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Abstract 
The formation of a single lumen during tubulogenesis is crucial for the 

development and function of many organs. Although 3D cell culture models have 

identified molecular mechanisms controlling lumen formation in vitro, their function 

during vertebrate organogenesis is poorly understood. In this work we used the zebrafish 

gut as a model to investigate single lumen formation during tubulogenesis. Previous work 

has shown that multiple small lumens enlarge through fluid accumulation and coalesce 

into a single lumen. However, since lumen formation occurs in the absence of apoptosis, 

other cellular processes are necessary to facilitate single lumen formation.  

Using light sheet microscopy and genetic approaches we identified a distinct 

intermediate stage in lumen formation, characterized by two adjacent un-fused lumens. 

These lumens are separated by cell contacts that contain basolateral adhesion proteins. 

We observed that lumens arise independently from each other along the length of the gut 

and do not share a continuous apical surface. Resolution of this intermediate phenotype 

into a single, continuous lumen requires the remodeling of basolateral contacts between 

adjacent lumens and subsequent lumen fusion.  

Furthermore, we provide insight into the genetic mechanisms regulating lumen 

formation through the analysis of the Hedgehog pathway. We show that lumen 

resolution, but not lumen opening, is impaired in smoothened (smo) mutants, indicating 

that fluid-driven lumen enlargement and resolution are two distinct processes. We also 

show that smo mutants exhibit perturbations in the Rab11 trafficking pathway, which led 
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us to demonstrate that Rab11-mediated recycling, but not degradation, is necessary for 

single lumen formation. Taken together, this work demonstrates that lumen resolution is a 

distinct genetically-controlled process, requiring cellular rearrangement and lumen fusion 

events, to create a single, continuous lumen in the zebrafish gut.  
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1. Introduction 

1.1 Tubulogenesis 

Tubes are critical to the form and function of many organs including the lungs, 

vasculature, kidney, and gut, and have become essential to the transport and distribution 

of fluids and gases throughout the body of mutlicellular organisms. Tubular organs vary 

greatly in their shape and function across organ systems. For example, they can range 

from small unicellular tubes like the C. elegans kidney cell, to the large multicellular 

mammalian gut tube. They can also vary considerably in complexity from simple 

cylinder shaped organs to complex tubular networks like the highly branched human 

lung. Despite their variability, tubes share common fundamental features. For example, 

all tubular organs are composed of cells with apical-basal polarity and contain a single 

central lumen. Within a tube, the apical membrane of cells face the central lumen, the 

basal surface is attached to the basement membrane, and lateral membranes contact 

neighboring cells through junctions to control barrier function. This organization is 

allows for specialized membrane function and facilitates the delivery of ions and 

secretory vesicles to the proper surface (Iruela-Arispe and Beitel, 2013). 

Tube formation occurs through several distinct mechanisms based on the initial 

architecture of the epithelial primordium. Tubes that develop from a polarized epithelium 

typically undergo the process of epithelial wrapping or budding. During epithelial 

wrapping, which occurs in the mammalian neural tube, cells within a flat epithelial sheet 

undergo apical constriction, causing a curvature in the sheet (Sawyer et al., 2010). This 
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bending continues until the ends of the sheet meet and fuse to form a tube with a single 

central lumen (Figure 1A). Alternatively, budding occurs when cells from an epithelial 

sheet invaginate to create a small tube that is then extended by cell elongation, migration, 

or division (Figure 1B). During this process, new buds frequently form off existing tubes 

to create a complex contiguous network as seen in the mammalian lung and vasculature. 

(Lubarsky and Krasnow, 2003).   

Tubes can also form from unpolarized groups of cells as seen during the 

development of the pancreas and mammary gland. Unlike wrapping and budding, during 

the processes of cavitation and cord hollowing, cells must acquire polarity and undergo 

de novo lumen formation. Cavitation begins with a non-polarized solid rod of cells. Cells 

on the edge of then rod polarize while cells in the center of the rod are eliminated by 

apoptosis to form a central lumen (Figure 1C). This mechanism of tube formation is 

observed in the mammary gland and mammalian salivary gland (Melnick and Jaskoll, 

2000). Another mechanism in which a tubular organ is formed from a solid rod of cells is 

cord hollowing. During cord hollowing a central lumen is formed by creating a space 

between cells within the rod, in the absence of apoptosis (Figure 1C). Cord hollowing is 

observed during the development of the neural tube and intestine in the zebrafish, yet the 

way in which cells polarize and form a lumen vary between the two organs. In the 

zebrafish gut, which will be discussed in detail later, polarity is established at multiple 

points within the rod of cells. Small lumens form at these points and merge to form a  
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Figure 1-Mechanisms of tubulogenesis 

 

There are four general mechanisms of tubulogenesis. A- A polarized epithelial sheet can 

undergo wrapping to form a tube. B- Cells can invaginate from an epithelial sheet to form 

a small tube or small tubes can bud off from an existing tube. C- A solid rod of cells can 

undergo cavitation in which central cells apoptose to form a lumen (top), or cells can 

undergo cord hollowing in which a central lumen is formed in the absence of cell loss 

(bottom). 
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single lumen (Bagnat et al., 2007; Horne-Badovinac et al., 2001). In contrast, neural tube 

formation begins with the establishment of apical-basal polarity through mirror 

symmetrical divisions. These cell divisions distribute apical proteins along the midline of 

the rod and a lumen is formed through fluid expansion (Buckley et al., 2013). The final 

mode of tube formation is cell hollowing, in which a luminal surface is created within a 

single cell by the fusion of intracellular vacuolar apical compartments. The C. elegans 

excretory canal and zebrafish vasculature typically form through this mechanism 

(Buechner, 2002; Kamei et al., 2006). 

Understanding the molecular mechanisms regulating the process of tubulogenesis 

is critical to understanding several human diseases and disorders including 

atherosclerosis, spina bifida, and kidney disease which are all the result of defects in tube 

structure (Hogan and Kolodziej, 2002; Lubarsky and Krasnow, 2003). To study the 

cellular and molecular events controlling the formation of tubular organs, several model 

systems have been developed. The primary in vitro model of tubulogenesis utilizes 

MDCK cells, which when grown in a 3D matrix, form tube like cysts. In addition, in vivo 

systems have also been established to model different types of tube formation including 

the Drosophila trachea and salivary gland, the C. elegans excretory canal, and the 

zebrafish vasculature. 

Given the relative simplicity of cell culture systems compared to in vivo systems, 

the in vitro MDCK cyst model of tubulogenesis has been extensively studied and has 

provided insight into the molecular regulators of polarity establishment, lumen formation, 
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and ECM interactions involved in tube morphogenesis. For example, findings from 

MDCK cyst models have identified that asymmetric membrane distribution of PIP2 and 

PIP3, together with Crumbs and Par3 complexes, is essential in establishing apical-basal 

polarity (Martin-Belmonte and Mostov, 2008). The correct distribution of these 

molecules is responsible for correct lipid and membrane protein targeting, as well as the 

localization of junctions within the epithelia. Furthermore, MDCK cysts studies have also 

shed light on the interactions between polarity and the ECM. Several studies have shown 

that B integrin, Rac-1, and laminin in the ECM orients epithelial cell polarity and that 

disruption of Rac-1 leads to a reversal in cyst polarity (O'Brien et al., 2001; Yu et al., 

2005).  

Lumenogenesis has also been well studied in the 3D cyst model. Lumen 

formation initiates in MDCK cysts with the accumulation of the apical protein 

podocalyxin in Rab11 and Rab8 positive vesicles. These vesicles are transported to the 

membrane between two opposing cells to establish an apical domain where a lumen soon 

forms (Bryant et al., 2010). However, this mechanism of lumen formation does not 

accurately represent single lumen formation in many in vivo systems. Unlike many in 

vivo systems, MDCK cysts polarize at the two-cell stage and a lumen forms in the 

presence of just these two cells. In contrast, tubular organs such as the mammary gland, 

salivary gland, and pancreas develop from a large cluster of unpolarized cells and have to 

coordinate lumen initiation and single lumen formation within a large tissue (Hogg et al., 

1983; Villasenor et al., 2010). Furthermore, tube morphogenesis in vivo involves 
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interactions with surrounding tissues, and coordination with various cell types, which 

cannot be modeled in the 3D cyst system. Therefore, in vivo models of tubulogenesis are 

critical to understanding how tubular organs develop and function. The work presented 

here utilizes the zebrafish gut as a model to study the molecular mechanisms involved in 

single lumen formation during the process of cord hollowing. 

1.2 Advantages of the zebrafish as a model  

The zebrafish offers several unique advantages as a vertebrate model. One of the 

greatest advantages of the zebrafish compared to other vertebrates is the ability to image 

all internal organs together and intact. The optical transparency of zebrafish embryos and 

their rapid external development allows access to all developmental stages and real-time 

imaging of developmental processes.  Most of the major organs including the heart, 

vasculature, intestine, liver, pancreas, and nervous system can be easily observed and 

screened for developmental abnormalities during the first few days after fertilization. 

Furthermore, the ability to generate tissue-specific fluorescent transgenic zebrafish has 

become relatively easy, fast, and inexpensive (Figure 2B-C). The transparency of 

zebrafish allows for real-time visualization of fluorescent transgenic animals during 

developmental processes such as cell division, differentiation and organogenesis. For 

example, confocal time-lapse imaging of Tg(gutGFP) embryos, which express GFP in 

endodermal tissue, has achieved a detailed characterization of the morphogenesis of all 

developing endodermal organs (Field et al., 2003). Finally, due to the genetic tractability 

of the zebrafish, forward and reverse genetic techniques are well established to 
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manipulate and study gene function. Notably, targeted gene mutation techniques are 

quickly being developed in zebrafish including Transcription activator like effector 

nucleases (TALENs). TALENs are a powerful new tool that induce mutations in 

endogenous zebrafish genes and enable targeted gene knockdown, which can be utilized 

in future studies of lumen formation (Huang et al., 2011; Miller et al., 2011). Thus, the 

transparent nature of the zebrafish together with the availability of a wide range of 

genetic tools, allows for easy genetic manipulation and real-time imaging of the gut 

throughout development, therefore making the zebrafish intestine an excellent model to 

study tubulogenesis.  

1.3 Zebrafish gut development 

The molecular pathways regulating endoderm development are well conserved 

between zebrafish and mammals. Gastrointestinal organogenesis in the zebrafish begins 

at 1 dpf when a thin layer of endoderm at the midline of the embryos gives rise to the 

primitive gut at 26-30 hpf (Ng et al., 2005). This rod of tissue soon gives rise to all the 

major organs of the digestive system including the pancreas, liver and intestine (Wallace 

and Pack, 2003) (Figure 2A-C). Development of the intestine begins at 24 hpf when the 

anterior portion of the endodermal rod thickens. Intestinal development continues over 5 

days and undergoes stages of lumen formation, cell differentiation, epithelial folding, and 

gut motility. 
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Figure 2- Zebrafish gastrointestinal anatomy 

A-The zebrafish gastrointestinal tract is composed of a liver (red), exocrine pancreas 

(green), primary islet (orange), and an intestine that is divided into the intestinal bulb 

(purple), mid-intestine (blue), and posterior intestine (yellow). The swim bladder is in 

gray. B- Transverse cross section of a Tg(gutGFP) embryo expressing GFP in the liver 

(L), pancreas (P), and intestine (I). Section corresponds to line 2 in panel A. C- 

Transverse cross section of a transgenic embryo expressing an intestine specific 

membrane GFP marker. Section corresponds to line 1 in panel A. 
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Anatomy of the zebrafish intestine 

As in mice, the zebrafish intestinal tract is compartmentalized in an anterior-

posterior direction and is divided into three regions: the intestinal bulb, mid-intestine, and 

posterior intestine, each of which have specialized anatomical and physiological 

characteristics (Wallace et al., 2005). Morphogenesis of the three intestinal regions 

occurs during the fourth day of development and each region can be identified based on 

the specialized characteristics and functions acquired by cells within each region. The 

most anterior region of the gut is known as the intestinal bulb. Unlike most vertebrates, 

the zebrafish esophagus connects directly to the intestine and there is no true stomach. 

Instead, zebrafish develop an expanded portion of the intestine called the intestinal bulb 

that acts as the major site of lipid digestion (Pack et al., 1996). Compared to the rest of 

the intestinal tract, the luminal space in the intestinal bulb is quite expanded and rounded 

in appearance. The epithelium in this region exhibits folds that extend down the intestinal 

tube to the middle of the embryo and cell proliferation occurs in cells found at the base of 

these folds (Ng et al., 2005). The next region of the gut is the mid-intestine which is 

characterized by a reduced rate of proliferation and a large amount of cell differentiation. 

In this region goblet cells, identified by Alcian blue staining, are observed early in 

development and not seen in other regions of the gut. In addition, enterocytes containing 

large vacuoles are also specific to this region (Ng et al., 2005). Finally, the most posterior 

region of the gut tube is called the posterior intestine and is characterized by the absence 

of epithelial folds, a moderate amount of proliferation and a lack of goblet cells. This 
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region of the gut has been proposed to function, like the mammalian colon, in ion and 

water uptake (Wallace et al., 2005). 

Cell proliferation in the zebrafish intestine only occurs at the base of the epithelial 

folds (Ng et al., 2005). Although the base of epithelial folds appears to be similar to 

mammalian crypts, zebrafish do not form true crypt-like structures. As the cells migrate 

up the folds, proliferation stops and cells begin to express differentiation markers. Cell 

differentiation in the epithelium occurs through lateral inhibition, which is regulated by 

the Notch signaling pathway. This signaling is critical to ensure cells become different 

fates, since in the absence of Notch signaling, all intestinal cells differentiate into a 

secretory fate (Crosnier et al., 2005)  

The zebrafish intestinal epithelium differentiates into three major types of cells: 

enterocytes which are absorptive cells that display a brush border on their apical surface, 

mucus containing goblet cells, and enteroendocrine cells that contain secretory granules. 

These cells types are found within different regions of the gut with varying proportions. 

Enterocytes are the most abundant cell type in the zebrafish intestine and are found in the 

intestinal bulb and mid intestine.  The second most populous cell type are the goblet cells 

which are found in all regions of the intestine, followed by enteroendocrine cells which 

are restricted to the anterior intestine. Unlike mammals, the zebrafish intestine does not 

contain Paneth cells during development or in adulthood (Wallace et al., 2005). 
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Formation of the intestinal lumen 

The process by which lumen formation occurs in the zebrafish intestine differs 

widely from that seen in mammals. In mammals, the intestinal tube is formed through the 

wrapping of a flat epithelial sheet that forms a transiently stratified epithelium and 

undergoes apoptosis to form an epithelial monolayer (Wells and Melton, 1999). In 

contrast, tubulogenesis in zebrafish occurs through a process of cord hollowing (Wallace 

and Pack, 2003) in which a lumen is formed in between cells within a solid rod. 

Furthermore, unlike many tubular organs, the primative zebrafish gut does not contain a 

lumen and the cells are not arranged in a radial pattern. Thus, the first stage of intestine 

development in the zebrafish involves the morphogenesis of a solid endodermal rod into 

a continuous tubular structure through a cord hollowing process. The process of lumen 

formation initiates in the anterior region of the endoderm and occurs in an anterior to 

posterior direction. The cells within the endodermal rod develop a bilayer arrangement 

and reconfigure into an epithelial monolayer as the lumen is formed. In contrast to the 

development of the mammalian intestine, which requires apoptosis for the formation of 

the epithelial monolayer, apoptosis is not involved in lumen formation in the zebrafish 

intestine (Ng et al., 2005). 

Intestinal lumen formation begins around 40 hpf with the development of multiple 

actin rich foci within the endodermal rod. Next, junctional proteins such as ZO-1 localize 

to the foci which cluster and move toward the center of the gut. Small lumens form at 

these points then coalesce into a single continuous lumen that extends from the caudal 
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The zebrafish gut begins from a sold rod of endodermal cell. Lumen formation is initiated 

by the development of multiple actin rich foci and junctional clusters in between cells. 

Small lumens form at these points and vhnf1 regulates Na/K+ atpase and Claudin15 to 

drive fluid accumulation within small lumens to promote lumen enlargement and 

coalescence. However other cellular processes are likely involved to facilitate cellular 

rearrangements and luminal coalescence during single lumen formation. 

Figure 3-Zebrafish intestinal lumen formation 
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end of the intestine to the pharyngesophageal region of the larvae (Bagnat et al., 2007). 

Zebrafish mutant for atypical protein kinase C (aPCK) fail to undergo gut looping and 

develop multiple small lumens in the gut (Horne-Badovinac et al., 2001). This gene 

appears to be involved in the regulation of clustering and maintenance of apical adherens 

junctions. In the absence of aPCK, apical adherens junction clustering is delayed and 

overall less effective compared to wildtypes, resulting in the formation of small lumens 

prior to their convergence at the center of the gut (Horne-Badovinac et al., 2001).  

Further insight into how multiple small lumens coalesce into a single lumen was 

gained by the examination of embryos mutant for the transcription factor hnf1. Analysis 

of hnf1 mutant embryos revealed multiple small lumens within the intestinal bulb region 

at 72 hpf (Bagnat et al., 2007). However multiple lumens were never observed in 

wildtype embryos at this time point. Hnf1 regulates expression of Claudin15 and Na/K -

Atpase which are required for proper lumen coalescence. It is proposed that Na/K-Atpse 

generates an electrochemical gradient that drives ions through Claudin15 junctions into 

the lumen (Bagnat et al., 2007). As a result, fluid accumulates within the lumens leading 

to their expansion and coalescence into a single lumen. However, additional cellular 

processes are likely involved in the coordination of a single lumen and need to be 

investigated further.    

Although lumen formation is the major morphogenic process occurring during 

this period of gut development, several other events are simultaneously occurring and the 

intestine is undergoing a high rate of proliferation. The epithelial cells around the lumen 



 

 

14 

take on a columnar shape and the nuclei localize near the base of the cells. In addition, 

around the time of lumen opening, a thin layer of cells from the lateral plate mesoderm 

begin to surround the intestine, and eventually differentiate into connective tissue and 

form the muscle layers that surround the intestine (Ng et al., 2005).  

