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Abstract

All-optical devices have attracted many research interests due to their ultimately low

heat dissipation compared to conventional devices based on electric-optical conver-

sion. With recent advances in nonlinear optics, it is now possible to design the optical

properties of a medium via all-optical nonlinear effects in a table-top device or even

on a chip.

In this thesis, I realize all-optical control of the optical group velocity using the

nonlinear process of stimulated Brillouin scattering (SBS) in optical fibers. The SBS-

based techniques generally require very low pump power and offer a wide transparent

window and a large tunable range. Moreover, my invention of the arbitrary SBS res-

onance tailoring technique enables engineering of the optical properties to optimize

desired function performance, which has made the SBS techniques particularly widely

adapted for various applications.

I demonstrate theoretically and experimentally how the all-optical control of group

velocity is achieved using SBS in optical fibers. Particularly, I demonstrate that the fre-

quency dependence of the wavevector experienced by the signal beam can be tailored

using multi-line and broadband pump beams in the SBS process. Based on the theo-

retical framework, I engineer the spectral profile to achieve two different application

goals: a uniform low group velocity (slow light) within a broadband spectrum, and

a group velocity with a linear dependence on the frequency detuning (group velocity

dispersion or GVD).
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In the broadband SBS slow light experiment, I develop a novel noise current mod-

ulation method that arbitrarily tailors the spectrum of a diode laser. Applying this

method, I obtain a 5-GHz broadband SBS gain with optimized flat-topped profile, in

comparison to the ∼ 40 MHz natural linewidth of the SBS resonance. Based on the

broadband SBS resonance, I build a 5-GHz optical buffer and use this optical buffer to

delay a return-to-zero data sequence of rate 2.5 GHz (pulse width 200 ps). The fast

noise modulation method significantly stabilizes the SBS gain and improves the signal

fidelity. I obtain a tunable delay up to one pulse-width with a peak signal-to-noise

ratio of 7. I also find that SBS slow light performance can be improved by avoiding

competing nonlinear effects. A gain-bandwidth product of 344 dB·GHz is obtained in

our system with a highly-nonlinear optical fiber.

Besides the slow light applications, I realize that group velocity dispersion is also

optically controlled via the SBS process. In the very recent GVD experiment, I use a

dual-line SBS resonance and obtain a tunable GVD parameter of 7.5 ns2/m, which is

109 times larger than the value found in a single-mode fiber. The large GVD system

is used to disperse an optical pulse with a pulse width of 28 ns, which is beyond

the capability for current dispersion techniques working in the picosecond and sub

picosecond region. The SBS-based all-optical control of GVD is also widely tunable

and can be applied to any wavelength within the transparent window of the optical

fiber. I expect many future extensions following this work on the SBS-based all-optical

GVD control using the readily developed SBS tailoring techniques.

Finally, I extend the basic theory of backwards SBS to describe the forward SBS

observed in a highly nonlinear fiber, where asymmetric forward SBS resonances are

observed at the gigahertz range. An especially large gain coefficient of 34.7 W−1 is ob-

served at the resonance frequency of 933.8 MHz. This is due to good overlap between

the optical wave and the high order guided radial acoustic wave. The interplay from

the competing process known as the Kerr effect is also accounted for in the theory.
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1

Overview

1.1 Motivation: Slow light and design of the optical properties of ma-

terials

Slow light has become a highly researched topic since the discovery of a dramatic re-

duction of the group velocity in 1999 [1]. The group velocity, which refers to the speed

at which a light pulse travels in the medium, was reduced to 17 m/s, and later com-

pletely stopped [2] in nonlinear optical materials. This interesting optical phenomena

is generated by optically induced nonlinear optical resonances, which modify the com-

plex susceptibility of the material dramatically at the vicinities of the resonances. By

using different kinds of resonances, the group velocity can be dramatically changed in

different ways. In fact, the group velocity can be made very small, known as “slow

light,” or very large (larger than the speed of light in vacuum), known as “fast light,”

or even negative [3–6]. The unprecedent small and large values of group velocities

have attracted a lot of research interests. For example, there has been a lot of research

on the fundamental physics of the information speed in fast light materials, which is

verified to be non-superluminal, thus does not violate casuality [7].

Moreover, the control of group velocity in fast and slow light experiments has al-
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lowed the design of optical properties of materials via nonlinear optical interactions.

While initial slow/fast light experiments control the group velocity via natural non-

linear optical resonances, advanced techniques, starting from broadband slow light,

have been developed to artificially engineer the profile and resonant frequency of the

optical resonances. Using advanced techniques that tailor arbitrarily nonlinear optical

resonances and that I developed, it is now possible to modify the optical properties of

materials with a high degree of control, designing the resonance wavelength, band-

width and wavevector profiles at will. As a result, I am able to design functional op-

tical material with properties that optimize function performance [8, 9]. In addition,

this technique has been extended to general optical property design beyond fast/slow

light. As one example, I have successfully made the group velocity linearly dependent

on the frequency, resulting in a huge group velocity dispersion 109 times larger than

that in normal optical fiber [10].

Optical control of the optical properties of medium is important also due to its

implications for all-optical computation [4, 11]. The manipulation of an optical pulse

using another light beam enables interesting all-optical applications, such as all-optical

switching [12], all-optical buffer [13] and all-optical storage [2, 14]. Traditionally, op-

tical signals transferred through the telecommunication channels need to be converted

into electronic signals and then processed by electronic devices. After the processing,

the electronic signals are converted back into optical pulses to be sent through opti-

cal channels again. Heat dissipation from the conversion procedure is considered as

the ultimate limit of processing speed [15]. All optical devices solve this problem by

eliminating the need for optical-electric-optical conversion, and thus are expected to

greatly enhance the speed.

The control of the group velocity was first demonstrated in atomic gases [1], but

the technique has only become popular and widely applicable after the recent demon-

stration of slow and fast light in optical fiber via simulated Brillouin scattering (SBS),
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in which our group is a major contributor [8, 9, 16–18]. Compared to the atomic

gas system, optical fiber based SBS slow light system enjoys a much simpler table-top

configuration. It is also much more flexible in terms of resonant frequency, which

is tunable over the whole transparent range of the optical fiber, while the resonance

frequencies of the atomic resonances are usually fixed. The incoherent nature of the

SBS resonance is also key to the development of the arbitrary SBS tailoring technique.

Using this technique, we are able to realize bandwidths up to tens of gigahertz, a

bandwidth that is compatible with the data rates of modern optical communication

channels. As mentioned before, the technique I developed also enables arbitrarily re-

shaping of the profiles of SBS resonance, extending the fast/slow light techniques into

general optical property design.

In this thesis, I present my contributions in the recent development of group veloc-

ity control using SBS in optical fibers. This is still a rapidly emerging field, and many

of the techniques and applications I present in the thesis are still in progress.

1.2 Background

1.2.1 Stimulated Brillouin scattering in optical fiber

Brillouin scattering is a nonlinear opto-acoustic coupling process in which an incident

pump beam is scattered by propagating acoustic vibrations in a nonlinear material,

most commonly an optical fiber. The scattered optical beam acquires a frequency shift

characterized by the Brillouin frequency, ΩB, in the material. From a quantum mechan-

ical standpoint, the photons in the counter-propagating optical beams are coupled to

the excitation quanta of phonons in the medium. In an optical fiber, where light waves

and acoustic vibrations are tightly confined, a self-reinforced process occurs between

the optical and acoustic waves, giving rise to the stimulated Brillouin scattering (SBS)

process. In this process, the interference beat between the two optical waves stimu-
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lates acoustic vibrations, and the acoustic waves in turn scatters light wave from the

higher frequency beam into the lower frequency beam, thereby reinforcing the optical

interference beat. The SBS process can be very efficient in optical fibers even at low

power levels (∼ mW), giving rise to strong gain and/or absorption resonances.

SBS was first reported by Chiao et al. since 1964 [19, 20] and has been extensively

studied even since [20, 21]. SBS is the dominant nonlinear scattering process in an

optical fiber [22] and plays a limiting role in passive optical fiber transmission chan-

nels. SBS detracts a large amount of power from the input beam into the backward

direction, and thus limits the maximum amount of power that can be transmitted over

a fiber [22, 23]. On the other hand, SBS is useful when utilized in active applications

such as fiber-based Brillouin amplifiers and lasers.

In this thesis, I intentionally utilize the SBS process to modify the refractive index

and group velocity in the optical fiber. Techniques based on SBS in optical fibers

benefit from the low power requirement, tunable resonant frequency, wide range of

transparent window, inexpensive setup and room-temperature operation, all of which

makes all-optical fast and slow light applications easy and accessible, leading to a

boom of research interest in this field [4].

1.2.2 Group index and slow light

The propagation of a light wave in optical materials is characterized by the refractive

index n, defined as

n =
c

vp

, (1.1)

where c is the speed of light in vacuum and vp is the phase velocity of light wave in

the material. As a result of phase retard of the reemitted waves from the atoms of

the material, the overall phase propagation of the light wave is slightly delayed. For

common materials, such as air, water and silica, the refractive index value usually falls
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into the range of 1 < n < 3 at visible and infrared wavelength ranges. For example,

diamond has a large refractive index of 2.46.

However, the phase velocity cannot accurately describe the propagation of the in-

tensity profile of a temporally-varying optical wave. To characterize the propagation

of an optical pulse in materials, I refer to the group index ng , defined as

ng =
c

vg

, (1.2)

where vg is the group velocity of the light wave in the material. The group index is

obtained by

ng = n+ω
dn

dω
, (1.3)

where ω is the frequency of the light wave.

Usually, refractive index has little dependence on the frequency of the light wave,

and therefore the value of group index is similar to that of the refractive index, i.e

n ∼ ng .

In 1999, however, Professor Hau’s group has successfully reduced group velocity

of a light wave to 17 m/s in atomic gases, corresponding to a group index of 1.7×107

(Fig. 1.1). Such a dramatic reduction of group velocity is known as the slow light.

The extremely small group velocities are found at the vicinity of an optical resonance,

where large dispersion occurs in a narrow spectral region. We see from Eq. (1.3) that

a large normal dispersive term dn/dω results in a small vg .

Slow light with remarkably low group velocity is a promising solution for spa-

tial compression of optical energy and the enhancement of linear and nonlinear op-

tical effects. The continuously tunable delay lines also provide great opportunities

in optical telecommunication for data buffering, synchronization and jitter correction

[13, 14, 24], as well as in interferometry for scanning a reference arm without mov-

ing parts [25–27] and slow light radar [28]. As a result, achieving slow light in a
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FIGURE 1.1: Slowlight in atomic gases.

wide variety of material systems using different physical mechanisms is a topic of in-

tensive study [1, 29, 30]. Among various slow light approaches, stimulated-Brillouin-

scattering-based slow light in single-mode optical fibers has attracted much interest

since 2006, when our group and Professor Thévenaz’s group demonstrated the idea of

broadband SBS [5, 31]. Because of the optically controllable delay time and tunabil-

ity of the bandwidth [31, 32], stimulated Brillouin scattering (SBS) slow light devices

demonstrate great potential for all-optical applications and many research works have

followed in recent years [2, 3, 8, 9, 16, 18, 33].

