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Abstract

In this work, I investigate the mechanical response of the liver to increasing pressure

in the portal vein using ultrasonic approaches. In advancing liver disease, portal ve-

nous pressure increases lead to severe clinical problems and death. Monitoring these

pressure increases can predict patient outcomes and guide treatment. Current meth-

ods for measurement of portal venous pressure are invasive, expensive, and therefore

are rarely repeated. Ultrasonic methods show promise because they are noninvasive,

but traditional ultrasound images and doppler measurements do not yield accurate

repeatable measures of hepatic pressure. However, increases in portal venous pressure

have been associated with higher estimates of liver stiffness using ultrasound-based

shear wave speed estimation algorithms. These quantitative estimates of shear wave

speed may provide a mechanism for noninvasive hepatic pressure characterization,

but they cannot currently be distinguished from the increases in shear wave speed

estimates that are also observed in patients with normal portal venous pressures

with advancing liver diseases. Thus, a better understanding of the mechanisms by

which hepatic pressure modulates estimates of liver stiffness could provide informa-

tion needed to distinguish increasing hepatic pressure from advancing fibrosis stage.

This work is devoted to identifying and characterizing the underlying mechanism

behind the observed increases in hepatic shear wave speed with pressurization.

Two experiments were designed in order to define the mechanical properties of

liver tissue that underlie the observed increase in shear wave speeds with increasing
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portal venous pressure. First, the behavior of the liver was shown to be nonlinear

(or strain-dependent) by comparing stiffness estimates in livers that were free to

expand and constrained from expansion at increasing hepatic pressures. Shear wave

speeds were observed to increase only in the unconstrained case in which the liver was

observed to qualitatively deform. Second, the deformation of the liver was quantified

using a clinical scanner and 3-D transducer to generate estimates of axial strain

during pressurization. Axial strain was found to increase with elevation in portal

venous pressure. This axial expansion of the liver also corresponded to increases in

shear wave speed estimates with portal venous pressure.

The techniques developed herein were used to elucidate mechanical properties of

the pressurized liver by concurrent ultrasound-based quantification of hepatic defor-

mation and stiffness. This work shows that increasing shear wave speed estimates

with hepatic pressurization are associated with increases in hepatic axial strain mea-

surements. These results provide the basis for quantifying the relationship between

pressurization and hepatic strain, laying the foundation for hyperelastic material

modeling of the liver. Such nonlinear mechanical models can provide the basis for

noninvasive characterization of hepatic pressure using stiffness metrics in the future.
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1

Introduction

1.1 Clinical importance of portal venous pressure

As recently as 2001, cirrhosis and chronic liver disease lead to more than 27,000

deaths per year in the United States, comprising the 10th leading cause of death in

men and the 12th leading cause of death in women in 2001 [4]. The progression

of liver failure due to advancing liver fibrosis (cirrhosis) leads to increases in portal

venous pressure (PVP) [20, 150, 176], which is in turn responsible for the most

severe clinical effects of advancing liver disease [69]. These consequences include

gastro-esophageal varices, gastrointestinal bleeding, ascites, hepatorenal syndrome,

and hepatic encephalopathy [14, 134, 10, 202]. Esophageal varices in particular

continue to be the leading cause of death in patients with cirrhosis [176]. Acute

esophageal varices, a direct consequence of increasing PVP, have been associated

with a mortality of 20% within 6 weeks and immediate mortality of 5-8% [14].

Normal baseline hepatic venous pressure is 1-5 mmHg [69] and portal hypertension

is defined as any PVP greater than this [134]. However, clinically significant portal

hypertension is defined as a hepatic venous pressure gradient (HVPG) greater than
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10 mmHg [70, 41]. Elevated HVPG is shown to predict clinical decompensation from

cirrhosis, and produces better predictive accuracy for the prognosis of patients with

liver disease than commonly used methods such as MELD or Child-Pugh scores [146,

108]. Various studies have shown that variceal bleeding and other major consequences

of increasing PVP do not occur with HVPG measurements below 12 mmHg [187,

55]. The ability to distinguish clinically significant PVP would be important for

prognostic and treatment purposes.

Monitoring of PVP is important in the clinical setting. It can be used primarily to

guide treatment, as lowering the HVPG to below 12 mmHg is predicted to reduce the

serious clinical sequelae of advancing liver disease and increasing hepatic pressure.

Pharmacologic decrease of PVP has been associated with a concurrent improvement

in liver function [20], and baseline PVP measurements have been shown to predict

response to various pharmacologic treatments [20]. Measurement of PVP can also

be useful in surgical planning, as elevated PVP is associated with increased mortality

from abdominal surgery [113]. Current standards of treatment now suggest targets

of pharmacologic lowering of HVPG 10-20% from baseline or decrease of HVPG to

below 12 mmHg [14, 187, 55]. These targets have been shown to improve clinical

outcomes through protection from variceal bleeding, formation of ascites, develop-

ment of hepatorenal syndrome, and death in follow up [70, 181, 1, 39, 64]. The

diversity of patient response to pharmacologic treatment as well as the variety of

treatments available suggests that repeated measures of PVP would be desireable

[16, 6, 104, 79]. Thus, a repeatable and inexpensive method for measuring PVP in

vivo would be a highly desireable clinical tool.

1.2 Current methods for the measurement of portal venous pressure

Current methods of monitoring hepatic venous pressure rely on invasive or ultrasonic

approaches. The invasive approaches tend to be more reliable but are expensive and
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can be associated with side effects. The ultrasonic approaches have the advantage of

being noninvasive and inexpensive but are less accurate. The most commonly used

invasive approach to measuring hepatic pressure relies on occlusion of the hepatic

vein using a balloon catheter to measure wedged hepatic pressure [69] and mea-

suring the difference between this pressure and the free hepatic venous pressure.

Essentially, this measurement of HVPG measures the gradient between the portal

vein and the outflow into the inferior vena cava [69]. This measurement has been

shown to correlate well with PVP in patients with cirrhosis [69, 174]. The rate of

successful catheterization has excedes 95% in recent years with skilled operators [69].

However, the expensive nature of an invasive approach, combined with the need for

specialized training and equipment, has prevented the widespread adoption of HVPG

monitoring [173]. Against this backdrop, a noninvasive approach to HVPG moni-

toring would lead to improved pharmacologic treatment planning for patients with

worsening cirrhosis as well as increased adoption due to decreased cost.

Ultrasound is deployed widely in the evaluation of advancing liver disease. It can

be used to look at the liver morphology as well as measurement of hepatic blood flow

parameters for hepatic venous pressure assessment [197]. The two major effects of

increasing portal venous pressure as a result of advancing liver disease on hepatic

blood flow are (1) a decrease in blood flowing through the portal vein and (2) a re-

sultant increase in blood flow in surrounding smaller blood vessels, called collaterals

[16]. A major advantage of using ultrasound for this application, in addition to its

noninvasive nature, is that qualitative investigation - such as location and function-

ality of collateral blood flow - can be evaluated in addition to quantitative metrics

such as doppler ultrasonography. Color doppler ultrasonography (cDUS) is partic-

ularly useful for identification of increased collateral blood flow, but does not very

accurately quantify decreased blood flow in the portal vein [197, 172]. Estimates

of decreasing portal venous velocities as measured using duplex doppler ultrasound
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(dDUS) are more accurate than those obtained using cDUS, but standardized values

for diagnosis have not yet been developed because of variations in results obtained

with different systems and personnel [197, 42, 154, 196, 80]. Thus, from a clini-

cal perspective, a method for PVP measurement that could provide the noninvasive

and qualitative insights of ultrasonography with superior quantitative reproducibility

would be highly desireable.

1.3 Use of stiffness metrics to evaluate hepatic venous pressure

Recently, a novel approach using stiffness metrics for noninvasive hepatic pressure

characterization has been proposed. Noninvasive estimates of liver stiffness can be

achieved using a variety of imaging techniques, but all utilize the same underlying

mechanical assumptions and phenomena. Essentially, a mechanical shear wave (de-

fined as a wave in which the tissue displacement direction is perpendicular to the

propagation direction) is excited and tracked in the tissue [68, 195]. Such methods

can rely on tracking an externally-excited shear wave using either ultrasonic track-

ing, such as the transient elastography (TE) technique [157], or MRI-based tracking,

termed magnetic resonance elastography (MRE) [78, 165]. Alternately, shear waves

can be excited remotely using acoustic radiation force provided by the same ultra-

sound transducer used to track the shear waves [160, 116, 7, 52]. The advantages

of the radiation force based approaches are that they use a clinical diagnostic ultra-

sound scanner and transducer, so they can be combined with qualitative ultrasound

approaches for liver interrogation and included in a standard hepatic exam. They

also directly couple the mechanical excitation into the liver, which overcomes some

of the challenges faced by external vibration methods in larger patients and patients

with ascites. The work described herein focuses on acoustic radiation force impulse

(ARFI)-induced shear wave induction and tracking using a clinical diagnostic system,

an approach which is described in more detail in Chapter 2.
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Across all methodologies, shear wave speed (SWS) based estimates of liver me-

chanical properties have been observed to increase with PVP. Transient elastography

has been the most widely explored with increases in its liver stiffness measures di-

rectly correlated with elevated hepatic pressures in animal models [107] and clinical

patients [29, 186, 155, 25, 97]. Liver stiffness estimates based on TE have also

been shown to predict long term complications from cirrhosis in patients similarly to

HVPG estimates [149]. However, the main drawback of using liver stiffness estimates

as a proxy for measuring PVP is that measurements of liver stiffness using transient

elastography [168, 141, 28, 54], magnetic resonance elastography [161, 78], and

radiation-force impulse induced shear wave elastography [128, 5], are all observed

to increase with advancing liver fibrosis stage [38, 46]. Thus, liver fibrosis stage may

provide a confounding effect on predictions of PVP using stiffness metrics. This be-

havior may also help explain the large variability in stiffness estimates at high hepatic

pressures and fibrosis stages that has been observed in some studies [184, 141].

In addition to increases in stiffness metrics of the liver, SWS increases have also

been observed in the spleen as a result of elevated PVP. MRE measures in animal

models [112] as well as the clinical [171] setting have suggested that increasing

PVP leads to higher SWS estimates in the spleen. These findings of increasing

splenic stiffness with higher PVP have also been reported using radiation force based

methods [170, 60]. In some cases, splenic stiffness from radiation force methods

[170] and TE [169] has also been correlated with higher risk esophageal varices.

Radiation force induced SWS estimates in the spleen have also returned partially

toward normal after partial normalization of hepatic pressures with transjugular

intrahepatic portosystemic shunt placement [60]. However, splenic stiffness is also

increased generally in the presence of advancing hepatic fibrosis, which may lead to a

confounding effect on the ability of splenic stiffness estimates to correlate with PVP

metrics [171, 169].
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Despite the promise shown by observations of increasing SWS-based stiffness

estimates in the liver and spleen with higher portal venous pressures, the confounding

effects of fibrosis stage on both of these measures suggest that further investigation

is necessary into the mechanism by which these SWS increases are observed.

1.4 Theoretical factors that influence shear wave speed metrics

The two most common parameters that have been reported to affect the relation-

ship between SWS estimates and underlying hepatic material properties are time-

dependent, or viscoelastic, effects and strain-dependent, or nonlinear hyperelastic,

effects. Viscoelastic effects on shear wave speed estimates manifest through disper-

sion as a change in phase velocity of the wave propagation as a function of fre-

quency of shear wave speed excitation [159, 68]. The viscoelastic properties of

tissue can be explored using external vibration [51, 22], magnetic resonance elastog-

raphy [95], harmonically modulated radiation force excitations [33], and radiation

force impulse based approaches [191, 110]. By contrast, the nonlinear properties

of tissue-mimicking materials manifest as a change in SWS estimates as a function

of material deformation. The examination of these properties using ultrasonic ap-

proaches has been explored in the context of acoustoelasticity experiments, where

materials are deformed a known quantity and the change in SWS with applied strain

is monitored [67]. Using various invasive and ex-vivo mechanical testing meth-

ods, the liver has been shown to have both viscoelastic and nonlinear behavior

[86, 2, 114, 111, 82, 162, 103, 177]. The effect of portal venous pressurization on

shear wave speed estimates is hypothesized to be nonlinear rather than viscoelastic

because the excitation frequencies remain constant in the different methods used to

observe this behavior and the deformation state of the liver is considered to be time-

independent, due to the fact that the pressure remains relatively constant throughout

interrogation of the liver stiffness. In this thesis, we present an experiment designed
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to test this hypothesis and to demonstrate that the stiffening effect of PVP is a

product of nonlinear behavior in Chapter 3.

1.5 Investigation of hepatic nonlinearity

Classical SWS-based exploration of material nonlinear properties relies on placing

the material under a known deformation and tracking the change in SWS as a result

of this applied strain [67, 163]. An example derivation for the SWS response to

uniaxial compression in a nonlinear Mooney-Rivlin material as described by these

types of experiments is described in Appendix A. The geometry of the pressurized

liver, however, does not allow for simple modeling of the deformation that results

from increasing PVP. The addition of fluid to the material observed during pres-

surization [151] suggests that it is unlikely to be represented by a simple uniaxial

stress experiment because expansion is expected to be uniform in all directions. In

order to explore the relationship between hepatic deformation and SWS estimates

in the context of increasing PVP, quantitative tools to measure hepatic deformation

in three dimensions were developed and implemented in this thesis. The methods

used for 3-D ultrasound based interrogation of hepatic displacement are described in

Chapter 4. Simulations (described in Chapter 5) were performed to validate the

ultrasound-based methods of displacement and strain estimation in 3-dimensions.

The tools described in Chapters 4 and 5 were then combined with the experimental

setup developed in Chapter 3 to explore the relationship between shear wave speed

and deformation in the liver with increasing PVP in Chapter 6. The hypothesis

developed and tested in this work utilizing the experiments described is that shear

wave speed estimate increase with increasing portal venous pressure occurs as a result

of a nonlinear hyperelastic behavior and is associated with a corresponding increase

in measures of hepatic strain.
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2

Background

2.1 Ultrasound Imaging

Classical ultrasound imaging systems provide real-time 2 or 3 dimensional images of

tissue. They rely on generation of sound pulses and detection of returning echoes us-

ing a transducer composed of piezoelectric elements that convert voltage to pressure

and vice versa for the returning waves. A traditional 2-dimensional image is com-

posed of many amplitude or A-lines at each lateral position in which the displayed

brightness is related to the amplitude of the received signal at each depth (related to

arrival time by the speed of sound). A block diagram of an ultrasound imaging sys-

tem can be seen in Figure 2.1. Sound waves are longitudinal waves that propagate

through periodic perturbations in local pressure and compression. This propagation

is described by the speed of sound (co), which depends on the bulk modulus (B) and

material density (ρo), as shown in Equation 2.1.

c “

d

B

ρo
(2.1)

The varying amplitudes in an ultrasound image that provide the basis for contrast
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are related to acoustic impedance (Z) differences (see Equation 2.2 in which Z is

the acoustic impedance, ρo is the material density, and co is the speed of sound in

the material)

Z “ ρoco. (2.2)

Figure 2.1: Flowchart of an ultrasound imaging system. The grey shaded regions
on the flowchart are those modified in generating and tracking displacements caused
by Acoustic Radiation Force Impulse (ARFI) excitations.

