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Abstract

This dissertation develops new econometric techniques for use in estimating and
conducting inference on parameters that can be identified from option prices. The
techniques in question extend the existing literature in financial econometrics along
several directions.

The first essay considers the problem of estimating and conducting inference on
the term structures of a class of economically interesting option portfolios. The
option portfolios of interest play the role of functionals on an infinite-dimensional
parameter (the option surface indexed by the term structure of state-price densities)
that is well-known to be identified from option prices. Admissible functionals in
the essay are generalizations of the VIX volatility index, which represent weighted
integrals of options prices at a fixed maturity. By forming portfolios for various
maturities, one can study their term structure. However, an important econometric
difficulty that must be addressed is the illiquidity of options at longer maturities,
which the essay overcomes by proposing a new nonparametric framework that takes
advantage of asset pricing restrictions to estimate a shape-conforming option sur-
face. In a second stage, the option portfolios of interest are cast as functionals of

the estimated option surface, which then gives rise to a new, asymptotic distribution
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theory for option portfolios. The distribution theory is used to quantify the estima-
tion error induced by computing integrated option portfolios from a sample of noisy
option data. Moreover, by relying on the method of sieves, the framework is non-
parametric, adheres to economic shape restrictions for arbitrary maturities, yields
closed-form option prices, and is easy to compute. The framework also permits the
extraction of the entire term structure of risk-neutral distributions in closed-form.
Monte Carlo simulations confirm the framework’s performance in finite samples. An
application to the term structure of the synthetic variance swap portfolio finds size-
able uncertainty around the swap’s true fair value, particularly when the variance
swap is synthesized from noisy long-maturity options. A nonparametric investigation
into the term structure of the variance risk premium finds growing compensation for
variance risk at long maturities.

The second essay, which represents joint work with Jia Li, proposes an econo-
metric framework for inference on parametric option pricing models with two novel
features. First, point identification is not assumed. The lack of identification arises
naturally when a researcher only has interval observations on option quotes rather
than on the efficient option price itself, which implies that the parameters of inter-
est are only partially identified by observed option prices. This issue is solved by
adopting a moment inequality approach. Second, the essay imposes no-arbitrage re-
strictions between the risk-neutral and the physical measures by nonparametrically
estimating quantities that are invariant to changes of measures using high-frequency
returns data. Theoretical justification for this framework is provided and is based

on an asymptotic setting in which the sampling interval of high frequency returns



goes to zero as the sampling span goes to infinity. Empirically, the essay shows that
inference on risk-neutral parameters becomes much more conservative once the as-
sumption of identification is relaxed. At the same time, however, the conservative
inference approach yields new and interesting insights into how option model param-
eters are related. Finally, the essay shows how the informativeness of the inference
can be restored with the use of high frequency observations on the underlying.

The third essay applies the sieve estimation framework developed in this dis-
sertation to estimate a weekly time series of the risk-neutral return distribution’s
quantiles. Analogous quantiles for the objective-measure distribution are estimated
using available methods in the literature for forecasting conditional quantiles from
historical data. The essay documents the time-series properties for a range of return
quantiles under each measure and further compares the difference between matching
return quantiles. This difference is shown to correspond to a risk premium on binary
options that pay off when the underlying asset moves below a given quantile. A brief
empirical study shows asymmetric compensation for these return risk premia across

different quantiles of the conditional return distribution.
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1

Introduction

Options are derivative securities whose payoffs depend on the behavior of a specified
underlying asset. This dissertation studies estimation and inference problems on
economic models whose parameters can be identified from the prices of options.
Over the last half-century, two major strands of literature have emerged con-
cerning the study of option prices. The first strand of literature, pioneered by the
seminal work of Black and Scholes (1973) and Merton (1973), takes the underlying
asset and relevant risk factors as primitives and then examines the problem of de-
termining prices for options written on that asset.! In this approach, option prices
are derived from the behavior of other primitives, the underlying asset and relevant
risk factors. The second strand of literature, starting at least since Ross (1976),
treats option prices themselves as primitives. The enormous fruitfulness of the latter

approach is in no small part due to the remarkable theoretical spanning properties of

! Further examples of papers that fall into this literature include Cox et al. (1985), Hull and White
(1987), Heston (1993), Bakshi et al. (1997), Duffie et al. (2000), Christoffersen et al. (2006), and
Christoffersen et al. (2008).



options, which play a fundamental role in completing markets by acting as de facto
Arrow-Debreu securities.?

The primary focus of this dissertation is a collection of econometric and empirical
contributions to the second strand of literature. That is, throughout this dissertation,
options and their prices are treated as primitives, in the sense that they are used
to extract information about the underlying asset and relevant risk factors. The
process of extracting information from observed option price data is fundamentally
an econometric problem and requires answers to questions about model identification,
estimation, and inference. The chapters ahead consider variations on these three
types of questions under varying assumptions on the option data generating process,
the structure of the model considered, the dimensionality of parameters, the degree

of identifiability of these parameters, and on functionals of the parameters.

1.1 Inference on Option Portfolios

The next chapter of this dissertation considers the problem of estimating the term
structures of a class of economically interesting option portfolios. A primary exam-
ple of such an option portfolio is the VIX, or volatility index, which is synthesized
by combining a large number of S&P 500 Index options at a fixed maturity into a
single option portfolio. The Chicago Board Options Exchange, or CBOE, publishes
the value of the VIX portfolio using short-run, 30-day options, and when these are
unavailable, it constructs two VIX portfolios using options that straddle the 30 day

maturity and then performs a linear interpolation to arrive at a 30-day VIX approx-

2 See, for example, Debreu (1959), Arrow (1964), Breeden and Litzenberger (1978), Banz and
Miller (1978), Ait-Sahalia and Lo (1998), Britten-Jones and Neuberger (2000), Bakshi and Madan
(2000), and Andersen et al. (2012).
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FiGURE 1.1: The daily VIX historical time series, 1996-2014. The Chicago Board
Options Exchange’s 30-day VIX volatility index represents the value of a portfolio
of S&P 500 Index options.

imation. The CBOE’s 30-day VIX has garnered an informal interpretation as an
investor “fear gauge” because of its tendency to rise during periods associated with
high financial market volatility.> A daily time series of the CBOE’s historical 30-day
VIX is plotted in Figure 1.1.

More formally, the CBOE’s VIX approximates a model-free measure of implied
volatility derived, for example, in Carr and Wu (2009). This measure of implied
volatility (or its square) under certain conditions replicates the price of a volatility
insurance contract (a so-called variance swap) through the construction of a hedging
portfolio consisting of a theoretically infinite number of put and call options on the

S&P 500 Index. The variance swap then pays off when future realized volatility

3 As an example for this use of terminology, see the Wall Street Journal article by Kiernan (2014).



exceeds the value of the index. Depending on the length of the period for which one
would like to purchase this volatility insurance, a natural term structure of hedging
option portfolios can be formed to value the insurance contract by simply forming the
Carr-Wu portfolio using options at different maturities. Thus, pricing the variance
swap term structure is one economic motivation for being able to compute the term
structure of the VIX portfolio.

The next chapter shows, however, that extending the CBOE’s VIX approximation
to longer maturity options is not straightforward. This is due to the illiquidity of
options at longer maturities, which results in option prices that are more sparse
and noisy at long maturities, possess larger bid-ask spreads, and are subject to
more egregious synchronization errors than their short-maturity counterparts. It
is clear that any VIX portfolio formed from the sparse and noisy long-maturity
options should be subject to some form of estimation error. In other words, the
study of long-run analogs of the CBOE’s 30-day VIX should involve a theory of
inference that can quantify the notion of estimation error in a VIX portfolio, which
the econometrics literature has hitherto neglected to provide. The provision of such
a theory of inference is one of the main contributions of this dissertation.

In particular, the next chapter provides a new nonparametric framework for esti-
mating and conducting inference on the term structure of the VIX and other VIX-like
option portfolios. The illiquidity problem of options at longer maturities is partially
solved by introducing additional structure in the form of asset pricing theory. Specif-

ically, the risk-neutral valuation equation imposes well-known shape constraints on



option prices at all maturities.*

To take advantage of these constraints, the next
chapter proposes a sieve estimation framework that can fully incorporate the struc-
ture afforded by the risk-neutral valuation equation and that can, at the same time,

remain fully nonparametric.®

A key step in this framework comes from the ob-
servation that the shape constraints on option prices are driven by an expectation
against a valid density (the so-called state-price density, or SPD), i.e. one that is
nonnegative and integrates to one. The framework proposed below remains nonpara-
metric by treating the term structure of SPDs that generated observed options as an
element of an infinite-dimensional parameter space. The infinite-dimensional param-
eter is then estimated via the method of sieves, which generates shape-conforming
option surfaces. This result extends the existing literature on shape-constrained
nonparametric option pricing to the entire option surface, rather than exploiting the
shape-constraints for single option maturities.®

The resulting nonparametrically estimated option surface is then used as an input
to computing the term structure of the VIX or other VIX-like portfolios. Specifically,
by treating the VIX (an integrated option portfolio) as a functional of the estimated
option surface, I rely on some well-known functional delta methods to derive an
asymptotic distribution theory for the VIX, pointwise along its term structure. The
distribution theory is used to quantify the notion that the noise and sparseness
of options at long maturities should induce an estimation error when forming the

VIX portfolio from an option surface that was estimated from sparse and noisy

4 See Duffie (2001) for an introduction to the notion of risk-neutral valuation.
® Chen (2007) provides an excellent survey of sieve estimation.

6 See Ait-Sahalia and Duarte (2003), Jiang and Tian (2005), and Figlewski (2008) for examples
of this literature.



options. Moreover, by computing the VIX term structure off of the estimated option
surface, one can circumvent the issue of interpolating neighboring VIXs, as is done,
for example, in the CBOE’s calculation. The central contributions of the next chapter
are, therefore, a procedure for estimating the term structure of the VIX (or VIX-
like portfolios) at arbitrary maturities without resorting to theoretically unsupported
interpolations, as well as the provision of an asymptotic distribution theory that is
used to construct confidence intervals around the VIX term structure.

Monte Carlo simulations show that minimizing the Bayesian Information Cri-
terion provides a simple, data-driven method for computing the sieve’s expansion
terms with good finite sample coverage probabilities. The sieve framework is then
tested in three separate empirical applications: the pricing of the term structure of
variance swaps, a comparison with the CBOE’s interpolation method for generat-
ing a VIX term structure, and the estimation of the term structure of the variance
risk premium. The latter application is one of a few existing extensions of the well-
established literature on the variance risk premium to longer horizons.” The findings
imply larger magnitudes for the term structure of the variance risk premium than

previously found in parametric estimates.®

1.2 Inference on Partially Identified Option Pricing Models

The next essay in this dissertation considers the problem of inference on option

model parameters that are finite-dimensional, but may only be partially identified.

" Bakshi and Madan (2006), Carr and Wu (2009), Bollerslev and Todorov (2011), Bollerslev et al.
(2011), Bollerslev et al. (2013), and the references therein.

8 See Ait-Sahalia et al. (2012) and Fusari and Gonzalez-Perez (2012).



This essay represents joint work with Jia Li and builds on earlier findings from
my third-year prospectus. In our setup, the partial identification of option model
parameters arises naturally when observed option data come in the form of bid and
ask quotes instead of efficient prices. That is, since option pricing models make point
predictions on the efficient, equilibrium price of an option, but observed option data
come in pairs of quotes, it is not clear how to identify the option model’s parameters
without specifying a mapping from quotes to efficient prices. This mapping can
be interpreted as a microstructure model that specifies the option market maker’s
price setting schedule relative to the efficient price. Because this mapping is neither
revealed by the option pricing model nor the observed data, a lack of identification
arises naturally.

To address the lack of a microstructure model that maps quotes to efficient prices,
Li and I propose merely bounding the efficient price by the bid and ask quotes. This
assumption substantially relaxes the existing practice in the literature of proxying
unobserved efficient prices by the option mid-quote, i.e. the arithmetic average of
observed bid and ask prices. This is because the mid-quote itself represents one of
the simplest possible microstructure models, which posits that observed bid and ask
quotes are always symmetric about the efficient price, in every state of the world.
While the plausibility of this assumption has been questioned in the literature,” our
essay represents the first to examine the issue from an identification viewpoint.

We argue that working with bid-ask bounds rather than mid-quotes is especially

relevant with option data, since illiquid deep in-the-money options and long-maturity

9 See Carr and Wu (2009) and Pan (2002).



options tend to have nontrivially wide bid-ask spreads. It is intuitively clear that the
wider the bid-ask spread, the stronger the mid-quote assumption becomes. Indeed,
since many efficient prices can potentially fit the observed bid-ask spread, choos-
ing the bid-ask mid-point amounts to selecting an arbitrary element among a set
of admissible prices. The goal, therefore, is to conduct inference on option model
parameters that are set-identified.

Our inference on option pricing models is implemented via a moment inequality
framework. To allow for option quotes that are observed with error, our identifying
restrictions only require efficient option prices to lie between the observed bid-ask
spread on average. The framework relies on methods from the burgeoning moment
inequality literature, including the papers by Andrews and Soares (2010) and An-
drews and Shi (2014). We extend this literature to accommodate features that are
unique to option pricing. In particular, the literature on empirical option pricing
(discussed below) has established the need for incorporating stochastic volatility dy-
namics in order to adequately explain observed patterns in option prices.!® The
implication for option pricing is that a latent spot volatility variable enters into the
option pricing equation, and hence, into the moment functions that constitute the
identifying restrictions.

To overcome the presence of a latent spot volatility variable within the moment
functions, we propose replacing the latent variable with an estimate obtained from
high-frequency data on the underlying. In particular, using the jump-robust estima-

tor from Mancini (2009), we arrive at an end-of-day estimate of spot volatility using

10°SeeHull and White (1987), Heston (1993), and Bakshi et al. (1997) for early stochastic volatility
models.



the square root of average integrated variance near the closing minutes of trading.
This estimate is then plugged into the option pricer in a second stage and is treated as
though it represents an actual observation on spot volatility. We provide a rigorous
theoretical justification for replacing latent spot volatility with this high-frequency
estimate and further perform Monte Carlo experiments to confirm this practice in
empirically realistic settings.

The option pricing models considered fall under the general framework of Duffie
et al. (2000) and will therefore admit comparisons between our parameter set esti-
mates and the point estimates obtained in the existing empirical options literature.!*
In particular, our empirical findings reveal large estimated parameter sets when the
mid-quote assumption is replaced by the bid-ask quote bounds. These parameter sets
reveal new and interesting relationships between option pricing parameters. Finally,
by providing further identifying information using high-frequency data on the un-
derlying, we show that the informativeness of inference can be restored even within

our partially identified option pricing framework.

1.3 A Sieve Application to Estimating Quantile Risk Premia

The final essay in this dissertation takes the sieve estimation framework proposed in
Chapter 2 to examine the time series properties of the option-implied risk-neutral
return distribution. An economic motivation for studying this distribution is that
it can be used to decompose the familiar equity risk premium into its return quan-

tile constituents. That is, by directly comparing the time series of risk-neutral and

11 See Bates (1996, 2000), Bakshi et al. (1997), Pan (2002), Eraker (2004), Broadie et al. (2007),
Andersen et al. (2012), and Andersen et al. (2013).



objective return distributions, one can shed further light on which features of these
distributions are responsible for the time-varying risk premia observed in the data.
However, in contrast to previous estimates of higher-order moment risk premia, the
third essay in this dissertation proposes comparisons via the risk-neutral and ob-
jective return quantiles. The differences in these quantiles are shown to have an
interpretation as a risk premium on certain binary options that pay off when the
underlying asset moves below a given quantile.

To study such risk premia, an estimate of P-measure return quantiles is needed.
To this end, I use the CAViaR forecasting model proposed in Engle and Manganelli
(2004) to estimate conditional P-measure return quantiles. However, in order to
obtain 30-day ahead return quantiles, the CAViaR model requires monthly return
data. To mitigate the loss of intra-month return variation, I augment the CAViaR
quantile model with daily (intra-month) realized variance estimates and find that
this procedure aids the nonlinear optimization’s convergence.

Quantile comparisons similar to those discussed in the third essay of this dis-
sertation are found in Metaxoglou and Smith (2013). My approach differs from
theirs primarily through the use of sieves to compute the Q-measure return quan-
tiles, whereas Metaxoglou and Smith (2013) use a mixture of log-normals. The
framework presented here can therefore be viewed as complementary to theirs from
a nonparametrically motivated perspective.

The empirical findings of the quantile-forecasting approach point to the presence

of asymmetric tail risk compensation. This underscores existing findings using mo-

10



ment, rather than quantile, based frameworks.!? In particular, I find that there is
significant compensation for bearing left-tail risk, but that the risk premium changes

sign and has a smaller magnitude for bearing right-tail risk.

12 See, for example, Conrad et al. (2013).

11



2

Term Structures, Shape-Constraints, and Inference

for Option Portfolios

2.1 Introduction

This paper is concerned with nonparametrically estimating a shape-conforming op-
tion price surface and quantifying the statistical uncertainty around associated inte-
grated option portfolios. The use of option prices in the extraction of economically
significant quantities is linked to their ability to approximate state-contingent claims.
This observation is due to the fundamental insights of Ross (1976) and Breeden and
Litzenberger (1978), who show that options can be combined into portfolios that
replicate the role of Arrow-Debreu securities in spanning or hedging against uncer-
tain future states. More recently, option prices and their portfolios have been used

to extract state-price densities,! to learn about the market prices of jump risk and

1 See Jackwerth and Rubinstein (1996), Ait-Sahalia and Lo (1998), Ait-Sahalia et al. (2001),
Bondarenko (2003), Yatchew and Hérdle (2006), Figlewski (2008) among others.

12



crash fears,? to estimate investor risk aversion and risk-neutral skewness®, to forecast
returns,* and to study how investors price and perceive volatility risk.” The latter
category, in particular, has benefitted from a collection of recently developed model-
free implied volatility measures that are obtained by forming integrated portfolios of
option prices, the most well-known of which is arguably the synthetic variance swap
and its square-root, the VIX volatility index.%

However, a central issue with implementing the above theory is the sparseness
and noise of option data due to illiquidity. For example, in order to construct the
synthetic variance swap portfolio or risk-neutral density at some horizon 7, an infinite
continuum of European options expiring in 7 periods is required (Carr and Wu
(2009)). In reality, option prices are discrete and truncated in strikes and maturity,
since there may only be a few dozen observations available from which to infer the
infinite option portfolio. The problem is even more severe when the objective is to
investigate term structures implied by option prices, since the typical option panel has
only a handful of maturities clustered at short horizons. To overcome this mismatch
between data sparseness and theory, it has been customary to numerically interpolate
observed options and then to treat the resulting estimates as though they represent
actual observations on the theoretical object of interest. This approach omits at least

two important considerations: first, the replacement of option prices by estimates

2 See, for example, Bates (2000), Pan (2002), Broadie et al. (2007), and Bollerslev and Todorov
(2011).

3 See Bliss and Panigirtzoglou (2004) and Bakshi et al. (2003).

4 Bakshi et al. (2011) and Bollerslev et al. (2013).

® Carr and Wu (2009), Bollerslev et al. (2011),Drechsler and Yaron (2011)

6 See Britten-Jones and Neuberger (2000), Jiang and Tian (2005), and Carr and Wu (2009).
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should induce an estimation error. How quickly does the estimation error vanish
as more options become available? Second, options are frequently observed with
microstructure error arising from synchronization issues, bid-ask spreads, and quote
staleness. Does the presence and variance of these errors affect the precision of the
estimated portfolio, and can this be meaningfully quantified?

To answer these questions, I propose a new nonparametric framework to (1) over-
come the discreteness and truncation of option data in both the strike and maturity
dimension and (2) additionally provide a distribution theory for option portfolios.
The key ingredient in this framework is the nonparametric estimation of an option
surface that satisfies certain shape constraints implied by economic theory. Thus,
in illiquid regions of the option panel where maturities or strikes are only sparsely
available, economic theory guides the estimator to maintain the proper structure.
Moreover, the estimator has a number of appealing properties from an empirical
perspective: first, option prices can be solved in closed-form. Second, because the
option prices are shape-conforming along any maturity of interest, the estimator
yields an entire term structure of valid state-price densities (SPDs) and risk-neutral
CDF's indexed by maturity. That is, for any maturity of interest, the estimated
SPDs always integrate to one, even in finite samples and even off the support of
observed options. Third, the term structures of SPDs and risk-neutral CDFs are
available in closed-form, avoiding the need to consider numerical differentiation or
integration errors. Fourth, while having nonparametric properties, the estimator is
easy to implement.

To be specific, given a cross-section of observed options at a fixed point in time,
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I propose solving a sieve least squares problem involving bivariate Hermite polyno-
mial expansions of the joint risk-neutral density in both the return- and maturity-
dimensions. This joint density is divided by its marginal on 7, yielding densities
that are conditional versions of the Gallant and Nychka (1987) type (conditioning
on 7) and are normalized to be nonnegative and to always integrate to one for any
7. When integrated against the option payoff function, I show that these Hermite
densities yield closed-form option prices, SPD term structures, and risk-neutral CDF
term structures. This result extends the work of Leén and Sentana (2009) to the bi-
variate case involving the 7 expansion. The closed-form option prices are indexed by
Hermite polynomial coefficients that are chosen to minimize a least squares criterion
in a procedure that is numerically equivalent to nonlinear least squares.

The main econometric results of this paper are the consistency of the nonpara-
metric price surface, its rate of convergence, and an asymptotic distribution theory
for integrated portfolios of options. In other words, the latter result can be used to
put confidence intervals on the synthetic variance swap (SVS) or VIX term structure
that quantify the precision of portfolios that are constructed from estimated option
prices. Throughout, the focus of this paper will be on the twin problems of (1)
producing reliable estimates of option term structure objects (e.g. the SVSs, SPDs,
and risk-neutral CDFs), and (2) the quantification of “reliability” as measured by
asymptotically valid standard errors on the portfolio term structures. It should be
emphasized, however, that the methods presented here are of interest even if the
application is not about the option term structure. Indeed, because the present sieve

estimator is shape-conforming for a given maturity across all strikes, it can be used
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to extrapolate option prices into extreme strikes. In light of the recent financial cri-
sis and the renewed interest in studying tails of return distributions, the estimator’s
ability to estimate risk-neutral tails could be helpful in certain applications.

The paper connects with several strands of the literatures in finance and econo-
metrics. The incorporation of asset pricing information relates to an existing litera-
ture on nonparametric shape-constrained estimation for options, which includes the
extant papers by Ait-Sahalia and Duarte (2003), Bondarenko (2003), Yatchew and
Hérdle (2006), Figlewski (2008), as well as the numerical procedures to produce ex-
trapolated option smiles in Bliss and Panigirtzoglou (2004), Jiang and Tian (2005),
and Metaxoglou and Smith (2011). This literature has produced estimators that are
shape-conforming for a fixed option maturity. In contrast, the framework presented
here extends these methods in a new direction by generating shape-conforming sur-
faces for arbitrary (and even sparsely observed) maturities, while at the same time
also offering closed-form term structures of valid state-price densities and risk-neutral
CDFs using a single option panel. Finally, the paper’s nonparametric distribution
theory to quantify the estimation error in option portfolios is novel to this literature.
Collectively, these results are obtained by connecting ideas from Leén and Sentana
(2009) to the ongoing literature on sieve estimation, e.g. Gallant and Nychka (1987),
Shen (1997), Chen and Shen (1998), Chen (2007), and Chen et al. (2013). In par-
ticular, the computationally simple distribution theory for option portfolios in this
paper is adapted from Chen et al. (2013).

Simulations and several examples illustrate the framework’s flexibility. Monte

Carlo simulations show that the sieve estimator can capture the term structure of
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option prices, risk-neutral CDFs, and state-price densities implied by a variety of
continuous-time double jump-diffusion data generating processes (DGPs), including
the processes by Black and Scholes (1973), Heston (1993), and Duffie et al. (2000).
Moreover, additional simulation exercises demonstrate that the portfolio distribution
theory provides good coverage of the term structure of VIX’s, regardless of whether
the DGP has jumps in price and/or stochastic volatility. This flexibility is due to
a key tuning parameter, the number of sieve expansion terms, which is required
to grow with the sample size. The simulations show that minimizing the Bayesian
Information Criterion (BIC) provides a simple but effective method for selecting the
number of expansion terms automatically. Finally, a brief simulation shows that the
method can be employed in an “out-of-sample” sense to generate daily or weekly
balanced panels option portfolios, risk-neutral CDF's, and SPDs by evaluating the
sieve estimator at arbitrary 7.7

My empirical applications of the sieve option estimator study the term structure
of the synthetic variance swap portfolio and the associated variance risk premia us-
ing actual data from S&P 500 Index options from 1996 to 2010. The results show
that sampling variation in noisy option prices induces up to 8% uncertainty around
the fair value of the long-run variance swap contract when the swap is synthesized
from noisy long-maturity options. In contrast, swaps synthesized from short- and
medium-maturity options on the S&P 500 Index appear more precisely estimated,
which supports the validity of the linearly interpolated approximations at short hori-

zons commonly adopted in the literature. The latter observation is underscored in

7 This result is relegated to Appendix A for brevity.
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empirical comparisons of the sieve-estimated VIX term structure and the CBOE’s
discretized analog.

The sieve-estimated variance swap term structures are then used to estimate the
term structure of the variance risk premium. An active literature in financial eco-
nomics has documented the existence of a significant and time-varying risk premium
that investors demand for bearing return variance risk.® Recently, Ait-Sahalia et al.
(2012) and Fusari and Gonzalez-Perez (2012) have extended this literature by exam-
ining the variance risk premium at longer horizons using a flexible parametric model
combined with data on variance swaps. The present paper complements their work
from a nonparametric perspective and confirms that the variance risk premium term
structure grows with maturity. Moreover, I find that the shape of the term structure
depends on current volatility levels by applying a set of novel expectation hypothesis
regressions.

The paper is organized as follows. Section 2.2 introduces the sieve least squares
estimator for the shape-conforming option surface. Section 2.3 gives the closed-form
option pricing formulas that are used in the sieve framework, and Section 2.4 estab-
lishes the estimator’s consistency and its rate of convergence. Section 2.5 derives the
asymptotic distribution theory for integrated option portfolios, which are functionals
of the option surface estimated in the preceding sections. The results of Monte Carlo
simulations that examine the sieve estimator’s properties in finite samples is given

in Section 2.6. Section 2.7 studies the term structure of the synthetic variance swap

8 See Bakshi and Madan (2006), Carr and Wu (2009), Bollerslev and Todorov (2011), Bollerslev
et al. (2011), and the related literature exploring parametric estimates of the volatility risk premium,
e.g. Pan (2002), Eraker (2004), and Broadie et al. (2007). Equilibrium models that seek to explain
the existence and size of the variance risk premium from a preference-based point of view are
examined in Bakshi and Madan (2006), Bollerslev et al. (2009), and Drechsler and Yaron (2011).
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portfolio and associated variance risk premia, and Section 2.8 concludes.

2.2 A Nonparametric, Shape-Conforming Option Surface

The goal is to provide model-free confidence intervals for the term structure of the
VIX or VIX-like portfolios. These portfolio term structures can be cast as functionals
of the nonparametric, shape-constrained option surface estimator outlined in this

section.
2.2.1 Setup

Under mild restrictions, the current price Py(k,7) of a European put option with
strike k and time-to-maturity 7 is given by the well-known risk-neutral valuation
equation?

Pyl 7) = e B [k - 5., |V

) (2.2.1)
e f [ — S1/2(S|r, V)dS,

0

where V is a vector of state variables that generate the current information set,
f( - |7, V) is the unobserved transition or state-price density (SPD), and r is the
risk-free rate. The components of V are left unspecified and can contain any number
of variables relevant to pricing options. The Heston model, for example, specifies V =
(S0, Vo), where Sy is the current underlying price and Vj represents spot volatility
(see Heston (1993), Duffie et al. (2000)).

Since the goal is to estimate a shape-conforming option surface at a single point

in time, V realizes to some fixed value vy, so that the density in (2.2.1) becomes

9 See, for example, Chapters 6 and 8 in Duffie (2001).
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fYS|T, V = vg). To avoid cumbersome notation, I therefore define fX(S|r) =
f(S|T, V = wvy), since vy is static across the option surface. On the other hand,
T is not static on the option surface because it indexes maturity. In this form, the

risk-neutral valuation formula on a single option cross-section becomes

Py, 7) = e j "k — S172(S|P)dS. (2.2.2)

0

Letting Z = (k,7,7,q) denote a vector of characteristics containing the contract
variables (k, T), the risk-free rate r, and the dividend yield ¢, the dependence of the

option price on the SPD fé? and the characteristics Z can be expressed as
Py(r,7) = P(fQ. 7).

The no-arbitrage pricing equation (2.2.2) implies shape restrictions on the option
prices. By differentiating P( f(()Q , Z) repeatedly with respect to the strike price x, one

has

oR,
Ok

%Py

= 6_””Tf?(()@(,{/h—)’ a/{z

= 7" fo’(k]7),

where F(()@ is the CDF of f(()@ These conditions immediately imply that P( fé@, Z) is

—rT7

monotone and convex in x for any 7, and additionally has slope e as Kk — O
and slope 0 as k — 0. Notice that these shape constraints follow directly from the
nonnegativity of fé@ and the property that f(()@ integrates to one with respect to S for

all 7.10

Since the option price’s shape constraints are implied by the fact that fé@ is a PDF,

10 These shape constraints have been exploited elsewhere in the nonparametric option pricing
literature for a single 7. See, for example, Ait-Sahalia and Lo (1998), Ait-Sahalia and Duarte
(2003), Bondarenko (2003), Yatchew and Héardle (2006), and Figlewski (2008).
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the strategy I employ to obtain shape-conforming option price estimates is to use
approximating densities that are valid PDFs within the context of sieve estimation.
However, instead of approximating f(()Q directly, it turns out to be more convenient
to first transform S by a change of variables, and then find approximating densities
to a Jacobian transformation of ff)@. The results of this straightforward change-of-
variables are analytically closed-form option prices that are theoretically informative

and computationally convenient.
2.2.2  Change of Variables

I propose the following change of variables to obtain closed-form expressions of esti-
mates to the option price in Eq. (2.2.2). Let Y be the 7-measurable random variable

that satisfies

log (S%) = (Z)+o(Z)Y, (2.2.3)

where Y ~ fo( - |7), and p(-) and o(-) > 0 are known functions of the characteristics
Z, and where fo(-|7) is the unknown density to be nonparametrically estimated from
the data.

Under this change of variables, the valuation equation (2.2.2) becomes

K

P(f2.7) = e”f (k= S) f5(S|T)ds

0

d(Z)
_ e_TTJ (H _ Soeu(Z)Jra(Z)Y) FoY|r)dY (2.2.4)

0

= PY(an Z)a

21



where

i) - PR D)

(2.2.5)

The original SPD of interest evaluated at an arbitrary point s in the domain of .S,

f&(s|Z), can then be obtained by the Jacobian transformation

fo'(s|7) = (s0(Z)) " fo(s]7). (2.2.6)

The sieve framework outlined below will produce consistent estimates fn of fo. By
a continuous mapping theorem, g, defined pointwise by g, (s|7) = (SU(Z))_lfn(S|T)
will also converge to f(()@ .

If only the option price and not g, is needed, then one does not have to perform
the Jacobian transformation, since Eq. (2.2.4) says P(f% Z) = Py(fo,Z). This

allows the analysis to focus on option pricing equations of the form

d(Z)

Po(rz) = |

(/{ — Soe“(z)+"(z)y) f(Y|r)dY. (2.2.7)
0

It is easy to verify that Eq. (2.2.7) contains the same shape restrictions as Eq. (2.2.2)
for any f with { f(y|7)dy = 1. Proposition 1 below solves this integral in closed-form

when f represents a sieve approximation.
2.2.8 Sieve Least Squares Regression

The goal is to obtain a shape-conforming option surface by directly using the struc-
ture implied by Eq. (2.2.7). Notice that the true option price Py (fy,Z) is not
observed because of the presence of the unknown infinite-dimensional parameter fo,

which is assumed to reside in some general function space F. The space F consists of

22



a very large class of smooth conditional densities f(y|7) and will be described shortly.
Thus, given a random sample {P;, Z;}"_, on put option prices P; and characteristics
Z;, the idea is to solve problems of the form

f=arginf {1 Z[g ~ Py(f, Zi)TWz} , (2.2.8)

feF | n 4
i=1

where Py (-) is the known pricing functional from equation (2.2.7), Z; is the vector
of observables, and W; = W (Z;) are known weights as a function of Z;.!!

The main difficulty with solving the optimization problem in equation (2.2.8) is
the infinite dimension of the function space F. In general, optimizing over an infinite-
dimensional function space may not be feasible or could even be ill-posed. Instead,
it is typical to proceed by the method of sieves, which involves approximating F by

a sequence of finite-dimensional function spaces (the “sieve” spaces)

[see Chen (2007), Chen and Shen (1998), and Shen (1997)]. The crucial property
of sieve spaces is that they are much simpler than F but are sufficiently rich to
eventually become dense in F. That is, given any f € F and any € > 0, there is an
M such that for all K > M, there exists fx € Fx such that ||f — fx]|| <e.

The sieve space properties — along with mild regularity conditions — ensure that

solutions to

]?K" = arg min {%Z}[R — Py(f, Zi)]2WZ} (2.2.10)

fE.FKn

11 Call options can be handled analogously in what follows, but for brevity I focus on puts.
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are consistent for fy. I provide conditions in Section 2.4 that ensure that the con-
vergence of fKn to fo also implies the convergence of Py ( f ,Z) to Py(fy,Z) under
suitable norms. Also note that the minimum in (2.2.10) is taken over the subspace
Fk, < F, where K,, — o slowly as n — co. The requirement that K, — oo slowly
is crucial and can be interpreted as the sieve analog of a bandwidth selection in
kernel estimation and has an intuitive interpretation: as the sample size grows, the
approximating spaces J, increasingly resemble the parent space F. The regularity

conditions then ensure that optima on F, indeed converge to fo.
2.2.4  The Definition of F and its Sieve Spaces Fi

For an option surface to conform to the theoretical shape restrictions of Eq. (2.2.7),
F must be a function space consisting of conditional densities f(Y|7) in the sense
that { f(y|7)dy = 1 for all 7. I construct such functions by first defining a collection
of joint densities F¥'" with elements f¥'"(y, 7), and then defining F to consist of those
functions f(y|r) such that f(y|7) = f¥"(y,7)/§ ¥ (y, 7)dy for some f¥7 e F¥7.
Gallant and Nychka (1987) show that if 7**7 is a Sobolev subspace and {Fy"}2_,
is a collection of squared and scaled Hermite functions, then {]-"[’;’T}?:O is a valid sieve
for F¥7. T show that the conditional approximating spaces {Fx}%_, consisting of
those functions fx for which fx (y|7) = fi (y,7)/ § fX"(y, 7)dy for some fy" e FyT
is also a valid sieve for the conditional parent space F, although the topologies differ.
A formal discussion of these technical details is postponed until Section 2.4, when
the asymptotic properties of the estimator are examined. For now, it is sufficient to
note that when Fy is constructed from a ratio of two Gallant-Nychka densities, then

there exists a norm under which Fx is a valid sieve for F.
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The Gallant-Nychka sieve spaces {F"}%_, consist of functions of the form

2
K (y,7) = Z (Z BriH; Hk:(y)] T eV

| k=0
(2.2.11)
_K.U 1?2
= | > (B, 7)H(y) | e PV,
| k=0

where Hj, are Hermite polynomials of degree k, and where B is a matrix of coefficients
with kj-entry fg; and K = (K, +1)(K, +1).'* This function is clearly non-negative.
Then, using orthogonality properties of Hermite polynomials, it can be shown that
in order for {{ f}?T T)dydr =1 for any K, it suffices to impose Zk 0 Z ,Bkj =

The conditional sieve spaces Fx will then consist of functions of the form

frelm) = fx" (v, 7 /Jf Y, T (2.2.12)

for some joint density f}?T € .7-"};’7. Notice that because the sieve joint densities
f;{/’T (y, T) are completely determined by the parameter matrix of coefficients B, then

so are the conditional densities in Fr. Therefore, for § = vec(B), the least squares

12 The Hermite polynomials are orthogonalized polynomials. They are defined, for scalars x, by

Hic () = xHg_1(x) — VK — 1Hg _o(x) K2

ﬁ )

where Hy(z) =1, and H;(x) = x [see, for example, Ledn and Sentana (2009)]. Note that Hg (x) is
a polynomial in = of degree K.
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problem in (2.2.10) becomes

BeREn

~ ) 1& 2
Bn = arg min {E;[B — Py (B, Zz’)] Wz}

(2.2.13)
Ky(n) K+(n

)
s.t. Z Z B,%j =1,
k=0 j=0

which is numerically equivalent to nonlinear least squares estimation for fixed K,,.
As written, Py (f,Z;) is identical to Py (fk,Z;) from Eq. (2.2.7), which still

requires an integration to obtain a candidate option price. Section 2.3 shows that

in fact, Py(fk,Z;) is available in closed-form for any fx € Fx, which considerably

facilitates implementation.
2.2.5 The Sieve Satisfies the Required Shape Constraints

The sieve option prices produce highly structured option surfaces because the re-

sulting option prices are shape-conforming for each 7. To see this, one differentiates

r> (2.2.14)

where Fi(+|7) is the cumulative distribution function of fr. Hence, because fr = 0

with respect to x to obtain

log(r/S0) — u(Z)

e aPY(fKa Z)
o(Z)

0K

A(Z)
_ f Fe(Y )Y T = Fie (

0

and integrates to one, one observes that (a) Py (fx, Z) is increasing in the k£ dimension
(since Fx >= 0 as a CDF), (b) Py(fk,Z) is convex (since 0Fk/0k is fr/(rko(Z))

and fx = 0), and (c)

lim erTaPY(fKﬂz) -1 lim erTaPY(fK7Z)

= 0. 2.2.15
K0 oK ’ ) Ok ( )

26



This shows that the sieve option prices satisfy the shape constraints implied by

economic theory, for any 7.

