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Abstract

The cross-sectional images of computed tomography (CT) are calculated from a
series of projections using reconstruction methods. Recently introduced on clinical CT
scanners, iterative reconstruction (IR) method enables potential patient dose reduction
with significantly reduced image noise, but is limited by its "waxy” texture and
nonlinear nature. To balance the advantages and disadvantages of IR, evaluations are
needed with diagnostic accuracy as the endpoint. Moreover, evaluations need to take
into consideration the type of the imaging task (detection and quantification), the
properties of the task (lesion size, contrast, edge profile, etc.), and other acquisition and
reconstruction parameters.

To evaluate detection tasks, the more acceptable method is observer studies,
which involve image preparation, graphical user interface setup, manual detection and
scoring, and statistical analyses. Because such evaluation can be time consuming,
mathematical models have been proposed to efficiently predict observer performance in
terms of a detectability index (d’). However, certain assumptions such as system
linearity may need to be made, thus limiting the application of the models to potentially
nonlinear IR. For evaluating quantification tasks, conventional method can also be time
consuming as it usually involves experiments with anthropomorphic phantoms. A

mathematical model similar to d” was therefore proposed for the prediction of volume
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quantification performance, named the estimability index (e’). However, this prior
model was limited in its modeling of the task, modeling of the volume segmentation
process, and assumption of system linearity.

To expand prior d” and e’ models to the evaluations of IR performance, the first
part of this dissertation developed an experimental methodology to characterize image
noise and resolution in a manner that was relevant to nonlinear IR. Results showed that
this method was efficient and meaningful in characterizing the system performance
accounting for the non-linearity of IR at multiple contrast and noise levels. It was also
shown that when certain criteria were met, the measurement error could be controlled to
be less than 10% to allow challenging measuring conditions with low object contrast and
high image noise.

The second part of this dissertation incorporated the noise and resolution
characterizations developed in the first part into the d’ calculations, and evaluated the
performance of IR and conventional filtered back-projection (FBP) for detection tasks.
Results showed that compared to FBP, IR required less dose to achieve a threshold
performance accuracy level, therefore potentially reducing the required dose. The dose
saving potential of IR was not constant, but dependent on the task properties, with
subtle tasks (small size and low contrast) enabling more dose saving than conspicuous

tasks. Results also showed that at a fixed dose level, IR allowed more subtle tasks to



exceed a threshold performance level, demonstrating the overall superior performance
of IR for detection tasks.

The third part of this dissertation evaluated IR performance in volume
quantification tasks with conventional experimental method. The volume quantification
performance of IR was measured using an anthropomorphic chest phantom and
compared to FBP in terms of accuracy and precision. Results showed that across a wide
range of dose and slice thickness, IR led to accuracy significantly different from that of
FBP, highlighting the importance of calibrating or expanding current segmentation
software to incorporate the image characteristics of IR. Results also showed that despite
IR’s great noise reduction in uniform regions, IR in general had quantification precision
similar to that of FBP, possibly due to IR’s diminished noise reduction at edges (such as
nodule boundaries) and IR’s loss of resolution at low dose levels.

The last part of this dissertation mathematically predicted IR performance in
volume quantification tasks with an e” model that was extended in three respects,
including the task modeling, the segmentation software modeling, and the
characterizations of noise and resolution properties. Results showed that the extended e’
model correlated with experimental precision across a range of image acquisition
protocols, nodule sizes, and segmentation software. In addition, compared to

experimental assessments of quantification performance, e’ was significantly reduced in
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computational time, such that it can be easily employed in clinical studies to verify
quantitative compliance and to optimize clinical protocols for CT volumetry.

The research in this dissertation has two important clinical implications. First,
because d’ values reflect the percent of detection accuracy and e’ values reflect the
quantification precision, this work provides a framework for evaluating IR with
diagnostic accuracy as the endpoint. Second, because the calculations of d” and e’
models are much more efficient compared to conventional observer studies, the clinical
protocols with IR can be optimized in a timely fashion, and the compliance of clinical

performance can be examined routinely.
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1. Background and Introduction

1.1 Iterative Reconstruction in Computed Tomography

Computed tomography (CT) enables non-invasive examinations of patients with
cross-sectional images reconstructed from a series of x-ray projections. The
reconstruction is essentially the process of solving an inverse problem: Given the
physical measurements of the patient (projections), the reconstruction process converts
the measurements back into the information about the patient (cross-sections). To solve
the inverse problem, an intuitive approach is to “guess” the patient cross-sections in a
feedback mechanism: One starts with an initial guess of the patient cross-sections, and
updates the guess in a feedback loop (iteration) by comparing the projections of the
guess to the projections of the patient!. Multiple iterations are usually required to solve
for the patient cross-sections. This feedback mechanism is known as the iterative

reconstruction (IR) method.

1.1.1 Theory of IR method

The aforementioned IR scheme is quite simple and straightforward. However, to
accurately solve for the complicated human body structure, many details need to be
implemented into an IR method. The complexity of the details affects the tradeoff
between the computational time and the image quality, and is the choice of the

developer of the IR method. Typically, there are five choices that need to be made?:



The first choice concerns the parameterization of the object. While the human
body is a continuous object, the reconstructed image is a discrete sample of the object.
Therefore, an obvious question would be how small the pixels should be. A smaller
pixel size allows a better sampling of the patient, but increases the computational
burden dramatically. A practical compromise may be to start with a large pixel size that
coarsely samples the object, such that a general ideal of the object can be quickly
acquired, and then refine the image with smaller pixel size to have a better
understanding of the object details®.

The second choice concerns the modeling of the imaging system. After a guess of
the object is made, a forward-projection process converts the guess to projections of the
guess. To improve the accuracy of the forward-projection process, many physical
properties of the imaging system can be modeled!, including the scan geometry, the
properties of the x-ray source (focal spot size, spatial distribution of beam intensity, and
energy spectrum), the interaction between the x-ray and the patient body (scatter and
beam-hardening), and the properties of the detector (finite detector size and detector
crosstalk). IR methods with these details implemented are known as “model-based IR”,
which are expected to provide higher image resolution, improved low contrast
detectability, and reduced image artifact. However, the computational time for model-
based IR is also significantly longer, as the modeling process dramatically increases the

complexity of the forward-projection.



The third choice concerns the inclusion of statistical noise models. Due to the
impact of quantum noise and electronic noise, the patient measurements (projections)
are always distributed around the means. However, the forward-projection process can
only predict the mean of the measurements. As a result, even if the guess of the patient
cross-section is correct, due to the noise, the projections of the guess can never perfectly
match the projections of the patient. To account for this bias, noise models can be
included: The quantum noise can be modeled as Poisson noise, and the electronic noise
in readout electronics can be modeled as Gaussian noise*. After implementing the noise
models, a maximum-likelihood (ML) method can be used to look for a guess that
maximizes the likelihood of obtaining the true patient projections®.

The fourth choice concerns the enforcement of desired properties. To get low-
noise CT images, a regularization term can be included in IR to penalize image noise®.
There are various forms of penalties, but they share the same idea that the difference
between neighboring pixels is mostly likely due to the noise and should be penalized.
With penalties, the reconstructed images can be made smoother and less noisy, but the
edges of the body feature may also get penalized and blurred. Therefore, some of the
penalties further set a threshold to preserve the edges: When the difference between the
neighboring pixels reaches the threshold, the difference is recognized as an edge instead

of the noise, and the difference is no longer penalized.



The last choice concerns the algorithm for updating the guess. Between iterations,
an algorithm updates the guess and terminates the iterations if a stopping criterion is
met. There are multiple algorithms available” (conjugate gradients, ordered subsets,
coordinate descent, etc.). The choice of algorithm affects the convergence rate and the

easiness of parallelization.

1.1.2 Examples of currently available clinical IR algorithms

When Sir Godfrey Hounsfield invented CT scanner in 1970s, the first
reconstruction method he employed was an IR method. However, at that time, IR was
too computational expensive for clinical workflow, and was later replaced on clinical
scanners by an analytical method, the filter back-projection (FBP). Recently, the
possibility of IR as a clinical reconstruction method has been revisited for three reasons.
First, with the developments in modern computing, the computational burden of IR has
become less of a problem. Second, compared to FBP, IR has the flexibility of modeling
physical conditions that would pose problems for analytical reconstructions, such as
irregular gantry orbit, metal implant, and detector crosstalk!. Last but most importantly,
IR has the ability to significantly reduce patient dose through regularization and
statistical model of the quantum noise!'*'?, which helps ease the growing public concern
about CT radiation dose®.

All major CT vendors now have IR algorithms available for their clinical

scanners. Examples include IRIS™* (Iterative Reconstruction in Image Space) and



SAFIRE® (Sinogram Affirmed Iterative Reconstruction) from Siemens Healthcare,
Malvern, PA; ASiR (Adaptive Statistical Iterative Reconstruction) and MBIR!'® (model
based iterative reconstruction, marketed as Veo) from GE Healthcare, Waukesha, WI;
AIDR 3D (Adaptive Iterative Dose Reduction 3D) from Toshiba Medical Systems
Corporation, Otawara, Japan; and iDose!® from Philips Healthcare, Cleveland, OH.
Because the IR methods described in 1.1.1 with loops of forward-projections are
very computationally demanding, all aforementioned clinical IR algorithms have their
own approach to reduce the computational time. It is difficult to describe the exact
mechanisms behind these algorithms due to their commercial natures. The following
describes clinical IR algorithms in three categories and briefly explain each, from the
most simplified image-domain method to the most sophisticated model-based method.
The first category is an image-domain method. Unlike traditional IR methods
that use forward-projections to iterate between raw data domain and image domain, the
image-domain method eliminates the process of forward-projection and iterates within
image domain only. To do so, a cross-sectional image is first reconstructed with FBP
method. The algorithm then identifies the noise in the image by comparing the
fluctuations in the image to a statistical model of the noise, and repeats this noise
identification process to iteratively reduce image noise. This method is the most
simplified and also the fastest method among all commercial IR methods. IRIS uses this

method.



The second category of commercial IR involves both raw data domain and image
data domain, but has little interaction between the two. To do so, a loop of noise
identification similar to the one performed in the image domain is first performed in the
raw data domain. The de-noised raw data is then back-projected into image domain to
be further de-noised with a second loop of noise identification process. Compared to the
first category, this category pushes noise reduction further. As a compromise, the
computational time of this category is slightly longer, but still significantly shorter than
traditional IR methods and can be used clinically without interrupting clinical flow.
SAFIRE, iDose, ADIR 3D, and ASIR fall in this category.

The aforementioned two categories, while significantly reducing image noise, are
still limited in that they continue assuming ideal imaging system like the conventional
FBP method. Therefore, IR algorithms in these two categories cannot solve some
fundamental problems with FBP, such as beam hardening artifact. The third category,
however, includes physical modeling into the algorithm to account for multiple sources
of system imperfection, such as the finite focal spot size, the crosstalk between detector
elements, the polychromatic x-ray source, and the scattering distribution within human
body. This physical modeling is implemented via multiple forward-projections from the
image domain to the raw data domain. As a result of the modeling, the noise is further
reduced, the resolution is improved, and the beam hardening artifact is reduced. The

computational time of this category is the longest among the three, and to some extent



interrupts the clinical flow. However, with the rapid development of modern computing

technology, this will not be a concern for long. MBIR falls in this category.

1.1.3 Advantages and disadvantages of clinical IR algorithms

Since the emergence of clinical IR in 2009", multiple studies have been
conducted to investigate the potential of clinical IR techniques in improving observer
performance!®. Initial studies have reported reduced artifacts!> 1o 1 (metal, photon
starvation, etc.) and a 30-70% reduction in image noise with these IR algorithms as
compared to FBP'> 22, One may assume such attributes to help improve the
performance of human observer or any characterization operator that takes the images
as input.

However, commercial IR has potential drawbacks too. One drawback is its
reported “waxy” noise texture!® 22 as a result of IR’s increased low frequency noise? .
Because many anatomical features of interest are mainly composed of low frequency
components also, IR’s waxy texture increases the difficulty of distinguishing anatomical
features from noise, and therefore to some extent hampers the perception of the images.
Another drawback of IR is its possible loss of image resolution at reduced dose setting
due to the tradeoff between image noise and resolution?, which adds difficulty to the
detection or quantification of subtle features. The third drawback of IR is its diversity, as
each CT vendor had its own approach to system modeling and computational time

reduction. For example, SAFIRE, ASiR, and iDose all involve iterations in both



reconstructed and projection space, each in a different manner, while MBIR involves
iterations in the projection space only'>?. As a result, IR is not as standardized as FBP

reconstruction: Each IR algorithm needs to be evaluated individually.

1.2 Task-specific Evaluations of IR

Having summarized the general advantages and disadvantages of commercial IR,
it is now important to evaluate IR for an optimal tradeoff between the advantages and
disadvantages. The evaluations of IR need to be made with diagnostic accuracy as the
endpoint. They also need to be performed together with other acquisition parameters,
such as dose and slice thickness, to capture possible interactions between IR and other
acquisition parameters. Most importantly, the evaluations need to be “task-specific”, i.e.,
with clear definitions of the task type (detection or quantification) and the task

properties (nodule size, density, shape).

1.2.1 Evaluating IR for detection tasks

For characterizing detection tasks, the more acceptable method is observer
studies. Considering a typical observer study for the detection of lung nodules, images
with nodule absent and present are first prepared; graphical user interface is then
developed to display one or more images at a time; human observers detect and assign
scores to possible nodules according to their confidence for the presence of the nodules;
receiver operating characteristic (ROC) curves are generated from the scores; and finally,

the areas under the ROC curves (AUC) are calculated to represent the percent accuracy



of the detection performance. Observer study directly reflects the diagnostic accuracy,
and therefore is the gold standard of performance evaluation. However, it is time and
effort consuming: Even for a single detection task and a single imaging protocol (a
certain combination of imaging and reconstruction parameters), a large number of
images and observers are required to achieve sufficient statistical significance®” 28, let
alone that IR needs to be evaluated for multiple tasks and along with varying imaging
and reconstruction parameters.

To efficiently evaluate detection tasks, mathematical observer models have been
developed, which predict human observer performance by modeling the properties of
the image, the nodule, and the observer?-(. The observer models calculate the detection
performance in terms of a detectability index (d’), which can be translated into AUC for
further analysis. Previous studies have shown good agreements between the AUC
derived from d’ and the AUC measured directly with human observers®-*2. However,
certain assumptions, such as system linearity and stationarity may need to be made,
which limit the applicability of d” calculations.

CT with IR method is often non-linear in the sense that CT noise and resolution
might vary as a function of noise magnitude and task contrast'®?%. As a result, to apply
observer models for task-specific evaluations of IR, the models must be first extended in

their characterizations of image noise and resolution: Instead of assuming constant noise



and resolution, the noise and resolution properties may need to be characterized as a

function of noise magnitude and task contrast.

1.2.2 Evaluating IR for quantification tasks

Quantification tasks are tasks that extract numerical information (diameter,
volume, density, etc.) from CT images. They are not necessarily evaluated in terms of
AUC, but more clinically relevant in terms of the accuracy and precision of the
quantification. The accuracy is the degree to which a measured quantity represents its
true value. The precision is the degree to which repeated measurements under
unchanged conditions show the same outcome, thus indicating the performance in term
of discerning changes.

