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Abstract 
Sleek and powerful touchscreen devices with continuous access to high-

bandwidth wireless data networks have transformed mobile into a first-class 

development platform. Many applications (i.e., "apps") written for these platforms rely 

on remote services such as Dropbox, Facebook, and Twitter, and require users to 

provide one or more passwords upon installation. Unfortunately, today's mobile 

platforms provide no protection for users' passwords, even as mobile devices have 

become attractive targets for password-stealing malware and other phishing attacks. 

This dissertation explores the feasibility of providing strong protections for 

passwords input on mobile devices without requiring large changes to existing apps. 

We propose two approaches to secure password entry on mobile devices: 

ScreenPass and VeriUI. ScreenPass is integrated with a device's operating system and 

continuously monitors the device's screen to prevent malicious apps from spoofing the 

system's trusted software keyboard. The trusted keyboard ensures that ScreenPass 

always knows when a password is input, which allows it to prevent apps from sending 

password data to the untrusted servers. VeriUI relies on trusted hardware to isolate 

password handling from a device's operating system and apps. This approach allows 

VeriUI to prove to remote services that a relatively small and well-known code base 

directly handled a user's password data. 
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1. Introduction  

1.1 Booming Mobile and Cloud Services 

Mobile devices, such as smartphones and tablets have become immensely 

popular in recent years. According to a 2012 survey, Smartphone ownership has reached 

half of all U.S. mobile consumers [8]. Only in the second season of 2013, nearly 180 

million Android devices and over 30 million iOS devices were sold worldwide [6]. Users 

are attracted by the powerful and interesting apps on the devices and spend a lot of time 

on them. By 2013, Google Play had nearly 1 million applications available in the market 

with 50 billion downloads in total [7], versus 0.8 million applications and 40 billion 

downloads in Apple iOS app store [2]. American users spend an average of 58 minutes 

per day on their mobile devices, of which 14% on browsing the mobile websites while 

the rest through mobile apps [11]. 27% of photos were taken through smartphone 

according a survey in Dec. 2011 [16]. 

At the meantime, lots of new cloud services are booming rapidly and taking up 

almost all the aspects of people’s life: social networks, instant messaging, video 

streaming, photo gallery, e-business, location-based services (LBS), online storage, etc. 

These cloud services have attracted thousands of millions of users worldwide. Facebook 

reached 1.11 billion monthly-active users all over the world as of May 2013 [4], who 

contribute to 3 million messages and 1 million links every 20 minutes [5]. Over 1 billion 
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monthly-active users of YouTube upload 100 hours of video every minute, and over 6 

billion hours of video are watched each month [17]. More and more people access cloud 

services from their mobile devices. Facebook has 680 million mobile users [5]. Instagram 

has attracted 150 million monthly active users who generate 55 million photos per day 

through the mobile app [12]. 80% smartphone owners use their mobile device to shop 

online, according to a study conducted in Sept. 2012 [3]. 

The reason for such high level of participation in the mobile and cloud services is 

obvious: they bring a lot of fun and convenience to the users. People can look up in the 

map through their smartphone when they are adventuring the new cities. Or they can 

watch funny YouTube videos while waiting in the subway. Users can make video calls 

with colleagues no matter how far away they are. Or they can share photos taken in the 

trip immediately with best friends all over the world through OSNs. As a result, the 

functionalities provided by mobile devices and cloud services restyle people’s daily life 

and redefine how they interact with the whole world. 

1.2 New Security Challenges in the Mobile Era 

Mobile and cloud services bring convenience and fun to the users. However, 

enhancing security on mobile computing becomes an important and pressing problem, 

because mobile devices not only store and generate huge amount of personal or even 
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sensitive data in local systems, but also become portable and popular clients to access all 

kinds of cloud services which control the entrances to users’ cloud data. 

Firstly, smartphones and tablets contains lots of personal information in the 

system, a considerable part of it is highly private or sensitive.  Mobile devices nowadays 

are far more than simple call phones to users. Instead, they are becoming important 

personal assistants and useful portable computers. Besides contacts and messages in 

these devices, they may also contain private data such as daily schedule, scratch notes, 

or even business presentations.  

In addition, as most modern smartphones and tablets are equipped with a 

number of sensors such as GPS, camera, microphone, accelerometer, gravimeter, 

pressure and light sensors, etc., users are very easy to generate information-rich content 

through their mobile devices. The sensors on mobile devices can sense the environment 

as well as users themselves comprehensively. As a result, contents from user-centric 

sensing contains a lot of personal or even sensitive information about the users such as 

locations, life habits, health conditions, and social activities. 

Lastly, more and more people routinely access all kinds of cloud services 

through their mobile devices because of availability and convenience. Due to the high 

portability of mobile devices and the wide availability of internet access, users are able 

to interact with the cloud services almost anywhere and anytime through their mobile 
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clients. It is very convenient to generate User Generated Contents (UCG) from mobile 

devices and send them to cloud services.  Due to the limitation of power, storage, and 

computation capacities of mobile devices, many mobile apps only serves as light-

weighted clients to display and handle user interactions, and they rely on cloud servers 

to process and store huge amount of data. Before mobile apps can access to cloud 

services, users have to give them credentials for authentication with servers. The 

credentials such as usernames and passwords are very sensitive because they are the 

keys to access users’ properties in the cloud. There are lots of private and sensitive data 

in the clouds, such as commercial emails, social network photos, instant messenger 

contacts, and online documents, etc. Private data in the cloud will be in great danger if 

the credentials are not properly handled in the mobile devices and stolen by malicious 

entities. In addition, it is also unavoidable for users to perform other sensitive 

interactions with cloud services through mobile apps, such as online payment. Such 

sensitive interactions and operations must take place in a secure environment as well. 

Since mobile devices such as smartphones and tablets contains lots of private 

information and access all kinds of cloud services on behalf of users, no doubt, they 

become valuable targets for malwares and attackers. Malicious apps may steal users’ 

credentials or fool users to pay online. Improper or buggy apps may have vulnerabilities 

in their code and put users’ sensitive information in high risks. Although centralized 
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app markets and app review processes do help relieve these problems, apparently they 

are not enough. Examinations on mobile apps before release cannot detect all the 

problems in them. On the other hand, it does allow installing apps from untrusted 

sources in some mobile platforms such as Android. 

In this dissertation, we focus on protecting sensitive input data when users are 

accessing cloud services through mobile apps and taking sensitive operations, such as 

authentication and online payment. When users interact with mobile apps and input 

sensitive information, they need to make sure that the mobile apps handle their sensitive 

operations properly and securely. Our goal is to enhance the security for users’ most 

important data, and also relieve the concerns of users when they are enjoying the fun 

and convenience provided by mobile apps.  

Similar security problems have been studied in desktop computers. However, we 

are facing the following new challenges for touchscreen mobile devices: 

Third-party apps: Third-party apps become more and more popular in the 

mobile app market. Many cloud services open their platform APIs to third-party 

developers and encourage them to contribute to the ecosystem. For example, popular 

OSNs such Facebook and Twitter allow third-party apps to access users’ OSN data once 

users grant permits to them. These third-party apps greatly extended the services 

provided by the original platforms and fill in their gaps. People choose to use third-
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party apps because they provide augmented functionality and integrated services, or 

just because first-party app is unavailable in the market. However, when users are 

accessing first-party cloud services through third-party mobile apps, they unavoidably 

have to give sensitive data to third-party apps for authentication, online payment, etc. 

This causes great security issues. Currently there is no enforcing mechanism to isolate 

third-party apps completely from the secrets between users and cloud services. And 

there is also lack of regulation mechanism to monitor how the sensitive data is being 

handled by third-party apps so as to prevent improper behaviors by buggy or even 

malicious code. 

Software keyboard: The input entry is no longer trusted in current touchscreen 

devices. Most mobile devices are touchscreen devices, which do not equipped with 

hardware keyboards and only provide users with software input methods. In desktop 

computers with hardware keyboard, the keyboard driver is part of system code and 

handles user inputs directly. But in touch screen devices, only the touchscreen driver is 

part of the system code, and the input method works as an application to turn touch 

actions into key strokes. So any mobile app can implement a software keyboard within 

the app. It can translate the user taps into character inputs all by itself, without calling 

the default input method service. At a result, the entry for inputting sensitive 

information is no longer trusted in touchscreen devices. 
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Embedded web UI: The web UI is not secure and can be manipulated by mobile 

apps. Besides mobile browsers, mobile system also provides developers with an UI 

widget called WebView. WebView provides basic browser functionalities and can be 

embedded in the mobile apps to display web contents. It is widely used in mobile apps 

because it is a convenience way to communicate with cloud services. Many mobile apps 

embed it to serve as a highly-customized mini-browser. However WebView also raises 

new security issues to the system because it can be easily manipulated by its host mobile 

app. To help web applications tightly integrated with mobile apps, WebView provides a 

number of APIs for developers to register event listeners, and inject JavaScript code, etc. 

The host app can easily hijack the web content and sniffer user input in WebView. As a 

result, WebView compromise the trust base for browsers. Different from desktop 

browsers such as Chrome and Firfox in which people trust, WebView is not trusted 

unless its host app is completely trusted and secured. 

Small screen size: The much smaller screen size in mobile devices makes it even 

more difficult to protect users against social-engineering attacks than in desktop 

computers. Screen is very precious estate in smartphones so that most mobile system 

supports full-screen mode to maximize display utilization. There is no reservation area 

in the screen and mobile apps are allowed to arbitrarily write to any part of the screen. 

As a result, secure areas or indicators which are used against spoofing attacks in desktop 
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computers and browsers, do not work anymore on mobile devices. What’s even worse, 

small-size screen with less contents and visual clues displayed, makes users more 

difficult to judge the authenticity of the UIs and easier to be deceived. Mobile browsers 

which usually hide the address bar to save the screen, attracts little attention from the 

users on the domain changes in the URLs. All these factors combined together make the 

social-engineering attacks much more difficult to prevent. 

1.3 Enhance Trusted UI in Touchscreen Mobile Devices 

To solve the new security challenges in touchscreen mobile devices, we propose 

to enforce trusted UI to guarantee the security for sensitive operations and protect users’ 

sensitive information against improper or even malicious mobile apps. 

We practice the following three principles to design and implement trusted UI in 

our systems, which are also three major challenges we must consider and solve: 

• Secure environment: Trusted UI must provide users with a secure 

environment to complete sensitive operations, such as authentication or 

online payment. It must be part of trusted computing base (TCB) in the 

system, or at least controlled and monitored by TCB. The display and 

operation of trusted UI must be handled by trusted code. 

• Usage Enforcement: The usage of trusted UI by mobile apps must be 

enforced. In other words, there must be an enforcing mechanism to 
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guarantee mobile apps will use trusted UI to handle sensitive user 

interactions and input. Whenever mobile apps ask users to take sensitive 

operations, they have no way to circumvent trusted UI but only adopt it. 

At least, if an improper or malicious mobile app is trying to use its own 

UI to handle user interactions instead of trusted UI, TCB in the system 

must detect and prevent it in time. 

• Anti-spoofing campaign: The authenticity of the trusted UI must be 

protected. Any security mechanism handling user interactions must 

consider social-engineering attacks. Malicious apps can display identical 

or highly similar UI to spoof the users, in order to steal sensitive 

information from them. TCB in the system must be able to detect and 

prevent phishing or spoofing attacks. More importantly, the user 

responsibility must be minimized in the anti-spoofing campaign. We 

cannot rely on the users to make critical judgments whether they are 

interacting with the trusted UI or not. Users are not expertise on security 

and prone to ignore warnings according to previous studies. They have 

less information than the system about what is happening on the device. 

If users have to be fully trained or educated to prevent spoofing attacks, 

the security mechanism will be definitely vulnerable and easy to fail. 
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In our research, we have done two case studies, ScreenPass and VeriUI to 

enhance the security of sensitive input through trusted UI. Both studies practice the 

three major principles in their designs and implementations. 

1.4 Dissertation Statement and Overview 

Security on mobile computing, especially the security of sensitive input data 

through mobile apps, is the focus of my dissertation. Sensitive input data includes but 

not limited to: credentials such as passwords, financial accounts such as credit card 

numbers, personal identities such as SSN numbers, etc. My dissertation statement is as 

follows: 

 

This dissertation validates the statement via the design, implementation, and 

experimental evaluation of two systems: ScreenPass and VeriUI. 

We propose ScreenPass – a system that enhances password security on 

touchscreen devices through OCR and taint-tracking techniques. Passwords are highly 

sensitive data, and users need to ensure their passwords are handled properly by mobile 

apps. In order to provide users with trusted password entry, ScreenPass checks the 

When users access cloud services from touchscreen mobile devices, it is 

feasible to enhance the security for sensitive input by enforcing trusted UI in 

mobile apps. 
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authenticity of software keyboard using optical character recognition (OCR) to validate 

it is legally called through system input method framework. ScreenPass provides a 

special UI to capture user intent explicitly when she inputs the password, and tags the 

password with the secure domain which the user selected. After the password is 

properly tagged, ScreenPass monitors the password usage throughout the system using 

taint-tracking, and enforce security policies to protect the password against improper or 

even malicious mobile apps. 

We also propose VeriUI – a system that enhances security for sensitive 

operations on mobile devices using ARM TrustZone technique. VeriUI leverages ARM 

TrustZone technique to run two systems at the same time: a normal system with rich 

applications in the normal world, and a minimized secure system for users to take 

sensitive operations in the secure world. A minimized and secure webkit runs in the 

secure word to provide generalized service to third-party apps running in the normal 

world. Secure webkit sends requests to cloud servers together with attestations 

generated by the secure system, which proves the secure environment.  First-party cloud 

services checks and verifies the remote attestations before they process the requests so 

that third-party apps are required to use trusted web UI in the secure world to handle 

sensitive user interactions with first-party cloud servers. 
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1.5 Dissertation Outline 

The rest of this dissertation is organized as follows: Chapter 2 provides the 

background knowledge and techniques related with ScreenPass and VeriUI, including 

Android system, OAuth 2.0 protocol, taint-tracking, and trust computing. Chapter 3 and 

Chapter 4 describe the major contributions of this dissertation. Chapter 3 describes the 

design, implementation, and evaluation of ScreenPass, a system that enhances password 

security in touchscreen device. ScreenPass verifies the authenticity of software keyboard 

through OCR, and monitors the usage of passwords by mobile apps through taint-

tracking. Chapter 4 presents the design, implementation, and evaluation of VeriUI, a 

system that enhances security for sensitive operations in mobile devices. VeriUI 

leverages ARM TrustZone technique to provide users with trusted web UI in the secure 

world, and enforces the usage of trusted UI by third-party apps through remote 

attestation. Chapter 5 provides the related work on password security, anti-phishing 

techniques, trusted UI, and trust computing, etc. It discusses the state of art in these 

fields and compares it with ScreenPass and VeriUI respectively. Chapter 6 concludes the 

dissertation with a summary of our contributions. It also discusses our experiences on 

designing and implementing ScreenPass and VeriUI. 
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2. Background 
This chapter provides some background knowledge regarding the design and 

implementation of ScreenPass and VeriUI. We first briefly introduce some important 

components of Android system in Section 2.1: Android framework, web browser, and 

display subsystem. After that, we provide an overview of OAuth 2.0 protocol for 

authorization and authentication in Section 2.2.  In Section 2.3 we discuss the taint-

tracking technique and an existing implementation for Android - TaintDroid. Finally, 

we present the background knowledge related to Trust Computing especially ARM 

TrustZone and remote attestation on Section 2.4.     