2.3 Closed-form Option Prices

I now provide closed-form expressions for the sieve option prices Py (fr, Z) to be used
in the regression (2.2.10) and show that (Z) and o(Z) can be chosen so that the sieve
option prices have a natural interpretation as expansions around the Black-Scholes

model.
2.3.1 Closed-Form Option Prices

To obtain closed-form option prices, it is convenient to first obtain a closed-form
expression for the conditional sieve densities fx of Eq. (2.2.12). This is done by
expanding the squared polynomial term in the joint densities of Eq. (2.2.11) using

techniques similar to those in Leén and Sentana (2009).

Lemma 2.3.1. Any fx € Fx can be expressed in the form

Fellr) = 3 (B, 7 He(0)(y). (2.3.1)

where
a(B, 1) Aya(B, T)
B ==

WwB7) = =B rya(B.7)

Ay is a known matriz of constants, and o(B,T) is a (K, + 1) x 1 column vector

obtained by stacking the oy (B, T) in Eq. (2.2.11).
Proof. Appendix A.2. O]
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The use of densities fx(y|7) that are linear combinations of functions in y helps
with the derivation of closed-form option prices. The following result is an extension
of Proposition 9 in Leén and Sentana (2009) to the case allowing for conditioning on

T.

Proposition 1. For a candidate SPD fx(x|T) € Fi of the form given in equation

(2.3.1), the put option price Py (fx,Z) from equation (2.2.7) is given by

Py(fi,Z) = re " [cb(d(Z)) - i MJE?T)Hkl(d(Z))¢(d(Z))]

2K,

— Spe "THH®) [eo<z>2/2q>(d(2) —0o(Z)) + Y, (B, T)I,:(d(Z))] (2.3.2)

k=1
where ®(-) is the standard normal CDF, K = (K, + 1)(K; + 1), and where

o(Z) ., L @iz
W[,H(d(Z)) v/ DAL (d(Z)p(d(Z)),  fork =1,

I3(d(Z)) = P P9(d(Z) - 0(2)),

1(d(2) =

and (B, T) is the coefficient function given in equation (2.3.1).

The price of a call option is given by

Oy (fx, Z) = Spe™ 72 [6"(2)2/2[1 — ®(d(Z) —o(2))] + 21%(37 )1} (d(Z))]

— ke "7 [[1 — 0(d(2))] - Zy: &Jéﬂf&—l(d(z))wd(z))] - (233)

Proof. Appendix A.2 O]

Remark 2.3.2. The significance of this result is that it makes the sieve regressor
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function of Eq. (2.2.13) available in closed-form. Indeed, in sharp contrast to the
large class of parametric option pricing models of Heston (1993) and Duffie et al.
(2000), no numerical integrations are required to compute an option price, which
significantly facilitates the optimization problem Eq. (2.2.13). Moreover, Appendix
A also provides closed-form gradients and second derivatives of the prices Py (fr, Z).
And finally, having closed-form price estimates additionally simplifies the ultimate

objective of computing integrated portfolios of Py (fx,Z).

The sieve put option price in Eq. (2.3.2) has an intuitive interpretation. Rear-

ranging equation (2.3.2), one obtains

Py (fi,Z) = ke " ®(d(Z)) — Soe B T B PP ((Z) — o(Z))

— Z Ye(B,T) [\/LEHkl(d(Z))aﬁ(d(Z)) + Spe "B I (d(Z))] . (2.34)

Inspection of equation (2.3.4) shows that choosing

o(Z) =01, wWZ)=(r—q-0o*/2)r (2.3.5)

will cause the leading term in equation (2.3.4) to become Ppgs(0,Z) = ke ""®(d(Z))—
Soe " ®(d(Z) — o+/T), where ¢ is the dividend yield, and where the function d(Z)
from equation (2.2.5) is now d(Z) = (log(x/Sy) — (r — q¢—02/2)7)/(0+/T). The value
o is a tuning parameter in the sieve framework and is chosen to be equal to the
average implied volatility of the observed option cross-section.

This is the familiar option pricing formula of Black and Scholes (1973). Therefore,

the choice of u(Z) and o(Z) above result in a sieve approximation with leading term
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given by the Black-Scholes formula, that is,

Py(fK,Z) = PBs(O', Z)

Hy,1(d(Z)$(d(Z)) + S~ "I} (d(Z))

2K, _
Y |::‘<J€ rT

_ kz:l fyk(B, 7') W
(2.3.6)

This formula can be interpreted as “centering” the sieve at Black-Scholes, and then
supplementing it with higher-order “correction” terms.'® As the sample size n in-
creases, the number of correction terms K, and K, also increase,'* albeit at a slower
rate than n. Thus, the more data one has, the more complex the sieve option pricer
is permitted to be relative to Black-Scholes.

If the (B, 7) terms for k > 1 above are nonzero in the data, then we can re-
gard this as evidence against the Black-Scholes model. In particular, it has been
well-documented that conditional distributions of asset prices contain substantial
volatility, skewness, and kurtosis that the Black-Scholes model is unable to capture.
Modeling techniques to introduce such features into the return distribution includes
the addition of stochastic volatility [Heston (1993)], as well as jumps [Bates (1996),
Bates (2000), Bakshi et al. (1997), Duffie et al. (2000)]. The simulation study in
Section 2.6 explores how these continuous time parametric features feed into the co-
efficients of the Hermite expansion and shows that low-order expansion terms (order 4
to 6) are quite capable of fitting the conditional distributions implied by complicated

stochastic volatility and jump specifications.

13 Recently, Kristensen and Mele (2011), Xiu (2011), and Leén and Sentana (2009) have employed
Hermite polynomials in a parametric option pricing setting. The formulas derived here differ in
that they are the result of a nonparametric sieve least squares framework.

14 Recall that the (B, T) terms also contain expansions.
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2.4 Consistency

The critical feature of Py (f,Z) in Eq. (2.2.7) is that it generates shape-conforming
option prices for any 7. It does so by indexing state-price densities with 7, which
appears as a conditioning variable. A straightforward extension of Eq. (2.2.7) is to
permit a state-price density with arbitrary conditioning information, f(Y|X), where
X € Z and contains 7. For example, one could have X = (7,r) to accommodate a
risk-free rate term structure that does not match the maturities of observed option
prices. Allowing for general X is instructive in order to see how the rate of con-
vergence is slowed by the dimension of the conditioning variable X. Therefore, this
section establishes the asymptotic theory for the extension that allows for arbitrary
conditioning information in the SPD.

A summary of the theoretical results developed in this section is as follows. First,
[ move from Gallant-Nychka joint density spaces to conditional density spaces (the
norm changes), and from conditional spaces to option price spaces (with another
norm change). The theoretical contribution of this section is to show that each of
these transitions corresponds to a Lipschitz map between function spaces. Thus,
the complexity of the option price spaces, as measured by the L*(R'*% P) metric
entropy from empirical process theory, is completely determined by the complexity
of the Gallant-Nychka joint density spaces, which are Sobolev subspaces with known
covering numbers. Hence, one can apply existing general theorems from the sieve
estimation and inference literature to obtain convergence and asymptotic distribution

results.
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2.4.1 Consistency of Sieve Option Prices and State-Price Densities

With Bn in hand, estimated option prices are simply given by Py (Bn, Z) = 135”, which
has the closed-form expression stated in Proposition 1. This subsection establishes
that || PX" — P2|l, % 0 as n — 0, where the consistency norm is the L2(R%, P) norm
defined below in Eq. (2.4.1).

The asymptotic results developed in the remainder of this section make use of
Sobolev spaces and associated norms. Detailed definitions of these spaces are given
in Appendix A.1.1. Under those definitions, the sieve spaces of conditional densities
from Secion 2.2.4 are assumed to be subspaces of W™!(R%) stated in Definition
A1.1.

The results in this section refer to the following norms: The option price consis-

tency norm is

|Pyv,y — Pyall; = B{[Py.1(Z) — Pya(Z)P'W(Z)} = J[Pm(z) — Py(Z)]*W(Z)P(dZ)
(2.4.1)
i.e. the Lo(P,W)-norm on the space of option prices P that are obtained by inte-

gration against some f € F. The state-price density consistency norm is d(fi, fo) =

1f1 = fall7ua-

The consistency proof requires some assumptions and a few preliminary results.
Bounded Stock Prices

When state-price densities are close, then asset prices computed off those densities

should be close. This intuition is formalized in the following assumption.
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Assumption 2.4.1. (Locally Uniformly Bounded Stock Prices). Given any fy € F,
there exists an ||-||m1— open neighborhood U containing fo and a constant M (possibly

depending on U) such that

sup|S(f,Z)| < M P—a.s.,
feu

where
S(f,Z)=e"" f Soet @Y £(y|X)dY = e "7 f Srf(Y|X)dY

denotes the price of a stock given a candidate SPD f.

Assumption 2.4.1 is a technical condition that is required in order for certain
arguments in the asymptotic theory to go through and has little bearing on practical
applications. In particular, it is easy to check within optimization routines that this
constraint is never close to being violated.

I also make the following assumption.
Assumption 2.4.2. Assume

(i) {pi, 2}y are i.i.d. draws fromY = (P,Z) with E|Y|**° < oo for some § > 0,

and E[W(Z;)] < .
(i) The true state-price density fo € F satisfies P = E[Py(fo, Z)|Z].

Assumption 2.4.2 is standard and very mild. It says that the options are observed
with conditional mean-zero errors with bounded 2 + § moments.

Taken together, Assumptions 2.4.1 and 2.4.2 imply a number of useful properties
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that are summarized in several Lemmas that I prove in Appendix A.1.1. These

properties are used to establish the following consistency result.

Proposition 2. (Consistency) Under Assumptions 2.4.1 and 2.4.2, d(fn,fg) 50

and || PE» — P2, & 0.
Proof. Appendix A.2 O
2.4.2  Rate of Convergence

The ultimate aim is to derive asymptotic inference procedures for certain option
portfolios. To implement such procedures, one requires knowledge of the rate of
convergence of ||]3{,<" (Z) — PL(Z)||» 2 0.

The rate of convergence of the sieve option prices depends on notions of size
or complexity of the space of admissible option pricing functions as measured by
the latter’s bracketing numbers. Note that each candidate option price Py (f,Z) is
uniquely identified by the state-price density f (Lemma A.1.5). In turn, f € F is the
target of a Lipschitz map with preimage f¥* = h? + ehg, a Gallant-Nychka density
(Lemma A.1.6). The Gallant-Nychka class of densities requires h to reside in H, a
closed Sobolev ball of some radius By.'> The rate result obtained below hinges on

the observation that the collection of possible option prices,
P={P : Pv(Z)= P (f, Z) for some f e F},

is ultimately Lipschitz in the index parameter h € H. Therefore, the size and com-

plexity of P, as measured by its L?(R% ) bracketing number, is bounded by the

15 For further details, see the Online Appendix as well as Gallant and Nychka (1987).
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covering number of the Sobolev ball H (see Van Der Vaart and Wellner (1996)). The

following assumptions are used in the proof of the rate result below.
Assumption 2.4.3. o(Z) = E[e|Z] and W(Z) are bounded, where e = P — P(Z).

Assumption 2.4.4. The deterministic approzimation error rate satisfies

1A = i Bl lmg 1m,2,60 = O(K, %)

n

for some o > 0, where h € H and its orthogonal projection mk, h € Hg, are defined in
Definitions A.1.2 and A.1.3, and where K, = [K,(n)+1][Ky1(n)+1] ... [K;q4,(n)+

1] denotes the total number of series terms for functions in Hg,, .
Assumption 2.4.5. For state-price densities in W™ (R%), we have m > d, + 2.

Assumption 2.4.3 is mild and commonly adopted in the literature (see Chen
(2007)). Assumption 2.4.4 takes as given the deterministic approximation error rate,
and Assumption 2.4.5 imposes additional smoothness in order to invoke Sobolev

imbedding theorems (see Adams and Fournier (2003)).

Proposition 3. Let Py(Z) = Py(fn,Z), where f, solves (2.2.10), and let PY =

Py (fo,Z) denote the true option price. Under Assumptions 2.4.1, 2.4.2, 2.4.3, and

2.4.4,
HﬁY_P3||2 = Op(e,),  where €, = max{p~(motm)/Zmorm)tdu) —adu/(Hmotm)+du)}
Proof. Appendix A.2. n

Coppejans and Gallant (2002) provide conditions under which oo = (mg + m) in

the univariate density case (d, = 1) using a chi-squared norm. If this rate extends
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to a = (mo+m)/d, in the multivariate case, the above rate simplifies to the optimal
£, = Op(n—m/(Qm+du))7

where m = mg + m, implying that the entropy and approximation error rates in

Proposition 3 balance out.

2.5 Inference for Option Portfolios

I now turn to quantifying the precision of option portfolios that use the estimated
option prices ﬁé{" just derived. Many such portfolios fall into the following class of
functionals that take the function Py as inputs and return a real number. Therefore,
the general sieve functional inference framework of Chen et al. (2013) can readily by
applied.

Split Z = (Z,,Z,). The prime example is Z; = x, which includes the large class
of functionals used in option hedging that integrate option prices over strikes. While
the results in this subsection apply more generally, for concreteness this discussion
will consider linear functionals of the form

I'(Py) =Tz, (Py) = c(Z) + J W(Zy, 23)[Py(Zy,25) + 0(Z1,Z)]dZ,. (25.1)

Z

This general functional includes so-called weighted integration functionals as well
as evaluation functionals, or combinations of both (this terminology is borrowed from
Chen et al. (2013)). The following examples serve to illustrate the flexibility of this

functional.

Example 2.5.1. To compute the Synthetic Variance Swap (SVS) of Carr and Wu

36



(2009) at horizon 7, one has for Zy = k, Zy = Z_,. and by put-call parity'®

SVS(T) = PZZ (Py)

2 (F@ 1 N 1
_2 f oL P () + J oL Cy (Z)dn (2.5.2)
T J_o K T F(Z) K

_ L (5, Zo) [Py (1, Zo) + D(Z)) i
= J/c w(Z)[Py(Z) + b(Z)]dr
where F(Z) = Spe™ D7 denotes the forward price, and where
w(Z)=e¢"T— b(Z) = 1|k > F(Z)]|Soe " — ke "],

and ¢(Z) = 0.

Example 2.5.2. Bakshi et al. (2011) consider the exponential claim on integrated

variance proposed in Carr and Lee (2008) given by

P(Py)=e ""EQ [eXp (— L ' afdt) ‘z] (2.5.3)
~e Ty fw W(Z) Py (Z)drs + LOO W(Z)Cy (Z)drs (2.5.4)
= o(Z) + Lw(Z)[Py(Z) 1 b(Z)]dk (2.5.5)

16 7 _,. denotes all the values of Z that exclude the component .
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where

s ot + £ (8)
= \/ST)KW

b(Z) = 1[k > Sp][Soe™ " — ke "]

Many more functionals of option prices fall under this framework. For instance,
the large class of so-called “model-free” volatility measures that are widely used in
the literature, involve some type of weighted integral of option prices across strikes.
See, for example, Carr and Wu (2009), Jiang and Tian (2005), Britten-Jones and
Neuberger (2000), and Ait-Sahalia et al. (2012) and the many references therein. The
Carr and Wu (2009) SVS-type portfolios will be the subject of this paper’s empirical
application below. Note that because of put-call parity, the b(Z) term in Eq. (2.5.1)
can serve to create call options from the put pricing function.

The goal is now to establish the asymptotic distribution of I'(Py). This will
permit the construction of (pointwise) confidence intervals on the wide variety of
option portfolios described in the preceding examples, which includes the class of
model-free option-implied measures. It is natural to think of the estimated option
pricing function ﬁy as being indexed by a finite-dimensional parameter, i.e. fA’y(Z) =
Py(Bn, Z) pointwise in Z. Hence F(ﬁy) is indexed by 3,,, which suggests the use of the
standard parametric delta-method for the derivation of the asymptotic distribution of
T'(Py). This intuition turns out to be correct, but only if K,, = (K,(n)+1)(K,(n)+1)
has been chosen appropriately. The Monte Carlo simulations below confirm that

incorrect choices of K, (i.e. either too large or too small) yield incorrect asymptotic
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distributions. However, the simple procedure of selecting K, by minimizing the BIC
turns out to perform quite well.

With a correct choice of K, in hand, inference on F(ﬁy) by parametric delta-
method is numerically equivalent to nonparametric sieve inference. This is the result
of Proposition 4 below, whose proof involves verifying some Donsker properties in
order to invoke the theorems of Chen et al. (2013).

Specifically, let =; = (P;, Z;) denote observations on option prices and charac-

teristics, and define ¢(8,Z) = — [P, — Py(8,Z;)]*W;. The following assumption is

1
2

made.
Assumption 2.5.1.

(i) The smallest and largest eigenvalues of Ry, are bounded and bounded away

from zero uniformly for all K,.

s 0L (PQ) foPy™
(i) Nime, o | T2 [Z25- ] I3 < 0.
(iti) ||vi —v*|la = O(n™P) for B > 1 — m, where vl and v* are the Riesz

representors defined in Appendix B.2.1.

() llogll/llvgllsa = O(1).

Here, Rk, is the population analog of (2.5.8) below. The main result of this
section is the following proposition, which enables the construction of confidence
intervals or a wide array of option portfolios that fall under the functional class in

Eq. (2.5.1).
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Proposition 4. Assume the conditions of Proposition 3 as well as Assumption 2.5.1.

Then
ViV, R (Py) — T(PY)] -5 N(0,1) (2.5.6)
where
V, = Gl Ry Sk, Ry G, (2.5.7)
and where
& R(G.2)
K =
5 020(B, Z5)
Ry, = 2 57 (2.5.8)
& ol( 5n,=z 6€(ﬁn,ul)
YK, = .
. z -
Proof. Appendix A.2. u

Remark 2.5.3. The objects in Eq. (2.5.8) are the usual quantities involved in the
estimation of the variance matrix in nonlinear least squares problems. For example,
if I' represents the 1-month SVS, i.e. SV S(1) of Example 2.5.1, then Eq. (2.5.6)
says that the SV'S(1) is asymptotically normally distributed with estimated variance
V,, computed above. Moreover, this calculation can be done for any SV (1) for
arbitrary 7, which enables the construction of SVS term structures that quantify the
estimation error involved with the construction of long-term SVS’s. An analysis of

SVS term structures and associated estimation errors is conducted in Section 2.7.

Remark 2.5.4. Proposition 4 shows y/n-consistency of functionals of the option price,

whereas Proposition 3 shows a somewhat slower rate for the convergence of Pff” to
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P. This is because the functionals of interest (Eq. (2.5.1)) belong to the so-called
reqular class of functionals of Chen et al. (2013). Similar y/n-consistency of well-

behaved functionals is obtained in Newey (1997).

Implementation Summary

1. Choose p(Z) and o(Z). To center expanions around Black-Scholes, use Eq.
(2.3.5).

2. Construct Py (3, Z) from Proposition 1.

3. Choose K, = (K,(n) + 1)(K;(n) + 1) to grow slowly as n — o0, e.g. by
minimizing BIC.

4. Optimize the objective function over sieve coefficients in Eq. (2.2.13), using all
options from a given cross-section of options.

5. Form V, using Eq. (2.5.7) and use critical values from standard normal tables.

2.6 Simulations

Aside from its ease of computation, a key advantage of the estimation and inference
framework developed above is its flexibility. Here I show that the sieve estimator
performs well in capturing the term structures of option smiles, risk-neutral quantiles,
and state-price densities when the data are generated by familiar parametric DGPs.17
The section concludes with a Monte Carlo experiment showing good finite-sample
properties of the functional estimator from Proposition 4.

The simulations in the this section refer to various subcases of the following

17 T also show how the sieve can be used in the construction of daily or weekly time series of
fixed-maturity (e.g. 30-day) implied measures. The latter is relevant to applications that use
exchange-traded options with fixed expiration, which often results in daily option surfaces in which
the maturities “cycle” deterministically as the expiration date approaches. For brevity, the results
of these simulations are relegated to an Online Appendix to this paper.
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general data generating process.

1
dX, = (7« —q—\a— 51/;) dt + py/VidW, + J,dN,
(2.6.1)

Vi = ko (V = Vi)t + pon/VidWy + (1 = p°) 2 on/VidW! + Z,dN,

where V} is a stochastic volatility process, W; and W/ are standard Brownian motions,
and k,, V, p, v parametrize the volatility process’ mean reversion, long-run mean, the
leverage effect, and the volatility of volatility, respectively. N, is a Poisson process
with arrival intensity A and compensator Az, where i = exp(uy + 0.50%)/(1 — p, —
psttw) — 1 . The variable J;|Z; ~ N (s + pyZ;, 0%) is the price jump component and
Zy ~ exp(fu,) is the volatility jump component. This is the well-known double-jump
process, which is a special case of the general affine-jump diffusion processes treated
in Duffie et al. (2000) that is nonetheless general enough to nest the celebrated models
of Black and Scholes (1973), Heston (1993), and other jump-diffusions commonly
used in the option pricing literature. The values of these parameters are set to those

used in Andersen et al. (2012) and are given in the Online Appendix to this paper.
2.0.1 Shape-Constrained Fitting

The main paper contributes to an existing literature concerned with shape-constrained
option price fitting. Specifically, Eqgs. (2.2.14) and (2.2.15) show that the option pric-
ing function Py (a.) is monotone in r, (b.) convex in &, (c.) has first derivative
(@) 45 a CDF, yielding limits of 0 and 1 0 and ivel
eT—5-—asa , ylelding limits of 0 an as Kk goes to 0 and 400, respectively,

and (d.) restrictions (a.)-(c.) must hold for arbitrary time-to-maturity .

Several papers have proposed estimation and fitting methods that obey a subset
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of these shape constraints. For example, Yatchew and Hérdle (2006) propose a
nonparametric shape-constrained estimator for options along a single maturity, as
do Ait-Sahalia and Duarte (2003). Garcia and Gengay (2000) use neural network
methods and the Black-Scholes formula to impose structure on their option estimates.
The attractive feature of these models is that they can be differentiated to obtain
risk-neutral CDFs and PDFs.

Another potential value of shape-constrained option estimators is their use in
applications that require a continuum of option prices in the strike dimension that
extends to infinity as inputs in empirical investigations. These include studies that
use the integrated portfolios of the form Eq. (2.5.1) [see e.g. Britten-Jones and
Neuberger (2000), Bakshi et al. (2003), Jiang and Tian (2005), Carr and Lee (2008),
Carr and Wu (2009), or their uses in e.g. Bollerslev and Zhou (2006), Bollerslev
et al. (2011), Bakshi et al. (2011) among many others|. Thus, since it is well-known
that option prices are only discretely observed on a truncated interval, one often
requires some type of interpolation or smoothing on the range of observed discrete
options, and an extrapolation beyond the truncated range of strikes. Jiang and Tian
(2005) examine the numerical properties of one such interpolation and extrapolation
procedure. The sieve estimator derived above provides a complementary tool that
upholds the no-arbitrage shape-constraints across all maturities 7, even for maturities
for which there are few or even no observations. This is done by evaluating 13y at a
desired .

Figure 2.1 illustrates the estimator’s adherence to the shape constraints in Egs.

(2.2.14) and (2.2.15). The figure shows that for each observed maturity in the simu-
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FIGURE 2.1: Shape-conforming option price estimates for multiple maturities. A
dense set of true option prices is simulated from the double-jump process in Eq.
(2.6.1) and are plotted in solid for eight maturities. A subset of 250 option prices is
drawn from this dense set and perturbed with zero-mean measurement error (round
dots). The sieve least squares problem in Eq. (2.2.13) is solved with BIC-selected
K, =6 and K, = 2 and is plotted (dash).

lated sample, option prices satisfy the shape constraints even beyond the truncated
range of observed option data and asymptote to the option’s intrinsic value. Thus,
the sieve estimator performs the task of both interpolating between observed data,
and extrapolating beyond observed data in a single estimation step across all matu-

rities.
2.6.2 Risk-Neutral Quantiles and Densities

The purpose of shape-constrained option fitting is often to differentiate the (scaled)
put pricing function once to obtain the option-implied risk neutral CDF, or differen-

tiating it twice to obtain the state-price density. This is the subject of Jackwerth and
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Rubinstein (1996), Ait-Sahalia and Lo (1998), Figlewski (2008), Birru and Figlewski
(2012), as well as Bondarenko (2003) and the many references therein.

In contrast to methods that require numerical differentiation of the option pricing
function, the sieve estimator in Eq. (2.2.13) delivers risk-neutral CDFs and PDF's in
closed form. The closed-form expression of the risk-neutral PDF (i.e. the state-price
density) is obtained by plugging Eq. (2.3.1) into Eq. (2.2.6) above. The closed-form
formula for the risk-neutral CDF can be obtained by integrating the PDF and using

properties of Hermite polynomials, yielding

2K,

Qu(Sy < ulr) = 2(d(@) - 3, X0 i @@pow@),  (262)

where Qg (A) = {, fx(z|7)dx is the sieve-implied risk-neutral measure obtained by
integrating against the sieve state-price density. See Eq. (A.2.2) in the proof of
Proposition 1 for a derivation of this expression.

Figures 2.2 and 2.3 show the term structures of risk-neutral CDFs and PDFs,
using the estimated sieve coefficients obtained by solving the least squares problem
in Eq. (2.2.13) on data generated by the SVJJ process in Eq. (2.6.1) and the last
column of Table B.1. The CDFs cannot violate the 0 and 1 bounds at all maturities
by construction of the risk-neutral PDF, since it was scaled to integrate to one for
expansions of any order K. The true CDF and true PDF are plotted as well and
show remarkable fit across all maturities in the panel. However, in the more extreme
quantiles of the data, and particularly in the left tail, the sieve estimator begins to
oscillate. This is a consequence of the bias-variance tradeoff given in the rate result

of Proposition 3. In particular, the rate shows that the estimator’s convergence is
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FIGURE 2.2: The term structure of risk-neutral CDFs. A dense set of true option
prices is simulated from the double-jump process in Eq. (2.6.1) and are plotted in
solid for eight maturities. A subset of 250 option prices is drawn from this dense
set and perturbed with zero-mean measurement error (round dots). The sieve least
squares problem in Eq. (2.2.13) is solved with BIC-selected K, = 6 and K, = 2. Eq.

(2.6.2) is then evaluated at the estimated coefficient matrix B (dash).

a function of bias (i.e., how quickly the sieve space fills in the parent space as K,
grows), versus the variability of the approximator, which grows with K,. Thus,
the oscillatory behavior in the plot can be decreased by reducing expansion terms,
however at the cost of introducing some bias into the estimate.!®

Finally, it is worth noting that the sieve provides remarkable fit of the entire
term structure of option prices, risk-neutral CDFs, and risk-neutral PDF's, without
incorporating any information about the underlying SVJJ parameters and state vec-

tors. It can therefore be considered “model-free” in that it does not require correct

18 An alternative approach to reducing oscillatory behavior would be to add a penalization or
“regularization” term against oscillatory solutions to the least squares problem in Eq. (2.2.10). An
approach of this type would fall under the penalized sieve literature and would require techniques
that are beyond the scope of this paper.
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FIGURE 2.3: The term structure of risk-neutral PDFs. A dense set of true option
prices is simulated from the double-jump process in Eq. (2.6.1) and are plotted in
solid for eight maturities. A subset of 250 option prices is drawn from this dense
set and perturbed with zero-mean measurement error (round dots). The sieve least
squares problem in Eq. (2.2.13) is solved with BIC-selected K, = 6 and K, = 2. Eq.

(2.3.1) is then evaluated at the estimated coefficient matrix B (dash).

specification of the underlying dynamics.
2.6.3 Coverage

This section shows that uninformed choices of expansion terms can yield incorrect
inference on portfolios of option prices. In particular, the discussion in Section 2.2
demonstrated that the number of sieve expansion terms K,, = (K,(n)+1)(K,(n)+1)
must grow slowly as the sample size n tends to infinity. As mentioned above, the
result in Proposition 3 shows that the estimated option price ]35" converges to the
true option price P2 at a rate that trades off two criteria with bias and variance

interpretations [see Chen (2007)]. That is, on the one hand, large choices of K, result
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in lower bias, as the sieve space has more basis functions available to approximate the
parent function space. On the other hand, large K, will increase the variability of the
sieve estimate, leading to oscillatory behavior. The optimal choice of K,,, therefore,
balances these two influences. However, an inspection of the rate in Proposition 3
shows that the optimal choice of K, depends on the degree of smoothness of the
true state-price density fy. Since fy is unknown, the rate result does not inform us
of the optimal K,,. A formal theory for selecting K, specifically for the least squares
option pricing problem in Eq. (2.2.10) is therefore required, but beyond the scope of
the current paper.

Instead, this section shows that selecting K,(n) and K (n) by minimizing the
Bayesian Information Criterion can yield effective results in terms of coverage prob-
abilities for test statistics of the form in Proposition 4. Moreover, minimizing the
BIC is computationally attractive, and has been compared favorably to the more
formal cross-validation procedures in Coppejans and Gallant (2002). Given the em-
pirical application in the next section, the focus will be on the term structure of
synthetic variance swaps, SV.S(7), converted to standard deviation units, yielding
the VIX (1) = 100\/TS(7') functionals for various 7 ranging from 1 month to 2
years.

The simulation design is as follows: A rich set of put option prices is simulated
for each of the Heston, SVJ, and SVJJ models for maturities of 1, 2, 4, 6, 9, 12,
18, and 24 months. That is, for each of these maturities, a collection of 600 option
prices is generated with moneyness ranging from 0.3 to 1.7, for a total of 600 x 8 =

4,800 option prices. This is considered the panel of “true” option prices within
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the simulation. From this true option panel, a sample of 250 options is drawn at
random and perturbed with i.i.d. noise calibrated from actual options data. To
ensure realistic sampling across maturities, I use the option counts across the eight
maturities available for S&P 500 Index option prices on a randomly chosen day (in
this case, January 5, 2005), which had a distribution of 48, 28, 27, 30, 34, 29, and 20
options at the respective maturities. This design captures the richness of available
option prices at short maturities relative to long maturities.

Then, the NLLS problem in Eq. (2.2.13) is solved on the sample of n = 250 option
prices, which yields Bn that is then plugged into Eq. (2.3.2) to yield ﬁf”(Z) These
estimated option prices are then used to construct the Carr-Wu Synthetic Variance
Swap at each maturity [see Carr and Wu (2009)], by numerically integrating

—— F(Z) 1 ~ 2 0 1 ~ K
SVS(r) = Ze'™ — PE(Z)dk + =" —CE(Z)dr, (2.6.3)

T 0 K2 T

where the call prices CA’{,(”(Z) are obtained by put-call parity [see Example 2.5.1

above|. The associated sieve estimate of the VIX(7) is given by

VIX(7) = 1004/ SVS(r). (2.6.4)

Because this can be done for each 7 from 1 to 24 months, this procedure yields an
entire estimated VIX term structure. Because I also observe a rich set of noise-free
option prices within the simulation, I can compute the true VIX term structure as
well. Finally, for each point along the VIX term structure, 95%-confidence intervals

are constructed using the variance matrix in Proposition 4, with G, similar to
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(2.7.5) below with adjustment for the square root and scale factor 100. The random
sampling of 250 options and sieve estimation is then repeated 1,000 times, yielding
1,000 VIX(7) confidence intervals for each 7 from 1 to 24 months.

Table 2.1 shows the results of this Monte Carlo experiment for each of the Heston,
SVJ, and SVJJ DGPs, and with varying expansion lengths K, and K. By defini-
tion of frequentist 95%-confidence intervals, one should expect the true VIX (1) to
lie inside the estimated confidence intervals for around 95% of the 1,000 simulated
samples, for each 7. The table shows this is often the case along the entire VIX term
structure and that the best performance is achieved when the BIC is permitted to
select the number of expansion terms K, (BIC selections are shaded). In particular,
choices of K, that are small or large relative to the BIC choice appear to result in
overrejections, i.e. confidence intervals that are too biased or narrow to cover the
true VIX(7) in 95% of samples.

The case for allowing K, to grow slowly with the sample size is seen strongly in the
top panel of Table 2.1, where the sieve was expanded to K, = 3 and K, = 1 terms.
When the option prices are generated by a Heston-type stochastic volatility process,
an expansion to (K,, K;) = (3,1) terms provides near 95% coverage. In contrast,
if the underlying DGP were instead to include jumps in price and/or volatility, a
(3,1) expansion is clearly inadequate to capture the short end of the VIX(7) term
structure. For the SVJ DGP in particular, the 1-month true VIX was only inside
6.9% of estimated confidence intervals.

This form of overrejection is significantly improved when the BIC is allowed to

choose the expansion terms. The middle panel of Table 2.1 shows expansions to

50



Table 2.1: Simulated Coverage Probabilities Given Affine Jump-Diffusion DGP. A
dense set of true option prices is simulated from the double-jump process in Eq.
(2.6.1) with parameters from Table B.1, from which a true VIX(7) for each of the
7 given in the displayed horizons is computed. Then a sample of 250 option prices
is drawn at random from this dense set and perturbed with zero-mean measurement
error. The sieve least squares problem in Eq. (2.2.13) is solved with different choices
of expansion terms K, and K,. The estimated variance from Proposition 4 is then
computed to construct 95% confidence intervals around the estimated VIX (7). The

process of drawing 250 options prices and computing estimated VIX(7) and its
confidence intervals is repeated 1,000 times, and the proportion of occasions on which
the true VIX(7) lies inside the estimated 95% confidence intervals is then recorded
at each horizon 7. Shading denotes BIC selection.

Horizon (months)

1 2 4 6 9 12 18 24
K,=3 K, =1

Heston 0.939 0.946 0.910 0.915 0943 0.948 0.941 0.873
SVJ 0.060 0.040 0.434 0.886 0.909 0.802 0.853 0.908
SVJJ 0.076 0.031 0.039 0.056 0.317 0.706 0.861 0.840
K, =6, K, =2

Heston 0.930 0.935 0.960 0.923 0.929 0.916 0.919 0.888
SVJ 0971 0.941 0.962 0.944 0.909 0.897 0.916 0.890
SVJ]J 0.961 0.940 0.918 0.941 0.863 0.876 0.878 0.835
K, =7 K, =2

Heston 0.958 0.945 0.913 0.942 0.955 0.941 0.908 0.867
SVJ 0.970 0.968 0.922 0.931 0.960 0.934 0.913 0.883
SVJJ 0.934 0.907 0.915 0.939 0.909 0.915 0.921 0.852

(Ky, K;) = (6,2), which is the BIC choice for SVJ DGPs. Allowing the expansion to
go from (3,1) to (6,2) improved the coverage rate from 6.9% to 97%, which is much
closer to the asymptotic rejection probability of 95%.

The main takeaway from this Monte Carlo experiment is that choosing an expan-

sion length that is too small relative to the BIC yields incorrect inference. Moreover,

o1



the rate result in Proposition 3 suggests that this is due to pronounced biases in
the sieve estimator. Allowing K, to increase with the complexity of the model is
therefore necessary to avoid misspecification biases. Finally, I note that although
more formal methods for selecting K, are needed, the choice that minimizes BIC

performs remarkably well in terms of coverage probabilities.

2.7 The Term Structure of Variance Swaps and Risk Premia

An active literature in financial economics is concerned with studying the variance
risk premium, i.e. the compensation that investors demand for bearing return vari-
ance risk. This literature has shown that investors are averse to return variation and
have historically demanded a significant, but time-varying premium for holding secu-
rities that are exposed to such risk. Moreover, the variance risk premium, although
correlated with the equity risk premium, appears to identify a source of risk that is

unexplained by classic risk factors.*
2.7.1 Construction of the VRP Term Structure

The variance risk premium is typically measured by examining the difference be-
tween some measure of expected realized variance under the physical measure and
a comparable measure of expected realized variance under the risk-neutral measure
over a fixed time horizon 7, where the measure of realized variance considered here
is defined as follows. If F} is the futures price of an asset, no-arbitrage and some

mild regularity conditions imply that on a risk-neutral probability space (£2,Z,Q),

19 See, for example, Bakshi and Madan (2006), Carr and Wu (2009), Bollerslev and Todorov (2011),
Bollerslev et al. (2011), Bollerslev et al. (2013), and the references therein.
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F; solves the stochastic differential equation

dF, = Fy_ordW, + f Fo (e — V)[p(de, dt) — my(x)dzdt],  (27.1)
R

where o,_ is a stochastic volatility process, F;_ is the futures price prior to a jump
at time t of size F;_(e® — 1), u(dz,dt) is a counting measure, and v;(z)dzr is a
compensator. I assume for simplicity that all quantities involved satisfy the usual
regularity conditions, including finite jump activity [see e.g. Jacod and Protter
(2012)]. This is a very general and commonly adopted specification in the literature
[see e.g. Carr and Wu (2009) and Bollerslev and Todorov (2011)]. The realized

variance of this process is defined as its annualized quadratic variation, i.e.

