where Φp�q is the standard normal CDF, K � pKy � 1qpKτ � 1q, and where

I�k pdpZqq �
σpZq?
k
I�k�1pdpZqq �

1?
k
eσpZqdpZqHk�1pdpZqqφpdpZqq, for k ¥ 1,

I�0 pdpZqq � eσpZq
2{2ΦpdpZq � σpZqq,

and γkpB, τq is the coefficient function given in equation (2.3.1).

The price of a call option is given by

CY pfK ,Zq � S0e
�rτ�µpZq

�
eσpZq

2{2r1� ΦpdpZq � σpZqqs �
2Ky¸
k�1

γkpB, τqI�k pdpZqq
�

� κe�rτ
�
r1� ΦpdpZqqs �

Ky¸
k�1

γkpB, τq?
k

Hk�1pdpZqqφpdpZqq
�
. (2.3.3)

Proof. Appendix A.2

Remark 2.3.2. The significance of this result is that it makes the sieve regressor
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function of Eq. (2.2.13) available in closed-form. Indeed, in sharp contrast to the

large class of parametric option pricing models of Heston (1993) and Duffie et al.

(2000), no numerical integrations are required to compute an option price, which

significantly facilitates the optimization problem Eq. (2.2.13). Moreover, Appendix

A also provides closed-form gradients and second derivatives of the prices PY pfK ,Zq.

And finally, having closed-form price estimates additionally simplifies the ultimate

objective of computing integrated portfolios of PY pfK ,Zq.

The sieve put option price in Eq. (2.3.2) has an intuitive interpretation. Rear-

ranging equation (2.3.2), one obtains

PY pfK ,Zq � κe�rτΦpdpZqq � S0e
�rτ�µpZqeσpZq

2{2ΦpdpZq � σpZqq

�
Ky¸
k�1

γkpB, τq
�

1?
k
Hk�1pdpZqqφpdpZqq � S0e

�rτ�µpZqI�k pdpZqq
�
. (2.3.4)

Inspection of equation (2.3.4) shows that choosing

σpZq � σ
?
τ , µpZq � pr � q � σ2{2qτ (2.3.5)

will cause the leading term in equation (2.3.4) to become PBSpσ,Zq � κe�rτΦpdpZqq�

S0e
�qτΦpdpZq � σ

?
τq, where q is the dividend yield, and where the function dpZq

from equation (2.2.5) is now dpZq � plogpκ{S0q� pr� q� σ2{2qτq{pσ?τq. The value

σ is a tuning parameter in the sieve framework and is chosen to be equal to the

average implied volatility of the observed option cross-section.

This is the familiar option pricing formula of Black and Scholes (1973). Therefore,

the choice of µpZq and σpZq above result in a sieve approximation with leading term
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given by the Black-Scholes formula, that is,

PY pfK ,Zq � PBSpσ,Zq

�
2Ky¸
k�1

γkpB, τq
�
κe�rτ?

k
Hk�1pdpZqqφpdpZqq � Se�qτ�σ

2τ{2I�k pdpZqq
�
.

(2.3.6)

This formula can be interpreted as “centering” the sieve at Black-Scholes, and then

supplementing it with higher-order “correction” terms.13 As the sample size n in-

creases, the number of correction terms Ky and Kτ also increase,14 albeit at a slower

rate than n. Thus, the more data one has, the more complex the sieve option pricer

is permitted to be relative to Black-Scholes.

If the γkpB, τq terms for k ¥ 1 above are nonzero in the data, then we can re-

gard this as evidence against the Black-Scholes model. In particular, it has been

well-documented that conditional distributions of asset prices contain substantial

volatility, skewness, and kurtosis that the Black-Scholes model is unable to capture.

Modeling techniques to introduce such features into the return distribution includes

the addition of stochastic volatility [Heston (1993)], as well as jumps [Bates (1996),

Bates (2000), Bakshi et al. (1997), Duffie et al. (2000)]. The simulation study in

Section 2.6 explores how these continuous time parametric features feed into the co-

efficients of the Hermite expansion and shows that low-order expansion terms (order 4

to 6) are quite capable of fitting the conditional distributions implied by complicated

stochastic volatility and jump specifications.

13 Recently, Kristensen and Mele (2011), Xiu (2011), and León and Sentana (2009) have employed
Hermite polynomials in a parametric option pricing setting. The formulas derived here differ in
that they are the result of a nonparametric sieve least squares framework.

14 Recall that the γkpB, τq terms also contain expansions.
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2.4 Consistency

The critical feature of PY pf,Zq in Eq. (2.2.7) is that it generates shape-conforming

option prices for any τ . It does so by indexing state-price densities with τ , which

appears as a conditioning variable. A straightforward extension of Eq. (2.2.7) is to

permit a state-price density with arbitrary conditioning information, fpY |Xq, where

X � Z and contains τ . For example, one could have X � pτ, rq to accommodate a

risk-free rate term structure that does not match the maturities of observed option

prices. Allowing for general X is instructive in order to see how the rate of con-

vergence is slowed by the dimension of the conditioning variable X. Therefore, this

section establishes the asymptotic theory for the extension that allows for arbitrary

conditioning information in the SPD.

A summary of the theoretical results developed in this section is as follows. First,

I move from Gallant-Nychka joint density spaces to conditional density spaces (the

norm changes), and from conditional spaces to option price spaces (with another

norm change). The theoretical contribution of this section is to show that each of

these transitions corresponds to a Lipschitz map between function spaces. Thus,

the complexity of the option price spaces, as measured by the L2pR1�dx ,Pq metric

entropy from empirical process theory, is completely determined by the complexity

of the Gallant-Nychka joint density spaces, which are Sobolev subspaces with known

covering numbers. Hence, one can apply existing general theorems from the sieve

estimation and inference literature to obtain convergence and asymptotic distribution

results.
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2.4.1 Consistency of Sieve Option Prices and State-Price Densities

With pβn in hand, estimated option prices are simply given by PY ppβn,Zq � pPKn
Y , which

has the closed-form expression stated in Proposition 1. This subsection establishes

that ‖ pPKn
Y �P 0

Y ‖2
pÑ 0 as nÑ 0, where the consistency norm is the L2pRdx ,Pq norm

defined below in Eq. (2.4.1).

The asymptotic results developed in the remainder of this section make use of

Sobolev spaces and associated norms. Detailed definitions of these spaces are given

in Appendix A.1.1. Under those definitions, the sieve spaces of conditional densities

from Secion 2.2.4 are assumed to be subspaces of Wm,1pRduq stated in Definition

A.1.1.

The results in this section refer to the following norms: The option price consis-

tency norm is

‖PY,1 � PY,2‖2
2 � EtrPY,1pZq � PY,2pZqs2W pZqu �

»
rPY,1pZq � PY,2pZqs2W pZqPpdZq

(2.4.1)

i.e. the L2pP,W q-norm on the space of option prices P that are obtained by inte-

gration against some f P F . The state-price density consistency norm is dpf1, f2q �

‖f1 � f2‖2
m,1.

The consistency proof requires some assumptions and a few preliminary results.

Bounded Stock Prices

When state-price densities are close, then asset prices computed off those densities

should be close. This intuition is formalized in the following assumption.
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Assumption 2.4.1. (Locally Uniformly Bounded Stock Prices). Given any f0 P F ,

there exists an ‖�‖m,1� open neighborhood U containing f0 and a constant M (possibly

depending on U) such that

sup
fPU
|Spf,Zq| ¤M P� a.s.,

where

Spf,Zq � e�rτ
»
S0e

µpZq�σpZqY fpY |XqdY � e�rτ
»
STfpY |XqdY

denotes the price of a stock given a candidate SPD f .

Assumption 2.4.1 is a technical condition that is required in order for certain

arguments in the asymptotic theory to go through and has little bearing on practical

applications. In particular, it is easy to check within optimization routines that this

constraint is never close to being violated.

I also make the following assumption.

Assumption 2.4.2. Assume

(i) tpi, ziuni�1 are i.i.d. draws from Y � pP,Zq with E|Y |2�δ   8 for some δ ¡ 0,

and ErW pZiqs   8.

(ii) The true state-price density f0 P F satisfies P � ErPY pf0,Zq|Zs.

Assumption 2.4.2 is standard and very mild. It says that the options are observed

with conditional mean-zero errors with bounded 2� δ moments.

Taken together, Assumptions 2.4.1 and 2.4.2 imply a number of useful properties
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that are summarized in several Lemmas that I prove in Appendix A.1.1. These

properties are used to establish the following consistency result.

Proposition 2. (Consistency) Under Assumptions 2.4.1 and 2.4.2, dp pfn, f0q pÑ 0

and ‖ pPKn
Y � P 0

Y ‖2
pÑ 0.

Proof. Appendix A.2

2.4.2 Rate of Convergence

The ultimate aim is to derive asymptotic inference procedures for certain option

portfolios. To implement such procedures, one requires knowledge of the rate of

convergence of ‖ pPKn
Y pZq � P 0

Y pZq‖2
pÑ 0.

The rate of convergence of the sieve option prices depends on notions of size

or complexity of the space of admissible option pricing functions as measured by

the latter’s bracketing numbers. Note that each candidate option price PY pf,Zq is

uniquely identified by the state-price density f (Lemma A.1.5). In turn, f P F is the

target of a Lipschitz map with preimage fY,X � h2� ε0h0, a Gallant-Nychka density

(Lemma A.1.6). The Gallant-Nychka class of densities requires h to reside in H, a

closed Sobolev ball of some radius B0.15 The rate result obtained below hinges on

the observation that the collection of possible option prices,

P � tPY : PY pZq � PY pf,Zq for some f P Fu,

is ultimately Lipschitz in the index parameter h P H. Therefore, the size and com-

plexity of P , as measured by its L2pRdx ,Pq bracketing number, is bounded by the

15 For further details, see the Online Appendix as well as Gallant and Nychka (1987).
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covering number of the Sobolev ball H (see Van Der Vaart and Wellner (1996)). The

following assumptions are used in the proof of the rate result below.

Assumption 2.4.3. σpZq � Ere|Zs and W pZq are bounded, where e � P � P 0
Y pZq.

Assumption 2.4.4. The deterministic approximation error rate satisfies

‖h� πKnh‖m0�m,2,ζ0 � OpK�α
n q

for some α ¡ 0, where h P H and its orthogonal projection πKnh P HKn are defined in

Definitions A.1.2 and A.1.3, and where Kn � rKypnq�1srKx,1pnq�1s . . . rKx,dxpnq�

1s denotes the total number of series terms for functions in HKn.

Assumption 2.4.5. For state-price densities in Wm,1pRduq, we have m ¥ du � 2.

Assumption 2.4.3 is mild and commonly adopted in the literature (see Chen

(2007)). Assumption 2.4.4 takes as given the deterministic approximation error rate,

and Assumption 2.4.5 imposes additional smoothness in order to invoke Sobolev

imbedding theorems (see Adams and Fournier (2003)).

Proposition 3. Let pPY pZq � PY p pfn,Zq, where pfn solves (2.2.10), and let P 0
Y �

PY pf0,Zq denote the true option price. Under Assumptions 2.4.1, 2.4.2, 2.4.3, and

2.4.4,

‖ pPY�P 0
Y ‖2 � OP pεnq, where εn � maxtn�pm0�mq{p2pm0�mq�duq, n�αdu{p2pm0�mq�duqu.

Proof. Appendix A.2.

Coppejans and Gallant (2002) provide conditions under which α � pm0 �mq in

the univariate density case (du � 1) using a chi-squared norm. If this rate extends
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to α � pm0�mq{du in the multivariate case, the above rate simplifies to the optimal

εn � OP pn�m{p2m�duqq,

where m � m0 � m, implying that the entropy and approximation error rates in

Proposition 3 balance out.

2.5 Inference for Option Portfolios

I now turn to quantifying the precision of option portfolios that use the estimated

option prices pPKn
Y just derived. Many such portfolios fall into the following class of

functionals that take the function PY as inputs and return a real number. Therefore,

the general sieve functional inference framework of Chen et al. (2013) can readily by

applied.

Split Z � pZ1,Z2q. The prime example is Z1 � κ, which includes the large class

of functionals used in option hedging that integrate option prices over strikes. While

the results in this subsection apply more generally, for concreteness this discussion

will consider linear functionals of the form

ΓpPY q � ΓZ2pPY q � cpZq �
»
Z1

ωpZ1,Z2qrPY pZ1,Z2q � bpZ1,Z2qsdZ1. (2.5.1)

This general functional includes so-called weighted integration functionals as well

as evaluation functionals, or combinations of both (this terminology is borrowed from

Chen et al. (2013)). The following examples serve to illustrate the flexibility of this

functional.

Example 2.5.1. To compute the Synthetic Variance Swap (SVS) of Carr and Wu
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(2009) at horizon τ , one has for Z1 � κ, Z2 � Z�κ and by put-call parity16

SV Spτq � ΓZ2pPY q

� 2

τ

» F pZq

�8
erτ

1

κ2
PY pZqdκ� 2

τ

» 8

F pZq
erτ

1

κ2
CY pZqdκ (2.5.2)

�
»
K
ωpκ,Z2qrPY pκ,Z2q � bpZqsdκ

�
»
K
ωpZqrPY pZq � bpZqsdκ

where F pZq � S0e
pr�qqτ denotes the forward price, and where

ωpZq � e�rτ
2

τκ2
, bpZq � 1rκ ¡ F pZqsrS0e

�qτ � κe�rτ s,

and cpZq � 0.

Example 2.5.2. Bakshi et al. (2011) consider the exponential claim on integrated

variance proposed in Carr and Lee (2008) given by

ΓpPY q � e�rτEQ
�

exp

�
�
» T

0

σ2
t dt


 ���Z� (2.5.3)

� e�rτ �
» S0

�8
ωpZqPY pZqdκ�

» 8

S0

ωpZqCY pZqdκ (2.5.4)

� cpZq �
»
K
ωpZqrPY pZq � bpZqsdκ (2.5.5)

16 Z�κ denotes all the values of Z that exclude the component κ.
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where

ωpZq �
8?
14

cos
�

arctanp1{?7q �
?

7
2

ln
�
K
S0

		
?
S0K3{2

bpZq � 1rκ ¡ S0srS0e
�qτ � κe�rτ s

cpZq � e�rτ

Many more functionals of option prices fall under this framework. For instance,

the large class of so-called “model-free” volatility measures that are widely used in

the literature, involve some type of weighted integral of option prices across strikes.

See, for example, Carr and Wu (2009), Jiang and Tian (2005), Britten-Jones and

Neuberger (2000), and Aı̈t-Sahalia et al. (2012) and the many references therein. The

Carr and Wu (2009) SVS-type portfolios will be the subject of this paper’s empirical

application below. Note that because of put-call parity, the bpZq term in Eq. (2.5.1)

can serve to create call options from the put pricing function.

The goal is now to establish the asymptotic distribution of Γp pPY q. This will

permit the construction of (pointwise) confidence intervals on the wide variety of

option portfolios described in the preceding examples, which includes the class of

model-free option-implied measures. It is natural to think of the estimated option

pricing function pPY as being indexed by a finite-dimensional parameter, i.e. pPY pZq �
PY ppβn,Zq pointwise in Z. Hence Γp pPY q is indexed by pβn, which suggests the use of the

standard parametric delta-method for the derivation of the asymptotic distribution of

Γp pPY q. This intuition turns out to be correct, but only if Kn � pKypnq�1qpKτ pnq�1q

has been chosen appropriately. The Monte Carlo simulations below confirm that

incorrect choices of Kn (i.e. either too large or too small) yield incorrect asymptotic
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distributions. However, the simple procedure of selecting Kn by minimizing the BIC

turns out to perform quite well.

With a correct choice of Kn in hand, inference on Γp pPY q by parametric delta-

method is numerically equivalent to nonparametric sieve inference. This is the result

of Proposition 4 below, whose proof involves verifying some Donsker properties in

order to invoke the theorems of Chen et al. (2013).

Specifically, let Ξi � pPi,Ziq denote observations on option prices and charac-

teristics, and define `pβ,Ξq � �1
2
rPi � PY pβ,Ziqs2Wi. The following assumption is

made.

Assumption 2.5.1.

(i) The smallest and largest eigenvalues of RKn are bounded and bounded away

from zero uniformly for all Kn.

(ii) limKnÑ8‖
BΓzpP 0

Y q
BPY rBPKnYBβ s‖2

E   8.

(iii) ‖v�n � v�‖2 � Opn�βq for β ¡ 1
2
� 2αdu

2pm0�mq�du , where v�n and v� are the Riesz

representors defined in Appendix B.2.1.

(iv) ‖v�n‖{‖v�n‖sd � Op1q.

Here, RKn is the population analog of (2.5.8) below. The main result of this

section is the following proposition, which enables the construction of confidence

intervals or a wide array of option portfolios that fall under the functional class in

Eq. (2.5.1).
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Proposition 4. Assume the conditions of Proposition 3 as well as Assumption 2.5.1.

Then

?
npV �1{2

n rΓp pPY q � ΓpP 0
Y qs dÝÑ Np0, 1q (2.5.6)

where

pVn � pG1
Kn

pR�1
Kn

pΣKn
pR�1
Kn

pGKn (2.5.7)

and where

pGKn �
BΓpPY ppβn,Zqq

Bβ

pRKn � � 1

n

ņ

i�1

B2`ppβn,Ξiq
BβBβ1 (2.5.8)

pΣKn �
1

n

ņ

i�1

B`ppβn,Ξiq
Bβ

B`ppβn,Ξiq
Bβ

1
.

Proof. Appendix A.2.

Remark 2.5.3. The objects in Eq. (2.5.8) are the usual quantities involved in the

estimation of the variance matrix in nonlinear least squares problems. For example,

if Γ represents the 1-month SVS, i.e. SV Sp1q of Example 2.5.1, then Eq. (2.5.6)

says that the SV Sp1q is asymptotically normally distributed with estimated variance

pVn computed above. Moreover, this calculation can be done for any SV Spτq for

arbitrary τ , which enables the construction of SVS term structures that quantify the

estimation error involved with the construction of long-term SVS’s. An analysis of

SVS term structures and associated estimation errors is conducted in Section 2.7.

Remark 2.5.4. Proposition 4 shows
?
n-consistency of functionals of the option price,

whereas Proposition 3 shows a somewhat slower rate for the convergence of pPKn
Y to
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P 0
Y . This is because the functionals of interest (Eq. (2.5.1)) belong to the so-called

regular class of functionals of Chen et al. (2013). Similar
?
n-consistency of well-

behaved functionals is obtained in Newey (1997).

Implementation Summary

1. Choose µpZq and σpZq. To center expanions around Black-Scholes, use Eq.
(2.3.5).

2. Construct PY pβ,Zq from Proposition 1.

3. Choose Kn � pKypnq � 1qpKτ pnq � 1q to grow slowly as n Ñ 8, e.g. by
minimizing BIC.

4. Optimize the objective function over sieve coefficients in Eq. (2.2.13), using all
options from a given cross-section of options.

5. Form pVn using Eq. (2.5.7) and use critical values from standard normal tables.

2.6 Simulations

Aside from its ease of computation, a key advantage of the estimation and inference

framework developed above is its flexibility. Here I show that the sieve estimator

performs well in capturing the term structures of option smiles, risk-neutral quantiles,

and state-price densities when the data are generated by familiar parametric DGPs.17

The section concludes with a Monte Carlo experiment showing good finite-sample

properties of the functional estimator from Proposition 4.

The simulations in the this section refer to various subcases of the following

17 I also show how the sieve can be used in the construction of daily or weekly time series of
fixed-maturity (e.g. 30-day) implied measures. The latter is relevant to applications that use
exchange-traded options with fixed expiration, which often results in daily option surfaces in which
the maturities “cycle” deterministically as the expiration date approaches. For brevity, the results
of these simulations are relegated to an Online Appendix to this paper.
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general data generating process.

dXt �
�
r � q � λµ� 1

2
Vt



dt� ρ

a
VtdWt � JtdNt

dVt � κvpV � Vtqdt� ρv
a
VtdWt �

�
1� ρ2

�1{2
v
a
VtdW

1
t � ZtdNt

(2.6.1)

where Vt is a stochastic volatility process, Wt and W 1
t are standard Brownian motions,

and κv, V , ρ, v parametrize the volatility process’ mean reversion, long-run mean, the

leverage effect, and the volatility of volatility, respectively. Nt is a Poisson process

with arrival intensity λ and compensator λµ, where µ � exppµJ � 0.5σ2
Jq{p1 � µv �

ρJµvq � 1 . The variable Jt|Zt � NpµJ � ρJZt, σ
2
Jq is the price jump component and

Zt � exppµvq is the volatility jump component. This is the well-known double-jump

process, which is a special case of the general affine-jump diffusion processes treated

in Duffie et al. (2000) that is nonetheless general enough to nest the celebrated models

of Black and Scholes (1973), Heston (1993), and other jump-diffusions commonly

used in the option pricing literature. The values of these parameters are set to those

used in Andersen et al. (2012) and are given in the Online Appendix to this paper.

2.6.1 Shape-Constrained Fitting

The main paper contributes to an existing literature concerned with shape-constrained

option price fitting. Specifically, Eqs. (2.2.14) and (2.2.15) show that the option pric-

ing function PY (a.) is monotone in κ, (b.) convex in κ, (c.) has first derivative

erτ
BPKY pZq

Bκ as a CDF, yielding limits of 0 and 1 as κ goes to 0 and �8, respectively,

and (d.) restrictions (a.)-(c.) must hold for arbitrary time-to-maturity τ .

Several papers have proposed estimation and fitting methods that obey a subset
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of these shape constraints. For example, Yatchew and Härdle (2006) propose a

nonparametric shape-constrained estimator for options along a single maturity, as

do Aı̈t-Sahalia and Duarte (2003). Garcia and Gençay (2000) use neural network

methods and the Black-Scholes formula to impose structure on their option estimates.

The attractive feature of these models is that they can be differentiated to obtain

risk-neutral CDFs and PDFs.

Another potential value of shape-constrained option estimators is their use in

applications that require a continuum of option prices in the strike dimension that

extends to infinity as inputs in empirical investigations. These include studies that

use the integrated portfolios of the form Eq. (2.5.1) [see e.g. Britten-Jones and

Neuberger (2000), Bakshi et al. (2003), Jiang and Tian (2005), Carr and Lee (2008),

Carr and Wu (2009), or their uses in e.g. Bollerslev and Zhou (2006), Bollerslev

et al. (2011), Bakshi et al. (2011) among many others]. Thus, since it is well-known

that option prices are only discretely observed on a truncated interval, one often

requires some type of interpolation or smoothing on the range of observed discrete

options, and an extrapolation beyond the truncated range of strikes. Jiang and Tian

(2005) examine the numerical properties of one such interpolation and extrapolation

procedure. The sieve estimator derived above provides a complementary tool that

upholds the no-arbitrage shape-constraints across all maturities τ , even for maturities

for which there are few or even no observations. This is done by evaluating pPY at a

desired τ .

Figure 2.1 illustrates the estimator’s adherence to the shape constraints in Eqs.

(2.2.14) and (2.2.15). The figure shows that for each observed maturity in the simu-
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Figure 2.1: Shape-conforming option price estimates for multiple maturities. A
dense set of true option prices is simulated from the double-jump process in Eq.
(2.6.1) and are plotted in solid for eight maturities. A subset of 250 option prices is
drawn from this dense set and perturbed with zero-mean measurement error (round
dots). The sieve least squares problem in Eq. (2.2.13) is solved with BIC-selected
Kx � 6 and Kτ � 2 and is plotted (dash).

lated sample, option prices satisfy the shape constraints even beyond the truncated

range of observed option data and asymptote to the option’s intrinsic value. Thus,

the sieve estimator performs the task of both interpolating between observed data,

and extrapolating beyond observed data in a single estimation step across all matu-

rities.

2.6.2 Risk-Neutral Quantiles and Densities

The purpose of shape-constrained option fitting is often to differentiate the (scaled)

put pricing function once to obtain the option-implied risk neutral CDF, or differen-

tiating it twice to obtain the state-price density. This is the subject of Jackwerth and
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Rubinstein (1996), Aı̈t-Sahalia and Lo (1998), Figlewski (2008), Birru and Figlewski

(2012), as well as Bondarenko (2003) and the many references therein.

In contrast to methods that require numerical differentiation of the option pricing

function, the sieve estimator in Eq. (2.2.13) delivers risk-neutral CDFs and PDFs in

closed form. The closed-form expression of the risk-neutral PDF (i.e. the state-price

density) is obtained by plugging Eq. (2.3.1) into Eq. (2.2.6) above. The closed-form

formula for the risk-neutral CDF can be obtained by integrating the PDF and using

properties of Hermite polynomials, yielding

QKpST ¤ κ|τq � ΦpdpZqq �
2Kx̧

k�1

γkpB, τq?
k

Hk�1pdpZqqφpdpZqq, (2.6.2)

where QKpAq �
³
A
fKpx|τqdx is the sieve-implied risk-neutral measure obtained by

integrating against the sieve state-price density. See Eq. (A.2.2) in the proof of

Proposition 1 for a derivation of this expression.

Figures 2.2 and 2.3 show the term structures of risk-neutral CDFs and PDFs,

using the estimated sieve coefficients obtained by solving the least squares problem

in Eq. (2.2.13) on data generated by the SVJJ process in Eq. (2.6.1) and the last

column of Table B.1. The CDFs cannot violate the 0 and 1 bounds at all maturities

by construction of the risk-neutral PDF, since it was scaled to integrate to one for

expansions of any order K. The true CDF and true PDF are plotted as well and

show remarkable fit across all maturities in the panel. However, in the more extreme

quantiles of the data, and particularly in the left tail, the sieve estimator begins to

oscillate. This is a consequence of the bias-variance tradeoff given in the rate result

of Proposition 3. In particular, the rate shows that the estimator’s convergence is
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Figure 2.2: The term structure of risk-neutral CDFs. A dense set of true option
prices is simulated from the double-jump process in Eq. (2.6.1) and are plotted in
solid for eight maturities. A subset of 250 option prices is drawn from this dense
set and perturbed with zero-mean measurement error (round dots). The sieve least
squares problem in Eq. (2.2.13) is solved with BIC-selected Kx � 6 and Kτ � 2. Eq.

(2.6.2) is then evaluated at the estimated coefficient matrix pB (dash).

a function of bias (i.e., how quickly the sieve space fills in the parent space as Kn

grows), versus the variability of the approximator, which grows with Kn. Thus,

the oscillatory behavior in the plot can be decreased by reducing expansion terms,

however at the cost of introducing some bias into the estimate.18

Finally, it is worth noting that the sieve provides remarkable fit of the entire

term structure of option prices, risk-neutral CDFs, and risk-neutral PDFs, without

incorporating any information about the underlying SVJJ parameters and state vec-

tors. It can therefore be considered “model-free” in that it does not require correct

18 An alternative approach to reducing oscillatory behavior would be to add a penalization or
“regularization” term against oscillatory solutions to the least squares problem in Eq. (2.2.10). An
approach of this type would fall under the penalized sieve literature and would require techniques
that are beyond the scope of this paper.
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Figure 2.3: The term structure of risk-neutral PDFs. A dense set of true option
prices is simulated from the double-jump process in Eq. (2.6.1) and are plotted in
solid for eight maturities. A subset of 250 option prices is drawn from this dense
set and perturbed with zero-mean measurement error (round dots). The sieve least
squares problem in Eq. (2.2.13) is solved with BIC-selected Kx � 6 and Kτ � 2. Eq.

(2.3.1) is then evaluated at the estimated coefficient matrix pB (dash).

specification of the underlying dynamics.

2.6.3 Coverage

This section shows that uninformed choices of expansion terms can yield incorrect

inference on portfolios of option prices. In particular, the discussion in Section 2.2

demonstrated that the number of sieve expansion terms Kn � pKypnq�1qpKτ pnq�1q

must grow slowly as the sample size n tends to infinity. As mentioned above, the

result in Proposition 3 shows that the estimated option price pPKn
Y converges to the

true option price P 0
Y at a rate that trades off two criteria with bias and variance

interpretations [see Chen (2007)]. That is, on the one hand, large choices of Kn result
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in lower bias, as the sieve space has more basis functions available to approximate the

parent function space. On the other hand, large Kn will increase the variability of the

sieve estimate, leading to oscillatory behavior. The optimal choice of Kn, therefore,

balances these two influences. However, an inspection of the rate in Proposition 3

shows that the optimal choice of Kn depends on the degree of smoothness of the

true state-price density f0. Since f0 is unknown, the rate result does not inform us

of the optimal Kn. A formal theory for selecting Kn specifically for the least squares

option pricing problem in Eq. (2.2.10) is therefore required, but beyond the scope of

the current paper.

Instead, this section shows that selecting Kypnq and Kτ pnq by minimizing the

Bayesian Information Criterion can yield effective results in terms of coverage prob-

abilities for test statistics of the form in Proposition 4. Moreover, minimizing the

BIC is computationally attractive, and has been compared favorably to the more

formal cross-validation procedures in Coppejans and Gallant (2002). Given the em-

pirical application in the next section, the focus will be on the term structure of

synthetic variance swaps, SV Spτq, converted to standard deviation units, yielding

the V IXpτq � 100
a
SV Spτq functionals for various τ ranging from 1 month to 2

years.

The simulation design is as follows: A rich set of put option prices is simulated

for each of the Heston, SVJ, and SVJJ models for maturities of 1, 2, 4, 6, 9, 12,

18, and 24 months. That is, for each of these maturities, a collection of 600 option

prices is generated with moneyness ranging from 0.3 to 1.7, for a total of 600� 8 �

4, 800 option prices. This is considered the panel of “true” option prices within
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the simulation. From this true option panel, a sample of 250 options is drawn at

random and perturbed with i.i.d. noise calibrated from actual options data. To

ensure realistic sampling across maturities, I use the option counts across the eight

maturities available for S&P 500 Index option prices on a randomly chosen day (in

this case, January 5, 2005), which had a distribution of 48, 28, 27, 30, 34, 29, and 20

options at the respective maturities. This design captures the richness of available

option prices at short maturities relative to long maturities.

Then, the NLLS problem in Eq. (2.2.13) is solved on the sample of n � 250 option

prices, which yields pβn that is then plugged into Eq. (2.3.2) to yield pPKn
Y pZq. These

estimated option prices are then used to construct the Carr-Wu Synthetic Variance

Swap at each maturity [see Carr and Wu (2009)], by numerically integrating

zSV Spτq � 2

τ
erτ

» F pZq

0

1

κ2
pPKn
Y pZqdκ� 2

τ
erτ

» 8

F pZq

1

κ2
pCKn
Y pZqdκ, (2.6.3)

where the call prices pCKn
Y pZq are obtained by put-call parity [see Example 2.5.1

above]. The associated sieve estimate of the V IXpτq is given by

zV IXpτq � 100

bzSV Spτq. (2.6.4)

Because this can be done for each τ from 1 to 24 months, this procedure yields an

entire estimated VIX term structure. Because I also observe a rich set of noise-free

option prices within the simulation, I can compute the true VIX term structure as

well. Finally, for each point along the VIX term structure, 95%-confidence intervals

are constructed using the variance matrix in Proposition 4, with pGKn similar to
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(2.7.5) below with adjustment for the square root and scale factor 100. The random

sampling of 250 options and sieve estimation is then repeated 1,000 times, yielding

1,000 V IXpτq confidence intervals for each τ from 1 to 24 months.

Table 2.1 shows the results of this Monte Carlo experiment for each of the Heston,

SVJ, and SVJJ DGPs, and with varying expansion lengths Ky and Kτ . By defini-

tion of frequentist 95%-confidence intervals, one should expect the true V IXpτq to

lie inside the estimated confidence intervals for around 95% of the 1,000 simulated

samples, for each τ . The table shows this is often the case along the entire VIX term

structure and that the best performance is achieved when the BIC is permitted to

select the number of expansion terms Kn (BIC selections are shaded). In particular,

choices of Kn that are small or large relative to the BIC choice appear to result in

overrejections, i.e. confidence intervals that are too biased or narrow to cover the

true V IXpτq in 95% of samples.

The case for allowingKn to grow slowly with the sample size is seen strongly in the

top panel of Table 2.1, where the sieve was expanded to Ky � 3 and Kτ � 1 terms.

When the option prices are generated by a Heston-type stochastic volatility process,

an expansion to pKy, Kτ q � p3, 1q terms provides near 95% coverage. In contrast,

if the underlying DGP were instead to include jumps in price and/or volatility, a

p3, 1q expansion is clearly inadequate to capture the short end of the V IXpτq term

structure. For the SVJ DGP in particular, the 1-month true VIX was only inside

6.9% of estimated confidence intervals.

This form of overrejection is significantly improved when the BIC is allowed to

choose the expansion terms. The middle panel of Table 2.1 shows expansions to
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Table 2.1: Simulated Coverage Probabilities Given Affine Jump-Diffusion DGP. A
dense set of true option prices is simulated from the double-jump process in Eq.
(2.6.1) with parameters from Table B.1, from which a true V IXpτq for each of the
τ given in the displayed horizons is computed. Then a sample of 250 option prices
is drawn at random from this dense set and perturbed with zero-mean measurement
error. The sieve least squares problem in Eq. (2.2.13) is solved with different choices
of expansion terms Ky and Kτ . The estimated variance from Proposition 4 is then
computed to construct 95% confidence intervals around the estimated V IXpτq. The

process of drawing 250 options prices and computing estimated zV IXpτq and its
confidence intervals is repeated 1,000 times, and the proportion of occasions on which
the true V IXpτq lies inside the estimated 95% confidence intervals is then recorded
at each horizon τ . Shading denotes BIC selection.

Horizon (months)

1 2 4 6 9 12 18 24

Ky � 3, Kτ � 1

Heston 0.939 0.946 0.910 0.915 0.943 0.948 0.941 0.873
SVJ 0.069 0.040 0.434 0.886 0.909 0.802 0.853 0.908
SVJJ 0.076 0.031 0.039 0.056 0.317 0.706 0.861 0.840

Ky � 6, Kτ � 2

Heston 0.930 0.935 0.960 0.923 0.929 0.916 0.919 0.888
SVJ 0.971 0.941 0.962 0.944 0.909 0.897 0.916 0.890
SVJJ 0.961 0.940 0.918 0.941 0.863 0.876 0.878 0.835

Ky � 7, Kτ � 2

Heston 0.958 0.945 0.913 0.942 0.955 0.941 0.908 0.867
SVJ 0.970 0.968 0.922 0.931 0.960 0.934 0.913 0.883
SVJJ 0.934 0.907 0.915 0.939 0.909 0.915 0.921 0.852

pKy, Kτ q � p6, 2q, which is the BIC choice for SVJ DGPs. Allowing the expansion to

go from p3, 1q to p6, 2q improved the coverage rate from 6.9% to 97%, which is much

closer to the asymptotic rejection probability of 95%.

The main takeaway from this Monte Carlo experiment is that choosing an expan-

sion length that is too small relative to the BIC yields incorrect inference. Moreover,
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the rate result in Proposition 3 suggests that this is due to pronounced biases in

the sieve estimator. Allowing Kn to increase with the complexity of the model is

therefore necessary to avoid misspecification biases. Finally, I note that although

more formal methods for selecting Kn are needed, the choice that minimizes BIC

performs remarkably well in terms of coverage probabilities.

2.7 The Term Structure of Variance Swaps and Risk Premia

An active literature in financial economics is concerned with studying the variance

risk premium, i.e. the compensation that investors demand for bearing return vari-

ance risk. This literature has shown that investors are averse to return variation and

have historically demanded a significant, but time-varying premium for holding secu-

rities that are exposed to such risk. Moreover, the variance risk premium, although

correlated with the equity risk premium, appears to identify a source of risk that is

unexplained by classic risk factors.19

2.7.1 Construction of the VRP Term Structure

The variance risk premium is typically measured by examining the difference be-

tween some measure of expected realized variance under the physical measure and

a comparable measure of expected realized variance under the risk-neutral measure

over a fixed time horizon τ , where the measure of realized variance considered here

is defined as follows. If Ft is the futures price of an asset, no-arbitrage and some

mild regularity conditions imply that on a risk-neutral probability space pΩ, I,Qq,
19 See, for example, Bakshi and Madan (2006), Carr and Wu (2009), Bollerslev and Todorov (2011),
Bollerslev et al. (2011), Bollerslev et al. (2013), and the references therein.

52



Ft solves the stochastic differential equation

dFt � Ft�σt�dWt �
»
R
Ft�pex � 1qrµpdx, dtq � νtpxqdxdts, (2.7.1)

where σt� is a stochastic volatility process, Ft� is the futures price prior to a jump

at time t of size Ft�pex � 1q, µpdx, dtq is a counting measure, and νtpxqdx is a

compensator. I assume for simplicity that all quantities involved satisfy the usual

regularity conditions, including finite jump activity [see e.g. Jacod and Protter

(2012)]. This is a very general and commonly adopted specification in the literature

[see e.g. Carr and Wu (2009) and Bollerslev and Todorov (2011)]. The realized

variance of this process is defined as its annualized quadratic variation, i.e.