In traditional evaluations of quantification tasks, repeated experimental
measurements are usually required. Take the evaluation of lung nodule volume
quantification as an example. CT images are first acquired from repeated scanning of an
anthropomorphic phantom or a patient; the nodules are then manually or semi-
manually segmented from the images with the aid of software; the volumes of the
segmented nodules are calculated; and the accuracy and precision of the volume
quantification are statistically analyzed. The whole process can take weeks to months?
33,34

To evaluate IR for quantification tasks more efficiently, mathematical models

similar to the detection models can be used. Prior studies have employed models such as
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maximum-likelihood estimator®, classical Wiener estimator®, and scanning-linear
estimator® to directly quantify the size, location, and amplitude of the signal. To focus
on assessing the performance of the quantification, a recent mathematical model has
been developed by Richard and Samei* to assess the precision of volume quantification
in terms of an estimability index (e’). The e values correlated well with theoretical
quantification precision obtained via a maximum likelihood estimator. However, this
prior model was limited in three aspects: 1) for each task (unique nodule size, contrast,
shape, etc.), the model needed to be first trained with pre-known precision values,
therefore limiting its applicability to a wide range of nodule characteristics; 2) the model
assumed ideal quantification that made optimal use of the image for nodule
segmentation, while clinical quantification software generally have less efficiency; and 3)
the model characterized image noise and resolution properties in a linear fashion, and

thus was limited to linear imaging systems.

1.3 Design and Objective of the Dissertation

The objective of this dissertation is to develop a task-specific framework for
efficient evaluations of IR performance.

For both detection and quantification tasks, the characterizations of image noise
and resolution need to be extended to reflect IR’s potential non-linearity. An extended
characterization methodology was thus first developed in Chapter 2. The methodology

used a previously developed image quality phantom® to measure magnitude-
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dependent noise properties and contrast-dependent resolution properties in three
dimensions. Because such measurements were performed at multiple contrast and noise
levels, including high noise and low contrast conditions that were susceptible to errors, a
series of procedures were employed to ensure the robustness of the measurements. In
addition, simulations were performed to validate the accuracy and precision of this
methodology, with guidelines established to ensure <10% measurement error.

Chapter 3 evaluated the performance of IR in detection tasks using the observer
models. The extended noise and resolution characterizations developed in Chapter 2
were incorporated into the observer models, such that the detection performance with
IR could be mathematically predicted in terms of the detectability index (d”). The d” was
calculated for both FBP and IR (IRIS and SAFIRE) images under a range of dose levels,
task contrasts, and task sizes. The performance of FBP and IR were then compared in
terms of task-specific dose reduction potential and the percentage of tasks exceeding a
threshold AUC of 0.9 for a given dose level.

Both Chapters 4 and 5 evaluated the performance of IR for quantification tasks:
Chapter 4 evaluated IR performance using experimental methods, while Chapter 5
evaluated IR performance using mathematical models. To evaluate IR experimentally,
an anthropomorphic chest phantom with synthetic nodules of two sizes were scanned
using a range of protocols, including FBP and two IR algorithms (ASiR and MBIR). The

nodule volumes were quantified with two segmentation software. The accuracy and
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precision of the volume quantification were calculated for each protocol, nodule size,
and segmentation software. The impact of IR on the accuracy and precision of
quantification was then evaluated with respect to nodule size, dose level, reconstruction
slice thickness, and software.

Chapter 5 mathematically predicted the quantitative performance of IR via the
estimability index (e’). The e model employed in this dissertation work was an
extension of the prior model*: The nodule-specific training process was replaced with a
more efficient, physically-based modeling process; the imperfection of the quantification
software was modeled in terms of the discrepancy between the actual nodule and the
segmentation software’s expectation; and the characterizations of noise and resolution
was extended to reflect IR’s non-linearity. The new e’ model was then used to predict
the precision values experimentally assessed in Chapter 4, such that e’ was validated
against experimental results across a range of acquisition protocols, nodule sizes, and

segmentation software.
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2. Generalizeg Measurements of CT Noise and
Resolution

2.1 Introduction

The noise and resolution properties of computed tomography (CT) images are of
great importance to diagnostic performance. Quantifying these properties has many
applications, such as benchmarking image quality across systems, optimizing
acquisition and reconstruction parameters to improve dose efficiency, and predicting
observers’ performance. Conventionally, these properties are quantified with methods
adopted from planar x-ray imaging, where the noise is measured on structure-free
images in terms of noise power spectrum (NPS)* %, and the spatial resolution is
measured on images of high contrast slits*!, edges*?, or bars® in terms of modulation
transfer function (MTF). In their conventional implementations, both the NPS and the
MTF methodologies assume a linear system and are, therefore, independent of object
contrast and noise magnitude.

With nonlinear iterative reconstruction (IR), however, the system noise and
resolution may vary with noise magnitude and object contrast!® 2+ 2. As a result, we have
extended the conventional concepts of NPS and MTF to magnitude-dependent NPS and
contrast-dependent task transfer function (TTF, also referred to as “task-based MTF” in

previous studies), which characterize the noise and resolution properties at a specific

" This chapter is based on a manuscript submitted to Medical Physics.
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noise magnitude and object contrast level** % 4. Both magnitude-dependent NPS and
contrast-dependent TTF have been shown to be of experimental value* and effective for
predicting human observer performance* 4. However, their experimental
measurements are challenging for several reasons. First, to be relevant to the potential
non-linearity of IR, the measurements need to be performed at multiple contrast and
noise levels. Second, performing these measurements in a clinical setting must be able to
be done efficiently. Third, measurements made under high noise and low contrast
conditions are susceptible to errors, so the effects of noise should be mitigated. Finally,
the accuracy and precision of the measurement methodology need to be fully
characterized to establish guidelines for robust measurements.

The conventional characterizations of noise and resolution are also limited in
their dimensionality. Conventional measurements are often performed in the axial plane
(bi-dimensional), which may be sufficient when a CT dataset is viewed in a slice-by-slice
fashion, but insufficient for volumetric operations such as three-dimensional surface
rendering, multi-planar reformation, and volume quantification. For the increasing
applications of volumetric CT, it is important to measure the noise and resolution
properties for all spatial dimensions.

To address the aforementioned limitations, this study aimed to develop a CT
noise and resolution measurement technique that is relevant for non-linear CT systems

and volumetric (3D) imaging. This objective was achieved in two steps: 1) a phantom-
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based measurement technique was developed to measure noise and resolution in an
efficient and 3D manner; and 2) the robustness of the technique at challenging imaging
condition was validated through simulations, with guidelines established for achieving
targeted accuracy and precision. In addition, the methodology was applied to

commercial CT systems to ascertain its clinical applicability.

2.2 Methods and Materials
2.2.1 Theory

The NPS describes the square of the image noise (variance) in the Fourier domain
as a function of spatial frequency. For a linear system, the functional shape of NPS is
independent of noise magnitude. In this study, to capture the possible dependency of
the shape of the NPS as a function of noise magnitude with non-linear algorithms, the
NPS is defined to depend on the magnitude of the image noise. The NPS is also defined
in three dimensions for volumetric applications, as
RS (U,v Wil) = | 72y LT, v, ZiM) - T, v, 2+ @D
where I(x,y,z;N) is the intensity of the volume at the noise magnitude N; u, v, and w are
spatial frequencies; and V is the volume of the VOI. The area under the NPS curve
reflects the magnitude of the noise, and the shape of NPS reflects the texture of the noise
in terms of the spatial correlation of pixel values.

The second figure of merit, TTF, is an extension of the linear system concept of

the modulation transfer function (MTF) to accommodate both linear and non-linear
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systems. While MTF describes the resolution of a linear system that is independent of
the imaging task, TTF describes the resolution of the system for a given “task,” i.e., for a
specific object contrast and a specific background noise level. The idea is that the
resolution of non-linear systems depends on the task, and therefore cannot be
sufficiently characterized with one MTF curve. Instead, multiple TTF curves are
employed to characterize the system resolution in multiple sub-spaces of tasks, each
containing tasks of similar contrast and noise levels. The resolutions of the tasks within
the same sub-space are sufficiently close to be considered constant, such that the sub-
space is quasi-linear. This quasi-linear approximation is consistent with the treatment of
non-linear resolution conditions in prior works* 44, For linear systems, the resolution
of the entire task space can simply be characterized with one single TTF, which is
identical to the MTF.

The TTF is calculated as the Fourier transform of the line spread function (LSF)
with respect to the specific object contrast and image noise. The LSF can be derived from
the edge spread function (ESF), the system’s response to an edge impulse®. Because a
single TTF only represents the system resolution at a specific task contrast and noise
level, a library of TTFs may be used to characterize the resolution for a relevant range of
non-linear operating space. A single TTF also only represents the resolution along the
direction perpendicular to the edge. To measure a 3D TTF that fully samples the

system’s spatial resolution, multiple TTFs need to be measured along various directions.
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2.2.2 Measurement technique

The 3D NPS and in-plane TTF are measured from a dedicated phantom
developed at our institution, so-called Mercury Phantom® (Figure 2.1). The phantom is
composed of four cylindrical sections of various diameters (16, 23, 30, and 37 cm) and
three tapered connecting sections, all made of polyethylene (-90 HU at 120 kVp). Each
cylindrical section is further divided into a 3-cm long uniform subsection for NPS
measurements and a 3-cm long subsection with 2.54-cm-diameter rod inserts for in-
plane TTF measurements. The inserts are consist of four contrast levels (air, -910 HU;
Teflon, 1000 HU; Acrylic, 205 HU; and polystyrene, 50 HU; all at 120 kVp). The TTF
along the axial direction is measured with a supplemental phantom, as shown in Figure
2.2. The phantom, denoted as Z-res Phantom hereinafter, is composed of three 10-cm
cylindrical sections of different materials (polyethylene, Acrylic, and Teflon). The plane
edges at the interfaces of sections enables the measurements of axial TTF at four contrast
levels (air to polyethylene, 910 HU; polyethylene to Acrylic, 205 HU; Acrylic to Teflon,
795 HU, and Teflon to air, -1910 HU; all at 120 kVp). The phantom is 5°-tilted in the
sagittal plane to yield pre-sampled TTF for slices up to 8-mm thick. The compact
arrangement of the rod inserts in Mercury Phantom and the edge planes in Z-res
Phantom allows TTF to be measured at four contrast levels in a single scan, which

greatly improves the efficiency of the measurements.
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% " lodinated inserts
(not used in this study)

Air -1000 HU

Teflon 910 HU

Acrylic 115 HU

1” Inserts of various
densities for in-plane
TTF measurement

Uniform region for
NPS measurement (C)

Figure 2.1: (a,b) Mercury Phantom is consists of four cylindrical sections
of increasing diameters and three tapered connecting sections. (c) The
four cylindrical sections can each be divided into two subsections: one
uniform subsection for NPS measurements, and one subsection with rod
inserts for in plane TTF measurements.
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Figure 2.2: A supplemental phantom for TTF measurements along the
axial direction. The phantom consists of three cylindrical sections of
different materials, the interfaces of which provide plane edges for TTF
measurements.

To measure NPS, multiple regions of interest (ROI) are extracted from slices
across a uniform section of the Mercury Phantom (Figure 2.3 (a)). The ROIs are arranged
concentrically to address possible non-stationarity of noise across the field of view. The
distance of the ROIs from the phantom center is flexible, but preferably at the same
depth as the rod inserts shown in Figure 2.1 (c), such that NPS and TTF are measured at
the same depth. The physical size of the ROI is based on the size of the foveal vision,
which is the central 2-3 degrees of the view that has the best visual acuity®. Large scale
variations within each ROI are removed with a second order polynomial fit prior to the

NPS calculation, as such non-uniformities are generally not considered noise. ROIs of
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successive slices are then combined to yield volumes of interest (VOI) (Figure 2.3 (b)).

3D NPS are calculated from each VOI according to Eq. 2.1, and averaged over multiple

ol

Figure 2.3: (a) ROIs are concentrically extracted from the uniform region
of the phantom image. (b) ROIs from successive slices are combined to
yield VOlIs for 3D NPS measurements.

locations.

(b)

The 3D TTF is calculated from two components: The TTF that represents the in-
plane resolution, TTFxy, and the TTF that represents the axial resolution, TTF.. A
complete flowchart of the 3D TTF measurement is shown in Figure 2.4. TTFxy is
calculated from the Mercury Phantom, using the circular edges in the cross-sectioned
images of the rod inserts. An ROI twice the size of the insert diameter is extracted
around the center of the insert, providing balanced space on both sides of the circular
edge to capture the full extent of the ESF. Assuming isotropic in-plane resolution, the
Hounsfield Units (HU) of all pixels in the ROI are plotted as a function of their distance
from the center of the insert to form the “raw” ESF, as shown in Figure 2.4 (e). The raw
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ESF, however, are generally too noisy to be used directly for the TTF calculation,
especially those measured from low contrast edges with low exposure (i.e., relatively
high image noise). Therefore, four de-noising steps are applied to reduce the noise in the
ESF:

1) ROIs of an insert are averaged over consecutive slices to reduce the image
noise prior to calculating the raw ESF. In doing so, the edges of the insert in all slices
need to be precisely aligned to avoid edge blurring due to averaging. This is largely
ensured by a precise alignment of the Mercury Phantom with the calibrated laser
indicators prior to the scans.

2) The raw ESF spatial binning is super-sampled and rebinned into one tenth of
the pixel size to ensure a good uniform sampling without loss of resolution®.

3) The rebinned ESF is further smoothed with an edge-preserving smoothing
algorithm adapted from a previous work®!. The algorithm iteratively smoothes the ESF

curve yi by finding a new set of points Yi that minimizes
=Y, =) (2:2)

while satisfying the constraint that the new ESF Yi is monotonic. In our study, to help
preserve the edge enhancement feature seen in some iteratively reconstructed images,
the monotonic constraint was extended in the region of edge enhancement to tolerate
minor fluctuations between consecutive points. The fluctuation varied between 0-3% of

the edge magnitude, depending on the extent of the edge enhancement.
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4) After differentiating the ESF to obtain the LSF, the LSF is smoothed with a
Hann function with the same peak location as that of the LSF. This helps to remove the
noise on the tails of the LSF while preserving peak sharpness. The TTFxy is calculated
from the de-noised LSF.

The TTF. is calculated from the Z-res Phantom. The interfaces of three sections
provide plane edges for TTF. measurements. VOIs are segmented from the image
dataset to enclose the plane edges. Virtual planes are fitted to the edges. The raw ESF is
plotted as the voxel intensity against the signed distance between the voxel and the
virtual plane. TTF: is then calculated from the raw ESF following the same series of de-

noising procedures as in the calculation of TTFxoy.

/ XOY plane: circular edge ™\ Binned ESF Smoothed ESF
2 ; 2
 niad —t
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/~__ Zdirection:plane edge "\ Smoothed LSF TTE

—LSF /||
— Hann/
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Figure 2.4: 3D TTF is acquired separately in terms of TTFxoy and TTFz.
(a,b) To acquire the raw ESF for TTFxoy, the center of the rod insert is
located from the averaged slices, with pixels around the center plotted for
their HU against their distance from the center to yield (e) the raw ESF.
(c,d) Along axial direction, the slanted edge of the Z-res Phantom is fitted
with a virtual plane, with voxels on both sides of the plane plotted for
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their distance from the virtual plane against their HU to yield (e) the raw
ESFE. (f-i) To acquire the TTF from the raw ESF, the raw ESF is (f) re-
binned, (g) smoothed with an edge preserving algorithm, (h)
differentiated into the LSF, smoothed with a Hann window, and (i)
Fourier transformed to obtain the TTF.