1.2.3 Optical buffer

A direct application of slow light is the optical buffer. Buffering refers to the temporal

storage of information by the delay of signal flow (see Fig. 1.2). It is a fundamental

function in the telecommunication and data processing systems [13, 34]. While ordi-

nary buffers delay electronic signals, an optical buffer is a device that delays optical

pulses. By bypassing the step of converting optical signals to the electrical ones, as

needed for conventional buffering, optical buffers offer the potential for faster optical

communications. Recently, research interest in slow-light has boosted the develop-

ment of all-optical slow-light based optical buffers [4, 9, 13]. Large optical pulse

delay has been observed in several slow-light experiments [1, 29, 30].

Among various slow-light buffering approaches, SBS-based slow-light optical buffers

provide optically tunable resonance wavelength and delay time, which has been shown
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FIGURE 1.2: An optical buffer delays the propagation of optical pulse sequences. Td is

the delay time of the optical buffer

to benefit applications such as optical packet switches and data synchronization [13,

24].

In SBS slow light devices, the bandwidth is determined by the linewidth of the SBS

resonance. The intrinsic linewidth, ΓB, of the resonance in a normal single-mode fiber

is ∼40 MHz (FWHM), which is determined by the decay rate of acoustic phonons in

the optical fiber [35]. The data rate in such a system is limited to ∼ΓB, insufficient

for modern optical communication applications with GHz data rates. To solve this

problem, broadband SBS slow light has been developed, in which the linewidth of the

SBS resonance is broadened using a multi-frequency laser source as the pump beam

[33, 36–38]. Specifically, a multi-channel SBS slowlight system has been demon-

strated by passing an incoherent pump laser source through a spectral-slicing filter

[33].

Professor Gonzalez-Herráez et al. and our group first demonstrated broadband

SBS by tailoring the pump spectrum in 2006 [31] and 2007 [16]. Using the well-

known Brillouin spectrum broadening technique by direct current modulation of a

semiconductor pump laser [39], Gonzalez-Herráez increased the SBS bandwidth to

∼325 MHz [31]. Since then, a number of research groups have successfully broadened
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the bandwidth of the SBS slow light, making it much larger than the intrinsic linewidth

of SBS resonance [9, 16, 40]. Broadband SBS slow-light has been demonstrated with

bandwidths up to tens of GHz [8, 18, 41], a data rate compatible with modern optical

communication systems.

Applying the arbitrary tailoring technique I developed to the broadband optical

buffer, I find improvement of delay and reduced distortion under pump power con-

straints [18, 42]. Fractional delays as large as three have been demonstrated recently

[18].

1.2.4 Competing effects

In broadband SBS slow light applications, performance of the device can be degraded

due to competing optical nonlinear effects. These nonlinear effects are enhanced by

the large pump power required to generate the broadband SBS resonance. Amplified

spontaneous Brillouin scattering has been discussed as an intrinsic limitation on SBS

in many previous works [43–45]. Other competing effects such as stimulated Raman

scattering [39], Rayleigh backscattering [46]. Recently, I also find that modulation

instability caused by Kerr nonlinearity [8] also degrades slow light performance in

broadband SBS systems.

The competing processes affect the SBS slow light in two ways.

• Depletion of the pump power. Competing effects can transfer power in the pump

beam into non-optical forms, counter-propagating directions, or into other fre-

quency ranges. The depletion of the pump power reduces the attainable SBS

gain and thus limits the slow light delay.

• Generation of noisy beams that mix with the signal. Some of the competing ef-

fects generate beams that co-propagate with the signal beam. Because these gen-

erated beams are initiated from amplification of thermal and quantum noises,
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FIGURE 1.3: An input transform-limited optical pulse broadens temporally and devel-

ops a linear frequency chirp as it propagates through a material with group velocity

dispersion parameter β2

they are noisy in nature and reduce the signal-to-noise ratio for the slow light

operation.

A good SBS-based device needs to eliminate and/or suppress the completing effects

to optimize its performance.

1.2.5 Group velocity dispersion

Group velocity dispersion (GVD) refers to the linear dependence of group velocity

on frequency. Upon propagation in a GVD material, different frequency components

travel at different group velocities, and are relocated to different temporal positions. A

transform limited optical pulse with a short temporal duration (thus a broad spectrum)

will get broadened propagating in a GVD material, as shown in Fig. 1.3. In addition,

the spectrum of the optical wave is displayed in the temporal domain. GVD material

is widely used in various applications such as short pulse manipulation [47, 48], tem-

poral domain Fourier optics [49, 50] and quantum information processing [51–53].

Breakthrough research over the past decade has demonstrated unprecedented control

over the frequency-dependent refractive index of optical materials. For example, it is

now possible to obtain negative values of the refractive index using metamaterials [6]

and extremely large or negative values of the group index using laser-induced mate-
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rial resonances or photonic crystals [4]. In contrast, engineering the group velocity

dispersion (GVD) is limited to the domain of broadband, ultra-fast light pulses [54].

Yet, emerging applications, such as quantum key distribution [49, 50], quantum [51]

and classical [48, 52, 55] information processing, and temporal cloaking [56], require

or can benefit from large GVD that can disperse longer duration pulses. I demonstrate

giant values of the GVD parameter β2 are obtained by arranging the SBS resonances

and placing the amplifying resonance next to an absorbing resonance.

1.2.6 Forward SBS

Besides the commonly used backwards SBS, the unconventional SBS in the forward

direction has attracted research interest in recent years. Forward spontaneous Bril-

louin scattering (FSBS) in optical fibers was first discussed by Shelby et al. [57] in

a process known as guided acoustic-wave Brillouin scattering (GAWBS). Since then,

GAWBS has been extensively explored in fibers with different core dimensions and po-

larization properties [58–61]. The FSBS process between two non-degenerate optical

modes was first characterized by Russell et al. [62], where the frequency shift was of-

the-order-of 17 MHz. More recently, highly efficient FSBS at gigahertz frequencies has

been demonstrated by Kang et al. [63] using a small-core (diameter 2 µm) photonic

crystal fiber (PCF) coupling to the torsional and radial modes. Current researches on

FSBS at gigahertz frequencies suggest that the process may be used in a wide variety

of photonic applications, such as frequency comb generation, active phase modula-

tion, optical frequency conversion, and high-frequency mode locking of fiber lasers

[58, 59, 64].

1.3 Outline

The rest of the thesis is organized as follows. In Ch. 2, I present the theory of SBS in

an optical fiber. In this chapter, I derive the effective wavevector K , which represents
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FIGURE 1.4: Slow light performance using periodic modulation method in HNLF. Av-

eraged output signal profiles at pump power Pp = 350 mW for a single pulse (black

solid line), together with the undelayed pulse profile at Pp = 0 mW (red dashed line)

in HNLF. A delay of 160 ps is shown at this pump power.

the modified optical properties of the optical fiber under the modulation of the SBS

resonance. The refractive index and group velocity are obtained from the real part of

the wavevector K . Particularly, I derive the SBS resonance with multiple pump lines

and broadband pump beams. This is the theoretical framework for the SBS resonance

tailoring and optimization technique.

In Ch. 3, I present the theory for the broadband slow light using a rectangular-

shaped SBS gain profile. I describe my experiment where I generate and optimize

such a flat-topped gain profile using periodic current modulation of the diode pump

laser source. I experimentally demonstrate a delay for an optical pulse of 200-ps width

(shown in Fig. 1.4). The delay time is in good agreement with the prediction of model.

In Chapter 4, I introduce my arbitrary SBS tailoring technique using noise current

modulation. I apply the novel technique into the optimization of a broadband SBS

optical buffer. The experiment I performed shows significant improvement compared

to previous methods in that the arbitrarily tailored resonance yields much more stable

output signals. The data fidelity measurements of the broadband optical buffer show

that this method profoundly reduces SBS gain fluctuations and improves signal data

fidelity, while maintaining the delay performance. A preview of the eye diagram for
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FIGURE 1.5: Eye diagrams of delayed and amplified data sequences for (a) slow and (b)

fast modulation waveforms at Pp = 350 mW in HNLF. The arrows in the figure show

the EO for each case. A 50% increase of EO is demonstrated in the fast modulation

method.

the fast and slow modulation method is shown in Fig. 1.5, where the improvement of

data eye-opening is significant.

In Chapter 5, I introduce common competing processes and analyze their effect

on the broadband SBS slow light system. Particularly, I discover that pump depletion

occurs as a result of the modulation instability (MI) in a LEAF fiber and quantify the

limitation on delay-bandwidth product in the experiment. To my knowledge, this is

the first analysis of the modulation instability in SBS experiments. The results show

that MI is suppressed in a normal dispersive optical fibers in the SBS fast/slow light

experiments. The criterion is useful in future design of fiber based SBS applications.

In Ch. 6, I extend the arbitrary SBS resonance tailoring technique into general opti-

cal property design beyond slow/fast light. Instead of designing a resonance to obtain

a large group velocity, I obtain an SBS modified material with an unprecedent large

group velocity dispersion. The recent experiment on the exceptionally large group

velocity utilizes a dual-lined SBS resonance in an optical fiber. The GVD parameter,

β2, is 109 times larger than that in silica fibers without the SBS resonance. This is

the first demonstration of using SBS to optically control the group velocity dispersion.

The large GVD in this experiment greatly enlarges the range of dispersion values that
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we can obtain, enables dispersive techniques for optical pulses in the nanosecond (ns)

region. Similar to the invention of slow light using SBS in optical fiber, this work is

expected to greatly reduce the complexity of experimental setup and thus makes GVD

control widely applicable, even in previously unconsidered temporal scales.

In Ch. 7, I reconsider the fundamental aspects of the SBS process and describe the

observation of the forward stimulated Brillouin scattering in a highly nonlinear optical

fiber. In this process, co-propagating optical beams are coupled to the radial guided

modes of acoustic vibration in the optical fiber. The strong coupling between the

guided radial acoustic wave and the optical wave in a single mode fiber was previously

considered unlikely. I prove both theoretically and experimentally that the strong

FSBS resonances in the application-favorable gigahertz range do exist. The findings

significantly lower the cost and increase the accessability for the FSBS applications.

The many different modes of guided acoustic vibrations in a cylindrical waveguide

give rise to multiple FSBS resonance peaks with different resonant frequencies. I

calculate the coupling strength for these multiple resonances. Additionally, interplay

with Kerr effect is accounted for in our theoretical model and experiment.

Finally, in Ch. 8, I summarize the main results and suggest future work directions.
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2

Theory of stimulated Brillouin scattering in

optical fiber

This chapter covers the theoretical framework for stimulated Brillouin scattering (SBS)

in an optical fiber. I will first review nonlinear optical processes in an optical fiber, in-

cluding a number of competing nonlinear effects other than SBS that will become

relevant in the following chapters. I will then present the theory of acoustic-optical

coupling in an optical fiber and derive the solution for a stimulated Brillouin scatter-

ing resonance pumped by a monochromatic laser beam. The presence of SBS change

dramatically the effective refractive index profile as experienced by the signal beam.