RVtpτq � 1

τ

» t�τ

t

σ2
s�ds�

1

τ

» t�τ

t

»
R
x2µpdx, dsq. (2.7.2)

The second term on the right-hand side is variation due to jumps, which is not

hedged by the SVS portfolio. Hence, my focus in this application will be on the first

term, the truncated variation

TVtpτq � 1

τ

» t�τ

t

σ2
s�ds, (2.7.3)

which measures the continuous variation in the underlying.

The (continuous) variance risk premium then measures the difference between

this quantity’s physical and risk-neutral expectations,

V RPtpτq � EP
t rTVtpτqs � EQ

t rTVtpτqs. (2.7.4)
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Carr and Wu (2009) show that the second term in the right-hand side of Eq. (2.7.4)

is spanned by the SV Stpτq portfolio given in Eq. (2.5.2) above. That is, SV Stpτq �

EQ
t rTVt,τ s.

Portfolios of this type have been studied in recent years, but the focus has gen-

erally been on short (e.g. τ � 30 day) horizons.20 A glance at the SV Stpτq portfolio

given in Eq. (2.5.2) above, and the option data counts in Table ?? should reveal

why: Beyond τ � 90 days, the availability of option prices to approximate the infinite

integral in the SVS portfolio (2.5.2) drops off significantly. Any SV Stpτq portfolio

constructed on the sparse long-run portions of the option surface should therefore

be less precise than integrated portfolios constructed from the rich short-run data.

But this is exactly what Proposition 4 above contributes: it provides a formal way

to quantify the precision of estimates of integrated option portfolios that are con-

structed from sparse and possibly noisy long-run option data.

This section therefore studies the term structure of sieve-estimated zSV Stpτq port-

folios and its implications for studying the corresponding term structure of the vari-

ance risk premium (VRP). I now turn to estimating the two quantities involved in

the construction of the V RPtpτq in Eq. (2.7.4).

2.7.2 The Q-Measure: Estimating EQ
t rTVtpτqs

As discussed above, the SV Spτq spans EQ
t rTVtpτqs and is computed from actual

option price data. The option data used are S&P 500 Index options obtained from

OptionMetrics for the time period spanning January 1996 to January 2013. The usual

20 The notable exceptions are the papers by Aı̈t-Sahalia et al. (2012) and Fusari and Gonzalez-Perez
(2012).
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filters are applied to the data, i.e. options with zero bid prices are discarded, as are

in-the-money options and options with maturity less than a week. This is common

practice in the literature in order to mitigate effects arising from price discreteness,

liquidity effects, quote staleness, and general microstructure effects. See, for example,

Andersen et al. (2012). For the analysis below, I consider the construction of 9

weekly SV Stpτq time series for τ � 1, 2, 3, 4, 6, 9, 12, 18, and 24 months-to-maturity

that use options every Wednesday of the week. While a similar construction of

daily or monthly time series is also possible, the weekly frequency strikes a balance

between providing a sufficiently rich time series of variance swap term structures

while avoiding observations that overlap too strongly, since the SV Stpτq is a forward-

looking measure.

Because index options are sparse at both long-run maturities and very short-run

maturities, and because the maturities vary from week to week, I use the sieve estima-

tor derived in the previous sections to obtain a balanced time series of estimated SVS

term structures. Note that the coefficient solution to Eq. (2.2.13) uses options across

all maturities in one step and does not require second-stage zSV Stpτq interpolations.

That is, for each Wednesday, it uses all available option prices and characteristics

tPi,Ziuni�1 and solves the NLLS problem in Eq. (2.2.13) for BIC-selected Ky � 6

and Kτ � 2, yielding a parameter matrix pB, from which the estimated option pric-

ing function pPKn
Y is obtained. The call pricing function pCKn

Y is obtained by put-call

parity, and the week-t zSV Stpτq term structure is then numerically computed via Eq.

(2.6.3) by evaluating pPKn
Y and pCKn

Y at τ � 1, 2, 3, 4, 6, 9, 12, 18, and 24 months.
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To compute confidence intervals on any zSV Stpτq, I set

pGKn �
2

τ
e�rτ

» b

a

1

κ2

BPKn
Y ppβn,Zq
Bβ dκ (2.7.5)

and construct the estimated covariance matrix pVn in Eq. (2.5.7). Note that because

pPKn
Y is shape-conforming even for strikes that are unobserved, the integral discretiza-

tion error can be made arbitrarily small. Similarly, because of the sieve-estimator’s

adherence to shape-constraints, the integration limits a and b can be set arbitrarily

wide. However, to facilitate comparisons with the CBOE’s VIX, I set the integration

limits to exclude option prices that fall below 1 cent.

2.7.3 Measuring the Economic Value of Standard Errors on the Variance Swap

Portfolio

The above procedure yields a weekly time series of nonparametrically estimated and

balanced synthetic variance swap term structures, zSV Stpτq, along with correspond-

ing confidence intervals obtained from the inference theory of Proposition 4 above.

One way to measure the economic value of sampling uncertainty induced by noisy op-

tion prices is to examine the width of the synthetic variance swap confidence intervals

relative to the synthetic variance swap itself.

To be specific, for each day t and horizon τ , I compute the 95% confidence

intervals of zSV Stpτq. The long position in a variance swap contract receives the

payoff NpTVtpτq�zSV Stpτqq, where N is the variance notional that converts variance

units into US Dollar amounts. To keep with an industry standard over-the-counter

variance swap, the notional is set to N � 100, 000{p2 � 100 � ?SV Sq.21

21 See CBOE Futures Exchange (2013).
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Table 2.2: Variance swap confidence intervals and ex-post payoffs for the sample

period 1996-2010. The synthetic variance swap term structure zSV Stpτq along with
95% confidence intervals is estimated using the sieve methods derived in Sections 2-4
in the text. The P-measure ex-post realized analog is computed by truncating jumps

from 5-minute return data according to Eq. (B.4.1). The payoff pTVt � zSV Stq of a
hypothetical long position in the continuous variance swap is reported. Profit and
loss in US dollars are computed using the variance notional given in the text.

Variance USD Pct.
Maturity SV S 95%-CI Range SVS 95%-CI Range CI Range

1 0.043 0.002 979,692 59,036 5.81
2 0.045 0.002 1,009,857 39,874 4.00
3 0.045 0.002 1,023,792 33,843 3.36

4 0.046 0.001 1,030,537 32,238 3.19
6 0.046 0.001 1,035,922 26,874 2.66
9 0.046 0.001 1,038,554 23,017 2.23

12 0.046 0.001 1,039,255 23,692 2.27
18 0.045 0.001 1,037,955 30,035 2.82
24 0.045 0.004 1,035,320 87,291 8.17

Table 2.2 displays the sample average of the synthetic variance swap contract in

both variance units and US Dollars. Column 3 shows the 95% confidence interval

width on the estimated fixed leg zSV Stpτq. The last column of the table shows

the proportion of this confidence interval width in relation to the swap’s notional

value. For short and very long horizons, the 95% confidence intervals command a

sizeable fraction of the swap’s fixed leg; 5.81% for 1-month swaps and up to 8.17%

for two-year swaps. The corresponding Dollar amounts for these values are given in

columns 4 and 5. Medium horizon swaps, in contrast, appear very well estimated

and account for a relatively smaller fraction of the fixed leg payout over the sample

period, compared with their short and long-maturity counterparts.

Table 2.2 suggests that sampling variation can account for about 8% of the ob-
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served average payoff on 2-year synthetic variance swaps. This is largely due to the

lack of observations on long-maturity options for the first half of the sample, shown

in Table ??. If the confidence interval width is interpreted as a gauge of precision

for the fair value of the variance swap given observed option information, then this

result suggests that available options at long (2-year) horizons relatively less informa-

tive hedges of the swap contract’s true value and could therefore receive a premium

relative to swaps at more liquid option maturities.

2.7.4 Comparing the Sieve and CBOE VIX

For maturities τ � 30 days, the Chicago Board Options Exchange publishes a dis-

cretized estimate of the synthetic variance swap, given by

V IX2
CBOEpτq{104 � 2

τ
erτ

¸
κj¤F

1

κ2
j

P pκj, τq∆κj � 2

τ
erτ

¸
κj¡F

1

κ2
j

Cpκj, τq∆κj

� 1

τ

�
F

κ0

� 1

�
,

(2.7.6)

where κ0 is the largest observed strike below the forward price F . Note that the last

term in (2.7.6) is zero when options with κ0 � F are observed. Because S&P 500

Index options expire on the third Friday of each month, options expiring exactly 30

days hence are not available in most instances. In such instances, the CBOE takes

the two maturities that straddle 30 days, i.e. τ1   30 and τ2 ¡ 30, and computes the

linear interpolation

V IX2
CBOEp30q � ω1V IX

2
CBOEpτ1q � ω2V IX

2
CBOEpτ2q

for ω1 � p30� τ1q{pτ2 � τ1q and ω2 � pτ2 � 30q{pτ2 � τ1q.
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Table 2.3: The CBOE and Sieve VIX Term Structurs from 1996 to 2013. VIX term
structures and corresponding confidence intervals are obtained for each Wednesday
of the sample using the sieve estimator from the main text as well as the CBOE’s
discrete approximation and linear interpolation procedure.

Mean Standard Deviation 95% CI

CBOE Sieve Diff. CBOE Sieve Diff.
Frac. Days

Signif.
Maturity p1q p2q p1q-p2q p4q p5q p4q-p5q Diff.

1 21.3 21.3 �0.03 8.4 8.2 0.18 0.56
2 21.7 21.9 �0.18 7.6 7.8 �0.13 0.70
3 22.0 22.3 �0.31 7.5 7.4 0.11 0.74

4 22.3 22.6 �0.26 7.2 7.2 �0.03 0.70
6 22.2 22.8 �0.58 6.4 6.9 �0.52 0.74
9 22.0 23.0 �0.96 6.1 6.6 �0.45 0.82

12 21.9 23.1 �1.16 6.1 6.4 �0.37 0.82
18 22.3 23.2 �0.88 6.3 6.3 0.05 0.84
24 22.2 23.3 �1.15 6.7 6.3 0.41 0.74

It is informative to compare this volatility index with the analogous sieve estimate

from Eq. (2.6.4). Using the above interpolation scheme, I compute a term structure

of V IXCBOE
t pτq at fixed horizons τ � 1, 2, 3, 4, 6, 9, 12, 18, and 24 months-to-maturity

for each date t in the weekly sample.

An unconditional comparison of the resulting sieve and CBOE VIX term struc-

tures is given in Table 2.3, which shows that the V IXCBOE
t pτq term structure is

generally lower than the sieve estimator. The difference is negligible at the 1-month

(=30 day) horizon (about 3bp on average), but becomes substantial at longer hori-

zons (about 100bp on average). This difference is primarily due to truncation of

available strikes, as can be seen by comparing the theoretical formula in Eq. (2.5.2)

with the approximation in Eq. (2.7.6). While the theoretical formula in Eq. (2.5.2)
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extends to infinity for both call and put prices, the approximation in Eq. (2.7.6)

sums only over observed, positive option prices. Implicitly, Eq. (2.7.6) has set op-

tion prices with theoretical strikes beyond observed strikes to zero, biasing down the

synthetic variance swap estimate. In contrast, the sieve estimator permits extrapo-

lation into unobserved strikes in a shape-conforming way. Figure 2.4 illustrates the

downward bias of the CBOE VIX for long maturity options by comparing the time

series of 30-day to 365-day CBOE and sieve VIX estimates.

Figure 2.4: Short- and long-maturity time series of the sieve VIX from Eq. (2.6.4)
and the CBOE VIX from Eq. (2.7.6).

The disagreement between the sieve estimate and the long-run CBOE VIX is

further quantified in the last column of Table 2.3, which records the proportion
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of days in the sample in which the CBOE VIX lies outside the 95% confidence

intervals of the sieve VIX. The proportion is clearly largest for long maturity options,

suggesting clear differences between the two estimators at long maturities. Figure

2.5 shows that indeed, fluctuations in the CBOE VIX from maturity to maturity are

larger than the width implied by the sieve confidence intervals. This should come

as no surprise: Since the CBOE VIX only uses information from two neighboring

maturities, one only needs a single sparsely observed or noisy maturity to cause

the CBOE VIX to lose coherence with the CBOE VIX at other maturities on the

same day. In contrast, the sieve VIX estimate uses information on all maturities

to construct the term structure, which has the effect of downweighting individual

poorly observed maturities.

2.7.5 The Term Structure of Continuous Variance Risk Premia

With estimates EQ
t rTVtpτqs in hand, the only object needed to compute the variance

risk premium is an objective forecast of EP
t rTVtpτqs. I follow Andersen et al. (2003)

and model the long-memory properties of realized volatilities as an ARFIMAp5, 0.4, 0q

process.22 The variance risk premium is then computed as in (2.7.4).

22 For brevity, the details of this forecasting model are provided in the Online Appendix.
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Figure 2.5: Term Structures for the sieve VIX and the CBOE VIX. The sieve VIX
95% confidence intervals of the estimate in Eq. (2.6.4) are plotted alongside the
CBOE VIX approximations from Eq. (2.7.6) for four sample days with τ ranging
from 1 month to 24 months.
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Table 2.4 provides summary statistics of the variance risk premium term structure

of Eq. (2.7.4). The average volatility risk premium ranges from �0.028 at the 1-

month horizon to �0.036 at the 2-year horizon. This finding corroborates the results

of Aı̈t-Sahalia et al. (2012) and Fusari and Gonzalez-Perez (2012). When the sample

is restricted to the financial crisis period from 2007 to 2010, the variance risk premium

widens significantly in magnitude and exhibits a downward-sloping term structure

ranging from �0.045 to about �0.059. At the same time, the term structure of

variance risk premia is itself more volatile. The decline in skewness and kurtosis and

increase in persistence with τ is also consistent with Aı̈t-Sahalia et al. (2012), who

employ a different model and data set to back out a VRP term structure. First-order

autocorrelations clearly show that the variance risk premium is most persistent at

long horizons.

In economic terms, the magnitudes of the variance risk premium suggest that

investors demand significant compensation for bearing return-variance risk and that

this compensation must increase with maturity. In turbulent times, the premium is

widens to about 1.6 times the average premium over the sample period. Figure 2.6

shows that this premium cannot be solely accounted for by sampling variation in

option prices. The top two panels show that the variance risk premium, visualized

as the gap between the displayed P- and Q-measure variance term structures, widens

with longer maturities. Table 2.4 suggests that this is standard behavior for generic

variance term structures. However, the bottom right panel suggests that on certain

high-volatility days, there also appears to be significant uncertainty about the long-

run variance swap price itself, although it still cannot account for the entire risk
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Figure 2.6: Term Structures for High-, Medium-, and Low-Volatility Days. Trading
days are sorted by 1-month volatility as measured by the synthetic variance swap,
SVS. A high-volatility day is chosen to exceed the 95th percentile of all 1-month
SVS values, and a low-volatility trading day is chosen to lie below the 5th percentile
of 1-month VIX values. Q-measure SVS 95% confidence intervals and P-measure
forecasts of truncated variation, EP

t rTVtpτqs are plotted for τ ranging from 1 month
to 24 months.
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premium.

2.7.6 Expectation Hypothesis Regressions

The balanced time series of sieve-estimated zSV Stpτq can also be used to test the

expectation hypothesis. Specifically, for stochastic discount factor mtpτq, since

SV Stpτq � EQ
t rTVtpτqs � EP

t rmtpτqTVtpτqs

� EP
t rTVtpτqs � CovPt rmtpτq, TVtpτqs,

(2.7.7)

the null hypothesis of no variance risk premium is equivalent to testing the null

hypothesis H0 : CovPt rmtpτq, TVtpτqs � 0, i.e. no covariance between the stochastic

discount factor mtpτq and the continuous variation of the market portfolio. That is,

under H0, one has SV Stpτq � EP
t rTVtpτqs, so that for εtpτq with EP

t rεtpτqs � 0,

TVtpτq � SV Stpτq � εtpτq.

Therefore, H0 is equivalent to the joint hypothesis a � 0 and b � 1 in the regressions

TVtpτq � apτq � bpτqSV Stpτq � εtpτq. (2.7.8)

The special case of τ � 1 month is considered, for example, in Carr and Wu (2009).

More recently, Aı̈t-Sahalia et al. (2012) examine this regression for general τ from

a model-based perspective and derive interesting interpretations of the coefficients

a and b in terms of Heston model coefficients. The sieve estimate zSV Stpτq can

complement their approach from a nonparametric perspective.

The results of the regression (2.7.8) on the weekly sample from 1996-2010 are

given in Table 2.5. Note that the b̂pτq is monotonically declining in τ and uniformly
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below 1. The joint hypothesis of apτq � 0 X bpτq � 1 is firmly rejected for τ � 1

month, with p-values less than 0.000 at all horizons. This result corresponds to

the model-based implications of Aı̈t-Sahalia et al. (2012). The results from Table

2.4, however, suggest that the variance risk-premium behaves differently when con-

ditioning on different volatility regimes. To this end, I also perform the augmented

regression

TVtpτq � apτq � bpτqSV Stpτq � cpτqSV Stpτq � 1tt is High Volatility Dayu � εtpτq. (2.7.9)

The interaction of the synthetic variance swap SV Stpτq with a dummy variable that

is one during high-volatility periods and zero otherwise allows the slope coefficient on

SV Stpτq to change according to volatility regimes. For this exercise, a trading day

was considered “high-volatility” if the 30-day VIX exceeded its 67% sample quantile.

The results of this regression do not change materially for different cutoffs ranging

from 60% to 90% quantiles.23 The estimates of this augmented expectation hypthe-

sis regressions are given in the bottom panel of Table 2.5. The results are quite

surprising. The magnitudes of swap coefficient are uniformly higher and are signifi-

cantly closer to one.24 In particular, the expectation hypothesis cannot be rejected

for maturities ranging from 1 to 4 months during normal times, since b̂pτq cannot be

distinguished from one for these maturities. However, during high volatility periods,

the slope coefficient is given by b̂pτq� ĉpτq. The significantly negative sign on ĉpτq is

evidence of a sizeable risk premium on high-volatility days, which drives the wedge

23 Above 90% quantiles, the long-maturity regressions samples had relatively few observations to
identify c.

24 The sole exception is the 2-year maturity regression, which has zero explanatory power.
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Table 2.5: Expectation Hypothesis Regressions. The OLS regressions TVtpτq �
apτq � bpτqSV Stpτq � εtpτq from Eq. (2.7.8) of realized continuous variation on syn-
thetic variance swaps are estimated for each of the horizons τ � 1, 2, 3, 4, 6, 9, 12, 18,
and 24 and are reported in the top panel. The same regressions are augmented
in Eq. (2.7.9) to incorporate conditioning information on volatility, i.e. TVtpτq �
apτq � bpτqSV Stpτq � cpτqSV Stpτq � 1tt is High Volatility Dayu � εtpτq, and are reported
in the bottom panel. t-statistics on apτq and cpτq are centered at 0, whereas the
t-statistic on bpτq is centered at 1. p-values report the outcome of the joint tests
apτq � 0X bpτq � 1.

τ âpτq t-stat b̂pτq t-stat ĉpτq t-stat p-val R2 N

1 -0.001 -0.18 0.760 -1.96 0.000 0.51 764
2 0.008 2.07 0.573 -4.69 0.000 0.29 758
3 0.013 2.80 0.479 -6.20 0.000 0.21 752
4 0.018 3.52 0.409 -7.50 0.000 0.16 745
6 0.022 4.53 0.330 -9.34 0.000 0.12 733
9 0.027 5.54 0.256 -10.26 0.000 0.08 713
12 0.030 6.06 0.206 -11.47 0.000 0.06 694
18 0.031 4.27 0.216 -6.19 0.000 0.03 657
24 0.040 7.19 0.003 -12.20 0.000 0.00 619

τ âpτq t-stat b̂pτq t-stat ĉpτq t-stat p-val R2 N

1 -0.006 -1.36 0.979 -0.15 -0.193 -1.92 0.012 0.51 764
2 -0.001 -0.23 0.918 -0.49 -0.298 -2.56 0.673 0.30 758
3 0.002 0.54 0.879 -0.69 -0.341 -2.74 0.461 0.23 752
4 0.005 1.15 0.838 -0.87 -0.363 -2.60 0.190 0.19 745
6 0.012 2.16 0.685 -1.68 -0.301 -2.13 0.001 0.14 733
9 0.018 2.87 0.546 -2.68 -0.243 -2.05 0.000 0.10 713
12 0.025 3.53 0.388 -4.15 -0.154 -1.57 0.000 0.07 694
18 0.031 2.84 0.235 -3.58 -0.017 -0.19 0.000 0.03 657
24 0.040 5.26 -0.005 -7.88 0.008 0.11 0.000 0.00 619
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between P- and Q-measure expected variation. This wedge is not detected for the

shorter horizon, medium- to low-volatility days.

The compensation for variance risk in the long-run, however, does not appear as

sensitive. The t-statistics report that the b̂pτq coefficients are significantly different

from one, suggesting that the expectation hypothesis is rejected for those horizons

even in medium- to low-volatility days. The risk premium widens even for longer

maturities on high-volatility days.

2.8 Conclusion

This paper presented a nonparametric framework to help estimate option portfo-

lios at sparsely observed maturities. The framework involved Hermite polynomial

expansions of the state-price density conditional on maturity that yielded shape-

conforming option surfaces in closed-form. The coefficients of the sieve option prices

are computationally easy to obtain by solving a simple sieve least squares problem.

In addition, I provided a new asymptotic theory for the sieve option prices and

showed them to be consistent for the true option price. I further derived its rate of

convergence in terms of the deterministic sieve approximation error rate of Gallant

and Nychka (1987) densities. Finally, the paper provides an asymptotic distribution

theory for certain integrated portfolios of options, enabling the computation of point-

wise confidence intervals for the synthetic variance swap (or VIX) term structure and

related measures.

In addition to providing closed-form option prices, the framework also produced

closed-form term structures of state-price densities and risk-neutral CDFs. Simula-
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tions showed that the term structures of sieve option prices, SPDs, and risk-neutral

CDFs can capture a variety of data-generating processes well, and that confidence in-

tervals obtained from the aforementioned distribution theory provide good coverage

of the VIX term structure in finite samples.

An application to the term structure of the synthetic variance swap portfolios

and the associated variance risk premia embedded in S&P 500 Index options and

high-frequency index returns was also presented. The results showed that sampling

variation in option prices can account for significant uncertainty around the variance

swap’s true fair value, particularly when the variance swap is synthesized from noisy

long-maturity options. The term structure of variance risk premia was found to

be downward-sloping and sizeable, especially on high-volatility trading days. This

finding is corroborated within novel expectation hypothesis regressions that condition

on volatility level information.
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3

Inference on Option Pricing Models under Partial

Identification

Introduction

It is widely recognized that transaction and quote data represent imperfect observa-

tions on an asset’s efficient price. Available data on financial instruments might suffer

from any combination of irregularities concerning time lags, sampling frequencies,

price discreteness, market microstructure frictions, and a positive spread between

quoted bid and ask prices. Thus, if a model imposes testable restrictions on asset

prices, but asset prices do not directly correspond to observed data, then it may not

be possible to recover the model’s features from the data.

We examine the mismatch between model-implied asset pricing restrictions and

available data in the option quote setting. While available option pricing models

map underlying state variables to efficient prices, observed option bid and ask quotes

effectively deliver only interval information on efficient prices. While the prevailing
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practice in empirical option pricing is to simply average these bids and asks and

then to fit option prices to the resulting mid-quotes, we argue that the illiquidity of

many deep in-the-money options induces substantial bid-ask spreads that prevent the

point-identification of option model parameters. Indeed, if, as Carr and Wu (2009)

remark, “[t]he mid-quote may not reflect the fair price if the bid and ask quotes

are not symmetric around the fair price,” then fitting option models to the mid-

quote introduces a joint hypothesis problem, in the sense that rejections of option

pricing models can either come from option model misspecification or mid-quote

(microstructure) misspecification.

This paper takes a new approach to inference on option pricing models in the

bid-ask quote setting. Rather than assuming knowledge of the structure that equates

untestable functions of observed quotes to the efficient price process (of which the

mid-quote is the most prominent example), we take a conservative approach of

bounding moments of efficient option prices by observed bid and ask quotes. We

then proceed with inference on option model parameters by leaving the relationship

between the option’s efficient price and the quotes otherwise unspecified. Because

this relationship is a function of the market maker’s price-setting schedule, we are

in essence proceeding with inference without having to model the (unobserved) pric-

ing practices of the market maker. The cost of leaving the market maker’s pricing

schedule unspecified is a loss of point-identification. This implies in particular that

the information contained in the data-generating process (DGP) is only able to re-

strict the option model’s parameters to a set. However, while there is a large and
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growing literature on inference in this type of partial identification setting,1 option

pricing models often depend on latent variables (like spot volatility) that cannot be

accommodated using existing econometric techniques.

Our main theoretical contribution, therefore, is a theory of set-inference in which

the moment function depends on latent spot volatility. We solve this dependence

by using high-frequency data on the underlying asset to nonparametrically estimate

spot volatility near the close of the trading day in a first stage. We then plug the

spot volatility estimate into the pricing model and proceed with the familiar moment

inequality framework of Andrews and Soares (2010) and Andrews and Shi (2014). We

provide rigorous justification of this two-step inference procedure in an asymptotic

setting in which the high-frequency sampling interval goes to zero sufficiently quickly

as the sample size of options grows. In particular, we establish the rates at which

the spot volatility estimator must converge relative to the length of the option panel.

Under these rate conditions, we provide asymptotic coverage results for familiar test

statistics and critical values from the partial identification literature.2

The framework for inference is also flexible enough to allow for additional mo-

ment equalities, which enable us to sharpen inference with information obtained

from high-frequency observations on the underlying state variables. Incorporating

restrictions based on information on the underlying is natural, given that certain pa-

rameters are invariant to changing the measure from the objective to the risk-neutral

1 See Chernozhukov et al. (2007), Romano and Shaikh (2008), Andrews and Soares (2010), An-
drews and Guggenberger (2009), Bugni (2010), Andrews and Shi (2014), and the many references
therein.

2 Our results pertain to the modified method of moments statistic and critical values introduced
in Andrews and Soares (2010).
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one. This idea has been exploited in the existing empirical options literature.3 This

literature, however, has made the empirically puzzling observation that the theo-

retically motivated invariance to changes of measure does not seem to hold in the

data, a phenomenon dubbed the time-series inconsistency of option data (Broadie

et al. (2007)). Motivated by these observations, we extend our moment inequality

framework to allow for objective measure restrictions on leverage and volatility-of-

volatility–quantities that are theoretically invariant to changes of measure. We find

that time-series inconsistency is partially mitigated by relaxing the mid-quote as-

sumption, because fitting to the option bid-ask spread allows for a wider range of

option-implied leverage and volatility-of-volatility than would be possible by merely

fitting to the option mid-quote.

To examine the finite-sample properties of our asymptotic coverage results, we

conduct Monte Carlo simulations using a flexible stochastic volatility jump-diffusion

model (Duffie et al. (2000)). The simulations confirm that replacing latent spot

volatility with a high-frequency estimate preserves the finite-sample coverage prob-

abilities of the proposed confidence sets. We also examine the tradeoff between

long-span asymptotics and infill asymptotics that invariably affects our moment con-

ditions by considering simulated option samples of different lengths, as well as the

effects of incorporating objective measure restrictions on the underlying. Finally, we

consider the effect of assuming that the efficient price equals the mid-quote proxy

under several quote-setting DGPs and find that doing so can result in sometimes

severe option model overrejections.

3 See, for example Bakshi et al. (1997), Bates (2000), and Broadie et al. (2007).
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Finally, we conduct inference on the aforementioned stochastic volatility jump-

diffusion model (SVJ) and its specialization, the Heston (1993) model, using actual

data on S&P 500 Index options from 1996 to 2010. We find that relaxing the mid-

quote assumption results in large estimated parameter sets that leave us unable to

reject the SVJ model, which contrasts with the existing findings of the empirical op-

tions literature. However, the same model is rejected when the mid-quote assumption

is imposed. In addition, the estimated parameter sets reveal new and interesting re-

lationships among option model parameters. For example, the parameter sets clearly

indicate a tradeoff between the jump component’s intensity and the jump-size mean

and variance; option quotes appear supportive of either high-intensity-small-jumps

or low-intensity-large-jump models. We also find a positive relationship between

volatility’s speed of mean reversion and volatility-of-volatility. Taken together, these

findings point toward a greater need to study the precise identifying information

contained in option panels.

The remainder of the paper is organized as follows: Section 3.1 lays down our

moment inequality framework, our two-step inference procedure, the asymptotic the-

ory, and the incorporation of additional objective measure identifying restrictions.

Sections 3.2 and 3.3 present our Monte Carlo simulation and empirical results, and

Section 3.4 concludes.
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3.1 The Framework

3.1.1 Moment inequality restrictions on option pricing models

For each day t P t1, . . . , T u, we observe an option panel with Nt options, where Nt is a

random integer-valued variable taking values in
�
1, N̄

�
for some constant N̄ ¥ 1. Let

Zi,t denote the characteristics of option i P t1, . . . , Ntu and Zt � tZi,t : 1 ¤ i ¤ Ntu.

We denote the domain of Zi,t and Zt by Z and Z̃ respectively.4 In our empirical

application, we consider European style call and put options with Zi,t � pKi,t, τi,tq

where Ki,t is the strike price and τi,t is the time to maturity. We suppose that Zt

is realized at the market opening and is constant throughout each trading day. At

the market close, we observe the quotes, the ask price Ai,t and the bid price Bi,t, of

option i, along with the log price of the underlying Xt. We denote the midquote by

Mi,t � pAi,t �Bi,tq {2.

The econometric problem here is to conduct inference for parameters of an option

pricing model. We consider models with two state variables: the underlying log price

Xt and the spot variance Vt of the underlying asset, taking values in X � R and

V � p0,8q respectively. We denote the option pricing function by f pXt, Vt, Zi,t; θq,

θ P Θ, where Θ � RdimpΘq is a compact parameter space. The unknown parameter

θ governs the risk-neutral dynamics of the underlying asset and is referred to as the

risk-neutral parameter below. We call a model correctly specified if for some θ0 P Θ,

the true option price p�i,t equals f pXt, Vt, Zi,t; θ0q for each option i and day t. In an

ideal market without any friction, the observed option price should coincide with p�i,t

generated by a correctly specified model. However, in reality, the observed price may

4 Note that Z̃ � �N̄n�1Zn, where Zn is the n-tuple of Z.
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deviate from the model prediction due to various frictions, such as the existence of

a bid-ask spread, data synchronization errors, or simply idiosyncratic errors specific

to each transaction. In contrast to the existing empirical options literature, we treat

the true option price p�i,t as a latent variable.

To close the econometric model, we need to link the latent true price p�i,t with

observed quantities. A standard approach in the literature is to consider a noisy

proxy pi,t, such as the midquote or the actual transaction price, of the latent price

p�i,t.
5 Moreover, statistical assumptions on the pricing error εi,t � pi,t � p�i,t are

often imposed so that standard econometric procedures are valid. Perhaps the most

popular estimation procedure is the nonlinear least squares,6 which in turn can be

cast in a general conditional moment equality framework:

E rεi,t|Its � E
�
pi,t � p�i,t|It

� � E rpi,t � f pXt, Vt, Zi,t; θ0q |Its � 0, (3.1.1)

where It denotes an information set (i.e. σ-field) generated by tXs, Vs, Zs : s ¤ tu

or its subsets.7 Likelihood-based procedures, such as the one considered by Bates

(2000), often impose stronger parametric assumptions which imply (3.1.1) as a con-

sequence.

While the option pricing model is designed to describe the relationship between

true option price p�i,t and the state variables pXt, Vtq, (3.1.1) imposes an extra re-

striction on the microstructure of the option market, which links the latent value p�i,t

5 For example, Bates (2000) and Broadie et al. (2007) use transaction data for S&P 500 futures
options, whereas Bakshi et al. (1997), Pan (2002), Christoffersen and Jacobs (2004), Eraker (2004),
Andersen et al. (2012) use midquote data for S&P 500 index options.

6 See, for example, Bakshi et al. (1997), Bates (1991), Christoffersen and Jacobs (2004), Broadie
et al. (2007).

7 See Hayashi (2000) for a discussion in textbook form.
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with its observed proxy. Conditional moment equality restrictions like (3.1.1) are

often needed to justify standard econometric procedures, but it is not automatically

clear on which economic ground this restriction should hold. Indeed, as Bates (2000)

page 195 points out, “a fundamental difficulty with implicit parameter estimation

is the absence of an appropriate statistical theory of option pricing errors.” If the

inference for the option pricing model also depends on the validity of (3.1.1), which

is typically the case in the literature, it is important to investigate the economic

content underlying (3.1.1).

To make the discussion precise, we consider a simple empirical microstructure

model. We suppose that the option quotes are observed with noise, that is,

Ai,t � A�
i,t � εAi,t, Bi,t � B�

i,t � εBi,t, (3.1.2)

where A�
i,t and B�

i,t are the latent “efficient” ask and bid prices which would be con-

sistent with the behavior of a rational market maker equipped with the information

set It.8

The pricing errors εAi,t and εBi,t are introduced here because we do not expect every

pair of quotes in the data to reflect precisely the prediction of a theoretical model.

Instead, we assume that the pricing error is zero on average:

E
�
εAi,t|It

� � E
�
εBi,t|It

� � 0. (3.1.3)

8 Since A�i,t and B�i,t are determined based on the information in It, they are (tautologically)
It-measurable.
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When we take the proxy pi,t to be the midquote, (3.1.1) holds if and only if

M�
i,t � p�i,t, (3.1.4)

where M�
i,t � pA�

i,t�B�
i,tq{2 is the efficient midquote. That is, the mid-quote coincides

with the efficient price. However, it is well-known that this condition is violated in

general. For example, based on the sequential trade model of Glosten and Milgrom

(1985), Hasbrouck (2006) page 46 shows that the mid-quote generically deviates from

the efficient price.

Taking pi,t to be the transaction price is unlikely to fulfill the condition (3.1.1)

either. Following Hasbrouck (2006), we consider a simple model in which transactions

are treated as a sampling mechanism of the quote price. Suppose that the transaction

price pi,t is given by

pi,t � p1� δi,tqAi,t � δi,tBi,t,

where δi,t � 1 (resp. 0) for a sell (resp. buy) order. If, conditionally on It, the

direction of the order δi,t is uncorrelated with the pricing errors εAi,t and εBi,t, then

(3.1.1) is equivalent to

Prob psell | ItqA�
i,t � Prob pbuy |ItqB�

i,t � p�i,t. (3.1.5)

Hence, when using the transaction price as a proxy for p�i,t, the condition (3.1.1) is

satisfied if and only if the buying propensity Prob(buy|It)� pp�i,t�A�
i,tq{pB�

i,t�A�
i,tq.

At least in this simple setup, there appears to be no compelling reason for this

condition, and thus (3.1.1), to hold.

Of course, the discussion above does not imply that the condition (3.1.1) is false

79



or irrelavant. Indeed, even if this condition is violated in a strict sense, it might be a

decent approximation to reality and lead to useful empirical results, as demonstrated

by the existing literature. Instead, we only argue that this identification condition is

likely to impose nontrivial restrictions on the microstructure of the option market;

the setup specified in the above two paragraphs only serve the purpose of making

this argument precise. In our view, such extra restrictions are orthogonal to the

specification of risk-neutral option pricing models as well as the inference based on

these models. This concern motivates us to propose an inference framework for

option pricing models without assuming (3.1.1). We deem our approach below as

complementary to the existing toolbox for empirical asset pricing.

We propose an alternative econometric framework based on moment inequality

restrictions. We maintain (3.1.2) and (3.1.3) and suppose that

B�
i,t ¤ p�i,t ¤ A�

i,t, (3.1.6)

i.e., the true option price falls in the efficient bid-ask bracket. Compared with con-

ditions such as (3.1.4) and (3.1.5), (3.1.6) is very mild and should be satisfied by

any reasonable microstructure model. Given (3.1.2) and (3.1.6), a correctly specified

pricing function fp�; θ0q satisfies the following conditional moment inequalities:

#
ErAi,t � fpXt, Vt, Zi,t; θ0q|Its ¥ 0

ErfpXt, Vt, Zi,t; θ0q �Bi,t|Its ¥ 0.
(3.1.7)

We observe that we do not require the observed quotes to bracket p�i,t for every

realization of the data, but rather the weaker condition that the bracketing only
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holds in expectation.