Smooth Muscle 

In addition to an epithelium, the gut is also composed of smooth muscle which is 

vital to proper intestinal form and function.  The zebrafish develops two layers of smooth 

muscle surrounding the intestine: circular smooth muscle and longitudinal smooth 

muscle. These layers of muscle are critical to the stability, contractility and mobility of 

the gastrointestinal tract. Several smooth muscle markers are dynamically expressed in 

the mesenchyme during gut development, the earliest of which include SM22-α, αSMA 

and non-muscle myosin heavy chain (myh11) (Georgijevic et al., 2007). Smooth muscle 

cells differentiate from mesenchymal cells beginning at about 50 hpf based on the 

expression of myh11 in the anterior intestine. However the protein is not found until 72 

hpf. Following expression of differentiation markers, smooth muscle cells proliferate and 

expand to all regions of the intestine by 72 hpf. Finally, by 96 hpf a continuous layer of 

circular and longitudinal muscle is easily observed around the gut and motility begins 

(Wallace et al., 2005). 

Interactions between the epithelium and mesenchyme are critical to the 

development of many vertebrate organs including the gut. In the gut, signaling from the 

intestinal epithelium regulates the differentiation of mesenchymal cells into smooth 



 

 

15 

muscle (Kedinger et al., 1998). In return, reciprocal signaling from the mesenchyme 

controls epithelial patterning, differentiation and morphogenesis of the intestinal 

endoderm. These epithelial-mesenchymal interactions are primarily regulated by secreted 

proteins. For example, hedgehog signaling from the gut epithelium promotes proliferation 

of the neighboring mesenchyme and is involved in villus formation, SMC differentiation, 

and the development of the enteric nervous system (Mao et al., 2010). Furthermore, in the 

zebrafish, interactions between Hh in the epithelium and Fgf10a in the mesenchyme have 

been shown to be critical during esophagus and swimbladder development (Korzh et al., 

2011). In addition to the Hh signaling pathway, bone morphogeneic proteins (BMPs) 

secreted from the mesenchyme, are also known regulators of mesenchyme differentiation, 

and epithelial cell proliferation, differentiation and migration during gut development 

(Ishizuya-Oka and Hasebe, 2008). Therefore, understanding the cross talk between the 

epithelium and mesenchyme is critical to the understanding of the morphogenic processes 

regulating gut development. 

1.4 Hedgehog signaling during gut development 

The role of hedgehog signaling has been extensively studied in gastrointestinal 

development. Hedgehog signaling coordinates morphogenic patterning and 

regionalization of the gut tube across a wide range of the animal kingdom, including 

Amphioxus, Drosophila, sea urchin, zebrafish, chicken and mouse (Bitgood and 

McMahon, 1995; Mohler and Vani, 1992; Shimeld, 1999; Strahle et al., 1996; Walton et 

al., 2006). There are three Hh ligands in vertebrates- Sonic Hedgehog, Indian Hedgehog,  
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Figure 4- The Hedgehog signaling pathway 

When the hedgehog ligand is absent, patched inhibits smoothened and Sufu 

generates a repressor form of Gli to inhibit transcription of target genes. In the presence 

of ligand, hedgehog binds to the patched receptor and relieves repression of smoothened. 

Gli can then translocate to the nucleus to activate transcription of target genes. 
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and Desert Hedgehog, all of which are expressed in the gut tube. These ligands bind to 

the receptors Patched 1 and Patched 2 (Ptch). In the absence of Hh binding, Ptch 

represses the membrane protein smoothened and the pathway is inactive. In the presence 

of ligand, Hh binds to the Ptch receptor relieving the inhibition of smoothened and in 

turn, activates pathway activity and transcription of target genes (Figure 4). Shh and Ihh 

are expressed in the gut epithelium, while Dhh is found in Schwann cells and peripheral 

nerves in the gut. Signaling between pathway members occurs in a paracrine fashion 

between Hh in the epithelium and target genes in the mesenchyme, which is critical for 

the proper development of both tissues (Kolterud et al., 2009). 

Hedgehog signaling is involved in all major aspects of gut development including 

anterior-posterior patterning, radial patterning, and stem cell regulated proliferation and 

differentiation (Ramalho-Santos et al., 2000). Loss of Hh activity leads to a wide range of 

gastrointestinal defects and diseases. In mice, loss of Shh and Ihh results in malrotation of 

the gut, reduced smooth muscle, and esophageal atresia with tracheal esophageal fistula. 

In addition, loss of the Hh effector protein, Gli, results in morphogenesis defects in the 

esophagus and hindgut, as well as anal stenosis, and an extended distal stomach. In 

humans, impaired Hh signaling is also linked to GI malformations including Palister-Hall 

syndrome and VACTERL association (Ramalho-Santos et al., 2000).   

Zebrafish have three Hh homologs that are expressed in the gut endoderm, 

including shha, shhb and ihha. Hh signaling has been shown to regulate morphogenesis 

of the esophagus, gut, and swimbladder in zebrafish. Fish mutant for Ihh exhibit reduced 
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expression of the endodermal marker foxa2 in the esophagus, intestinal bulb and 

swimbladder, as well as a reduction in the gut epithelium (Korzh et al., 2011). In 

addition, these mutants display a reduced or absent lumen and lack differentiated 

enterocytes. Studies in zebrafish mutant for shh also suggest a role for Shh in esophagus 

morphogenesis and differentiation, cloacal development, and for the development of the 

enteric nervous system (Parkin et al., 2009; Reichenbach et al., 2008; Wallace and Pack, 

2003). Taken together, signaling between the intestinal epithelium and mesenchyme, 

particularly by the Hh singling pathway, is vital to the proper morphogenesis and 

function of the gut.   

1.5 Intracellular trafficking  

Cells internalize ligands, membrane proteins, and extracellular material through 

the process of endocytosis. Endocytosis is in turn balanced by the process of endosomal 

recycling, in which many endocytosed proteins are recycled back to the plasma 

membrane. This balance between internalization and recycling is critical to a number of 

cellular processes including signal transduction, the formation of adhesions and junctions, 

cell polarity, and cell migration. For example, in epithelial cells, endocytic trafficking is 

essential for membrane proteins to be properly returned to the membrane from which 

they were removed in order to maintain the distinction between the apical and basolateral 

membrane (Wang et al., 2000). 

Given the importance of protein endocytosis and recycling, the intracellular 

trafficking pathways regulating these processes are highly coordinated by a large family 
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of Rab GTPases. Rab proteins comprise the largest family of small GTPaes and over 60 

Rab proteins have been identified in vertebrates, highlighting a great need for 

intracellular transport throughout a range of organisms (Zerial and McBride, 2001). Rabs 

act as molecular switches that alternate between a GDP bound inactive state and a GTP 

bound active state. In their inactive state, Rabs are inserted into their target membrane. A 

GEF then converts the Rab to its active state, allowing the Rab to interact with effector 

proteins (Hutagalung and Novick, 2011). When active, Rabs regulate diverse cellular 

functions through their interaction with effector proteins, which are highly specialized for 

individual organelle and transport activities. Together with effector proteins, Rabs direct 

all stages of membrane transport including vesicle formation, vesicle transport, and the 

docking and fusing of vesicles to their intended compartment (Hutagalung and Novick, 

2011). 

The first step of the endocytic trafficking pathway involves the internalization of 

ligands from the plasma membrane. Ligands are sequestered into clatherin-coated 

vesicles and are transported from the plasma membrane where they fuse to early 

endosomes. This early endocytic pathway, including the homotypic fusion of early 

endosomes, is regulated by Rab5 and its effector EEA1 (Bucci et al., 1992; Gorvel et al., 

1991). Due to the mild acidity of early endosomes, proteins in this compartment undergo 

conformational changes leading to the release of ligands from receptors. Proteins are then 

sorted and undergo either fast recycling back to the plasma membrane or are sent to the 

recycling endosome. Rab4 is thought to regulate the efflux of proteins from the early 
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endosome to the fast recycling pathway, however knockdown studies have been 

inconclusive (van der Sluijs et al., 1992; Yudowski et al., 2009). Proteins sent to the 

recycling endosome are recycled back to the plasma membrane through the slow 

recycling pathway regulated by Rab11. The slow recycling pathway was initially 

demonstrated to be important for transferrin recycling in non-polarized cells and has 

since been shown to also be critical for recycling from the apical recycling endosome in 

polarized epithelial cells (Calhoun et al., 1998; Ullrich et al., 1996). Alternatively, instead 

of being recycled, cargo proteins can also be endocytosed into early endocytic 

compartments and sent for degradation.  In this case, cargo is trafficked from early to late 

endosomes and finally to lysosomes through regulation by Rab7 (Feng et al., 1995) 

(Figure 5A).  

Acidification of endosomal compartments is critical for proper sorting and 

recycling along the endocytic trafficking pathways. Each endosomal compartment has a 

distinct pH and become increasingly acidic as they progress along the pathway from 

newly formed vesicles at the plasma membrane to the highly acidic lysosomal 

compartment (Marshansky and Futai, 2008). Acidification of intracellular compartments 

is driven primarily by the (V) H-ATPase pump which hydrolyses ATP to translocate 

protons into the lumen of the organelle. To maintain electroneutrality, additional ion 

channels, exchangers, and transporters are necessary to facilitate acidification, including 

ClC, NHE, and Ca2+ transporters (Scott and Gruenberg, 2011) (Figure 5B). Defects in  
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Figure 5- Intracellular trafficking and acidification 

A- Membrane proteins can be internalized and degraded or recycled back the cell surface. 

When proteins are internalized they are transported from the plasma membrane and fuse 

with early endosomes (purple) which is regulated by Rab5. From here they can be 

recycled directly back to the membrane by Rab4 or they can be sent to the recycling 

endosome. The Rab11 mediated recycling endosome (green) sorts and recycles proteins 

back to the plasma membrane. If proteins are to be degraded, they are trafficked from the 

early endosome to the Rab7 mediated late endosome (orange) and finally to the lysosome 

(brown). B- Intracellular acidification is primarily regulated by the V- H+ATPase. 

Additional channels and transporters are also needed to maintain electroneutrality. 
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acidification inhibit endosomal transport, endosomal sorting, and intracellular vesicle 

fusion and are linked to various human diseases including cancer, neurological disorders, 

and diabetes (Aridor and Hannan, 2002). 

Intracellular recycling and morphogenesis 

The endocytic recycling pathway is critical to the continuous trafficking of the 

basolateral adhesion protein, cadherin, to and from the cell surface. This continual 

recycling is essential to the dynamic nature of adherens junction formation and is 

necessary for proper cell adhesion as well as a range of morphogenic events. E-Cadherin 

is an epithelial adhesion protein that forms dynamic adherens junctions during the 

processes of epithelial morphogenesis and polarization (Yap et al., 1997). It forms a 

complex with several other junctional proteins including B-catenin, p120-catenin, and a-

catenin, at the adherens junction where it interacts with the actin cytoskeleton and 

signaling proteins (Pokutta and Weis, 2007). E-Cadherin is internalized from the surface 

of the cell by clatherin-mediated endocytosis and can be degraded or recycled back to the 

plasma membrane (Paterson et al., 2003). Recent work has shown that recycling 

endosomes and active Rab11 is necessary for the correct targeting of cadherin to the 

basolateral surface. When Rab11 function is impaired through expression of a dominant 

negative Rab11, cadherin missorts to the apical surface and lumen formation in MDCK 

cysts is compromised (Desclozeaux et al., 2008). 

Several in vivo studies have also demonstrated that modulation of adhesions 

through intracellular recycling activities regulate morphogenic processes. In Drosophila 
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for example, cadherin removal and insertion at cell boundaries drives hexagonal packing 

of epithelial cells in the imaginal wing disc. This process is regulated by dynamin 

dependent endocytosis and Rab11 dependent recycling of cadherin. When endocytosis is 

blocked, cellular rearrangements are impaired, and the expression of a dominant negative 

Rab11 causes an accumulation of cadherin in intracellular compartments (Classen et al., 

2005). Cadherin recycling has also been proposed to play a role in tube morphogenesis in 

the Drosophila trachea. The Drosophila trachea undergoes cellular rearrangements to 

promote a reduction in diameter of tracheal branches. It has recently been shown that 

Rab11 and its effector protein Rip11 modulate the trafficking of cadherin to specify 

which branches undergo morphogenesis. In this system, Rab11 and Rip 11 accumulate in 

the dorsal trunk, causing a junctional accumulation of cadherin. It is proposed that 

increased levels of cadherin in the dorsal trunk inhibits cell intercalation, whereas low 

levels of Rab11 and Rip11 in other branches allow intercalation to proceed (Shaye et al., 

2008). Adherens junctions are also regulated by the Cdc42, Par6, Par3, aPKC complex. 

During neuroectoderm development, Cdc42 and Par6 stabilize adherens junctions by 

slowing endocytosis of apical proteins from the plasma membrane and by accelerating 

the trafficking of apical proteins from the early to the late endosome (Harris and Tepass, 

2008). Furthermore, this complex was also found to be essential in maintaining E-

cadherin at junctions in the Drosophila dorsal thorax. In this system, loss of Cdc42-Par6-

aPCK results in defects in junctional continuity and apical actin cytoskeletal organization 

(Georgiou et al., 2008). Taken together, these studies highlight the important role of 
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intracellular trafficking and adhesion dynamics during a variety of morphogenic 

processes.    

1.7 Summary 

Tubulogenesis is a complex process that occurs through a variety of mechanisms 

among different tissues and organisms. However, a defining feature among all tubes is 

the presence of a single continuous lumen. In this work, I will further investigate the 

process of single lumen formation using the zebrafish gut as a model. Compared to in 

vitro systems of lumen formation, which lack the complexity of an in vivo organ, the 

zebrafish gut is optically accessible and amenable to both physical and genetic 

manipulation, which makes it an ideal system to examine the development of a single 

continuous lumen within a large organ. Previous studies have shown how lumens initiate 

and enlarge, however additional cellular processes are likely involved in lumen 

coalescence. Since zebrafish lumen formation occurs in the absence of apoptosis, we 

hypothesize that cellular rearrangements within the endodermal rod are necessary for 

single lumen resolution. To address this hypothesis, I will thoroughly examine gene 

expression, cellular organization, and luminal arrangements during gut development. I 

will also examine the hedgehog pathway, which will provide insight into the genetic 

regulation of different stages of single lumen formation. Finally, given the importance of 

adhesion remodeling in tissue morphogenesis, I will address endocytic trafficking and 

recycling as possible mechanisms regulating cellular rearrangement during 

lumenogenesis in the zebrafish gut. Together, these studies will elucidate new 
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mechanisms regulating single lumen formation and will provide tools to further the study 

of gut morphogenesis in the zebrafish. 
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2. Materials and Methods 

2.1 Fish Stocks 

Zebrafish were maintained at 28°C and bred as previously described (Westerfield, 

2000).  Zebrafish lines used in this study include: EK, smos294 (Aanstad et al., 2009), 

Tg(UAS:mCherry-rab11a-S25N)mw35 (Clark et al., 2011), Tg(hsp70l:Gal4) (Scheer and 

Campos-Ortega, 1999), Tg(hsp:GFP-podlx)pd1080 (Navis et al., 2013), 

atp6v1e1bhi577aTg/hi577aTg, atp6v1fhi1988Tg/hi1988Tg (Nuckels et al., 2009), Tg(GBS-

ptch2:EGFP)umz23 (Choi et al., 2013), TgBAC(cldn15la-GFP)pd1034, Tg(-

1.0ifabp:GFP-CaaX)pd1005, Tg(hsp70l:GFP-CaaX)pd1008, Tg(hsp70l:GFP-

rab11bS25N)pd1090, Tg(hsp70l:GFP-RAB11a)pd1031, Tg(hsp70l:GFP-RAB7)pd1033, 

Tg(hsp70l:GFP-RAB7T22N)pd1032, Tg(hsp70l:GFP-p120)pd1091, Tg(hsp70l:Ras-

RFP)pd1111, Tg(hsp70l:GFP-Clic5a1)pd1030 (this study). To induce expression, 

embryos under the hsp70l promoter were placed in 50ml conical tubes and heat-shocked 

for 40 minutes in a 40° C water bath.  

2.2 Transgenics 

Transgenic lines were generated using the Tol2kit gateway recombination system 

(Kwan et al., 2007). Plasmids used include p5E-MCS, p5E-hsp70l, pME-MCS, pME-

EGFP-CaaX, p3E-polyA, pDestTol2pA2, and pDestTol2CG2. pME-RAB11a was 

generated from Addgene plasmid 12674: GFP-rab11WT. pMe-GFP-Rab7 and pMe-GFP-

Rab7DN were generated from Addgene plasmids 12605 and12660 respectively. rab11b 

was amplified from cDNA using primers with BamHI and NotI restriction sites: 



 

27 

Rab11b_BamHI_F, GGATCCATGGGGACCCGTGACGAC; Rab11b_NotI_R, 

GCGGCCGCTCACAGGTCCTGACAGC and a point mutation was created using 

QuikChange II XL site-directed mutagenesis kit (Agilent Technologies) to generate 

Rab11bS25N. clic5a1 was amplified using the following primers with BamHI and NotI 

rstrictions site: Clic5a1_BamF, 

GGATCCATGACCTCAAATGAAGAGGGCAAAGATCCT, Clic5a1_NotR, 

GCGGCCGCTTATTTTCCGAGCCGCTTGGCCACGTCC. 

2.3 BAC Recombineering 

A BAC containing cldn15la was modified as previously described (Navis et al., 

2013).  A C terminal fusion was created using a plasmid containing a 20-aa spacer 

(DLPAEQKAASEEDLDPPVAT), GFP, and a SV-40 polyadenylation sequence.  