Furthermore, by tailoring the SBS resonance profile with multiple-line or distributed

broadband pump beam, the optical properties of the SBS resonance can be controlled

and optimized for specific applications. The theoretic framework laid out in this sec-

tion is used throughout the rest of the thesis.
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FIGURE 2.1: structure of a highly nonlinear optical fiber

2.1 Nonlinear optical processes in an optical fiber

2.1.1 Optical fiber

Optical fiber is the most widely used optical waveguide in the modern world [19,

65, 66]. An optical fiber is a transparent waveguide typically made of high quality

extruded glass (silica). It is composed of the large cladding and a small core area

(see Fig. (2.1)), where the refractive index is slightly larger than that in the cladding

material. The refractive index difference causes internal total reflection that confines

light tightly in the core of the fiber. Power in the light wave is thereby confined inside

the transparent fiber and is transmitted over large distances with minimum loss [19,

65]. Particularly, in a single mode fiber, the optical field is only allowed in one mode

called the HE11 mode [65], which is a nearly azimuthally symmetric radial profile

concentrated in the core area.

Apart from its important role of passive optical signal transmission in fiber-optic

communications [66], optical fiber is also a very popular and important waveguide for

the study of active nonlinear optical processes [19, 66]. Nonlinear optical phenomena

are usually enhanced in optical fiber due to the tight confinement of the optical wave
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that dramatically increases the light intensity for a given power, and also due to the

propagation distances that enables long interaction length. For example, a typical

highly nonlinear optical fiber confines the light field to a mode area of ∼ 10 µm2

through a distance of several km, while the length of a nonlinear crystal is typically

on the order of a few millimeters and the focal light field area is ∼ 100 µm2. As a

result, nonlinear effects can be evident at much lower power levels inside an optical

fiber [19].

2.1.2 Nonlinear susceptibility

The response of an optical fiber to a light wave is mostly linear and fast, i.e, the

polarization P(t) of the material is proportional to the amplitude of the input light

field E(t) by [67, 68]

P(t) = ε0χE(t), (2.1)

where ε0 is the permittivity of vacuum, and χ is the linear susceptibility. While E and

P are vectors in general, I simplify the description by limiting E and P in one of the

two orthogonal polarization modes inside the optical fiber [65]. This polarization is

called the linear polarization P L. The time-varying material polarization P(t) is the

source for generating new optical fields.

However, with high intensity light waves confined in the small core area of an

optical fiber, the fiber response P deviates from the simple linear relation. In this case,

the polarization P contains both linear and nonlinear parts, P = P L + PN L [68].

Nonlinear optical processes are treated by expanding the polarization to include

higher-order contributions [19]. In doing that, we assume that the response of the

polarization P to the higher-order terms of light field E is important, but small enough

so that the nonlinear response can be treated as a perturbation. In this case, the
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polarization is expanded as

P(t) = ε0(χ1E(t) +χ2E(t)2+ χ3E(t)3+ ...), (2.2)

where the nonlinear susceptibilities χ2 and χ3 are called the second and third-order

susceptibility, respectively. Here, the nonlinear polarization PN L = χ2E(t)2+χ3E(t)3+

....

Usually, the second-order nonlinearity is the leading nonlinear term. However,

only materials with asymmetric orientations (such as noncentrosymmetric crystals)

are capable of demonstrating a second-order susceptibility [68]. Optical fibers made

of amorphous silica have zero second-order susceptibility and hence the leading-order

nonlinearity is proportional to third-order susceptibility (χ3), giving rise to the optical

Kerr effect and third-harmonic generation, for example [19].

In the Kerr effect, an intense optical wave modulates the refractive index of the

material and induces light scattering from the refractive index variations. For example,

in a four-wave-mixing process, two intense pump waves modulate the refractive index

of the optical fiber and create a moving refractive index grating at the beat frequency

of the two pump beams. A weak beam input into the waveguide scatters off the

grating, and is converted into light beams with new frequencies up or down shifted by

the frequency difference of the two pump beams. This kind of process is known as the

parametric processes because the final status of the material is unchanged; thus only

"parametricly" involved in the light scattering process

The optical Kerr effect gives rise to processes such as self phase modulation, cross

phase modulation, four-wave mixing and the modulation instability. These effects are

readily observable in optical fibers and I will discuss them as competing processes in

Chs. 3 and 7.

Apart from parametric Kerr effects, nonlinear light scattering takes place when the

final state is different from the initial state. This type of nonlinear process alters the
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states of the optical fiber and induces inelastic light scattering that couples light field

with the internal states of the fiber material. It is called nonlinear light scattering,

including [68]

• Raman scattering, interaction of light with the vibrational modes of the molecules

in optical fiber, or optical phonons,

• Brillouin scattering, interaction of light with the propagating pressure/density

wave, or acoustic phonons,

• Rayleigh scattering, interaction of light with static density distribution

A full description of the nonlinear light scattering processes thus involves both op-

tical and vibrational waves in the optical fiber and an optical-acoustic coupling theory

is required.

2.2 Stimulated Brillouin scattering

2.2.1 Overall interpretation

Brillouin scattering is light wave scattering from a propagating sound wave in optical

fiber [19, 68]. In typical Brillouin scattering processes, the light wave and sound waves

are coupled via electrostriction and the density-induced refractive index changes in

the optical fiber medium. (A less common type of Brillouin scattering is caused by

absorption of light that induces temperature changes and hence density changes.) On

one hand, a strong optical field induces material density variations via electrostriction,

which makes the material more dense in areas with high optical intensity. On the

other hand, density variations change the refractive index of the material, which in

turn act as optical gratings that scatters light wave into the down-shifted (Stokes) and

up-shifted (anti-Stokes) frequencies. When there is only one external beam applied,

the sound wave and the scattered light field are generated from noise (thermal noise
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FIGURE 2.2: Geometry of the SBS processes. Two counter-propagating beams (sig-

nal beam frequency ωs and pump beam frequency ωp) are coupled to the longitude

acoustic wave (frequency ΩB).

and/or quantum noise)[45, 68, 69], and such a process is called spontaneous Brillouin

scattering.

When there is an additional external seeding signal beam, a resonant stimulated

Brillouin scattering (SBS) process can occur [19, 68] in both the backward direction

(Fig. 2.2) and the forward direction (to be discussed in Ch. 7). Stimulated Brillouin

Scattering takes place when a signal beam of frequencyωs and a strong pump beam of

frequencyωp are coupled to an acoustic wave in an optical fiber [68]. The interaction

between the three fields leads to strong coupling when the frequency difference of

the light waves matches the frequency of the acoustic excitation (Brillouin frequency

ΩB) in the medium. When the frequencies are matched, the beating from the interfer-

ence of the two optical waves produces a propagating density wave in the fiber. This

acoustic wave then in turn acts as a refractive index grating that scatters the higher-

frequency beam into the lower-frequency beam, inducing an amplification/absortion

of the signal beam. When the signal beam is on the lower-frequency side, i.e, the

Stokes side, the amplification of the Stokes beam increases the intensity of the beat sig-

nal between the optical waves and thus reinforces the sound wave. The self-enhanced

feedback results in an exponential increase of the signal beam, efficiently transferring

optical power into the signal beam until depletion of the pump beam sets in.
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FIGURE 2.3: Energy and phase matching conditions for the backward SBS. The solid

curve is the optical dispersion relation. The green and red arrows denote the optical

beams, and the blue arrow denotes the acoustic wave.

2.2.2 Energy and phase matching conditions and Brillouin frequency ΩB

We can obtain the value of Brillouin frequency ΩB through simple energy and phase

matching conditions. In order to obtain a strong coupling, the frequency and wavevec-

tor of the beating between the optical fields must match that of the acoustic wave. The

energy and phase matching conditions are given by [19]

Ω =ωp −ωs,

q = kp − ks,
(2.3)

respectively, where Ω is the frequency of the acoustic wave, kp, ks and q are the

wavevectors of the optical beams and the acoustic wave. Note that a negative sign

of wavevector is assumed when it counter-propagates with the pump beam. Figure

2.3 shows the energy and phase matching conditions for the backward SBS process.

The phase matching conditions cannot be fulfilled for arbitrary ωp and ωs due to

constraints on the dispersion relationship for optical and acoustic waves. In the case
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of backward SBS, these dispersion relationships are given by [19]

|k j|= nω j/c, ( j = s, p)

q = Ω/v,
(2.4)

where c is the speed of light in vacuum, n is the refractive index of the optical fiber

and v is the speed of sound in the material. Combining Eq. (2.3) and Eq. (2.4), energy

and phase matching are achieved when

Ω =

2v

c/n
ωp

1+ v

c/n

≡ ΩB ≈
2v

c/n
ω, q = 2nω/c, (2.5)

where ω = ωp ≈ ωs. Note that the approximation is valid because v ≪ c/n in an

optical fiber.

2.2.3 Acoustic-optical coupling in optical fiber

To describe the acoustic-optical coupling between optical field E(t) and material den-

sity variation ρ(t) in full detail, we refer to the coupling equation between P and E

derived from the Maxwell equations, given by [19, 68]

∇2E − n2

c2

∂ 2E

∂ t2
=

1

ε0c2

∂ 2PN L

∂ t2
, (2.6)

and the acoustic wave equation [68]

∂ 2ρ

∂ t2
− (v2+Γ

∂

∂ t
)∇2ρ =∇ ·−→f , (2.7)

where Γ is a damping parameter. The driving source is the divergence of the force per

unit volume
−→
f =∇pst, where pst is the pressure. In the case of electrostriction, pst is

determined by the optical field E given by [68]

pst =−
1

2
ε0γeE

2, (2.8)
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where γe is the electrostriction constant and E2 represents the averaged value of E2

over time.

On the other hand, the nonlinear polarization PN L in Eq. (2.6) is determined by

the density variation ρ, given by

PN L = ε0δχE = ε0ρ
−1
0
γeρE, (2.9)

where ρ0 is the background material density.

Using the density variation expression and inserting into the nonlinear polarization

equation, we obtain the coupling equations that describe the evolution of the optical

and acoustic fields, which are given by

∇2E − n2

c2

∂ 2E

∂ t2
=

γe

c2ρ0

∂ 2(ρE)

∂ t2
(2.10)

∂ 2ρ

∂ t2
− (v2+Γ

∂

∂ t
)∇2ρ = −1

2
ε0γe∇2(E2), (2.11)

The optical and acoustic fields can be solved from these equations with boundary

conditions. I next solve for the backward SBS resonances using the coupled equations.

More discussions on forward SBS is given in Ch. 7.

2.2.4 Single-lined SBS resonance

Now consider the case for a monochromatic pump beam Ep and counter-propagating

monochromatic probe beam Es, coupling with a single-frequency acoustic wave ρ (fre-

quency Ω =ωp −ωs,wavevector q), as shown in Fig. 2.5.

The optical field E is given by

E(z, t) = Ep + Es = Apei(−ωp t+kpz) + Ase
i(−ωs t−ksz) + c.c., (2.12)

and the acoustic field given in term of the material density variation ρ is given by

ρ(z, t) = ρ0+ [ρei(−Ωt+qz) + c.c.]. (2.13)
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FIGURE 2.4: SBS gain G for the Stokes (a) and the anti-Stokes beam (b)

Inserting the expression of E into Eq. (2.8), and only keeping the beat term with the

correct frequency Ω, the source term on the right side of Eq. (2.7) is thus given by

∇ ·−→f = εγeq
2[ApA∗

s
ei(qz−Ωt)+ c.c.]. (2.14)

Inserting Eqs. (2.13) and (2.14) into the acoustic wave equation (2.7), we obtain

−2iΩ
∂ ρ

∂ t
+ (Ω2

B
−Ω2− iΩΓB)ρ− 2iqv2

∂ ρ

∂ z
= ε0γeq

2ApA∗
s
, (2.15)

where the acoustic amplitude is assumed to be slowly varying, ΓB = q2Γ is the Brillouin

linewidth, the inverse of the phonon lifetime.