These conditional inequalities further imply a set of unconditional moment in-

equalities: for any nonnegative function Gp�q on X � V � Z � Z̃,

$&% E
�°Nt

i�1pAi,t � fpXt, Vt, Zi,t; θ0qqGpXt, Vt, Zi,t, Ztq
�

¥ 0

E
�°Nt

i�1pfpXt, Vt, Zi,t; θ0q �Bi,tqGpXt, Vt, Zi,t, Ztq
�

¥ 0.
(3.1.8)

The conditional moment equality (3.1.1), if it holds, also implies a set of moment

equalities

E

�
Nţ

i�1

ppi,t � fpXt, Vt, Zi,t; θ0qqGpXt, Vt, Zi,t, Ztq
�
� 0, (3.1.9)

while here the function Gp�q does not have to be nonnegative. Below, we refer to the

function G p�q as a weighting function. We sometimes write G px, v, z, z̃q for x P X ,

v P V , z P Z and z̃ P Z̃ in order to make its arguments explicit.

We finish this section by introducing a standard moment inequality/equality

framework encompassing both (3.1.8) and (3.1.9). While our main proposal is to

conduct inference based on the inequalities (3.1.8), incorporting (3.1.9) into the same

framework facilitates the comparison between results based on bid-ask brackets and

those based on midquotes or transaction data in a unified manner.

Let Qt � pQi,tq1¤i¤Nt , Qi,t � pAi,t, Bi,t, pi,tq, denote the collection of option price

data; recall that pi,t can be either the midquote or the transaction price depending

on the application. We consider kI � kE weighting functions Gj p�q , 1 ¤ j ¤ kI � kE,

and suppose Gj p�q is nonnegative for 1 ¤ j ¤ kI . Let k � 2kI � kE. We consider an
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Rk-valued function:

m pXt, Vt, Qt, Zt; θq � pm1 pXt, Vt, Qt, Zt; θq , . . . ,mk pXt, Vt, Qt, Zt; θqqJ ,

where

mj pXt, Vt, Qt, Zt; θq

�

$'&'%
°Nt
i�1pAi,t � fpXt, Vt, Zi,t; θqqGpj�1q{2pXt, Vt, Zi,t, Ztq if 1 ¤ j ¤ 2kI , j odd°Nt
i�1pfpXt, Vt, Zi,t; θq �Bi,tqGj{2pXt, Vt, Zi,t, Ztq if 1 ¤ j ¤ 2kI , j even°Nt
i�1ppi,t � fpXt, Vt, Zi,t; θqqGj�kI pXt, Vt, Zi,t, Ztq if 2kI � 1 ¤ j ¤ k.

We then consider a collection moment inequalities and equalities given by

#
ErmjpXt, Vt, Qt, Zt; θ0qs ¥ 0, j � 1, . . . , 2kI ,

ErmjpXt, Vt, Qt, Zt; θ0qs � 0, j � 2kI � 1, . . . , k.
(3.1.10)

Here, the 2kI inequalities correponds to (3.1.8) and weighting functions Gj, 1 ¤ j ¤

kI ; the kE inequalities correspond to (3.1.9) associated with weight functions Gj,

kI � 1 ¤ j ¤ k.

The model (3.1.10) may only be partially identified, i.e., the solution to (3.1.10)

on the parameter space Θ may not be unique. Indeed, if the equality restrictions

in (3.1.10) are absent, the model is not point identified in general. The situation is

illustrated in Figure 3.1 This feature of the model is in sharp contrast with aforemen-

tioned work in empirical option pricing. Moreover, even in cases where parameters

are point identified by the moment equalities, the identification may be weak and

could render standard inference unreliable (Stock and Wright (2000), Andrews and

Cheng (2012)). Our inference procedure below does not rely on identification. Thus,

82



Bl
ac

k−
Sc

ho
le

s 
Im

pl
ie

d 
Vo

la
til

ity

Moneyness = K/S

Average Times−to−maturity = 21.6, 49.9, and 83.9

 

 

0.81 0.88 0.93  0.99 1.04 1.10

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34
Short Term
Medium Term
Long Term

Student Version of MATLAB

Figure 3.1: Set-Inference framework illustration. Time-averaged bid and ask quotes
for seven strike categories and three maturity categories are plotted. Under correct
specification in our framework, a true option model parameter is assumed to gener-
ate option prices that lie between the shaded bounds for all three maturities. The
inference procedure delivers confidence sets that cover the true parameter with a
prespecified probability.

it is naturally immune to the weak identification problem. As the weak identification

problem is rarely, if ever, dealt with in prior works in empirical option pricing, our

empirical analysis based on the moment equalities also complements the literature

in an interesting way.

Below, we discuss the construction of confidence sets for the true risk-neutral

parameter θ0 based on the moment inequality/equality model (3.1.10).
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3.1.2 A two-step inference procedure

Inference based on the moment inequality/equality model like (3.1.10) has been

extensively studied in the recent econometrics literature (see, for example, Andrews

and Soares (2010), Andrews and Shi (2014), Romano and Shaikh (2008), Bugni

(2010), Andrews and Guggenberger (2009), Chernozhukov et al. (2007)). However,

here we face a complication that is unique to financial econometric applications—

the spot variance process Vt is not observable. In a nutshell, we solve this problem

in a two-stage procedure. In the first stage, we nonparametrically estimate the

spot variance Vt of the log-price at the market close using intraday high frequency

data. In the second-stage, we construct confidence sets by using the generalized

moment selection (GMS) method of Andrews and Soares (2010), treating the first-

stage estimate of the spot variance as if it were the true spot variance. We provide

a rigorous theoretical justification for the validity of this two-stage procedure.

To further the discussion, we need to introduce more notations to decribe the

intraday data. We suppose that, on a filtered probability space pΩ,F , pFtqt¥0,Pq,

the log-price of the underlying asset follows an Itô semimartingale with the form:

Xt � X0 �
» t

0

bs ds�
» t

0

σs dWs �
» t

0

»
R
δps, zqµpds, dzq, (3.1.11)

where bt is locally bounded predictable process, δ : Ω � R� � R ÞÑ R a predictable

function, Wt a standard Brownian motion, µ is a Poisson measure with compensator

νpdt, dzq � dt b λpdzq for some σ-finite measure λ on R. We refer to the process σt

as the spot volatility, which is associated with the spot variance Vt by Vt � σ2
t . We

refer to trading day t, t � 1, . . . , T , as the interval rt, ts, where t is the opening time

84



of the market. We suppose that intraday data of the log price are regularly sampled

at discrete times t� i∆n, i � 0, . . . , n, where ∆n � pt� tq{n.

We estimate the spot variance Vt nonparametrically with the following jump-

robust estimator (Mancini (2009)):

pVn,t � 1

kn∆n

kņ

j�1

pXt�pj�1q∆n �Xt�j∆nq21t|Xt�pj�1q∆n�Xt�j∆n |¤α∆$
n u, (3.1.12)

where 1t�u denotes the indicator function, α ¡ 0 and $ P p0, 1{2q are constants, and

kn is a sequence of integers satisfying kn Ñ 8 and kn∆n Ñ 0. The asymptotic

behavior of this estimator under the fill-in asymptotics (i.e. ∆n Ñ 0) is well known:

under mild regularity conditions, pVn,t consistently estimates Vt for each t as the

sampling interval goes to 0.9

We construct confidence sets by inverting tests of the null hypothesis that θ is

the true value for each θ P Θ, as is standard in the partial identification literature.

Let Sn,T pθq be a test statistic and cn,T pθ, 1�αq be a corresponding critical value for

a test with nominal significance level α. A nominal level 1 � α confidence set (CS)

for the true value θ0 is then given by

CSn,T p1� αq � tθ P Θ : Sn,T pθq ¤ cn,T pθ, 1� αqu , (3.1.13)

To define the test statistic, we set

pmn,t pθq � ppm1,n,t pθq , . . . , pmk,n,t pθqqJ , wherepmj,n,t pθq � mj

�
Xt, pVn,t, Qt, Zt; θ

	
, j � 1, . . . , k.

(3.1.14)

9 See Theorem 9.3.2 in Jacod and Protter (2012) for details.
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The sample moments are given by

mn,T pθq � 1

T

Ţ

t�1

pmn,t pθq , mj,n,T pθq � 1

T

Ţ

t�1

pmj,n,t pθq , j � 1, . . . , k. (3.1.15)

Let pΣn,T pθq be a heteroskedasticity and autocorrelation consistent (HAC) estimator

associated with mn,T pθq. To be concrete, we follow Andrews (1991) by considering

pΣn,T pθq �
LŢ

l��LT
ωpl{LT q pΓl,n,T pθq, where for |l| ¤ T � 1, (3.1.16)

pΓl,n,T pθq � 1

T

¸
1¤t,t�l¤T

ppmn,t pθq �mn,T pθqq ppmn,t�lpθq �mn,T pθqqJ ,(3.1.17)

where ωp�q and LT are the kernel function and the bandwidth parameter, respec-

tively.10 The test statistic Sn,T pθq is defined to be

Sn,T pθq �
2kI̧

j�1

�
T 1{2mj,n,T pθq{ pD1{2

j,n,T pθq
�2

�
�

ķ

j�2kI�1

�
T 1{2mj,n,T pθq{ pD1{2

j,n,T pθq
	2

,

(3.1.18)

where rxs� � maxt�x, 0u for x P R, pDn,T pθq � DiagppΣn,T pθqq the diagonal matrix

collecting the diagonal elements of pΣn,T pθq, and pDj,n,T pθq is the jth diagonal ele-

ment of pDn,T pθq. This test statistic has been studied, for example, in Andrews and

Soares (2010) and quantifies the extent to which the moment inequalities/equalities

in (3.1.10) are violated in the sample.11 Each sample moment mj,n,T is normalized

10 For technical convenience, we only consider HAC estimators associated with compactly sup-
ported kernel functions, hence the estimator pΣn,T pθq only involves autocovariances up to order LT .
Examples of such kernel functions include Bartlett’s kernel, Parzen’s kernel and the Tukey-Hanning
kernel. The quadratic spectral kernel considered by Andrews (1991) is excluded.

11 In the terminology of Andrews and Soares (2010), the test statistic (3.1.18) is called the modified
method of moments (MMM) statistic. Andrews and Soares (2010) also other possible test statistics
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with respect to its standard error to ensure that the test statistic is scale invariant;

this is clearly a desirable property in applications.

We choose the critical value based on the GMS procedure of Andrews and Soares

(2010). Let pΩn,T pθq � pD�1{2
n,T pθqpΣn,T pθq pD�1{2

n,T pθq denote the correlation matrix associ-

ated with pΣn,T pθq. We consider an Rk-valued random variable pYn,T pθq � pΩn,T pθq1{2Y �,

where Y � � N p0k, Ikq is independent of the data; the jth element pYn,T pθq is denoted

by pYj,n,T pθq. Conditionally on the data, we set cn,T pθ, 1� αq as the p1�αq-quantile

of

φn,T pθq �
2kI̧

j�1

�pYj,n,T�2

�
1tT 1{2mj,n,T pθq¤logpT q1{2 pD1{2

j,n,T pθqu �
ķ

j�2kI�1

pYj,n,T pθq2 . (3.1.19)

The indicator function in the above display selects moment inequalities that are

“almost”binding at 0, where the factor logpT q1{2 corresponds to the BIC criterion.

3.1.3 Asymptotic results

We now turn to the asymptotic property of the confidence set CSn,T p1� αq. We first

collect and discuss our assumptions, starting with those for the underlying processes.

Assumption A. For some constants C ¡ 0 and k ¥ 2, we have the following.

A1. The process Xt is an Itô semimartingale given by (3.1.11) with λ pRq   8. The

processes σt ¡ 0 is also an Itô semimartingale with the form

σt � σ0 �
» t

0

b̃s ds�
» t

0

σ̃s dWs �
» t

0

σ̃1s dW
1
s �

» t

0

»
R
δ̃ps, zqpµ� νqpds, dzq (3.1.20)

including the Gaussian quasilikelihood ratio statistic and the generalized empirical likelihood ratio
statistics. In the current paper, we only consider the MMM statistic for the concreteness and
simplicity of exposition. We choose the MMM statistic because it is a direct generalization of the
mean square error commonly used in empirical option pricing.
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where b̃t is a locally bounded predictable process, W 1
t is a standard Brownian motion

orthogonal to Wt, σ̃t and σ̃1t are locally bounded càdlàg adapted processes and δ̃p�q

is a predictable function.

A2. For any t P R�,

E
�
|bt|k � |b̃t|k � |σt|k � |σ̃t|k � |σ̃1t|k �

»
R
|δ̃ pt, zq |kλ pdzq



¤ C. (3.1.21)

A3. For any t, s P R�,

E
�
|bt � bs|2 � |b̃t � b̃s|2

	
¤ C |t� s| .

Assumption A1 provides a standard setup for analyzing high-frequency data.

Jumps are allowed in both the price process and the spot volatility process. The

leverage effect is also allowed here as dXt and dσt are both loaded on the Brownian

shock dWt. Moreover, by Itô’s lemma, the spot variance Vt � σ2
t is also an Itô

semimartingale, which can be expressed as

Vt � V0�
» t

0

bV,sds�
» t

0

σV,s dWs�
» t

0

σ1V,s dW
1
s�

» t

0

»
R
δV ps, zqpµ�νqpds, dzq, (3.1.22)

where bV,t, σV,t, σ
1
V,t and δV p�q are determined by the coefficients in (3.1.20), see

(C.2.2) for explicit expressions. By assuming λ pRq   8, we restrict our analysis to

the case with finitely active jumps. While imposing finite activity appears strong

for analyzing high-frequency financial data, it is not overly restrictive in the study

of option pricing models. Indeed, many empirical works assume that the jumps are

finitely active, typically compound Poisson, under the risk-neutral measure; by the
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equavalence of the risk-neutral and the physical measure, jumps are also finitely

active under the physical measure in such settings. Assumption A2 is useful in

analyzing the asymptotic behavior of various bias terms when T Ñ 8.12 Assumption

A3 imposes some additional smoothness for the drift coefficient, but again is very

mild.

We now state the assumptions that relate to option prices. Below, we denote by

fV p�q the partial derivative of f p�q with respect to spot variance.

Assumption B. We suppose for each fixed θ P Θ, there exists some constant C ¡ 0

such that the following hold for some k1 ¡ 0 and all t.

B1. The variables Nt and Zt � tZi,t : 1 ¤ i ¤ Ntu are Ft-measurable and Zs � Zt

for all s P rt, ts.

B2. E p|fV pXt, Vt, Zi,t; θq|4q ¤ C.

B3. E
�
|fpXt, Vt, Zi,t; θq|2k1 � }Qi,t}2k1

	
¤ C, where Qi,t � pAi,t, Bi,t, pi,tq and }�} is

the Euclidean norm.

B4. For some η ¡ 0 and all s P rt�η, ts, E p|fV pXt, Vt, Zi,t; θq � fV pXs, Vs, Zi,t; θq|2q ¤

C|t� s|.

B5. We have |fpXt, pVn,t, Zi,t; θq � fpXt, Vt, Zi,t; θq| ¤ χn,t|pVn,t � Vt| for some random

variable χn,t such that Ep|χn,t|2k1q ¤ C for all n.

B6. We have |fpXt, pVn,t, Zi,t; θq � fpXt, Vt, Zi,t; θq � fV pXt, Vt, Zi,t; θqppVn,t � Vtq| ¤
12 In a typical fill-in asymptotic setting, the processes bt, b̃t, σt, σ̃t and δ̃p�q can be assumed bounded
without loss of generality with the help of a standard localization argument; see Jacod and Protter
(2012) for a comprehensive treatment. In such cases, (3.1.21) is satisfied trivially for the localized
processes. In the current paper, we consider a setting in which the time span T also goes to infinity.
This setting prevents the use of localization and requires explicit integrability conditions as imposed
in (3.1.21).
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ξn,t|pVn,t�Vt|2 for some random variable ξn,t such that for some k ¡ 0, Ep|ξn,t|k1q ¤ C

for all n.

Assumption B1 formalizes the notion that Nt and Zt are realized at the market

opening and constant over the trading day. This assumption is realistic. It is also

techinically convenient, because Assumption B1 allows us to ignore the theoretically

possible intraday movement of the “menu” of quoted options. Assumptions B2 and

B3 are primitive in nature and easy to interpret. Assumption B4 holds if for each

day t, the process s ÞÑ fV pXs, Vs, Zi,t; θq is Hölder continuous with exponent 1{2

in the L2-space. This high-level assumption can be easily reduced into primitive

conditions. Indeed, under the assumption that both Xt and σt are Itô semimartigales

(Assumption A), the process s ÞÑ fV pXs, Vs, Zi,t; θq is also an Itô semimartingale by

Itô’s formula, provided that fV pXt, Vt, Zi,t; θq is twice continuously differentiable in

pXt, Vtq. The 1{2-Hölder continuity is a standard estimate for Itô semimartingales.

Assumptions B5 and B6 are high-level in nature and are used to impose, respec-

tively, the first- and the second-order smoothness of the pricing function f p�q in the

spot variance. We first discuss Assumption B5. By the mean value theorem, we

have |fpXt, pVn,t, Zi,t; θq � fpXt, Vt, Zi,t; θq| � |fV
�
Xt, Ṽn,t, Zi,t; θ

	
||pVn,t � Vt|, where

Ṽn,t is the mean value between Vt and pVn,t. With χn,t � |fV
�
Xt, Ṽn,t, Zi,t; θ

	
|, As-

sumption B5 effectively imposes that the slope χn,t is bounded in a stochastic sense.

The interpretation of Assumption B6 is similar; there, the variable ξn,t plays the role

of the second derivative of f p�q with respect to the spot variance evaluated at the

mean value in a second order Taylor expansion. Although we deem Assumptions B5

and B6 to be intuitively appealing, we note that these assumptions may be difficult
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to verify under primitive conditions because option pricing functions typically do

not have closed-form expressions. This being said, we are able to provide primitive

conditions for B5 and B6 under the assumption that the derivatives of f p�q have

polynomial growth in its arguments.

We assume either of the following assumption for the weighting functions and

conditioning information set It in (3.1.3).

Assumption C. The condition (3.1.3) holds for It � σ tZs : s ¤ tu. For each j P

t1, . . . , Ku, the function Gj px, v, z, z̃q does not depend on px, vq.

Assumption C’. The condition (3.1.3) holds for It � σ tXs, Vs, Zs : s ¤ tu. For

each j P t1, . . . , Ku, the function Gj px, v, z, z̃q is continuously differentiable in v P V

with bounded partial derivative.

Assumption C is fairly mild. Assumption C’ requires (3.1.3) to hold for a larger

information set; this assumption is stronger but commonly adopted in empirical work

with the benefit of improving the identification power of the model. In Assumption

C’, we require the weighting function to be smooth in the spot variance because we

need to control the approximation error when using pVn,t as a proxy of Vt.

A simple but important example of a weighting function G p�q satisfying Assump-

tion C is G pXt, Vt, Zi,t, Ztq � 1tKt ¤ Ki,t ¤ Kt, τ t ¤ τ ¤ τ tu, where the thresholds�
Kt, Kt

�
and pτ t, τ tq are allowed to be dependent on Zt.

13 By varying the thresh-

olds, we effectively sort the options into various groups, or “boxes”, indexed by

13 For example, one may take Kt and Kt as the 10th-percentile and the 25th-percentile of the list
of observed strikes tKi,t : 1 ¤ i ¤ Ntu, and take τ t � 7 days and τ t � 30 days; in this case, the
weighting function G p�q plays the role of selecting a group of in-the-money call and/or out-of-the-
money put options with short maturity.
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the strike price and the time-to-maturity. The inequality/equality system (3.1.10)

simply consists of restrictions for group-wise moments. Clearly, the identification

power of this system can be improved by using finer boxes. Indeed, Andrews and

Shi (2014) show that when the number of boxes goes to infinity, trasforming condi-

tional moment equalities and inequalities into unconditional ones incurs no loss of

identification power.14 Although this box construction is simple and intuitive, the

smoothness requirement in Assumption C’ prevents us from using the discontinuous

indicator function on the dimension of the spot variance. In this case, a smooth

approximation of the indicator function can be used for the spot variance.

We now state the key approximation result characterizing the approximation error

for using pVn,t as a proxy for Vt in the computation of sample moments and the HAC

estimator. To state the result, we complement the notations in (3.1.14), (3.1.15) and

(3.1.16) by defining m�
t pθq, m�

T pθq, and pΣ�
T pθq in the same way as pmn,tpθq, mn,T pθq,

and pΣn,T pθq but with Vt in place of pVn,t.
Theorem 3.1.1. Let $ P p3{8, 1{2q. Suppose that Assumptions A and B hold for

some k ¥ 2{ p1� 2$q and k1 ¥ 2{ p8$ � 3q.

(a) Under Assumption C, we have T 1{2 pmn,T pθq �m�
T pθqq � OppT 1{2∆

1{2
n q� opp1q.

(b) Under Assumption C’, we have T 1{2 pmn,T pθq �m�
T pθqq � OppT 1{2∆

1{4
n q�opp1q.

14 Andrews and Shi’s theory requires transforming the conditional moment (in)equalities into in-
finitely many unconditional moment equality/inequalities corresponding to infinitely many boxes
in the space spanned by the conditioning variables. In finite samples, only a finite number of
boxes can be used. Andrews and Shi show that the identification power of the conditional moment
(in)equalities is still preserved if the number of boxes goes to infinity asymptotically. In the current
paper, we maintain the simpler setting where the number of unconditional moment (in)equalities
is fixed in the asymptotic theory and chosen to be relatively small in the numerical work. While
we believe that the intuition underlying Andrews and Shi’s theory is valid in our setting, we do not
attempt to make a contribution in this direction in the current paper.
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(c) Suppose either Assumption C or C’. If LT∆
1{4
n Ñ 0, then pΣn,T pθq � pΣ�

T pθq �

opp1q.

Comments. (i) Part (a) and part (b) establishes the order of magnitude of the

approximation error of the feasible sample moment function mn,T pθq to its infeasible

couterpart m�
T pθq. Qualitatively, both (a) and (b) ensures that the approximation er-

ror of the sample moments is negligible in the analysis of the asymptotic distributions

of sample moments if ∆n Ñ 0 sufficiently fast relative to T Ñ 8. Quantitatively,

part (a) provides a stronger result than part (b); this improvement is achieved by

extracting the martingale component from the approximation error and relies on the

simple structure of the weighting function.

(ii) Part (c) shows that the feasible HAC estimator approximates its infeasible

counterpart with a first-order negligible error, as soon as the bandwidth LT in the

HAC estimation grows to infinity sufficiently slow.

(iii) The assertions of the theorem holds for fixed truncation parameter $ and

for sufficiently large k and k1 which are needed for the elimination of jumps. These

conditions can be equivalently formulated as

$ P
�

3k1 � 2

8k1
,
k � 2

2k

�
, k1 ¡ 2, k ¡ 8k1

k1 � 2
¡ 8.

For fixed k and k1, the condition in Theorem 3.1.1 hence specifies a range of admissible

$ for which jumps can be eliminated effectively enough as if they did not exist. This

admissible range widens as k and k1 increase; in particular, it converges to p3{8, 1{2q

as k and k1 approaches infinity.
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The significance of Theorem 3.1.1 is that it helps reduce the inference problem

at hand, which involves the latent spot variance, to a standard moment inequal-

ity/equality problem involving only observables. More precisely, Theorem 3.1.1 im-

plies that when ∆n Ñ 0 sufficiently fast, the feasible and the infeasible versions

of the sample moments, as well as the HAC estimators, have the same asymptotic

behavior. This result provides a theoretical justification for treating the latent spot

variance Vt as if it is observed to be pVn,t. This formulation allows us to borrow the

full strength of the existing results in the moment inequality/equality literature with

no additional cost.

We introduce assumptions that are needed for the inference on the moment in-

equality/equality model in the second stage.

Assumption D. For each θ P Θ, we have the following:

D1. The Rk-valued process m�
t pθq , t � 1, . . . , T , is stationary.

D2. T 1{2 pm�
T pθq �m pθqq dÝÑ N p0k,Σ pθqq for some k-dimensional positive definite

matrix Σ pθq, where m pθq � E rm�
t pθqs .

D3. pΣ�
T pθq PÝÑ Σ pθq .

Assumption D1 imposes stationarity. We note that we only need m�
t pθq to be

stationary, instead of the (unrealistically) strong assumption that Xt, Vt and other

processes are jointly stationary. This assumption is reasonable when the option price

is quoted in Black-Scholes implied volatility terms, rather than in currency terms.

While it is possible to allow some mild heterogeneity in the time series by using

the proper limiting theorem, such a generalization is beyond the interest of the cur-
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rent paper.15 Assumption D2 describes the asymptotic distribution of the infeasible

sample moment m�
T pθ0q. Observe that we assume the existence and the nonsingu-

larity of the asymptotic variance-covariance matrix. This assumption is nevertheless

quite mild. Assumption D3 imposes the consistency of the infeasible HAC estimator

pΣ�
T pθq. Primitive conditions for D2 and D3 are well known in econometrics; see e.g.

Davidson (1994).

We are now ready to state the asymptotic coverage property of CSn,T p1� αq.

Below, we denote by Ω pθq the correlation matrix associated with Σ pθq.

Theorem 3.1.2. Let α P p0, 1q. Suppose either (i) the conditions of Theorem 3.1.1

with T∆n Ñ 0 or (ii) the conditions of Theorem 3.1.1(b) with T∆
1{2
n Ñ 0. Also

suppose (iii) Assumption D holds and LT∆
1{4
n Ñ 0. Then we have

lim inf
∆nÑ0,TÑ8

P pθ0 P CSn,T p1� αqq ¥ 1� α. (3.1.23)

If additionally, we have (iv) the distribution function of the sum
°2kI
j�1rUjs2�1tm̄jpθ0q�0u�°k

j�2kI�1pUjq2 is continuous at its p1� αq-quantile, where U � N p0,Ω pθ0qq, then

lim
∆nÑ0,TÑ8

P pθ0 P CSn,T p1� αqq � 1� α. (3.1.24)

Theorem 3.1.2 shows that CSn,T p1� αq has asymptotically correct coverage for

the true parameter θ0. The proof is a straightforward consequence of Theorem 3.1.1.

This result only asserts the pointwise validity of the CS. A stronger, uniform coverage

result is beyond the scope of the paper.

15 We note that Andrews and Soares (2010) also impose stationarity in their time-series setting.
As some of our proofs rely on their results, we maintain this assumption for the convenience of
reference.
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3.1.4 No-arbitrage restrictions for affine jump-diffusion models

We now specialize the pricing function f p�q in a risk-neutral pricing setting. In

this section, we propose an additional testable restriction based on a no-arbitrage

argument. Here we extend the above inference procedure to accommodate this new

restriction.

In the absence of arbitrage opportunities, there exists a risk-neutral measure Q,

which is locally equivalent to the physical measure P and transforms the discounted

asset prices into local martingales. We suppose that under the Q-measure, the log-

price and spot variance processes have the following dynamics:

dXt � bQt dt�
?
VtdW

Q
t � dJQ

t ,

dVt � bQV,tdt� ρv
?
VtdW

Q
t � p1� ρ2q1{2 v?VtdW 1Q

t ,
(3.1.25)

where JQ
t is a pure jump process with finite activity, WQ

t and W
1Q
t are mutually

orthogonal standard Q-Brownian motions, and the constant ρ P r�1, 1s captures the

“leverage effect” (Black (1976)), and the constant v ¡ 0 is often referred to as the

volatility of volatility. The specific forms of the drift processes bQt and bQV,t are not

relevant for the discussion in this section.

We observe an important parametric restriction imposed by (3.1.25), namely that

the spot variance process follows a square-root diffusion under Q. This parametric

form is commonly imposed in the empirical option pricing literature as it, when

combined with other simplications, admits a semi closed-form solution for option

prices. The resulting computational efficiency gain is desirable and often necessary

for analyzing large data sets of options.
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Next, note that since the covariation process between Xt and Vt is invariant with

respect to equivalent change of measure, (3.1.25) imposes the following restriction:

CVt � ρ0v0IVt, where CVt �
» t

t

σV,sσsds, IVt �
» t

t

Vsds, (3.1.26)

where ρ0 and v0 denote the true value of ρ and v; “CV ” and “IV ” stand, respectively,

for “covariation” and “integrated volatility”.

To have a feasible procedure, we approximate the latent variables CVt and IVt

with estimators based on high frequency data. For IVt, we consider the well-known

jump-robust estimator proposed by Mancini (2001):

xIV n,t �
ņ

i�1

��∆t,n
i X

��2 1t|∆t,n
i X|¤α∆$

n u. (3.1.27)

For CVt, Wang and Mykland (2011) propose an estimator in the absence of price and

volatility jumps. To accomodate the price jumps, we consider a truncated version of

Wang and Mykland’s estimator defined as follows. For each day t, we group the n

intraday returns into Bn blocks, where block i P t1, . . . , Bnu collects the kn � n{Bn

returns within the interval pτ pt, n, i� 1q , τ pt, n, iqs, τ pt, n, iq � t � ikn∆n. For

simplicity, we have implicitly assumed that kn is an integer, but this assumption has

little effect on the asymptotic theory. For day t, we denote the jth return in the ith
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block to be ∆t,n
i,jX � Xτpt,n,i�1q�j∆n �Xτpt,n,i�1q�pj�1q∆n , and define

yCV n,t � 2
Bņ

i�2

�
kņ

j�1

∆t,n
i,jX 1t|∆t,n

i,j X|¤α∆$
n u
��pVn,τpt,n,iq � pVn,τpt,n,i�1q

	
, where

pVn,τpt,n,iq � 1

kn∆n

kņ

j�1

�
∆t,n
i,jX

�2
1t|∆t,n

i,j X|¤α∆$
n u, i P t1, . . . , Bnu .

(3.1.28)

We observe that Wang and Mykland’s orginal estimator corresponds the case with

α � 8 (i.e. no truncation), as price jumps are not considered in their paper.

To motivate the use of yCV n,t, we provide an auxiliary result describing its asymp-

totic behavior.

Lemma 3.1.3. Suppose that Assumption A1 holds and σt is continuous. Then for

each fixed t, as n Ñ 8, ∆
�1{4
n

�yCV n,t � CVt

	
converges stably in law to a random

variable defined on an extension of the probability space pΩ,F ,Pq, which conditionally

on F , is centered Gaussian with strictly positive variance.

Comments. (i) Lemma 3.1.3 establishes the n1{4-rate of convergence of yCV n,t

towards CVt and shows that the rate is sharp. This result is related to Wang and

Mykland’s Theorem 1, which derives the stable convergence in law of yCV n,t for

continuous processes (hence without truncation). In our proof, we show that for

fixed α P p0,8q and $ P p5{12, 1{2q, the truncation in yCV n,t eleminates price jumps

“effectively enough”, so that the asymptotic theory in the presence of price jumps

can be reduced to the continuous setting as considered by Wang and Mykland.16

16 In particular, the asympototic variance of yCV n,t is identical to that given in Theorem 1 of Wang
and Mykland (2013). Its (rather complicated) expression is suppressed here as we do not make use
of its exact form in the current paper.

98



(ii) An important consequence is that ∆
�1{4
n pyCV n,t � ρvxIV n,tq is nondegenerate

asympotically. To see this, first recall the well-known result that xIV n,t � IVt �

Opp∆1{2
n q. Under (3.1.26), ∆

�1{4
n pyCV n,t � ρ0v0

xIV n,tq � ∆
�1{4
n pyCV n,t � CVtq � op p1q.

Lemma 3.1.3 hence implies that ∆
�1{4
n pyCV n,t � ρ0v0

xIV n,tq is asymptotically nonde-

generate, i.e., its asymptotic variance is strictly positive. For ρv �� ρ0v0, it is easily

to see that ∆
�1{4
n pyCV n,t � ρvxIV n,tq � pρ0v0 � ρvq∆�1{4

n IVt � Op p1q, which diverges

to infinity and is clearly nondegenerate.

In practice, it turns out that it is helpful to consider an equivalent formulation

of (3.1.26) as follows. Let aIV ¥ 0 and bIV ¡ 0 be constants fixed a priori. We can

express (3.1.26) equivalently as

CVt
aIV IVt�1 � bIV

� ρ0v0
IVt

aIV IVt�1 � bIV
� 0. (3.1.29)

The idea is that by normalizing CVt and IVt by 1{ paIV IVt�1 � bIV q, both series tend

to become less volatile, leading to better numerical performance in finite-samples. In

our simulation and empirical work, we take aIV � 1 and bIV � 0.0001.17 We associate

(3.1.29) with its sample moment,

m̄�
n,T pθq �

1

T

Ţ

t�1

m̂�
n,t pθq , where

m̂�
n,t pθq � ∆�1{4

n

� yCV n,t

aIV xIV n,t�1 � bIV
� ρv

xIV n,t

aIV xIV n,t�1 � bIV

�
,

(3.1.30)

17 Setting bIV to be strictly positive, instead of being zero, ensures that the normalizing factor
1{ paIV IVt � bIV q is bounded above. The boundedness is clearly convenient for asymptotic argu-
ments; it also enhances the stability in numerical works (CVt{IVt may be very large when IVt is
small). We note that bIV is a fixed constant and plays no role in the asymptotics.

99



(note that ρ and v are elements of θ) and let pΣ�
n,T pθq be a HAC estimator of long-run

variance of the sequence m̂�
n,t pθq, 1 ¤ t ¤ T . We include the factor ∆

�1{4
n in the

definition of pm�
n,t pθq to prevent degeneracy; see comment (ii) of Lemma 3.1.3.

The new test statistic is given by

S 1n,T pθq � Sn,T pθq �
�
T 1{2m̄�

n,T pθq
�2 {pΣ�

n,T pθq ,

Here, we incorporate the feasible version of the equality restriction (3.1.29) as an

extra moment equality. Although E
�
m̂�
n,t pθq

� � 0 only holds “approximately” (as

∆n Ñ 0), this complication can be readily accomodated in the asymptotic theory as

shown below. For α P p0, 1q, a 1�α level confidence set based on S 1n,T pθq is given by

CS 1n,T p1� αq �  
θ P Θ : S 1n,T ¤ c1n,T pθ, 1� αq( , (3.1.31)

where the critical value c1n,T pθ, 1� αq is determined as follows. We set

φ1n,T pθq � φn,T pθq � pY ��q2 ,

where φn,T pθq is given by (3.1.19) and Y �� is a generic standard Gaussian random

variable independent of φn,T pθq. We then set c1n,T pθ, 1� αq as the p1� αq-quantile

of φ1n,T pθq conditionally on the data. Under regularity conditions, we can show that

S 1n,T pθ0q � Sn,T pθ0q is asymptotically chi-square distributed with degree of freedom

one and asymptotically independent of Sn,T pθ0q; this motivates using the distribution

of φ1n,T pθ0q to approximate the distribution of S 1n,T pθ0q. Our formal results demand

the following assumption.

Assumption E. Denote ψn,t pθq �
�
T�1{2m�

t pθqJ , T�1{2m̂�
n,t pθq

	J
. Let Σψ,n,T pθq
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and Σ�
n,T pθq be the variance-covariance matrices of

°T
t�1 ψn,t pθq and

°T
t�1 T

�1{2m̂�
n,t pθq,

respectively. Let c1 and c2 P p0, 1q be strictly positive constants.

E1. ∆n � T�c1 .

E2. Σψ,n,T pθq�1{2 °T
t�1 pψn,t pθq � E rψn,t pθqsq dÝÑ N p0k�1, Ik�1q.

E3. pΣ�
n,T pθq � Σ�

n,T pθq PÝÑ 0 as T Ñ 8.

E4. Σ�
n,T pθq�1 � Op p1q as T Ñ 8.

E5. The process ψn,t pθq , 1 ¤ t ¤ T , is stationary and α-mixing with mixing

coefficient αmix,l satisfying
°8
l�1 α

1�c2
mix,l   8.

Assumption E1 links the asymptotic behavior of ∆n with that of T so that the

double asymptotic nesting is reduced to a simpler one indexed only by T . This

simplification has little effect in practice, but allows us to use well-known limit the-

orems for dependent triangular arrays, and hence greatly simplifies the exposition of

results. Under Assumption E1, ψn,t pθ0q � E rψn,t pθ0qs forms a zero-mean triangular

array by construction. Assumptions E2 can then be verified under primitive con-

ditions via central limit theorems for dependent triangular arrays; see e.g. de Jong

(1997). Assumption E2 partially overlaps with Assumption D2 in that they both

imposes the weak convergence of the sample moment m�
n,T pθq. Assumption D2 is

actually stronger on this regard, because it imposes the existence of the asymptotic

variance. Hence, the additional regularity from Assumption E2 is for the weak con-

vergence of the additional moment m�
n,T pθq, joint with m̄�

n,T pθq, without imposing

the existence of their asymptotic variance-covariance. Nevertheless, we show that

the asymptotic covariance between m�
n,T pθq and m̄�

n,T pθq exists and is zero. This

result is a key step for the proof of Theorem 3.1.4 below. Assumptions E3 imposes
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the consistency of the HAC estimator for Σ�
n,T pθ0q. This assumption can be verified

under primitive conditions via results on the HAC estimation for dependent trian-

gular arrays; see e.g. Davidson and de Jong (2002). Assumption E4 states that the

variance of the sequence m̂�
n,t pθq is nondegenerate asymptotically. This assumption

is not very restrictive. As discussed in comment (ii) of Lemma 3.1.3, ∆
�1{4
n is the

proper scaling factor for yCV n,t�ρvxIV n,t that prevents its variance from degenerating

asympototically.