Attenuation of ultrasound pulses in tissues can occur due to two primary effects:

scattering and absorption. For an idealized tissue composed of Rayleigh scatterers,

the scattering will depend on the frequency of excitation, radius, compressibilty, and

density of the scatterer as compared with the surroundings (usually assumed to be

water) [36]. Most attenuation of ultrasound pulses in tissues occurs due to absorption

[133], which describes the loss of ultrasound signal intensity with propagation due to

the transfer of energy from the propagating ultrasound wave to the tissue.
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2.2 Acoustic Radiation Force

Acoustic radiation force relies on the transfer of energy from the propagating ul-

trasound wave to the tissue, causing a slight (µm) displacement in the direction of

wave propagation [131]. Loss of acoustic energy during propagation in tissue occurs

due to both scattering and absorption, and both mechanisms can lead to radiation

force [117]. However, absorption provides the majority of tissue attenuation, so it is

assumed to be the primary source of observed soft tissue displacement. Under the as-

sumptions of tissue behaving as an incompressible linearly viscous fluid at ultrasonic

frequencies and plane wave propagation of the ultrasound waves, the equation for

radiation force (F [kg/(s2cm2]) as a function of temporal average acoustic intensity

(I [W/cm2]), amplitude attenuation coefficient (α [Np/m]), and speed of sound (co

[m/s]) is [121]:

F “
2αI

co
(2.3)

As implemented for the ARFI imaging described herein, standard clinical ul-

trasound scanners are used to generate impulsive acoustic radiation force in tissue

[131]. The acoustic radiation force is localized to a region of excitation (ROE) that

is determined by the focal configuration of the system and attenuation of the tis-

sue. This ROE is usually within 2 mm lateral extent ˆ 10-20 mm axially ˆ 0.5-2

mm in the elevation dimension in the tissue and 60-400 µs in duration [131] (see

Figures 2.2 and 2.3). Ultrasound-based displacement tracking methods (see sec-

tion 2.3) are used to monitor the mechanical response of the tissue through time

[131, 115, 116, 118, 119]. Commonly observed tissue mechanical behaviors when

excited by ARFI are discussed further in section 2.4.
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Figure 2.2: Diagram of a typical dimension nomenclature and distribution of an
ultrasound image.

2.3 Ultrasonic Displacement Tracking

ARFI based imaging requires the generation and tracking of local displacements

in tissue. ARFI generates axial displacements in the direction of ultrasound wave

propagation (away from the transducer) of magnitude approximately 0.1-0.01(λu),

where λu is the ultrasound wavelength [138]. In order to track these types of

displacements, the pushing beam is preceeded by a reference line and followed by a

series of tracking beams in a typical A-line configuration. These tracking beams can

either be on the axis of the push to generate a qualitative stiffness map of underlying

tissue [127, 131, 152], or offset from the push in various lateral locations to monitor

the associated shear wave propagation away from the ROE, which can be used to

generate a quantitative stiffness estimate of underlying tissue (see section 2.6). The

most commonly used techniques for axial displacement estimation caused by an ARFI

excitation are normalized cross correlation, Kasai’s algorithm, and Loupas’ algorithm
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[136, 85, 100].

For the work described herein, the Loupas phase shift estimator has been used

[137, 100]. The phase shift of the signal between subsequent tracking lines can be

converted to a displacement estimate at each axial position using an assumed speed

of sound.

Sources of Error in Displacement Estimation

Displacement tracking with ultrasound is subject to many sources of error, primarily

decorrelation, electronic noise, and motion. There are two major types of errors

that are observed when using the Loupas phase-shift estimator: phase wrapping and

jitter.

Phase wrapping errors can be mitigated by having a high pulse repetition fre-

quency (PRF) in order to prevent aliasing errors. In addition, nonlinear post-

processing algorithms that identify discontinuities in displacement estimates can be

used to limit displacement estimates from ´λu{2 to λu{2 [11, 190].

Displacement estimation relies on determination of time or phase shift between

two partially-correlated signals. Small error estimates (less than λu
2

) lead to increase

in displacement estimation variance (jitter). Jitter can be caused by signal decorrela-

tion, noise, and sampling effects [190]. The lower bound for displacement estimation

jitter of cross correlation based estimates has been related to the Cramer-Rao Lower

Bound (CRLB) [137, 190, 125]:

Jitter ě

d

3

2f 3
c π

2T pBW 3 ` 12BW q
r

1

ρ2
p1`

1

SNR2
q2 ´ 1s (2.4)

Where Jitter depends on signal-to-noise ratio (SNR), fractional bandwidth of

the transducer (BW ), kernel size (T ), correlation coefficient between reference and

tracked RF-data (ρ), and center frequency of the tracking (fc).
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As we might expect, jitter reduction can be achieved with higher tracking fre-

quency, higher transducer bandwidth, increased kernel size, and better correlation

between tracked lines. For the experimental setups described herein, the standard

deviations of on-axis displacement magnitudes at the focus of excitation (jitter) is

experimentally determined to be approximately 1.5 µm for our experimental setup

[190, 137], providing a lower bound on the precision of axial displacement estimates.

2.4 Acoustic Radiation Force Impulse (ARFI)-based imaging

The dynamic response of soft tissue to ARFI excitation relies on the properties of the

ultrasonic system used for excitation and on the underlying material properties of the

tissue. These have primarily been studied using ultrasonic tracking combined with

displacement estimation methods discussed in sections 2.2 and 2.3. An example

of the soft tissue response to an ARFI excitation from mechanical finite element

simulations is shown in Figure 2.3 [131].

The axial region in which the ARFI excitation remains constant in the lateral

and elevation dimensions, called the depth of field (DOF), can be estimated [36]:

DOF “ 8F 2λ (2.5)

Where F is the F/# of the focal configuration used for imaging (F “ z
D

) equal to

the focal depth (z) divided by the aperture size (D). In Figure 2.3, the excitation

frequency is 7.27 MHz, and the DOF is calculated to be 1.7 mm axially. There are

two types of information that are usually generated by exciting and tracking ARFI

displacements in a particular DOF. The first, qualitative stiffness imaging, is aimed

at generating a relative stiffness map for identifying mechanical heterogeneities in

tissues [129, 152]. The second, shear wave elasticity imaging (SWEI) targets the

propagation of the axial displacement transverse wave laterally in tissue to generate

a quantitative estimate of shear wave speed (SWS) [160].
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Figure 2.3: Examples of simulated axial displacements (as represented by the col-
orbars in units of µm) at 0.2 msec (left column) and 0.4 msec (right column) after
the ARFI push beam in a soft (Ey = 5 kPa, top row) and stiff (Ey = 80 kPa, bot-
tom row) elastic solid [130]. Simulations were performed for a SIEMENSTM14L-5
transducer focused at 5.5 mm in depth and using 7.27 MHz for push beams. Both
the higher amplitude displacement in the softer material as compared with the stiffer
material, and the slower propagation of the axial displacement laterally (in a trans-
verse or shear wave) in the softer material demonstrate the potential for ARFI-based
imaging to analyze tissue mechanical properties.

Qualitative Stiffness Imaging

As observed in Figure 2.3, the magnitude of ARFI-induced displacement varies be-

tween stiffer and softer materials [120]. The displacement magnitude also depends

on other factors such as attenuation, aberration, and focusing, so displacement mag-

nitude images are primarily used for imaging relative mechanical properties in a
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particular area of tissue. These types of qualitative images are generated by track-

ing on the axis of the ARFI excitation. An example of this type of image from

experimentally-acquired datasets using the Siemens ACUSONTMclinical S2000 ul-

trasound scanner and a 14L-5 linear array (Siemens Medical Systems, Ultrasound

Group, Issaquah, WA, USA) at 7.27 MHz and F/1 focal configuration is shown in

Figure 2.4.
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Figure 2.4: Qualitative stiffness images of a 4 mm diameter stiff lesion in a tissue-
mimicking phantom (Computerized Imaging Reference Systems, Norfolk Virginia)
acquired by tracking along the axis of the ARFI excitation. The phantom has
an acoustic attenuation of 0.7 dB/cm/MHz. Experiments were performed with a
SIEMENSTM14L-5 transducer focused at 5.5 mm in depth and using 7.27 MHz for
push and track beams. Displacements in subfigures a,b, and c are shown on a scale
from zero to 8 microns at 0.2 msec after the ARFI excitation. The brighter areas
represent greater displacements which correspond to softer materials. Subfigure a
shows the results from an excitation focused at 3.5 mm axially, subfigure b shows
the results from an excitation focused 5.5 mm axially, and subfigure c shows the
results from an excitation focused at 7.5 mm axially. Subfigure d shows the average
of the three focal zone images acquired with focal gain correction and a 0.4 ˆ 0.6
mm median filter applied. Because displacement magnitude depends on a variety
of factors including the ultrasound power supply, tissue attenuation, and geometric
lesion effects, the displacement ratio cannot be used as a quantitative measure of
stiffness. It can, however, be used as a qualitative depiction of areas that are stiffer
or softer than others in the same field of view.

Figure 2.4d demonstrates how the limitations of a confined focal region can be

mitigated by using information from several focal configurations combined with gain

correction and median filtration. Relative stiffness imaging can be used to identify

mechanical inhomogeneities in tissues [152, 201].
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Shear Wave Elasticity Imaging

Tissue stiffness can be quantified using shear wave imaging methods [160, 61, 116,

66]. Acoustic radiation force-based methods have yielded consistent and informative

liver stiffnesses in clinical subjects with different stages of fibrosis, commonly rely-

ing on time-of-flight (TOF) calculation algorithms to identify the arrival time of the

wave at various lateral locations [128, 192]. Ultrasonically-tracked displacements

through time at each lateral position are used to identify the arrival time for SWS

approximation [132, 156]. After determination of SWS, the relationship between

the shear wave speed and underlying tissue mechanical properties can be inferred

by choosing a specific tissue mechanical model. Often, material linearity, isotropy,

incompressibility, and elasticity are assumed [128, 158, 56, 110]. Under these con-

ditions, the shear wave speed (cT ) is related to shear modulus(µ) and density (ρ)

as:

cT “

c

µ

ρ
(2.6)

In this thesis, shear wave elasticity imaging (SWEI) relies on ARFI-based quanti-

tative stiffness estimates in which ARFI pushing beams are held at a constant lateral

position and each followed by sequential ultrasonic tracking at various locations. A

diagram of this experimental configuration is shown in Figure 2.5. A representative

dataset acquired in a tissue-mimicking phantom is shown in Figure 3.2.

As shown in Figure 3.2, the peak displacement moves laterally in a homogenous

medium at a constant speed. While ordinarily displacement estimates are expected

to begin and end at zero, system artifact, transducer face heating, and master clock

jitter as well as undersampling may contribute to the nonzero initial and final dis-

placements. Motion, jitter, and sampling rate limitations can also lead to SWS

estimation error. In this work, iterative outlier removal is used to generate TOF es-

timates in order to better estimate shear wave speeds with noisy data. This method
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Figure 2.5: Diagram of shear wave propagation as generated by an acoustic radi-
ation force impulse.

is based on the random sample consensus (RANSAC) algorithm and has been vali-

dated [192]. All datasets with fewer than 40% outliers removed during the iterative

line fitting process were kept for shear wave speed calculations. Figure 2.7 shows

the precision of RANSAC-based SWS estimation in calibrated tissue-mimicking elas-

ticity phantoms. The precision of shear wave speed estimates is observed to worsen

with increasing shear wave speed due to limitations in temporal sampling with the

system used.

The primary goal of the work in this thesis is to discover the underlying re-

lationship between shear wave speed estimates in excised canine livers and tissue

mechanical properties. Appendix A describes a derivation in which a nonlinear

model (Mooney-Rivlin) is assumed and shows the resulting change in shear wave

speed that can occur in a deformed nonlinear material [17]. The experiments and
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tools designed were devoted to determining whether the liver behaves nonlinearly

when pressurized and to elucidating the quantitative relationship between the tissue

deformation and the shear wave speed changes with increasing hepatic pressure.
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3

The Impact of Hepatic Pressurization on Liver
Shear Wave Speed Estimates in Constrained vs.

Unconstrained Conditions

This chapter has been published in the journal Physics in Medicine and Biology 57(2)

pages 329-341 (2012). This work was chosen by the editor to be highlighted in an

article in MedicalPhysicsWeb on Jan 18, 2012.

3.1 Abstract

Increased hepatic venous pressure can be observed in patients with advanced liver

disease and congestive heart failure. This elevated portal pressure also leads to vari-

ation in acoustic radiation-force derived shear wave based liver stiffness estimates.

These changes in stiffness metrics with hepatic interstitial pressure may confound

stiffness-based predictions of liver fibrosis stage. The underlying mechanism for this

observed stiffening behavior with pressurization is not well understood, and is not

explained with commonly-used linear elastic mechanical models. An experiment was

designed to determine whether the stiffness increase exhibited with hepatic pressur-

ization results from a strain-dependent hyperelastic behavior. Six excised canine
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livers were subjected to variations in interstitial pressure through cannulation of the

portal vein and closure of the hepatic artery and hepatic vein under constrained

conditions (in which the liver was not free to expand) and unconstrained conditions.

Radiation force derived shear wave speed estimates were obtained and correlated

with pressure. Estimates of hepatic shear stiffness increased with changes in intersti-

tial pressure over a physiologically relevant range of pressures (0-35mmHg) from 1.5

to 3.5 m/s. These increases were observed only under conditions in which the liver

was free to expand while pressurized. This behavior is consistent with hyperelastic

nonlinear material models that could be used in the future to explore methods for

estimating hepatic interstitial pressure noninvasively.

3.2 Introduction

Advanced chronic liver disease (cirrhosis) is the twelfth leading cause of death in the

United States with an approximate incidence worldwide of 1 in every 1,000 subjects

[63]. The progression of cirrhosis is marked by two important consequences: liver

dysfunction, and portal hypertension [63]. Liver dysfunction is often characterized

using a combination of serum testing and liver biopsy, while portal hypertension is

usually measured by hepatic venous pressure gradient (HVPG). Ultrasound provides

an opportunity to evaluate two aspects of clinical hepatic disease that are tradition-

ally measured invasively: liver fibrosis and HVPG [53]. The first, liver fibrosis,

has been extensively studied with relation to comparing biopsy-based fibrosis stage

to quantitative estimates of liver stiffness [126, 58, 199, 18, 28, 5]. Specifically,

Transient Elastography [158], Magnetic Resonance Elastography [78], and Acoustic

Radiation Force Impulse (ARFI) [192, 126, 87, 143, 5] based quantitative estimation

of tissue stiffness have been successful in distinguishing fibrosis stage noninvasively.

Recent studies have suggested that ultrasound-based estimates of liver stiffness also

increase with hepatic venous pressurization [107, 185, 25, 149], but the underlying
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mechanism for this observed stiffening is not understood.

HVPG measurement in liver disease is important for predicting disease progres-

sion, guiding treatment, and longitudinal monitoring [63, 15]. HVPG has been

shown to be the most robust predictor of disease progression, or decompensation

in patients with cirrhosis [146]. Decompensated cirrhosis is associated with a 30%

decrease in 1-year survival for patients with cirrhosis, and is characterized by variceal

bleeding, encephalopathy, and jaundice [40]. Specifically, increased HVPG above 10

mmHg (from 5 mmHg normal) predicts variceal bleeding, decompensation of cirrho-

sis, and hepatocellular carcinoma development [39, 21, 88, 98]. In addition to its

prognostic value, lowering HVPG pharmacologically in a cirrhotic patient to below

12 mmHg or 20% decrease from baseline significantly decreases risk of hemorrhage,

ascites, encephalopathy, and death [39, 188]. Finally, prediction of portal pressure

can inform treatment, such as life expectancy prediction for liver transplant guidance

[40] and outcome and safety estimates for antiretroviral therapy in patients with hep-

atitis C virus related cirrhosis [141]. HVPG is useful at all stages of liver disease, for

prognostication, longitudinal tracking, or treatment decision-making purposes [106].

Unfortunately, current methods of HVPG measurement involve portal vein catheter-

ization, which is highly invasive, expensive, and can lead to complications such as

infection [106, 142]. Clearly, a non-invasive metric for HVPG measurement would

be highly beneficial to reduce these risks and improve liver disease treatment. The

greatest current challenge to measuring HVPG noninvasively using elasticity met-

rics remains that the stiffening observed with advanced fibrosis cannot currently be

distinguished from that which may be due to elevated HVPG [149]. This study is

aimed at exploring differences in the underlying tissue behavior for these two stiff-

ening effects observed in advanced liver disease.
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3.3 Background

Tissue stiffness can be quantified using shear wave imaging methods [160, 61, 116,

7, 32]. Acoustic radiation force-based methods have yielded consistent and informa-

tive liver stiffnesses in clinical subjects with different stages of fibrosis, commonly

relying on time-of-flight (TOF) calculation algorithms to identify the arrival time of

the wave at various lateral locations [5, 126, 192]. Ultrasonically-tracked displace-

ments through time at each lateral position are used to identify the arrival time for

SWS approximation [132, 156, 105]. After determination of SWS, the relationship

between the shear wave speed and underlying tissue mechanical properties can be

inferred by choosing a specific tissue mechanical model. Often, material linearity,

isotropy, incompressibility, and elasticity are assumed [126, 158, 56, 110]. Under

these conditions, the shear wave speed (cT ) is related to shear modulus(µ) and den-

sity (ρ).

cT “

c

µ

ρ
(3.1)

Shear wave speeds have been observed to increase with increasing pressure in

excised porcine livers [107] and in humans with elevated portal hepatic pressures

[184, 25, 149]. This result is inconsistent with the linear elastic assumptions expressed

in Equation 3.1. A change in estimates of liver stiffness with pressure implies a non-

linear relationship between stress and strain of a particular material [94, 122]. Non-

linear materials which display time-independent elastic behavior (such as rubbers,

foams, and tissues) are classically described by hyperelastic theories [19, 59, 122].

