
Coordinating the Design and Management of

Heterogeneous Datacenter Resources
by

Marisabel Guevara

Department of Computer Science
Duke University

Date:
Approved:

Benjamin C. Lee, Supervisor

Jeffrey S. Chase

Benjamin Lubin

Bruce M. Maggs

Daniel J. Sorin

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2014

Abstract

Coordinating the Design and Management of Heterogeneous
Datacenter Resources

by

Marisabel Guevara

Department of Computer Science
Duke University

Date:
Approved:

Benjamin C. Lee, Supervisor

Jeffrey S. Chase

Benjamin Lubin

Bruce M. Maggs

Daniel J. Sorin

An abstract of a dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

Department of Computer Science
in the Graduate School of Duke University

2014

Copyright © 2014 by Marisabel Guevara
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial License

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Heterogeneous design presents an opportunity to improve energy efficiency but raises

a challenge in management. Whereas prior work separates the two, we coordinate

heterogeneous design and management. We present a market-based resource allo-

cation mechanism that navigates the performance and power trade-offs of heteroge-

neous architectures. Given this management framework, we explore a design space of

heterogeneous processors and show a 12x reduction in response time violations when

equipping a datacenter with three processor types over a homogeneous system that

consumes the same power. To better understand trade-offs in large heterogeneous

design spaces, we explore dozens of design strategies and present a risk taxonomy

that classifies the reasons why a deployed system may underperform relative to de-

sign targets. We propose design strategies that explicitly mitigate risk, such as a

strategy that minimizes the coefficient of variation in performance. In our experi-

ments, we find that risk-aware design accounts for more than 70% of the strategies

that produce systems with the best service quality. We also present a new datacenter

management mechanism that fairly allocates processors to latency-sensitive applica-

tions. Tasks express value for performance using sophisticated piecewise-linear utility

functions. With fairness in market allocations, we show how datacenters can mit-

igate envy amongst latency-sensitive users. We quantify the price of fairness and

detail efficiency-fairness trade-offs. Finally, we extend the market to fairly allocate

heterogeneous processors.

iv

For Irene, Nelson, and Oscar – the greatest gifts in my life.

v

Contents

Abstract iv

List of Tables vii

List of Figures viii

Acknowledgements ix

1 Introduction 1

1.1 System-Level Heterogeneity . 4

1.2 Market Mechanism to Allocate Heterogeneous Processors 5

1.3 Strategies for Heterogeneous Design 6

1.4 Appraising Fairness in the Market . 7

1.5 Key Contributions . 8

2 Market Mechanism to Allocate Heterogeneous Processors 11

2.1 Heterogeneity – Principles and Strategies 12

2.1.1 Heterogeneity as a Design Space 13

2.1.2 Accommodating Architectural Heterogeneity 15

2.2 The Market Mechanism . 17

2.2.1 Proxies and Value Analysis . 19

2.2.2 Seller Cost Analysis . 22

2.2.3 Welfare Optimization . 22

2.3 Managing Heterogeneous Processors 23

vi

2.3.1 Experimental Setup . 23

2.3.2 Architectural Preferences . 27

2.3.3 Improving Welfare . 29

2.3.4 Balancing Atoms and Xeons 30

2.3.5 Saving Energy . 31

2.3.6 Evaluating Optimization Time 32

2.3.7 Assessing Demand Prediction 33

2.4 Increased Processor Heterogeneity . 35

2.4.1 Experimental Setup . 35

2.4.2 Architectural Preferences . 36

2.4.3 Improving Service Quality . 37

2.4.4 Balancing Core Types . 39

2.5 Qualifications and Assumptions . 41

2.6 Related Work . 42

2.7 Summary . 45

3 Strategies for Heterogeneous Design 46

3.1 Anticipating Risk in Heterogeneous Design 48

3.1.1 Anticipating Run-time Effects 48

3.1.2 Understanding Sources of Risk 50

3.2 Formalizing Heterogeneous Design Strategies 52

3.2.1 Characterizing the Hardware-Software Space 52

3.2.2 Formulating the Clustering Problem 53

3.2.3 Invoking the Clustering Heuristic 54

3.2.4 Selecting Designs from Clusters 55

3.2.5 Ranking Heterogeneous Outcomes 57

vii

3.3 Experimental Methodology . 58

3.4 Designing for Manageability . 63

3.5 Classifying Sources of Risk . 67

3.5.1 Incurring Risk to Increase Reward 68

3.5.2 Quantifying Risks to Efficiency 71

3.6 Related Work . 74

3.7 Summary . 76

4 Appraising Fairness in the Market 77

4.1 Background . 79

4.1.1 Efficiency versus Fairness . 80

4.1.2 Expressive Utility Functions 81

4.2 Fair Market Mechanism . 83

4.2.1 Expressive Utilities and Fairness 83

4.2.2 Fairness and Markets . 85

4.3 Fairness for Heterogeneous Tasks . 88

4.3.1 Agents for Heterogeneous Tasks in the Market 89

4.3.2 Web Search and Heterogeneous Queries 91

4.3.3 Query Diversity and Execution Time 93

4.4 Price of Fairness . 95

4.4.1 Mitigating Envy . 95

4.4.2 Price of Fairness . 100

4.4.3 Trading Fairness for Efficiency 101

4.5 Fairness and Heterogeneous Processors 105

4.5.1 Expressing Heterogeneity . 106

4.5.2 Allocating Big and Small Cores 108

viii

4.6 Related Work . 110

4.7 Summary . 111

5 Conclusions 112

5.1 Key Contributions . 114

5.2 Future Directions . 115

5.3 Market Mechanisms . 115

5.4 Heterogeneous System Design . 117

Bibliography 119

Biography 129

ix

List of Tables

2.1 Architecture parameters for Xeons and Atoms [34, 35, 48]. 23

2.2 Power modes and parameters for Xeons and Atoms [84]. 23

2.3 Characteristics of the processor sensitive (PS) and insensitive (PS)
applications. For a task stream, T is 95th percentile queueing time. . 24

2.4 Parameters for the twelve cores simulated in gem5. 35

2.5 Area and power estimates for four core types. 35

2.6 Characteristics for the task streams made of two applications from
SPEC CPU 2006, libquantum and lbm. 35

3.1 Parameters of the processor design space made up of 42 cores. 55

3.2 Parameters for the out-of-order cores in the design space. 59

3.3 Parameters for the in-order in the design space. 59

3.4 Characteristics for the task streams made up of three applications
from the benchmark suites: barnes, radix, and quadword (web search). 59

3.5 Heterogeneous outcomes from BIPS strategies. 64

3.6 Heterogeneous outcomes from BIPS3/W strategies. 64

4.1 System Parameters for Web Search performance measurements. . . . 89

4.2 Parameters for the four bins of web search query types in the market. 94

4.3 Architecture parameters for big and small cores. 95

4.4 Performance scaling factors for web search query types on big and
small cores. 95

x

List of Figures

2.1 Venn diagram that illustrates a datacenter design space for low-power
and high-performance processors; the intersection harbors heteroge-
neous design options. Colored points depict QoS violations. 15

2.2 Market Overview. 18

2.3 Proxy Bids . 19

2.4 Demand for processor sensitive (PS) and insensitive (PS) applica-
tions. 24

2.5 Seller costs due to (a) energy and (b) transition penalty, as the ratio
of Atom:Xeon processors varies. Energy cost corresponds closely to
application behavior across datacenter configurations. Ridges in tran-
sition cost are due to a $0.05 penalty per transition that accounts for
increased system wear-out [38]. 25

2.6 95th percentile waiting time for (a) only Xeons, (b) mix of Atoms
and Xeons, and (c) only Atoms. Heterogeneous system (b) violates
performance targets less often than homogeneous configurations (a),
(c). 26

2.7 Allocation measured in fraction of configured nodes as Atom:Xeon
ratio varies. For example, a 50% Atom allocation in a A:X=168:40
configuration maps to 84 Atom nodes. Atom and Xeon cores at each
datacenter configuration may be allocated to the processor sensitive
(PS), processor insensitive (PS), or neither (sleep) application. . . 28

2.8 Energy saved from sleep modes. 32

2.9 Solve time CDF across all periods. 32

2.10 Prediction error in demand: (a) relative error, (b,c) percent error for
each application at different quartiles of total load. Using 6 time
periods of load traffic history, the predictions are sufficiently accurate. 34

xi

2.11 gem5 simulation results, cores on the horizontal axis are in order of
increasing peak dynamic power. 37

2.12 Number of 95th percentile waiting time violations. The horizontal axis
indicates the number of servers of each of the four core types: io1w10,
io1w24, io4w24, and oo6w24, in that order. Prepended letters mark
the corresponding region in Figure 2.13. 38

2.13 Sum of libq and lbm waiting time violations, shown on a Venn dia-
gram. 38

3.2 Performance diversity across applications (IPC on Core 42 of Table
3.1). 60

3.3 Risk-aware strategies are more likely to produce outcomes with the
best service quality. 65

3.4 Heterogeneous system 14|22|38|39 exhibits more risk yet reduces
response time violations by 50% relative to low-risk system 42|39
(barnes|radix). 68

3.5 Quality-of-service as we vary fractional shares of cores for top 5 ranked
outcomes. 69

3.6 Efficiency for top ranked outcomes of heterogeneous cores. The BIPS3/W-
maximizing core for each application may not occur in an outcome due
to application risk (AR) or may not be allocated to that application
due to contention risk (CR). 72

4.1 Piecewise-Uniform Utility. Utility increases with the number of indi-
visible resources. 82

4.2 Piecewise-Linear Utility. Utility is zero when given insufficient re-
sources. Utility does not increase beyond the resources required to
meet a performance target. 82

4.3 An example of violating Envy-Freeness with piecewise-Linear utility
functions. Max-min fairness for utilities is not EF; UA is higher with
XB. 84

4.4 Market Overview: Users report value derived from performance. Proxy
agents bid on behalf of users for computational resources. Market
clears and allocates hardware. 86

4.5 Query runtime is (a) highly correlated to the number of hits and (b)
increases with the number of search terms. 91

xii

4.6 Utility functions show that 1- and 2-term queries require significantly
fewer processors than 3- and >3-term queries. 97

4.7 Max allocations more efficiently use processors than the envy-free
mechanism, especially at high load. 99

4.8 Increasing the amount of envy in the system via the parameter ε im-
proves efficiency. 102

4.9 As ε-envy increases, resource allocations more closely approximate
those of the max mechanism. 103

4.10 Query arrival rate. 104

4.11 Max vs EF efficiency. 104

4.12 Market clearing and solve time for varying degrees of envy. 105

4.13 Allocations of heterogeneous resources. 109

xiii

Acknowledgements

It is appropriate for the word "fulfillment" to be on the cover of this dissertation,

as that is a word I would choose to describe my graduate school experience. Ver-

batim, the text on the cover reads: Dissertation submitted in partial fulfillment of

the requirements for the degree of Doctor of Philosophy in the Department of Com-

puter Science in the Graduate School of Duke University. Though its appearance in

that sentence is meant to describe this thesis as a requirement, my use of the word

fulfillment to describe my graduate school experience is to express gratification. Ful-

fillment of this degree is a realization of a challenge, where intellect and dedication

were both equally necessary to attain this goal. Many additional elements went

into this dissertation, one of which was key to make this experience fulfilling. That

is the element of human relationships, a combination of professional and personal

connections that I wish to acknowledge.

I want to thank my research advisor, Dr. Benjamin Lee, for having been a great

example of dedication. In the years that we have worked together, I have only seen

him make full, never partial, investments in projects and students. This is a great

trait, and I appreciate that I am one of the students that he invested in. I am also

thankful to Dr. Lee for the time, encouragement, challenges, and the freedom he

gave me in my work. Dr. Daniel Sorin contributed to my experience at Duke as the

voice of wisdom, and I am deeply grateful for his advice. He served as a much-needed

external opinion and it has elevated the quality of my work. I am also thankful to Dr.

xiv

Benjamin Lubin at Boston University for his enthusiasm and advice that helped me

pursue the research reflected in all of the chapters of this thesis. Also elemental to

this work has been Dr. Kevin Skadron at the University of Virginia, his mentorship

formed the foundation of my approach to research. Another mentor to whom I am

thankful is Dr. Thomas Schweiger, who ignited my curiosity in research before I even

considered attending graduate school.

My experience at Duke also benefited from the support and enthusiasm of my

colleagues. I am thankful for the tireless support provided by Dr. Blake Hechtman,

who believed in each of my ideas and my work long enough to convince me that they

were solid. I found a valuable friend and confidant in Luwa Matthews, to whom I am

particularly thankful to for having made this experience a memorable one. Qiuyun

Wang is another extraordinary friend and supporter, and I am thankful for each

time that she asked for my advice as it pushed my professional growth. I thank all

my labmates and friends at Duke for sharing the good times and the hard times

of graduate school. I am also grateful for my ongoing friendship with Dr. Chris

Gregg and Dr. Yousef Shaksheer, whose advice and solidarity have been unwavering

since the moment we met. Lastly, the most important element to my rewarding

experience in graduate school has been my family. Irene, Nelson, and Oscar are my

lifelong blessings; I am indebted to each of you for pushing me to maintain grace,

kindness, and passion throughout this journey.

xv

1

Introduction

Energy efficiency has typically been a concern for embedded systems that are con-

strained by battery life. Since the end of Dennard scaling, however, peak power has

become a primary constraint to the performance of general purpose systems [45].

Datacenters are warehouse-sized systems made up of hundreds of racks of servers.

They power numerous web services including internet search engines, remote data

storage, media streaming, and social networks. The compute load on datacenters

is rapidly growing due to the recent trend towards ubiquitous computing and cloud

services. This thesis aims to improve the energy efficiency of datacenters so that

more computation can be achieved within a fixed power envelope.

Datacenters have traditionally relied on Moore’s Law to increase compute ca-

pability across generations of processors. Given that improvements in single core

performance have reached a stand-still, datacenters can instead scale-out the num-

ber of servers and processors in the system. This option is unattractive as it increases

the power required by the datacenter. Recent studies have shown that datacenters

already dissipate a non-trivial amount of power. Datacenters consume approximately

1.5% of total United States energy, the equivalent of 5.8M households in 2006 [97].

1

Global datacenter energy usage increased by 2ˆ from 2000 to 2005, and an additional

1.6ˆ from 2005 to 2010 [51]. If we could halve cloud computing energy, we would

save the equivalent of the electricity consumption of the United Kingdom [42].

Recent work has shown that mobile technologies can be deployed in a datacenter

setting to service cloud applications. Mobile processors and memory technologies

have been optimized for power efficiency, whereas their server-class counterparts aim

to maximize peak performance. For this reason, mobile cores use a fraction of the

power of a server core, and are likely to degrade performance. Fortunately, the

reduction in power far outweighs the performance loss. For example, web search

can execute on Intel Atom cores that consume 1
10
th the power of Intel Xeon cores,

yet only incur a 3ˆ reduction in query throughput [84]. Mobile memory is another

opportunity for efficiency. Recent work has shown that LPDDR2 consumes 1
10
th

the power of DDR3 and reduces bandwidth by 2ˆ when executing web search [67].

The power savings will remain constant regardless of the application. The perfor-

mance degradation, however, varies based on the compute and memory intensity

of each application. There are applications where the performance degradation of

mobile technologies is trivial, yet there are also applications where the slow-downs

are unacceptable. For this reason, deploying mobile technologies as a substitute to

high-performance components is not a panacea.

Datacenters should be more energy efficient, yet application performance remains

the foremost design target. Performance targets are the most strict for latency-

sensitive applications, where the duration of each query has an impact on user ex-

perience. Web search is an example of this class of applications. A search engine

specifies a service level agreement (SLA) that states a latency target for P th per-

centile of its queries, where P ě 95%. A datacenter provides good service quality to

web search if P% of search queries are serviced within the latency target specified

by the SLA. If the datacenter cannot meet the SLA, the application reaps no benefit

2

and is at risk of losing its user base. In contrast, throughput applications benefit

from any cycles that a datacenter can provide. Even if this best-effort service is not

ideal, throughput applications will make forward progress. In this thesis, we focus

on datacenters that are designed to service latency-sensitive applications.

In this thesis, we demonstrate an alternative approach to increase the compute

capability of a datacenter within a fixed power budget. Mobile and server tech-

nologies can be deployed side-by-side in a single heterogeneous system. Designing

systems with heterogeneous components can qualitatively improve the energy effi-

ciency of datacenters. By tailoring hardware architectures to the application mix, a

datacenter can perform the same amount of work with less power, or it can service

more applications within the same power budget.

Along with the opportunity to build a more energy efficient system, however,

heterogeneity also introduces a challenge to resource management and design. Ap-

plications benefit from each of the heterogeneous resources in a unique way. A

resource manager must consider these preferences in order to provide good service

quality. Thus far, efforts to exploit the opportunity and address the challenge have

been uncoordinated. This separation exposes software to performance risk or leaves

hardware energy efficiency unexploited.

Coordinated design and management is crucial for the adoption of heterogeneity

in systems research. Prior work has been conservative in its treatment of hardware

diversity by studying modest heterogeneity across hardware generations [69, 76]. In

contrast, our work provides solutions to the challenge of managing and designing

datacenters that are heterogeneous by design. Aggressively heterogeneous systems

require robust resource management frameworks that avoid catastrophic allocations.

Without greater coordination between the design and management of heterogeneous

systems, there is a risk that datacenters become prohibitively complicated to manage,

or allocators may be ineffective for the most efficient forms of heterogeneity.

3

To address these challenges, we coordinate the design of heterogeneous architec-

tures with recent advances in multi-agent systems. In Chapter 2, we embed microar-

chitectural insight into a market mechanism that serves as a resource allocator. We

propose a novel approach to selecting heterogeneous processors in Chapter 3 from

a design space such that the performance uncertainty of the system is minimized.

In Chapter 4, we enforce fairness in the allocations produced by the market and

experimentally show that the reduction in throughput when fairness is guaranteed

is most significant when resources are scarce. Next, we describe the granularity of

heterogeneity that we consider throughout this work, and then detail each of the

three contributions listed above.

1.1 System-Level Heterogeneity

The driving force for datacenter resource heterogeneity is application diversity in the

cloud. But even though the various task streams are heterogeneous, the many tasks

within a stream are homogeneous. Further, any given stream typically has a volume

of tasks high enough to require several rack’s worth of computation. Given such

coarse-grained diversity, we envision heterogeneity deployed at the level of servers

(or racks thereof). Consequently, a datacenter need not deploy heterogeneous chip

multiprocessors (CMPs) since these CMPs will likely be allocated to serve a stream

of many, homogeneous tasks. Thus we propose to use system-level, and not core-

level, heterogeneity as the most effective way of deploying and managing diverse

processors.

System-level heterogeneity also grants architects the ability to deploy a heteroge-

neous mix of resources in a ratio that matches an expected mix of applications. For

example, a datacenter may prefer one big core for every two small cores. Achieving

a desired heterogeneous ratio across servers and racks using homogeneous CMPs is

easy. If instead we were to focus on fine-grained, intra-chip heterogeneity, the core

4

ratios would be pre-determined by CMP design decisions and as a consequence, likely

result in a poor match to the application mix.

Finally, system-level heterogeneity facilitates global datacenter resource manage-

ment. An allocator can assign resources to serve application tasks, precisely tuning

a heterogeneous allocation with its choice of servers and racks. On the other hand,

heterogeneous CMPs would be more difficult to manage. A system-wide allocator

would assign tasks to a particular node, yet the exact mapping of heterogeneous CMP

cores to tasks would be determined by a local scheduler. To ensure that performance

is determined by global managers, not local schedulers, we advocate system-level

heterogeneity.

1.2 Market Mechanism to Allocate Heterogeneous Processors

Determining an allocation of resources in response to application preferences and

system dynamics is difficult in the presence of heterogeneity. Heterogeneous system

design allows us to tailor resources to task mixes for efficiency. Yet specialization

increases performance risk and demands sophisticated resource allocation. To ensure

quality-of-service, we introduce a novel market in which proxies, acting on behalf of

applications, possess microarchitectural insight.

The market we deploy to manage heterogeneous processors builds on two prior

efforts. Chase et al. manage homogeneous servers by asking users to bid on perfor-

mance [19]. Lubin et al. extend this formulation with processor frequency scaling,

a novel modeling and bidding language, and a mixed integer program to clear the

market [66]. We start from the latter market, which assumes fungible processor cy-

cles, and extend it to account for architectural heterogeneity. For compute-bound

workloads, a cycle on a superscalar, out-of-order core is worth more than one from

an in-order core. How much more depends on the task’s instruction-level parallelism.

Memory-bound tasks, on the other hand, are indifferent to heterogeneous cycles. We

5

rely on profiling to capture this application-specific preference for processor type,

and embed the profiles into the market.

Given the market as a mechanism to match applications to resources, our exper-

iments show the efficiency trade-offs as we vary the types and number of processors

that populate the datacenter. We vary the mix of server- and mobile-class proces-

sors and find an optimal heterogeneous balance that improves welfare and reduces

energy. By increasing the heterogeneity in the system, we find that a combination

of three processor architectures reduces response time violations by 12ˆ relative to

a homogeneous system. The results in Chapter 2 demonstrate that an architect can

balance efficiency and risk at design-time, and the next chapter formalizes the design

decisions to identify strategies that are more likely to produce heterogeneous systems

that meet a service quality target.

1.3 Strategies for Heterogeneous Design

Designing heterogeneous systems is difficult. In fact, design methodologies from

prior work provide no insight into the performance of heterogeneity under real-world

conditions [54, 59]. Prior efforts tailor heterogeneity to diverse software by assuming

ideal scheduling and allocation. However, datacenters are large systems with complex

dynamics. It is likely, in fact almost inevitable, that an application will not execute

on its ideal hardware due to run-time effects, such as contention.

We propose a novel approach to datacenter design that aims for manageability,

accounting for the performance uncertainty and management risk introduced by het-

erogeneity. As an example of run-time risk, consider a datacenter equipped with two

resource types such as server and mobile processors. Due to resource availability, an

application ill suited to a mobile core may still be forced to use one, and as a result

incur a catastrophic slowdown. The penalties of a sub-optimal allocation increase

with hardware diversity. Consequently, run-time effects should influence design-time

6

decisions to mitigate this effect.

We need metrics to quantify manageability and to penalize extreme heterogeneity,

which may potentially provide high efficiency that is, in practice, difficult to attain.

We also need to understand disparate sources of management risk. A heterogeneous

system may perform poorly if hardware choices are tailored for other applications,

if hardware contention is severe, or if hardware mixes are not matched to software

arrival rates. To this end, Chapter 3 contributes a taxonomy of risk, and the evalu-

ation of design strategies uses quantitative metrics to compare the risk across many

heterogeneous designs.

1.4 Appraising Fairness in the Market

Compute resources in a datacenter are inevitably shared by a large number of users.

To ensure user happiness, datacenters must take a holistic view of performance and

fairness. The market mechanism described in Chapter 2 allocates resources to max-

imize efficiency, yet does not consider whether an allocation is fair. Performance

has been the primary objective, whether the manager is navigating heterogeneity

or mitigating contention in the shared datacenter. Beyond performance, however,

shared datacenters require new policies and mechanisms for fairness.

In Chapter 4, we present a new datacenter management mechanism that fairly

allocates processors to tasks with sophisticated performance objectives. Many def-

initions of fairness exist in systems and economics research. Rather than equate

fairness to equal slowdowns amongst applications in a shared system [75], we define

fairness in game-theoretic terms [99]:

An allocation is fair when each user weakly prefers her own allocation to that of every

other user. In other words, no user envies the allocation of another.

Envy-free systems encourage user participation in shared systems and can thus be

7

deemed fair.

The market allocates resources to latency-sensitive applications, and the novelty

of our approach is its ability to mitigate envy for users and tasks with strict perfor-

mance objectives. Prior efforts have examined fairness for throughput-oriented tasks

with simple Leontief utilities [36]. In contrast, we examine latency-sensitive tasks

with articulate piecewise-linear utilities. These expressive utility functions more ac-

curately represent realistic service-level agreements. In this setting, reducing envy

poses new challenges in resource allocation.

Envy-freeness is a strict definition of fairness, which inevitably has a price. If

a management mechanism neglects envy, it can optimize performance by searching

an unconstrained space of allocations. However, if the mechanism instead constrains

envy, efficiency falls. By comparing welfare-maximizing and envy-minimizing mech-

anisms, we find that the price of fairness is prohibitively high when a datacenter

system is highly loaded. For such settings, we present an alternative to envy-free

allocation – ε-envy-freeness, which is parameterized by the amount of envy permitted

in datacenter allocations. Our work also shows that the envy-free mechanism can

allocate heterogeneous resources by using the solution from Chapter 2 to express the

preferences of the applications to the market.

1.5 Key Contributions

This thesis presents design and management strategies for datacenters equipped with

heterogeneous processors. In Chapter 2 we allocate heterogeneous processors to

applications by embedding microarchitectural information into a market mechanism.