Theorem 3.1.4. Let $ P p5{12, 1{2q. Suppose (i) Assumption A holds for some

k ¥ maxt8, 2{p1 � 2$qu and Vt satisfies (3.1.25); (ii) Assumption B holds for some

k1 ¡ 2{p12$ � 5q; (iii) either Assumption C or Assumption C’; (iv) Assumption D

holds with LT∆
1{4
n � op1q; (v) Assumption E holds for some c1 ¡ 2{p12$ � 5q and

c2 � 1{p2k1q � p9� 12$q{4. Then

lim
TÑ8

P
�
θ0 P CS 1n,T p1� αq� � 1� α.

We finish this section by pointing out several limitations of the approach above,

as well as possible extensions on these directions. Firstly, (3.1.25) excludes the

presence of volatility jumps. Although the truncated estimator yCV n,t is likely to

remain n1{4-consistent for CVt with volatility jumps, the characterizations of its

limiting distribution under the fill-in asymptotics (cf. Lemma 3.1.3) and its bias

under the long-span asymptotics are still open questions. We exclude volatility jumps

here mainly for this reason. Secondly, the approach above only incorporates the

restriction on the covariation between the log-price and the spot variance. Clearly, a
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similar restriction can be imposed on the quadratic variation process of Vt. Indeed,

(3.1.25) implies that the quadratic variation of Vt (or more generally the continuous

part of Vt) is v0

³t
t
Vsds, yielding an extra restriction on the volatility-of-volatility

parameter. If a nonparametric estimator for the quadratic variation of Vt is available,

we may incorporate this additional restriction in a similar fashion as we have done for

(3.1.26). This being said, nonparameteric estimation for the quadratic variation of Vt

is, to the best of our knowledge, still an open question, especially when price jumps

and/or volatility jumps are present and treated nonparametrically. Hence, extensions

on these two directions demand further high-frequency estimation results for the

covariation CVt and/or the diffusive quadratic variation of Vt in a general setting

with price and volatilty jumps under both fill-in and long-span asymptotics. These

results are interesting on their own and technically challenging, and beyond the scope

of the current paper. We hope our discussion here may motivate future research on

this direction, which in turn may be incorporated to generalize the approach consider

here.

3.2 Simulation Study

We now examine the finite-sample performance of the above asymptotic theory.
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3.2.1 Simulation Design

We consider the stochastic volatility model with jumps under the risk-neutral mea-

sure:

dXt � prt � δtq dt�
?
VtdW

Q
t � dJt,

dVt � κQ
�
Vt � V̄ Q

�
dt� ρQvQ

?
VtdW

Q
t �

�
1� �

ρQ
�2
	1{2

vQ
?
VtdW

1Q
t

(3.2.1)

where Jt is a compound Poisson process with intensity λQ and jump size distributed

as N pµQ
J , pσQ

J q2q. For simplicity, we suppose the interest rate and the dividend yield

are zero in the simulation. The risk neutral parameter θ is given by the vector

pκQ, V̄ Q, ρQ, vQ, λQ, µQ
J , σ

Q
J q. We set

�
κQ, V̄ Q, ρQ, vQ, λQ, µQ

J , σ
Q
J

� � p5.00, 0.05,�0.50, 0.60, 0.50,�0.05, 0.20q.

Under the physical measure, the data is generated using the same model but with

parameters

�
κP, V̄ P, ρP, vP, λP, µP

J , σ
P
J

� � p6.33, 0.04,�0.50, 0.60, 0.50,�0.05, 0.20q.

We have imposed ρP � ρQ and vP � vQ to ensures the equivalence between the risk-

neutral measure and the physical measure. The continuous-time process is simulated

via the Euler scheme discretized at 5 seconds. The high-frequency data used in our

estimation is then resampled at 1-minute interval.

We consider European call options. Quoted in terms of the Black-Scholes implied

volatility, the true price of an option with strike price κ and time-to-maturity τ is
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given by

f px, v, κ, τ ; θq � BS�1
x,κ,τ pEQ

��
eXτ � κ

�� |X0 � x, V0 � v
�
q,

where BS�1
x,κ,τ p�q is the functional inversion of the Black-Scholes formula. We adopt

the method of Duffie et al. (2000) and Fang and Oosterlee (2008) for comput-

ing the true option price. For each day, we generate 7 options with strike prices

tκi,t : 1 ¤ i ¤ 7u and the same times-to-maturity τi,t � 30, 60, and 90 days. We set

κi,t � κi exp pXtq, where pκ1, . . . , κ7q � p0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1q.

We consider three settings for generating the efficient quotes
�
A�
i,t, B

�
i,t

�
:

Case 1 :

#
A�
i,t � f pXt, Vt, κi,t, τi,t; θ0q � SPRD{2

B�
i,t � f pXt, Vt, κi,t, τi,t; θ0q � SPRD{2

Case 2 :

#
A�
i,t � f pXt, Vt, κi,t, τi,t; θ0q � p1� κi{2qSPRD

B�
i,t � f pXt, Vt, κi,t, τi,t; θ0q � pκi{2qSPRD,

Case 3 :

#
A�
i,t � f pXt, Vt, κi,t, τi,t; θ0q � p1� pi� 1q{3qSPRD

B�
i,t � f pXt, Vt, κi,t, τi,t; θ0q � ppi� 1q{3qSPRD,

where the bid-ask spread SPRD is calibrated from actual data and corresponds to

about 1-2% implied volatility units, depending on the strike-maturity combination.

In case 1, the true option price coincides with the efficient mid-quote. In case 2,

the true option price is lower (resp. higher) than the mid-quote for in-the-money

(resp. out-of-the-money) options. The observed quotes are then generated according

to (3.1.2) where εAit and εBit are drawn independently from a uniform distribution

supported on r�σε, σεs. With σε   SPRD{2, this design is a simple way of ensuring

the natural ordering Ai,t ¡ Bi,t. We calibrate σε according to V ar pAi,t �Bi,tq �
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V ar
�
εAi,t � εBi,t

� � 2V ar
�
εAi,t

� � 2
3
σ2
ε , so σε �

ap3{2qSe pAi,t �Bi,tq and then further

refine the specification to σε � min
!ap3{2qSe pAi,t �Bi,tq , 0.99 � SPRD{2

)
. Case

3 considers the case of boundary misspecification, i.e. when the true option price lies

on either the bid or ask as opposed to uniformly in the interior of the spread.

We consider Monte Carlo samples of length T � 2 years and 15 years, consisting

of daily end-of-day simulated option prices. The purpose of looking at different

length samples is to examine the effect of T , given the convergence rate interaction

with the sampling interval ∆n derived previously. To obtain end-of-day prices, we

simulate the stochastic process in (3.2.1) and record the values of the state variables

at the close of the simulated trading day and use those to compute closing “true”

option prices. We then generate noisy bid and ask quotes following the framework

outlined above. For each of the resulting daily option samples, we compute the finite-

sample coverage probabilities given in the Q-measure setup from (3.1.13), as well as

the joint P- and Q-measure setup in (3.1.31), under the three DGP cases described

above. Specifically, we examine the coverage probabilities under correct mid-quote

specification, interior misspecification, and boundary misspecification.

3.2.2 Simulation Results

The results of the simulation exercises are given in Tables 3.1 through 3.6. Tables

3.1 through 3.3 show coverage probabilities for 15 year samples, whereas Tables 3.4

through 3.6 show the corresponding results for the 2 year samples.

Table 3.1 represents the DGP under which the mid-quote and the latent efficient

option price coincide exactly. The left panel shows the coverage probabilities using

the joint P- and Q-measure conditions (which includes an equality restriction on the

106



Table 3.1: Monte Carlo Simulation: Size Control, 15 Year Sample, Case 1. This
table shows the results of a Monte Carlo experiment, in which 15 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions only.

Within each panel, the table shows the effect of using estimated spot volatility pVn,t
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only

Mid-quote Full Spread Mid-quote Full Spread

α Vt pVn,t Vt pVn,t Vt pVn,t Vt pVn,t
0.01 0.010 0.017 0.029 0.028 0.011 0.015 0.000 0.000
0.05 0.062 0.069 0.109 0.108 0.059 0.062 0.000 0.000
0.10 0.124 0.122 0.171 0.172 0.107 0.109 0.000 0.000
0.15 0.171 0.172 0.228 0.228 0.162 0.167 0.000 0.000
0.20 0.226 0.220 0.290 0.289 0.212 0.218 0.000 0.000
0.25 0.278 0.270 0.338 0.338 0.260 0.269 0.000 0.000
0.30 0.324 0.321 0.390 0.391 0.306 0.319 0.000 0.000
0.35 0.373 0.382 0.432 0.434 0.358 0.371 0.000 0.000
0.40 0.429 0.438 0.483 0.483 0.410 0.417 0.000 0.000
0.45 0.482 0.499 0.538 0.538 0.465 0.459 0.000 0.000
0.50 0.533 0.544 0.587 0.588 0.513 0.512 0.000 0.000

product of the leverage effect and vol-of-vol), whereas the right panel shows coverage

probabilities under only Q-measure restrictions (using only moment inequalities).

Not surprisingly, the best coverage is achieved by fitting the model to mid-quotes

when the DGP is in fact the mid-quote. This holds whether one uses the infeasi-

ble true spot volatility Vt to price options or uses its high-frequence estimate pVn,t
(columns 2 and 3). In contrast, using the more conservative approach of bounding

the efficient price by the bid-ask spread (columns titled “Full Spread”) results in
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Table 3.2: Monte Carlo Simulation: Size Control, 15 Year Sample, Case 2. This
table shows the results of a Monte Carlo experiment, in which 15 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions only.

Within each panel, the table shows the effect of using estimated spot volatility pVn,t
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only

Mid-quote Full Spread Mid-quote Full Spread

α Vt pVn,t Vt pVn,t Vt pVn,t Vt pVn,t
0.01 0.045 0.034 0.027 0.026 0.040 0.029 0.000 0.000
0.05 0.229 0.164 0.109 0.107 0.232 0.154 0.000 0.000
0.10 0.427 0.336 0.165 0.165 0.423 0.323 0.000 0.000
0.15 0.592 0.487 0.221 0.222 0.586 0.481 0.000 0.000
0.20 0.709 0.614 0.283 0.282 0.709 0.605 0.000 0.000
0.25 0.796 0.722 0.333 0.332 0.788 0.713 0.000 0.000
0.30 0.861 0.795 0.384 0.385 0.851 0.788 0.000 0.000
0.35 0.901 0.853 0.429 0.429 0.892 0.844 0.000 0.000
0.40 0.931 0.886 0.478 0.478 0.926 0.883 0.000 0.000
0.45 0.953 0.917 0.531 0.531 0.945 0.918 0.000 0.000
0.50 0.972 0.941 0.582 0.583 0.960 0.946 0.000 0.000

slight overrejection. Under Q-measure restrictions only, using the full spread given

by bid ask quotes now results in conservative inference, whereas using the mid-quote

directly results in correct finite-sample coverage.

The most striking results are given in Tables 3.2 and 3.3. Table 3.2 shows cov-

erage probabilities under the first type of mid-quote misspecification (Case 2), i.e.

the efficient price is not the mid-quote, but it is also not on the boundary given by

the bid and ask quotes. In the left panel, the columns labeled “Mid-quote” show
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that fitting an option pricing model to the mid-quote when the DGP in fact de-

viates from the mid-quote can result in severe overrejection of the option pricing

model. We interpret this result as evidence that incorrect assumptions on the option

market’s microstructure can have profound effects on inference on frictionless option

pricing models. On the other hand, taking the more conservative approach of merely

bounding the efficient price by the bid and ask quotes results in comparatively mild

overrejection. For example, for nominal level 50% confidence sets, the bid-ask bound

approach results in 58.3% rejections compared to 94.1% rejections from the erro-

neous mid-quote point-identifying assumption. For Q-measure-only confidence sets,

the bid-ask bound approach results in conservative inference, whereas the mid-quote

assumption again results in severe overrejection.

Table 3.3 shows results for the Case 3 DGPs, i.e. when the efficient price some-

times coincides with the bid and ask quotes and generally deviates from the mid-

quote. In this scenario, fitting option prices to the mid-quote results in automatic

100% rejections. In contrast, bounding the efficient prices by the bid and ask quotes

yields slightly conservative and sometimes correct inference. This observation holds

whether one is using the P-measure equality restriction (confirming Theorem 3.1.4)

or not (Theorem 3.1.2, Equation (3.1.24)), since Case 3 corresponds to the boundary

parameter case.

Comparing Table 3.4 with Table 3.1, we observe that the effect of a smaller sample

size T mitigates the mild overrejections found on the 15-year sample. This agrees

well with the result in Theorem 3.1.1, which required the sampling interval ∆n Ñ 0

sufficiently fast relative to the growth in T . This improvement in inference is carried
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Table 3.3: Monte Carlo Simulation: Size Control, 15 Year Sample, Case 3. This
table shows the results of a Monte Carlo experiment, in which 15 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions only.

Within each panel, the table shows the effect of using estimated spot volatility pVn,t
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only

Mid-quote Full Spread Mid-quote Full Spread

α Vt pVn,t Vt pVn,t Vt pVn,t Vt pVn,t
0.01 1.000 1.000 0.001 0.001 1.000 1.000 0.002 0.001
0.05 1.000 1.000 0.020 0.021 1.000 1.000 0.014 0.016
0.10 1.000 1.000 0.057 0.051 1.000 1.000 0.044 0.044
0.15 1.000 1.000 0.111 0.107 1.000 1.000 0.089 0.088
0.20 1.000 1.000 0.166 0.169 1.000 1.000 0.136 0.137
0.25 1.000 1.000 0.216 0.226 1.000 1.000 0.187 0.182
0.30 1.000 1.000 0.275 0.284 1.000 1.000 0.246 0.240
0.35 1.000 1.000 0.337 0.339 1.000 1.000 0.299 0.298
0.40 1.000 1.000 0.398 0.405 1.000 1.000 0.350 0.350
0.45 1.000 1.000 0.461 0.466 1.000 1.000 0.404 0.414
0.50 1.000 1.000 0.504 0.507 1.000 1.000 0.454 0.473

forward into the misspecification Cases 2 and 3 shown in Tables 3.5 and 3.6, where

the rejection frequencies are close to their nominal levels.

3.3 Empirical Results

We examine our set inference framework on actual S&P 500 Index Options and

high-frequency observations on the underlying.
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Table 3.4: Monte Carlo Simulation: Size Control, 2 Year Sample, Case 1. This
table shows the results of a Monte Carlo experiment, in which 2 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions only.

Within each panel, the table shows the effect of using estimated spot volatility pVn,t
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only

Mid-quote Full Spread Mid-quote Full Spread

α Vt pVn,t Vt pVn,t Vt pVn,t Vt pVn,t
0.01 0.008 0.069 0.014 0.009 0.012 0.072 0.000 0.000
0.05 0.045 0.234 0.054 0.041 0.057 0.240 0.000 0.000
0.10 0.102 0.357 0.098 0.073 0.115 0.363 0.000 0.000
0.15 0.149 0.452 0.131 0.104 0.166 0.454 0.000 0.000
0.20 0.199 0.536 0.171 0.145 0.220 0.519 0.000 0.000
0.25 0.256 0.607 0.216 0.179 0.268 0.582 0.000 0.000
0.30 0.304 0.659 0.254 0.213 0.319 0.635 0.000 0.000
0.35 0.365 0.701 0.294 0.251 0.375 0.684 0.000 0.001
0.40 0.413 0.740 0.337 0.290 0.417 0.723 0.000 0.001
0.45 0.469 0.777 0.378 0.322 0.476 0.759 0.000 0.001
0.50 0.510 0.809 0.413 0.366 0.526 0.796 0.001 0.001

3.3.1 The Data

Our data are obtained from OptionMetrics and represent daily observations on S&P

500 Index Options spanning January 1996 to December 2010. In light of our discus-

sion following Assumption C, a relevant set of instruments for our moment inequal-

ity approach is given by the indicator functions that categorize options according

to strike and time-to-maturity. Andrews and Shi (2014) show that there is no loss

of identification power when the number of categories (or “boxes”) goes to infinity.
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Table 3.5: Monte Carlo Simulation: Size Control, 2 Year Sample, Case 2. This
table shows the results of a Monte Carlo experiment, in which 2 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions only.

Within each panel, the table shows the effect of using estimated spot volatility pVn,t
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only

Mid-quote Full Spread Mid-quote Full Spread

α Vt pVn,t Vt pVn,t Vt pVn,t Vt pVn,t
0.01 0.028 0.106 0.011 0.010 0.033 0.108 0.000 0.000
0.05 0.163 0.378 0.047 0.031 0.181 0.367 0.000 0.000
0.10 0.304 0.578 0.082 0.064 0.330 0.577 0.000 0.000
0.15 0.430 0.703 0.112 0.089 0.451 0.690 0.000 0.000
0.20 0.536 0.790 0.148 0.117 0.552 0.775 0.000 0.001
0.25 0.628 0.850 0.185 0.148 0.637 0.838 0.000 0.001
0.30 0.708 0.890 0.217 0.178 0.704 0.891 0.000 0.001
0.35 0.762 0.916 0.249 0.215 0.772 0.918 0.001 0.001
0.40 0.816 0.945 0.286 0.251 0.828 0.944 0.001 0.001
0.45 0.861 0.964 0.324 0.285 0.868 0.966 0.001 0.002
0.50 0.896 0.976 0.365 0.322 0.896 0.979 0.003 0.002

However, for the purposes of empirical tractability, we settle on categorizing options

into seven strike categories and three maturity categories, for a total of twenty-one

option categories.

Summary statistics for each category of options is presented in Table 3.7. The

categories were chosen to be representative of the full option smile observed on the

three closest maturities for a given trading day and therefore make use of information

on both deeply in-the-money (ITM) and deeply out-of-the-money (OTM) options.
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Table 3.6: Monte Carlo Simulation: Size Control, 2 Year Sample, Case 3. This
table shows the results of a Monte Carlo experiment, in which 2 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions only.

Within each panel, the table shows the effect of using estimated spot volatility pVn,t
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only

Mid-quote Full Spread Mid-quote Full Spread

α Vt pVn,t Vt pVn,t Vt pVn,t Vt pVn,t
0.01 1.000 1.000 0.001 0.002 1.000 1.000 0.000 0.001
0.05 1.000 1.000 0.005 0.029 1.000 1.000 0.003 0.022
0.10 1.000 1.000 0.019 0.065 1.000 1.000 0.014 0.057
0.15 1.000 1.000 0.031 0.111 1.000 1.000 0.035 0.112
0.20 1.000 1.000 0.057 0.164 1.000 1.000 0.052 0.170
0.25 1.000 1.000 0.087 0.227 1.000 1.000 0.086 0.222
0.30 1.000 1.000 0.133 0.288 1.000 1.000 0.120 0.278
0.35 1.000 1.000 0.178 0.354 1.000 1.000 0.159 0.336
0.40 1.000 1.000 0.224 0.406 1.000 1.000 0.198 0.394
0.45 1.000 1.000 0.281 0.474 1.000 1.000 0.240 0.451
0.50 1.000 1.000 0.338 0.536 1.000 1.000 0.296 0.517

The table shows that the bid-ask spread is on average 200bp wide for the less liquid

ITM options. Wider bid-ask spreads are actually observed when OTM calls are not

converted to ITM via put-call parity, as we have done following practices in the

existing literature (see for example Andersen et al. (2012)). These option categories

result in an effective option sample of 7� 3� 3, 462 � 72, 702 pairs of quotes. Over

the same sample period, we also have 1-minute observations on S&P 500 futures that

we use to construct our high-frequency estimates of spot volatility pVn,t in (3.1.12).18

18 We thank Sophia Zhengzi Li for providing us with the data.
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The data was filtered following the standard practices in the literature (Andersen

et al. (2012)). In particular, options with time-to-maturity less than 7 days are

discarded, as are options with zero bids. The riskfree rate is interpolated from the

observed LIBOR term structure and the dividend yield process is the one supplied

by OptionMetrics.

3.3.2 Results

We present empirical results for several specifications. Table 3.8 shows various con-

fidence set estimates for the general stochastic jump-diffusion model in (3.1.25).

The top panel of the table shows results using only option data (the Q-measure

model), whereas the bottom panel shows results using additional identifying infor-

mation about leverage and volatility-of-volatility from the high-frequency record on

the underlying (the joint P-Q model).

The column labeled PNT describes point estimates of the parameters obtained

under the mid-quote point-identifying assumption under squared loss. The estimates

accord well with findings in the existing literature, e.g. Eraker et al. (2003), Andersen

et al. (2002), Chernov et al. (2003), Eraker (2004), Broadie et al. (2007). In particu-

lar, the options are clearly pricing volatility mean-reversion (κ ¡ 0) and are implying

strong negative skewness (ρ close to �1). The long-run variance V also corresponds

well to nonparametric estimates of long-run risk-neutral variance (Bollerslev et al.

(2011)). The option data are also clearly pricing jumps with a negative jump size

mean (µJ   0), with one jump occurring approximately every 1.3 years. Compar-

isons between the top and bottom panels of the PNT column show that the estimates
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Table 3.7: Summary of Options Quote Data. This table shows time-averaged strike-
to-spot ratios (Kj{S), and bid and ask quotes for strike categories Kj, j � 1, . . . , 7,
for a total of 7 � 3 � 3, 462 � 72, 702 pairs of quotes. The data represent weekly
observations on S&P500 index call options from January 2, 1996 to December 30,
2010. In-the-money call options were replaced by out-of-the-money puts converted by
put-call parity. Days with fewer than seven strikes or three maturities were dropped.

Short
Term K/S Bid-IV SD Ask-IV SD Spread τ SD T

K1 0.88 0.29 0.12 0.31 0.13 0.02 24.3 9.3 3,462
K2 0.93 0.25 0.10 0.27 0.11 0.02 24.3 9.3 3,462
K3 0.96 0.22 0.09 0.24 0.09 0.01 24.3 9.3 3,462
K4 0.99 0.20 0.08 0.21 0.08 0.01 24.3 9.3 3,462
K5 1.00 0.19 0.07 0.20 0.08 0.01 24.3 9.3 3,462
K6 1.03 0.17 0.07 0.19 0.07 0.01 24.3 9.3 3,462
K7 1.06 0.16 0.06 0.18 0.07 0.01 24.3 9.3 3,462

Med.
Term
K1 0.83 0.30 0.11 0.32 0.12 0.02 52.5 11.3 3,462
K2 0.89 0.27 0.10 0.28 0.10 0.01 52.5 11.3 3,462
K3 0.94 0.24 0.08 0.25 0.09 0.01 52.5 11.3 3,462
K4 0.98 0.21 0.07 0.22 0.08 0.01 52.5 11.3 3,462
K5 0.99 0.20 0.07 0.21 0.08 0.01 52.5 11.3 3,462
K6 1.03 0.18 0.06 0.19 0.07 0.01 52.5 11.3 3,462
K7 1.09 0.16 0.06 0.17 0.06 0.01 52.5 11.3 3,462

Long
Term
K1 0.80 0.30 0.11 0.32 0.11 0.02 88.7 29.5 3,462
K2 0.87 0.27 0.09 0.28 0.09 0.01 88.7 29.5 3,462
K3 0.93 0.24 0.08 0.25 0.08 0.01 88.7 29.5 3,462
K4 0.98 0.21 0.07 0.22 0.07 0.01 88.7 29.5 3,462
K5 0.99 0.21 0.07 0.22 0.07 0.01 88.7 29.5 3,462
K6 1.04 0.18 0.06 0.19 0.06 0.01 88.7 29.5 3,462
K7 1.10 0.16 0.05 0.17 0.06 0.01 88.7 29.5 3,462
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Table 3.8: SVJ Baseline Set-Inference. Estimation and inference for SVJ model.
PNT, E50, I50, E95, and I95 denote point estimates, mid-quote moment equality CS
at size 50%, full bid-ask spread CS at size 50%, mid-quote moment equality CS at
size 95%, and full bid-ask spread CS at size 95%, respectively. “Obj. fn.” denotes
value of the objective function pSpθq � cpθ, 1� αqq�.

Q PNT E50 I50 E95 I95

κ 3.81 3.44 [1.45, 59.95] [3.85, 131.64] [1.26, 157.7]
V 0.04 0.04 [0.02, 0.08] [0.02, 0.06] [0.01, 0.07]
ρ -1.00 -1.00 [-1.00, -0.44] [-1.00, -0.38] [-1.00, -0.00]
v 0.56 0.51 [0.19, 2.11] [0.34, 3.03] [0.00, 3.40]
λ 0.76 0.69 [0.03, 0.94] [0.02, 0.61] [0.00, 1.11]
µJ -0.07 -0.07 [-0.78, -0.05] [-0.98, -0.05] [-1.47, 0.06]
σJ 0.14 0.15 [0.00, 0.37] [0.00, 0.45] [0.00, 0.78]
Obj. fn. 2.93 12.11 0.00 0.00 0.00

Q and P PNT E50 I50 E95 I95

κ 4.77 3.34 [1.45, 41.89] [3.11, 86.17] [1.33,139.2]
V 0.04 0.04 [0.02, 0.08] [0.02, 0.06] [0.01,0.08]
ρ -0.98 -0.99 [-1.00, -0.41] [-1.00, -0.38] [-1.00,-0.00]
v 0.60 0.51 [0.21, 1.51] [0.34, 2.26] [0.00,3.4]
λ 0.67 0.67 [0.07, 0.94] [0.01, 0.72] [0.00,1.11]
µJ -0.07 -0.07 [-0.52, -0.04] [-0.97, -0.04] [-1.47, 0.06]
σJ 0.14 0.15 [0.00, 0.35] [0.00, 0.45] [0.00, 0.78]
Obj fn. 2.98 11.54 0.00 0.00 0.00

are little changed by the additional identifying restriction.

The remaining columns of Table 3.8 show estimated 50% and 95% confidence sets

under both mid-quote equality restrictions as well as full bound width restrictions.

That is, the moment inequality framework in Section 3.1 is specialized to the case

when the bid and ask quotes are artificially collapsed to the mid-quote (columns

labeled E50 and E95), whereas the columns labeled I50 and I95 correspond to the full

moment inequality setup and represent 50% and 95% CS’s, respectively. The results
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show a rejection of the SVJ model at the 50% level when the mid-quote equality

is artificially imposed. The result disappears when the mid-quote assumption is

relaxed. More generally, Table 3.8 reveals large confidence sets, as indicated by the

intervals on each parameter. In interpreting the results, however, one should remain

cautious of the fact that indicated intervals represent projections of a 7-dimensional

confidence set onto individual parameters.
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To better understand the shape of the 7-dimensional CS, we plot its projections

onto pairs of parameter coordinates in Figure 3.2. The figure reveals new and in-

teresting tradeoffs between option model parameters in the SVJ model. That is,

observed option quotes appear to admit a variety of parameter configurations. For

example, the fourth panel in the first row of Figure 3.2 suggests that option prices

do not appear to distinguish {high mean-reversion, high vol-of-vol} from {low mean-

reversion, low vol-of-vol}. Similarly, the first panel in the third row shows that option

prices can be well represented by either a {high-intensity, small jump-size} specifica-

tion or a {low-intensity, large jump-size}. The figure also reveals how the volatility

and jump process interact: A model with high long-run variance is consistent with

observed option quotes, as long as the jump-intensity goes to zero (second row, first

column). Conversely, the long-run variance is permitted to assume smaller values

when the jump arrival intensity goes up. A similar relationship appears to hold for

the vol-of-vol parameter as well.

In general, Table 3.8 and Figure 3.2 show large estimated confidence sets. To

sharpen the inference, we introduce additional moment restrictions of the form in

Assumption C’. In particular, rather than using only test functions corresponding to

indicator functions in the strike and maturity dimension, we introduce a smoothed

indicator function in the volatility space that will require option prices to satisfy the

bid-ask bounds in three distinct volatility states: high, medium, and low volatility

periods as distinguished by their sample tertiles. These additional test functions

effectively triple the number of moment inequalities used for inference and (perhaps

not surprisingly) result in smaller estimated confidence sets.
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Table 3.9: Set estimates with volatility conditioning information. Estimation and
inference for SVJ model with volatility weighting function. PNT, E50, I50, E95, and
I95 denote point estimates, mid-quote moment equality CS at size 50%, full bid-ask
spread CS at size 50%, mid-quote moment equality CS at size 95%, and full bid-
ask spread CS at size 95%, respectively. “Obj. fn.” denotes value of the objective
function pSpθq � cpθ, 1� αqq�.

Q PNT E50 I50 E95 I95

κ 3.30 3.71 3.02 3.20 [2.78, 4.05]
V 0.05 0.05 0.05 0.05 [0.044, 0.053]
ρ -1.00 -1.00 -1.00 -1.00 [-1.00, -0.98]
v 0.56 0.61 0.55 0.56 [0.51, 0.64]
λ 0.93 0.96 0.81 0.96 [0.68, 0.97]
µJ -0.04 -0.04 -0.04 -0.04 [-0.05, -0.04]
σJ 0.13 0.13 0.14 0.13 [0.13, 0.15]
Obj fn. 18.26 390.94 78.59 270.22 0.00

Q and P PNT E50 I50 E95 I95

κ 3.47 3.53 3.090 3.570 [2.71, 3.34]
V 0.05 0.05 0.050 0.050 [0.045,0.052]
ρ -0.96 -1.00 -1.000 -1.000 [-1.00, -0.98]
v 0.54 0.57 0.550 0.570 [0.50, 0.58]
λ 0.78 1.03 0.800 1.000 [0.73, 0.94]
µJ -0.05 -0.04 -0.040 -0.040 [-0.05, -0.04]
σJ 0.14 0.12 0.140 0.130 [0.13, 0.15]
Obj fn. 18.26 397.33 77.56 267.91 0.00

To illustrate, Figure 3.2 also shows estimated 95% CS’s for the volatility test

function case in green (light shading). The resulting CS’s display significant reduc-

tions in the size of the new CS’s, suggesting that the volatility test functions are

ruling out many of the observationally similar parameter estimates from the original

model. Figure 3.3 zooms into the parameter estimates for the volatility test func-

tion confidence sets and reveals parameter sets that are close to the point estimates
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obtained under the mid-quote assumption. However, in a striking deviation from

existing findings in the literature (Andersen et al. (2012)), the SVJ model is not

rejected at the 5% level when the full width of bid and ask quotes is used, whereas

point estimates specializing to the option mid-quote are rejected (Table 3.9). Our

results suggest that the mid-quote assumption imports enough information into an

option model that it may overturn conclusions obtained under more conservative

assumptions on the data generating process.

121



F
ig
u
r
e
3
.3

:
E

st
im

at
ed

co
n
fi
d
en

ce
se

ts
u
si

n
g

vo
la

ti
li
ty

te
st

fu
n
ct

io
n
s

fr
om

A
ss

u
m

p
ti

on
C

’.
T

h
e

co
n
fi
d
en

ce
se

ts
(3

.1
.1

3)
ar

e
p
ro

je
ct

ed
on

to
p
ai

rs
of

p
ar

am
et

er
s

an
d

p
lo

tt
ed

fo
r

th
e

S
V

J
m

o
d
el

in
(3

.1
.2

5)
.

D
ar

k
(b

la
ck

)
sh

ad
in

g
co

rr
es

p
on

d
s

to
co

n
fi
d
en

ce
se

ts
u
si

n
g

on
ly

Q
-m

ea
su

re
b
id

-a
sk

b
ou

n
d

re
st

ri
ct

io
n
s,

w
h
er

ea
s

gr
ee

n
(l

ig
h
t)

sh
ad

in
g

co
rr

es
p

on
d
s

to
co

n
fi
d
en

ce
se

ts
u
si

n
g

jo
in

t
P-
Q

re
st

ri
ct

io
n
s

fr
om

S
u
b
se

ct
io

n
3.

1.
4.

122



3.4 Conclusion

This paper examines inference on option model parameters in the bid-ask quote set-

ting. Specifically, we propose an econometric framework that explicitly recognizes

bid and ask quotes as interval observations on the efficient option price, which natu-

rally gives rise to a lack of point-identification: that is, a situation in which multiple

option model parameters are consistent with observed option quotes. Our frame-

work relies on moment inequalities that bound model-implied option prices between

observed bid and ask quotes, thus avoiding the untestable microstructure restric-

tion of equating efficient option prices to the option mid-quote. We argue that the

mid-quote point-identifying assumption is especially relevant in an empirical option

pricing setting, where the illiquidity of certain deep in-the-money options can induce

significant bid-ask spreads.

Our framework extends the existing econometric literature on set-inference by

admitting moment functions that depend on a latent variable (spot variance) that

must be estimated in a first stage from high-frequency data on the option’s under-

lying. This extension allows us to conduct inference on a general affine stochastic

volatility jump-diffusion model of Duffie et al. (2000) within a partial identification

setting. By construction, the inference is robust to microstructure misspecifications

by allowing us to remain agnostic about the relationship between bid-ask quotes and

the efficient price. We also illustrate that the framework is general enough to accom-

modate additional identifying restrictions on certain option pricing parameters that

are invariant to the change of measure.

Monte Carlo simulations show that the use of estimated spot variance in place
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of latent spot variance provides accurate coverage of the true pricing parameter

under empirically realistic sample sizes. Our empirical exercise shows that relaxing

the mid-quote assumption results in large estimated parameter sets that reveal novel

relationships among option model parameters. We also show that the informativeness

of inference can be restored by incorporating certain variance test functions into the

moment inequality framework.
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4

A Sieve Application to Estimating Quantile Risk

Premia

Introduction

This chapter uses the sieve framework developed in Chapter 2 to examine the time

series properties of risk-neutral return quantiles. An economic motivation for exam-

ining these return quantiles is that they are informative about tail risk premia. To

this end, I estimate the objective-measure counterparts to the risk-neutral quantiles

and show that their difference is related to a risk-premium on binary options that

pay off $1 in case of moves in the underlying asset of a given size.

The quantities defined in this chapter are related to the state-price of conditional

quantiles (SPOCQ), defined in Metaxoglou and Smith (2013). The analysis differs

here in the Q-measure estimation, since they employed a lognormal mixture to obtain

estimates of the risk-neutral distribution, whereas here I rely on the sieve methods

of Chapter 2 to provide a complementary view on return quantiles. The methods
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discussed here also differ from Metaxoglou and Smith (2013) in that I examine the

risk-premium interpretation associated with their SPOCQ and furthermore make di-

rect comparisons of the quantiles of the P- and Q-measure distributions. Lastly, I

also propose a regression framework for forecasting excess returns based on a decom-

position of the equity risk-premium into its quantile constituents.

In what follows, P-measure return quantiles were estimated using the CAViaR

methods of Engle and Manganelli (2004), augmented with intra-month information

on realized daily squared returns. The empirical findings of the chapter suggest

a pronounced presence of risk premia in the extremes of the return distribution,

underscoring existing results on the drivers of the equity risk premium (Bollerslev

and Todorov (2011)). However, in contrast to the variance risk premium litera-

ture discussed in Chapter 2, the compensation for these distributional risks appear

asymmetric across quantiles.

4.1 Motivating Quantile Risk Premia

I define the equity premium as the τ -period ahead expected excess return EP
t rrt,t�τ s�

rft,t�τ on the aggregate market index St, where rt,t�τ � pSt�τ{Stq�1 and rft,t�τ denotes

the riskfree rate over the corresponding horizon. The expectation operator for the

market return in this definition is under the objective measure, or P-measure.

On the other hand, it is well-known that the riskfree rate rft,t�τ can also be written

as a conditional expectation of returns, but against the risk-neutral measure Q, that

is

rft,t�τ � EQ
t rrt,t�τ s, (4.1.1)
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giving rise to the definition

ERPt,t�τ � EP
t rrt,t�τ s � EQ

t rrt,t�τ s. (4.1.2)

Equation (4.1.2) shows that the equity premium depends critically on two expec-

tations of future returns, EP
t rrt,t�τ s and EQ

t rrt,t�τ s. Each of these, in turn, can be

viewed as functionals on the conditional distributions that generated the expectation.

That is, letting Ft�τ |t denote a conditional CDF and defining

T
�
Ft�τ |t

	
�
» 8

�8
r dFt�τ |tprq,

we see that the equity premium is given

ERPt,t�τ � T
�
F P
t�τ |t

�� T
�
FQ
t�τ |t

	
. (4.1.3)

The focus of this paper is on direct comparisons of the distributions F P
t�τ |t and FQ

t�τ |t

through their quantiles, rather than through the lens of the operator T p�q.

4.2 Forecasting Objective and Risk-Neutral Quantiles

Since the distributions F P
t�τ |t and FQ

t�τ |t in (4.1.3) are unobserved, they must be

estimated from historical data. I discuss the estimation of each in turn.