This equation is greatly simplified when the propagation of phonons is ignored. In

conventional optical fibers, the damping of acoustic phonons are indeed very strong

and acoustic vibrations only affect optical fields locally [19]. Therefore it is legitimate

23



to drop terms with ∂ ρ/∂ z. Furthermore, considering the steady-state situation by

dropping term with ∂ ρ/∂ t as well, the acoustic field is obtained that

ρ(z, t) = εγeq
2

ApA∗
s

Ω2
B
−Ω2− iΩΓB

. (2.16)

We further use the slowly-varying assumption for the optical amplitude, i.e, the

envelope of the optical wave Ap and As vary slowly in time and space compared to a

period or wavelength. Inserting Eq. (2.16) into the right side of Eq. (2.10), we obtain

coupled equations for the amplitudes of the optical beams

∂ Ap

∂ z
+

n

c

∂ Ap

∂ t
=

i

2
g̃ IsAp, (2.17)

−∂ As

∂ z
+

n

c

∂ As

∂ t
=

i

2
g̃ IpAs, (2.18)

where the beam intensity is defined as Ii = 2nε0nc|Ai|2 (i = s, p) and

g̃ =
−iωq2γ2

e

2n2c2ρ0

1

Ω2
B
−Ω2− iΩΓB

(2.19)

is the SBS complex gain factor with g0 = γ
2
e
ω2/nvc3ρ0ΓB. The expression is simplified

to

g̃ =
g0

1− 2iδω/ΓB

(2.20)

when the detuning, δω = −ωs +ωp − ΩB, is much smaller than the bandwidth ΓB.

A similar derivation is also applied to the anti-Stokes SBS at the detuning δω = ωs −
ωp −ΩB. In this case

g̃ = − g0

1− 2iδω/ΓB

(2.21)

In the case where the pump beam is strong with little power transferred to the

signal beam, Ip is considered as a constant. This is called the non-depleted pump

assumption. The solution to Eq. (2.17) is given by
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As(z) = As(0)e
(ik0+ g̃ Ip/2)z, (2.22)

where k0 = nω/c is the back ground wavevector. We can define the SBS wavevector

K = k0 − i g̃ Ip/2 so that

As(z) = As(0)e
iKz, (2.23)

where it is straightforward to see that the optical properties of the waveguide expe-

rienced by the probe beam is modified as a result of the SBS process. The physics

interpretation of the SBS wavevector K will be discussed in detail in Section 2.3.

2.2.5 Coupled intensity equations

Note that the coupled equations Eq. (2.17) contains no explicit phase term. We can

therefore separate the phase and intensity evolution. Most of the time, the intensity

is the quantity being measured in the experiment and we can obtain the evolution of

intensity alone. Substitute amplitude with intensity in Eq. (2.17), assuming slowly-

varying quantities, the intensity coupled equations are given by

dIp

dz
= g Ip Is (2.24)

dIs

dz
= g Ip Is, (2.25)

where g is the real part of the SBS gain factor g̃ given by

g = g0

1

1+ (2δω/ΓB)
2
. (2.26)

Using the assumption of an undepleted pump beam, the intensity of the pump

beam is considered constant and the solution for the probe beam is given by

Is(z) = Is(0)e
G, (2.27)
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where G = g Ipz is the SBS intensity gain. This is a gain resonance with a Lorentzian

profile, bandwidth of the resonance is ΓB, which is full width at half maxima (FWHM).

A probe Stokes beam injected at one end of the fiber will experience exponential in-

tensity growth as it propagates through the waveguide, shown in Fig. 2.4(a).

The derivation is also valid for an anti-Stokes probe beam, if we flip ωs withωp. In

this case, the probe beam will experience exponential decay as it propagates through

the waveguide

Is(z) = Is(0)e
G, (2.28)

where G = −g Ipz. The probe beam is attenuated as it propagates through the fiber,

shown in Fig. 2.4(b).

The intensity equations given by Eq. (2.24) and the real gain coefficient g are

usually used to describe SBS processes where only the optical intensity is of interest.

However, as discussed later in the thesis, it is sometimes also important to look into

the phase evolution of the probe beam. It is therefore desired to use the amplitude

evolution equations given by Eq. (2.17) and the SBS wavevector K with both real and

imagery part for a full description of the SBS process.

2.2.6 SBS with multiple-line and distributed broadband pump beam

Now consider pump beams with more than one frequency components in the back-

ward SBS process. Let’s first consider two pump beams with frequency ωp1 and ωp2

coupled to a counter-propagating probe beam ωs at the Stokes frequency, accord-

ing to Eq. (2.16). The interaction gives rise to density variations with frequencies

Ω1 = ωp1 −ωs and Ω2 = ωp2 −ωs, which are generated due to beating between the

pump and probe beams. However, since the two pump beams are propagating in the

same direction, the fast propagating beat signal between the two pump beams does

not match the phase for the acoustic wave, and thereby does not contribute to the SBS

process. Note this is not true for the forward SBS case, as discussed in Ch. 7. The
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amplitude evolution equation of the probe beam is therefore given by

−∂ As

∂ z
+

n

c

∂ As

∂ t
=

i

2
g̃1 Ip1As +

i

2
g̃2 Ip2As, (2.29)

where

g̃ j = −
g0

1− 2i(Ω j −ΩB)/ΓB

, j = 1, 2. (2.30)

The solution to Eq. (2.29) is

As(z) = As(0)e
ik0z+( g̃1 Ip1+ g̃2 Ip2)z. (2.31)

This conclusion is easily extended to the situation of N pump beams with discrete

different frequency ωp1,ωp2 · · ·ωpN , where

As(z) = As(0)e
ik0z+
∑N

j ( g̃ j Ip j)z. (2.32)

The SBS wavevector is given by K = k0 − i
∑N

j
( g̃ j Ip j).

We further extend this result to a broadband pump beam with continuous fre-

quency distribution Ip =
∫

ιp(ωp)dωp. In this case, the summation is substituted by

an integral

As(z) = As(0)e
i(k0−i g̃⊗ip)z, (2.33)

where ⊗ is the convolution operator. The SBS wavevector is given by K = k0− i g̃⊗ ιp.

This allows us to engineer the SBS wavevector K by tailoring the spectrum of the

pump beam. We will see this technique applied to SBS-based broadband slow light

and group velocity dispersion in Chs. 3 and 4 and Ch. 5, respectively.

2.3 Physics interpretation of the SBS wavevector K

2.3.1 Imaginary and real part of wavevector K

The expression for the probe beam E(z) given by Eq. (2.23) shows that we can inter-

pret the effect of SBS as a change of optical properties experienced by the probe beam.
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The result is a modified wavevector K , given by

K = k0 +
−i g0 Ip/2

1− 2iδω/ΓB

. (2.34)

To study the optical properties of the SBS modified materials, we first separate the

real and the imagery part of the wavevector as

K = k0 + kr − iki

= k0 +
g0 Ip

2
[

2δω/ΓB

1+ (2δω/ΓB)
2
+

−i

1+ (2δω/ΓB)
2
]

(2.35)

The imaginary part ki = g Ip/2 is responsible for the intensity gain and/or absorption,

as discussed in Sec. 2.2.5. It has a Lorentzian profile with resonance full-width at

half-maxima ΓB. The SBS intensity gain G is obtained by G = g Ip L. The profile of G

for a single-lined SBS is shown in Fig 2.5(a).

The real part kr modifies the refractive index of the optical fiber and is responsible

for phase modulation of the probe beam. The modified refractive index n is given by

n = 1+ kr/k0. The profile of n for a single-lined SBS is shown in Fig. 2.5(b).

The real and imaginary parts of the SBS wavevector K are interdependent on each

other by the Kramers-Kronig relations [68]. As a result, the associated SBS refractive

index and SBS gain profiles are also interdependent. While we make use of one part

of K for desired optical functions, we should not forget to consider and minimize the

side effect coming from the other part of K . A good engineering design of an SBS

optical material must consider the optimization of both the real and imaginary parts

of K .

2.3.2 Group velocity and group velocity dispersion

In the following chapters, I will discuss two interesting SBS materials. One has very

large group refractive index and demonstrate slow light effect, while the other has
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FIGURE 2.5: SBS resonance for a monochromatic pump laser in an optical fiber. Taken

from Fig. 1 in [4]. (a) SBS gain G, (b) refractive index n and (c) group index ng

as functions of the frequency in SBS Stokes and anti-Stokes resonances. The spectral

location of the pump beam is also shown.

very large group velocity dispersion. The concepts of group index and group velocity

dispersion come from expanding the wavevector in term in a Taylor series about the

central signal frequency ω0 [19]:

K(ωs) = β0+ β1(ωs −ω0) +
1

2
β2(ωs −ω0)

2+ · · · , (2.36)

where

βi =
d jβ

dω
j
s

|ωs−ω0=0, ( j = 0, 1, 2 . . .). (2.37)

For materials that are essentially transparent so that K is pure real, the parameters

β1 is the inverse of group velocity vg and is related to the group index ng by

β1 =
1

v g
=

ng

c

=
1

c
(n+ω

dn

dω
).

(2.38)

The profile of the group index for a single-lined SBS resonance is seen in Fig. 2.5(c).
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Similarly, the parameter β2, is the group velocity dispersion (GVD) parameter. It

represents the dispersion of the group velocity. The parameter β3 is called the 3rd

order dispersion parameter and so on.

The parameters β1 and β2 have important physical meanings. β1 determines the

group velocity at which the envelope of an optical pulse propagates. By manipulating

β1 through the SBS process, group velocities can be made very small, and hence the

effect of slow-light can be obtained, to be discussed in Chs. 5 and 6. On the other

hand, β2 determines the group velocity dispersion, which broadens an optical pulse

by relocating its frequency components linearly in the temporal domain. Similarly, by

tailoring the SBS resonance, I can obtain very large β2, resulting in large chirping of

optical pulses, to be discussed in Ch. 5. The theoretic framework provided in this

chapter lays foundations for the pursuit of extreme optical properties enabled by the

SBS modified materials.
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3

Broadband SBS slow light

From this chapter onward I move into the application of SBS in optical fibers. I use

SBS resonances to modulate the refractive index of the optical fiber that enables appli-

cations such as slow light and large group velocity dispersion (GVD). Particularly, the

novel technique of arbitrary SBS resonance tailoring is introduced and used to obtain

an optimized performance under each particular circumstance.

In Chs. 3 and 4, I demonstrate a 5-GHz-bandwidth slow-light optical buffer based

on stimulated Brillouin scattering. In particular, I present my arbitrary SBS resonance

tailoring technique based on fast noise modulation. This novel method is compared

with a previously used slow periodic modulation method. Using both methods, I ob-

tain a flat-topped SBS gain profile with a bandwidth of 5 GHz. I use the broadband

SBS slow light system to buffer a 2.5-GHz data sequence and demonstrate a tunable

delay up to one pulse-width. The fast noise method is shown to substantially improve

the signal date fidelity by generating a much more stable output. It should be noted

that the SBS profile reshaping technique presented in these two chapters is not re-

stricted to applications of broadband slow light, but can be easily extended to other
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SBS applications such as broadband GVD (to be discussed in Ch. 5).