Recombination was performed using the following homology primers: cldn15la-

spGFP_hom_F, 

CCATCTATACCACAGCTCAATCGAACGCAGAAACATCCAAAGCCTACGTCGA

TCTCCCCGCCGAACAGAAA, and cldn15la-spGFP_hom_R, 

TAAACAAACATCAACGTAACAACAGTTCAGCCTTGTTAAAATGGGAAATCAT

TGGAGCTCCACCGCGGTG.  The cldn15la-GFP BAC was linearized using AsiSI 

(NEB), injected into one cell stage embryos and a transgenic line TgBAC(cldn15la-

GFP)pd1034 was created.  

2.4 RNA injection 

RFP was fused to the N-terminus of Rab11fip1a and cloned into pCS2+ using 

ClaI and XbaI sites. The plasmid was linearized using NotI and RNA was transcribed 
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using the mMESSAGE mMACHINE SP6 kit (Ambion). RFP-Rab11fip1a (294 

pg/embryo) RNA was injected into embryos at the one cell stage.  

2.5 Histology and Immunofluorescence 

For cross sections, embryos were fixed in 4% paraformaldehyde overnight at 4°C, 

washed with PBS then embedded in 4% low melt agarose (GeneMate), sectioned with a 

vibratome (VT 1000S; Leica) and stained as described previously (Bagnat et al., 2007). 

Primary antibodies used were: pan-cadherin (Santa Cruz Biotechnology ; 1:1200), ZO-1 

(Invitrogen; 1:500), 4e8 (AbCam; 1:500), β-catenin (Santa Cruz Biotechnology; 1:500), 

caspase 3 (Milipore, 1:500), Myh11 (Biomedical Technologies; 1:150) and BrdU 

(Invitrogen, 1:500). F-Actin was visualized with alexa-568 or 488 phalloidin (Invitrogen; 

1:500). Goat anti mouse alexa568 and goat anti-rabbit alexa568 secondary antibodies 

(Molecular Probes) were used at 1:300. A custom Cldn15la antibody was generated in 

rabbit using a peptide derived from the C-terminus of Cldn15la 

(YQRFSKSKEKGAYYPC) and used at a concentration of 1:500. Cldn15la staining was 

performed as previously described (Dong et al., 2007). Briefly, embryos were fixed with 

2% formaldehyde in 100mM PIPES, 1mM MgSO4, 2mM EGTA overnight at 4°C. 

Embryos were washed with PBS, blocked in PBS plus 5% BSA, 10% FCS and 0.3% 

TritonX, and sectioned. Primary and secondary antibodies were diluted in PBS plus 5% 

BSA and 0.3% TritonX and sections were incubated overnight at 4°C. All sections were 

mounted on glass slides with Vectasheild mounting media with DAPI (Vector 

Laboratories) and imaged on a SP5 confocal microscope (Leica, Wetzlar, Germany) with 

40×/1.25–0.75 HCX PL APO oil objective and Application Suit software (Leica). For 
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whole mount imaging, embryos were fixed, deyolked, permeablized in PBS with 0.4% 

TritonX for 1 hour at room temperature and stained as described above.  Following 

staining embryos were washed in PBS and mounted on a glass slide in 0.8% low melt 

agarose (GeneMate). All images were acquired on a SP5 confocal microscope (Leica, 

Wetzlar, Germany) with a 20×/0.70 HC PL APO oil objective or 40×/1.25–0.75 HCX PL 

APO oil objective and Application Suit software (Leica).  

To label proliferating cells 72 hpf embryos were incubated in 16mM BrdU with 

10% DMSO in egg water for 1 hr at 28ºC. Embryos were washed and fixed in 4% PFA 

overnight at 4ºC. Embryos were then washed with water, rinsed with 2M HCl for 1 hr, 

washed with PBS and stained as described above. Percentage of proliferating cells was 

calculated by comparing the number of BrdU positive cells in a gut section versus total 

cells.  

2.6 Live Imaging 

Zebrafish embryos at 48 hpf were anesthetized and embedded in 1.5% agarose. 

Selective Plane Illumination Microscopy (SPIM) was performed using three 10x/0.3 

water dipping lenses (Leica), two for illumination and one for detection in an mSPIM 

configuration (Huisken and Stainier, 2007). A 488nm laser (Coherent) was used for 

excitation. A stack of 100 planes (3µm apart) was recorded with an EMCCD camera 

(Andor) every 10min for a total duration of 24h at 24°C. 
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2.7 Embryo dissociation and FACS 

Embryos were collected in 1.5 ml tubes and rinsed with 1 mL calcium free 

Ringer’s solution for 10 minutes at room temperature. The Ringers solution was removed 

and embryos were incubated in 0.25% trypsin (Gibco) and 300 µg/mL collagenase 

(Sigma) for 45 minutes at 28°C with pipetting every 15 minutes until a single cell 

suspension was attained.  Cells were spun, washed twice with ice cold PBS plus 5% FCS 

and passed through a 70 µm filter (BD Falcon). Cell suspensions were stained with 

propidium iodide (Invitrogen) prior to sorting. Cells were sorted on a BD FACS Diva 

sorter at the Flow Cytometry Shared Resource center (Duke University). GFP+/PI- and 

GFP-/PI- cells were collected in 1.5 ml tubes containing RLT buffer (Qiagen) and β-

mercaptoethanol (Sigma) and stored at -80°C. 

2.8 RNA isolation qPCR 

RNA was extracted using the RNeasy micro kit (Qiagen) according to the 

manufacture’s protocol and RNA was further concentrated by ethanol precipitation and 

eluted in 10µl water.  cDNA was synthesized using the First Strand cDNA Synthesis Kit 

(Roche) with an anchored-oligo(dT) primer. Quantitative PCR was performed using a 

BioRad CFX96 Real TimeSystem C1000 Thermocycler and BioRad iQ SYBR Green 

Supermix. All reactions were performed in duplicate with an annealing temperature of 

60°, and data from three independent runs were obtained. Primers used include: elfa_F, 

CTTCTCAGGCTGACTGTGC; elfa_R, CCGCTAGGATTACCCTCC; myoVb_F, 

AGGACATGCTGGACCACTTC; myoVb_R, TCCAGCTCTTGCACTTTCTTC; 
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rab11fip1a_F, TCAAACACGTTGGGACCATA; rab11fip1a_R, 

TTTGGGCCTTGTAAGGACAG; rab11a_F, GAAAGACCGTCAAGGCTCAG; 

rab11a_R, ACCTGGATGGACACCACATT; rab11b_F, 

GGACAGGAACGCTACAGAGC; rab11b_R, TGCCCTTTAACCCGTCAGTA. 

Expression levels of target genes were normalized to elfa for each cDNA set. Clic5a_F, 

TGACAAAGGCACTCAAGAAGCTGG; Clic5a_R, 

TCTTCTTGTGCATACGCACTGTT; Clic5a1_F, CAGCTTCCTAAACTCCCCTCT; 

Clic5a1_R, CTCGGCTGTAGGCGTTCTG; Clic5b_F, 

AGAGCCGATTTACAGCACTCTGGA; Clic5b_R, 

ATCTCCATTGGACAGAGACGCCA, B-actin_F, 

TGGACTTTGAGCAGGAGATGGGAA; B-actin_R, 

AAGGTGGTCTCATGGATACCGCAA. All Clic expression levels were normalized to 

B-cactin. 

2.9 In situ hybridization 

To make an in situ probe, cldn15la was amplified from cDNA and ligated into 

pGEMT-Easy (Promega) using the following primers: cldn_probe_F, 

GGGGCTGGTTGGTTTAGTTT; cldn_probe_R, CCGCATCCATGAAAATTGA. The 

plasmid was linearized and DIG RNA Labeling Kit (Roche) was used to make 

digoxygenin-labeled RNA. In situ hybridization for cldn15la, foxa3 (Field et al., 2003) 

and αSMA (Georgijevic et al., 2007) was performed as described previously (Navis, 

2013) and images were acquired on a Discovery V20 stereoscope (Zeiss) with an 

Achromat S 1.0x lens.  
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2.10 Morpholino knockdown 

The following morpholinos against Clic5 isoforms were injected into one-cell 

stage embryos. Embryos were incubated at 28°C, fixed at 72hpf and analyzed for lumen 

defects. clic5a: ATCAGGCTCTTGACCGTCTCCCATT, clic5a1(zgc101827): 

TGCCCTCTTCATTTGAGGTCATATC, clic5b: 

GACGTTTGCAGCCATGATGGACCTC 

2.11 Pharmacological treatment 

 Embryos were dechorionated at 48 hpf and placed in a 12 well dish with 1µM 

bafilomycin (Sigma) or 1µM DMSO (Sigma) in egg water.  Embryos were incubated at 

28°C and fixed at 72 hpf. 

2.12 Cell Culture 

MDCK-C7 cells and Caco2 cells were cultured in DMEM with 10% fetal bovine 

serum and 1% penicillin-streptomycin (Invitrogen). Cells were transfected with pcDNA3 

–GFP-CLIC5 using Lipofectamine 2000 (Invitrogen). To prepare cysts, cells were plated 

at 2x103 on matrigel in an 8 well chamber slide and covered with media plus 2% 

matrigel. Media was changed every 2 days and cells were grown for 7-10 days until 

lumens formed. Cysts were fixed in 4%PFA, stained with phalloidin and lumen formation 

is analyzed by confocal microscopy. 

2.13 Membrane Association assay  

Cells were washed with PBS, lifted and transferred to and eppendorf tube. Ice 

cold TNE buffer (150 mM NaCl, 2.5mM EDTA, 10 mM Tris pH 7.4), 250mM sucrose, 
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and 1mM PMSF was added and cells were homogenized with a dounce on ice. 0.5ml of 

homogenate was laid on top of a 35% sucrose cushion in TNE buffer and spun at 35 K 

rpm for 1 hr at 4 degrees. Four 0.5 ml fractions were collected from the top of the cushion 

and protein content from each layer was determined.  

To determine integral versus peripheral membrane association the membrane 

(top) fraction from above was diluted in TNE buffer and centrifuged fro 30 min at 100Kg 

at 4°C to pellet the membranes. The pellet was resuspended in TNE buffer or TNE plus 

100 mM NaCO3 pH11 and incubated on ice for 10 min. Tubes were spun for 30 min at 

100Kg. Samples were collected from the supernatant, the pellet was resuspended in TNE 

plus 1% TritonX 100, and a sample was obtained. The resuspended pellet was transferred 

to a new tube, spun again for 30 min and supernatant and pellet samples were taken. 

Samples were mixed with Laemmli buffer, immunoblotted for anti-GFP primary 

antibody followed by goat anti-chicken HRP conjugated secondary antibody and detected 

by chemiluminecense (Amersham-Pharmacia).  

2.14 Statistical analysis 

Gut diameter and perimeter was determined using Image J software. 

Quantification of cell number within the gut were obtained by counting DAPI stained 

nuclei in A-P position matched sections. Statistical significance for all measurements was 

determined using Student’s t-test. 
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3. Characterization of intestinal lumen formation  
In this chapter I provide a detailed analysis of lumen formation in the zebrafish 

gut. I discuss the generation of a novel intestine-specific reporter transgenic line and 

show that single lumen formation occurs through luminal enlargement and fusion in an 

anterior to posterior (AP) manner. In collaboration with Jan Huiskin from MPI in 

Desden, I provide a high-resolution in vivo imaging of the process of lumen formation in 

the zebrafish intestine and identify contact remodeling as a critical step in lumenogenesis 

that is distinct from fluid driven lumen enlargement.  

3.1 Introduction 

Tubulogenesis is a crucial process during the formation of many organs including 

the pancreas, lungs, vasculature, mammary gland and gut. Tube formation mechanisms 

are diverse across organ systems, but they all result in a structure with a single lumen. 

Tubes arising from a polarized epithelium typically undergo a process of epithelial 

wrapping or budding that is driven primarily by changes in cell shape.  On the other hand, 

tubes originating from unpolarized cells form through a process of cord hollowing or 

cavitation that requires the establishment of cell polarity and de novo lumen formation 

(Lubarsky and Krasnow, 2003; Martin-Belmonte and Mostov, 2008).  

The zebrafish has been used to study tubulogenesis in a variety of organs and is a 

powerful vertebrate model of de novo lumen formation. Live imaging of the zebrafish 

vasculature has revealed two mechanisms of tubulogenesis involving cellular 

rearrangements and cell invagination (Herwig et al., 2011). The isolation of a zebrafish 
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par6γ mutation identified a role for spindle orientation in the forming neural tube 

(Munson et al., 2008). In addition, examination of the zebrafish intestine and Kupffer’s 

vesicle has demonstrated the role of fluid secretion in lumen expansion (Bagnat et al., 

2010; Navis et al., 2013). Furthermore, optical accessibility and a vast array of 

transgenics make zebrafish an ideal vertebrate system in which live imaging and 

functional studies can provide insight into the molecular and developmental mechanisms 

involved in tube morphogenesis. 

The zebrafish intestine begins as a solid rod of endodermal cells that differentiate 

into epithelial cells and undergo a cord hollowing process to form a tube. Lumen 

formation initiates with the development of multiple actin-rich foci between cells and is 

followed by the localization of junctional proteins at multiple points within the intestine 

(Horne-Badovinac et al., 2001). Small lumens then form at these points and expand, 

coalesce and eventually form a single continuous lumen. Interestingly, intestinal villus 

formation in the rat epithelium has also been suggested to form through the fusion of 

small secondary lumens (Madara et al., 1981). Previous work in zebrafish showed that 

paracellular ion transport regulated by Claudin15 and the Na+/K+- ATPase drives fluid 

accumulation, thus promoting lumen expansion and coalescence in to a single lumen 

(Bagnat et al., 2007). However, since the gut lumen forms without apoptosis (Ng et al., 

2005), other cellular processes such as epithelial remodeling must occur to facilitate 

lumen coalescence.  
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3.2 Results 

Time course analysis of lumen formation  

Lumen formation in the zebrafish gut begins with the appearance of multiple 

small lumens that enlarge through fluid accumulation and then coalesce to form a single 

lumen (Bagnat et al., 2007). However, fluid accumulation alone cannot drive the cellular 

rearrangements necessary for lumen coalescence. The complexity of the tissue suggests 

that other processes are required. To elucidate the process of lumen formation in the 

zebrafish intestine we performed a time course analysis from 48 hpf to 72 hpf and 

characterized the appearance of the lumen at four hour intervals. Analysis of fixed, thick 

transverse sections by confocal microscopy revealed a range of lumen morphologies 

during this 24-hour period. We classified the intestinal tubes into three categories: Class 

I, containing multiple small lumens, in which 2-4 actin foci or small lumens spanned the 

intestine (Figure 6A); Class II, represented by enlarged, un-fused lumens, in which a 

bridge of cells separate open lumens (Figure 6B); Class III, single lumens, characterized 

by one enlarged continuous lumen (Figure 6C). In 48 hpf embryos all three lumen types 

are apparent with relatively similar frequency. Both class I and class III lumens were 

found in 38% of embryos whereas class II lumens were found in 24% of gut sections.  

Over the next 12 hours the appearance of class I lumens decreased, while the frequency 

of class II lumens increased to 30% and class III lumens increased to 70% at 60 hpf.  

During the subsequent 12 hrs, the number of embryos with class II lumens decreased and 

by 68 hpf only single lumen guts (class III) were observed (Figure 6D). Thus, single  
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Figure 6- Lumens enlarge and fuse during single lumen formation 

A-C Confocal images of cross sections of WT embryos exhibiting class I (A), class II 

(B), and class III (C) lumens, stained with phalloidin. Arrowheads indicate lumens. Scale 

bars= 20 µm. D- Quantification of lumen phenotypes between 48 hpf and 72 hpf. 48 hpf 

n=21, 52 hpf n=29, 56 hpf n=27, 60 hpf n=27, 64 hpf n=30, 68 hpf n=21, 72 hpf n=26. E- 

Space fill projection from a 200 µm confocal stack of an intestine section at the 

resolution stage. Yellow- Lumen, Green- GFP-CaaX, Blue- DAPI.  Scale bar = 10 µm F- 

Confocal whole-mount image of the anterior gut at 58 hpf stained with phalloidin (red). 

Arrowheads indicate adjacent un-fused lumens. G- Confocal whole-mount image of the 

posterior gut at 58 hpf stained with phalloidin (red). Arrowheads indicate the lumens. 

Scale bars = 20 µm  
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lumen formation is preceded by two stereotypic luminal arrangements that include both 

multiple small lumens and enlarged, un-fused double lumens.   

The most frequently observed luminal arrangement prior to single lumen 

formation is two enlarged lumens. When two lumens are observed in cross section they 

are typically located at the foci of the ellipsoid-shaped intestinal tube. However, this 

arrangement is not simply the result of two parallel lumens spanning the intestine. Using 

Imaris imaging software we generated a 3D rendering of lumen size and shape from a 

200-micron transverse confocal stack. Even within this small region, lumens are 

discontinuous and highly dynamic in shape and size (Figure 6E). To gain a better 

understanding of how these discontinuous lumens are arranged along the AP axis we 

performed whole-mount confocal imaging. Analysis of the anterior intestinal bulb at 58 

hpf revealed two enlarged lumens side by side (Figure 6F), which is representative of the 

un-fused lumens (class II) we observed in transverse cross section. These adjacently 

arranged lumens are most frequently observed in the anterior gut, likely due to the larger 

diameter and number of cells in this region of the intestine. Enlarged discontinuous 

lumens were found along the AP length of the intestine. Toward the posterior end of the 

intestine discontinuous lumens were more abundant and of smaller size (Figure 6G). The 

un-fused lumen phenotype (class II) occurs most frequently between 52 and 60 hpf and 

represents a previously uncharacterized stage in normal lumen formation. We have 

termed this phase of single lumen formation the ‘lumen resolution stage’. Together, these 

data suggest that lumen formation occurs through stages of multiple small, and expanded 

un-fused lumens before resolving into a single continuous lumen. 
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Generation of Cldn15la-GFP 

Analysis of fixed tissue sections suggested that initial lumen expansion and 

coalescence, and lumen resolution are distinct phases of intestinal lumen formation. Since 

sectional analysis only offers a static snapshot of lumen formation, we wanted to monitor 

the process of lumen formation in the intestine using live imaging. To image lumen 

coalescence in vivo, we required a new transgenic line that is intestine-specific and 

expresses prior to single lumen formation. To identify intestine-specific genes we isolated 

intestinal epithelial cells using a Tg(-1.0ifabp:GFP-CaaX) line which expresses 

membrane-GFP in the intestinal cells starting around 120 hpf. Using RNA isolated from 

these cells we performed a microarray analysis to identify highly expressed genes in the 

gut. We found that one of the most highly intestine-enriched genes was claudin15-like a 

(cldn15la), a member of the Claudin family of tetraspanning membrane proteins (Furuse 

et al., 1998). At day 5, cldnl15a was upregulated in the gut 120 fold. By in situ 

hybridization, cldn15la was highly expressed and restricted to the intestine by 50 hpf. 