4.2.1 Forecasting Q-measure Return Quantiles: The Method of Sieves

I use the method of sieves proposed in Chapter 2 to estimate quantiles of FQ
t�τ |t.

The method of sieves exploits the structure embedded in the risk-neutral valuation

equation and allows for the estimation of the entire function FQ
t�τ |t for a fixed τ , even
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if options with maturity τ are unobserved.

Following the same arguments from Chapter 2, the price of a put option with

strike κ and maturity τ is given by1

P0pκ, τq � e�rτ
» κ

0

rκ� SsfQ
0 pS|τqdS.

Next, the following convenient change of variables is adopted,

log

�
S

S0



� µpZq � σpZqY,

where Z � pκ, τ, r, qq holds the strike, maturity, risk-free rate, and dividend yield,

and where µpZq � pr�q�σ2{2qτ and σpZq � σ
?
τ . For empirical implementation, σ

is chosen as an interpolated implied volatility of an at-the-money τ -maturity option.

Under this change of variables, the valuation equation becomes

P0pκ, τq � PY pf0,Zq � e�rτ
» dpZq

0

�
κ� S0e

µpZq�σpZqY
	
f0pY |τqdY, (4.2.1)

where dpZq � logpκ{Sq�µpZq
σpZq . The procedure in Chapter 2 delivers estimates for f0pY |τq,

which are related to the density of interest by the simple Jacobian transformation

fQ
0 ps|τq � psσpZqq�1f0ps|τq.

To estimate fQ
0 ps|τq, one constructs Hermite polynomial expansions using candidate

densities of the form

fKpy|τq �
2Ky¸
k�0

γkpB, τqHkpyqφpyq, (4.2.2)

1 Exactly as in Chapter 2, the dependence of fQ0 pS|τq on a possibly unobserved state vector V

that generated the time-t information set, i.e. fQ0 pS|τ,V � v0q, is suppressed, since the strategy

here is to estimated fQ0 pS|τq separately for each option cross section.
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where K � pKy � 1qpKτ � 1q and where

γkpB, τq � αpB, τq1AkαpB, τq
αpB, τq1αpB, τq ,

and αpB, τq � p°Kτ
j�0 β0jHjpτq, . . . ,

°Kτ
j�0 βKyjHjpτqq1. Ak are matrices of constants

derived in León and Sentana (2009). Hkpyq are Hermite polynomials of order k that

are orthonormal with respect to expp�y2{2q dy. B is a pKy� 1q� pKτ � 1q matrix of

coefficients. I denote its vectorized representation as β � vecpBq and then estimate

β by solving the least squares problem

pβ � arg min
βPRK

#
1

n

ņ

i�1

�
Pi � PY pβ,Ziq

�2

Wi

+

s.t.

Ky¸
k�0

Kτ̧

j�0

β2
kj � 1.

(4.2.3)

The contribution of Chapter 2 was to show that if K Ñ 8 as the cross-section of op-

tions grew (n Ñ 8), then dp pfK , f0q Ñ 0, where pfKpy|τq � °2Ky
k�0 γkp pB, τqHkpyqφpyq.

The simulations in Chapter 2 also demonstrate that selecting K by minimizing the

BIC is effective for obtaining nonparametric coverage of certain portfolios of options

that depend on fK .

Because the focus here is on fK and its CDF and not option portfolio inference,

I fix Ky � 5 and Kτ � 1 for computational ease. The low order on τ expansions

is supported by using a restricted option panel, e.g. by only using the first three

available maturities in the option panel in order to estimate the 30-day ahead return

distribution. The minimization in (4.2.3) is then conducted on a weekly sample

of S&P 500 Index options spanning 1996 to 2013. A total of 883 optimizations
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Table 4.1: Time-Averaged Sieve Estimates. The sieve least-squares problem in (4.2.3)
with Ky � 5 and Kτ � 1 is solved on a weekly sample of S&P 500 Index options

spanning 1996 to 2013, resulting in 883 coefficient estimates for pB, where pβ � vecp pBq.
The table reports time-averages and standard deviations for the squares of the coef-

ficient matrices pB.

Mean pB �Bq Std pB �Bq

Ky \Kτ τ 0 τ 1 τ 0 τ 1

0 0.127 0.660 0.221 0.297
1 0.001 0.017 0.004 0.042
2 0.005 0.054 0.011 0.054
3 0.001 0.024 0.003 0.044
4 0.001 0.023 0.004 0.040
5 0.007 0.081 0.015 0.069

corresponding to the number of weeks in the sample are performed for this sample,

and time-averaged squares of coefficient estimates are reported in Table 4.1. The

table reports squares of coefficients because of the constraint in (4.2.3), which gives

an indication of how much weight the option data place on each Hermite polynomial

term. The table clearly shows that on average, most of the weight is placed on

the leading expansion term, and that this leading weight changes significantly over

time. The higher-order Hermite polynomial terms are nonzero on average, with more

emphasis placed on the first-order τ expansion. With estimates of pB in hand, one

can easily construct estimates of FQ
t�τ |t using the closed-form relation

pQKpSt�τ ¤ κ|τq �
» dpZq

0

pfKpx|τq dx
� ΦpdpZqq �

2Kx̧

k�1

γkp pB, τq?
k

Hk�1pdpZqqφpdpZqq,
(4.2.4)
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pQKpAq �
³
A
pfKpx|τqdx is the estimated risk-neutral measure.2 One then obtains the

return distribution estimate

pFQ
t�τ |tprq � pQK

�
St�τ � St

St
¤ κ� St

St

�����τ
�
, (4.2.5)

where r � pκ�Stq{St. The above procedure yields a time-series of τ � 30-day ahead

distributions pFQ
t�τ |tprq, from which quantiles are readily computed by inversion.

4.2.2 Forecasting P-measure Return Quantiles: CAViaR

To estimate the quantiles of F P
t�τ |t, I apply the CAViaR model of Engle and Man-

ganelli (2004). To ease notation, let τ � 1 month, and let QuantPrt�1|tpαq denote the

level α quantile of the return distribution F P
t�τ |t. That is, let

QuantPrt�1|tpαq � inf
 
r : α ¤ F P

t�1|tprq
(
. (4.2.6)

The CAViaR model specifies dynamics for conditional quantiles QuantPrt�1|tpαq in a

manner analogous to the GARCH specification of Bollerslev (1986) for conditional

variances. Thus, given returns and observables trt, xtuTt�1, one defines

ft�1pβq � ft�1pxt, βαq � QuantPrt�1|tpαq. (4.2.7)

2 See Chapter 2 for a derivation of this expression.
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Then a generic CAViaR specification takes the form

ft�1pβq � β0 �
q̧

i�0

βift�ipβq �
p̧

j�0

βj`t�jpxt�jq

rt � ftpβ0q � εαt (4.2.8)

QuantPεαt|xt�1
pαq � 0.

Thus, conditional return quantiles are allowed to depend on its own lags as well as

lags of covariates xt. For the empirics below, I consider the specialization

ft�1pβq � β0 � β1ftpβq � β2|rt|� β3RVt�1,t, (4.2.9)

where RVt�1,t denotes the realized variance, or sum of squared daily (intra-month)

returns between t � 1 and t. The idea behind this specification is to let large intra-

month variances affect next period’s quantiles.

Then, the model in (4.2.8) with quantile dynamics (4.2.9) is optimized to yield

the coefficient vector

pβα � arg min
β

1

T

Ţ

t�1

�
α � 1rrt ¤ ftpβqs

�rrt � ftpβqs, (4.2.10)

which one then uses to forecast the return quantile ft�1ppβαq. To obtain multiple α

quantiles, I re-estimate this model for each α of interest to obtain a forecast of a

different conditional quantile.

It is worth noting that in order for t � 1 to denote a 30-day ahead P-measure

quantile, one must use a historical time series with 30-day increments. Since this

amounts to a loss of intra-month information, the inclusion of RVt�1,t is designed to
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compensate by incorporating intra-month variation. Furthermore, for my empirical

analysis, I require weekly observations on the 30-day ahead P-measure quantiles. I

therefore estimate a CAViaR model on a weekly expanding-window sample, which

produces a new coefficient vector estimate pβα for each week. The results of these

estimations are summarized in Table 4.2, which shows the average of coefficients

obtained for each of the 30-day ahead forecasting problems. A noteworthy feature

of Table 4.2 is the higher persistence in upper quantiles than for lower quantiles.

To aid in the estimation, the coefficients on realized variance and absolute returns

were constrained to be negative for quantiles below the median. Furthermore, the

coefficient on lagged quantiles was constrained to be positive to enforce continuity.

These constraints were imposed in order to help the numerical optimizer converge to

stable coefficient estimates. Indeed, Engle and Manganelli (2004) themselves provide

a lengthy discussion on optimizing the CAViaR model, whose numerical instability

can easily lead to different optima that depend on the starting location of the initial

parameter vector. The results reported here were obtained using a genetic algorithm.

4.3 Quantile Risk Premia

I first document the time series properties of the P- and Q-measure quantiles esti-

mated in the preceding section. I then show how the differences between correspond-

ing P- and Q-measure quantiles is related to a risk premium on a binary option that

pays $1 for a given return value.
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Table 4.2: Averaged CAViaR Estimates. The model in (4.2.8) with quantile dynam-
ics (4.2.9) is estimated on an expanding-window sample by solving the minimization
problem in (4.2.10). The sample consists of weekly forecasts of a 30-day ahead return
quantile. Average coefficient estimates are shown alongside the unconditional sample
probability of returns realizing below the indicated quantile.

α Pprt ¤ ftpβqq const ftpβq |rt| RVt�1,t

0.01 0.01 -0.02 0.33 -0.22 -1.20
0.05 0.06 -0.02 0.46 -0.12 -0.34
0.10 0.12 -0.01 0.39 -0.11 -0.24
0.20 0.22 -0.01 0.21 -0.10 -0.18
0.30 0.31 0.00 0.11 -0.10 -0.13
0.40 0.38 0.01 0.10 -0.10 -0.10
0.50 0.51 0.00 0.35 0.10 0.10
0.60 0.61 0.00 0.42 0.10 0.12
0.70 0.70 0.00 0.53 0.10 0.15
0.80 0.81 0.01 0.55 0.10 0.22
0.90 0.93 0.01 0.52 0.10 0.36
0.95 0.97 0.01 0.46 0.10 0.58
0.99 1.00 0.02 0.45 0.20 0.70

4.3.1 P- and Q-measure Quantile Time Series

Figure 4.1 displays the time series of quantile estimates associated to 13 different

probabilities, 0.01, 0.05, 0.1, 0.2, . . . , 0.8, 0.9, 0.95, and 0.99. The time-series are

clearly capturing the volatility-clustering effects commonly reported in the realized

variance literature. That is, high- and low-volatility periods appear to persist in

the quantile data as they do in volatility estimation literature (see, for example,

Andersen et al. (2003) and Corsi (2009)). More strikingly, however, are the apparent

quantile asymmetries that emerage in particularly volatile times. The financial crisis

period from 2008 to 2010 is displaying significant skewness in the left-tail of both P-

and Q-measure return quantiles. Not surprisingly, however, these extreme quantile
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estimates are each displaying significantly higher own-volatility that is likely to be

affected by a lack of power in the estimation step.

These qualitative observations are underscored in Table 4.3, which highlights

several interesting features. First, extreme Q-measure quantiles appear more pro-

nounced than their P-measure counterpart, a feature that can be interpreted as

evidence for a quantile risk premium (discussed further below). Moreover, these dif-

ferences appear clearly more pronounced in the left tail than in the right. Second,

the further one travels from the median, the more volatile each time series becomes,

with a drop in autocorrelation at the furthest extremes. Third, and perhaps not sur-

prisingly, each conditional distribution is showing pronounced signs of left-skewness.

Table 4.3: Summary statistics for the return quantile time series.

P-measure Q-measure P�Q

Mean Std Auto Mean Std Auto Mean Std Auto

0.01 -0.14 0.06 0.82 -0.18 0.07 0.74 0.04 0.05 0.19
0.05 -0.08 0.03 0.89 -0.10 0.04 0.88 0.02 0.02 0.59
0.10 -0.05 0.02 0.90 -0.07 0.03 0.90 0.02 0.02 0.67
0.20 -0.03 0.01 0.84 -0.04 0.02 0.89 0.01 0.01 0.63
0.30 -0.02 0.01 0.80 -0.02 0.01 0.77 0.01 0.01 0.37
0.40 0.00 0.01 0.81 -0.01 0.01 0.48 0.00 0.01 0.32
0.50 0.01 0.01 0.82 0.01 0.01 0.31 0.01 0.01 0.52
0.60 0.02 0.01 0.83 0.02 0.01 0.78 0.00 0.01 0.34
0.70 0.03 0.01 0.86 0.03 0.01 0.92 0.00 0.01 0.37
0.80 0.05 0.02 0.91 0.05 0.02 0.92 0.00 0.01 0.48
0.90 0.07 0.02 0.93 0.07 0.03 0.83 0.00 0.02 0.36
0.95 0.09 0.03 0.91 0.09 0.04 0.79 0.00 0.02 0.34
0.99 0.12 0.04 0.84 0.15 0.07 0.71 -0.02 0.05 0.41
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Figure 4.1: Weekly time-series of 30-day-ahead P and Q-measure return quan-
tiles, 1996–2013. The procedure in Section 4.2 is implemented to obtain quantiles
estimates of the τ � 30-day-ahead return distributions, F P

t�τ |tprq and FQ
t�τ |tprq, intro-

duced in Section 4.1. The quantiles displayed correspond to 13 probabilities of 0.01,
0.05, 0.1, 0.2, . . . , 0.8, 0.9, 0.95, and 0.99.

4.3.2 Relation to the Risk Premium on a Binary Option

Differences in the quantiles of the P- and Q-measure distributions are related to risk

premia on certain binary options. That is, let rPα denote the α-quantile of F P
t�τ |t.

Then, by definition, one has

α � F P
t�τ |tprPαq � Ptprt,t�τ ¤ rPαq � PtpSt�τ ¤ StprPα � 1qq.
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The Q-measure quantile of the same rPα can also be obtained, yielding

α � FQ
t�τ |tprPαq � Qtprt,t�τ ¤ rPαq � QtpSt�τ ¤ StprPα � 1qq,

The quantity on the right-hand side can be identified by the price of a binary option

with strike κ � StprPα � 1q, since EQ
t

�
1rSt�τ ¤ StprPα � 1qs� � QtpSt�τ ¤ StprPα � 1qq.

In the absence of such options, one can use the sieve procedure outlined above to

estimate QtpSt�τ ¤ StprPα � 1qq from a panel of plain vanilla European options.

In light of this, I adopt the term quantile risk premium to refer to the following

quantity,

QRPt�τ |tpαq � e�rτPtpSt�τ ¤ StprPα � 1qq � e�rτQtpSt�τ ¤ StprPα � 1qq (4.3.1)

� e�rτα � e�rτQtpSt�τ ¤ StprPα � 1qq. (4.3.2)

The situation is illustrated in Figure 4.2. For α � 20%, the quantile risk premium

QRPt�τ |tpαq is plotted for hypothetical CDFs and corresponds to vertical differences

between the P- and Q-measure CDFs at the P-measure α-quantile.

The time series of various quantile risk premia are plotted in Figure 4.3. The time

series show that the Q-measure distribution consistently lies above the corresponding

P-measure distribution at the α � 1% P-measure quantile, providing evidence for a

tail risk premium. A similar sign on the tail risk premium is reserved at the 5%

and 10% quantiles. On the other hand, the risk premium at the α � 90%, 95%,

and 99% quantiles appears to have the opposite sign. Taken together, these results

suggest an asymmetric compensation for right- and left-tail risk that contrast with

the symmetric compensation for variance risk discussed in Chapter 2.
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Figure 4.2: Illustration of an α � 20% Quantile Risk Premium. The Q-measure
CDF (dash) and P-measure CDF (solid) are plotted alongside an α � 20% quantile
risk premium.

4.4 Future Directions: Return Forecastability

I obtain a simple decomposition of the equity risk premium in terms of the distri-

butions associated with the two expectation operators. Specifically, write (4.1.2)

as

ERPt,t�τ � EP
t rrt,t�τ s � rft,t�τ �

» 8

�8
rdF P

t�τ |tprq �
» 8

�8
rdFQ

t�τ |tprq

�
» 8

�8
r
�
dF P

t�τ |tprq � dFQ
t�τ |tprq

�
.

(4.4.1)

Equation (4.4.1) makes explicit that any risk premium on returns, as measured
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Figure 4.3: Time series of quantile risk premia. The quantile risk premium in
(4.3.1) is plotted for the α-quantiles listed at the top of each panel.

by differences in objective and risk-neutral expectations, is driven by differences in

increments of the distribution functions. To make this intuition empirically imple-

mentable, one can interpret the right-hand side of (4.4.1) as a Riemann-Stieltjes

integral. That is, given a sequence of ordered partitions Pn of the return domain,
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the integral in (4.4.1) can be interpreted as a limit,» 8

�8
r
�
dF P

t�τ |tprq � dFQ
t�τ |tprq

�
� lim

nÑ8

¸
riPPn

ri�1

�
F P
t�τ |tpri�1q � Ft�τ |tpriq � rFQ

t�τ |tpri�1q � FQ
t�τ |tpriqs

�
.

A natural example of a partition Pn is given by the return quantiles ri � F�1
t�τ |tpθiq,

where θi P r0, 1s. Using this partition, one has

» 8

�8
r
�
dF P

t�τ |tprq � dFQ
t�τ |tprq

�
� lim

nÑ8

¸
riPPn

ri�1

�
rθi�1 � θis �FQ

t�τ |tpri�1q �FQ
t�τ |tpriq

�
.

(4.4.2)

Equation (4.4.2) motivates a simple regressor framework for forecasting the equity

risk-premium, obtained by regressing excess returns on differenced objective and

risk-neutral quantiles of the return distribution.

4.5 Conclusion

This chapter outlined methods for making direct comparisons of P- and Q-measure

return distributions by examining the time series of their conditional quantile esti-

mates. By relying on the method of sieves, I extracted a balanced time series of

Q-measure return quantiles using the methods outlined in Chapter 2. Correspond-

ing estimates of P-measure quantiles were obtained using the CAViaR methods of

Engle and Manganelli (2004). The findings showed evidence for the existence of pro-

nounced risk premia in the extremes of the respective return distributions, but with

asymmetric compensation for left- and right-tail risk. I further outlined a regression

framework that motivated the use of quantile risk premia for forecasting returns by
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decomposing the equity risk premium into its return quantile components.
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Appendix A

Definitions and Proofs for Chapter 2

A.1 Technical Results and Definitions

A.1.1 Sobolev Sieve Spaces

Establishing consistency and asymptotic normality of functionals requires a pre-

cise definition of the sieve approximation spaces. The final sieve spaces of interest

are collections of conditional densities that we obtain by first defining a space of

joint densities, and whose future payoff component can be integrated out to yield

marginals. As mentioned above, the space of joint densities is the Gallant-Nychka

class of densities first defined in Gallant and Nychka (1987). This class of densities

is reviewed here.
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The Gallant-Nychka Joint Density Spaces

Let u � py,xq P Rdu , where du � 1� dx, and define the following notation for higher

order derivatives,

Dλfpuq � Bλ1Bλ2 . . . Bλdu
Buλ1

1 Buλ2
2 . . . Buλdudu

fpuq,

with λ � pλ1, . . . , λduq1 consisting of nonnegative integer elements. The order of the

derivative is |λ| � °du
i�1|λi|, and D0f � f .

Definition A.1.1. (Sobolev norms). For 1 ¤ p   8, define the Sobolev norm of f

with respect to the nonnegative weight function ζpuq by

‖f‖m,p,ζ �
�� ¸

|λ|¤m

»
|Dλfpuq|pζpuqdu

�
1{p

.

For p � 8 and f with continuous partial derivatives to order m, define

‖f‖m,8,ζ � max
|λ|¤m

sup
uPRdu

|Dλfpuq|ζpuq.

If ζpuq � 1, simply write ‖f‖m,p and ‖f‖m,8. Associated with each of these norms

are the weighted Sobolev spaces

Wm,p,ζpRduq � tf P LppRduq : Dλf P LppRduqu,

where 1 ¤ p ¤ 8.

The following definitions are precisely the same as the collections H and HK in

Gallant and Nychka (1987).
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Definition A.1.2. (The Gallant-Nychka Joint Density Space FY,X). Let m denote

the number of derivatives that characterize the degree of smoothness of the true

joint SPD. Then for some integer m0 ¡ du{2, some bound B0, some small ε0 ¡ 0,

some δ0 ¡ du{2, and some probability density function h0puq with zero mean and

‖h0‖m0�m,2,ζ0 ¤ B0, let FY,X consist of those probability density functions fpuq with

zero mean that have the form

fY,Xpuq � hpuq2 � εh0puq

with ‖h‖m0�m,2,ζ0 ¤ B0 and ε ¡ ε0, where

ζ0puq � p1� u1uqδ0 .

Let

H � th P Wm0�m,2,ζ0 : ‖h‖m0�m,2,ζ0 ¤ B0u.

The collection FY,X is the parent space of densities from which the conditional

class of densities of interest are derived. Similarly, the sieve spaces that approxi-

mate the conditional parent space are obtained from joint density sieve spaces that

approximate FY,X .

Definition A.1.3. (The Gallant-Nychka Sieve Space FY,XK ). Let φpuq � expp�u1u{2q,

and let PKpuq denote a Hermite polynomial of degree K. FY,XK consists of those prob-

ability density functions with zero mean that are of the form

fY,XK puq � rPKpu� τqs2φpu� τq � εh0puq

with ‖PKpu� τqφpu� τq1{2‖m0�m,2,ζ0 ¤ B0 and ε ¡ ε0.
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The Conditional Density Spaces

The state-price density of interest, f0, is a conditional density that resides in some

parent function space of conditional densities. The associated sieve spaces are sub-

spaces constructed to approximate this parent function space. The conditional den-

sity spaces of interest are obtained by simply dividing each member of FY,X by a

marginal in x, after having integrated out the first component in y.

Definition A.1.4. (The Sieve Spaces F and FK). Define

FY |X �
"
f P Wm,1pRduq : fpy|xq � fY,Xpy,xq³

fY,Xpy,xqdx some fY,X P FY,X
*

and

FY |XK �
#
fK P Wm,1pRduq : fKpy|xq � fY,XK py,xq³

fY,XK py,xqdx some fY,XK P FY,XK

+
.

This definition says that to each joint density in FY,X , one can associate its

corresponding conditional density. This association naturally gives rise to map Λ :

FY,X Ñ F with the following continuity property. Note that the densities in F are

related to the return distribution via the change of variables formula in Eq. (2.2.3).

A.1.2 Intermediate Results

Lemma A.1.5. PXpf1,Zq � PXpf2,Zq if and only if f1 � f2 almost everywhere.

Proof. If f1 � f2 a.e., then by definition PXpf1,Zq � PXpf2,Zq. Conversely, suppose

PXpf1,Zq � PXpf2,Zq. Then differentiating the option price with respect to strike

twice yields

erτ
B2PXpf1,Zq

Bκ2

���
κ
� erτ

B2PXpf2,Zq
Bκ2

���
κ

ùñ f1pκ|Zq � f2pκ|Zq.
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Since this holds for every κ, the result follows.

Lemma A.1.6. The map Λ : FY,X Ñ F taking joint densities to their conditional

counterparts in F , i.e. ΛpfY,Xq � f , is ‖�‖m,8,ζ � ‖�‖m,1 Lipschitz continuous, where

f is defined pointwise by

fpy|xq � ΛpfY,Xpy,xqq � fY,Xpy,xq³
fY,Xpy,xqdx

and where ζpuq � p1� u1uqδ and δ P pdu{2, δ0q.

Proof. Let f0pxq �
³
R
fY,X0 py,xqdx and fKpxq �

³
R
fY,XK py,xqdx denote the marginal

distributions of X of generic fY,X0 P FY,X and fY,XK P FY,XK , and let g0pxq � 1{f0pxq

and gKpxq � 1{fKpxq denote their reciprocals. In this notation, the conditional

densities become f0py|xq � fY,X0 py,xqg0pxq and fKpy|xq � fY,XK py,xqgKpxq. Let

X � Rdx and Y � R.

The goal of the proof is to show that ‖fKpy|xq � f0py|xq‖m,1 is small whenever

the corresponding joint distribution error ‖fY,XK py,xq � fY,X0 py,xq‖m0�m,8,ζ is small.

Note first that by definition,

‖fKpy|xq � f0py|xq‖m,1 �
¸

|λ|¤m

»
X

»
Y
|DλfKpy|xq �Dλf0py|xq|dxdx

�
¸

|λ|¤m
‖DλfKpy|xq �Dλf0py|xq‖0,1, (A.1.1)

so we can focus on the ‖DλfKpy|xq �Dλf0py|xq‖0,1 terms on the RHS.
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‖DλfKpy|xq �Dλf0py|xq‖0,1 �
»
X

»
Y

���DλtfKpy|xqu �Dλtf0py|xqu
���dxdx

�
»
X

»
Y

���DλtfKpy,xqgKpxqu �Dλtf0py,xqg0pxqu
���dxdx

�
»
X

»
Y

���DλtrfKpy,xq � f0py,xqsgKpxqu

�DλtrgKpxq � g0pxqsf0py,xqu
���dxdx

¤
»
X

»
Y

���DλtrfKpy,xq � f0py,xqsgKpxqu
���dxdx

�
»
X

»
Y

���DλtrgKpxq � g0pxqsf0py,xqu
���dxdx

� ‖DλtrfKpy,xq � f0py,xqsgKpxqu‖0,1

� ‖DλtrgKpxq � g0pxqsf0py,xqu‖0,1. (A.1.2)

To bound the two terms on the RHS, we first need to establish bounds on the

marginals. Observe that since the marginal densities have one fewer component than

the joint densities, for |λ| ¤ m, define the multi-index α � p0, λ2, . . . , λduq. Then

‖DαfKpxq �Dαf0pxq‖0,1 �
»
X
|DαfKpxq �Dαf0pxq|dx

�
»
X
|Dα

»
Y
fY,XK py,xqdx�Dα

»
Y
fY,X0 py,xqdx|dx

�
»
X
|
»
Y
DαfY,XK py,xqdx�

»
Y
DαfY,X0 py,xqdx|dx (A.1.3)

¤
»
X

»
Y
|DαfY,XK py,xqdx�DαfY,X0 py,xq|dxdx

¤ ‖fY,XK � fY,X0 ‖m,8,ζ
»
Rdu

p1� u1uq�δdu,
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where the last two inequalities are the triangle and Hölder’s inequality, respectively.

The interchange between the integration and differentiation operator on the third

line is due to the dominated convergence theorem with dominating function derived

from the norm bound on functions in FY,X as follows. By assumption,

fY,X � h2 � ε0h0,

where ‖h‖m0�m,2,ζ0   B0. Thus,

|ζ0puq1{2hpuq| ¤ max
|λ|¤m

sup
uPRdu

|Dλζ0puq1{2hpuq|

� ‖ζ1{2
0 h‖m,8

¤M2‖h‖m0�m,2,ζ0 by Gallant and Nychka (1987) Lemma A.1(b)

 M2B0.

Therefore,

ζ0puqhpuq2 ¤ pM2B0q2

hpuq2 ¤ pM2B0q2p1� u1uq�δ0 ¤ pM2B0q2p1� u1uq�δ.

Similar reasoning establishes a bound on h0, so we have

fY,X ¤ const.p1� u1uq�δ,

where the RHS is integrable. By dominated convergence, this establishes the va-

lidity of interchanging the differentiation and integration operator in Eq. (A.1.3).
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Therefore,

‖fKpxq � f0pxq‖m,1 �
¸

|α|¤m

»
X
|DαtfKpxqu �Dαtf0pxqu|dx

�
¸

|α|¤m
‖DαfKpxq �Dαf0pxq‖0,1

¤ const.‖fY,XK � fY,X0 ‖m,8,ζ
»
Rdu

p1� u1uq�δdu,

which implies that if ‖fY,XK � fY,X0 ‖m,8,ζ Ñ 0, then ‖fKpxq � f0pxq‖m,1 Ñ 0. Next,

observe that this type of convergence holds for the reciprocal marginals g � 1{f too,

due to the continuity of the operator f ÞÑ 1{f (since f has a lower density bound of

order ε0h0). Thus, ‖gKpxq � g0pxq‖m,1 Ñ 0 as well.

We are now ready to examine the two terms on the RHS of Eq. (A.1.2). Apply

Leibniz’ formula (see Adams and Fournier (2003)) to get

DλtrgKpxq � g0pxqsf0py,xqu �
¸
β¤λ

�
λ

β

�
Dλ�βtgKpxq � g0pxquDβf0py,xq,

so that by the triangle inequality, Hölder’s inequality, and the definitions of Sobolev
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norms,

‖DλtrgKpxq � g0pxqsf0py,xqu‖0,1 ¤

¸
β¤λ

�
λ

β

�
‖Dλ�βtgKpxq � g0pxquDβf0py,xq‖0,1

¤
¸
β¤λ

�
λ

β

�
‖Dλ�βtgKpxq � g0pxqu‖0,1‖Dβf0py,xq‖0,8

¤ const.‖gKpxq � g0pxq‖m,1‖f0py,xq‖m,8

¤ const.‖gKpxq � g0pxq‖m,1. (A.1.4)

Similarly,

‖DλtrfKpy,xq � f0py,xqsgKpxqu‖0,1 ¤

¸
β¤λ

�
λ

β

�
‖Dλ�βtfKpy,xq � f0py,xquDβgKpxq‖0,1

¤
¸
β¤λ

�
λ

β

�
‖Dλ�βtfKpy,xq � f0py,xqu‖0,8‖DβgKpxq‖0,1

¤ const.‖fKpy,xq � f0py,xq‖m,8‖gKpxq‖m,1

¤ const.‖fKpy,xq � f0py,xq‖m,8,ζ0‖gKpxq‖m,1

¤ const.‖fKpy,xq � f0py,xq‖m,8,ζ0‖gKpxq � g0pxq � g0pxq‖m,1

¤ const.‖fKpy,xq � f0py,xq‖m,8,ζ0‖gKpxq � g0pxq‖m,1

� const.‖fKpy,xq � f0py,xq‖m,8,ζ0‖g0pxq‖m,1. (A.1.5)

Plugging Eqs. (A.1.4) and (A.1.5) into the RHS of Eq. (A.1.2), we see that

‖DλfKpy|xq �Dλf0py|xq‖0,1 Ñ 0 whenever ‖fKpy,xq � f0py,xq‖m,8,ζ0 Ñ 0. By Eq.
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(A.1.1), this means that we have ‖fKpy|xq�f0py|xq‖m,1 Ñ 0 whenever ‖DλfKpy|xq�

Dλf0py|xq‖0,1 Ñ 0, which is the statement of the lemma.

This result formalizes an intuitive notion: when two joint densities in FY,X are

close, then so are the conditional densities in F . The Lemma provides the Sobolev

norms for which this intuition is correct. Furthermore, this property will be used

below to regulate the complexity of the space of option pricing functions that are

obtained by integrating the option payoff against a candidate from F . Note that the

map in Lemma A.1.6 is also surjective by definition.

The final sieve spaces on which the asymptotic theory is built are of the following

form.

Definition A.1.7. (Sieve Spaces). The sieve spaces of interest are denoted F �

ΛrclpFY,Xqs and FY |XK � ΛrclpFY,XK qs, where clp�q denotes the closure.

The following is a consequence of Lemma A.1.6.

Corollary A.1.8. There exists a continuous extension of Λ to a mapping Λ :

clpFY,Y q Ñ clpFY |Y q, where clp�q denotes the closure.

Proof. Note that clpFY |Xq is a closed subset of a (complete) Sobolev space and

is therefore complete (p. 194 Royden and Fitzpatrick (2010)). In addition, Lemma

A.1.6 shows that Λ : FY,X Ñ FY |X is Lipschitz continuous and is therefore uniformly

continuous. Therefore, this map has a unique uniformly continuous extension Λ from

FY,X to clpFY,Xq (p. 196 Royden and Fitzpatrick (2010)). This extension sends

clpFY |Xq into clpFY |Xq.
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To establish the asymptotic properties of the sieve estimator, the following two

conditions are required.

Lemma A.1.9. The sieve spaces FK satisfy the following conditions:

(i) FK is compact in the topology generated by ‖�‖m,1 for all K ¥ 0.

(ii) Y8
K�0FK is dense in F with the topology generated by ‖�‖m,1.

Proof. Continuity of the Λ map above means that the spaces FK inherit the topolog-

ical properties of their preimages under Λ. Since Theorem 1 of Gallant and Nychka

(1987) says that clpFY,Xq is compact in ‖�‖m,8,ζ , we have that clpFY,XK q are compact

as well. By continuity of Λ, this means that FK is compact in ‖�‖m,1, which shows

(i). Similarly, Theorem 2 of Gallant and Nychka (1987) shows that Y8
K�0F

Y,X
K is a

dense subset of clpFY,Xq, so Y8
K�0clpFY,XK q is as well. Next, note that the definition

of F says that Λ is surjective. Because the image of a dense set is again dense under

a continuous surjective map, we have that ΛpY8
K�0clpFY,XK qq � Y8

K�0ΛpclpF Y,X
K qq �

Y8
K�0FK is dense in F under ‖�‖m,1, showing (ii).

Finally, the densities are related to option prices via the following result.

Lemma A.1.10. Under Assumption 2.4.1, the option pricing functional PY pf,Zq is

(i) almost surely locally |�|, ‖�‖m,1-Lipschitz continuous in f .

(ii) locally ‖�‖2, ‖�‖m,1-Lipschitz continuous in f .

Proof. (i) Let ε ¡ 0 be given, and fix an f0 P F . Under Assumption 2.4.1, there

exists an ‖�‖m,1�open ball Bδpf0q of radius δ such that

sup
fPBδpf0q

|Spf,Zq| ¤M P� a.s.
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Then choose η � mintε, δu{p2Mq, and consider any f P Bηpf0q. Using put-call parity,

|PY pf,Zq � PY pf0,Zq| � |CY pf,Zq � S0e
�qτ � κe�rτ � CY pf0,Zq � S0e

�qτ � κe�rτ |

� |CY pf,Zq � CY pf0,Zq|

¤ sup
gPpf,f0q

|BCY pg,ZqBf |‖f � f0‖m,1

� sup
gPpf,f0q

|CY pg,Zq|‖f � f0‖m,1

¤ sup
gPpf,f0q

|ST pg,Zq|‖f � f0‖m,1

¤M‖f � f0‖m,1 a.s.,

¤ ε{2

so that |PY pf,Zq � PY pf0,Zq|   ε. The third line in the preceding display is due

to the functional mean value theorem, the fourth due to the linearity of CY pf,Zq in

f , the fifth is a consequence of no arbitrage bounds on option prices, and the final

inequality is due to our assumption.

(ii) follows from (i), after observing that

sup
fPBδpf0q

‖ST pf,Zq‖2
2 � sup

fPBδpf0q
ErST pf,Zq2W pZqs ¤ Er sup

fPBδpf0q
ST pf,Zq2W pZqs ¤ const.

by combining Assumption 2.4.1 and Assumption 2.4.2 (i). Choose η similar to (i)

above, but depending on const. Then perform the derivations under (i) above, re-

placing |�| with ‖�‖2 to obtain the desired result.
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A.2 Appendix: Proofs

Proof of Lemma 2.1 Let αpB, τq � p°Kτ
j�0 β0jHjpτq, . . . ,

°Kτ
j�0 βKyjHjpτqq1. Then

»
fX,ZK py, τqdy �

» �
Ky¸
k�0

αkpB, τqHkpyq
�2

φpτqφpyqdy

� φpτq
» Ky¸
k�0

αkpB, τq2Hkpyq2φpyqdy � φpτq
Ky¸
k�0

αkpB, τq2

� αpB, τq1αpB, τqφpτq,

where the second and third equality follow from the orthonormality of the Hermite

polynomials. Then,

fKpy|τq � fX,ZK py, τq³
fX,ZK py, τqdy �

�°Ky
k�0 αkpB, τqHkpyq

�2

φpτqφpyq
αpB, τq1αpB, τqφpτq

�
°2Ky
k�0 αpB, τq1AkαpB, τqHkpyqφpyq

αpB, τq1αpB, τq

where the last equality and the definition of Ak follow by applying Proposition 1 of

Leon, Mencia, and Sentana (2009). The result follows.

Proof of Proposition 1 I follow the derivation of León and Sentana (2009), which

differs due to the conditioning on τ . The plug-in estimator of the population option
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price in equation (2.2.4), is given by

PY pfK ,Zq � e�rτ
» dpZq

�8

�
κ� SeµpZq�σpZqY

	
fKpY |τqdY

� κe�rτ
» dpZq

�8
fKpY |τqdY � Se�rτ�µpZq

» dpZq

�8
eσpZqY fKpY |τqdY. (A.2.1)

The integral in the first term becomes

» dpZq

�8
fKpY |τqdY �

» dpZq

�8

�
2Ky¸
k�0

γkpB, τqHkpY qφpY q
�
dY

�
2Ky¸
k�0

γkpB, τq
» dpZq

�8
HkpY qφpY qdY � ΦpdpZqq �

2Ky¸
k�1

γkpB, τq?
k

Hk�1pdpZqqφpdpZqq,

(A.2.2)

where the last equality follows from integration properties of the Hermite functions.