3.1 Introduction to broadband SBS

In SBS slow/fast light experiments, the bandwidth of the device is determined by the

linewidth of the resonance. In Ch. 2, I discussed using a broadband pump beam to

broaden the SBS linewidth. In addition to the broadening of the spectral linewidth of

the SBS resonance, it is also found that a judicious choice of the SBS gain profile results

in better delay performance for the broadband SBS slow light systems [8, 9, 18, 42].

The optimal gain profile, which improves the pulse delay under constraints of pulse

distortion and pump power, is a flat-top gain spectrum with sharp edges [8, 9, 18, 42].

To obtain such an optimized gain profile, we need a technique to arbitrarily control

the profile of the SBS resonance.

In this chapter, I use a periodic current modulation method to design a 5-GHz flat-

topped SBS gain profile. The parameters of the modulation function are optimized

by correcting for non-ideal features in the resulting spectrum based on an iterative

method, which enables arbitrary control over the diode laser spectrum. The method is

introduced by Dr. Edu Cabrera-Granado in reference [18]. Based on his method and

experiment design, I set up the 5-GHz slow light experiment using a highly-nonlinear

fiber. The data collection and analysis presented in this chapter have been conducted

by me under Professor Gauthier’s supervision. Professor Gauthier and I summarized

the findings in reference [9].

The next section presents the theory for broadband SBS slow light with the op-

timized rectangular-shape gain profile. Section 3.3 gives details of the modulation

function optimization. Section 3.4 shows the 5-GHz broadband SBS slow light exper-

iment implemented in a standard highly-nonlinear optical fiber. A 200-ps-long super-

Gaussian pulse is delayed with a fractional delay up with one pulse width. Conclusions
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are given in Sec. 3.5

3.2 Theory of broadband SBS slowlight

3.2.1 Slow light with a single-lined SBS gain resonance

In a SBS slow light device, an optical pulse (the signal) is delayed by interacting with a

counterpropagating broadband pump beam via the SBS process. The SBS interaction

generates a gain resonance for the signal beam. This gives rise to a variation in the

refractive index within a narrow frequency range around the resonance frequency,

resulting in a small vg for the signal beam.

As discussed in Chap 2, the complex refractive index of an optical fiber is changed

by the SBS interaction. A weak signal laser beam (frequencyωs) propagating in a SBS

waveguide has an effective complex wavevector K given by

K(ωs) = k0 +
−i g0 Ip/2

1− 2iδω/ΓB

, (3.1)

when interacting with a single frequency pump beam of intensity Ip. Here, δω =

−ωs +ωp −ΩB is the frequency detuning and g0 is the line center SBS gain factor (a

constant determined by the material). The refractive index is associated with the real

part of the wavevector by n = Re(K)/ks, and the imaginary part of the wavevector

gives the SBS gain profile g = −Im(K).

We use the group index ng to characterize the propagation of temporal profiles of

optical pulses, given by

ng = n+ωs

dn

dωs

, (3.2)

where n is the refractive index, ωs is the carrier frequency of the optical pulse (in

rad/s) and c is the speed of light in vacuum. The group velocity at which the optical

pulse propagates is related to the group index ng by vg = c/ng .
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The group index ng is obtained by taking the derivative of the real part of wavevec-

tor K evaluated at δω= 0, given by [19]

ng(ωs) = c
dRe(K)

dωs

|δω=0, (3.3)

ng0(ωs) = c
dRe(k0)

dωs

|δω=0,

where ng0 is the material group refractive index without the SBS process. For a single-

frequency pump laser beam, inserting Eq. 3.1 into Eq. 3.3, the group refractive index

is given by [17]

ng(ωs) = ng0+
cg0 Ip

ΓB

1− 4δω2/Γ2
B

(1+ 4δω2/Γ2
B
)2

.

A maximum value of ng = ng0 + cg0 Ip/ΓB is obtained on resonance (δω = 0), corre-

sponding to a minimum group velocity vg = c/(ng0 + cg0 Ip/ΓB) for the signal pulse

propagation.

Consider a signal optical pulse propagating through a fiber of length L. The transit

time, Tg is approximately given by [17, 70]

Tg =
L

vg

=
Lng

c
. (3.4)

The delay time, Td in a slow light system is defined as the difference between the

transit times through the medium with and without the slow light effect,

Td = Tg − Tg0 =
L

c
(ng − ng0), (3.5)

where ng and ng0 are the group indices with and without the slow light effect, respec-

tively. The fractional delay τd is defined as the ratio of the delay time to the pulse

width, given by τd = Td/t0.
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For a single-lined SBS gain resonance, the delay is given by

Td = g0 Ip L/ΓB = G0/ΓB, (3.6)

for an on-resonance signal pulse whose spectral width is narrower than ΓB. Here G0 is

the center SBS intensity gain.

I next calculate the delay an optical pulse in the slow light system using an opti-

mized rectangular-shaped SBS resonance profile.

3.2.2 Broadband slow light using a rectangular-shaped SBS resonance profile

In our broadband SBS slow light experiment, a current-modulated distributed feed-

back laser (DFB) is used to increase the linewidth of the pump beam spectrum. As

discussed in Chap. 2, the broadened complex SBS wavevector K(ωs) results from

the convolution of the intrinsic complex SBS gain spectrum g̃(ωs) with the intensity

spectrum ιp(ωp) of the pump beam, expressed by

K(ωs) = k0 +
−i g0/2

1− 2iδω/ΓB

⊗ ιp(ωp). (3.7)

By designing the modulation function (to be discussed in detail in the next section),

I obtain a rectangular-shaped pump beam spectrum ιp(ωp) given by [18]

ιp(ωp) =
Ip

Γ
rect(

ωp −ωp0

Γ
), (3.8)

where ωp0 is the pump center frequency, Γ/2π = 5 GHz is the bandwidth (FWHM) of

the pump beam,

rect(x) =

(

1 |x |< 1/2 (3.9a)

0 |x |> 1/2, (3.9b)

and Ip =
∫

ip(ωp)dωp is the intensity of the pump beam.
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The complex SBS wavevector is therefore given by

K(ωs) = k0 + i

∫ ∞

−∞

(g0 Ip/Γ) · rect[(ωp −ωp0)/Γ]

1− i(ωs +ΩB −ωp)/(ΓB/2)
dωp. (3.10)

The gain profile of the broadened SBS resonance is obtained from the imaginary

part of the integral in Eq.(3.10) and is given by

g(δω) =
ΓB

2Γ
g0 Ip[arctan(

δω+Γ/2

ΓB/2
)− arctan(

δω−Γ/2
ΓB/2

)], (3.11)

where δω=ωs+ΩB−ωp0 is the signal beam detuning from the SBS resonance center.

In our case Γ≫ ΓB, and the profile is simplified as

g(δω) ≈ πΓB

2Γ
g0 Iprect(δω/Γ). (3.12)

The resonance profile is broadened to a rectangular shape with bandwidth Γ. Note that

g(δω) scales inversely proportional to the bandwidth Γ, so a larger input intensity Ip

is required to sustain the SBS gain at larger bandwidth.

In an optical fiber of length L, the on-resonance SBS intensity gain G is given by

G0 = 2g(0)L = 2
ΓB

Γ
g0 Ip L arctan(Γ/ΓB). (3.13)

With the approximation Γ≫ ΓB, the expression is simplified to

G0 ≈
πΓB

Γ
g0 Ip L. (3.14)

The refractive index n associated with the SBS process is obtained by taking the

real part of Eq. (3.10),

n(δω) = n0 +
c

ωs

ΓB

2Γ
g0 Ip ln

1+ [(δω+Γ/2)/(ΓB/2)]
2

1+ [(δω−Γ/2)/(ΓB/2)]
2
, (3.15)
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where n0 is the refractive index without the SBS process. The group index ng at zero

detuning (δω= 0) is then determined using Eq. (3.2) and Eq. (3.15)

ng = n+ωs

dn

dδω
|δω=0 = ng0+

4cΓB

Γ2
g0 Ip. (3.16)

Assume that the pump intensity Ip does not change over the fiber length L. The delay

time of an on-resonance signal pulse whose spectral bandwidth is much smaller than

that of the broadband SBS resonance is given approximately by

Td = (ng − n)L/c =
4ΓB

πΓ2
g0 Ip L =

4

π

G0

Γ
, (3.17)

where the center SBS intensity gain G0 in Eq. (3.14) is used.

The delay time Td is proportional to the gain G0 and inversely proportional to the

pump spectral bandwidth Γ. As a result, we are able to control the delay time Td by

adjusting the SBS gain G0, which is determined by the pump intensity Ip.

Note Eq. (3.17) is obtained assuming that the pump beam power Ip is constant

along the fiber. There are two mechanisms that can cause a position-dependent pump

intensity. One is scattering light from the pump into the signal beam, which I discuss

below in the next section. The other is pump-beam absorption by the fiber or scatter

of pump light out of the guided mode of the fiber. Both of these later effects can be

accounted for by using the effective length Leff = [1−exp(−αL)]/α in place of length

L in equations Eq. (3.13) and Eq. (3.17), where α is the attenuation coefficient.

The real and imaginary parts of the SBS wavevector are plotted in Fig 3.1, in

which the rectangular-shaped SBS profile is compared with the single-line Lorentzain-

shaped SBS profile. As shown in Ref. [42], the SBS gain profile that optimizes slow-

light performance under various practical constraints is rectangular-shaped with sharp

edges and a flat top. Such a gain profile produces longer delays and reduces pulse

distortion. This is because the flat gain profile given in Eq. (3.11) enables uniform
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FIGURE 3.1: SBS gain profiles (right) and refractive index profiles (left) of the single-

lined SBS resonance and rectangular-shaped broadband SBS resonance. The ampli-

tude for the broadband SBS resonance is scaled by a factor of Γ/ΓB to make an appro-

priate comparison between the profiles.

amplification over the different frequency components of the data stream, minimizing

the filtering effect and thereby reducing pulse distortion [36]. The rectangular-shaped

gain profile also improves the delay. Using the Kramers-Kronig relation, the abrupt-

edged gain profile increases the phase shift, which leads to a larger group index and

longer delays [40]. Indeed, this is shown in Fig 3.1 in that the slope of the refractive

index profile is steeper in the rectangular shaped broadband case. By comparing the

delay given in Eq. (3.6) and Eq. (3.17), we also see that the delay-bandwidth product

is increased in the broadband case, enabling improved pulse delay performance.

3.2.3 Limitation due to SBS gain saturation

The delays given in Eq. (3.6) and Eq. (3.17) are proportional to SBS intensity gain

G0, which is in turn proportional to the pump intensity. Therefore, an SBS slow light
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device can control the propagation delay time of the signal optical pulses by adjusting

the pump intensity Ip. Larger Ip results in increased Td. However, one cannot increase

G0 forever. One limitation of the SBS slow light delay is the SBS gain saturation caused

by pump depletion. This occurs when the SBS gain is so large that most of the power

contained in the pump is converted into the amplified Stokes beam, leaving the pump

depleted. Two different saturation processes are involved in the pump depletion. One

occurs when the initial probe beam is strong; the power of amplified probe beam grows

quickly and depletes the pump beam even at moderate G. The other takes place when

G approaches a threshold value Gth, found to be ∼11 in single-mode fibers [69]. In

this case, spontaneous Brillouin scattering from thermal fluctuations and quantum

noise is amplified and becomes sufficiently large, depleting the pump power even in

the absence of a probe beam. When the pump beam is depleted, the undepleted pump

assumption is no longer valid. As a result, G, and thus the delay time Td, no longer

grow with increasing pump power [68, 69]. Gain saturation and competing nonlinear

processes in an SBS device are discussed in details in Ch. 5.