2.1 Android System 

The Android mobile platform includes a Linux kernel, Java programming 

environment, and several layers of trusted middleware. We briefly describe the most 

relevant of these subsystems below.  

2.1.1 Android Framework, Apps, and Services 

Application framework: An Android app consists of three components. An 

activity defines the app’s UI, and controls all of an app’s widgets (called “views” in 

Android). Activities interact with background services and content providers. An 

application’s background service is a separate thread that contains the application’s core 



 

 

14 

logic and soft state. An app’s content provider offers an interface to persistent storage 

such as the file system or a SQL database. 

Dalvik virtual machine: App components are written in Java, and this code is 

compiled into Dalvik Execution (DEX) byte codes. The Android team developed their 

own Dalvik Virtual Machine (VM), which is optimized for mobile devices. Android apps 

execute within separate VM instances, and VM instances are managed as processes by 

the underlying Linux kernel. Apps use Android’s custom IPC protocol (Binder) to 

communicate with processes outside of their own. 

Input method framework: The Input Method Framework (IMF) provides a way 

to invoke and manage input methods such as onscreen software keyboards. When a user 

selects a text-input box, the widget makes a request to the IMF for an Input Method 

Engine (IME) that can receive input from the user. The IME runs in a separate process 

from the requesting app and writes user input to a string field in the text-input widget 

via IPC. 

2.1.2 Mobile Browser and WebView Widget 

There are two types of web UI facilities on Android: the mobile browser and 

WebView widgets. 

A WebView is a system UI widget that serves as an embedded browser for 

loading URLs within an app. Mobile developers can easily integrate WebView 
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components in their apps to render web pages and display contents from cloud 

services.WebView supports basic browser functionality such as navigation and 

JavaScript execution. It also provides an API for mobile apps to interact with and 

customize WebView output. Because of its usefulness, flexibility, and ease of use, 

WebView are widely used in mobile apps. 

There are several ways that an app can monitor its in-app WebView components. 

Firstly, it can register event listeners through WebView APIs. With these event listeners, 

the app can hijack the web content, or even sniff everything the user does with the 

webpage. Secondly, the app can inject and execute JavaScript code into the web page. 

The injected JavaScript code can also invoke Java code to pass information back to the 

host app. Through these methods, the webpage loaded in WebView is tightly integrated 

with the mobile app and can be easily customized. However, these WebView APIs 

compromise the trustworthiness of the embedded browsers. When users interact with 

desktop browsers, they trust them because they are independent programs. But the 

WebView is only as trustworthy as its host app. 

The mobile browser is a stand-alone app supporting full-fledged web features as 

its desktop counterparts, and can be called by other apps via IPC. Each Android app 

runs as a Linux process with its own unprivileged UID. An app can request the mobile 

browser to open any URL through Binder IPC calls. The app yields control to the mobile 
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browser and runs in background. The mobile browser becomes the foreground app to 

interact with the user. After finishing its work, the mobile browser can be redirected 

back to the app. Unlike the embedded WebView, third-party apps have no control over 

the mobile browser. 

2.1.3 Display Subsystem 

Frame Buffer: The Linux frame buffer (FB) is an abstraction that provides access 

to the graphical output of the device. Android’s FB device is found at /dev/graphics/fb0 

and can be accessed by only the root user and the graphics group. The FB has a front 

and back buffer: the front buffer contains the pixel data currently displayed on the 

screen, and the back buffer is used for composition by the SurfaceFlinger. 

SurfaceFlinger: The SurfaceFlinger (SF) is Android’s system-wide surface 

composition engine, and is responsible for managing surfaces and the virtual frame 

buffer device. When an activity creates a widget, it asks the SF to allocate a new surface. 

The SF allocates a back and front buffer for the surface and returns a handle to the 

requesting process. As the owner of this surface, the requesting process is free to update 

the back buffer as needed. The back buffer is used by the activity for rendering new 

frames. Once a process has finished rendering, it swaps the front and back buffers and 

asks the SF to draw the new frame to the screen. The front buffer is used by the SF for 

composition. 
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2.2 OAuth 2.0 Protocol 

OAuth 2.0 [9] is an open and standard resource authorization protocol which is 

widely used by modern web services. It enables users to grant a third-party to access to 

their resources stored in the cloud to a limited extent, without sharing their long-term 

credentials, such as usernames and passwords. OAuth allows a cloud service to generate 

a capability called OAuth token for an app on the user’s behalf which will be used as 

permit to access the user’s data later. Every OAuth token corresponds to a list of 

resources in the cloud and has an expiration date. The user can also actively revoke an 

app's OAuth token before it expires through the cloud service. OAuth protocol supports 

different types of third-party apps, such as websites, browser plug-ins, mobile apps, and 

desktop applications. OAuth is designed as an authorization protocol, but it is also 

widely used by third-party apps in single sign-on (SSO) authentication services. 

The procedure for mobile apps to obtain an OAuth token from cloud services is 

as follows: when a mobile app first request access to a resource in the cloud service, it 

redirect the user to the OAuth login website of the cloud service through WebView 

default browser, together with a list of resources it requires in the parameters. The user 

completes the authentication process through the web UI and approves the required 

permissions from the app. The cloud service will create an OAuth token, and a client 
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secret for the app to retrieve the OAuth token later. Then it redirects the WebView or 

default browser back to the app, returning it with the generated client secret. 

After presenting the client secret to the cloud service and receiving its OAuth 

token, the app can make API calls to the cloud service to access the corresponding user 

data by presenting the OAuth token. The mobile app usually stores the OAuth token in 

the client for future use, or even send the token to the app’s own server.  

OAuth 2.0 provides a standard solution for first-party cloud services to share 

data with third-party mobile apps, and it has been widely accepted and deployed. 

However, not all third-party apps implement the protocol properly and completely, a 

portion of third-party apps ask users for account information through its app UI directly 

and then complete the whole process by itself. 

2.3 Taint-tracking and TaintDroid  

ScreenPass relies on TaintDroid for taint-tracking. TaintDroid is a system-wide 

taint-tracking extension for Android [27]. TaintDroid associates tags with sensitive data 

that is released to untrusted code via taint sources such as requests for a device’s current 

location. Taint tags are 32-entry bit vectors that can be associated with program 

variables, IPC messages, and files. TaintDroid implements tag-propagation logic to 

capture data dependencies as the system executes. 
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2.4 Trust Computing and ARM TrustZone 

2.4.1 ARM TrustZone 

TrustZone [19] is a set of security extensions for trusted computing supported by 

ARM processors since ARMv6, such as ARM Cortex A8, A9, and A15. TrustZone’s 

security architecture embodies a “two worlds” paradigm. One world is called the 

“normal world” or rich execution environment (REE), and the other is called “secure 

world” or trusted execution environment (TEE). The two worlds are separated by 

introducing a special 33rd address line on the system bus. Hardware-based access 

control will be enforced according to the state on the 33rd address line, so that untrusted 

code in the normal world cannot access to the protected memory pages or peripheral 

registers of the secure world. 

TrustZone supports running two operating systems at the same time without 

degrading system performance. The rich OS such as an Android system and all 

applications run in the normal world, whereas a secure OS such as a trusted kernel and 

secure applications runs in the secure world. Software stacks in the two worlds can be 

bridged through a secure monitor call (SMC). System switch is managed by the 

TrustZone monitor, which is part of the secure world. Once SMC is executed, the 

hardware switches to the TrustZone monitor to perform a secure context switch into the 
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secure world. Besides SMC, TrustZone monitor can also be entered by a number of 

hardware interrupts. 

TrustZone protects code and data integrity and confidentiality in the secure 

world by isolating untrusted code running in the normal world from protected 

resources. Secure boot ensures the system components enter trusted states. When the 

platform boots, it first boots into the secure world and the system firmware setups the 

entire runtime environment for the secure world. After the secure OS boots, the secure 

world yields to the normal world by loading the bootloader for the rich OS. When the 

booting process finishes, the normal world must use SMC to call back into the secure 

world. As a result, even though the rich OS in the normal world is compromised, the 

data and code in the secure world is still not tampered. 

2.4.2 Remote Attestation 

Remote attestation is the process to make and verify a claim about the properties 

of a target by providing evidence to the authority to check through network. In system 

security, the evidence can be a hash of the system states to verify that the OS has not 

been tampered before taking sensitive operations. The attestation can be created by 

either trusted hardware or software. 

Even though ARM TrustZone provides isolation between normal world and 

secure world, it does not provide remote attestation capabilities originally. This 
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requirement can be full filled through hardware or software solutions. For hardware 

method, an external TPM [18] or MTM module can be introduced into the platform to 

provide binding, sealing, and remote attestation. In software solution, these capabilities 

can be implemented in a trusted kernel in the secure world. Since TrustZone is robust, 

venders can build secure storage in the secure world. The keys and sensitive data can be 

stored in the TEE-only addressable area as protected resources to be isolated from the 

untrusted code.  The trusted kernel can provide attestation to remote authorities. 
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3. ScreenPass: Secure Password Entry via OCR and 
Taint-tracking 

In this chapter we describe ScreenPass [34] – a system that enhances password 

security on touchscreen devices through OCR and taint-tracking techniques. 

Users routinely access cloud services through third-party apps on smartphones 

by giving apps login credentials (i.e., a username and password). Unfortunately, users 

have no assurance that their apps will properly handle this sensitive information. In this 

chapter, we describe the design and implementation of ScreenPass, which significantly 

improves the security of passwords on touchscreen devices. ScreenPass secures 

passwords by ensuring that they are entered securely, and uses taint-tracking to monitor 

where apps send password data. The primary technical challenge addressed by 

ScreenPass is guaranteeing that trusted code is always aware of when a user is entering 

a password. ScreenPass provides this guarantee through two techniques. First, 

ScreenPass includes a trusted software keyboard that encourages users to specify their 

passwords’ domains as they are entered (i.e., to tag their passwords). Second, 

ScreenPass performs optical character recognition (OCR) on a device’s screenbuffer to 

ensure that passwords are entered only through the trusted software keyboard. We have 

evaluated ScreenPass through experiments with a prototype implementation, two insitu 

user studies, and a small app study. Our prototype detected a wide range of dynamic 

and static keyboard-spoofing attacks and generated zero false positives. As long as a 
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screen is off, not updated, or not tapped, our prototype consumes zero additional 

energy; in the worst case, when a highly interactive app rapidly updates the screen, our 

prototype under a typical configuration introduces only 12% energy overhead. 

Participants in our user studies tagged their passwords at a high rate and reported that 

tagging imposed no additional burden. Finally, a study of malicious and non-malicious 

apps running under ScreenPass revealed several cases of password mishandling. 

3.1 Introduction 

Users routinely access cloud services such as Facebook and Twitter via third-

party applications (i.e., “apps”) on touchscreen devices. To interact with these services, 

an app must provide a user’s password to one or more remote servers. Passwords are 

highly sensitive data and handing them over to third-party apps raises the following 

question: how can users be sure that an app properly handles their passwords? The 

recent discovery of password-stealing apps and other vulnerabilities in Android 

demonstrates that users have reason to be concerned [31, 58]. 

A trusted information-flow monitor such as TaintDroid [27] can track the 

propagation of password data, but data must be tagged before it can be tracked. Past 

systems have tagged sensitive user input via a secure attention sequence (SAS), such as 

“@@”, to indicate the beginning of a password [41, 47]. Trusted software (i.e., a keyboard 
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driver) must monitor the incoming character stream for the SAS and, when it appears, 

must treat subsequent characters as password data. 

However, recognizing SASes in the text-input stream of a touchscreen device is 

difficult because of software keyboards. Trusted code such as the touchscreen driver and 

user-interface manager receive taps on a touchscreen as a set of coordinates, and can 

only understand the intended meaning of a user’s taps when they understand the 

content of the screen. 

The platform could reserve part of the screen for secure gestures, but modern 

devices’ small screens make screen real estate a precious resource. Important third-party 

apps such as games, media players, and web browsers need write access to the entire 

screen. 

Unfortunately, a malicious app can abuse this privilege to spoof a platform’s user 

interface, including its trusted software keyboard. 

Under a spoofing attack, a user may input an SAS meant for the trusted platform 

without realizing that the input was delivered directly to a malicious app. 

To ensure that passwords are input securely, we have developed a system called 

ScreenPass. ScreenPass provides a special-purpose software keyboard for entering 

sensitive text such as passwords that allows a user to tag her input with a domain (e.g., 



 

 

25 

Google, Facebook, or Twitter). ScreenPass uses these tags to taint-track the user’s 

password data as it propagates through the app. 

Tags can subsequently be used to enable a number of useful policies. 

For example, the system may want to know when plaintext password data is 

written to disk or when password data is shared between apps via IPC. Similarly, if an 

app tries to write password data to the network, a guard can check the write’s safety by 

reasoning about features of the network endpoint (is the destination port associated with 

unencrypted traffic?), the taint tag’s domain (is the destination IP address in the 

appropriate domain?), or a password’s usage history (is the app adhering to the OAuth 

specification and only sending a password once?). If an action is considered unsafe, then 

the guard can either block the data from being released, or it can raise an alert. 

ScreenPass’s primary goal is ensuring that password data is only entered 

through a trusted keyboard so that it can be tagged before it is given to an app. To 

achieve this goal, ScreenPass performs dynamic optical character recognition (OCR) on 

regions of the screen where users expect a software keyboard to appear. If text in this 

region of the screen is sufficiently similar to the “qwerty” text of a keyboard and the 

foreground app has not yielded control of the screen to the trusted keyboard, the OS can 

kill the foreground process or raise an alert. 

ScreenPass makes the following contributions: 
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• Previous secure UIs have restricted where untrusted code can write to the 

screen [29, 55], but ScreenPass is the first system designed specifically for the 

limited screen real estate of a mobile device; ScreenPass protects sensitive 

input by restricting what untrusted code may write to sensitive parts of the 

screen. 

• ScreenPass is the first system to prevent UI spoofing through efficient and 

robust online computer vision. Software-only computer-vision techniques 

such as OCR minimize ScreenPass’s hardware requirements and allow our 

approach to generalize to any modern touchscreen device. 

• We have implemented a ScreenPass prototype for Android and evaluated its 

robustness to attack as well as its energy and performance overheads. Our 

attack study found that ScreenPass is robust to a wide range of static and 

dynamic attacks while generating zero false positives. ScreenPass only failed 

to detect spoofed keyboards with noisy backgrounds that look significantly 

different than a standard system keyboard. ScreenPass consumes no 

additional energy when the screen is not updated or tapped. Under a typical 

configuration, ScreenPass introduces 12% energy overhead in the worst case. 

It consumes far less for apps that infrequently update the screen or require 

little user input. ScreenPass also had negligible impact on interactivity; under 
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a typical configuration, no workload experienced a statistically significant 

drop in frame rate under ScreenPass. 

• We have also conducted two in-situ user studies with ScreenPass-like 

software keyboards. Our initial 18-user, three-week user study showed that 

tagging passwords imposes little additional burden on users, and showed 

that users will tag passwords at a high rate when prompted. A smaller, 

follow-up study demonstrated that integrating a password manager with 

ScreenPass incentivizes users to tag their passwords at a high rate even when 

they are not prompted. 