T

1 t+1 1 t+7
RV =1 [ otdse [ [ sutdnds) (272
t T M R

The second term on the right-hand side is variation due to jumps, which is not
hedged by the SVS portfolio. Hence, my focus in this application will be on the first

term, the truncated variation

1 t+T
TVi(1) = —J o2 ds, (2.7.3)
¢

T s

which measures the continuous variation in the underlying.
The (continuous) variance risk premium then measures the difference between

this quantity’s physical and risk-neutral expectations,

VRP,(7) = EF[TV,(1)] — EZ[TVi(7)]. (2.7.4)
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Carr and Wu (2009) show that the second term in the right-hand side of Eq. (2.7.4)
is spanned by the SV Si(7) portfolio given in Eq. (2.5.2) above. That is, SV.S;(7) =
EZ[TV:,).

Portfolios of this type have been studied in recent years, but the focus has gen-
erally been on short (e.g. 7 = 30 day) horizons.?® A glance at the SV S;(7) portfolio
given in Eq. (2.5.2) above, and the option data counts in Table ?? should reveal
why: Beyond 7 = 90 days, the availability of option prices to approximate the infinite
integral in the SVS portfolio (2.5.2) drops off significantly. Any SV .Si(7) portfolio
constructed on the sparse long-run portions of the option surface should therefore
be less precise than integrated portfolios constructed from the rich short-run data.
But this is exactly what Proposition 4 above contributes: it provides a formal way
to quantify the precision of estimates of integrated option portfolios that are con-
structed from sparse and possibly noisy long-run option data.

This section therefore studies the term structure of sieve-estimated SV3 +(T) port-
folios and its implications for studying the corresponding term structure of the vari-

ance risk premium (VRP). I now turn to estimating the two quantities involved in

the construction of the VRP,(7) in Eq. (2.7.4).
2.7.2  The Q-Measure: Estimating EX[TV,(7)]

As discussed above, the SVS(r) spans E2[TV,(r)] and is computed from actual
option price data. The option data used are S&P 500 Index options obtained from

OptionMetrics for the time period spanning January 1996 to January 2013. The usual

20 The notable exceptions are the papers by Ait-Sahalia et al. (2012) and Fusari and Gonzalez-Perez
(2012).
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filters are applied to the data, i.e. options with zero bid prices are discarded, as are
in-the-money options and options with maturity less than a week. This is common
practice in the literature in order to mitigate effects arising from price discreteness,
liquidity effects, quote staleness, and general microstructure effects. See, for example,
Andersen et al. (2012). For the analysis below, I consider the construction of 9
weekly SV Sy(7) time series for 7 = 1,2,3,4,6,9,12, 18, and 24 months-to-maturity
that use options every Wednesday of the week. While a similar construction of
daily or monthly time series is also possible, the weekly frequency strikes a balance
between providing a sufficiently rich time series of variance swap term structures
while avoiding observations that overlap too strongly, since the SV .Sy(7) is a forward-
looking measure.

Because index options are sparse at both long-run maturities and very short-run
maturities, and because the maturities vary from week to week, I use the sieve estima-
tor derived in the previous sections to obtain a balanced time series of estimated SV'S
term structures. Note that the coefficient solution to Eq. (2.2.13) uses options across
all maturities in one step and does not require second-stage STV\St(T) interpolations.
That is, for each Wednesday, it uses all available option prices and characteristics
{P;,Z;}"_, and solves the NLLS problem in Eq. (2.2.13) for BIC-selected K, = 6
and K, = 2, yielding a parameter matrix B , from which the estimated option pric-
ing function 155” is obtained. The call pricing function CA’{/{" is obtained by put-call
parity, and the week-t S/V\St(T) term structure is then numerically computed via Eq.

(2.6.3) by evaluating PX" and CK» at 7 = 1,2,3,4,6,9,12, 18, and 24 months.
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To compute confidence intervals on any S/V\St(T), I set

b Kn(f3
2 _TTJ 105 (Bn2) | (2.7.5)

O, = 7 o K2 op
and construct the estimated covariance matrix V, in Eq. (2.5.7). Note that because
]35" is shape-conforming even for strikes that are unobserved, the integral discretiza-
tion error can be made arbitrarily small. Similarly, because of the sieve-estimator’s
adherence to shape-constraints, the integration limits a and b can be set arbitrarily
wide. However, to facilitate comparisons with the CBOE’s VIX, I set the integration

limits to exclude option prices that fall below 1 cent.

2.7.3 Measuring the Economic Value of Standard Errors on the Variance Swap
Portfolio

The above procedure yields a weekly time series of nonparametrically estimated and
balanced synthetic variance swap term structures, @t(ﬂ, along with correspond-
ing confidence intervals obtained from the inference theory of Proposition 4 above.
One way to measure the economic value of sampling uncertainty induced by noisy op-
tion prices is to examine the width of the synthetic variance swap confidence intervals
relative to the synthetic variance swap itself.

To be specific, for each day ¢t and horizon 7, I compute the 95% confidence
intervals of S/"V\St(T). The long position in a variance swap contract receives the
payoft N(TV,(r)— S/V\St(T)), where N is the variance notional that converts variance
units into US Dollar amounts. To keep with an industry standard over-the-counter

variance swap, the notional is set to N = 100, 000/(2 - 100 - v/ SV'5).2!

21 See CBOE Futures Exchange (2013).
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Table 2.2: Variance swap confidence intervals and ex-post payoffs for the sample

period 1996-2010. The synthetic variance swap term structure S%t(T) along with
95% confidence intervals is estimated using the sieve methods derived in Sections 2-4
in the text. The P-measure ex-post realized analog is computed by truncating jumps
from 5-minute return data according to Eq. (B.4.1). The payoft (T'V; — SV S;) of a

hypothetical long position in the continuous variance swap is reported. Profit and
loss in US dollars are computed using the variance notional given in the text.

Variance USD Pct.
Maturity SVS  95%-CI Range SVS 95%-CI Range CI Range

1 0.043 0.002 979,692 59,036 5.81
2 0.045 0.002 1,009,857 39,874 4.00
3 0.045 0.002 1,023,792 33,843 3.36
4 0.046 0.001 1,030,537 32,238 3.19
6 0.046 0.001 1,035,922 26,874 2.66
9 0.046 0.001 1,038,554 23,017 2.23
12 0.046 0.001 1,039,255 23,692 2.27
18 0.045 0.001 1,037,955 30,035 2.82
24 0.045 0.004 1,035,320 87,291 8.17

Table 2.2 displays the sample average of the synthetic variance swap contract in
both variance units and US Dollars. Column 3 shows the 95% confidence interval
width on the estimated fixed leg S/V\St(T). The last column of the table shows
the proportion of this confidence interval width in relation to the swap’s notional
value. For short and very long horizons, the 95% confidence intervals command a
sizeable fraction of the swap’s fixed leg; 5.81% for 1-month swaps and up to 8.17%
for two-year swaps. The corresponding Dollar amounts for these values are given in
columns 4 and 5. Medium horizon swaps, in contrast, appear very well estimated
and account for a relatively smaller fraction of the fixed leg payout over the sample
period, compared with their short and long-maturity counterparts.

Table 2.2 suggests that sampling variation can account for about 8% of the ob-
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served average payoff on 2-year synthetic variance swaps. This is largely due to the
lack of observations on long-maturity options for the first half of the sample, shown
in Table ??. If the confidence interval width is interpreted as a gauge of precision
for the fair value of the variance swap given observed option information, then this
result suggests that available options at long (2-year) horizons relatively less informa-
tive hedges of the swap contract’s true value and could therefore receive a premium

relative to swaps at more liquid option maturities.
2.7.4 Comparing the Sieve and CBOE VIX

For maturities 7 = 30 days, the Chicago Board Options Exchange publishes a dis-

cretized estimate of the synthetic variance swap, given by

2 rT 1 2 rT 1
VIX%BOE(T)/104 = ;6 Z ?P(KJJ‘,T)AHJ' + ;6 Z FC(KJ',T)AH]'

kj<F VI kj>F
1| F ]
7 | Ko ’

where kg is the largest observed strike below the forward price F'. Note that the last

(2.7.6)

term in (2.7.6) is zero when options with kg = F' are observed. Because S&P 500
Index options expire on the third Friday of each month, options expiring exactly 30
days hence are not available in most instances. In such instances, the CBOE takes
the two maturities that straddle 30 days, i.e. 71 < 30 and 7, > 30, and computes the

linear interpolation

VIXZpop(30) = wiVIXZpog(T) + wVIXEpop(T2)

for wy = (30 — 1) /(12 — 1) and we = (19 — 30) /(72 — 71).
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Table 2.3: The CBOE and Sieve VIX Term Structurs from 1996 to 2013. VIX term
structures and corresponding confidence intervals are obtained for each Wednesday

of the sample using the sieve estimator from the main text as well as the CBOE’s
discrete approximation and linear interpolation procedure.

Mean Standard Deviation 95% CI
. . . . Frac. Days

CBOE Sieve Diff. CBOE Sieve Diff. ..

Signif.
Maturity (1) (2)  (1)-(2) (4) (5)  (4)-(5) Diff.
1 21.3 21.3 —0.03 8.4 8.2 0.18 0.56
2 21.7 21.9 —-0.18 7.6 7.8 —=0.13 0.70
3 22.0 22.3 —0.31 7.5 7.4 0.11 0.74
4 22.3 22.6 —0.26 7.2 7.2 —=0.03 0.70
6 22.2 22.8 —0.58 6.4 6.9 —0.52 0.74
9 22.0 23.0 —0.96 6.1 6.6 —0.45 0.82
12 21.9 23.1 —1.16 6.1 6.4 —0.37 0.82
18 22.3 23.2 —0.88 6.3 6.3 0.05 0.84
24 22.2 23.3 —1.15 6.7 6.3 0.41 0.74

It is informative to compare this volatility index with the analogous sieve estimate
from Eq. (2.6.4). Using the above interpolation scheme, I compute a term structure
of VIXEBOE(7) at fixed horizons 7 = 1,2, 3,4, 6,9, 12, 18, and 24 months-to-maturity
for each date t in the weekly sample.

An unconditional comparison of the resulting sieve and CBOE VIX term struc-
tures is given in Table 2.3, which shows that the VIXFBOF(7) term structure is
generally lower than the sieve estimator. The difference is negligible at the 1-month
(=30 day) horizon (about 3bp on average), but becomes substantial at longer hori-
zons (about 100bp on average). This difference is primarily due to truncation of
available strikes, as can be seen by comparing the theoretical formula in Eq. (2.5.2)

with the approximation in Eq. (2.7.6). While the theoretical formula in Eq. (2.5.2)
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extends to infinity for both call and put prices, the approximation in Eq. (2.7.6)
sums only over observed, positive option prices. Implicitly, Eq. (2.7.6) has set op-
tion prices with theoretical strikes beyond observed strikes to zero, biasing down the
synthetic variance swap estimate. In contrast, the sieve estimator permits extrapo-
lation into unobserved strikes in a shape-conforming way. Figure 2.4 illustrates the
downward bias of the CBOE VIX for long maturity options by comparing the time

series of 30-day to 365-day CBOE and sieve VIX estimates.

30-day VIX
& \ T

| | | | | | |
0
2007 2008 2009 2010 2011 2012 2013

365-day VIX

:
10 | \ \ | \ \ |
2007 2008 2009 2010 2011 2012 2013

Sieve VIX ====" CBOE VIX |

FIGURE 2.4: Short- and long-maturity time series of the sieve VIX from Eq. (2.6.4)
and the CBOE VIX from Eq. (2.7.6).

The disagreement between the sieve estimate and the long-run CBOE VIX is

further quantified in the last column of Table 2.3, which records the proportion
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of days in the sample in which the CBOE VIX lies outside the 95% confidence
intervals of the sieve VIX. The proportion is clearly largest for long maturity options,
suggesting clear differences between the two estimators at long maturities. Figure
2.5 shows that indeed, fluctuations in the CBOE VIX from maturity to maturity are
larger than the width implied by the sieve confidence intervals. This should come
as no surprise: Since the CBOE VIX only uses information from two neighboring
maturities, one only needs a single sparsely observed or noisy maturity to cause
the CBOE VIX to lose coherence with the CBOE VIX at other maturities on the
same day. In contrast, the sieve VIX estimate uses information on all maturities
to construct the term structure, which has the effect of downweighting individual

poorly observed maturities.
2.7.5 The Term Structure of Continuous Variance Risk Premia

With estimates EZ[TV,(7)] in hand, the only object needed to compute the variance
risk premium is an objective forecast of EF[TV;(7)]. I follow Andersen et al. (2003)
and model the long-memory properties of realized volatilities as an ARFIMA(5,0.4, 0)

process.?? The variance risk premium is then computed as in (2.7.4).

22 For brevity, the details of this forecasting model are provided in the Online Appendix.
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FIGURE 2.5: Term Structures for the sieve VIX and the CBOE VIX. The sieve VIX
95% confidence intervals of the estimate in Eq. (2.6.4) are plotted alongside the

CBOE VIX approximations from Eq. (2.7.6) for four sample days with 7 ranging
from 1 month to 24 months.
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Table 2.4 provides summary statistics of the variance risk premium term structure
of Eq. (2.7.4). The average volatility risk premium ranges from —0.028 at the 1-
month horizon to —0.036 at the 2-year horizon. This finding corroborates the results
of Ait-Sahalia et al. (2012) and Fusari and Gonzalez-Perez (2012). When the sample
is restricted to the financial crisis period from 2007 to 2010, the variance risk premium
widens significantly in magnitude and exhibits a downward-sloping term structure
ranging from —0.045 to about —0.059. At the same time, the term structure of
variance risk premia is itself more volatile. The decline in skewness and kurtosis and
increase in persistence with 7 is also consistent with Ait-Sahalia et al. (2012), who
employ a different model and data set to back out a VRP term structure. First-order
autocorrelations clearly show that the variance risk premium is most persistent at
long horizons.

In economic terms, the magnitudes of the variance risk premium suggest that
investors demand significant compensation for bearing return-variance risk and that
this compensation must increase with maturity. In turbulent times, the premium is
widens to about 1.6 times the average premium over the sample period. Figure 2.6
shows that this premium cannot be solely accounted for by sampling variation in
option prices. The top two panels show that the variance risk premium, visualized
as the gap between the displayed P- and (Q-measure variance term structures, widens
with longer maturities. Table 2.4 suggests that this is standard behavior for generic
variance term structures. However, the bottom right panel suggests that on certain
high-volatility days, there also appears to be significant uncertainty about the long-

run variance swap price itself, although it still cannot account for the entire risk
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FIGURE 2.6: Term Structures for High-, Medium-, and Low-Volatility Days. Trading
days are sorted by 1-month volatility as measured by the synthetic variance swap,
SVS. A high-volatility day is chosen to exceed the 95th percentile of all 1-month
SVS values, and a low-volatility trading day is chosen to lie below the 5th percentile
of 1-month VIX values. Q-measure SVS 95% confidence intervals and P-measure
forecasts of truncated variation, EF[T'V;(7)] are plotted for 7 ranging from 1 month
to 24 months.
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premium.
2.7.6 FExpectation Hypothesis Regressions

The balanced time series of sieve-estimated S/V\St(T) can also be used to test the

expectation hypothesis. Specifically, for stochastic discount factor m,(7), since

SVSi(7) = EZ[TVi(r)] = Ef [m(r) TVi(7)]
(2.7.7)
= E;[TVi(1)] + Cov;[my(7), TVi(7)],
the null hypothesis of no variance risk premium is equivalent to testing the null
hypothesis Hy : Covf [m:(7), TVi(7)] = 0, i.e. no covariance between the stochastic

discount factor m;(7) and the continuous variation of the market portfolio. That is,

under Hy, one has SV S;(1) = EF[TV,(7)], so that for ,(7) with Ef[e,(7)] = 0,
TVi(1) = SVS(1) + (7).
Therefore, Hy is equivalent to the joint hypothesis a = 0 and b = 1 in the regressions
TVi(1) = a(7) + b(1)SV S (1) + &(T). (2.7.8)

The special case of 7 = 1 month is considered, for example, in Carr and Wu (2009).
More recently, Ait-Sahalia et al. (2012) examine this regression for general 7 from
a model-based perspective and derive interesting interpretations of the coefficients
a and b in terms of Heston model coefficients. The sieve estimate S/V\St(T) can
complement their approach from a nonparametric perspective.

The results of the regression (2.7.8) on the weekly sample from 1996-2010 are

given in Table 2.5. Note that the ZA?(T) is monotonically declining in 7 and uniformly
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below 1. The joint hypothesis of a(7) = 0 n b(7) = 1 is firmly rejected for 7 = 1
month, with p-values less than 0.000 at all horizons. This result corresponds to
the model-based implications of Ait-Sahalia et al. (2012). The results from Table
2.4, however, suggest that the variance risk-premium behaves differently when con-
ditioning on different volatility regimes. To this end, I also perform the augmented

regression
TVi(1) = a(r) + b(1) SV Sy(7) 4+ c(7)SV Se(T) X it is High Volatility Day} + €¢(7). (2.7.9)

The interaction of the synthetic variance swap SV.S;(7) with a dummy variable that
is one during high-volatility periods and zero otherwise allows the slope coefficient on
SV S() to change according to volatility regimes. For this exercise, a trading day
was considered “high-volatility” if the 30-day VIX exceeded its 67% sample quantile.
The results of this regression do not change materially for different cutoffs ranging
from 60% to 90% quantiles.?> The estimates of this augmented expectation hypthe-
sis regressions are given in the bottom panel of Table 2.5. The results are quite
surprising. The magnitudes of swap coefficient are uniformly higher and are signifi-
cantly closer to one.?* In particular, the expectation hypothesis cannot be rejected
for maturities ranging from 1 to 4 months during normal times, since 13(7) cannot be
distinguished from one for these maturities. However, during high volatility periods,
the slope coefficient is given by b(7) + é(7). The significantly negative sign on é&(r) is

evidence of a sizeable risk premium on high-volatility days, which drives the wedge

23 Above 90% quantiles, the long-maturity regressions samples had relatively few observations to
identify c.

24 The sole exception is the 2-year maturity regression, which has zero explanatory power.
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Table 2.5: Expectation Hypothesis Regressions. The OLS regressions TV,(7) =
a(t) + b(1)SVSi(7) + &¢(7) from Eq. (2.7.8) of realized continuous variation on syn-
thetic variance swaps are estimated for each of the horizons 7 =1,2,3,4,6,9, 12, 18,
and 24 and are reported in the top panel. The same regressions are augmented
in Eq. (2.7.9) to incorporate conditioning information on volatility, i.e. TV;(1) =
a(1) + b(1)SVS(T) + (1) SV Sy (T) X it is High Volatility Day} + €¢(T), and are reported
in the bottom panel. t-statistics on a(7) and ¢(7) are centered at 0, whereas the
t-statistic on b(7) is centered at 1. p-values report the outcome of the joint tests
a(t) =0nb(r) = 1.

T a(t) t-stat  b(7) t-stat  é(r) t-stat p-val R N
1 -0.001  -0.18 0.760 -1.96 0.000 0.51 764
2 0.008  2.07 0.573 -4.69 0.000 0.29 758
3 0.013 280 0479 -6.20 0.000 0.21 752
4 0.018 3.52 0409 -7.50 0.000 0.16 745
6 0.022 453 0.330 -9.34 0.000 0.12 733
9 0.027  5.54 0.256 -10.26 0.000 0.08 713
12 0.030 6.06 0.206 -11.47 0.000 0.06 694
18 0.031 427 0.216 -6.19 0.000 0.03 657
24 0.040 7.19 0.003 -12.20 0.000 0.00 619
T a(t) t-stat  b(r) t-stat  &(r) t-stat p-val R N
1 -0.006 -1.36 0.979 -0.15 -0.193 -1.92 0.012 0.51 764
2 -0.001 -0.23 0918 -0.49 -0.298 -2.56 0.673 0.30 758
3 0.002 0.54 0879 -0.69 -0.341 -2.74 0.461 0.23 752
4 0.006 1.15 0.838 -0.87 -0.363 -2.60 0.190 0.19 745
6 0.012 216 0.685 -1.68 -0.301 -2.13 0.001 0.14 733
9 0.018 2.87 0.546 -2.68 -0.243 -2.05 0.000 0.10 713
12 0.025 3,53 0388 -4.15 -0.154 -1.57 0.000 0.07 694
18 0.031 284 0.235 -3.58 -0.017 -0.19 0.000 0.03 657
24 0.040  5.26 -0.005 -7.88 0.008 0.11 0.000 0.00 619
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between P- and Q-measure expected variation. This wedge is not detected for the
shorter horizon, medium- to low-volatility days.

The compensation for variance risk in the long-run, however, does not appear as
sensitive. The t-statistics report that the B(T) coefficients are significantly different
from one, suggesting that the expectation hypothesis is rejected for those horizons
even in medium- to low-volatility days. The risk premium widens even for longer

maturities on high-volatility days.

2.8 Conclusion

This paper presented a nonparametric framework to help estimate option portfo-
lios at sparsely observed maturities. The framework involved Hermite polynomial
expansions of the state-price density conditional on maturity that yielded shape-
conforming option surfaces in closed-form. The coefficients of the sieve option prices
are computationally easy to obtain by solving a simple sieve least squares problem.

In addition, I provided a new asymptotic theory for the sieve option prices and
showed them to be consistent for the true option price. I further derived its rate of
convergence in terms of the deterministic sieve approximation error rate of Gallant
and Nychka (1987) densities. Finally, the paper provides an asymptotic distribution
theory for certain integrated portfolios of options, enabling the computation of point-
wise confidence intervals for the synthetic variance swap (or VIX) term structure and
related measures.

In addition to providing closed-form option prices, the framework also produced

closed-form term structures of state-price densities and risk-neutral CDFs. Simula-
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tions showed that the term structures of sieve option prices, SPDs, and risk-neutral
CDFs can capture a variety of data-generating processes well, and that confidence in-
tervals obtained from the aforementioned distribution theory provide good coverage
of the VIX term structure in finite samples.

An application to the term structure of the synthetic variance swap portfolios
and the associated variance risk premia embedded in S&P 500 Index options and
high-frequency index returns was also presented. The results showed that sampling
variation in option prices can account for significant uncertainty around the variance
swap’s true fair value, particularly when the variance swap is synthesized from noisy
long-maturity options. The term structure of variance risk premia was found to
be downward-sloping and sizeable, especially on high-volatility trading days. This
finding is corroborated within novel expectation hypothesis regressions that condition

on volatility level information.
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3

Inference on Option Pricing Models under Partial

Identification

Introduction

It is widely recognized that transaction and quote data represent imperfect observa-
tions on an asset’s efficient price. Available data on financial instruments might suffer
from any combination of irregularities concerning time lags, sampling frequencies,
price discreteness, market microstructure frictions, and a positive spread between
quoted bid and ask prices. Thus, if a model imposes testable restrictions on asset
prices, but asset prices do not directly correspond to observed data, then it may not
be possible to recover the model’s features from the data.

We examine the mismatch between model-implied asset pricing restrictions and
available data in the option quote setting. While available option pricing models
map underlying state variables to efficient prices, observed option bid and ask quotes

effectively deliver only interval information on efficient prices. While the prevailing
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practice in empirical option pricing is to simply average these bids and asks and
then to fit option prices to the resulting mid-quotes, we argue that the illiquidity of
many deep in-the-money options induces substantial bid-ask spreads that prevent the
point-identification of option model parameters. Indeed, if, as Carr and Wu (2009)
remark, “[tlhe mid-quote may not reflect the fair price if the bid and ask quotes
are not symmetric around the fair price,” then fitting option models to the mid-
quote introduces a joint hypothesis problem, in the sense that rejections of option
pricing models can either come from option model misspecification or mid-quote
(microstructure) misspecification.

This paper takes a new approach to inference on option pricing models in the
bid-ask quote setting. Rather than assuming knowledge of the structure that equates
untestable functions of observed quotes to the efficient price process (of which the
mid-quote is the most prominent example), we take a conservative approach of
bounding moments of efficient option prices by observed bid and ask quotes. We
then proceed with inference on option model parameters by leaving the relationship
between the option’s efficient price and the quotes otherwise unspecified. Because
this relationship is a function of the market maker’s price-setting schedule, we are
in essence proceeding with inference without having to model the (unobserved) pric-
ing practices of the market maker. The cost of leaving the market maker’s pricing
schedule unspecified is a loss of point-identification. This implies in particular that
the information contained in the data-generating process (DGP) is only able to re-

strict the option model’s parameters to a set. However, while there is a large and
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growing literature on inference in this type of partial identification setting,! option
pricing models often depend on latent variables (like spot volatility) that cannot be
accommodated using existing econometric techniques.

Our main theoretical contribution, therefore, is a theory of set-inference in which
the moment function depends on latent spot volatility. We solve this dependence
by using high-frequency data on the underlying asset to nonparametrically estimate
spot volatility near the close of the trading day in a first stage. We then plug the
spot volatility estimate into the pricing model and proceed with the familiar moment
inequality framework of Andrews and Soares (2010) and Andrews and Shi (2014). We
provide rigorous justification of this two-step inference procedure in an asymptotic
setting in which the high-frequency sampling interval goes to zero sufficiently quickly
as the sample size of options grows. In particular, we establish the rates at which
the spot volatility estimator must converge relative to the length of the option panel.
Under these rate conditions, we provide asymptotic coverage results for familiar test
statistics and critical values from the partial identification literature.?

The framework for inference is also flexible enough to allow for additional mo-
ment equalities, which enable us to sharpen inference with information obtained
from high-frequency observations on the underlying state variables. Incorporating
restrictions based on information on the underlying is natural, given that certain pa-

rameters are invariant to changing the measure from the objective to the risk-neutral

1 See Chernozhukov et al. (2007), Romano and Shaikh (2008), Andrews and Soares (2010), An-
drews and Guggenberger (2009), Bugni (2010), Andrews and Shi (2014), and the many references
therein.

2 Our results pertain to the modified method of moments statistic and critical values introduced
in Andrews and Soares (2010).
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one. This idea has been exploited in the existing empirical options literature.® This
literature, however, has made the empirically puzzling observation that the theo-
retically motivated invariance to changes of measure does not seem to hold in the
data, a phenomenon dubbed the time-series inconsistency of option data (Broadie
et al. (2007)). Motivated by these observations, we extend our moment inequality
framework to allow for objective measure restrictions on leverage and volatility-of-
volatility—quantities that are theoretically invariant to changes of measure. We find
that time-series inconsistency is partially mitigated by relaxing the mid-quote as-
sumption, because fitting to the option bid-ask spread allows for a wider range of
option-implied leverage and volatility-of-volatility than would be possible by merely
fitting to the option mid-quote.

To examine the finite-sample properties of our asymptotic coverage results, we
conduct Monte Carlo simulations using a flexible stochastic volatility jump-diffusion
model (Duffie et al. (2000)). The simulations confirm that replacing latent spot
volatility with a high-frequency estimate preserves the finite-sample coverage prob-
abilities of the proposed confidence sets. We also examine the tradeoff between
long-span asymptotics and infill asymptotics that invariably affects our moment con-
ditions by considering simulated option samples of different lengths, as well as the
effects of incorporating objective measure restrictions on the underlying. Finally, we
consider the effect of assuming that the efficient price equals the mid-quote proxy
under several quote-setting DGPs and find that doing so can result in sometimes

severe option model overrejections.

3 See, for example Bakshi et al. (1997), Bates (2000), and Broadie et al. (2007).
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Finally, we conduct inference on the aforementioned stochastic volatility jump-
diffusion model (SVJ) and its specialization, the Heston (1993) model, using actual
data on S&P 500 Index options from 1996 to 2010. We find that relaxing the mid-
quote assumption results in large estimated parameter sets that leave us unable to
reject the SVJ model, which contrasts with the existing findings of the empirical op-
tions literature. However, the same model is rejected when the mid-quote assumption
is imposed. In addition, the estimated parameter sets reveal new and interesting re-
lationships among option model parameters. For example, the parameter sets clearly
indicate a tradeoff between the jump component’s intensity and the jump-size mean
and variance; option quotes appear supportive of either high-intensity-small-jumps
or low-intensity-large-jump models. We also find a positive relationship between
volatility’s speed of mean reversion and volatility-of-volatility. Taken together, these
findings point toward a greater need to study the precise identifying information
contained in option panels.

The remainder of the paper is organized as follows: Section 3.1 lays down our
moment inequality framework, our two-step inference procedure, the asymptotic the-
ory, and the incorporation of additional objective measure identifying restrictions.
Sections 3.2 and 3.3 present our Monte Carlo simulation and empirical results, and

Section 3.4 concludes.
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3.1 The Framework

3.1.1 Moment inequality restrictions on option pricing models

For each day t € {1, ..., T}, we observe an option panel with N; options, where N is a
random integer-valued variable taking values in [1, N ] for some constant N > 1. Let
Z;+ denote the characteristics of option ¢ € {1,...,N;} and Z; = {Z;; : 1 <i < Ny}
We denote the domain of Z;;, and Z; by Z and Z respectively.? In our empirical
application, we consider European style call and put options with Z;; = (K;4, Ti¢)
where K, is the strike price and 7;; is the time to maturity. We suppose that Z;
is realized at the market opening and is constant throughout each trading day. At
the market close, we observe the quotes, the ask price A;; and the bid price B, of
option ¢, along with the log price of the underlying X;. We denote the midquote by
My = (Aiy + Biy) /2.

The econometric problem here is to conduct inference for parameters of an option
pricing model. We consider models with two state variables: the underlying log price
X, and the spot variance V; of the underlying asset, taking values in X < R and
V < (0, 00) respectively. We denote the option pricing function by f (X, Vi, Z;4;0),
6 € O, where © c RI™(®) js 5 compact parameter space. The unknown parameter
0 governs the risk-neutral dynamics of the underlying asset and is referred to as the
risk-neutral parameter below. We call a model correctly specified if for some 6, € O,
the true option price p}; equals f (X;, Vi, Z;; 0p) for each option i and day ¢. In an
ideal market without any friction, the observed option price should coincide with p},

generated by a correctly specified model. However, in reality, the observed price may

4 Note that Z = Uszl Z", where Z" is the n-tuple of Z.
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deviate from the model prediction due to various frictions, such as the existence of
a bid-ask spread, data synchronization errors, or simply idiosyncratic errors specific
to each transaction. In contrast to the existing empirical options literature, we treat
the true option price p;; as a latent variable.

To close the econometric model, we need to link the latent true price p;, with
observed quantities. A standard approach in the literature is to consider a noisy
proxy p;, such as the midquote or the actual transaction price, of the latent price
pzt.5 Moreover, statistical assumptions on the pricing error €;; = p;; — p;, are
often imposed so that standard econometric procedures are valid. Perhaps the most

popular estimation procedure is the nonlinear least squares,® which in turn can be

cast in a general conditional moment equality framework:
E [5i,t|It] =K [pi,t —pzt|l't] =E [pi,t —f (Xt7 Vis Zit; 90) |It] =0, (3-1-1)

where Z; denotes an information set (i.e. o-field) generated by {Xs, Vi, Zs : s < t}
or its subsets.” Likelihood-based procedures, such as the one considered by Bates
(2000), often impose stronger parametric assumptions which imply (3.1.1) as a con-
sequence.

While the option pricing model is designed to describe the relationship between
true option price pf, and the state variables (X;, V;), (3.1.1) imposes an extra re-

striction on the microstructure of the option market, which links the latent value pf,

® For example, Bates (2000) and Broadie et al. (2007) use transaction data for S&P 500 futures
options, whereas Bakshi et al. (1997), Pan (2002), Christoffersen and Jacobs (2004), Eraker (2004),
Andersen et al. (2012) use midquote data for S&P 500 index options.

6 See, for example, Bakshi et al. (1997), Bates (1991), Christoffersen and Jacobs (2004), Broadie
et al. (2007).

T See Hayashi (2000) for a discussion in textbook form.
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with its observed proxy. Conditional moment equality restrictions like (3.1.1) are
often needed to justify standard econometric procedures, but it is not automatically
clear on which economic ground this restriction should hold. Indeed, as Bates (2000)
page 195 points out, “a fundamental difficulty with implicit parameter estimation
is the absence of an appropriate statistical theory of option pricing errors.” If the
inference for the option pricing model also depends on the validity of (3.1.1), which
is typically the case in the literature, it is important to investigate the economic
content underlying (3.1.1).

To make the discussion precise, we consider a simple empirical microstructure

model. We suppose that the option quotes are observed with noise, that is,

Aip = Af +ely, Bii= B} +e) (3.1.2)

2,0 it

where Af, and B}, are the latent “efficient” ask and bid prices which would be con-
sistent with the behavior of a rational market maker equipped with the information
set 7,.%

The pricing errors 5ft and eft are introduced here because we do not expect every
pair of quotes in the data to reflect precisely the prediction of a theoretical model.

Instead, we assume that the pricing error is zero on average:

E[eA|T] = E[el|Z.] = . (3.1.3)

8 Since Aﬁt and B;’jt are determined based on the information in Z;, they are (tautologically)
T:;-measurable.
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When we take the proxy p;; to be the midquote, (3.1.1) holds if and only if
M7, = piy, (3.1.4)

where M7, = (A7, + Bf,)/2 is the efficient midquote. That is, the mid-quote coincides
with the efficient price. However, it is well-known that this condition is violated in
general. For example, based on the sequential trade model of Glosten and Milgrom
(1985), Hasbrouck (2006) page 46 shows that the mid-quote generically deviates from
the efficient price.

Taking p;; to be the transaction price is unlikely to fulfill the condition (3.1.1)
either. Following Hasbrouck (2006), we consider a simple model in which transactions
are treated as a sampling mechanism of the quote price. Suppose that the transaction
price p;, is given by

Pip = (1= 6i¢) Aiy + 01 Biy,

where 0;; = 1 (resp. 0) for a sell (resp. buy) order. If, conditionally on Z;, the
direction of the order ¢;, is uncorrelated with the pricing errors 5ft and 55“ then

(3.1.1) is equivalent to
Prob (sell | Z;) A}, + Prob (buy | Z;) B}, = pj,. (3.1.5)

Hence, when using the transaction price as a proxy for p},, the condition (3.1.1) is
satisfied if and only if the buying propensity Prob(buy|Zy)= (p}, — A},)/ (B}, — Af,).
At least in this simple setup, there appears to be no compelling reason for this
condition, and thus (3.1.1), to hold.

Of course, the discussion above does not imply that the condition (3.1.1) is false
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or irrelavant. Indeed, even if this condition is violated in a strict sense, it might be a
decent approximation to reality and lead to useful empirical results, as demonstrated
by the existing literature. Instead, we only argue that this identification condition is
likely to impose nontrivial restrictions on the microstructure of the option market;
the setup specified in the above two paragraphs only serve the purpose of making
this argument precise. In our view, such extra restrictions are orthogonal to the
specification of risk-neutral option pricing models as well as the inference based on
these models. This concern motivates us to propose an inference framework for
option pricing models without assuming (3.1.1). We deem our approach below as
complementary to the existing toolbox for empirical asset pricing.

We propose an alternative econometric framework based on moment inequality

restrictions. We maintain (3.1.2) and (3.1.3) and suppose that
Biy <pj < Ay (3.1.6)

i.e., the true option price falls in the efficient bid-ask bracket. Compared with con-
ditions such as (3.1.4) and (3.1.5), (3.1.6) is very mild and should be satisfied by
any reasonable microstructure model. Given (3.1.2) and (3.1.6), a correctly specified

pricing function f(-;6y) satisfies the following conditional moment inequalities:

{ E[Ais — f(Xe, Vi, Zig; 00)|T] = 0 (3.1.7)
N 1.

>
E[f(Xn Vis Ziy; 90) — By |It] =

We observe that we do not require the observed quotes to bracket p;, for every

realization of the data, but rather the weaker condition that the bracketing only
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holds in expectation.
These conditional inequalities further imply a set of unconditional moment in-

equalities: for any nonnegative function G(-) on X x V x Z x Z,

E| S (A — F(X0 Vi, Zii 00) G (X0 Vi, Zi, Z0) | 2

0
~ (3.1.8)
E| S (X0, Vio Zii 00) = Bi)G(Xi Vi, Zig, 20| = 0.

The conditional moment equality (3.1.1), if it holds, also implies a set of moment

equalities

Ny
E [Z(pi,t — f(Xe: Vis Zi4:00)) G (X4, Vi, Zig,s Zt)] =0, (3.1.9)

i=1
while here the function G(-) does not have to be nonnegative. Below, we refer to the
function G (-) as a weighting function. We sometimes write G (z,v, 2, 2) for x € X,
veV, ze Z and Z € Z in order to make its arguments explicit.

We finish this section by introducing a standard moment inequality/equality
framework encompassing both (3.1.8) and (3.1.9). While our main proposal is to
conduct inference based on the inequalities (3.1.8), incorporting (3.1.9) into the same
framework facilitates the comparison between results based on bid-ask brackets and
those based on midquotes or transaction data in a unified manner.