3.3 Broadband optimal SBS gain profile design with direct current

modulation

In broadband SBS slow light systems, a spectrally broadened laser is used as the pump

beam. As discussed in the previous section, a rectangular-shaped pump laser spectrum

with a width much greater than the Lorentzian linewidth produces the desired optimal

broadband SBS gain profile. In our experiment, a modulation voltage V (t) is added

to the DC injection current of the DFB laser via a bias-T (input impedance = 50 Ω)

to broaden the laser spectrum. Broadening of the laser’s spectrum with direct current

modulation has been widely used and a quantitative, semi-empirical model for the

instantaneous spectral shift of the DFB laser output due to direct current modulation

i(t) has been established in [71]. The spectral shift ωp(t) as a function of time is
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given by

ωp(t) = a0i(t)− i(t)⊗ h(t), (3.18)

where the first term on the right-hand-side of Eq. (3.18) represents the linear adiabatic

chirp induced by the almost instantaneous current-related changes of the equilibrium

carrier density, and a0 is a constant coefficient; the second term describes the slower

thermal chirp, which changes the frequency as a result of temperature-related changes

of the refractive index and physical length of the cavity. I start from only considering

the first term, where DFB frequency follows the modulation current exactly. A trian-

gular waveform spends an equal amount of time in each voltage value, in accordance

with a rectangular-shaped distribution.

I start from a 400-kHz periodic triangular waveform and set the peak to peak

amplitude to 2.73 V (Fig. 3.2(a)). The slow variation period and smooth waveform

ensure that the variation of voltage is slow for the DFB laser to follow, with exceptions

around the turning points. As shown in Fig. 3.2(b), a roughly rectangular-shaped

spectrum is obtained. However, the pump spectrum shows a clear asymmetry, which

is caused by response differences during the rising and falling of temperatures and

is corrected by introducing a quadratic term in the triangular waveform (Fig. 3.2(c)

and (d)). We also observe peaks at the edge of the spectral profile induced by the

thermal chirp at the turning points of the waveform. As a result of the thermal chirp,

the instantaneous laser frequency spends more time in these regions. These peaks

are corrected by introducing a current “jump” at the turning points, as shown in Fig.

3.2(e) and (f). The final modulation waveform is expressed as

V (t) = vmax/2×















at2 + (4/T − aT/4)t if t < T/4

at2 − (4/T + a3T/4)t + 2+ (2aT 2)/42 if T/4< t ≤ 3T/4

at2 + (4/T − a9T/4)t + (5aT 2)/4− 4 if 3T/4< t ≤ T.

I obtain the best parameter values for an optimal pump spectrum by applying
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FIGURE 3.2: Pump spectral distribution optimization procedure for the case of slow

modulation. Modulation waveform V (t) (left column) and measured pump spectrum

profile p(ωp) (right column) are shown for triangular modulation (upper row), with

the addition of a small quadratic term (middle row), and for the optimum waveform

(lower row). The DC injection current is 110 mA.

an iterative scheme. As I change the parameters in small steps, the pump spectrum

is recorded and compared to an optimal flat-top spectrum. The error (root mean

square deviation RMSD) is calculated at each step. After a small number of iterations,

I minimize the error using a steepest descent search procedure, which gives us the

optimal values vmax = 2.73 V, and a = −30.4 µs−2. The RMSD for the optimal spectral

profile is 0.069 mW/GHz (Fig. 3.2(f)), compared to 0.083 mW/GHz for Fig. 3.2(b)

and 0.081 mW/GHz for Fig. 3.2(d).

I then measure the SBS gain profiles produced by the spectral broadened pump

beam using the current modulation waveforms depicted in Fig. 3.2(e). The experi-

mental setup is shown in Fig. 3.3. To independently measure the SBS gain profile, I
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FIGURE 3.3: Experiment setup. Spectrally broadened pump and signal beams counter-

propagate in the 2-km-long slow light medium (HNLF, OFS Inc.), where they interact

via the SBS process. The SBS frequency shift in HNLF is 9.62 GHz. A fiber Bragg

grating (FBG, bandwidth 0.1 nm) is used to filter out the Rayleigh backscattering of

the pump beam from the amplified and delayed signal pulse sequence before detec-

tion. AWG: arbitrary function generator (Tektronix AFG3251), DFB1: 1550-nm DFB

laser diode (Sumitomo Electric, STL4416), EDFA: erbium doped fiber amplifier (IPG

Photonics EAD 1K), DFB2: 1550-n DFB laser diode (Fitel FOL15DCWC), MZM: Mach-

Zehnder Modulator, PG: electronic signal pattern generator, PR: 12 GHz photo-receiver

(New Focus 1544b), FPC: fiber polarization controllers, CIR: optical circulator.

use a weak unmodulated monochromatic signal beam (input power Ps0), and record

the amplified signal beam power Ps at the photoreceiver as I slowly scan the frequency

of the signal beam. The SBS intensity gain G is obtained by

G = ln(Ps/Ps0). (3.19)

The SBS intensity gain G is related to g(ωs) by G(ωs) = g(ωs)Leff, where Leff =
(1− e−αL)/α = 1.64 km is the effective length of the fiber, L (= 2 km) is the physical

length of the fiber and α (= 0.9 dB/km) is the attenuation coefficient. The pump beam

is characterized by its power Pp instead of intensity Ip in the experiment. The power

and intensity are related by Pp = IpAeff, where Aeff = 11.7 µm2 is the mode area of

the highly nonlinear fiber.
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FIGURE 3.4: (a) SBS gain profile at Pp = 70 mW. (b) SBS gain saturation.

Figure 3.4(a) shows the measured SBS gain G profiles for the periodic modulation

method. As discussed previously, the SBS gain profile is the convolution of the pump

spectrum with the intrinsic narrow Lorentzian lineshape. In our case where the pump

spectrum bandwidth (5 GHz) is much larger than the narrow Lorentzain linewidth

(∼52 MHz in HNLF), the resultant SBS gain profile is similar to the pump spectrum,

as seen in Fig. 3.4(a).

I next measure the gain saturation behavior for the broadband SBS resonance. A

continuous-wave signal beam (Ps0 = 48 µW) is tuned to the SBS resonance to measure

the line center SBS gain G at different pump powers. Again, G is obtained from Eq.

(3.19). As shown in Fig. 3.4(b), G grows linearly with respect to the pump power

Pp when Pp is low. Saturation takes place when the SBS gain G is large enough so

that a great portion of the power in the pump beam is transferred into the signal

beam, and the exponential amplification of the signal beam cannot be sustained [68].

As Pp increases, we see that gain starts to saturate around G = 3. This saturation

threshold is significantly smaller than that of the single-lined SBS. In the next section

I will discuss how irregularities in the slow periodic current modulation affect the

saturation threshold.
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3.4 Slow-light performance

I now measure the delay of a signal optical pulse in the broadband SBS slow light

device. I use the 5-GHz broadband SBS slow light system to delay a single super-

Gaussian shaped optical pulse (shown in Fig 3.5(b)). The pulse width is set to 200 ps

to match the bandwidth of the device. The signal pulse is first generated electrically

via a pattern generator and then encoded on the signal beam via the 10-GHz Mach-

Zehnder Modulator (MZM). I use a weak signal seed laser beam (power Ps0 = 12 µW)

and restrict Pp < 500 mW. After propagating through the fiber, the delayed and am-

plified signal beam is detected by a 12-GHz photoreceiver and recorded on an 8-GHz

digital oscilloscope (Agilent DSO80804B). Slow light performance is characterized by

measuring the delay and the temporal profile of the output signal at various pump

power levels.

Figure 3.5(a) shows the measured pattern delay as a function of Pp. Because a

weak signal beam is used in the measurement, the measured pattern delay goes lin-

early with Pp and no significant saturation is observed. The measurement result agrees

well with the theoretical simulation the delay time for a rectangular-like optimized

gain profile given in Eq. (3.17). A maximum delay of 199 ps is obtained at the pump

power of 500 mW. In Fig. 3.5(b) we see that the delayed pulse shape is a little distorted

compared with the undelayed pulse shape, which is a super-Gaussian. The re-shaped

the signal pulse looks more Gaussian and we can also see small ripples behind the

main pulse. This is because high frequency components beyond the 5-GHz bandwidth

are suppressed by the filtering effect of the resonance profile. However, the distortions

are small, with very little pulse broadening.
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FIGURE 3.5: Slow light performance using periodic modulation method in HNLF. (a)

Slow light delay as a function of Pp(black solid). The theoretically predicted delay for

a rectangular-like optimized gain profile (blue dash-dot line) is also shown. SBS gain

saturation is avoided using a signal data sequence with a small peak optical power

Ps0 = 12 µW; (b) Averaged output signal profiles at Pp = 350 mW for a single pulse

(black solid line), together with the undelayed pulse profile at Pp = 0 mW (red dashed

line) in HNLF. The delayed pulse is more Gaussian-shaped but without significant

broadening. The amplitude of the pulses is normalized as a percentage of the peak

pulse height.

3.5 Conclusion

I have presented the theory and experiment of a broadband SBS slow light device.

A current modulation function is obtained using an iterative method to generate an

optimized rectangular-shaped SBS gain profile. A 5-GHz broadband SBS slow light

system is built and a 200-ps-long super-Gaussian signal pulse is delayed up to one

pulse width. The results presented in this chapter are only of average measurements

on a single pulse. In the next chapter, I will characterize a long sequence of data pass-

ing through the slow light material in real time, which shows that the slow modulation

method has substantial excess noise. I will describe a new modulation method in the

next chapter that addresses the problem.
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4

Fast noise modulation method in high-fidelity

broadband SBS slow light

In the previous chapter, we only looked at the delay for a single pulse. Here, I pass

a stream of pseudo-random data through the slow light medium, which allows us to

explore pattern dependence as well as noise in the system. From analysis of this data,

I find that the slow modulation method presented in the previous chapter has more

pattern dependence, meaning that different signal sequences result in different delay

times and amplitudes. To solve this problem, I introduce a high-fidelity broadband

slow-light device pumped by a noise-current-modulated laser beam. The novel SBS

tailoring technique has been developed based on noise current modulation. By using

the new tailoring technique and optimizing the buffering performance using a iterative

method, I significantly improved the signal fidelity in a broadband SBS slow light

system. This method can be applied with any DFB laser diode to generate stable laser

beams with a desired spectral profile, thus sets no restrictions to the sources.

The arbitrary SBS tailoring technique that enables device performance optimiza-

tion is my key contribution to this field, and can be generalized to optimize the optical
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properties of SBS-modified functional materials. The application to broadband optical

buffer presented in this chapter demonstrates the typical procedure for the method.