Hyperelasticity encompasses many possible nonlinear mechanical models of solids,

all of which are described by an assumed strain energy function. The strain energy

function can be used to derive strain-dependent stress-strain relationships under dif-

ferent boundary conditions. These models are relevant to the question of hepatic
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pressurization because there is evidence that increased hepatic pressure leads to a

change in the underlying strain state of the liver. Hepatomegaly, an increase in liver

size that would imply a change in underlying liver strain state, has also been reported

in patients with increased portal pressure due to right-sided congestive heart failure

[37, 53]. The question addressed in this work is whether deformation is necessary

to observe increases in measured shear wave speeds with increased hepatic pressure.

If the increase in stiffness metrics are associated with hepatic deformation, this re-

sult would imply that hyperelastic material models are necessary for describing this

behavior.

Extensive theoretical work in nonlinear mechanics has been devoted to analytic

predictions of wave speeds under different boundary conditions and material models

for soft solids like tissue [17, 45, 44, 200]. Acoustoelastic techniques take advantage

of these analytic predictions by characterizing tissue using measured wave speeds in

uniaxially compressed hyperelastic materials [163, 89, 178] and have been previously

reported using shear wave speed metrics in tissue-mimicking materials [30, 67]. In

acoustoelastic testing methods, an underlying hyperelastic expression is assumed,

and then the mechanical properties (or parameters of the constitutive model) are

determined by measuring wave speed in a compressed material and fitting the ex-

perimental results to the material constants of the assumed material model [89].

Hepatic pressurization does not lend itself to explicit characterization by acoustoe-

lastic techniques because of its geometric complexity and because the appropriate

hyperelastic model has not yet been determined. In particular, the hepatic pres-

surization condition does not correspond to that of uniaxial compression, which is

examined using acoustoelastic techniques. The study presented herein was designed

to test the hypothesis that liver material nonlinearity manifesting as finite strain

deformation with hepatic pressurization leads to increased shear wave speeds.
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3.4 Methods

3.4.1 Experimental Setup

Experimental Animals All experiments were performed using freshly harvested ca-

nine livers. The canines were obtained through the Duke University Vivarium, and

euthanasia was achieved through methods approved by the Duke Institutional An-

imal Care and Use Committee (IACUC). Three minutes prior to euthanasia, 3 mL

of heparin was given to the animal to prevent clotting in the liver during the exper-

iment. After euthanasia the canine liver was removed, with care taken to preserve

the inflow and outflow tracts.

Constrained versus Unconstrained Data Acquisition In order to evaluate the effect of

strain on pressure-related observations of shear wave speed changes, a custom experi-

mental setup (see figure 3.1) was constructed to evaluate SWS in the liver under first

constrained and then unconstrained conditions. A variable height watertight cylin-

der was designed with a top transducer window, water release valves and side portal

vein access port. The liver was placed within the cylinder, the hepatic artery and

vein were closed, and the portal vein was connected to the exterior through an ac-

cess port for pressurization and connection to a digital manometer (SPER Scientific,

Ltd., resolution = 0.075 mmHg). The liver was surrounded with phosphate buffered

saline (PBS), with a 4 cm PBS fluid path between the acoustic window and surface

of the liver. Air was removed and all valves were closed. Datasets were acquired

with pressurization with the valves closed (the constrained condition). Pressure was

increased in 5 mmHg steps from 0-45 mmHg by raising the saline reservoir. Then,

the reservoir was lowered to achieve 0 mmHg pressure and the valves were opened to

allow saline to overflow as the liver expanded with pressurization. The pressurization

and data acquisition protocol was repeated in this unconstrained scenario with the
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Figure 3.1: Diagram of the experimental setup for comparison between excised
canine livers that were or were not constrained from deformation throughout pres-
surization. The increase in hepatic pressure was accomplished by raising the saline
reservoir from the level of the portal vein as shown above.

valves open. At each pressurization step, 6 SWS datasets were acquired in the same

location with the speeds averaged together to provide a single SWS estimate for each

pressurization step.

3.4.2 SWS Estimation Methods

Ultrasonic Parameters Shear waves were generated with focused acoustic radiation

force in the ex-vivo livers using a Siemens ACUSONTMS2000 scanner and a 4C-

1 curvilinear array (Siemens Medical Systems, Ultrasound Group, Issaquah, WA,

USA) focused at between 35 mm to 50 mm operating at 2.6 MHz (F/# 3.5). The

system has been modified for user control of acoustic beam sequences and intensities,

as well as allowing access to the radio-frequency in-phase and quadrature (IQ) data.

Data acquisition was performed using a modified version of the Siemens Virtual

TouchTMtissue quantification tool, with custom processing as described below. The

transmit power was increased from standard settings in all collected datasets and the

corresponding acoustic output is shown in table 3.1. For each shear wave dataset,
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an 8 mm ˆ 5 mm region of interest (ROI) was interrogated. For each radiation force

excitation, or ”push,” four parallel lateral positions were tracked for a duration of

10 msec, with pulse repetition frequency (PRF) varying from 7-10 kHz with deeper

focii corresponding to a slower PRF. Twenty-eight lateral positions spaced 0.17 mm

apart were tracked for each push location, requiring 7 pushes. This sequence was

repeated once with a push on the left side of the ROI with tracking to the right

and once with the push on the right side of the ROI with tracking to the left.

The SWS estimates from each push location were then averaged to obtain one SWS

estimate. This protocol was repeated 6 times without moving the ROI and the 6 SWS

estimates were averaged to obtain one SWS estimate per pressurization condition

from each of 6 excised canine livers. Figure 3.2 shows examples of individual datasets

acquired in two different unconstrained pressurization conditions. Table 3.1 shows

the ultrasound imaging parameters in detail.
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Figure 3.2: Two sample unconstrained experimental datasets. Average axial dis-
placements over 4.4-5.1 cm in depth are shown at various lateral positions. The
ARFI push occurs at lateral position = 0 mm and the displacement through time
profiles as tracked ultrasonically and calculated by the Loupas estimation algorithm
[100] are shown. A 1000 Hz low-pass filter has been applied to the displacements
in the time dimension. At increased pressure, the displacement amplitudes are ob-
served to be smaller and the displacement peaks occur earlier in time, both of which
correspond to faster shear wave speed propagation and increased material stiffness.
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Dataset Processing Datasets were processed offline using MATLAB (MathWorksTM,

Natick, MA). Local displacement estimates were calculated using the Loupas phase-

shift estimator [100, 136]. Displacements from positions 1.4-8 mm lateral to the re-

gion of excitation were used to generate shear wave speed estimates using a RANSAC-

based time-of-flight algorithm [192, 132]. The RANSAC-based SWS estimator uses

an iterative removal of outliers method, which was exploited to eliminate datasets

that had greater than 50% outliers. Then, the shear wave speed is found from the

inverse slope of the time to peak displacement versus lateral position. Two example

datasets are shown in figure 3.3 after the iterative removal of outliers procedure.

This process was repeated for both the left and right side shear wave excitations for

each of the 6 repeated data acquisitions in a given liver at each pressurization level

to obtain a single SWS estimate. The mean SWS at each pressure for each of 6

canine livers were compiled and sorted into 11 equally-spaced bins between 2.25 and

45 mmHg to generate mean and standard deviation of SWS for each pressure bin

across all six animals.

Table 3.1: Radiation Force Sequence Parameters

Parameter Value
Ultrasound Scanner S-2000
Probe 4C-1
Push Frequency 2.67 MHz
Track Frequency 3.08 MHz
Push Cycles 400
Push Duration 180 µs
Push F# 3.5
Push Focal Depth (lateral) 3.5-5.0 cm
Elevation Focus 4.9 cm
Isppa (H20) 1544 W/cm2

Isppa (α = 0.3) 626 W/cm2

MI (0.3) 1.9
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Figure 3.3: The RANSAC-based iterative removal of outliers as implemented for
SWS estimation [192] is shown for the two datasets examined in figure 3.2. A
steeper time to peak displacement versus lateral position corresponds to a slower
shear wave speed as shown for the figure on the left at 1 mmHg hepatic pressure
as compared with the figure on the right at 44 mmHg pressure. Both datasets were
collected in the unconstrained case for which the liver was allowed to expand with
increased pressure.

3.4.3 Statistical Analysis

The SWS estimates at increasing pressures were compared between unconstrained

and constrained pressurization cases. An analysis of variance (ANOVA) as imple-

mented in MATLABTMwas performed on the acquired datasets to compare the con-

strained and unconstrained datasets at each pressure state [43]. In addition, a

linear regression analysis between the average SWS and pressure in all six experi-

mental animals for the unconstrained and constrained cases was used to identify the

dependence of SWS on pressure for the two experimental conditions.

3.5 Results

3.5.1 Constrained and Unconstrained Comparison

A sample set of data collected for the constrained/unconstrained conditions in a

single experimental liver is shown in figure 3.4.
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Figure 3.4: Comparison within one ex-vivo canine liver between a pressurized
case limited in volume (constrained, shown with circles) to one allowed to expand
(unconstrained, shown with boxes).

The compiled mean SWS binned into evenly spaced pressure bins across six ex-

periments can be seen in figure 3.5. When the liver is constrained, shear wave speed

does not vary with pressure (figures 3.4 and 3.5, red circles). When the liver is

unconstrained, the SWS is observed to increase with pressure (figures 3.4 and 3.5,

blue squares).

ANOVA were performed between unconstrained and constrained SWS across six

animal experiments at each pressure. Statistically significant (p ă 0.01) differences

between the two groups were observed in the pressure bins with mean pressure greater

than 20 mmHg. In order to determine the correlation between pressure and shear

wave speed estimates for each experimental condition, a linear regression analysis

was performed on the constrained and unconstrained datasets as shown in figure 3.6

and results from the linear fit are shown in table 3.2.
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Figure 3.5: Comparison between pressurization and SWS for constrained (shown
with circles) and unconstrained (shown with boxes) cases from independent measures
taken in six ex-vivo canine livers. Standard deviation between the experiments in
pressure and SWS are shown as horizontal and vertical errorbars respectively. The
* represent groups for which the p-value was less than 0.01.

Ex-vivo livers were also visually observed to expand in the unconstrained case but

not in the constrained case. These qualitative observations are shown in a comparison

between constrained and unconstrained B-mode screenshots at 45 mmHg in figure

3.7.

3.6 Discussion

HVPG measurement has an important role in the clinical management of hepatic

disease. Quantitative liver stiffness measurements have been shown to increase with

HVPG [107, 148, 184]. The value of the increase in SWS with pressure is comparable

to that observed with fibrosis [192, 126, 158, 199, 58, 161, 5]. Thus, with patients

suffering from advanced cirrhosis, it would be difficult to estimate HVPG from SWS
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Figure 3.6: Multiple linear regression results for the unconstrained (subfigure a)
and constrained (subfigure b) SWS estimates across all six experimental animals.
The p ´ values for the hypothesis that SWS does not change with pressure are 0
and .96 for the unconstrained and constrained cases respectively. More quantitative
results for the linear fit are shown in table 3.2.

estimates alone. The stiffening observed with advanced stages of fibrosis has been

suggested to occur due to increased fibrin and collagen deposition in the tissue [37,

199, 58]. The work described herein investigates a different mechanism that may

underlie stiffening observed with pressurization in order to provide the basis for

methods that could be used to differentiate the two effects.

In the unconstrained livers at pressure = 2 mmHg and constrained livers across

all pressures, the average SWS are 1.4˘0.1 m/s and 1.6˘0.2 m/s respectively. These

were not significantly different groups (p = 0.63) and are consistent with the 1-1.7

m/s range reported in surveys of healthy human livers [35, 8, 153]. The similarity

between the canine livers described herein and the normal and pressurized results

reported in the literature suggest that the strain-dependent mechanisms elucidated
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Experimental Condition y-intercept rm{ss slope r m{s
mmHg

s R2 p´ value

Unconstrained .66 .08 .82 ă .01
Constrained 1.56 0.001 2.7E-5 .96

Table 3.2: Linear regression comparing SWS and pressure for constrained and un-
constrained conditions across six experiments. The non-zero slope, high R2 value,
and low p ´ value of the SWS compared with pressure in the unconstrained case
indicate a significant correlation between SWS and pressure when the pressurized
liver is free to deform. In the constrained case, the high p´ value and low R2 value
indicate that there was no correlation between SWS and pressure increase observed
when the liver is not free to deform while pressurized.

Constrained Unconstrained

Figure 3.7: Screen images from the ultrasound scanner comparing constrained and
uconstrained canine livers at 45 mmHg. The green boxes shown above represent
the region of interest interrogated using shear wave speed metrics for each case. As
shown, the depth of the radiation force excitation varied from 3.5 cm to 5.1 cm in
depth from the transducer face. Regions of interest were selected for distance from
edges of the liver and relative homogeneity based on B-mode examination. Six shear
wave speed datasets were acquired for each pressure at one location of radiation force
excitation.

can inform clinical applications of elastography-based technologies. At the highest

clinically relevant physiologic pressures of 20-30 mmHg, the SWS estimates have

increased from 1.4 m/s to 3 m/s in the unconstrained case as shown in figure 3.5.

These results are similar to the „1.6 m/s at 5 mmHg to „4 m/s at 30 mmHg reported

in patients with Hepatitis C Virus (HCV)-related chronic liver disease [185]. These

results are also comparable to the SWS of 2.5-3.5 m/s reported for fibrosis stage 4
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using radiation force-based methods [192, 126]. Because fibrosis is related to an

underlying change in collagen content of the tissue [37] while pressurization does

not alter fundamental tissue material properties, the strain-based stiffening behavior

of pressurized liver observed in this work may provide an opportunity to distinguish

fibrotic stiffening from stiffening occurring secondary to pressurization.

The observed increase in volume with increased portal venous pressure (see fig-

ure 3.7), suggests that the liver is expanded during hepatic pressurization. This

increase in liver size suggests a deformation-dependent increase in shear wave speed

that is not consistent geometrically with compression-direction-dependent acoustoe-

lasticity theory. While the underlying theoretical basis of both SWS increases with

hepatic pressurization and changes in SWS predicted with acoustoelastic uniaxial

compression both rely on hyperelastic material properties, the relationship between

the applied stress and corresponding SWS will be different and likely depend on many

factors including underlying liver geometry. The liver was qualitatively observed to

increase in size with pressurization only in the unconstrained case (see figure 3.7),

but it was not possible to evaluate quantitative volume change with this experimen-

tal setup. This result supports the hypothesis that increases in liver stiffness with

pressurization arise from an increase in underlying strain condition, and can there-

fore be attributed to tissue nonlinearity. Limitations of this experiment relate to the

differences between the experimental setup and in-vivo conditions such as the lack of

perfusion or active physiologic response, and the difference in temperature between

the infusate („23 degrees Celsius) and normal physiology („37 degrees Celsius).

The good agreement between experimental results and reports from clinical human

literature suggest that these effects are likely to be small. The general increase in

SWS errorbar size with increasing SWS noted in figure 3.5 is an expected result

related to limitations in temporal and spatial sampling [192].