2.2.3 Validation

The NPS measurement was validated via simulated ROIs with a known noise
spectrum. The pixel size was 0.82x0.82 mm?, assuming a 420-mm reconstructed field of
view for the Mercury Phantom. The size of the ROIs was 64x64, corresponding to the
foveal field of view at 100 cm viewing distance. Each ROI contained randomly simulated
Gaussian white noise with a standard deviation of 50 HU. The true NPS, NPSuuwe, was
thus a flat spectrum with energy equal to 50 HU and a cutoff frequency at the Nyquist
frequency. The NPS measured with our technique, NPSmeasured, was the average of the
NPS measured from multiple ROIs. To validate our method, NPSmeasured Was compared
to NPSte in terms of percent error (PEnes), as

b _ [[INPS e V) = NPS (1, V)| dludly _ [[INPS e V) = NPS (V)| dudly (2.3)
e ﬂ NPS, (u,v)dudv o’

true

To assess the accuracy and precision of the NPS measurement, the calculation of
PExrs was repeated multiple times, with the accuracy calculated as the mean PEnrs over
repeats, and the precision as the standard deviation of the PEnes over repeats. The
number of the repeats was chosen to be 300, which provided a good balance between

computational time and representing the population. In addition, because PExrs might
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be affected by the number of the ROIs employed in the NPSmeasured calculation, the
accuracy and precision of the NPS measurement were further calculated as a function of
the number of the ROIs (8, 40, 80, 160, 240, and 320) to derive the minimum number of
ROIs required to achieve <10% error.

The TTF measurement was also validated via simulated ROIs. An ROI with a
uniform disk in the center was first simulated to represent the cross-section of the rod
insert. The pixel size of the ROI was the same as the pixel size of Mercury Phantom
images reconstructed with a 420-mm field of view. The diameter of the disk was the
same as the rod inserts in the Mercury Phantom. The width of the ROI was twice the
diameter of the disk. The edge of the disk was blurred according to the partial volume
effect. No noise was simulated in the ROI, so that the TTF measured from the noise-free
ROI represented the true TTF, TTFuw. Next, simulated noise background was
superimposed onto the noise-free ROI. Three types of noise texture were simulated to
represent three CT reconstruction algorithms, including FBP and two IR algorithms
(Iterative Reconstruction in Image Space, IRIS, and Sinogram Affirmed Iterative
Reconstruction at strength 5, SAFIRES5; Siemens Healthcare, Malvern, PA). The TTF
measured from the noisy ROI, TTFmeasured, was compared to TTFuue in terms of the

percent error (PEttr), as

PE. — _”.|77-Fmeasured (v, v)- 77-Ftrue(ul V)|dUdV ) (24)
e .[J' TTF, (u,v)dudv

true
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The accuracy and precision of the TTF measurement were calculated from 300
repeated PErtr measurements. To assess the dependency of the accuracy and precision
on the contrast to noise ratio (CNR) of the disk (rod insert), the aforementioned
processes were performed at eight disk contrast levels with a fixed noise (noise = 25 HU;
disk contrast = 25, 75, 125, 175, 225, 275, 325, and 375 HU; CNR =1, 3,5, 7, 9, 11, 13, and
15) to empirically determine the minimum CNR required to achieve an error less than
10%.

For a low contrast insert with high image noise, the minimum CNR derived
above may not be achievable in a single slice. In that case, multiple slices across the
insert can be averaged to lower the noise and thus to increase the CNR. The number of

slices needed to achieve the minimum CNR was also derived as

2
number of slices = — Rmn___| . 2.5)
Contrast | Noise

2.2.4 Experimental measurements

As a demonstration, the methodology was used to measure the noise and
resolution properties of a commercial CT system. Both the Mercury and the Z-res
phantoms were scanned on a multi-detector CT scanner (SOMATOM Definition Flash
CT scanner, Siemens Healthcare, Malvern, PA) with 64x0.6-mm collimation, 0.6 pitch, 1-
s rotation time, 500-mm scan field of view, and five dose levels (64.8, 27.0, 13.5, 6.7, and
3.4 mGy). The images were then reconstructed with 420-mm reconstruction field of

view, two slice thicknesses (0.6 and 1.5 mm), and three reconstruction algorithms (FBP,
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IRIS, and SAFIRES5). Both IRIS and SAFIRE5 are commercially available iterative
reconstruction algorithms. IRIS iterates in the image domain to reduce image noise
while maintaining spatial resolution!® >4, SAFIRES iterates in both raw data and image
domain to reduce image noise and image artifacts''2>15. The NPS and TTF of all three
reconstruction algorithms were measured from the phantom images using the validated

methodology.

2.3 Results
2.3.1 Validation of NPS measurements

The mean and standard deviation (depicted as error bars, extremely small in this
case) of PEnrs over 300 repeats are shown in Figure 2.5, which represent the accuracy
and precision of the NPS measurements, respectively. The accuracy improves
considerably as the number of the ROI increases. With standard deviation depicted in
Figure 2.5 being extremely small, the precision of the NPS measurements is extremely
good. The results indicate that to achieve an NPS measurement with a percent error of

<10%, a minimum number of 65 ROIs would be required.
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Figure 2.5: The percent error of the NPS measurements averaged over 300
repeated simulations.

2.3.2 Validation of TTF measurements

The mean and standard deviation (error bar) of PErtr over 300 repeats are shown
in Figure 2.6, which represents the accuracy and precision of the TTF measurements,
respectively. The accuracy and precision improves considerably as the disk CNR
increases. The results indicate that the performance of all three reconstruction

algorithms converge and plateau at CNR=15, which provides reasonable accuracy and

precision (10+3% error).
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Figure 2.6: The averaged percent error of the TTF measurements as a
function of the CNR of the disk.

In case the CNR of 15 is not achievable in a single slice, as noted earlier, multiple
slices across the insert can be averaged to increase the CNR. The number of slices
needed to achieve a CNR of 15 is plotted in Figure 2.7 for varying contrast and noise
levels. With 0.625-mm slice thickness, the 30-mm long rod insert in the Mercury
Phantom can accommodate ~40 slices for slice averaging. Therefore, a reliable TTF

measurement can be achieved for all combinations of contrast and noise levels above the

iso-slice line of 40 in Figure 2.7.
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Figure 2.7: The number of slices required to achieve a CNR of 15 by slice
averaging. The iso-slice line corresponds to 40 slices.

2.3.3 Experimental measurements

Examples of measured 3D NPS and TTF are shown in Figure 2.8. To better
visualize and compare the NPS and TTF measured at various parameters, Figure 2.9 and
Figure 2.10 show the radially averaged in-plane figures of merit. Figure 2.9 (a) shows the
ROIs from the 23-cm section of the Mercury Phantom. Compared to FBP, the ROIs of IR
showed noise of reduced magnitude (IRIS, 30% and SAFIRES5, 55%), corresponding to
the lower NPS magnitudes in Figure 2.9 (b). The NPS also demonstrate IR’s “waxier”
texture with reduced NPS peak frequencies (FBP, 0.25 mm; IRIS, 0.23 mm; and

SAFIRE5, 0.16 mm1).
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(a) ROIs extracted from the 23-cm section of the Mercury
Phantom, imaged at five dose levels and reconstructed with three
algorithms. (b) Radially averaged in-plane NPS corresponding to each
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Figure 2.10 (a) shows the ROI of the inserts in the 23-cm section of Mercury
Phantom, imaged at a dose level of 64.8 mGy. Edge enhancements were visually
observed around the rod inserts in all ROIs. Improvement in edge definition with IR was
observed in ROIs of low contrast inserts. Figure 2.10 (b) shows the corresponding TTFxoy
curves, which reflect the edge enhancements observed in Figure 2.10 (a) with “bumps”
near DC frequency, and reflect IR’s improvement in edge definition with higher 50%
TTF frequency, fso (FBP: polyethylene, 0.41 mm, other inserts, 0.36 mm; IRIS:
polyethylene, 0.42 mm; other inserts, 0.37 mm; SAFIRE5: polyethylene, 0.46 mm,
Acrylic, 0.4 mm’, other inserts, 0.37 mm™). Note that for SAFIRES5, the fso for
polyethylene insert is much higher than the fso for other inserts, reflecting SAFIRE5’s
non-linearity. The magnitude of this contrast dependency was also confirmed via
comparing the areas under the TTF curves: The area under the polyethylene curve was
~30% larger than the area under other curves, much greater than the magnitude of the

error associated with the TTF calculation (10+3% according to Figure 2.6).
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Figure 2.10: (a) ROIs extracted around the inserts in the 23-cm section of
the Mercury Phantom, imaged at 64.8 mGy and reconstructed with three
algorithms. (b) Radially averaged TTFxoy corresponding to each ROL

Figure 2.11 shows the edges of the Z-res Phantom (magnified to show the
stepwise appearance of the edge through successive slices, full view provided in Figure
2.4) and corresponding TTF: curves at both 0.6 and 1.5 mm slice thicknesses. The ROIs at
thinner slice thickness showed sharper edge transitions, thus better axial resolution. The
TTF: captured the better resolution at thinner slice thickness by showing higher overall
values (fso at 0.6 mm slice thickness, 0.35-0.79 mm; fs0 at 1.5 mm slice thickness, 0.22-0.3

mm). In addition, the TTF:captured the improvements in axial resolution as a result of
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the flying focal spot technique® employed in the scanning: For both slice thicknesses, the
TTF:extended to around twice the Nyquist frequency (0.6 mm slice thickness, fnyquist =
0.83 mm; 1.5 mm slice thickness, fnyquist = 0.33 mm!). The impact of contrast on axial
resolution depends on the reconstruction algorithm. For FBP and IRIS, the three lower
contrast levels showed similar TTF: (fso at 0.6 mm slice thickness: air-polyethylene, 0.49
mm; polyethylene-acrylic, 0.52 mm; and acrylic-Teflon, 0.48 mm); only the highest
contrast level at Teflon-air interface showed a deteriorated TTF: (fso at 0.6 mm slice
thickness: 0.35 mm), possibly due to the increased partial volume effect at high contrast
levels. For SAFIRE5, all contrast levels showed different TTF: (fso at 0.6 mm slice
thickness: air-polyethylene, 0.64 mm; polyethylene-acrylic, 0.79 mm; acrylic-Teflon,
0.49 mm; and Teflon-air, 0.42 mm), with higher contrast levels showing lower TTF,
i.e., worse resolution. Similar to TTFxy, the magnitudes of these contrast dependencies
were verified by comparing the areas under the TTF: curves. This strong dependency of
resolution on the contrast level reflected SAFIRE5’s non-linearity, and substantiated the

importance of evaluating resolution with respect to task properties.
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Figure 2.11: The flat-plane edges of Z-res Phantom (magnified sagittal
view) and corresponding TTFz curves at (a) 0.6 mm and (b) 1.5 mm slice
thicknesses.
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2.4 Discussion

Characterization of CT noise and resolution properties plays a central role in
image quality assessment, imaging parameter optimization, and performance
prediction. For non-linear iterative reconstructions, the conventional characterization of
noise and resolution properties need to be extended to varying noise and contrast levels,
including challenging conditions of clinically-relevant low contrast and high noise
levels. To address this challenge, this work introduced a phantom-based methodology to
ensure robust measurements at challenging conditions, with established guidelines to
achieve target accuracy and precision levels. In addition, the characterization of noise
and resolution was extended to three dimensions to accommodate volumetric
operations such as three-dimensional surface rendering and CT volume quantification.

The validation of the NPS measurements showed that to achieve a percent error
of less than 10%, a minimum of 65 64x64 ROIs is required. Although this requirement
was deduced based on a noise of 50 HU in magnitude, the percent error would be
applicable to other noise magnitudes because its definition is already normalized by the
noise magnitude (Eq. 2.3). For the Mercury Phantom, which has a 30-mm long uniform
subsection for NPS measurements, the requirement can be achieved by satisfying the

relationship of

37;’*”265, (2.6)

36



where 7 is the number of ROIs extracted from each slice and d is the slice thickness of
the images. In case the number of slices in the uniform subsection is limited by the slice
thickness, more ROIs can be extracted from each slice to meet the criterion by allowing
overlap.

Our 3D TTF is measured under two assumptions, the isotropy of in-plane
resolution, and the independence between in-plane resolution and axial resolution. One
way to avoid these assumptions is to employ spherical phantoms that directly measure
resolution along arbitrary directions with edges within a small solid angle®5. The
spherical phantom method, however, requires relatively large spheres to ensure
sufficient sampling density along each direction. This can be difficult when there is a
need to arrange multiple spheres of various attenuations together for TTF
measurements. Another alternative is to use point inserts to measure 3D resolution
properties from point spread function (PSF)* 5. The point insert method is limited in
that it requires inserts with sufficiently high density to generate enough signal
magnitude for PSF and is therefore not applicable to TTF measurements at low contrast
levels. Compared to sphere and point methods, our approach provides a trade-off
between task-based specificity and phantom construction feasibility.

A similar circular-edge-based technique for in-plane TTF measurements was
employed in a prior study?. Compared to the prior study, our method employed further

noise reduction procedures to ensure robust TTF measurements for high noise and low
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edge contrast conditions. More importantly, the prior study validated the TTF
measurements at high CNR level only. Our study validated the TTF measurements at a
range of CNR levels, especially at low CNR levels where the TTF measurements are
challenged. Finally, the prior study only validated the accuracy of TTF measurements,
while our study employed repeated simulations to validate both accuracy and precision,
with guidelines provided for compliance.

Most clinical tasks are represented by a continuous range of contrast values.
However, due to practical limitations, only four discrete contrast levels were employed
in this study for the calculations of TTFxoy and TTF.. For low-contrast tasks most relevant
to nodule detection, the resolution of the tasks varies slowly such that our TTF measured
with Acrylic and polystyrene inserts may be representative of tasks at similar contrast
levels. For high contrast tasks such as bone and contrast angiography studies, there is a
higher degree of approximation, but provided that the contrast level for the TTF
measurement matches the contrast of the task, the TTF may be considered as
representative of the overall resolution of the task.

While our characterizations of noise and resolution were performed in Fourier
domain, it is worthwhile mentioning that the characterization can also be performed in
spatial domain in terms of covariance matrices. The main strength of the spatial domain
approach is that it is not limited to linear systems, and can therefore be applied directly

to iterative reconstruction”’. However, the spatial domain approach is practically
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challenging as it requires hundreds of repeated scans to calculate the covariance
matrices for a single task. Our Fourier approach, on the other hand, requires only a few
scans of the Mercury Phantom to characterize the task space, and can therefore be
implemented into routine quality assurance without interrupting the clinical workflow.
Furthermore, a previous study has shown that our Fourier approach provide a
reasonable model of human observer performance with non-linear iterative
reconstruction across a wide range of systems and dose levels* .