(Figure 7A-B). To generate a transgenic line expressing Cldn15la-GFP we obtained a 

BAC containing cldn15la with 80kb and 40kb of its upstream and downstream genomic 

DNA, respectively. A C-terminal fusion protein was created by replacing the stop codon 

of cldn15la with GFP, and a transgenic line, TgBAC(cldn15la-GFP)pd1034, was 

established (Figure 7C). 

Cldn15la-GFP expression was first observed at 48 hpf in the intestinal epithelium 

and remained expressed throughout the course of lumen formation (Figure 8D-E). An 

analysis of transverse sections revealed that Cldn15la-GFP is restricted to the intestine  
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Figure 7- Generation of an intestine specific transgenic line 

 

A-B Dorsal, top panel, and lateral view, bottom panel, in situ hybridization showing 

claudin 15-like a expressed specifically in the intestine at 56 hpf.  C- Schematic 

representation of TgBAC(cldn15la-GFP) generation. The recombination target is shown 

on top, and the expected protein structure is shown on the bottom.  
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and is not expressed in other endoderm-derived organs (Figure 8A). Cldn15la-GFP was 

unexpectedly found localized to the lateral surface of the intestinal epithelium. The 

spacer sequence between Cldn15 and GFP (DLPAEQKLISEEDLDPPVAT) contained 

potential basolateral targeting motif, therefore we generated an additional transgenic line 

with a different linker sequence between GFP and Cldn15la 

(DLPAEQKAGSEEDLDPPVAT), yet observed a similar basolateral localization pattern 

(Figure 8B). Although Claudin proteins are components of tight junctions and typically 

localize to the subapical region (Furuse et al., 1998), recent studies have shown that 

several members of this protein family also localize to lateral membranes during 

morphogenesis (Gregory et al., 2001; Inai et al., 2007; Westmoreland et al., 2012) 

including the closely related zebrafish claudin Cldn15lb (Cheung et al., 2012). To 

determine whether Cldn15la-GFP lateral membrane localization represented the 

endogenous protein localization we generated an antibody against the C terminus of 

Cldn15la.  Similar to the BAC transgenic construct, the Cldn15la antibody localized to 

the lateral membrane in intestinal epithelial cells, indicating that the Cldn15la-GFP fusion 

recapitulates endogenous expression and localization (Figure 8C). Despite the unexpected 

localization pattern, the Cldn15la-GFP transgene allowed for improved examination of 

the cellular and luminal arrangements within the intestine. Whole-mount imaging of the 

entire intestine revealed that lumen fusion begins in the anterior region and proceeds in 

an anterior to posterior direction (Figure 8F). In addition, we observed that un-fused 

lumens were frequently separated by single cell-cell contacts expressing Cldn15la-GFP 

(Figure 8G).  
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Figure 8- Claudin 15-like a localizes to the basolateral membrane 

A- Confocal cross section of a 72 hpf TgBAC(cldn15la-GFP) embryo. Scale bar = 50 

µm.  B- Magnification of box from A. C- Immunolocalization of Claudin15la to the 

basolateral membranes of intestinal epithelial cells.  D-E Whole-mount fluorescent 

images of 55 hpf and 75 hpf embryos expressing TgBAC(cldn15la-GFP). Arrows 

indicate the gut tube. F- Stitched confocal whole-mount images of a TgBAC(cldn15la-

GFP) embryo show un-fused lumens (arrowhead) in the posterior intestine at 68 hpf that 

are separated by cell-cell contacts (arrow). G- Magnification of cell-cell contacts from 

Fig. F. Arrows indicate contacts. Phalloidin (red).  Scale bar = 20µm 

 



 

43 

 

Figure 9- Live imaging of TgBAC(cldn15la-GFP) 

A-D-  Live imaging was performed from 48-70 hpf. Snapshots of a single plane at 48, 53, 

60, and 70 hpf show lumens enlarging and fusing into a single lumen. Arrowheads 

indicate lumens, arrows point to cell-cell contacts between lumens. 
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Live imaging the zebrafish gut 

To visualize the process of lumen formation live, we used Selective Plane 

Illumination Microscopy (SPIM) (Huisken and Stainier, 2007) to image 

TgBAC(cldn15la-GFP) embryos. Initially, several small lumens were seen opening along 

the AP length of the intestine (Figure 9B). These lumens were often separated by a few 

cells, which is similar to those observed in fixed whole mount embryos at the resolution 

stage. Initially, the expansion of these lumens was rapid and directly followed by local 

fusion events that resulted in two to three large luminal compartments along the AP axis 

of the tube. The larger lumens remained separated by a one or two cell-thick cellular 

bridge, and did not fuse for an extended period of time, yielding a distinct intermediate 

(Figure 9C).  Ultimately, these large lumens resolve into one (Figure 9D). Taken 

together, our morphological and live imaging studies reveal that single lumen formation 

in the zebrafish intestine involves two distinct morphological and kinetic phases and 

identify a previously unknown stage characterized by the presence of large, un-fused 

lumens. 

Epithelial morphology and polarity 

Previous work has shown that fluid accumulation promotes lumen enlargement 

and coalescence during single lumen formation (Bagnat et al., 2007; Navis et al., 2013). 

However, because lumen coalescence occurs in the absence of apoptosis (Ng et al., 

2005), additional processes must also be involved to facilitate tissue remodeling during 

lumen resolution. To address the process of lumen fusion, I further characterized the 

resolution stage. Analysis of the cellular architecture of transverse intestinal sections at 
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the resolution stage using a membrane GFP marker, Tg(hsp70l:GFP-CaaX)pd1008, 

revealed that lateral lumens were often separated by a bridge of cells whose contacts form 

a Y- or T-shaped arrangement between two adjacent lumens (Figure 10A,A’). To 

determine the identity of the bridge contacts, I examined the localization of specific 

apical and basolateral proteins.  Using a Tg(hsp70l:GFP-podxl)pd1080 line, we found 

that the apical membrane protein podocalyxin localized to the apical surface surrounding 

the lumens and was absent from the connecting bridge (Figure 10B-B’). Similarly, the 

tight junction protein ZO-1 was restricted to the subluminal area and was not found at the 

membrane between lumens (Figure 10C-C’). In contrast, the adhesion proteins cadherin 

and β-catenin were localized to all basolateral membranes and were also located on the 

bridge membrane separating the two lumens (Figure 10D-E’).  These data reveal that 

during the resolution stage, intestinal epithelial cells surrounding the lumens are polarized 

and adjacently arranged lumens within an intestinal cross section are separated by 

basolateral contacts that exclude apical proteins. 

Next we examined the process of lumen resolution along the length of the 

intestine. The generation of a single continuous lumen is a more complex process 

involving the coordination of several lumens along the entire gut.  There are two possible 

scenarios in which a single continuous lumen can resolve from multiple discontinuous 

lumens (Figure 11A).  One possibility is that apical membrane can be deposited at bridge 

contacts between lumens, forming a continuous path and acting as a linker connecting the 

enlarging lumens. Alternatively, each lumen may be an autonomous unit separated by 

basolateral contacts, similar to adjacently arranged lumens. In this case, single lumen  
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Figure 10- Basolateral contacts are found between lumens 

A-E Confocal cross sections of embryos at the lumen resolution stage. A- 
Tg(hsp70l:GFP-CaaX) labels all cell membranes. A’- Cartoon diagram of Fig 3A 

depicting laterally arranged lumens in red and ‘bridge’ contacts in green. B-B’ Apical 

protein, GFP-Podocalyxin surrounds the lumen but is not found at bridge contacts.  

Phalloidin (red). C,C’ Antibody staining against Zo-1 labels tight junctions. Phalloidin 

(red). D-E’ Antibody staining against cadherin and β-catenin labels basolateral contacts 

and ‘bridge’ contacts between lumens. Phalloidin (green). Arrows indicate lumens, 

arrowheads indicate bridge contacts. Scale bars: 20µM.  
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Figure 11- Basolateral adhesions separate adhesions on A-P axis 

A- Cartoon depicting two scenarios of lumen fusion along the AP axis. Apical membrane 

(red) can be deposited on membranes between lumens (top) or lumens may arise isolated 

and fuse directly without an apical membrane linker (bottom). B-B’’ Whole-mount 

confocal image of a lumen resolution stage embryo expressing GFP-Podocalyxin (red) 

and stained for cadherin in green. Cadherin localizes to basolateral contacts separating 

lumens. Arrows indicate lumens, arrowheads indicate bridge contact. Scale bars: 20µM.  
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formation would require the disengagement of the cell-cell contacts between the adjacent 

lumens. To determine which scenario most accurately represents the process of lumen 

resolution along the intestine I performed whole-mount analysis of Tg(hsp70l:GFP-

podxl)pd1080 embryos stained for cadherin. Consistent with the transverse section data, 

lumens along the AP axis were frequently separated by Y- and T-shaped cadherin-

positive contacts and GFP-Podxl was restricted to the membrane surrounding the lumens 

(Figure 11 B-B’’). Thus, the organization of adjacent lumens seen in transverse sections 

is analogous to the organization of adjacent lumens along the AP axis. Furthermore, we 

found no evidence of apical membrane deposition between two lumens prior to lumen 

fusion. 

Lumen fusion  

Lumen resolution may occur via the expansion and direct fusion of luminal 

membranes, or through the reduction and breaking of contacts between the lumens or 

both. Prior to lumen fusion adjacent lumens expand and the connecting bridge appears to 

shrink. We observed that in regions where the basolateral bridge contact was particularly 

narrow, GFP-podlx-positive membranes protruded from the adjacent luminal surfaces 

toward a central area with diffuse cadherin signal, likely originating from the 

internalization of the contact (Figure 12A-A’’).  We termed this type of resolution event 

luminal fusion. Further analysis of cadherin-stained and TgBAC(GFP-cldn15la) embryos 

revealed that in some instances during the fusion process, cadherin and GFP-Cldn15la 

can still be found at the fusion site (Figure 13A-D). Co-localization with Tg(hsp70l:Ras-

RFP) confirmed that cadherin remains at the membrane. Although the basolateral 
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proteins are not completely removed from the membrane, cell-cell adhesion is lost. This 

localization at the cell surface likely originates from the separated bridge contact, 

suggesting that the adhesions between the cells had snapped prior to their complete 

internalization (Figure 13B-D). We termed this type of resolution event adhesion 

snapping. Analysis of lumen resolution events in whole mount embryos revealed that 

luminal fusion seems to be the predominant mode of lumen resolution (65%), whereas 

adhesion snapping accounts for 35% of the resolution events (n=20).  Together, these 

data indicate that lumen resolution involves remodeling of bridge contacts through both 

apical membrane expansion and the reduction of the adhesion contact. 

3.3 Discussion  

In this study we identify lumen resolution as a critical process during single 

lumen formation. Single lumen formation begins with multiple small lumens that enlarge 

through fluid accumulation driven by Cldn15 and Na+/K+ATPase (Fig. 7A). Prior to 

lumen coalescence, enlarged lumens are found along the length of the gut and are 

separated by basolateral bridge contacts. Our studies reveal that cell-cell bridge contacts 

lack apical and tight junction markers between the lumens, indicating that these bridge 

contacts do not change identity prior to lumen fusion. Instead, we observed that lumen 

fusion occurs through both apical membrane expansion and the shrinking and breaking of 

basolateral bridge contacts. The most common bridge cell arrangement involves cells that 

have one apical surface, however occasionally bridge cells exhibit two apical surfaces. 

Bipolar cells have also been observed during tubulogenesis in the Ciona notochord 

(Denker and Jiang, 2012). Although the mechanism by which a cell acquires two apical  
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Figure 12- Lumen resolution through luminal fusion 

A-A’’’ Whole mount confocal image of an embryo expressing GFP-Podocalyxin (false 

colored in red) and stained for cadherin (green) shows luminal expansion during a 

“lumen fusion” event.  Ras-RFP (white) marks cell membranes. Arrows mark fusion 

event. Blue, DAPI.  B-B’’’ Optical sections from a Z-stack surrounding a fusion event. 
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Figure 13- Lumen resolution through snapping 

A-A’’ Whole-mount confocal image of a TgBAC(GFP-cldn15la) embryo shows a 

putative adhesion snapping event during fusion. The arrow marks adhesion at the surface. 

B-B’’ Whole-mount confocal image of an embryo expressing GFP-Podocalyxin (red) and 

stained for cadherin (green) shows adhesion snapping during fusion. Ras-RFP (white) 

marks cell membranes. The arrow marks adhesion at the surface. C-C’’ Optical sections 

from Z-stack surrounding a fusion event. The asterisk marks a cell with adhesion. D-D’ 

Space fill projection labeling cells surrounding the fusion event. Lumen, red. The asterisk 

marks a cell with adhesion.  Scale bars: 10µM 
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membranes is unknown, it is possible that the cells between the lumens are unable to 

receive proper polarizing cues from the basement membrane. 

During the resolution stage lumens may merge through either direct apical-apical 

membrane fusion or through fusion at cell junctions. Studies in the zebrafish vasculature 

and ascidian notochord provide insight into the possible mechanisms involved in 

membrane and junctional coalescence during lumen fusion. During ascidian notochord 

tubulogenesis, cellular remodeling involves a reduction of intracellular junctions between 

neighboring cells and the establishment of a new junction between two previously un-

connected cells (Dong et al., 2009). Furthermore, work in the zebrafish dorsal 

longitudinal anastomotic vessel suggests that when two apical membrane compartments 

merge, a new junction is formed between two cells allowing for the detachment of a third 

cell at the new contact site (Herwig et al., 2011). However, a more detailed study will be 

needed to determine whether lumens merge through apical fusion in the zebrafish gut. 

In the zebrafish intestine, lumens open at multiple sites within the gut tube rather 

than at a single initiation point as seen in other models of tube formation such as 3D cysts 

and the C. elegans excretory cell (Bryant et al., 2010; Khan et al., 2013; Kolotuev et al., 

2013). Through live imaging and a detailed characterization of luminal architecture, we 

observed that lumens form along the entire length of the gut tube and are typically 

separated from each other by only one or two cells.  This architecture allows lumens to 

fuse through localized cellular rearrangements, thus facilitating the generation of a 

continuous lumen within a long tube. Elucidating the mechanisms regulating continuous 

lumen formation is critical to understanding morphogenesis of various organs in 
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vertebrates. For example, in the mouse mammary gland, several small lumens form 

within the developing bud that must connect with each other to form a continuous 

luminal network (Hogg, 1983). Overall, the work in this chapter demonstrates that the 

zebrafish intestine serves as a powerful model to investigate the cellular processes 

involved in single continuous lumen formation in vertebrate tubes. 
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4. Molecular mechanisms regulating single lumen 
formation 

In the prior chapter I indentified a previously undescribed stage in single lumen 

formation characterized by enlarged un-fused lumens. I found that the fusion of these 

lumens requires the rearrangement of cellular contacts in between two lumens. In this 

chapter I investigate the molecular mechanisms that may be involved in contact 

rearrangement through the identification of a mutant exhibiting impair lumen fusion and 

through the examination of the intracellular recycling pathway. 

4.1 Introduction 

De novo lumen formation is integral to the development of tubes that form from 

an unpolarized epithelium and the mechanism by which this occurs has been extensively 

studied in vitro in 3D cysts. In the cyst model, apical-basal cell polarity is established 

through the differential distribution of PIP2 and PIP3, as well as several polarity 

complexes both of which are required for the asymmetric targeting of membrane proteins 

(Joberty et al., 2000; Martin-Belmonte et al., 2007; Nelson, 2003) To initiate lumen 

formation, apical membrane proteins such as podocalyxin accumulate in Rab11 and 

Rab8a-positive vesicles. These vesicles are then delivered to the plasma membrane 

where, together with the exocyst and the Par3 complex, they fuse to generate an apical 

surface (Bryant et al., 2010). Once an early apical domain is established, the Par3-aPKC 

complex re-localizes tight junctions and oriented cell divisions reinforce the polarized 

architecture of the cyst (Jaffe et al., 2008; Martin-Belmonte and Mostov, 2008). Although 

these studies highlight the importance of apical membrane trafficking in lumen 
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formation, such in vitro systems cannot fully recapitulate the complexity of a three-

dimensional organ. For example, in most 3D cyst models the lumen typically forms 

between two differentiated epithelial cells and does not involve processes of epithelial 

transformation and remodeling that are essential for tube formation in vivo in many 

organs. 

Epithelial remodeling has been well studied in Drosophila models of tube 

morphogenesis. In the Drosophila salivary gland, lumen size and shape are controlled by 

regulating the localization of E-cadherin at adherens junctions and basolateral surfaces 

(Pirraglia et al., 2010). Apical elongation is promoted by reduced E-cadherin levels at 

adherens junctions and increased levels at the basolateral surface (Pirraglia et al., 2010). 

In the Drosophila trachea, trafficking of E-cadherin through Rab11-mediated recycling is 

known to regulate cell intercalation (Shaye et al., 2008). Together, these studies have 

highlighted the importance of endocytic trafficking and recycling of cadherin during 

epithelial remodeling. However, the cellular mechanisms controlling tubulogenesis in 

large un-branched tubes, particularly in vertebrates, remain poorly understood. 