Let Q; = (Qi,t)lgigNy Qi+ = (Ais, Bit,pit), denote the collection of option price
data; recall that p;; can be either the midquote or the transaction price depending
on the application. We consider k; + kg weighting functions G; (), 1 < j < k; + kg,

and suppose G; () is nonnegative for 1 < j < k;. Let k = 2k; + kg. We consider an
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R*-valued function:
m (Xt7 ‘/;f) Qt: Zt7 0) = (ml (Xta ‘/t7 Qt7 Zt7 0) ooy M (Xt7 ‘/;7 Qta Zta 0))T 3

where

m; (Xn Vi, Qu, Zt§0)

SN (Aie — F( X, Viy Zit3 0))Ganye (X, Vi, Zig, Z2) i 1< j <2
= 221“()@57 Vi, Zi:0) — By )Glio(Xe, Vi, Ziy, Zy) if 1<j <2k, jeven
SN pie = [ (X, Vi, Zi; )Gy (X0, Vi, Zis Z) - if 2k +1 <

We then consider a collection moment inequalities and equalities given by

(3.1.10)

E[mj(XtaviaQtaZt;QO)] = 07 ]: 1,...72]€],
E[m;(X:, Vi, Qi Z6;00)] = 0, j=2kr+1,....k

Here, the 2k; inequalities correponds to (3.1.8) and weighting functions G;, 1 < j <
kr; the kg inequalities correspond to (3.1.9) associated with weight functions Gj,
kr+1<j<k.

The model (3.1.10) may only be partially identified, i.e., the solution to (3.1.10)
on the parameter space ® may not be unique. Indeed, if the equality restrictions
in (3.1.10) are absent, the model is not point identified in general. The situation is
illustrated in Figure 3.1 This feature of the model is in sharp contrast with aforemen-
tioned work in empirical option pricing. Moreover, even in cases where parameters
are point identified by the moment equalities, the identification may be weak and
could render standard inference unreliable (Stock and Wright (2000), Andrews and

Cheng (2012)). Our inference procedure below does not rely on identification. Thus,
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FI1GURE 3.1: Set-Inference framework illustration. Time-averaged bid and ask quotes
for seven strike categories and three maturity categories are plotted. Under correct
specification in our framework, a true option model parameter is assumed to gener-
ate option prices that lie between the shaded bounds for all three maturities. The
inference procedure delivers confidence sets that cover the true parameter with a
prespecified probability.

it is naturally immune to the weak identification problem. As the weak identification
problem is rarely, if ever, dealt with in prior works in empirical option pricing, our
empirical analysis based on the moment equalities also complements the literature
in an interesting way.

Below, we discuss the construction of confidence sets for the true risk-neutral

parameter 6y based on the moment inequality/equality model (3.1.10).
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3.1.2 A two-step inference procedure

Inference based on the moment inequality/equality model like (3.1.10) has been
extensively studied in the recent econometrics literature (see, for example, Andrews
and Soares (2010), Andrews and Shi (2014), Romano and Shaikh (2008), Bugni
(2010), Andrews and Guggenberger (2009), Chernozhukov et al. (2007)). However,
here we face a complication that is unique to financial econometric applications—
the spot variance process V; is not observable. In a nutshell, we solve this problem
in a two-stage procedure. In the first stage, we nonparametrically estimate the
spot variance V; of the log-price at the market close using intraday high frequency
data. In the second-stage, we construct confidence sets by using the generalized
moment selection (GMS) method of Andrews and Soares (2010), treating the first-
stage estimate of the spot variance as if it were the true spot variance. We provide
a rigorous theoretical justification for the validity of this two-stage procedure.

To further the discussion, we need to introduce more notations to decribe the
intraday data. We suppose that, on a filtered probability space (Q,F, (F})i=o0,P),
the log-price of the underlying asset follows an Itd6 semimartingale with the form:

t t t
X=X, + J by ds + J o dW, + J J 3(s, 2)p(ds, dz), (3.1.11)
0 JR

0 0 -

where b; is locally bounded predictable process, 6 : 2 x Ry x R+ R a predictable
function, W; a standard Brownian motion, p is a Poisson measure with compensator
v(dt,dz) = dt ® A(dz) for some o-finite measure A on R. We refer to the process oy
as the spot volatility, which is associated with the spot variance V; by V; = o2. We
refer to trading day ¢, t = 1,...,T, as the interval [¢,t], where ¢ is the opening time
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of the market. We suppose that intraday data of the log price are regularly sampled
at discrete times t + iA,, ¢ =0,...,n, where A, = (t — t)/n.

We estimate the spot variance V; nonparametrically with the following jump-
robust estimator (Mancini (2009)):

k
~ 1 o
nt — LA E (Xt—(jfl)An _Xt_jAn)Q1{|Xt7(j71)An*Xt—jAn|<04Ag}7 (3.1.12)
n&=n j=1

where 1 denotes the indicator function, o > 0 and @ € (0,1/2) are constants, and
k, is a sequence of integers satisfying k, — oo and k,A,, — 0. The asymptotic
behavior of this estimator under the fill-in asymptotics (i.e. A, — 0) is well known:
under mild regularity conditions, ‘Afn,t consistently estimates V; for each t as the
sampling interval goes to 0.

We construct confidence sets by inverting tests of the null hypothesis that 6 is
the true value for each 6 € O, as is standard in the partial identification literature.
Let S, 7 (0) be a test statistic and ¢, (0, 1 — a) be a corresponding critical value for
a test with nominal significance level a. A nominal level 1 — « confidence set (CS)

for the true value 6, is then given by
CSpr(l—a)={0e€0:5,7(0) <c,r(0,1 —a)}, (3.1.13)
To define the test statistic, we set

Mg (0) = (Mape(0),... Mg (0))',  where

- 5 . (3.1.14)
Pine 0) = my (X0 Vs Qe Zi0), =1,k

9 See Theorem 9.3.2 in Jacod and Protter (2012) for details.
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The sample moments are given by
T 1 Z
i1 ( 2 T (0) = TZ@M @), j=1,....k (3.1.15)
= t=1

Let imT(O) be a heteroskedasticity and autocorrelation consistent (HAC) estimator

associated with m,, 7(6). To be concrete, we follow Andrews (1991) by considering

Sar(0) = Y w(l/Ly)Tyur(6),  where for I < T -1, (3.1.16)

Ling(0) = : D0 (B (0) = Mz (0)) (R g1(6) — T () " ,(3.1.17)

1<t t+1<T

where w(-) and Ly are the kernel function and the bandwidth parameter, respec-

tively.!® The test statistic S, r(0) is defined to be

506 2k |:T1/2mjnT( )/D;/ST ] + Z (TI/ZmJnT(H)/D;/nzT(Q))Qa

j=1 j=2kr+1

~

(3.1.18)
where [z]_- = max{—z,0} for z € R, lA)an(H) = Diag(in,T(Q)) the diagonal matrix
collecting the diagonal elements of in;p(@), and lA)jva(G) is the jth diagonal ele-
ment of lA)n,T(H). This test statistic has been studied, for example, in Andrews and
Soares (2010) and quantifies the extent to which the moment inequalities/equalities

in (3.1.10) are violated in the sample.!! Each sample moment m;, r is normalized

10 For technical convenience, we only consider HAC estimators associated with compactly sup-
ported kernel functions, hence the estimator X,, 1(6) only involves autocovariances up to order L.
Examples of such kernel functions include Bartlett’s kernel, Parzen’s kernel and the Tukey-Hanning
kernel. The quadratic spectral kernel considered by Andrews (1991) is excluded.

1 Tn the terminology of Andrews and Soares (2010), the test statistic (3.1.18) is called the modified
method of moments (MMM) statistic. Andrews and Soares (2010) also other possible test statistics

86



with respect to its standard error to ensure that the test statistic is scale invariant;
this is clearly a desirable property in applications.

We choose the critical value based on the GMS procedure of Andrews and Soares
(2010). Let QmT(H) = ZA?;%FQ (9)§3n7T (9)ﬁ;¥2 (f) denote the correlation matrix associ-
ated with £, 7(6). We consider an R¥-valued random variable Y, 7 (6) = €, 7(6)/2Y *,

where Y* ~ N (O, I,) is independent of the data; the jth element Y,, 7 (6) is denoted

by }A/jnT (0). Conditionally on the data, we set ¢, r (#,1 — a) as the (1 — a)-quantile

of
2kr 9 k
A~ A~ 2
qbn,T(e) = I:Y‘j’n,T:| _ 1{Tlmﬁj,n,T(0)<log(T)1/2ﬁ]1~/3 T(e)} + Z Yj7n’T (0) . (3119)
j=1 o J=2kr+1

The indicator function in the above display selects moment inequalities that are

1/2

“almost”binding at 0, where the factor log(7T")'/* corresponds to the BIC criterion.

3.1.8  Asymptotic results

We now turn to the asymptotic property of the confidence set C'S,, r (1 — o). We first

collect and discuss our assumptions, starting with those for the underlying processes.

Assumption A. For some constants C' > 0 and k& > 2, we have the following.
A1. The process X; is an It6 semimartingale given by (3.1.11) with A (R) < co. The
processes 0y > 0 is also an It6 semimartingale with the form

¢ ¢ ¢ ¢
o =09+ J by ds + J G5 AW + f oL dW! + J j S(S,Z)(ﬁ— v)(ds,dz) (3.1.20)
0 Jr

0 0 0

including the Gaussian quasilikelihood ratio statistic and the generalized empirical likelihood ratio
statistics. In the current paper, we only consider the MMM statistic for the concreteness and
simplicity of exposition. We choose the MMM statistic because it is a direct generalization of the
mean square error commonly used in empirical option pricing.
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where b, is a locally bounded predictable process, W) is a standard Brownian motion
orthogonal to W, &, and &} are locally bounded cadlag adapted processes and ) (+)
is a predictable function.

A2 ForanyteR,,
E (|bt|’“ + be* + Jou]* + |6 |F + |50F + JR 10 (¢, 2) |F) (dz)) < C. (3.1.21)
A3. For any t,se R,
E <|bt Sy |6t—63|2) <COlt—s|.

Assumption Al provides a standard setup for analyzing high-frequency data.
Jumps are allowed in both the price process and the spot volatility process. The
leverage effect is also allowed here as d.X; and do; are both loaded on the Brownian
shock dW;. Moreover, by It6’s lemma, the spot variance V; = o? is also an It
semimartingale, which can be expressed as

¢ t ¢ ¢
Vi= %+J bvysds—i-f Vs dWs—i-f oy dWé—i—J f dv (s, z)(u—r)(ds,dz), (3.1.22)
0 0 0 0 Jr

where by, ovy, oy, and dy (-) are determined by the coefficients in (3.1.20), see
(C.2.2) for explicit expressions. By assuming A (R) < oo, we restrict our analysis to
the case with finitely active jumps. While imposing finite activity appears strong
for analyzing high-frequency financial data, it is not overly restrictive in the study
of option pricing models. Indeed, many empirical works assume that the jumps are

finitely active, typically compound Poisson, under the risk-neutral measure; by the
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equavalence of the risk-neutral and the physical measure, jumps are also finitely
active under the physical measure in such settings. Assumption A2 is useful in
analyzing the asymptotic behavior of various bias terms when 7' — 00.'? Assumption
A3 imposes some additional smoothness for the drift coefficient, but again is very

mild.

We now state the assumptions that relate to option prices. Below, we denote by

fv (+) the partial derivative of f (-) with respect to spot variance.

Assumption B. We suppose for each fixed 6 € ©, there exists some constant C' > 0
such that the following hold for some &' > 0 and all ¢.

B1. The variables V; and Z;, = {Z;; : 1 < i < N,} are F;-measurable and Z, = Z,
for all s € [t,1].

B2. E (|fv (X, Vi, Zig; 0)|*) < C.

B3. E (|f(Xi, Vi, Zis O + | Quil™) < €, where Qi = (Aiy, Big, piy) and |1 is
the Fuclidean norm.

B4. For somen > 0and all s € [t—n,t], E (| fy (X:, Vi, Zis; 0) — fv(Xs, Vs, Zig; 0)) <
Clt — s|.

B5. We have |f(X, ‘7”,,5, Zi;0) — f( X4, Vi, Zi1;0)| < Xn,t|‘7n,t — V| for some random
variable Y, such that E(|x,.|**) < C for all n.

B6. We have |f(X;, ‘A/n,t, Zig;0) — f(Xe, Vi, Z4:0) — fu (X, Vi, Zi,t;g)(‘A/n,t -V <

12 Tn a typical fill-in asymptotic setting, the processes by, l~),57 oy, 04 and ) () can be assumed bounded
without loss of generality with the help of a standard localization argument; see Jacod and Protter
(2012) for a comprehensive treatment. In such cases, (3.1.21) is satisfied trivially for the localized
processes. In the current paper, we consider a setting in which the time span T also goes to infinity.
This setting prevents the use of localization and requires explicit integrability conditions as imposed
in (3.1.21).
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Sn,tﬂA/n,t — V;|? for some random variable &, ,; such that for some k > 0, E(|&..[F) < C

for all n.

Assumption Bl formalizes the notion that N; and Z; are realized at the market
opening and constant over the trading day. This assumption is realistic. It is also
techinically convenient, because Assumption B1 allows us to ignore the theoretically
possible intraday movement of the “menu” of quoted options. Assumptions B2 and
B3 are primitive in nature and easy to interpret. Assumption B4 holds if for each
day t, the process s — fv (X, Vs, Z;4;0) is Holder continuous with exponent 1/2
in the L2-space. This high-level assumption can be easily reduced into primitive
conditions. Indeed, under the assumption that both X; and o, are [t0 semimartigales
(Assumption A), the process s — fy (Xs, Vi, Z;4;0) is also an [t6 semimartingale by
It6’s formula, provided that fi (Xi, Vi, Z;4;6) is twice continuously differentiable in
(X, Vi). The 1/2-Holder continuity is a standard estimate for 1t6 semimartingales.

Assumptions B5 and B6 are high-level in nature and are used to impose, respec-
tively, the first- and the second-order smoothness of the pricing function f (-) in the
spot variance. We first discuss Assumption B5. By the mean value theorem, we

have |f(Xt7‘7n,tu Zz’,t;e) - f(Xth;Zi,t;QH = |fv (th/n,taZi,t;g) ||‘7nt - Vt|, where

f/m is the mean value between V; and XA/M. With x,.: = |fv (Xt, VW, Ziy; 9) |, As-
sumption Bb effectively imposes that the slope x;,; is bounded in a stochastic sense.
The interpretation of Assumption B6 is similar; there, the variable &, ; plays the role
of the second derivative of f(-) with respect to the spot variance evaluated at the
mean value in a second order Taylor expansion. Although we deem Assumptions B5

and B6 to be intuitively appealing, we note that these assumptions may be difficult
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to verify under primitive conditions because option pricing functions typically do
not have closed-form expressions. This being said, we are able to provide primitive
conditions for B5 and B6 under the assumption that the derivatives of f(-) have
polynomial growth in its arguments.

We assume either of the following assumption for the weighting functions and

conditioning information set Z; in (3.1.3).

Assumption C. The condition (3.1.3) holds for 7, = o0 {Z, : s <t}. For each j €
{1,..., K}, the function G, (z,v, z, Z) does not depend on (x,v).

Assumption C’. The condition (3.1.3) holds for Z, = o {X,, V;, Zs: s <t}. For
each j € {1,..., K}, the function G, (z,v, 2, Z) is continuously differentiable in v € V

with bounded partial derivative.

Assumption C is fairly mild. Assumption C’ requires (3.1.3) to hold for a larger
information set; this assumption is stronger but commonly adopted in empirical work
with the benefit of improving the identification power of the model. In Assumption
C’, we require the weighting function to be smooth in the spot variance because we
need to control the approximation error when using YA/M as a proxy of V.

A simple but important example of a weighting function G (-) satisfying Assump-
tion C is G (X, Vi, Ziy, Zy) = WK, < K;y < Ky, 7, < 7 <7}, where the thresholds
(K,,K;) and (7,,7;) are allowed to be dependent on Z;.'* By varying the thresh-

olds, we effectively sort the options into various groups, or “boxes”, indexed by

13 For example, one may take K, and K; as the 10th-percentile and the 25th-percentile of the list
of observed strikes {K;::1 <1i < N}, and take 7, = 7 days and 7; = 30 days; in this case, the
weighting function G (-) plays the role of selecting a group of in-the-money call and/or out-of-the-
money put options with short maturity.
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the strike price and the time-to-maturity. The inequality/equality system (3.1.10)
simply consists of restrictions for group-wise moments. Clearly, the identification
power of this system can be improved by using finer boxes. Indeed, Andrews and
Shi (2014) show that when the number of boxes goes to infinity, trasforming condi-
tional moment equalities and inequalities into unconditional ones incurs no loss of
identification power.!* Although this box construction is simple and intuitive, the
smoothness requirement in Assumption C’ prevents us from using the discontinuous
indicator function on the dimension of the spot variance. In this case, a smooth
approximation of the indicator function can be used for the spot variance.

We now state the key approximation result characterizing the approximation error
for using ‘A/m as a proxy for V; in the computation of sample moments and the HAC
estimator. To state the result, we complement the notations in (3.1.14), (3.1.15) and
(3.1.16) by defining m}(0), m%(6), and S%(6) in the same way as (), M,r(6),

and 3, 7(#) but with V; in place of V.

Theorem 3.1.1. Let w € (3/8,1/2). Suppose that Assumptions A and B hold for

some k =2/ (1 —2w) and k' = 2/ (8w — 3).
(a) Under Assumption C, we have T (i, r(0) — m%(0)) = Op(T1/2A711/2) +0,(1).

(b) Under Assumption C’, we have T2 (i, 7(6) — m%(0)) = O (TY2AN*) +0,(1).

14 Andrews and Shi’s theory requires transforming the conditional moment (in)equalities into in-
finitely many unconditional moment equality/inequalities corresponding to infinitely many boxes
in the space spanned by the conditioning variables. In finite samples, only a finite number of
boxes can be used. Andrews and Shi show that the identification power of the conditional moment
(in)equalities is still preserved if the number of boxes goes to infinity asymptotically. In the current
paper, we maintain the simpler setting where the number of unconditional moment (in)equalities
is fixed in the asymptotic theory and chosen to be relatively small in the numerical work. While
we believe that the intuition underlying Andrews and Shi’s theory is valid in our setting, we do not
attempt to make a contribution in this direction in the current paper.
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(¢) Suppose either Assumption C or C. If LrAYY =0, then inﬁT(H) —X5(0) =

0p(1).

COMMENTS. (i) Part (a) and part (b) establishes the order of magnitude of the
approximation error of the feasible sample moment function 7, r(6) to its infeasible
couterpart 5 (0). Qualitatively, both (a) and (b) ensures that the approximation er-
ror of the sample moments is negligible in the analysis of the asymptotic distributions
of sample moments if A,, — 0 sufficiently fast relative to T' — co. Quantitatively,
part (a) provides a stronger result than part (b); this improvement is achieved by
extracting the martingale component from the approximation error and relies on the
simple structure of the weighting function.

(ii) Part (c) shows that the feasible HAC estimator approximates its infeasible
counterpart with a first-order negligible error, as soon as the bandwidth Ly in the
HAC estimation grows to infinity sufficiently slow.

(iii) The assertions of the theorem holds for fixed truncation parameter w and
for sufficiently large k£ and k' which are needed for the elimination of jumps. These
conditions can be equivalently formulated as

8k’

k’—2>8’

[3k’+2 k—2
w €

A K2k
8k”2k]’ e e

For fixed k and £/, the condition in Theorem 3.1.1 hence specifies a range of admissible
w for which jumps can be eliminated effectively enough as if they did not exist. This
admissible range widens as k and k' increase; in particular, it converges to (3/8,1/2)

as k and k' approaches infinity.
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The significance of Theorem 3.1.1 is that it helps reduce the inference problem
at hand, which involves the latent spot variance, to a standard moment inequal-
ity /equality problem involving only observables. More precisely, Theorem 3.1.1 im-
plies that when A, — 0 sufficiently fast, the feasible and the infeasible versions
of the sample moments, as well as the HAC estimators, have the same asymptotic
behavior. This result provides a theoretical justification for treating the latent spot
variance V; as if it is observed to be 17n7t. This formulation allows us to borrow the
full strength of the existing results in the moment inequality /equality literature with
no additional cost.

We introduce assumptions that are needed for the inference on the moment in-

equality /equality model in the second stage.

Assumption D. For each 6 € ©, we have the following:

D1. The R*-valued process m} (), t=1,...,T, is stationary.

D2. T2 (m (0) — m (6)) -5 N (0, = (8)) for some k-dimensional positive definite
matrix X (6), where m (0) = E [m] (0)] .

D3. $:(0) -5 ¥(6).

Assumption D1 imposes stationarity. We note that we only need m} (6) to be
stationary, instead of the (unrealistically) strong assumption that X;, V; and other
processes are jointly stationary. This assumption is reasonable when the option price
is quoted in Black-Scholes implied volatility terms, rather than in currency terms.
While it is possible to allow some mild heterogeneity in the time series by using

the proper limiting theorem, such a generalization is beyond the interest of the cur-
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rent paper.'® Assumption D2 describes the asymptotic distribution of the infeasible
sample moment 7% (6p). Observe that we assume the existence and the nonsingu-
larity of the asymptotic variance-covariance matrix. This assumption is nevertheless
quite mild. Assumption D3 imposes the consistency of the infeasible HAC estimator
i; (f). Primitive conditions for D2 and D3 are well known in econometrics; see e.g.
Davidson (1994).

We are now ready to state the asymptotic coverage property of C'S, (1 — a).

Below, we denote by €2 () the correlation matrix associated with X (6).

Theorem 3.1.2. Let a € (0,1). Suppose either (i) the conditions of Theorem 3.1.1
with TA,, — 0 or (ii) the conditions of Theorem 3.1.1(b) with TAY? = 0. Also

1/4
n

suppose (iii) Assumption D holds and LyAy;" — 0. Then we have

liminf P(fpe CSpr(l—a))=>1—a. (3.1.23)

Ap,—0,T—w0

If additionally, we have (iv) the distribution function of the sum Z?i’l (U312 1, (00) -0y +

Z?Z%IH(UJ)2 is continuous at its (1 — «)-quantile, where U ~ N (0,Q (6p)), then

lim PO eCSur(l—a)=1-q (3.1.24)

Ap,—0,T—w0

Theorem 3.1.2 shows that C'S,, 7 (1 — «) has asymptotically correct coverage for
the true parameter 6. The proof is a straightforward consequence of Theorem 3.1.1.
This result only asserts the pointwise validity of the CS. A stronger, uniform coverage

result is beyond the scope of the paper.

15 We note that Andrews and Soares (2010) also impose stationarity in their time-series setting.
As some of our proofs rely on their results, we maintain this assumption for the convenience of
reference.
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3.1.4  No-arbitrage restrictions for affine jump-diffusion models

We now specialize the pricing function f(-) in a risk-neutral pricing setting. In
this section, we propose an additional testable restriction based on a no-arbitrage
argument. Here we extend the above inference procedure to accommodate this new
restriction.

In the absence of arbitrage opportunities, there exists a risk-neutral measure Q,
which is locally equivalent to the physical measure P and transforms the discounted
asset prices into local martingales. We suppose that under the Q-measure, the log-

price and spot variance processes have the following dynamics:

dX; = b2dt + /V,dW2 + dJ2,

3.1.25
AV, = B3, + po/Vid W2 4 (1— )2 0 VW2, (31.25)

where JtQ is a pure jump process with finite activity, WtQ and VV;Q are mutually
orthogonal standard Q-Brownian motions, and the constant p € [—1, 1] captures the
“leverage effect” (Black (1976)), and the constant v > 0 is often referred to as the
volatility of volatility. The specific forms of the drift processes b? and b%t are not
relevant for the discussion in this section.

We observe an important parametric restriction imposed by (3.1.25), namely that
the spot variance process follows a square-root diffusion under Q. This parametric
form is commonly imposed in the empirical option pricing literature as it, when
combined with other simplications, admits a semi closed-form solution for option
prices. The resulting computational efficiency gain is desirable and often necessary

for analyzing large data sets of options.
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Next, note that since the covariation process between X; and V; is invariant with

respect to equivalent change of measure, (3.1.25) imposes the following restriction:
t t
CV; = povolV;, where CV, = J ovsosds, 1V, = J Vids, (3.1.26)
t t

where pg and vy denote the true value of p and v; “CV” and “I'V” stand, respectively,
for “covariation” and “integrated volatility”.

To have a feasible procedure, we approximate the latent variables C'V; and IV}
with estimators based on high frequency data. For I'V;, we consider the well-known

jump-robust estimator proposed by Mancini (2001):

n

ﬁ/”vt - Z ‘A?RXF 1{|A§’"X|<QA5}’ (3.1.27)

i=1

For CV;, Wang and Mykland (2011) propose an estimator in the absence of price and
volatility jumps. To accomodate the price jumps, we consider a truncated version of
Wang and Mykland’s estimator defined as follows. For each day t, we group the n
intraday returns into B,, blocks, where block i € {1,..., B,} collects the k, = n/B,
returns within the interval (7 (¢,n,i—1),7 (¢t,n,4)], 7 (¢t,n,i) = t + ik,A,. For
simplicity, we have implicitly assumed that k,, is an integer, but this assumption has

little effect on the asymptotic theory. For day t, we denote the jth return in the ith
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block to be Af?X = Xr(tni—1)1jAn — Xr(tnie1)+(j— , and define

Bn kn
CV gt 22 <Z X 1{|At nX|<OéAw}> (Vn,T(t,n,i) - V’flﬂ'(t,n,i—l)) s Where

kn
Vn,'r(t,nz = Z 1{|A::;LX|<QA%—,}, 1€ {]-a7Bn}

(3.1.28)

We observe that Wang and Mykland’s orginal estimator corresponds the case with
a = oo (i.e. no truncation), as price jumps are not considered in their paper.

To motivate the use of C'V n.t, We provide an auxiliary result describing its asymp-

totic behavior.

Lemma 3.1.3. Suppose that Assumption A1 holds and o; is continuous. Then for
each fixed t, as n — oo, AV (5‘\/“ — C’Vt) converges stably in law to a random
variable defined on an extension of the probability space (Q, F,P), which conditionally

on F, is centered Gaussian with strictly positive variance.

COMMENTS. (i) Lemma 3.1.3 establishes the n'/*-rate of convergence of éi\/n,t
towards C'V; and shows that the rate is sharp. This result is related to Wang and
Mykland’s Theorem 1, which derives the stable convergence in law of 1% nt for
continuous processes (hence without truncation). In our proof, we show that for
fixed o € (0,00) and w € (5/12,1/2), the truncation in 6\\/71,75 eleminates price jumps
“effectively enough”, so that the asymptotic theory in the presence of price jumps

can be reduced to the continuous setting as considered by Wang and Mykland.'6

16 Tn particular, the asympototic variance of oV n,t is identical to that given in Theorem 1 of Wang
and Mykland (2013). Its (rather complicated) expression is suppressed here as we do not make use
of its exact form in the current paper.
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(ii) An important consequence is that A, Y 4(5‘\/ nt — poIV nt) 18 nondegenerate
asympotically. To see this, first recall the well-known result that v nt — IVy =
0,(AY?). Under (3.1.26), Ay (CV s — povolVis) = AT (CV oy — CVY) + 0, (1).
Lemma 3.1.3 hence implies that A;1/4(6"\/n7t — povof\\/n’t) is asymptotically nonde-
generate, i.e., its asymptotic variance is strictly positive. For pv £ pgvg, it is easily
to see that A;1/4(5‘\/n7t — pvl/\\/nvt) = (povo — pv)AEl/4]W + O, (1), which diverges

to infinity and is clearly nondegenerate.

In practice, it turns out that it is helpful to consider an equivalent formulation
of (3.1.26) as follows. Let ayy = 0 and byy > 0 be constants fixed a priori. We can
express (3.1.26) equivalently as

Vi o .
aryIVi_y + bry po YarIVioy + bry

(3.1.29)

The idea is that by normalizing C'V; and IV, by 1/ (arvIV;_1 + brv), both series tend
to become less volatile, leading to better numerical performance in finite-samples. In
our simulation and empirical work, we take a;y = 1 and by = 0.0001.17 We associate

(3.1.29) with its sample moment,

V., v,
m;t (0) = A;M = ! — pv it
aryIVye—1 + bry

t=1 ) (3.1.30)

ary IV, -1 +bry

17 Setting bry to be strictly positive, instead of being zero, ensures that the normalizing factor
1/(ayyIVy 4+ bry) is bounded above. The boundedness is clearly convenient for asymptotic argu-
ments; it also enhances the stability in numerical works (CV;/IV; may be very large when IV} is
small). We note that bry is a fixed constant and plays no role in the asymptotics.
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(note that p and v are elements of ) and let i:T (0) be a HAC estimator of long-run
variance of the sequence 7, (f), 1 <t < T. We include the factor A, Y4 in the
definition of 7, , (f) to prevent degeneracy; see comment (ii) of Lemma 3.1.3.

The new test statistic is given by
_ 2.8
S (0) = S (0) + (TV2m5 1 (0)) /251 (6)

Here, we incorporate the feasible version of the equality restriction (3.1.29) as an
extra moment equality. Although E [m;t (0)] = 0 only holds “approximately” (as
A,, — 0), this complication can be readily accomodated in the asymptotic theory as

shown below. For a € (0,1), a 1 —a level confidence set based on S, 1 (0) is given by
CSr(l—a)={0€0:S5, <, (0,1-a)}, (3.1.31)
where the critical value ¢;, - (6,1 — ) is determined as follows. We set

O (0) = Gu (6) + (V)2

where ¢, 1 (0) is given by (3.1.19) and Y™** is a generic standard Gaussian random
variable independent of ¢, 7 (). We then set ¢, (0,1 — ) as the (1 — a)-quantile
of ¢, 1 (#) conditionally on the data. Under regularity conditions, we can show that
S (0o) — Sur (0o) is asymptotically chi-square distributed with degree of freedom
one and asymptotically independent of S,, 7 (6p); this motivates using the distribution
of ¢, () to approximate the distribution of S}, ;- (6p). Our formal results demand

the following assumption.

-
Assumption E. Denote 9, (0) = (T_l/zm;‘ G ST 2 (0)) . Let Xy 1 (6)
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and X7 1 (f) be the variance-covariance matrices of S s (0) and X1, T, (9),
respectively. Let ¢y and ¢y € (0,1) be strictly positive constants.

El1. A, =T,

E2. Sy (0) X0 (Wne (0) = E [ (0)]) == N (g1, Tera)-

E3. Sf,(0) ~ %/ (0) —> 0as T — 0.

E4. %/ (0)' =0,(1) as T — .

E5. The process ¢, (0), 1 < t < T, is stationary and a-mixing with mixing

1—co

coefficient oy, satisfying >~ o, 2 < co.

Assumption E1 links the asymptotic behavior of A, with that of T' so that the
double asymptotic nesting is reduced to a simpler one indexed only by 7. This
simplification has little effect in practice, but allows us to use well-known limit the-
orems for dependent triangular arrays, and hence greatly simplifies the exposition of
results. Under Assumption E1, ¢, (6p) — E [, (6p)] forms a zero-mean triangular
array by construction. Assumptions E2 can then be verified under primitive con-
ditions via central limit theorems for dependent triangular arrays; see e.g. de Jong
(1997). Assumption E2 partially overlaps with Assumption D2 in that they both
imposes the weak convergence of the sample moment 7, - (¢). Assumption D2 is
actually stronger on this regard, because it imposes the existence of the asymptotic
variance. Hence, the additional regularity from Assumption E2 is for the weak con-
vergence of the additional moment 7, 1. (), joint with /. 1. (6), without imposing
the existence of their asymptotic variance-covariance. Nevertheless, we show that
the asymptotic covariance between ! . (¢) and m: . (0) exists and is zero. This

result is a key step for the proof of Theorem 3.1.4 below. Assumptions E3 imposes
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the consistency of the HAC estimator for E;T (6p). This assumption can be verified
under primitive conditions via results on the HAC estimation for dependent trian-
gular arrays; see e.g. Davidson and de Jong (2002). Assumption E4 states that the
variance of the sequence Th;t (0) is nondegenerate asymptotically. This assumption
is not very restrictive. As discussed in comment (ii) of Lemma 3.1.3, A, is the

proper scaling factor for 61\/ nt— va/‘\/ n,t that prevents its variance from degenerating

asympototically.

Theorem 3.1.4. Let w € (5/12,1/2). Suppose (i) Assumption A holds for some
k = max{8,2/(1 — 2w)} and V; satisfies (3.1.25); (ii) Assumption B holds for some
k' > 2/(12w — 5); (iii) either Assumption C or Assumption C’; (iv) Assumption D
holds with LyAY* = o(1); (v) Assumption E holds for some ¢; > 2/(12c0 — 5) and

co =1/(2K") + (9 — 12w)/4. Then

lim P (6, " (1 — =1—-a.
Jim (0o CS, 1+ (1—0)) «

We finish this section by pointing out several limitations of the approach above,
as well as possible extensions on these directions. Firstly, (3.1.25) excludes the
presence of volatility jumps. Although the truncated estimator o1% nt 15 likely to

remain n'/4

-consistent for C'V; with volatility jumps, the characterizations of its
limiting distribution under the fill-in asymptotics (cf. Lemma 3.1.3) and its bias
under the long-span asymptotics are still open questions. We exclude volatility jumps

here mainly for this reason. Secondly, the approach above only incorporates the

restriction on the covariation between the log-price and the spot variance. Clearly, a

102



similar restriction can be imposed on the quadratic variation process of V;. Indeed,
(3.1.25) implies that the quadratic variation of V; (or more generally the continuous
part of V;) is vy Sz Vids, yielding an extra restriction on the volatility-of-volatility
parameter. If a nonparametric estimator for the quadratic variation of V; is available,
we may incorporate this additional restriction in a similar fashion as we have done for
(3.1.26). This being said, nonparameteric estimation for the quadratic variation of V;
is, to the best of our knowledge, still an open question, especially when price jumps
and /or volatility jumps are present and treated nonparametrically. Hence, extensions
on these two directions demand further high-frequency estimation results for the
covariation CV; and/or the diffusive quadratic variation of V; in a general setting
with price and volatilty jumps under both fill-in and long-span asymptotics. These
results are interesting on their own and technically challenging, and beyond the scope
of the current paper. We hope our discussion here may motivate future research on
this direction, which in turn may be incorporated to generalize the approach consider

here.

3.2 Simulation Study

We now examine the finite-sample performance of the above asymptotic theory.
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3.2.1  Simulation Design

We consider the stochastic volatility model with jumps under the risk-neutral mea-

sure:

dX, = (ry—6,)dt +/VidW2 + dJ,,

) 3.2.1
Wi = K (V= VO)dt + py VW2 + (1 (pQ)2)1/2 eyvawe  FY

where J, is a compound Poisson process with intensity A and jump size distributed
as N (pf?, (09)2). For simplicity, we suppose the interest rate and the dividend yield
are zero in the simulation. The risk neutral parameter 6 is given by the vector

(K’Q7‘7Q7pQ7UQ7)\Q,,U9,0'9). We set
(K%, V2, 02,02 A2 1%, 6%) = (5.00,0.05, —0.50,0.60, 0.50, —0.05, 0.20).

Under the physical measure, the data is generated using the same model but with

parameters
(K7, VE, % 0% NF 1, o) = (6.33,0.04, —0.50, 0.60, 0.50, —0.05, 0.20).

We have imposed pF = p@ and v* = v to ensures the equivalence between the risk-
neutral measure and the physical measure. The continuous-time process is simulated
via the Euler scheme discretized at 5 seconds. The high-frequency data used in our
estimation is then resampled at 1-minute interval.

We consider European call options. Quoted in terms of the Black-Scholes implied

volatility, the true price of an option with strike price x and time-to-maturity 7 is
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given by

f(x,v,k,70) =BS;. _(EQ [(eXT — /<¢)+ | Xo =2,y = v]),

TR, T

where BS,} _(-) is the functional inversion of the Black-Scholes formula. We adopt
the method of Duffie et al. (2000) and Fang and Oosterlee (2008) for comput-
ing the true option price. For each day, we generate 7 options with strike prices
{rit:1<1i <7} and the same times-to-maturity 7;; = 30, 60, and 90 days. We set
kit = K; exp (Xy), where (ky,...,K7) = (0.8,0.85,0.9,0.95,1,1.05,1.1).

We consider three settings for generating the efficient quotes (Azt, B;t):

Case 1 Afy = [ (X, Vi, Kigs Tie; 0o) + SPRD)/2
ase 1 : :
Bf, = f(Xy, Vi, Kig, Tig; 00) — SPRD/2

Case 2 A;k,t = f (Xta ‘/t?/{i,thi,t; 60) + (]- - /fz/2) SPRD
. B:t = f(Xy, Vi, Kig, Tig; 00) — (Ki/2) SPRD,

Case 3 { A:t = f (Xt7 V;ﬁvﬁi,taTi,t; 90) + (1 - (Z - 1)/3) SPRD

Bf, = [(Xy,Vi,Kig,Tigi60) — ((1 —1)/3) SPRD,
where the bid-ask spread SPRD is calibrated from actual data and corresponds to
about 1-2% implied volatility units, depending on the strike-maturity combination.
In case 1, the true option price coincides with the efficient mid-quote. In case 2,
the true option price is lower (resp. higher) than the mid-quote for in-the-money
(resp. out-of-the-money) options. The observed quotes are then generated according
to (3.1.2) where €4 and €5 are drawn independently from a uniform distribution
supported on [—o.,0.]. With 0. < SPRD/2, this design is a simple way of ensuring

the natural ordering A;; > B;;. We calibrate o. according to Var (A;; — B;:) =
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Var (Eft - sft) = 2Var (eft) = , 50 0. = /(3/2)Se (A B; ;) and then further
refine the specification to 0. = min {\/@Se (Ait — Bit),0.99 = SPRD/Z} . Case
3 considers the case of boundary misspecification, i.e. when the true option price lies
on either the bid or ask as opposed to uniformly in the interior of the spread.