Table 3.2 shows the results from a linear regression analysis comparing SWS
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and increase in pressure for the constrained and unconstrained liver pressurization

experiments. There was a high correlation between increasing pressure and SWS

when the liver was free to expand (R2 “ .81, p ă .01, slope = 0.08 m{s
mmHg

). In the

constrained case, the SWS were not observed to change significantly with pressure

(R2 ă .001, p “ .96, slope = 0.001 m{s
mmHg

). These results show a statistically signifi-

cant relationship between SWS and increasing hepatic pressure only when the liver

is free to deform and no relationship when the liver is constrained from expansion.

The necessity of deformation to observe increase in SWS suggests that the stiffening

effect of pressurization on the liver may be similar to strain-stiffening reported in

collagen, kidney, prostate, and other biologic tissues [49, 59, 92]. These similarities

may amplify understanding of liver pressurization and provide the basis for using

nonlinear strain-stiffening models to quantitate liver pressure in vivo.

Hyperelastic behaviors have been previously reported in tissues [49, 92, 59, 179].

Additionally, nonlinear parameter fitting from compression or indentation testing

has been studied in liver tissue [24, 34, 81, 62], but in-situ testing of nonlinear

mechanical properties has not been previously reported. The experiments reported

herein provide the basis for exploring nonlinear hyperelastic behavior of the liver in-

situ or in-vivo using radiation force-based methods. The deformation observed with

hepatic pressurization may be useful for both elucidating the appropriate mechanical

models for liver and modeling the deformation observed with hepatic pressurization.

Determining the deformation state of the liver noninvasively using stiffness metrics

may provide a noninvasive hepatic pressure measurement tool in the future.

3.7 Conclusions

This work demonstrates that hepatic stiffening with increased pressure requires an

underlying tissue deformation indicating that a hyperelastic nonlinear model would

be reasonable to adopt for studying shear wave speed increases with hepatic pressur-
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ization. Because the mechanism of stiffening from fibrosis stage and pressurization

are different, this may provide the basis for distinguishing the two stiffening behav-

iors, resolving differences between different studies, and for longitudinal tracking of

HVPG for prognostic and treatment purposes.
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4

Developing and Validating Methods for Tracking
Liver Deformation

4.1 Motivation and Background

Understanding the mechanical properties of the liver relies on tracking the change in

strain state of the liver with increasing portal hepatic pressure. In order to accomplish

this goal, the deformation of the liver is tracked in two consecutive steps. First, tissue

displacement is calculated, and second, the tissue displacements are used to generate

estimates of tissue strain [31, 123]. This chapter describes the development and

validation of techniques used to calculate tissue displacement using cross correlation

of sequential received signals [31, 182, 190], while Chapter 5 discusses the simulations

performed to verify strain estimation methods. The imaging system used for the

experiments in Chapter 6 and described in Table 4.1 [57] was used. The goals of

the work described below were to determine the optimal displacement tracking kernel

size to use for hepatic displacement estimation and to quantify the displacement

estimation accuracy and precision. These results will inform the data processing

algorithms used in the strain simulations described in Chapter 5 and implemented
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to determine hepatic strain in the Chapter 6 experiments.

Ultrasonic displacement estimate resolution depends on both window size and

displacement magnitude [3, 144]. Three dimensional displacement estimation used

for quantifying tissue deformation suffers from the same potential sources of error

as the 1-D ultrasonic displacement estimates for radiation force based methods de-

scribed in Chapter 2.3. The variation of displacement estimates away from the true

displacement below a magnitude of λ
2

is referred to as jitter. Theoretical predictions

of the ideal kernel size for strain estimation suggest that there is a direct relation-

ship between displacement estimation jitter and strain estimate variance [31, 180]

as shown in Equation 4.1.

σ2
S ě

2σ2
τ

T∆t
(4.1)

In Equation 4.1, the variance of the strain estimate (σ2
S) depends on the variance

of the time delay estimator (σ2
τ ), the correlation window size (T ), and the shift

between the echoes (∆t) [180]. This theory predicts that a larger window size will

reduce strain estimation variance subject to the effects of decorrelation felt through

the displacement estimation jitter value. Decorrelation effects will dominate the

effects of displacement error on strain variance in the region of strains larger than

2% [123]. Various methods have been proposed in the literature to balance the

decreasing strain variance effect of a larger window size with the increasing strain-

derived decorrelation experienced during the initial correlation-based displacement

estimation due to that large window size. Axial displacement estimation kernels in

cardiac imaging have been used over a range of 1.8mm to 6.9mm [193, 96, 91]. In

addition to the variation in window size, the optimal number of dimensions used

in the cross correlation kernel and search region are subject to debate. In cardiac

strain methods used vary from use of a 1-D axial kernel in a 2-D search region
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[90, 96], to 2-D square kernels [91] to a 3-D kernel and search region [26]. While

increasing the lateral and elevational sizes of the kernel beyond one dimension can

lead to reduced resolution in those additional dimensions [75], they can also lead to

improved displacement estimation accuracy [75, 140, 93].

The goal of this study was to choose a displacement estimation kernel size that

would minimize displacement spatial variability under conditions of bulk motion,

in which no underlying spatial variability in displacement is expected. The results

achieved suggest that axial displacement estimation is much more accurate than

elevational or lateral displacement estimation accuracy, due to the phase information

and broad bandwidth that is present exclusively in the axial dimension [101, 183].

4.2 Methods

In order to analyze the methods proposed for determining hepatic displacement, an

experimental setup was used in which tissue-mimicking phantoms [73] were sub-

merged in a water bath 4 cm from the surface of the transducer. The transducer was

held with a motorized translation stage (model NM 3000, 0.1 µm precision, Newport

Corporation, Irvine, CA). Pure axial, lateral, and elevational motion were generated

in 25 µm increments from 25-125 µm in the axial dimension and 25-300 µm in the

elevational and lateral dimensions.

Table 4.1: Parameters Used for Displacement Tracking

Parameter Value
Ultrasound Scanner SC-2000
Probe 4z1c
Fc 2.8 MHz
Transmit Focus 8cm
Imaging Depth 5-7cm

The following experiments used the SC-2000TMscanner with the 4z1c matrix ar-

ray transducer (Siemens Ultrasound, Mountain View, CA) [57]. The ultrasonic
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parameters of this system are described in Table 4.1. Standard B-mode ultrasound

images were acquired and the autocorrelation of the speckle was calculated at a

depth of 5 cm in order to quantify system resolution. The full-width-half-max of the

speckle autocorrelation describes the system resolution in 3 dimensions [189]. This

information was used to predict optimal speckle tracking parameters. These results

are shown in Figure 4.1.
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Figure 4.1: Three-dimensional normalized autocorrelation of speckle for the imag-
ing parameters used.

Figure 4.1 suggests that axial kernels larger than 0.78mm (the FWHM of the

autocorrelation in the axial dimension) would be necessary to adequately sample the

data and achieve accurate displacement estimates without peak-hopping artifacts.

The lateral and elevational speckle size (as described by the FWHM) are 1.61 and

1.64 mm respectively, significantly larger than that observed in the axial dimension.

In order to characterize the behavior of the liver during pressurization, the optimal

displacement estimation strategy using the available transducer and ultrasound pa-

rameters was explored via experiments using known displacements generated by a

mechanical translation stage.

The results shown in Figure 4.1 describe the speckle size in the elevation and

lateral dimensions as 1.61 and 1.64 mm. In the case of translation stage bulk motion,
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which will be explored in this chapter, we would expect that larger displacement es-

timate kernel sizes in all three dimensions would lead to more accurate and precise

displacement measurement. However, Equation 4.1 reveals that larger displacement

estimation kernels in the context of tissue strain (rather than bulk tissue displace-

ment) will lead to strain decorrelation and larger strain estimation errors. This effect

has been shown to be much worse in the lateral and elevation dimensions than in

the axial dimension [26]. Thus, a balance of large enough displacement estimate

kernel size to generate accurate measurement with a small enough kernel to reduce

strain decorrelation artifacts is necessary. Based on a review of the literature on

multi-dimensional strain imaging, [26, 90, 91, 193, 93], a large axial kernel size

with respect to the wavelength (approximately 4λ) and small lateral and elevational

kernels with respect to the resolution width (0.4 and 0.6 mm) were tested.

Displacement Estimation

Because hepatic expansion is expected to occur in three dimensions, 3-D displace-

ment estimation techniques were utilized. This is expected to reduce displacement

estimation jitter as well as increase accuracy in cases where multiple dimensions of

displacement are observed [75, 140, 93]. Displacements were estimated using a 3-D

cross correlation approach described in [26]. Phase-sensitive normalized cross corre-

lation with grid slopes algorithm sub-sample estimation was used [48, 194, 65]. A 0.9

correlation coefficient cutoff was implemented for the displacement estimates. The

kernel and window sizes chosen correspond to the displacement estimation kernels

in cardiac imaging reported in the literature. Particularly, the specific axial kernel

sizes used have been observed over a range of 1.8 mm to 6.9 mm [193, 96, 91].
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Translation Stage Experiments

Bulk motion in the axial, lateral, and elevational dimensions was implemented using

a translation stage. In one experiment, the translation stage was moved at fixed

increments of 25-120 µm in the axial dimension and 25-300 µm in the lateral and el-

evational dimensions between 3-D B-mode volume acquisitions. These datasets were

used to characterize the displacement estimation accuracy and spatial variation in

each of the 3 dimensions. In addition, experiments were performed to characterize

the displacement estimate variability with changes in underlying speckle by gener-

ating 10 datasets with the same volume to volume displacement of 110 µm. The

variability in the same location in the B-mode volume but with different underly-

ing speckle was used to generate an estimate of displacement estimate jitter (σ2
τ in

Equation 4.1).

4.3 Results and Discussion

Translation stage experiments under conditions of bulk motion were performed to

determine the optimal kernel size for displacement estimation using this imaging

system. Various axial kernel sizes were tested on pure axial bulk motion while keeping

the lateral and elevational kernels to a constant size (0.45x0.50 mm in the lateral and

elevational dimensions respectively). Results are shown in Figure 4.2 and suggest

that axial kernel sizes above 0.65mm can accurately estimate displacements from

0-0.12mm.

Because displacement estimation jitter and bias appeared to decrease as a func-

tion of increasing axial displacement estimation kernel size, an axial kernel size of

2.88 mm was chosen (which corresponds to slightly larger than 4λ of the imaging

system) for further examination. Analysis was then performed to determine the op-

timal elevational and lateral kernel sizes as a function of displacement estimation
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Figure 4.2: Displacement estimates from 0.02-0.12 mm as a function of 7 different
axial kernel sizes (different colors, shown in mm). Errorbars show the spatial stan-
dard deviation of the displacement estimate over a 2x1.1x1.1 cm volume from 5-7
cm in depth. Lateral and elevational kernel sizes were kept constant at 0.40 and 0.45
mm respectively for the data shown.

accuracy, spatial variation, and bias.
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Figure 4.3: Two different lateral and elevational kernel sizes were tested on pure
axial motion using the translation stage. A 0.9 correlation coefficient cutoff was used
for the displacement estimation. A line with unity slope is shown in black. The R2

of the displacement estimates to this unity line is 0.99 for the smaller kernel (left)
and 0.99 for the larger kernel (right).

The lateral and elevational kernels tested in Figure 4.3 yielded accurate mean
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Effect of lateral and elevational kernel size on lateral displacement estimation
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Figure 4.4: Two different lateral and elevational kernel sizes were tested on pure
lateral motion using the translation stage. A 0.9 correlation coefficient cutoff was
used for the displacement estimation. A line with unity slope is shown in black. The
R2 of the displacement estimates to this unity line is 0.88 for the smaller kernel (left)
and 0.93 for the larger kernel (right).

Effect of lateral and elevational kernel size on elevational displacement estimation
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Figure 4.5: Two different lateral and elevational kernel sizes were tested on pure
elevational motion using the translation stage. A 0.9 correlation coefficient cutoff
was used for the displacement estimation. A line with unity slope is shown in black.
The R2 of the displacement estimates to this unity line is 0.48 for the smaller kernel
(left) and 0.50 for the larger kernel (right).
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displacement estimates to within 15 µm across all axial displacements, whereas biases

as large as 100 µm in magnitude were observed in the elevation (Figure 4.5) and

lateral dimensions (Figure 4.4) for large bulk displacements. No significant change in

displacement estimation bias was observed with increasing kernel size. These results

as a function of lateral and elevational kernel size are shown in Figure 4.6.
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Figure 4.6: Effect of kernel size on bulk displacement estimate bias. The axes are
changed between the axial plot and the lateral and elevation plots to provide infor-
mation about the slight differences observed in the kernel sizes tested. Three kernel
sizes were tested on pure axial, elevational, and lateral motion using the translation
stage. A 0.9 correlation coefficient cutoff was used for the displacement estimation.
The average bias for each displacement estimation volume across different kernel sizes
is shown above. The bias for each displacement magnitude does appear to increase in
magnitude in the lateral and elevational dimensions with kernel size, but the results
are not statistically distinguishable from each other.

Strain estimation relies on the assumption that all displacement estimates in the

same axial, elevation, or lateral location are the same. Thus, measurement of spatial

variation of displacement in a volume when we know all displacement estimates

should be identical was also examined in order to determine the optimal kernel size

for strain estimation. These results are shown in Figure 4.7. Spatial variation of

displacement estimate is observed to decrease slightly, though the differences were

not statistically significant, as a function of increasing elevation and lateral kernel

size. In the case of three different elevational and lateral kernel sizes tested with

a constant axial kernel size, displacement estimation bias and average correlation

coefficient magnitude did not change with increasing kernel size. These results are

45



Kernel Size Jitter with constant 110 µm Jitter in the liver
(mm3) axial motion between volumes (no motion)
2.88x0.20x0.23 3.23˘ 3.94µm 1.25˘ 0.75µm
2.88x0.40x0.45 1.92˘ 2.21µm 1.15˘ 0.72µm
2.88x0.60x0.68 1.28˘ 1.23µm 1.04˘ 0.68µm

Table 4.2: Comparison between axial displacement estimation jitter in hepatic
volume comparisons without motion and those with a constant inter-volume dis-
placement.

consistent with the expectation for a bulk motion case, but average decorrelation

between received echoes would be expected to increase with increasing kernel size in

the case of strain due to increasing decorrelation within the kernel itself [99].
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Figure 4.7: Effect of kernel size on displacement estimate spatial variability for
bulk motion. Three kernel sizes were tested on pure axial, elevational, and lateral
motion using the translation stage. A 0.9 correlation coefficient cutoff was used for
the displacement estimation. The spatial variation of each displacement estimate for
the corresponding translation stage motion direction is shown above and appears to
decrease with increasing elevation and lateral kernel size.

The displacement estimation jitter was also calculated in the case of multiple se-

quential volumes with known 110 µm displacement between each subsequent volume

as compared with displacement estimates in the case of no motion. These results are

shown in Table 4.2.

The expected jitter for all three dimensions of bulk motion is shown in Table 4.3.

There was a significant increase in lateral displacement estimation jitter as compared

with elevation estimation jitter in the case of 100 µm constant motion in subsequent
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Axial Jitter Lateral Jitter Elevation Jitter
1.28˘ 1.23µm 15.59˘ 6.9µm 5.08˘ 1.87µm

Table 4.3: Three dimensional displacement estimation jitter calculated for constant
velocity translation stage motion.

volumes. This relationship was not predicted by the previous studies of displacement

estimate accuracy or spatial variation, but could have a detrimental effect on the

potential for three dimensional strain estimation in the liver experiments.

Since strain estimation variance is dependent on displacement estimation jitter

magnitude (σ2
τ in Equation 4.1), the displacement estimation kernel size was chosen

to decrease the spatial variability and jitter of displacement estimate in the context

of bulk motion limited by the kernel sizes tested under the expectation that dis-

placement estimation jitter will dramatically increase in the context of tissue strain

[26]. This kernel size of 2.88x0.60x0.68 mm was chosen for the experimental efforts

to characterize hepatic deformation with increasing hepatic pressure.