Notwithstanding the findings of the study, certain qualifications need to be
acknowledged. First, the validation of the NPS was performed based on white noise,
while CT noise is correlated. This was done to provide a universal validation
independent of the spectrum of CT noise, as the spectrum was known to vary across
bowtie filter, tube voltage, reconstruction algorithm, and convolution filter. To what
extent the noise spectrum impacts the accuracy and precision of NPS measurements
remains the effort of our future studies. Second, our phantom-based method evaluates
the possible non-linearity of noise and resolution properties in two aspects: the noise
magnitude and the object contrast. However, the non-linearity needs to be evaluated for
variable anatomical structures also. For example, extremely textured backgrounds (such
as lung vessels) and irregular objects (such as speculated lesions) might render a noise

and resolution condition not reflected by those measured in uniform backgrounds? 3.
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Therefore, phantoms with textured background and irregular shaped inserts are
warranted in future studies to fully investigate this possible limitation.

In conclusion, this study introduced an experimental method for measuring CT
noise and resolution properties relevant to iterative reconstruction and 3D volumetric
imaging. Results show that our method is efficient and meaningful in characterizing the
system performance accounting for the non-linearity of iterative reconstruction
algorithms at multiple contrast and noise levels; accurate and precise to allow
challenging measuring conditions with low object contrast and high image noise; and

three dimensional to accommodate volumetric operations.
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3. Matherpatical Prediction of Detection Performance
with IR

3.1 Introduction

The growing number of computed tomography (CT) procedures® has raised
public concerns regarding the risk associated with ionizing radiation’®. To reduce CT
radiation dose, all major CT vendors have recently introduced commercial iterative
reconstruction (IR) algorithms'*!¥, which reduce image noise as compared to filtered
back-projection (FBP), and therefore potentially provide performance equal to that of

FBP at lower acquisition dose!*!2.

To optimize IR for clinical implementation and to compare it with FBP, it is
important to evaluate its performance at various imaging conditions with respect to
multiple indications. The evaluation, however, is challenged by the fact that IR is likely
to be nonlinear, and may have variable noise and resolution depending on the
properties of the imaging task® ® (size, contrast, and noise level). As a result, task-
independent metrics such as voxel noise or contrast-to-noise ratio are possibly no longer

adequate for IR evaluations'.

Recently, a task-specific metric based on the detectability index (d") has been
employed to evaluate IR* 4 4. The d’ mathematically predicts human observer

performance according to image and task properties for liner imaging systems?, and has

" This chapter is based on a manuscript submitted to Medical Physics.
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been extended to accommodate the nonlinearity of IR images? 38444, Previous studies
employing d” have shown IR’s advantage over FBP in terms of dose reduction potentials.
However, the studies have been mostly based on a single task® # 4, while the dose
reduction potential of IR might depend on task properties. In addition, to yield a general
comparison between IR and FBP that is independent of task, it is necessary to

summarize the performance of IR over a wide range of tasks.

The aim of this study was to evaluate IR with both task-specific and task-generic
approaches: Task-specific evaluation was based on the performance of IR with respect to
specific individual tasks, while the task-generic evaluation was based on the
performance of IR summarized across tasks with a wide range of contrast, size, and edge
profile to yield a generic assessment. The task-specific performance was evaluated in
terms of the task-dependent dose reduction potential of IR, and the task-generic
performance was evaluated in terms of the percent of tasks yielding a threshold

performance level.

3.2 Methods and Materials
3.2.1 Observer model and detectability index (d’)
3.2.1.1 Theory

CT systems were evaluated using an observer model that mathematically
predicts human detection performance in terms of a detectability index (d")*%. d” was

originally developed for linear systems, but has been extended to accommodate IR

42



images? 3% 461, There are a host of observer models that could be potentially used for
this evaluation?” 2. In this study, we deployed non-prewhitening matched filter with eye
filter and internal noise (NPWEi) as it has been shown a better match to human observer
performance for tasks evaluated in this study3 4. The NPWEi model assumes a signal
known exactly scheme with no noise whitening, and further incorporates the sensitivity
of human visual system and the inconsistency in human decision-making 2. It can be
calculated as

2 (.U|M/l‘ask|2 77FZEZ(J’UL?'V)Z
[ ves + )W, | TTFE dudy

(3.1)

where u and v are orthogonal spatial frequencies, Wtsk is the task function, TTF is the
task transfer function, NPS is the noise power spectrum, E is the eye filter, and Ni is the
internal noise. d” can be further used to determine the area under receiver operating

characteristic curve (AUC) by assuming Gaussian distributed decision variable?, as
d.,
AUC,, = %[1 rerf(“2)) (3.2)

Task function characterizes the profile, size, and contrast of the task. It is
mathematically modeled to be the Fourier-difference between the null hypothesis,

“absent”, and the alternative hypothesis, “present”, as

WZ‘aS/((UI V) = |)/;;{/7G(Xl ,V) - HO(XI y)}| = |<}/\ZD{T(XI y)} 4 (33)
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where Ho is the null hypothesis, Hi is the alternative hypothesis, and T is the detection

task (the lesion) mathematically defined in spatial domain.

TTF and NPS characterize the image quality. TTF is a task specific extension of
the concept modulation transfer function (MTF) to accommodate the potential
nonlinearity of iterative reconstruction algorithms? 3 46 61, TTF characterizes the
resolution of the image with respect to a given “task”, i.e., an object to be detected with
specific contrast and background noise level, such that even if the system behaves
nonlinearly, the TTF will still characterize the transformation of the task to the image; it
is assumed that the system’s resolution varies sufficiently constant in the contrast range
of the task that can be considered constant for the given task. The TTF is calculated as
the Fourier transform of the line spread function (LSF) with respect to a specific object

contrast and an image noise magnitude.

NPS reflects the magnitude and texture of the quantum noise. It is calculated as
the square of the noise (variance) in the Fourier domain as a function of spatial
frequency. Traditionally, NPS is defined independent of the noise magnitude. In this
study, to capture the possible change in the shape of the NPS with nonlinear IR
algorithms, the NPS was assumed changeable as a function of the magnitude of the
noise. As such, both the TTF and the NPS characterized the properties of the system

specific to the targeted task and background.
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Both eye filter and internal noise characterize the properties of the observer. Eye
filter characterizes the sensitivity of human visual system to various spatial

frequencies®> %, which is mathematically modeled as
E(u,v)= (u2 + vz)o'65 exp(—c(u2 + vz))r (3.4)

where u and v are orthogonal spatial frequencies and c is a scale factor depending on the
viewing distance and display size, selected to yield peak sensitivity at 4 cycles/degree.
Internal noise reflects the cognitive decision inconsistency of the observer. The idea is
that even with identical detection task, inconsistent decisions may be reached in
repeated trials. Previous studies have shown that the internal noise impacts the

detection performance in a way similar to a 60% increase in the quantum noise? 32,

3.2.1.2 Experimental setup

The TTF and NPS were experimentally measured from a previously developed
image quality phantom3 (Figure 3.1). The phantom had four sections of increasing
diameters to represent patients of increasing sizes. In this study, both NPS and TTF were
measured from the 30-cm section (29-cm water equivalent diameter) to represent the
image quality when imaging a medium sized patient. The TTF was measured from the
rod inserts of various attenuations using an edge technique, and the NPS was measured
from the uniform region of the phantom. The measurement methods for the TTF and
NPS have been validated to ensure <10% errors and described in detail in Chapter 2 and

in previous publications® 6 ¢4,
45



The phantom was scanned on a CT scanner (SOMATOM Definition Flash,
Siemens Healthcare, Forchheim, Germany) at 120 kVp with five radiation exposure
levels (volume CT dose index, CTDIv = 64.8, 27.2, 13.6, 6.9, and 3.4 mGy). The data was
reconstructed with FBP and IR (Iterative Reconstruction in Imaging Space, IRIS;
Sinogram Affirmed Iterative Reconstruction with strengths of 3 and 5, SAFIRE3 and
SAFIRES). The TTF was calculated with respect to the noise level, the contrast level, and
the reconstruction algorithm. The NPS was calculated with respect to the noise level and

the reconstruction algorithm.

% ” lodinated inserts

(not used) Air -1000 HU

Teflon 910 HU

1” Inserts for
TTF measurement

Acrylic 115 HU

Uniform region for
NPS measurement

(b)
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Figure 3.1: (a) The phantom for TTF and NPS measurements is composed
of four cylindrical sections of increasing diameters, with tapered sections
in between. (b) Each cylindrical section is divided into two subsections,
one with uniform regions for the NPS measurement and the other with
rod inserts of varying contrasts for the TTF measurement™.

In this study, the task was mathematically defined in spatial domain using a

previously developed contrast profile®>, as

)= ( 1 -(gj] : (35)

where Cpeak is the peak contrast, r is the radial distance from the center, R is the radius,
and n is a positive number inversely related to the steepness of the contrast profile. In
addition, a second radius Rz was defined at 20% of the peak contrast to approximate the

radius visible to human observers®, calculated as

R

20

=R\J1-4/0.2.. (3.6)

The contrast profile was then employed to simulate a library of tasks, including tasks of
multiple sizes (R2o from 1 to 4 mm, 50 intervals), contrast levels (Cpeak from 10 to 100 HU,
50 intervals), and edge profiles (sharp edge, n = 1; and soft edge, n = 3). Figure 3.2(a)
shows selected tasks of 2 contrast levels, 3 sizes, and 2 edge profiles. Note that the tasks
of different edge profiles share the same Rx. The library of tasks was then Fourier
transformed into a library of task functions, with examples shown in Figure 3.2(b). The

intensity (power) of the task functions depends on the task contrast and size, and the
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frequency component (shape) of the task function depends on the task size and edge

profile.

Task

]
C --n

Task contrast
Task function

Radial distance Radial spatial frequency

(b)

Figure 3.2: (a) Examples of tasks defined at 3 sizes, 2 contrast levels, and 2
edge profiles (n=1 and n=3). (b) The corresponding task functions.

For the calculation of the eye filter, the viewing distance was assumed to be 100
cm, and the display size was assumed to be 40 cm. The corresponding c was calculated
to be 12.4 mm?2 by differentiating Eq. 3.4. The internal noise was modeled to be 60% of
the quantum noise to account for the cognitive inconsistency. In addition, because in
clinical practices the unknown task location caused additional deterioration to observer
performance®, the d” values calculated with Eq. 3.1 were adjusted with an offset factor of

1.5 according to a previous observer study*.

3.2.2 Task-specific and task-generic evaluations

As the observer performance (AUC«)improves monotonically as dose increases,
a minimum dose requirement (the threshold dose level) can be defined to achieve a

threshold AUC level. A threshold AUC of 0.9 was chosen in this study to provide a good
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tradeoff between diagnostic accuracy and patient dose. The dose reduction potential of
IR was then calculated as the difference between IR and FBP’s threshold dose levels for
specific tasks. A relative dose reduction potential was also calculated as the ratio of the

dose reduction potential of IR and the threshold dose level of FBP.

In addition, the task-generic performance of IR was evaluated in terms of the
percentage of tasks (out of the entire library developed in 3.2.1.2) yielding a performance
higher than that defined by the threshold AUC level. This metric did not focus on the
performance with a specific task, but rather the general performance of the system; the

larger the percentage, the better the system performance in general.

3.3 Results
3.3.1 TTF and NPS

Figure 3.3 shows examples of phantom-measured TTF as a function of
reconstruction algorithm and object contrast. Compared to FBP, IRIS had similar TTF at
all contrast levels, while SAFIRE3 and SAFIRE5 had enhanced TTF at low contrast levels
(50% frequency of polystyrene-based TTF: FBP, 0.41 mm; IRIS, 0.42 mm; SAFIRE3,
0.44 mm; and SAFIRE5, 0.46 mm). All TTF had peak values slightly off zero frequency,

as a result of the edge enhancement employed in the reconstruction algorithm.
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Figure 3.3: (a,b,c,d) The regions of interest showing the rod inserts of

varying contrasts and (e,f,g h) the corresponding TTF curves.

Figure 3.4 shows the NPS results as a function of reconstruction algorithm and

imaging dose level. Compared to FBP at the same dose level, IR showed notable

reductions in the NPS magnitude: 50%, 50%, and 80% for IRIS, SAFIRE3, and SAFIRES5,

respectively. Because the NPS magnitude is proportional to the square of the noise

magnitude, the corresponding reductions in noise magnitude were: 30%, 30%, and 55%

for IRIS, SAFIRE3, and SAFIRES5, respectively. Another difference with IR was the

reduced NPS peak frequency: IR, especially SAFIRE5, had their peaks shifted to lower

frequencies, reflecting IR’s “waxier” texture (peak locations: FBP, 0.25 mm!; IRIS, 0.23

mm; SAFIRE3, 0.23 mm; and SAFIRES5, 0.16 mm).
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3.3.2 Detectability index

task size, contrast, and edge profile, with the dose level fixed at 13.6 mGy. For the same
task, SAFIRES yielded the highest d” (best performance), followed by SAFIRE3 and IRIS,

and FBP had the lowest d’. For a fixed reconstruction algorithm, larger task size, higher
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Figure 3.4: The NPS results measured at five dose levels for (a) FBP, (b)
IRIS, (c) SAFIRE3, and (d) SAFIRE5. Examples of regions of interest for
NPS measurements are also shown.

Examples of d’ results for FBP and IR are plotted in Figure 3.5 as a function of

task contrast, and sharper task edge profile led to higher d".
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Figure 3.5: The detectability index (d”) for four reconstruction algorithms,
plotted as a function of task size, task contrast, and task edge profile.

3.3.3 Task-specific performance: dose reduction potential

The dose reduction potentials are summarized in Table 3.1. In general, SAFIRE5
showed the most significant dose reduction potentials (11-54 mGy), followed by
SAFIRE3 (7-36 mGy) and IRIS (6-26 mGy). The dose reduction potentials highly
depended on task size and task contrast, with tasks of lower contrasts and smaller sizes,
i.e., more challenging tasks, showed higher dose reduction potentials. Softer edge profile
showed higher dose reduction potentials with SAFIRE3 and SAFIRES, but not with IRIS.
The relative dose reduction potentials generally followed the same trend, but were less

dependent on task properties (IRIS, 37-50%; SAFIRE3, 50-61%; and SAFIRES, 77-84%).
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Table 3.1: The dose reduction potentials of IR in the unit of mGy. The
numbers in parentheses are relative dose reduction potentials.

Ry Cpeax Sharp edge profile (n= 1) Soft edge profile (n = 3)
(mm)  (HU) IRIS SAFIRE3  SAFIRE5 IRIS SAFIRE3  SAFIRES
1 100 25(50%) 30 (61%) 42 (84%) 26 (44%)  35(59%) 50 (84%)
1.5 100 7 (41%) 8 (52%) 13 (79%) 8 (41%) 11 (53%) 16 (80%)
1.5 65 25 (47%)  32(60%) 45 (84%) 24 (37%)  36(56%) 54 (83%)
22 65 6 (40%) 7 (50%) 11 (77%) 8 (40%) 10 (52%) 15 (79%)
22 45 24 (48%)  30(60%) 41 (83%) 24 (37%)  35(55%) 53 (82%)
3 45 10 (42%) 13 (52%) 19 (78%) 13 (50%)  24(59%) 33 (81%)
4 45 8 (41%) 9 (50%) 15 (77%) 15(47%) 17 (54%) 24 (78%)

An example of the dose reduction calculation is shown in Figure 3.6 for a task at

2.5-mm in radius (Rw), 54-HU peak contrast, and soft edge profile (n=3). The AUC«

values for FBP and SAFIRE3 are plotted as a function of dose level. Simulated images

showing the task in noisy backgrounds are displayed next to each AUCq« data point for

demonstration. The threshold doses required to achieve the threshold AUC were 13 and

28 mGy for SAFIRE3 and FBP, respectively. The dose reduction potential of SAFIRE3 for

this task was therefore calculated to be 28-13 = 15 mGy. The relative dose reduction

potential of SAFIRE3 was calculated as 15/28 = 54%. Note that for more conspicuous

tasks (high contrast, large diameter, or sharp edge) or more obscure tasks (low contrast,

small diameter, or soft edge), the AUC« curves might not cross the horizontal line of the

threshold AUC, not yielding a meaningful interpolation of the dose reduction potential.
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Figure 3.6: The calculation of the dose reduction potential of SAFIRE3 for
a task with 2.5-mm Rz, 54-HU peak contrast, and n=3 (soft) edge profile.