We demonstrate novel design strategies in Chapter 3 that are more likely to produce

manageable heterogeneous datacenters than traditional methodologies. In Chapter

4 we evaluate the trade-off between efficiency and fairness in allocations made by

a modified version of the market that restricts the amount of envy allowed in the

8

system. The key contributions of this thesis include:

• Processor Heterogeneity in the Datacenter. We define a novel design

space where heterogeneous processors are deployed in datacenters to increase

the compute capability of the system within a fixed power budget. (§2.1)

• Economic Mechanisms and Optimization. We allocate processors to ap-

plications with a market that navigates performance-efficiency trade-offs of

heterogeneity. (§2.2)

• Application to Big/Small Cores. We vary the number of server- and

mobile-class processors in a datacenter managed by the market mechanism.

Experimentally we observe that 30% of tasks incur response time violations in

homogeneous systems but not in heterogeneous ones that use the same power.

(§2.3)

• Application to Further Heterogeneity. Out of a larger design space that

varies frequency, superscalar width, and dynamic execution, we find that a

combination of three processor types reduces response time violations by 12ˆ

relative to a homogeneous baseline. (§2.4)

• Anticipating Risk in Heterogeneous Design. We consider resource man-

agement at design-time and ask whether a deployed heterogeneous system is

likely to meet design objectives using non-ideal resource allocation. (§3.1)

• Formalizing Heterogeneous Design Strategies. We construct a frame-

work of strategies for heterogeneous design, and propose strategies that mini-

mize performance uncertainty. (§3.2)

• Designing for Manageability. We explore tens of design strategies and rank

the resulting systems based on service quality. Risk-aware design accounts for

9

more than 70% of the top-ranked strategies. (§3.4)

• Incurring Risk to Increase Reward. We classify reasons for a deployed

system to deviate from expected efficiency, and find that aggressively heteroge-

neous systems exhibit more risk yet reduce violations of response time targets

by 50% compared to less diverse systems. (§3.5)

• Examine Fairness for Latency-Sensitive Tasks. We demonstrate that

prior algorithms for fair allocations do not support expressive piecewise-linear

utility functions, which are necessary to describe the performance targets of

latency-sensitive tasks. (§4.2)

• Introduce Fairness to Markets. We add constraints to a market mechanism

so that the resulting resource allocations are fair. (§4.2)

• Enforcing Fairness for Heterogeneous Tasks. We find that web search

queries have vastly different runtimes and can be classified upon arrival based

on the number of search terms. (§4.3)

• Quantifying the Price of Fairness. We observe that the efficiency of a

welfare-maximizing market is 1.5ˆ that of fair allocations, though we can im-

prove efficiency by parametrizing the amount of envy allowed in the system.

(§4.4)

• Extending Fairness to Heterogeneous Processors. We show that the

microarchitectural differences in heterogeneous processors can be embedded

into the market when the fairness constraints are present. (§4.5)

10

2

Market Mechanism to Allocate Heterogeneous
Processors

Datacenter energy efficiency can benefit from new system architectures and microar-

chitectures that are designed for energy-constrained systems. Recent research and

industry trends highlight opportunities for building servers with lightweight proces-

sors that were originally designed for mobile and embedded platforms [3, 88]. These

small cores are several times more energy-efficient than high performance processors.

However, lightweight cores have limited applicability. While memory- or IO-

intensive applications benefit from small core efficiency, the era of big data is intro-

ducing more sophisticated computation into datacenters. Tasks may launch complex

analytical or machine learning algorithms with strict targets for service quality [84].

To guarantee service, high-performance cores must continue to play a role. To this

end, heterogeneous datacenter servers can balance big core performance and small

core efficiency. This chapter is organized as follows:

• Processor Heterogeneity in the Datacenter (§2.1). We identify a new

design space where heterogeneous processor microarchitectures allow a datacen-

11

ter to combine the benefits of specialization with the performance guarantees

of traditional high-performance servers.

• Economic Mechanisms and Optimization (§2.2). We develop a market

that manages resources and navigates performance-efficiency trade-offs due to

microarchitectural heterogeneity. Inferring application preferences for hard-

ware, proxies compose bids on behalf of applications within the market. A

mixed integer program allocates resources to maximize welfare, which is user

value net datacenter cost.

• Application to Big/Small Cores (§2.3). We apply the economic mecha-

nism to explore a space of heterogeneous datacenters, varying the mix of server-

and mobile-class processors. We find an optimal heterogeneous balance that

improves welfare and reduces energy. Moreover, 30% of tasks incur response

time violations in homogeneous systems but not in heterogeneous ones.

• Application to Further Heterogeneity (§2.4). We further explore the mi-

croarchitectural design space and tailor processor cores to application mixes.

With processors that differ in pipeline depth, superscalar width, and in-order

versus out-of-order execution, we find that a combination of three processor

architectures can reduce response time violations by 12ˆ relative to a homo-

geneous system.

Thus, we present a management framework that allows datacenters to exploit the

efficiency of heterogeneous processors while mitigating its performance risk.

2.1 Heterogeneity – Principles and Strategies

The largest datacenters today are equipped with high-performance processors. De-

spite diversity due to process technology or generations, these cores all reside at the

12

high-performance end of the design spectrum. Thus, we refer to the processors in

state-of-the-art datacenters as homogeneous by design. While such homogeneity can

provide near-uniform performance, it also keeps datacenters from exploiting recent

advances in energy-efficient hardware. For example, small processor cores are far

more power efficient than conventional, high-performance ones. Since only certain

tasks are amenable to small core execution, big cores must also remain as guarantors

of service quality.

2.1.1 Heterogeneity as a Design Space

Server heterogeneity is efficient but requires sophisticated resource managers to bal-

ance performance risk and reward. This balance requires a novel type of design

space exploration to survey and appraise a variety of datacenter configurations. To

illustrate the challenge, Figure 2.1 depicts the design space for two core types: a high-

performance, server-class core and its low-power, mobile-class counterpart. Combi-

nations of these two processor types fall into three regions shown in the Venn dia-

gram. Two regions represent homogeneous configurations, where the datacenter is

comprised of only server or mobile cores. Heterogeneous mixes lie in the third region,

the intersection of the sets.

The colorbar shows the percentage of allocation intervals that suffered a quality-

of-service degradation for a pair of task streams; this data is collected through sim-

ulation with parameters found in §2.3. For the workloads in this experiment, the

two homogeneous configurations violate quality-of-service agreements at least 6% of

the time. 1 As some high-performance, power-hungry nodes are replaced by a larger

number of low-power processors, datacenter heterogeneity improves quality-of-service

and reduces the frequency of violations to ă 1%.

1 These are equal power datacenters, and there are more than five times more mobile than server
processors in the homogeneous configurations.

13

Indeed, ensuring service quality poses the greatest challenge to heterogeneity in

datacenters. Several design questions arise when we consider how to populate a

datacenter with diverse processor types. First, what are the right core types for a

given set of applications? In this work, we trade-off efficiency and performance by

considering two existing processors: the mobile-class Atom and the server-class Xeon

(§2.3). Additionally, we design and evaluate up to twelve cores that lie along the

efficiency-vs-performance spectrum (§2.4).

Second, how many of each processor type do we provision in the datacenter?

Using microarchitectural and datacenter simulation, we evaluate performance and

energy consumption for mixes of Xeons and Atoms, and mixes of the twelve cores.

Third and equally important is the resource management of heterogeneous com-

ponents. How do we allocate heterogeneous processing resources to diverse appli-

cations? It turns out that we cannot answer the first two questions without first

designing a solution to the third. A policy for matching applications to processing

resources is vital to ensuring quality-of-service guarantees for datacenter applications.

Our effort to differentiate preferences for heterogeneous cycles is driven by a

desire to exploit low-power cores when possible. Small cores are efficient but exact

a task-specific performance penalty. Thus, we encounter a tension between design

and management in heterogeneous systems. When designing for efficiency, we would

prefer to tailor processor mix to task mix. Each task would run only on the processor

that is most efficient for its computation, but datacenter dynamics preclude such

extreme heterogeneity and its brittle performance guarantees. In contrast, when

managing for performance, we would favor today’s homogeneous systems and suffer

their inefficiencies.

We strike a balance by moderating heterogeneity and increasing manager sophis-

tication. Using the market as a management mechanism, we explore types and ratios

of heterogeneous processors as a coordinated study of this novel design space. Balanc-

14

Low−powerHigh−performance

Heterogeneous

Homogeneous 0%

1%

2%

3%

4%

5%

6%

7%

8%

Figure 2.1: Venn diagram that illustrates a datacenter design space for low-power
and high-performance processors; the intersection harbors heterogeneous design op-
tions. Colored points depict QoS violations.

ing allocative efficiency loss against computational speed, our approach approximates

complex heterogeneous hardware allocations by simpler, canonical ones. Doing this

well requires microarchitectural insight that properly captures software preferences

for hardware. With such insight, the market can quickly trade-off performance and

efficiency across heterogeneous processors.

2.1.2 Accommodating Architectural Heterogeneity

Up to 5ˆ more efficient than big ones, small processor cores are increasingly pop-

ular for datacenter computation [84]. Small cores are well balanced for the modest

computational intensity of simple web search queries, distributed memory caching,

and key-value stores [3, 78, 84]. Such research in unconventional datacenter hard-

ware has spurred broader commercial interest [4, 25] and analogous research in other

technologies, such as DRAM [67, 106].

15

Performance variations across processor types are well-studied in architecture,

yet such detail is abstracted away in markets for systems. Since Sutherland’s market

for a shared PDP-1 [96], allocators have considered simple, exchangeable slots of

computer or network time. This limited model of the architecture has persisted

despite large strides in computational economies during the past two decades, most

notably by Waldspurger in 1992 [101], by Chase in 2001 [19], and Lubin in 2009 [66].

Simply counting cycles is insufficient when the value of each hardware cycle depends

on software-specific preferences.

The heterogeneity required for the largest efficiency gains demands sophisticated

architectural insight. For heterogeneous processors, performance differences depend

on computer architecture’s classical equation:

Tasks
Sec

“
Cycles
Sec

ˆ
Insts
Cycle

ˆ
Tasks
Inst

(2.1)

To scale Cycles
Sec , we must consider software compute-memory ratios and sensitivity

to processor frequency. To scale Insts
Cycle , we must consider software instruction-level

parallelism and its exploitation by hardware datapaths. And, if code is tuned or

re-compiled, we must also scale Tasks
Inst .

Heterogeneous Processors and Hard Constraints. Some processors may

be incapable of providing the desired service. By obtaining application performance

characteristics, a resource manager can account for machine restrictions. For exam-

ple, the manager might determine the suitability of small cores based on memory,

network, or I/O activity. The market uses profiling information to determine if an

application derives no value from certain processors. These hard restrictions are en-

forced by constraints when we clear the market by solving a mixed integer program.

Heterogeneous Cycles and Soft Constraints. Suppose a processor is suited

to execute a task. Then service rate and queueing delay are determined by core

microarchitecture. For compute-bound workloads, a cycle on a superscalar, out-of-

16

order core is worth more than one from an in-order core. How much more depends

on the task’s instruction-level parallelism. Memory-bound tasks are indifferent to

heterogeneous cycles.

To account for cycles that are not fungible, we introduce scaling factors that

translate task performance on heterogeneous cores into its performance on a canonical

one. Applications constrained by memory or I/O will not necessarily benefit from the

additional compute resources of a big, out-of-order core. On the other hand, a big

core might commit 3ˆ more instructions per cycle than a small core for applications

with high instruction-level parallelism.

We differentiate cycles from each core type with a vector of scaling factors, κ “

pκbig, κsmallq, that accounts for the application-specific performance variation of the

two core types. For example, an agent sets κ “ p1, 1
3
q for the application with high

ILP, and κ “ p1, 1q for the memory-intensive job.

To calculate scaling factors, we rely on application profiling data. In this thesis,

we assume that existing profilers provide this data (see §2.6 for a survey of related

work). Although more advances are needed, existing profilers are sophisticated and

allow us to focus on the allocation mechanism.

2.2 The Market Mechanism

To ensure quality-of-service, we introduce a novel market in which proxies, acting

on behalf of applications, possess microarchitectural insight. Heterogeneous system

design allows us to tailor resources to task mixes for efficiency. Yet specialization

increases performance risk and demands sophisticated resource allocation. In this

work, we balance efficiency and risk by identifying datacenter designs that provide

robust performance guarantees within the market framework.

We present a market for heterogeneous processors that builds on two prior efforts.

Chase et al. manage homogeneous servers by asking users to bid on performance [19].

17

Market

(Datacenter Manager)

ProcW (CostW)

ProcX (CostX)

ProcY (CostY)

ProcZ (CostZ)

B
id

s
(P

ro
x

y
)

A
sk

s (D
a

ta
ce

n
te

r)

(ActivityA, ValueA) AppA

(ActivityB, ValueB) AppB

(ActivityC, ValueC) AppC

(ActivityD, ValueD) AppD

Figure 2.2: Market Overview.

Lubin et al. extend this formulation with processor frequency scaling, a novel model-

ing and bidding language, and a mixed integer program to clear the market [66]. We

start from the latter market, which assumes fungible processor cycles, and extend it

to account for architectural heterogeneity.

Figure 4.4 illustrates such market mechanism with three operations:: (i) hardware

performance is evaluated to calculate bids for each user application (buyer proxy), (ii)

hardware efficiency is used to calculate costs (seller proxy), (iii) a welfare maximizing

allocation is found (mixed integer program).

This approach has several advantages in our setting with non-fungible cycles.

First, proxies are made to account for performance variation across heterogeneous

cycles based on instruction-level parallelism in the datapath. Second, proxies will bid

for complex, heterogeneous combinations of cores, while hiding the complexity of the

heterogeneous hardware from users who are ill-equipped to reason about it. Lastly,

an optimizer maximizes welfare according to the submitted bids when clearing the

market and allocating resources.

18

Figure 2.3: Proxy Bids

2.2.1 Proxies and Value Analysis

In this chapter, we present extensions for our novel setting, embedding greater hard-

ware insight into the market. Buyers are task streams with diverse requirements and

valuations. Sellers are datacenters with processors that differ in performance and

energy efficiency. Proxies infer hardware preferences and bid for candidate hardware

allocations. Figure 2.3 summarizes the role of the proxy.

Resource allocations are optimized periodically. Prior to each period, each appli-

cation’s proxy anticipates task arrivals and estimates the value of candidate hardware

assignments. The bidding process has several steps: (i) estimate task arrival distri-

bution, (ii) estimate task service rates, (iii) estimate task latency, and (iv) translate

latency into bid.

Estimate Task Arrival Distribution. At the start of an allocation period t,

the proxy has historical task arrival rates for h prior periods: λH “ pλt´1, . . . , λt´hq.

To estimate the current period’s rate λt, the proxy fits a Gaussian distribution to the

19

history and estimates task arrival rate by sampling from NpErλHs, V arpλHqq. Thus,

we drive the market with a predicted distribution of arrivals as in prior work [66].

Estimate Task Service Rate. To serve these arriving tasks, an optimizer

searches an allocation space of heterogeneous cores. Prior efforts assume fungible

processor cycles [19, 66], an assumption that breaks under microarchitectural het-

erogeneity. In contrast, we scale each candidate allocation into a canonical one based

on application-architecture interactions.

Suppose we have n core types. Let q “ pq1, . . . , qnq denote a heterogeneous allo-

cation of those cores and let κ “ pκ1, . . . , κnq denote their task-specific performance

relative to a canonical core. Let Q denote an equivalent, homogeneous allocation

of canonical cores. Finally, P denotes task performance (i.e., throughput) on the

canonical core. In this notation, the canonical allocation is Q “ κT q, which provides

task service rate µ “ PQ.

The system can determine P and κ with little effect on performance. The proxy

profiles a new task on the canonical core to determine P and initializes κi “ 1, iPr1, ns

to reflect initial indifference to heterogeneity. As allocations are made and as tasks

are run, the proxies accrue insight and update κ. In steady state, κ will reflect task

preferences for hardware. With many tasks, sub-optimal hardware allocations to a

few tasks for the sake of profiling have no appreciable impact on latency percentiles.

Estimate Task Latency. Service rate determines task latency. Agents estimate

M/M/1 queueing effects, which is sufficiently accurate in our setting because the

coefficients of variation for inter-arrival and service times are low; see §2.5 for details.

We estimate latency percentiles with Equation (2.2) and use the 95th percentile as

the figure of merit, p “ 0.95.

p-th latency percentile | T “ ´lnp1´ pq{pµ´ λq (2.2)

service rate inflections | µ̂t “ λt ´ lnp1´ pq{T̂ (2.3)

20

Translate Latency into Bid. Latency determines user value. To faithfully

represent their users, proxies must create a chain of relationships between hardware

allocation, service rate, response time, and dollar value (Equations (2.4)–(2.6)).

datacenter profiler | Pa : thwau Ñ tservice rateu (2.4)

datacenter queues | T : tservice rateu Ñ tlatencyu (2.5)

user value | V : tlatencyu Ñ tdollarsu (2.6)

market welfare | W “
ÿ

aPA

´

V ˝T ˝Paphwaq
¯

´Cphwq (2.7)

E “
`

naP act
` niP idle

` nsP sleep
˘

∆
looooooooooooooooooomooooooooooooooooooon

no power transition

` nis
`

P idleδis ` P sleep
p∆´ δisq

˘

loooooooooooooooooomoooooooooooooooooon

idleÑsleep

` nsa
`

P actδsa ` P act
p∆´ δsaq

˘

loooooooooooooooooomoooooooooooooooooon

sleepÑactive

(2.8)

A profile Pa maps proxy a’s hardware allocation to an application-specific service

rate. A queueing model T maps service rate to latency. Finally, the user provides

a value function V, mapping latency to dollars. Note that only V requires explicit

user input.

These functions are composed when proxy a bids for a candidate hardware al-

location: V ˝ T ˝ Paphwaq. To compose V ˝ T, the proxy identifies inflections in

the piecewise-linear value function V. Then, the proxy translates each inflection in

time T̂ into an inflection in service rate µ̂ by inverting the queueing time equation

(Equation (2.3)). Thus, service rate maps to dollar value. Note that service rate

inflections depend on the arrival rate λt of tasks. To accommodate load changes, the

21

proxy determines new inflection points for each period.

2.2.2 Seller Cost Analysis

For an accurate estimate of electricity use, the market requires information about

server and processor power modes from the datacenter [71, 72]. For example, we

model server power modes as three possible states: active, idle (but in an active

power mode), and sleep.

In Equation (2.8), the datacenter accounts for the number of servers (n˚) in each

mode and power (P ˚) dissipated over the allocation time period (∆) [66]. Servers

that transition between modes incur a latency (δ˚). For example, a server that

enters a sleep mode will dissipate P idle over δis as it transitions and dissipate P sleep

for the remaining ∆ ´ δis. Similarly, a server that wakes from sleep will require δsa

during which P act is dissipated but no useful work is done. Energy is multiplied by

datacenter power usage effectiveness (PUE) and then by electricity costs [8].

2.2.3 Welfare Optimization

Proxies submit complex bids for candidate hardware allocations on behalf of users.

Sellers submit machine profiles and their cost structure. The market then allocates

processor cores to maximize welfare, or buyer value minus seller cost (Equation

(2.7)). Welfare optimization is formulated as a mixed integer program (MIP), which

determines the number and type of cores each user receives. For MIP details, see

Lubin’s formulation [66]. Allocations are optimized at core granularity but each core

is ultimately mapped to processors and servers in post-processing. For example,

active and sleeping cores cannot map to the same server if machines implement

server-level sleep modes.

Heterogeneity increases optimization difficulty. In a naïve approach, value is a

multi-dimensional function of heterogeneous quantities q “ pq1, . . . , qnq. However,

22

Table 2.1: Architecture parameters for
Xeons and Atoms [34, 35, 48].

Xeon Atom
Number of Nodes 0´ 160 0´ 225
Number of Cores 4 16
Frequency 2.5 GHz 1.6 GHz
Pipeline 14 stages 16 stages
Superscalar 4 inst issue 2 inst issue
Execution out-of-order in-order
L1 I/D Cache 32/32KB 32/24KB
L2 Cache 12MB, 24-way 4MB, 8-way

Table 2.2: Power modes and parameters
for Xeons and Atoms [84].

Xeon Atom
Core sleep 0 W
Core idle 7.8 W 0.8 W
Core active 15.6 W 1.6 W
Platform sleep 25 W
Platform idle 65 W
Platform active 65 W
SleepÑ Active 8 secs, $0.05
ActiveÑ Sleep 6 secs, $0.05

the proxies would need to construct piecewise approximations for multi-dimensional

bids, which is increasingly difficult as n grows. Each new core type would add a

dimension to the problem.

Scaling to a canonical resource type improves tractability by imposing an ab-

straction between user proxies and datacenter hardware. By encapsulating this com-

plexity, the proxy determines the relative performance of heterogeneous quantities

κ “ pκ1, . . . , κnq and computes Q “ κT q. Bids for Q are one-dimensional.

2.3 Managing Heterogeneous Processors

For a heterogeneous datacenter with big Xeon and small Atom cores, we exercise

three key aspects of the economic mechanism. First, heterogeneous microarchitec-

tures are well represented by Xeons and Atoms. Cycles from in-order and out-of-order

datapaths are not fungible. Second, heterogeneous tasks contend for these cycles

with different preferences and valuations. Third, large processor power differences

are representative of trends in heterogeneity and specialization.

2.3.1 Experimental Setup

Our evaluation uses an in-house datacenter simulator. A proxy predicts demand from

history, predicts latency using a closed-form response time model, and constructs a

bid. The framework then clears the market, identifying welfare-maximizing alloca-

tions by invoking CPLEX to solve a MIP. The MIP solution is an allocation for the

23

Table 2.3: Characteristics of the processor sensitive (PS) and insensitive (PS)
applications. For a task stream, T is 95th percentile queueing time.

Processor Sensitive (PS) Processor Insensitive (PS)
P – task profile 70 50
(Mcycles/task)
λ – peak load 1000 500
(Ktasks/min)
V – value $5000 if Tď10ms $4500 if Tď10ms
($/month) $0 if Tě80ms $0 if Tě80ms
κ – scaling factor κX “ 1.0 κX “ 1.0

κA “ 0.33 κA “ 1.0

0 200 400 600 800 1000
0

2

4

6

8
x 10

14

Simulation Time (10 min intervals)

L
o

a
d

 p
e
r

P
e
ri

o
d

 (
c
y
c
le

s
/p

e
ri

o
d

)

Total
PS

¬PS

Figure 2.4: Demand for processor sensitive (PS) and insensitive (PS) applica-
tions.

next 10-minute interval. For this interval, the simulator uses response time models,

cost models, application demand, and the allocation to compute value produced and

energy consumed. The simulator does exactly what a real cluster manager would do,

providing hints at future prototype performance. The simulator does not perform

per-task microarchitectural simulation, which is prohibitively expensive.

Tables 2.1–2.2 summarize platform parameters. The hypothetical sixteen-core

Atom integrates many cores per chip to balance the server organization and amortize

platform components (e.g., motherboard, memory) over more compute resources

[84, 88]. Xeon core power is 10ˆ Atom core power. Servers transition from active to

sleep mode in 6 secs and from sleep to active in 8 secs, powering off everything but

24

(a) Transition Cost (b) Energy
Figure 2.5: Seller costs due to (a) energy and (b) transition penalty, as the ratio
of Atom:Xeon processors varies. Energy cost corresponds closely to application be-
havior across datacenter configurations. Ridges in transition cost are due to a $0.05
penalty per transition that accounts for increased system wear-out [38].

the memory and network interface [1, 32]. Power usage effectiveness (PUE) for the

datacenter is 1.6, an average of industry standards [29, 97]. Energy costs are $0.07

per kWh, an average of surveyed energy costs from prior work [83].

We explore a range of heterogeneous configurations, varying the ratio of Xeons

and Atoms. The initial system has 160 Xeon servers, a number determined experi-

mentally to accommodate the load of the evaluated applications. We sweep the Atom

to Xeon ratio by progressively replacing a Xeon with the number of Atom servers

that fit within a Xeon power budget. A 20kW datacenter accommodates 160 Xeons,

225 Atoms, or some combination thereof.

Workloads. We study tasks that are generated to follow a time series, which

is detailed in Table 2.3 and illustrated in Figure 2.4. We simulate a week of task

load that is a composite of two sinusoids, one with a week-long period and one with

a day-long period. The sinusoid determines the average arrival rate around which

we specify a Gaussian distribution to reflect load randomness. Such patterns are

representative of real-world web services [72].

25

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

10 Minute Interval

9
5

th
 P

e
rc

e
n

ti
le

 W
a

it
 T

im
e
 (

m
s
)

PS

¬PS

(a) 0 Atoms::160 Xeons

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

10 Minute Interval

9
5
th

 P
e
rc

e
n

ti
le

 W
a
it

 T
im

e
 (

m
s
)

PS

¬PS

(b) 147 Atoms::55 Xeons

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

10 Minute Interval

9
5
th

 P
e
rc

e
n

ti
le

 W
a
it

 T
im

e
 (

m
s
)

PS

¬PS

(c) 225 Atoms::0 Xeons
Figure 2.6: 95th percentile waiting time for (a) only Xeons, (b) mix of Atoms and
Xeons, and (c) only Atoms. Heterogeneous system (b) violates performance targets
less often than homogeneous configurations (a), (c).