4.4 Conclusions

Experiments were performed to validate the proposed methods for measuring hepatic

tissue displacement with increasing pressure. A 3-dimensional displacement estima-

tion kernel of 2.88x0.60x0.68 mm3 was selected to minimize spatial variability and

precision in the displacement estimate that would then be input to the strain cal-

culation algorithm. Displacement estimates in the lateral and elevation dimension

were significantly worse than the axial estimates by metrics of displacement estimate

bias and jitter. For displacements less than 100 µm, lateral and elevational bulk

displacements were able to be measured to within 50 µm and within 15 µm in the

axial dimension.
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5

Establishing methods used to calculate hepatic
strain

5.1 Motivation and Background

Understanding the mechanical properties of the liver as they relate to the effect

of hepatic pressurization relies on tracking the change in strain state of the liver

with increasing portal hepatic pressure. While Chapter 4 discussed the methods

explored to accurately calculate displacements in the case of bulk motion, it was

also necessary to verify the strain estimation methods used. Accurate description of

hepatic deformation during pressurization will form the basis for conclusions that can

be drawn about hepatic elasticity in the thesis work described herein. Simulations

were performed to characterize the accuracy of the ultrasonic imaging system used

as well as the post-processing algorithms for the purpose of strain estimation.

Strain can be calculated by differences between time delayed received echoes

[31, 182, 190]. In our case, the delays between signals were calculated in the form

of 3-D displacements using cross correlation, as described in Chapter 4. These

displacements were then input to the strain estimation algorithms to generate an
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estimate of the strain state of the deformed material being simulated.

The relationship between tissue displacement, deformation, and strain underly

our ability to deduce mechanical properties of tissue using ultrasound. We can begin

to explore this by looking at a model of a simple compression state in a cartesian

coordinate system with pure compression in the axial (x1) direction. The deformation

state is shown below in which the capital X (e.g. Xi) denotes the undeformed state

while the lowercase x (e.g. xi) denotes the deformed state.

x1 “ λX1

x2 “
1
?
λ
X2

x3 “
1
?
λ
X3

from which we can find the deformation gradient:

F “

¨

˝

λ 0 0
0 1?

λ
0

0 0 1?
λ

˛

‚ (5.1)

The relationship between the deformations in the x1 dimension as compared with

x2 and x3 are dictated by the assumption of incompressibility (which requires that

F11F22F33 “ 1). Most biological tissues can be accurately modeled as being incom-

pressible [2, 151, 27, 177, 175, 111]. The strain can be calculated for this general

deformation state as explained below. The incompressibility condition requires a par-

ticular relationship between the displacements imposed in the axial (x1) dimension

as compared with the other two dimensions in that without adding or subtracting

volume, a compression in one dimension requires equal expansion in the other two

dimensions. The displacement (ui) will be equal to the difference between the de-

formed state and the undeformed state. The derivative of the deformed state with
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respect to the undeformed state in the axial dimension is defined as λ below because

it also represents the stretch of the deformed material.

u1 “ x1 ´X1 “ λX1 ´X1 “ pλ´ 1qX1

u2 “ x2 ´X2 “
1
?
λ
X2 ´X2 “ p

1
?
λ
´ 1qX2

u3 “ x3 “ X3 “
1
?
λ
X3 ´X3 “ p

1
?
λ
´ 1qX3

The Lagrangian Strain Tensor (EKL is defined in Equation 5.2 using the spatial

derivatives of the displacement.

EKL “
1

2
p
BuK
BXL

`
BuL
BXK

`
BuM
BXK

BuM
BXL

q (5.2)

Thus, for the deformation state described by simple compression above, the strain

tensor will be:

E “

¨

˝

λ´ 1 0 0
0 1?

λ
´ 1 0

0 0 1?
λ
´ 1

˛

‚ (5.3)

Relating these quantities to more standard notation, the change in height in the

axial dimension (i.e. the change in “length” of the material: ∆l
l

) equals λ, which

equals 1 + E11 in the deformation state described. Since there are no shear strains

induced during compression (the off-diagonal zeros in Equation 5.3), the major

quantities needed to be calculated to generate an estimate of the strains are the

derivatives Bui
BXi

. In the case of static and constant strain, we expect these derivative

values to be the same at all positions, which implies that, for example, the axial

displacement will be expected to be the same at all elevation and lateral positions

that correspond to a specific axial position. This development of predictions about
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an incompressible material under uniaxial deformation informs the generation of

simulated materials for testing strain estimation algorithms. In the case of bulk

motion this would also hold true, but the derivative of the axial displacement as a

function of position would be zero.

The goal of this work was to validate methods for interrogating deformation of

the liver as portal venous pressure is increased. Accurate estimates of hepatic strain

will provide the basis for future development of tissue mechanical models. Using

the underlying theory of incompressible materials under uniaxial compression, strain

estimation methods were tested against finite element simulations. The strain calcu-

lation method of linear regression over a large strain estimation kernel was compared

with finite element strains using scatterer motion and tracked 3-D displacements of

simulated deformation.

5.2 Methods

Mechanical Simulations In order to test the strain estimation algorithm used to char-

acterize hepatic expansion, four compressive strains between 0.08% and 0.8% were

simulated using LS-DYNATM(LSTC, Livermore, CA). An implicit solver method

[77] was used and the compressive strain was achieved through axial compression

of the top nodes while fixing the bottom boundary of the phantom from any move-

ment. The phantom was simulated as an isotropic nearly-incompressible (ν “ 0.499)

solid with a Young’s Modulus of 4kPa and square elements. Details of the simulated

phantom size are shown in Table 5.1.

Table 5.1: LS-DYNATMparameters for simulation of tissue compression.

Parameter Value
Axial Extent 5 cm
Lateral Extent 1.5 cm
Elevation Extent 1.5 cm
Element Size 1 mm3
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Post-processing of the simulation results was performed using LS-PREPOSTTMand

MATLABTM(Mathworks, Natick, MA). Methods similar to those described in [131,

130] were used to generate scatterer fields corresponding to the simulated strains. A

scatterer density of 55,000 scatterers per cm3 was used with 8 independent scatterer

fields generated per strain simulation. For each scatterer field, the positions of the

scatterers were randomly determined, but amplitudes were held constant and not

varied. The number of scatterers was chosen as the minimum required to maintain

a signal to noise ratio in the tracked simulated detected data greater than 1.91.

Strain Estimation The strain estimation algorithm of fitting a line using least-squares

estimation on the displacement versus position was utilized [123]. In order to test

this, the displacement of the imposed scatterer fields was calculated prior to simu-

lation of the ultrasound motion tracking. Scatterers were limited to 5-7 cm away

from the transducer in the axial dimension. These displaced scatterers’ movements

were fit to a linear regression over a 2 cm strain estimation kernel. The slope of the

displacement vs position was calculated to generate a strain estimate.

Radiofrequency data in 3-D was simulated in Field II by tracking of the 8 scatterer

realizations with the 4z1cTM(Siemens Ultrasound, Mountain View, CA) matrix array

transducer using the parameters that correspond to the imaging case used in the

hepatic pressurization setup [130] (see Table 5.2). At 6 cm depth, the region of

interest interrogated by simulated tracking beams was 17mm x 15mm x 20mm in the

lateral, elevation, and axial planes respectively. Beams were spaced 0.8mm apart in

the lateral dimension and 1.0 mm apart in the elevation dimension (as compared to

0.798 mm and 0.99 mm respectively for the imaging system). The transmit F/# was

2 in both elevation and lateral with dynamic receive focusing applied. The center

frequency of the probe was simulated at 2.5 MHz with 100 MHz sampling.

Once the RF-data was simulated, post-deformation displacements were estimated
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Table 5.2: Comparison of Simulation and Experimental Parameters

Parameter Simulated Value Experimental Value
Ultrasound Scanner SC-2000
Probe 4z1c
Center Frequency 2.5 MHz 2.8 MHz
Focal Depth 0.08 m 0.08 m
Lateral Beam Spacing at 6 cm depth 0.8 mm 0.81 mm
Elevation Beam Spacing at 6 cm depth 1.0 mm 0.99 mm
Displacement Estimation Kernel 2.3x0.4x0.42 mm 2.88x0.60x0.68 mm

on demodulated IQ data (fdem = 2.5 MHz) using a 3-D cross correlation algorithm

with a grid-slopes sub-sample estimator [26]. The 3-D kernel used was 0.4mm x

0.42mm x 2.3mm and the search region was 0.8mm x 0.9mm x 4.6mm in the lateral,

elevation, and axial dimensions respectively, as calculated at 5cm depth. The exact

method used for displacement estimation as well as the verification of displacement

estimation accuracy for the bulk motion of scatterers was described in more detail

in Chapter 4.

Since the strain is expected to be constant through the region of interest, bulk

static strains were approximated as a linear regression to the slope of the displace-

ment estimate as a function of position [84, 175, 102]. Using a linear regression will

significantly decrease the effect of noise in the displacement estimate on the final

strain calculation as compared with a gradient operator [84]. In the case of constant

strain, strain variance can be reduced and SNR can be increased by lengthening the

strain estimation window and increasing the number of displacement estimates used

for the strain estimate [84]. This approach was evolved from methods to estimate

local strains using an approximation of the derivative from local time shift estimates

from received echoes [124]. In cases where the strain does not vary spatially, large

spatial shifts between measured displacement positions are shown to increase the

strain estimation SNR with an associated decrease in resolution [9, 167, 144].
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5.3 Results and Discussion

Axial Strain Estimation

The outputs from LS-DYNATMwere used as the gold standard in this simulation work

as they formed the basis of scatterer field placement and motion for the ultrasonic

tracking. The displacement and strain output from the finite element simulations

are shown in Figures 5.1 and 5.2. The imposed displacement gradient in each of

the strain cases can be clearly observed in Figure 5.1. Boundary-related artifacts

on the simulation strain state at the bottom of the solid model can clearly be seen

in Figure 5.2 for all strain cases. The region of interest is far from this boundary,

which should mitigate the effects of having a fixed bottom boundary (rather than

one which is free to move in the elevation-lateral plane). The gold standard strain

estimate upon which the strain estimate algorithm is tested is the mean of finite

element calculation in the simulation. Thus, the effect of a fixed bottom boundary

should be controlled for as it is included in the comparison.

The line fitting methods were verified by fitting a linear regression to the indi-

vidual scatterer displacements and compared with the average finite element strain

calculation in the region of interest. Eight different scatterer realizations were simu-

lated for each strain state. Examples of the scatterer displacements (with the mean

displacement subtracted so all displacements are centered about zero) and the linear

regression used to calculate strain for one speckle realization are shown in Figure

5.3. Good agreement can be observed between the strain estimate linear fit and the

scatterer displacements.

The axial strain estimates from LS-DYNATMare compared with the linear re-

gression to the scatterer displacements for the three different dimensions in Figure

5.4. For the 8 speckle realizations and each of the four deformation states tested,

the axial strain estimates based on linear regression of scatterer displacement and
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Figure 5.1: Axial displacement calculation from finite element simulations using
LS-DYNATM. The region of interest interrogated by the simulated transducer is
shown in black. The gradient of displacement can clearly be seen in the top row of
each image (the color limits of the images vary with different strains).

position agreed very well with the finite element simulated strains. The scatterer

input to Field II for simulation of the 3-D tracking are deforming as expected and

the proposed strain estimation algorithm is generating accurate estimates of strain

using a linear regression of displacement estimates and position of the scatterers.

The average error of the strain fit to the scatterer positions as compared with the

finite element strain output was 2.5% ˘ 0.4%.
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Figure 5.2: Axial strain calculated using LS-DYNATMfinite element simula-
tions.The region of interest interrogated by the simulated transducer is shown in
black.

In addition to testing the strain estimation algorithm on simulated scatterer lo-

cations, the ultrasonic images of the scatterers were generated using Field II and the

resulting RF-data was used for 3-D displacement estimation using the algorithms

described in Chapter 4. These 3-D displacements were used to generate estimates

of strain in 3 dimensions using the algorithms validated by linear regression to scat-

terer position. The linear regressions as compared with the axial displacement versus

axial position (with the mean displacement subtracted) are shown for all four strain
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Figure 5.3: Examples of the line fit used to generate axial strain estimates
for the four deformation cases using the scatterer positions generated from LS-
DYNATMsimulation output. The scatterer displacements are shown in black and
the line fit is shown in red. In this case, the 95% confidence interval is given rather
than a standard deviation because there is only one measurement.

cases in Figure 5.5. The raw displacements are plotted as a function of position

for all the strain cases with the scatterer displacements overlayed in Figure 5.7 and

also illustrates why the fourth plot of linear fit to the displacement estimates was

counterintuitive for the largest strain case tested instead of the expected negative

result.

Figure 5.7 shows the axial displacement estimates as a function of axial position

for all four strain states simulated in this work. For the two smaller strain states

simulated, there is good agreement between the scatterer displacement and the dis-
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Figure 5.4: Axial strain estimate based on linear regression of scatterer displace-
ment versus position as compared with the average of the finite element simulation
strain estimate in the region of interest. Errorbars shown which appear to be gen-
erally smaller than the marker size are the standard deviation of eight scatterer
realizations (for the scatterers) or the strain estimate in the region of interest (for
the simulations).

placements estimated based on the tracked simulated ultrasound signal. For the two

larger strain states, it appears that the strain simulation implementation used in this

work, for which the top boundary of the simulated material is being compressed, is

leading to large bulk displacements at the top of the region of interest (at 50 mm

in depth) in order to achieve the desired applied strain. In addition, there appears

to be a slight flattening of the displacement estimate at the surface, which may be

a result of the fact that the simulated scatterer position begins at 50 mm exactly.

This lack of shallow scatterers may be affecting the displacement estimates right at

the edge of the scatterer field, but is not expected in the experimental datasets for

which the region of interest begins below the liver capsule. Figure 5.6 suggests that

this slight flattening of the displacement estimates is a result of the low RF-signal

amplitude at 5cm in depth away from the transducer.

For the -0.84% strain case, the gradient of displacements across the 2 cm strain
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Figure 5.5: Example simulated and tracked axial displacement versus position
using 3-D tracking for the four simulated strain cases. The calculated strain for each
of the datasets are shown with intervals quoted as the 95% confidence interval of the
line fit and the mean displacement is subtracted so all the displacements are centered
around zero. The axes for the top row are smaller than for the bottom row in order
to show all displacement estimates in the four cases. The bottom right plot shows
the erroneous positive fit achieved for the largest strain case (strain expected -0.88%
strain as compared to the estimate of 1.17%).

estimation kernel is 0.15 mm while the offset of the displacements is up to 0.3 mm.

We hypothesize that this large bulk displacement offset is leading to peak hopping

of the displacement estimates as the discontinuities correspond to λ
2

and λ and an

implementation of displacement estimation with a larger search region did not mit-

igate this effect. These aberrant displacements were observed across all lateral and

elevational positions for the axial positions affected. The dependence of the incorrect
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Figure 5.6: One axial A-line acquired from simulated deformed scatterers with
imposed 0.84% compressive strain. From 0.05 to 0.052 m in depth there is no signal,
which is an artifact of the simulation approach in which scatterers were populated
starting at 0.05 m. This artifact may lead to bias in the strain and displacement
estimates but is not expected in vivo. The addition of many scatterers closer to the
transducer could reduce the effect of this error in the region of interest, but at the
expense of much larger datasets and longer run times for the simulation.

(as compared with underlying scatterer displacement) displacement estimates on λ
2

can be seen in Figure 5.8 and is repeated for the 8 scatter realizations in 0.42% and

0.84% strain cases tested.

Figure 5.8 shows that the relationship between the correct underlying scatterer

displacements and the displacement estimate is related to λ{2 and λ. Using the dis-

placement estimation approach described, it is the lag at the peak of the correlation

function between the search region imaging data from the reference configuration

as compared to the kernel from the deformed configuration that corresponds to the

displacement estimate [195]. Utlization of a phased array transducer to track high

underlying displacements can lead to a peak of the correlation function used to calcu-

late displacements that is significantly less than unity. This decorrelation can cause

random variations in speckle brightness to generate high secondary peaks that can
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Figure 5.7: Example axial displacement versus position using 3-D tracking as
compared with the input scatterer displacement for all strains simulated. In the
lower plots (that correspond to larger displacement amplitudes), there are differences
observed between the displacement estimates and the change in scatterer position
simulated.

exceed the magnitude of the true peak [135, 195]. The 3-D phase sensitive normal-

ized cross correlation algorithms used for displacement estimation have previously

been shown to be susceptible to peak hopping artifacts [26]. These errors can be

addressed using nonlinear correction methods [72, 135], but these have not been

implemented in this work as they can be computationally intensive and correction

in one dimension of displacement will not generally correct errors in displacement

estimates in the lateral and elevational dimensions.
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Figure 5.8: Displacement estimate plotted with the correct scatterer displacement
and the scatterer displacement shifted by λ{2 and λ. The relationship between the
underlying simulated displacement (as represented by the scatterer red line) and
the displacement estimate is clearly either a factor of λ{2 or of λ, a pattern which
strongly suggests peak hopping behavior.