3.3.4 Task-generic performance: percent of tasks exceeding
threshold AUC

Figure 3.7 plots the tasks yielding the threshold AUC (0.9) as lines across the task
space. Tasks above each line had AUC exceeding the threshold. The percent of tasks
exceeding the threshold AUC, visually interpreted as the ratio between the area above
each line and the area of the entire task space, is numerically summarized in Table 3.2. In
general, IR allowed more tasks to exceed the threshold AUC than FBP, with an increase
of 8-12% with IRIS, 10-16% with SAFIRE3, and 20-33% with SAFIRE5 (note: although
percentage signs are used here, these are absolute differences). Higher dose level and

sharper edge profile also allowed more tasks to achieve the threshold performance, as
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expected. However, the advantage of IR was generally less apparent at higher dose

levels.
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Figure 3.7: Tasks yielding the threshold AUC of 0.9 at different dose
levels, specified as lines of different colors.
Table 3.2: The percent of tasks exceeding the threshold AUC, calculated
for 2 edge profiles, 5 dose levels, and 4 reconstruction algorithms.
Dose level Sharp edge profile (n = 1) Soft edge profile (n = 3)
FBP IRIS SAFIRE3 SAFIRES FBP IRIS SAFIRE3 SAFIRES
3 mGy 5 14 17 35 1 9 11 28
7 mGy 18 30 34 51 12 24 28 45
13 mGy 34 45 49 64 28 39 43 59
27 mGy 47 57 60 73 42 51 55 69
64 mGy 61 69 72 81 56 64 68 78
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3.4 Discussion

The evaluation of IR needs to be task-specific to capture the potential
dependency of IR performance on the task, but also task-generic to enable a general
comparison of IR and FBP. In this study, we accommodated both needs by evaluating IR
with tasks across a range of sizes, contrasts, and edge profiles. Results showed that IR’s
dose reduction potential depended on the size, contrast, and edge-profile of the task.
Results also showed that across a wide range of tasks, IR was superior to FBP in terms of

the percent of tasks exceeding a threshold performance level.

In previous studies, IR was mostly assessed with task-independent metrics, such
as voxel noise and contrast-to-noise ratio!® ® ¢, As a result, a single dose reduction
potential independent of tasks was usually prescribed to IR. Our task-specific analysis,
however, demonstrated that tasks with lower contrast and smaller size had higher
absolute dose reduction potential (differences up to 20, 29 and 43 mGy for IRIS,
SAFIRE3, and SAFIRES, respectively). This highlights the importance of evaluating IR
with respect to the task, and could be employed to optimize the operating dose of IR

according to the size and contrast of the task of interest.

The task-generic analysis evaluated overall performance and enabled general
comparisons between FBP and IR. The framework can be further used to assess the

performance of IR for a specific medical indication. For example, by summarizing over
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tasks with kidney stone’s typical contrast and size levels, the general detectability of

kidney stones with IR can be assessed.

In this study, in order to calculate Fourier-based d” for IR, the Fourier concepts of
MTF and NPS were extended to contrast-dependent TTF and magnitude dependent-
NPS to accommodate IR’s potential nonlinearity. These extensions are not necessary if d’
is calculated in the spatial domain”. However, the spatial domain approach is
practically limited in that it can be considerably time-consuming: Hundreds of repeated
scans are required to characterize the covariance matrices for a single task, let alone that
a range of tasks need to be evaluated to fully examine IR. While approximating, the
Fourier approach extended to accommodate certain nonlinearity, and agrees well with

human observer performance across three IR algorithms from three CT vendors* .

The threshold AUC of 0.9 was employed for the evaluation of IR, because it
provided a good tradeoff between diagnostic accuracy and patient dose. However, one
question is that how will the choice of the threshold AUC affect the assessment. To
answer this question, the percent of tasks exceeding the threshold AUC were
recalculated with a lower threshold AUC of 0.7, as shown in Table 3.3. Compared to
Table 3.2, the percentage of tasks yielding the lower threshold AUC is higher, especially
at lower dose levels. However, the advantage of IR in terms of the difference between
FBP and IR remained largely unchanged (6-11% for IRIS, 9-15% for SAFIRE3, and 9-31%
for SAFIRES).
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Table 3.3: The percent of tasks yielding an AUC higher than 0.7.

Dose level Sharp edge profile (n = 1) Soft edge profile (n = 3)
FBP IRIS SAFIRE3 SAFIRES FBP IRIS SAFIRE3 SAFIRES
3 mGy 19 30 34 50 13 24 27 44
7 mGy 34 44 48 63 28 39 43 58
13 mGy 48 57 61 74 42 52 56 70
27 mGy 60 67 71 81 55 63 66 77
64 mGy 71 77 80 87 67 73 76 85

In this study, both dose reduction potential and detectable range were calculated
for detection tasks only. Therefore, the advantage of IR derived in this study may not be
translated to other types of tasks, such as discrimination tasks that distinguish two
features, and quantification tasks that quantify the physical properties of certain
features. For example, CT data has been employed to quantify the development of lung
nodule volume over time. For such task, two commercial IR algorithms showed little
advantage in terms of quantification precision?. This once again highlights the

importance of evaluating IR with respect to the imaging task at hand.

The NPS of IR was measured from uniform background, which, due to IR’s
nonlinearity, is not representative of the noise property in heavily textured anatomical
background, such as lung? . Furthermore, the 4" model employed in this study only
accounted for the impact of quantum noise, not anatomical noise. Therefore, the

evaluation of IR in this study is more applicable to tasks in relatively uniform
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background, such as hepatic lesions and kidney stones. Our ongoing efforts are focusing
on measuring the quantum and anatomical NPS from textured backgrounds, such that

IR can be evaluated for tasks in textured backgrounds.

To conclude, this study went beyond traditional contrast and noise based
assessments of IR, and developed a framework for IR evaluations with respect to the
detection task. The task-specific evaluation demonstrated the strong dependency of IR’s
dose reduction potential on task size and contrast, which can be employed to optimize
IR for clinical indications with specific ranges of size and contrast. The task-generic
evaluation demonstrated IR’s overall superiority over FBP in terms of the range of the

tasks detectable, which can be employed for general comparisons between algorithms.
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4. Experimental Assessment of Quantification
Performance with IR

4.1 Introduction

Size estimations of pulmonary nodules provide useful quantitative information
for diagnosis and staging of lung cancer. Currently, these estimations are standardized
by uni-dimensional (Response Evaluation Criteria in Solid Tumors, RECIST) and bi-
dimensional (World Health Organization, WHO) methods” 7!, which merely measure
the diameters of the nodule by assuming symmetrical nodule shrinkage/growth. This
assumption of symmetrical development, however, is not always valid. For a more
comprehensive estimation, new three-dimensional (3D) methods have been proposed to
estimate the size in terms of nodule volume. The accuracy (bias) and precision (variance)
of this 3D method, however, are subject to many factors such as scanning and
reconstruction parameters, segmentation software, and nodules characteristics. A
detailed knowledge of the accuracy and precision is required to confidently estimate
volume changes®.

In addition, iterative reconstruction algorithms (IR) recently introduced in the
clinics have greatly improved image contrast-to-noise ratio and demonstrated significant
potential advantage in interpretive imaging as compared to conventional filtered back-

projection (FBP) images!” ¢ 72. The effect of IR algorithms on quantitative imaging,

“This chapter is based on a manuscript published on Medical Physics, titled “Volumetric quantification of
lung nodules in CT with iterative reconstruction (ASiR and MBIR).”
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however, has not received much attention. Specifically, two IR algorithms of Adaptive
Statistical Iterative Reconstruction (ASiR) and Model Based Iterative Reconstruction
(MBIR, commercially marketed as Veo) notably reduce image noise by selectively
identifying and subtracting noise from images'> 2" %, potentially enabling more accurate
and precise volume quantifications as compared to FBP. MBIR further improves image
resolution and suppresses certain artifacts by modeling system-optics, noise, and non-
idealities of the data'>?. One may assume such attributes to help improve the estimation
of nodule volumes, an assumption that needs verification.

The purpose of this study was to investigate the impact of iterative
reconstruction on the accuracy and precision of lung nodule volume quantifications. In
addition, this impact was evaluated as a function of other key influencing parameters,

including dose and reconstruction slice thickness.
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4.2 Method and Materials
4.2.1 Image acquisition and reconstruction

An anthropomorphic chest phantom consisting of realistic pulmonary vessels
(LUNGMAN, KYOTO KAGAKU, Kyoto, Japan) was used to simulate chest CT imaging
(Figure 4.1). The phantom was supplemented with pulmonary nodules simulated by
acrylic spheres (80 HU at 120 kVp) of diameters 4.76 and 9.53 mm, attached to its vessels
and pleura. A total of 14 small and 21 large nodules were placed in various locations
throughout the lung structure. Compared to uniform chest phantoms employed in
previous study””>, the vessel structures in our phantom were expected to provide more

realistic anatomy and geometry.

Figure 4.1: (a) An anthropomorphic chest phantom was used to simulate chest
CT images, which contained (b) a lung insert with realistic pulmonary vessels.
Acrylic spheres of diameters 4.76 and 9.53 mm were attached to the vessels and
pleura to simulate pulmonary nodules.
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The phantom was scanned on a Discovery CIT750 HD CT scanner (GE
Healthcare, Waukesha, WI) with a standard chest protocol at Duke University Medical
Center: 40 mm collimation, 120 kVp, 1.375 pitch, 0.5 s rotation time, large bow tie filter,
500-mm scan field of view, 360-mm reconstruction field of view, a clinical dose level
corresponding to a noise index of 28.0 (CTDLw = 7.5 mGy) with automatic exposure
control (AEC) turned off, filtered back-projection (FBP) reconstruction with “detail”
kernel, and 1.25 mm slice thickness with equal slice spacing. In addition to the routine
protocol, two additional iterative reconstructions, ASiR (blended with 50% of FBP to
moderate the “patchy” texture of noise in IR images) and MBIR, were used. Two other
important parameters, dose and slice thickness, were also expanded to a broader
parameter space to examine their relative impact. Added data included five additional
dose levels of 75%, 50%, 25%, 10%, and 3% (100% corresponding to the standard dose
level), and two additional slice thicknesses of 0.625 and 2.5 mm. AEC was turned off at
all dose levels. The slice spacing was equal to the slice thickness for all slice thicknesses.
As illustrated in Figure 4.2, in general, this study investigated three reconstruction
algorithms, six dose levels, and three slice thicknesses, yielding fifty-four distinct
acquisition and reconstruction protocols. Furthermore, each protocol was repeated five

times to enable the estimation of the precision of quantifications.
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4.2.2

quantified from the uniform regions in the mediastinum of the anthropomorphic
phantom with a 50 x 50 ROI (35 mm x 35 mm). The image appearance in terms of

resolution and noise texture was further visually compared between FBP, ASiR, and

Slice thickness (mm)

&

A -
Accuracy & Precision

Dose level

100% = 7.5 mGy CTDI,,,
75%
50%
25%
10%
3%

Data analysis

2.5 1.25 0.625

75%, and 100%, with 100%
thicknesses (0.625, 1.25, and 2.5 mm).

FBP
ASiR

MBIR ' Reconstruction
algorithm

Figure 4.2: One routine chest protocol in Duke University Health Center
was expanded into fifty-four protocol to investigate the impact of
protocol parameters on the accuracy and precision of volume
quantifications under various conditions, including three reconstruction
algorithms (FBP, ASiR, and MBIR), six dose levels (3%, 10%, 25%, 50%,

=~ 7.5 mGy CTDlIvol), and three slice

As a related factor to volume quantifications, the image noise magnitude was

MBIR images reconstructed from the same raw data.

Healthcare, Waukesha, WI; hereinafter referred to as Software A) in a semi-automatic

fashion®. After loading the CT dataset, the software first suggest all potential nodules

Nodule volumes were quantified with clinical software Lung VCAR (GE
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with its built-in computer-aided detection feature, as highlighted in Figure 4.3 (a,b). The
user then can click on the center of a nodule (whether suggested by the software or not)
to initiate the segmentation. The software automatically choose a built-in segmentation
algorithm that best matches the nodule’s shape, density and surrounding structure, and
reports the segmented volume in mm3 [Figure 4.3 (c,d)]. All 9450 nodule image dataset

(54 protocols x 5 repetitions x 35 nodules) were segmented using this procedure.

Figure 4.3: Nodule volumes were semi-automatically quantified from the
images using clinical software Lung VCAR. (a) Coronal view, nodules
suggested for quantifications are highlighted in circles, and the nodule
selected for quantification is highlighted at the crossing. (b) Axial view,
the nodule selected for quantification is highlighted at the crossing (c) 3D
rendering of the selected nodule with surrounding structures (d) 3D
rendering of the segmented nodule with volume reported in mm?3.
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Since the segmentation software is a large factor of whether IR improves or
degrades volume quantification, a second clinical software, iNtuition (TeraRecon, Foster
City, CA; hereinafter referred to as Software B), was employed for volume
quantifications. Similar to Software A, Software B is semi-automatic in the sense that it
relies on the users to input the location of the nodule. The segmentation process of
Software B, however, is more generic than software A, as it is developed for processing
images from multiple vendors. The segmentation process of software B further allows
the user to choose the type of segmentation (single click, region growing, or manual
ROI) and to manually modify the boundary of the segmented nodule. Most
segmentation procedures were performed with “single click” with no manual
modification to the nodule boundary. Only two 4.76 mm nodules were segmented with
“region growing”, as they were attached to the pleura and could not be properly
segmented with “single click”. All 9450 nodule image dataset (54 protocols x 5
repetitions x 35 nodules) that segmented with software A were also segmented with

software B.
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Figure 4.4: A second clinical software, iNtuition, was employed for
nodule segmentations. The user inputs the location of the nodule and the
type of segmentation. The software reports the volume in cm3.

Following the volume quantification, each protocol’s accuracy and precision
were calculated in terms of bias and repeatability coefficient, respectively”. Bias was the
difference between the segmented nodule volume and the true volume. A bias with a
smaller absolute value shows a measurement closer to the truth, thus a better accuracy.