In the experiment, I use a noise-modulation waveform with an optimized pseudo-

random distribution to obtain an optimal flat-topped gain profile. In comparison with

the previous slow-modulation method presented in Ch. 3, eye-diagram and signal-to-

noise ratio (SNR) analysis shows that this broadband slow-light technique significantly

increases the fidelity of a delayed data sequence, while maintaining the delay perfor-

mance. A fractional delay of 0.81 with an eye opening (EO) of 0.5 and an SNR of 5.2

is achieved at the pump power of 350 mW using a 2-km-long highly nonlinear fiber

with the fast noise-modulation method. This results in a 50% increase in eye-opening

and a 36% increase in SNR compared to the slow modulation technique.

The idea of noise modulation was conceived by me and Professor Gauthier. I set

up the experiment and collected the data. In cooperation with Dr. Myungjun Lee, Dr.

Michael Gehm and Prof. Mark Neifeld, we develop the theoretical model for the system

and compared it with the data analysis. In particular, Professor Gauthier and Dr. Lee

has developed the noise model and eye pattern simulation. The channel capacity

analysis has been completed by Dr. Myungjun Lee and Prof. Neifeld. We summarize

the results presented in this chapter in the paper[9]. A more detailed noise model

and channel capacity performance analysis for a large range of parameters have been

summarized in the paper [73].

4.1 Noise modulation method

Most previously reported broadband SBS slow light experiments control the spectral

SBS gain profile by direct modulation of the pump laser using a periodic modulation

waveform [8, 18, 40]. The frequency of the waveform is typically chosen to be in the

sub-MHz range so that detailed features of the waveform can be reproduced faithfully
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using an arbitrary waveform generator. However, such periodic modulation results

in an intermittent interaction with the signal beam, which may induce signal fluctu-

ations. Previous research that focused on averaged pulse delay was not affected by

these fluctuations because they were averaged out. Nevertheless, these low-frequency

fluctuations reduces the signal-to-noise ratio (SNR) of a delayed pseudo-random data

sequence and degrades fidelity of the device.

To build an optimal high-fidelity broadband SBS slow light system, I develop a

systematic procedure to generate a broadband flat-topped SBS gain profile with direct

noise current modulation. I compare such a system to the slow periodic modulation

method in Ch. 3 to experimentally demonstrate slow light performance improvement

with increased modulation speed. Random noise current modulation has been used

in previous research on broadband SBS slow light systems [16, 31, 41]. However, due

to limited control of the spectral profile, these previous methods generally result in a

Gaussian-shaped SBS gain profile. The frequency-dependent gain of a Gaussian profile

causes pulse distortion at large delays. Although Yi et al. [41] have discussed shap-

ing the pump spectrum by passing a noise waveform through a saturated electronic

amplifier, the control over the SBS gain profile is still limited and highly sensitive to

the detailed saturation characteristics of the high speed amplifier, which is often hard

to characterize. Here, I present an extension of Yi’s method in which the noise dis-

tribution is controlled arbitrarily. Compared to Yi’s work, the method described here

is superior because I have complete control over the noise waveform in a way that

is easily generalized to any DFB laser used in broadband SBS slow light systems. It

will be shown that, by controlling the distribution of the noise waveform, I am able

to tune the shape of the SBS gain profile and obtain the best flat-topped profile that

optimizes the slow light delay and reduces distortion. I also find that using a noise

modulation function with a sampling rate ∼400 MHz (fast compared to the phonon

lifetime (∼ 4 ns) in the fiber) substantially stabilizes the optical signal and improves
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the data fidelity of the broadband SBS slow light system compared to previous slow

modulation methods.

The rest of the chapter is organized as follows. Section 4.2 briefly reviews the

dynamics of a distributed feedback (DFB) laser under direct current modulation and

describes the procedure to obtain a flat-topped SBS gain profile with the noise mod-

ulation waveform. Section 4.3 describes and compares the delay performance for a

2.5-Gb/s return-to-zero (RZ) data sequence using these two methods (slow and fast).

I also quantify transmission fidelity by eye-opening (EO) and signal-to-noise ratio mea-

surements. Finally, our conclusions are summarized in Sec. 4.4.

4.2 Optimal SBS profile design using the fast noise modulation method

To obtain an optimized pump laser spectrum, I again start from the semi-empirical

model for the frequency shift of a DFB laser with direct current modulation i(t) de-

scribed in Eq. (3.18)

ωp(t) = a0i(t)− i(t)⊗ h(t),

where a0 is the instantaneous response parameter. In the previous chapter where the

modulation function is slow, the thermal chirp term is not considered. However, they

are important in the fast modulation method presented in this chapter. The thermal

chirp is characterized by the convolution of i(t) with the impulse response h(t) =
∑

ane−τ/τn , where the different time constants τn correspond to thermal conductivities

of different layers in the DFB laser. Measurements of our DFB laser reveal that the

dominant thermal term has a time constant as short as 7.5 ns [18]. As a result, an

analysis of both the thermal and adiabatic chirp is necessary to obtain a precise design

of the laser spectrum.

I start the design of the optimal SBS gain profile by only considering the linear

adiabatic term in Eq. (3.18). In this case, the frequency distribution of the DFB
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FIGURE 4.1: Pump spectral distribution optimization procedure of the fast noise

modulation. Modulation voltage waveform V (t) (left column), probability distri-

bution P (bin size = 0.025 V) (middle column) and resultant pump beam spec-

trum p(ωp) (right column) are shown for the flat-distributed white noise modulation

V (t) = 2.5 V× f (t), where f (t) is a random variable that is approximate uniformly

distributed between -0.5 and 0.5 (upper row), the bi-peak symmetric noise modu-

lation V (t) = 2.5 V× tanh[10 f (t)] (middle row) and the optimal noise modulation

V (t) = 2.5 V× tanh[10( f (t) + 0.06)] (bottom row). A Gaussian spectral profile re-

sulted from a Gaussian noise modulation V (t) = 2.5 V×g(t), where g(t) is a random

variable with standard normal distribution, is shown in Figs. c,f and i for comparison

purposes. The DC injection current is 110 mA.

laser is the same as that of the current modulation waveform. This is true when the

characteristic time scale of the modulation is faster than any of the time constants of

the DFB laser. When the thermal chirp is present, the spectral distribution of the noise

must be adjusted using an iterative method, as described below.

To generate the optimal rectangular-shaped pump spectrum, I use a noise wave-

form V (t) = 2.5 V× f (t), in which f (t) is a random variable approximately uniformly
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distributed between -0.5 and 0.5 (Fig. 4.1(a)). The sampling time interval is set to

2.5 ns on an arbitrary wavefunction generator (Tektonix AFG3251). Figure 4.1(b)

shows the probability distribution P of the modulation waveform as a function of the

voltage V , which is determined from the histogram of the waveform. The spectrum

of the pump beam p(ωp) is measured by mixing it with a monochromatic reference

beam (New Focus Vortex 6029) on a high-speed detector (New Focus Model 1544b),

as shown in Fig. 4.1(c). We see that the generated pump beam spectrum shows a

significant improvement compared to a Gaussian profile, but is slightly peaked in the

center and shows some asymmetry.

The concentration of the spectrum in the center is due to thermal chirp. In par-

ticular, the current of the laser is fluctuating quickly, leading to fluctuations in the

temperature about an equilibrium value. According to Eq. (3.18), a step change in

the current i(t) leads to a sudden adiabatic change in the optical frequency ωp(t)

followed by thermal induced multiple exponential decays to a stationary value. The

fast noise-modulation waveform has a rise time of ∼ 2.5 ns, and has many abrupt

changes that can be considered as instantaneous jumps (Fig.4.1(a)). After such an

abrupt change, the laser spends some time returning towards the previous frequency

due to the thermal chirp, which favors frequencies in the middle of the range and

causes the center-concentration effect.

To compensate for this effect, I increase the probability distribution in the ex-

trema of the noise distribution. This can be done using the nonlinear function 2.5

V× tanh(b f (t)), where b controls the distribution weights on the extrema. Figure

4.1(d)-(f) show the waveform V (t), distribution probability P, and the resultant pump

spectrum p(ωp) for b = 10. We see that the center-concentration problem in the pump

spectrum is solved, but there is still an asymmetry in the profile, as seen in Fig. 4.1(f).

This asymmetric frequency response is induced by the nonlinear contribution to the

adiabatic chirp (not accounted for in Eq. (3.18)) and the additional different thermal
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time constants [18]. To solve this problem, an asymmetry is needed in the distribution

of the modulation waveform. We use 2.5 V× tanh[b( f (t)+c)], in which the parameter

c controls the asymmetry of the distribution.

The best parameter values for an optimal pump spectrum are obtained by applying

an iterative scheme. As I change the parameters in small steps, the pump spectrum

is recorded and compared to an optimal flat-top spectrum. The error (root mean

square deviation RMSD) is calculated at each step. After a small number of iterations,

I minimize the error using a steepest descent search procedure, which gives us the

optimal values b = 10 and c = 0.06. As shown in Fig. 4.1(i), modulation with the

optimal parameters results in a flat-topped spectrum profile. The edge is smoothed

due to the thermal chirp but is still reasonably steep. The RMSD of this spectral profile

is 0.164 mW/GHz, compared to 0.25 mW/GHz in Fig. 4.1(c) and 0.173 mW/GHz in

Fig. 4.1(f).

The generated broadband pump beam is then injected into the 2-km highly nonlin-

ear fiber, and the SBS gain profile is measured by detecting the output of a frequency

swept signal beam, as described in Sec. 3.3. The measured SBS gain profile is shown

in Fig. 4.2(a), which is compared with the gain profile using the slow periodic mod-

ulation method. The fast noise-modulation waveform results in a less sharp edge in

the SBS gain profile as a result of the temperature fluctuation in a nondeterministic

manner. In the fast noise modulation, the temperature is affected by the previous his-

tory of the modulation and thus has wide fluctuations. On the other hand, the slow

triangular-like waveform results in a deterministic value of the laser temperature at

any moment. Therefore, the frequency of the laser is well-defined at the edge of the

modulation waveform. Nevertheless, as shown next, the reduced slope of the edges

with the fast noise modulation does not significantly affect its slow light delay.

Next, I repeat the measurement of the line center SBS gain using the fast modula-

tion method in the 2-km highly nonlinear optical fiber. The results with the fast and
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FIGURE 4.2: (a) SBS gain profiles using the fast noise modulation (black solid) and

slow periodic modulation (red dashed) at Pp = 70 mW. Measurement taken using ex-

perimental setup in Fig. 3.3. The same cw signal beam is used in both measurements.

(b) SBS gain saturation. The black solid line shows the SBS gain G using the fast

noise modulation, which grows linearly with pump power Pp until saturated. The red

dashed line shows the SBS gain G using the slow modulation, which starts to saturate

gradually at a much smaller Pp compared to the fast modulation method.

the slow modulation methods are compared in Fig. 4.2(b). As Pp increases, we see

that the slow modulation method results in an early saturation at G ∼ 3. In contrast,

fast modulation results in a hard stop of gain increase at G ∼ 5.