26

Applications specify value (SLA) as a function of 95th percentile response time.

Value degrades linearly up to a cut-off of 80ms, after which computation has no

value. The value functions express priorities for applications. Since the market

maximizes welfare, users with higher value per requested cycle are more likely to

receive hardware. The economic mechanism does not accommodate under-bidding

and valuations must at least cover the cost of computation.

2.3.2 Architectural Preferences

We consider two workloads that contend for Xeons and Atom servers, yet value the

cores differently. The first is a processor sensitive (PS) application that prefers cycles

from the high-throughput Xeon and values an Atom cycle less, scaling its value down

by κ “ 1
3
. The second, on the other hand, is a processor insensitive (PS) application

indifferent between the two processor types.

The architecture scaling factors κ are consistent with prior datacenter workload

characterizations. Reddi et al. find Inst
Cycle on Atom is 33% of that on Xeon for

Microsoft Bing web search [84]. Lim et al. find performance on the mobile-class

Intel Core 2 Turion is 34% of that on the Intel Xeon [64]. These applications exhibit

instruction-level parallelism, which benefits from wider pipelines and out-of-order

execution in server-class cores: κX “ 1, κA “
1
3
.

In contrast, PS does not benefit from extra capabilities in server-class processors

and is representative of web, file, or database servers [26, 50]. Andersen et al. propose

embedded processors for distributed key-value store servers [3]. Servers that deliver

Youtube-like traffic can run on small cores with negligible performance penalties [64].

Higher processor performance does not benefit such workloads. PS applications are

indifferent to Xeons and Atoms: κX “ κA “ 1.

27

(a) Xeon Allocation for PS (b) Xeon Allocation for PS

(c) Xeon Sleep (d) Atom Allocation for PS

(e) Atom Allocation for PS (f) Atom Sleep

Figure 2.7: Allocation measured in fraction of configured nodes as Atom:Xeon
ratio varies. For example, a 50% Atom allocation in a A:X=168:40 configuration
maps to 84 Atom nodes. Atom and Xeon cores at each datacenter configuration may
be allocated to the processor sensitive (PS), processor insensitive (PS), or neither
(sleep) application.

28

2.3.3 Improving Welfare

A heterogeneous mix of Xeons and Atoms enhances welfare. To understand this

advantage, we study homogeneity’s limitations on both sides of the ledger: value

and cost.

Value. A Xeon-only system provides less value because it cannot meet perfor-

mance targets during traffic spikes. Users derive no value when latencies violate the

target (waiting time ď 80ms), which happens in more than a third of the allocation

periods. Periods of low welfare arise directly from periods of poor service quality; in

Figure 2.6a see periods 130-380.

As we replace Xeons with Atoms, we increase system capacity within the 20kW

budget. Each four-core Xeon server can be replaced by 1.4 sixteen-core Atom servers.

Equivalently, each Xeon core is replaced by 5.6 Atom cores. And if we account for

the frequency difference, each Xeon cycle is replaced by 3.6 Atom cycles. This extra

capacity enhances value and welfare during traffic peaks even after scaling down core

capability by κ.

Moreover, applications successfully bid for preferred architectures. As Xeons

become scarce, PS receives more of its preferred Xeons at the expense of PS, which

is indifferent between Xeons and Atoms. As Xeons are replaced by Atoms, Figure

2.7a shows the market allocating a larger fraction of the remaining Xeons to PS

thus improving its response time. Simultaneously, Figure 2.7b shows the market

allocating fewer Xeons to PS.

Cost. On the other side of the ledger, energy costs degrade welfare. Cores incur

transition costs when they change power modes. During a transition, cores dissipate

power but do not add value. As shown in Figure 2.5a, a charge is imposed for

every transition to account for increased wear and reduced mean-time-to-failure as

machines power-cycle [38].

29

Per server, Xeons and Atoms incur the same transition cost. Yet the Atom-

only system incurs larger transition costs than alternate systems as it manages more

servers. Since an Atom system contributes fewer cycles and less value than a Xeon

server, such costs reduce allocation responsiveness. This inertia of the Atom-only

system causes a response time spike at the first load peak (period 200) but not the

second (Figure 2.6c).

2.3.4 Balancing Atoms and Xeons

Number of Atoms. Given a mix of applications and hardware preferences, there

exists a maximum number of Atoms that can be usefully substituted into the system.

Beyond this number, additional Atoms are not useful to either application, leaving

the absolute number of allocated Atoms unchanged.

In our datacenter, the maximum number of useful Atom servers is 147. This

maximum marks a point of diminishing marginal returns for substituting Atoms.

Beyond this point, additional Atoms are put to sleep (Figure 2.7f) and the fraction of

Atoms allocated to PS and PS decline (Figure 2.7d and Figure 2.7e, respectively).

In fact, adding Atoms beyond this point can harm welfare as transition costs are

incurred to turn them off. This cost produces the highest ridge of Figure 2.5a, where

spare Atom servers are transitioned to sleep.

Number of Xeons. A related conclusion can be made for Xeons: there exists a

minimum number of Xeons necessary to provide the PS application adequate perfor-

mance. Beyond this point, as Atoms are added and Xeons are removed, the number

of Xeons available to be allocated to PS steadily decreases – Atoms are used for part

of the processor-sensitive computation (Figure 2.7a and Figure 2.7d, respectively),

decreasing performance. As we replace most of the Xeons in the system with Atoms,

the few Xeons remaining in the system are either allocated to PS or put to sleep

during PS activity troughs (Figure 2.7a and Figure 2.7c, respectively). Clearly, as

30

they become scarce, the remaining Xeons are increasingly precious to PS.

Based on this, our datacenter should have at least 55 Xeon servers. This mini-

mum marks a point of increasing marginal penalties incurred when removing Xeons.

Strikingly, this minimum occurs in a heterogeneous configuration with 55 Xeons and

147 Atoms, which coincides with our analysis for the maximum number of Atoms.

Max/Min Heterogeneity. We refer to this balance of 147 Atom and 55 Xeon

servers as the max/min configuration for the datacenter. This heterogeneous config-

uration provides better service quality and fewer SLA violations. As seen in Figure

2.6b, this mix of Xeons and Atoms provide queueing times that are stable and far

below the 80ms cut-off.

For contrast, consider Figure 2.6a and Figure 2.6c. 38% and 19% of allocation

periods violate the 80ms cut-off for PS queueing time in Xeon- and Atom-only sys-

tems, respectively. In the Xeon-only system, PS suffers longer waiting times due

to contention with PS for limited computational capacity. In the Atom-only system,

 PS experiences volatile waiting times during time periods 147-217.

Thus, by replacing Xeon with Atom nodes within a fixed power budget, the mixed

configurations increase the system’s computational capacity. This clear benefit of

specialization will play an important role towards sustaining the rapidly growing

demand on datacenters.

2.3.5 Saving Energy

The allocation mechanism activates servers only in response to demand. The data-

center saves energy by putting unneeded servers to sleep. As shown in Figure 2.8, a

homogeneous Xeon-only datacenter saves 900kWh over a week of simulated time.

When Atoms are first introduced, cycles become scarce and fewer servers exploit

sleep modes; the datacenter saves only 600kWh. Note, however, that the heteroge-

neous datacenter saves this energy while simultaneously improving service quality

31

0:160 56:120 112:80 168:40 225:0
600

700

800

900

1000

1100

1200

1300

E
n

e
rg

y
 S

a
v
e

d
 (

k
W

h
)

Atom:Xeon Ratio

Figure 2.8: Energy saved from sleep
modes.

0 2 4 6 8 10
0

0.25

0.5

0.75

1

Solve Time (sec)

Atom
Max/min
Xeon

Figure 2.9: Solve time CDF across all
periods.

(Figure 2.6). Energy savings from server activation plateau at 1200kWh for most

heterogeneous systems, including the max/min configuration. While an Atom-only

system could save up to 1280kWh, it would sacrifice service quality and violate per-

formance targets during the PS activity trough.

Datacenters may prefer to schedule low-priority batch jobs rather than exploit

sleep states [9]. Presumably, the value of batch computation exceeds servers’ oper-

ating and amortized capital costs. Spot prices for Amazon EC2 are one measure of

these costs. Given batch jobs with sufficient value, a policy that replaces sleep modes

with active batch computing will only increase welfare.

Even in such datacenters, heterogeneity improves efficiency. A mix of active

Xeons and Atoms consumes less energy (Figure 2.5b). The max/min configuration

consumes 4.0kWh per allocation period. In contrast, the Xeon-only system consumes

5.4kWh yet exhibits more volatile service quality.

2.3.6 Evaluating Optimization Time

Given that the market and proxy implementation include all the elements required in

a real system, market clearing performance is important. Across allocation periods

32

in all datacenter configurations, solve time (wall clock) varies but is less than 800ms

for 98% of allocation periods. All other periods clear the market in less than 10s as

shown in Figure 4.12. Solve time increases when resources are scarce and contention

is high. And contention is highest in a Xeon-only system, which provides the worst

service quality.

We implement the market and proxy in Java as it would be in a real distributed

system. Inputs are task arrival history and user value functions. Outputs are resource

allocations, which maximize welfare. Welfare is optimized with a mixed integer

program, which is quickly solved to exact optimality by commercial CPLEX 12.1

MIP solver codes despite the formally NP-Hard nature of the problem.

We obtain this computational speed by representing heterogeneous resources as

scaled canonical ones, and thus keeping the MIP tractable. Further, in our MIP

formulation the task arrival rate and the number of servers in the system simply

affect coefficients, not MIP computational complexity. However, the number of user

applications and heterogeneous resource types does impact MIP complexity, and

for sufficiently complex data centers it is possible that CPLEX might solve only to

approximate optimality within time allotted for computation. Fortunately, previous

work has shown that such approximate solutions are efficient with high probability

[66].

2.3.7 Assessing Demand Prediction

Although adding mobile-class Atoms to the datacenter improves PS waiting time,

the queuing time for PS suffers during time periods 165-185 across all mixes of

Xeon and Atom cores. Figure 2.6 illustrates the response time spike. These intervals

correspond to a trough in PS load. Demand is particularly difficult to predict in

this trough.

33

0 2 4 6 8 10

x 10
6

0

2

4

6

8

10

x 10
6

Actual Demand (requests/period)P
re

d
ic

te
d

 D
e

m
a

n
d

 (
re

q
u

e
s
ts

/p
e

ri
o

d
)

(a) Relative Error

0−25% 25%−50%50%−75%75%−max
0

20

40

60

80

100

P
e

rc
e

n
t

E
rr

o
r

(b) Processor Sensitive Application
0−25% 25%−50%50%−75%75%−max

0

20

40

60

80

100

P
e

rc
e

n
t

E
rr

o
r

(c) Processor Insensitive Application

Figure 2.10: Prediction error in demand: (a) relative error, (b,c) percent error for
each application at different quartiles of total load. Using 6 time periods of load
traffic history, the predictions are sufficiently accurate.

Figure 2.10a indicates that predicted demand is strongly correlated with actual

demand. However, if we consider prediction error broken into demand quartiles, we

find errors are larger at low levels of demand. This effect is most noticeable for PS.

At lowest quartile of load, Figure 2.10c indicates that prediction errors for PS can

be as high as 90%. Figure 2.10b indicates PS prediction error follows a similar trend,

yet the errors are not nearly as large as those for PS. Thus, we attribute the ridge

in PS waiting time to prediction error during time periods 165-185.

34

Table 2.4: Parameters for the twelve cores
simulated in gem5.

Out-of-order InOrder
Clock 1.0GHz 2.4GHz 1.0 2.4
Width 2 6 8 1 2 4
ROB 192 320 342 –
RF 80 120 160 –
L1 I-$ 64 KB 4-way 32 KB 4-way
L1 D-$ 64 KB 4-way 32 KB 4-way
L2 $ 4 MB 8-way 1 MB 8-way

Table 2.5: Area and power estimates for
four core types.

io1w10 io1w24 io4w24 oo6w24
Num 18 18 12 6
Area (mm2)
Core 12.31 12.31 17.31 36.89
Die ă 225

Power (W)
Core 1.10 2.63 8.40 28.10
Sys 65.00
Tot 85 114 168 235

Table 2.6: Characteristics for the task streams made of two applications from SPEC
CPU 2006, libquantum and lbm.

libq lbm
P – task profile (Mcycles/task) 67 149
λ – peak load (Ktasks/min) 480 80
V – value ($/month)

if Tď20ms $5000 $2500
if Tě160ms $0 $0

κ – scaling factor
κio1w10 0.50 1.45
κio1w24 0.40 1.09
κio4w24 0.56 1.26
κoo6w24 1.00 1.00

2.4 Increased Processor Heterogeneity

Increasing processor diversity allows for tailoring datacenter resources to the appli-

cation mix. In this section we investigate the design space of sets of diverse processor

types, when the goal is to obtain an effective mix within a datacenter. To do so, we

cluster processor/core designs and identify representative individuals. We then study

combinations of these cores for datacenters that span a spectrum of heterogeneity.

2.4.1 Experimental Setup

Atom efficiency is derived from three key design elements: static instruction schedul-

ing, narrower issue width, and lower frequency. We define a space around these

elements, producing twelve designs with parameters in Table 2.4. We simulate these

designs with the gem5 cycle-accurate simulator in syscall emulation mode [12].

For this experiment, we consider the preferences of SPEC CPU2006 applications

35

on heterogeneous processors. These benchmarks are sensitive to processor choice,

and we study the opportunity of using low-power cores even for applications with

high instruction-level parallelism. We simulate 100M instructions from gobmk, hm-

mer, h264ref, mcf, libquantum, bzip2, sjeng, gcc, xalancbmk, milc, gromacs, namd,

calculix, deallII, soplex, and lbm. Applications are cross-compiled into ALPHA with

level -O2 optimizations.

These architectures and applications offer a wide range of performance scaling

factors for evaluating heterogeneity. The market allocates resources for streams of

computational tasks. We define a stream for each SPEC application with service-level

agreements defined in Table 2.6, which shares parameters from §2.3 where possible.

2.4.2 Architectural Preferences

Only a subset of the twelve cores is necessary to reap the efficiency of heterogeneity.

To identify this subset, we cluster cores with similar performance for the application

suite. For each core, we define an n-element vector specifing its performance for n

applications. We cluster these vectors with multi-dimensional, hierarchical clustering

[82]. In this formulation, each application adds a dimension. Hierarchical clustering

constructs a dendrogram that quantifies similarity using Euclidean distance. By

examining this tree at different levels, we choose results for a particular number of

clusters k.

Figure 2.11b shows k “ 4 clusters. The twelve original cores are ordered by

increasing power on the x-axis. For each core, we plot the performance for various

applications. Across the application suite, cores in the same cluster provide similar

performance. From each cluster, we select the core with the lowest variation in per-

formance (Table 2.5). We refer to cores with the tuple: [IO/OO][width][frequency].

For example, io1w10 denotes a 1-wide, in-order core with a 1.0GHz clock.

36

0

0.5

1

1.5

2

2.5

3

IP
C

 S
c

a
li

n
g

 F
a

c
to

rs
 (

re
la

ti
v

e
 t

o
 o

o
8

w
2

4
)

io
1w

10

io
2w

10

io
1w

24

io
4w

10

io
2w

24

oo2w
10

io
4w

24

oo2w
24

oo6w
10

oo8w
10

oo6w
24

oo8w
24

libq lbm SPEC average

(a) IPC scaling factors

0.5

1

1.5

2

2.5

3

3.5

4

B
IP

S

io
1
w
1
0

io
2
w
1
0

io
1
w
2
4

io
4
w
1
0

io
2
w
2
4

o
o
2
w
1
0

io
4
w
2
4

o
o
2
w
2
4

o
o
6
w
1
0

o
o
8
w
1
0

o
o
6
w
2
4

o
o
8
w
2
4

1 2 3 4

(b) Core clustering k=4

Figure 2.11: gem5 simulation results, cores on the horizontal axis are in order of
increasing peak dynamic power.

We organize these cores into servers that use equal-area processors; area and

power are estimated with McPAT models [61], and calibrated to real Xeon and

Atom measurements. We normalize silicon area since it is the primary determinant

of a processor’s marginal cost. We align server power with estimates from related

work [84].

Finally, we determine the number of servers that fit in a 15KW datacenter. We

explore a mix of heterogeneous processors and servers. Because a full sweep of

heterogeneous combinations is prohibitively expensive for more than two core types,

we simulate datacenters comprised of 1
4
, 1
2
, 3
4
, or entirely of each core type within the

power budget.

2.4.3 Improving Service Quality

Increased processor diversity benefits service quality. Figure 2.12 compares the num-

ber of allocation periods where response time exceeds target cutoffs on each data-

center configuration, which are ordered by increasing computational capacity on the

37

0

200

400

600

800

N
u

m
 R

T
 V

io
la

ti
o

n
s

(A
)0

.0
.0

.6
4

(F
)0

.0
.2

2.
48

(F
)0

.0
.4

5.
32

(E
)0

.3
3.

0.
48

(F
)0

.0
.6

7.
16

(L
)0

.3
3.

22
.3

2

(J
)4

4.
0.

0.
48

(B
)0

.0
.9

0.
0

(L
)0

.3
3.

45
.1

6

(N
)4

4.
0.

22
.3

2

(E
)0

.6
6.

0.
32

(G
)0

.3
3.

67
.0

(N
)4

4.
0.

45
.1

6

(L
)0

.6
6.

22
.1

6

(K
)4

4.
33

.0
.3

2

(I)
44

.0
.6

7.
0

(G
)0

.6
6.

45
.0

(O
)4

4.
33

.2
2.

16

(J
)8

9.
0.

0.
32

(E
)0

.9
9.

0.
16

(M
)4

4.
33

.4
5.

0

(N
)8

9.
0.

22
.1

6

(G
)0

.9
9.

22
.0

(K
)4

4.
66

.0
.1

6

(I)
89

.0
.4

5.
0

(M
)4

4.
66

.2
2.

0

(K
)8

9.
33

.0
.1

6

(C
)0

.1
32

.0
.0

(M
)8

9.
33

.2
2.

0

(J
)1

34
.0

.0
.1

6

(H
)4

4.
99

.0
.0

(I)
13

4.
0.

22
.0

(H
)8

9.
66

.0
.0

(H
)1

34
.3

3.
0.

0

(D
)1

79
.0

.0
.0

libq
lbm

Figure 2.12: Number of 95th percentile waiting time violations. The horizontal
axis indicates the number of servers of each of the four core types: io1w10, io1w24,
io4w24, and oo6w24, in that order. Prepended letters mark the corresponding region
in Figure 2.13.

oo6w24

io4w24 io1w24

io1w10

A

B C

D

E

F

G

H

I

J

K

L M

N

O

2%

4%

6%

8%

10%

12%

14%

16%

18%

Figure 2.13: Sum of libq and lbm waiting time violations, shown on a Venn dia-
gram.

x-axis. Data is shown for libquantum and lbm, which are representative of diversity

in the broader application suite (Figure 2.11a).

As in the Xeon and Atom case, a homogeneous system that uses the highest

performing core provides the fewest number of these cores within a limited power

budget. In fact, homogeneous systems of any core type violate performance targets

for 20% or more of the allocation periods.

Replacing the oo6w24 core with io*w** cores produces a configuration with

strictly more compute cycles available per unit time. However, these cycles do not

38

necessarily translate into better performance. Cycles are scaled by diverse factors

that reflect heterogeneous preferences for hardware.

On its own, each core type is inadequate. But as part of a heterogeneous mix,

diverse cores can improve service quality. Specifically, the worst of the homogeneous

systems uses only oo6w24 cores. Yet oo6w24 cores are included in more than half of

the most effective heterogeneous mixes, which produce the fewest service violations.

This observation showcases the complexity of navigating a heterogeneous design

space. Had oo6w24 been discarded as a candidate design due to its poor performance

in a homogeneous setting, several heterogeneous systems that include this core type

would remain undiscovered.

More generally, combinations of io1w24, io4w24, and oo6w24 provide the best

service quality for libquantum and lbm. For example, a system with 33 io1w24 cores

and 67 io4w24 cores (00.33.67.0 in Figure 2.12) has the fewest response time viola-

tions. Our applications prefer designs with deeper pipelines and higher frequencies.

However, if applications had exhibited complex control flow and poorly predicted

branches, shallower pipelines would have been preferred.

2.4.4 Balancing Core Types

Figure 2.13 depicts the datacenter design space for four processor types. Colored

dots show the percentage of allocation intervals that incurred waiting time violations

for a system servicing libquantum and lbm task streams. Configurations in regions

A-D are homogeneous. And those in regions E-J, K-N, and O are heterogeneous

combinations of two, three, and four core types respectively.

Microarchitectural Heterogeneity. Various combinations of io1w24, io4w24,

and oo6w24 provide attractive service quality. Heterogeneity with design elements

that span instruction scheduling and superscalar width are best suited to accommo-

39

date the diversity of libquantum and lbm. In contrast, despite the power savings, the

decreased performance of a shallower pipeline is unattractive for these applications.

The design space has a few unambiguous conclusions. A mix of io4w24 and

io1w24 cores performs well. This intersection, region G, contains the configuration

with the best service quality, incurring quality-of-service violations for 1.6% of the

time intervals. The two other points in this region are almost as good at 1.7%.

Also clear, configurations that include io1w10 unanimously provide poor service

quality. Its ellipse is solely populated by light colored points, marking waiting time

violations for up to 15.5% of the experiment. Datacenter configurations within this

ellipse can likely be trimmed from a subsequent, fine-grained sweep of remaining

regions. In general, discarding core combinations is not straightforward because of

inconsistent trends like those in regions E and L.

Number of Heterogeneous Microarchitectures. Heterogeneous design space

exploration is iterative and expensive. For tractability, this study has assumed four

heterogeneous core types but this choice might also be parameterized to produce

subtle effects.

If we had chosen k “ 3 clusters, io1w10 would have been absorbed into the

io1w24 cluster. Moreover, io1w10 would have replaced io1w24 as the representative

core from this cluster since we select cores to minimize performance variation.2 In

this scenario, regions E, G and L of Figure 2.13 would not have been explored. Miss-

ing the opportunity to explore G is particularly unfortunate since its heterogeneous

configurations produced the best service quality.

Choosing more clusters k ą 4 might have produced other trade-offs. But related

work in heterogeneous microarchitectures have illustrated diminishing marginal re-

turns, which coincidentally arise as heterogeneity increases beyond four designs [59].

2 Alternatively, we could limit the clustering methodology to microarchitecture alone and apply
dynamic frequency scaling to include both designs.

40

Moreover, datacenters with more than four core types may produce impractical cap-

ital and maintenance costs.

This complex design space and its sophisticated trade-offs call for further inno-

vation in the heuristics and metrics that guide optimization. The benefits to spe-

cialization of datacenter resources are manifold, and the market mechanism provides

necessary abstractions and management capabilities.

2.5 Qualifications and Assumptions

We assume users submit jobs that are comprised of tasks. For these tasks, we assume

the 95th percentile response time determines service quality. This task stream model

does not extend naturally to batch jobs with deadlines. Accommodating such work-

loads requires further research, especially since a single job offers no representative

task to profile.

In our case studies, the k vectors collected from simulation do not account for

performance degradation due to task co-location. Mars et al. [70] propose a technique

for mapping applications to machine groups such that co-located tasks incur mini-

mal interference. With such schemes, contention is modest and profiling k vectors is

straight-forward. Without such schemes, more sophisticated profilers to accommo-

date contention effects will be needed.

We also assume M/M/1 queues are sufficient approximations for datacenter dy-

namics. M/M/1 models make three assumptions: (i) inter-arrival times are dis-

tributed exponentially; (ii) service times are distributed exponentially; (iii) a single

server executes tasks. The first two assumptions break when the coefficient of vari-

ation Cv “ σ{µ is large. However, we find Cv to be small for inter-arrival times.

Although Cv increases with job and task heterogeneity, our framework uses different

queues for different jobs to limit task heterogeneity. Thus, Cv « 1 for inter-arrival

41

times. Moreover, inter-arrival times for university datacenter services and Google

queries follow a near-exponential distribution [72, 73].

For service times, we compare an exponential distribution (M) against a general

distribution (G). A standard queueing time approximation indicates that M/M/1

is close to M/G/1 when Cv « 1.3 Assumptions of exponential distributions break

when Cv is large (e.g., 20 or 100) [41]. However, in our simulations of heterogeneous

processor cores with more realistic hyperexponential distributions, we find that Cv

for service times is often near 1 and well below 2, indicating M/M/1 is a good ap-

proximation for M/G/1, at least in expectation. Moreover, exponentially distributed

service times have been applied in prior computing markets [19, 66].

Finally, the number of parallel servers (M/M/k versus M/M/1) affects the proba-

bility that a task must wait in the queue. We assume a single server whose capability

(i.e., throughput) increases with the hardware allocation. However, with only one

server, tasks queue with high probability. This assumption means our queueing time

estimates are pessimistic, which lead to conservative hardware allocations where the

market may over-provision resources. A more accurate model with parallel servers

would only reduce queueing times and further improve our market’s efficiency.