For jth protocol, which included n repetitions and K nodules, bias was calculated as

IRNY
By =— i 2 iV =70, (4.1

where Vt and Vijk represent the true and measured volume, respectively. The true

volume was calculated based on the diameter of the spherical nodule, and was
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physically validated using a liquid displacement method. The percent bias (PB) was also

calculated, as

B.
PB, :7f><100. (4.2)

t

The repeatability coefficient (RC) was defined as the expected absolute difference
between any two repeated quantifications of the same object, for 95% of cases. Therefore,

a smaller RC reflects a more precise measurement. For jth protocol, RC was calculated as
2 A
RC; =1.96,/20;, =2.T10,, =2.710,,, (4.3)

where

)

s
= JWMS, \/2 WMS, In=y|> 1> o —2—1 T (4.4)

WMS , was the estimate for the within-nodule variance (GVZVJ. ), obtained from one-way

analysis of variance (ANOVA) with the nodule location as the main factor. RC reflected
the absolute fluctuation for each volume measurement. RC was further normalized by

the true nodule volume to yield the percent repeatability coefficient (PRC), as

PRC, =

(4.5)

Comparisons of accuracy and precision difference between protocols were
carried out via a generalized estimating equation (GEE) approach’ 7. The GEE analysis

accounts for the correlation of multiple measurements from the same nodule. Since
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previous studies has demonstrated the impact of dose and slice thickness with FBP
reconstruction, the goal of this study was focused more primarily on the comparisons of
the two new iterative reconstructions versus FBP, at various dose levels and slice
thicknesses. A p-value less than or equal to 0.05 was considered to be statistically
significant with no adjustment for multiple comparisons. A p-value greater than 0.05 but
less than 0.1 was considered to be marginally significant. All analyses were carried out

by a standard statistical package (SAS version 9.2, SAS Institute Inc., Cary, NC).

4.3 Results

All twenty-one 9.53 mm nodules were successfully segmented. Two of the
fourteen 4.76 mm nodules failed in the segmentation of Software A with images scanned
at 25%-100% dose levels and reconstructed with MBIR. The nodules for which the
segmentation failed were highly cluttered with surrounding vascular structures. Only

the successfully segmented nodules were analyzed for accuracy and precision.

4.3.1 Image noise and appearance

The noise magnitude measured from the uniform region of the phantom is
shown in Table 4.1. Higher dose and thicker slice thickness led to less noise. At fixed
dose level and slice thickness, ASiR reduced the noise magnitude by ~30% throughout
all dose levels as compared to FBP, and MBIR reduced the noise magnitude by ~35% at
100% dose level and ~80% at 3% dose level. The noise magnitude, however, did not fully

capture the difference between FBP and IR images. As shown in Figure 4.5, the noise
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texture and the resolution were also different between FBP and IR, which are especially

pronounced at low dose levels in the soft tissue.

Table 4.1: The noise measured from the uniform region of the phantom image.

Reconstruction .
. FBP ASiR MBIR
algorithm
Slice thickness
0.625 1.25 2.5 0.625 1.25 2.5 0.625 1.25 2.5
(mm)
100% 13.0 11.1 7.7 9.1 7.8 5.5 8.2 7.4 6.3
75% 14.9 12.9 8.9 10.6 9.1 6.3 8.7 8.0 6.7
Dose  50% 181 150 104 126 103 72 91 83 68
levels 550, 253 215 149 178 150 103 98 92 78
10% 41.7 36.2 25.5 28.8 25.4 18.1 11.7 10.8 9.5
3% 74.8 63.6 43.8 52.5 45.1 30.4 15.3 14.3 12.6
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Figure 4.5: Sample images of the phantom reconstructed with FBP, ASiR,
and MBIR. (a) The phantom imaged with the standard chest protocol
(100% dose level = 7.5 mGy, 120 kVp, 1.25 mm slice thickness). (b)
Magnified views of lung region with lung window (WL/WW = -600/1600).
(c) Magnified views of soft tissue with soft tissue window (WL/WW =
40/400).

4.3.2 Accuracy and precision of volume quantifications — Software A

In order to efficiently navigate through the large amount of data generated in
this study, we first demonstrate the accuracy and precision of volume quantifications
with Software A. The impact of IR on the accuracy and precision of 9.53 mm nodules is
shown in Figure 4.6. Figure 4.6 (a) shows the accuracy of the volume quantified with 2.5
mm slice thickness. At 100% dose level (7.5 mGy), which corresponds to the clinical dose
level used in our institute, FBP and MBIR show comparable accuracy. ASiR, on the other

hand, shows a higher PB, i.e.,, a worse accuracy. This difference between ASiR and the
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other two algorithms is consistently observed throughout all other five dose levels (3%-
75%, 0.23 — 5.63 mGy), and is further confirmed by the corresponding GEE analysis
(Table 4.2). It is also worthwhile to mention that an overall lower PB was observed at
lower dose level, which indicated a counter-intuitively better accuracy with lower dose.
This trend, also noted in a previous study®, is a particularity resulted from the unstable
performance of the segmentation software at low dose/high noise condition. We
speculate that the software was more unstable when segmenting nodules with noisy
boundaries and reported smaller nodule volumes. This decrease in reported nodule
volume seemed to coincide with the overestimated volume, thus resulting in “better”
accuracy at lower dose levels. As such, this particularity is not an indicator of more
accurate volume estimation at lower dose, but rather an emphasis of the importance of
sufficient but not excessive dose to yield robust segmentations for this particular
software (>50% of current clinical dose level was indicated from Figure 4.6 (a), as
statistical comparisons performed between successive dose levels showed insignificant
differences between dose levels of 50% and above).

Figure 4.6 (b) shows the precision of the volume quantified with 2.5 mm slice
thickness. Overall, the PRC drops quickly from 3% to 50% dose levels, and plateaus
afterwards, showing a limited improvement in precision with increasing dose for all
reconstruction algorithms. At 50-100% dose levels, all three reconstruction algorithms

have similar PRC values. At dose levels less than 50%, both ASiR and MBIR have
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smaller PRC values, i.e., better precision than FBP. Corresponding GEE analysis also
shows a marginally significant improvement in precision with ASiR at 3% and 25% dose
levels (Table 4.2).

Figure 4.6 (c-f) further shows the accuracy and precision of volume
quantification with two thinner slice thicknesses: 1.25 and 2.5 mm. The accuracy of
volume quantification with 1.25 and 0.625 mm slice thickness are shown in Figure 4.6 (c)
and (e), respectively. Overall, the accuracy of the quantification improves by around
30% with thinner slice thicknesses. At 1.25 mm slice thickness, the difference between
ASiR and FBP are greatly reduced as compared to 2.5 mm slice thickness, but still
noticeable. MBIR remains comparable to FBP. GEE analysis shows that ASiR has
significantly worse accuracy than FBP at most dose levels, and MBIR has accuracy
similar to FBP except at the lowest dose levels (Table 4.2). At 0.625 mm slice thickness,
the difference between the accuracy of ASiR and FBP are further reduced to be
insignificant, as shown visually in Figure 4.6 (e) and via GEE analysis. The accuracy of
MBIR, however, is greatly improves at higher dose levels, and is significantly better than
the other two algorithms across most dose levels (Table 4.2). Figure 4.6 (d) and (f) shows
the precision of volume quantification with 1.25 and 0.625 mm slice thickness,
respectively. Overall, the precision of all three reconstructions at thinner slice
thicknesses are slightly improved as compared to that of 2.5 mm slice thickness. IR’s

precision is still comparable to that of FBP at 1.25 and 0.625 mm slice thicknesses. The
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only exception is the precision of MBIR at extremely low dose level with 0.625 mm slice,

where the GEE analysis results show a marginal improvement with MBIR (Table 4.2).
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Figure 4.6: Accuracy and precision of 9.53 mm nodules segmented with
Software A. (a,c,e) Accuracy at (a) 2.5 mm, (c) 1.25 mm, and (e) 0.625 mm
slice thicknesses. (b,d,f) Precision at (b) 2.5 mm, (d) 1.25 mm, and (f) 0.625
mm slice thicknesses. The left y-axes show the absolute accuracy and
precision in the unit of mm3, and the right y-axes show the relative
accuracy and precision in the unit of %.

Table 4.2: Plotted GEE analysis results of the differences between FBP and

IR in the volume quantification of 9.53 mm nodules with Software A (see

Figure 4.6). Each solid circle represents a statistically significant difference

with a p-value less than 0.05. Each open circle represents a marginally

significant difference with a p-value between 0.05 and 0.1. All blank areas
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indicate no statistically significant difference between the two
reconstruction algorithms.

Accuracy, 9.53 mm nodule

Slice Reconstruction Dose level
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Precision, 9.53 mm nodule
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Figure 4.7 summarizes the accuracy and precision of a smaller nodule — 4.76 mm
in diameter. Compared to Figure 4.6, smaller nodules have overall worse accuracy and
precision and noisier results due to the segmentation difficulty and the smaller number

of nodules employed. Also compared to Figure 4.6, the counter-intuitively better
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accuracy observed at low dose levels was less noticeable with smaller nodules, as
smaller nodules have less nodule boundaries. Figure 4.7 (a) shows the accuracy of 4.76
mm nodule measured with 2.5 mm slice thickness. ASiR shows the worst accuracy, and
MBIR shows the best. The corresponding GEE analysis results shown in Table 4.3 were
not able to detect these observed differences to be statistically significant at 0.1 or lower
level. This could be due to the low power resulted from small sample size (12 small
nodules) or large uncertainty associated with the observed values. Figure 4.7 (b) shows
the precision measured with 2.5 mm slice thickness, which suggests better precision
with IR at lower dose levels, but better precision with FBP at higher dose levels. The
following GEE analysis showed that only MBIR at 10% dose had significantly better
precision than FBP (Table 4.3).

Figure 4.7 (c-f) further shows the accuracy and precision of 4.76 mm nodule with
1.25 and 0.625 mm slice thicknesses. Overall, the accuracy of 4.76 mm nodules improves
30-50% with thinner slice thicknesses, but the precision is not much affected. When
comparing reconstruction algorithms, MBIR shows better accuracy than the other two
algorithms at most dose levels, as shown in Figure 4.7 (c) and (e). ASiR’s accuracy is
worse than that of FBP at 1.25 mm, but comparable at 0.625 mm. The GEE analysis
confirms some of the significance at dose levels <50%, as shown in Table 4.3. Figure 4.7
(b) and (d) shows the precision of the volume quantification with thinner slice thickness.

At 1.25 mm slice thickness, MBIR shows worse but not significant precision than the
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other two algorithms. At 0.625 mm slice thickness, no obvious trend is observed
between the precision of IR and FBP. The GEE analysis, however, shows a marginally

significant improvement in precision with IR at 20% and 50% dose (Table 4.3).
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Figure 4.7: Accuracy and precision of 4.76 mm nodules segmented with
Software A. (a,c,e) Accuracy at (a) 2.5 mm, (c) 1.25 mm, and (e) 0.625 mm
slice thicknesses. (b,d,f) Precision at (b) 2.5 mm, (d) 1.25 mm, and (f) 0.625
mm slice thicknesses. The left y-axes show the absolute accuracy and
precision in the unit of mm3, and the right y-axes show the relative
accuracy and precision in the unit of %.

Table 4.3: Plotted GEE analysis results of the differences between FBP and
IR in the volume quantification of 4.76 mm nodules with Software A (see
Figure 4.7). Each solid circle represents a statistically significant difference
with a p-value less than 0.05. Each open circle represents a marginally
significant difference with a p-value between 0.05 and 0.1. All blank areas
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indicate no significant difference between the two reconstruction

algorithms.
Accuracy, 4.76 mm nodule
Slice Reconstruction Dose level
thickness algorithms 0.03 01 025 05 075 1
25mm  ASiR vs. FBP
MBIR vs. FBP
1.25mm  ASiR vs. FBP ° o ° ° o
MBIR vs. FBP ° o
0.625 mm ASiR vs. FBP o
MBIR vs. FBP ° ° ° °

Precision, 4.76 mm nodule

Slice Reconstruction Dose level

thickness algorithms 003 0.1 025 05 0.75 1

2.5 mm ASiR vs. FBP

MBIR vs. FBP °

1.25mm  ASiR vs. FBP

MBIR vs. FBP

0.625 mm ASiR vs. FBP

MBIR vs. FBP o

4.3.3 Accuracy and precision of volume quantifications — Software B

The accuracy and precision of 9.53 mm nodule measured with Software B are

shown in Figure 4.8 and Table 4.4. Software B generally followed the same trends as
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observed with Software A: 1) The accuracy of MBIR was superior to that of FBP. 2) The
precision of both ASiR and MBIR were mostly not significantly different from that of
FBP. 3) Smaller nodule volumes were reported at lower dose levels. However, two
deviations were noted: First, the accuracy of ASiR was equivalent or inferior to that of
FBP with Software A, but superior to that of FBP with Software B. Secondly, the nodule
volumes were generally overestimated with Software A, but underestimated with
Software B (negative bias values in Figure 4.8). It is difficult to speculate the reason for
these software dependencies. Nevertheless, they highlight a need to incorporate the
“operator” in the characterization of volume quantification, and to implement some type

of calibrations for software.
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Figure 4.8: Accuracy and precision of 9.53 mm nodules segmented with
Software B. (a,c,e) Accuracy of FBP and IR at (a) 2.5 mm, (c) 1.25 mm, and
(e) 0.625 mm slice thicknesses. (b,d,f) Precision of FBP and IR at (b) 2.5
mm, (d) 1.25 mm, and (f) 0.625 mm slice thicknesses. The left y-axes show
the absolute accuracy and precision in the unit of mm3, and the right y-
axes show the relative accuracy and precision in the unit of %.

Table 4.4: Plotted GEE analysis results of the differences between FBP and
IR in the volume quantification of 9.53 mm nodules with Software B (see
Figure 4.8). Each solid circle represents a statistically significant difference
with a p-value less than 0.05. Each open circle represents a marginally
significant difference with a p-value between 0.05 and 0.1. All blank areas
indicate no significant difference between the two reconstruction
algorithms.
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Accuracy, 9.53 mm nodule

Slice Reconstruction Dose level
thickness algorithms 003 0.1 025 05 075 1
2.5 mm ASiR vs. FBP ° ° ° ° ° °

MBIR vs. FBP ° ° ° ° ° °

1.25mm  ASiR vs. FBP

©)
[
[
[
[ ]
[ ]

MBIR vs. FBP ° ° ° ° ° °

0.625 mm ASiR vs. FBP ° ° ° ° °

MBIR vs. FBP ° ° ° ° ° °

Precision, 9.53 mm nodule

Slice Reconstruction Dose level
thickness algorithms 0.03 0.1 025 05 075 1
2.5mm ASiR vs. FBP o
MBIR vs. FBP
1.25mm  ASiR vs. FBP
MBIR vs. FBP o o
0.625 mm ASiR vs. FBP °
MBIR vs. FBP o °

The accuracy and precision of 4.76 mm nodule measured with Software B
generally followed the trends observed with Software A, as shown in Figure 4.9 and
Table 4.5. The accuracy of both ASiR and MBIR were similar to that of FBP (a slightly

higher PB with MBIR was observed at 1.25 mm slice thickness, but not statistically

81



significant). The precision of both ASiR and MBIR were not significantly different from

that of FBP.
Accuracy Precision
201 P i 30
KR& & & & 15 2.5 mm
15 - 20
10
10 20 - SN §
s B Mo ~
5 2.5mm |10 _° ¢ S
(a) E (b) =
s IS L g
40 = =
20 1.25 g o -
+ FBP :%g 5 -0 mm 30 ?@’ é 15 1.25 mm L;
. = © P+ 2
o ASIR % P A A Ay B 8 10P .
A MBR| & 10@ . 5 & B Z oo 2o 5 o
506 @ 10 o - & X L §
(c) b5 (d) 1T
. Q . c
40 « 30 o
20 0.625 mm % 15 0.625mm| &
15
20
o0 108
10 Ka R 0
, 10 N
Sk X8 2 % )
(e) 0 () 0
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Dose level (100% = 7.5 mGy) Dose level (100% = 7.5 mGy)

Figure 4.9: Accuracy and precision of 4.76 mm nodules segmented with
Software B. (a,c,e) Accuracy of FBP and IR at (a) 2.5 mm, (c) 1.25 mm, and
(e) 0.625 mm slice thicknesses. (b,d,f) Precision of FBP and IR at (b) 2.5
mm, (d) 1.25 mm, and (f) 0.625 mm slice thicknesses. The left y-axes show
the absolute accuracy and precision in the unit of mm3, and the right y-
axes show the relative accuracy and precision in the unit of %.