4.2 Results 

smoothened mutants exhibit impaired lumen formation 

We next sought to identify a genetic model to investigate the resolution stage of 

lumen formation in the intestine. The hedgehog pathway is a well-known regulator of 

gastrointestinal development in vertebrates.  In mammals, the hedgehog (Hh) pathway is 

involved in intestinal patterning, regionalization, and villus formation, while in the 

zebrafish, Hh signaling regulates cloaca formation (Parkin et al., 2009; Ramalho-Santos 



 

56 

et al., 2000; Wallace and Pack, 2003). Therefore, we examined lumen formation in 

embryos mutant for smoothened (smo), the hedgehog co-receptor. We performed 

transverse sectional analyses of homozygous smos294 (Aanstad et al., 2009) mutant 

embryos at 72 hpf, a time point when a single continuous lumen is well established in 

WT embryos. The smos294 allele contains a mutation in a conserved cystine residue in the 

extracellular domain of the protein and is essential for full activation of the Hh pathway 

(Aanstad et al., 2009).  At 72 hpf, approximately 43% of smos294 mutant embryos (n= 21 

mutants) exhibit impaired lumen fusion in the intestine (Figure 14A,E). To confirm that 

the smoothened mutation is responsible for the lumen formation defect, we examined a 

null allele of smoothened, smohi1640 (Chen et al., 2001) and found the same phenotype  in 

a similar proportion of embryos (44% n=27) (data not shown). The smos294 phenotype 

was similar to the class II WT intermediate, which indicates a failure at the resolution 

stage. To determine if un-fused lumens resolve at a later time in development, we also 

examined embryos beyond 72hpf. The un-fused lumen phenotype was observed at 85 

hpf, 96 hpf, and 110 hpf (Figure 14B-D, F-H). At 96 hpf 27% of smos294 embryos (n= 26 

mutants) continued to exhibit un-fused lumens, indicating that impaired lumen fusion in 

mutants is not due to a developmental delay. In addition to transverse sectional analysis, 

we also examined smos294 in whole-mount to determine if impaired lumen fusion was 

displayed along the entire intestine or was restricted to the anterior intestinal bulb.  At 72 

hpf, smos294 mutants exhibited several un-fused lumens along the intestine (Figure 14I-J), 

which is consistent with the results observed in WT embryos at the resolution stage. It is 

important to note that in the intestine of smos294 mutants, the un-fused lumens are fully  
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Figure 14- smoothened mutants exhibit a defect in lumen fusion 

A-H Confocal cross sections of WT (top) and smos294 (bottom) intestines at 72 hpf, 85 

hpf, 96 hpf, and 110 hpf. Phalloidin (red). I-J Confocal whole-mount image of WT and 

smos294 embryos expressing TgBAC(cldn15la-GFP) to highlight the cellular and luminal 

architecture of the intestine at 72 hpf. I- WT intestine, J- smos294 intestine. Arrowheads: 

lumens, Asterisk: adjacent lumens. Scale bars: 20µM 
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open and continue to expand as cells divide (Figure 14E-H). These results indicate that 

the smos294 phenotype results from a failure in lumen resolution and not from impaired 

fluid accumulation. Taken together, these data support the idea that fluid alone cannot 

drive single lumen formation in the intestine and reveal that lumen opening and lumen 

fusion are two distinct events required for single lumen formation that can be genetically 

uncoupled.  

Characterization of smo guts 

Hedgehog signaling occurs in a paracrine manner typically involving Hh 

expressing cells in the epithelium and signal receiving cells in the mesenchyme. To 

examine the spatiotemporal expression of smo in the gut we used a transgenic reporter 

line for the Hh pathway target gene, patched (Choi et al., 2013). At 48 and 72 hpf 

signaling was observed in the mesenchyme surrounding the gut epithelium which is  

consistent with established finding (Figure 15A-C). Hh signaling is known to play an 

important role in the differentiation of mesodermal precursors into smooth muscle. In 

smos294 we observed that the mesenchymal layer contained fewer, more elongated cells 

compared to WT (Figure 14E-H). Therefore, we next examined the differentiation of the 

mesenchymal layer in smos294 mutants. in situ hybridization revealed that expression of 

the smooth muscle marker αSMA is lacking in mutant embryos at 72 hpf compared to 

WT, indicating an absence of differentiated smooth muscle surrounding the gut (Figure 

15D-E).  

To determine if impaired lumen fusion in smos294 mutants stems from an early 

endoderm migration defect, we examined expression of the endoderm marker, foxa3.  At  
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Figure 15- smoothened signaling acts in the surrounding mesenchyme 

A-B Confocal cross section of the transcriptional reporter Tg(GBS-ptch2:EGFP)umz23. 

Phalloidin (red), DAPI (blue). Scale bar: 20 µM. C Hh is expressed in the epithelium and 

binds to ptch in the mesenchyme to activate smo mediated downstream transcription. 

Thus, smo regulates the epithelium through epithelial-mesenchymal signaling pathways. 

D-E Dorsal view of an in situ hybridization showing αSMA expression in WT and smo 

mutant embryos at 72 hpf. Arrows point to smooth muscle. Scale bar: 100 µM. 
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30 hpf smos294 mutants show a single, midline localized endodermal rod that is overall 

similar in shape to that of WT embryos (Figure 16A-B). Examination of 

TgBAC(cldn15la-GFP) embryos at 48 hpf revealed that the intestinal epithelium is also 

similar in size and shape in  WT and smos294 mutants (Figure 16C-D, G). Furthermore, 

we determined that there is no significant difference in cell number, or cell proliferation 

between WT and smos294 mutants (Figure 16E-F’,H-I). There was also no observable 

apoptosis in the gut of WT or smos294 embryos (data not shown). Therefore, the lumen 

fusion phenotype observed in smos294 mutants does not result from defects in early 

endoderm migration, or impaired regulation of epithelial cell numbers. 

Next we investigated whether the lumen defect in smos294 mutants is linked to a 

failure in the establishment of apical-basal polarity. To determine if smos294 mutants 

exhibit disrupted epithelial polarity we examined the localization of several apical and 

basolateral markers at 72 hpf. Staining for the tight junction protein ZO-1 showed proper 

localization to the junctions and no localization between lumens, similar to what we 

observe in WT intermediate embryos (Figure 17A-B). In addition, examination of 

Tg(hsp70l:GFP-podx); smo s294 embryos revealed proper localization of podocalyxin to 

the luminal surface (Figure 17C-D). However, the basolateral protein cadherin was 

localized to all basolateral surfaces, and was also found in a non-polarized distribution on 

the bridge cells between the lumens. These bridge cells express cadherin on all 

membranes, similar to the localization pattern in WT intermediate embryo (Figure 17E-

F). Therefore, smos294 mutants do not display extreme defects in cell polarity during 

lumen formation. The localization of polarity markers resembles what is seen in  
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Figure 16- Gut tube shape and cell number are similar in WT and smo mutants 

A-B In situ hybridization of WT and smo mutant embryos expressing foxa3 at 30 hpf. 

Scale bar: 200 µM. C-D WT and smo mutant embryo expressing TgBAC(cldn15la-GFP) 

at 48 hpf. Arrows indicate intestine. E-F’ Cross section of WT and smo mutant guts at 72 

hpf stained for BrdU to label proliferating cells. Scale bars: 20 µM. (G) Quantification of 

the diameter and perimeter of WT and smo mutant guts from transverse cross sections. 

Wt n=14, mutant n=18, diameter p>0.18, perimeter p >0.48. (H) Quantification of total 

cell number in WT and mutant guts. WT n=14, mutant n=18, p>0.30 (I) Quantification of 

the percent of BrdU positive cells in WT and smo mutant guts. WT n= 14, mutant n= 19, 

p> 0.32. 
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Figure 17- smoothened mutants do not display polarity defects 

A-B Confocal cross sections of Wt and smo mutant embryos stained for the tight junction 

marker Zo-1 (green). C-D  Confocal cross sections of Wt and smo mutant 

Tg(hsp70l:GFP-podxl) embryos (green). E-F Confocal cross section of Wt and smo 

mutant embryos stained for the basolateral marker cadherin (red). 
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intermediate stage WT embryos, further suggesting that the smos294 lumen phenotype is 

representative of the lumen resolution stage of development. Taken together these results 

indicate that smo mutants exhibit mesenchymal defects, yet the intestinal epithelium is 

similar between WT and mutant embryos. However, despite the epithelial similarities 

smo mutants are distinct in their inability to undergo lumen fusion.  

Endocytic degradation and recycling during lumen resolution 

Because single lumen formation in the zebrafish gut occurs without apoptosis (Ng 

et al., 2005), lumen resolution must involve epithelial remodeling and the rearrangement 

of cellular contacts that are observed between the lumens. This remodeling can be 

achieved by changing the identity of bridge contacts, from basolateral to apical, or by 

breaking adhesions. To undergo remodeling, cellular contacts and adhesions can be 

internalized and trafficked to lysosomes for degradation or they can be recycled back to 

the cell surface (Le et al., 1999; Palacios et al., 2005). To determine if lysosomal 

degradation is important for lumen fusion we inhibited the degradation pathway by 

targeting a variety of mechanisms. First, we perturbed Rab7 function, which regulates 

late endosomal trafficking, (Bucci et al., 2000) using a dominant negative version of the 

protein (Rab7DN).  Expression of Rab7DN was induced by heat shocking 

Tg(hsp70l:GFP-Rab7aDN) embryos at 48 hpf. Examination at 72 hpf revealed there was 

no difference in single lumen formation between WT and DN embryos (Figure 18A-B). 

To further probe the degradation pathway, we inhibited intracellular acidification. 

Acidification is critical to the proper function of intracellular compartments, and is 

primarily regulated by the vacuolar type H+ATPase. A low pH is essential to the function 
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lysosomes and other vesicles along the degradation pathway. Therefore, we impaired 

lysosomal acidification using the drug bafilomycin, which inhibits the vacuolar type H+ 

ATPase (V-H+ATPase). Embryos were bathed in a range of drug concentrations yet 

lumen defects were never observed (Figure 18C-D). It is difficult to determine if 

bafilomycin was able to reach the gut in sufficient quantities to adequately impair 

intracellular acidification, therefore we also examined embryos mutant for members of 

the V-H+ATPase complex (Nuckels et al., 2009). Analysis of embryos mutant for the v1f 

and v1e1 subunit of the V-H+ATPase complex again showed no lumen defects (Figure 

18E-F). Taken together these results suggest that intracellular degradation and 

acidification are not critical to contact remodeling and lumen fusion.  

Several studies have found that endocytic recycling and trafficking are important 

for epithelial remodeling during morphogenesis (Pirraglia et al., 2010; Shaye et al., 

2008). The Rab11 family of small GTPases as well as the Rab11 effector proteins 

Rab11FIP and MyoVb are well known regulators of the recycling pathway (Hales et al., 

2001; Lapierre et al., 2001; Ullrich et al., 1996) and have been shown to play a key role 

in both apical trafficking and basolateral recycling during epithelial morphogenesis 

(Kerman et al., 2008; Satoh et al., 2005). To determine if recycling is involved in single 

lumen formation, we utilized a dominant-negative construct to disrupt endogenous 

Rab11a function. We crossed Tg(UAS:mcherry-rab11a-S25N)mw35 (Rab11aDN) (Clark 

et al., 2011) to a Tg(hsp70l:gal4) line to temporally control expression of Rab11aDN. 

Expression of Rab11aDN prior to the resolution stage resulted in an un-fused lumen 

phenotype, similar to that of smos294 mutants and class II WT embryos, in 45% of  
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Figure 18- The degradation pathway is not involved in lumen formation 

A-B Confocal cross sections from Tg(hsp70l:GFP-Rab7) and Tg(hsp70l:GFP-

Rab7DN) embryos. Phalloidin (red). C-D Confocal cross sections from DMSO and 

bafilomycin treated embryos. E-F Confocal cross sections from atp6 v1f and atp3v1e 

mutant embryos. Phalloidin (red). Scale bars: 20 µM 
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Figure 19- Rab11aDN embryos exhibit impaired lumen fusion 

A-A’ Confocal cross section of a Tg(hsp70l:gal4); Tg(UAS:mcherry-rab11aS25N) 

embryo. Phalloidin (green). B Quantification of total cell number in the gut in WT and 

Rab11aDN embryos. WT n=13, DN n=11, p>0.32. C-C’ Confocal cross section of a 

Tg(hsp70l:GFP-rab11bS25N) embryo. Phalloidin (red) D Confocal cross section of a 

WT embryo at 72 hpf stained for cadherin. E-H Confocal cross section of a Rab11aDN 

embryo stained for cadherin. Arrowheads point to Rab11DN and cadherin co-localization 

in internal compartments.  I Confocal cross section of a WT embryo at 72 hpf stained for 

4e8. J-M Confocal cross section of a Rab11aDN embryo at 72 hpf stained for 4e8. 

Arrowheads point to Rab11DN and 4e8 co-localization in internal compartments Scale 

bars: 20 µM  



 

67 

embryos (n=20) at 72 hpf (Figure 19A). These embryos contained the same number of 

epithelial cells in the gut as WT embryos, indicating that failed lumen resolution is not 

due to differences in cell numbers or a developmental delay (Figure 19B). Upon 

expression of Rab11aDN, cadherin accumulated intracellularly, indicating it is recycled 

in a Rab11a-dependent manner during lumen formation (Figure 19D-H). In addition, the 

apical protein 4e8 was also found to co-localize to Rab11aDN compartments (Figure 19 

I-M). We also tested the function of Rab11b, which is highly similar to Rab11a, yet 

resides in distinct apical vesicles in epithelial cells and co-localizes with different cargo 

proteins (Lai et al., 1994; Lapierre et al., 2003). Unlike DN-Rab11a, expression of DN-

Rab11b did not cause a lumen formation phenotype (Figure 19C). Thus Rab11a mediated 

recycling of basolateral and apical membrane proteins is necessary for lumen fusion 

during single lumen formation. 

The dynamic nature of cadherin at the membrane is based on its continual 

trafficking to and from the cell surface and this trafficking is essential to the regulation of 

adhesions during morphogenesis (Bryant and Stow, 2004). p120-catenin regulates 

cadherin stability at the membrane by masking an endocytic signal on the C-terminal tail 

of cadherin, preventing its internalization and degradation (Davis et al., 2003; Nanes et 

al., 2012; Xiao et al., 2003). To determine if cadherin stability is involved in lumen 

fusion we overexpressed p120-catenin during the resolution stage of lumen formation to 

stabilize cadherin at the surface. We examined Tg(hsp70l:GFP-p120)pd1091 embryos in 

whole-mount and found that p120 localizes to the basolateral membranes and high 

expression of the protein impairs lumen fusion within the intestine compared to non-
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expressing clutchmates (Figure 20A-B). Using this transgenic line, additional studies can 

be performed to determine if specific contacts expressing high levels of p120 are less 

likely to undergo remodeling.  

Since smo mutants have mesenchymal defects, we next examined Rab11DN 

embryos to determine if impaired lumen fusion is linked to defects in mesenchymal 

differentiation. We performed in situ hybridization on Rab11aDN embryos to detect 

expression of αSMA, and found that Rab11DN embryos exhibited proper differentiation 

of the mesenchymal layer (Figure 21A-B). Furthermore, staining for smooth muscle 

myosin, Myh11, showed that mesenchymal cells specifically expressing Rab11aDN 

differentiated to a similar extent as controls (Figure 21C-D’).  These data suggest that 

Rab11aDN expression does not affect the differentiation of the gut mesenchymal layer 

and that the lumen resolution phenotype observed in Rab11DN embryos is not solely due 

to mesenchymal defects.  

Impaired Rab11a recycling in smo mutants 

The similar lumen phenotype shared by smos294 mutants and Rab11aDN-

expressing embryos next led us to investigate whether defects in the recycling pathway 

contribute to the smos294 phenotype. To this end we generated a GFP-RAB11a transgenic 

line, Tg(hsp70l-GFP-RAB11a)pd1031, to mark recycling endosomes.  In WT embryos, 

GFP-RAB11a was localized to small sub-apical compartments surrounding the lumen 

(Figure 22A-A’). In contrast, smos294 mutants exhibited abnormally enlarged GFP-

RAB11a compartments that were dispersed from the apical surface (Figure 22B-B’). 

These enlarged Rab11a compartments in smo mutants contained the apical protein 4e8 
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Figure 20- p120 expression impairs lumen fusion 

A-B Whole mount confocal image of an embryo expressing Tg(hsp70l:GFP-p120) and a 

non-expressing clutchmate. Arrowheads point to un-fused lumens found in GFP-p120 

expressing embryos. 
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Figure 21- Mesenchymal differentiation is not impaired in RabllaDN embryos 

A-B- Lateral view of an in situ hybridization showing αSMA expression in WT and 

Rab11aDN embryos at 72 hpf. Arrow points to smooth muscle. Scale bar: 100 µM. C-

D’’- Confocal section of WT and Rab11DN embryo stained for Myh11. Arrowhead 

points to Mhy11 in the mesenchyme. Asterisk indicates non-specific epithelial staining as 

observed previously (Wallace et al., 2005) Scale bars: 20 µM 
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indicating a defect in trafficking of apical membrane proteins (Figure 22 C-D’). 

Colocalization with cadherin was not as apparent (Figure 22E-F’). However, due to the 

transient nature of internalized cadherin, cadherin colocalization with recycling 

endosomes is often limited (Desclozeaux et al., 2008), which likely accounts for the 

minimal amount of colocalization with Rab11a compartments we observe. These data, 

together with the Rab11DN data suggests that Rab11 trafficking of both apical and 

basolateral proteins is important in lumen fusion.  