We consider Monte Carlo samples of length 7' = 2 years and 15 years, consisting
of daily end-of-day simulated option prices. The purpose of looking at different
length samples is to examine the effect of T, given the convergence rate interaction
with the sampling interval A, derived previously. To obtain end-of-day prices, we
simulate the stochastic process in (3.2.1) and record the values of the state variables
at the close of the simulated trading day and use those to compute closing “true”
option prices. We then generate noisy bid and ask quotes following the framework
outlined above. For each of the resulting daily option samples, we compute the finite-
sample coverage probabilities given in the Q-measure setup from (3.1.13), as well as
the joint P- and Q-measure setup in (3.1.31), under the three DGP cases described
above. Specifically, we examine the coverage probabilities under correct mid-quote

specification, interior misspecification, and boundary misspecification.
3.2.2  Simulation Results

The results of the simulation exercises are given in Tables 3.1 through 3.6. Tables
3.1 through 3.3 show coverage probabilities for 15 year samples, whereas Tables 3.4
through 3.6 show the corresponding results for the 2 year samples.

Table 3.1 represents the DGP under which the mid-quote and the latent efficient
option price coincide exactly. The left panel shows the coverage probabilities using

the joint P- and Q-measure conditions (which includes an equality restriction on the
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Table 3.1: Monte Carlo Simulation: Size Control, 15 Year Sample, Case 1. This
table shows the results of a Monte Carlo experiment, in which 15 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions orily.

Within each panel, the table shows the effect of using estimated spot volatility V/, ,
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only
Mid-quote Full Spread Mid-quote Full Spread
« ‘/t ‘7n,t V;‘, ‘711,15 Vvt Vn,t ‘/t ‘7n,t

0.01 0.010 0.017 0.029 0.028 0.011 0.015 0.000 0.000
0.05 0.062 0.069 0.109 0.108 0.059 0.062 0.000 0.000
0.10 0.124 0.122 0.171 0.172 0.107 0.109 0.000 0.000
0.15 0.171 0.172 0.228 0.228 0.162 0.167 0.000 0.000
0.20 0.226 0.220 0.290 0.289 0.212 0.218 0.000 0.000
0.25 0.278 0.270 0.338 0.338 0.260 0.269 0.000 0.000
0.30 0.324 0.321 0.390 0.391 0.306 0.319 0.000 0.000
0.35 0.373 0.382 0.432 0.434 0.358 0.371 0.000 0.000
0.40 0.429 0.438 0.483 0.483 0.410 0.417 0.000 0.000
0.45 0.482 0.499 0.538 0.538 0.465 0.459 0.000 0.000
0.50 0.533 0.544 0.587 0.588 0.513 0.512 0.000 0.000

product of the leverage effect and vol-of-vol), whereas the right panel shows coverage
probabilities under only Q-measure restrictions (using only moment inequalities).
Not surprisingly, the best coverage is achieved by fitting the model to mid-quotes
when the DGP is in fact the mid-quote. This holds whether one uses the infeasi-
ble true spot volatility V; to price options or uses its high-frequence estimate ‘A/n,t
(columns 2 and 3). In contrast, using the more conservative approach of bounding

the efficient price by the bid-ask spread (columns titled “Full Spread”) results in
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Table 3.2: Monte Carlo Simulation: Size Control, 15 Year Sample, Case 2. This
table shows the results of a Monte Carlo experiment, in which 15 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions orily.

Within each panel, the table shows the effect of using estimated spot volatility V/, ,
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only
Mid-quote Full Spread Mid-quote Full Spread
o ‘/t ‘7n,t ‘/t ?n,t Vvt Vn,t ‘/t ‘7n,t

0.01 0.045 0.034 0.027 0.026 0.040 0.029 0.000 0.000
0.05 0.229 0.164 0.109 0.107 0.232 0.154 0.000 0.000
0.10 0.427 0.336 0.165 0.165 0.423 0.323 0.000 0.000
0.15 0.592 0.487 0.221 0.222 0.586 0.481 0.000 0.000
0.20 0.709 0.614 0.283 0.282 0.709 0.605 0.000 0.000
0.25 0.796 0.722 0.333 0.332 0.788 0.713 0.000 0.000
0.30 0.861 0.795 0.384 0.385 0.851 0.788 0.000 0.000
0.35 0.901 0.853 0.429 0.429 0.892 0.844 0.000 0.000
0.40 0.931 0.886 0.478 0.478 0.926 0.883 0.000 0.000
0.45 0.953 0.917 0.531 0.531 0.945 0.918 0.000 0.000
0.50 0.972 0.941 0.582 0.583 0.960 0.946 0.000 0.000

slight overrejection. Under (Q-measure restrictions only, using the full spread given
by bid ask quotes now results in conservative inference, whereas using the mid-quote
directly results in correct finite-sample coverage.

The most striking results are given in Tables 3.2 and 3.3. Table 3.2 shows cov-
erage probabilities under the first type of mid-quote misspecification (Case 2), i.e.
the efficient price is not the mid-quote, but it is also not on the boundary given by

the bid and ask quotes. In the left panel, the columns labeled “Mid-quote” show
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that fitting an option pricing model to the mid-quote when the DGP in fact de-
viates from the mid-quote can result in severe overrejection of the option pricing
model. We interpret this result as evidence that incorrect assumptions on the option
market’s microstructure can have profound effects on inference on frictionless option
pricing models. On the other hand, taking the more conservative approach of merely
bounding the efficient price by the bid and ask quotes results in comparatively mild
overrejection. For example, for nominal level 50% confidence sets, the bid-ask bound
approach results in 58.3% rejections compared to 94.1% rejections from the erro-
neous mid-quote point-identifying assumption. For (Q-measure-only confidence sets,
the bid-ask bound approach results in conservative inference, whereas the mid-quote
assumption again results in severe overrejection.

Table 3.3 shows results for the Case 3 DGPs, i.e. when the efficient price some-
times coincides with the bid and ask quotes and generally deviates from the mid-
quote. In this scenario, fitting option prices to the mid-quote results in automatic
100% rejections. In contrast, bounding the efficient prices by the bid and ask quotes
yields slightly conservative and sometimes correct inference. This observation holds
whether one is using the P-measure equality restriction (confirming Theorem 3.1.4)
or not (Theorem 3.1.2, Equation (3.1.24)), since Case 3 corresponds to the boundary
parameter case.

Comparing Table 3.4 with Table 3.1, we observe that the effect of a smaller sample
size T" mitigates the mild overrejections found on the 15-year sample. This agrees
well with the result in Theorem 3.1.1, which required the sampling interval A,, — 0

sufficiently fast relative to the growth in 7. This improvement in inference is carried

109



Table 3.3: Monte Carlo Simulation: Size Control, 15 Year Sample, Case 3. This
table shows the results of a Monte Carlo experiment, in which 15 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions orily.

Within each panel, the table shows the effect of using estimated spot volatility V/, ,
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only
Mid-quote Full Spread Mid-quote Full Spread
o ‘/t ‘7n,t ‘/t ?n,t Vvt Vn,t ‘/t ‘7n,t

0.01 1.000 1.000 0.001 0.001 1.000 1.000 0.002 0.001
0.05 1.000 1.000 0.020 0.021 1.000 1.000 0.014 0.016
0.10 1.000 1.000 0.057 0.051 1.000 1.000 0.044 0.044
0.15 1.000 1.000 0.111 0.107 1.000 1.000 0.089 0.088
0.20 1.000 1.000 0.166 0.169 1.000 1.000 0.136 0.137
0.25 1.000 1.000 0.216 0.226 1.000 1.000 0.187 0.182
0.30 1.000 1.000 0.275 0.284 1.000 1.000 0.246 0.240
0.35 1.000 1.000 0.337 0.339 1.000 1.000 0.299 0.298
0.40 1.000 1.000 0.398 0.405 1.000 1.000 0.350 0.350
0.45 1.000 1.000 0.461 0.466 1.000 1.000 0.404 0.414
0.50 1.000 1.000 0.504 0.507 1.000 1.000 0.454 0473

forward into the misspecification Cases 2 and 3 shown in Tables 3.5 and 3.6, where

the rejection frequencies are close to their nominal levels.

3.3 Empirical Results

We examine our set inference framework on actual S&P 500 Index Options and

high-frequency observations on the underlying.
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Table 3.4: Monte Carlo Simulation: Size Control, 2 Year Sample, Case 1. This
table shows the results of a Monte Carlo experiment, in which 2 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions orily.

Within each panel, the table shows the effect of using estimated spot volatility V/, ,
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only
Mid-quote Full Spread Mid-quote Full Spread
o ‘/t ‘7n,t ‘/t ?n,t Vvt Vn,t ‘/t ‘7n,t

0.01 0.008 0.069 0.014 0.009 0.012 0.072 0.000 0.000
0.05 0.045 0.234 0.054 0.041 0.057 0.240 0.000 0.000
0.10 0.102 0.357 0.098 0.073 0.115 0.363 0.000 0.000
0.15 0.149 0.452 0.131 0.104 0.166 0.454 0.000 0.000
0.20 0.199 0.536 0.171 0.145 0.220 0.519 0.000 0.000
0.25 0.256 0.607 0.216 0.179 0.268 0.582 0.000 0.000
0.30 0.304 0.659 0.254 0.213 0.319 0.635 0.000 0.000
0.35 0.365 0.701 0.294 0.251 0.375 0.684 0.000 0.001
0.40 0.413 0.740 0.337  0.290 0.417 0.723 0.000 0.001
0.45 0.469 0.777 0.378 0.322 0.476 0.759 0.000 0.001
0.50 0.510 0.809 0.413 0.366 0.526 0.796 0.001 0.001

3.8.1 The Data

Our data are obtained from OptionMetrics and represent daily observations on S&P
500 Index Options spanning January 1996 to December 2010. In light of our discus-
sion following Assumption C, a relevant set of instruments for our moment inequal-
ity approach is given by the indicator functions that categorize options according
to strike and time-to-maturity. Andrews and Shi (2014) show that there is no loss

of identification power when the number of categories (or “boxes”) goes to infinity.
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Table 3.5: Monte Carlo Simulation: Size Control, 2 Year Sample, Case 2. This
table shows the results of a Monte Carlo experiment, in which 2 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions orily.

Within each panel, the table shows the effect of using estimated spot volatility V/, ,
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only
Mid-quote Full Spread Mid-quote Full Spread
o ‘/t ‘7n,t ‘/t ?n,t Vvt Vn,t ‘/t ‘7n,t

0.01 0.028 0.106 0.011 0.010 0.033 0.108 0.000 0.000
0.05 0.163 0.378 0.047 0.031 0.181 0.367 0.000 0.000
0.10 0.304 0.578 0.082 0.064 0.330 0.577 0.000 0.000
0.15 0.430 0.703 0.112 0.089 0.451 0.690 0.000 0.000
0.20 0.536 0.790 0.148 0.117 0.552 0.775 0.000 0.001
0.25 0.628 0.850 0.185 0.148 0.637 0.838 0.000 0.001
0.30 0.708 0.890 0.217 0.178 0.704 0.891 0.000 0.001
0.35 0.762 0.916 0.249 0.215 0.772 0918 0.001 0.001
0.40 0.816 0.945 0.286 0.251 0.828 0.944 0.001 0.001
0.45 0.861 0.964 0.324 0.285 0.868 0.966 0.001  0.002
0.50 0.896 0.976 0.365 0.322 0.896 0.979 0.003 0.002

However, for the purposes of empirical tractability, we settle on categorizing options
into seven strike categories and three maturity categories, for a total of twenty-one
option categories.

Summary statistics for each category of options is presented in Table 3.7. The
categories were chosen to be representative of the full option smile observed on the
three closest maturities for a given trading day and therefore make use of information

on both deeply in-the-money (ITM) and deeply out-of-the-money (OTM) options.

112



Table 3.6: Monte Carlo Simulation: Size Control, 2 Year Sample, Case 3. This
table shows the results of a Monte Carlo experiment, in which 2 years of options
bid and ask quotes were simulated 2,000 times by pricing options on an underlying
SVJ model generated via an Euler scheme. The Andrews-Soares (2010) confidence
sets were computed each time, and the rejection frequencies were recorded for the
nominal sizes given in column 1. The left panel shows simulation results using both
P and Q measure restrictions; the right panel shows Q measure restrictions orily.

Within each panel, the table shows the effect of using estimated spot volatility V/, ,
under varying widths of the bid-ask spread.

P and Q measure restrictions Q measure restrictions only
Mid-quote Full Spread Mid-quote Full Spread

o ‘/t ‘7n,t ‘/t ?n,t Vvt Vn,t ‘/t ‘7n,t
0.01 1.000 1.000 0.001  0.002 1.000 1.000 0.000 0.001
0.05 1.000 1.000 0.005 0.029 1.000 1.000 0.003 0.022
0.10 1.000 1.000 0.019 0.065 1.000 1.000 0.014 0.057
0.15 1.000 1.000 0.031 0.111 1.000 1.000 0.035 0.112
0.20 1.000 1.000 0.057 0.164 1.000 1.000 0.052 0.170
0.25 1.000 1.000 0.087 0.227 1.000 1.000 0.086 0.222
0.30 1.000 1.000 0.133  0.288 1.000 1.000 0.120 0.278
0.35 1.000 1.000 0.178 0.354 1.000 1.000 0.159 0.336
0.40 1.000 1.000 0.224 0.406 1.000 1.000 0.198 0.394
0.45 1.000 1.000 0.281 0.474 1.000 1.000 0.240 0.451
0.50 1.000 1.000 0.338 0.536 1.000 1.000 0.296 0.517

The table shows that the bid-ask spread is on average 200bp wide for the less liquid
ITM options. Wider bid-ask spreads are actually observed when OTM calls are not
converted to ITM via put-call parity, as we have done following practices in the
existing literature (see for example Andersen et al. (2012)). These option categories
result in an effective option sample of 7 x 3 x 3,462 = 72, 702 pairs of quotes. Over
the same sample period, we also have 1-minute observations on S&P 500 futures that

we use to construct our high-frequency estimates of spot volatility XA/M in (3.1.12).18

18 We thank Sophia Zhengzi Li for providing us with the data.
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The data was filtered following the standard practices in the literature (Andersen
et al. (2012)). In particular, options with time-to-maturity less than 7 days are
discarded, as are options with zero bids. The riskfree rate is interpolated from the
observed LIBOR term structure and the dividend yield process is the one supplied

by OptionMetrics.
3.8.2 Results

We present empirical results for several specifications. Table 3.8 shows various con-
fidence set estimates for the general stochastic jump-diffusion model in (3.1.25).
The top panel of the table shows results using only option data (the @Q-measure
model), whereas the bottom panel shows results using additional identifying infor-
mation about leverage and volatility-of-volatility from the high-frequency record on
the underlying (the joint P-Q model).

The column labeled PNT describes point estimates of the parameters obtained
under the mid-quote point-identifying assumption under squared loss. The estimates
accord well with findings in the existing literature, e.g. Eraker et al. (2003), Andersen
et al. (2002), Chernov et al. (2003), Eraker (2004), Broadie et al. (2007). In particu-
lar, the options are clearly pricing volatility mean-reversion (x > 0) and are implying
strong negative skewness (p close to —1). The long-run variance V also corresponds
well to nonparametric estimates of long-run risk-neutral variance (Bollerslev et al.
(2011)). The option data are also clearly pricing jumps with a negative jump size
mean (py; < 0), with one jump occurring approximately every 1.3 years. Compar-

isons between the top and bottom panels of the PNT column show that the estimates
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Table 3.7: Summary of Options Quote Data. This table shows time-averaged strike-
to-spot ratios (K;/5), and bid and ask quotes for strike categories K;, j =1,...,7,
for a total of 7 x 3 x 3,462 = 72,702 pairs of quotes. The data represent weekly
observations on S&P500 index call options from January 2, 1996 to December 30,
2010. In-the-money call options were replaced by out-of-the-money puts converted by
put-call parity. Days with fewer than seven strikes or three maturities were dropped.

Short
Term K/S Bid- IV SD Ask IV SD Spread 7  SD T

K, 0.8 029 0.12 031 0.13 0.02 243 9.3 3462
Ky 093 025 010 027 0.11 0.02 243 9.3 3,462
K 096 022 0.09 024 0.09 001 243 93 3462
Ky 099 020 0.08 021 0.08 0.01 243 9.3 3462
K 1.00 019 0.07 020 008 001 243 93 3,462
K 1.03 0.17 0.0 0.19 0.07 0.01 243 93 3,462
K7 1.06 0.16 006 0.18 0.07 0.01 243 9.3 3,462

K, 083 030 011 032 0.12 0.02 525 11.3 3,462
Ky 089 027 010 028 0.10 0.01 525 11.3 3,462
K 094 024 008 025 0.09 0.01 525 11.3 3,462
Ky 098 021 007 022 0.08 0.01 525 11.3 3,462
K 099 020 0.07 021 0.08 0.01 525 11.3 3,462
K 1.03 018 006 0.19 007 001 525 11.3 3,462
K7 1.09 016 006 0.17 006 001 525 11.3 3,462

K, 080 030 0.11 032 0.11 0.02 88.7 29.5 3,462
Ky 087 027 0.09 028 0.09 0.01 8.7 295 3,462
K; 093 024 008 025 0.08 001 8.7 295 3,462
Ky 098 021 007 022 0.07 001 887 295 3,462
Ks 099 021 007 022 0.07 001 887 295 3,462
Kg 1.04 018 006 019 006 0.01 8.7 29.5 3,462
K7 1.10  0.16 0.05 0.17 0.06 0.01 8.7 29.5 3,462
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Table 3.8: SVJ Baseline Set-Inference. Estimation and inference for SVJ model.
PNT, E50, 150, E95, and 195 denote point estimates, mid-quote moment equality CS

at size 50%, full b1d ask spread CS at size 50%, mld quote moment equality CS at
size 95%, and full bid-ask spread CS at size 95%, respectively. “Obj. fn.” denotes
value of the objective function (S(0) —c(0,1 — a)).

Q PNT E50 150 E95 195

K 381 344 [1.45,59.95] [3.85, 131.64] [1.26, 157.7]
% 0.04 0.04 [0.02,0.08  [0.02, 006  [0.01,0.07]
P -1.00 -1.00 [-1.00,-0.44] [-1.00,-0.38] [-1.00, -0.00]
v 0.56 0.51 [0.19,2.11]  [0.34,3.03]  [0.00, 3.40]
A 0.76 0.69 [0.03,0.94]  [0.02, 0.61]  [0.00, 1.11]
1 0.07 -0.07 [-0.78,-0.05] [-0.98,-0.05] [-1.47, 0.06]
oy 014 015 [0.00,0.37]  [0.00, 0.45  [0.00, 0.78]
Obj. fn. 293 12.11 0.00 0.00 0.00
QandP  PNT E50 150 E95 195

K A77 3.34 [1.45,41.89] [3.11, 86.17]  [1.33,139.2]
1% 0.04 0.04 [0.02,0.08  [0.02,0.06]  [0.01,0.08]
p 0.98 -0.99 [1.00,-0.41] [-1.00,-0.38] [-1.00,-0.00]
v 0.60 051 [0.21,1.51]  [0.34,2.26]  [0.00,3.4]
A 0.67 0.67 [0.07,0.94]  [0.01,0.72]  [0.00,1.11]
1y 0.07 -0.07 [-0.52,-0.04] [-0.97,-0.04] [-1.47, 0.06]
oy 0.14 0.5 [0.00,0.35]  [0.00, 0.45]  [0.00, 0.78]
Obj fn. 2.98 11.54 0.00 0.00 0.00

are little changed by the additional identifying restriction.

The remaining columns of Table 3.8 show estimated 50% and 95% confidence sets
under both mid-quote equality restrictions as well as full bound width restrictions.
That is, the moment inequality framework in Section 3.1 is specialized to the case
when the bid and ask quotes are artificially collapsed to the mid-quote (columns
labeled E50 and E95), whereas the columns labeled 150 and 195 correspond to the full

moment inequality setup and represent 50% and 95% CS’s, respectively. The results
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show a rejection of the SVJ model at the 50% level when the mid-quote equality
is artificially imposed. The result disappears when the mid-quote assumption is
relaxed. More generally, Table 3.8 reveals large confidence sets, as indicated by the
intervals on each parameter. In interpreting the results, however, one should remain
cautious of the fact that indicated intervals represent projections of a 7-dimensional

confidence set onto individual parameters.
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To better understand the shape of the 7-dimensional CS, we plot its projections
onto pairs of parameter coordinates in Figure 3.2. The figure reveals new and in-
teresting tradeoffs between option model parameters in the SVJ model. That is,
observed option quotes appear to admit a variety of parameter configurations. For
example, the fourth panel in the first row of Figure 3.2 suggests that option prices
do not appear to distinguish {high mean-reversion, high vol-of-vol} from {low mean-
reversion, low vol-of-vol}. Similarly, the first panel in the third row shows that option
prices can be well represented by either a {high-intensity, small jump-size} specifica-
tion or a {low-intensity, large jump-size}. The figure also reveals how the volatility
and jump process interact: A model with high long-run variance is consistent with
observed option quotes, as long as the jump-intensity goes to zero (second row, first
column). Conversely, the long-run variance is permitted to assume smaller values
when the jump arrival intensity goes up. A similar relationship appears to hold for
the vol-of-vol parameter as well.

In general, Table 3.8 and Figure 3.2 show large estimated confidence sets. To
sharpen the inference, we introduce additional moment restrictions of the form in
Assumption C’. In particular, rather than using only test functions corresponding to
indicator functions in the strike and maturity dimension, we introduce a smoothed
indicator function in the volatility space that will require option prices to satisfy the
bid-ask bounds in three distinct volatility states: high, medium, and low volatility
periods as distinguished by their sample tertiles. These additional test functions
effectively triple the number of moment inequalities used for inference and (perhaps

not surprisingly) result in smaller estimated confidence sets.
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Table 3.9: Set estimates with volatility conditioning information. Estimation and
inference for SVJ model with volatility weighting function. PNT, E50, 150, E95, and
195 denote point estimates, mid-quote moment equality CS at size 50%, full bid-ask
spread CS at size 50%, mid-quote moment equality CS at size 95%, and full bid-
ask spread CS at size 95%, respectively. “Obj. fn.” denotes value of the objective

function (S(0) — c(6,1 — a)) .

Q PNT E50 150 E95 195

K 330  3.71 3.02 320  [2.78, 4.05]
1% 0.05 0.05 0.05 0.05 [0.044, 0.053]
p -1.00  -1.00 -1.00 -1.00  [-1.00, -0.98]
v 056 0.61 0.55 0.56  [0.51, 0.64]
A 093 096 081 096  [0.68, 0.97]
[y -0.04 -0.04 -0.04 -0.04 [-0.05,-0.04]
oy 0.13 0.13 0.14 0.3  [0.13, 0.15]
Obj fn 1826 390.94 78.59 270.22 0.00
QandP  PNT E50 150 E95 195

K 3.47 353  3.090 3570  [2.71, 3.34]
% 0.05 0.05 0.050 0.050 [0.045,0.052]
p -0.96 -1.00 -1.000 -1.000 [-1.00, -0.98]
v 0.54 0.57 0550 0.570  [0.50, 0.58]
A 0.78 1.03  0.800 1.000  [0.73, 0.94]
I, -0.05 -0.04 -0.040 -0.040 [-0.05, -0.04]
oy 0.14 0.2 0.140 0.130  [0.13, 0.15]
Obj fn. 1826 397.33 77.56 267.91 0.00

To illustrate, Figure 3.2 also shows estimated 95% CS’s for the volatility test

function case in green (light shading). The resulting CS’s display significant reduc-

tions in the size of the new CS’s, suggesting that the volatility test functions are

ruling out many of the observationally similar parameter estimates from the original

model. Figure 3.3 zooms into the parameter estimates for the volatility test func-

tion confidence sets and reveals parameter sets that are close to the point estimates
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obtained under the mid-quote assumption. However, in a striking deviation from
existing findings in the literature (Andersen et al. (2012)), the SVJ model is not
rejected at the 5% level when the full width of bid and ask quotes is used, whereas
point estimates specializing to the option mid-quote are rejected (Table 3.9). Our
results suggest that the mid-quote assumption imports enough information into an
option model that it may overturn conclusions obtained under more conservative

assumptions on the data generating process.
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3.4 Conclusion

This paper examines inference on option model parameters in the bid-ask quote set-
ting. Specifically, we propose an econometric framework that explicitly recognizes
bid and ask quotes as interval observations on the efficient option price, which natu-
rally gives rise to a lack of point-identification: that is, a situation in which multiple
option model parameters are consistent with observed option quotes. Our frame-
work relies on moment inequalities that bound model-implied option prices between
observed bid and ask quotes, thus avoiding the untestable microstructure restric-
tion of equating efficient option prices to the option mid-quote. We argue that the
mid-quote point-identifying assumption is especially relevant in an empirical option
pricing setting, where the illiquidity of certain deep in-the-money options can induce
significant bid-ask spreads.

Our framework extends the existing econometric literature on set-inference by
admitting moment functions that depend on a latent variable (spot variance) that
must be estimated in a first stage from high-frequency data on the option’s under-
lying. This extension allows us to conduct inference on a general affine stochastic
volatility jump-diffusion model of Duffie et al. (2000) within a partial identification
setting. By construction, the inference is robust to microstructure misspecifications
by allowing us to remain agnostic about the relationship between bid-ask quotes and
the efficient price. We also illustrate that the framework is general enough to accom-
modate additional identifying restrictions on certain option pricing parameters that
are invariant to the change of measure.

Monte Carlo simulations show that the use of estimated spot variance in place
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of latent spot variance provides accurate coverage of the true pricing parameter
under empirically realistic sample sizes. Our empirical exercise shows that relaxing
the mid-quote assumption results in large estimated parameter sets that reveal novel
relationships among option model parameters. We also show that the informativeness
of inference can be restored by incorporating certain variance test functions into the

moment inequality framework.
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4

A Sieve Application to Estimating Quantile Risk

Premia

Introduction

This chapter uses the sieve framework developed in Chapter 2 to examine the time
series properties of risk-neutral return quantiles. An economic motivation for exam-
ining these return quantiles is that they are informative about tail risk premia. To
this end, I estimate the objective-measure counterparts to the risk-neutral quantiles
and show that their difference is related to a risk-premium on binary options that
pay off $1 in case of moves in the underlying asset of a given size.

The quantities defined in this chapter are related to the state-price of conditional
quantiles (SPOCQ), defined in Metaxoglou and Smith (2013). The analysis differs
here in the (Q-measure estimation, since they employed a lognormal mixture to obtain
estimates of the risk-neutral distribution, whereas here I rely on the sieve methods

of Chapter 2 to provide a complementary view on return quantiles. The methods
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discussed here also differ from Metaxoglou and Smith (2013) in that I examine the
risk-premium interpretation associated with their SPOCQ and furthermore make di-
rect comparisons of the quantiles of the P- and Q-measure distributions. Lastly, I
also propose a regression framework for forecasting excess returns based on a decom-
position of the equity risk-premium into its quantile constituents.

In what follows, P-measure return quantiles were estimated using the CAViaR
methods of Engle and Manganelli (2004), augmented with intra-month information
on realized daily squared returns. The empirical findings of the chapter suggest
a pronounced presence of risk premia in the extremes of the return distribution,
underscoring existing results on the drivers of the equity risk premium (Bollerslev
and Todorov (2011)). However, in contrast to the variance risk premium litera-
ture discussed in Chapter 2, the compensation for these distributional risks appear

asymmetric across quantiles.
4.1 Motivating Quantile Risk Premia

I define the equity premium as the 7-period ahead expected excess return Ef [ry 1. |—
T{HT on the aggregate market index Sy, where ry sy, = (S;1-/S:)—1 and T{t_,_T denotes
the riskfree rate over the corresponding horizon. The expectation operator for the
market return in this definition is under the objective measure, or P-measure.

On the other hand, it is well-known that the riskfree rate rgi ++- can also be written
as a conditional expectation of returns, but against the risk-neutral measure Q, that
is

e = EXreeis]s (4.1.1)
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giving rise to the definition
ERPitir = EF[Tt,t-i-T] - Eé@[rt,tw]- (4.1.2)

Equation (4.1.2) shows that the equity premium depends critically on two expec-
tations of future returns, Ef[r;;,,] and EP[Tt7t+T]. Each of these, in turn, can be
viewed as functionals on the conditional distributions that generated the expectation.

That is, letting Fy,,; denote a conditional CDF and defining

0
T(E+T|t> = J rdFt+T\t(r)7
—0
we see that the equity premium is given
ERPuy ., =T (Fi) =T (FST|t) : (4.1.3)

The focus of this paper is on direct comparisons of the distributions Fﬁ-ﬂ . and I Sﬂ .

through their quantiles, rather than through the lens of the operator T'(+).
4.2 Forecasting Objective and Risk-Neutral Quantiles

and FY

Since the distributions FT bt

Y in (4.1.3) are unobserved, they must be

estimated from historical data. I discuss the estimation of each in turn.
4.2.1 Forecasting Q-measure Return Quantiles: The Method of Sieves

I use the method of sieves proposed in Chapter 2 to estimate quantiles of FST‘ .

The method of sieves exploits the structure embedded in the risk-neutral valuation

equation and allows for the estimation of the entire function F%

Aty for a fixed 7, even
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if options with maturity 7 are unobserved.
Following the same arguments from Chapter 2, the price of a put option with

strike x and maturity 7 is given by*

Py, 7) = e~ J "k — S172(S|P)dS.

0

Next, the following convenient change of variables is adopted,

log (Si) — u(Z) + (2,

where Z = (k,T,7,q) holds the strike, maturity, risk-free rate, and dividend yield,
and where y(Z) = (r—q—o0?/2)t and 0(Z) = o+/7. For empirical implementation, o
is chosen as an interpolated implied volatility of an at-the-money 7-maturity option.
Under this change of variables, the valuation equation becomes

d(Z)

Py(k,7) = Py(fo, Z) = e—rTJ

<l€ — Soe“(Z)Jr”(Z)Y) fo(Y|r)dY, (4.2.1)
0

where d(Z) = W. The procedure in Chapter 2 delivers estimates for fo(Y|7),

which are related to the density of interest by the simple Jacobian transformation

fo'(slr) = (50(Z)) 7" fosl7).

To estimate fi(s|7), one constructs Hermite polynomial expansions using candidate

densities of the form

2K,

Fe@lm) = > w(B, 7) Hi(y)o(y), (4.2.2)

I Exactly as in Chapter 2, the dependence of fél) (S|T) on a possibly unobserved state vector V
that generated the time-t information set, i.e. fé?(S |7,V = vyq), is suppressed, since the strategy
here is to estimated fgl)(S |7) separately for each option cross section.
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where K = (K, + 1)(K, + 1) and where

(B, 1) Ara(B, T)
a(B,7)a(B,T) ’

(0%
ka(BvT) =

and a(B,T) = (Z]K:To Bo;Hi(T), ..., Z]K:TO Br,;H;(T)). Aj are matrices of constants
derived in Le6n and Sentana (2009). Hy(y) are Hermite polynomials of order k that
are orthonormal with respect to exp(—y?/2)dy. Bis a (K, +1) x (K, + 1) matrix of
coefficients. I denote its vectorized representation as § = vec(B) and then estimate

[ by solving the least squares problem

~ 1 &

(4.2.3)

Ky K‘r

s.t. Z Z ﬁzj = 1.

k=03=0

The contribution of Chapter 2 was to show that if K — o0 as the cross-section of op-
tions grew (n — o0), then d(fx, fo) = 0, where fic(y|7) = Y358 (B, 7)Hi(y)8(y).
The simulations in Chapter 2 also demonstrate that selecting K by minimizing the
BIC is effective for obtaining nonparametric coverage of certain portfolios of options
that depend on ff.

Because the focus here is on fx and its CDF and not option portfolio inference,
I fix K, = 5 and K, = 1 for computational ease. The low order on 7 expansions
is supported by using a restricted option panel, e.g. by only using the first three
available maturities in the option panel in order to estimate the 30-day ahead return
distribution. The minimization in (4.2.3) is then conducted on a weekly sample
of S&P 500 Index options spanning 1996 to 2013. A total of 883 optimizations
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Table 4.1: Time—Averaged Sieve Estimates. The sieve least-squares problem in (4.2.3)
with K, = 5 and K, = 1 is solved on a weekly sample of S&P 500 Index optlons

spanning 1996 to 2013, resulting in 883 coefficient estimates for B, where B = vec(B)
The table reports tlme averages and standard deviations for the squares of the coef-

ficient matrices B.

Mean (B o B) Std (B o B)

K, \K; 70 7l 70 7l

0.127  0.660 0.221 0.297
0.001 0.017 0.004 0.042
0.005 0.054 0.011 0.054
0.001  0.024 0.003 0.044
0.001  0.023 0.004 0.040
0.007  0.081 0.015 0.069

T W N~ O

corresponding to the number of weeks in the sample are performed for this sample,
and time-averaged squares of coefficient estimates are reported in Table 4.1. The
table reports squares of coefficients because of the constraint in (4.2.3), which gives
an indication of how much weight the option data place on each Hermite polynomial
term. The table clearly shows that on average, most of the weight is placed on
the leading expansion term, and that this leading weight changes significantly over
time. The higher-order Hermite polynomial terms are nonzero on average, with more
emphasis placed on the first-order 7 expansion. With estimates of Bin hand, one

can easily construct estimates of F2_, using the closed-form relation

t+rlt

Az)

B (Surr < HlT) = f Frc(alr) dz

' (4.2.4)
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Qx(A) = $4 fi(z|7)dx is the estimated risk-neutral measure.2 One then obtains the

7') , (4.2.5)

where r = (k—S;)/S;. The above procedure yields a time-series of 7 = 30-day ahead

return distribution estimate

Ft(%fr\t(r) = Qx

distributions F©

rer] .(r), from which quantiles are readily computed by inversion.

4.2.2  Forecasting P-measure Return Quantiles: CAViaR

To estimate the quantiles of FF I apply the CAViaR model of Engle and Man-

t+7t)

ganelli (2004). To ease notation, let 7 = 1 month, and let Quantfﬂﬂt(a) denote the

level o quantile of the return distribution F Em .- That is, let
Quantfwﬂt(a) = inf{r:a < Ftﬁ”t(r)}. (4.2.6)
The CAViaR model specifies dynamics for conditional quantiles Quantfmlt(a) in a

manner analogous to the GARCH specification of Bollerslev (1986) for conditional

variances. Thus, given returns and observables {r;, ¥;}]_,, one defines

fer1(B) = frea(zi, Ba) = Quanty,  ,(a). (4.2.7)

2 See Chapter 2 for a derivation of this expression.
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Then a generic CAViaR specification takes the form
q p
fee1(B) = Bo + 2 Bifi—i(B) + Z Bili—j(w—j)
i=0 j=0

re = fi(B°) + e (4.2.8)

Quant: (o) = 0.

Eat|$t—1

Thus, conditional return quantiles are allowed to depend on its own lags as well as

lags of covariates x;. For the empirics below, I consider the specialization

fix1(B) = Bo + Bufe(B) + Balri| + BsRVi—1y, (4.2.9)

where RV;_;; denotes the realized variance, or sum of squared daily (intra-month)
returns between ¢t — 1 and ¢. The idea behind this specification is to let large intra-
month variances affect next period’s quantiles.

Then, the model in (4.2.8) with quantile dynamics (4.2.9) is optimized to yield

the coefficient vector

T

o = axgmin % S =1 < @ — £, (4.2.10)

t=1

which one then uses to forecast the return quantile ft+1(3a). To obtain multiple «
quantiles, I re-estimate this model for each « of interest to obtain a forecast of a
different conditional quantile.

It is worth noting that in order for ¢t + 1 to denote a 30-day ahead P-measure
quantile, one must use a historical time series with 30-day increments. Since this

amounts to a loss of intra-month information, the inclusion of RV;_ 1, is designed to
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compensate by incorporating intra-month variation. Furthermore, for my empirical
analysis, I require weekly observations on the 30-day ahead P-measure quantiles. I
therefore estimate a CAViaR model on a weekly expanding-window sample, which
produces a new coefficient vector estimate Ba for each week. The results of these
estimations are summarized in Table 4.2, which shows the average of coefficients
obtained for each of the 30-day ahead forecasting problems. A noteworthy feature
of Table 4.2 is the higher persistence in upper quantiles than for lower quantiles.
To aid in the estimation, the coefficients on realized variance and absolute returns
were constrained to be negative for quantiles below the median. Furthermore, the
coefficient on lagged quantiles was constrained to be positive to enforce continuity.
These constraints were imposed in order to help the numerical optimizer converge to
stable coefficient estimates. Indeed, Engle and Manganelli (2004) themselves provide
a lengthy discussion on optimizing the CAViaR model, whose numerical instability
can easily lead to different optima that depend on the starting location of the initial

parameter vector. The results reported here were obtained using a genetic algorithm.