2.6 Related Work

Since the advent of chip multiprocessors, small and efficient processor cores have

been studied for datacenters. Piranha, Niagara, and scale-out processors integrate

many small cores for throughput [7, 26, 50, 65]. Server efficiency also benefits from

re-purposing processors originally designed for mobile platforms [49, 64, 84]. These

efforts illustrate small-core efficiency for memory- and I/O-bound tasks, and warn

about performance penalties for more complex computation. Indeed, microarchitec-

3 ErWM{G{1s «
C2

v`1
2 ErWM{M{1s

42

ture increasingly affects datacenter computation [30]. Our market is a step toward

managing heterogeneous microarchitectures in datacenters.

Heterogeneity. Our treatment of heterogeneity focuses on diverse core microar-

chitectures and their mix in datacenters. Prior work studied core heterogeneity in

chip multiprocessors [23, 53, 54, 59, 62] but does not identify the optimal number of

cores for each type in a large system as we do. Other studies accommodate differ-

ences in serial and parallel code portions [43, 95] or devote an efficient core to the

operating system [74]. In contrast, we consider a more general mix of datacenter

computation.

Prior work in heterogeneous datacenters studied high-performance processors

from different design generations or running at different clock frequencies [70, 76]. In

contrast, our heterogeneous cores occupy very different corners of the design space.

Efficiency gains are larger but so is performance risk. Mitigating risk, we make novel

contributions in coordinating core design, core mix, and resource allocation.

In distributed systems and grid/cloud computing, prior work emphasized virtual

machine (VM) and/or software heterogeneity. CloudSim simulates federated data-

centers with local, shared, and public VMs that might differ in core count or memory

capacity [2, 16, 100]. And prior work matched heterogeneous software demands (e.g.,

from Hadoop tasks) with heterogeneous VMs [36, 60]. Such work occupies a differ-

ent abstraction layer, neglects the processor microarchitecture, and complements this

work.

Resource Allocation. Early computational economies focused on maximizing

performance in shared, distributed systems [31, 46, 96, 101]. Chase et al. extended

these mechanisms to account for energy costs [19]. Lubin et al. further accommo-

dated dynamic voltage/frequency scaling in datacenter markets [66]. This prior work

is agnostic of microarchitectural differences and their effect on instruction-level par-

allelism. Addressing this limitation, we present a multi-agent market that navigates

43

non-fungible processor cycles.

Prior studies relied on greedy solvers, allocating cores to tasks in their queued

order and provisioning heterogeneous cores in a deterministic fashion (e.g., low-power

cores first) [33, 76, 87]. Both Chase and Lubin show greedy solvers are less effective

than markets for improving service time and reducing cost. Like Lubin [66], we use a

mixed integer program to find exactly optimal allocations, but approximate methods

like gradient ascent [19, 70] may also apply.

We optimize welfare and neglect fairness, which is increasingly important in fed-

erated clouds. Dominant resource fairness accommodates heterogeneous demands

for multiple, complementary resources (e.g,. processors and memory) in a shared

datacenter [36]. However, maximizing welfare and fairness in this setting are mutu-

ally exclusive [79]. Navigating conflicting optimization objectives is important future

work.

Profiling. Obtaining application preferences is trivial if users explicitly request

particular hardware resources. Clouds offer a menu of heterogeneous virtual machine

types, which differ in the number of compute units and memory capacity [2]. Sim-

ilarly, recent efforts in datacenter management assume that users explicitly request

processors and memory [36, 44].

As heterogeneity increases, users or agents acting on their behalf rely on pro-

filing tools that measure software sensitivity to hardware differences. These tools

include gprof [37], VTune [47], or OProfile [77]. At datacenter scale, profiling ev-

ery application on every node is infeasible and sampling is required. For example,

the Google-Wide Profiling infrastructure periodically activates profilers on randomly

selected machines and collects results for integrated analysis [85].

Given samples, inferred statistical machine learning models might predict scal-

ing factors as a function of software characteristics and hardware parameters [104].

Such models might be trained with profile databases, like Google’s, to produce scal-

44

ing factors. Such a capability requires integrating two bodies of related work in

microarchitecturally-independent software characteristics and statistical inference [28,

58].

2.7 Summary

Results in this chapter motivate new directions in heterogeneous system design and

management. Within datacenters, we find opportunities to mix server- and mobile-

class processors to increase welfare while reducing energy cost. Architects that design

heterogeneous systems cannot ignore their deployment. Market mechanisms are well

suited to allocating heterogeneous resources to diverse users.

45

3

Strategies for Heterogeneous Design

The previous chapter applied a market mechanism to manage heterogeneous pro-

cessors by feeding it application-specific information to estimate the performance

difference between different microarchitectures. Experimentally, we observed a large

variation in the service quality of applications running on different heterogeneous

systems made up of the same two or four cores. In this chapter, we dissect the

heterogeneous design process to study the effect of design decisions on the run-time

behavior of a system using a realistic resource manager.

Designing heterogeneous systems is difficult. and we find that design methodology

from prior work provides no insight into the performance of heterogeneity under

real-world conditions [54, 59]. Prior efforts tailor heterogeneity to diverse software

by assuming ideal scheduling and allocation. However, datacenters are large systems

with complex dynamics. It is likely, in fact almost inevitable, that an application

will not execute on its ideal hardware due to run-time effects, such as contention.

In particular, we propose a novel approach to datacenter design that aims for

manageability, accounting for the performance uncertainty and management risk

introduced by heterogeneity. Effective resource allocation is more difficult in sys-

46

tems with diverse hardware. As an example of run-time risk, consider a datacenter

equipped with two resource types such as server and mobile processors. Due to re-

source availability, an application ill suited to a mobile core may still be forced to use

one, and as a result incur a catastrophic slowdown. The penalties of a sub-optimal

allocation increase with hardware diversity. Consequently, run-time effects should

influence design-time decisions to mitigate this effect.

We need metrics to quantify manageability and to penalize extreme heterogeneity,

which may potentially provide high efficiency that is, in practice, difficult to attain.

We also need to understand disparate sources of management risk. A heterogeneous

system may perform poorly if hardware choices are tailored for other applications,

if hardware contention is severe, or if hardware mixes are not matched to software

arrival rates.

This chapter makes the following contributions towards a design flow for hetero-

geneous systems that anticipates run-time risk:

• Anticipating Risk in Heterogeneous Design. We propose a novel ap-

proach to heterogeneous design that accounts for system management. Unlike

prior efforts, we ask whether a deployed heterogeneous system is likely to meet

design objectives using non-ideal resource allocation (§3.1).

• Formalizing Heterogeneous Design Strategies. We set forth a holistic

framework of design strategies, and propose strategies that minimize perfor-

mance variation. In particular, we consider the coefficient of variation for each

application on all processors in the heterogeneous system (§3.2).

• Designing for Manageability. From the tens of design strategies in our

framework, we identify those that produce systems with the best service quality.

We find that risk-aware design accounts for more than 70% of these desirable

strategies (§3.4).

47

• Incurring Risk to Increase Reward. We show that the additional diver-

sity of aggressively heterogeneous systems reduces violations of response time

targets by 50% compared to less diverse systems. Having formalized the notion

of risk, we enumerate reasons why a heterogeneous datacenter might deviate

from expected efficiency (§3.5).

Rather than consider a single strategy, we define a framework of design strategies

(§3.2). Each strategy produces a heterogeneous system, which is managed by a

market mechanism (§3.3). We identify strategies that are likely to produce designs

with higher performance, higher energy efficiency, and lower run-time risk (§3.4–

3.5). Collectively, our findings make the case for rethinking heterogeneous design

strategies to account for run-time risk.

3.1 Anticipating Risk in Heterogeneous Design

One of the greatest challenges to heterogeneous system design is resource manage-

ment. A deployed system may not realize the performance opportunity of the design

effort due to the difficulty of mapping applications to diverse hardware. Prior ap-

proaches aim for performance and/or efficiency targets based on ideal mappings of

workloads to resources. In contrast, our work presents a novel approach to hetero-

geneous design that provisions for the management of such systems in the design

flow.

3.1.1 Anticipating Run-time Effects

The state-of-the-art in heterogeneous processor design focuses on tractable analysis

and optimization. Heterogeneity significantly expands the design space, especially

given all permutations of application-to-core pairings. Prior studies explore design

48

spaces for processor cores [23, 54, 59] and datacenter organizations [39]. These

methodologies find a subset of cores from a design space that satisfy diverse ap-

plication behavior.

This state-of-the-art strategy is rather limited. It focuses on maximizing best-case

performance and/or efficiency. Such performance guarantees may collapse when an

application cannot execute on its best-matched architecture due to run-time effects,

such as contention, which are prevalent in datacenters.

Yet heterogeneity in datacenter hardware is desirable as it presents an opportu-

nity for energy efficiency. Web search executes on small processors at 1
5
ˆ the energy

of big cores, and degrades throughput by 1
3
ˆ [64, 84]. Similarly, web search and mem-

cached will transfer data across low-bandwidth memory channels at 1
5
ˆ the energy of

high-bandwidth channels with negligible performance penalty [67]. Energy-efficient

technologies cannot provide uniform performance guarantees to all applications; thus,

a heterogeneous hardware mix is needed to balance performance and efficiency.

Datacenters that are heterogeneous by design will use hardware that better matches

application diversity to increase efficiency. For a given a power budget, a heteroge-

neous datacenter’s quality-of-service is greater than that of homogeneous datacenters

[39]. Achieving this improvement in service quality depends on effectively manag-

ing heterogeneous resources. In this chapter, we present a design flow to anticipate

resource management challenges during heterogeneous system design.

We propose alternative strategies that consider metrics beyond best-case perfor-

mance and efficiency. We introduce the notion of anticipating run-time effects during

the design process. Our new design strategies seek energy efficiency while improving

worst-case performance and mitigating performance variation. Such optimization

criteria are particularly relevant for datacenters, which aim for strict service quality

guarantees and seek to avoid run-time variations.

49

Figure 3.1: A Strategy Framework shows the numerous approaches to heteroge-
neous design.

3.1.2 Understanding Sources of Risk

As we introduce new heterogeneous design strategies, we evaluate their ability to

mitigate risk. To illustrate the importance of risk analysis, consider the classical

problem of reducing application diversity through basic block clustering [90] and

benchmark redundancy analysis [81]. Suppose Xi is performance for application i

and Xi’s are identically and independently distributed:

Var pE[X]q “ Var

˜

1

n

n
ÿ

i“1

Xi

¸

“
1

n2

n
ÿ

i“1

VarpXiq “
1

n
VarpXiq

Redundant applications may be removed from a suite while preserving the mean

(i.e., expected performance). But variance is affected, which is unfortunate since

understanding performance uncertainty is critical to heterogeneous design.

If risk is defined as uncertainty, then performance and efficiency risk increases with

heterogeneity. Next, we consider three types of risk that may prevent a heterogeneous

system from realizing best-case performance and efficiency: (i) application risk, (ii)

contention risk, and (iii) system risk.

50

Application Risk. Processor architects design product families using bench-

mark suites. But system architects demand performance for only a subset of these

applications. By using only a few representative benchmarks, architects risk design-

ing for benchmarks that are dissimilar to run-time software. Note that this definition

of risk excludes applications that lie in the superset of the benchmark suite. Het-

erogeneity exacerbates application risk by more tightly tying benchmark mixes to

processor optimization.

Contention Risk. Architects select core types with the intent that each appli-

cation executes on the core that maximizes efficiency. Prior studies in heterogeneous

processors consider only this optimal matching of applications to cores [23, 53, 59, 94].

Contention risk occurs when the preferred core is present in the heterogeneous sys-

tem, yet allocated to another application. When a task uses an alternative to its

preferred core, design-time decisions determine performance and efficiency penal-

ties. Mitigating contention risk requires accounting for substitution effects during

design-time.

System Risk. Datacenter procurement invests a fraction of the power budget to

each core type. System risk is the uncertainty that the fractional share of deployed

cores will match the run-time application mix. Prior work considers only one core

of each type or fixed shares [23, 53, 59, 94]. Fractional shares matter most as core

types become increasingly diverse. Equally dividing a system’s power budget to big

and small cores may work well for a particular application mix. Yet a different mix

may demand another fractional share of big and small cores. Mitigating system risk

requires a coordinated decision between the design of the heterogeneous core types

and the fractional share of each.

51

3.2 Formalizing Heterogeneous Design Strategies

Systems with heterogeneous processors aim to provide microarchitectures that more

closely match diverse applications. The design flow requires a series of decisions to

select cores from a design space: Do we cluster similar applications or architectures?

How do we select a processor to match each cluster? Do we optimize for performance

or efficiency? We refer to the answers to these design questions as a strategy. Strate-

gies produce heterogeneous designs, with different performance characteristics when

deployed and managed at scale.

We set forth a set of essential design decisions in a strategy framework, which is

the scaffolding that contains all strategies. The framework includes strategies from

prior work that aim to maximize performance or efficiency as long as applications

run on the best-matched core. In addition, the framework includes novel strategies

where cores are selected to reduce variation or minimize performance under imperfect

allocations. We illustrate our framework in Figure 3.1, and detail each stage in which

a decision is made (e.g., hardware-software space, clustering dimension, etc.).

3.2.1 Characterizing the Hardware-Software Space

A strategy begins with data from the hardware-software space, which we represent

as two data matrices. In the first, we profile application behavior on many ar-

chitectures. Microarchitecture-independent characteristics, such as instruction mix,

branches taken, and basic block size, are the elements of the first matrix. Matrix

rows represent applications (e.g., web search), and columns represent behaviors (e.g.,

basic block size).

In the second data matrix, we profile figures of merit for a variety of application-

architecture pairs. Matrix rows still represent applications, and columns now repre-

sent architectures (e.g., out-of-order, six-wide superscalar, 1GHz). Matrix elements

52

are measures of performance (BIPS) or efficiency (BIPS3/W). These matrices are

populated with data from cycle-accurate simulation for diverse applications and pro-

cessors.

3.2.2 Formulating the Clustering Problem

The applications and architectures we study may have similar characteristics. To

discard repetition from our design space, we select a clustering dimension by group-

ing together rows or columns of the matrices based on similarity. In the application

dimension, clusters identify software that behave similarly across many architec-

tures. In the architecture dimension, clusters identify hardware that perform simi-

larly across many applications. Further, we choose a similarity metric for clustering,

e.g. software behavior, performance, or efficiency.

Clustering Dimension. Only a subset of the cores in a design space need

actually be deployed given that many of the cores provide similar performance or

efficiency to similar applications, and are thus redundant. Clustering applications

distills many applications into a few representative ones for which hardware can be

tailored. For a particular application mix, this approach may produce a narrowly

defined mix of cores. Clustering architectures identifies a few representative cores

that span the full spectrum of performance and power trade-offs. Diversity is par-

ticularly useful at run-time as resource managers have the opportunity to maximize

efficiency and/or meet performance targets with more types of cores. Next, we detail

clustering implementations.

Application Clustering. We can identify similar applications based on their

microarchitecture-independent behavior. The application-behavior matrix is split

into row vectors, which are clustered so that applications with similar behavior belong

in the same cluster.

53

Alternatively, we might identify similar applications based on performance or ef-

ficiency. If two applications exhibit similar performance across a broad spectrum

of cores, we infer that microarchitectural mechanisms (e.g., dynamic instruction

scheduling) affect both in similar ways. In this case, the application-architecture

matrix is split into row vectors and clustered. Applications that prefer the same

architectures will be assigned to the same cluster.

Architecture Clustering. In the architecture dimension, cores that deliver sim-

ilar performance across a spectrum of applications might be expected to have similar

microarchitectures. The application-architecture matrix is clustered by columns,

distilling the large hardware design space into representative cores.

3.2.3 Invoking the Clustering Heuristic

We use the K-Means algorithm to cluster applications or architectures. As the

number of clusters, K, increases, the heuristic identifies more classes of similar ap-

plications (respectively architectures). The data fed into the clustering heuristic is

one of the following three similarity metrics : microarchitecture-independent behav-

ior, performance (BIPS), or efficiency (BIPS3/W). Each vector is a dimension to the

heuristic, and similarity is defined by Euclidean distance between vector-elements.

When application behavior is the similarity metric, the vector-elements are weighted

by the correlation coefficient of each dimension to performance.

Empirically, we see that clustering by application behaviors or performance pro-

duces a small number of similar clusters. This approach leads to systems made up of

big cores that deliver high performance. In contrast, clustering by efficiency exploits

interesting performance and power trade-offs. The outcome is a mix of big and small

cores, reflecting the fact that the performance advantage of big cores may not justify

their power cost.

54

Table 3.1: Parameters of the processor design space made up of 42 cores.
Core Exe Width L2 Freq Power Area Num
ID (insns) (MB) (GHz) (W) (mm2) (per CMP)
1 IO 1 1/4 1 2.01 8.30 18
2 IO 1 1/4 2 3.11 8.30 18
3 IO 1 1/2 1 2.33 8.96 17
4 IO 1 1/2 2 3.43 8.96 17
5 IO 1 1 1 2.24 9.99 15
6 IO 1 1 2 3.34 9.99 15
7 IO 2 1/4 1 2.69 9.78 15
8 IO 2 1/4 2 4.45 9.78 15
9 IO 2 1/2 1 3.00 10.44 14
10 IO 2 1/2 2 4.77 10.44 14
11 IO 2 1 1 2.91 11.47 13
12 IO 2 1 2 4.68 11.47 13
13 IO 4 1/4 1 4.42 13.29 11
14 IO 4 1/4 2 7.93 13.29 11
15 IO 4 1/2 1 4.74 13.96 11
16 IO 4 1/2 2 8.24 13.96 11
17 IO 4 1 1 4.65 14.99 10
18 IO 4 1 2 8.15 14.99 10
19 OOO 2 1 1 5.56 13.96 11
20 OOO 2 1 2 9.98 13.96 11
21 OOO 2 2 1 5.72 16.94 9
22 OOO 2 2 2 10.14 16.94 9
23 OOO 2 4 1 6.42 23.21 6
24 OOO 2 4 2 10.84 23.21 6
25 OOO 4 1 1 9.90 16.40 9
26 OOO 4 1 2 18.66 16.40 9
27 OOO 4 2 1 10.07 19.38 7
28 OOO 4 2 2 18.82 19.38 7
29 OOO 4 4 1 10.76 25.65 5
30 OOO 4 4 2 19.52 25.65 5
31 OOO 6 1 1 12.13 22.96 6
32 OOO 6 1 2 23.11 22.96 6
33 OOO 6 2 1 12.29 25.94 5
34 OOO 6 2 2 23.27 25.94 5
35 OOO 6 4 1 12.99 32.20 4
36 OOO 6 4 2 23.97 32.20 4
37 OOO 8 1 1 17.12 29.20 5
38 OOO 8 1 2 33.09 29.20 5
39 OOO 8 2 1 17.28 32.18 4
40 OOO 8 2 2 33.25 32.18 4
41 OOO 8 4 1 17.98 38.45 4
42 OOO 8 4 2 33.95 38.45 4

3.2.4 Selecting Designs from Clusters

The final heterogeneous system contains a core from each of the K clusters. To

select a single, representative core from several in a cluster, we specify a selection

criterion. For each cluster k P r1, Ks, we use a figure of merit F , either performance

or efficiency, to evaluate its nk cores. The selection criterion can either maximize

reward or minimize risk; we describe each approach below.

55

Maximizing Reward. Selecting cores from each cluster can maximize per-

formance or power assuming a best-case allocation, but this approach makes no

provision for imperfect profiling. It also neglects contention that diverts a task from

its preferred core to a sub-optimal alternative. While this criterion produces a sys-

tem with the best potential performance or efficiency, it may perform poorly under

typical, let alone adverse, conditions.

We describe this reward-maximizing selection criterion as argMax Max(F): from

the nk cores in cluster k, the argMax operator selects the core that maximizes the

figure of merit (F) from within the cluster. In practice, the criterion typically pro-

duces extreme cores tailored for a particular application and is the approach taken

by prior work [23, 54, 59].

To accommodate other applications, we can use selection criteria that reduce

uncertainty albeit with lower rewards. We might select cores to target the moderate

center of the application space, using argMax Mean(F) or argMax Median(F), which

select a representative core to maximize the mean or median figure of merit across

all applications.

Minimizing Uncertainty. Reward-centric selection criteria handle uncertainly

only implicitly. These criteria assume that uncertainty in performance or efficiency

may fall simply by optimizing these figures of merit less aggressively. As an extreme

example of a reward-centric approach towards minimizing uncertainty, we include

argMax Min(F). This conservative selection criterion opts for cores that accommo-

date worst-case allocations and the lowest-performance application in the suite.

In contrast, we propose selection criteria that handle uncertainty explicitly by

using measures of variance. For each of nk cores in cluster k, we calculate the

variance of that core’s figure of merit F across all applications. Low variance indicates

that a core provides similar F across all applications. High variance suggests that

improving F for one application is attained at the expense of others. We describe

56

an uncertainty-minimizing selection criterion as argMin Var(F).

However, minimizing variance alone may sacrifice too much reward; one way to

minimize variance is to select a core that provides equally bad performance for all

applications. To strike a balance, a better selection criterion uses the coefficient of

variation (CoV = σ{µ) and selects cores using argMin CoV(F). 1 The coefficient of

variation is the standard deviation divided by the mean. Lower mean performance

degrades this selection criterion, hence it minimizes uncertainty in a way that favors

high-performance cores [68].

Heterogeneous Outcomes. In summary, we start with matrices that detail

hardware-software interactions. We apply the strategy framework to make decisions

that constitute design strategies. Each strategy first creates clusters of applications

and cores. A representative core is selected from each cluster, creating a heteroge-

neous mix of cores that we refer to as the strategy’s outcome. An outcome is a family

of processor designs, which system architects can use to organize a large system (e.g.,

datacenter) tailored for diverse applications.

3.2.5 Ranking Heterogeneous Outcomes

The strategy framework yields many heterogeneous outcomes, but processor and

datacenter architects choose only one of these to produce and procure. This choice

depends on applications in the system, yet different applications prefer different

outcomes. One application might prefer heterogeneous systems with at least one

big core. Another might prefer systems with various small cores. The designer

needs to navigate, not only the hardware design space, but also divergent application

preferences for heterogeneous systems. We present a voting mechanism to reconcile

these divergent preferences, and aid the designer in selecting the best heterogeneous

1 Alternatives might also be used, for example the Sharpe ratio that is effectively the inverse of
CoV, or the Sortino ratio to penalize downside risk.

57

outcome.

Ranked Voting for Heterogeneous Core Types. The following ranked vot-

ing (a.k.a. preferential voting) system allows a designer to reconcile divergent pref-

erences. Outcomes are ranked based on the preferences of each application, and

then aggregated by computing rank sums. This ranking mechanism is a design-

time exercise to identify the outcomes that provide the best quality-of-service across

many applications. The ranking balances competing application preferences, and the

degree to which application preferences align determines a system’s overall service

quality.

Suppose the system runs requests from two applications, a1 and a2. A designer

ranks heterogeneous systems based on the service quality of a1 when competing with

a2 for shared resources. Thus, a ranking of outcomes based on the service quality

of a1 is different than one for a2. We combine two sets of ranked preferences by

computing rank sums. If a particular heterogeneous outcome is ranked 1st by a1 and

10th by a2, the outcome has rank sum 11. The mechanism behaves likewise for any

a.

Applications that prefer the same heterogeneous systems will have rankings that

align, and the resulting system will provide high service quality to all. However,

if applications have different preferences, the rank sums will identify heterogeneous

design compromises that avoid sacrificing one application more than others. We

apply preferential voting to the outcomes of the strategy framework, and compare

the service quality of the best-ranked outcomes in §3.4.

3.3 Experimental Methodology

To evaluate heterogeneous processor design strategies for datacenters, we deploy

a comprehensive methodology. Cycle-accurate processor and memory simulations

58

Table 3.2: Parameters for the out-of-order
cores in the design space.

Width 2 4 6 8
Phys RF 64 128 192 256
ROB 64 128 192 256
Fetch Q 24 48 72 96
Load Q 24 48 72 96
Store Q 24 48 72 96
L1 D-$ 64 KB 4-way, wb
L1 I-$ 64 KB 4-way, wb

Table 3.3: Parameters for the in-order in
the design space.

Width 1 2 4
Dispatch Q 8 16 32
Store Buff 8 16 32
Forward Buff 16 32 64
Commit Buff 16 32 64
L1 D-$ 32 KB 4-way, wb
L1 I-$ 32 KB 4-way, wb

Table 3.4: Characteristics for the task streams made up of three applications from
the benchmark suites: barnes, radix, and quadword (web search).

Task Profile Daily Peak Weekly Peak Value Scaling Factors
(Mcycles/task) (tasks/min) (tasks/min) (K$/month)

barnes 2972 420 1261 $5 if T ď 200ms 0.19´ 1.0
$0 if T ě 1000ms

radix 1326 1884 5652 $5 if T ď 200ms 0.79´ 1.0
$0 if T ě 1000ms

quadword 32 76827 230482 $5 if T ď 20ms 0.25´ 1.0
$0 if T ě 160ms

for datacenter workloads provide detailed, node-level analysis. For datacenter-level

analysis, we add queueing models and allocation mechanisms for heterogeneous hard-

ware. Collectively, this infrastructure allows us to study processor design strategies

and their run-time effect on datacenters.