Previous studies in the Drosophila trachea have shown a similar accumulation of 

Rab11 in enlarged compartments upon over-expression of the Rab11 effector protein 

Rip11, an ortholog of Rab11Fip1a (Shaye et al., 2008). Rab11Fip1a and MyoVb interact 

with Rab11 family members and regulate plasma membrane recycling (Hales et al., 2001; 

Lapierre et al., 2001). To investigate Rab11 effectors in smos294 mutants we examined the 

expression levels of Rab11a, Rab11b, Rab11Fip1a and MyoVb in WT and smos294 

embryos. We used fluorescence-activated cell sorting (FACS) to isolate intestinal cells 

from homozygous mutant TgBAC(cldn15la-GFP)pd1034; smos294 embryos and WT 

clutchmates. We isolated RNA and performed quantitative RT-PCR (qPCR) to evaluate 

differential gene expression specifically in the intestinal epithelium of smo mutants. In 

smos294 cells, the expression of rab11fip1a was increased threefold. However, the 

expression of rab11a, rab11b and myo5b was not significantly different from that in WT 

cells (Figure 22I). To assess how an increase in Rab11fip1a levels may contribute to the 

smo gut phenotype, we overexpressed Rab11fipa1 in Tg(hsp70l:GFP-RAB11a) embryos 

through RNA injection. Upon mild overexpression, GFP-Rab11a compartments became  
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Figure 22- Rab11a is abnormally localized in smo mutants 

A-B’ Confocal cross sections of smos294 and WT clutch-mates expressing 

Tg(hsp70l:GFP-RAB11a). Arrowheads point to abnormal enlarged Rab11 positive 

vesicles in smos294. Phalloidin (red) C-F’ Confocal cross section of WT and smos294 

embryos expressing Tg(hsp70l:GFP-RAB11a) stained for the apical marker 4e8 (C-D’) or 

cadherin (E-F’). Arrowheads point to areas of colocalization. G-H Confocal cross 

sections of uninjected and RFP-Rab11fipa1 injected Tg(hsp701:GFP-RAB11a) embryos. 

Arrowheads point to dispersed compartments. I Expression levels of Rab11 family 

members in the intestinal epithelium of smos294 mutants relative to WT clutch-mates. 

Rab11fip1a p<0.011. All embryos are 72 hpf. Scale bars: 20 µM 
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enlarged and disorganized compared to non-injected embryos, similar to that observed in 

smo mutants (Figure 22G-H). The data suggests that increased levels of Rab11fip1a are 

likely in part responsible for the abnormally enlarged GFP-RAB11a compartments 

observed in smos294 mutants. 

4.3 Discussion  

The studies presented here have identified an intermediate stage in the process of 

single lumen formation and revealed that lumen resolution is a genetically-regulated 

process crucial for continuous lumen formation in the zebrafish gut. In addition, our 

findings show that intracellular recycling of apical and basolateral membrane proteins is 

involved in the remodeling process during lumen fusion. Finally, our data also highlight 

the role of smoothened signaling from the mesenchyme in the regulation of lumen 

morphogenesis in the gut epithelium.   

Based on our studies, we propose that smo signaling facilitates the remodeling 

and weakening of bridge contacts as well as the enlargement of apical membrane via 

Rab11a-mediated trafficking and recycling. These signaling and trafficking events are 

essential to the generation of a single continuous lumen in the zebrafish gut (Figure 23A). 

In our model, basolateral recycling re-localizes the adhesion from the bridge to lateral 

surfaces, thus shrinking and weakening the contacts between the lumens. In addition, 

apical membrane is delivered to the luminal surface to facilitate membrane expansion. As 

adhesions shrink, the bridge contacts eventually break and lumens fuse (Figure 23B). 

This may also be facilitated by the insertion of anti-adhesive apical proteins on the edge  
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Figure 23- Lumens enlarge and fuse during single lumen formation 

A- During single lumen formation, vhnf1 drives lumen enlargement through Cldn15 and 

Na+/K+ATPase regulated fluid accumulation. Next smoothened regulates remodeling 

through Rab11a mediated trafficking to facilitate lumen fusion. Red indicates the luminal 

surface. B- During the fusion process, Rab11 traffics apical proteins (red) to the luminal 

surface and recycles basolateral proteins (green) from bridge contacts to lateral 

membranes. As the lumens expand, the bridge contacts between the lumens shrink and 

split, and the lumens fuse. 
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of the bridge contact as shown in blood vessels (Strilic et al., 2010). Interestingly, 

zebrafish mutant for aPKCλ, which regulates adherens and tight junctions, also exhibit a 

single lumen formation defect (Horne-Badovinac et al., 2001), underscoring that proper 

regulation of adherens is critical in single lumen formation. 

Work in 3D cyst models has established the importance of functional Rab11 and 

recycling endosomes in E-cadherin trafficking, cyst morphogenesis and lumen formation 

(Bryant et al., 2010; Desclozeaux et al., 2008). In 3D cysts, Rab11 is critical for lumen 

initiation by mediating the relocation of apical membrane from the outer surface of cells 

to a central patch where a lumen subsequently forms (Bryant et al., 2010). However, in 

most in vivo tubular systems including the zebrafish intestine, mammalian pancreas and 

mammary gland, lumens initiate at several different sites within a rod of cells and must 

connect with each other to form a continuous luminal network. Our work shows that 

Rab11 mediated trafficking is needed to facilitate lumen resolution. Therefore, Rab11 

may play a role in two distinct processes of lumen formation- lumen initiation and lumen 

resolution.  

The examination of important recycling pathway members revealed differential 

expression of the Rab11 effector protein, Rab11fip1a, as well as an accumulation of 

enlarged Rab11a compartments in the smo s294 intestinal epithelium. Overexpression of 

Rab11fip1a caused a similar accumulation of Rab11a compartments compared to WT 

embryos but did not produce a lumen fusion phenotype. This suggests that either 

additional genes are also involved or that higher levels of Rab11fip1a expression are 

required to cause a lumen formation defect. In the Drosophila trachea, the overexpression 
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of the Rab11 effector protein, Rip11, causes an accumulation of large Rab11 vesicles, 

similar to what we observed in smos294 mutants, and results in impaired morphogenesis 

(Shaye et al., 2008). Furthermore, expression of the pseudophosphorylated Rab11-

FIP2(S227E) mutant results in multiple lumens and a disruption of tight and adherens 

junctions in cysts in vitro (Lapierre et al., 2012). Therefore, our findings in smos294 

mutants are consistent with previous studies and highlight the importance of effector 

protein levels in modulating endocytic recycling.  

Although smos294 mutants exhibit aberrant Rab11a localization and increased 

expression of Rab11 effector proteins, it is unclear how smo signaling regulates these 

recycling pathway members. In zebrafish, molecular interactions between epithelial Hh 

and mesenchymal Fgf10 regulate proliferation and differentiation in the esophagus and 

swimbladder (Korzh et al., 2011). In addition, Hh signaling from the endoderm is 

required for posterior gut development in zebrafish embryos (Parkin et al., 2009). Using a 

transcriptional reporter we found that smo signaling acts in the surrounding mesenchyme 

but not in the intestinal epithelium. Thus, smo likely regulates lumen fusion through 

epithelial-mesenchymal interactions and/or morphogen signaling such as the Bmp or Fgf 

pathways. Signaling from the mesenchyme through secreted factors, and/or mechanical 

interactions are undoubtedly important for epithelial organization during tubulogenesis. 

Future studies should dissect the specific role both types of interactions play in regulating 

gut morphogenesis.  
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5. The role of Clic5 in the zebrafish gut 
Early in our study of intestinal tubulogenesis, a microarray was performed on WT 

and smo mutant whole embryos to identify potential targets regulating lumen formation. 

One gene of interest that initially attracted our attention was the Chloride Intracellular 

Channel, clic5. In this chapter I describe our work with this protein and discuss its 

potential role in gut development. I will also discuss work that is currently being pursued 

in the lab to understand early polarization and lumen initiation in the gut and explain how 

Clic5 may provide insight into this area of study. 

5.1 Introduction 

The chloride intracellular channel (CLIC) family of proteins was first identified as 

a class of intracellular anion channels consisting of 6 highly conserved family members 

(Cromer et al., 2002). CLIC proteins are highly conserved among vertebrates. The six 

paralogues are composed of approximately 240 amino acids with a conserved C terminal 

domain and a variable N-terminus, and many of these proteins have splice variants or 

additional N-terminal domains.  

p64, also known as CLIC5B, was the first CLIC family member to be identified. 

p64 was purified from bovine kidney cells and was characterized as a chloride channel 

based on inhibition by indanyloxyacetic acid 94. Cloning of p64 revealed no similarity 

with other integral membrane proteins or any known ion channels, however 

reconstitution of these proteins in liposomes showed chloride channel activity (Landry et 
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al., 1993). Several additional proteins were then identified based on the presence of a 

characteristic CLIC module and had variable activity as an ion channel. 

Interestingly, all CLIC proteins that have been studied exist in both a soluble 

globular confirmation and as integral membrane proteins with channel activity (Littler et 

al., 2010). The transition between these two confirmations is likely regulated by pH and 

redox conditions. However, CLIC proteins do not act as typical ion channels. They lack 

an N-terminal signal sequence and, unlike most ion channel proteins, which contain 

several clear transmembrane domains, ClIC proteins only have a putative transmembrane 

domain. In vitro experiments have shown that CLIC1,4, and 5 can form poorly selective 

integral membrane ion channels. However, it remains unknown whether these channels 

have any physiological activity in vivo.  

Aside from channels, some studies have suggested that CLICs play a role in the 

interactions between the membrane and the cytoskeleton. For example, CLIC5 was first 

isolated from placental microvillus and shown to interact with the cortical cytoskeletal 

complex containing ezrin and actin (Berryman et al., 2004). Clic5a has also been 

identified in podocytes where it forms a complex with ezrin, podocalyxin and the actin 

cytoskeleton. Mice with a mutation in CLIC5a display abnormal podocyte morphology 

and proteinuria, indicating that CLIC5a plays a role in podocyte structure and function as 

a component of the cytoskeleton (Pierchala et al., 2010; Wegner et al., 2010). 

Furthermore, CLICs are associated with intracellular vesicle membranes in both 

membrane bound and soluble forms. It is currently believed that CLICs are required for 
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formation and maintenance of intracellular vesicles, however the mechanism of this 

regulation is currently unknown (Littler et al., 2010). 

Several studies have provided insight into the physiological functions of CLIC, 

which range from roles in tubulogenesis, acidification, and the actin cytoskeleton.  In C. 

elegans the CLIC-like protein exc4 was shown to be involved in the formation and 

maintenance of the intracellular tubular excretory vesicle (Berry et al., 2003).  This study 

determined that the first 66 residues of Exc4, which includes the putative transmembrane 

domain, are essential to proper localization to the apical membrane. Following this study, 

vertebrate CLIC proteins, specifically CLIC4, were also investigated in tubulogenesis. 

For example, CLIC4-/- mice were found to exhibit defects in angiogenesis due to 

impaired acidification along the intracellular tubulogenic pathway (Tung et al., 2009). 

The “jitterbug” mouse also provides insight into the function of Clic proteins. These mice 

arose from a spontaneous recessive mutation in Clic5 and display a lack of coordination 

and progressively become deaf. It was discovered that these mice have a defect in inner 

hair cell stereocillia due to a lack of CLIC5 in the base of the hair bundle, which causes 

the stereocillia to degrade. Based on this phenotype, it was proposed that CLIC5 

associates with radixin to help stabilize the linkage of the actin bundle to the plasma 

membrane in inner hair cells (Gagnon et al., 2006). Later studies also found that the 

jitterbug mouse displays reduced levels of phospho-ERM in podocytes (Wegner et al., 

2010).  

Together, these studies have provided clues to a wide range of physiological roles 

of CLIC proteins including roles in tubulogenesis and the actin cytoskeleton. Given 



 

80 

Clic’s ability to regulate endosomal trafficking through its role as a possible intracellular 

channel, together with its connection to tubulogenesis, Clic5 was identified as a good 

candidate gene to study further as a mediator of lumen formation. In the following 

section, I investigate a potential role for Clic5 in lumen initiation and single lumen 

formation in the zebrafish gut. 

5.2 Results  

Prior to the generation of the Tg(cldn15la:GFP) line and the ability to sort 

intestine-specific cells, whole embryos were used to identify potential genes regulated by 

smo during single lumen formation. Microarray analysis was used to examine the gene 

expression pattern of smo mutant and WT embryos at 72 hpf. The analysis revealed no 

overlap with the transcriptional program of vhnf1. The array provided a list of genes that 

were up and down regulated in smo with respect to wt, many of which are implicated in 

endocytosis and recycling. To determine which genes may be playing a role during lumen 

formation, we examined the expression patterns of genes that were highly downregulated 

in smo mutants and focused our attention to those with gut expression.  Here, I will 

discuss our work on Clic5, which showed a fourfold downregulation in smo mutants. 

In vitro analysis of Clic5 

To validate the results obtained from the microarray we used RT-QPCR to 

examine clic5 transcript levels in WT and mutant embryos. Zebrafish have three clic5 

family members (Figure 24). clic5a and clic5b are splice variants while clic5a1 

(zgc:101827) is a gene duplication of clic5a. Clic5a and Clic5a1 are approximately 240  
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Figure 24- Zebrafish clic5 

Zebrafish contain three clic5 family members. Clic5a and Clic5b are splice variants 

which differ in a 200 amino acid N-terminal region. Clic5a1 (zgc:101827) is a gene 

duplication of Clic5a and shares 84% identity. 

 



 

82 

amino acids in length and have a conserved N-terminal region. Clic5b on the other hand 

is over 400 amino acids in length due to an additional N-terminal motif of approximately 

200 amino acids. To determine the abundance of each isoform in WT embryos we made 

cDNA from 72 hpf whole embryos and performed qPCR. The expression level of cli5a1 

was 10-fold more abundant compared to clic5a and clic5b (Figure 25A). Next, we 

compared expression levels between WT and smo mutant embryos and found clic5a1 

expression was reduced 2-fold in mutants, while clic5a and clic5b remained fairly 

unchanged relative to WT levels (Figure 25B). A time course analysis of clic5a1 

expression from 2-5 dpf was also performed by qPCR to determine the stage in 

development in which clic5a1 is most highly expressed. This revealed that clic5a1 

expression remains constant from 2-4 dpf then increases 2.5-fold at 5 dpf (Figure 25C). 

This increase in expression at 5 dpf may indicate that Clic5a1 is involved in additional 

morphological or physiological processes occurring later in gut development. 

Since Clic proteins have been shown to be both intracellular channels and actin 

binding proteins, we next examined Clic5 localization to determine if it is found 

intracellularly or at the cell surface. To examine the localization of Clic5 in a polarized 

epithelium we generated a stable MDCK cell line expressing GFP-Clic5. When MDCK 

cells are grown on a 2D thin substrate they serve as an effective system to study apical 

basal polarity. When suspended in a thick 3D matrix, theses cells aggregate to form cysts 

consisting of an epithelial monolayer surrounding a fluid filled cavity. When stable cells 

were grown on 2D filters, GFP-Clic5 co-localized with GP135 on the apical membrane 

(Figure 26A). Furthermore, when cells were cultured in a matrix, 3D cysts formed and  
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Figure 25- Gene expression analysis of clic5 

A Relative expression levels of clic5a1, clic5a, and clic5b in whole embryos, normalized 

to ß-actin. B Relative expression levels of clic5a1, clic5a, and clic5b in whole smo 

mutant embryos, normalized to WT clutchmates. C Relative expression level of clic5a1 

at 2,3,4 and 5 dpf. Expression normalized to 2 dpf levels.  
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GFP-Clic5 localized to the luminal surface. Thus, Clic5 localizes apically in polarized 

epithelial cells in vitro (Figure 26B). Next, we used the cyst model to determine if Clic5 

is involved in lumen formation. GFP-Clic5 was overexpressed in Caco2 intestinal 

epithelial cells and the cells were grown into 3D cysts. After several days of growth, the 

overexpression of Clic5 resulted in cysts containing multiple lumens, while non-

transfected controls properly formed single lumens (Figure 26C-D). This result suggests 

that misregulation of Clic5 expression may interfere with lumen initiation or lumen 

coalescence.  

Is Clic5 a chloride channel? 

To investigate the potential of Clic5 acting as an ion channel we examined 

whether GFP-Clic5 functions as a peripheral or integral membrane protein. We created a 

homogenate of HEK 293 cells expressing GFP-Clic5, laid it on a sucrose cushion and 

centrifuged the lysate to isolate the membrane fraction.  The majority of Clic5 protein 

was found in the top fraction of the sucrose cushion, indicating that Clic5 associates with 

the membrane (Figure 27C). We then pelleted the membrane fraction and resuspended 

the proteins in a high alkaline buffer to isolate peripheral proteins from integral 

membrane proteins. Most of the Clic5 protein was solubilized by the high pH, indicating 

that Clic5 is peripherally associated (Figure 27D). Taken together, these data suggest that 

Clic5 is not an ion channel but does associate with the membrane, possibly as a regulator 

of ion channel activity. However, given Clic5’s known interaction with the actin  
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Figure 26- in vitro expression of Clic5 

A Confocal image and orthogonal plane view of GFP-Clic5 localized to the apical 

surface of polarized MDCK cells grown on a filter. The apical marker Gp-135 is in red. B 

Confocal image of GFP-Clic5 localized to the apical membrane of cells in a 3D MDCK 

cyst. Phalloidin is in red. C-D 3D Caco2 cyst overexpressing GFP-Clic5 and a non-

transfected control. ß-catenin is in red. Arrows point to lumens. 
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Figure 27- Clic5 associates peripherally with the membrane 

A- GFP-Clic5 cells were homogenized and spun on a sucrose gradient. Fractions were 

collected from the top to bottom of the gradient and blotted for GFP expression. B- The 

membrane fraction from (A) was treated with Tris buffer or Tris + NaCO3 and pelleted. 

In neutral conditions, GFP expression was detected in the pellet and in high pH 

conditions GFP was detected in the supernatant. S-supernatant, P- pellet 
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cytoskeleton and its identity as a peripheral membrane protein, Clic5 may also be acting 

as a scaffold protein that couples the membrane with the cytoskeleton. 