The integral in the second term on the right-hand side (RHS) of equation (A.2.1)

can further be simplified by integrating by parts. Let

I�k pdpZqq �
» dpZq

�8
eσpZqYHkpY qφpY qdY.

For k � 0,

I�0 pdpZqq �
» dpZq

�8
eσpZqY φpY qdY � eσpZq

2{2
» dpZq�σpZq

�8
φpuqdu � eσpZq

2{2Φpdpzq � σpzqq
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by a change of variables. For k ¥ 1,

I�k pdpZqq �
» dpZq

�8
eσpZqYHkpY qφpY qdY

�
�
� 1?

k
eσpZqYHk�1pY qφpY q

�dpZq
�8

� σpZq?
k

» dpZq

�8
eσpZqYHk�1pY qφpY qdY

� � 1?
k
eσpZqdpZqHk�1pdpZqqφpdpZqq � σpZq?

k
I�k�1pdpZqq.

Thus,

» dpZq

�8
eσpZqY fKpY |τqdY �

» dpZq

�8
eσpZqY

�
2Ky¸
k�0

γkpB, τqHkpY qφpY q
�
dY

�
2Ky¸
k�0

γkpB, τq
» dpZq

�8
eσpZqYHkpY qφpY qdY �

2Ky¸
k�0

γkpB, τqI�k pdpZqq

� γ0pB,ZqeσpZq2{2Φpdpzq � σpzqq �
2Ky¸
k�1

γkpB, τqI�k pdpZqq

� 1 � eσpZq2{2Φpdpzq � σpzqq �
2Ky¸
k�1

γkpB, τqI�k pdpZqq (A.2.3)

Plugging equations (A.2.2) and (A.2.3) into (A.2.1) obtains the desired result. The

proof for call options is analogous and is therefore omitted.

Proof of Proposition 2 Let Lpfq � Et�1
2
rP � PY pf,Zqs2W u � Et`pf, Y qu,

where Y � pP,Zq, and W � W pZq is a strictly positive weighting function. ` is

concave in f , and L is strictly concave in f . The goal is to estimate the unknown
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P 0
Y pZq � ErP |Zs by invoking the general sieve consistency theorem in Chen (2007)

(i.e. her Theorem 3.1). This requires verification of her Conditions 3.1’ - 3.3’, 3.4,

and 3.5(i), which adapts to the present notation as follows:

Condition 3.1’.

(i) Lpfq is continuous at f0 P F , Lpf0q ¡ �8.

(ii) for all ε ¡ 0, Lpf0q ¡ suptfPF :dpf,f0q¥εu Lpfq

Condition 3.2’.

(i) FK � FK�1 � � � � � F , for all K ¥ 1.

(ii) For any f P F , there exists πKf P FK such that dpf, πKfq Ñ 0 as K Ñ 8.

Condition 3.3’.

(i) Lnpfq is a measurable function of the data tYiuni�1 for all f P FK

(ii) For any data tYiuni�1, Lnpfq is upper semicontinuous on FK under dp�, �q.

Condition 3.4. The sieve spaces FK are compact under dp�, �q.

Condition 3.5.

(i) For all K ¥ 1, supfPFK |Lnpfq � Lpfq| � 0.

I verify each of these conditions in turn.
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Condition 3.1’: Assumption 2.4.2 (ii) implies Lpf0q � 0 ¡ �8. Also,

Lpf0q � Lpfq

� �Et1

2
rP � PY pf0,Zqs2W pZqu � Et1

2
rP � PY pf,Zqs2W pZqu

� 1

2
EtrP 2 � 2PPY pf,Zq � PY pf,Zq2 � P 2 � 2PPY pf0,Zq � PY pf0,ZqsW pZqu

� 1

2
EtrPY pf,Zq � PY pf0,Zqsr�2P � PY pf,Zq � PY pf0,ZqsW pZqu

� �EtrPY pf,Zq � PY pf0,ZqsrpP � PY pf0,Zqq � 1

2
pPY pf,Zq � PY pf0,ZqqsW pZqu

� 1

2
EtrPY pf,Zq � PY pf0,Zqs2W pZqu

� 1

2
‖PY pf,Zq � PY pf0,Zq‖2

2.

As dpfn, f0q Ñ 0, the local Lipschitz continuity condition derived in Lemma A.1.10

implies that the RHS tends to zero, i.e. Lpf0q � Lpfq � |Lpf0q � Lpfq| Ñ 0. This

establishes Condition 3.1’(i). As for Condition 3.1’(ii), note that continuity of Lpfq

at f0 implies that for any η ¡ 0, there exists a ε ¡ 0 such that for all f satisfying

dpf, f0q   ε, we have ‖PY pf,Zq � PY pf0,Zq‖2   η. The contrapositive of this

statement reads: Given any ε ¡ 0, there exists η ¡ 0 such that if dpf, f0q ¥ ε, then

‖PY pf,Zq � PY pf0,Zq‖2 ¥ η. Now let ε ¡ 0 be given as in Condition 3.1’(ii), and

consider any f P tf P F : dpf, f0q ¥ εu. By the previous derivations,

Lpf0q � Lpfq � 1

2
‖PY pf,Zq � PY pf0,Zq‖2

2 ¥
1

2
η2,

so

Lpf0q � sup
tfPF :dpf,f0q¥εu

Lpfq � inf
tfPF :dpf,f0q¥εu

rLpf0q � Lpfqs ¥ 1

4
η2 ¡ 0,
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which establishes Condition 3.1’(ii).

Condition 3.2’: Condition 3.2’(i) follows readily from the orthogonality of Hermite

polynomials. Condition 3.2’(ii) is shown in Lemma A.1.9 (ii).

Condition 3.3’: First note that Chen’s Theorem 3.1 still goes through if we only

require Lnpfq’s upper semi-continuity to hold almost surely. To this end, observe

that Assumption 2.4.2 (i) implies that Pi is almost surely finite, i.e. D a Borel set ΩF

with Pipωq   8 for all ω P ΩF ,1 and Assumption 2.4.1 with no arbitrage imposed

implies PY pf,Ziq is locally bounded P� a.s. on F . Therefore Pi�PY pf,Ziq is finite

on ΩF .

Next, fix ω P ΩF . Given any sequence fj P FK with ‖fj � f‖m,1 Ñ 0,

|Lnpfjq � Lnpfq| ¤ 1

n

ņ

i�1

���rPY pfj,Zipωqq � PY pf,Zipωqqs

rpPipωq � PY pf,Zipωqqq � 1

2
pPY pfj,Zipωqq � PY pf,ZipωqqqsW pZipωqq

���
¤ const.

1

n

ņ

i�1

t|rPY pfj,Zipωqq � PY pf,Zipωqqs2W pZipωqq|

� |rpPipωq � PY pf,ZipωqqqpPY pfj,Zipωqq � PY pf,ZipωqqqsW pZipωqq|u.

¤ const.
1

n

ņ

i�1

t sup
gPpfj ,fq

|PY pg,Zipωqq|2‖fj � f‖2
m,1

� rpPipωq � PY pf,Zipωqqq sup
gPpfj ,fq

|PY pg,Zipωqq|‖fj � f‖m,1u

Ñ 0

where the last inequality follows from the mean value theorem, and Assumption

1 To see this, note by Markov’s inequality that Pp|Pi| ¡ Mq ¤ V arpPiq{M2. Applying the
Borel-Cantelli Lemma then shows that Pi is almost surely finite. See Billingsley (1995).
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2.4.1 implies that the suprema are bounded for sufficiently large j. Hence Lnpfq is

almost surely continuous and therefore upper semi-continuous. On the other hand,

Lnpfq � 1
n

°n
i�1 �1

2
rPi � PY pf,Ziqs2W pZiq is continuous in Zi for each f P F and is

therefore measurable. Thus Condition 3.3’(i) is satisfied.

Condition 3.4: Compactness of the FK is the result of Lemma A.1.9 (i).

Condition 3.5(i): Finally, we require the uniform convergence of the empirical crite-

rion Lnpfq � 1
n

°n
i�1 �1

2
rPi�PY pf,Zqs2Wi over sieves, i.e. @K ¥ 1, supfPFK |Lnpfq�

Lpfq| pÑ 0 as n Ñ 8. First, note that by Assumption 2.4.2 (i) and the law of large

numbers, Lnpfq � Lpfq � opp1q pointwise in f on FK . Second, standard arguments

show

sup
fPFK
|L1npfq| ¤ sup

fPFK

1

n

ņ

i�1

|Pi � PY pf,Ziq||W pZiq|

¤ 1

n

ņ

i�1

|PiW pZiq|� sup
gPFK
|PY pg,Ziq|

�
1

n

ņ

i�1

|W pZiq|
�

¤
�

1

n

ņ

i�1

|Pi|2
�1{2 �

1

n

ņ

i�1

|W pZiq|2
�1{2

� sup
gPFK
|PY pg,Ziq|

�
1

n

ņ

i�1

|W pZiq|
�
.

The first term is Opp1q by Assumption 2.4.2 (i). The second term is also Opp1q by

the following arguments. By Lemma A.1.9 (i), the FK are compact. Next, cover

each point in FK with balls of radius small enough to make the local boundedness

Assumption 2.4.1 hold. By compactness of FK , there exists a finite subcover tUiuNi�1

of FK where for each set Ui in the subcover, supfPUi Spf,Zq ¤ Mi P � a.s. Then

M � maxtM1, . . . ,MNu is a bound on supgPFK |PY pg,Ziq|, so the second term in

the above display is Opp1q under Assumption 2.4.2 (i). Hence, by the mean value
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theorem, for f1, f2 P FK ,

|Lnpf1q � Lnpf2q| ¤ Opp1q‖f1 � f2‖m,1.

This Lipschitz condition, the compactness of FK , and the pointwise convergence of

Lnpfq to Lpfq mean that the conditions for Corollary 2.2 in Newey (1991) are met,

so that suphPHK
|Lnphq � Lphq| pÑ 0, as required. Since the conditions for Chen’s

Theorem 3.1 are met, we conclude that dpf̂n, f0q � opp1q. Applying Lemma A.1.10

gives ‖PY p pfn,Zq � PY pf0,Zq‖2
pÑ 0.

Proof of Proposition 3 Recall that the option prices PY pZq are generated by

a conditional density, i.e. PY pZq � PY pf,Zq, where f P F is the target of a Lips-

chitz map with preimage fY,X � h2 � ε0h0. The function h P H lives in a Sobolev

ball of radius B0. The complexity of the space of possible option prices P is then

firmly linked to the complexity of the Sobolev ball H. The proof strategy is therefore

to establish this link, and then to apply Theorem 3.2 in Chen (2007) once we have

a handle on the complexity of P .

Application of Theorem 3.2 in Chen (2007) requires verification of her Condi-

tions 3.6, 3.7, and 3.8, reproduced here for the current notation. It also requires

the computation of a certain bracketing entropy integral, which is undertaken below.

Condition 3.6 requires an i.i.d. sample, which we have already assumed in Assump-

tion 2.4.2. It remains to check Conditions 3.7 and 3.8 and to compute the bracketing

entropy integral.
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Condition 3.7. There exists C1 ¡ 0 such that @ε ¡ 0 small,

sup
PY PBεpP 0

Y q
V ar

�
`pPY , Yiq � `pP 0

Y , Yiq
� ¤ C1ε

2.

Condition 3.8. For all δ ¡ 0, there exists a constant s P p0, 2q such that

sup
PY PBδpP 0

Y q

��`pPY , Yiq � `pP 0
Y , Yiq

�� ¤ δsUpYiq,

with ErUpYiqγs ¤ C2 for some γ ¥ 2.

First, note that `pPY , Yiq � `pP 0
Y , Yiq � W pZiqrPY pZiq �P 0

Y pZiqstei� 1
2
rPY pZiq �

P 0
Y pZiqsu. Then

Etr`pPY , Yiq � `pP 0
Y , Yiqs2u

� EtW pZiq2rPY pZiq � P 0
Y pZiqs2tei � 1

2
rPY pZiq � P 0

Y pZiqsu2

� EtW pZiq2rPY pZiq � P 0
Y pZiqs2e2

i u � Et1

4
W pZiq2rPY pZiq � P 0

Y pZiqs4u

� EtW pZiq2rPY pZiq � P 0
Y pZiqs2σpZiqu � 1

4
EtW pZiq2rPY pZiq � P 0

Y pZiqs4u

¤ const.‖PY � P 0
Y ‖2

2 �
1

4
EtW pZiq2rPY pZiq � P 0

Y pZiqs4u

where the last inequality uses the bound from Assumption 2.4.3. The second term

on the RHS can be further bounded,

EtW pZiq2rPY pZiq � P 0
Y pZiqs4u

¤ C sup
ZPZ

rPY pZq � P 0
Y pZqs2EtrPY pZiq � P 0

Y pZiqs2W pZiqu

� C‖PY � P 0
Y ‖2

8‖PY � P 0
Y ‖2

2
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The smoothness of PY and P 0
Y can be used to bound ‖PY � P 0

Y ‖2
8 as follows. First,

let

Cj,ηpclpRduqq �
!
f P CmpclpRduqq : max

|λ|¤j
sup
uPRdu

|Dλfpuq| ¤ L

max
|λ|�j

sup
u1�u2PRdu

|Dλfpu1q �Dλfpu2q|
|u1 � u2|η

¤ L
)

denote a Hölder space. Let m � j � k, η � 1, k � du � 1. If the domain Z satisfies

some mild regularity conditions, the Sobolev Embedding Theorem (Theorem 4.12

Adams and Fournier (2003) Part II) implies that Wm,1pRduq ãÑ Cj,ηpclpRduqq, where

j � m � k � m � du � 1 ¥ 1 by Assumption 2.4.5. Thus Assumption 2.4.5 ensures

that Wm,1pRduq can be embedded in a Hölder space consisting of functions that

are at least once continuously differentiable and therefore Lipschitz. Now, since the

smoothness of

PY pZq � e�rτ
» dpZq

�8
rκ� S0e

µpZq�σpZqY sfpY |XqdY

depends on that of f (apply Leibniz’ formula), which is continuously differentiable,

then by Lemma 2 in Chen and Shen (1998), one has ‖PY �P 0
Y ‖8 ¤ ‖PY �P 0

Y ‖2{p2�dxq.

Therefore

EtW pZiq2rPY pZiq � P 0
Y pZiqs4u ¤ C‖PY � P 0

Y ‖
2�4{p2�dxq
2 ,

and one has

Etr`pPY , Yiq � `pP 0
Y , Yiqs2u ¤ const.‖PY � P 0

Y ‖2
2 �

C

4
‖PY � P 0

Y ‖
2�4{p2�dxq
2 .

This implies that Condition 3.7 is satisfied for all ε ¤ 1.
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To show Condition 3.8, note that

|`pPY , Yiq � `pP 0
Y , Yiq| � |rPY pZiq � P 0

Y pZiqs
�
ei � 1

2
rP 0

Y pZiq � PY pZiqs
�
|

¤ const.‖PY � P 0
Y ‖8t|ei|�

1

2
‖P 0

Y ‖8 �
1

2
‖PY ‖8u.

The terms involving ‖P 0
Y ‖8 and ‖PY ‖8 are bounded as a consequence of the local

boundedness of the stock price in Assumption 2.4.1 as well as the compactness of the

sieve space (Lemma A.1.9).2 Thus Lemma 2 in Chen and Shen (1998) and another

appeal to the Sobolev Embedding Theorem imply that

|`pPY , Yiq � `pP 0
Y , Yiq| ¤ const.‖PY � P 0

Y ‖8UpYiq

¤ const.UpYiq‖PY � P 0
Y ‖

2{p2�dxq
2

for UpYiq � |ei| � const. Thus s � 2{p2 � dxq is the required modulus of continuity,

and γ � 2 by Assumption 2.4.2. This establishes Condition 3.8.

An appeal to Chen (2007)’s Theorem 3.2 requires the computation of δn satisfying

δn � inf

"
δ P p0, 1q :

1?
nδ2

» δ

bδ2

b
Hr spw,Gn, ‖�‖2qdw

*
,

for the bracketing entropy Hr spw,Gn, ‖�‖2q, where

Gn � t`pPY , Yiq � `pP 0
Y , Yiq : ‖PY � P 0

Y ‖2 ¤ δ, PY P PKnu.
2 See also the argument in the proof of Proposition 2.
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Consider the following chain of inequalities

|`pPY , Yiq � `pP 0
Y , Yiq| � |rPY pZiq � P 0

Y pZiq||ei � 1

2
rP 0

Y pZiq � PY pZiqs|

¤M1‖f � f0‖m,1UpYiq

¤M2UpYiq‖fY,X � fY,X0 ‖m,8,ζ0 by Lemma A.1.6

�M2UpYiq‖phY,Xq2 � phY,X0 q2‖m,8,ζ0 by Def. A.1.2

¤M3UpYiq‖hY,X � hY,X0 ‖m0�m,2,ζ0 (A.2.4)

To see the last inequality, observe that

‖phY,Xq2 � phY,X0 q2‖m,8,ζ0 ¤ C‖hY,X � hY,X0 ‖
m,8,ζ1{2

0
‖hY,X � hY,X0 ‖

m,8,ζ1{2
0

¤ C1‖ζ1{2
0 phY,X � hY,X0 q‖m,8C2‖ζ1{2

0 phY,X � hY,X0 q‖m,8

¤ C3‖hY,X � hY,X0 ‖m0�m,2,ζ0C4‖hY,X � hY,X0 ‖m0�m,2,ζ0

¤ C3p2B0qC4‖hY,X � hY,X0 ‖m0�m,2,ζ0 .

for some constants Mj and Cj, and where the first inequality follows from Gallant

and Nychka (1987) Lemma A.3, the second from Gallant and Nychka (1987) Lemma

A.1(d), the third from Gallant and Nychka (1987) Lemma A.1(b), and the fourth by

the definition of Hn as a bounded Sobolev ball.

Theorem 2.7.11 in Van Der Vaart and Wellner (1996) implies that the bracketing

number for Gn can be bounded

Nr spw,Gn, ‖�‖2q ¤ N

�
w

2CM3

,Hn, ‖�‖m0�m,2,ζ0



,

where the RHS is by the covering number of a Sobolev ball with dimension Kn �

rKypnq � 1srKx,1pnq � 1s . . . rKx,dxpnq � 1s. By Lemma 2.5 in Van De Geer (2000),
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we can further bound the RHS, giving

Nr spw,Gn, ‖�‖2q ¤ N

�
w

2CM3

,Hn, ‖�‖m0�m,2,ζ0



¤
�

1� 8B0CM3

w


Kn

.

Therefore,

1?
nδ2

n

» δn

bδ2
n

b
Hr spw,Gn, ‖�‖2qdw ¤ 1?

nδ2
n

» δn

bδ2
n

d
Kn log

�
1� 8B0CM3

w



dw

¤ C
1?
nδ2

n

a
Knδn,

which is less than or equal to a constant for the choice δn �
a
Kn{n. Put Kypnq �

Kx,1pnq � � � � � Kx,dxpnq � n1{p2pm0�mq�duq, so that Kn � ndu{p2pm0�mq�duq, yielding

δn �
?
Kn?
n

� ndu{r2p2pm0�mq�duqsn�1{2 � n
�pm0�mq

2pm0�mq�du .

On the other hand, this choice of Kn combined with Assumption 2.4.4 yields the

approximation error rate

‖rPY pZiq � P 0
Y pZiq‖2 ¤ const.‖hY,X � hY,X0 ‖m0�m,2,ζ0 � OpK�α

n q � O
�
n

�αdu
2pm0�mq�du

	
,

where the inequality follows from the ones in Eq. (A.2.4). Applying Chen (2007)’s

Theorem 3.2 yields the stated result.

Proof of Proposition 4 I verify Assumptions 3.1 - 3.4 of Chen et al. (2013) (CLS).

Linearity of v ÞÑ BΓpP 0
Y q

BPY rvs is satisfied for the linear functional Γ in Eq. (2.5.1), since

BΓpP 0
Y q

BPY rav1 � bv2s �
³
ωpZqrav1 � bv2sdZ1 � a

³
ωpZqv1pZqdZ1 � b

³
ωpZqv2pZqdZ1 �
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a
BΓpP 0

Y q
BPY rv1s � bBΓpP 0

Y q
BPY rv2s. CLS Assumption 3.1(ii) is also trivially satisfied, since Γ is

a linear functional. By Assumption 2.5.1 (iii) and the rate in Proposition 3, we also

have ‖v�n � v�‖� ‖P 0,n
Y � P 0

Y ‖ � opn�1{2q. Thus CLS Assumption 3.1 is satsified.

CLS Assumption 3.2 is directly assumed under our Assumption 2.5.1 (iv).

CLS Assumption 3.3(i) follows from the linearity of `1pP 0
Y ,Ξqrav1 � bv2s � rP �

P 0
Y pZqsW pZqpav1pZq � bv2pZqq � a`1pP 0

Y ,Ξqrv1s � b`1pP 0
Y ,Ξqrv2s. To show CLS As-

sumption 3.3(ii), we invoke Lemma 4.2 of Chen (2007). Take

sup
t‖PY �P 0

Y ‖2¤δu
|rP 0

Y pZq � PY pZqsBPY pβqBβ R�1
Kn
GKn| ¤Mδ.

by Assumption 2.5.1 (ii). Lemma B.2.1 implies that the entropy integral of Chen

(2007) (4.2.2) is satisfied. CLS Assumption 3.3(ii) therefore follows after invoking

Lemma 4.2 of Chen (2007). Next, note that CLS Assumption 3.3.(iii) follows by

definition of the least squares objective function (see e.g. Shen (1997) Example 1).

Finally, define the empirical process µtgpΞqu � 1
n

°n
i�1 gpΞiq � EgpΞiq, and let

u�n � v�n{‖v�n‖sd. Then

?
nµt`1pP 0

Y ,Ξqru�nsu �
1?
n

ņ

i�1

`1pP 0
Y ,Ξqrv�ns

V arp`1pP 0
Y ,Ξiqrv�nsq

�
�
G1
KnR

�1
Kn

ΣKnR
�1
Kn
GKn

	�1� 1?
n

ņ

i�1

`1pP 0
Y ,Ξqrv�ns

	

�
�
G1
KnR

�1
Kn

ΣKnR
�1
Kn
GKn

	�1� 1?
n

ņ

i�1

ei
BPY pβq
Bβ R�1

Kn
GKn

	
dÑ Np0, 1q

by continuous mapping theorem and a standard central limit theorem for i.i.d.
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samples. CLS Assumption 3.4 then follows.

Chen et al. (2013) Theorem 3.1 then implies

?
n

Γp pPY q � ΓpP 0
Y q

‖v�n‖sd
dÑ Np0, 1q.

Next, we want to replace ‖v�n‖sd with its estimate

‖pv�n‖2
sd,n � yV ar� 1?

n

ņ

i�1

`1p pPY ,Ξiqrpv�ns
�
. (A.2.5)

First note that Corollary B.2.2 implies that

|‖pv�n‖
‖v�n‖

� 1| � Oppε�nq,
‖pv�n � v�n‖
‖v�n‖

� Oppε�nq

by application of CLS Lemma 5.1. Then following the proof of CLS Theorem 5.1

with modifications to the weight functions, consider

pΛ � 1?
n

ņ

i�1

`1p pPY ,Ξiqrpv�ns
� 1?

n

ņ

i�1

!
`1p pPY ,Ξiqrpv�ns � Er`1p pPY ,Ξiqrpv�nss � `1pP 0

Y ,Ξiqrpv�ns � Er`1pP 0
Y ,Ξiqrpv�nss)

� 1?
n

ņ

i�1

!
Er`1p pPY ,Ξiqrpv�nss � Er`1pP 0

Y ,Ξiqrpv�nss � ErrpP 0
Y ,Ξiqrpv�n, pPY � P 0

Y ss
)

� 1?
n

ņ

i�1

!
ErrpP 0

Y ,Ξiqrpv�n, pPY � P 0
Y ss

)

� 1?
n

ņ

i�1

`1pP 0
Y ,Ξiqrpv�ns

� Î1 � Î2 � Î3 � Î4.
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Corollary B.2.2 (iii) and (iv) implies that Î1 � opp‖pv�n‖q and Î2 � Opp
?
nε�nεn‖pv�n‖q,

which makes

pΛ � opp‖pv�n‖q �Opp
?
nε�nεn‖pv�n‖q

� 1?
n

ņ

i�1

txpv�n � v�n, pPY � P 0
Y y � xv�n, pPY � P 0

Y yu

� 1?
n

ņ

i�1

`1pP 0
Y ,Ξiqrpv�n � v�ns �

1?
n

ņ

i�1

`1pP 0
Y ,Ξiqrv�ns.

By arguments similar to the proof of CLS Theorem 5.1, we have

?
n‖v�n‖�1

sd xv�n, pPY � P 0
Y y � ‖v�n‖�1

sd

1?
n

ņ

i�1

`1pP 0
Y ,Ξiqrv�ns � opp1q

and

|
?
nxpv�n � v�n, pPY � P 0

Y y| ¤
?
n‖pv�n � v�n‖‖ pPY � P 0

Y ‖ � Opp
?
n‖v�n‖ε�nεnq

and

| 1?
n

ņ

i�1

`1pP 0
Y ,Ξiqrpv�n � v�ns| ¤ ‖pv�n � v�n‖ sup

vPWn

| 1?
n

ņ

i�1

`1pP 0
Y ,Ξiqrvs| � Opp‖v�n‖ε�nq.

Since
?
nε�nεn � op1q, we combine these results to obtain

‖pv�n‖sd,n
‖v�n‖sd

� ‖v�n‖�1
sd

yV ar �pΛ	

� ‖v�n‖�1
sd

yV ar� 1?
n

ņ

i�1

`1pP 0
Y ,Ξiqrv�ns � opp1q

�
pÑ ‖v�n‖�1

sd ‖v
�
n‖sd � 1.
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Therefore

?
nrΓp pPY q � ΓpPY qs
‖pv�n‖sd,n �

?
nrΓp pPY q � ΓpPY qs
‖v�n‖sd,n

‖v�n‖sd,n
‖pv�n‖sd,n dÑ Np0, 1q
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Appendix B

Implementation Details, Riesz Representors, and

Technical Lemmas

B.1 Implementation Details

B.1.1 Gradients and Hessian

The objective function to be minimized is

Lnpβq � 1

n

ņ

i�1

1

2

�
pi � PXpβ, ziq

�2

Wi � 1

n

ņ

i�1

`pβ, Yiq. (B.1.1)

The gradient and Hessian of the objective function are

BLnppβq
Bβ � 1

n

ņ

i�1

B`ppβ, Yiq
Bβ � 1

n

ņ

i�1

�
�
pi � PXppβ, ziq�Wi

BPXppβ, ziq
Bβ (B.1.2)
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B2Lnppβq
BβBβ1 � 1

n

ņ

i�1

B2`ppβ, Yiq
BβBβ1

� 1

n

ņ

i�1

#
�
�
pi � PXppβ, ziq�Wi

B2PXppβ, ziq
BβBβ1 �Wi

BPXppβ, ziq
Bβ

BPXppβ, ziq
Bβ

1+
.

(B.1.3)

The pricing function PXpβ, ziq is found in Proposition 1,

PXpβ, ziq � κe�riτi
�

Φpdpziqq �
2Kxpnq¸
k�1

γkpβ, τiq?
k

Hk�1pdpziqqφpdpziqq
�

� Sie
�riτi�µpziq

�
eσpziq

2{2Φpdpziq � σpziqq �
2Kxpnq¸
k�1

γkpβ, τiqI�k pdpziqq
�

(B.1.4)

where Φp�q is the standard normal CDF, Kn � pKxpnq, Kτ pnqq, and where

I�k pdpziqq �
σpziq?
k
I�k�1pdpziqq �

1?
k
eσpziqdpziqHk�1pdpziqqφpdpziqq, for k ¥ 1,

I�0 pdpziqq � eσpziq
2{2Φpdpziq � σpziqq,

and γkpβ, τiq, β � vecpBq is the coefficient function

γkpβ, τiq � αpB, τq1AkαpB, τq
αpB, τq1αpB, τq ,

Ak is the known matrix of constants in Leon, Mencia, Sentana (2009) Prop. 1, and

αpB, τq �

����
°Kz
j�0 β0jHjpτq

...°Kz
j�0 βKxjHjpτq

���� � B �H
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for

B �

������
β00 β01 . . . β0Kτ

β10 β11 . . . β1Kτ
...

βKx0 βKx1 . . . βKxKτ

������ , H �

����
H0pτq

...

HKτ pτq

���� .

The only place where β shows up in PXpβ, zq is through each of the γkpβ, τq, k �

1, . . . , Kx. Hence to find first and second derivatives of PXp�, zq we must find them

for γkp�, τq.

Note that

γkpB, τq � rH 1B1B1Hs�1H 1B1AkBH.

I suppress the k subscript on A in subsequent derivations. Using the matrix differ-

ential conventions in Fackler (2005), it can be shown that

BγkpB, τq
BB � BvectγkpB, τqu

BvectBu � Bγkpβ, τq
Bβ

� rH 1B1BHs�1
!
pH 1 bH 1B1Aq � pH 1B1A1 bH 1qTpKx�1q,pKτ�1q

)
� rH 1B1BHs�2rH 1B1ABHs

!
pH 1 bH 1B1q � pH 1B1 bH 1qTpKx�1q,pKτ�1q

)
,

(B.1.5)

where Tm,n is an mn � mn permutation matrix satisfying for any matrix Cm�n,

vectC 1u � Tm,nvectCu. Then,

BPXppβ, ziq
Bβ � κe�riτi

�
Φpdpziqq �

2Kxpnq¸
k�1

1?
k

Bγkpβ, τq
Bβ Hk�1pdpziqqφpdpziqq

�

� Sie
�riτi�µpziq

�
eσpziq

2{2Φpdpziq � σpziqq �
2Kxpnq¸
k�1

Bγkpβ, τq
Bβ I�k pdpziqq

�
.
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To obtain the Hessian, decompose the expression in Eq. (B.1.5) into its four

terms,

f1pBq � rH 1B1BHs�1pH 1 bH 1B1Aq

f2pBq � rH 1B1BHs�1pH 1B1A1 bH 1qTpKx�1q,pKτ�1q

f3pBq � rH 1B1BHs�2rH 1B1ABHspH 1 bH 1B1q

f4pBq � rH 1B1BHs�2rH 1B1ABHspH 1B1 bH 1qTpKx�1q,pKτ�1q

To avoid clutter, let u1pBq � rH 1B1BHs�1, v1pBq � pH 1 bH 1B1Aq. Then

u11pBq � �rH 1H 1BHs�2
!
pH 1 bH 1B1q � pH 1B1 bH 1qTpKx�1q,pKτ�1q

)
v11pBq � H 1 b pH b A1q

so

f 11pBq � v1pBq1u11pBq � rIpKx�1qpKτ�1q b u1pBqsv11pBq.

Next, for v2pBq � pH 1B1A1 bH 1qTpKx�1q,pKτ�1q,

v12pBq � H 1 b T 1pKx�1q,pKτ�1qpAbHq,

so

f 12pBq � v2pBq1u11pBq � rIpKx�1qpKτ�1q b u1pBqsv12pBq.

Next, note that f3pBq and f4pBq are products of three functions of B, so I make use

of the product rule for i � 3, 4:

f 1ipBq � DupBqm�pvpBqp�qwpBqq�n � rwpBq1vpBq1 b Imsu1pBq

� pIn b upBqq
!
pwpBq1 b Ipqv1pBq � pIn b vpBqw1pBqq

)
.
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In this setup, m � p � q � 1 and n � pKx � 1qpKτ � 1q, the number of free

coefficients. To obtain f3pBq, set

upBq � rH 1B1BHs�2, vpBq � H 1B1ABH, wpBq � H 1 bH 1B1.

Then

u1pBq � �2rH 1B1BHs�3
!
pH 1 bH 1B1q � pH 1B1 bH 1qTpKx�1q,pKτ�1q

)
v1pBq � pH 1 bH 1B1Aq � pH 1B1A1 bH 1qTpKx�1q,pKτ�1q

w1pBq � H 1 b pH b IKx�1q.

The expression for f 14pBq is obtained similarly by using the same upBq and vpBq as

above but by changing wpBq to

wpBq � pH 1B1 bH 1qTpKx�1q,pKτ�1q

w1pBq � H 1 b T 1pKx�1q,pKτ�1qpIKx�1 bHq.

Combining these gives

B2γkpβ, τiq
BβBβ1 � f 11pBq � f 12pBq � f 13pBq � f 14pBq.

Then,

B2PXppβ, ziq
BβBβ1 � κe�riτi

�
Φpdpziqq �

2Kxpnq¸
k�1

1?
k

B2γkpβ, τiq
BβBβ1 Hk�1pdpziqqφpdpziqq

�

� Sie
�riτi�µpziq

�
eσpziq

2{2Φpdpziq � σpziqq �
2Kxpnq¸
k�1

B2γkpβ, τiq
BβBβ1 I�k pdpziqq

�
.
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B.2 Technical Definitions and Results

B.2.1 Riesz Representors

The aim is to connect the sieve asymptotic theory with simple non-linear least squares

implementations. It is therefore helpful to adopt the notation PKn
X pZq � PXpβn,Zq

and `pPKn
X ,Zq � `pβn,Zq for the purposes of this section. Then following Chen et al.

(2013), one can define the inner product

xP 1
X � P 0

X , P
2
X � P 0

Xy � �EtrpP 0
X , Y qrP 1

X � P 0
X , P

2
X � P 0

Xsu,

where

rpP 0
X , Y qrP 1

X � P 0
X , P

2
X � P 0

Xs �
B`1pP 0

X � ηpP 2
X � P 0

Xq, Y qrP 1
X � P 0

Xs
Bη

�����
η�0

can be interpreted as a second-order Gateaux derivative in the directions P 1
X � P 0

X

and P 2
X � P 0

X . The associated norm is given by

‖PX � P 0
X‖2 � �EtrpP 0

X , Y qrPX � P 0
X , PX � P 0

Xsu.

Heuristically, this norm measures deviations of the objective function from its linear

approximation and will have a Hessian interpretation later on.

In light of the consistency and rate results in Propositions 2 and 3, one can confine

the analysis to the local setting of Chen et al. (2013). That is, the convergence rate

εn in Proposition 3 implies that pPX P Bn with probability approaching one, where

Bn � B0 X PKn , where B0 � tPX P PKn : ‖PX � P 0
X‖2 ¤ εn log log nu.
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Let V � clsppB0q � tP 0
Xu and Vn � clsppBnq � tP 0,n

X u, where clspp�q denotes the

closed linear span and where P 0,n
X � πKnP

0
X denotes the orthogonal projection of P 0

X

onto the sieve space PKn .

Vn is a finite-dimensional Hilbert space, which implies that the functional ΓpPXq

in Eq. (2.5.1) has a Riesz representer v�n P Vn such that the Gateaux derivative in

the direction v P Vn can be expressed as an inner product

BΓpP 0
Xq

BPX rvs � BΓpP 0
X � ηvq
Bη

�����
η�0

� xv�n, vy

and

BΓpP 0
Xq

BPX rv�ns � ‖v�n‖2 � sup
vPVn,v�0

|BΓpP 0
Xq

BPX rvs|2{‖v‖2. (B.2.1)

To get a step closer to familiar expressions from non-linear least squares asymp-

totic theory, one linearizes the option pricing function PX . Since any v P Vn has the

form v � PKn
X � P 0,n

X , one has by mean value theorem v � BPXpβ,Zq
Bβ pβn � β0,nq for β

between βn and the coefficients of the projection P 0,n
X . Thus v�n � BPXpβ,Zq

Bβ pβ�n �β0,nq

for some β�n that depends on the functional ΓpPKn
X q.

Now, for each γn � pβn � β0,nq, define the associated

GKn �
BΓzpP 0

Xq
BPX

1BPXpβ,Zq
Bβ , RKn � E

"
�B

2`pβ, Y q
BβBβ1

*
.

In this notation, the problem in Eq. (B.2.1) translates to finding the solution

γ�n � arg sup
γnPRKn ,γn�0

γ1nGKnG
1
Kn
γn

γ1nRKnγn
,
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which, following derivations similar to Chen et al. (2013), is given by

γ�n � R�1
Kn
GKn .

Therefore,

v�n �
BPXpβ,Zq

Bβ pβ�n � β0,nq � BPXpβ,Zq
Bβ γ�n �

BPXpβ,Zq
Bβ R�1

Kn
GKn ,

which by definition implies the norm

‖v�n‖2 � G1
KnR

�1
Kn
GKn .