Processor Simulation. We use the Marssx86 full-system simulator [80], inte-

grated with DRAMSIM2 [86], to simulate the 42 processors listed in Table 3.1. The

design space is defined by four microarchitectural parameters: instruction scheduling,

superscalar width, last-level cache size, and frequency. Additional structures scale in

proportion to superscalar width, shown in Tables 3.2–3.3. We use McPAT/CACTI at

32nm to model power and area [61]. We set an area budget for chip multiprocessors

and determine the number of cores that can fit within it.

Applications. We simulate web search queries using the open-source Nutch/-

SOLR search engine. We crawl/index 50KWikipedia documents and evaluate diverse

types of queries [91]. A query type denotes whether page content or title is searched.

Wildcards and searches for similar words (near) are supported. Negative queries

59

Figure 3.2: Performance diversity across applications (IPC on Core 42 of Table
3.1).

are denoted by inverse. Queries may contain multiple search terms (single, double,

triple, quad) connected by logical operators (and, or).

We use checkpoints to simulate 100M instructions at regions of interest in PAR-

SEC, SPLASH-2, and web search. Our checkpoints for web search are taken after

the server has been initialized and warmed up with 100 queries.

These applications exhibit diverse performance as shown in Figure 3.2. Diverse

search queries vary in computational complexity. The complex inverseContentSingle

query incurs a larger performance penalty on a small core than the simple doubleOr

query. Some workloads have a strong preference for high-performance cores (e.g.,

barnes). Others execute more efficiently on a small, low-power core (e.g., radix).

60

Application Task Streams. To evaluate applications in the datacenter, we or-

ganize workloads into task streams that follow known diurnal and sinusoidal activity

[72]. Such patterns have been used to evaluate other datacenters [19, 39, 66].

The task arrival rate is the composite of a sinusoid with a week-long period and

another with a day-long period. Amplitudes, shown in Table 4.2, are set such that

load is no greater than the maximum computational capacity of a 20KW budget.

We add Gaussian-distributed noise to the time series.

As is typical in elastic clouds [19, 39, 66], users specify service-level agreements

(SLA) that define value as a function of response time. Without loss of generality,

we use M/M/1 queues to estimate 95th percentile response time. Value degrades

linearly as response time increases up to some cut-off, after which computation has

no value (Table 4.2). Users that derive higher value from computation are given

higher priority.

Datacenter Management. To anticipate run-time effects during design, we

must consider a particular management mechanism. For heterogeneous design, the

mechanism must differentiate heterogeneous processing resources when allocating

them to diverse applications. Any management mechanism may be used within our

framework.

Without loss of generality, we use markets to allocate hardware in our evaluation.

Markets have several compelling properties. First, markets provide an attractive

interface as users express value for performance. Second, market agents use value

functions to automatically bid for hardware on behalf of users, thus shielding users

from the complexity of heterogeneous hardware. Finally, markets are cleared to

maximize welfare via hardware allocations.

Our market allocates heterogeneous processors periodically (e.g., every 10 min-

utes) to serve diverse application tasks. An allocation might span many heteroge-

neous core types. The market invokes CPLEX, a mixed integer program solver, to

61

determine an allocation that efficiently meets quality-of-service targets. We refer the

reader to prior work for detail [19, 39, 66].

We apply the market to the heterogeneous outcome of a design strategy from

Figure 3.1. We configure systems with a 20KW budget, which is approximately the

power dissipated by two datacenter racks. Server power is processor power plus 65W,

which accounts for memory, motherboard, network interface, and disk [84]. These

servers are integrated into a heterogeneous chassis (e.g., IBM PureFlex). Datacenter

power usage effectiveness (PUE) is 1.6. Energy costs $0.07 per kWh.

Scaling Factors. The market uses scaling factors to account for performance

differences in heterogeneous systems[39]. For each application, these factors report

performance for each core relative to that of the highest-performance core.

If scaling factors for an application are uniformly 1.0, its tasks are indifferent to

core microarchitecture. In contrast, an application with greater diversity in scaling

factors has stronger preferences for particular core types, perhaps its tasks are more

compute intensive. Table 4.2 shows a broad range of scaling factors. Radix is least

sensitive to core type whereas barnes and quadword search queries are more sensitive.

Scaling factors may be obtained from profiling tools, such as gprof [37], VTune [47],

or OProfile [77]. At datacenter scale, profiling every application on every node is

infeasible and sampling is required. For example, the Google-Wide Profiling infras-

tructure periodically activates profilers on randomly selected machines and collects

results for integrated analysis [85]. Given sparsely sampled profiles, statistical ma-

chine learning can fit models and predict scaling factors [104].

System Model. Our datacenter model envisions applications, made up of task

streams, running on heterogeneous processors, where heterogeneity exists across

racks. Rack-level heterogeneity allows for system-wide resource management. A

resource allocator explicitly directs applications to compute resources by steering

tasks to the right rack. In addition, system designers can deploy heterogeneous re-

62

sources at a fractional share that matches an expected application mix. By fractional

share we refer to the portion of the total power budget provisioned to each type of

heterogeneous resource. In §3.5.1 we evaluate each heterogeneous outcome and its

sensitivity to fractional shares.

3.4 Designing for Manageability

In this section, we compare the strategies that produced the 50 unique outcomes

listed in Tables 3.5–3.6. An outcome is a set of heterogeneous core types, and it is

the product of a design strategy that is applied to the benchmark suite and processor

design space. We evaluate heterogeneous design strategies based on manageability,

which we quantify as service quality across co-running applications using a realistic

heterogeneous resource manager. We simulate equal-power datacenters equipped

with systems that house heterogeneous processors across racks.

The framework of strategies detailed in §3.2 produces the outcomes in Tables

3.5–3.6, where each entry is a tuple of identifiers that map to the microarchitectures

in Table 3.1. Identifiers in the 1 - 18 range designate in-order, power efficient cores,

whereas 19 - 42 are out-of-order, high performance cores. For example, heteroge-

neous outcome 42|37 is made up of two types of out-of-order cores, and is the product

of a MaxMax(BIPS) selection strategy from two clusters of applications grouped by

behavior. The systems we evaluate range from homogeneous high-performance big

cores, 42, to highly heterogeneous datacenters composed of both big and small cores,

11|24|30|42.

Allocation and run-time risks are a function of user competition, thus we study

application pairs that exemplify three, distinct contention scenarios:

• barnes|radix exhibit complementary preferences

63

Table 3.5: Heterogeneous outcomes from BIPS strategies.
K=2 K=3 K=4

Application Behavior
MaxMax 42|37 42|37|40 41|42|37|40
MaxMean 41|42 41|42 41|42
MaxMin 42 42 42
MinVar 5|2 5|2 5|2
MinCoV 5|4 5|2|24 5|2|24

Application Performance
MaxMax 41 41 41
MaxMean 41 41 41
MaxMin 35|41 41 29|35|41
MinVar 6|1 5|2 1|2||14|27
MinCoV 1|22 5|20|31 1|2|14|27

Architecture Performance
MaxMax 17|42 12|17|42 17|24|30|42
MaxMean 17|41 12|17||41 17|23|41|38
MaxMin 11|42 5|11|42 11|24|30|42
MinVar 5|21 5|11|21 5|21|25|27
MinCoV 5|21 5|11|21 5|21|29|25

Table 3.6: Heterogeneous outcomes from BIPS3/W strategies.
K=2 K=3 K=4

Application Behavior
MaxMax 29| 35 29|35 29|35
MaxMean 29 29 29|35
MaxMin 5|23 5|23|29 5|23|29
MinVar 14 14 14
MinCoV 14 14 14

Application Efficiency
MaxMax 29 29|35 23|29
MaxMean 29 29|35 29|35
MaxMin 5|35 5|29 5|29|35
MinVar 14 14 14|38
MinCoV 14 14 14|42|38

Architecture Efficiency
MaxMax 29|42 22|29|30 11|23|29|37
MaxMean 29|42 23|22|29 11|23|29|37
MaxMin 5|23 5|23|29 5|23|29|37
MinVar 14|21 14|24|37 14|22|38
MinCoV 14|21 14|24 14|22|38

• barnes|quadword contend for big, high-performance cores

• radix|quadword contend for small, low-power cores

Across all three types of contention, we find that risk-aware strategies at design-

time improve service quality at run-time. Results also show that ranked voting at

design-time reconciles competing user preferences for hardware at run-time.

Mitigating Risk During Design. Prior approaches to heterogeneous design

64

Figure 3.3: Risk-aware strategies are more likely to produce outcomes with the
best service quality.

identify core types that maximize performance or efficiency for the benchmark suite,

and hence aim only to maximize rewards. Such approaches correspond to MaxMax

and MaxMean strategies in our framework. For these strategies to deliver expected

performance and efficiency, users must receive the cores best suited to their appli-

cations. Yet, such ideal allocations are difficult to obtain in the real world, where

applications compete for shared hardware.

In contrast, strategies that anticipate risk by measuring performance variance at

design-time are more robust to dynamic hardware allocation at run-time. Selecting

cores using MinVar or MinCoV criteria accounts for allocation risk in heterogeneous

systems. Alternatively, the MaxMin criterion optimizes heterogeneity for worst case

65

management scenarios when a user receives the least ideal processor type in the

system.

To quantify these effects, we examine the 20 best outcomes (e.g., 14|22|38|39,

. . .) based on service quality across applications. Figure 3.3 shows all the design

strategies that produce the 20 most effective heterogeneous systems for barnes|radix.

These strategies are desirable from the perspective of manageability. For example,

there exist 24 strategies that provide the 20 heterogeneous outcomes with the best

service quality when barnes and radix are co-runners.2 Of these 24 strategies, 83%

of them account for risk either by optimizing performance variance with MinVar or

MinCov, or by optimizing for worst-case scenarios with MaxMin. Similarly, risk-

aware strategies account for more than 70% of the strategies that produce the top

20 outcomes for barnes|quadword and radix|quadword.

Case for Risk-Aware Design. Three of the selection criteria form a part

of risk-aware design strategies: MinCoV, MinVar, and MaxMin. These strategies

balance rewards in performance and efficiency against risks in heterogeneous resource

allocation. As Figure 3.3 shows for barnes|radix, the 20 outcomes with the best

service quality are most likely the product of risk-aware design.

MinCoV is the best at balancing risk and reward as it selects cores to moderate

variance but not at the expense of average performance. Thus, cores with higher

performance are included in the heterogeneous outcome. For example, MinCoV

BIPS produces 5|2|24 while MinVar BIPS more conservatively produces 5|2.

MinVar minimizes performance variance, which tends to favor small cores that

provide uniformly low performance. The advantage of small cores is power efficiency,

which allows more servers to fit within a fixed power budget. More servers translate

into greater throughput and fewer service quality violations. If bigger cores are

2 Note that the number of good strategies exceed the number of good outcomes because multiple
strategies may produce the same outcome.

66

needed for performance, MinVar provides them in highly heterogeneous systems (e.g.,

when K “ 4, MinVar BIPS produces 1|2|14|27).

Finally, MaxMin can be considered a risk-aware design strategy. This strategy

favors big cores to ensure service quality in worst-case allocation scenarios by max-

imizing minimum performance. MaxMin accommodates the most demanding appli-

cations with a high-performance core (e.g., 42 for BIPS) or with a high-efficiency

core (e..g, 5|23|29 for BIPS3/W).

Limitations of Risk-Agnostic Design. In contrast to risk-aware strategies,

MaxMax and MaxMean strategies rarely lead to a heterogeneous system with good

service quality. These strategies identify the very best heterogeneous processor mixes

for the complete application suite. When a subset of these applications actually use

the resulting systems, their lack of flexibility degrades service quality. For example,

radix|quadword prefers small, low-power cores. Yet MaxMax will produce several

big, high-performance cores as it tries to maximize best-case performance for the

original set of 32 applications.

3.5 Classifying Sources of Risk

Our evaluation has thus far determined that the best design strategies are risk-

aware. Next, we consider the sources of risk in the top-ranked outcomes and observe

that higher reward comes at higher risk (§3.5.1). Another metric of interest to

system architects is the efficiency of top-ranked outcomes. We compare the efficiency

of heterogeneous outcomes to an optimal case where each application runs on the

efficiency-maximizing core in the design space. We find that heterogeneous systems

are most efficient when running complementary applications (§3.5.2).

67

Figure 3.4: Heterogeneous system 14|22|38|39 exhibits more risk yet reduces
response time violations by 50% relative to low-risk system 42|39 (barnes|radix).

3.5.1 Incurring Risk to Increase Reward

Heterogeneity allows a system to provide specialized resources for subsets of appli-

cations, and thus more effectively invest a limited power budget than systems with

low diversity. The reward of heterogeneity is an improvement in performance. In a

datacenter, this reward is a reduction in the number of allocation periods that incur

response time violations.

However, it is difficult to provision diverse resources in proportions that match

the application mix. A strategyâĂŹs outcome defines a set of heterogeneous cores,

but not their organization in the system. Our evaluation thus far has assumed that

the systemâĂŹs power budget is divided amongst heterogeneous core types such that

68

(a) barnes|radix

(b) barnes|quadword

(c) radix|quadword
Figure 3.5: Quality-of-service as we vary fractional shares of cores for top 5 ranked
outcomes.

69

service quality is optimized. Yet identifying each core typeâĂŹs share of the power

budget is a design space of its own. We explore this space and assess service quality.

Risk. We quantify risk-reward trade-offs by varying the fractional share of the

power budget that each processor type is allocated. For barnes|radix, Figure 3.4

illustrates service quality for different heterogeneous outcomes (x-axis) at different

shares of those types (boxes). The x-axis spans varying degrees of heterogeneity,

from the conservative system 42|39 to increasingly heterogeneous systems.

For an application mix, the box shows the effect of different fractional shares.

Given K heterogeneous cores, we evaluate all combinations of 1
K
-sized fractions

within a fixed power budget (e.g., 20KW). For example, when K “ 2, core types

can be organized into fractions of 1:0, 1
2
:1
2
, and 0:1. Across these different shares,

boxes illustrate the variance in service quality, measured by the number of allocation

periods that violate response time targets (y-axis).

Greater heterogeneity leads to higher variability in service quality and system risk.

Figure 3.4 shows increased risk for outcomes 14|22|38|39 and 5|20|31. Note that

heterogeneity and system risk is not simply a function of the number of core types.

Although both outcomes have three core types, 5|20|31 exhibits lower variance than

14|42|38. Cores 42 and 38 only differ in L2 cache size and hence the variation in

application performance across the two cores is small.

Reward. Despite the increase in system risk, the reward is a significant improve-

ment in service quality. The highest ranked outcome for barnes|radix is 14|22|38|39,

which is also most risky. If the deployed share is well-matched to barnes and radix

load, we observe only 375 allocation periods in which an application violates the ser-

vice target. This is a 50% reduction in intervals that suffer violations, compared to

the 675 violations observed on a more conservative outcome 42|39. We also see that

in the worst case, when the fractional share of the aggressively heterogeneous out-

come 14|22|38|39 is poorly suited to the application mix, the number of violations

70

is no worse than that of the conservative outcomes in Figure 3.4.

barnes|radix. Most top ranked outcomes in Figure 3.5a pose significant system

risk, as shown by the span of the boxes as we vary the shares at which each outcome

may be deployed. The exception is 5|11|21, which we prefer since it provides high

service quality at low system risk. In contrast, 17|24|30|42 is a particularly poor

option; the fractional share that provides the best service is an outlier.

barnes|quadword. Most heterogeneous outcomes are capable of high service

quality. But 5|2 or 1|22 clearly provide that service quality at lower risk. Selecting

poor fractional shares is too likely in the other three outcomes.

radix|quadword. These applications contend for small, efficient cores and hence

prefer outcomes with low heterogeneity. The top ranked outcome is, in fact, homoge-

neous (Figure 3.5c). However, outcomes 5|4 and 6|1 may be better choices. In the

best case, if the fractional shares are well-matched to application mixes, heterogene-

ity improves service quality. Only 161 allocation periods see service violations, a 42%

reduction compared to the 278 violations observed on the top-ranked homogeneous

system. Moreover, despite system risk, the worst-case service on the heterogeneous

system is no worse than that of the homogeneous one.

3.5.2 Quantifying Risks to Efficiency

The previous section studied performance sensitivity to the number of each processor

type and task mix. Next, we consider variability in energy efficiency and two addi-

tional sources of risk. For this evaluation, we define the upper bound on efficiency as

the application running on its BIPS3/W-maximizing core from the complete design

space.

An application may not realize the upper bound on efficiency and instead run on

a less efficient core for two reasons. First, an application’s most efficient core may not

71

(a) barnes|radix

(b) barnes|quadword

(c) radix|quadword
Figure 3.6: Efficiency for top ranked outcomes of heterogeneous cores. The
BIPS3/W-maximizing core for each application may not occur in an outcome due to
application risk (AR) or may not be allocated to that application due to contention
risk (CR).

72

be available in the heterogeneous outcome chosen for the system. In this scenario,

efficiency is lost due to application risk. Second, an application’s most efficient core

may be present but allocated to another application, which is contention risk.

In Figure 3.6, we report efficiency when the application runs on the best core in

the heterogeneous outcome. Any efficiency lost to application risk is due to choices

during design (“AR”). We also report efficiency based on the actual allocation of

cores in the market mechanism. Any further efficiency loss is due to contention

during allocation (“CR”). Carefully selected heterogeneous designs provide 80% of

the BIPS3/W upper-bound. On the other hand, contention can cause systems to

realize only 20% of this potential.

barnes|radix. Figure 3.6a shows efficiency losses due to application and con-

tention risk. Radix executes at near-optimal efficiency for a few of the top ranked

outcomes (i.e., 5|11|21 and 5|20|31). Reconciled rankings closely align with radix’s

ranking. If the second- and third-ranked configurations are chosen, efficiency losses

are zero.

On the other hand, barnes loses efficiency to both application and contention

risk. The heterogeneous configurations in the reconciled rankings do not represent

barnes’s preferences; radix introduces big cores into the system, which determines

barnes’s efficiency loss from application risk. Moreover, these big cores are most often

allocated to barnes, which ensures service quality but degrades run-time efficiency.

Since the top-ranked configurations provide similar quality of service, the sys-

tem architect can opt for the configuration that maximizes efficiency. Although not

shown, the sixth-ranked configuration provides better efficiency for both applications

without further harming service quality.

barnes|quadword. These applications illustrate efficiency losses primarily from

application risk. When these two applications are contending for cycles, neither will

likely execute at near-optimal efficiency. Figure 3.6b shows that several of the config-

73

urations most highly ranked for quality-of-service achieve performance by sacrificing

at least 60% of the efficiency available in the design space. Although the first and

fifth configurations retain most of the efficiency during design clustering, contention

means that actual efficiency is often less than 20% of the upper bound. This mix is

particularly difficult to accommodate within the fixed power budget given that both

applications incur benefit from power-hungry cores.

radix|quadword. For both radix and quadword queries, Figure 3.6c indicates

that allocated efficiency matches the best possible designed efficiency. Nearly all

the cores in various configurations are from the low-power, in-order end of the de-

sign spectrum (cores 1-18). Since these cores are similar, efficiency is not signifi-

cantly impacted by allocation decisions. Only the fourth configuration includes a

high-performance design (core 42), and only this configuration suffers any significant

efficiency loss from allocation decisions.

3.6 Related Work

Heterogeneous Chip Multiprocessors. Kumar et al. consider existing cores

drawn from multiple design generations [53, 55]. Alternatively, Kumar et al. exhaus-

tively simulate and search a space with hundreds of designs to maximize performance

subject to power and area constraints [54]. Choudhary et al. use FabScalar to eval-

uate synthesizable core designs and evaluate cores in a heterogeneous mix [23]. This

particular strategy maps approximately to our architecture-driven clustering with a

MaxMean selection criterion on performance.

Lee and Brooks also explore a large design space, using regression models to ex-

plore performance and power trade-offs tractably, and use K-means clustering to opti-

mize [59]. Strozek and Brooks similarly study clustering strategies for heterogeneous

embedded systems [94]. This strategy maps approximately to our architecture-driven

74

clustering with a maxMean selection criterion on BIPS3/W efficiency.

Prior heterogeneous strategies do not produce designs that are robust to system

integration, performance risk, and contention risk. These prior efforts take a partic-

ular strategy whereas we explore an broad space of strategies. Unlike prior work, we

anticipate run-time manageability at design-time.

Heterogeneous Datacenters. While much prior work in distributed systems

have considered diverse tasks and heterogeneous virtual machines, the underlying

processors are often homogeneous by design. At present, heterogeneity in datacen-

ters is modest and involves multiple generations of processors [70, 76] or processors

operating at different frequencies [66]. However, studies of datacenter software on

diverse hardware motivate greater heterogeneity due to the potential for efficiency

[30, 64, 84].

Heterogeneous Management. To anticipate run-time manageability, we de-

ploy a framework that uses a market mechanism to assign cores to tasks [19, 39, 66].

These mechanisms operate at datacenter scale, examining application preferences for

hardware and allocating cores to task streams.

A much larger body of work studies scheduling in heterogeneous chip multipro-

cessors. Much of this work focuses on profiling and thread migration. Scheduling

diverse software to heterogeneous hardware might account for memory-level paral-

lelism [98], instruction-level parallelism [10, 52], resource demands [5, 20, 89, 92, 93],

thread age [57], load balance [63], or hardware faults [13, 103]. Scheduling is simpli-

fied when big or small cores are used for a specific purpose. Big cores can accelerate

critical sections in parallel computation [95] while small cores can efficiently support

the operating system [74] or managed software [17].

75

3.7 Summary

Our work is the first to define a taxonomy of the risks that heterogeneous systems face

due to the current divide between design and management. We present a framework

of design strategies, and for the first time include risk-aware strategies that comple-

ment traditional performance or efficiency maximizing strategies. We evaluate these

strategies under diverse datacenter contention scenarios, and find them to reduce

service quality violations by 50% relative to traditional approaches to heterogeneous

design.

76

4

Appraising Fairness in the Market

In the resource allocation mechanism of Chapter 2 we describe a market mechanism

that maximizes welfare when dividing available processing resources to service in-

coming applications. Welfare, which is value net cost, is a measure of the efficiency

of an allocation. In fact, similar resource allocators typically maximize for other

measures of efficiency and performance. Whether the manager is navigating hetero-

geneity or mitigating contention in a shared datacenter, performance has been the

primary objective. Beyond performance, however, shared datacenters require new

policies and mechanisms for fairness.

In this chapter, we present a new datacenter management mechanism that fairly

allocates processors to tasks with sophisticated performance objectives. Many def-

initions of fairness exist in systems and economics research. Rather than equate

fairness to equal slowdowns amongst applications in a shared system [75], we define

fairness in game-theoretic terms [99]:

An allocation is fair when each user weakly prefers her own allocation to that of every

other user. In other words, no user envies the allocation of another.

77

Conceptually, a system that does not induce envy between users is fair. In such a

system, resources have been allocated in an equitable manner so that no user has

cause to complain. Envy-free systems encourage user participation in shared systems

and promote allocation stability.

We seek to mitigate envy for users and tasks with strict performance objec-

tives. Prior efforts have examined fairness for throughput-oriented tasks with simple

Leontief utilities [36]. In contrast, we examine latency-sensitive tasks with artic-

ulate piecewise-linear utilities. These expressive utility functions more accurately

represent realistic service-level agreements. In this setting, reducing envy poses new

challenges in resource allocation.

Envy-freeness is a strict definition of fairness, which inevitably has a price. If

a management mechanism neglects envy, it can optimize performance by searching

an unconstrained space of allocations. Such a strategy efficiently deploys datacenter

hardware to the software that needs it most. However, if the mechanism instead con-

strains envy, efficiency falls. By comparing welfare-maximizing and envy-minimizing

mechanisms, we analyze the price of fairness.

We find that the price of fairness is prohibitively high when a datacenter system is

highly loaded. For such settings, we present an alternative to envy-free allocation – ε-

envy-freeness, which is parameterized by the amount of envy permitted in datacenter

allocations. We vary ε to understand the trade-offs between fairness and efficiency.

We assess these trade-offs for specific datacenter applications and architectures.