The rest of this chapter is organized as follows: Section 3.2 describes ScreenPass’s 

trust and threat model, Section 3.3 provides an overview of ScreenPass’s approach to 

securing passwords on mobile devices, Section 3.4 describes the design and 

implementation of ScreenPass, Section 3.5 describes our evaluation, Section 3.6 gives our 

conclusions.  

3.2 Trust and Threat Model 

To ensure fractal behavior, Fractal Coherence requires a hierarchical logical 

structure. However, Fractal Coherence does not place any requirements on the physical 

topology of the system. The hierarchical logical structure can be implemented on any 

kind of physical topology, such as a 2D mesh, torus, ring, etc. Hereafter, when we refer 
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to a system’s structure, we are referring to its logical structure. In this thesis, we confine 

our discussion to the tree structure with a consistent degree at each level, but we believe 

our methodology can also apply to other hierarchical logical structures. 

We assume that a user trusts the mobile platform running on her device, and 

relies on the operating system’s existing mechanisms to thwart attacks against the 

platform itself. We assume that the trusted computing base (TCB) consists of any code 

that sits behind the standard set of APIs on which a mobile app is implemented. 

For example, the essential components of Android’s security model are a Linux 

kernel, user-space daemons called services running under privileged UIDs, and an IPC 

mechanism called Binder. Each Android app is signed by its developer and runs as a 

Linux process with its own unique, unprivileged UID. Apps access protected resources 

such as the software keyboard through Binder IPC calls. Apps and services can limit 

interactions with other code by specifying access-control policies to the Binder 

dispatcher. 

An information-flow monitor such as TaintDroid cannot track important data 

unless it is properly tagged and cannot protect tagged data without release policies. 

However, even though these tags can allow a monitor to provide stronger security for a 

user’s passwords than is possible today, some classes of attacks are difficult or 

impossible to prevent with existing monitors. 
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For example, like many monitors, TaintDroid does not prevent data from leaking 

through covert channels such as a program’s control flow or timing information. Recent 

work on selectively tracking implicit flows using information from the symbolic 

execution of a program is promising [32], and such techniques may be applicable to 

existing monitors. We consider attacks against the taint-tracker to be outside the scope of 

ScreenPass; our goal is to ensure that password input is always tagged. Furthermore, 

ScreenPass is not designed to prevent passwords from leaking via covert channels like a 

device’s motion sensors [24, 40]. These vulnerabilities have straightforward solutions, 

such as disabling access to motion sensors whenever a password is input. 

ScreenPass’s taint tags associate data with a coarse-grained domain. As a result, 

ScreenPass alone cannot prevent attacks in which passwords are leaked within a 

domain. For example, untrusted code could log into a service using credentials that are 

hardcoded into the app binary or accessed from an external server. Once logged in, the 

untrusted code could leak another user’s password through the original account (e.g., by 

writing the user’s password on an attacker’s Facebook wall). Alternatively, an untrusted 

app could encode a user’s Facebook password as a world-readable message on the 

user’s own wall, wait for an external machine to read the post, and then delete the post 

before the user noticed anything strange. These attacks are challenging, but allowing a 

system to monitor which domains have access to a password make it more likely that 
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problems can be detected than if passwords continue to be shared without restriction. 

For example, many services maintain detailed records of all user actions. If a service 

detects a same-domain attack on mobile users’ passwords, then it may be able to use its 

logs and identify how many other users were affected. 

Finally, this work assumes that passwords are input through a “qwerty” English 

keyboard, though we believe that our techniques can be generalized to more specialized 

keyboards, such as numeric keyboards or non-English keyboards. We assume that users 

will not trust apps that require passwords to be input through a keyboard with a non-

standard layout or an unusual set of keys. 

3.3 Approach Overview 

ScreenPass must ensure that the TCB intercepts all password input so that it can 

be tagged and tracked by an information-flow monitor like TaintDroid. The original 

TaintDroid prototype [27] tracks sensitive data that is accessed through a small number 

of 

API calls with well-defined semantics. By interposing on these taint sources, 

TaintDroid can tag several important classes of sensitive data before they are accessed 

by untrusted code. Once this data has been released, TaintDroid tracks its propagation 

by integrating dynamic taint analysis (taint-tracking) into Android’s Dalvik VM, native 

system libraries, file system, and Binder IPC mechanism. Tagging sensitive data as it 
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enters a program by interposing on API calls with well-defined semantics is sufficient 

for many classes of sensitive data (e.g., a device’s location and IMEI number), but this 

approach is not a good fit for passwords. 

Apps access passwords through character-stream interfaces that do not 

distinguish between sensitive and non-sensitive data. Previous approaches to 

identifying password inputs have required users to explicitly identify their passwords 

through a secure attention sequence (SAS) [41, 47]. An SAS is a well-known sequence of 

characters (e.g., “@@”) that labels bytes in the stream as password data. As long as 

trusted code can identify individual characters, it can look for the SAS and tag password 

data. Unfortunately, on touchscreen devices with software keyboards, untrusted apps 

can circumvent the SAS by hiding text input from the TCB. 

Software keyboards translate touchscreen gestures to characters by correlating 

the screen location where a user tapped or gestured with what was displayed at that 

location. Well-behaved apps allow trusted code to map gestures to characters by 

invoking the platform’s standard software keyboard. When invoked, the trusted 

software keyboard assumes control of the lower half of the screen, where it displays a 

virtual keypad. The keypad receives the coordinates of taps from the touchscreen driver, 

translates those inputs into characters, and returns the characters to the app. In addition, 

well-behaved apps using a platform’s standard library of widgets can put text-input 
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boxes into “password” mode by manipulating its attributes. For example, Android apps 

can set the “android:password” attribute of a text-input widget to explicitly notify the 

TCB when input to the text box is a password. 

Unfortunately, touchscreen platforms cannot force apps to yield control of the 

screen to the trusted UI. An untrusted app can bypass the trusted keyboard by retaining 

control of the screen, displaying a keypad that is visually indistinguishable from the 

trusted one, and translating touchscreen gestures to characters by itself. 

Under such a spoofing attack, trusted code such as the touchscreen driver and UI 

manager would only see taps and swipes on the screen and cannot interpret the 

semantics of those gestures. Trusted code would have no way of knowing that a user’s 

taps and swipes were meant to be text inputs, and a user would have no way of 

knowing that the TCB was oblivious to her password input. 

To address these challenges, we developed ScreenPass while keeping the 

following design considerations in mind: 

Minimize hardware assumptions. ScreenPass should work on as many 

touchscreen devices as possible. There are hundreds of touchscreen devices with a wide 

range of hardware configurations. However, because of the minimalist industrial design 

of modern smartphones we conservatively assume that all interactions with a user occur 

through the touchscreen. Furthermore, ScreenPass should not re-purpose already 
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overloaded inputs such as a home or power button for an SAS, or rely on a non-

touchscreen output such an external LED to signal the user. 

Maximize display utilization. Screen real estate is a precious resource for mobile 

apps. Prior approaches to secure UIs [29, 55] have reserved part of the screen for 

messages from the TCB to the user, but this is inappropriate for consumer touchscreen 

devices. Android, iOS, and other mobile platforms provide a bar at the top of the screen 

for system information and notifications, but allow apps such as games, media players, 

and web browsers to hide this bar when in full-screen mode. To preserve the 

functionality of these important apps, ScreenPass should also support full-screen mode. 

Minimize users’ responsibilities. ScreenPass should avoid burdening users’ 

with easy-to-ignore and error-prone new responsibilities. For example, ScreenPass could 

display a secret image, known only to ScreenPass and the user whenever it detected 

password input. If the image was absent during password entry, a user would be 

expected to notice and not provide her password. We did not pursue this approach 

because (1) ScreenPass would have to rely on users to choose images that could not be 

guessed by untrusted code, and (2) the secret image would have to be managed through 

additional layers of UI (e.g., for setting and resetting), each of which would need to be 

secured. 
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Furthermore, Schechter’s 2007 study of site-authentication images (SAIs) found 

that these secrets provide very little security in practice [49]. This study found that 92% 

of participants logged in to a banking site when their secret image was replaced with a 

generic maintenance message. Schechter’s study also found that 100% of participants 

logged in when the secure-connection indicator (i.e., a red “https” string) was absent. 

Other studies of web-based systems have found that relying on users to heed warnings 

or notice the absence of a visual signal are often ineffective [25, 26, 57]. 

The main observation behind our approach to securing password input is that a 

keyboard consists of a unique and predictable sequence of characters. Thus, ScreenPass 

uses efficient optical character recognition (OCR) to search for text in the portion of the 

screen where a user would expect a keyboard (i.e., the lower half). If the OCR engine 

detects character sequences that are close to those of a keyboard (e.g., “qwerty” or 

“qvvrty”), it checks whether the trusted software keyboard has been invoked. If not, 

ScreenPass can take a variety of actions, such as killing the foreground process or 

warning the user. 

3.4 ScreenPass 

ScreenPass is a realization of the approach to secure password entry for Android 

touchscreen devices outlined in Section 3.3. 
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3.4.1 Capturing and Tainting Password 

Figure 1 shows a high-level overview of how ScreenPass captures and tags a 

user’s password. Arrows in the diagram represent IPC calls across components. All 

components in the figure are trusted except for the untrusted app in gray. 

 

Figure 1: Overview of the ScreenPass architecture. 
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The first step in tagging a user’s password is for the untrusted app to request an 

IME from the IMF system service. The request contains attributes describing the target 

widget so that the software keyboard can be appropriately configured. For example, if a 

text field is an email address, the software keyboard can display an “@” key along with 

the usual alphabetical keys. The IMF assigns the app to the ScreenPass IME and passes 

along the target widget’s attributes. The IME checks these attributes to see if the widget 

is in password mode. 

If a widget says that it is in password mode, the secure keyboard first contacts 

the ScreenPass system service to put the device in password mode. The ScreenPass 

system service acts as a central repository for ScreenPass state. IPCs to access this state 

can be controlled using Android’s code-signing framework. Only code that has been 

signed by a trusted entity is allowed to communicate with the ScreenPass system 

service. 

A malicious app could claim that the target widget was not in password mode, 

while still obfuscating text input as a user would expect of a password field. If this 

happens, the ScreenPass IME will not prompt the user to tag their password, and the 

user must either (1) avoid entering their password, or (2) use an area at the bottom of the 

secure keyboard to actively tag their password and put the device in password mode. 

We call this a silent-widget attack. We will return to this attack shortly. 
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Once the device is in password mode, the keyboard makes a request to the 

Android Window Manager to display the secure keyboard and domain chooser. Figure 

2 shows the software keyboard and chooser. The tag list allows a user to associate an 

administrative domain with her password. This association must be set before a user 

inputs her password or else characters may not be properly tagged. As a result, the 

software keyboard ignores input until the user has chosen a tag, and the secure 

keyboard immediately prompts the user for a domain when triggered. Figure 2 shows 

the prompt a user sees after the keyboard is displayed. ScreenPass uses an integrated 

password manger to incentivize users to tag their passwords when they are not 

explicitly prompted (e.g., during a silent-widget attack). 

 

Figure 2: When a user taps on a password field, ScreenPass’s secure keyboard 
prompts the user to tag their password, and then applies the tag to each character 

using TaintDroid. 
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Once the user has chosen a domain, the keyboard looks up the associated taint 

tag and applies the tag to all subsequent character inputs (whether input by the user 

using the keypad or loaded from the password database). It should be noted that once a 

user has chosen a tag, there is no way to change the tags that have been previously 

applied. However, our prototype allows users to choose from a preset list of domains or 

to define a new tag. 

As described earlier, TaintDroid’s taint tags are 32-bit bit vectors. The original 

TaintDroid design treats tags as bit vectors so that data derived from multiple sensitive 

sources can be represented. However, this approach leaves ScreenPass with too few bits 

to represent all of the services a user might use. As a result, ScreenPass reserves the 

highest 10 bits of each tag and treats those bits as a 10-bit namespace. Passwords do not 

need to be associated with multiple domains, and 1023 domains should be sufficient for 

most users. 

When a user taps on the secure keyboard, it maps the coordinates of the taps to 

characters, and uses TaintDroid to tag the IPC message back to the untrusted app that 

contains password data. Once the untrusted app receives the tainted IPC message, 

TaintDroid propagates its tags as the app uses the password. When the app attempts to 

send a password over the network, to the file system, or over an IPC channel, 

TaintDroid inspects the buffer’s tags and can enforce a system-defined policy. 
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3.4.2 Prevent Spoofing Attacks 

The FrameChecker is responsible for detecting attempts to spoof the software 

keyboard. The FrameChecker is a thread running within the SF. The SF’s main thread 

composes the system’s surfaces together and posts the resulting frame to the frame 

buffer’s (FB’s) front buffer. Implementing the FrameChecker as a separate thread keeps 

spoof detection out of the critical path of the SF’s main work. 

At a high-level, a typical working cycle of the FrameChecker consists of three 

stages: (1) capturing the screen, (2) performing OCR to detect software keyboards, and 

(3) sleeping for a random, short amount of time. The random sleep time helps 

ScreenPass reduce its energy overhead to an acceptable level. As we will show in Section 

3.5, performing OCR without resting could quickly drain a user’s battery under certain 

workloads. Our current implementation sleeps for a randomly chosen time between 0ms 

and 1,000ms; that is, the expected sleep time is 500ms.  

3.4.2.1 Screen Capture 

Upon waking up, the FrameChecker first checks with the ScreenPass system 

service to see if the device is in password mode, if the touchscreen has not been tapped, 

or if the screen has not changed since it went to sleep. If any of these conditions are true, 

then the FrameChecker does not need to analyze the screen and can go back to sleep. 

The SF maintains information about which regions of the screen are dirty, which allows 
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the FrameChecker to avoid inspecting the FB if it has not changed since the last scan. In 

addition, a thread runs alongside the FrameChecker to detect touchscreen inputs. It 

detects all touch events by polling the device file /dev/input/event0 and maintains a 

status variable indicating whether a touch event occurred. After the FrameChecker 

wakes up, it checks this status variable. 

The vast majority of the time, the screen will not have changed. Furthermore, 

only analyzing the screen while a user is interacting with it avoids performing analysis 

when the screen is updating but the user cannot be inputting her password. This is 

common for games that are primarily controlled by a device’s motion sensors and for 

watching videos. 

If the FrameChecker finds that the device is not in password mode, that the 

screen has been updated, and that the user is interacting with it, then the FrameChecker 

must perform OCR. However, taking a single instantaneous screen capture would leave 

ScreenPass vulnerable to dynamic attacks. Under a dynamic attack, malicious code 

rapidly alternates between frames of a partial keyboard so that a user viewing the screen 

sees a complete keyboard, but no single frame contains one. To combat this attack, 

another thread in the SF computes a “squashed image” composed of all instantaneous 

screen captures between FrameChecker requests. The squashed image contains the 
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average pixel values over a period of time, and, as we will see in Section 3.5, closely 

approximates what a user perceives under a dynamic attack. 