In vivo analysis of Clic5 

Our in vitro analysis revealed that Clic5 localizes to the apical membrane and 

overexpression of Clic5 impairs single lumen formation in 3D cysts. Therefore, we next 

investigated Clic5 during lumen formation in the zebrafish gut. To examine endogenous 

protein expression, we obtained an antibody against full length human Clic5. We stained 

cross sections of 72 and 96 hpf embryos and found that Clic5a1 localization changes over 

the course of development. At 72 hpf, the protein is found in a punctate pattern in the 

cytoplasm with only slight apical expression (Figure 28A). After 96 hpf, the protein 

localizes predominantly to the apical membrane of the gut (Figure 28B). This point in 

development correlates with the formation of microvilli at the apical surface suggesting 

that Clic5 may associate with the actin cytoskeleton as previously reported (Berryman et 

al., 2004). 

Although antibody staining suggests that Clic5 is found primarily at the apical 

surface of the gut at 4 dpf, it is often difficult to achieve high quality antibody staining in 

the zebrafish gut. To support our Clic5a1 antibody localization data, we created a stable 

transgenic line expressing GFP-Clic5a1 under control of the heat shock promoter, 

Tg(hsp70l:GFP-clic5a1). We heat shocked embryos at various time points to observe the 

localization of Clic5a1 during gut development. At 2 dpf, Clic5a1 localized weakly to the 

apical surface (Figure 29A-A’). By 3dpf, Clic5a1 localization at the apical surface was 

stronger and was also faintly observed in the cytoplasm, and by day 4, Clic5a1 strongly is 
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Figure 28- Clic5a1 localizes to the apical membrane in the gut 

A. Confocal cross section of 3 dpf embryo stained for Clic5 (green). B Confocal cross 

section of 4 dpf embryos stained for Clic5 (green). Phalloidin is in red. 
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 unaffected in mutant embryos (Figure 29D-D’). These data support our antibody staining 

and suggest that Clic5a is strongly polarized to the apical surface, likely due to its 

interaction with actin. 

  Studies in both mice and worms have suggested that Clic proteins play a role in 

tubulogenesis. Therefore, we continued our studies in zebrafish to determine if Clic5 is 

involved in lumen formation in the gut. We knocked down Clic5a1 expression with 

antisense morpholinos against clic5a1, clic5a, and clic5b. Morpholinos against each 

isoform were individually injected at the one cell stage and cross sections of 72 hpf 

embryos were examined for lumen defects. Knockdown of both clic5a and clic5a1 

resulted in impaired lumen resolution similar to smo mutants (Figure 30A-C).  However, 

clic5b knockdown did not produce a lumen phenotype (Figure 30D). These preliminary 

results need to be confirmed using additional knockdown technologies (e.g., TALENs). 

Taken together, these data suggest Clic5 may be involved in tubulogenesis in the 

zebrafish gut, however the mechanism by which this is occurring warrants further 

investigation. 

5.3 Discussion 

In this study we investigated the role of Clic5 in single lumen formation. We 

show that Clic5 expression is reduced in smo mutants and localizes to the apical surface 

of epithelial cells both in vivo and in vitro. Furthermore, we show that Clic5 acts as a 

peripheral membrane protein and knockdown of Clic5 may impair lumen formation. 

However, additional studies need to be performed to further elucidate the role of Clic5 in 

single lumen formation. 
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Figure 29- Expression of Tg(hsp70l:GFP-clic5a1) during gut development 

A-C’ Confocal cross sections of Tg(hsp70l:GFP-Clic5a1) embryos at 48, 72, and 96 hpf. 

Phalloidin is in red, DAPI is in blue. D-D’ Confocal cross section of Tg(hsp70l:GFP-

Clic5a1; ura mutant embryos at 3 dpf. Phalloidin is in red DAPI is in blue. 
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Figure 30- Morpholino knockdown of clic5 impairs lumen formation 

A-D Confocal cross sections of embryos injected with a morpholino against clic5a1, 

clic5a or clic5b and a non-injected control. Clic5a1 produced 3/13 lumen defects and 

clic5a produced 6/18 lumen defects. 
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Clic5a1 was identified as an interesting candidate gene due to the potential of 

CLIC proteins functioning as chloride channels. The microarray identifying Clic5 used 

RNA from whole embryos and was not specific to the gut. However, subsequent 

examination of Clic5 expression from sorted gut-specific cells revealed that clic5a and 

clic5a1 are enriched in the intestinal epithelium.  It was hypothesized that Clic5’s 

function as a chloride channel was involved in the regulation of intracellular 

acidification, which is essential to endocytic trafficking during epithelial remodeling.  

However, recent studies question Clic5’s role as a chloride channel and suggest that if 

Clic5 forms a channel, it is poorly selective at best (Singh et al., 2007). Our work further 

supports a non-channel role for Clic5 through the identification of Clic5 as a peripheral 

membrane protein rather than an integral membrane protein. One possibility is that Clic5 

is not an ion channel itself, but rather helps modulate ion channel activity as shown with 

Clic2 (Board et al., 2004). Alternatively, Clic5 may not associate with channels at all, and 

may instead function as an actin binding protein. Interestingly, we found that Clic5 is 

enriched at the apical membrane and in microvilli, suggesting that Clic5 may be involved 

in brush border formation or stabilization through its known interactions with the actin 

cytoskeleton. Regardless of Clic5’s function at the apical membrane, the generation of 

Tg(hsp70l:GFP-clic5a1) has proven useful as an apical marker in other zebrafish organs 

such as Kupffer’s vesicle where it’s been used to demonstrate proper apical polarity in 

the epithelium.  

To determine the function of Clic5 we used morpholinos to knock down each 

clic5 family member. Morpholinos are commonly used to quickly analyze the function of 
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genes early in development.  However, morpholino knockdown is only effective at early 

stages in development and frequently presents off target effects and sequence-specific 

toxicity. The possibility that the lumen phenotype is the result of an overall delay in 

development rather than a gut specific phenotype still needs to be addressed. However, 

our morpholino results could not be replicated in subsequent experiments, likely due to a 

loss of morpholino activity over time. Therefore, to accurately determine the role of Clic5 

in lumen formation, a Clic5 mutant is required. Using TALENs, Clic5 can be specifically 

targeted to create several stable mutant lines and then the guts of the mutant embryos can 

be observed for lumen initiation, lumen fusion, or brush border defects.  

Further examination of Clic5 in the gut may also provide insight into the 

importance of actin binding during the process of lumen initiation. Work involving the 

has mutant has shown that actin foci and junction clustering is essential to the early 

formation of a single lumen (Horne-Badovinac et al., 2001). In addition, the CLIC5a-/- 

mouse has shown that in the absence of CLIC5a, podoycte structure and function is 

impaired, likely due to a defect in actin binding (Pierchala et al., 2010). Together this 

suggests that Clic5 may play a role in actin targeting and binding during the early stages 

of lumen initiation. In this case, loss of Clic5 in zebrafish may result in either an inability 

to properly form actin foci or weaken actin foci, ultimately leading to impaired single 

lumen formation.  
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6. Conclusion and Future Directions 
The work that I have presented here has not only provided insight into the process 

of lumen formation but has also spurred new questions regarding additional mechanisms 

regulating lumenogenesis and gut development. Fortunately, several tools have been 

generated throughout the course of my work, which can help address questions regarding 

the additional mechanisms involved in single lumen formation.  

6.1 Apical polarity and lumen initiation 

The establishment of cell polarity is critical to the formation and function of 

tubular organs. A key aspect in polarity establishment is the asymmetric distribution of 

Phosphatidylinositol-phosphates (PIPs), which regulate the proper targeting of membrane 

proteins. PIP3 localizes to the basolateral surface and PIP2 is enriched at the apical 

surface. The asymmetric distribution of PIPs is regulated by the PAR complex and the 

recruitment of PTEN to tight junctions (Martin-Belmonte et al., 2007).  

Following protein synthesis, proteins are sorted from the TGN to their target 

surface. Basolateral protein sorting is dictated by a well-established, relatively simple set 

of sorting signals found on the cytoplasmic tail. In contrast, apical sorting signals are 

much more numerous and complex, and can be found on the luminal, membrane, or 

cytosolic region of the protein (Rodriguez-Boulan et al., 2005). Basolateral proteins are 

typically transported from the TGN directly to the plasma membrane or through an 

intermediate basolateral early endosome. However, the transport of apical proteins is not 

as straight forward. Some apical proteins can be trafficked directly to the surface, while 



 

95 

others go through a recycling endosome before being sorted to the plasma membrane. In 

addition, some proteins are trafficked non-specifically to all membranes and then are 

endocytosed and transported to the apical surface (Cao et al., 2012). The proper targeting 

of the apical protein podocalyxin has been shown to be essential for lumen formation in 

MDCK cysts. When trafficking of podocalyxin is impaired through dominant negative 

versions of Rab11 and Rab8, multiple lumens result (Bryant et al., 2010).  

During our studies, we noticed that at the intermediate stage of lumen 

development basolateral proteins are specifically targeted to the basolateral surface, yet 

some apical markers remain weakly polarized and are found on both the apical and 

basolateral surfaces of the cell. For example, the basolateral proteins MICA and 

Aquaporin3 are found at the basolateral surface at 60 hpf (Figure 32A-B). However, 

when we examined the apical transmembrane protein p75 at 60 hpf, we found expression 

on both the apical and basolateral surface (Figure 32D). At day 5 however, this protein is 

fully polarized at the apical surface (Figure 32E). Furthermore, we found that PIP2 

localizes to both apical and basolateral membranes in a non-polarized manner at 60 hpf 

(Figure 32 C). These initial results suggest that basolateral protein sorting is predominant 

early in gut development and that the apical sorting machinery in the gut is not fully 

functional until later in development when lumens have already been initiated. 

Furthermore, this also suggests that the establishment of apical membrane is dispensable 

for early lumen initiation, which raises the question, how is a luminal surface  
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Figure 31- p-75 is unpolarized during early gut development 

A-B- Confocal cross sections of 60 hpf embryos expressing the basolateral 

proteins Aquaporin3 and Mica. C- Confocal cross section of a 60 hpf embryo expressing 

GFP-PIP2. D- Confocal cross section of a 60 hpf embryo expressing the apical protein p-

75. E- Confocal cross section of a 120 hpf embryo expressing the apical protein p-75. F-

G Confocal cross sections of 60 hpf embryos expressing the apical proteins Annexin and 

Syntaxin.  
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established without full apical membrane polarization. We hypothesize that the 

establishment of the basolateral membrane is the primary requirement necessary for 

polarity and lumen initiation, whereas full apical membrane establishment is not essential 

for early stages of lumen formation.  

Both Rab8 and Syntaxin 3 have been shown to be essential for proper apical 

membrane targeting (Sato et al., 2007; Sharma et al., 2006). To address the need of the 

apical membrane during lumen initiation, dominant negative versions of Rab8 and 

Syntaxin 3 have been generated in the lab to impair apical sorting. Rab8 and Syntaxin 3 

mutant lines can be crossed to fish expressing tagged apical membrane proteins to 

determine if apical sorting is impaired upon expression of the dominant negative. We can 

also observe lumen initiation in dominant negative embryos. If mutant embryos are 

unable to establish an apical surface, but can still initiate lumen formation, this would 

suggest that apical membrane is not required for the early stages of lumen formation. 

There are several apical proteins that do localize early in gut development. As 

shown in the previous chapters, the apical proteins Podocalyxin, and Clic5a1 are strictly 

localized to the apical surface during early gut development. Furthermore, examination of 

the apical proteins Annexin A2 and Syntaxin 3 also appear to localize apically at 60 hpf 

(Figure 32F-G). Interestingly, Clic5a1 and Podocalyxin are both known to interact with 

ERM proteins and the actin cytoskeleton, and Annexin A2 is a known regulator of actin 

dynamics, suggesting that actin binding and clustering may play an important role during 

lumen initiation (Grieve et al., 2012; Pierchala et al., 2010).  
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 Overall, given our preliminary data and the tools recently generated in the lab, 

apical polarity establishment, apical protein sorting and actin binding during lumen 

initiation are all areas that can be easily investigated in future studies. 

6.2 The role of the mesenchyme in lumen formation 

A major question that still remains from our studies is how smoothened 

expression in the mesenchyme controls lumen resolution in the epithelium. It is 

hypothesized that smoothened regulates the epithelium indirectly by regulating signaling 

from the mesenchyme to the epithelium. It has been well established that the 

mesenchyme is critical for proper gut development. However, the relationship between 

the mesenchyme and lumen formation has not been investigated. The mesenchyme can 

potentially regulate single lumen formation through signaling mechanisms or through 

mechanical interactions. smo mutants lack mesenchyme around the gut and are unable to 

undergo lumen fusion. Therefore, it is difficult to determine if the lumen defects are a 

result of a physical lack of mesenchyme or if the defects are caused by a loss of the 

source of signaling factors.  

Several studies have shown that members of the Fgf and BMP family of proteins 

are frequently involved in mesenchyme to epithelium signaling in the gut. For example, 

in mice Fgf10 in the mesenchyme signals to the epithelium through FgfR2b to drive 

proliferation during cecal budding (Zhang et al., 2006). Similarly, in zebrafish, Ihh and 

Fgf10 interact during swimbladder and esophagus morphogenesis. It is suggested that Ihh 

from the epithelium interacts with mesenchymal Fgf10, which in turn, is secreted by the 

mesoderm to affect the Fgfr2 expressing cells of the gastrointestinal endoderm (Korzh et 
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al., 2011). Furthermore, work from Madison et al. showed that hedgehog signaling via 

Gli2 and Gli3 directly regulates foxf1 and foxl1 in the mesenchyme (Madison et al., 

2009). Gli and Fox transcription factors regulate secreted morphogens including BMPs 

and Wnts that signal back to the endoderm. Mutations in the Fox family of genes are 

known to cause delays in epithelial organization (Kaestner et al., 1997).  

To identify potential mesenchymal signals involved in lumen formation, we used 

BAC recombineering to generate a Myh11-GFP fusion protein. Based on in situ data, we 

expect stable transgenic embryos to express Myh11-GFP specifically in the mesenchyme 

around the gut. Using this line, we can sort GFP+ cells and isolate mesenchymal RNA for 

microarray analysis to identify genes that are highly expressed in the mesenchyme. Using 

the microarray results, together with our knowledge of known intestinal signaling 

molecules involved in other vertebrate systems, we can identify candidate genes that may 

be involved in mesenchymal regulation of lumen formation. We can also use the mhy11 

containing BAC to create a Myh11-Gal4 fusion using BAC recombineering. Transgenic 

embryos expressing this fusion protein can be crossed to UAS expressing transgenics to 

specifically regulate expression of any gene of interest in the mesenchyme. Together, 

these tools will provide us with ability to further investigate the role of the mesenchyme 

during various stages of gut development.  

Aside from signaling, the mesenchyme may also provide physical forces that are 

essential for epithelial organization and lumen formation. For example, the mesenchyme 

may be required to constrain the epithelium and provide an inward force that drives 

cellular rearrangements and lumen fusion. In this scenario, the absence of mesenchyme 
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would allow separate lumens to enlarge without any force to promote fusion.  However, 

this hypothesis is difficult to address since it is challenging to measure forces in vivo. 

Furthermore, we are unable to perform ablation experiments since any ablation of the 

mesenchyme would not only affect mechanical interactions, but also mesenchymal-

epithelial signaling. Future advances in tools and technologies may soon allow this 

question to be addressed.  

6.3 Regulation of Rab11  

In our study of single lumen formation we showed that Rab11 is necessary for 

proper lumen fusion. However, there is currently no evidence that links the hedgehog 

pathway to Rab11 or endocytic recycling. To find a possible connection between 

smoothened signaling and Rab11 regulation we compared the expression levels of two 

Rab11 effector proteins in WT and smo embryos and found that rab11-fip1a was up 

regulated in mutant embryos. Additional studies need to be performed to more 

thoroughly address how differential expression of Rab11 effector proteins, as well as 

other recycling related genes affect lumen formation.  Aside from fip1a and myoVb, 

several other Rab11 effector proteins including Rabphillin, phosphoinostitide 4 kinase, 

SEC15, and 5 FIP family members, can be examined as possible smoothened targets. If 

specific effectors exhibit reduced expression in smo mutants, overexpression experiments 

can be performed to rescue lumen fusion. Likewise, knockdown of these effectors may 

also induce abnormal accumulations GFP-Rab11 in Tg(hsp70l:GFP-Rab11aWT) 

embryos.  
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6.4 Claudin 15la and single lumen formation 

The Claudin15la-GFP transgenic line was initially generated as a tool to better 

facilitate live imaging of the early zebrafish gut. Similar to most Claudin proteins, 15la 

was expected to localize at the apical membrane, thus providing a way to visualize the 

process of lumen fusion. However, examination of transgenic stable lines revealed that 

Cldn15la localizes to the basolateral membrane. Furthermore, we noticed that the 

localization of Cldn15la changes over the course of development. At 48 hpf, Cldn15la 

accumulates at what appears to be tight junctions around the lumen and the basolateral 

surface (Figure 31A-A’). However, over time the localization at the tight junctions 

decreases and by 72 hpf Cldn15la is uniformly expressed on the lateral surface (Figure 

31B-D’). Similar localization patterns have been observed in a variety of organs. For 

example, Claudin 3 exhibits basloateral expression in the rat small intestine (Rahner et 

al., 2001), and Claudin 7 localizes to both the basolateral membrane and tight junction 

region of pancreatic ductal cells and rat epididymal cells (Inai et al., 2007; Westmoreland 

et al., 2012). Interestingly, studies in the rat uterus found that the localization of several 

Claudin proteins change from tight junction to basolateral localization over the course of 

the estrous cycle. The authors suggest that these changes in the localization of Claudins 

and other tight junction proteins may occur in response to the changes in uterine 

morphology and luminal fluid levels that take place during the estrous cycle (Mendoza-

Rodriguez et al., 2005). It is proposed that the basolateral localization of Claudin 

provides an excess pool of the protein, which can be quickly relocated and utilized at the 

tight junction when needed. 