Finally, the score process

`1pP 0
X , Yiqrv�ns � rPi � P 0

XpZiqsW pZiqv�n

� rPi � P 0
XpZiqsW pZiqBPXpβ,Ziq

Bβ γ�n

� eiW pZiqBPXpβ,Ziq
Bβ γ�n

is required, with so-called standard deviation norm

‖v�n‖2
sd � V ar

�
`1pP 0

X , Yiqrv�ns
	

� γ
1�
n E

�
e2
iW pZiq2BPXpβ,Ziq

Bβ
BPXpβ,Ziq

Bβ
1�
γ�n

� G1
KnR

�1
Kn

ΣKnR
�1
Kn
GKn . (B.2.2)

This object can be estimated by replacing the Riesz representer v�n with an esti-
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mate pv�n. Define

pRKn � � 1

n

ņ

i�1

B2`ppβn, Y q
BβBβ1

pΣKn �
1

n

ņ

i�1

B`ppβn, Y q
Bβ

B`ppβn, Y q
Bβ

1

pGKn �
»
Z1

ωpZqBPXp
pβn,Zq
Bβ dZ1 pv�n � BPXpβ,Zq

Bβ
pR�1
Kn

pGKn .

Then

‖pv�n‖2
sd,n � pG1

Kn
pR�1
Kn

pΣKn
pR�1
Kn

pGKn � pVn (B.2.3)

corresponds to the usual variance estimator using the familiar parametric Delta

method.

B.2.2 Technical Lemmas

Lemma B.2.1. For small δ ¡ 0, the subset of option pricing functions Gpδq �

tP 1
X , P

2
X P P : ‖P 1

X � P 2
X‖2 ¤ δu is P-Donsker.

Proof. By Lemma A.1.10,

‖P 1
X � P 2

X‖2 ¤M1‖f1 � f2‖m,1

¤M2‖fX,Z � fX,Z0 ‖m,8,ζ0 by Lemma A.1.6

�M2‖phX,Zq2 � phX,Z0 q2‖m,8,ζ0 by Def. A.1.2

¤M3‖hX,Z � hX,Z0 ‖m0�m,2,ζ0 (B.2.4)

¤ 2M3B0. (B.2.5)

Therefore Fpδq � tf P F : PXpf,Zq P Ppδqu is a bounded subset of the weighted

Sobolev space Wm0�m,2,ζ0pRduq. Therefore we can think of Ppδq as being Lipschitz
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in an index parameter that is a bounded subset of Wm0�m,2,ζ0pRduq.

Theorem 2.7.11 in Van Der Vaart and Wellner (1996) then implies that the brack-

eting number for Gpδq can be bounded, i.e.

Nr spw,Gpδq, ‖�‖2q ¤ N

�
w

4B0M3

,HX,Z , ‖�‖m0�m,2,ζ0



¤ N

�
w

4B0M3

,HX,Z , ‖�‖8


,

where the second inequality follows from Gallant and Nychka (1987) Lemma A.1(c).

Therefore,

Hr spw,Gpδq, ‖�‖2q ¤ C2w
�du{m

by Corollary 4 of Nickl and Pötscher (2007). Because m ¡ du{2 by assumption on

the Gallant-Nychka spaces, we have that

» 8

0

H
1{2
r s pw,Gpδq, ‖�‖2qdw   8,

which is a sufficient condition for Gpδq to be P-Donsker (see Van Der Vaart and

Wellner (1996) p. 129).

Corollary B.2.2. For Wn � tv P Vn : ‖v‖ � 1u, ε�n � op1q, and
?
nε�nεn � op1q, the

following conditions are satisfied:

(i) supPXPBnv1,v2PWn
µntrpPX , Y qrv1, v2su � Oppε�nq.

(ii) supPXPBnvPWn
|BΓpPXq
BPX rvs � BΓpP 0

Xq
BPX rvs| � Opε�nq

(iii) supPXPBnvPWn

1?
n

°n
i�1

�
`1pPX , Yiqrvs � `1pP 0

X , Yiqrvs � Et`1pPX , Yiqrvsu
�
� op1q

(iv) supPXPBnvPWn
E
!
`1pPX , Yiqrvs�`1pP 0

X , Yiqrvs�rpP 0
X , Yiqrv, PX�P 0

Xs
)
� Opε�nεnq
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(v) supvPWn
| 1?

n

°n
i�1 `

1pP 0
X , Yiqrvs| � Opp1q.

Proof. (ii) holds trivially for the weighted integral functionals in Eq. (2.5.1). Direct

calculation of Gateaux derivatives shows `1pPX , Yiqrv1s � rP � PXpZqsW pZqv1pZq

and rpPX , Y qrv1, v2s � v1pZqv2pZqW pZq, where vjpZq � rP j
XpZq � P 0,n

X pZqs for some

P j
X P PKnX , which only involve objects from the Donsker class in Lemma B.2.1. The

remaining results hold by stochastic equicontinuity and/or application of ULLN and

UCLT.

B.3 Further Simulations and Examples

B.3.1 Simulation Parameters

Section 2.6 in the main paper simulates a double-jump process whose parameter val-

ues correspond to those from Andersen et al. (2012). For completeness, the parameter

values used in my simulations are given in Table B.1.

The headers of the table reflect the fact that the first three columns represent

models that can be viewed as special cases of the stochastic volatility price-jump and

volatility-jump model shown in the fourth column.

B.3.2 Bayesian Information Criterion Selection

I examine how the BIC selection relates to the familiar parametric data generating

processes in Eq. (2.6.1). To this end, I simulated a dense panel of option prices for

eight different maturities from the continuous time process in Eq. (2.6.1) for each

of the parameter specifications in Table B.1. Then, I drew a random sample of 250

options to mimic features of the option prices of a given trading day (in this case

January 5, 2005). Finally I performed the NLLS optimization in Eq. (2.2.13) for
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Table B.1: Parameter values used in the simulation exercises in Section 2.3.

Black-Scholes Heston SVJ SVJJ

V0 0.014 0.014 0.014 0.014
κ 4.032 4.032 4.032
V 0.014 0.014 0.014
ρ -0.460 -0.460 -0.460
v 0.200 0.200 0.200
λ 1.008 1.008
µJ -0.050 -0.050
σJ 0.075 0.075
µv 0.100
ρJ -0.500

Kx ranging from 1 to 9, and Kτ ranging from 0 to 2. The largest model involved

(9+1)(2+1) = 30 parameters.

Table B.2 records the squared coefficient values and the BIC expansion choices

for each of the Black-Scholes, Heston, SVJ, and SVJJ models. Recall that the sieve

coefficients are normalized to make their squares sum to one. Thus the squared

coefficients represent the share of weight, or loading, onto individual expansion terms.

Blank rows in the table reflect the fact that the BIC did not use expansions in x of

that order. Similarly, blank columns illustrate that the minimized BIC did not select

expansions in the τ dimension of that order. Thus, the fact that the BIC correctly

chose 0 expansion terms in x and 0 in τ means that the BIC correctly chose the

Black-Scholes model when faced with a Black-Scholes DGP. The next panel of Table

B.2 then shows that as stochastic volatility is added to the DGP, more expansion

terms (Kx � 3 and Kτ � 1) are required to fit the newly generated option surface.

This trend continues in the last two panels of Table B.2: the more complexity is
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added to the DGP, the more expansion terms are required to provide adequate fit.

Table B.2: BIC Selection Given Affine Jump-Diffusion DGP.

Black-Scholes Heston SVJ SVJJ

Kx \Kτ τ 0 τ 1 τ 2 τ 0 τ 1 τ 2 τ 0 τ 1 τ 2 τ 0 τ 1 τ 2

0 1.0 0.8 0.2 0.4 0.1 0.5 0.0 0.8 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0
8
9

B.3.3 30-day Measures

The fit of the sieve option pricer extends beyond observed maturities. Because the

estimation problem in Eq. (2.2.13) uses the entire option panel in a single step (i.e.

options of all available maturities), and because the sieve expansion of the state-price

density in (2.3.1) is bivariate in the return-maturity space, it is possible to simply

evaluate pPKn
X pκ, τ, S0, r, qq at arbitrary maturities τ � τ�.

The ability to evaluate pPKn
X pκ, τ, S0, r, qq at arbitrary maturities has applications

in the construction of time series of balanced option panels and term structures.

For instance, in the application to the variance risk premium in the next section, I

consider the expectation hypothesis regression, which requires weekly observations

on the V IXpτq for, say, τ � 30 days to maturity. However, exchange traded options

like the S&P 500 Index Options traded on the Chicago Board Options Exchange

183



(CBOE) have a fixed maturity date on the third Friday of each month. Hence, from

week to week, the observed options’ time-to-maturity shortens by one week, which

complicates the construction of a balanced time series. Moreover, as short-maturity

options expire, new long maturity options are added, causing a type of “cycling”

in the time series of observed maturities. Such deterministic cycling can induce

non-stationarities in the constructed option-implied time series [see Pan (2002)].

To address this issue, the CBOE’s VIX is computed by interpolating two VIX’s

that straddle the 30-day maturity. However, if the VIX is designed to approximate

the forward-looking risk-neutral expectation of realized variance, EQ
t rRVt,t�τ s, it is

unclear how such an interpolation maps to the true V IXp30q if 30-day time-to-

maturity options were actually observed.

Figure B.1 shows the result of evaluating the estimated sieve pricer on a maturity

that was not available for estimation – in this case 30 days – and comparing it with

true values that are known inside the simulation. That is, I simulated a dense set

of put option prices (i.e. 600 per maturity times 9 maturities, totalling 5,400 true

option prices) from the Heston submodel of Eq. (2.6.1) with days-to-maturity 17, 30,

45, 73, 164, 255, 346, 528, and 710. I then drew a random sample of 250 observations

from this dense set of true prices but omitted the options maturing at 30 days. I

then perturbed this sample with random errors to generate microstructure noise as

calibrated from actual data. The sieve estimator was then estimated on the 250 noisy

options.

In this setup, even though the sieve estimator was not permitted to “see” the

information contained in the 30-day maturity options, it was nonetheless able to
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Figure B.1: Projecting the Sieve onto Arbitrary Maturities. A dense set of true op-
tion prices is simulated from the Heston submodel Eq. (2.6.1) with days-to-maturity
17, 30, 45, 73, 164, 255, 346, 528, 710. A subset of 250 option prices is drawn from
this dense set, but omitting the 30-day maturity, and is perturbed with zero-mean
measurement error. The sieve least squares problem in Eq. (2.2.13) is solved with
BIC-selected Kx � 3 and Kτ � 1. Eqs. (2.3.2), (2.6.2), and (2.3.1) are then eval-

uated at the estimated coefficient matrix pB for τ � 17, 30, and 45. The 30-day
horizon (circles) is out-of-sample, since the estimation omitted data at the 30-day
horizon.

accurately predict what those option values were, given information on options at

other maturities. This is seen by comparing the circles (corresponding to the sieve)

with the solid line (true prices) in the left panel of Figure B.1. Moreover, the sieve

estimator does remarkably well in estimating the 30-day risk-neutral CDF (center

panel) and the 30-day risk-neutral PDF. It is useful to emphasize that all quantities

in the figure are available in closed-form via Eqs. (2.3.2), (2.6.2), and (2.3.1).

B.4 The P-Measure: Estimating EP
t rTVtpτqs

The variance risk premium requires the forecast of continuous variation, that is,

EP
t rTVtpτqs, which I obtain as follows. The data used for estimating EP

t rTVtpτqs are

last-tick-sampled 5-minute S&P 500 futures prices from the TAQ database. The 5-

minute sampling frequency is chosen to mitigate the well-known effects arising from
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market microstructure noise in ultra high-frequency realizations of the continuous-

time process in Eq. (2.7.1).

The advantage of using high-frequency observations for estimating quadratic vari-

ation and its components has been well-established in the last decade [see, for ex-

ample, Andersen et al. (2003)]. Reliable model-free estimators for the continuous

variation in Eq. (2.7.3) have since been developed, including the bipower varia-

tion estimator of Barndorff-Nielsen and Shephard (2004), the threshold estimator

by Mancini (2009), and the threshold multipower variation estimator by Corsi et al.

(2010). For brevity I present results only for Mancini’s estimator, although con-

clusions are not materially affected by the particular choice of continuous variation

estimator. In particular, Mancini (2009) shows that

yTV tpτq �
rτ{∆ns¸
i�1

|∆iX|21t|∆iX|2¤vnu
pÝÑ TVtpτq, (B.4.1)

where n is the number of 5-minute observations from t to t� τ , ∆n is the 5-minute

sampling interval, ∆iX � logpFi∆nq�logpFpi�1q∆nq, and vn is a thresholding sequence

that can depend on a local estimate of σs� [see Jacod and Protter (2012) p. 248].

To compute EP
t rTVtpτqs, however, only time-t information may be used. Hence, a

forecast of TVtpτq is required. Let TVt denote the intraday continuous variation for

one trading day. It is well-known that the realized volatility measures are persistent

and exhibit long-memory properties. In particular, Andersen et al. (2003) show that

the realized volatilities are well-described as integrated order d processes, i.e. Ipdq

for d P p0, 1
2
q. Thus, to obtain forecasts of TVt, it is reasonable to parsimoniously
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model TVt as a fractionally differenced ARMA process, ARFIMA(p, d, q). That is,

p1� LqdφpLqpyt � µq � θpLqεt (B.4.2)

where yt � logpTV 1{2
t q, φpLq and θpLq are the standard AR and MA lag polynomials,

and p1�Lqd is the fractional differencing filter. A plot of autocorrelations (not shown

for brevity) of TVt and p1 � LqdTVt reveals that setting d � 0.401 as in Andersen

et al. (2003) suffices to isolate the low-frequency movements in the TVt time series,

which is a key requirement for obtaining long-run forecasts. To obtain forecasts of

TVtpτq, one forecasts yt�h for h � 1, . . . , τ days out using Eq. (B.4.2) and then

inverts for TVtphq. Then TVtpτq is taken as the annualized sum of one day forecasts

between t and t� τ .1

1 An analogous forecast using an HARp1, 5, 22q process developed in Corsi (2009) was also con-
sidered and yields similar results.
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Appendix C

Proofs for Inference on Option Pricing Models

under Partial Identification

We prove the main theorems in Appendix C.1 based on some technical lemmas which

in turn are proved in Appendix C.2. Throughout the proof, we use K to denote a

generic constant which may change from line to line.

C.1 Proofs of main theorems

C.1.1 Proof of Theorem 3.1.1

The proof requires the following technical lemma, the proof of which is in Appendix

C.2.

Lemma C.1.1. Suppose Assumption A holds for some k ¥ 2. Let $ P p0, 1{2q and

q P r1, k{2s. Then we can decompose pVn,t � Vt � ζn,t � ζ 1n,t such that ζn,t and ζ 1n,t are

188



Ft-measurable and

E |ζn,t|q ¤ K
�
∆1�qp1�2$q
n �∆1�q{k�qp1{2�$q

n �∆pk�2qqp1{2�$q
n

�∆pq{2q^p1�q{kq
n

�
, (C.1.1)

E
�
ζ 1n,t|Ft�kn∆n

� � 0, E
��ζ 1n,t��q ¤ K∆q{4

n . (C.1.2)

If, in addition, k ¥ 2{ p1� 2$q, then

E |ζn,t|q ¤ K∆p1�qp1�2$qq^pq{2q
n . (C.1.3)

Proof of Theorem 3.1.1. Step 1. We prove part (a) in this step. By arguing

compoment by component, we can assume that m p�q is 1-dimensional without loss

of generality. Moreover, we only prove the case for the ask price, so

mpXt, v, Qi,t, Zi,t, Zt; θq � pAi,t � f pXt, v, Zi,t; θqqG pXt, v, Zi,t, Ztq ; (C.1.4)

the other cases involving Bi,t or pi,t follow the same argument with only notational

changes. We denote

fi,t � f pXt, Vt, Zi,t; θq , pfi,t � f
�
Xt, pVn,t, Zi,t; θ	 , fV,i,t � fV pXt, Vt, Zi,t; θq ,

Gi,t � G pXt, Vt, Zi,t, Ztq , pGi,t � G
�
Xt, pVn,t, Zi,t, Zt	 .

(C.1.5)

Then we can rewrite

m�
n,T pθq � T�1

Ţ

t�1

Nţ

i�1

pAi,t � fi,tqGi,t, mn,T pθq � T�1
Ţ

t�1

Nţ

i�1

pAi,t � pfi,tq pGi,t.
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We shall use the following estimates repeatedly. Since k ¥ 2{ p1� 2$q, by Lemma

C.1.1, for each q P r1, k{2s,

�
E|pVn,t � Vt|q

	1{q
¤ K∆

p1{q�p1�2$qq^p1{2q
n �K∆

1{4
n�

E|pVn,t � Vt|2q
	1{q

¤ K∆
1{q�2p1�2$q
n �K∆

1{2
n .

(C.1.6)

Recalling the decomposition pVn,t � Vt � ζn,t � ζ 1n,t as described in Lemma C.1.1,

we consider the following decomposition

T 1{2 �m�
n,T pθq �mn,T pθq

� � 4̧

j�1

R
pjq
n,T , (C.1.7)

where

R
p1q
n,T � T�1{2

Ţ

t�1

Nţ

i�1

p pfi,t � fi,t � fV,i,tppVn,t � VtqqGi,t,

R
p2q
n,T � T�1{2

Ţ

t�1

Nţ

i�1

pfV,i,tGi,t � fV,i,t�kn∆nGi,t�kn∆nq ppVn,t � Vtq,

R
p3q
n,T � T�1{2

Ţ

t�1

Nţ

i�1

fV,i,t�kn∆nGi,t�kn∆nζn,t,

R
p4q
n,T � T�1{2

Ţ

t�1

Nţ

i�1

fV,i,t�kn∆nGi,t�kn∆nζ
1
n,t.

We now provide estimates for R
pjq
n,T , 1 ¤ j ¤ 4. First consider R

p1q
n,T . Observe
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that,

E
��� pfi,t � fi,t � fV,i,tppVn,t � Vtqq

��� ¤ E
����ξn,t �pVn,t � Vt

	2
����

¤ K
�
E |ξn,t|k3

	1{k3

�
E
����pVn,t � Vt

���2k3{pk3�1q�
1�1{k3

¤ K∆1�1{k3�2p1�2$q
n �K∆1{2

n

¤ K∆1{2
n ,

where the first inequality follows Assumption B, the second inequality is by Hölder’s

inequality, the third inequality follows (C.1.6) and the last inequality holds because

$ P p3{8, 1{2q and k3 ¥ 2{ p8$ � 3q. Since Nt and Gi,t are bounded, we have

E
���Rp1q

n,T

��� ¤ KT 1{2∆1{2
n . (C.1.8)

Next, consider R
p2q
n,T . By Assumption B and the Cauchy-Schwarz inequality,

E
���pfV,i,tGi,t � fV,i,t�kn∆nGi,t�kn∆nq ppVn,t � Vtq

���
¤ �

E
�pfV,i,tGi,t � fV,i,t�kn∆nGi,t�kn∆nq2

��1{2
�
E
��pVn,t � Vt

	2
�
1{2 (C.1.9)

By the assumption of part (a), G px, v, z, z̃q does not depend on px, vq. Moreover,

recall that Zi,t and Zt are constant within each day. Hence, we have Gi,t � Gi,t�kn∆n .

Then by Assumption B4, E |fV,i,tGi,t � fV,i,t�kn∆nGi,t�kn∆n |2 ¤ K∆
1{2
n . Moreover, by

(C.1.6) and $ ¡ 3{8,

�
E
��pVn,t � Vt

	2
�
1{2

¤ K∆1{2�p1�2$q
n �K∆1{4

n ¤ K∆1{4
n . (C.1.10)
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Therefore, the majorant side of (C.1.9) can be further bounded by K∆
1{2
n ; thus,

E
���Rp2q

n,T

��� ¤ KT 1{2∆1{2
n . (C.1.11)

We now turn to R
p3q
n,T . We observe

E |fV,i,t�kn∆nGi,t�kn∆nζn,t| ¤ K
�
E
�pfV,i,t�kn∆nq4

��1{4 �E �
|ζn,t|4{3

�	3{4

� K∆p2$�1{4q^p1{2q
n

¤ K∆1{2
n ,

where the first inequality is by Hölder’s inequality, the second inequality follows

Lemma C.1.1 and the last inequality holds because $ ¡ 3{8. Hence,

E
���Rp3q

n,T

��� ¤ K∆1{2
n . (C.1.12)

Now, consider R
p4q
n,T . Observe that, by Lemma C.1.1, E

�
ζ 1n,t|Ft�kn∆n

� � 0.

By assumption B1, Nt is Ft-measurable. It is then easy to see that the quantity°Nt
t�1 fV,i,t�kn∆nGi,t�kn∆nζ

1
n,t forms a martingale difference sequence with respect to

the filtration pFtqt�1,...,T . By the Cauchy-Schwarz inequality, the boundedness of Nt

and Gi,t�kn∆n , and Lemma C.1.1 with q � 4, we derive

E
���Rp4q

n,T

���2 � 1

T

Ţ

t�1

E

���Nţ

i�1

fV,i,t�kn∆nGi,t�kn∆nζ
1
n,t

�2
��

¤ K
1

T

Ţ

t�1

E

�
Nţ

i�1

�
fV,i,t�kn∆nζ

1
n,t

�2

�

¤ K∆1{2
n . (C.1.13)
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Finally, combining (C.1.7), (C.1.8), (C.1.11), (C.1.12) and (C.1.13), we readily

derive the assertion of part (a).

Step 2. In this step, we prove part (b). As argued in step 1, we consider the

1-dimensional case and suppose (C.1.4) without loss of generality. We also maintain

the notations in (C.1.5). Observe that

E
���pAi,t � fi,tqGi,t �

�
Ai,t � pfi,t	 pGi,t

���
¤ E

���Ai,t � pGi,t �Gi,t

	���� E
���fi,t � pGi,t �Gi,t

	����KE
���� pfi,t � fi,t

	��� . (C.1.14)

Since G px, v, z, z̃q is continuously differentiable in v with bounded derivative, we

have

|Gi,t � pGi,t| ¤ K|pVn,t � Vt|. (C.1.15)

Since E|Ai,t|2 � E|fi,t|2 ¤ K by Assumption B3, we apply the Cauchy-Schwarz in-

equality and (C.1.10) to show that the first two terms on the majorant side of (C.1.14)

can be further bounded by K∆
1{4
n . Similarly, since | pfi,t � fi,t| ¤ χn,t|pVn,t � Vt| and

E |χn,t|2 ¤ K, we can bound the third term on the majorant side of (C.1.14) by

K∆
1{4
n . Hence, we derive

E
���pAi,t � fi,tqGi,t �

�
Ai,t � pfi,t	 pGi,t

��� ¤ K∆1{4
n .

The assertion of part (b) then readily follows.

Step 3. We now show part (c). We first consider the one-dimensional case.

Without loss, we consider the case for the ask price, so (C.1.4) is in force. We
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observe

E
���pAi,t � fi,tqGi,t �

�
Ai,t � pfi,t	 pGi,t

���2
¤ KE

���Ai,t �Gi,t � pGi,t

	���2 �KE
���fi,t � pGi,t �Gi,t

	���2 �KE
��� pGi,t

� pfi,t � fi,t

	���2 .
(C.1.16)

By Hölder’s inequality and (C.1.15),

E
���Ai,t �Gi,t � pGi,t

	���2 ¤
�
E
�
pAi,tq2k

1
�	1{k1 �

E
����pVn,t � Vt

���2k1{pk1�1q�
1�1{k1

¤ K∆1�1{k1�2p1�2$q
n �K∆1{2

n

¤ K∆1{2
n ,

where the second inequality follows (C.1.6) and the third inequality holds because

$ P p3{8, 1{2q and k1 ¥ 2{ p8$ � 3q. Similarly, we can also bound the last two terms

on the right-hand side of (C.1.16) by K∆
1{2
n . Hence, by Cauchy-Schwarz,

E
���m̃t pVt; θq � m̃t

�pVn,t; θ	���2 ¤ K∆1{2
n , (C.1.17)

which further implies that

E
��m̄�

n,T pθq � m̄n,T pθq
��2 ¤ K∆1{2

n . (C.1.18)

Since m̃t pVt; θq and m̄�
n,T pθq are L2-bounded by Assumption B3, it is then easy to

see that

E
���m̃t

�pVn,t; θ	���2 ¤ K, E |m̄n,T pθq|2 ¤ K. (C.1.19)

Let pΓ�l,T pθq be defined as pΓl,n,T pθq in (3.1.17) but with Vt in place of pVn,t. Observe
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that, by the triangle inequality,

���pΓl,n,T pθq � pΓ�l,T pθq���
¤ 1

T

¸
1¤t,t�l¤T

����m̃t

�pVn,t; θ	� m̃t pVt; θq
	�

m̃t�l
�pVn,t�l; θ	� m̄n,T pθq

	���
� 1

T

¸
1¤t,t�l¤T

���pm̄n,T pθq � m̄�
T pθqq

�
m̃t�l

�pVn,t�l; θ	� m̄n,T pθq
	���

� 1

T

¸
1¤t,t�l¤T

���pm̃t pVt; θq � m̄�
T pθqq

�
m̃t�l

�pVn,t�l; θ	� m̃t�l pVt�l; θq
	���

� 1

T

¸
1¤t,t�l¤T

|pm̃t pVt; θq � m̄�
T pθqq pm̄n,T pθq � m̄�

T pθqq| .

By the Cauchy-Schwarz inequality and (C.1.17), (C.1.18), (C.1.19), we derive

E
���pΓl,n,T pθq � pΓ�l,T pθq��� ¤ K∆1{4

n .

Since Ln,T � op∆1{4
n q by assumption, we derive E|pΣn,T pθq � pΣ�

T pθq | ¤ KLn,T∆
1{4
n �

o p1q. Hence, pΣn,T pθq � pΣ�
T pθq � op p1q.

For the multivariate case, we can use exactly the same argument to show that

each element of pΣn,T pθq � pΣ�
T pθq is op p1q, as asserted. l

C.1.2 Proof of Theorem 3.1.2

Proof. By Theorem 3.1.1 and Assumption D, we have

T 1{2 pm̄n,T pθ0q � m̄ pθ0qq dÝÑ N p0K ,Σ pθ0qq , pΣn,T pθ0q PÝÑ Σ pθ0q . (C.1.20)
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The proof for (3.1.23) and (3.1.24) then follows Theorem 1(a) and 1(b) in the sup-

plement to Andrews and Soares (2010) by specializing their proof to a fixed sequence

of data generating process. To make the proof self-contained, we prove a direct proof

below.

Let Z� � Ω pθ0q1{2 Y � with the same Y � in the definition of φn,T pθq (recall

(3.1.19)). By the continuous mapping theorem,

Sn,T pθ0q dÝÑ
2KI̧

j�1

�
Z�
j

�2

� 1tmjpθ0q�0u �
Ķ

j�2KI�1

�
Z�
j

�2
(C.1.21)

Moreover, for any (fixed) realization of Y � (hence Z�), by the continuous mapping

theorem (recall the notation φn,T p�q from (3.1.19)),

φn,T pθ0q PÝÑ
2KI̧

j�1

�
Z�
j

�2

� 1tmjpθ0q�0u �
Ķ

j�2KI�1

�
Z�
j

�2
. (C.1.22)

Below, let L denote the distribution function of the variable on the right-hand side

of (C.1.21) and denote by c pθ0, 1� αq the p1� αq-quantile of L.

We first prove (3.1.24), so condition (iv) is in force. Since c pθ0, 1� αq is a conti-

nuity point of L, we have c pθ0, 1� αq ¡ 0. Indeed, if c pθ0, 1� αq � 0 were true, the

continuity of L at c pθ0, 1� αq would imply L pc pθ0, 1� αqq � L p0q � 0; this would

be a contradiction to the fact that c pθ0, 1� αq is p1� αq-quantile of L for some

α P p0, 1q. Furthermore, we observe that L is strictly increasing at c pθ0, 1� αq and

thus 1�α is a continuity point of the quantile function associated with L. Combining
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this with (C.1.22), we derive

cn,T pθ0, 1� αq PÝÑ c pθ0, 1� αq . (C.1.23)

We then finish the proof by observing

P pθ0 P CSn,T p1� αqq � P pSn,T pθ0q ¤ cn,T pθ0, 1� αqq Ñ 1� α,

where the convergence follows (C.1.21) and (C.1.23), as well as the continuity of L p�q

at c pθ0, 1� αq .

We now turn to (3.1.23). By (3.1.24), it remains to consider the case in which

L is discontinuous at c pθ0, 1� αq. Note that this is possible only if c pθ0, 1� αq � 0

and kE � 0. Hence,

lim inf
∆nÑ0,TÑ8

P pθ0 P CSn,T p1� αqq

� lim inf
∆nÑ0,TÑ8

P pSn,T pθ0q ¤ cn,T pθ0, 1� αqq

¥ lim inf
∆nÑ0,TÑ8

P pSn,T pθ0q � 0q

� lim inf
∆nÑ0,TÑ8

P
� pD�1{2

j,n,T pθ0qT 1{2mj,n,T pθ0q ¥ 0 for 1 ¤ j ¤ 2kI

	
� L p0q ¥ 1� α.

This finishes the proof of (3.1.23). l

C.1.3 Proof of Theorem 3.1.4

The proof of Theorem 3.1.4 relies on the following technical lemma, whose proof is

given in Appendix C.2.
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Lemma C.1.2. Fix some constant $ P p5{12, 1{2q. Suppose (i) Assumption A holds

for some k ¥ maxt8, 2{p1�2$qu and Vt follows (3.2.1); (ii) Assumption B holds for

some k1 ¡ 2{ p12$ � 5q. Then

(a)
��E � pm�

n,t pθ0q
��� ¤ K∆

3$�5{4
n .

(b) E
�� pm�

n,t pθ0q
��4{p9�12$q ¤ K.

(c) For each s, t, the sequences pm�
s pθ0qpm�

n,tpθ0qqn¥1 and ppm�
n,t pθ0qqn¥1 are uni-

formly integrable.

Proof of Theorem 3.1.4. Step 1. In view of Assumption E1, we can and will state

limiting results under T Ñ 8 and n Ñ 8 interchangeably. We consider the k � 1

vector

Ξn,T � Cov

�
Ţ

t�1

T�1{2m�
t pθ0q ,

Ţ

t�1

T�1{2 pm�
n,t pθ0q

�
.

In this step, we show that as T Ñ 8,

Ξn,T Ñ 0. (C.1.24)

First, observe that

Ξn,T �
T�1̧

l��pT�1q

1

T

¸
1¤t,t�l¤T

Cov
�
m�
t pθ0q , pm�

n,t�l pθ0q
�
. (C.1.25)

Note that for each t, xIV n,t � IVt � Opp∆1{2
n q. Combining this with Lemma 3.1.3,

we deduce that for each t, pm�
n,t pθ0q converges stably in law to some variable ζt

which, conditionally on F , is centered Gaussian. Hence, by the property of stable
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convergence, we have for any fixed t and s,

�
m�
s pθ0q , pm�

n,t pθ0q
� dÝÑ pm�

s pθ0q , ζtq .

By Lemma C.1.2(c), pm�
s pθ0qpmn,tpθ0qqn¥1 and ppmn,t pθ0qqn¥1 are both uniformly inte-

grable. Hence, for fixed s and t, as nÑ 8,

Cov
�
m�
s pθ0q , pm�

n,t pθ0q
�Ñ Cov pm�

s pθ0q , ζtq � 0. (C.1.26)

Let }�}p denote the Lp-norm and r � 4{ p9� 12$q. By the mixing inequality,

��Cov �m�
t pθ0q , pm�

n,t�l pθ0q
��� ¤ Kα

1�1{p2k1q�1{r
mix,|l| ||m�

t pθ0q ||2k1 ||pm�
n,t�l pθ0q ||r.

By Assumptions B3, E5 and Lemma C.1.2(b), the majorant side of the above display

is summable over tl : |l|   8u. By dominated convergence, (C.1.25) and (C.1.26)

readily imply (C.1.24).

Step 2. Recall Σ pθ0q from Assumption D and let Ω pθ0q be the associated corre-

lation matrix. We introduce some notations:

pΣψ,n,T pθ0q �
� pΣn,T pθ0q 0k

0Jk pΣ�
n,T pθ0q

�
, pDψ,n,T pθ0q � Diag

�pΣψ,n,T pθ0q
	
,

Ωψ pθ0q �
�

Ω pθ0q 0k

0Jk 1

�
, ψ̄ �

�
E rm�

t pθ0qsJ , 0
	J

.

In this step, we show that

pD�1{2
ψ,n,T pθ0q

Ţ

t�1

�
ψn,t pθ0q � ψ̄

� dÝÑ N p0k�1,Ωψ pθ0qq . (C.1.27)
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By (C.1.24), Assumptions D3 (combined with Theorem 3.1.1(c)) and E3, we de-

rive pΣψ,n,T pθ0q � Σψ,n,T pθ0q � op p1q; then by continuous mapping, pΣ�1{2
ψ,n,T pθ0q �

Σ
�1{2
ψ,n,T pθ0q � op p1q. In particular, pΣ�1{2

ψ,n,T pθ0q � Op p1q by Assumptions D2 and E4.

By Theorem 3.1.1 (note that the conditions here are stronger than those in Theo-

rem 3.1.1) and Lemma C.1.2(a),
°T
t�1

�
E rψn,t pθ0qs � ψ̄

� � OpT 1{2∆
3$�5{4
n q � o p1q,

where the second equality is due to Assumption E1 and our choice of c1. Hence, by

Assumption E2,

pΣ�1{2
ψ,n,T pθ0q

Ţ

t�1

�
ψn,t pθ0q � ψ̄

� dÝÑ N p0, Ik�1q . (C.1.28)

It is also easy to see that

pD�1{2
ψ,n,T pθ0q pΣψ,n,T pθ0q pD�1{2

ψ,n,T pθ0q �
� pD�1{2

n,T pθ0q pΣn,T pθ0q pD�1{2
n,T pθ0q 0

0 1

�
PÝÑ Ωψ pθ0q . (C.1.29)

Combining (C.1.28) and (C.1.29), we derive (C.1.27) as claimed.

Step 3. We now prove the assertion of the theorem. Let Z� � Ω1{2 pθ0qY �. By

(C.1.27) and the continuous mapping theorem,

S 1n,T pθ0q dÝÑ
2kI̧

j�1

!�
Z�
j

�2

� 1tmjpθ0q�0u
)
�

ķ

j�2kI�1

�
Z�
j

�2 � pY ��q2 .

Let L1 denote the distribution function of the right-hand side of the above conver-

gence. Observe (i) the p1� αq-quantile of L1 is strictly positive for any α P p0, 1q,

and (ii) L1 is continuous at its p1� αq-quantile. The proof then follows a similar
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argument as the proof of Theorem 3.1.2. (The only difference is that we do not need

condition (v) in Theorem 3.1.2, because the continuity of the limiting distribution

at its quantiles automatically holds in the presence of equality restrictions, as shown

above.) l

C.2 Proofs of technical lemmas

In this appendix, we prove technical lemmas used in Appendix C.1. Throughout the

appendix, we set

X 1
t � X0 �

» t

0

bsds�
» t

0

σsdWs, X2
t � Xt �X 1

t. (C.2.1)

C.2.1 Proof of Lemma C.1.1

Step 1. We first introduce some notations and some preliminary estimates.Let

t pn, iq � t � kn∆n � i∆n, i � 0, . . . , kn. For any process Y , we denote ∆t,n
i Y �

Ytpn,iq � Ytpn,i�1q. We then set pV 1
n,t � pkn∆nq�1 °kn

i�1 |∆t,n
i X 1|2 and note that pVn,t

can be written as pVn,t � pkn∆nq�1 °kn
i�1 |∆t,n

i X|21t|∆t,n
i X| ¤ α∆$

n u. We denote for

i � 1, . . . , kn,

λt,ni � 1

∆
1{2
n

�» tpn,iq

tpn,i�1q
bsds�

» tpn,iq

tpn,i�1q

�
σs � σtpn,i�1q

�
dWs

�

βt,ni � σtpn,i�1q∆
t,n
i W {∆1{2

n .