We deploy and characterize web search. The management mechanism first classifies

latency-sensitive queries by their length. It then allocates processors to maximize

welfare while mitigating envy across query types. This chapter makes the following

contributions:

• Examine Fairness for Latency-Sensitive Tasks. To describe value for pro-

78

cessors, latency-sensitive tasks require expressive piecewise-linear utility func-

tions. In this setting, prior algorithms do not allocate fairly. (§4.2)

• Introduce Fairness to Markets. Market mechanisms typically allocate pro-

cessors to maximize efficiency. We add fairness into the system, introducing

constraints that account for envy when allocating processors. (§4.2)

• Enforcing Fairness for Heterogeneous Tasks. Fairness for end users re-

quire fairness for diverse application tasks. We take web search as a case study,

classifying queries according to length and complexity. (§4.3)

• Quantifying the Price of Fairness. For search queries, welfare-maximizing

processor allocations are 1.5ˆ more efficient than envy-free ones. Allowing a

tunable amount of envy ε improves efficiency. (§4.4)

• Extending Fairness to Heterogeneous Processors. A market mechanism

that maximizes welfare subject to constraints on envy generalizes to heteroge-

neous processors. Big and small cores are allocated to mitigate envy. (§4.5)

4.1 Background

Resource allocation in datacenters must navigate several (often conflicting) targets,

accounting for service quality, energy-efficiency, and application preferences for var-

ious resources. Fair resource allocations are important for systems that provide

computation for a variety of applications. Datacenters are such systems, both in the

private setting where many services that are of importance to a company must share

resources, and in the public setting where a provider aims to guarantee fair access

to resources that users are renting.

Even systems that optimize performance may wish to provide a measure of fair-

ness. A fair system would allocate resources to maximize throughput while providing

79

each user a minimum allocation. In other words, the system optimizes throughput

with safeguards against starvation. These objectives are sensible even for market-

based allocation in which users pay for datacenter resources [2, 19, 39, 66]. Fairness

in this setting leads to a capitalist market with a social safety net, which is often

desirable.

4.1.1 Efficiency versus Fairness

We define allocative efficiency as the sum of user utilities. Each user’s utility depends

on measures of performance, such as latency and throughput. Within a shared

system, there exists an optimal allocation that maximizes efficiency. There also exist

Pareto-efficient allocations for which increasing a user’s utility necessarily reduces

another’s. Beyond these special cases, there exist many other allocations of varying

efficiency.

Inevitably, efficiency is degraded by fairness. We define fairness using concepts

from economic game theory, which consider sharing incentives and the degree of

envy in multi-agent systems. First, fairness matters only if a system provides an

incentive for users to share. Without such incentives, users would not participate

in the system. An allocation mechanism provides sharing incentives when each user

prefers her allocation to an equal division of resources; see condition 4.1.

SI : VApXAq ě VA pX{2q VApXAq ě VA pX{2q (4.1)

EF : VApXAq ě VApXBq VBpXBq ě VBpXAq (4.2)

V˚ Ð value of allocation to *

X˚ Ð machines allocated to *

XÐ number of machines in the system

80

Second, a fair system mitigates envy between users. In a special case, envy-

free (EF) allocations are those for which no user prefers another’s allocation; see

condition 4.2. Beyond the intuitive links between envy and fairness [99], EF is

desirable because it produces stable allocations in which no user wishes to trade.

In practice, an EF allocation may be infeasible or may demand large trade-offs in

efficiency. Yet systems that cannot eliminate envy may still find ways to reduce it.

These concepts of fairness pose interesting questions for datacenters and dis-

tributed systems. For example, dominant resource fairness (DRF) fairly divides

multiple resource types to heterogeneous applications [36, 79]. Based on the obser-

vation that each application’s performance is determined by a dominant resource,

the DRF mechanism implements max-min fairness to equalize dominant shares. In

this setting, max-min fairness guarantees sharing incentives and envy-freeness.

4.1.2 Expressive Utility Functions

The strength of a system’s game-theoretic guarantees depends on users and their

utility functions. In practice, throughput- and latency-oriented users employ funda-

mentally different utility functions. Strong and attractive game-theoretic properties

have been demonstrated for throughput-oriented applications [36, 79]. But latency-

sensitive applications and their expressive utility functions pose new challenges.

First, consider Figure 4.1 and utility functions for throughput-oriented applica-

tions. The x-axis is the number of allocated resources (e.g., processor cycles) and

the y-axis expresses the value of possible allocations to an application. Throughput-

oriented users experience better service as more resources are allocated. One example

is the Leontief utility function [36]. Suppose each task or virtual machine requires

2 units of a resource. As a user receives more resources, she is able to launch more

virtual machines.

81

utility ($)

number of
resources

Figure 4.1: Piecewise-Uniform Utility. Utility increases with the number of indi-
visible resources.

utility ($)

number of
resources

Figure 4.2: Piecewise-Linear Utility. Utility is zero when given insufficient re-
sources. Utility does not increase beyond the resources required to meet a perfor-
mance target.

On the other hand, the preferences of latency-sensitive applications are best mod-

eled with piecewise-linear utility functions [19, 39, 66]; see Figure 4.2. An allocation

is of no value unless it delivers some minimum performance. Value increases as the

allocation grows and service improves. Eventually, the application is completely sat-

isfied with its service and derives no value from additional resources. Piecewise-linear

utilities can be used to approximate any valuation function [56].

The difference between the two types of utility functions is as important as the

difference between throughput and latency. For a latency-sensitive application, al-

locating either an insufficient or an excessive amount of resources is undesirable.

82

Without an expressive piecewise-linear function, a user may be forced to pay for re-

sources that are inadequate to meet its service-level agreement. Similarly, allocating

more resources than necessary is inefficient and costly to the system. In contrast,

throughput-oriented applications in the DRF model always benefit from more re-

sources (i.e., there is always another task to execute).

4.2 Fair Market Mechanism

Max-min fairness applies naturally to throughput computing, which has a relatively

simple utility function. Each software task requires a particular number of resources

and task throughput increases with the allocation. Such linear or piecewise-uniform

utility functions are amenable to max-min fair allocation and produce strong, desir-

able game-theoretic properties.

Beyond throughput computing, datacenters must accommodate latency-sensitive

applications with strict service quality targets. Applications that receive an insuf-

ficient resource allocation will violate service targets and provide no user utility

[84]. With expressive piecewise-linear utility functions, allocating resources fairly is

challenging [15, 21, 24]. We compare throughput and latency-sensitive models of

computation to describe the difficulties of fair allocation for the latter.

4.2.1 Expressive Utilities and Fairness

Using piecewise-linear utility functions has significant implications for fairness. In

this setting, unfortunately, max-min solutions (e.g., DRF) no longer guarantee fair-

ness properties, like envy-freeness and Pareto efficiency. The difficulty lies in the

regions where the user’s utility does not increase as the allocation increases. We

provide examples to illustrate how max-min allocations no longer satisfy fairness

criteria.

83

utility ($)

number of
processors1 2 3 4 5 6

XA=2 XB=4

UA (XA) = UB (XB)

app A

app B

UB (XA) > UB (XB)

Figure 4.3: An example of violating Envy-Freeness with piecewise-Linear utility
functions. Max-min fairness for utilities is not EF; UA is higher with XB.

Max-Min Allocation. To understand the limitations of max-min allocation,

we first describe the underlying rationale and an algorithm for its implementation.

Formally defined, a max-min fair mechanism maximizes the allocation to each user i

subject to the constraint that an incremental increase in i’s allocation does not cause

a decrease in another user’s allocation that is already smaller than i’s [102]. Con-

ceptually, such fairness is achieved when the most poorly treated user is prioritized

when allocating an available resource [11]. These notions are drawn from much prior

work in max-min control flow for communication networks.

Iterative mechanisms for max-min allocation assign resources to users incremen-

tally. Note that the allocation mechanism can define max-min with respect to al-

locations or utilities. At the beginning of each iteration, the mechanism identifies

the user with the smallest allocation or the lowest utility. This user then receives

an incremental allocation. After this update, the next iteration begins. Such mech-

anisms have been applied to fairly allocate network bandwidth [11, 102] and have

been generalized to multiple resources [36, 79].

Violating Envy-Freeness. Suppose the max-min algorithm allocates for fair-

ness across agent utilities. We show that the resulting allocations cannot guarantee

84

fairness when applied to piecewise-linear utility functions. Again, consider two appli-

cations, A and B, with utility functions in Figure 4.3. A max-min algorithm identifies

XA and XB such that VApXAq “ VBpXBq. In this solution, XB ą XA and we see that

A envies B’s allocation. A would obtain more value from swapping the allocations.

In other words, the allocation is not envy-free since VApXAq ­ą VApXBq.

Although these examples are not exhaustive, they serve as clear indicators that

algorithms for max-min fairness do not extend to expressive utility functions. In

fact, guaranteeing fairness for more expressive utility functions is a hard problem.

Theoretical challenges continue to motivate interesting work in computational eco-

nomics and theory. Economist and theorists are considering this problem from an

abstract perspective.

In contrast, our work is the first to link fairness for expressive utility function

to an important class of applications in distributed systems: latency-sensitive tasks.

We have shown how expressive utility functions are needed when applications have

service quality targets, a real-world setting. We will now discuss our approach to

guaranteeing fairness within a market-based resource allocator.

4.2.2 Fairness and Markets

In 1968, Sutherland proposed a market for time slots for a shared PDP-1 computer

at Harvard [96]. Over the past 40 years, however, market dynamics for computing

resources have become far more complex [2]. Despite recent advances in game-

theoretic fairness [36] and welfare-maximizing markets for datacenters [19, 39, 66],

the trade-offs between fairness and welfare are not yet understood in these settings.

Market Overview. We use markets to allocate hardware and maximize system

welfare. Markets have several attractive properties. First, markets provide a clean

abstraction to users who simply specify their utility for performance. Second, proxy

85

Market

Processors
(P1, . . . , Pn)

B
id

s
(P

ro
xy

) A
sks (C

o
st)

Query Type A

Web Search Queries

Query Type B

Query Type C

Query Type D

Figure 4.4: Market Overview: Users report value derived from performance. Proxy
agents bid on behalf of users for computational resources. Market clears and allocates
hardware.

agents represent users within the market, automatically profiling and bidding for

hardware thereby absolving users of these burdens. Third, the market clears to

maximize welfare, which corresponds to throughput in the datacenter setting.

We consider the market illustrated in Figure 4.4, examining fairness for latency-

sensitive users. Users employ expressive utility functions to specify value for com-

putation. Value increases with performance and performance increases with the

hardware allocation. Proxy agents automatically profile performance to determine

how to bid for a hardware allocation.

Resources are allocated periodically (e.g., every ten minutes). At the beginning of

every period, bids are collected and compared against hardware costs, which include

operational and amortized capital costs. Operational costs depend on hardware

power and electricity prices. Capital costs include the price of servers depreciated

over their lifetime. In the market, welfare is defined as aggregate user value minus

datacenter hardware cost. We use welfare and efficiency interchangeably to describe

the market’s maximization objective.

Market Clearing Mechanism. Previously proposed market mechanisms max-

imize throughput while meeting latency objectives. Chase et al. prototype a market

86

for allocating cycles to web servers [19]. Lubin et al. extend the market to accom-

modate dynamic voltage and frequency scaling [66]. Most recently, Guevara et al.

embed microarchitectural insight into the market’s proxy agents, allowing them to

navigate heterogeneous processors within a datacenter [39].

Formally, a market clearing mechanism maximizes welfare subject to datacenter

resource capacity. Expression 4.3 is the objective, which maximizes welfare summed

across all agents minus datacenter cost. Constraint 4.4 ensures that the allocation is

bound by the number of resources X in the system.

max
ÿ

aPA

VapXaq ´ C (4.3)

s.t.
ÿ

aPA

Xa ď X (4.4)

VapXaq ě VapXbq @a, b P A; a ‰ b (4.5)

Va Ð value of allocation to application a

Xa Ð machines allocated to application a

C Ð cost of allocation

AÐ set of all applications

XÐ number of machines in the system

In each of these prior mechanisms, the objective is welfare maximization. For the

first time, we introduce the notion of fairness into the market clearing mechanism.

Our definition of fairness is tied to the notion of envy. An agent is envious when she

87

derives higher utility from another agent’s allocation than from her own. A market

clearing mechanism with fairness must avoid allocations that induce envy.

Constraint 4.5 enforces envy-freeness, ensuring that every agent a derives greater

value from its allocation Xa than from another agent b’s allocation. This constraint is

enforced on every pair of agents. The market clearing mechanism performs this con-

strained optimization with a mixed integer linear program. The resulting allocations

are envy-free and thus fair.

4.3 Fairness for Heterogeneous Tasks

To allocate resources effectively, we must understand datacenter applications. Stud-

ies often treat the application as a large, monolithic piece of software. In this set-

ting, the resource manager provides quality-of-service (QoS) to each application as

a whole. For an application with many latency-sensitive tasks, QoS is expressed as

a percentile on response time (e.g., 95th). This QoS metric allows a few tasks to fall

short of the performance target or fail altogether.

Tasks within an application are diverse. For example, memcached requests may

vary in size. Map Reduce tasks may vary in complexity. Web search queries may

vary in length. A single QoS metric expressed for each of these applications does

not capture differences in task behavior. Neglecting these differences may produce

unintended consequences. Yet addressing these differences raise hard questions about

fairness for tasks of different types.

Fairness for Users Requires Fairness for Tasks. Whether tasks of a par-

ticular type get a fair allocation depends on the datacenter manager. To achieve

a given response time, complex tasks require more time and hardware than simple

ones. Hardware may be diverted from simple tasks to complex ones. Whether such

task-level strategies are fair requires an understanding of user-level preferences and

88

envy. Fairness between task types translates into fairness between the users that

create those tasks.

For example, suppose two users or agents issue web search queries – agent As

issues simple queries and agent Ac issues complex ones. Intuitively, fairness could be

argued both ways. Agent As might argue that a datacenter is unfair to devote many

resources for relatively few, complex queries, especially if those resources could make

common, simple queries faster. To address this argument, the datacenter manager

needs a strategy to mitigate envy.

On the other hand, agent Ac might argue that a datacenter is unfair to sacrifice

the performance of complex queries even if they are rare. Moreover, the search

engine may wish to build user trust in its algorithms by consistently performing well

on “hard” queries. To address this argument, the datacenter manager must explicitly

recognize task diversity and ensure no task type is victim to discriminatory service.

Table 4.1: System Parameters for Web Search performance measurements.
Component Specification
Processor 3.3 GHz OOO cores, 6-wide issue (2 ld + 1 st + 3 int/fp)
L1 Cache 32 KB, 8-way SA, 64-byte blocks, 4-cycle (min)
L2 Cache 256 KB, 8-way SA, 64-byte blocks, 11-cycle (min)
L3 Cache 6 MB, 4-bank 8-way SA, 64-byte blocks, 26-31-cycle
DRAM Bandwidth 12.8 GB/s, dual channel

4.3.1 Agents for Heterogeneous Tasks in the Market

We classify an application’s tasks by type and consider a datacenter manager that

distributes resources across diverse tasks. We frame the fairness problem with a

multi-agent system. Each agent is associated with a task type and requests resources

on behalf of its queued tasks. We then make the case for mitigating envy and

encouraging sharing.

Envy-Freeness (EF). First, consider the benefits of envy-free (EF) allocation

for tasks of varying complexity. An EF allocation is one in which no user envies the

89

allocation of another. An EF mechanism might provide more resources to agents

with complex tasks. This outcome is not obviously EF. One might think that an

agent As with simple tasks would envy the larger allocation for an agent Ac with

complex ones. However, additional resources may not necessarily benefit As.

Suppose agent As defines service quality with respect to some target latency (e.g.,

100ms). Once this target is met, further latency reductions provide no additional

utility. If As is already meeting her latency target with her allocation, she will not

envy the larger allocation for Ac. Thus, EF allocations are fair yet differentiated for

task complexity.

Differentiation is important. For fairly balanced waiting times, Little’s Law says

that queues with complex tasks need more resources than ones with simple tasks. By

providing differentiated allocations, EF naturally produces desirable system behav-

ior. In particular, agents communicate task complexity with expressive piecewise-

linear utility functions. And the EF mechanism distributes resources to ensure agents

who represent diverse tasks do not envy each other. As a consequence, the users who

issue those tasks do not experience envy.

Sharing Incentives (SI). Datacenter resources might be divided statically or

dynamically. Without sharing incentives, n agents would not participate in a shared

system. Instead, they would prefer a static 1{n division of resources. Such division

is inefficient because it neglects task diversity. Complex tasks would better utilize a

ą 1{n allocation and simple tasks would see little harm from a ă 1{n allocation.

Sharing incentives (SI) allow an application to dynamically divide resources among

its constituent agents and tasks, providing each agent the utility it would have re-

ceived under a 1{n division. With dynamism, complex tasks will be served by more

hardware and simple tasks will be served by less. Note that this outcome, SI, arises

naturally from an EF mechanism. For any number of agents, sharing incentives fol-

low from envy-freeness as long as all resources in the system are allocated (i.e., no

90

(a) Number of Hits (b) Number of Terms
Figure 4.5: Query runtime is (a) highly correlated to the number of hits and (b)
increases with the number of search terms.

free disposal in cake cutting theory [22]).

Efficiency and the Price of Fairness. We define allocative efficiency with

respect to system throughput. Given this definition, the price of fairness is intu-

itive. Without fairness, a datacenter manager could allocate resources to maximize

throughput without regard to fairness. In the pursuit of fairness, the datacenter

manager must allocate resources subject to constraints imposed by EF and SI. These

constraints shift resource allocations and reduce throughput. The extent of this re-

duction constitutes the price of fairness.

4.3.2 Web Search and Heterogeneous Queries

Our approach to fair allocation relies on assigning an application’s heterogeneous

tasks to separate agents and queues. To do so, we need a method to distinguish

task types before having executed it. If we can classify tasks as they arrive, we can

forward them to different agents and queues.

We demonstrate this strategy for web search, focusing on latency-sensitive query

processing. Search is an important datacenter application that exhibits significant

91

diversity across queries. Moreover, we show that queries can be classified based on

the number of terms. These queries have strict latency targets [84] and would benefit

from fair resource allocation.

Creating an Index. We benchmark and characterize web search queries using

an open-source search engine. Lucene is a library that powers many open-source

search engines, including Solr which we use to index and search web pages. Search

queries vary in sophistication and length [14, 91], making them an ideal benchmark

for our system model. Note that while we focus on Wikipedia queries, Solr has a

broad user base, which includes Netflix, LinkedIn, and Twitter.

We use Wikimedia’s publicly available database of Wikipedia articles from June

2013. The database has over 13.5M articles, which produces a 12.3 GB index. Real

world search engines execute on indexes of all sizes. Our Wikipedia index is relatively

small compared to Google’s reported 100 PB index from July 2012. While we could

have used Nutch to crawl Wikipedia pages to create an index dynamically, we prefer

a static dataset that provides experimental repeatability.

Constructing Queries. We construct a diverse query stream to exercise the

search engine based on the 1,000 most popular Wikipedia English articles as reported

by Wikitrends. Specifically, we construct one query from each of the top article

titles. If the title is comprised of multiple words, we concatenate them with logical

ORs. For example, the most popular article is “List of reporting software” and the

corresponding query is “List+of+reporting+software”. Queries constructed in this

manner exhibit significant diversity. Long, complex queries have execution times

that are orders of magnitude greater than those for short, simple queries.

Our approach produces diverse yet relevant queries. For contrast, suppose we

were to construct queries with random terms selected independently of the indexed

pages (e.g., words from an English dictionary). Such queries could be irrelevant to

the indexed pages and produce too few results. For example, searching for jargon

92

is unlikely to yield any results for indexed content in a different discipline. Alterna-

tively, these queries could be too common (e.g., “the”) and produce too many results.

These effects are exacerbated in multi-term queries.

Executing Search. We run the web search engine on the platform in Table

4.1 and execute the set of 1,000 queries. We use Solr’s built-in logging to measure

the time required to execute each query. To ensure consistent and representative

measurements, we warm up the system and set aside data collected immediately

after the search engine is started.

After warm-up, we run the full set of queries three times. Across these experi-

ments, we observe an average variation of 7% in query execution time. This reported

variation is inflated by large percentage differences for relatively few small queries.

Across experiments, a short query’s execution time could vary between 2-4ms, a

difference of 50-100%.

4.3.3 Query Diversity and Execution Time

We analyze Solr logs to obtain the execution time for each query. Query execution

time varies from milliseconds to seconds as illustrated by the logscale y-axis on Figure

4.5a. The variation in query execution time is surprising and we seek to understand

the source of this diversity.

We find that the number of results for a query is a strong indicator of execution

time. Figure 4.5a shows the number of hits for each query on the log-scale x-axis. The

correlation coefficient between the execution time and number of hits is 0.91, which

indicates a strong correlation for the large data set. Intuitively, more computation is

required for queries that match a larger part of the index. Evidently, distinguishing

between short- and long-running queries is a necessary first step for fair guarantees

on service quality.

93

Table 4.2: Parameters for the four bins of web search query types in the market.
1-term 2-term 3-term >3-term

Mcyc/Task 14 79 509 1539
% StdDev 100 200 80 70
% Arrivals 32.5% 32.7% 18.9% 15.9%
Total Tasks/min 1620K
Daily Tasks/min 13162 13244 7654 6440
Week Tasks/min 52650 52974 30618 25758
Value (K$/month) $15 if Tď50ms

$0 if Tě800ms

To this end, we separate queries by an indicator that is readily available before

query processing: the number of search terms. Figure 4.5b illustrates the distribution

of execution times for varying query lengths. Queries with the same number of terms

have similar response times. We observe that 1-term queries are likely to take less

time than 2-term queries, and so on. The intuition is that adding a term to a query

will only add to the number of hits since terms are ORed together.

The relationships between query execution time, the number of hits, and the

number of search terms hold even when the index is in shards across multiple nodes

(e.g., SolrCloud). Queries execute against all shards in parallel, and the longest

running execution determines execution time. In this configuration, the correlation

coefficient between execution time and number of hits is 0.90, nearly as high as in the

single-server case. Although a query touches only a fraction of the data in distributed

search, we find that query execution time is not reduced by the same fraction. Thus,

we focus on single-server search, expecting our results to be representative and gen-

eralize due to the data parallelism at greater scales.

Our study thus far has shown that number of terms is a good indicator of ex-

ecution time, and that there is a wide spectrum of execution times for our query

set. Given that we can classify query types prior to executing them, we can assign

queries to separate agents and queues. Moreover, we can fairly allocate resources to

these agents and provide service quality guarantees across query types.

94

Table 4.3: Architecture parameters for big
and small cores.

Big Small
#Nodes 0´ 160 0´ 225
#CPU 4 16
Freq 2.0 GHz 1.0 GHz
Issue 6 inst 2 inst
Exe OOO IO
L1 I/D 64/64KB 32/32KB
L2 4MB, 8-way 1MB, 8-way

Table 4.4: Performance scaling factors for
web search query types on big and small
cores.

IPCBig IPCSmall SF
1-term 1.03 0.44 0.43
2-term 1.01 0.44 0.43
3-term 1.02 0.44 0.45
>3-term 1.14 0.45 0.40

4.4 Price of Fairness

Fair resource allocation is desirable, yet enforcing fairness likely reduces datacenter

throughput and efficiency relative to a welfare-maximizing allocator. Next, we eval-

uate the price of fairness by examining processor allocations for web search queries

of different types. We compare a welfare-maximizing allocation (max) against an

envy-free allocation (fair).

4.4.1 Mitigating Envy

Economic mechanisms expose an inherent tension familiar to most system architects.

A free market maximizes system throughput but may leave some tasks vulnerable to

poor performance. In contrast, a perfectly fair allocation does not efficiently use the

resources within the datacenter. To navigate efficiency-fairness trade-offs, we require

a spectrum of management mechanisms.

At one end of the spectrum, we implement a market that allocates processors to

maximize welfare [39]. At the other end, we constrain the market to enforce fairness

by eliminating envy. With these mechanisms, we identify the sources of envy and the

price paid for mitigating it. In particular, we examine expressive utility functions for

different types of web search queries to identify root causes of envy.

Methodology. We use an in-house simulator to compare the welfare-maximizing

(max) and envy-free (fair) market mechanisms. The market allocates processors to

95

web search queries as summarized in Table 4.2 that have diurnal arrival rates shown

in Figure 4.10. Four agents contend for resources, each acting on behalf of a particular

query type. Each query type demands the same 95th-percentile wait time (<800ms)

and derives the same value when this target is met.

We classify queries into four types based on the number of terms: 1, 2, 3, and

>3. Each query type is parametrized by its duration in millions of cycles, based on

measurements in Figure 4.5b a physical machine. Query arrivals follow sinusoidal

patterns and with relative arrival rates based on the characterization of Silverstein

et al. [91].

The market allocates processors to agents and their queries. We simulate a 20KW

system, which corresponds to approximately two racks of servers equipped with 160

quad-core processors. Each 2.5GHz core dissipates 15.6W, and the uncore compo-

nents (memory, disk, NIC) dissipate 65W. We assume a power usage effectiveness of

1.6 [6]. The electricity price is $0.07 per kWh. These parameters determine costs

that are used to calculate welfare.

Sources of Envy. To understand the type of envy that max allocations cause,

we consider the utility functions of each agent. Utility is the value derived from

a particular allocation of processors. As the processor allocation increases, 95th

percentile response time falls and value rises. We consider these effects for agents

A1, A2, A3, Aą3 who represent queries with 1, 2, 3 and >3 terms.

The effects of a processor allocation vary across query types due to differences in

query latency and arrival rates. Arrival rates vary according to diurnal datacenter

activity. We examine envy in three activity scenarios: low, average, and high. As

shown in Figure 4.6, utility functions assign a dollar value (y-axis) to processor

allocations (x-axis).