To reduce the computational load of computing the squashed image, ScreenPass 

takes two steps. First, we only target the bottom two-fifths of the screen where a 

keyboard may appear. Our Nexus S prototype has a screen resolution of 800  480 pixels, 

and our squashed image is 320 480 pixels. This not only reduces the effort needed to 

compute the squashed image, but the work of the OCR engine as well. Second, we used 

the NEON 128-bit SIMD instruction available on the Nexus S’s ARM processor. This 

instruction allows us to add up to 16 8-bit integers in a single instruction, and greatly 

increases the efficiency of computing a squashed image. 

One danger of computing squashed images is that, for periods containing a 

transition from a non-keyboard scene to a keyboard, the averages will be polluted by 

pre-keyboard pixels. However, as we will see in Section 3.5.2 that users type passwords 

much more slowly than ScreenPass checks the screen. If a user starts to type her 

password, ScreenPass will have computed a “clean” squashed image well before she 

finishes. 

3.4.2.2 OCR Analysis 

The FrameChecker analyzes screen content using OCR. Our current 

implementation uses the well-known TesseractOCR package [53, 54, 56]. OCR converts 



 

 

42 

images of text into machine-encoded characters, and is widely used to digitize a number 

of paper-based data sources including books, documents, receipts, and checks. A typical 

OCR process integrates techniques from computer vision, pattern recognition, and 

artificial intelligence. Usually, the steps include locating and segmenting the characters 

from input images, preprocessing the images to remove noise, extracting patterns from 

the characters for classifiers, organizing the identified characters to reconstruct original 

words, and postprocessing to correct OCR errors by checking the context. 

One of the advantages of using OCR to detect keyboards is that the analysis does 

not have to be completely accurate. The FrameChecker only needs to identify fragments 

of text that are sufficiently similar to the character sequences expected of a keyboard. 

Furthermore, attackers have no room to alter the character sequences on a spoofed 

keyboard, since a user will become instantly suspicious of a keyboard in which the keys 

have been moved around. A keyboard is usually divided into three areas: the characters, 

the keys, and the background. The keys cover the majority of this area. To improve 

character identification, we apply preprocessing to the screen captures to highlight the 

characters and reconcile the color of the key and background. The keys cover more 

pixels than the characters and the background, so we can determine the color of the keys 

by identifying the peak color for all pixels. Then we refill the background with the same 

color of the keys so that the characters are highlighted against a pure color background. 
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The preprocessing algorithm is fast and traverses all pixels twice. In the first traversal, 

we count the number of pixels in gray scale and identify the color for the peak. Then we 

change the color of the background pixels in the second traversal. 

It is also worth pointing out that TesseractOCR itself can tolerate some color 

differences between the keys and background. We apply preprocessing only to handle 

some extreme cases, such as a black background and white keys, and to better facilitate 

character recognition. Finally, we use the training data for the English language from the 

TesseractOCR official site. When the FrameChecker starts, it loads the training data and 

initiates the OCR engine. 

3.5 Evaluation 

To evaluate ScreenPass, we sought answers to the following questions: 

• How robust is ScreenPass to spoofing attacks? 

• What is the perceived burden of tagging passwords? 

• How likely are users to tag their passwords? 

• How often should ScreenPass check for spoofing attacks? 

• What is the performance and energy overhead of ScreenPass? 

• Can taint-tracking detect when apps mishandle passwords? 

To answer the first question, we subjected our ScreenPass prototype to a variety 

of attack keyboards. To answer the next two questions, we performed two user studies. 
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The first was a three-week, in-situ user study with 18 participants; the second was a one-

week, follow-up study with eight of the initial participants. To answer the next two 

questions, we measured the performance and energy characteristics of our prototype 

using a mix of representative apps. To answer the final question, we ran 31 Android 

apps (30 benign and one malicious) on our ScreenPass prototype. Our prototype 

implements ScreenPass on top of Android 2.3.4, uses TaintDroid for taint-tracking, and 

runs on an HTC Nexus S smartphone. 

3.5.1 Robustness to Spoofing Attacks 

To measure ScreenPass’s robustness to various kinds of spoofed keyboards, we 

created 12 static attacks and four dynamic attacks. 

For the static attacks, we applied the following modifications classes to the stock 

Android keyboard: transformations, color changes, and special effects. Each class can be 

applied to the keyboard’s background, its characters, or both. Figure 3 shows the upper-

left corner of each static attack keyboard used in our experiments with the character 

sequence “q w e r t y”. 

Transformation: To generate the transformed attack keyboards, we altered the 

shape of each character in the stock keyboard. These transformations included changing 

the font, italicizing the font, altering the font width, rotating characters, and warping 

characters. 
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Figure 3: Static attack images tested: a. Scripted typeface, b. Italicized typeface, 
c. Narrowed typeface, d. Widened typeface, e. Rotated characters, f. Warped 

characters, g. Colored background, h. Colored characters, i. Blurred background, j. 
Blurred characters, k. Shiny characters, l. Random noise. 

Color: Color attacks altered the background or character color of the stock 

keyboard. 
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Effects: We also created attack keyboards by applying special effects to parts of 

the stock keyboard, such as a blurred background, blurred characters, “shiny” 

characters, and adding random noise. 

If ScreenPass only performed OCR on individual frames it would be vulnerable 

to dynamic attacks in which a malicious app rapidly alternated partially complete 

frames. ScreenPass’s squashed images smooth out visual differences between frames 

over a period of time to approximate what a user sees. 

 

Figure 4: Sample frame from a dynamic-attack keyboard that ScreenPass could 
not detect by analyzing individual frames. ScreenPass detected the attack by 

analyzing a squashed image. 

For our dynamic-attack experiments, we were interested in knowing (1) how 

incomplete frames needed to be before analyzing individual frames became insufficient, 

and (2) how robust our squashed image approach was to these attacks. Each frame in 

our dynamic attack keyboards consisted of a checkerboard pattern of alternating empty 

blocks and keyboard-image blocks. Consecutive frames in an attack sequence swapped 

empty and keyboard-image blocks, so that when alternating frames were displayed at 30 

FPS, a user saw a legitimate keyboard on the screen. 
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When the alternating blocks were only 1 X 1 pixel, OCR still detected the 

keyboard on individual frames. However, when blocks were 4 X 4 and 8 X 8 pixels large, 

OCR failed on individual frames but succeeded on the squashed image. The only 

dynamic attack that ScreenPass could not defeat was a keyboard with a flowery 

background. Figure 4 shows an example frame from the attack. 

The reason that ScreenPass failed to detect this keyboard is that the characters on 

the keyboard blended in with the noisy background in our squashed image. 

Nonetheless, this attack keyboard was clearly non-standard and would be easy for users 

to detect. 

3.5.2 User Studies 

To better understand ScreenPass’s usability, we designed two insitu user studies. 

In both studies, participants were asked to (1) replace the software keyboard of their 

personal Android smartphone with a ScreenPass-like study keyboard, and (2) use their 

smartphones to complete a series of online surveys. 

3.5.2.1 Study Designs 

Both study keyboards provided a high-fidelity simulation of using ScreenPass. 

The keyboards’ default behavior was to immediately prompt the user to tag their 

password when the keyboard received a password-input request from an app. The 

prompt included a list of alphabetically-ordered pre-loaded tags, as well as an option to 
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add a new tag. As with ScreenPass, the keyboard allowed users to tag any text input, 

even in the absence of an explicit prompt. The keyboard also included hooks for 

remotely turning explicit prompting on and off. The main difference between the 

keyboards used in our initial study and our follow-up study was that the initial-study 

keyboard did not include a password manager, whereas the keyboard in the follow-up 

study did. In both studies, each participant was instructed to disable the “password 

remembering” feature of their phone’s web browser and to set the study keyboard as 

their phone’s default input method. Each time an app requested password input the 

keyboard uploaded a time-stamped record with the following information: 

• whether the user was prompted to tag their password  

• whether the user tagged their password 

• a cryptographic hash of the tag (i.e., a domain name) 

•  a timestamp of when the keyboard received the password-input request 

• a timestamp of when the keyboard displayed the tag prompt 

• a timestamp of when the tag prompt stopped being displayed 

• a timestamp of when the keyboard stopped being displayed 

This data allowed us to measure how often users tagged their passwords (with 

and without prompting), how many unique tags a user used, how long users took to tag 

their passwords, and how long users took to type in their passwords. In the initial study, 
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the keyboard did not log individual keystrokes or unhashed tags. In the follow-up 

study, the keyboard stored passwords to a local database so that they could be loaded 

automatically at a later time. 

In addition to logging this data, we also asked participants to complete online 

surveys on their smartphones, as well an initial demographic and exit questionnaire on a 

PC. Surveys could only be accessed after logging in with a username and password, 

which increased the number of study-keyboard logins we could observe. In the initial 

study, we asked participants to complete three surveys, and in the follow-up study, we 

asked participants to complete two surveys. 

Each of the online surveys (i.e., pre-study, mid-study, and poststudy for the 

initial study and pre-study and post-study for the follow-up study) consisted of three 

questions. Each question was presented as a statement, and users were instructed to 

select their level of agreement with each statement on a scale from one (“Strongly 

disagree”) to seven (“Strongly agree”). 

The first two survey statements were “I worry that websites and mobile apps 

may steal my passwords” and “Before I log into a website, I make sure that the 

connection is secure.” These statements were intended to gauge a user’s awareness of 

security threats, and were identical in all pre-study, mid-study, and post-study surveys. 
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The third statement asked participants to indicate how difficult they felt logging 

into apps and websites on a smartphone is. For the pre-study surveys, we presented the 

statement “Before beginning the study, logging into websites and mobile apps on my 

smartphone was difficult.” For the mid-study and post-study surveys, we changed the 

start of the statement from “Before beginning the study” to “Since beginning the study”, 

while leaving the remaining wording the same. The change in phrasing allowed us to 

compare the perceived difficulty of inputting passwords on smartphones with and 

without the study keyboard. 

For the first 20 days of the initial study, users were always prompted to tag their 

passwords. However, we turned off prompting before releasing the post-study survey. 

Because users were instructed to complete the post-study survey from their 

smartphones, turning off prompting at the end gave us a sense of how users would react 

to a silent-widget attack after 20 days of experience with the study keyboard. We 

similarly turned off prompting after a training phase in our follow-up study. 

3.5.2.2 Recruitment and Training 

After receiving approval for our initial study from the university Internal Review 

Board (IRB), we recruited candidate participants by posting a call for participation on 

Facebook and Google Plus, and by sending emails to several university mailing lists. 

Interested users were instructed to complete a demographic questionnaire on our study 
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website. As an incentive to participate, we offered each participant a $20 Amazon Gift 

Card, to be given after completing all study tasks. 

46 individuals registered and completed our demographic questionnaire. We 

selected 20 participants from these candidates. We rejected candidates who used a non-

Android smartphone or lived too far from campus to sign a consent form in person. 

From our initial set of 20 participants, two did not install the keyboard in a timely 

manner, and we have excluded them from our results. Thus, our reported results from 

the initial study are from 18 participants who installed our study keyboard on their 

personal Android smartphone for a period of three weeks during November and 

December, 2012. 

From the initial demographic questionnaire, the average age of the 18 

participants was 24 years old. Participants had owned an Android smartphone for an 

average of 1.5 years, spent an average of two hours each day browsing the Internet on 

their phone, and spent an average of five hours each day using the Internet on a PC. 15 

of the participants were undergraduate or graduate students, one was a professor, one 

was a doctor, and one worked for local technology company. Four participants were 

female. After notifying participants that they had been selected for the study, each 

signed a consent form in person. After signing the consent form, we installed the study 

keyboard on their personal Android smartphone and set it as the default keyboard. We 
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also disabled the remembering-passwords option in their web browser settings. Lastly, 

we showed each participant how to tag their passwords and how to add a new 

password tag. The list of pre-loaded tags did not include one for the study website. We 

repeated this setup procedure in our follow-up study. 

3.5.2.3 Results and analysis 

In analyzing our study results, we were primarily interested in characterizing the 

qualitative and quantitative burden of using ScreenPass, and users’ willingness to tag 

passwords with and without explicit prompting. 

Tagging burden 

Figure 5 shows the results of our pre-study, mid-study, and poststudy surveys 

for the initial study. These graphs have two noteworthy features. First, the median level 

of worry about stolen passwords and the median level of diligence about checking for 

SSL remained constant throughout the study. It is hard to draw any conclusions from 

the slight fluctuations of the 25th and 75th percentile responses to the first two survey 

questions. These results show that, in general, our participants thought of themselves as 

being fairly security conscious, and that this self-perception did not change over the 

course of the initial study. 
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Figure 5: At the beginning, middle, and end of our initial user study, 
participants were asked to rate how much they agreed with statements that (1) they 

are worried that malware will steal their passwords, (2) they make sure SSL is 
enabled before logging into a website, and (3) logging into apps and websites on a 

smartphone is difficult. Pre-study responses reflect users’ experiences before 
participating in the study. Mid-study and post-study responses reflect users’ 

experiences during the study. The agreement scale ranges from one (“Strongly 
disagree”) to seven (“Strongly agree”). The top edge of each dark-gray box represents 

the 75th percentile response, the bottom edge of each dark-gray box represents the 
median response, and the bottom edge of the light-gray box represents the 25th 
percentile response. The top whisker extends to the maximum response, and the 

bottom whisker extends to the minimum response. Note that an absent light-gray box 
indicates that the 25th percentile response was equal to the median response. 
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The median reported difficulty of logging into apps on a smartphone also 

remained constant throughout the initial study. However, the 75th percentile response 

rose slightly in the mid-study and post-study surveys of the initial study, which cover 

the period when users were asked to tag their passwords with the study keyboard. This 

indicates that tagging a password imposed only a minor additional burden on users 

beyond the existing inconveniences of typing in a password on a smartphone. 

 

Figure 6: When a participant tapped on a password field, we recorded the total 
time the keyboard was displayed (“Total time”), the time spent tagging the input 

(“Tag time”), and the time spent typing in a password (“Pwd time”). The top edge of 
each dark-gray box represents the 75th percentile time, the bottom edge of each dark-

gray box represents the median time, and the bottom edge of the light-gray box 
represents the 25th percentile time. The top whisker extends to the maximum time, 

and the bottom whisker extends to the minimum time. Note that the top whiskers for 
“Total time” and “Pwd time” have been cut off to improve readability. The maximum 

login time was 117 seconds, and the maximum time to enter a password was 116 
seconds. These results are for the initial study only. 
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The timing numbers collected whenever participants input a password are 

consistent with our survey results. Figure 6 shows that during the initial study the 

median time to tag and enter a password was 23.3 seconds, the median time to tag a 

password was 4.9 seconds, and the median time to type in a password was 18.6 seconds. 

Note that the median tag and password values do not sum to the median total value 

because the median total time was taken from a different event than the median tagging 

time and median password-entry time. 

The slowness of inputting passwords on a smartphone has three implications for 

ScreenPass. The first is that the time to tag and type in a password is dominated by 

typing. Thus, it is not surprising that users did not report a significant increase in the 

burden of logging into apps during the study. The second implication is that integrating 

a system-wide password manager into ScreenPass (as we did in our follow-up study) 

should make logging in significantly faster. Integration would essentially make entering 

a password as fast as tagging; a user would only have to choose a tag, and the keyboard 

would send the password characters to the requesting app. 