Note that ∆t,n
i X 1{∆1{2

n � λt,ni � βt,ni .
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Recalling Vt � σ2
t and (3.1.20), by Itô’s formula, we can represent Vt as

Vt � V0 �
» t

0

bV,sds�
» t

0

σV,sdWs �
» t

0

σ1V,sdW
1
s �

» t

0

»
R
δV ps, zq pµ� νqpds, dzq,

where

bV,s � 2σsb̃s � σ̃2
s � σ̃12s �

³
R δ̃ ps, zq2 λ pdzq ,

σV,s � 2σsσ̃s, σ1V,s � 2σsσ̃
1
s, δV ps, zq � 2σs�δ̃ ps, zq � δ̃ ps, zq2 . (C.2.2)

We then set BV,t �
³t
0
bV,sds and MV,t � Vt � V0 � BV,t. By Hölder’s inequality,

E |bV,s|q ¤ K and hence for t ¡ s ¥ 0,

E |BV,t �BV,s|q ¤ K |t� s|q . (C.2.3)

By the Burkholder-Davis-Gundy inequality, as well as Lemma 2.1.5 of Jacod and

Protter (2012), we derive, for any 0 ¤ s   t with |t� s| ¤ 1,

E |MV,t �MV,s|q ¤ K. (C.2.4)

The decomposition asserted in the lemma is given by

pVn,t � Vt � ζn,t � ζ 1n,t,
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where

ζn,t �
4̧

j�1

ζ
pjq
n,t , ζ

p1q
n,t � pVn,t � pV 1

n,t, ζ
p2q
n,t �

1

kn

kņ

i�1

�
λt,ni

�2
,

ζ
p3q
n,t � 2

kn

kņ

i�1

λt,ni βt,ni , ζ
p4q
n,t �

1

kn

kņ

i�1

�
BV,tpn,i�1q �BV,t

�
,

ζ 1n,t � 1

kn

kņ

i�1

Vtpn,i�1q
��

∆t,n
i W {∆1{2

n

�2 � 1
	
� 1

kn

kņ

i�1

�
MV,tpn,i�1q �MV,t

�
.

It is clear that ζn,t and ζ 1n,t are Ft-measurable and E
�
ζ 1n,t|Ft�kn∆n

� � 0. It remains

to show the inequalities in the assertion.

Step 2. In this step, we show (C.1.1) and (C.1.3). It is easy to see that (C.1.1)

follows

E
���ζp1qn,t

���q ¤ K
�
∆1�qp1�2$q
n �∆1�q{k�qp1{2�$q

n �∆pk�2qqp1{2�$q
n

�
(C.2.5)

E
���ζp2qn,t

���q ¤ K∆n (C.2.6)

E
���ζp3qn,t

���q ¤ K∆pq{2q^p1�q{kq
n (C.2.7)

E|ζp4qn,t |q ¤ K∆q
n. (C.2.8)

Moreover, when k ¥ 2{ p1� 2$q, (C.1.3) follows (C.1.1) as an elementary conse-

quence. It remains to establish the estimates in the above display.

First consider (C.2.5). We use the following elementary inequality: for any w ¡ 0,

u ¡ 0, there exists some constant K ¡ 0, such that for all x, y P R,

��|x� y|2 1t|x�y|¤uu � x2
�� ¤ K

�
p|y| ^ uq2 � |x| p|y| ^ uq � |x|2�w

uw

�
. (C.2.9)
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Using (C.2.9) with x � ∆t,n
i X 1, y � ∆t.n

i X2, u � α∆$
n , and w � k{q � 2, we derive

E
�����∆t,n

i X
��2 1t|∆t,n

i X|¤α∆$
n u �

��∆t,n
i X 1��2���q

¤ K∆2$q
n E

�����∆t,n
i X2

∆$
n



^ 1

����2q

�K∆$q
n E

���∆t,n
i X 1��q �∆t,n

i X2

∆$
n

^ 1


q
�
�K∆�$pk�2qq

n E
���∆t,n

i X 1��k� .
Observe that p∆t,n

i X2{∆$
n q^1 is bounded and is non-zero only if jumps occur during

pt pn, i� 1q , t pn, iqs. Hence, for any r ¥ 0, Er|p∆t,n
i X2{∆$

n q^1|rs ¤ K∆n. Moreover,

by Hölder’s inequality and the Burkholder-Davis-Gundy inequality, E|∆t,n
i X 1|k ¤

K∆
k{2
n . Combining these estimates and using Hölder’s inequality, we derive

E

���∆t,n
i X 1��q �∆t,n

i X2

∆$
n

^ 1


q
�

¤
�
E
��∆t,n

i X 1��k	q{k�E
�

∆t,n
i X2

∆$
n

^ 1


qk{pk�qq�1�q{k

¤ K∆1�q{2�q{k
n ,

and hence

E
�����∆t,n

i X
��2 1t|∆t,n

i X|¤α∆$
n u �

��∆t,n
i X 1��2���q ¤ K∆1�2$q

n �K∆1�qp1{2�$�1{kq
n

�K∆2$q�$k�k{2
n . (C.2.10)

By Hölder’s inequality,

E
���ζp1qn,t

���q ¤ k�1
n ∆�q

n

kņ

i�1

E
�����∆t,n

i X
��2 1t|∆t,n

i X|¤α∆$
n u �

��∆t,n
i X 1��2���q . (C.2.11)

The claim (C.2.5) readily follows (C.2.10) and (C.2.11).
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Next, observe that by Hölder’s inequality and the Burkholder-Davis-Gundy in-

equality, we have for any r P r0, ks, E|βt,ni |r ¤ K and E|λt,ni |r ¤ K∆
pr^2q{2
n . By using

Hölder’s inequality again, we derive (C.2.6) as E|ζp2qn,t |q ¤ Kk�1
n

°kn
i�1 E|λt,ni |2q ¤ K∆n.

Similarly, we derive (C.2.7) as

E
���ζp3qn,t

���q ¤ Kk�1
n

kņ

i�1

E
��λt,ni βt,ni

��q
¤ Kk�1

n

kņ

i�1

�
E
��βt,ni ��k	q{k �E ��λt,ni ��qk{pk�qq	1�q{k

¤ K∆pq{2q^p1�q{kq
n . (C.2.12)

Finally, by Hölder’s inequality and (C.2.3), we derive (C.2.8).

Step 3. We now turn to (C.1.2). Observe that ζ 1n,t is a sum of martingale dif-

ferences. When q ¥ 2, by the Burkholder-Davis-Gundy inequality and Hölder’s

inequality,

E

����� 1

kn

kņ

i�1

Vtpn,i�1q
��

∆t,n
i W {∆1{2

n

�2 � 1
	�����
q

¤ Kk�q{2n . (C.2.13)

The estimate still holds when q P r1, 2s, by Jensen’s inequality. Combining the same

argument with (C.2.4), we derive

E

����� 1

kn

kņ

i�1

�
MV,tpn,i�1q �MV,t

������
q

¤ Kk�q{2n . (C.2.14)

By (C.2.13) and (C.2.14), we derive (C.1.2). l
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C.2.2 Proof of Lemmas 3.1.3 and C.1.2

We complement the definitions in (3.1.28) for the continuous component X 1 with

the following. Recall τ pt, n, iq � t � ikn∆n and denote ∆t,n
i,jX

1 � X 1
τpt,n,i�1q�j∆n

�

X 1
τpt,n,i�1q�pj�1q∆n

. We set

yCV 1
n,t � 2

Bņ

i�2

�
kņ

j�1

∆t,n
i,jX

1
��pV 1

n,τpt,n,iq � pV 1
n,τpt,n,i�1q

	
, where

pV 1
n,τpt,n,iq �

1

kn∆n

kņ

j�1

�
∆t,n
i,jX

1�2
, i P t1, . . . , Bnu .

(C.2.15)

We also complement (3.1.27) with

xIV 1
n,t �

ņ

i�1

��∆t,n
i X 1��2 . (C.2.16)

We first prove two auxiliary lemmas, Lemma C.2.1 and Lemma C.2.2, and then prove

Lemmas 3.1.3 and C.1.2. The proof of Lemma C.1.2 makes full use of these auxiliary

lemmas. The proof of Lemma 3.1.3 makes partial use of Lemma C.2.1, with much

to spare.

Lemma C.2.1. Let $ P �
5
12
, 1

2

�
and r P �

1, 4
9�12$

�
be constants. Suppose (i) As-

sumption A holds for some k ¥ 8_ 2
1�2$

and (ii) the process σt is continuous. Then

E
���∆�1{4

n

�yCV n,t �yCV 1
n,t

	���� E
���∆�1{4

n

�xIV n,t � xIV 1
n,t

	��� ¤ K∆3$�5{4
n ,

E
���∆�1{4

n

�yCV n,t �yCV 1
n,t

	���r � E
���∆�1{4

n

�xIV n,t � xIV 1
n,t

	���r ¤ K.

Proof. Step 1. In this step, we derive the following preliminary estimates: for any
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q P r0, ks,

E

����� kņ
j�1

��
∆t,n
i,jX

�
1t|∆t,n

i,j X|¤α∆$
n u �∆t,n

i,jX
1
	�����
q

¤ K∆1�qp1{2�$q
n �K∆pk�qqp1{2�$q

n ,(C.2.17)

E
���pV 1
τpt,n,iq � Vτpt,n,iq

���k{2 ¤ K∆k{8
n , (C.2.18)

E
���V̂ 1
τpt,n,iq � V̂ 1

τpt,n,i�1q
���k{2 ¤ K∆k{8

n . (C.2.19)

We start with (C.2.17). Observe that for any v ¡ 0, w ¡ 0, there exists a constant

K ¡ 0 such that for all x, y P R,

��px� yq 1t|x�y|¤vu � x
�� ¤ K

�
|y| ^ v � |x|1�w

vw

�
. (C.2.20)

For any q P r0, ks, applying (C.2.20) with x � ∆t,n
i,jX

1, y � ∆t,n
i,jX

2, v � α∆$
n , and

w � k{q � 1 yields

E
����∆t,n

i,jX
�

1t|∆t,n
i,j X|¤α∆$

n u �∆t,n
i,jX

1
���q

¤ KE
����∆t,n

i,jX
2��^∆$

n

�q��KE

���∆t,n
i,jX

1��k
∆
$pk�qq
n

�

¤ K∆1�$q
n �K∆k{2�$pk�qq

n .

By Hölder’s inequality and kn ¤ K∆
�1{2
n , we readily derive (C.2.17).

We now show (C.2.18). We denote a discretized version of the quantity X 1 by

X 1
n,s � X 1

τpt,n,i�1q�pj�1q∆n
, for s P pτ pt, n, i� 1q�pj � 1q∆n, τ pt, n, i� 1q�j∆ns. By
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Itô’s formula, we can decompose

pV 1
n,τpt,n,iq �

1

kn∆n

» τpt,n,iq

τpt,n,i�1q
2
�
X 1
s �X 1

n,s

� pbsds� σsdWsq � 1

kn∆n

» τpt,n,iq

τpt,n,i�1q
Vsds,

(C.2.21)

Recalling the classical estimate that E
��X 1

s �X 1
n,s

��k ¤ K∆
k{2
n , by Hölder’s inequality

and the Burkholder-Davis-Gundy inequality, we derive

$'&'% E
��� 1
kn∆n

³τpt,n,iq
τpt,n,i�1q 2

�
X 1
s �X 1

n,s

�
bsds

���k{2 ¤ K∆
k{4
n

E
��� 1
kn∆n

³τpt,n,iq
τpt,n,i�1q 2

�
X 1
s �X 1

n,s

�
σsdWs

���k{2 ¤ K∆
k{8
n .

(C.2.22)

Since σt (and hence Vt) is continuous, we have E |Vt � Vs|k{2 ¤ K |t� s|k{4 by a

standard estimate for continuous Itô processes. By Hölder’s inequality, we derive

E

����� 1

kn∆n

» τpt,n,iq

τpt,n,i�1q
Vsds� Vτpt,n,iq

�����
k{2

¤ K∆k{8
n . (C.2.23)

Combining (C.2.21)-(C.2.23), we have (C.2.18), which further implies (C.2.19).

Step 2. In this step, we show that

E
���yCV n,t �yCV 1

n,t

���r � E
���xIV n,t � xIV 1

n,t

���r ¤K∆1�rp$�3{4�2{kq
n �K∆1�r{2�3rp1{2�$q

n

(C.2.24)

�K∆1�r{k�r{2�2rp1{2�$q
n

�K∆pk�3rqp1{2�$q�r{2
n

We consider the following decomposition:

yCV n,t �yCV 1
n,t � R

p1q
n,t �R

p2q
n,t, (C.2.25)
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where

R
p1q
n,t � 2

Bņ

i�2

�
kņ

j�1

��
∆t,n
i,jX

�
1t|∆t,n

i,j X|¤α∆$
n u �∆t,n

i,jX
1
	��pV 1

n,τpt,n,iq � pV 1
n,τpt,n,i�1q

	

R
p2q
n,t � 2

Bņ

i�2

�
kņ

j�1

�
∆t,n
i,jX

�
1t|∆t,n

i,j X|¤α∆$
n u
��pVn,τpt,n,iq � pVn,τpt,n,i�1q

�
�pV 1

n,τpt,n,iq � pV 1
n,τpt,n,i�1q

		
.

We first consider R
p1q
n,t. Let q solve 1{q� 2r{k � 1. The conditions on $, r and k

imply qr ¤ k. Then we have

E

�����
�

kņ

j�1

��
∆t,n
i,jX

�
1t|∆t,n

i,j X|¤α∆$
n u �∆t,n

i,jX
1
	��

V̂ 1
τpt,n,iq � V̂ 1

τpt,n,i�1q
	�����
r

¤
�
E

����� kņ
j�1

��
∆t,n
i,jX

�
1t|∆t,n

i,j X|¤α∆$
n u �∆t,n

i,jX
1
	�����
qr�1{q �

E
���V̂ 1
τpt,n,iq � V̂ 1

τpt,n,i�1q
���k{2
2r{k

¤ K∆1�rp$�1{4�2{kq
n �K∆kp1{2�$q�rp3$�5{4q

n ,

where the first inequality is due to Hölder’s inequality and the second inequality

follows from (C.2.17) and (C.2.19). Since Bn ¤ K∆
�1{2
n , by the triangle inequality,

E
���Rp1q

n,t

���r ¤ K∆1�rp$�3{4�2{kq
n �K∆pk�3rqp1{2�$q�r{4

n . (C.2.26)

Now, we turn to R
p2q
n,t. By (C.2.5),

E
���pVτpt,n,iq � pV 1

τpt,n,iq
���r ¤ K

�
∆1�rp1�2$q
n �∆1�r{k�rp1{2�$q

n �∆pk�2rqp1{2�$q
n

�
.
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Since |°kn
j�1p∆t,n

i,jXq1t|∆t,n
i,jX| ¤ α∆$

n u| ¤ K∆
$�1{2
n , we derive

E
���Rp2q

n,t

���r ¤ K∆1�r{2�3rp1{2�$q
n �K∆1�r{k�r{2�2rp1{2�$q

n �K∆pk�3rqp1{2�$q�r{2
n .

(C.2.27)

Since xIV n,t � xIV 1
n,t � kn∆n

°Bn
i�1ppVτpt,n,iq � pV 1

τpt,n,iqq, it is easy to see that E|xIV n,t �
xIV 1

n,t|r can also be bounded by the right-hand side of (C.2.27), with much to spare.

Combining (C.2.25), (C.2.26) and (C.2.27), we derive (C.2.24).

Step 3. We now prove the assertion of the lemma. Using k ¥ 8 _ 2
1�2$

, it is

elementary to show that the second term on the majorant side of (C.2.24) dominates

other terms asymptotically. The first assertion follows (C.2.24) with r � 1. For the

second assertion, we observe that by (C.2.24),

E
���∆�1{4

n

�yCV n,t �yCV 1
n,t

	���r � E
���∆�1{4

n

�xIV n,t � xIV 1
n,t

	���r ¤ K∆1�9r{4�3$r
n .

Under the assumption that $ P p5{12, 1{2q and 1 ¤ r ¤ 4{p9� 12$q, the right-hand

side of the display is bounded by a constant, as asserted. l

Lemma C.2.2. Suppose Assumption A holds for some k ¥ 8. In addition, suppose

(3.2.1). Then

E
���E �

∆�1{4
n

�yCV 1
n,t � CVt

	���Ft�1

����� E
���E �

∆�1{4
n

�xIV 1
n,t � IVt

	���Ft�1

���� ¤ K∆1{4
n ,

(C.2.28)

E
���∆�1{4

n

�yCV 1
n,t � CVt

	���2 � E
���∆�1{4

n

�xIV 1
n,t � IVt

	���2 ¤ K.

(C.2.29)

Proof. Step 1. In this step, we introduce some notations and preliminary estimates.
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Recall τ pt, n, iq � t � ikn∆n. For notational simplicity, we denote τ piq � τ pt, n, iq.

By (C.2.21), we can decompose

pV 1
n,τpt,n,iq � 2

3̧

j�1

ζ
pjq
t,n,i � V̄ 1

τpt,n,iq, where

ζ
p1q
t,n,i �

1

kn∆n

» τpiq

τpi�1q

�
X 1
s �X 1

n,s

�
bτpi�1qds,

ζ
p2q
t,n,i �

1

kn∆n

» τpiq

τpi�1q

�
X 1
s �X 1

n,s

� �
bs � bτpi�1q

�
ds

ζ
p3q
t,n,i �

1

kn∆n

» τpiq

τpi�1q

�
X 1
s �X 1

n,s

�
σsdWs, V̄ 1

n,τpt,n,iq �
1

kn∆n

» τpiq

τpi�1q
Vsds.

(C.2.30)

Observe that V̄ 1
n,τpiq � V̄ 1

n,τpi�1q � pkn∆nq�1 ³τpiq
τpi�1q pVs � Vs�kn∆nq ds. By (3.2.1), we

decompose

V̄ 1
n,τpiq � V̄ 1

τpi�1q �
3̧

j�1

z
pjq
t,n,i, where

z
p1q
t,n,i �

1

kn∆n

» τpiq

τpi�1q

�» s

s�kn∆n

bV,udu



ds

z
p2q
t,n,i �

ρv

kn∆n

» τpiq

τpi�1q

�» s

s�kn∆n

σudWu



ds,

z
p3q
t,n,i �

p1� ρ2q1{2 v
kn∆n

» τpiq

τpi�1q

�» s

s�kn∆n

σudW
1
u



ds.

We then rewrite

pV 1
n,τpt,n,iq � pV 1

n,τpt,n,i�1q �
3̧

j�1

ζ
pjq
t,n,i �

3̧

j�1

ζ
pjq
t,n,i�1 �

3̧

j�1

z
pjq
t,n,i. (C.2.31)
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We also decomposeX 1
τpiq �X 1

τpi�1q � xt,n,i � yt,n,i, where

xt,n,i �
» τpiq

τpi�1q
bsds, yt,n,i �

» τpiq

τpi�1q
σsdWs. (C.2.32)

We now collect some obvious estimates: for q P r0, ks,

$&% E
��X 1

s �X 1
n,s

��q ¤ K∆
q{2
n , E |xt,n,i|q ¤ K∆

q{2
n , E |yt,n,i|q ¤ K∆

q{4
n ,

E
���ζp1qt,n,i

���q � E
���ζp2qt,n,i

���q ¤ K∆
q{2
n , E

���ζp2qt,n,i

���4{3 ¤ K∆n, E
���ζp3qt,n,i

���q ¤ K∆
q{4
n ,

(C.2.33)

and for q P r0, k{2s,

E
���zp1qt,n,i���q ¤ K∆q{2

n , E
���zp2qt,n,i���q � E

���zp3qt,n,i���q ¤ K∆q{4
n . (C.2.34)

By Itô’s lemma, (3.2.1) implies that σ̃t � ρv{2, σ̃1t � p1�ρ2q1{2v{2 and δ̃ ps, zq � 0.

By (C.2.2), bV,u � bV,s � 2
�
σub̃u � σsb̃s

	
for any u, s ¥ 0; hence,

E |yt,n,i pbV,u � bV,sq| ¤ KE
���yt,n,ib̃u pσu � σsq

����KE
���yt,n,iσs �b̃u � b̃s

	���
¤ K∆1{4

n |u� s|1{2 , (C.2.35)

where the first inequality follows the triangle inequality; the second inequality follows

from Hölder’s inequality and Ep |σu � σs|2 � |b̃u� b̃s|2q ¤ K|u� s|, the latter in turn

is implied by Assumption A.

Below, steps 2-5 are devoted to proving (C.2.28); step 6 contains the proof of

(C.2.29).
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Step 2. In this step, we show that

E
���E �

xt,n,i

�pV 1
n,τpiq � pV 1

n,τpi�1q
	���Ft�1

���� ¤ K∆n. (C.2.36)

By the Cauchy-Schwarz inequality and (C.2.33),

E
���xt,n,iζpjqt,n,i���� E

���xt,n,iζpjqt,n,i�1

���� E
���xt,n,izp1qt,n,i��� ¤ K∆n, j � 1, 2.

Let x1t,n,i �
³τpiq
τpi�1q

�
bs � bτpi�2q

�
ds. By Cauchy-Schwarz, E|x1t,n,i|2 ¤ K∆

3{2
n . We then

observe

E
���E �

xt,n,iζ
p3q
t,n,i�1

���Ft�1

���� � E
���E �

x1t,n,iζ
p3q
t,n,i�1

���Ft�1

���� ¤ E
���x1t,n,iζp3qt,n,i�1

��� ¤ K∆n,

where the equality holds because Erζp3qt,n,i�1|Fτpi�2qs � 0 and xt,n,i � x1t,n,i is Fτpi�2q

measurable; the first inequality follows Jensen’s inequality and repeated condition-

ing; the second inequality follows (C.2.33) and Cauchy-Schwarz. Using a similar

argument, we can also show

E
���E �

xt,n,i

�
ζ
p3q
t,n,i � z

p2q
t,n,i � z

p3q
t,n,i

	���Ft�1

���� ¤ K∆n.

Combining the displayed estimates in this step, we readily derive (C.2.36).

Step 3. In this step, we show that

E

�����E
�
yt,n,i

�
3̧

j�1

ζ
pjq
t,n,i �

3̧

j�1

ζ
pjq
t,n,i�1

������Ft�1

������ ¤ K∆n. (C.2.37)

Denote τ pt, n, i� 1, jq � τ pt, n, i� 1q � j∆n, for j P t0, . . . , knu. For notational
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simplicity, we write τ pi, jq in place of τ pt, n, i, jq below. By definition (see (C.2.30)),

E
���E �

yt,n,iζ
p1q
t,n,i

���Ft�1

����
¤ 1

kn∆n

E

�����E
�
yt,n,i

kņ

j�1

» τpi�1,jq

τpi�1,j�1q

�» s

τpi�1,j�1q
budu



bτpi�1qds

�����Ft�1

������
� 1

kn∆n

E

�����E
�
yt,n,i

kņ

j�1

» τpi�1,jq

τpi�1,j�1q

�» s

τpi�1,j�1q
σudWu



bτpi�1qds

�����Ft�1

������ .
(C.2.38)

By (C.2.33) and properties of conditional expectation, it is easy to see that the first

term on the right-hand side of (C.2.38) can be bounded by K∆
5{4
n . Moreover, the

second term can be bounded by K∆n. To see this, it suffices to note

E

�
yt,n,i

kņ

j�1

» τpi�1,jq

τpi�1,j�1q

�» s

τpi�1,j�1q
σudWu



bτpi�1qds

�����Ft�1

�

� E

�
kņ

j�1

» τpi�1,jq

τpi�1,j�1q
E

��» τpiq

τpi�1q
σudWu

��» s

τpi�1,j�1q
σudWu


�����Fτpi�1q

�

bτpi�1qds|Ft�1

�

� E

�
kņ

j�1

» τpi�1,jq

τpi�1,j�1q

�» s

τpi�1,j�1q
σ2
udu



bτpi�1qds

�����Ft�1

�
,

where the first equality follows from the definition of yt,n,i and repeated conditioning;

the second equality follows properties of stochastic integrals and repeated condition-

ing. Hence, (C.2.38) further implies

E
���E �

yt,n,iζ
p1q
t,n,i

���Ft�1

���� ¤ K∆n. (C.2.39)
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Next, we observe

E
���E �

yt,n,iζ
p2q
t,n,i

���Ft�1

���� ¤ E
���yt,n,iζp2qt,n,i

��� ¤ �
E |yt,n,i|4

�1{4
�
E
���ζp2qt,n,i

���4{3
3{4
¤ K∆n.

(C.2.40)

where the first inequality is obvious; the second inequality is by Hölder’s inequality;

the last inequality follows (C.2.33).

Now, note that

E
���E �

yt,n,iζ
p3q
t,n,i

���Ft�1

����
� E

�����E
�

1

kn∆n

» τpiq

τpi�1q

�
X 1
s �X 1

n,s

�
Vsds

�����Ft�1

������
¤ E

�
1

kn∆n

kņ

j�1

�����
» τpi�1,jq

τpi�1,j�1q

�» s

τpi�1,j�1q
budu



Vτpi�1,j�1qds

�����
�

� E

�����E
�

1

kn∆n

kņ

j�1

» τpi�1,jq

τpi�1,j�1q

�» s

τpi�1,j�1q
σudWu



Vτpi�1,j�1qds

�����Ft�1

������
� E

�
1

kn∆n

kņ

j�1

�����
» τpi�1,jq

τpi�1,j�1q

�
X 1
s �X 1

τpi�1,j�1q
� �
Vs � Vτpi�1,j�1q

������ ds
�

¤ K∆n,

(C.2.41)

where the equality follows from properties of stochastic integrals; the first inequality

is obtained by using the triangle inequality, as well as properties of conditional ex-

pection. Observing that the second term on the majorant side of the first inequality

is zero, we readily derive the second inequality.

Finally, observe that Eryt,n,i|Fτpi�1qs � 0 and ζ
pjq
t,n,i�1 P Fτpi�1q for j � 1, 2, 3;

hence, Eryt,n,iζpjqt,n,i�1|Ft�1s � 0. Combining this with (C.2.39), (C.2.40) and (C.2.41),

we have (C.2.37).
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Step 4. In this step, we show that

E
���E �

yt,n,i

�
z
p1q
t,n,i � z

p3q
t,n,i

	���Ft�1

���� ¤ K∆n (C.2.42)

E

�����E
�

2
Bņ

i�1

yt,n,iz
p2q
t,n,i � ρv

» t

t

Vsds

�����Ft�1

������ ¤ K∆1{2
n . (C.2.43)

Since the Brownian motions W and W 1 are orthogonal, Eryt,n,izp3qt,n,i|Ft�1s � 0. Since

E
�
yt,n,i|Fτpi�1q

� � 0, by repeated conditioning,

E

�����E
�
yt,n,iz

p1q
t,n,i

�����Ft�1

������
� E

�����E
�
yt,n,i

1

kn∆n

» τpiq

τpi�1q

�» s

s�kn∆n

�
bV,u � bV,τpi�1q

�
du



ds

�����Ft�1

������
¤ K∆n,

where the inequality follows from Jensen’s inequality, repeated conditioning and

(C.2.35). Then (C.2.42) is obvious.

We now consider (C.2.43). Under (3.2.1), we have the following decomposition

2yt,n,iz
p2q
t,n,i � λ

p1q
t,n,i � λ

p2q
t,n,i � λ

p3q
t,n,i � λ

p4q
t,n,i, where

λ
p1q
t,n,i � ρvVτpi�1qkn∆n

λ
p2q
t,n,i �

2ρv

kn∆n

» τpiq

τpi�1q

�» s

τpi�1q

�» u

τpi�1q
bV,rdr



du



ds

λ
p3q
t,n,i �

2ρv

kn∆n

» τpiq

τpi�1q

�» s

τpi�1q

�
ρv

» u

τpi�1q
σrdWr �

�
1� ρ2

�1{2
v

» u

τpi�1q
σrdW

1
r



du



ds

λ
p4q
t,n,i � 2yt,n,iz

p2q
t,n,i �

2ρv

kn∆n

» τpiq

τpi�1q

�» s

τpi�1q
Vudu



ds.

(C.2.44)
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Note that Erλp3qt,n,i|Ft�1s � 0, Erλp4qt,n,i|Ft�1s � 0 and E|λp2qt,n,i| ¤ K∆n. Hence,

E

�����E
�

2
Bņ

i�1

yt,n,iz
p2q
t,n,i � ρv

» t

t

Vsds

�����Ft�1

������ ¤ E

�����E
�
Bņ

i�2

λ
p1q
t,n,i � ρv

» t

t

Vsds

�����Ft�1

������
�K∆1{2

n . (C.2.45)

The first term on the right-hand side of the above can be further bounded by

KE

�����E
�
Bņ

i�2

» τpiq

τpi�1q

�
Vs � Vτpi�1q

�
ds

�����Ft�1

�������KE
����» t�kn∆n

t

Vsds

����
¤ KE

�����E
�
Bņ

i�2

» τpiq

τpi�1q

�» s

τpi�1q
bV,udu



ds

�����Ft�1

�������Kkn∆n

¤ K∆1{2
n .

(C.2.46)

Combining (C.2.45) and (C.2.46), we derive (C.2.43).

Step 5. We prove (C.2.28) in this step. By (C.2.37), (C.2.42) and (C.2.43), we

have

E

�����E
�

2
Bņ

i�2

yt,n,i

�pV 1
n,τpiq � pV 1

n,τpi�1q
	
� ρv

» t

t

Vsds

�����Ft�1

������ ¤ K∆1{2
n .

Then by (C.2.36), we derive E|EryCV 1
n,t�CVt|Ft�1s| ¤ K∆

1{2
n . Moreover, we observe

xIV n,t � kn∆n

°Bn
i�1

pVn,τpiq, IVt � kn∆n

°Bn
i�1 V̄n,τpiq. Since Erζp3qt,n,i|Ft�1s � 0, we derive

E|ErxIV n,t � IVt|Ft�1s| ¤ K∆
1{2
n by using (C.2.30) and (C.2.33). Combining the

estimates in this step, we have (C.2.28).

Step 6. We show (C.2.29) in this step. By (C.2.30) and (C.2.33), it is easily seen

that E|∆�1{4
n pxIV 1

n,t�IVtq|2 ¤ K; the details are omitted for brevity. Below, we prove
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the more complicated part of the assertion, i.e.,

E
���∆�1{4

n pyCV 1
n,t � CVtq

���2 ¤ K. (C.2.47)

First, by Cauchy-Schwarz, (C.2.31)-(C.2.34),

$&% E
���xt,n,i �pV 1

n,τpiq � pV 1
n,τpi�1q

	���2 ¤ K∆
3{2
n ,

E
���yt,n,izp1qt,n,i���2 � E

���yt,n,i �ζp1qt,n,i � ζ
p2q
t,n,i

	���2 � E
���yt,n,i �ζp1qt,n,i�1 � ζ

p2q
t,n,i�1

	���2 ¤ K∆
3{2
n .

(C.2.48)

We claim for the moment that

$''''&''''%
E
���°Bn

i�2 yt,n,iζ
p3q
t,n,i

���2 ¤ K∆
1{2
n

E
���°Bn

i�2 yt,n,iζ
p3q
t,n,i�1

���2 ¤ K∆
1{2
n

E
���2°Bn

i�2 yt,n,i

�
z
p2q
t,n,i � z

p3q
t,n,i

	
� ρv

³t
t
Vsds

���2 ¤ K∆
1{2
n .

(C.2.49)

Then (C.2.47) readily follows (C.2.48) and (C.2.49).

It remains to show (C.2.49), starting with the first inequality there. Observe that

Bņ

i�2

yt,n,iζ
p3q
t,n,i �

Bņ

i�2

�
yt,n,iζ

p3q
t,n,i �

1

kn∆n

» τpiq

τpi�1q

�
X 1
s �X 1

n,s

�
Vsds

�

�
Bņ

i�2

1

kn∆n

» τpiq

τpi�1q

�
X 1
s �X 1

n,s

� �
Vs � Vτpi�1q

�
ds

�
Bņ

i�2

1

kn∆n

kņ

j�1

» τpi�1,jq

τpi�1,j�1q

�» s

τpi�1,j�1q
budu



Vτpi�1qds

�
Bņ

i�2

1

kn∆n

kņ

j�1

» τpi�1,jq

τpi�1,j�1q

�» s

τpi�1,j�1q
σudWu



Vτpi�1qds.

By construction, the first term and the last term on the right-hand side of the above
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equation are sums of martingale differences. It is then easy to see

E

�����Bņ
i�2

�
yt,n,iζ

p3q
t,n,i �

1

kn∆n

» τpiq

τpi�1q

�
X 1
s �X 1

n,s

�
Vsds

������
2

¤ K∆1{2
n ,

E

�����Bņ
i�2

1

kn∆n

kņ

j�1

» τpi�1,jq

τpi�1,j�1q

�» s

τpi�1,j�1q
σudWu



Vτpi�1qds

�����
2

¤ K∆n.

Observing that E |Vt � Vs|4 ¤ K |t� s|2 and E
��X 1

s �X 1
n,s

��4 ¤ K∆2
n, we use Cauchy-

Schwarz to derive

E

�����Bņ
i�2

1

kn∆n

» τpiq

τpi�1q

�
X 1
s �X 1

n,s

� �
Vs � Vτpi�1q

�
ds

�����
2

¤ K∆1{2
n .

It is also easy to see that

E

�����Bņ
i�2

1

kn∆n

kņ

j�1

» τpi�1,jq

τpi�1,j�1q

�» s

τpi�1,j�1q
budu



Vτpi�1qds

�����
2

¤ K∆n.

We combine the above estimates to derive E
���°Bn

i�2 yt,n,iζ
p3q
t,n,i

���2 ¤ K∆
1{2
n , as asserted in

(C.2.49). The second inequality in (C.2.49) can be proved in a similar (but simpler)

way.

Now, recall the decomposition in (C.2.44). Observe that

E

�����Bņ
i�2

λ
p1q
t,n,i � ρv

» t

t

Vsds

�����
2

¤ K∆n, E

�����Bņ
i�2

λ
p2q
t,n,i

�����
2

¤ K∆n

E

�����Bņ
i�2

λ
p3q
t,n,i

�����
2

¤ K∆n, E

�����Bņ
i�2

λ
p4q
t,n,i

�����
2

¤ K∆1{2
n ,
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where the first inequality is a simple estimate for the Riemann approximation error

for the Itô process Vt; the second inequality is obvious; the third inequality is ob-

tained by using the fact that λ
p3q
t,,n,i forms a martingale difference sequence; the fourth

inequality is derived by using Erλp4qt,n,i|Fτpi�2qs � 0 (hence the odd- and even-indexed

terms respectively form martingale difference sequences). These estimates further

imply E|2°Bn
i�2 yt,n,iz

p2q
t,n,i � ρv

³t
t
Vsds|2 ¤ K∆

1{2
n . A similar (but simpler) argument

yields E|°Bn
i�2 yt,n,iz

p3q
t,n,i|2 ¤ K∆

1{2
n . The third inequality of (C.2.49) then readily

follows. This finishes the proof. l

Proof of Lemma 3.1.3. By localization, we can suppose that bt, σt, b̃t, σ̃t and σ̃1t

are bounded without loss of generality. By Lemma C.2.1, ∆
�1{4
n pyCV n,t � yCV 1

n,tq �

op p1q . By Theorem 1 of Wang and Mykland (2013), ∆
�1{4
n pyCV 1

n,t�CVn,tq converges

stably in law to some variable ζ, which conditionally on F , is centered Gaussian

with strictly positive variance (note that σt ¡ 0 by assumption). The assertion of

the lemma then readily follows. l

Proof of Lemma C.1.2. Applying Lemma C.2.1 with r � 4{p9�12$q and Lemma

C.2.2, we have

$&% E
���E �

∆
�1{4
n

�yCV n,t � ρ0v0
xIV n,t

	���Ft�1

���� ¤ K∆
3$�5{4
n ,

E
���∆�1{4

n

�yCV n,t � ρ0v0
xIV n,t

	���r ¤ K.
(C.2.50)
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We then derive

��E �
m̂�
n,t pθ0q

��� �
������E

��E
�

∆
�1{4
n

�yCV n,t � ρ0v0
xIV n,t

	���Ft�1

�
aIV xIV n,t�1 � bIV

��������
¤ KE

���E �
∆�1{4
n

�yCV n,t � ρ0v0
xIV n,t

	���Ft�1

����
¤ K∆3$�5{4

n ,

where the equality follows definition (3.1.30) and repeated conditioning; the first

inequality follows Jensen’s inequality and aIV xIV n,t�1 � bIV ¥ bIV ¡ 0; the second

inequality is due to the first line of (C.2.50). This finishes the proof of part (a).

By the second inequality of (C.2.50), it is easy to see that E
��m̂�

n,t pθ0q
��r ¤ K, as

asserted in part (b). Moreover, since r ¡ 1, part (b) also implies that tm̂n,t pθ0qun¥1

is uniformly integrable. To show part (c), we define some constants:

q �
�

1

r
� 1

2k1


�1

, p � 2k1

q
¡ 1, p1 � r

q
¡ 1.

We then observe E
��m�

s pθ0q m̂�
n,t pθ0q

��q ¤ �
E |m�

s pθ0q|2k
1
	1{p �

E
��m̂�

n,t pθ0q
��r�1{p1 ¤ K,

where the first inequality follows Hölder’s inequality, and the second inequality fol-

lows part (b) and Assumption B3. Finally, note that k1 ¡ 2{p12$�5q implies q ¡ 1.

Hence, tm�
s pθ0q m̂�

n,t pθ0qun¥1 is also uniformly integrable as asserted in part (c). l
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