4.3 Quantile Risk Premia

I first document the time series properties of the P- and Q-measure quantiles esti-
mated in the preceding section. I then show how the differences between correspond-
ing P- and Q-measure quantiles is related to a risk premium on a binary option that

pays $1 for a given return value.
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Table 4.2: Averaged CAViaR Estimates. The model in (4.2.8) with quantile dynam-
ics (4.2.9) is estimated on an expanding-window sample by solving the minimization
problem in (4.2.10). The sample consists of weekly forecasts of a 30-day ahead return
quantile. Average coefficient estimates are shown alongside the unconditional sample
probability of returns realizing below the indicated quantile.

a P(ry < fi(B)) const fi(B) |re]  RVioiy

0.01 0.01 -0.02 033 -0.22 -1.20
0.05 0.06 -0.02 046 -0.12 -0.34
0.10 0.12 -0.01 0.39 -0.11 -0.24
0.20 0.22 -0.01 0.21 -0.10 -0.18
0.30 0.31 0.00 0.11 -0.10 -0.13
0.40 0.38 0.01 0.10 -0.10 -0.10
0.50 0.51 0.00 0.35 0.10 0.10
0.60 0.61 0.00 0.42 0.10 0.12
0.70 0.70 0.00 0.53 0.10 0.15
0.80 0.81 0.01 0.55 0.10 0.22
0.90 0.93 0.01 0.52 0.10 0.36
0.95 0.97 0.01 046 0.10 0.58
0.99 1.00 0.02 045 0.20 0.70

4.3.1 P- and Q-measure Quantile Time Series

Figure 4.1 displays the time series of quantile estimates associated to 13 different
probabilities, 0.01, 0.05, 0.1, 0.2, ..., 0.8, 0.9, 0.95, and 0.99. The time-series are
clearly capturing the volatility-clustering effects commonly reported in the realized
variance literature. That is, high- and low-volatility periods appear to persist in
the quantile data as they do in volatility estimation literature (see, for example,
Andersen et al. (2003) and Corsi (2009)). More strikingly, however, are the apparent
quantile asymmetries that emerage in particularly volatile times. The financial crisis
period from 2008 to 2010 is displaying significant skewness in the left-tail of both P-

and Q-measure return quantiles. Not surprisingly, however, these extreme quantile
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estimates are each displaying significantly higher own-volatility that is likely to be
affected by a lack of power in the estimation step.

These qualitative observations are underscored in Table 4.3, which highlights
several interesting features. First, extreme Q-measure quantiles appear more pro-
nounced than their P-measure counterpart, a feature that can be interpreted as
evidence for a quantile risk premium (discussed further below). Moreover, these dif-
ferences appear clearly more pronounced in the left tail than in the right. Second,
the further one travels from the median, the more volatile each time series becomes,
with a drop in autocorrelation at the furthest extremes. Third, and perhaps not sur-

prisingly, each conditional distribution is showing pronounced signs of left-skewness.

Table 4.3: Summary statistics for the return quantile time series.

P-measure Q-measure P-Q

Mean Std Auto Mean Std Auto Mean Std Auto

0.01 -0.14 0.06 0.82 -0.18 0.07 0.74 0.04 0.05 0.19
0.05 -0.08 0.03 0.89 -0.10 0.04 0.88 0.02 0.02 0.59
0.10 -0.05 0.02 0.90 -0.07 0.03 0.90 0.02 0.02 0.67
0.20 -0.03 0.01 0.84 -0.04 0.02 0.89 0.01 0.01 0.63
0.30 -0.02 0.01 0.80 -0.02 0.01 0.77 0.01 0.01 0.37
0.40 0.00 0.01 0.81 -0.01 0.01 0.48 0.00 0.01 0.32

0.50 0.01 0.01 0.82 0.01 0.01 0.31 0.01 0.01 0.52
0.60 0.02 0.01 0.83 0.02 0.01 0.78 0.00 0.01 0.34
0.70 0.03 0.01 0.86 0.03 0.01 0.92 0.00 0.01 0.37
0.80 0.06 0.02 091 0.05 0.02 0.92 0.00 0.01 0.48
0.90 0.07  0.02 0.93 0.07  0.03 0.83 0.00 0.02 0.36
0.95 0.09 0.03 091 0.09 0.04 0.79 0.00 0.02 0.34
0.99 0.12 0.04 0.84 0.15 0.07 0.71 -0.02  0.06 0.41
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FIGURE 4.1: Weekly time-series of 30-day-ahead P and Q-measure return quan-
tiles, 1996-2013. The procedure in Section 4.2 is implemented to obtain quantiles

estimates of the 7 = 30-day-ahead return distributions, F, Em () and F, Sﬂ .(r), intro-

duced in Section 4.1. The quantiles displayed correspond to 13 probabilities of 0.01,
0.05, 0.1, 0.2, ..., 0.8, 0.9, 0.95, and 0.99.

4.3.2  Relation to the Risk Premium on a Binary Option

Differences in the quantiles of the P- and Q-measure distributions are related to risk

premia on certain binary options. That is, let 7% denote the a-quantile of Fﬂﬂt.

Then, by definition, one has

a=F,(r) = Pe(reeer <15) = Py(Spsr < Selr + 1))
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P

,, can also be obtained, yielding

The Q-measure quantile of the same r

t+7‘|t(r§) = Q4(reper < TE) = Qi(Sisr < St(T'E +1)),

The quantity on the right-hand side can be identified by the price of a binary option
with strike £ = Sy(r + 1), since EZ(1[Syr < Si(rf + 1)]) = Qu(Spsr < SelrE + 1)).
In the absence of such options, one can use the sieve procedure outlined above to
estimate Q; (S, < Si(rf + 1)) from a panel of plain vanilla European options.

In light of this, I adopt the term quantile risk premium to refer to the following

quantity,
QRPyp(a) = € "TPy(Spr < Si(rh + 1)) — e TQu(Siyr < Si(rh +1))  (4.3.1)

=e "a— G_TT@t(SH_T < St(rg + ].)) (432)

The situation is illustrated in Figure 4.2. For a = 20%, the quantile risk premium
QRP;i-;4(a) is plotted for hypothetical CDFs and corresponds to vertical differences
between the P- and Q-measure CDFs at the P-measure a-quantile.

The time series of various quantile risk premia are plotted in Figure 4.3. The time
series show that the Q-measure distribution consistently lies above the corresponding
P-measure distribution at the a = 1% P-measure quantile, providing evidence for a
tail risk premium. A similar sign on the tail risk premium is reserved at the 5%
and 10% quantiles. On the other hand, the risk premium at the o = 90%, 95%,
and 99% quantiles appears to have the opposite sign. Taken together, these results
suggest an asymmetric compensation for right- and left-tail risk that contrast with

the symmetric compensation for variance risk discussed in Chapter 2.
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FIGURE 4.2: Illustration of an o = 20% Quantile Risk Premium. The Q-measure
CDF (dash) and P-measure CDF (solid) are plotted alongside an o = 20% quantile

risk premium.

4.4 Future Directions: Return Forecastability

I obtain a simple decomposition of the equity risk premium in terms of the distri-

butions associated with the two expectation operators. Specifically, write (4.1.2)

as

ERP, ;= EJ[rpir] — 1l

o0 ©
TdFt[iﬂt(r) - f TdFt(%-T‘t(T)
—0 —o0
(4.4.1)
00
r|dFf ) = dFS ()]
—o0

Equation (4.4.1) makes explicit that any risk premium on returns, as measured
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FIGURE 4.3: Time series of quantile risk premia. The quantile risk premium in
(4.3.1) is plotted for the a-quantiles listed at the top of each panel.

by differences in objective and risk-neutral expectations, is driven by differences in
increments of the distribution functions. To make this intuition empirically imple-
mentable, one can interpret the right-hand side of (4.4.1) as a Riemann-Stieltjes

integral. That is, given a sequence of ordered partitions P, of the return domain,
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the integral in (4.4.1) can be interpreted as a limit,

[ rfarto - arg, o)

—0

= lim > 7“2‘+1[F£T\t(7“i+1) = Fronp(ri) = [F3y 1y (ricn) — Ft%ﬂt(ri)]]'
r,€Py,

A natural example of a partition P, is given by the return quantiles r; = thrlﬂ .(0:),

where 6; € [0,1]. Using this partition, one has

f T[dFtﬁT\t(r) - dFt(?-T\t(r)] = lim 2. 7”i+1[[€v:+1 — 0] = P (rien) — F;:(%-ﬂt(ri)]'

—© r,€Py,

(4.4.2)
Equation (4.4.2) motivates a simple regressor framework for forecasting the equity
risk-premium, obtained by regressing excess returns on differenced objective and

risk-neutral quantiles of the return distribution.
4.5 Conclusion

This chapter outlined methods for making direct comparisons of P- and Q-measure
return distributions by examining the time series of their conditional quantile esti-
mates. By relying on the method of sieves, I extracted a balanced time series of
Q-measure return quantiles using the methods outlined in Chapter 2. Correspond-
ing estimates of P-measure quantiles were obtained using the CAViaR methods of
Engle and Manganelli (2004). The findings showed evidence for the existence of pro-
nounced risk premia in the extremes of the respective return distributions, but with
asymmetric compensation for left- and right-tail risk. I further outlined a regression
framework that motivated the use of quantile risk premia for forecasting returns by
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decomposing the equity risk premium into its return quantile components.
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Appendix A

Definitions and Proofs for Chapter 2

A.1 Technical Results and Definitions

A.1.1 Sobolev Sieve Spaces

Establishing consistency and asymptotic normality of functionals requires a pre-
cise definition of the sieve approximation spaces. The final sieve spaces of interest
are collections of conditional densities that we obtain by first defining a space of
joint densities, and whose future payoff component can be integrated out to yield
marginals. As mentioned above, the space of joint densities is the Gallant-Nychka
class of densities first defined in Gallant and Nychka (1987). This class of densities

is reviewed here.
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The Gallant-Nychka Joint Density Spaces

Let u = (y,x) € R%, where d,, = 1+ d,, and define the following notation for higher

order derivatives,

D)\f(u) . 6)\1 aAQ Ce a)‘du

- /\1 )\2 )\du
ouytouy® ... Ouy’

f (),

with A = (A,..., \g,)’ consisting of nonnegative integer elements. The order of the

derivative is |A| = Zf;!)\il, and D°f = f.

Definition A.1.1. (Sobolev norms). For 1 < p < oo, define the Sobolev norm of f

with respect to the nonnegative weight function {(u) by
1/p
£lns = | 3 [P @)

[A|l<m

For p = o0 and f with continuous partial derivatives to order m, define

1 fllmco.c = max sup |D*f(w)[¢(u).

Alsm yerdu

If ((u) = 1, simply write || f||m,p and || f]|m.o. Associated with each of these norms

are the weighted Sobolev spaces

WS (R = (f € L(R™) : D\f € LP(R™)),

where 1 < p < 0.

The following definitions are precisely the same as the collections H and Hg in

Gallant and Nychka (1987).
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Definition A.1.2. (The Gallant-Nychka Joint Density Space FYX). Let m denote
the number of derivatives that characterize the degree of smoothness of the true
joint SPD. Then for some integer my > d, /2, some bound By, some small g5 > 0,
some g > d,/2, and some probability density function ho(u) with zero mean and
R0l mo+m.2.co < Bo, let F¥X consist of those probability density functions f(u) with

zero mean that have the form
F7 () = h(u)® + eho(u)
with || 2| mg+m.2.c, < Bo and € > gy, where
Go(u) = (1 +u'u)®,

Let
H={he W25 By, < Bo).
The collection F¥¥ is the parent space of densities from which the conditional
class of densities of interest are derived. Similarly, the sieve spaces that approxi-

mate the conditional parent space are obtained from joint density sieve spaces that

approximate F¥X.

Definition A.1.3. (The Gallant-Nychka Sieve Space F)o~). Let ¢(u) = exp(—u'u/2),
and let Pk (u) denote a Hermite polynomial of degree K. F%’X consists of those prob-

ability density functions with zero mean that are of the form

(W) = [Pr(u—7)p(u—7) + cho(u)

with || Pr(u — 7)d(u — 7)Y2[|ing1m2co < Bo and € > &,
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The Conditional Density Spaces

The state-price density of interest, fy, is a conditional density that resides in some
parent function space of conditional densities. The associated sieve spaces are sub-
spaces constructed to approximate this parent function space. The conditional den-
sity spaces of interest are obtained by simply dividing each member of F¥X by a

marginal in x, after having integrated out the first component in y.
Definition A.1.4. (The Sieve Spaces F and Fk). Define

FYIX {f c Wm,l(]Rdu) c flylx) = SJZC:;(% some f¥X e fY,X} and

Y, X

]:;;'X = fr e W R™) : frlylx) = —E - (. x) some fy* e FoX b,
SfK’ (y7X)dZE

This definition says that to each joint density in FY¥, one can associate its
corresponding conditional density. This association naturally gives rise to map A :
FYX — F with the following continuity property. Note that the densities in F are

related to the return distribution via the change of variables formula in Eq. (2.2.3).
A.1.2 Intermediate Results
Lemma A.1.5. Px(f1,Z) = Px(f2,Z) if and only if fi = fo almost everywhere.

Proof. 1f fi = f5 a.e., then by definition Px(f1,Z) = Px(f2,Z). Conversely, suppose
Px(f1,Z) = Px(f2,Z). Then differentiating the option price with respect to strike
twice yields

erra2PX(flvz) . erTaQPX(f%Z)

6/@2 K 5/‘12 K

= [i(klZ) = fa(x|Z).

145



Since this holds for every &, the result follows. O

Lemma A.1.6. The map A : F¥'X — F taking joint densities to their conditional
counterparts in F, i.e. AN(f¥*) = f, is |||lmooc — I[lm1 Lipschitz continuous, where
f s defined pointwise by

100 = AP0 =

and where ((u) = (1 +u'a)® and 6 € (d,/2, ).

Proof. Let fo(x) = {g fo ™ (y, x)dz and fx(x) = = f17 (y, x)dz denote the marginal
distributions of X of generic f;"* € F¥'X and f3;* € Fi™, and let go(x) = 1/fo(x)
and gx(x) = 1/fk(x) denote their reciprocals. In this notation, the conditional
densities become fo(y[x) = fo (v, %)go(x) and fx(y|x) = Fi~(y,x)gx(x). Let
X =R% and Y = R.
The goal of the proof is to show that || fx(y|x) — fo(y|x)|m1 is small whenever
Y, X

the corresponding joint distribution error || £ (¥, %) — fo ™ (¥, X)|lmo+m.co.c is small.

Note first that by definition,

1w~ folobls = X [ | 10l ~ D ffyboana

[Al<m

= 3 D i (ylx) = D folwl) o, (A1)

[Al<m

so we can focus on the || D> fr(y|x) — D*fo(y|x)|lo.1 terms on the RHS.
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1D fic(yl%) = D fo(ylx) o DMy} = DM folyl)} |drdx

Jx Jy
:;;Dﬁ&ww%®rimﬁm@memx
= [ [ 1At~ 0 9

+ DMgk (%) = 9030 foly, %)} | drdx
< [ | [P0 ~ oty ar03anax

+ L L ‘DA{[QK(X) - gO(X)]fO(y,X)}‘dxdx

= IDM{[fx(y, %) = foly, x)]9x (x)}]]o.1

+ 1M g () = 90()1fo(y. %)} lo.1- (A.1.2)

To bound the two terms on the RHS, we first need to establish bounds on the
marginals. Observe that since the marginal densities have one fewer component than

the joint densities, for || < m, define the multi-index a = (0, Ag, ..., Ag, ). Then
1D fre(x) = D fo(¥)[lo1 = J | D% fic (%) — D* fo(x)|dx

x

— J |D°‘J X (y, x)dz — DO‘J fo ™ (y, x)dx|dx
X Y Yy

~ | 1] DR wds - [ 02 dalix (A1)
X JY Yy

< J J | D 0% (y, x)de — D £ (y, x)|dedx
X JYy

I = A e | (L w) i

Ru
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where the last two inequalities are the triangle and Hoélder’s inequality, respectively.
The interchange between the integration and differentiation operator on the third
line is due to the dominated convergence theorem with dominating function derived

from the norm bound on functions in F¥¥ as follows. By assumption,
Y% =n® + eoho,

where [|Al[mg+m.2,¢ < Bo- Thus,

[Go(w)2h(w)| < max sup [D*Go(w) 2 h(u)|

[Al<m yerdu

= 1166 Pllmo
< Ms||h||mg+m.2.c, by Gallant and Nychka (1987) Lemma A.1(b)

< M2BO.

Therefore,
Co(w)h(u)? < (M2By)?

h(u)? < (MyBp)?(1 4+ u'u) ™% < (MyBy)?(1 + u'n) .
Similar reasoning establishes a bound on hg, so we have
% < const.(1 +u'u)™,

where the RHS is integrable. By dominated convergence, this establishes the va-

lidity of interchanging the differentiation and integration operator in Eq. (A.1.3).
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Therefore,

15 () = fo)lma = LID“{fK(X)}—Do‘{fo(X)}ldX

|| <m

= > ID*fi(x) = D* fo(x)]|o.1

lal<m

< const.|| fr — g’XHm,oo,gf (1 +u'u) ’du,
Reu

which implies that if || £ — fo o llmeoc — 0, then || fx(x) — fo(x)|lm1 — 0. Next,
observe that this type of convergence holds for the reciprocal marginals g = 1/f too,
due to the continuity of the operator f +— 1/f (since f has a lower density bound of
order gohg). Thus, ||gx(x) — go(X)||m.1 — 0 as well.

We are now ready to examine the two terms on the RHS of Eq. (A.1.2). Apply
Leibniz’ formula (see Adams and Fournier (2003)) to get

DM[gx (%) = go(x)]foly. x)} = > [A] D {gr(x) — go(x)} D? fo(y, %),

B 5

so that by the triangle inequality, Holder’s inequality, and the definitions of Sobolev
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norms,

1D [gx (%) = go ()] fo(y, %)} lloa <

] 1D~ {gx (%) = 9o(x)} D fo(y, %) lo

ot
<2
B<A

2] 1D~ {gx (%) = go(3) o1 1 D7 foy, %) llo.o

< const.||gx (%) — go(X)|[m, 1l fo(ys %) || m.c0

< const.||gr (%) — go(X)||lm.1- (A.1.4)

Similarly,

IDM{[ £ (y, %) = foly, x)]gx ()} o1 <

Z [2] HD’\*/B{fK(y’X) — fo(%x)}DﬁgK(X)”O,l

B<A

< [ ] 10> 24 Fic(9.) = Foly: 39} losell D9 () o

B<A

< const. || fx (Y, %) = fo(y, %) lm,eoll 5 (%) [[m,1

< const. || fx (Y, %) = fo(y, %) lm.co,co 95 (%) m1

< const. || fx (Y, %) = fo(y, X)lm.co.o |95 (%) = 90(%) + g0(X) [[m.1
< const. || fx (Y, %) — fo(y, X)|lm,co.co |95 (%) — g0 (%) [Im.1

+ const.|| fi (y, %) = fo(y, %) llm,0.60l190 (%) [ m,1- (A.1.5)

Plugging Egs. (A.1.4) and (A.1.5) into the RHS of Eq. (A.1.2), we see that

1D fx (y[x) — D* fo(y]x)[loq — 0 whenever || fx(y,x) — fo(y,%)|lm,c0c, — 0. By Eq.
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(A.1.1), this means that we have || fx (y|x)— fo(y|X)|/m1 — 0 whenever || D fx (y|x) —

D? fo(y|x)]lo.1 — 0, which is the statement of the lemma. O

This result formalizes an intuitive notion: when two joint densities in F¥X are
close, then so are the conditional densities in F. The Lemma provides the Sobolev
norms for which this intuition is correct. Furthermore, this property will be used
below to regulate the complexity of the space of option pricing functions that are
obtained by integrating the option payoff against a candidate from F. Note that the
map in Lemma A.1.6 is also surjective by definition.

The final sieve spaces on which the asymptotic theory is built are of the following

form.

Definition A.1.7. (Sieve Spaces). The sieve spaces of interest are denoted F =

A[cl(F¥X)] and Fi¥ = K[cl(FL™)], where cl(-) denotes the closure.

The following is a consequence of Lemma A.1.6.

Corollary A.1.8. There exists a continuous extension of A to a mapping A :

cl(FYY) — c(FYWY), where cl(-) denotes the closure.

Proof. Note that cl(FY1X) is a closed subset of a (complete) Sobolev space and
is therefore complete (p. 194 Royden and Fitzpatrick (2010)). In addition, Lemma
A.1.6 shows that A : F¥'X — FYIX i Lipschitz continuous and is therefore uniformly
continuous. Therefore, this map has a unique uniformly continuous extension A from
FYX to c(F¥X) (p. 196 Royden and Fitzpatrick (2010)). This extension sends

cl(FYXY into cl(FYX). O
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To establish the asymptotic properties of the sieve estimator, the following two

conditions are required.
Lemma A.1.9. The sieve spaces Fx satisfy the following conditions:

(i) Fi is compact in the topology generated by ||-||m.1 for all K = 0.

(11) OR_oFK is dense in F with the topology generated by ||-||m.1-

Proof. Continuity of the A map above means that the spaces F inherit the topolog-
ical properties of their preimages under A. Since Theorem 1 of Gallant and Nychka
(1987) says that cl(F¥X) is compact in ||-||pm.m.c, we have that cl(Fy™) are compact
as well. By continuity of A, this means that F is compact in ||-||,,.1, which shows
(i). Similarly, Theorem 2 of Gallant and Nychka (1987) shows that U%2_,Fr" is a
dense subset of cl(F¥X), so UL_,cl(Fy™) is as well. Next, note that the definition
of F says that A is surjective. Because the image of a dense set is again dense under
a continuous surjective map, we have that A(U%_ocl(F)r™)) = UL A(cl(F™)) =

U%_oFk is dense in F under ||-||;,,1, showing (ii). O
Finally, the densities are related to option prices via the following result.
Lemma A.1.10. Under Assumption 2.4.1, the option pricing functional Py (f,Z) is

(1) almost surely locally ||, ||*||m.1-Lipschitz continuous in f.

(11) locally ||-|l2, ||||m1-Lipschitz continuous in f.

Proof. (i) Let ¢ > 0 be given, and fix an fy; € F. Under Assumption 2.4.1, there
exists an ||-||,,1—open ball B;(fy) of radius d such that

sup |S(f,Z)|<M  P—a.s.
feBs(fo)
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Then choose = min{e, §}/(2M ), and consider any f € B, (fo). Using put-call parity,
1Py (f,2) = Py(fo, 2)] = [Cy(f,Z) = Soe ™ + ke ™" — Cy (fo, Z) + Soe ™" — re” 7|

= |Cy(f,Z) — Cy(fo, Z)|

oCy(g,Z
< suwp (F0By; gy,
9&(f,fo) f

= sup [Cy (g, Z)[||f = follm.
ge(f:fo)

< sup [Sr(g, Z)I|f = follma
ge(f,fo)

< M| f = follma  as.,

<eg/2

so that |Py(f,Z) — Py(fo,Z)| < e. The third line in the preceding display is due
to the functional mean value theorem, the fourth due to the linearity of Cy(f,Z) in
f, the fifth is a consequence of no arbitrage bounds on option prices, and the final
inequality is due to our assumption.

(ii) follows from (i), after observing that

sup [|Sr(f,Z)|l5 = sup E[Sr(f,Z)*W(Z)] <E[ sup Sr(f,Z)*W(Z)] < const.
feBs(fo) feBs(fo) feBs(fo)

by combining Assumption 2.4.1 and Assumption 2.4.2 (i). Choose n similar to (i)
above, but depending on const. Then perform the derivations under (i) above, re-

placing |-| with ||-||2 to obtain the desired result. O
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A.2  Appendix: Proofs

Proof of Lemma 2.1 Let o(B, 1) = (Z]K:TO BojH;(T), ..., Z]K:TO Br,;H;(T))". Then
fﬁzwﬂ@=f[iamaﬂmw1¢vwww
JZ a(B, )2 Hy,(y)*¢(y)dy = o(7) i a(B,7)?

= O'/(B’ T)/a(B7 T)QS(T)’

where the second and third equality follow from the orthonormality of the Hermite

polynomials. Then,

B[S B )] 6re)
S5y a(BrYalBne

fr(ylt) =

_ 2l (B, 1) Aa(B, T) Hi(y)d(y)
a(B, 1) a(B,T)

where the last equality and the definition of A follow by applying Proposition 1 of

Leon, Mencia, and Sentana (2009). The result follows.

Proof of Proposition 1 I follow the derivation of Leén and Sentana (2009), which

differs due to the conditioning on 7. The plug-in estimator of the population option
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price in equation (2.2.4), is given by

d(Z)
PY(fK, Z) — T J <I€ _ SGM(Z)+U(Z)Y) fK(Y|7‘)dY

ee}

d(Z) d(Z)
zme_”J Fe(Y|F)dY — Se=rr(@ f @Y f (V)Y (A2.1)

—00 —0

The integral in the first term becomes

—o0 —0 k=0

d(Z) d(Z)
| vy = | lz%Bﬂﬂk(Y)qs(Y)]dY

2K,

g j H(Y)o(Y)dY = (d ”’“ " e\ (d(2))6(d(2)),

(A.2.2)

where the last equality follows from integration properties of the Hermite functions.
The integral in the second term on the right-hand side (RHS) of equation (A.2.1)

can further be simplified by integrating by parts. Let

d(Z)
R@) = [ @ m()ov)ay.
For k =0,
d(Z) d(Z)—0o(Z)
@)= [ @ oiay =@ [ g = et - o)

155



by a change of variables. For k > 1

T3 (d(Z)) = fd(Z) @Y H (Y)(Y)dY

—0

. d(Z) o(Z) d(Z) .
l_\/_%e (2) Hkl(y)qs(y)]w + WLD TV Hy o (Y)g(Y)dY

_ _L€UZdZ @ *
- DAL Hy 1 (d(Z)p(d(Z)) + > I 1 (d(Z)).

Thus,
d(Z) d(Z) 2Ky
J DY f (Y ]r)dY = f @Y | S (B, 1) H(Y)6(Y) | dY
—Qo0 —Qo0 k’ 0

2K, 2K,

d(Z)
PRI | e ey - 2, (B, 7 ((Z)

20(B. 2)e" P L0(d(z) — o(2)) + zf% (2))
=1-e¢"@PP(d(z) — o(z)) + i Ye(B, ) (d(Z)) (A.2.3)

Plugging equations (A.2.2) and (A.2.3) into (A.2.1) obtains the desired result. The

proof for call options is analogous and is therefore omitted.

Proof of Proposition 2 Let L(f) = E{-i[P — Py(f,Z)]*W} = E{{(f,Y)},

where Y = (P,Z), and W = W(Z) is a strictly positive weighting function. ¢ is

concave in f, and L is strictly concave in f. The goal is to estimate the unknown
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P2(Z) = E[P|Z] by invoking the general sieve consistency theorem in Chen (2007)
(i.e. her Theorem 3.1). This requires verification of her Conditions 3.1 - 3.3’, 3.4,

and 3.5(i), which adapts to the present notation as follows:
Condition 3.1°.

(i) L(f) is continuous at fo € F, L(fy) > —o0.

(ii) for all € > 0, L(fo) > supser.a(s o)z} L(f)
Condition 3.2°.

(i) Fk € Fk1 € --- < F, forall K > 1.

(ii) For any f € F, there exists mx f € Fx such that d(f, 7xf) — 0 as K — c0.
Condition 3.3’.

(i) L,(f) is a measurable function of the data {Y;}?_; for all f € Fg

(ii) For any data {Y;}!,, L,(f) is upper semicontinuous on Fx under d(-,-).
Condition 3.4. The sieve spaces Fi are compact under d(-, -).
Condition 3.5.

(i) For all K = 1, supjez, |Ln(f) — L(f)| = 0.

I verify each of these conditions in turn.

157



Condition 3.1’: Assumption 2.4.2 (ii) implies L(fy) = 0 > —oo. Also,

L(fo) = L(f)

= “E([P ~ Be(fo. (D)} + E([P ~ Be(f, )W (Z)}
- %1{-«::{[132 = 2PPy(f.Z) + Py(f,2)" = P* + 2PPy(fo, Z) — Py (fo, 2)|W (2)}

= SEURAL.2) = Pefo 2)][=2P + Py(f, 2) + Py (1o, Z)]W/(2))

1

= —E{[Py(f,Z) — Py (fo, 2)][(P — Py (fo,Z)) 2(PY(JC, Z) — Py (fo,Z))|W(Z)}

_ %E{[Pyu, Z) — Py(fo, Z)]*W(Z)}

As d(fn, fo) — 0, the local Lipschitz continuity condition derived in Lemma A.1.10
implies that the RHS tends to zero, i.e. L(fo) — L(f) = |L(fo) — L(f)| — 0. This
establishes Condition 3.1°(i). As for Condition 3.1°(ii), note that continuity of L(f)
at fo implies that for any n > 0, there exists a ¢ > 0 such that for all f satisfying
d(f, fo) < e, we have |Py(f,Z) — Py(fo,Z)|]2 < n. The contrapositive of this
statement reads: Given any £ > 0, there exists n > 0 such that if d(f, fo) = €, then
|\ Py (f,Z) — Py(fo,Z)||]2 = n. Now let ¢ > 0 be given as in Condition 3.1°(ii), and

consider any f € {f € F : d(f, fo) = ¢}. By the previous derivations,

L) = () = 51 B (5. 2) = Pefo Z)IE > 57
SO
. o s Le
B 5t M) = e U0~ HON 2 07 > 0
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which establishes Condition 3.1°(ii).

Condition 3.2": Condition 3.2’(i) follows readily from the orthogonality of Hermite

polynomials. Condition 3.2°(ii) is shown in Lemma A.1.9 (ii).

Condition 3.3”: First note that Chen’s Theorem 3.1 still goes through if we only

require L,(f)’s upper semi-continuity to hold almost surely. To this end, observe
that Assumption 2.4.2 (i) implies that P; is almost surely finite, i.e. 3 a Borel set Qg
with P;(w) < oo for all w € Qp,! and Assumption 2.4.1 with no arbitrage imposed
implies Py (f,Z;) is locally bounded P — a.s. on F. Therefore P; — Py (f,Z;) is finite
on p.

Next, fix w € Qp. Given any sequence f; € Fx with ||f; — f|lm1 — 0,

() = Ta(D1 <, 3[R ) = (5 2]

[(Pi(w) = Py (f,Zi(w))) — %(Py(fj, Zi(w)) = Py (f, Zi(w)IW (Zi(w))

< const. - ST (1, 2u) — P, Zi) W ()
#IP) = PrUf 2P 2i(w)) ~ Py (L ZLDIW 2 )]}

< const.— Z{ sup |Py (g, Zi(w)PIf; = flia

zlge(])

+[(Pi(w) = Py (f, Zi(w))) eS(lflpf)le(% (DI = Fllma}

— 0

where the last inequality follows from the mean value theorem, and Assumption

! To see this, note by Markov’s inequality that P(|P;| > M) < Var(P;)/M?. Applying the
Borel-Cantelli Lemma then shows that P; is almost surely finite. See Billingsley (1995).
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2.4.1 implies that the suprema are bounded for sufficiently large j. Hence L, (f) is
almost surely continuous and therefore upper semi-continuous. On the other hand,
Lo(f) = 230 =3P — Py(f,Z;)]?°W(Z;) is continuous in Z; for each f € F and is

therefore measurable. Thus Condition 3.3'(i) is satisfied.

Condition 3.4: Compactness of the Fx is the result of Lemma A.1.9 (i).

Condition 3.5(i): Finally, we require the uniform convergence of the empirical crite-

rion Ly, (f) = £+ 37 —3[Pi— Py (f, Z)]*W; over sieves, i.e. YK = 1, sup ez, |Ln(f) —
L(f)| % 0 as n — oo. First, note that by Assumption 2.4.2 (i) and the law of large
numbers, L, (f) — L(f) = 0,(1) pointwise in f on Fk. Second, standard arguments

show

sup | L, (f)] < sup — _Z|P Py (f.2:)||W(Z,)]

feFk feFk

< DIPWZ)I + s Fy(o.7 <2|W )

9€F K

" 1/2 " 1/2
1 1
< <EZ;|E|2) (g Z;|W(Zi)|2> +gseul,)<|PY 9, Z < Z|W )

The first term is O,(1) by Assumption 2.4.2 (i). The second term is also O,(1) by
the following arguments. By Lemma A.1.9 (i), the Fx are compact. Next, cover
each point in Fx with balls of radius small enough to make the local boundedness
Assumption 2.4.1 hold. By compactness of Fg, there exists a finite subcover {U;}¥,
of Fx where for each set U; in the subcover, sup e, S(f,Z) < M; P — a.s. Then
M = max{M,..., My} is a bound on sup,.r,|Py(g,Z;)|, so the second term in

the above display is O,(1) under Assumption 2.4.2 (i). Hence, by the mean value

160



theorem, for fi, fo € Fg,

|Ln(f1) - Ln(f2)| < Op(l)Hfl - f2||m,1'

This Lipschitz condition, the compactness of Fg, and the pointwise convergence of
L,(f) to L(f) mean that the conditions for Corollary 2.2 in Newey (1991) are met,
so that supjey, |Ln(h) — L(h)| 5 0, as required. Since the conditions for Chen’s
Theorem 3.1 are met, we conclude that d(f,, fo) = 0p(1). Applying Lemma A.1.10

gives || Py (fu, Z) = Py (fo, Z)]l> 0, U

Proof of Proposition 3 Recall that the option prices Py(Z) are generated by

a conditional density, i.e. Py(Z) = Py(f,Z), where f € F is the target of a Lips-
chitz map with preimage f¥* = h? + goho. The function h € H lives in a Sobolev
ball of radius By. The complexity of the space of possible option prices P is then
firmly linked to the complexity of the Sobolev ball H. The proof strategy is therefore
to establish this link, and then to apply Theorem 3.2 in Chen (2007) once we have
a handle on the complexity of P.

Application of Theorem 3.2 in Chen (2007) requires verification of her Condi-
tions 3.6, 3.7, and 3.8, reproduced here for the current notation. It also requires
the computation of a certain bracketing entropy integral, which is undertaken below.
Condition 3.6 requires an i.i.d. sample, which we have already assumed in Assump-
tion 2.4.2. It remains to check Conditions 3.7 and 3.8 and to compute the bracketing

entropy integral.
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Condition 3.7. There exists C; > 0 such that Ve > 0 small,

sup  Var(((Py,Y;) — ((P2,Y;)) < Cie”.

PyeB(PY)

Condition 3.8. For all § > 0, there exists a constant s € (0,2) such that

sup  |((Py,Y;) — (P, Y;)| < 8°U(Y5),

PyEBg(Pg)
with E[U(Y;)7] < Cy for some v > 2.

First, note that ((Py, Y;) — (P}, Yi) = W(Z) [Py (Z:) — P2(Zi)l{e: + 5[Pr(Zs) -
PY%Z)]}. Then
E{[((Py,Y;) = ((Py, Y;)]*}
— E{W(Z[Py (Z) — PUZ)P e+ 5P (%) — P20
= B{W(Z:)*[P(Z;) — PAUZ)]*e2} + E{iW(Zi)Q[Py(Zi) - P(Z:)]"}
= E{W (2[R (Z:) — P2 Po(Z0)} + JEOW (20?1 P(20) - P(Z0)')
< const | Py — P2+ {BIW (22 [Py (Z,) — P(20)])
where the last inequality uses the bound from Assumption 2.4.3. The second term
on the RHS can be further bounded,
E(W (2" [Py(Z:) — PY(Z)])
< Cswpl P (2) - PUDPE(P(Z:) - PUZ)IW(Z,)}

ZeZ

= C||Py — Pyl Py — Pyl3
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The smoothness of Py and PY can be used to bound ||Py — P2||% as follows. First,

let

CIn(cl(R™)) = {f e C™(cl(R™)) : max sup |[DMf(w)| < L

AIST ueRdu

D>‘ o D/\
(e (G !
IA=J u; £useRdu lu; — uy|

denote a Holder space. Let m =5+ k, n =1, k =d, + 1. If the domain Z satisfies
some mild regularity conditions, the Sobolev Embedding Theorem (Theorem 4.12
Adams and Fournier (2003) Part II) implies that W™ (R%) < C%7(cl(R%)), where
j=m—k=m-—d,—12>=1 by Assumption 2.4.5. Thus Assumption 2.4.5 ensures
that W™!(R%) can be embedded in a Holder space consisting of functions that
are at least once continuously differentiable and therefore Lipschitz. Now, since the

smoothness of

Py (Z) = e_TTJ [ — SoelDHo@Y | £(V|X)dY

—0

depends on that of f (apply Leibniz’ formula), which is continuously differentiable,
then by Lemma 2 in Chen and Shen (1998), one has || Py — P2 || < || Py — P2 ||+,

Therefore

E{W(Z,)’[Pr(Z:) - PR(Z)]'} < C|| Py — PPl ),

and one has

C
E{[((Py,Y)) — (P, YD} < const.| Py — PR3 + —|[Py — Py,

This implies that Condition 3.7 is satisfied for all ¢ < 1.
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To show Condition 3.8, note that

F Pz - Rz

[Py, Yi) = Py, Yi)l = [Py (Z:) — Py(Z)][ei + 5

< const.|| Py — Pyllooflei] + 5 HPQHoo prHoo}-

The terms involving || P2|| and || Pyl are bounded as a consequence of the local
boundedness of the stock price in Assumption 2.4.1 as well as the compactness of the
sieve space (Lemma A.1.9).? Thus Lemma 2 in Chen and Shen (1998) and another

appeal to the Sobolev Embedding Theorem imply that
|6(Py, Yi) = (P, )| < const.|| Py — Py[|U(Y)

< const.U(Y;)|| Py p19”2/(2+dz

for U(Y;) = |e;| + const. Thus s = 2/(2 + d,) is the required modulus of continuity,
and v = 2 by Assumption 2.4.2. This establishes Condition 3.8.