Finally, even with an integrated password manager, ScreenPass users will 

occasionally have to input new passwords. However, the long latency of entering a 

password gives ScreenPass a large window for detecting spoofing attacks. This large 
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window affords ScreenPass the opportunity to safely throttle the frequency with which 

it performs OCR. We will return to this issue in Section 3.5.3. 

Willingness to tag 

During the initial study we recorded data from 134 logins. The average number 

of logins per user was 7.2 (with a maximum of 20), and the median number of unique 

tags per user was 2.5 (with a maximum of 6). Despite our instructions, some participants 

did not complete the surveys on their smartphones, although most users did as we 

asked. 

Figure 7 shows how frequently participants tagged passwords over the course of 

the initial study. During the first period of this study, beginning from the start of the 

study until the time when the first mid-study survey had been completed, participants 

tagged their passwords 83% of the time (i.e., 49 out of 59 passwords were tagged). 

During the second period of the study, beginning from completion of the first mid-study 

survey until the first post-study survey was completed, participants tagged their 

passwords 89% of the time (i.e., 42 out of 47 passwords were tagged). We suspect that 

the rise in tagging rate is due to users becoming more comfortable with the study 

keyboard. Thus, the overall tagging rate for prompted logins was 86% (i.e., 91 out of 106 

passwords were tagged). However, disabling prompting during the final period of the 

initial study had a major impact on the observed tagging rate. With prompting off and 
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without a password manager, only 25% of passwords were tagged (i.e., 7 out of 28 

passwords). 

 

Figure 7: The first bar (“Pre-study”) depicts data for the period starting with 
the beginning of the study and ending before the first mid-study survey was 

completed. The second bar (“Midstudy”) depicts data for the period starting with the 
completion of the first mid-study survey and ending before the first post-study 
survey was completed. The third bar (“Post-study”) shows data for the period 

beginning with the completion of the first post-study survey and ending with the end 
of the study. During the pre-study and mid-study periods, users were immediately 

prompted to tag their password. During post-study period, users were not prompted 
to tag their passwords. These results are for the initial study only. 

The low tagging rate for unprompted logins demonstrated that ScreenPass must 

give users a strong reason to tag their passwords without being prompted. If not, users 

will likely fall victim to silent-widget attacks. Thankfully, as mentioned earlier, 

integrating a password manager into ScreenPass provides precisely such a reason. In a 

silent-widget attack, users still interact with the secure keyboard, but are not prompted 
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to tag their password because a malicious app does not set a password flag in its input 

request. Telling the secure keyboard to load a password from a ScreenPass maintained 

database effectively tags the password and prevents the attack. 

To test our hypothesis, we ran a small, IRB-approved follow-up study with eight 

participants from our initial study over one week in April, 2013. We recruited volunteers 

for the follow-up study by reaching out to the pool of participants from the initial study. 

Seven of the eight were graduate students, one was a professor, and two were female. 

Each volunteer received a $20 Amazon gift card for participating. 

 

Figure 8: This graph compares the tagging rates for the eight users who 
participated in our initial user study and our followup user study. The first three bars 

depict tagging rates for those users during the three phases of the first study, when 
the study keyboard did not include a password manager (“No PWM”). The last two 
bars depict the tagging rates for those users during the two phases of the follow-up 

study, when the study keyboard included a password manager (“w/ PWM”). Explicit 
prompting was turned off during the “Post-study” phase for both studies. 
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As before, participants were prompted to tag their passwords during an initial 

training phase lasting six days, and prompting was turned off during the final phase to 

simulate a silent-widget attack. However, unlike the initial study, the keyboard in the 

follow-up study included an integrated password manager that saved passwords the 

first time they were entered, and automatically loaded a saved password according to 

the tag specified by the user. In the interest of clarity, we only present the tagging rates 

from our follow-up study. 

Figure 8 shows the tagging rates during the initial and follow-up studies for the 

eight volunteers who participated in both. First, users who chose to participate in both 

studies had higher tagging rates than the broader population that only participated in 

the initial study. For example, these eight participants tagged passwords at rates of 96%, 

93%, and 42% during the initial study’s pre-study, mid-study, and post-study phases, 

respectively. Importantly, as with the the larger population in the initial study, the eight 

who participated in both studies exhibited a sharply lower tagging rate when prompting 

was turned off. 

As Figure 8 shows, the unprompted tagging rate increased dramatically when 

users were given a keyboard with an integrated password manager. With prompting on 

during the pre-study phase, users tagged their passwords at a rate of 90% (i.e., 27 out of 

30 passwords were tagged). With prompting off during the post-study phase, users 
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tagged 89% of their passwords (i.e., 17 out of 19 passwords were tagged). This tagging 

rate is more than double the rate of those same volunteers in the post-study phase of the 

initial study. Because the sample sizes are relatively small, it is hard to precisely cross-

compare the phases of each study. Nonetheless, the trend for unprompted tagging is 

striking and strongly suggests that integrating a password manager into ScreenPass 

makes users far less vulnerable to silent-widget attacks. 

3.5.3 OCR Performance 

Because users react to screen updates slowly, ScreenPass performs OCR 

periodically rather than on every frame displayed. We expect the system to notify the 

user of an attack within one second of being drawn on the screen, which should be 

before she has given the app her password. The time the FrameChecker takes to analyze 

a frame determines how often it can run. The faster the FrameChecker is, the more 

frequently it can check for attacks. 

To characterize the performance of analyzing a frame, we used a variety of 

representative app workloads: exploring Android’s system-preference menus 

(“General”), scrolling the App Drawer (“AppDrawer”), playing a YouTube video 

(“Video”), playing two popular games from the Android Market (“Labyrinth” and 

“Winds of Steel”), browsing email (“Email”), and reading a PDF document (“PDF 

Reader”). Table 1 summarizes each app and our interactions with it. We ran each app for 
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at least one minute and averaged the times to analyze all frames within a run. For these 

experiments, the FrameChecker did not skip any frames and did not pause between 

scans. 

Table 1: App workloads used for energy and performance experiments. 

Workload App version Description 

General Android 2.3.4 Settings 
Scrolled and browsed through system 

settings. 

App Drawer 
Android 2.3.4 App 

Launcher 
Vigorously scrolled through app icons. 

Video YouTube, version 4.4.11 Played the “Fast Five” movie trailer in HD. 

Labyrinth Version 1.5.2 Loaded and started a game. 

Winds of 

Steel 
Version 2.2 Loaded and started a game. 

Email 
Android 2.3.4 email 

client 
Read a sequence of emails from the inbox. 

PDF Reader 
Adobe Reader, version 

10.5.2 

Resized and read a research paper 

(occasionally scrolling to recenter the text). 
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Figure 9: The average time taken by the FrameChecker to scan a single frame. 

The results of our experiments are in Figure 9 with error bars representing 

standard deviations. The high standard deviations we observed while running resource-

intensive apps like games were expected, since the FrameChecker thread must contend 

for the CPU with the app itself. This also explains why analyzing Winds of Steel, which 

has a high CPU utilization, was relatively slow. None of the other workloads require 

much CPU time. 

The text-heavy workloads of Email and PDF Reader were the slowest to analyze, 

requiring an average of 317ms and 358ms, respectively. Their high standard deviations 

are due to the difference between analyzing a frame containing static text, which was 

slower, and analyzing a (squashed) frame generated while scrolling and zooming, which 

was faster. For example, during the Email workload, we read a sequence of emails from 
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Android’s stock email client. Scrolling within a message and moving to new message 

caused text to move and change on the screen, but these events were infrequent relative 

to the amount of time spent reading static text. 

We suspect that the times to scan General and App Drawer frames were also 

relatively high because of the amount of text displayed on the screen. These numbers 

indicate that the OCR engine’s analysis time is strongly correlated with the amount of 

text in a frame. Thankfully, as we will see in Section 3.5.4, text-heavy apps require 

infrequent OCR analysis since they update the screen and are tapped infrequently 

relative to FrameChecker wake ups. 

As noted earlier, experiments with our ScreenPass prototype were run on a 

Nexus S smartphone, which has a single-core CPU. A multi-core mobile processor 

would help ease the CPU contention observed with Winds of Steel, and a device with a 

newer, faster CPU should significantly improve OCR performance. However device 

screens are also growing in size and pixel density. For example, the Nexus 4’s screen has 

a resolution of 1280 X 768 and contains over two and a half times more pixels than the 

Nexus S, whose screen resolution is 800  480. It is unclear how well ScreenPass will 

continue to perform given these competing trends, and we leave an investigation of this 

question to future work. Finally, we note that for all workloads, our ScreenPass 

prototype generated zero false positives. 
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3.5.4 Sampling Rate 

Though OCR is fast enough to sample frequently, we would like to choose a 

sampling rate that best balances the overhead of running ScreenPass and its security 

guarantees. To characterize the tradeoffs, we configured ScreenPass with three sleep-

time ranges: no sleep (0ms), 0 to 500ms (500ms), 0 to 1,000ms (1000ms). Note that the 

expected rest time for the 500ms configuration is 250ms, and that the expected rest time 

for the 1000ms configuration is 500ms. 

To understand the sampling-rate tradeoff, we used the same apps as before plus 

another game (PinBall, version 1.3.2), and measured their frame rates and energy 

consumption. Frame rate captures ScreenPass’s impact on device responsiveness. 

However, because the FrameChecker runs in parallel with an app, ScreenPass could still 

drain the battery without affecting responsiveness.   

3.5.4.1 Frame Rate 

UI responsiveness is important for mobile devices and can be captured by 

measuring an app’s frame rate. We should note that Android supports two frame-

rendering modes: continuous and render when dirty. In continuous mode, the system 

continuously renders frames, regardless of whether anything on the screen has changed. 

In contrast, render when dirty mode only renders frames when on-screen changes occur. 

Render when dirty mode is not useful for measuring the effect of ScreenPass on frame 
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rate, and we focused on apps that use Android’s continuous rendering mode. For this 

reason we do not include our frame-rate results for the General, Email, or PDF Reader 

workloads. 

 

Figure 10: The average frame rates observed while running several 
applications. 

Similar to our OCR-performance experiments, we recorded the frame rates of a 

variety of apps while running ScreenPass. In particular, we looked at video playback 

and resource-intensive games, since frame rate is extremely important for these apps. 

We ran our apps on an unaltered version of Android 2.3 and ScreenPass using three 

sleep ranges. Each app ran for one minute. We measured the frame rate by periodically 

logging the frame rate for a small time slice of approximately 250ms throughout the 

experiment. We then averaged the logged frame rates for that run. Note that for these 
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experiments, we conservatively analyzed the screen even if the user had not tapped the 

screen. 

Figure 10 shows our results. Continuous analysis has the most significant impact 

on frame rate due to CPU contention. Most apps experienced little to no slowdown 

when the FrameChecker slept between 0 and 500ms. Video playback, Pinball, and 

Labyrinth were all within 1-3 frames/sec of the unaltered system. In the worst cases 

(App Drawer and Winds of Steel under 0ms), the frame rates dropped by approximately 

3.5 frames/sec, but both were close to 50 frames/sec overall. This is a relatively small 

performance hit that we would not expect to users to notice.  

3.5.4.2 Energy 

We were also interested in characterizing ScreenPass’s effect on energy and 

battery life. To measure energy overhead we attached a hardware power meter and 

power source to our Nexus S prototype’s battery. We measured current at 5000 Hz and 

assumed a constant voltage. Using all of the apps from this section under the stock, 0ms, 

500ms, and 1000ms configurations, we ran each app continuously for five minutes. To 

measure energy, we separated the samples into minute-long intervals. Finally, we 

averaged each interval for a given app and system configuration. 
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Figure 11: The average energy consumed over one minute while running 
several applications. 

Figure 11 shows our results. The energy overhead of running the FrameChecker 

continuously is too great. The General workload experienced the greatest energy 

overhead of 44%, due to its high interactivity and frame-update rate. However, 500ms 

and 1000ms required far less energy. For 500ms, the maximum overhead was 18% for 

General, while the interactive games of Pinball and Winds of Steel exhibited overheads 

of 17%. All other apps were 10% or less under 500ms. For 1000ms, all apps exhibited 

overheads of less than 12%. Of course, ScreenPass has no impact on either performance 

or energy when the screen is not updated or when the user does not tap the screen. For 

example, playing a YouTube video and the game Labyrinth require infrequent user 

tapping and have low energy overhead across all configurations. This is also true of our 

two text-heavy workloads, Email and PDF Reader; both imposed 7% overhead for 

500ms and 5% overhead for 1000ms. 
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Recall that in our user study 75% of passwords took 10.1 seconds or longer to 

enter, and that the minimum time to enter a password was 2.5 seconds. Recall too that 

under a 500ms configuration, the FrameChecker expects to pause for 250ms between 

analyses. The FrameChecker expects to pause for 500ms between analyses under a 

1000ms configuration. Thus, with a maximum analysis time of around 350ms, either a 

500ms or a 1000ms configuration would provide a good balance of safety and energy 

efficiency; 500ms would provide better safety, and 1000ms would provide better energy 

efficiency. 

Though several in-situ app-usage studies have been published in recent years 

[23, 28, 42], it is difficult to use these studies to precisely quantify the impact ScreenPass 

would have on overall battery life. The worst-case workload for ScreenPass is one that is 

highly interactive and frequently updates the screen, as in the General workload and 

interactive games. 

None of these studies found that users spend much time browsing their phone’s 

settings. However, a study of iPhone users found that social networking apps accounted 

for 8% of overall app usage, while games accounted for approximately 5% of app usage 

[42]. A study of Android users found that users have their screen on for an average of 60 

minutes each day and that the average game session lasts 114 seconds [23]. An earlier 

study of Windows Mobile users found a wide range of usage, with screens on between 
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30 minutes and 500 minutes each day. Among Windows Mobile users, mapping apps 

and games tended to have the longest sessions, lasting approximately 120 and 110 

seconds, respectively, on average [28]. 

A common conclusion across all three studies is that phone usage can vary 

significantly from user to user. Thus, we suspect that ScreenPass under a 500ms 

configuration would scarcely impact light and average phone users, while heavy users 

may prefer running ScreenPass under a 1000ms configuration. Either configuration 

would provide strong security against keyboard-spoofing attacks. 

3.5.5 App Study 

To better understand how existing apps handle passwords, we ran 30 apps from 

the Android Market and one malicious credentialstealing app from the Android 

Malware Genome Project [58] under ScreenPass. We are unaware of any malicious apps 

in the wild that mount keyboard-spoofing or silent-widget attacks. 

The non-malicious apps were chosen from a pool of the top 20 free applications 

in the following categories: finance, communication, education, media and video, 

shopping, social, comics, and productivity. To broaden our pool we also added the top 

20 apps returned after searching for the following keywords: password, auctions, and 

online games. 
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From this larger pool, we required apps to be in English, to request a password 

without requiring the username to be validated first (as most banking apps do), to not 

use native libraries (since TaintDroid does not support native libraries), and to have 

been installed at least 100,000 times (most of our apps had more than 250,000 

installations). Finally, we tried to create a diverse range of apps by choosing apps in less 

well-represented categories over apps with more installations in categories that were 

already represented. All apps in our study either stored a user’s password locally in the 

file system or sent it over the network. Table 2 shows the distribution of apps, organized 

by how they handle passwords. 