Table 4.5: Plotted GEE analysis results of the differences between FBP and
IR in the volume quantification of 4.76 mm nodules with Software B (See
Figure 4.9). Each solid circle represents a statistically significant difference
with a p-value less than 0.05. Each open circle represents a marginally
significant difference with a p-value between 0.05 and 0.1. All blank areas
indicate no significant difference between the two reconstruction
algorithms.
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Accuracy, 4.76 mm nodule

Slice Reconstruction Dose level
thickness algorithms 0.03 01 025 05 075 1
25mm  ASiR vs. FBP

MBIR vs. FBP
1.25mm ASiR vs. FBP

MBIR vs. FBP
0.625 mm ASiR vs. FBP

MBIR vs. FBP o

Precision, 4.76 mm nodule

Slice Reconstruction Dose level
thickness algorithms 0.03 01 025 05 075 1
25mm  ASiR vs. FBP

MBIR vs. FBP
1.25mm ASiR vs. FBP

MBIR vs. FBP
0.625 mm ASiR vs. FBP o

MBIR vs. FBP
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4.4 Discussion

Assessing the nodule size change in terms of volume can potentially offer
improved quantification as compared to traditional uni- and bi-dimensional methods.
The usefulness of the volume quantification technique, however, depends on its
accuracy and precision, which is a function of the protocol used. In this study, we
investigated the impact of two iterative reconstruction algorithms (ASiR and MBIR) on
the accuracy and precision of volume quantification across a range of dose levels, slice
thicknesses, nodule sizes, and segmentation software.

This study found systematic difference between the accuracy of FBP and IR
across two segmentation software: Software A yielded a consistently equivalent or
inferior accuracy with ASiR as compared to FBP, and a consistently equivalent or
superior accuracy with MBIR; Software B yielded a consistently equivalent or superior
accuracy with ASIR, and a consistently equivalent or superior accuracy with MBIR for
large nodules. While this reflects the performance of the three reconstruction algorithms
in this particular study, it is worthwhile to point out that the segmentation software
employed was designed and optimized for FBP images, not ASiR and MBIR images
which are known to have different resolution and noise texture?. Therefore, it is possible
that the difference between FBP and IR was due to the software being not compatible

with IR image characteristics. Expanding current segmentation software to take IR
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image characteristics into consideration will be beneficial. Furthermore, in case a follow-
up scan is reconstructed with a different algorithm, a baseline calibration may aid to
correct for the systematic offset, such that conclusions can be drawn on the
growth/shrinkage of the nodule over time.

For both Software A and B, smaller nodule volumes were reported at lower
dose/higher noise levels. This was counter-intuitive because image noise distributed
symmetrically around zero, and was therefore expected to have a zero-sum impact on
the volume segmentation. We speculate that this noise dependency may be a result of
the morphological process employed in the segmentation algorithms, which preferably
segments nodules into spherical shapes with smooth surfaces. When the noise
magnitude reaches a certain level, the software’s ability to determine a smooth nodule
boundary may be impeded, resulting in a decreased volume estimate. This may also
explain Software A’s “better” accuracy at lower dose levels (Figure 4.6), as the decreased
volume estimate cancels Software A’s volume over-estimation. However, question
remains in that why the noise-induced counter-intuitive trend was also observed in IR

images, which, according to

Table 4.1, had significantly reduced noise by 30-80% in the uniform region. The
reason is that IR did not equally reduce the noise around nodule boundaries. As shown

in the noise maps in Figure 4.10, IR algorithms (especially MBIR) greatly reduce noise in

85



the uniform region as compared to FBP, but barely reduce noise at the edges of lung
structures, soft tissue, and bone. Quantitatively, at the 3% dose level, the noise in the
uniform region of the noise maps were 73, 51, and 15 HU, for FBP, ASiR, and MBIR,
respectively. Corresponding values at the edge region of the noise maps (calculated
with an edge-detecting mask) were 63, 68, and 44 HU. With the edge of the nodule
remained noisy with IR, the segmentation software reported smaller volumes at lower

dose levels.

Figure 4.10: (a) The phantom image scanned at 3% dose level and
reconstructed with 0.625 mm slice thickness. (b) The noise map
corresponding to the phantom images, acquired by subtracting slices at
the same axial location in repeated scans (the magnitude of the subtracted
noise was corrected by a factor of square root of 2).

The precision of quantification was expected to improve with reduced image

noise. In this study, despite ASiR and MBIR’s notable noise reduction, similar precision
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was found between FBP and IR. On the other hand, higher dose levels, which also offer
reduced image noise, improved precision in most cases. The fact that IR’s improved
noise did not translate into improved precision may again be attributed to IR’s enhanced
noise at nodule edge (Figure 4.10). Noisier edges (regardless of reconstruction) would
lead to degraded precision. Furthermore, the two IR employed in this study reduced
noise at the cost of decreased resolution at extremely low dose levels*, which also
nullifies part of IR’s noise reduction benefit.

As mentioned before, not all nodules were successfully segmented: at 25%-100%
dose levels with MBIR reconstructions, two 4.76 mm nodules could not be segmented by
Software A. Figure 4.11 illustrates one such nodule. The nodule was heavily cluttered
with vessels. The segmentation of the nodule succeeded with FBP images, but failed
with MBIR images at the same imaging condition. In the corresponding three-
dimensional surface rendering of the nodule, MBIR images showed more vessels than
FBP due to its enhanced edge definition and reduced noise. We therefore speculate that
the segmentation failure of MBIR was a result of its increased vessel visibility, which

somehow distracted the segmentation.
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Figure 4.11: Three dimensional surface rendering and CT slices of the 4.76
mm nodule that (a,b) succeeded in the segmentation with FBP but (c,d)
failed in the segmentation with MBIR.

Previously with FBP images, the accuracy of volume quantification was shown to
be worse at 2.5 mm slice thickness than at 1.25 and 0.625 mm slice thicknesses*. In this
study, at 2.5 mm slice thickness, similar accuracy deterioration was observed with FBP
images. Furthermore, the deterioration was also observed with ASiR and MBIR images,
indicating that a thinner slice thickness as an important factor for quantification
accuracy regardless of the reconstruction algorithm.

As with most studies, our study had certain limitations. First, due to the capacity
of the vesselled phantom, the nodules employed in this study were limited in terms of
both type and number. Further tests will be beneficial to re-ascertain the impact of IR

observed in this study with more nodules of different shapes and types. Tests with
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increased number of nodules or repeated scans will also help compensate for the
uncertainty caused by the nature of the vessel attachment, especially for small nodules.
Second, it is very challenging to claim full generalizability from a limit set of image data
with non-linear properties. However, even though this study does not fully examine
every possible factor in volume quantification, it provides a methodology to examine
quantitative tasks, and reveals trends and factors that have not been known before.
Furthermore, some observed behaviors are generalizable (e.g., effect of slice thickness,
dose, and behavior across segmentations). Therefore, we believe this study is
meaningful and reasonably representative. Finally, both segmentation software
employed in this study are commercial software, so that the quantitative results in this
study can be reproduced by other scientists using the same software. However, current
commercial software are mostly designed for FBP, thus might be sub-optimal for IR.
Future works are warranted to investigate IR with open-source software that gives user
more control of the segmentation process, and to develop generic segmentation software
that are compatible with both FBP and IR images.

In summary, this study examined and compared the accuracy and precision of
volume quantification with both FBP and IR algorithms. Both FBP and IR showed worse
accuracy at 2.5 mm slice thickness. For large nodules, the accuracy was significantly
different between ASiIiR and FBP for all slice thicknesses with both software, and

significantly different between MBIR and FBP for 0.625 mm slice thickness with
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Software A and for all slice thicknesses with Software B. For small nodules, the accuracy
was more similar between FBP and iterative reconstruction, with the exception of ASIR
vs. FBP at 1.25 mm with Software A and MBIR vs. FBP at 0.625 mm with Software A.
The different accuracy between IR and FBP highlights the importance of extending the
current segmentation software for the image characteristics of iterative reconstructions.
In absence of software extension, a calibration process may help correct for the
difference between the accuracy of FBP and IR, such that repeated scans with different
reconstruction algorithms can be compared against each other. Few significant
differences in precision were found between IR and FBP, possibly due to IR’s
diminished noise reduction at nodule edges and IR’s degraded resolution at high noise
conditions, but this does not rule out potential advantage of IR that might be evident in

a study that uses a larger number of nodules or repeated scans.
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5. Mathematical Predicfion of Quantification
Performance with IR

5.1 Introduction

The high axial resolution images of multi-detector computed tomography (CT)
have enabled the quantification of lung nodule volume, which is an important
biomarker for cancer diagnosis and treatment response monitoring®. For example, the
change of nodule volume over time, assessed from serial scans of the patient can be
employed to ascertain treatment response and to differentiate benign and malignant
nodules”™. The usefulness of a volume quantification technique, however, depends on
the precision of the quantification, which is the degree to which repeated quantifications
of the same nodule under unchanged conditions yield the same outcome. To confidently
assess nodule volume change, it is important to have a detailed knowledge of the
quantification precision. Furthermore, since the precision might depend on acquisition
parameters and nodule characteristics, the assessment needs to be performed across a
wide range of conditions.

In recent years, a number of studies have been performed to assess the
quantification precision experimentally®* 375798, The experimental method is effective,
but extremely time consuming, as it involves multiple steps of case preparation,

repeated scans, nodule segmentation, and statistical analysis. In addition, due to the

" This chapter is based on a manuscript submitted to Medical Physics.
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complexity of CT acquisition and reconstruction parameters (dose, pitch, kernel, slice

thickness, etc.), the experimental results are difficult to generalize.

To assess the quantification precision in an efficient and generalizable manner, a
mathematical model named the estimability index (e’) was developed by Richard and
Samei¥. The e’ predicted the quantification precision by modeling the nodule and image
characteristics in Fourier domain. It was shown to be effective in predicting the
theoretical quantification precision obtained via a maximum likelihood estimator.
However, in that implementation of e/, for each nodule characteristics, the model
needed to be first trained with pre-known precision values, therefore limiting the
applicability of the model to a wide range of nodule characteristics. Furthermore, the
model assumed ideal quantification software, which had a priori knowledge of the
nodule’s physical properties (size, contrast, shape, and edge profile), and made optimal

use of the knowledge to segment the nodule.

Inspired by the prior work and motivated by its limitations, this study aimed to
extend the e’ model by replacing the nodule-specific training process with a more
efficient, physically-based modeling process; the imperfection of the quantification
software was modeled in terms of the discrepancy between the actual nodule and the
segmentation software’s expectation. Furthermore, the precision derived from the
reformulated e’ model was validated against empirical precision across 54 distinct

acquisition protocols, 2 nodule sizes, and 2 segmentation software.
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5.2 Methods and Materials
5.2.1 Estimability index (e’)

A surrogate of volume quantification precision, the estimability index (e’), was
developed by mathematically modeling the three factors influencing the quantification
performance: the image quality (noise and resolution), the nodule characteristics, and

the volume segmentation software.

The noise and resolution properties of the image were characterized in terms of
noise power spectrum (NPS) and task transfer function (TTF), respectively. NPS is the
square of the image noise (variance) as a function of spatial frequency, which describes
both the magnitude and the texture of the noise. TTF is an extension of the modulation
transfer function (MTF) to accommodate potential non-linearity of iterative
reconstruction algorithms by describing the image resolution as a function of object
contrast and image noise?* °.. In this study, both NPS and TTF were measured in three
dimensions from a previously developed phantom, named the Mercury Phantom
(Figure 5.1). The three dimensional NPS was measured from the uniform region of the
phantom; the in-plane TTF was measured from the rod inserts of various contrast levels
using an edge technique; and the axial TTF was measured from the interfaces of various
contrast levels between sections of the supplemental phantom, also using an edge
technique. Both NPS and TTF measurements were described in detail in Chapter 2 and

in previous studies % ¢, and have been validated for their accuracy and precision.
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Figure 5.1: The three dimensional noise and resolution properties of the
imaging system are measured from Mercury Phantom in terms of NPS
and TTF, respectively. (a) The phantom is composed of four cylindrical
sections with three tapered sections in between. (b) Each cylindrical
section is divided into two subsections for the measurements of NPS and
in-plane TTF. (c) A supplemental section with slanted surfaces provides
the measurement of TTF along axial direction.

The second factor of quantification, the physical properties of the nodule, was
mathematically modeled in terms of task function, Wtsk. The task function is the 3D
Fourier transform of the nodule’s edge profile, containing information such as the size,
contrast, and edge profile of the nodule (Figure 5.2). The magnitude of the task function
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is adjusted with a scale factor, such that the power of the function (the integral of the
task function in frequency domain) equals the power of the nodule (the integral of the

nodule in spatial domain).

Figure 5.2: (a) A nodule is mathematically modeled. (b) The edge profile
of the nodule is detected using a discrete Laplace operator. (c) The task
function of the nodule is calculated as the Fourier transform of the edge
profile. The nodule and its task function are three-dimensional, but
plotted in two-dimensions for display purpose.

The last component of the quantification precision, the nodule segmentation
process, was modeled as a cross-correlation between the nodule and a template,
described in Fourier domain as a template function, Wemp. If the template matches the
nodule, the segmentation is optimized; if not, the segmentation is biased towards the
template. The morphological processes employed by most commercial segmentation
software favor spherical or lobular nodules®!. As a result, for most spherical nodules, the
template matches the nodule well. However, speculated nodules are penalized as they

do not fit the spherical assumption of most segmentation algorithms.
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Finally, inspired by the non-prewhitening matched filter model observer
employed for detection tasks (detectability index)?, the e’ was formulated as

L — “]NPS ) 777:2 ’|M/task| : |M/temp|dUdVdW , (51)
2 .
(.”I TTF* '|Vl/task|' Vl/temp|dU0’VdW)

e

where u, v, and w are orthogonal spatial frequencies, and C and N are the contrast and
noise levels at which the nodule volumes are quantified. e’ modeled the quantification
(segmentation) process as a cross correlation between the nodule and the template,
which is equivalent to the product between the template function and the task function
in Fourier domain. The numerator represents the fluctuation of the segmentation due to
image noise and the mismatch between the nodule and the template, while the
denominator normalizes it by the strength of the cross-correlation, i.e., the similarity
between the nodule and the template. Note that higher e’ value represents larger
fluctuation and therefore worse quantification precision. Higher noise (larger NPS),
poorer resolution (lower TTF), or worse prior knowledge of nodule (mismatch between

the template function and the task function) result in larger e’.