An appeal to Chen (2007)’s Theorem 3.2 requires the computation of §,, satisfying

1 )
5, = inf {5 c0.1): s [ /Hyw.g. ||-||2>dw} ,

for the bracketing entropy Hj(w, Gy, ||-||2), where

Gn = {l(Py,Y;) = U(P),Y;) : ||[Py — PY|l2 <6, Py € Pk}

2 See also the argument in the proof of Proposition 2.
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Consider the following chain of inequalities

(R, Y:) ~ (P Y| = ([Re(Z) — PYZDIles + 5 [P(Z:) — Pr(20)]

< Mi||f = follmaU(Y)
< MgU(Y})HfY’X — SCXHm,oo,Co by Lemma A.1.6
= MuU(Y)|(RY)? = (hy ™) lmeoc, by Def. A.1.2

< MaU(Y)) |5 — hé/’XHmﬁm,zgo (A.2.4)

To see the last inequality, observe that

72 = (Pl < IR 4+ 3yl = BN

m,00,(,
< OIS (Y 4 by ™Yo Call G (BYX = By ™) | msoo
< C13||hY7X + héf7X||MO+m72,COO4”hYVX - h§7X|lmo+m727Co

< C5(2B0) Cal|B = 1y ™ ||mgm,2.6o-

for some constants M; and C;, and where the first inequality follows from Gallant
and Nychka (1987) Lemma A.3, the second from Gallant and Nychka (1987) Lemma
A.1(d), the third from Gallant and Nychka (1987) Lemma A.1(b), and the fourth by
the definition of H,, as a bounded Sobolev ball.

Theorem 2.7.11 in Van Der Vaart and Wellner (1996) implies that the bracketing

number for G,, can be bounded

w
N1 G ) < N (e Ho iz )

where the RHS is by the covering number of a Sobolev ball with dimension K, =
[Ky(n) + 1][Ky1(n) + 1] ... [Ky4,(n) + 1]. By Lemma 2.5 in Van De Geer (2000),
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we can further bound the RHS, giving

w

w 8BoC M3\ ™"
N, G 1) < N (555 Ho wemaa ) < (14 5220

Therefore,

1 on 1 On 8B,C' M3
H . < K, 1 14—
737 | V000G ﬁéJ\/ o 1+ SR

1
S T o Kn ns
C\/ﬁ(sg‘/ )

)

which is less than or equal to a constant for the choice 9,, = 4/ K, /n. Put K,(n)

Ko1(n) == K4, (n) = nt/Gmotmitds) g4 that K, = ndu/(2motm)+dy) vielding

K —(mg+m)
5, = VB _dupeemermyvdl, -2 _ et

On the other hand, this choice of K, combined with Assumption 2.4.4 yields the

approximation error rate

I[Py (Z:) = PR(Zo)ll2 < const B = 1§ g mago = OUK;®) = O (n¥wmasnbea )

n

where the inequality follows from the ones in Eq. (A.2.4). Applying Chen (2007)’s

Theorem 3.2 yields the stated result. O

Proof of Proposition 4 I verify Assumptions 3.1 - 3.4 of Chen et al. (2013) (CLS).

or(Py)
aPy

Linearity of v — [v] is satisfied for the linear functional I' in Eq. (2.5.1), since

%[avl + bvy] = (w(Z)[avy + bug)dZy = a\w(Z)vi(Z)dZy + b w(Z)vo(Z)dZ, =
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a%%o)[vl] + bagg}e) [v2]. CLS Assumption 3.1(ii) is also trivially satisfied, since I" is

a linear functional. By Assumption 2.5.1 (iii) and the rate in Proposition 3, we also
have |[vF — v*|| x ||PY" — P|| = o(n~"/?). Thus CLS Assumption 3.1 is satsified.
CLS Assumption 3.2 is directly assumed under our Assumption 2.5.1 (iv).
CLS Assumption 3.3(i) follows from the linearity of ¢'(P2, =)[av; + bvy] = [P —
PUZ)IW (Z)(av1(Z) + bug(Z)) = al' (P2, Z)[v1] + bl'(PY,Z)[vs]. To show CLS As-

sumption 3.3(ii), we invoke Lemma 4.2 of Chen (2007). Take

s |[PU2) - Pz Y

RI_(I GKn ’ < M.
1Py —PQ [l2<6} op

by Assumption 2.5.1 (ii). Lemma B.2.1 implies that the entropy integral of Chen
(2007) (4.2.2) is satisfied. CLS Assumption 3.3(ii) therefore follows after invoking
Lemma 4.2 of Chen (2007). Next, note that CLS Assumption 3.3.(iii) follows by
definition of the least squares objective function (see e.g. Shen (1997) Example 1).

Finally, define the empirical process u{g(2)} = £ 37" | g(Z;) — Eg(E;), and let
uk = v¥/||vE]|sq. Then

o) - LS LB
Vil (B, 2)[u /vawwwsnm

= (Gl S, Bl G )

Bl

Ing
~
2
m
=

S——

= (G’KHR;(iZKn R;(,llGKn) R (

S
-

Q)
Q

5 N(0,1)
by continuous mapping theorem and a standard central limit theorem for i.i.d.
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samples. CLS Assumption 3.4 then follows.

Chen et al. (2013) Theorem 3.1 then implies

I(Py) - T(PY)

d
— N(0,1).
[0 ]]sa

Vn

«q With its estimate

Next, we want to replace ||v¥||

o 1 & ~
=V — > (Py,Z)[07] ). A.25
’ ”sdn ar (\/ﬁ; ( Y )[Un]> ( )
First note that Corollary B.2.2 implies that

HN

1] = Op(en),

by application of CLS Lemma 5.1. Then following the proof of CLS Theorem 5.1

with modifications to the weight functions, consider

n
A*
Z PYN—‘Z

%\

;{ (Py,Z)(07] — B¢ (P, Z)[0:1) - £/(PY, Z)[0:] + EL(PR, 2 (9711

%\

7 Bl (P 2020~ BIC( 2030 - B (25 By~ PR

%\

N/ji{E (P, =)[0%, Py Poﬂ}

v 2 (P, E)[03]
=L+ 1+ I3+ I,
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Corollary B.2.2 (iii) and (iv) implies that I; = o0,(]|0%]|) and I, = O,(v/ne*e, ||0%])),

which makes

op(15311) + Op(VnerenllOr )
+—= Z{< — Py) + v, Py — )}
1 n
- g/ PO Ez ok gl PO :1 %

+ \/ﬁ; ( Yo U U \FZ Y> )[ ]

By arguments similar to the proof of CLS Theorem 5.1, we have
VAo B~ P = il o= 3 ZE' (PLE)[v3] + 0p(1)
and
Vn(@s —or, Py = Pl < v/l — vill| Py = P2l = Op(vnllvhllexen)
and
Ifxlf’ (Py, E)[0; —onll < 107 — vyl sup Ifxlf’ (Py, E)[v]l = Op(llvnller).

Since y/neke, = o(1), we combine these results to obtain

1103 lsan

el = — Jjo3 14 Var (R)

= ||U*||sd1VCLT ( ZEI P)ng:z + Op(1)>

= Jonllea lonllsa = 1.
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Therefore

ViL(Py) =T(Py)] _ va[L(Py) =T [villsan o N(0,1)

105 | . 105 | 1051l sa.m
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Appendix B

Implementation Details, Riesz Representors, and

Technical Lemmas

B.1 Implementation Details

B.1.1 Gradients and Hessian

The objective function to be minimized is

3I*—‘

[ — Px( ﬂ,zl] W, =

3I+—‘
l\:JIn—l

zn] zn] UB,Y)). (B.1.1)

The gradient and Hessian of the objective function are

/\

5 i [ — Py(B,2 )} z—apxa(g’zi) (B.1.2)

:I>—‘

i
e

3I>—‘
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1 " asz(B,Zi) aPX(B;Zi) aPX(B\7Zi)l

(B.1.3)
The pricing function Px(f,z;) is found in Proposition 1,
2Kz(n)
Px(P,2i) = ke " [ (d(Zz))¢(d(Zi))]
2K, (n)
_ emrirente) [eff(z”/?cb(d(zi) —ol@) + Y wlB L (d(zm]
(B.1.4)

where ®(+) is the standard normal CDF, K,, = (K,(n), K;(n)), and where

I (d(z) = "%‘) I () = e ) old(a), for k> 1

® o(zi)?
[§(d(z:)) = "™ 2@(d(2;) — 0(2:)),
and v,(8,7;), B = vec(B) is the coefficient function

N a(B, 7) Ara(B, T)
(5, 7) a(B,7)a(B, ) ’

Ay, is the known matrix of constants in Leon, Mencia, Sentana (2009) Prop. 1, and

33755 Boj H;(7)
a(B,T) = : =B-H
320 Breai Hy(7)
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for

200 201 e gOKT HO (7_)
B— '10 . 1K, C H= :
' H
Bro Bror - Brux. w0 (7)

The only place where § shows up in Px(f3,z) is through each of the v (5,7), k =

1,...,K,. Hence to find first and second derivatives of Px(-,z) we must find them
for (-, 7).
Note that

(B, 7) = [H'B'B'H] 'H'B' A, BH.

I suppress the k£ subscript on A in subsequent derivations. Using the matrix differ-

ential conventions in Fackler (2005), it can be shown that

ove(B, T) _ ovec{ (B, 1)} 0w(B,T)
oB  dvee{B} 0B

— [H'B'BH| ™" { (H' @ H'B'A) + (HB'A ® H')T(KM,(KTH)}

. [H’B’BH]*Q[H’B’ABH]{(H’ @ H'B') + (H'B'® H) T, 1)k 1) }
(B.1.5)

where T, , is an mn x mn permutation matrix satisfying for any matrix C,xn,

vec{C'} = T,,, nvec{C}. Then,

aPX(B7Zi) _ —TiT; . Sk 1 aﬁ)/k(ﬁ77—) . .
= [(I)(d(zz)) — ;;1 \/—ETHk—I(d(Zz))Qb(d(ZZ))]
2K (n)
— Semmimituz) [e”(zi)2/2q>(d(zz') —o(z)) + ), %gﬁff?(d(zi))] :

173



To obtain the Hessian, decompose the expression in Eq. (B.1.5) into its four

terms,
fi(B) =[H'B'BH] *(H' ® H'B'A)
fo(B) = [H'B'BH] "(H'B'A'® H')T (s, + 1)k, +1)
f2(B) = [H'B'BH|*[H'B'ABH|(H' ® H'B')
Ju(B) = [H'B'BH]*[H'BABH)(H'B' © H'Tc, 1,06+
To avoid clutter, let uy(B) = [H'B'BH| !, v1(B) = (H' ® H'B'A). Then
W (B) = —[H’H’BH]*Q{ (H @ H'B') + (H'B'® H’)T(Kx+1)7(KT+1)}
W(B) - H'® (H® A)
S0
1(B) = vi(B) uy(B) + s 11)(c +1) @ ua (B)]v1 (B).
Next, for vo(B) = (H'B'A' @ H')T(k, +1),(x, +1)»
vy(B) = H' @ Tk, 1) 1, +1)(A® H),
S0

fo(B) = va(B)' W\ (B) + [I(x, 1 1), +1) @ w1 (B)]vy(B).

Next, note that f3(B) and f4(B) are products of three functions of B, so I make use

of the product rule for ¢ = 3, 4:

[i(B) = Du(B)mxpv(B)pxqw(B)gxn = [w(B)v(B)' ® Inn]u'(B)

+ (L @ w(B){ (w(B) ® L,)'(B) + (I, ® v(B)w/(B))}.
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In this setup, m = p = ¢ = 1 and n = (K, + 1)(K, + 1), the number of free

coefficients. To obtain f3(B), set
w(B) = [H'B'BH|?, v(B)= H'B'ABH, w(B)=H ®H'B'.
Then
W'(B) = —2[H’B'BH]—3{ (H'@H'B') + (H'B'® H’)T(Kﬁl),(mm}
V(B) = (H'@ H'B'A) + (H'B'A' @ H')T (1, +1), (5, +1)
w'(B) = H'® (H ® Ik, +1)-
The expression for f;(B) is obtained similarly by using the same u(B) and v(B) as
above but by changing w(B) to
w(B) = (H'B'® H') Tt +1),(56,41)
w'(B) = H' @ T, 1) (x,+1) Uk, 11 @ H).

Combining these gives

02 i / / / 4
% = fi(B) + f3(B) + f5(B) + fi(B).

Then,

Z(: f}/k ﬁ Tz)

°Px(B.2:) _ e i [ NARFIET Hkl(d(zi))¢(d(zi))]

opop’

2K, (n

— ST | R — o) + Y, T g »)] |
e [e zZ o(z ,; opop zZ
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B.2 Technical Definitions and Results

B.2.1 Riesz Representors

The aim is to connect the sieve asymptotic theory with simple non-linear least squares
implementations. It is therefore helpful to adopt the notation Pi"(Z) = Px(B,,Z)
and ((PE", Z) = {(B,,Z) for the purposes of this section. Then following Chen et al.

(2013), one can define the inner product
(Px — P}, P} — Py) = —E{r(P},Y)[Px — P}, Px — PR},

where

ol' (P +n(Py — P%),Y)[Px — P%]
on

T(P;)OY)[P}(_PQOP)Q(_P)O(]E

n=0

can be interpreted as a second-order Gateaux derivative in the directions Py — PY

and P% — PY. The associated norm is given by
1Px — P|I* = —E{r(P%,Y)[Px — Pk, Px — Px]}.

Heuristically, this norm measures deviations of the objective function from its linear
approximation and will have a Hessian interpretation later on.

In light of the consistency and rate results in Propositions 2 and 3, one can confine
the analysis to the local setting of Chen et al. (2013). That is, the convergence rate

€, in Proposition 3 implies that ISX € B,, with probability approaching one, where

B, =Byn Pk, where By={Pxe€ Pk, :||Px — Pyl|l2 <enloglogn}.
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Let V = clsp(By) — {PY} and V, = clsp(B,) — {PY"}, where clsp(-) denotes the
closed linear span and where P)Ogn = 7, PY denotes the orthogonal projection of PY
onto the sieve space Pk,,.

V, is a finite-dimensional Hilbert space, which implies that the functional I'(Px)
in Eq. (2.5.1) has a Riesz representer v} € V, such that the Gateaux derivative in

the direction v € V,, can be expressed as an inner product

or(PY) _5F(P)O(+m}) .
5PX [U] - an o - <Un7 U>
and
or(ry) 2 OL(PR) 1 1121112
= — |lp*||2 = . B.2.1
S il = Il = sup Sl (B.2.1)

To get a step closer to familiar expressions from non-linear least squares asymp-
totic theory, one linearizes the option pricing function Px. Since any v € V), has the

form v = P§" — P)Og”, one has by mean value theorem v = %ﬁ?’z)(ﬁn — Bow) for B

between 3, and the coefficients of the projection Py". Thus v = aPXa(E’Z) (B — Bon)

for some 3* that depends on the functional T'(Py").
Now, for each v, = (8, — Bo.n), define the associated

o _ OUa(PX)'0Px(3,Z)
K = 0Py o

*(B,Y

s RK,L =K ——(57 ) .
opap!

In this notation, the problem in Eq. (B.2.1) translates to finding the solution

! !
’yn = arg sup . R
Yn€REN ~,, #£0 YUK, Tn
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which, following derivations similar to Chen et al. (2013), is given by

Therefore,
* = - * — n = - * = —R G s
Un aﬁ (Bn 50, ) 66 Tn 5\6 K, Kn
which by definition implies the norm
Finally, the score process
0(Py, Y)lvr] = [P = PY(Z)|W(Zi)v};
oPx(B,Z;)
— 7, - Phzyw(z) P2
op
aPX (B? Zz)
= e, W(Z, )X 2w
67,W( 1) aﬁ ’yn

is required, with so-called standard deviation norm

w2, = Var (¢(Py, Vo) lvz))

_ g [egw(zi)gapx(ﬁ, Z;) 0Px 5, Zi)'] :

= G, Ry Yk, Ry Gk, (B.2.2)

This object can be estimated by replacing the Riesz representer v;; with an esti-
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mate v);. Define

- 020(B,,Y o 1B, Y) U, Y)
B = 2 6665’ B = E; 0B 0B
A OPx(B,,Z) . OPx(B,Z) A ;4
- 7)) g7 P o D XVH A .
GKn JZI w( ) 56 d 1 (%5 56 RKHGKn
Then
192112, = G, Ri Sk, R G, = Vi, (B.2.3)

corresponds to the usual variance estimator using the familiar parametric Delta

method.
B.2.2 Technical Lemmas

Lemma B.2.1. For small 06 > 0, the subset of option pricing functions G(0) =

{P%, P% € P:||Px — P%ll2 < &} is P-Donsker.
Proof. By Lemma A.1.10,
1Py — Pklla < Myl fi = fallm.1
< Mo|| f5% — 57 lmeoce by Lemma A.1.6
= My||(h5%)? — (hg ") lmwgs by Def. A.1.2
< M3 ||h5% = 1y g mi2.co (B.2.4)

< 2Ms1,. (B.2.5)

Therefore F(6) = {f € F : Px(f,Z) € P(0)} is a bounded subset of the weighted

Sobolev space Wmotm:2 (Rde), Therefore we can think of P(§) as being Lipschitz

179



in an index parameter that is a bounded subset of VWmoTm260 (Rew),
Theorem 2.7.11 in Van Der Vaart and Wellner (1996) then implies that the brack-

eting number for G(0) can be bounded, i.e.

w w
N 5 -) < N XZ <N X.Z ||
10900 11 < 8 (e W iz ) < N (g #% H).

where the second inequality follows from Gallant and Nychka (1987) Lemma A.1(c).

Therefore,

H[](wag(6)7 HHQ) < Cwadu/m

by Corollary 4 of Nickl and Potscher (2007). Because m > d,/2 by assumption on

the Gallant-Nychka spaces, we have that
R
| w60, v <o

which is a sufficient condition for G(J) to be P-Donsker (see Van Der Vaart and

Wellner (1996) p. 129). O

Corollary B.2.2. For W, ={veV, : ||v|| =1}, €& = o(1), and \/nee, = o(1), the

following conditions are satisfied:

(7’) SuPPxEanl,UQEWn ILL'VL{T(PX7 Y) [Ul? ,UQ]} = Op(e;kl)
.. ¢ 9( . "
(i1) SUD pyer, vew, | Tom 2 [v] — T2 [v]] = O(e2)
(i) SUDpycs,vew, = 2?=1[e'<PX, Yi)[v] - €(PY,Y:)[v] — E{¢'(Px, n)[v]}] = o(1)

(0) D pyess e, B{(Px, YO [l = £ (P, Y)lo] =r(PY, Yi)[v, Px — PR} = O(eten)
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(1) Subyen, | S, (PYYDT]] = Oy(1).
Proof. (ii) holds trivially for the weighted integral functionals in Eq. (2.5.1). Direct
calculation of Gateaux derivatives shows ¢'(Px,Y;)[v1] = [P — Px(Z)|W(Z)v,(Z)
and r(Px,Y)[v1, v2] = v1(Z)va(Z)W(Z), where v;(Z) = [P4(Z) — Py"(Z)] for some
P} € PE» which only involve objects from the Donsker class in Lemma B.2.1. The

remaining results hold by stochastic equicontinuity and/or application of ULLN and

UCLT. —

B.3 Further Simulations and Examples

B.3.1 Simulation Parameters

Section 2.6 in the main paper simulates a double-jump process whose parameter val-
ues correspond to those from Andersen et al. (2012). For completeness, the parameter
values used in my simulations are given in Table B.1.

The headers of the table reflect the fact that the first three columns represent
models that can be viewed as special cases of the stochastic volatility price-jump and

volatility-jump model shown in the fourth column.
B.3.2  Bayesian Information Criterion Selection

I examine how the BIC selection relates to the familiar parametric data generating
processes in Eq. (2.6.1). To this end, I simulated a dense panel of option prices for
eight different maturities from the continuous time process in Eq. (2.6.1) for each
of the parameter specifications in Table B.1. Then, I drew a random sample of 250
options to mimic features of the option prices of a given trading day (in this case

January 5, 2005). Finally I performed the NLLS optimization in Eq. (2.2.13) for
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Table B.1: Parameter values used in the simulation exercises in Section 2.3.

Black-Scholes Heston SVJ  SVJJ

Vy 0.014 0.014 0.014 0.014
K 4.032  4.032 4.032
v 0.014 0.014 0.014
p -0.460 -0.460 -0.460
v 0.200  0.200  0.200
A 1.008  1.008
[ -0.050 -0.050
oy 0.075  0.075
Ly 0.100
0 -0.500

K, ranging from 1 to 9, and K, ranging from 0 to 2. The largest model involved
(9+1)(24+1) = 30 parameters.

Table B.2 records the squared coefficient values and the BIC expansion choices
for each of the Black-Scholes, Heston, SVJ, and SVJJ models. Recall that the sieve
coefficients are normalized to make their squares sum to one. Thus the squared
coefficients represent the share of weight, or loading, onto individual expansion terms.
Blank rows in the table reflect the fact that the BIC did not use expansions in x of
that order. Similarly, blank columns illustrate that the minimized BIC did not select
expansions in the 7 dimension of that order. Thus, the fact that the BIC correctly
chose 0 expansion terms in x and 0 in 7 means that the BIC correctly chose the
Black-Scholes model when faced with a Black-Scholes DGP. The next panel of Table
B.2 then shows that as stochastic volatility is added to the DGP, more expansion
terms (K, = 3 and K, = 1) are required to fit the newly generated option surface.

This trend continues in the last two panels of Table B.2: the more complexity is
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added to the DGP, the more expansion terms are required to provide adequate fit.

Table B.2: BIC Selection Given Affine Jump-Diffusion DGP.

Black-Scholes Heston SVJ SVJJ

K, \K, 1 r! 72 0 s 2 0 s g2 I L
0 1.0 0.8 0.2 04 01 05 00 08 0.0
1 0.0 0.0 0.0 00 00 00 0.0 0.0
2 0.0 0.0 0.0 00 00 00 0.0 0.0
3 0.0 0.0 0.0 00 00 00 0.0 0.0
4 0.0 00 00 00 0.0 0.0
5 0.0 00 00 00 00 0.0
6 0.0 00 00 00 0.0 0.0
7 0.0 0.0 0.0
8
9

B.3.3  30-day Measures

The fit of the sieve option pricer extends beyond observed maturities. Because the
estimation problem in Eq. (2.2.13) uses the entire option panel in a single step (i.e.
options of all available maturities), and because the sieve expansion of the state-price
density in (2.3.1) is bivariate in the return-maturity space, it is possible to simply
evaluate }/5)[({" (k,T,S0,7,q) at arbitrary maturities 7 = 7*.

The ability to evaluate ﬁf((”(/ﬁ, 7, 50,7, q) at arbitrary maturities has applications
in the construction of time series of balanced option panels and term structures.
For instance, in the application to the variance risk premium in the next section, I
consider the expectation hypothesis regression, which requires weekly observations
on the VIX(r) for, say, 7 = 30 days to maturity. However, exchange traded options

like the S&P 500 Index Options traded on the Chicago Board Options Exchange
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(CBOE) have a fixed maturity date on the third Friday of each month. Hence, from
week to week, the observed options’ time-to-maturity shortens by one week, which
complicates the construction of a balanced time series. Moreover, as short-maturity
options expire, new long maturity options are added, causing a type of “cycling”
in the time series of observed maturities. Such deterministic cycling can induce
non-stationarities in the constructed option-implied time series [see Pan (2002)].
To address this issue, the CBOE’s VIX is computed by interpolating two VIX’s
that straddle the 30-day maturity. However, if the VIX is designed to approximate
the forward-looking risk-neutral expectation of realized variance, E;Q [RViiir], it is
unclear how such an interpolation maps to the true VIX(30) if 30-day time-to-
maturity options were actually observed.

Figure B.1 shows the result of evaluating the estimated sieve pricer on a maturity
that was not available for estimation — in this case 30 days — and comparing it with
true values that are known inside the simulation. That is, I simulated a dense set
of put option prices (i.e. 600 per maturity times 9 maturities, totalling 5,400 true
option prices) from the Heston submodel of Eq. (2.6.1) with days-to-maturity 17, 30,
45, 73, 164, 255, 346, 528, and 710. I then drew a random sample of 250 observations
from this dense set of true prices but omitted the options maturing at 30 days. I
then perturbed this sample with random errors to generate microstructure noise as
calibrated from actual data. The sieve estimator was then estimated on the 250 noisy
options.

In this setup, even though the sieve estimator was not permitted to “see” the

information contained in the 30-day maturity options, it was nonetheless able to
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F1GURE B.1: Projecting the Sieve onto Arbitrary Maturities. A dense set of true op-
tion prices is simulated from the Heston submodel Eq. (2.6.1) with days-to-maturity
17, 30, 45, 73, 164, 255, 346, 528, 710. A subset of 250 option prices is drawn from
this dense set, but omitting the 30-day maturity, and is perturbed with zero-mean
measurement error. The sieve least squares problem in Eq. (2.2.13) is solved with
BIC-selected K, = 3 and K, = 1. Egs. (2.3.2), (2.6.2), and (2.3.1) are then eval-

uated at the estimated coefficient matrix B for 7 = 17, 30, and 45. The 30-day
horizon (circles) is out-of-sample, since the estimation omitted data at the 30-day
horizon.

accurately predict what those option values were, given information on options at
other maturities. This is seen by comparing the circles (corresponding to the sieve)
with the solid line (true prices) in the left panel of Figure B.1. Moreover, the sieve
estimator does remarkably well in estimating the 30-day risk-neutral CDF (center
panel) and the 30-day risk-neutral PDF. It is useful to emphasize that all quantities

in the figure are available in closed-form via Egs. (2.3.2), (2.6.2), and (2.3.1).

B.4 The P-Measure: Estimating EF[TV;(7)]

The variance risk premium requires the forecast of continuous variation, that is,
EF[TV:(7)], which I obtain as follows. The data used for estimating Ef [TV;(7)] are
last-tick-sampled 5-minute S&P 500 futures prices from the TAQ database. The 5-

minute sampling frequency is chosen to mitigate the well-known effects arising from
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market microstructure noise in ultra high-frequency realizations of the continuous-
time process in Eq. (2.7.1).

The advantage of using high-frequency observations for estimating quadratic vari-
ation and its components has been well-established in the last decade [see, for ex-
ample, Andersen et al. (2003)]. Reliable model-free estimators for the continuous
variation in Eq. (2.7.3) have since been developed, including the bipower varia-
tion estimator of Barndorff-Nielsen and Shephard (2004), the threshold estimator
by Mancini (2009), and the threshold multipower variation estimator by Corsi et al.
(2010). For brevity I present results only for Mancini’s estimator, although con-
clusions are not materially affected by the particular choice of continuous variation

estimator. In particular, Mancini (2009) shows that

[7/An]
TV(r) = Z IAX L xp2<0y  — TVA(T), (B.4.1)

=1

where n is the number of 5-minute observations from ¢ to t + 7, A,, is the 5-minute
sampling interval, A; X = log(Fja, ) —log(F(;-1)a, ), and v, is a thresholding sequence
that can depend on a local estimate of o,_ [see Jacod and Protter (2012) p. 248].
To compute Ef[TV,(7)], however, only time-t information may be used. Hence, a
forecast of T'V,(7) is required. Let T'V; denote the intraday continuous variation for
one trading day. It is well-known that the realized volatility measures are persistent
and exhibit long-memory properties. In particular, Andersen et al. (2003) show that
the realized volatilities are well-described as integrated order d processes, i.e. I(d)
1

for d € (0,3). Thus, to obtain forecasts of TV, it is reasonable to parsimoniously
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model T'V; as a fractionally differenced ARMA process, ARFIMA(p, d, q). That is,

(1= L)*o(L)(ys — 1) = 0(L)es (B.4.2)

where y; = log(T v, %), ¢(L) and (L) are the standard AR and MA lag polynomials,
and (1— L)% is the fractional differencing filter. A plot of autocorrelations (not shown
for brevity) of TV; and (1 — L)?TV; reveals that setting d = 0.401 as in Andersen
et al. (2003) suffices to isolate the low-frequency movements in the 7'V, time series,
which is a key requirement for obtaining long-run forecasts. To obtain forecasts of
TV,(7), one forecasts y; ., for h = 1,... 7 days out using Eq. (B.4.2) and then
inverts for TV;(h). Then T'V,(7) is taken as the annualized sum of one day forecasts

between t and t + 7.1

1 An analogous forecast using an HAR(1, 5,22) process developed in Corsi (2009) was also con-
sidered and yields similar results.
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Appendix C

Proofs for Inference on Option Pricing Models

under Partial Identification

We prove the main theorems in Appendix C.1 based on some technical lemmas which
in turn are proved in Appendix C.2. Throughout the proof, we use K to denote a

generic constant which may change from line to line.

C.1 Proofs of main theorems

C.1.1  Proof of Theorem 3.1.1

The proof requires the following technical lemma, the proof of which is in Appendix

C.2.

Lemma C.1.1. Suppose Assumption A holds for some k = 2. Let w € (0,1/2) and

q€|1,k/2]. Then we can decompose ‘A/n,t — Vi = Cui + Gy such that G,y and (), , are
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Fi-measurable and

E[(ns|? < K(A}L—Q(l—%) + A:Z_Q/k_q“/?—w) n Agc—Qq)(m_w)

+ALDAak)), (C.1.1)
E[¢ | Firan] =0, E[¢.|" < KAV (C.1.2)

If, in addition, k = 2/ (1 — 2w), then
E [Coe]? < KAU9=22)A(0/2), (C.1.3)
Proof of Theorem 3.1.1. Step 1. We prove part (a) in this step. By arguing

compoment by component, we can assume that m (-) is 1-dimensional without loss

of generality. Moreover, we only prove the case for the ask price, so
m(XuUa Qi,t; iy, Ly 9) = (Ai,t —f (Xtﬂ): Zi; 9)) G (Xtava Ziy, Zt) ; (C-1-4)

the other cases involving B;, or p;; follow the same argument with only notational

changes. We denote

Fia = F XV Zigi0), Foa=F (X0 Vi Ziai0) o Frie = fv (X0 Vi Zigi ),
G = G (X0 Vi Zip, 2, Gy = G (X0 Vg Zia Z2)

(C.1.5)
Then we can rewrite
T N T N A
m,, 1 (0) = T Z Z (Aig — fie) Gig, Mg (0) =T Z Z(Ai,t — fi)Gis-
t=1i=1 t=1i=1
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We shall use the following estimates repeatedly. Since k = 2/ (1 — 2w), by Lemma

C.1.1, for each ¢q € [1, k/2],

A~ 1/
<E|Vn,t—Vt|q) "< KAWMa=20)(/2) | e a1

~ 1/
(B Vi)™ < KA gl

(C.1.6)

Recalling the decomposition XA/n,t —Vi=C(Cot + C;,”t as described in Lemma C.1.1,

we consider the following decomposition

4

T2 (M 7 (0) — M (0)) = Z RfZ)T,
j=1
where
T N R R
RY = TN N (Foa— fia = Fraa(Ws = V)G,
t=1i=1
T N,
2 _ ~
Rgl)T = 777 Z Z (fviiGit = [vit—tnt, Git—knn,) Var — Vi),
t=1i=1
T N
RS)T = 7172 Z Z fvit—tnnn Git—tnn, Gt
t=1i=1
T N,
4 _
RE@%“ =T I/QZZ Svitetntn Git—bn 2, G-
t=1i=1

We now provide estimates for Rff; 2[, 1 < j < 4. First consider RS)T
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Observe



that,

~ ~ - 2
E\fit— fie — frit(Vas — V;s))‘ < E &y (Vn,t — Vt)

ja\ /K3 ~ 2ks/(ks—1) ]\ 17/k
< K (Elgul®) (E[vn,t—vt D
< KAifl/k372(lf2w) _i_KA?ll/Z
< KAY?

where the first inequality follows Assumption B, the second inequality is by Holder’s
inequality, the third inequality follows (C.1.6) and the last inequality holds because

w e (3/8,1/2) and ks = 2/ (8w — 3). Since N; and G;; are bounded, we have
E ‘RSH < KTV?A12, (C.1.8)
Next, consider RS)T By Assumption B and the Cauchy-Schwarz inequality,

E[(FrsiGia = Fviw b,3,Gia o) (Vs = Vi)

R SN2 (C.1.9)
< (E [(fV»i,tGi,t - fV,i,t—knAnGi,t—knAn)2])1/2 (E [(Vn,t — Vt) ])

By the assumption of part (a), G (z,v, 2, Z) does not depend on (x,v). Moreover,
recall that Z;; and Z, are constant within each day. Hence, we have G;; = G 1—k,.A,, -
Then by Assumption B4, E |fv.:Git — fvit—tna,Git—knn, |2 < KAY? Moreover, by

(C.1.6) and @ > 3/8,

R 2 1/2
(E [(Vm —~ 14) D < KAY0722) 4 AV < KAYS, (C.1.10)
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Therefore, the majorant side of (C.1.9) can be further bounded by K AY ?: thus,

E ‘Rfj}‘ < KT2AL2, (C.1.11)
We now turn to RS’)T We observe

i 3/4
E|fvii—tnn,Git—tnnnCngl < K (E [(fv,i,t—knAn)4]) / (E [|Cn,t|4/3])

= KAER=-YDA2)

< KA

where the first inequality is by Holder’s inequality, the second inequality follows

Lemma C.1.1 and the last inequality holds because @ > 3/8. Hence,
E ‘RS)T‘ < KA, (C.1.12)

Now, consider RE?T. Observe that, by Lemma C.1.1, E[CTII,t|‘E*knAnj| = 0.
By assumption Bl, N; is Fi-measurable. It is then easy to see that the quantity
Zivztl Ivit—knr,Git—knn, G, forms a martingale difference sequence with respect to

the filtration (F;);=1.. 7. By the Cauchy-Schwarz inequality, the boundedness of N;

.....

and G, A, , and Lemma C.1.1 with ¢ = 4, we derive

9 1 T Ny 2
4
E ‘Rfﬁp‘ = 7 Z E Z IVit—tntr, Git—knn, ;m>

t=1 i=1
< KEYES (o)
N Tt=1 | i=1 TSt
< KAY2 (C.1.13)
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Finally, combining (C.1.7), (C.1.8), (C.1.11), (C.1.12) and (C.1.13), we readily
derive the assertion of part (a).

Step 2. In this step, we prove part (b). As argued in step 1, we consider the
1-dimensional case and suppose (C.1.4) without loss of generality. We also maintain

the notations in (C.1.5). Observe that

E[(Ais = fi0) Gio = (4ie = Jia) G
<E ‘Ai,t (ézt — Gi,t) + E |fis (ézt - Gi,t)

(C.1.14)

+ KE|(fuu = fur)

Since G (z,v,z,2) is continuously differentiable in v with bounded derivative, we

have

Gy — Gl < K|Vp = Vi, (C.1.15)

Since E|A;|* + E|fi+|* < K by Assumption B3, we apply the Cauchy-Schwarz in-
equality and (C.1.10) to show that the first two terms on the majorant side of (C.1.14)
can be further bounded by KAY* Similarly, since |ﬁt — fit] < Xn,t|‘7n,t — V4| and
E |)(n’t|2 < K, we can bound the third term on the majorant side of (C.1.14) by

1/4 :
KAY* Hence, we derive

E|(Aiz — fir) Giz — (Ai,t — ﬁt) éi,t < KA}L/ZL‘

The assertion of part (b) then readily follows.
Step 3. We now show part (c). We first consider the one-dimensional case.

Without loss, we consider the case for the ask price, so (C.1.4) is in force. We
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observe

2

E|(Ais = fia) Gia — (Aus = fua) G|
Ay (Gi,t - ézt)

2

2
< KE + KE

fi (ézt - Gi,t) ‘2 + KE ‘ézt (ﬁt - fi,t)

(C.1.16)

By Holder’s inequality and (C.1.15),

~

< (E [(A )Zk’])l/k, (E [ Ve — Vi 2k’"/(’f’l)])ll/k’
< it

nt — Vt

E

Aig (Gi,t - ézt)

< KA}lfl/k'72(172w) + KA}L/Z

< KNP,

where the second inequality follows (C.1.6) and the third inequality holds because
w e (3/8,1/2) and k' = 2/ (8w — 3). Similarly, we can also bound the last two terms

on the right-hand side of (C.1.16) by K AY?. Hence, by Cauchy-Schwarz,
~ 2
E ‘mt (Vis 6) — 1y (vm; 9)‘ < KAY?, (C.1.17)
which further implies that
E|m? ;- (0) — mar ()] < KAY2. (C.1.18)

Since 1, (V;;0) and m ;. () are L*-bounded by Assumption B3, it is then easy to
see that

~ 2
E i (V)| < K, Blmur 0 < K. (C.1.19)

Let lA“;“T (0) be defined as lA“l’mT (A) in (3.1.17) but with V; in place of XA/n’t. Observe
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that, by the triangle inequality,

e ) =Tz (0)
< % Z ‘(mt (‘A/mt; 9) —my (W;Q)) (th (‘A/n,tJrl; 9) — Mp,T (9))‘
1<t t+I<T
+% Z ‘(mmT (0) —mi (6)) (mtﬂ (Vn,tJrl; 9) — M, (9))‘
1<t t+HI<T
b S0 | 0me (Vi) = (0) (e (Vuess6) — st (Vi)

1<t t+I<T

%F S| (Vi) — m3 (0)) (mur (0) — mi (0))).