Values on the y-axis originate from the service-level agreement for web search;

see Table 4.2. For each activity scenario and query type, there exists a flat region

96

(a) Low Load

(b) Average Load

(c) High Load
Figure 4.6: Utility functions show that 1- and 2-term queries require significantly
fewer processors than 3- and >3-term queries.

97

in which additional processors do not increase value. Values in this region vary from

$0.30 at low load, $3.00 at average load, and almost $7.00 at peak load. For a

particular level of load, however, query types derive similar value from good service.

The key differences in utility manifest on the x-axis and the number of processors

demanded by each query type. The x-intercept identifies the minimum number of

processors required for an agent. The x-intercept shifts right as query length and

complexity increases. Agent Aą3 demands more processors than agent A1. Addi-

tionally, the x-intercept shifts right as query load increases. Higher query arrival

rates require correspondingly high processor allocations to increase service rate and

to maintain reasonable queueing times.

Figure 4.6(a) highlights several of these effects. Short queries, despite comprising

more than 60% of the total query stream, require few processors. At low load, agents

A1 and A2 require less than 1% of the datacenter’s processors to maximize their value

for computation. With such modest demands for hardware, these agents are unlikely

to envy the allocation of others. Agents A1 and A2 derive no additional benefit from

an allocation greater than 0.1% and 0.6% of the system, respectively. They will not

envy the larger allocations of A3 and Aą3.

In contrast, envy is likely given high load or an over-subscribed datacenter, sce-

narios illustrated in Figure 4.6(c). The allocations for agents A3 and Aą3 require a

large share of the system to meet even their minimum service targets. Indeed, these

agents would need more than 100% of the datacenter’s processors to derive their

maximum value. For example, agent A3 would continue to benefit from additional

processors even if she were given all of the datacenter’s processors. In this setting,

envy is very likely.

Envying the Allocation of Another. Figure 4.7a compares max and fair

processor allocations that are made to each agent and her query type. At high

load, consider the allocations made by the max mechanism. Agent A3 and her 3-

98

(a) Max (b) Envy-Free
Figure 4.7: Max allocations more efficiently use processors than the envy-free mech-
anism, especially at high load.

term queries receive 21.2% of the datacenter’s processors. Agent Aą3 receive 55.9%.

Given these allocations, A3 envies Aą3. Agent A3 would derive more value from

55.9% of the datacenter’s processors than from the 21.2% she was allocated.

To reason about this envy, consider the users who issue the queries. Users who

issue 3-term queries would envy those who issue >3-term queries. The first user

would likely experience better service had the 3-term query been classified as a >3-

term query. This observation may produce strategic behavior. A user may try to

exploit a system under high load by aliasing her request and misleading the manager

for greater performance.

The envy-free mechanism explicitly guards against such strategic behavior. Fig-

ure 4.7b shows fair processor allocations for the same stream of queries. Unfortu-

nately, under high load, it is not possible to provision resources to agent Aą3 without

inducing envy in agent A3. As a result, the fair mechanism allocates Aą3 nothing so

that A3 has no cause for envy.

99

4.4.2 Price of Fairness

The most efficient allocation of datacenter processors is one that maximizes value

across all users. At best, the fair and envy-free mechanism allocates processors just

as efficiently as the optimal and welfare-maximizing one. At other times, however,

enforcing envy-freeness causes the system to deviate from the most efficient alloca-

tions. We quantify the price of fairness by comparing max and fair mechanisms.

Figure 4.11 indicates efficiency from the fair mechanism is noticeably lower than

that of the max mechanism when resource contention is high. To be precise about

the price of fairness, we adopt the definition from prior work [18]:

Price “
Total utility of agents in optimal allocation
Total utility of agents in fair allocation

We apply this definition to our week-long experiments in processor allocation. For the

four query types, the price of fairness is 1.5; the max allocation achieves up to 1.5ˆ

the value of the fair allocation. Recent theoretical findings have shown the difficulty

of applying tight bounds to the price of envy-freeness. We note that experiments

show far better efficiency than what is predicted by the loose upper bound n´ 1
2
[18].

Envy-freeness constraints degrade efficiency most when the system is under heavy

load. In this setting, compare max and fair allocations in Figure 4.7b. The key

difference between them is whether agent Aą3 receives any processors at all. These

queries need at least 50% of the datacenter’s processors to derive any value from

the allocation. Unfortunately, both agents A3 and Aą3 would benefit from a 50%

allocation. This situation leads to envy.

To eliminate envy between A3 and Aą3, the market would need to allocate an

equal number of processors to both agents. But both agents prefer ě 50% and the

market cannot satisfy both agents without sacrificing all other agents. Given these

100

trade-offs, the market allocates nothing to agent Aą3 and satisfies the other three

agents.

This particular example highlights the price of fairness. Envy-freeness is a highly

restrictive form of fairness. In a highly contended system, eliminating envy may force

the datacenter manager to degrade throughput and starve agents. Such trade-offs

are to be expected from a mechanism that enforces any sort of fairness. Given a

formal measure for the price of fairness, we proceed to introduce a knob that allows

the market to tune the balance between fairness and efficiency.

4.4.3 Trading Fairness for Efficiency

Although envy-freeness is a desirable property for an allocation mechanism, its effect

on efficiency is costly. When resources are scarce, the price of fairness is particularly

unattractive. To solve this problem, we add a parameter to the market mechanism

that allows for a tunable amount of envy to exist in the allocations. Constraint

Equation (4.5) for envy-freeness in the mixed integer program becomes:

ε-EF : VApXAq ` εˆ VApXAq ě VApXBq @a, b P Agents

In the above, ε is the amount of envy allowed in the system expressed relative to each

agent’s valuation. When ε “ 0, the market produces envy-free allocations. When

ε ą 0, optimization constraints are relaxed allowing the market to find more efficient

allocations while tolerating some degree of envy.

Figure 4.8 shows how efficiency improves as ε increases. The market permits

agents to envy another agent’s allocation and tolerates envy of 0.5ˆ, 1.0ˆ, or even

1.5ˆ of its allocated value VApXAq. By progressively increasing ε and relaxing con-

straints on envy, the overall efficiency of ε-EF allocations approaches that of the max

101

(a) ε “ 0.5-Envy

(b) ε “ 1.0-Envy

(c) ε “ 1.5-Envy
Figure 4.8: Increasing the amount of envy in the system via the parameter ε
improves efficiency.

102

(a) ε “ 0.5-Envy

(b) ε “ 1.0-Envy

(c) ε “ 1.5-Envy
Figure 4.9: As ε-envy increases, resource allocations more closely approximate
those of the max mechanism.

103

Figure 4.10: Query arrival rate. Figure 4.11: Max vs EF efficiency.

allocation.

As before, the effects of fairness on throughput are most apparent when the sys-

tem is under high load. Permitting some envy reduces the price of fairness observed

in Figure 4.11. In a deployed system, ε can serve as a powerful knob to trade-off

efficiency and envy in response to system load.

Improvements in efficiency are a direct result of different allocations for different

values of ε. Figure 4.9 shows allocations as the allowed amount of envy increases.

When ε “ 0.5, the allocations do not differ significantly from the envy-free ones in

Figure 4.7b. Yet even modest allocation changes when ε “ 0.5 improve efficiency for

periods of moderate contention. See Monday and Thursday in Figure 4.8a.

When ε “ 1.0, allocations under low and average load very closely resemble

those from the max mechanism in Figure 4.7a. Lastly, when ε “ 1.5, the four

agents’ allocations are close to those of the max mechanism. And as these allocations

converge, so do efficiency and welfare.

104

Figure 4.12: Market clearing and solve time for varying degrees of envy.

4.5 Fairness and Heterogeneous Processors

Recent industry trends motivate low-power, mobile-class processors in datacenters.

Though these processors degrade single query performance, many more of them

can be used within the power budget of traditional, server-class processors. Prior

mechanisms manage heterogeneous servers to maximize performance and throughput

[39, 69]. For the first time, we consider the fair allocation of heterogeneous processors.

In this section, we describe the difficulty of expressing heterogeneity with piecewise-

constant Leontief utility functions. Leontief utilities do not apply to latency-sensitive

tasks and we cannot leverage recent generalizations of max-min fairness [36]. Instead,

we express heterogeneity using piecewise-linear utility functions and implement fair-

ness within a market [39]. We evaluate fairness and envy when allocating big- and

small-core processors to web search queries of varying lengths.

105

4.5.1 Expressing Heterogeneity

Fairness is complicated in settings with multiple resources and resource types. Ghodsi

et al. generalize max-min fairness for multiple resources – processors and memory

[36]. In this setting, max-min fairness relies on two key assumptions. First, the

resources are complementary. Tasks require a minimum allocation of both processors

and memory to execute, and more of one resource cannot compensate for less of the

other. Second, piecewise-constant utility functions express value for throughput and

greater allocations always increases value.

In our setting, fairness is complicated by multiple resource types – big and small

processor cores. Processor heterogeneity poses fundamentally different challenges.

The processor cores are imperfect substitutes. One core type can be substituted for

another as long as the latency penalties are tolerable. Moreover, users derive value

when latency targets are met. Piecewise-linear utility functions express value for

latency.

For piecewise-linear utilities and heterogeneous processors, Guevara et al. present

a market mechanism for resource allocation [39]. We extend this market to mitigate

envy and improve fairness. As in the setting with homogeneous processors, we assess

envy and quantify the price of fairness when allocating heterogeneous processors.

Fairness and Substitutability. Heterogeneous processors are imperfect sub-

stitutes. Tasks may derive the same utility when running on QB big processors or

QS small processors. A stream of memory- or I/O-bound tasks may be indifferent

between core types and hence QB “ QS. In contrast, a processor-intensive task

stream needs many small cores to compensate for individual task slowdowns and

hence QB ă QS. The key is that, for any homogeneous task stream, the marginal

rate of substitution between core types is a given and constant.

Correctly expressing substitutability is important to achieving fairness. Assessing

106

envy requires each agent to compare the value derived from her allocation against

the value derived from other agents’ allocations. With processor heterogeneity, the

market clearing mechanism must differentiate between resource types to properly

quantify envy.

Fairness and Optimization Complexity. Processor heterogeneity, if exposed

directly to the market clearing solver, would produce an expensive multi-dimensional

linear program. For timely allocation decisions, we scale heterogeneous resource al-

locations into canonical ones. Such scaling reduces the dimensionality of the opti-

mization and reduces solve time.

Specifically, we apply performance scaling factors to represent application pref-

erences for heterogeneous processors. Utility functions express value as a function of

cycles from a canonical core (x-coordinate). Canonical cycles are inferred by applying

scaling factors ă κB, κS ą to a mix of heterogeneous cycles ă QB, QS ą. The market

clearing mechanism estimates canonical cycles by multiplying Q “ QBˆκB`QSˆκS

and mapping Q to value (y-coordinate).

Mitigating heterogeneity’s effect on solve time is important because enforcing

constraints on envy necessarily increases solve time. Fairness impacts solve time by

adding constraints on envy and reducing the set of feasible solutions for the linear

program. The precise impact on solve time depends on how restrictive the constraints

on fairness are.

Figure 4.12 illustrates solve time distributions when clearing a market with het-

erogeneous processors. At one end of the spectrum, a welfare-maximizing market

allocates processors without regard for envy. The market clears repeatedly for one

week of activity, and allocations are identified in <0.1 seconds.

In contrast, restricting the extent of envy in the system increases the mean and

variance for solve times. When ε “ 1.0´ 1.5 and more envy is permitted, solve time

remains <0.1 seconds. At ε “ 0.5 or when envy is not permitted, solve times increase

107

by one to two orders of magnitude. Increased allocation overheads are another price

of fairness.

4.5.2 Allocating Big and Small Cores

Let us again consider the problem of allocating processors to search queries. As

before, queries are classified upon arrival by the number of search terms. The allo-

cation mechanism partitions resources across query types maximizing welfare while

mitigating envy. The datacenter is equipped with two types of processors with ei-

ther big or small cores. We estimate performance scaling factors in cycle-accurate

simulation for each query type.

Methodology. We use Marssx86 and DRAMsim2 to simulate Solr with a smaller

input set of 50K documents [80, 86]. We configure big and small cores as listed

in Table 4.3. Across all query types, the scaling factor for the small core is 0.4

(κ “ IPCB

IPCS
), shown in Table 4.4. This is similar to prior work that executed the Bing

search engine on Intel Atom processors and observed a 3ˆ decrease in throughput

[84].

The number of cores per server is determined to equalize die area based on McPAT

estimates [61]. Processors that use small cores should integrate more of them on the

die to amortize the cost of uncore components across more processing capability.

Aside from scaling factors and core power, all parameters are kept the same across

processor types.

Sources of Envy. Figures 4.13a–4.13b show the allocations of small and big

cores with the welfare-maximizing market at average query load. The x-axis enu-

merates various ratios of small to big cores that fit within a 20KW power budget.

Possibilities include a homogeneous system with only big cores 0:160, only small

cores 225:0, or a heterogeneous mix of the two core types. The y-axis shows the

108

(a) Max Allocation of Small Cores (b) Max Allocation of Big Cores

(c) ε “ 1.0, Small Cores (d) ε “ 1.0, Big Cores
Figure 4.13: Allocations of heterogeneous resources.

percentage of small and big cores allocated to each query type.

Suppose agents A1, A2, A3, Aą3 represent query streams with 1, 2, 3, and >3

terms. Within each heterogeneous system, the max mechanism allocates the big cores

to Aą3 but this allocation causes envy. Consider system 112:80. Aą3’s allocation

is 37.5% of the system’s big cores and 5.0% of its small cores. The agent derives

$2.86 of utility (Figure 4.6b). Meanwhile, A3 receives no big cores and 19.1% of the

system’s small cores for $3.21 of utility. Agent A3 envies Aą3 since her value would

increase to $3.25 if allocations were swapped.

Now let us consider the allocations with the fair, envy-mitigating mechanism

109

shown in Figures 4.13c–4.13d. With ε “ 1.0, all four query types receive allocations.

In the heterogeneous cases, agents A1 and Aą3 always receive some fraction of the

big cores. The other two agents A2 and A3 receive a mix of heterogeneous cores.

Although not shown, the efficiencies of the EF and ε-EF mechanisms are the same

in both homogeneous and heterogeneous settings.

In summary, the fair market mechanisms extend naturally to datacenters with

heterogeneous processors. The market produces the desired outcomes. Big processors

are allocated to more expensive tasks and small processors are allocated to simpler

ones. The market clears to maximize welfare while mitigating envy. And the price

of fairness depends on the extent that envy is permissible.

4.6 Related Work

Fairness. In datacenter systems, dominant resource fairness (DRF) allocates re-

sources to throughput-oriented workloads [36]. DRF guarantees attractive game-

theoretic properties: sharing incentives, envy-freeness, Pareto efficiency, and strategy-

proofness. However, DRF does not apply to latency-sensitive tasks, which are the

focus of our work.

In computer architecture, fairness has been defined as equal-slowdown in the

presence of resource contention on a shared system [75]. This definition guarantees

fairness in outcomes but does not provide guidance for resource allocation. Equal-

slowdown mechanisms do not provide sharing incentives; prior work assumes that

users have no choice but to share.

In economics, the cake-cutting problem translates naturally into system manage-

ment. Yet only recently has it been studied for piecewise-linear utility [15, 24]. In

these settings, guaranteeing fairness is theoretically unexplored. Fairness necessarily

reduces efficiency, yet bounding efficiency losses is an open problem [18]. We present

110

a real-world need for piecewise-linear utility and fairness among search queries.

Markets. Resource allocation using economic mechanisms has typically aimed

to maximize performance [31, 46, 96, 101]. There has also been work in applying such

mechanisms to account for energy consumption [19]. Another approach to improving

energy efficiency of datacenters is to use DVFS [66]. More recently, allocating small

cores for their energy efficiency has been shown to improve service within a fixed

energy budget [39]. To the best of our knowledge, we are the first to apply market

mechanisms to enforce fairness properties across latency-sensitive applications.

Heterogeneity. By profiling requests on a variety of server-class processors,

resource managers can make better mappings of applications to systems [27, 69].

To exploit efficient mobile-class processors in heterogeneous systems, new allocation

mechanisms are needed [39]. Processor design methodologies can target datacenter

applications [65] or produce large-scale, heterogeneous systems [40]. Heterogeneity

presents a unique challenge to resource management we take an important first step

towards fairly allocating substitutable resources.

4.7 Summary

We use a market mechanism to enforce envy-freeness in shared datacenters. Applying

this resource manager to divide resources amongst web search queries reveals that the

price of fairness is efficiency, and it is most apparent when system resources are scarce.

We present a parametrized version of the EF market that allows a system to trade

envy for efficiency. Fair resource management can also be applied to heterogeneous

resources and maintain the same strong guarantees in the resulting allocations.

111

5

Conclusions

The primary contribution of this thesis is a novel approach to architecting heteroge-

neous systems that coordinates the design and management of the resources. Hetero-

geneity is desirable due to improvements in energy efficiency. If the heterogeneous

resources are well-matched to the application mix, the system is a step closer to

being specialized for the payload and can execute it more efficiently than a general-

purpose system. This efficiency allows datacenters to save power while servicing the

same amount of load, or to increase service rate without increasing power utilization.

This thesis has also contributed a vision and methodology for deploying hetero-

geneous processors in a datacenter. Though prior work has proposed heterogeneous

chip multiprocessors, we assume homogeneous multiprocessors and instead deploy

heterogeneity across servers or racks in a datacenter. The benefits of this approach

are twofold. First, system architects can determine the fraction of the power budget

that should be dedicated to each processor type based on the expected workload mix.

With heterogeneous CMPs, the processor architect determines the ratio of small and

big cores, and this mix is unlikely to satisfy all cloud services. Second, the man-

agement of the heterogeneous resources can be centralized such that once a request

112

arrives at a server, there are no additional resource allocation decisions to be made.

In fact, resources can be partitioned at the level of full racks or servers and requests

from an application are steered to that part of the datacenter.

We have presented two versions of an allocation mechanism that uses profiling

information to manage heterogeneous resources. The market mechanism in Chap-

ter 2 makes allocations that maximize welfare, which is value minus cost. It uses

an optimization framework to find the best allocation, where the best allocation is

that which provides good quality of service to as many applications as possible, at

the lowest operational cost. In Chapter 4 we present an alternative version of the

market that enforces envy-free allocations between latency-sensitive applications. In

both versions of the market, the resulting allocations provide theoretical guarantees

rather than responding to system utilization metrics as approximations for welfare or

fairness. The markets are truly a marriage between two fields, computer architecture

and computational economics, where techniques from both disciplines contributed to

the final product.

The other major contribution in this thesis is in the form of a methodology

for designing heterogeneous systems for manageability. In the presence of hetero-

geneity, resource managers make best-effort allocations in response to application

arrival rates and preferences. Instead of designing heterogeneous systems to maxi-

mize efficiency, diversity, or peak performance within a fixed area or power budget,

we propose design strategies that produce manageable systems. By considering the

sources of run-time uncertainty, our design strategies aim to provide resource man-

agers suitable alternatives to a best-case allocation. For example, in the presence of

contention an application may not get its preferred core, but if the design includes

reasonable alternatives to the preferred core, then the manager is more likely to make

reasonably good decisions. The results in 3 show that risk-aware design strategies are

likely to produce better systems than strategies from prior work that maximize effi-

113

ciency under best-case assumptions about resource management. Our work rethinks

heterogeneous design and demonstrates the benefit of this novel approach.

5.1 Key Contributions

In summary, the key contributions of this thesis are:

• Processor Heterogeneity in the Datacenter. We define a novel design

space where heterogeneous processors are deployed in datacenters to increase

the compute capability of the system within a fixed power budget.

• Economic Mechanisms and Heterogeneity. We allocate processors to

applications with a market that navigates performance-efficiency trade-offs of

heterogeneity.

• Anticipating Risk in Heterogeneous Design. We consider resource man-

agement at design-time and ask whether a deployed heterogeneous system is

likely to meet design objectives using non-ideal resource allocation.

• Formalizing Heterogeneous Design Strategies. We construct a frame-

work of strategies for heterogeneous design, and propose strategies that mini-

mize performance uncertainty.

• Designing for Manageability. We explore tens of design strategies and rank

the resulting systems based on service quality. Risk-aware design accounts for

more than 70% of the top-ranked strategies.

• Examine Fairness for Latency-Sensitive Tasks. We demonstrate that

prior algorithms for fair allocations do not support expressive piecewise-linear

utility functions, which are necessary to describe the performance targets of

latency-sensitive tasks.

114

• Introduce Fairness to Markets. We add constraints to a market mechanism

so that the resulting resource allocations are fair.

• Enforcing Fairness for Heterogeneous Tasks. We find that web search

queries have vastly different runtimes and can be classified upon arrival based

on the number of search terms.

• Quantifying the Price of Fairness. We observe that the efficiency of a

welfare-maximizing market is 1.5ˆ that of fair allocations, though we can im-

prove efficiency by parametrizing the amount of envy allowed in the system.

• Extending Fairness to Heterogeneous Processors. We show that the

microarchitectural differences in heterogeneous processors can be embedded

into the market when the fairness constraints are present.

5.2 Future Directions

Many interesting research directions lie at the intersection of systems and compu-

tational economics. Small and large-scale systems can benefit from solutions that

have a strong theoretical foundation. We can tailor mechanisms from theory based

on system and application behaviors. Both disciplines benefit and grow from collab-

orating wiht each other. Next, we discuss open questions that lie on the same course

as this thesis.

5.3 Market Mechanisms

As we continue to build bridges between computer architecture and economic and

multi-agent systems, enhancing allocation procedures with greater architectural in-

sight is imperative. This thesis demonstrates that market mechanisms can manage

115

heterogeneous resources when equipped with the relative performance and power

of the different architectures. There are other sources of performance and power

differences that might be considered by the allocator. For example, differences in

the storage technologies of servers have an effect on application performance, and a

mechanism for resource management would benefit from this information. Accelera-

tors are another source of performance and power improvements, and appropriately

expressing the trade-offs to an allocator is an open question.

There is much research in performance and power modeling in the systems com-

munity, and coupling these models with mechanisms from computational economics

would increase their relevance. Whereas the market in this thesis relied on data from

having profiled applications, using a model in the market that estimates performance

and power differences between heterogeneous processors is an interesting alternative.

There is also the option of having the market learn whether the profiling information

it uses is producing good allocations. The market can compare the value that each

application experiences from the allocation to the value that the market expected

from each application when it made its allocation decision. If the market is repeat-

edly over-valuing an allocation decision, then it is possible that the scaling factors

that it has for an application to do not adequately represent the sensitivity of that

application to processor choice.

Another direction is to have the proxy agents implement bidding strategies in

response to the allocations and service quality that an application obtain. If an

allocation is repeatedly unsuccessful at obtaining a good allocation, it may have

to rethink the parameters of its bid. The dollar value and response time targets

are fed to the proxy by each application, yet it is possible that an application is

unable to correctly specify these parameters to reflect the type of service it expects.

For example, even though an application may have a response time target in mind,

this target may not correctly account for queuing or other system delays and hence

116

needs to be reconsidered. The bidding proxy can make recommendations to the

application that will allow it to get better service. The proxy might also be strategic

and try to increase an application’s utility by obtaining the same service quality at

a lower price. Based on the status of the system, such as contention and degree of

heterogeneity, a proxy agent can define a strategy to bid less than the true valuation

of the application.

There is also a broader opportunity to apply market mechanisms to solve prob-

lems in systems other than datacenters. In fact, heterogeneous processors are more

prevalent in mobile systems-on-chip and chip multiprocessors than they are in data-

centers. Tailoring the application and system model in the market to these different

architectures would open these platforms to a new approach to resource manage-

ment. Other parts of the market model probably need to be updated, for example

the frequency of allocation decisions and the optimization technique that is used

to clear the market. Mobile and desktop platforms also have different application

and system settings than a datacenter. Properly reflecting these to the market is

necessary to benefit from the mechanism.

5.4 Heterogeneous System Design

Future work also exists along the route of heterogeneous system design. This thesis is

the first to consider the importance of resource management during the design phase.

Prior work in designing heterogeneous chip multiprocessors aimed to maximize ef-

ficiency by assuming a perfect mapping of applications to processors. By breaking

this assumption, we have discovered novel appraches to design space exploration that

produce systems that perform better under a realistic, imperfect resource allocation

setting. We evaluated the risk-aware strategies by applying them to a design space

of heterogeneous processors for datacenters. Yet the strategies can also be applied

117

to other heterogeneous systems, such as chip multiprocessors. It is also possible

that new strategies are waiting to be discovered that target different application and

system models.

Our approach in Chapter 3 ties the design to one allocation mechanism. It

would be interesting to know how sensitive the design process is to the specific

mechanism. For example, suppose the market mechanism undergoes a small change

that typically leads to better allocations. Does this mean that the heterogeneous

system we designed with the original market is no longer a good design point? The

market may also undergo a large change, or it may altogether be replaced. Ideally, the

system we designed would not altogether fail to provide good quality of service under

a different resource manager. It is unlikely that the design strategies we propose are

poorly matched to other resource allocators, but this remains an open question.