5.2.2 Experimental measurements of quantification precision

To verify our e model, the gold standard of quantification precision was
experimentally acquired in terms of percent repeatability coefficient (PRC), as described
in detail in Chapter 4 and in a previous study?. PRC is the expected percentage
difference between any two repeated quantifications of the same nodule, for 95% of

cases? 76, Smaller PRC therefore represents better quantification precision.
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To calculate PRC, synthetic nodules (acrylic; 80 HU at 120 kVp) of 9.5 and 4.8
mm in diameters were embedded in an anthropomorphic chest phantom (LUNGMAN,
KYOTO KAGAKU, Kyoto, Japan), attaching to lung vessel structures and pleura. The
phantom was scanned repeatedly on a 64 slice CT scanner (Discovery CT750 HD, GE
Healthcare, Waukesha, WI) with 54 distinct protocols, including 6 dose levels (100, 75,
50, 25, 10 and 3%, with 100% dose corresponding to a CTDIwl of 7.5 mGy), 3 slice
thicknesses (0.625, 1.25, and 2.5 mm), and 3 reconstruction algorithms [Filtered Back-
projection (FBP), Adaptive statistical Iterative Reconstruction (ASiR), and Model-based
Iterative Reconstruction (MBIR)]. Each protocol was repeated 5 times for precision
calculation. Nodule volumes were quantified from the phantom images using two semi-
automatic clinical segmentation software (Software A: LungVCAR, GE Healthcare,
Waukesha, WI; and Software B: iNtuition, TeraRecon, Foster City, CA). 108 PRC values
were calculated from the quantified volumes, corresponding to the 54 acquisition

protocols and the 2 nodule sizes.

5.2.3 Relating e’ to experimental precision

e’ was then calculated for the same acquisition protocols and nodule sizes
employed in the PRC calculation. First, a library of TTF and NPS was derived from the
Mercury Phantom measurements, characterizing the resolution and noise properties of
the operating space under a range of dose levels, reconstruction algorithms, and slice

thicknesses. Specific TTF and NPS relevant to the measurement condition of PRC were
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then interpolated from the library according to the nodule contrast, the noise magnitude,
the reconstruction algorithm, and the slice thickness of the chest phantom images.
Because of IR’s different noise magnitudes in textured region and in uniform region? %,
the noise magnitude used for interpolations was measured from the lung region. In that
process, lung vessels were removed prior to the noise measurements by subtracting
repeated scans and adjust the pixel intensity by a factor of J2. In total, 54 pairs of TTF
and NPS were interpolated from the library to represent the resolution and noise
properties of the 54 protocols used in PRC calculations. The task functions were
modeled for the 2 types of nodules used for PRC calculations. The template functions
were modeled as identical to the task functions since the nodules were perfectly
spherical. Finally, e” was calculated across all protocols and nodule sizes, and related to
PRC to see how it may predict quantification precision. Relationships were established
between e’ and PRC, which were further employed to develop a process for e’-based

PRC prediction.

5.3 Results
5.3.1 Reconstructed images

As a visual example of how acquisition parameters impact the image appearance
and further quantification precision, images of the anthropomorphic chest phantom
reconstructed with three algorithms are shown in Figure 5.3(a-c). The same images with

noise only (structure removed by subtracting repeated scans) are shown in Figure 5.3(d-
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f). Both ASiR and MBIR showed noise reduction as compared to FBP. MBIR had more
noise reduction in the relatively uniform areas of the images (e.g., soft tissue) than

around lung vessels and nodules.

FBP ASIR MBIR

ROI

R
A s

Subtracted ROI

S
3

Figure 5.3: (a-c) Regions of interest showing the anthropomorphic chest
phantom (used for PRC calculation) reconstructed at 0.625 mm slice
thickness and 3% dose with three algorithms: FBP, ASiR, and MBIR. The
nodules being quantified are highlighted with arrows. (d-f) Subtracted
regions of interest showing the noise only.

5.3.2 TTF and NPS

Figure 5.4 shows the TTF and NPS measured at various dose levels for all three
reconstruction algorithms, with the slice thickness fixed at 1.25 mm. Although three-

dimensional TTF and NPS were used for e’ calculation, Figure 5.4 only shows the in-
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plane radially averaged results for visualization and comparison purposes. Compared
to FBP, the two IR algorithms demonstrate enhanced TTF, i.e., better resolution, but also
a noise dependency, with higher dose (lower image noise) levels yielding better
resolution. The two IR algorithms showed NPS curves with smaller magnitude but
lower peak frequency, reflecting IR’s lower frequency noise feature, i.e., “waxier”

appearance (as seen in Figure 5.3).
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Figure 5.4: (a,b,c) The TTF of three reconstruction algorithms (FBP, ASiR,
and MBIR) at various dose levels. The contrast level for TTF
measurement is fixed at 1000 HU. (d,e,f) The NPS of the three

reconstruction algorithms at various dose levels.
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5.3.3 e’ results and validation

Figure 5.5 shows the relationship between e’ and PRC for 54 protocols, 2 nodule
sizes, and 2 segmentation software. The relationships between e” and PRC exhibiting
variability primarily due to the nature of the PRC quantification®. Nevertheless, they

follow general non-linear relationships, fitted to the form of PRC:aln(b-e'”+1), In

general, the relationships are independent of nodule size, imaging dose, reconstruction
algorithm, and slice thickness, but depend on the segmentation software, with Software

A showing a stronger correlation than software B.
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Figure 5.5: PRC verses 1/e’ across 3 reconstruction algorithms, 3 slice
thicknesses, 6 dose levels, 2 nodule sizes, and 2 segmentation software.

5.3.4 e’ as a compliance tool

With the relationships established between e’ and PRC, a process for e’-based
PRC assessment is summarized in Table 5.1. The process is based on two steps. In Step 1,
the image quality phantom is scanned several times to establish a library of TTF and
NPS characterizing the resolution and noise properties of the operating space. Step 2
models the task function and the template function, and combines them with the library

to calculate the PRC.



Table 5.1: Process for e’-based assessment of PRC.

Step Element Task
Step 1 A Image quality phantom that contains
- edges of various attenuations along various directions for three-

dimensional T7TF measurements
- uniform volume for three-dimensional NPS measurements
Scan the phantom at a range of dose levels and reconstruct the image with
multiple slice thicknesses and reconstruction algorithms to compute a
library of TTF and NPS that characterizes the operating space

Step 2 B Model W, and W,,,, according to the nodule size, shape, and contrast
C Interpolate a 3D TTF from the library built in Step 1 with respect to nodule
contrast and image noise (not necessary if the reconstruction algorithm is
linear)
Interpolate a 3D NPS from the library with respect to image noise
D Calculate e’ according to TTF, NPS, W, and Wiy,
E Relate e’ to PRC using the relationships established in Figure 5.5

The e’-based PRC assessment saved considerable time as compared to
experimental-based PRC assessment. The experimental-based assessment in this study
involved 30 scans (6 dose levels x 5 repeats) and 9 reconstructions per scan (3
reconstruction algorithms x 3 slice thicknesses). Furthermore, each dataset contained 35
nodules (21 9.5-mm nodule and 14 4.8-mm nodules) to be semi-manually segmented
with 2 software, yielding a total of 18900 segmentations. Given that each segmentation
took about 1 minute, the whole process toke more than 300 hours. On the contrary, the
calculation of e” involved only 6 scans (6 dose levels) and 9 reconstructions per scan (3
reconstruction algorithms x 3 slice thicknesses) to establish a library of NPS and TTF,

and mathematically calculated e’ for all nodule types and acquisition protocols. The total
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calculation time of e’ calculation was around 3 hours (2 hour of data collection and 1

hour of data analysis).

5.4 Discussion

To quantify the development of lung nodule volumes with confidence, the
precision of CT volume quantification needs to be assessed for a wide range of image
acquisition and reconstruction parameters and nodule characteristics. The traditional
experimental assessment of precision is time consuming. As a result, this study
developed a mathematical model to predict quantification precision in terms of an
estimability index (e”). Results showed a strong correlation between e’ and empirical

precision, indicating e’ as an effective predictor of quantification precision.

As mentioned in Introduction, this ¢’ model was an extension of a prior e’
methodology®. One limitation of that work was that it relied on pre-known precision
values to train the task function for each individual nodule type. In this study, by
introducing the task function based on the principle of volumetry (edge detection), not
only the computational burden of training process was eliminated, but also the possible
bias introduced by the training data was avoided. Another limitation of the prior work
was that it did not explicitly model the segmentation software as a influencing factor of
precision performance. In this study, the imperfection of clinical segmentation software
was modeled in two regards: first, a non-prewhitening matched filter model instead of a
prewhitening model was used to capture the impact of noise correlation on
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quantification precision?; second, a template function was introduced to account for the

possible mismatch between the nodule and the software’s expectation.

In clinical practices, methods other than volume quantification are also employed
to assess the size of lung nodule, such as the bi-dimensional quantification suggested by
World Health Organization (WHO)" and the uni-dimensional quantification suggested
by Response Evaluation Criteria in Solid Tumors (RECIST) working group”. This study
chose to focus on volume quantification because it has been shown to be more accurate
and precise compared to the bi- and uni-dimensional quantifications, especially for
complex lesion shapes®>. To reflect the three-dimensional nature of volume
quantification, the e’ was modeled in three dimensions. However, similar e’ models in
one and two dimensions may be derived to evaluate the performance of quantifications

using WHO and RECIST methods, if needed.

Two facts indicated imperfect modeling of the segmentation software in e”: 1) the
relationships established between e” and PRC were generally independent of image
acquisition parameters and nodule characteristics, but depend on volume segmentation
software; 2) the correlation between e’ and PRC was stronger for Software A than for
Software B. One possible solution is to replace the current software-generic template
function with a software-specific template function, which closely models the
segmentation algorithm of each software and its impact on quantification precision.

1

Another possible solution is to include an “internal noise” term, which models the
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inconsistency of the software during repeated segmentations of identical dataset, and
counts it towards precision deterioration. These remain as possible future extensions of

the e’ methodology.

It should be pointed out that even though the correlations between e’ and PRC
were weaker for Software B than for Software A, it did not necessarily indicate that e’ is
worse at predicting the precision of quantifications performed with Software B. This is
because PRC, the gold standard for quantification precision, even estimated with a
challengingly large number of nodules (21 9.5-mm nodules and 14 4.8-mm nodules), had
uncertainty due to the limited sample size?. Further studies with a larger sample size

are warranted to confirm the PRC.

In conclusion, a mathematical model based on an estimability index was
developed to assess the quantification precision efficiently. The model was shown
effective across a range of image acquisition protocols, nodule sizes, and segmentation

software, and can be employed to optimize clinical protocols for quantification tasks.
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6. Conclusions, Implications, and Future Directions

6.1 Summary and Conclusions

This dissertation developed a framework for task-specific evaluations of IR
performance. Two types of tasks were investigated: detection tasks and volume
quantification tasks. For each type of task, a mathematical model was developed to
evaluate IR effectively and efficiently.

As a basis for performance evaluation, an experimental methodology was first
developed in Chapter 2 to characterize the noise and resolution properties in a manner
that was relevant to IR and 3D volumetric imaging. Results showed that this method
was efficient and meaningful in characterizing the system performance accounting for
the non-linearity of IR at multiple contrast and noise levels. It was also shown that when
certain criteria were met, the measurement error could be controlled to be less than 10%
to allow challenging measuring conditions with low object contrast and high image
noise.

Chapter 3 incorporated the noise and resolution characterizations developed in
Chapter 2 into the d’ calculations, and evaluated the performance of IR and FBP for
detection tasks. Results showed that compared to FBP, IR required less dose to achieve a
threshold performance level (AUC), therefore potentially reducing the required dose.
The dose saving potential of IR was not constant, but dependent on the task properties,

with subtle tasks (small size and low contrast) enabling more dose saving than
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conspicuous tasks. Results also showed that at a fixed dose level, IR could detect more
subtle tasks than FBP, demonstrating the overall superior performance of IR for
detection tasks.

Chapter 4 experimentally compared the volume quantification performance of IR
to FBP in terms of accuracy and precision. Results showed that across a wide range of
dose and slice thickness, IR led to accuracy significantly different from that of FBP,
highlighting the importance of calibrating or expanding current segmentation software
to incorporate the image characteristics of IR. Results also showed that despite IR’s great
noise reduction in uniform regions, IR in general had quantification precision similar to
that of FBP, possibly due to IR’s diminished noise reduction at edges (such as nodule
boundaries) and IR’s loss of resolution at low dose levels.

Lastly, Chapter 5 extended the e’ model from a prior study¥, and employed it to
mathematically predict the quantification performance of IR and FBP. Results showed
that the extended e” model was improved in three respects, including the task modeling,
the segmentation software modeling, and the characterizations of noise and resolution
properties. Results also showed that the extended e’ model correlated with experimental
precision (Chapter 4) across a range of image acquisition protocols, nodule sizes, and
segmentation software. In addition, compared to experimental assessments of

quantification performance, e’ was significantly reduced in computational time, such
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that it can be easily employed in clinical studies to verify quantitative compliance and to

optimize clinical protocols for CT volumetry.

6.2 Clinical Implications

The research in this dissertation has two important clinical implications. First,
because d’ values reflect the percent of detection accuracy (AUC) and e’ values reflect
the quantification precision, this work provides a framework for evaluating IR with
diagnostic accuracy as the endpoint. Second, because the calculations of d” and e’
models are much more efficient compared to conventional observer studies, the clinical
protocols with IR can be optimized in a timely fashion, and the compliance of clinical

performance can be examined routinely.

6.3 Future Directions

In this dissertation the noise and resolution properties were measured from a
phantom with uniform backgrounds. However, it is of interest to also assess the image
noise and resolution properties in presence of background variability, because the
textured backgrounds (such as lung vessels) and irregular objects (such as speculated
lesions) might affect local noise and resolution properties of IR images. Therefore,
phantoms with textured background and irregular shaped inserts are warranted in
future studies to fully investigate the non-linear noise and resolution properties of IR.

Because the noise and resolution properties employed in d’ calculations were
measured from uniform backgrounds, the corresponding d’ values represented the
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detection performance of tasks in relatively uniform background, such as hepatic lesions
and kidney stones. Furthermore, the d” model employed in this dissertation work did
not accounted for the impact of anatomical noise on the performance of human observer.
Therefore, to evaluate IR for tasks in texture background, future efforts are needed to
measure noise and resolution properties from textured background and to incorporate
anatomical noise into the d” model.

In the experimental evaluation of IR’s quantitative performance, the type and
number of synthetic nodules were limited (21x 9.5-mm acrylic nodules and 14x 4.8-mm
acrylic nodules) by the capacity of the anthropomorphic phantom and the number of
segmentations practicable in one study (35 nodules x 54 protocols x 5 repeats x 2
segmentation software = 18900 segmentations). Further studies will be beneficial to re-
ascertain the observed impact of IR with nodules of variable density, shape, and size.
Tests with increased number of nodules of each type will also help compensate for the
inter-nodule variability caused by the nature of the vessel attachment, especially for
small nodules.

Although e’ in general agreed well with experimental precision, the relationships
between the two were still dependent on volume segmentation software. In future
extensions of the e’ methodology, the software-generic template function may be
replaced with a software-specific template function to closely model the segmentation

algorithm of each software and its impact on quantification precision. An iterative
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technique per Richard and Samei®” may be used to empirically determine the template
function for a segmentation algorithm, or a priori knowledge form the manufacturer can
be incorporated into the model. An “internal noise” term may also be introduced to
model the inconsistency of the segmentation software during repeated segmentations of

identical dataset.
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