1<t t+I<T

By the Cauchy-Schwarz inequality and (C.1.17), (C.1.18), (C.1.19), we derive
E|Tipr (0) —Tip (0)] < KAYY

Since L, 7 = 0(A}~/4) by assumption, we derive E|§IHT 6) — S ()| < KL,L’TA}/4 =

A~

o(1). Hence, 3,1 (0) — 5% (6) = o, (1).

For the multivariate case, we can use exactly the same argument to show that

~

each element of imT (0) — X% () is o, (1), as asserted. O
C.1.2  Proof of Theorem 3.1.2

Proof. By Theorem 3.1.1 and Assumption D, we have

TY2 (11 (B0) — 1 (60)) —> N (0, £ (60)), g (B) — S(6).  (C.1.20)
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The proof for (3.1.23) and (3.1.24) then follows Theorem 1(a) and 1(b) in the sup-
plement to Andrews and Soares (2010) by specializing their proof to a fixed sequence
of data generating process. To make the proof self-contained, we prove a direct proof
below.

Let Z* = Q(6)/*Y* with the same Y* in the definition of On1 (0) (recall

(3.1.19)). By the continuous mapping theorem,

2K1

K
Sur (00) == D (21 Lmon=0 + D, (25) (C.1.21)

j=1 j=2Kr+1

=

Moreover, for any (fixed) realization of Y* (hence Z*), by the continuous mapping
theorem (recall the notation ¢, 7 (+) from (3.1.19)),

2Ky

K
ur (00) = D[22 Lamyoo—oy + . (29)". (C.1.22)

j=1 J=2K +1

=

Below, let £ denote the distribution function of the variable on the right-hand side
of (C.1.21) and denote by ¢ (6y, 1 — «) the (1 — «)-quantile of L.

We first prove (3.1.24), so condition (iv) is in force. Since ¢ (6, 1 — «) is a conti-
nuity point of £, we have ¢ (6p, 1 — ) > 0. Indeed, if ¢ (6y, 1 — a) = 0 were true, the
continuity of £ at ¢ (6y,1 — a) would imply £ (¢ (0o, 1 — «)) = L(0) = 0; this would
be a contradiction to the fact that ¢(6y,1 — ) is (1 — a)-quantile of £ for some
a € (0,1). Furthermore, we observe that £ is strictly increasing at ¢ (fy,1 — a) and

thus 1—a is a continuity point of the quantile function associated with £. Combining

196



this with (C.1.22), we derive
Cnr (0,1 — ) = ¢ (6p,1 — ). (C.1.23)
We then finish the proof by observing
PlyeCSpr(1—a)) =P(S,r () <chr(by,l —a)) >1—aq,

where the convergence follows (C.1.21) and (C.1.23), as well as the continuity of £ ()
at ¢(0y,1 —a).

We now turn to (3.1.23). By (3.1.24), it remains to consider the case in which
L is discontinuous at ¢ (6, 1 — a). Note that this is possible only if ¢ (6,1 —a) =0

and kg = 0. Hence,

liminf P(0ye CS,r (1 —a))

Ap—0,T—00

= liminf P (Sn T (00) Cn, T (00, 1-— Oé))

Ap—0,T—w0

> liminf P(S,r(6) =0)

Ap—0,T—00

= liminf P (D 1/72« (90) T1/2mj7n’T (00) 0 for 1 < ] 2]{3[)

Ap—0,T—00
= L(0)>1-q
This finishes the proof of (3.1.23). O

C.1.8 Proof of Theorem 3.1.4

The proof of Theorem 3.1.4 relies on the following technical lemma, whose proof is

given in Appendix C.2.
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Lemma C.1.2. Fiz some constant w € (5/12,1/2). Suppose (i) Assumption A holds
for some k = max{8,2/(1—2w)} and V; follows (3.2.1); (ii) Assumption B holds for
some k' > 2/(12c0 — 5). Then

(a) [E [, (60)]] < KA,

4/(9—12w)

(b) E|in,., (6o)] < K.
(c) For each s,t, the sequences (mZ(0)m, (60))n=1 and (M, ; (00))n=1 are uni-

formly integrable.

Proof of Theorem 3.1.4. Step 1. In view of Assumption E1, we can and will state
limiting results under 7" — oo and n — oo interchangeably. We consider the k£ x 1

vector

T T
Enr = Cov <2 Tmg (0y), > TPk, (90)> .
t=1

t=1

In this step, we show that as T — oo,
=nr — 0. (C.1.24)

First, observe that

Enr= Y, = », Cov(mj(6).m},, (6)). (C.1.25)

I=—(T—1) ~ 1<t t+I<T

Note that for each ¢, [/‘\/m -1V, = O,,(A}/z). Combining this with Lemma 3.1.3,
we deduce that for each ¢, m, ,(6y) converges stably in law to some variable (;

which, conditionally on F, is centered Gaussian. Hence, by the property of stable

198



convergence, we have for any fixed ¢ and s,

(m? (6o) , i, (60)) = (m? (60),,) -

By Lemma C.1.2(c), (m*(6y)mn.+(00))n=1 and (M,+ (6p))n=1 are both uniformly inte-

grable. Hence, for fixed s and t, as n — oo,
Cov (m? (6o) , ), (6)) — Cov (m% (6y) ,¢) = 0. (C.1.26)
Let ||, denote the L,-norm and r = 4/(9 — 12cw). By the mixing inequality,

* A~ 1—1/(2K"Y—1/r
[Cov (mi (60) ) 41 (00))] < Kb & (i (60) llaw (17211 (00) ||

By Assumptions B3, E5 and Lemma C.1.2(b), the majorant side of the above display
is summable over {/:|l| < oco}. By dominated convergence, (C.1.25) and (C.1.26)
readily imply (C.1.24).

Step 2. Recall ¥ (6p) from Assumption D and let 2 (6y) be the associated corre-

lation matrix. We introduce some notations:

& in,:r’ (6o) O
O

0, (1) - ( NG ) = (B0mr @ 0)

) ) ﬁw,n,T (90) = Dlag (iwﬂ%’f (90)) ,

In this step, we show that

T
D;j{‘; ) (e (00) — D) 5 N (Op41, Qy (60)) - (C.1.27)
t=1
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By (C.1.24), Assumptions D3 (combined with Theorem 3.1.1(c)) and E3, we de-
rive §¢7n7T (6o) — Xy (B0) = 0,(1); then by continuous mapping, i;l,{QT (6o) —
Z;ZQT (6p) = 0, (1). In particular, 21;17{21“ (6p) = O, (1) by Assumptions D2 and E4.
By Theorem 3.1.1 (note that the conditions here are stronger than those in Theo-
rem 3.1.1) and Lemma C.1.2(a), Y1, (E [, (B0)] — ©0) = O(TY2A5 ) = o (1),
where the second equality is due to Assumption E1 and our choice of ¢;. Hence, by

Assumption E2,

!

S (0 )Y (G (B0) — &) 5 N (0, Ip1) (C.1.28)

t=1

It is also easy to see that

¢%1/2T (60) EwnT (90) 1/2 2 (6,) = ( 1/2 (6o) S (90) 1/2 (6p) O )

T
0 1

5 Q4 (6) . (C.1.29)

Combining (C.1.28) and (C.1.29), we derive (C.1.27) as claimed.
Step 3. We now prove the assertion of the theorem. Let Z* = QY2 () Y*. By

(C.1.27) and the continuous mapping theorem,

2k k

S’:L,T (90) i’ {[ZJ*]Q_ 1{mj(90):0}} + Z (Z]*)2 + (Y**)2 '

j=1 j=2kr+1

~

Let £’ denote the distribution function of the right-hand side of the above conver-
gence. Observe (i) the (1 — a)-quantile of £’ is strictly positive for any a € (0, 1),

and (ii) £’ is continuous at its (1 — a)-quantile. The proof then follows a similar
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argument as the proof of Theorem 3.1.2. (The only difference is that we do not need
condition (v) in Theorem 3.1.2, because the continuity of the limiting distribution
at its quantiles automatically holds in the presence of equality restrictions, as shown

above.) ]

C.2 Proofs of technical lemmas

In this appendix, we prove technical lemmas used in Appendix C.1. Throughout the

appendix, we set

t t
X! = X, +J byds +J o dW,, X! =X, - X]|. (C.2.1)
0 0

C.2.1 Proof of Lemma C.1.1

Step 1. We first introduce some notations and some preliminary estimates.Let
t(n,i) =t — k,A, +iA,, i = 0,...,k,. For any process Y, we denote AM"Y =
Yini) — Yim,i-1)- We then set \A/,:t = (k:nAn)lele |AY"X'|? and note that \A/n,t

can be written as \A/nvt = (kaA) " A XPI{|AY X | < @AT}. We denote for

. 1 t(n,i) t(n,i) ( )
A= — J beds + J Os — Opimi1y) AWy
A}/z t(n,i—1) t(n,i—1) o

ﬁ?’n = O't(nﬂ',l)A?nW/A}L/Q.

Note that AE’”X’/A}L/Q =\ + B
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Recalling V; = 07 and (3.1.20), by Itd’s formula, we can represent V; as

¢ ¢ ¢ ¢
Vi=W+ J by sds + J oy.sdWs + f oy AW, + J J oy (s,2) (1 — v)(ds, dz),
0 0 0 0 Jr

where

bV,s = 20565 =+ 6? + 5';2 + S]RS(S’ 2)2 A (dZ) R

o E . o, (C.2.2)
Ovs = 20,05, Oy, =20,0,, Oy(s,2)=20,0(s,2)+0(s,2)".

We then set By, = { byeds and My, = V; — Vy — By,. By Holder’s inequality,

E |bys|? < K and hence for t > s > 0,
E|By: — Bys|' < K|t —s|. (C.2.3)

By the Burkholder-Davis-Gundy inequality, as well as Lemma 2.1.5 of Jacod and

Protter (2012), we derive, for any 0 < s <t with [t — s| < 1,
E|My; — My, < K. (C.2.4)
The decomposition asserted in the lemma is given by

Vn,t - V; = Cn,t + C;L’p
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where

Cn,t = ZC}S];»

kn
® _ 2N ynghe
<n,t kn; 7 ﬁz )

1 &n
Gt = k—Z Vigni-1) ((A?”W/Aff ?)*
ni=1

n,t’ nt_

kn
1 2) 1 ,n
Gt = Vo= Vi Gl = L)

kn

1
Cr(:,lg = — Z (Bvi(ni—1) — Bvs)

kn

i=1

1
- 1) + & 2 (Mv,t(n,z'—l) - Mv,t) .

It is clear that (., and ¢}, are Fi-measurable and E [() ;| Fi—k,a,] = 0. It remains

to show the inequalities in the assertion.

Step 2. In this step, we show (C.1.1) and (C.1.3). It is easy to see that (C.1.1)

follows

B¢,

| q

N

N

IN

Moreover, when k >

K (A;fq(lﬁiﬂ + A};q/qu(l/%w') + Agﬂﬁq)(l/%w})
KA,
KASZ‘I/Q)A(I_Q/IC)

KA,

quence. It remains to establish the estimates in the above display.

(C.2.5)
(C.2.6)

(C.2.7)

(C.2.8)

2/ (1 —2w), (C.1.3) follows (C.1.1) as an elementary conse-

First consider (C.2.5). We use the following elementary inequality: for any w > 0,

u > 0, there exists some constant K > 0, such that for all x,y € R,

24w
i
2+ 0P ey — 2| < K <<|y| A+l (o] Au) + %) (©29)
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Using (C.2.9) with z = AV" X’ y = A" X"y = aAT, and w = k/q — 2, we derive

q
L “A?an Lijatnx|<ang} — ‘A?HXIf

t.n yvn
< mgqu«:,‘(AiA—f) Al

n

t,n q
Al (S5 A1)

2q

+KAZIE + KA;=¢—20) [\A?"X’\’“] .

A

n

Observe that (A" X”/AZ) A1 is bounded and is non-zero only if jumps occur during
(t(n,i—1),t(n,q)]. Hence, for any r = 0, E[|(AY"X"/AT) A1]"] < KA,,. Moreover,
by Holder’s inequality and the Burkholder-Davis-Gundy inequality, EJAM"X'[F <

KA¥?, Combining these estimates and using Holder’s inequality, we derive

—g\ 1-a/k
At,nx// q /k At»7nX/, qk/(k q)
st (B ) | = (elart) ((327 )

< KAH_Q/Q_q/k,

E

and hence

E “AZ,TLX‘Q 1{|A?7n . ‘A?nX/f 4 < KA711+2wq + KAiLJrq(l/Qerfl/k)

X|<anz}

+ KA?=a-=kth/2, (C.2.10)
By Holder’s inequality,

i
E|¢)| < kALY E “A?HX‘(Z Hjatnx|<anz) ~ NSNS (C.2.11)
i=1

The claim (C.2.5) readily follows (C.2.10) and (C.2.11).
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Next, observe that by Holder’s inequality and the Burkholder-Davis-Gundy in-
equality, we have for any € [0, k], E|8°"|" < K and E|X'"|" < KAY"?”. By using
Holder’s inequality again, we derive (C.2.6) as ]E|§,(ft) 9 < Kk, S0 BN 2 < KA,

Similarly, we derive (C.2.7) as

E[c®)

N

kn
Kk Z E[N"80"|
=1

N

kn _
N I Gl R
=1

< KAWHA-d/k) (C.2.12)

Finally, by Holder’s inequality and (C.2.3), we derive (C.2.8).
Step 3. We now turn to (C.1.2). Observe that ¢, is a sum of martingale dif-
ferences. When ¢ = 2, by the Burkholder-Davis-Gundy inequality and Holder’s

inequality,
q

E < Kk, 92 (C.2.13)

1 & 2
— D Vi (AW /A2 -1
an; -y ((AF"W/AY3)" 1)

The estimate still holds when ¢ € [1,2], by Jensen’s inequality. Combining the same

argument with (C.2.4), we derive

1 & !
E|— D (Myyniony — Myy)| < Kk, (C.2.14)
" =1
By (C.2.13) and (C.2.14), we derive (C.1.2). ]
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C.2.2  Proof of Lemmas 3.1.3 and C.1.2

We complement the definitions in (3.1.28) for the continuous component X’ with

the following. Recall 7 (¢,n,i) = t + ik,A, and denote A';’;‘X’ X hmie1)rian —

X! . We set

7(t,n,i—1)+(j—1)A,

cv, _22 <ZnA >( vy = Virtemi ) Wwhere

b (C.2.15)
v i) = A”‘X , iefl,...,Bn}.
We also complement (3.1.27) with
v, =Y |amx. (C.2.16)

=1

We first prove two auxiliary lemmas, Lemma C.2.1 and Lemma C.2.2, and then prove
Lemmas 3.1.3 and C.1.2. The proof of Lemma C.1.2 makes full use of these auxiliary
lemmas. The proof of Lemma 3.1.3 makes partial use of Lemma C.2.1, with much

to spare.

Lemma C.2.1. Let w € (i l) and r € [1

53 be constants. Suppose (i) As-

7912]

2
1-2w

sumption A holds for some k = 8 v and (ii) the process oy is continuous. Then

E[a, " (CV,, - CV,,) < KA O

+E ‘A,;l/‘* (ﬁ/m - IT/;”)

T

E ‘A;l/“ (ﬁ/n,t - 517;”) < K.

| (V- VL)

Proof. Step 1. In this step, we derive the following preliminary estimates: for any
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q € [0, k],

kn q

B[ (A1) Ujatoxjeans) — A X)| < KAL) 4 kALK E2)T)
=1 ? "
> k2 k/8
E VT(t,n,i) - V;'(t,n,i) < KA’H, 3 (CZlS)
EV/, ~—V Yo KAk C.2.19
T(t,n,i) T(t,n,i—1) = n ( e )

We start with (C.2.17). Observe that for any v > 0, w > 0, there exists a constant

K > 0 such that for all z,y € R,

1+w
‘(:L’ + y) 1{|x+y\<v} - fL" <K <|y| AU+ |$1|)w > . (0220)
For any ¢ € [0, k], applying (C.2.20) with =z = A;’?X', y = AE:;LX”, v = aA% and
w = k/q—1 yields

q

E|(al7X) - AGX

L{jatrx|<anz)

< KE[(|AVX"] A AZ)!] + KE

N
Af(’“*‘l)

< KAM™1 4 RAR2-=(k-0),

By Holder’s inequality and k, < KA, Y2 we readily derive (C.2.17).
We now show (C.2.18). We denote a discretized version of the quantity X’ by

X7IL,S = Xﬂl'(t,n,ifl)Jr(jfl)An’ for s € (T (t’ n’i - 1) + (j - 1) A’m T (ta nai - 1) +]An] By
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[t0’s formula, we can decompose

7(t,n,i) 1 7(t,n,%)

e X/ bsd Sd S
Vn ,7(t,m,1) k? A (i 1) n,s) ( sto W) + ]{JnAn r(t,n,i—1)

Vids,

(C.2.21)
Recalling the classical estimate that E ‘X; — X{lys‘k < KA]fLﬂ, by Holder’s inequality

and the Burkholder-Davis-Gundy inequality, we derive

n,i k/2
E |k Sl 2 (X0 - X)) bds| < KA
e ’ 9 (C.2.22)
i knA T(t,n,i—1) 2 (X; - X;L,s) Os < KA.
Since oy (and hence V;) is continuous, we have E |V, — Vs|k/2 < K|t— 5|k/4 by a

standard estimate for continuous Ito processes. By Holder’s inequality, we derive

k/2

E < KAME, (C.2.23)

1 JvT(t,n,i) p
‘/s S — ‘/’r N1
knAn 7(t,n,i—1) (b2

Combining (C.2.21)-(C.2.23), we have (C.2.18), which further implies (C.2.19).

Step 2. In this step, we show that

E 6‘\/71 t— 6‘\/; . " /\nt B I/‘\/;t r <[(A:ﬁr(w73/472/k) + KA71177"/2737"(1/2—w)

(C.2.24)
+ AL ke /2=20(1/2)
b K AR3/2-w) /2
We consider the following decomposition:
CVpy—CV,, = RY) + R, (C.2.25)
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B kn
1 n - -
Rguz =2 ‘ [ ((Af:j X) 1{ |Af:;LX gaA?} A X,)] (Vn T(t,ng) Vri,q-(t,n,z’—l))

Bn kn ~ ~
Z (Z 1{|At nX|<aAw}> <Vn’7—(t7"»i) - Vnﬂ'(t:”vifl)
~, ,

- ( n,7(t,ng) V ,7(t,n,i— 1)))

We first consider RSQ Let ¢ solve 1/q+ 2r/k = 1. The conditions on w, r and k

imply qr < k. Then we have

kn,
t,n ~ A
<Z ((Ai,j X) 1{|A§:;X|<0A5} A Xl)) (Vr(tnz) - VTl(t,n,z’—1))

=1
k‘ qr 1/q R . k/2 27’/]{)
E V! R Vg .
Z < ( 7(t,n,i) T(t,n,z—l)‘ >

< KA};FT(W_IM_Q/IC) + KAZ(I/Q—W)+T(3W—5/4)’

r

E

t,n
N X’)

where the first inequality is due to Holder’s inequality and the second inequality

follows from (C.2.17) and (C.2.19). Since B,, < KA by the triangle inequality,

E ‘RSZ "< KA @32 AR /2-=) /e (C.2.26)

Now, we turn to RS?E By (C.2.5),

T

A~ ~

E Vit — Vl(t,n,i)

T

<K (A};r(lf2w) + A%;r/kfr(l/wa) + AglkaT)(l/Q—w))'
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Since | S (A X)1{|AYX] < aAT} < KAT Y2, we derive

7j

E ‘ng " < KATllfr/in%r(l/wa) + KAifr/kfr/2f2r(l/27w) + KA%kf?)r)(l/wa)fr/Q.

(C.2.27)
Since I/‘\/n,t — I/‘\/;t =k, A, ZZBZ”I(‘A/T(M@ — ‘A/T’(mﬂ.)), it is easy to see that ]E|I/‘\/m —
I/\\/;7t|’” can also be bounded by the right-hand side of (C.2.27), with much to spare.

Combining (C.2.25), (C.2.26) and (C.2.27), we derive (C.2.24).

_2
12w’

Step 3. We now prove the assertion of the lemma. Using £ > 8 v it is
elementary to show that the second term on the majorant side of (C.2.24) dominates
other terms asymptotically. The first assertion follows (C.2.24) with » = 1. For the

second assertion, we observe that by (C.2.24),

B|a1 (6, - OT,) "< KA

"LE ‘A;l/“ (ﬁ\/n,t - ﬁ/;t)

Under the assumption that @ € (5/12,1/2) and 1 < r < 4/(9 — 12w), the right-hand

side of the display is bounded by a constant, as asserted. O

Lemma C.2.2. Suppose Assumption A holds for some k > 8. In addition, suppose

(3.2.1). Then

E ‘E [A;l/“ ((’JT/;,t . Cm)

]—"H” +E ‘IE [A;l/‘* (fv;’t - fv;)

th—l] ‘ < KAM

n

(C.2.28)

2
< K.

(C.2.29)

o~ 2 o~
E ‘A;l/“ (cv;ﬂt - CVt) +E ‘A;l/‘* (Iv;t - m)

Proof. Step 1. In this step, we introduce some notations and preliminary estimates.
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Recall 7 (t,n,i) =t + ik,A,. For notational simplicity, we denote 7 (i) = 7 (¢,n,1).

By (C.2.21), we can decompose

tnz)_QZCtnz+Vl(tnz where

) 1 T(i)

t,n,i =
knAn r(i‘f 1)

1 (%)
t(2n)1 = mj (Xi— X)) (bs = brii1y) ds

(X; - X;L,S) bT(Z‘_l)d87
(C.2.30)

(i-1)
(@ 7(0)
@ _ 1 P , 1
ol (XL = X)) osdWe, V) yniy = ol Vids

~ Vi iy = (k) T (V= Vicgoa,) ds. By (3.2.1), we

Observe that V/ (i

n,7(1)

decompose

x 7/ €))
n,7(i) T i—1) — Z 2 N0 where

1
FAROE by du | ds
b knAn 7(i—1) s—knAp "
NOJ.L J o < f ) guqu) ds,
Y knAn 7(i—1) s—knAp

1— 0 1/2 7(4) s
28, = (kp#f (J gudW;g) ds.
ne/n 7(i—1) s—knQAnp

We then rewrite

3 3
7’:,7’(15,71,2‘) - é,T(t,n,i—l) Z t, n i Z Ct(,Jrz,ifl + Z Zt n i (0231)
J=1 J=1
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We also decomposeX'

ON X;(z'—l) = Ttm,i + Yen,i, Where

7(4) 7(4)
Ttm,i = J bsdsa Ytni = J Odes- (0232)

7(i—1) 7(i—1)

We now collect some obvious estimates: for ¢ € [0, k],

E|X!— X, |"< KAY?, Eleg,]" < KAY, Ely.l" < KAY,

q q 4/3 q
|G| + B[ < KA E|(|T < KA., BT < KAYY,
(C.2.33)
and for ¢ € [0, k/2],
q q q
B0 < KAV B[22+ ERY ) < KAV (C.2.34)

By It6’s lemma, (3.2.1) implies that 6, = pv/2, &} = (1—p?)Y*v/2 and § (s, z) = 0.

By (C.2.2), by, —bys = 2 (aul;u — 0’565) for any u, s = 0; hence,

E Yt m,i (bvu — by,s)| < KE |y by (00w — 05)| + KE

Ytn,iOs (gu - 63)

< KAY* ju—s'? (C.2.35)

where the first inequality follows the triangle inequality; the second inequality follows
from Holder’s inequality and E( o, — 04|* + |by — bs|?) < K|u — s, the latter in turn
is implied by Assumption A.

Below, steps 2-5 are devoted to proving (C.2.28); step 6 contains the proof of

(C.2.29).

212



Step 2. In this step, we show that
E ‘E [xm (f/n o =Vl )‘]—} 1” < KA, (C.2.36)

By the Cauchy-Schwarz inequality and (C.2.33),

)

xtnlgtnz

E +E xtmzt(lgl < KA,, j=12

xtnlctnz 1‘+_E

Let af,,; = ST@ ) (bs — bri—2)) ds. By Cauchy-Schwarz, Elz} , ;|* < KA¥? We then

T(i—1

observe

E ‘]E [wtnzgt(i)zfl‘ ]:tfl]‘ =E ‘E [x;”’ ’5(?;3“1‘ ]:t*l” sE

(3)
xtnz tn,i—1 $§](an,

where the equality holds because E[Ct(,?;z),i—1|~7:7(i—2)] = 0 and myp; — 7}, 18 Frii-a)
measurable; the first inequality follows Jensen’s inequality and repeated condition-
ing; the second inequality follows (C.2.33) and Cauchy-Schwarz. Using a similar

argument, we can also show

]E‘E:[xtnj ( f?z +_Z§?z +_Ztnz)

Fia|| < KA.

Combining the displayed estimates in this step, we readily derive (C.2.36).

Step 3. In this step, we show that

3 3
. [y (z G-y <>) \ ftl]
j=1 j=1

Denote 7 (t,n,i — 1,7) = 7 (t,n,i — 1) + jA,, for j € {0,..., k,}. For notational

< KA, (C.2.37)
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simplicity, we write 7 (¢, j) in place of 7 (¢, n,, j) below. By definition (see (C.2.30)),

E ‘E [ytm@qz)l ftq”
% 7(i—1,5) s
< E|E | Yin. J (J budu) br(i—1yds| Fi 1
knAy -1 \Jri—1-1)
L klE kz e AW, ) bri_nyd
+ Yt,ni J (J Ou Wu) ri—1)ds| Fe1 || -
knAy, S \Jr11)

(C.2.38)
By (C.2.33) and properties of conditional expectation, it is easy to see that the first
term on the right-hand side of (C.2.38) can be bounded by K AY*. Moreover, the

second term can be bounded by KA,,. To see this, it suffices to note

kn  r7(i—1,5) s
E Ytn,i ZJ‘ <f O-udVVu> b'r(ifl)ds Fia
T(i—1,j—1) T(i—1,j—1)

j=1
kn  ~r(i—1,7) 7(2) s
=E[> f E f o, dW,, U auqu> Frtimn)
j=1 T(i—1,j—1) 7(i—1) 7(i—1,j—1)

bT(il)dS|]:t—1]

kn  ~r(i—1,5) s
=E Z J (J O'Zdu> bT(ifl)dS ft—l s
j=1 7(i—1,j—1) 7(i—1,j—1)

where the first equality follows from the definition of ¥ ,, ; and repeated conditioning;

the second equality follows properties of stochastic integrals and repeated condition-

ing. Hence, (C.2.38) further implies

Fia|| < KA. (C.2.39)
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Next, we observe

]:t—1” <E

< (Blyeni )" (E ) < KA,

(C.2.40)

where the first inequality is obvious; the second inequality is by Holder’s inequality;
the last inequality follows (C.2.33).

Now, note that

Fii

1 (1)
=E|E X' — X! ) Vids| Fi
knAn J;—(z‘_l) ( s n,s) S| St-1
1 kn ’T(i—l,j) S
<E J (J budu> Vii-1,-1)ds
knAp le 7(i—1,5—1) T(i—-1,j-1) ’
1 i r(i—1,5) s
L EE J (J O’uqu) Vr(i-1,j-1)ds| Fi—1
knAy j=1J7(-1,j-1) \JI7(i-1,j-1) ’
Bl [ 0 Ky ) (0 Vi)
+ s r(i—-1,5— s = Vr(i=1,j— §
kn A, A1) (i-1,j-1) (i—1,j—-1)
< KA,

(C.2.41)
where the equality follows from properties of stochastic integrals; the first inequality
is obtained by using the triangle inequality, as well as properties of conditional ex-
pection. Observing that the second term on the majorant side of the first inequality
is zero, we readily derive the second inequality.

Finally, observe that E[y,:|F-i—1)] = 0 and Ct(,{z),i—l € Fri—ny for j = 1,2,3;
hence, ]E[yt,n,igfgi_ﬂft,l] = (0. Combining this with (C.2.39), (C.2.40) and (C.2.41),

we have (C.2.37).
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Step 4. In this step, we show that

E ‘E [yt,n,i (Zt(,ln),i + zt(izﬂ)

Fl| < KA, (C.2.42)

-

Since the Brownian motions W and W' are orthogonal, E[ytmzf?;M]-}_l] = 0. Since

E < KAY2 (C.2.43)

B, t
E [2 Z ytmzﬁ)l — pv f Vids
t

i=1 I3

E [yt7n7i|]-}(i,1)] = 0, by repeated conditioning,

-

1 T(l) ( S
E Ytmi7 j bV,u —b T(1— du) ds
[ K knAn Jro1y sfknAn( o 1))

<KAn7

E

E [ytmzt(ln)z

=E

]:t—l]

where the inequality follows from Jensen’s inequality, repeated conditioning and

(C.2.35). Then (C.2.42) is obvious.

We now consider (C.2.43). Under (3.2.1), we have the following decomposition

2yt,"7iz7g,2n),i = A LAP L A AW where

t,n,i t,n,i t,n,i t,n,i)

)‘(1) i T pv‘/;(lfl)knAn
J (J bwdr> du> ds
7(i—1) 7(i—1)

t,n,e
2 7(2)

A= |

Y
) 7(¢ s o w

Aﬁ?,ﬁﬂf (J (pvf o, dW, + (1 - p?)' 0 f ardWT’) du) ds
knBp Jriy \Jri-1y U Jriony Hi-1)

2 7(i) s
Aﬁzz = Qyt,n,izﬁg,l- - k‘%[ <J Vudu> ds.
n=n Jr(i—1) T(i—1)

(C.2.44)
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| Fi-1] = 0, E[A A |Fi—1] = 0 and E|A

t,n,t
e

The first term on the right-hand side of the above can be further bounded by

Note that E[ KA,. Hence,

t
[Z A f Vids fH]
t

+ KAV, (C.2.45)

tnz tnz|

\

By, t
E [2 Z ytmzt(igl — pv J Vids
i=1 t

Bn 7'(1,) L“FknAn
KE|E| )] f (Vs = Viion)) ds| oot || + KE J Vids
i=2Y7(i—1) t
S (@) s (C.2.46)
<KEE|)] f f byudu | ds| Fioy || + Kk, A,
i=2 J7(i—1) \J7(i—1)

< KAY?

Combining (C.2.45) and (C.2.46), we derive (C.2.43).

Step 5. We prove (C.2.28) in this step. By (C.2.37), (C.2.42) and (C.2.43), we

-

Then by (C.2.36), we derive E|E[5‘\/lm —CVi|Fiq]] < KAY?. Moreover, we observe

have

< KAY2,

Bn t
K lzzyt,n,i ( n,7(i Vr; (i— 1)) - PUJ Vids
i=2 t

IVnt = kA, Y0 v, iy, IV = kpAy 3PV, (i)~ Since E[Ctm|]:t 1] = 0, we derive
E|E[IV ., — IV;|F,_1]| < KAY? by using (C.2.30) and (C.2.33). Combining the
estimates in this step, we have (C.2.28).

Step 6. We show (C.2.29) in this step. By (C.2.30) and (C.2.33), it is easily seen

that E|A, 14 (I/‘\/ ;t —IV;)]? < K; the details are omitted for brevity. Below, we prove

217



the more complicated part of the assertion, i.e.,
— 2
E ‘A;l/‘*(CViw —ov)| <K (C.2.47)

First, by Cauchy-Schwarz, (C.2.31)-(C.2.34),

e (- o) < 0
E vz + E|ns (@;,,3,1» F O]+ Bl (60 +2)| < BA
(C.2.48)
We claim for the moment that
B[S, v € fikmzﬂ
B[S i 1‘ < KAY? (C.2.49)

2
E‘Qzl o Yt,n,i (zt(731+z§:21> —va:Vsds‘ < KAY?

Then (C.2.47) readily follows (C.2.48) and (C.2.49).

It remains to show (C.2.49), starting with the first inequality there. Observe that

i=2 T(i—1)

By ) 1 7(3)
Z ytnthn i Z (yt,n,iCt(iL),i - LA J (X; - X7/’L78) ‘/st>

By o)
+ SkA, LH) (X, = X! ) (Vi = Vi) ds

% 1 i 7(i—1,5) s
+ J (J budu> V;(i,l)ds
i k:nAn 1 J1(i—1,5-1) T(i—1,j—1)

7j=1

Bn

Z 1 inlj\'r(i—l,j) (J*s
+ O'uqu) ‘/-,—(Z',l)ds.
2 Fnln o Jrmrg-1) \Jri-1-1)

By construction, the first term and the last term on the right-hand side of the above
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equation are sums of martingale differences. It is then easy to see

B .
n 1 T(’L)
E niC — X' — X' Y Vid < KA
g (yt, ) Ct,mz k:nAn (i) ( s n,s) S n
% 1 % 7(i—1,5) s 2 A
E J (J auqu) VT(i,l)ds < KA,.
i=2 kn B, j=19Y7(—1j—-1) \J7(i—1,j—1)

Observing that E [V; — Vi|* < K |t — s|” and E | X! — X/, |" < KA, we use Cauchy-
Schwarz to derive

2

E < KAY2,

B g )
Z kA f( 0 (Xs - Xn,s) (VS - Vr(i—l)) ds
izp 'nBn Jr(i-

It is also easy to see that

i 1 i JT(i—l,j) <Js
budU) ‘/;-(Z',l)ds
i—9 knAn T(i—1,7—1) T(i—1,j—1)

j=1

2
< KA,.

E

2
1/2 .
<K An/ , as asserted in

We combine the above estimates to derive E ‘Zfﬁz ytmgt(i)z
(C.2.49). The second inequality in (C.2.49) can be proved in a similar (but simpler)
way.

Now, recall the decomposition in (C.2.44). Observe that

Bn t 2 Bn 2
E Z )‘zg,lrzl - PUJ Vids| < KA,, E Z )\122721 < KA,
i—2 t P
By, 2 B, 2
ENAY L < KA, ENAY ] < KA
=2 i=2
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where the first inequality is a simple estimate for the Riemann approximation error
for the It6 process V;; the second inequality is obvious; the third inequality is ob-

tained by using the fact that )\E?’z” forms a martingale difference sequence; the fourth

inequality is derived by using E[AE?}A]—"T(FQ)] = 0 (hence the odd- and even-indexed
terms respectively form martingale difference sequences). These estimates further

imply E[237" ytm,izg’i — pv S; Vids|> < KAY?. A similar (but simpler) argument

yields E| 3.7, yt7n7iz§2i|2 < KAY?. The third inequality of (C.2.49) then readily

follows. This finishes the proof. OJ

Proof of Lemma 3.1.3. By localization, we can suppose that b;, oy, by, 6, and a;
are bounded without loss of generality. By Lemma C.2.1, A, Y 4(5\\/ nt — 1% ;t) =

—

0p (1) . By Theorem 1 of Wang and Mykland (2013), A;W‘(C’Vm — CV,,1) converges
stably in law to some variable (, which conditionally on F, is centered Gaussian
with strictly positive variance (note that o; > 0 by assumption). The assertion of

the lemma then readily follows. O

Proof of Lemma C.1.2. Applying Lemma C.2.1 with r = 4/(9—12w) and Lemma

C.2.2, we have

E[E| A (Vg = povol Vo )| Fia || < K2,
Yot (= — N\ (C.2.50)
E An CVM — po?}olvmt

< K.
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We then derive

E [A;1/4 (C’T/n,t - )OOUOI/‘\/n,t)

i Fii

&=
—
>
S+
N
>
(=]
SN’
—
|

a[\/ﬁ/n,t—l +bry
KE ‘E [A;W (5\7”7,5 - povol/\\/mt)
< I(Aiwf5/47

N

Fi|

where the equality follows definition (3.1.30) and repeated conditioning; the first
inequality follows Jensen’s inequality and a[Vﬁ/ ni—1 + bry = bry > 0; the second
inequality is due to the first line of (C.2.50). This finishes the proof of part (a).

By the second inequality of (C.2.50), it is easy to see that E \m;t (60)‘7« < K, as
asserted in part (b). Moreover, since r > 1, part (b) also implies that {1, (6o)}n=1
is uniformly integrable. To show part (c), we define some constants:

-1
q=(%+2ik,) : pz%k,>1, p’=£>1.

1/p

We then observe E|m¥ (6p) i}, (60)]* < <IE |m* (90)|2k,) (E |t (00)‘T)1/pl < K,

where the first inequality follows Holder’s inequality, and the second inequality fol-
lows part (b) and Assumption B3. Finally, note that &' > 2/(12ww —5) implies ¢ > 1.

Hence, {m? (6y) 7, ; (00) }n=1 is also uniformly integrable as asserted in part (c). [
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