 

102 

 

Figure 32- Claudin15la-GFP localization during development 

A-D Confocal cross sections of TgBAC(cldn15la-GFP) embryos at 48, 54, 60, and 72 

hpf. Arrows point to tight junction localization of Cldn15la. Phalloidin is in red.  
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 There are several possible roles for Claudin in the gut during the period of lumen 

formation. For example, as a basolateral protein, Cldn15la could be involved in cell-cell 

adhesion during epithelial remodeling. Alternatively, Cldn15la could regulate lumen 

initiation through its interaction with the actin-based cytoskeleton. The early  

localization to the tight junctions could suggest a role for Cldn15la in the regulation of 

paracellular ion and fluid flow into the lumen. Similar to the rat uterus, Cldn15 may 

relocalize from tight junctions to the basolateral membrane based on a need for 

paracellular fluid flow during lumen expansion. To address the function of Cldn15la in 

the gut, we can generate a TALEN mutant and examine the processes of lumen initiation, 

fluid accumulation, and lumen fusion in mutant embryos. Since expression of Cldn15la is 

highly specific to the gut, we would not expect any problems with viability or non-

specific effects from other organ systems.  

The early and specific expression pattern of Cldn15la also allows us to generate 

valuable tools to study intestine development. We have created a Cldn15la-Gal4 fusion 

construct through BAC recombineering to regulate the expression of genes specifically in 

the gut. The majority of experiments described previously used the heat shock promoter 

to temporally control gene expression, but ubiquitous expression in response to heat 

shock is not ideal in all situations. The Cldn15la-Gal4 transgenic line will allow us to 

express dominant negative forms of essential genes, such as Rab5, dynamin, and 

cadherin, specifically in the intestine to avoid problems with early lethality and non-

specific effects. This line will not only provide a better tool to investigate the molecular 
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regulators of lumen formation but can also be utilized in several other gut related projects 

in the lab. 

6.5 Investigation of Array Targets 

During our lumen formation study we took advantage of our ability to sort gut 

specific cells to determine gene expression levels under a variety of conditions. Our first 

array compared gene expression in intestinal and non-intestinal cells at 3 and 5 dpf. The 

purpose of this array was to identify genes highly specific to the gut that may play critical 

roles during the early and later stages of gut development, and many of the genes from 

the array required further investigation. The serine/threonine kinase, stk24, exhibited the 

greatest fold change with a 595-fold upregulation in the gut compared to non-gut cells. In 

situ hybridization confirmed its expression in the gut and a TALEN mutant was created 

to examine loss of function. At this point, no observable lumen phenotype has been found 

in the gut based strictly on morphology.  However, more experiments need to be 

performed to determine if stk24a mutants exhibit any physiological abnormalities, 

including defects in cell differentiation, endocytosis, or fluid regulation. Several 

additional genes from the array have also been targeted for future studies. Expression of 

the actin associated lipid binding protein, anax2b, was enriched 300-fold in gut cells 

while the scaffold protein pdzk1 was 170 fold more expressed. Anaxa2b localizes 

apically early in lumen formation and can be used as a marker in studies involving 

polarity initiation and apical sorting machinery as described above. pdzk1 can also be 

studied in terms of polarity establishment and maintenance. Pdzk1 is a scaffold protein 

containing 4 PDZ domains and mediates the clustering of proteins at the cell surface. A 
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pdzk1 TALEN mutant has been created but does not have any morphological defects. To 

further study the role of pdzk1 in the gut, mutants can be crossed to transgenic lines 

expressing various polarity markers, such as Podxl, Syntaxin3, and Clic5. If these 

markers fail to polarize or if they accumulate intracellularly it would indicate that actin 

scaffolding is critical for proper apical targeting. Furthermore, if lumens are still able to 

form despite intracellular retention of apical proteins such as podocalyxin, it would imply 

that apical membrane establishment is not required for lumen initiation. Alternatively, 

pdzk1 could also be involved in polarity maintenance, which can potentially have 

functional effects later in gut development. As such, embryos can be examined beyond 5 

dpf for defects in barrier function, absorption, and fluid regulation. 

We also performed a second microarray to compare gene expression levels of WT 

and smo mutant intestinal cells. This array was only minimally analyzed, and further 

analysis this array can provide additional information that can initiate future studies on 

single lumen formation and Hh signaling in the gut. Several collagen family members 

were highly downregulated in smo mutants, suggesting a potential defect in the basement 

membrane. Studies in the mouse intestine have showed that inhibition of the hedgehog 

pathway leads to a downregulation of basement membrane genes including integrin and 

collagen, and an upregulation of MMPs. This suggests that loss of Hh signaling causes a 

degradation of the basement membrane through expression of MMPs (Kosinski et al., 

2010). Furthermore, work in MDCK cysts have established that cues from the ECM are 

essential in regulating the intracellular signaling that controls apical-basal polarity. In 

such a system, integrin and collagen interactions activate Rac-1 to induce laminin 
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assembly, which is required for polarity (O'Brien et al., 2001). Therefore, the basement 

membrane is an area of study that may provide additional insight into the regulation of 

single lumen formation in the zebrafish gut. 

6.6 Conclusions 

In this study, I have thoroughly examined the process of lumenogenesis in the 

zebrafish gut and identified a previously uncharacterized stage of single lumen formation. 

The resolution stage of lumen formation is characterized by enlarged unfused lumens 

separated by basolateral cell contacts. This stage of lumen formation requires cellular 

remodeling to facilitate lumen coalescence, which can occur through lumen fusion or 

adhesion snapping events. Furthermore, I have shown that the Hh signaling pathway is 

required for lumen fusion and have established lumen fusion and lumen enlargement as 

two genetically separable events. In addition, Rab11 mediated recycling was found to be 

impaired in smo mutants and critical to the process of lumen fusion. Finally, through this 

study I have generated novel tools and assays to specifically address questions during 

early gut development, which has provided insight into the molecular processes 

regulating cellular rearrangement during lumen resolution and has elicited new questions 

for future areas of study. 

The knowledge gained from the studies presented here not only expand our 

understanding of zebrafish gut development, but can also be applied to human organ 

development and disease. Cord hollowing, for example, occurs during human pancreas 

development. The pancreatic ductal network forms via epithelial remodeling and fusion 

of secondary lumens with a primary duct, which is similar to what is observed in the 
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zebrafish gut. Therefore, work uncovering the cellular and molecular mechanisms 

regulating lumen formation in the zebrafish gut could provide insight into pancreatic duct 

development in humans.  Furthermore, greater knowledge of the mechanisms regulating 

lumen formation can also help to elucidate causes of tubular diseases such as polycystic 

kidney disease.  Aside from lumen formation, our studies on intracellular recycling and 

remodeling in the gut can also be applied to mammalian systems. Cadherin regulation 

and trafficking, which we show is important for lumen fusion, is involved in a large 

number of developmental processes across organisms. Furthermore, improper regulation 

of cadherin and other adhesions proteins leads to severe morphogenic defects, diseases, 

and tumor progression. Taken together, our study of lumen formation in the zebrafish gut 

can provided insight into mammalian development and has applications in organ 

morphogenesis and disease in humans. 
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Appendix  

Microarray data 

In this section I have included data obtained form two microarrays associated with 

studies presented here. The first array compared gene expression levels in non-intestinal 

epithelial cells with intestinal epithelial cells to identify genes that are highly enriched in 

the gut. The data sets shown in Table 1 and 2 list the top upregulated and downregulated 

genes in the intestinal epithelium relative to the rest of the embryo. I used the DAVID 

bioinformatics database to analyze the top and bottom most genes from the array to 

identify functionally related gene groups and pathways that are common amongst genes 

within each set. The most upregulated group of genes, and therefore most specific to the 

gut, include genes associated with metabolism and biosynthesis (Figure 33). 

Interestingly, the most downregulated genes in the gut compared to the rest of the embryo 

include many genes associated with cell-cell adhesion, the ECM, and the Hh pathway 

(Figure 34).  

The second set of array data presented in this section was obtained from intestinal 

epithelial cells from WT and smo mutant embryos. Table 3 and 4 shows the most 

upregulated and downregulated genes in mutant embryos compared to WT. DAVID 

analysis of unregulated genes in the smo intestine showed an enrichment of general 

metabolic genes (Figure 35). Analysis of downregulated genes on the other hand revealed 

an enrichment of genes associated with endocytosis (specifically the recycling pathway) 

and cell adhesion amongst others, which is in line with our experimental data (Figure 36 
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and 37). However, additional analysis of this array will be necessary for a more in-depth 

interpretation of the data.  
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Table 1- Downregulated genes in the intestinal epithelium 

Gene Name Fold downregulated 
nephrosin-like 53.55 
transient receptor potential cation channel, subfamily V,  48.36 
collagen, type IX, alpha 1 44.75 
collagen, type IX, alpha 1 44.10 
similar to cathepsin L 40.81 
cathepsin L, 1 b 39.01 
protein tyrosine phosphatase, receptor type, C 37.15 
keratin 5 35.95 
collagen, type XI, alpha 1a 29.68 
daz-like gene 28.15 
collagen, type I, alpha 1b 27.97 
pre-B-cell leukemia homeobox interacting protein 1a 27.90 
collagen type II, alpha-1a 27.78 
hypothetical protein LOC553366 27.32 
retinol dehydrogenase 8 like 27.23 
type I cytokeratin 26.60 
hatching enzyme 1b 26.29 
matrilin 1 26.18 
matrix metalloproteinase 13a 25.65 
calymmin 25.51 
claudin i 24.88 
collagen, type I, alpha 2 24.85 
Sperm acrosome membrane-associated protein 4-like 24.43 
lysophosphatidic acid receptor 6 like 24.29 
retinol binding protein 4, plasma 24.23 
periostin, osteoblast specific factor 23.96 
PLAC8-like protein 1-like 23.88 
aminopeptidase N-like 23.87 
integrin beta 3b 23.73 
hatching enzyme 1a 23.45 
collagen type II, alpha-1b 23.39 
odorant receptor, family H, subfamily 132, member 4 23.33 
spleen focus forming virus proviral integration oncogene spi1 22.65 
matrilin 3b 21.90 
rhodopsin 21.74 
neurexin 3b 21.68 
Rhesus blood group, B glycoprotein 21.30 
claudin 1 21.25 
collagen, type IX, alpha 3 21.11 
cholinergic receptor, nicotinic, alpha 10 21.07 
lysozye 21.03 
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Table 2- Upregulated genes in intestinal epithelial cells 

Gene Name Fold upregulated 
serine/threonine kinase 24a (STE20 homolog, yeast) 595.56 
carbonic anhydrase IV b 586.66 
claudin 15-like a 372.47 
annexin A2b 354.99 
caudal type homeobox 1 b 320.69 
hypothetical LOC794295 306.67 
caudal type homeo box transcription factor 1 a 245.92 
angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 212.02 
hexose-binding lectin 3 205.36 
hexose-binding lectin 3 199.70 
alanyl (membrane) aminopeptidase 195.64 
bridging integrator 2a 179.41 
bloodthirsty-related gene family, member 6 176.50 
PDZ domain containing 1 173.59 
fatty acid binding protein 6, ileal (gastrotropin) 161.93 
claudin 15b 160.25 
solute carrier family 34 (sodium phosphate), member 2a 150.89 
claudin 15a 137.73 
solute carrier family 47, member 1 134.30 
acyl-CoA synthetase long-chain family member 5 134.10 
sialidase 3.3 132.35 
cytochrome P450, family 7, subfamily A, polypeptide 1a 128.38 
Neu3.4 124.01 
UDP glucuronosyltransferase 5 family, polypeptide A2 113.88 
indoleamine 2,3-dioxygenase 1 103.75 
transmembrane protein 86B 101.07 
villin 1 like 101.01 
hypothetical LOC561946 97.07 
complement component bfb 95.41 
cadherin 17, LI cadherin (liver-intestine) 88.23 
myosin VIIa-like 87.98 
monoacylglycerol O-acyltransferase 2 86.08 
solute carrier family 5 member 1 85.30 
caudal type homeo box transcription factor 4 85.24 
solute carrier family 13, member 2 84.36 
dipeptidyl-peptidase 4 80.41 
glutamyl aminopeptidase 79.29 
similar to leucine rich repeat containing 24 76.95 
plastin 1 (I isoform) 76.34 
sb:cb166 72.91 
tetraspanin 13a 72.85 
crystallin, gamma M3 72.70 
indoleamine 2,3-dioxygenase 1 71.16 
cytochrome P450, family 2, subfamily J, polypeptide 22 68.21 
membrane guanylyl cyclase-like 67.64 
pyruvate carboxylase 67.45 
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Figure 33- Common biological pathways associated with upregulated genes in the 
intestinal epithelium 

Screenshot from the DAVID bioinformatics database showing biological pathways that 

are associated with 1900 upregulated genes in the intestinal epithelium 
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Figure 34- Common biological pathways associated with downregulated genes in the 
intestinal epithelium 

Screenshot from the DAVID bioinformatics database showing biological pathways that 

are associated with 3200 downregulated genes in the intestinal epithelium 
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Table 3- Downregulated genes in smo mutant intestinal epithelial cells 

Gene Name Fold Downregulated 
fatty acid binding protein 11b 95.29 
collagen, type X, alpha 1 61.83 
claudin 15b 29.94 
interleukin 1 receptor accessory protein-like 2 29.44 
collagen, type XI, alpha 1a 25.69 
septin 7a 24.04 
collagen, type I, alpha 1b 23.64 
myoglobin 20.37 
NK6 transcription factor related, locus 2 19.93 
dynactin 1a 19.85 
actin, alpha 2, smooth muscle, aorta 19.22 
decorin 19.11 
MYC binding protein 2 18.64 
sodium channel, voltage-gated, type III, beta 18.37 
proprotein convertase subtilisin/kexin type 2 18.12 
chymotrypsin-like 18.06 
chymotrypsinogen B1 17.43 
solute carrier family 40 (iron-regulated transporter) 17.39 
crystallin, gamma S3 16.96 
capthepsin B, b 16.58 
parvalbumin 8 16.46 
solute carrier family 12, member 10.1 16.25 
period homolog 1a (Drosophila) 14.61 
collagen, type IV, alpha 5 (Alport syndrome) 14.22 
adaptor-related protein complex 2, beta 1 subunit 14.15 
transmembrane protein 68 13.80 
myomesin 1a (skelemin) 13.20 
scavenger receptor class B, member 1 12.82 
paired box gene 7a 12.81 
solute carrier family 16, member 10 12.73 
NCK-associated protein 1 12.52 
ubiquitin specific peptidase 22 12.47 
fep15 selenoprotein 12.28 
distal-less homeobox gene 1a 12.09 
retinoblastoma 1 12.01 
solute carrier family 40, member 1 11.99 
spectrin, beta, non-erythrocytic 1 11.86 
pyrroline-5-carboxylate reductase-like 11.85 
collagen type II, alpha-1a 11.79 
KH-type splicing regulatory protein 11.74 
opsin 1 (cone pigments), short-wave-sensitive 1 11.61 
protein phosphatase 2, regulatory subunit B' 11.50 
kinesin family member 1C 11.44 
axin 2 (conductin, axil) 11.35 
vestigial like 4 (Drosophila) 11.29 
ankyrin repeat domain 1b (cardiac muscle) 11.29 
homeo box B13a 11.27 
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Table 4- Upregulated genes in smo mutant intestinal epithelial cells 

Gene Name Fold Upregulated 
ribosomal protein S3A 45.84 
immunoresponsive gene 1, like 31.10 
programmed cell death 2 31.08 
claudin k 30.34 
keratin 8 30.14 
influenza virus NS1A binding protein a 27.79 
glyceraldehyde-3-phosphate dehydrogenase,  27.72 
nuclear receptor binding factor 2 25.41 
guanine nucleotide binding protein, beta polypeptide 2-like 1 24.79 
growth arrest and DNA-damage-inducible, beta a 24.79 
ribosomal protein L7 24.54 
protein tyrosine phosphatase, mitochondrial 1 24.16 
lactate dehydrogenase Ba 23.95 
alpha-1-microglobulin/bikunin precursor, like 23.93 
ASF1 anti-silencing function 1 homolog Ba (S. cerevisiae) 23.23 
microtubule-associated protein 1 light chain 3 beta 22.83 
lysyl-tRNA synthetase 22.22 
cysteine conjugate-beta lyase 2 22.22 
complement factor B 21.91 
transferrin-a 20.77 
trm2 tRNA methyltransferase 2 homolog A (S. cerevisiae) 19.98 
coagulation factor V 19.96 
proliferation associated nuclear element 19.88 
solute carrier family 25 alpha, member 5 19.71 
complement factor D (adipsin) like 19.31 
fibrinogen, B beta polypeptide 19.27 
prodynorphin 19.25 
protein phosphatase 2, catalytic subunit, beta isoform 19.19 
type I cytokeratin, enveloping layer 19.13 
TatD DNase domain containing 1 18.86 
interferon induced transmembrane-like 18.65 
HIRA interacting protein 5 18.59 
LYR motif containing 1 18.54 
tumor necrosis factor a (TNF superfamily, member 2) 18.52 
malonyl CoA:ACP acyltransferase (mitochondrial) 18.47 
caspase Xa 18.27 
eukaryotic translation elongation factor 2b 17.82 
keratin 18 17.50 
suppressor of defective silencing 3 homolog ( 17.07 
nuclear cap binding protein subunit 2 17.03 
THO complex 5 17.00 
glucose phosphate isomerase a 17.00 
preprohepcidin 2 16.98 
secreted immunoglobulin domain 4 16.87 
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Figure 35- Common biological pathways associated with upregulated genes in smo  

Screenshot from the DAVID bioinformatics database showing biological pathways that 

are associated with 2600 upregulated genes in smo mutants.
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Figure 36- Common biological pathways associated with downregulated genes in smo 

Screenshot from the DAVID bioinformatics database showing biological pathways that 

are associated with 2800 downregulated genes in smo mutants. 
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Figure 37- The endocytic pathway is downregulated in smo mutants 

Snapshot from DAVID bioinformatics database showing the endocytic pathway. Genes 

in red are downregulated in smo mutants. 
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