The axial strain estimation results for the simulated and tracked displacements

are shown in Table 5.3. In the table, the values shown for the variability of the

estimate are the standard deviation of the 8 independent speckle realizations tested

and not the 95% confidence interval. All the values of the strain estimate are con-

sistent and correct for the simulations except for the 0.84% strain case. It is clear

that the 0.84% strain estimation case linear regression is severely impacted by the

peak hopping displacement estimation error as the estimates are the wrong sign and

in no cases did the 95% confidence interval (not shown in the table) of the strain fit

overlap the correct value. In all strain estimation cases tested, the method of using

linear regression to scatterer displacements versus axial position in the underlying

scatterers yielded accurate estimates of axial strain. This accuracy was also reflected

in strain estimates generated from 3-D displacement estimates of tracked simulated
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RF-data for strains ă 0.42%. However, for cases with larger underlying bulk dis-

placement (corresponding to axial strains ą 0.42%), peak hopping of displacement

estimates was observed and increasingly affected the estimates of axial strain to the

point where strain estimates generated in the 0.84% strain case were incorrect.

Axial strain estimates using different displacement inputs
LS-DYNATM Scatterer Position Displacement Estimate
-8.3e-3 ˘ 3.0e-4 -8.6e-3 ˘ 2.8e-7 -9.0e-3 ˘ 1.4e-3
-8.41e-2 ˘ 1.1e-3 -8.6e-2 ˘ 2.7e-6 -8.9e-2 ˘ 3.2e-3
-0.42 ˘ 5.4e-3 -0.43 ˘ 1.3e-5 -0.40 ˘ 4.0e-2
-0.84 ˘ 1.1e-2 -0.86 ˘ 1.7e-5 1.21 ˘ 0.06
Table 5.3: Axial strain estimates (quoted in %) based on averaging finite element
strain estimates, linear regression to the assigned scatterer positions, and linear re-
gression to the axial displacements using 3-D cross correlation methods on simu-
lated tracked data. Average and standard deviation of 8 speckle realizations are
given for the scatterer and displacement estimate results. For the simulated LS-
DYNATMoutput, the average and standard deviation of the region of interest is
shown.

As shown in Figure 5.5, the 95% confidence interval on the strain estimate for

the 0.84% compression case is still relatively small (0.01%) This value was much

smaller than values of 0.06% seen with some liver strain estimates and thus cannot

be used as a cutoff to determine the presence or absence of peak hopping artifacts

in underlying displacement data.

Elevation and Lateral Strain Estimation

Lateral and elevational strain estimation accuracy were also tested using the same

methods as described in the axial strain estimation section. However, a slightly dif-

ferent gold standard was used to compare the LS-DYNATMaxial strain estimate gold

standard to different strain estimation methods using assumptions of incompress-

ibility. Since the model was nearly incompressible (ν = 0.499), we can extrapolate

from the calculated axial strains to the predicted lateral and elevational strains.

This is due to the fact that λ “ 1 ` E11 and the perpendicular strains will equal
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E22 “ E33 “
1?
λ
´ 1. This approach has been used extensively to generate estimates

of perpendicular strains using ultrasound data as well [123, 101, 166]. The strains

estimated by linear regression of scatterer position and 3-D cross-correlation based

displacement estimate versus position were compared to the predicted elevation and

lateral strain using the FEM based axial strain calculation and assumptions of in-

compressibility. The lateral and elevational strain estimates from LS-DYNATMare

compared with the linear regression to the scatterer displacements for the three dif-

ferent dimensions in Figures 5.9, and 5.10. For all four strain states and 8 scatterer

realizations, lateral and elevational strain estimates based on linear regression of

scatterer displacement and position agreed very well with the finite element simu-

lated strains. The average error of the scatterer displacement-based strain estimate

for the four strain states in the lateral and elevation dimensions were 2.3% ˘ 0.5%.

These results are shown quantitatively as well in Tables 5.4 and 5.5.

Lateral strain estimates using different displacement inputs
LS-DYNATM Scatterer Position Displacement Estimate
4.2e-3 ˘ 3.0e-4 4.3e-3 ˘ 1.1e-7 -2.2e-3 ˘ 0.01
4.2e-2 ˘ 1.1e-3 4.3e-2 ˘ 1.0e-6 -0.03 ˘ 0.03
0.21 ˘ 5.4e-3 0.22 ˘ 5.0e-6 0.27 ˘ 0.02
0.42 ˘ 1.1e-2 0.43 ˘ 1.0e-5 0.36 ˘ 0.03
Table 5.4: Lateral strain estimates (quoted in %) based on averaging finite element
strain estimates, linear regression to the scatterer displacements, and linear regression
to the ultrasound-based displacement estimates generated with 3-D cross correlation
methods on simulated tracked data. Average and standard deviation of 8 speckle
realizations are given for the scatterer and displacement estimate results. The LS-
DYNATMerrors quoted are based on average and standard deviation in the region
interrogated with the simulated ultrasound beams.

Figure 5.11 shows the estimates of lateral displacement with the lateral strain

estimate overlaid. The lateral strain estimate for small strains is not close to the

expected value but improves with larger strains as expected. The banding close to

position 0 relates to the angular component of the phased array - at larger angles

64



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lateral Strain from DYNA Axial Strain Output (%)

S
tr

a
in

 E
s
ti
m

a
te

 f
ro

m
 S

c
a
tt
e
re

r 
P

o
s
it
io

n
s
 (

%
)
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Figure 5.9: Lateral strain estimate based on linear regression of scatterer displace-
ment versus position as compared with the average of the finite element simulation
strain estimate in the region of interest. Errorbars shown which appear to be gen-
erally smaller than the marker size are the standard deviation of eight scatterer
realizations (for the scatterers) or the strain estimate in the region of interest (for
the simulations).

away from the center line, the lateral position of the displacement estimate will vary

more with depth for one B-mode line. Table 5.4 suggests that above a lateral strain

of 0.21% we were able to accurately estimate lateral strains using our experimental

and simulation setup. This is consistent with existing literature that suggests lateral

strain estimation feasibility only above the displacement estimation jitter-induced

noise floor [145]. Below this value, the strain estimates were wrong and the wrong

sign, but continued to be very close to zero.

Table 5.5 describes a similar pattern in the elevation dimension to that observed

in the lateral strain estimation data. These results suggests that above an elevational

strain of 0.21% we were able to accurately estimate elevational strains using our ex-

perimental and simulation setup. Since we are using a matrix array, we would expect

this result to be consistent with existing literature that suggests strain estimation
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Figure 5.10: Elevational strain estimate based on linear regression of scatterer
displacement versus position as compared with the average of the finite element
simulation strain estimate in the region of interest. Errorbars shown which appear to
be generally smaller than the marker size are the standard deviation of eight scatterer
realizations (for the scatterers) or the strain estimate in the region of interest (for
the simulations).

Elevational strain estimates using different methods
LS-DYNATM Scatterer Position Displacement Estimate
4.2e-3 ˘ 3.0e-4 4.3e-3 ˘ 5.3e-8 1.3e-2 ˘ 0.01
4.2e-2 ˘ 1.1e-3 4.3e-2 ˘ 6.0e-7 -2.8e-2˘ 0.04
0.21 ˘ 5.4e-3 0.22 ˘ 2.6e-6 0.23 ˘ 0.02
0.42 ˘ 1.1e-2 0.43 ˘ 5.3e-6 0.30 ˘ 0.03
Table 5.5: Elevational strain estimates (quoted in %) based on averaging finite ele-
ment strain estimates, linear regression to the assigned scatterer positions, and linear
regression to the elevational displacements using 3-D cross correlation methods on
simulated tracked data. Average and standard deviation of 8 speckle realizations are
given for the scatterer and displacement estimate results. The LS-DYNATMerrors
quoted are based on average and standard deviation in the region interrogated with
the simulated ultrasound beams.

feasibility only above the displacement estimation jitter-induced noise floor [145].

The elevational strain estimation accuracy is slightly worse than that observed in

the lateral dimension due to coarser beam spacing in this dimension.
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Figure 5.11: Example simulated and tracked lateral displacement versus position
using 3-D tracking for the four simulated strain cases. The calculated strain for each
of the datasets are shown with intervals quoted as the 95% confidence interval of
the line fit and the mean displacement is subtracted so all the displacements are
centered around zero. While the two largest strain cases (bottom row) are close
to the expected result, the smallest strain estimates are the incorrect sign. Lateral
displacement estimate variability increases with increasing lateral strain.

5.4 Conclusions

This work has described the validation for methods used to calculate the strain of

hepatic deformations by linear regression of displacement as compared with position

for the imaging parameters used in our experimental setup. The simulated ultrasonic

tracking setup and described strain estimation algorithms will be used to generate

volume-to-volume strain estimates experimentally which will be accumulated to gen-
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erate estimates of change in hepatic strain with increasing portal venous pressure.

Thus, a method for accurately measuring strain for each hepatic pressurization in-

crement is necessary. In the axial dimension, large bulk displacements led to peak

hopping which caused inaccuracies in large strain estimation. However, strains be-

low 0.42% could be accurately measured using the linear regression and displacement

estimation methods described. Thus, the ultrasound volume acquisition rate can be

increased experimentally to the point where the change in strain between volumes

is less than 0.42%. As described in Chapter 4, jitter on lateral and elevational dis-

placement estimates is much larger than that observed in the axial dimension. This

causes the observed behavior that the minimum strain that is able to be quantified

accurately in the lateral and elevational dimensions is 0.2%, which is much higher

than that reported in the axial dimension. Given the strains simulated in all three

dimensions, the minimum strain that can be accurately tracked and estimated with

our experimental setup in the elevation and lateral dimensions and the maximum

strain that can be assessed without peak hopping artifacts in the axial dimension

were able to be predicted. While in the hepatic pressurization experiments, the vol-

ume rate can be increased to prevent strains greater than 0.42% between volumes, it

is unfortunately not possible to decrease the volume rate in order to generate strain

estimates in the lateral and elevation dimension greater than 0.2%. This is due to

the nature of the planned experiments in that the strains are expected to be accu-

mulated for each 5-10 mmHg portal venous pressure increase increment. In some of

these increments, strains lower than 0.2% were observed for the entire pressurization

step. This would prohibit elevational and lateral strains from being accumulated

accurately in the experimental methods described for the hepatic pressurization ex-

periments described in Chapter 6. While axial strain estimates are predicted to be

accurate for hepatic strain accumulation, the low frequency used for ultrasonic track-

ing and the lack of phase information in the lateral and elevation dimensions [145]
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prevent three-dimensional strain tracking for the experiments described in Chapter

6.

69



6

Ultrasonic characterization of the nonlinear
properties of canine livers by measuring shear wave

speed and axial strain with increasing portal
venous pressure
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6.1 Abstract

Hepatic venous pressure is increased in advancing liver disease and is considered the

primary source of complications (such as variceal bleeding and ascites). Measure-

ment of clinically significant increases in portal pressure is important for managing

liver disease and is performed using the invasive method of hepatic venous pressure

gradient (HVPG). We have previously reported that ARFI based shear wave speed

(SWS) estimate increases with increasing hepatic venous pressure require an under-

lying tissue deformation. This study is designed to elucidate the nonlinear proper-

ties of the liver during pressurization by measuring both the shear wave speed and
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strain. In this work, tissue deformation during hepatic pressurization was tracked in

8 canine livers using successively acquired 3-D B-mode volumes and compared with

concurrently accrued SWS datasets. When portal venous pressure was increased

from clinically normal (0-5 mmHg) to pressures representing highly diseased states

at 20 mmHg, axial strain was observed to increase up to 10%. At the same time,

SWS estimates were observed to increase from 1.5-2 m/s at 0-5 mmHg (baseline) to

3.25-3.5 m/s at 20 mmHg.

6.2 Introduction

Increasing portal venous pressure is one of the hallmarks of advancing liver disease

and contributes to leading causes of death and morbidity from cirrhosis, such as

variceal hemorrhage [146, 71, 164]. In addition, monitoring hemodynamic response

to therapies for reducing hepatic pressure through use of Hepatic Venous Pressure

Gradient (HVPG) measurement has proven effective in prolonging life, but is expen-

sive and invasive [79]. Ultrasound imaging has been widely used for imaging the liver

and gallbladder [197] and therefore is ideal for potential noninvasive hepatic pressure

measurements. Duplex Doppler ultrasonography has been previously proposed for

HVPG estimation [198, 203, 197] and has shown a clear relationship between quanti-

tative results and esophageal varices development [12]. However, this method is not

sufficiently accurate or reproducible between observers for implementation in clinical

practice for HVPG quantification [13, 42, 184]. Ultrasound-based estimates of liver

stiffness have been reported to increase with hepatic pressure [107, 184, 25, 149],

suggesting that stiffness-based approaches may provide the basis for a noninvasive

and inexpensive approach toward characterizing portal vein pressure in the clinic.

These include splenic stiffness measurements [170] and direct liver stiffness measures

[149, 74].

The major challenge to noninvasive stiffness-based metrics for characterizing hep-
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atic pressure in-vivo is that estimates of hepatic stiffness are also known to increase

with advancing fibrosis stage [170, 149, 128, 58, 199, 5, 38]. While splenic stiffness

has also been observed to increase with esophageal varices risk and portal venous

pressure, splenic stiffness is also increased from baseline in patients with cirrhosis and

without high levels of esophageal varices risk [170]. Thus, a better understanding of

the mechanisms by which hepatic pressure modulates estimates of liver stiffness could

provide information needed to distinguish increasing hepatic pressure from advanc-

ing fibrosis stage. We have previously reported the nonlinear hyperelastic behavior

of the liver as portal venous pressure increases [151]. In this work, an experiment

was designed to simultaneously measure changes in hepatic strain and stiffness with

increasing hepatic pressure in excised canine livers.

6.3 Background

This work primarily focuses on the potential applications of nonlinear characteriza-

tion of the liver using shear wave speed metrics toward noninvasive hepatic pressure

characterization. Nonlinear properties of the liver have previously been explored for

the purpose of computational surgery guidance [82] and modeling car accident in-

jury [23] as well as development of power law based models for soft tissues [114].

Nonlinear mechanical property evaluation of soft tissues such as the liver often re-

quires information about corresponding stress and strain at particular time points.

In the pressurized liver, because the geometry is so complicated, it is not feasible to

translate the portal venous pressure directly into a stress without many simplifying

assumptions. However, it is of clinical interest for potential applications of nonin-

vasive pressure characterization to characterize the nonlinear mechanical properties

that determine the increase in liver stiffness corresponding to portal venous pres-

sure increases. The experiments described herein are inspired by acoustoelasticity

experiments in that they generate estimates of shear wave speed and applied strain
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[67, 163], but novel in that both the applied strain and the resulting shear wave speed

increase are measured using ultrasonic metrics in response to an unknown applied

stress in the form of portal venous pressure.

6.4 Methods

Experimental Animals: Experimental excised canine livers were obtained through

cooperation with the Duke University Vivarium and euthanasia was achieved within

the guidelines provided by the Duke Institutional Animal Care and Use Committee.

Imaging was performed within 2 hours of excision and heparin was administered

prior to euthanasia in 7 of the 8 cases to reduce coagulation effects.

Evaluation of Hepatic Changes with Pressurization: The experiments described were

designed to compare changes in hepatic deformation and stiffness estimates with

increasing portal venous pressure. Eight excised canine livers were investigated.