Table 2: App types grouped by their password handling (saving to the file 
system or sending over the network). App categories are shown in parenthesis. 

Application Behavior # of Applications and type 

Sent the password through 

the network 

28 (1 business, 1 comics, 1 communication, 1 

entertainment, 4 finance, 1 music, 3 productivity, 1 

shopping, 13 social, 1 tools, 1 malicious) 

Stored the password in the 

file system 
12 (1 entertainment, 1 finance, 3 productivity, 7 social) 

 

Our malicious app was a fake NetFlix app provided by the Android Malware 

Genome Project. The fake NetFlix app poses as a legitimate NetFlix app and requests a 
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user’s NetFlix login credentials. However, rather than sending a user’s password to 

NetFlix servers, it posts it to the hard-coded URL http://erofolio.no-ip.biz/login.php. We 

should note that since this host is no longer active, we manually changed the hardcoded 

URL to one under our control to run the app. The fake NetFlix app is the only app in the 

Android Malware Genome Project archive that attempts to steal a user’s password. 

Table 3: Problematic password handling practices in eight of the studied apps. 
One of the apps stored and sent passwords in plaintext. 

Observed Behavior (# of 

apps) 
Details 

Password to third party 

servers (4) 

Fake NetFlix, one Financial, and two Social sent the 

password for the requested services to the application 

developer’s server. 

Password through the 

network in plaintext (4) 

Fake NetFlix, one Entertainment, and two Social sent the 

password in plaintext. 

Password stored in plaintext 

(4) 

Two Entertainment and two Social stored the password 

in the phone’s local storage in plaintext. 

 

Our findings are summarized in Table 3. ScreenPass found that four apps sent 

passwords to a third-party server controlled by the app developer, four apps sent 
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passwords over the network in plaintext, and four stored passwords in the local file 

system in plaintext. 

Sent to third-party servers: Four of the 28 applications that sent passwords over 

the network sent them to a server controlled by the app’s developer. We have already 

discussed the fake NetFlix app above. The remaining three non-malicious apps 

aggregate credentials for the user’s convenience: two are multiprotocol IM clients, while 

the other aggregates a user’s financial information from her credit and investment 

accounts. To the credit of the financial app, its user agreement clearly states that it stores 

passwords on its servers and that they are used solely to provide functionality. 

Unfortunately, the IM clients do not discuss how users’ passwords are handled in their 

user agreements. 

Sent in plaintext over the network: We found that four of the 28 applications 

that sent passwords through the network did so in plaintext. ScreenPass tracked both 

SSL and non-SSL connections. We examined the contents of flagged non-SSL 

connections and found plaintext passwords in three of them. One of these apps was the 

fake NetFlix app, two are first-party clients for widely-used dating networks, and 

another was an online game and instant messaging client. 

Stored in plaintext in the file system: Out of the 12 applications that stored 

passwords in the file system, four saved them in plaintext in the phone’s file system. All 
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kept passwords inside a preferences xml file. We manually inspected all flagged accesses 

to the file system, and only reported those in which the file persisted after the app was 

closed. 

3.6 Summary 

In this chapter we have presented ScreenPass, which allows users to securely tag 

their passwords before handing them to third-party mobile apps. ScreenPass provides 

users with a trusted password-entry UI and prevents spoofing of the trusted UI through 

OCR. 

Our evaluation of a ScreenPass prototype demonstrates that ScreenPass is robust 

to both static and dynamic attacks, and our energy and performance results show that 

running ScreenPass imposes modest overhead in the common case. Our user studies 

show that users are willing to tag their passwords when prompted, and that integrating 

a password manager into ScreenPass gives users a strong incentive to tag their 

passwords when they are not prompted.   
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4. VeriUI: Enforce Trusted UI via ARM TrustZone 
In this chapter we present VeriUI [33] – a system that enhances the security of 

sensitive operations on touchscreen mobile devices through ARM TrustZone technique. 

Mobile apps increasingly require users to login to remote services such as 

Facebook and Twitter. Unfortunately, today’s mobile platforms provide no protection 

for login credentials such as passwords. To address this problem, we introduce the idea 

of an attested login and an embodiment of this idea called VeriUI. Attested login 

augments user credentials with a certificate describing the software and hardware that 

handled the credentials. Experiments with a VeriUI prototype found that it avoids the 

sluggish responsiveness of a thin-client approach, while a small app study indicates that 

VeriUI would require minor changes to existing apps. 

4.1 Introduction 

Mobile apps are immensely popular nowadays and people are increasingly 

access all kinds of cloud services through these mobile apps on their smartphones or 

tablets. Although these mobile apps can access the cloud service, they may not be 

developed by the cloud service provider. We call such apps third-party apps. 

Correspondingly, we call the cloud service accessed by third-party apps first-party 

cloud service. For example, an individual developer can develop a third-party app to 

retrieve public articles from first-party services, such as Washington Post, New York 
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Times, etc., and feed users via mobile devices. There are many reasons why people 

choose to use third-party apps. Sometimes there are no first-party apps existing in the 

market, and people have no choice but to use third-party apps. Even if first-party apps 

are available, third-party apps may still be preferred because they embed augmented 

functionality and integrated service, and thus provide better user experience. 

As third-party apps become ubiquitous, it is almost unavoidable for users to 

perform sensitive operations on cloud services through these apps. Depending on the 

information users need to provide, these sensitive operations can be categorized as: 1) 

Login process which requires users’ passwords. For example, before the third-party app 

can access the private data in the online social networks, it must ask user to first input 

password to login to the online social networks from the apps. 2) Online payments 

which require users’ financial information. For example, a VoIP app will ask the user to 

login to the online payment site in order to purchase credits for her VoIP account. 

There are several different ways to implement the above sensitive operations in 

third-party apps. A straightforward method is via the direct query to user by third-party 

apps. However, users generally do not prefer this kind of queries and the popularity of 

this method has declined. A more complex, but widely used method is WebUIs. There 

are two types of web UIs: calling default browser through IPC or embedding WebView 

inside the app. The IPC method involves opening another browser and loads the 
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required information. In the previous VoIP example, the app can redirect users to the 

default browser to complete credit purchasing transactions from online payment 

website. Differently, WebView is a UI component serving as a mini browser to load any 

URL. It can be easily embedded in the app and manipulated through its APIs. In the 

previous online social networks example, the third-party app can embed WebView to 

load login UI from the online social networks and ask the user to complete inputting 

password. WebView provides a variety of functions, enabling developers to 

conveniently render web pages and display contents from cloud services in their mobile 

apps. 

However, a common weakness exists in all these methods, that is, there is no 

mechanism to ensure the security of sensitive information, such as password or financial 

account. Ideally, such user information should be only accessible by first-party cloud 

services, because it is secret between users and these services. However, through the 

analysis of current implementation methods, we find that there is a high risk that 

sensitive information can be revealed to third-party apps, which potentially leads to 

users' loss. We will illustrate the reasons as following.   

The most important reason is there lacks an enforcement mechanism to regulate 

third-party apps so that they securely handle sensitive user interaction. To facilitate the 

development of third-party apps, the first-party cloud services usually provide a set of 
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cloud APIs for RPC calls. Some of them even provide client SDKs that third-party apps 

could conveniently embed. However, the first-party cloud service can neither require 

the third-party app to use its SDK, nor check the integrity of the sensitive code in the 

SDK. Put another way, the first-party cloud service has no control over what the third-

party apps display to users and how they handle sensitive input from the user.  

A number of third party apps choose not to use the SDK provided by the first-

party service. For example, the third-party app may ask for the sensitive information 

directly from the user, and complete the sensitive transactions through RPC calls to 

cloud APIs by itself, totally ignoring the client SDK. In this way, users’ sensitive 

information, which is supposed to be only accessible by first-party cloud services, is 

actually revealed to third-party apps. Involving third-party apps in the handling of 

sensitive information is improper due to security reasons and it is highly desirable to 

completely isolate the apps from this process.  

Even if third-party apps include SDK to handle sensitive operations with cloud 

services, they can still easily steal the sensitive user input through modifying the 

original SDK,  since currently the first-cloud service has no way to check the integrity of 

its client SDK used in the third-party app. For example, the third-party app can replace 

the WebView UI component with a hacked one which will leak the user input to the 

third-party app. Besides the direct replacement, third-party can also manipulate the 
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WebView UI component to steal sensitive information. [36, 37] discussed the security 

vulnerabilities of the WebView component in Andoid system and showed that it is easy 

to be manipulated by its host mobile app. Therefore, although WebView brings 

convenience to app developers and equips mobile apps with customizable mini 

browser, it also raises new security issues to the mobile system.  

As seen from above, current mechanisms have no way to guarantee the client 

side provides a secure environment. As long as third-party apps participate the 

processing of sensitive information, users are in the danger of having their information 

stolen by those apps.  

Aside from third-party apps, there are still other contributors in damaging the 

security of users’ sensitive information. Phishing attacks and system spywares are two 

well-known threats.  

Phishing attacks, which have been studied for a long time under desktop 

browser environment, become even worse on mobile devices due to the small screen 

size. In mobile browsers, URL address lines are usually hidden to make maximum 

utilization of the screen display, and users have to pull down the screen to see the URL. 

What are even worse, most embedded VebView components do not have the address 

lines and users have no way to check what sites they are accessing to. As a result, when 

the third-party app open the web UI in WebView or mobile bowser to ask users to take 
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sensitive operations, it is very hard for users to clearly understand the relations between 

apps and the web contents displayed in the WebView. Most users are even not aware of 

the context switch between the two different entities. Furthermore, the small size screen 

displays less web content with the fewer clues provided, which make it much harder for 

users to differentiate phishing and genuine web UIs before input sensitive information. 

Under this situation, users are placed in higher risk of phishing attacks. 

The other well-known threat is system spywares. Even if the mobile apps are 

trusted and handle user interactions properly, there are still many other ways that users’ 

sensitive information can be leaked to system spywares. For example, if the input 

method is malicious or compromised, sensitive input from the users will be stolen. 

Normal mobile systems do not provide highly secured environment for users to input 

private information or take sensitive operations. 

To solve all the above problems, we propose a solution called VeriUI. VeriUI 

provides trusted UI for third-party apps to handle sensitive user interactions and 

guarantee strong isolation by leveraging the TrustZone technique enabled on ARM 

chips. TrustZone supports running two systems concurrently: a normal mobile system 

such as Android runs in the normal world, and a trusted light-weighted system runs in 

the secure world. A secured webkit runs on top of secured OS to provide generalized 

trusted UI to handle user interactions in sensitive operations. Third-party apps running 
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in the normal world can call the trusted UI through the TrustZone driver, but they are 

totally isolated from the trusted UI. To combat social engineering attacks, we capture 

user intent actively and check it before the webkit load the trusted UI. Secured webkit 

disables advanced web features to enforce a secure environment on the client side. 

However, the trusted UI alone cannot guarantee the security of sensitive 

operations on mobile devices, so VeriUI also needs mechanism to enforce the usage of 

the trusted UI by third-party apps. To require third-party apps to call secure service to 

handle sensitive interactions with the user, the cloud services ask the client to provide 

attestation of the software stack together with the sensitive transaction request. The 

attestation proves to the cloud server that it is trusted UI handling interactions with the 

user. The enforce mechanism prevent the third-party apps from circumventing the 

secure service in secure world to cheat the user. 

In short, we combine the hardware security provided by ARM processors and 

the attestation checking from trusted first-party cloud services to regulate the behaviors 

of third-party apps. To combat spyware in Android system, we leverage TrustZone to 

provide an isolated secure environment for users to input sensitive information. As for 

phishing attacks, we will describe our anti-phishing design in detail in Section 4.3.3. 

VeriUI makes the following contributions: 
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• Strong isolation: We leverage the security support from TrustZone 

technique to provide strong isolation between third-party apps and 

trusted UI service. We do not need to trust rich OS in the normal world. 

Even if the rich OS is compromised, users’ sensitive information is still 

safe. 

• Minimize user burden: We combine the efforts from first-party cloud 

services and TrustZone-enabled devices to combat malicious or improper 

third-party apps, in order to minimize the users’ attention to attacks. 

Users’ sensitive operations are protected under TrustZone and third-

party apps are required to prove to the first-party services that they 

provide trusted UI to users. As far as we know, this is the first work to 

protect integrity of sensitive code in client SDKs from first-party cloud 

services. 

• Generalized framework: VeriUI is a generalized framework for both 

third-party apps and first-party cloud services. In VerUI’s design, WebKit 

in the secure world can load HTML UI from any cloud services, and any 

third-party apps in the normal world can call the trusted UI service. 

• Minimize change to third-party apps: Our solution requires minimum 

changes on current third-party app ecosystem, especially for third-party 
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developers. It will befit both users and cloud service providers. For users, 

the framework protects their passwords and cloud data. For login 

services, it guarantees the sensitive code integrity on client. For third-

party developers, it is easy to migrate to new framework because most 

changes are made within the client SDK provided by cloud services. 

In VeriUI, we focus on third-party apps and concentrate our discussion on how 

to protect sensitive operations to first-party cloud services against these third-party 

apps. However, our generalized solution can also be applied to first-party apps which 

need high security guarantees.  

The rest of this chapter is organized as follows: Section 4.2 describes the trust and 

threat model of VeriUI, Section 4.3 describes VeriUI’s design in detail, Section 4.4 

presents our prototype implementation of VeriUI, Section 4.5 presents the evaluation 

results to VeriUI’s prototype, and Section 4.6 gives our conclusions. 

4.2 Trust and Threat Model 

VeriUI’s trust model is rooted in the hardware isolation provided by the ARM 

TrustZone. We do not trust the normalword operating system (e.g., Android), because a 

mobile user can install malware on their mobile device that compromises the Android 

system. For the same reason, we cannot trust any apps running in the normal world. 
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VeriUI assumes that all code in the secure world is trustworthy. Thus, our 

trusted computing base (TCB) consists of the TrustZone monitor, secure kernel, and all 

software that runs on top of it. VeriUI provides no guarantees if the TCB becomes 

compromised. As a result, even if the Android system running in the normal world is 

compromised, it cannot access sensitive information residing in the secure world. 

VeriUI cannot prevent passwords input outside of the secure world from 

leaking. For example, an app could spoof the UI of the secure world to convince a user 

that they are interacting with the secure world even if they are not [34]. Login attempts 

from outside of the secure world will not be properly attested and can be rejected by a 

remote service. However, if an attacker can convince a user to input her password in the 

normal world, it could later manually input the stolen password after switching to a 

secure world (presumably on a device physically controlled by the attacker). 

One way to prevent such an attack is to make the secure world more difficult to 

spoof. For example, Cloud Terminal [38] can be configured to display a user-chosen 

background image known only to the user and secure operating system. Under this 

approach, users must be trained to look for the visual secret and avoid inputting their 

password if it is absent. 

Another way to prevent leaked passwords from causing unauthorized logins is 

to embed additional contextual information in an attested-login certificate. For example, 
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the secure world operating system could attest to login-time GPS coordinates, WiFi-scan 

results, or imagery from the front-facing camera. A service could then verify one or 

more of these data items before authorizing a login request. Our current prototype does 

not support this use of "trusted sensing", but attested login is general enough to 

incorporate this additional information. Furthermore, prior work has demonstrated how 

trusted sensing can be implemented with a small TCB [35]. 