Another interesting direction is to identify key features and parameters in an al-

location mechanism that affect design decisions. For example, if a resource allocation

mechanism has a policy to always allocate low-power cores first, the designer might

consider that the resources will be managed based on their power utilization. An

open question is whether there is a may be to relay this information to the design

process without requiring an end-to-end evaluation of the different design points, as

was done in this work. If key features of an allocator can be extracted and communi-

cated to the designer, it is also likely that small updates to the allocation mechanism

will not necessitate updates to heterogeneous design strategies.

118

Bibliography

[1] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R. Gupta, “Som-
niloquy : Augmenting network interfaces to reduce PC energy usage,” in Pro-
ceedings of the 6th USENIX symposium on Networked systems design and im-
plementation, 2009, pp. 365–380.

[2] Amazon, “Amazon Elastic Compute Cloud,” 2011. [Online]. Available:
http://aws.amazon.com/ec2/

[3] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Va-
sudevan, “FAWN : A fast array of wimpy nodes introduction,” in Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. New
York, NY, USA: ACM, 2009, pp. 1–14.

[4] Anonymous, “Space invaders,” The Economist, 2012.

[5] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact of perfor-
mance asymmetry in emerging multicore architectures,” in Proceedings of the
32nd annual international symposium on Computer Architecture, ser. ISCA
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 506–517.

[6] L. Barroso, J. Clidaras, and U. Hölzle, The datacenter as a computer: An
introduction to the design of warehouse-scale machines. Morgan Claypool,
2013.

[7] L. Barroso, K. Gharachorloo, R. McNamara, a. Nowatzyk, S. Qadeer, B. Sano,
S. Smith, R. Stets, and B. Verghese, “Piranha: A scalable architecture based
on single-chip multiprocessing,” Proceedings of 27th International Symposium
on Computer Architecture (IEEE Cat. No.RS00201), pp. 282–293, 2000.

[8] L. A. Barroso and U. Hölzle, “The case for energy-proportional computing,”
Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.

[9] L. A. Barroso and U. Hölzle, “The datacenter as a computer: An introduction
to the design of warehouse-scale machines,” Synthesis Lectures on Computer
Architecture, vol. 4, no. 1, pp. 1–108, Jan. 2009.

119

http://aws.amazon.com/ec2/

[10] M. Becchi and P. Crowley, “Dynamic thread assignment on heterogeneous mul-
tiprocessor architectures,” in Proceedings of the 3rd conference on Computing
frontiers, ser. CF ’06. New York, NY, USA: ACM, 2006, pp. 29–40.

[11] D. Bertsekas and R. Gallager, Data Networks. Prentice Hall, 1992.

[12] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill,
D. a. Wood, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, and T. Krishna, “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, p. 1, Aug. 2011.

[13] F. Bower, D. Sorin, and L. Cox, “The impact of dynamically heterogeneous
multicore processors on thread scheduling,” Micro, IEEE, vol. 28, no. 3, pp.
17–25, 2008.

[14] E. Bragg, M. Guevara, and B. Lee, “Understanding query complexity and its
implications for energy-efficient web search,” in Low Power Electronics and
Design (ISLPED), 2013 IEEE International Symposium on, Sept 2013, pp.
401–401.

[15] S. J. Brams, M. Feldman, J. K. Lai, J. Morgenstern, and A. D. Procaccia,
“On maxsum fair allocations,” in Proceedings of the 26th AAAI Conference on
Artificial Intelligence, 2012.

[16] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
“CloudSim: A toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms,” Software: Practice
and Experience, vol. 41, no. 1, pp. 23–50, Jan. 2011.

[17] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley, “The yin and yang of
power and performance for asymmetric hardware and managed software,” in
Proceedings of the 39th Annual International Symposium on Computer Archi-
tecture, ser. ISCA ’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 225–236.

[18] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, and M. Kyropoulou, “The
efficiency of fair division,” Theory of Computing Systems, Sep. 2011.

[19] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,
“Managing energy and server resources in hosting centers,” ACM SIGOPS Op-
erating Systems Review, vol. 35, no. 5, p. 103, Dec. 2001.

[20] J. Chen and L. K. John, “Efficient program scheduling for heterogeneous multi-
core processors,” in Proceedings of the 46th Annual Design Automation Con-
ference, ser. DAC ’09. New York, NY, USA: ACM, 2009, pp. 927–930.

120

[21] Y. Chen, J. Lai, D. Parkes, and A. Procaccia, “Truth, justice and cake cutting,”
in Proceedings of the 24th AAAI Conference on Artificial Intelligence, 2010, pp.
756–761.

[22] ——, “Truth, justice and cake cutting,” Games and Economic Behavior, vol. 77,
no. 1, pp. 284–297, 2013.

[23] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi, B. H.
Dwiel, S. Navada, H. H. Najaf-abadi, and E. Rotenberg, “FabScalar : Compos-
ing synthesizable RTL designs of arbitrary cores within a canonical superscalar
template,” in Proceeding of the 38th annual international symposium on Com-
puter architecture. New York, NY, USA: ACM, 2011, pp. 11–22.

[24] Y. Cohler, J. Lai, D. C. Parkes, and A. D. Procaccia, “Optimal envy-free cake
cutting,” in Proceedings of the 25th AAAI Conference on Artificial Intelligence,
2011.

[25] R. Courtland, “The battle between ARM and Intel gets real,” IEEE Spectrum,
2012.

[26] J. Davis, J. Laudon, and K. Olukotun, “Maximizing CMP throughput with
mediocre cores,” 14th International Conference on Parallel Architectures and
Compilation Techniques (PACT’05), pp. 51–62, 2005.

[27] C. Delimitrou and C. Kozyrakis, “Paragon : QoS-Aware scheduling for het-
erogeneous datacenters,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems,
2013.

[28] L. Eeckhout, S. Nussbaum, J. Smith, and K. De Bosschere, “Statistical sim-
ulation: Adding efficiency to the computer designer’s toolbox,” Micro, IEEE,
vol. 23, no. 5, pp. 26–38, 2003.

[29] Facebook, “More effective computing,” Tech. Rep., 2011.

[30] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the Clouds:
A study of emerging scale-out workloads on modern hardware,” in 17th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, no. Asplos, 2012, pp. 1–11.

[31] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini, “Economic mod-
els for allocating resources in computer systems,” in Market Based Control of
Distributed Systems. World Scientific Press, 1996, pp. 156–183.

121

[32] A. Gandhi, M. Harchol-balter, and M. A. Kozuch, “The case for sleep states in
servers,” in Proceedings of the 4th Workshop on Power-Aware Computing and
Systems. New York, NY, USA: ACM, 2011.

[33] S. Garg, S. Sundaram, and H. D. Patel, “Robust heterogeneous data center
design: A principled approach,” SIGMETRICS Perform. Eval. Rev., vol. 39,
no. 3, pp. 28–30, Dec. 2011.

[34] V. George, S. Jahagirdar, C. Tong, K. Smits, S. Damaraju, S. Siers, V. Nayde-
nov, T. Khondker, S. Sarkar, and P. Singh, “Penryn : 45-nm next generation
Intel ® core ™ 2 processor,” in Solid-State Conference, 2007, pp. 14–17.

[35] G. Gerosa, S. Curtis, M. D’Addeo, B. Kuttanna, F. Merchant, B. Patel,
M. Taufique, and H. Samarchi, “A sub-2W low power IA processor for mo-
bile internet devices in 45 nm high-k metal gate CMOS,” IEEE Journal of
Solid-State Circuits, vol. 44, no. 1, pp. 73–82, Jan. 2009.

[36] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica,
“Dominant resource fairness : Fair allocation of multiple resource types,” in
Proceedings of the 8th USENIX conference on Networked Systems Design and
Implementation. Berkeley, CA: USENIX Association, 2011.

[37] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph exe-
cution profiler,” in Proceedings of the 1982 SIGPLAN symposium on Compiler
construction, ser. SIGPLAN ’82. New York, NY, USA: ACM, 1982, pp. 120–
126.

[38] B. Guenter, N. Jain, and C. Williams, “Managing cost , performance , and
reliability tradeoffs for energy-aware server provisioning,” in Proceedings of the
30th conference on Information communications, 2011, pp. 1332–1340.

[39] M. Guevara, B. Lubin, and B. Lee, “Navigating heterogeneous processors with
market mechanisms,” in Proceedings of the 19th IEEE International Symposium
on High-Performance Computer Architecture, Feb. 2013.

[40] ——, “Strategies for anticipating risk in heterogeneous system design,” in
Proceedings of the 20th IEEE International Symposium on High-Performance
Computer Architecture, Feb. 2014.

[41] V. Gupta, M. Harchol-Balter, J. G. Dai, and B. Zwart, “On the inapproxima-
bility of M/G/K: Why two moments of job size distribution are not enough,”
Queueing Systems, vol. 64, no. 1, pp. 5–48, Aug. 2009.

[42] Hewlett Packard, “HP moonshot system,” http://www.hp.com/go/moonshot.

[43] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Computer,
vol. 41, no. 7, pp. 33–38, Jul. 2008.

122

http://www.hp.com/go/moonshot

[44] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource shar-
ing in the data center,” in Proceedings of the 8th USENIX conference on Net-
worked systems design and implementation, ser. NSDI’11. Berkeley, CA, USA:
USENIX Association, 2011, pp. 22–22.

[45] M. Horowitz, “Scaling, power and the future of cmos,” in Proceedings of the 20th
International Conference on VLSI Design held jointly with 6th International
Conference on Embedded Systems, ser. VLSID ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 23–.

[46] T. Ibaraki and N. Katoh, Resource allocation problems: Algorithmic Ap-
proaches. Cambridge, MA, USA: MIT Press, Jan. 1988, vol. 45, no. 1.

[47] Intel, “Vtune,” http://software.intel.com/en-us/intel-vtune.

[48] Intel Corporation, “Intel ® 64 and IA-32 architectures software developer ’ s
manual,” Tech. Rep. 326018, 2011.

[49] L. Keys, S. Rivoire, and J. D. Davis, “The search for energy-efficient building
blocks for the data center system overview,” in Workshop on Energy-Efficient
Design, 2010.

[50] P. Kongetira and K. Aingaran, “Niagara: A 32-way multithreaded sparc pro-
cessor,” Micro, IEEE, pp. 21–29, 2005.

[51] J. Koomey, “Growth in data center electricity use 2005 to 2010,” 2011.

[52] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous multi-
core architectures,” in Proceedings of the 5th European conference on Computer
systems, ser. EuroSys ’10. New York, NY, USA: ACM, 2010, pp. 125–138.

[53] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA heterogeneous multi-core architectures: The potential for proces-
sor power reduction,” in Proceedings of the 36th International Symposium on
Microarchitecture, 2003.

[54] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture optimization
for heterogeneous chip multiprocessors,” Proceedings of the 15th international
conference on Parallel architectures and compilation techniques - PACT ’06,
p. 23, 2006.

[55] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded workload
performance,” in Proceedings of the 31st annual international symposium on
Computer architecture, ser. ISCA ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 64–.

123

[56] J. Lai, “Truthful and fair resource allocation,” Ph.D. dissertation, Harvard
University, 2013.

[57] N. B. Lakshminarayana, J. Lee, and H. Kim, “Age based scheduling for asym-
metric multiprocessors,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09. New York, NY,
USA: ACM, 2009, pp. 25:1–25:12.

[58] B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling for
microarchitectural performance and power prediction,” in Proceedings of the
12th international conference on Architectural support for programming lan-
guages and operating systems, ser. ASPLOS XII. New York, NY, USA: ACM,
2006, pp. 185–194.

[59] ——, “Illustrative design space studies with microarchitectural regression mod-
els,” in 13th International Symposium on High Performance Computer Archi-
tecture, no. 1. IEEE, 2007, pp. 340–351.

[60] G. Lee, B.-G. Chun, and H. Katz, “Heterogeneity-aware resource allocation and
scheduling in the cloud,” in Proceedings of the 3rd USENIX conference on Hot
topics in cloud computing, ser. HotCloud’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 4–4.

[61] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, no. c. New York,
New York, USA: ACM, 2009, pp. 469–480.

[62] S. Li, K. Lim, P. Faraboschi, J. Chang, P. Ranganathan, and N. P. Jouppi,
“System-level integrated server architectures for scale-out datacenters,” in Pro-
ceedings of the 44th Annual IEEE/ACM International Symposium on Microar-
chitecture, ser. MICRO-44 ’11. New York, NY, USA: ACM, 2011, pp. 260–271.

[63] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient operating system
scheduling for performance-asymmetric multi-core architectures,” in Proceed-
ings of the 2007 ACM/IEEE conference on Supercomputing, ser. SC ’07. New
York, NY, USA: ACM, 2007, pp. 53:1–53:11.

[64] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt,
“Understanding and designing new server architectures for emerging warehouse-
computing environments,” in 35th International Symposium on Computer Ar-
chitecture, 2008, pp. 315–326.

124

[65] P. Lotfi-kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel,
A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-out proces-
sors,” in Proceedings of the 39th annual international symposium on computer
architecture, vol. 00, no. c, 2012, pp. 500–511.

[66] B. Lubin, J. Kephart, R. Das, and D. Parkes, “Expressive power-based re-
source allocation for data centers,” in Proc. Twenty-First International Joint
Conference on Artificial Intelligence, 2009.

[67] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi, and
M. Horowitz, “Towards energy-proportional datacenter memory with mobile
DRAM,” in Proceedings of the 39th Annual International Symposium on Com-
puter Architecture, ser. ISCA ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 37–48.

[68] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7, no. 1, pp.
77–91, 1952.

[69] J. Mars and L. Tang, “Whare-Map : Heterogeneity in âĂĲhomogeneousâĂİ
warehouse-scale computers,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture, 2013, pp. 619–630.

[70] J. Mars, L. Tang, and R. Hundt, “Heterogeneity in “ homogeneous ” warehouse-
scale computers : A performance opportunity,” IEEE Computer Architecture
Letters, pp. 1–4, 2011.

[71] D. Meisner, B. Gold, and T. Wenisch, “PowerNap: Eliminating server idle
power,” ACM SIGPLAN Notices, vol. 44, no. 3, pp. 205–216, 2009.

[72] D. Meisner, C. Sadler, L. Barroso, W. Weber, and T. Wenisch, “Power man-
agement of online data-intensive services,” in Proceeding of the 38th annual
international symposium on Computer architecture. New York, New York,
USA: ACM, 2011.

[73] D. Meisner and T. F. Wenisch, “Stochastic queuing simulation for data center
workloads,” in Workshop on Exascale Evaluation and Research Techniques,
2010.

[74] J. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and V. Talwar, “Using
asymmetric single-isa cmps to save energy on operating systems,” Micro, IEEE,
vol. 28, no. 3, pp. 26–41, 2008.

[75] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhancing
both performance and fairness of shared DRAM systems,” in Proceedings of
the 35th Annual International Symposium on Computer Architecture, 2008,
pp. 63–74.

125

[76] R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting platform heterogeneity for
power efficient data centers,” Fourth International Conference on Autonomic
Computing (ICAC’07), pp. 5–5, Jun. 2007.

[77] Open Source, “OProfile,” http://oprofile.sourceforge.net.

[78] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Maz-
ières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S. M. Rumble,
E. Stratmann, and R. Stutsman, “The case for RAMClouds: Scalable high-
performance storage entirely in DRAM,” SIGOPS Oper. Syst. Rev., vol. 43,
no. 4, pp. 92–105, Jan. 2010.

[79] D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond dominant resource fair-
ness: Extensions, limitations, and indivisibilities,” in Proceedings of the 13th
ACM Conference on Electronic Commerce, ser. EC ’12. New York, NY, USA:
ACM, 2012, pp. 808–825.

[80] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: A full system simula-
tor for multicore x86 CPUs,” in Proceedings of the 48th Design Automation
Conference, ser. DAC ’11. New York, NY, USA: ACM, 2011, pp. 1050–1055.

[81] a. Phansalkar, a. Joshi, L. Eeckhout, and L. John, “Measuring program simi-
larity: Experiments with SPEC CPU benchmark suites,” IEEE International
Symposium on Performance Analysis of Systems and Software, 2005. ISPASS
2005., pp. 10–20, 2005.

[82] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and applica-
tion balance in the spec cpu2006 benchmark suite,” in Proceedings of the 34th
annual international symposium on Computer architecture. New York, NY,
USA: ACM, 2007.

[83] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, “Cutting
the electric bill for internet-scale systems,” Proceedings of the ACM SIGCOMM
2009 conference on Data communication, pp. 123–134, 2009.

[84] V. Reddi, B. Lee, T. Chilimbi, and K. Vaid, “Web search using mobile cores,”
Proceedings of the 37th annual international symposium on Computer archi-
tecture, no. Table 1, p. 314, 2010.

[85] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-wide
profiling: A continuous profiling infrastructure for data centers,” IEEE Micro,
vol. 30, no. 4, pp. 65–79, Jul. 2010.

[86] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate
memory system simulator,” IEEE Computer Architecture Letters, vol. 10, no. 1,
pp. 16–19, Jan. 2011.

126

[87] C. Rusu, A. Ferreira, C. Scordino, and A. Watson, “Energy-efficient real-time
heterogeneous server clusters,” in Proceedings of the 12th IEEE Real-Time and
Embedded Technology and Applications Symposium, ser. RTAS ’06. Washing-
ton, DC, USA: IEEE Computer Society, 2006, pp. 418–428.

[88] Seamicro, “Seamicro introduces the SM10000-64HD, setting industry record for
energy efficiency and compute density,” 2011.

[89] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F. Huang,
S. Blagodurov, and V. Kumar, “HASS: A scheduler for heterogeneous multicore
systems,” SIGOPS Oper. Syst. Rev., vol. 43, no. 2, pp. 66–75, Apr. 2009.

[90] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically charac-
terizing large scale program behavior,” in Proceedings of the 10th international
conference on Architectural support for programming languages and operating
systems, ser. ASPLOS X. New York, NY, USA: ACM, 2002, pp. 45–57.

[91] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz, “Analysis of a very
large web search engine query log,” SIGIR Forum, vol. 33, no. 1, pp. 6–12, Sep.
1999.

[92] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simultaneous
multithreaded processor,” in Proceedings of the ninth international conference
on Architectural support for programming languages and operating systems, ser.
ASPLOS IX. New York, NY, USA: ACM, 2000, pp. 234–244.

[93] S. Srinivasan, L. Zhao, R. Illikkal, and R. Iyer, “Efficient interaction between
os and architecture in heterogeneous platforms,” SIGOPS Oper. Syst. Rev.,
vol. 45, no. 1, pp. 62–72, Feb. 2011.

[94] L. Strozek and D. Brooks, “Efficient architectures through application cluster-
ing and architectural heterogeneity,” in Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for embedded systems, ser.
CASES ’06. New York, NY, USA: ACM, 2006, pp. 190–200.

[95] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Accelerating critical
section execution with asymmetric multi-core architectures,” in Proceedings of
the 14th international conference on Architectural support for programming
languages and operating systems, ser. ASPLOS XIV. New York, NY, USA:
ACM, 2009, pp. 253–264.

[96] I. E. Sutherland, “A futures market in computer time,” Commun. ACM, vol. 11,
no. 6, pp. 449–451, Jun. 1968.

[97] U.S. Environmental Protection Agency, “Report to congress on server and data
center energy efficiency public law 109-431,” Tech. Rep., 2007.

127

[98] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer, “Schedul-
ing heterogeneous multi-cores through performance impact estimation (pie),”
in Proceedings of the 39th Annual International Symposium on Computer Ar-
chitecture, ser. ISCA ’12. Washington, DC, USA: IEEE Computer Society,
2012, pp. 213–224.

[99] H. R. Varian, “Equity, envy, and efficiency,” Journal of Economic Theory, vol. 9,
1974.

[100] C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, and R. Buyya, “Deadline-
driven provisioning of resources for scientific applications in hybrid clouds with
aneka,” Future Generation Computer Systems, vol. 28, no. 1, pp. 58–65, Jan.
2012.

[101] C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and W. Stornetta,
“Spawn: A distributed computational economy,” IEEE Transactions on Soft-
ware Engineering, vol. 18, no. 2, pp. 103–117, 1992.

[102] J. Walrand and S. Parekh, Communication Networks: A concise introduction.
Morgan Claypool, Synthesis Lectures, 2010.

[103] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable thread scheduling
and global power management for heterogeneous many-core architectures,” in
Proceedings of the 19th international conference on Parallel architectures and
compilation techniques, ser. PACT ’10. New York, NY, USA: ACM, 2010, pp.
29–40.

[104] W. Wu and B. C. Lee, “Inferred models for dynamic and sparse hardware-
software spaces,” in Proceedings of the 2012 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 413–424.

[105] S. Xi, M. Guevara, J. Nelson, P. Pensabene, and B. Lee, “Understanding the
critical path in power state transition latencies,” in Low Power Electronics and
Design (ISLPED), 2013 IEEE International Symposium on, Sept 2013.

[106] D. H. Yoon, J. Chang, N. Muralimanohar, and P. Ranganathan, “BOOM:
Enabling mobile memory based low-power server DIMMs,” in Proceedings of
the 39th Annual International Symposium on Computer Architecture, 2012, pp.
25–36.

128

Biography

Marisabel Guevara was born on August 20, 1986 in Santa Cruz de la Sierra, Bolivia.

She received the Chancellor’s Scholarship to complete her undergraduate studies

at the University of Arkansas. In 2007, she was a recipient of the Google Anita

Borg Scholarship. She graduated Magna Cum Laude with Honors in Computer

Engineering in 2008. She was awarded a graduate fellowship from the School of

Engineering and Applied Sciences at the University of Virginia, where she received a

Masters in Computer Engineering in 2010. As a graduate student at Duke University,

she received the Dean’s Award for Excellence in Mentoring in 2013. Her research

lies at the intersection of computer architecture and computational economics. Her

work proposed a coordinated approach to the management and design of datacenters

equipped with heterogeneous resources [14, 39, 40, 105]. In 2014 she received a PhD

in Computer Science from Duke University.

129

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 System-Level Heterogeneity
	1.2 Market Mechanism to Allocate Heterogeneous Processors
	1.3 Strategies for Heterogeneous Design
	1.4 Appraising Fairness in the Market
	1.5 Key Contributions

	2 Market Mechanism to Allocate Heterogeneous Processors
	2.1 Heterogeneity – Principles and Strategies
	2.1.1 Heterogeneity as a Design Space
	2.1.2 Accommodating Architectural Heterogeneity

	2.2 The Market Mechanism
	2.2.1 Proxies and Value Analysis
	2.2.2 Seller Cost Analysis
	2.2.3 Welfare Optimization

	2.3 Managing Heterogeneous Processors
	2.3.1 Experimental Setup
	2.3.2 Architectural Preferences
	2.3.3 Improving Welfare
	2.3.4 Balancing Atoms and Xeons
	2.3.5 Saving Energy
	2.3.6 Evaluating Optimization Time
	2.3.7 Assessing Demand Prediction

	2.4 Increased Processor Heterogeneity
	2.4.1 Experimental Setup
	2.4.2 Architectural Preferences
	2.4.3 Improving Service Quality
	2.4.4 Balancing Core Types

	2.5 Qualifications and Assumptions
	2.6 Related Work
	2.7 Summary

	3 Strategies for Heterogeneous Design
	3.1 Anticipating Risk in Heterogeneous Design
	3.1.1 Anticipating Run-time Effects
	3.1.2 Understanding Sources of Risk

	3.2 Formalizing Heterogeneous Design Strategies
	3.2.1 Characterizing the Hardware-Software Space
	3.2.2 Formulating the Clustering Problem
	3.2.3 Invoking the Clustering Heuristic
	3.2.4 Selecting Designs from Clusters
	3.2.5 Ranking Heterogeneous Outcomes

	3.3 Experimental Methodology
	3.4 Designing for Manageability
	3.5 Classifying Sources of Risk
	3.5.1 Incurring Risk to Increase Reward
	3.5.2 Quantifying Risks to Efficiency

	3.6 Related Work
	3.7 Summary

	4 Appraising Fairness in the Market
	4.1 Background
	4.1.1 Efficiency versus Fairness
	4.1.2 Expressive Utility Functions

	4.2 Fair Market Mechanism
	4.2.1 Expressive Utilities and Fairness
	4.2.2 Fairness and Markets

	4.3 Fairness for Heterogeneous Tasks
	4.3.1 Agents for Heterogeneous Tasks in the Market
	4.3.2 Web Search and Heterogeneous Queries
	4.3.3 Query Diversity and Execution Time

	4.4 Price of Fairness
	4.4.1 Mitigating Envy
	4.4.2 Price of Fairness
	4.4.3 Trading Fairness for Efficiency

	4.5 Fairness and Heterogeneous Processors
	4.5.1 Expressing Heterogeneity
	4.5.2 Allocating Big and Small Cores

	4.6 Related Work
	4.7 Summary

	5 Conclusions
	5.1 Key Contributions
	5.2 Future Directions
	5.3 Market Mechanisms
	5.4 Heterogeneous System Design

	Bibliography
	Biography