After the canine liver was removed, the hepatic artery, hepatic vein, and portal vein

were cannulated and the hepatic artery and vein were closed. In all livers, super glue

(Loctite R© Westlake, OH) was used to seal any observed defects in the liver capsule

due to the liver extraction (all defects were ă 2mm). The liver was then placed in

a heparinized saline bath for five minutes to remove remaining air in the liver. We

attempted to mitigate the effects of included air, saline leakage, and clotting, because

all could contribute to decreased observed strain and stiffness response to increasing

hepatic pressure.

Increasing portal venous pressure was achieved by attachment of the portal vein to

a variable height saline reservoir as described in [151]. A diagram of the experimental

setup is shown in Figure 6.1.

In order to characterize hepatic expansion, the livers were allowed to expand in

a heparinized saline bath throughout the experiment. Liver pressure was increased
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Figure 6.1: Diagram of the hepatic pressurization and monitoring setup

stepwise from 0-20 mmHg with pressurization steps at 0.5-5 mmHg in magnitude as

measured using a handheld digital manometer (SPER Scientific, Ltd., resolution =

0.075 mmHg) attached to the portal vein cannulation setup. During each pressur-

ization step, 3-D B-mode datasets were acquired using a Siemens SC-2000TMscanner

and 4z1c matrix array ( [57] Siemens Medical Systems, Ultrasound Group, Mountain

View, CA, USA). The 3-D B-mode volumes were acquired with a frame rate of 0.1

Hz for up to 4 minutes over a 2x1.2x1.2 cm volume located 5-7 cm axially away from

the transducer. An example of a single A-line through time from the 4-D dataset

acquired for one pressurization increment is shown in Figure 6.2. After each pres-

surization step, 6 SWS datasets were acquired with a separate system as described

below from the region corresponding to that in which the 3-D B-mode acquisition

occurred.

Three-Dimensional Displacement Estimation: Because the liver expansion occurs in all

directions, a 3-D displacement estimation kernel and search region were used to deter-

mine the axial displacements used for calculation of axial strain. Axial displacements

were estimated using phase-sensitive 3-D cross correlation [47, 194]. Phase-sensitive

normalized cross correlation with grid slopes algorithm sub-sample estimation was

implemented as described in by Byram et al. [26]. A 0.9 correlation coefficient
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Figure 6.2: Example of data acquired in a pressurization increment between 17
and 18 mmHg portal venous pressure in one excised canine liver. One axial A-line
through the center of the volume interrogated is shown through time after pressure
increase. Expansion is observed in the growth of the brighter region, which represents
the liver.The red lines represent the axial extent of the 3-D region of interest over
which strain was computed.

cutoff was implemented for the displacement estimates. Details of the displacement

estimation parameters for hepatic deformation quantification can be found in Table

6.1.

These parameters are consistent with the kernel sizes and dimensions previously

reported for strain imaging in 2-D [90, 91, 193] and 3-D displacement estimation

Table 6.1: Parameters used for 3-D Displacement Estimation

Parameter Value
Ultrasound Scanner SC-2000
Probe 4z1c
Fc 2.8 MHz
Transmit Focus 8 cm
Imaging Depth 5-7 cm
Volume Rate 0.1 Hz
Axial Kernel 2.88 mm
Lateral Kernel 0.60 mm
Elevational Kernel 0.68 mm
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[26, 93].

Strain Calculation: The axial strain was calculated using a least-squares fit to the

axial displacement estimates in the region of interest as a function of axial position

[83, 84]. Two examples of this calculation over the entire volume are shown in Figure

6.3. For each pressurization increment, displacement estimates were acquired every

10 seconds for a duration of up to 4 minutes (24 time steps). The volume rate was

maintained so that all strains calculated were less than 0.42% as simulations of this

experimental setup showed significant peak hopping for strain states above this value.

Strain was calculated between each volume acquired and then accumulated for each

pressurization increment.

SWS estimation Methods: Tissue stiffness was quantified using standard shear

wave imaging methods [160, 116]. Radiation force-induced displacements were esti-

mated from IQ data offline using Loupas phase-shift estimator [139, 100]. The time

of the peak displacement at each lateral position was used to identify the arrival

time for SWS approximation [132, 157] as shown in Figure 6.4. Shear waves were

generated via acoustic radiation force using a Siemens ACUSON scanner and 4C-1

curvilinear array using the Siemens quantitative elasticity imaging tool with post-

processing of the I/Q data acquired performed offline [151]. Displacements between

1.4-8 mm lateral to the radiation force excitation were used to generate shear wave

speed estimates using a RANSAC-based time-of-flight algorithm [192].

6.5 Results

The comparison between shear wave speed and strain estimates in pressurized livers

was performed in order to evaluate the relationship between strain and stiffness

in a material with known nonlinear mechanical properties and irregular geometry.

Ultrasound based estimates of tissue stiffness (via shear wave speed estimation) and
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Figure 6.3: Axial strain calculation was performed using linear regression between
axial displacement and axial position throughout the imaging volume for each time
step (14080 kernels/volume). Subplots a) and b) provide example results from similar
strain states in two different livers but with very different 95% confidence intervals
on the strain estimate. In the left of each subfigure, all the displacement estimates
used to perform the linear regression are shown while on the right the distribution
of displacement estimates at each axial position is shown. The red lines on the right
side of each subfigure show the bounds of the 95% confidence interval of the linear
regression. In subfigure a), the strain was 0.37% with the confidence interval of 0.03%
while in subfigure b), the strain was 0.45% and the confidence interval was 0.1%.

axial strain were acquired in the same region to develop a better understanding of

tissue nonlinear properties. These nonlinear properties dictate the response of the

liver to increasing portal venous pressure and may provide the basis for a noninvasive

method for pressure measurement in the future.

Figure 6.5 shows an example of the strain accumulation process for one pressur-

ization increment. An increase of 5% axial strain was observed during an increase

in portal venous pressure from 17 to 18 mmHg. The red markers show the summed

axial strain while the errorbars on the red line in the figure represent the summed

95% confidence intervals on each strain fit shown in blue.

The region of interest interrogated was observed to move toward the transducer in

addition to expanding with increases in portal venous pressure. Figure 6.6 shows a

comparison between the original region of interest with change in position calculated

77



0 2 4 6 8 10 12 14
0

0.5

1

1.5

Time (ms)

D
is

p
la

c
e
m

e
n
t 
(µ

m
)

Mean Displacement per Lateral Position Over Time

 

 

2.2

2.9

3.6

4.2

4.9

5.6

6.2

Figure 6.4: Sample dataset showing displacements at various lateral positions aver-
aged over the depth of field around the focal depth in a sample hepatic experimental
dataset. The ARFI push occurs at lateral position = 0mm and the displacement
through time profiles at various locations are shown. Each colored line represents a
different lateral position, and the shear wave speed can be calculated by observing
the arrival time shift as the wave propagates laterally. A 1000 Hz low-pass filter has
been applied to the displacements in the temporal dimension.
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Figure 6.5: Axial strain during a pressurization increment between 17 and 18
mmHg as estimated using accumulation of individual volume-to-volume strain cal-
culations. The errorbars shown are the accumulated 95% confidence intervals on the
strain estimates (calculated as described in Figure 6.3).
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Figure 6.6: Example change in position and extent of the hepatic region interro-
gated for part of a pressurization step between 17 and 18 mmHg. Displacements
were accumulated to demonstrate the change in the 3-D position and extent of the
volume for an estimated 1.83% increase in axial strain.

using 3-D displacement estimation for an accumulated 6 volume-to-volume compar-

isons in one pressurization increment. The new locations of the estimated kernels

are shown in red as compared with the original displacement estimation locations

shown in blue.

Increases in SWS estimates and axial strain were observed with increasing portal

Shear Wave Speed vs. Portal Venous Pressure
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Figure 6.7: Shear wave speed increases observed with increasing portal venous
pressure across 6 excised canine livers (differentiated by color). Errorbars shown
represent the standard deviation of 6 shear wave speed datasets acquired in the
same location at each pressure.
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Figure 6.8: Percent axial strain increases observed as a function of increasing portal
venous pressure for 6 excised canine livers (differentiated by color). Errorbars shown
represent the accumulated 95% confidence interval on the strain estimate.
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Figure 6.9: Comparison between shear wave speed, percent axial strain, and pres-
sure in the two livers that were not observed to expand. For clarity, axes and errorbars
shown correspond to those shown for the 6 cases in which expansion was seen.

venous pressure in six of the eight canine livers interrogated (see Figure 6.7 and

Figure 6.8). SWS errorbars represent the standard deviation of 6 repeated measures

in the same region of interest in a given liver while no percent axial strain errorbars

are shown to represent that each is a single measure of accumulated strain.

In two livers, there were no increases in percent axial strain with pressurization.

The relationship between shear wave speed, axial strain, and pressure for both cases

are shown in Figure 6.9.

In each of the canine livers examined, increases in shear wave speeds were asso-

80



−2 0 2 4 6 8 10 12 14 16

1.5

2

2.5

3

3.5

Percent Axial Strain

S
W

S
 (

m
/s

)

Figure 6.10: Shear wave speed compared with percent axial strain across 6 excised
canine livers (differentiated by color) Because the six SWS estimates were in the
same region of interest, the errorbars (which represent the standard deviation of the
six SWS estimates) do not show potential tissue heterogeneity but rather the limits
of system precision on SWS estimates.

ciated with corresponding increases in estimates of percent axial strain. This rela-

tionship for the six cases in which both were observed to increase is shown in Figure

6.10.

6.6 Discussion

Increasing hepatic venous pressure is associated with advanced liver disease and

worsening patient outcomes [164]. It has been shown that pharmacologically low-

ering and tracking portal pressure can be beneficial [79]. Therefore, a noninvasive

metric for determining hepatic pressure and distinguishing it from the effect of ad-

vancing fibrosis stage would be clinically desirable. While hepatic stiffening reported

due to advancing fibrosis stage has been suggested to occur due to increased fibrin

and collagen deposition in the tissue [199, 58], previous work has suggested that a

nonlinear strain-based mechanism underlies hepatic stiffening observed with pressur-

ization [151]. In order to better understand the nonlinear hyperelastic properties

of the pressurized liver, a novel experimental setup for determining concurrent shear
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wave speed and axial strain estimates was designed and utilized.

In Figure 6.5, the accumulation of incremental axial strain estimates and 95%

confidence interval can be observed for one pressurization increment. Since the strain

estimation kernel does not change between acquisitions, the strains can be summed to

generate an estimate of the accumulated strain. The summed 95% interval represents

the confidence interval of the summed strain estimate.

Figure 6.6 shows an example of the deformation and bulk motion observed with

increasing hepatic pressure in the liver region interrogated. The 1.83% axial strain

increase quoted corresponds to the accumulated strain calculated for the displace-

ments shown. In addition, some blue points do not appear to have corresponding red

points. This is due to removal of displacement estimates with a correlation coefficient

lower than 0.9. Since pressure should correspond to a tri-axial expansion, we would

expect to see the same expansion in all three Cartesian dimensions. The example

shown appears to support this hypothesis as there appears to be 3-dimensional ex-

pansion. However, the low center frequency of the matrix transducer used (2.8 MHz)

and small aperture did not allow for estimation of lateral or elevational strains for

this experimental system [145].

SWS estimates were observed to increase from 1.5-2 m/s at 0-5 mmHg (baseline)

to 3.25-3.5 m/s at 20 mmHg in 6 of the 8 canine livers interrogated. Shear wave

speeds at baseline varied between 1.4 and 2 m/s in the livers tested. While this

result is consistent with reported variability in healthy human livers [153], it may

be that this baseline difference affects the response of the liver to applied portal

pressure. This remains to be further investigated from the perspective of selecting

either a nonlinear model to encompass the behavior of all healthy livers or choosing

a class of models that should be fit to each liver individually in future work.

When portal venous pressure was increased from clinically normal (0-5 mmHg) to

pressures representing highly diseased states at 20 mmHg, axial strain was observed
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to increase up to 10%. Between 0 and 10 mmHg, some estimates of axial strain were

observed to decrease slightly (up to 1%). It is possible that the static pressure in

the saline bath around the liver plays a confounding role in the experiment. If that

is the case, when the portal vein pressure is lower than the external static pressure,

the liver may appear to decrease in size.

Although there was a clear correlation between increasing strain and shear wave

speed, there was variability among the different livers. We hypothesize that some

of the variability in shear wave speed increase as a result of elevating portal venous

pressure may be a result of different strains achieved in different livers at the same

pressure. For example, the canine liver corresponding to the red squares clearly has

a lower pressure at which an increase in shear wave speed and percent axial strain

were observed (Figure 6.7), but appear consistent with the relationship between

shear wave speed and percent axial strain seen in the other hepatic cases (Figure

6.8). This result is likely due to the pressure behaving differently on livers with

different geometries and supports the use of strain and shear wave speed measures

for quantifying tissue nonlinear behavior. The complex geometry of the liver does

not allow use of the relationship between pressure and strain or stiffness to directly

generate predictions of nonlinear behavior. In addition, the increases in SWS corre-

sponding to axial strain increases of 4% above baseline configuration suggest that a

transition between where a linear model may be sufficient to states in which nonlin-

ear regimes dominate occurs at smaller strain states in these data than the greater

than 10% strain that is classically assumed to correspond to nonlinear hyperelastic

behavior [94].

In two of the livers examined, neither expansion in the form of axial strain increase

nor stiffening was observed. Figure 6.9 shows these results. This lack of expansion

and stiffening still supports our hypothesis that deformation is required in order to

observe SWS increases. In one of the cases, heparin was not administered prior
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to euthanasia, so we hypothesize that clotting effects prevented the pressurization

from communicating throughout the liver. In the other case, it is possible that

a small defect in the liver capsule or air in the portal venous system prevented

the distribution of the increasing portal venous pressure throughout the liver. It is

unlikely that air, excessive clotting, or capsule defects would exist when interrogating

increasing portal venous pressure in vivo, but the fact that even in those cases the

shear wave speed and expansion of the liver were correlated continues to support the

use of a strain-dependent model for the effect of hepatic pressure on stiffness metrics.

Increases in measurements of hepatic axial strain were associated with increases

in concurrently acquired SWS estimates. Figure 6.10 shows the relationship be-

tween the accumulated axial strain at a given pressure and the average of 6 SWS

estimates generated at each pressurization step. This data provides the correlation

between SWS and strain, which will be used moving forward to generate nonlinear

material models of hepatic tissues. A limitation of this initial study is that we used

only healthy canine livers for the experiment. Because most patients who suffer from

elevated portal venous pressure have advanced liver disease, it will also be impor-

tant to explore the effect of cirrhosis on hepatic nonlinear behavior. However, these

initial results suggest that hyperelastic material modeling of the liver on the basis

of the correlation between shear wave speed and axial strain is possible and appro-

priate and may provide the basis for a nonlinear mechanical model that leads to

an improved understanding of liver stiffening with disease-associated portal venous

pressure increases.

6.7 Conclusions

This work shows that increasing shear wave speed estimates with hepatic pressur-

ization are associated with increases in hepatic axial strain, and quantifies these

behaviors. Increases from normal portal venous pressure to diseased (an increase
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from about 0 to 20 mmHg) were associated with up to a 10% increase in axial strain

and up to a 230% increase in liver shear wave speed estimate from baseline in normal

canine livers. These results provide a foundation for hyperelastic material modeling

of the liver.
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7

Conclusions

Cirrhosis and chronic liver disease is an important cause of death and disability glob-

ally [4]. The increase in portal venous pressure (PVP) due to advancing liver failure

[20, 150, 176] is responsible for the most severe clinical effects of hepatic disease

[69]. Monitoring of PVP is important in the medical setting, and a repeatable and

inexpensive method for measuring PVP in vivo would be a highly desireable and

novel clinical tool. The novel contributions of this work toward these clinical goals

span characterizing the stiffening behavior of the pressurized liver as resulting from

nonlinear mechanical behavior, developing and validating tools such as displacement

tracking and tissue strain estimation for the clinical imaging system used, and char-

acterizing the hepatic nonlinear behavior with pressurization by comparing tissue

deformation and stiffness.