4.3 VeriUI Design 

In this section we describe the design of VeriUI in detail. 

4.3.1 System Overview 

As we have discussed in Section 4.1, either the WebView UI component or the 

default browser is vulnerable to attacks and cannot provide secure environment for 

users to take sensitive operations. In VeriUI, we provided a separate service called 

SecureWebKit to replace WebView or browser to handle sensitive user operations. 

SecureWebKit works as a light-weighted webkit engine to parse simple webpages and 

complete web requests, and it can provides general service to third-party apps. On the 

other hand, SecureWebKit is completely isolated from the third-party apps which call it, 

so it can provide trusted UI to handle use interactions securely, such as displaying 

online payment interfaces or typing in passwords. 
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Figure 12 shows system architecture of VeriUI. Two operating systems are 

running simultaneously based on TrustZone support. The rich OS is running in the 

normal world and the secure OS is running in the secure world. 

For untrusted Android system, we expose a TEE API to third-party apps. These 

apps can invoke the SecureWebKit service running in the TrustZone through secure 

procedure calls. Once the app requests the SecureWebKit, the TrustZone driver will be 

called and the system will switch to the secure world. Once in the secure world, the 

SecureWebKit service will start. 

 

Figure 12: Overview of the VeriUI architecture. 
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The secure OS is a light-weight kernel running with minimum driver support, 

such as network, display, and touchscreen drivers. The secure OS includes GUI lib 

support so that we can develop secure services and apps with a trusted UI for the secure 

world. SecureWebKit and touchscreen input methods run on top of the software stack 

and users can use them to securely connect to first-party services. 

To isolate SecureWebKit from the third-party apps for which it provides service, 

we leverage the TrustZone technique to run SecureWebKit in the secure world. Once the 

SecureWebKit has started, it will be running in isolation and disallowing any 

manipulation from the third-party app completely. And the third-party app knows 

nothing about the user input and operations in the whole login process. Third-party 

apps in the area will be limited and threats will be prevented. The isolation provided by 

TrustZone guarantees the security of users’ sensitive operations.  

We would like to provide a secure environment for users to process secure 

operations. The environment includes not only the SecureWebKit, but all the security 

facilities in the secure world. For example, in addition to the SecureWebKit, VeriUI also 

provides an input method engine for text entry. This input method is trusted and secure 

because it is isolated in the secure world. In the secure environment, we guarantee the 

UI displayed to handle sensitive user interactions is secure and genuine. 
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Memory is isolated. Normal system is restricted in the normal memory. But 

shared memory is allocated to help to pass parameters between normal world and 

secure world. When the third-party apps call SecureWebKit, they need to pass the URL 

as the parameter to the secure world. When SecureWebKit finishes the request, it may 

return data such as OAuth token back to the third-party apps. 

It is very important that the trusted UI and secure environment in charge of 

sensitive user interactions can be remotely verified by the first-party cloud services. To 

provide such capability, VeriUI loads a pair of keys into the secure world memory from 

the hardware ROM during the secure boot process. VeriUI uses the AIK to sign secure 

messages and provide remote attestations. The secure kernel provides a set of APIs for 

the SecureWebKit to call to generate attestations. We assume a ROM that is pre-installed 

with a key pair by the manufacturer is accessible from within the secure world during 

secure boot. 

4.3.2 SecureWebKit 

SecureWebKit is a WebKit browser that provides secure and basic browser 

functionality to third-party apps in the normal world. SecureWebKit is designed to 

provide general service to handle sensitive operations such as authentications and 

payments. SecureWebKit and third-party apps are completely isolated, but they are 

bridged by the TrustZone monitor and secure kernel. SecureWebKit can be started by a 
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third-party app by passing the targeting URL as a parameter through the secure kernel. 

After the TrustZone monitor completes a system switch, the secure kernel starts 

SecureWebKit to open the URL and handle sensitive user interactions. After the user 

finishes interacting with the first-party service, SecureWebKit will exit and return any 

received data (e.g., an OAuth token) to the third-party app. 

SecureWebKit disables advanced web features such as JavaScript and CSS to 

enhance the security of the browsing environment. SecureWebKit only supports basic 

HTML parsing and super-link navigation, and only communicates over HTTPS. Most 

sensitive operations, such as authentication and payment, only collect sensitive 

information such as passwords or account numbers from users. They are neither 

interaction-intensive (i.e. game) nor content-intensive (i.e. multimedia), so they do not 

need complex browser functionalities. This is even true for mobile devices with small-

size screens, which cannot display too much web contents. Basic and simple web UI can 

satisfy the requirements of such sensitive operations. 

To prevent phishing attacks, VeriUI provides a domain-selection UI for explicitly 

capturing user intent. Before SecureWebKit opens a target URL, it first displays a list of 

web domains and asks the user which domain she would like to access.  Figure 13 shows 

the domain selection UI. After the user chooses the intended domain, SecureWebKit will 

check whether the SSL certificate of the target URL matches the selected domain. If a 
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mismatch is detected (indicating a potential phishing attack), SecureWebKit ignores the 

target URL and alerts the user. 

After capturing the user’s intent, SecureWebKit loads the target URL and 

restricts all future communication to the selected domain. SecureWebKit monitors web 

navigation and URL loading to enforce the secure domain policy until it exits and 

returns. Because most sensitive operations only involve a single first-party cloud service 

and usually can be completed in several steps, the secure domain policy is reasonable 

and practical. This ensures that sensitive data can only be sent to the selected domain. 

 

Figure 13: Domain selection UI of SecureWebKit. 

All web requests generated by the SecureWebKit contain a certificate signed by 

the secure kernel covering any sensitive user input and the software configuration of the 

secure world. Taking user authentication as an example, after the SecureWebKit loads 
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the web UI from a first-party cloud service, users type in their password and submit 

their request to the server. Before sending these requests, SecureWebKit invokes the 

secure kernel to generate an attestation. The attestation together with the request can 

prove to the first-party cloud service that user input was handled in a secure 

environment. First-party cloud service verify the attestation and can decide whether to 

authorize the user or not. 

 

Figure 14: Format of a remote attestation certificate. 

Figure 3 shows the format of an attestation certificate. It contains sensitive data 

received by the SecureWebKit, and the configurations of the software stack in the secure 

world. The attestation is signed by the secure kernel using an AIK. In the WebKit part, 

the attestation states the initial targeting URL and the secure domain selected by the 
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user. The entries of post URL and post data should match the request to the server. It 

also includes request timestamp to prevent replay attacks. In the system part, the 

attention contains hashes of the software configuration (i.e., measurements) which can 

help first-party could service to verify the integrity of the client. 

4.3.3 Prevent Phishing Attacks 

Phishing attacks are very hard to prevent. Malicious third-party apps may 

leverage human faults or misunderstanding to cheat users to input account information 

or complete online payments. We consider the following two types of phishing attack 

scenarios: 

• Malicious apps send request to SecureWebKit to open a phishing URL in 

the web UI. 

• Malicious apps open a phishing URL in the web UI in the normal world. 

For the first type of phishing attacks, we have described several methods to 

prevent them in the SecureWebKit design in Section 4.3.2. The most important method is 

to introduce the new domain selection UI to capture user intent before the SecureWebKit 

starts. The SecureWebKit will open the URL only when the targeting URL passed from 

the third-party app matches the selected domain, which means the user is not fooled by 

the app and really aiming to that website. 
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After SecureWebKit start, it restricts all user actions within the intended domain 

by checking the URLs in super link navigations. Since SecureWebKit has disabled all 

advanced web features such as JavaScript and CSS, and only supports basic HTML 

webpages, it prevents the web application from communicating other servers outside 

the secure domain or manipulating the web content and layouts dynamically to cheat 

users. User operations will be restricted within the same secure domain until they exit 

SecureWebKit and return to the app. We believe most sensitive operations can be 

completed under simple HTML UI in the single domain within several steps.  

Finally, like many existing anti-phishing systems had already adopted, 

SecureWebKit could install white lists or black lists to accept access from only a limit 

number of trusted websites. The black lists can help filter out suspicious phishing sites 

and the white lists can enumerate all the popular and trust websites which provide 

services to third-party apps and support VeriUI verification framework. If 

SecureWebKit restricts access only to the servers on white list, it will jeopardize the 

generality of SecureWebKit, but enhance the system security greatly against phishing 

attacks. A trusted directory service could be introduced to update the white list 

dynamically and alleviate the problem of generality. 

For the second type of phishing attacks, we use the following methods to prevent 

them:  
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Firstly, TrustZone LED will be turned on when the device is running under 

secure OS, in order to notify users about the system switch. This is an explicit sign for 

users to check the security environment when they take sensitive operations. This can 

also be treated as reverse key [15] of the SecureWebKit. We have to educate people 

about this and they have to pay extra attentions on it. However, since we cannot fully 

rely on user efforts against phishing attacks and not all mobile devices support 

hardware signs like this, we have other mechanisms to prevent this type of phishing 

attacks, or reduce the losses to the minimum. 

Secondly, the first-party cloud service requires and verifies the attestation 

together with sensitive requests from the third-party apps. This mechanism requires the 

third party app to use VeriUI to interact with users for sensitive operations. Any 

sensitive operations such as OAuth authorizations and payment transactions will be 

failed without verified attestations. As a result, the third-party app will not receive the 

OAuth token to access the user’s data in the cloud, or it will not get paid or money 

transferred from the online bank. And the user will be notified by the first-party cloud 

services regarding the abnormal failure through email or other methods. Even the first 

phishing attacks succeed in cheating the users, their private data in the cloud and the 

financial properties are still under protected. 
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Finally, attestation key will be used as the second authentication factor to detect 

login or payment operations from new devices. First-party could services will send 

notification to the user through email once they find new devices. Even if the attacker 

gets the user’s sensitive information anyway, the attacker has to complete sensitive 

transactions to the first-party service from another VeriUI-enabled device. Then the user 

will be notified and alerted. The attestation key becomes the last defense firewall to 

reduce the user’s loss.  

In general, phishing attack is a hard problem and very difficult to prevent 

completely, because the social-engineering attacks work on human’s faults. For example, 

a malicious app could even ask the user to input account information directly, and the 

user may really give her password to the app. However, VeriUI guarantees that no 

sensitive operation will take effect if they are sent from an untrusted environment. It 

reduced the users’ losses to the minimum because the malicious app can do nothing to 

users’ cloud data or financial properties without verified attestations. 

4.4 Implementation 

We built a VeriUI prototype based on the design described in Section 4.3. We 

implemented the prototype on an ARM SOC equipped with ARM Cortex A8 cores. The 

following subsections describe how we developed the prototype in detail. 
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4.4.1 Duo System Boot 

We cut a stock Linux Kernel to reduce the TCB as much as possible. We only left 

the kernel and minimum drivers in the secure system, including the display driver, 

touchscreen driver, and network driver. Due to the limitation of the development board, 

we can only use a wired Ethernet network to connect to the servers. 

We use U-Boot [21] to start the two systems on the ARM SOC, and developed a 

monitor to control the world switches. During system start, we separate the memory for 

secure world and normal world. We reserve part of memory as shared memory to 

bridge the data communication between the two worlds. 

We modify the Linux kernel under Android to add the TrustZone driver into it. 

It exposes an API to Android apps to start a secure procedure call into TEE. 

4.4.2 Port GUI in TEE 

We use Qt [13] as our GUI lib in the secure world, since Qt provides better 

support for WebKit than other simple GUI libs in Linux. 

We implemented our SecureWebKit based on QtWeb [14]. We ported QtWeb 

onto the secure OS and implemented all the security and anti-phishing features 

described in Section 4.3.2. We removed all advanced features in QtWeb, and added the 

user-intent selection interface when SecureWebKit starts. We add attestations when 
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sending request to the servers. We also developed a touchscreen input method for the 

secure world to help user input data. 

4.4.3 Attestation 

We used OpenSSL [10] for generating attestations. The lib can provide 

attestations about the image of the secure OS. It provides an API for apps in the secure 

word to call. SecureWebKit will call the lib to generate attestations when it send request 

to the servers. 

4.4.4 Demo App using VeriUI 

To verify the usage of VeriUI system and evaluate the performance of it, we 

developed a simple Android app that supports OAuth login to Twitter. The app is built 

on top of standard SDKs provided by Twitter, and we modified these libraries to make a 

secure procedure calls to the SecureWebKit in TEE through TrustZone driver in REE. 

4.5 Evaluation 

VeriUI should support legitimate apps and require little or no modifications to 

existing apps. To better understand the feasibility of this goal, we performed a small 

survey of third-party Android apps and SDKs provided by first-party services. We 

characterize how current third-party apps handle sensitive operations to first-party 

could services, and how easily for app developers to switch to VeriUI framework. 
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For VeriUI to be practical, it must have acceptable performance. To understand 

its performance we compared its UI responsiveness to the thin-client approach 

embodied by Cloud Terminal [38]. 

To understand the overhead to complete sensitive operations through VeriUI, we 

measure the time for a third-party app to call VeriUI and compare it with the time to call 

VebView or mobile browser. We also measure the overhead to generate and verify an 

attestation certificate. 

4.5.1 App and SDK Study 

Table 4: Popular third-party apps for Twitter and Facebook in the study. 

Cloud Services Third-party Apps 

Twitter TweetCaster, UberSocial, TweetDeck, Plume, Seesmic, HootSuite, 

Slices, Janetter, Scope, Echofon, TwitPal, Tuippuru, Twidere, Feel on!, 

and Tweedle 

Facebook Go!Chat, TweetDeck, Video to Facebook, Seesmic, Friendcaster, 

HootSuite, BeejiveIM, Facebook Pages Manager, Sync.ME, and 

Contact Sync 

 

To better understand how current mobile apps request OAuth tokens, we 

performed a survey of existing Android apps from Google Play for most popular cloud 
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services. We examined the 15 popular third-party Twitter apps and 10 popular third-

party Facebook apps, which are listed in Table 4. We did not consider the first-party 

apps developed by either Facebook or Twitter since they remain under the services 

control. Although our study was limited to Facebook and Twitter apps, we believe that 

these are representative of third-party apps written for other cloud services. The 

Facebook and Twitter Platforms are the most popular platform for third-party app 

developers. 

 

Figure 15: Third-party app study for Facebook and Twitter - they use one of 
the three methods to handle user authentications: embedded WebView, mobile 

browser, or ask for user accounts directly. 

We were most interested in whether apps used Android WebView widgets, the 

default browser, or handled OAuth internally. Our results are in Figure 15. Among the 

25 apps in our study, we found that can see that most apps use WebView for OAuth: 11 
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out of 15 Twitter apps and nine out of 10 Facebook apps. No Facebook apps in our 

survey invoked the web browser, although three Twitter apps did. And one app from 

each category handled OAuth themselves. This indicates that for most apps, password 

requests could be redirected to VeriUI without many changes. 

We also study the SDKs provided by the two most popular cloud services. For 

Twitter, Twitter4j [20] is the recommended SDK for Android platform. It does not 

contain the login UI part because it is developed for Java in general, not for Android 

specifically. Third-party apps usually adopts WebView or default browser to complete 

the login process, and use IPC call to redirect and pass authorization code. For Facebook, 

Official SDK [1] is well encapsulated. The WebView-based login UI is packed into a 

prompt dialog. 