The experiments described in Chapter 3 determined that the liver behaves in a

nonlinear deformation-dependent manner by comparing a pressurized liver that was

constrained from expansion with one that was free to deform. Hepatic deformation

was shown to be correlated with observed liver stiffness increases, implying the need

for a hyperelastic material model to describe this behavior.
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In Chapters 4 and 5, a 3-D clinical system was used to validate methods later

employed for 3-D tissue displacement and strain estimation. Accuracy and preci-

sion of 3-D displacement estimation was quantified and simulations were used to

determine that only 1-D axial strain estimation could be performed within system

limitations.

Finally, the results from Chapter 3 were used to inform experiments performed

with the validated experimental methods (Chapters 4 and 5) to examine the re-

lationship between metrics of liver stiffness and deformation in excised pressurized

canine livers. The results from these experiments shown in Chapter 6 demonstrated

that shear wave speed estimates and hepatic axial strain increase with portal ve-

nous pressure. Increase in portal venous pressure of excised canine livers from that

representative of healthy (0-5 mmHg) to severely diseased (20-25 mmHg) states led

to a 10% increase in hepatic axial strain and 230% rise in liver stiffness metrics as

measured with shear wave speeds. These data provide the basis for nonlinear ma-

terial modeling of liver behavior and inform future work toward noninvasive hepatic

pressurization characterization.

7.1 Future work

Nonlinear material characterization using the experimentally-determined relation-

ship between strain and shear wave speed in the pressurized canine liver can be

performed by analyzing the fit of Neo-Hookean or Mooney-Rivlin hyperelastic ma-

terial model [147, 17, 122, 19] parameters to experimental stiffness data collected

from ex-vivo canine hepatic pressurization experiments shown in Chapter 6. The

Neo-Hookean model contains one nonlinear parameter and the Mooney-Rivlin con-

tains two. The theoretical basis for strain-dependent shear wave speed increases in a

nonlinear material are described for the Mooney-Rivlin model in Appendix A. These

models were chosen because they provide the basic mechanism of strain-dependent
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stiffening seen in hyperelasticity and have previously been used to describe nonlinear

tissue behavior [49, 122, 59, 19, 17]. Results shown in Chapter 6 provide the nec-

essary strain and shear wave speed information to determine appropriate nonlinear

parameters.

The work described in this dissertation is devoted to understanding the underly-

ing mechanical properties of the liver. In the context of portal venous pressurization,

the liver is observed to expand and stiffen. These behaviors were measured in Chap-

ter 5 and the relationship between increases in pressure, shear wave speed, and

hepatic axial strain have been quantified. However, the experiments shown fall short

of generating a noninvasive quantitative metric for portal venous pressure character-

ization. In order to fully characterize the pressure and fibrosis stage of the liver, one

measure of hepatic stiffness would not be sufficient. A fully characterized nonlinear

tissue model would require two stiffness measures at different strain or pressurization

stages in order to characterize underlying hepatic mechanics. There are several po-

tential methods for gaining this information. First, a patient with liver disease could

have their stiffness measured at each clinic visit. Thus, once the patient reached

an F4 fibrosis stage in which no further replacement of normal liver tissue with fi-

brotic material is expected, further increases of hepatic stiffness could be attributed

to pressurization. While this potential method is the simplest, new experiments and

histological studies would be required of patients with cirrhosis to determine if there

is a point beyond which the hepatic stiffness at normal pressure is no longer predicted

to increase. The second potential method for noninvasive hepatic pressurization char-

acterization using stiffness metrics would be to generate two estimates of strain and

SWS at different pressurization or strain states using pharmacology to lower portal

venous pressure or external compression to modulate the strain state. With both

methods, the relationship between the change in strain state with compression or

pressure-lowering drug administration and shear wave speed could provide the ba-
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sis for determining the hepatic fibrosis stage and pressurization state noninvasively.

While this method has the potential for determining hepatic pressure and fibrosis

stage for all potential stages of liver disease, experimental work on the potential

for changing hepatic strain state via compression or pharmacology as well as de-

velopment of simulations to predict the nature of the strain state changes required

and potential underlying pressures associated with them would be necessary. The

data collected and discussed in this work provids the basis for nonlinear mechanical

modeling of the liver and the potential basis noninvasive characterization of hepatic

pressure using stiffness metrics.
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Appendix A

Nonlinear Material Modeling Example

Shear wave speeds have been observed to increase with increasing pressure in excised

porcine livers [107] and in humans with elevated portal hepatic pressures [184,

25, 149]. This result is inconsistent with the linear elastic assumptions expressed

in Equation 3.1. A change in estimates of liver stiffness with pressure implies a

nonlinear relationship between stress and strain of a particular material [94, 122].

Nonlinear relationships between stress and strain in other biologic tissues have been

previously reported [50, 92]. Hepatomegaly, an increase in liver size that would

imply a change in underlying liver strain state, has also been reported in patients

with increased portal pressure due to right-sided congestive heart failure [37, 53].

The behavior of shear wave speeds in nonlinear materials should be considered for

examining these effects.

Shear Wave Propagation in a Hyperelastic Material

Biologic tissues such as the liver are known to behave nonlinearly [81, 59]. The

relationship between shear wave speed and mechanical properties of tissue can be

derived from governing equations that describe tissue. This relationship has been
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thoroughly examined in the linear case to yield the results shown in Equation 3.1.

A diagram of the dimensions referred to in the following derivation is shown in

Figure 2.5. Unlike linear materials, a hyperelastic material will require definition

of a strain-energy function, W , with a fixed relationship to the strain state of the

material [76, 122] and the following correspondence to the stresses:

σij “
BW

Bεij
(A.1)

The Mooney-Rivlin (MR) and Neo-Hookean (NH) models are commonly used

hyperelastic formulations for modeling biologic tissues [81]. They can be described

by the nonlinear strain-energy function which depends on two material constants C1

and C2 [122, 109, 147]:

W “ 2C1pI1 ´ 3q ` 2C2pI2 ´ 3q (A.2)

In Equation A.2, I1 and I2 are two principal invariants of the right Cauchy-Green

deformation tensor, C as described by:

I1 “ TrrCs

and

I2 “
1

2
pTrrCs2 ´ TrrC2

sq.

When considering small strains (such as those generated by acoustic radiation

force), the first strain invariant (I1) will not be largely affected by shear strains while

the second strain invariant (I2) depends primarily on shear strain components. The

MR formulation is described by the full Equation A.2, while the NH case corresponds

to C2 “ 0 in Equation A.2.
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Shear Waves in an Uncompressed Hyperelastic Solid The relationship between shear

wave speed and mechanical properties in a hyperelastic material is similar to that of

an elastic material in that it begins with a deformation state constrained to physical

laws (wave equation and conservation of momentum) in a material defined by the

hyperelastic constitutive law described above. In the case of a shear wave excitation

using radiation force, we expect there to be shear waves radiating outward from the

excitation in the elevation (x3) and lateral (x2) dimensions. The derivation follows

the simple shear loading case described in [122]:

x1 “ X1 ` u1pX2, tq ` u1pX3q

x2 “ X2

x3 “ X3

Lower case letters represent the deformed configuration and capital letters repre-

sent the undeformed (or reference) configuration.

We begin by calculating the deformation gradient, F “ Bxi
BXj

:

F “

¨

˝

1 Bu1
BX2

Bu1
BX3

0 1 0
0 0 1

˛

‚ (A.3)

The right Cauchy-Green deformation tensor C “ FF T will be:

C “

¨

˝

1` p Bu1
BX2
q2 ` p Bu1

BX3
q2 Bu1

BX2

Bu1
BX3

Bu1
BX2

1 0
Bu1
BX3

0 1

˛

‚ (A.4)

The strain-energy function follows:

W “ 2pC1 ` C2qp
Bu1

BX2

2

`
Bu1

BX3

2

q (A.5)
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Because the transducer we image with is limited to the axial-lateral plane, we

measure the shear wave speed in the lateral direction (described by the ε12 strain).

We can take the derivative of W with respect to shear strain utilizing the following

relationship between strain and displacement:

ε12 “
1

2

Bu1

BX2

(A.6)

ñ σ12 “ 4pC2 ` C1qε12 (A.7)

The stress-strain relationship for this type of simple shear loading is:

σ12 “ 4pC1 ` C2qε12 “ 2µε12 (A.8)

where µ “ 2pC1 ` C2q matches the linear isotropic elasticity case [94].

The general equation for a shear wave (direction of motion perpendicular to wave

propagation direction) is as follows:

B2u1

Bx2
2

“
1

c2

B2u1

Bt2
(A.9)

Above, u1 is the displacement in the x1 direction but it will only depend on x2 as

fits with the definition of shear (or transverse) wave propagation [94].

The relationship between strain and displacement from Equation A.6 can be

plugged into Equation A.7 to produce:

σ12 “ 2
Bu1

BX2

pC1 ` C2q (A.10)

Navier’s equations of motion [94] are expressed as:

Bσ12

BX2

ê1 “ ρo
B2u1

Bt2
ê1 (A.11)
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Taking the derivative with respect to X2 of Equation A.10 using the chain rule

returns:

Bσ12

Bx2

“ 2
B2u1

BX2
2

pC1 ` C2q

Combining this result with the wave equation (Equation A.9) and again employ-

ing the chain rule gives the following expression.

Bσ12

BX2

“
2

c2

B2u1

Bt2
pC1 ` C2q

.

This result can be plugged in to Equation A.11 to derive the expression for shear

wave speed, cT as a function of material constants as follows.

ñ
2pC1 ` C2q

c2
T

B2u1

Bt2
ê1 “ ρo

B2u1

Bt2
ê1

cT “

d

2pC1 ` C2q

ρo
(A.12)

This result corresponds to the linear case for µ “ 2pC1`C2q and depends only on

underlying material parameters without dependence on the magnitude of acoustic

radiation force applied. Because acoustic radiation force magnitude can depend on

ultrasonic parameters such as frequency and number of transducer elements used

as well as tissue parameters such as attenuation, the independence of shear wave

speed on the applied force provides a good mechanism for determining underlying

quantitative material stiffness parameters in the linear regime.

Shear Waves in a Compressed Hyperelastic Solid In order to model hepatic pressuriza-

tion, it will be useful to consider the case of underlying strain condition added to a
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shear excitation in the hyperelastic material. This can be simply done using super-

position of strain states when defining the displacements and deformation tensor, F .

We can begin by examining uniaxial stress acting in the normal direction (as seen in

[122, 76, 17]) combined with a small shear excitation used to describe shear waves

propagating in tissue. This derivation follows the description of a finite amplitude

wave in a compressed Mooney-Rivlin solid described in [17].

We begin by defining a deformation state:

x1 “ λX1 ` u1pX2, tq

x2 “
1
?
λ
X2

x3 “
1
?
λ
X3

In this deformation state described, λ is also approximated as the stretch ratio

in the compressive direction where λ “ x1
X1

(since u1 is much much smaller than the

compression present in the material). The stretch can also be approximated as one

plus the engineering strain in the compressive direction:

λ “ 1` ε11

We can find the deformation gradient from the deformation state:

F “

¨

˝

λ Bu1
X2

0

0 1?
λ

0

0 0 1?
λ

˛

‚ (A.13)

and C “ FF T :

C “

¨

˝

λ2 ` p Bu1
BX2
q2 Bu1

BX2

1?
λ

0
Bu1
BX2

1?
λ

1
λ

0

0 0 1
λ

˛

‚ (A.14)
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I1 “ p
Bu1

BX2

q
2
`

2

λ
` λ2

I2 “
1

λ2
` p

Bu1

BX2

q
2 1

λ
` 2λ

These substitutions give the strain energy function:

W “ 2C1pp
Bu1

BX2

q
2
`

2

λ
` λ2

´ 3q ` 2C2p
1

λ2
` p

Bu1

BX2

q
2 1

λ
` 2λ´ 3q (A.15)

In order to find the parameter interrogated by the shear wave propagation speed,

we again can take the derivative of the strain energy function with respect to the

shear component of the strain (using the fact that 2ε12 “
Bu1
BX2

).

σ12 “ 4pC1 `
C2

λ
q
Bu1

BX2

(A.16)

In order to derive the appropriate relationships, we again take the derivative with

respect to X2 of Equation A.16:

Bσ12

BX2

“ 2
B2u1

BX2
2

pC1 `
C2

λ
q (A.17)

Navier’s equation (see Equation A.11) produces another expression for Bσ12
BX2

:

Bσ12

BX2

“ ρo
B2u1

Bt2
(A.18)

Equations A.17 and A.18 combine to reveal this relationship:

2
B2u1

BX2
2

pC1 `
C2

λ
q “ ρo

B2u1

Bt2
(A.19)

Noting that pBX2

Bx2
q2 “ λ, and using the chain rule and wave equation substitutions

into Equation A.19 yields:
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2
B2u1

BX2
2

pC1 `
C2

λ
q “ λρoc

2B
2u1

BX2
2

This equation can lead to a prediction of shear wave speed (cT ) as a function of

material parameters C1 and C2 as well as uniaxial compression state (λ).

2pC1 `
C2

λ
q “ ρoc

2
Tλ

cT “

d

2pC1

λ
` C2

λ2
q

ρo
(A.20)

The expression for shear wave speed simplifies to the linear result in the limit

where λ “ 1 (no compression). In addition, this expression suggests a relationship

between the shear wave speed based estimates of tissue stiffness and the underlying

strain state (λ) of the material. While this result predicts a dependence of shear

wave speed on underlying compression state (λ), it still suggests an independence

of shear wave speed from acoustic radiation force excitation magnitude. Because

uniaxial compression or tension in an isotropic material supports two orthogonal

strain quantities, this type of deformation will allow for two orthogonal shear wave

speeds corresponding to Equation A.20 [17]. These will depend on the deformation

λ or its orthogonal counterpart,
?
λ, leading to two excitable shear wave speeds in

this type of hyperelastic material, propagating in orthogonal directions [17]:

v1 “

d

2pC1

λ
` C2

λ2
q

ρo
(A.21)

v2 “

d

2pC1

?
λ` C2λq

ρo
(A.22)
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Figure A.1: Comparison between the theoretically predicted linear elastic behavior
of SWS under material compression with those shear wave speeds predicted for two
sets of Mooney-Rivlin material parameters.

An example of expected v1 (or transverse SWS estimates) for deformations from

0-0.5 strain in a compressed Mooney-Rivlin material for shear wave speeds perpen-

dicular to the compression are shown in Figure A.1.

The relationship between shear wave speed increases and hepatic strain have been

experimentally determined for pressurized excised canine livers in Chapter 6. Thus,

nonlinear material characterization using the experimentally-determined relationship

between strain and shear wave speed in the pressurized canine liver can rely on fitting

this data to parameters shown in Equation A.20. This model was chosen because it

provides the basic mechanism of strain-dependent stiffening seen in hyperelasticity

and has previously been used to describe tissue behavior [49, 122, 59].
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[31] I Céspedes, M Insana, and J Ophir. Theoretical bounds on strain estimation
in elastography. IEEE Trans. Ultrason.,Ferroelec.,Freq. Contr., 42(5):969–972,
1995.

[32] S Chen, M Fatemi, and J Greenleaf. Quantifying elasticity and viscosity from
measurement of shear wave speed dispersion. The Journal of the Acoustical
Society of America, 115(6):2781–2785, 2004.

101



[33] S Chen, MW Urban, C Pislaru, R Kinnick, Y Zheng, A Yao, and JF Greenleaf.
Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elas-
ticity and viscosity. IEEE Trans Ultrason Ferroelectr Freq Control, 56(1):55–62,
January 2009.

[34] C Chui, E Kobayashi, X Chen, T Hisada, and I Sakuma. Combined compres-
sion and elongation experiments and non-linear modelling of liver tissue for
surgical simulation. Med Biol Eng Comput, 42(6):787–798, 2004.

[35] JFL Cobbold and SD Taylor-Robinson. Liver Stiffness values in healthy sub-
jects: implications for clinical practice. Journal of Hepatology, 48:531, 2008.

[36] RS Cobbold. Foundations of Biomedical Ultrasound. Oxford University Press,
New York,NY, 2007.

[37] RS Cotran, V Kumar, and T Collins. Robbins Pathologic Basis of Disease.
W.B. Saunders Company, Philadelphia, PA, 1999.

[38] G Crespo, G Fernández-Varo, Z Mariño, G Casals, R Miquel, SM Mart́ınez,
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