From third-party app and SDK study, we can see for most apps, the login UI can 

be easily split from the code. Modifications of SDKs can be done by the first-party cloud 

service providers so the effects on third-party app developers will be minimized. Our 

implementation to modify the Twitter SDK and app also indicates that the efforts to 

switch from WebView or browser to VeriUI are very low. 

4.5.2 UI responsiveness 

As mentioned previously, Cloud Terminal [38] addresses similar problems as 

VeriUI, but adopts a thin-client approach. This results in a smaller TCB, but leaves it 
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vulnerable to the high network latencies that are common for cellular data networks. To 

test our hypothesis that VeriUI would provide a better user experience than a thin client, 

we measured the time for VeriUI’s SecureWebKit and a web browser accessed via VNC 

client to complete keystrokes and window scrolls on under various network latencies. 

Both clients ran in the secure world on our prototype board. 

We setup the experimental environment using the development board and two 

desktop servers: the VNC server and the proxy server. We put them in the same 

network and direct all the traffic from the development board through the proxy server, 

so that we could inject latency at the proxy server to explore different latencies between 

the client and the VNC server. The average RTT between the client and the VNC server 

without any injected latency is 29ms. 

Under these network configurations, we used VNC client and SecureWebKit to 

open the same login webpage. When we use VNC client to open the webpage, it was 

actually opened from the browser in VNC server but viewed and manipulated on the 

client. After the login page loaded, we pressed keys to see how much time the character 

took to be displayed on the client. For SecureWebKit, we instrumented the code to 

capture these times; for VNC client, we modified its input method to capture the starting 

time for pressing a key and the finishing time was when the client reads the update from 
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the server and displays it. We injected different latency from 0ms to 250ms for all the 

traffic in the proxy server to test the UI responsiveness. 

 

Figure 16: Comparison of UI responsiveness for VeriUI and thin-client. 

Our results are in Figure 16. Unsurprisingly VeriUI’s approach provides a much 

more responsive UI than the thin client approach. Even for an injected delay of 250ms in 

the proxy server, the VNC client took over 2 seconds to respond to a keystroke, whereas 

VeriUI’s responsiveness was independent of network latency. 

4.5.3 Performance overhead 

In this section we evaluation the performance overhead of running VeriUI. 

We first want to know the performance of transitioning from third-party apps in 

the normal world to SecureWebKit in the secure world, and load a URL. To understand 
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the cost of system-switching and starting SecureWebKit, we measures the time from the 

beginning of SMC call to the end of URL loading in SecureWebKit. We also would like 

to compare the run time performance of VeriUI to the other two methods: embedded 

WebKit and mobile browser. So we developed two Android apps: the first app 

embedding a WebView widget and the second app to call the first app. We can measure 

the run time to load URL in an embedded WebKit through the first app. And we use the 

second app to send intent to the first app which serves as a mini mobile browser to open 

the URL from the received intent. Then we can measure the run time of starting a mobile 

browser to load URL. We use the three methods to load the Twitter login webpage 

under the same network condition. 

Figure 17 shows the run time performance results. VeriUI, with an average delay 

of 3305 milliseconds, has the best performance among the three methods. Because delay 

for system switch and starting SecureWebKit is shorter than starting an embedded 

WebView widget. Mobile browser is the slowest because it has to complete inter-app 

context switch before it start to load the URL. 

We also interested in the overhead of generating and verifying attestation. 

According to our measurements, the average cost to generate a remote attestation 

certificate from the secure kernel on the development board is 216 milliseconds. And the 

average cost to verify an attestation certificate from a commodity server (Intel i5 2.8GHz 
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CPU, 2G memory) is 15 milliseconds. Our results show that the cost of remote 

attestation is very low. 

 

Figure 17: Comparison of run time performance for VeriUI, embedded 
WebView, and mobile browser to start and load URL. 

We also measured the time to rebooting the secure world which is 7232 

milliseconds in average. Plus the time to switch system and start SecureWebKit, the total 

delay should be 10.5 seconds in average. For highly sensitive operations, we can also 

consider not only restarting SecureWebKit, but also rebooting the whole secure world to 

give users the highest security guarantee. Our evaluation shows the delay is still 

acceptable in this case.  



 

 

104 

4.6 Summary 

This paper has presented VeriUI, which helps thwart phishing attacks by mobile 

apps through attested login. Attested login augments a user’s credentials with 

information about the hardware and software that handled those credentials. By 

separating credential handling from the rest of an app and executing this code in a 

secure environment, users and services can be given greater assurance that passwords 

and other sensitive data has been handled properly. A small app study indicates that 

our architecture would require modest modifications to third-party apps, and 

experiments with a VeriUI prototype demonstrate that it provides better UI 

responsiveness than a thin client approach. 
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5. Related Work 
Due to the importance of client security on user authentication and online 

payment, it has attracted significant attention from the research community in general. 

In this chapter we discuss prior work that is related to the systems proposed in this 

dissertation. Section 5.1 compares our work to the most relevant systems on password 

security. In Section 5.2, we discuss prior work that involves trust computing techniques. 

5.1 Password Security and Anti-spoofing Techniques 

The problem of securely delivering sensitive data from a user to trusted software 

is not new. Similar problems on PCs have been addressed through a secure attention 

sequences (SAS), such as “@@” or the F2 in Bumpy [40] and PwdHash [47], respectively. 

The wellknown ctrl-alt-delete command on Windows machines is also an SAS. 

Relying on an SAS requires on a secure path from a user to the OS, usually 

through a trusted keyboard driver. Unfortunately, recognizing an SAS on a modern 

mobile platform is more challenging than on a PC, since nearly all popular devices lack a 

physical keyboard. Mobile operating systems can interpret taps on a touchscreen only as 

a set of coordinates with opaque semantics. Nontouchscreen inputs are scarce by design 

and typically have wellestablished functionality (e.g., the home button of the iPhone or 

the menu button on Android devices). 
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Previous attempts to create secure user interfaces on desktop machines [29, 30] 

have restricted where applications may write on the screen rather than what they may 

write. The general approach of these systems is to partition the display into regions that 

are writable by untrusted application and regions that are writable only by the trusted 

computing base. This approach is not appropriate on small-screen mobile devices, 

where screen real estate is at a premium. For example, mobile games would be much 

less usable if regions of the display were off limits. 

Using visual similarity to prevent spoofing has been previously used to identify 

phishing attacks [22, 30]. These projects compile training databases of well-known 

websites and then analyze unknown email and web sites to determine how visually 

similar they are to entries in the training database. The primary difference between our 

proposal and this prior work is that OCR can detect spoofed keyboards more accurately 

and efficiently than general purpose computer vision can identify logos and other 

iconography. In addition, performing similarity analysis continuously on the display of 

a mobile device imposes additional performance constraints not faced by the network 

proxies used to detect phishing emails and web sites. 

As mentioned previously, many studies have shown that security indicators are 

ineffective on web users [25, 26, 49, 57]. However, our user study results suggest that 
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integrating a password manager into ScreenPass provides a strong incentive for users to 

tag their passwords. 

Android and iOS provide integrated account services for various services such as 

Google, Twitter, and Facebook. However, these account services do not prevent 

malicious apps from asking a user for her login credentials. 

[46] proposes a new way for users to assign and monitor permissions to their 

apps through ACGs (access control gadgets). If a user grants an app permission to access 

a resource, such as a camera, the system embeds the appropriate ACG within its UI. 

ACGs are a useful way to make apps’ permissions explicit and visible to users. 

Unfortunately, ACGs cannot solve the problem of spoofed keyboards on mobile devices, 

because mobile platforms must support full-screen mode. 

Finally, LayerCake [44, 45] finds that allowing web and smartphone applications 

to embed user interfaces from other parties comes with security implications, both for 

the embedded interfaces and the host page or application. It explores the requirements 

for a system to support secure embedded user interfaces by systematically analyzing 

existing systems like browsers, smartphones, and research systems. It modifies Android 

to support secure interface embedding and evaluate the implementation using case 

studies that rely on embedded interfaces, such as advertisement libraries, Facebook 

social plugins (e.g., the “Like” button), and access control gadgets. 
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5.2 Trust Computing Related 

Cloud Terminal [38] proposed a framework to provide secure client to access 

sensitive application on the cloud. It provides strong isolation from compromised OS, 

and attestable to both server and user. Cloud Terminal moves the general client – 

browser to the cloud and handles sensitive applications. The client side only handles 

user input from keyboard and mouse, and displays the remote desktop of cloud servers 

through VNC. The client uses mutual attestations and encryption to setup secure 

channel with the cloud server. Cloud Terminal relies on light-weighted hypervisor to 

capture all user input and isolate its display from untrusted OS. It uses secure path to 

bring up the Cloud Terminal. 

TLR [48] provides a framework to run trusted applications on smartphones by 

leveraging ARM TrustZone technology and porting .NET MicroFramework to the TEE. 

A secure application can package the code handling sensitive data into TrustLet and run 

it in the TrustBox in TEE. The integrity of TrustLet can be verified by secure hash and 

bound with the sealed sensitive data. Communications through the boundary is via 

Secure Procedure Call. 

[35] proposes two software abstractions to develop trusted sensor applications: 

sensor attestation and sensor seal. They are based on the two important primitives 

provided by trusted computing: software attestation and sealed storage. They 
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implement the two abstractions on both x86 and ARM platforms. TrustZone technology 

makes the implementation on ARM much easier than its counterpart on x86. 

SIMlet [43] presents a new trustworthy computing abstraction for trust billing 

through ARM TrustZone. It allows content providers to pay for the traffic generated by 

mobile users visiting their websites or using their services. To implement split billing 

securely on a mobile platform, a SIMlet can be bound to a network socket to monitor 

and account all the traffic exchanged over the network socket. SIMlets provide 

trustworthy proofs of a device’s mobile traffic, and such proofs can be redeemed at a 

content provider involved in split billing. 

Flicker [39] is an infrastructure for executing security-sensitive code in complete 

isolation while trusting as few as 250 lines of additional code. Flicker can also provide 

meaningful, fine-grained attestation of the code executed (as well as its inputs and 

outputs) to a remote party. Given the correlation between code size and bugs in the 

code, Flicker significantly improves the security and reliability of the code it executes. 

Flicker guarantees these properties even if the BIOS, OS and DMA-enabled devices are 

all malicious. Flicker leverages trust-computing support from commodity processors. 

Nexus [50-52] implements logical attestation in a new operating system which 

executes natively on x86 platforms equipped with secure processors. It provides a 

general-purpose and flexible attestation mechanism to establish statements about the 
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current state of a computation, and a strong, high-performance isolation mechanism to 

enable reasoning about future behavior based on statements about the present. When 

deployed on a trustworthy cloud-computing stack, logical attestation is efficient, 

achieves high-performance, and can run applications that provide qualitative 

guarantees. 
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6. Conclusions 
Mobile devices such as smartphones and tablets are becoming one of the 

essential parts in people’s daily life, but they also introduce new security challenges and 

problems. Users access all kinds of cloud services through mobile apps, but their 

sensitive operations with cloud servers, such as user authentication and online payment, 

are under the threats from malwares. This dissertation presents two systems, ScreenPass 

and VeriUI, which protect users’ sensitive input such as credentials against buggy and 

malicious apps in their mobile devices. ScreenPass tracks and monitors the usage of 

sensitive input by mobile apps, while VeriUI completely isolate sensitive operations 

from untrusted code. They both use trusted UI to handle sensitive user interactions, 

which forms the base for the two security solutions. 

This dissertation makes contributions in three major areas. The first area is 

conceptual – it consists of the novel ideas generated by this work. The second area is a 

set of artifact system that we developed to validate this dissertation. The final area of 

contribution is the experimental evaluation of the systems that validate the feasibility of 

this dissertation’s statement. 

6.1 Conceptual contributions 

This dissertation makes the following conceptual contributions: 
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• I showed that it is necessary to regulate the behaviors of mobile apps 

when people are using them to access cloud services, because improper 

and malicious apps do exist. I propose two methods to protect sensitive 

input: tagging and monitoring the usage of it, or isolating it from 

untrusted apps. 

• I proposed to use trusted UI to handle sensitive user interactions in 

mobile apps. I proposed to use two methods to enforce the usage of 

trusted UI: computer vision analysis and verifiable remote attestation. 

• I proposed a new UI to capture user intent. I showed it’s usability in 

preventing social-engineering attacks. 

• I showed that it is possible to enhance the security of software keyboards 

by OCR analysis in touchscreen devices. 

• I showed that by leveraging ARM TrustZone technique, it is possible to 

isolate mobile apps from sensitive information while keep the original 

functionality with a few minor changes in code. 

6.2 Artifacts 

In the course of this dissertation, I have developed two major artifacts to validate 

the thesis: ScreenPass, and VeriUI. I built prototypes of these systems to confirm the 

feasibility of systems’ implementations and their usability. 
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• I built ScreenPass, an extension to Android system enhances password 

security on touchscreen devices through OCR and taint-tracking 

techniques. ScreenPass is composed of several related components: a 

special input method with domain-selection UI, a framebuffer checker 

with ORC analysis, a taint-tracking extension with warning facility. 

• I implemented an input method app and a data-collection server for the 

usability study of ScreenPass. The input method has the identical UI with 

that in ScreenPass, and report usage data regarding the domain-selection 

UI to the data-collection server. 

• I built VriUI, a system leverages ARM TrustZone to enhance security of 

sensitive operation on mobile devices. VeriUI supports to run two 

systems currently, an Android in the normal world and a minimized 

Linux kernel in the secure world. The secure world includes a secure web 

client to provide generalized web service, and the normal world includes 

a TrustZone driver to provide API for mobile apps. 

• I implemented a demo app to verify the usability of VeriUI. 

Table 4 compares of ScreenPass and VeriUI on how to practice the three 

principles of designing and implementing trusted UI presented in Section 1.3: secure 

environment, usage enforcement, and anti-spoofing campaign. 
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Table 5: Summary and comparison of ScreenPass and VeriUI. 

Principle ScreenPass VeriUI 

Secure environment 
Tags and tracks sensitive 

data. 

Isolates sensitive input 

from untrusted code. 

Usage enforcement 
OCR to enforce the usage of 

secure software keyboard. 

Remote attestation to 

enforce the usage of VeriUI. 

Anti-spoofing campaign 

OCR to prevent spoofed 

software keyboards. 

Capture user intent to 

check domain. 

Capture user intent to 

check domain. 

Public key in attestation as 

second factor. 

 

6.3 Evaluation results 

The evaluation results in this dissertation present the most important insight: 

When users access cloud services from touchscreen mobile devices, it is feasible to 

enhance the security for sensitive operations by enforcing trusted UI in mobile apps. 

• The app study on ScreenPass does find a malicious app stealing users’ 

passwords, and a number of unsecure or problematic apps which do not 

handle user credentials properly. It is absolutely necessary to enhance 

security for sensitive operations through mobile apps. 
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• The evaluation of ScreenPass shows acceptable performance and energy 

overhead. It shows good performance against both static and dynamic 

spoofing-keyboard attacks. 

• The evaluation of VeriUI shows very low overhead. It shows current apps 

can easily fit to use VeriUI framework by changing only small amount of 

code in SDKs. 

• The usability study for the new UI to capture user intent proves its 

usability. 
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