While the saturation threshold is brought down significantly by the increased pump

power required for broadband SBS resonances in both cases, gain saturates more

quickly with slow modulation. The early saturation in the slow modulation case is

likely due to fluctuations in G that are caused by the uneven frequency swept rate

and the end effect. In the slow modulation method, the frequency of the pump beam

is slowly swept. During the modulation period of 2.5 µs, a monochromatic signal

beam is only intermittently amplified during the short time period when the pump-

probe frequency difference is equal to the SBS frequency shift within the resonance

linewidth. An estimate of the average interaction time period gives 52 MHz/5 GHz

×2.5 µs= 26 ns. On this time scale, thermal fluctuations associated with short char-

acteristic temporal constants can significantly affect the length of the interaction time

period and give rise to fluctuations in G. Moreover, since the SBS amplification pro-
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cess in the slow modulation method is intermittent, there is an end effect that induces

more fluctuations in G. In our experiment specifically, the frequency of the pump

beam as seen by the signal beam goes through 7.76 periods of modulation during the

whole propagation time (∼9.7 µs). Since the number of modulation periods during

the propagation time is not an integer, the signal beam can meet the resonant pump

beam for either 7 or 8 times, depending on the relative time of measurement during

the modulation period. As a result of both effects, the output signal beams measured

at some particular times are amplified more than others, which can lead to gain sat-

uration. Consequently, gain saturation is observed even when the average G is still

small. This behavior results in the gradual early saturation seen in Fig. 4.2(b).

On the other hand, in the fast modulation experiment, a monochromatic signal is

constantly amplified by the frequency-matching component in the broadband pump

beam as it travels through the fiber. The pump beam frequency chirp rate potentially

has jitters on a faster time scale beyond 400 MHz, but the SBS interaction cannot

response to such fast processes. Moreover, the output signal amplification results from

the accumulated SBS interaction through the whole fiber. Therefore, G is uniform and

stable in this case. The fluctuations in G using the slow modulation method is the

source of the low-frequency fluctuations that degrade the fidelity of a data waveform.

The small number of scanning periods in the 2-km-long HNLF can be increased by

substantially increasing the fiber length while keeping the modulation rate fixed. By

increasing the fiber length, I expect to see a reduction in fluctuations due to the end

effect and more averaging along the fiber, which helps stabilize the output signal. To

test this, a 20-km LEAF fiber is used in the slow light device and the signal fidelity is

quantified and compared with that in the shorter HNLF. However, a much longer fiber

induces increased noise from spontaneous Brillouin scattering [69, 72] and boosts SBS

G saturation, because of the increased SBS gain coefficient. Moreover, the dispersion

in an optical fiber increases with length, distorting the signal pulse waveform and
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degrading the performance. The choice of fiber length is also limited by practical

factors of cost and volume. Instead, increasing the modulation rate is much easier and

more efficient.

4.3 Slow-light performance

I next compare the delay performances of the fast and slow modulation methods. I

measure the delay and fidelity of the output signal when applying our 5-GHz broad-

band SBS slow light system to a 212 bit-long return-to-zero (RZ) binary data sequence.

This data sequence contains all 28 8-bit-long sequences separated by 8-bit 0s serving

as a buffer. In this arrangement, the pattern-dependent delay is averaged. Compared

to the non-RZ coding, the use of an RZ signal in our experiment is robust against pulse

broadening, but takes twice as much bandwidth to achieve the same data rate. I use a

signal data rate of 2.5 Gb/s to match the SBS slow light bandwidth of 5 GHz (FWHM);

the width of a single pulse is equal to 200 ps. The data sequence by a pattern gen-

erator (HP70004A) and encoded on the signal beam via the 10-GHz Mach-Zehnder

Modulator (MZM). I use a weak signal seed laser beam (power Ps0 = 12 µW) and

restrict Pp < 500 mW to avoid SBS gain saturation in HNLF (Pp < 300 mW in LEAF).

After propagating through the fiber, I detect the delayed and amplified signal beam

using a 12-GHz photoreceiver and recorded on an 8-GHz digital oscilloscope (Agilent

DSO80804B). I evaluated the slow light performance from both fast and slow modu-

lation methods in different fibers using the well-known fidelity metrics of EO and SNR

based on the eye-diagram of the output signal at various pump power levels.

I first measure the slow light pattern delay by generating the output eye diagram

[73, 74]. I determine the pattern delay by comparing the position of the maximum

eye-opening with and without the pump beam. Figure 4.3(a) shows the measured

pattern delay as a function of Pp with the slow and fast modulation formats respec-
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tively. Because a weak signal beam is used in the measurement, the measured pattern

delay scales linearly with Pp and I observe no significant saturation. Both modulation

formats yield the same delay within the measurement error, which agrees well with

the theoretical simulation of the delay time (Eq. (3.17)) using a rectangular-like opti-

mized gain profile [8] (blue dotted-dash line) and using a super-Gaussian gain profile

(cyan dash-double dot line). As shown in both experimental data and simulation, the

reduced slope of the super-Gaussian gain profile in the fast modulation method does

not significantly reduce the delay time. I also observe similar temporal profiles of the

output signal pulses in Fig. 4.3(b). Shown in this figure are the averaged pulse profiles

at Pp = 350 mW of the first “1” in the data sequence, which is an isolated pulse with

many bits of “0”s before and after. We see that the delayed pulse shapes using both

modulation methods are very close. Compared with the undelayed pulse shape, which

is a super-Gaussian, we see that both fast and slow modulation SBS gain profiles re-

shape the signal pulse into a Gaussian profile. This is because high temporal frequency

components beyond the 5-GHz bandwidth are cut out. Nevertheless, the distortion is

small. We can also see that the fast modulation method results in a more symmetric

pulse profile, while the slow modulation method produces small ripples behind the

main pulse, making the overall profile asymmetric. This asymmetric pulse shape re-

duces the peak delay difference between the two methods. The better output pulse

profile in the fast modulation method is a result of the smoother phase response with

the super-Gaussian shaped gain profile. The asymmetric pulse shape associate with

the slow modulation reduces the peak delay difference between the two methods, re-

sulting in a very close delay performance observed in Fig. 4.3(a). Based on results

shown in Figure 4.3(a) and (b), we see that both slow and fast modulations demon-

strate similar delay and pulse distortion behaviors, allowing us a fair comparison of

their fidelity performance.

Also shown in Fig. 4.3(a) is the pattern delay in the 20-km LEAF fiber using the
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slow modulation method. We observe a steeper increase of delay time with Pp as a

result of increased Brillouin gain coefficient in the longer fiber. The pump power, Pp,

is restricted below 300 mW to avoid SBS self-oscillation.

Next, I study the signal fidelity of the slow light device. The slow light fidelity

metrics are measured in terms of EO and SNR. The EO is measured by the maximum

difference between the minimum value of the high level and the maximum value of

the low level in the eye diagram (shown in Fig. 4.4 and Fig. 4.5). The SNR at the

eye-center is defined as the ratio of the EO to the quadratic mean of the standard

deviations (noise) of the high and low levels, shown in Fig. 4.4.

Figure 4.3(c) shows the EO and Fig. 4.3(d) shows the SNR as functions of Pp. Note

that as I change Pp, the power of the signal beam goes through 3-4 orders of magni-

tude, which is beyond the dynamic range of most photoreceivers. To avoid detection

saturation at Pp = 500 mW in HNLF (Pp = 300 mW in LEAF), I place an attenua-

tor before our photoreciever. As the output signal beam is amplified with increasing

Pp, the signal fidelity first increases as the signal overtakes the detector dark noise,

then decreases when the SBS gain approaches saturation at high pump power, where

amplified spontaneous Brillouin scattering begins to dominate [69].

Comparing the slow light performances using the fast and slow modulation meth-

ods in the HNLF fiber, we see that while both modulation methods result in similar

trends for signal quality at different pump power levels, the fast noise-modulation

method results in better data fidelity over all pump power levels. In particular, Fig.

4.5 shows an example of the output eye diagrams using both modulation methods at

Pp = 350 mW, where 50% more EO is obtained using the fast modulation method. I

achieve a fractional delay (ratio of the delay to the width of a single pulse) of 0.81 and

an SNR of 5.2 at Pp = 350 mW using the fast modulation method. Compared to the

slow modulation method, the fast modulation method increases the EO by 50% and

SNR by 36%, demonstrating significant enhancement of data fidelity while maintain-
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ing the same delay.

The SNR and EO in the 20-km LEAF fiber using the slow modulation method are

also shown in Fig. 4.3 (c) and (d). We see that the trend of the fidelity curves as a

function of Pp in LEAF has the similar shape to the fidelity curves in the HNLF, but

the Pp level corresponding to the high fidelity peak is lower due to a larger Brillouin

gain coefficient. In the small Pp (< 200 mW) region, the LEAF fiber has improved

fidelity compared to the HNLF fiber with the same slow modulation. In the high Pp

(> 200 mW) region, as a result of larger spontaneous Brillouin amplification noise,

the fidelity of the signal drops down in the LEAF fiber. Overall, although the slow light

performance can be improved in the small Pp region using the long LEAF fiber, a much

better performance is obtained using the fast modulation method in HNLF at all Pp

levels.

4.4 Conclusion

I show in this chapter the original work of designing the optical properties for an op-

timized broadband SBS optical buffer. The spectrum of a diode laser is controlled

arbitrarily using a noise current modulation. By applying the fast noise modulation

method, I tailor the SBS gain profile by controlling the distribution of the noise-

modulation waveform. I obtain an optimal flat-topped gain profile using an asymmet-

ric bi-peak-distributed noise-modulation waveform. Using this broadband SBS slow

light technique, I significantly improve the signal fidelity compared to the previous

slow modulation method. I obtain pattern delays up to one pulse width for a RZ data

rate of 2.5 Gb/s. The high data fidelity (SNR up to 7) is the best of the time. More-

over, the experiment has demonstrated a typical procedure using the novel arbitrary

SBS tailoring technique to engineer the optical prosperities of the material for opti-

mized device performance. The iterative method used to shape the SBS resonance to

58



obtain best delay-bandwidth product can be applied to any SBS modified functional

material design. This piece of original work has been summarized in [9].
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FIGURE 4.3: Slow light performance using fast (solid black line) and slow (dashed red

line) modulation waveforms in HNLF, and slow modulation waveform in LEAF (dotted

green line). (a) Slow light delay as a function of Pp. The theoretically predicted delay

with a rectangular-like optimized gain profile (blue dash-dot line) and with a super-

Gaussian gain profile (cyan dash-double dot line) in the HNLF fiber are also shown.

SBS gain saturation is avoided using a signal data sequence with a small peak optical

power Ps0 = 12 µW; (b) Averaged output signal profiles at Pp = 350 mW of the first

single pulse in the data sequence, together with the undelayed pulse profile at Pp = 0

mW (blue dotted line) in HNLF. Both fast and slow modulation methods result in very

similar pulse profile modification without significant broadening. The amplitude of

the pulses is normalized as a percentage of the peak pulse height; Fidelity metrics are

shown in (c) EO and (d) SNR as functions of Pp, demonstrating better performance

with the fast modulation.
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FIGURE 4.4: Example of eye diagram measured by an oscilloscope. The vertical box

indicates the region of the eye diagram used to measure the standard deviation of “1s”

and “0s” at the eye-center, u1 and u0 denote the mean level for the “1s” and “0s”. EO

shows the eye opening.

FIGURE 4.5: Eye diagrams of delayed and amplified data sequences for (a) slow and

(b) fast modulation waveforms at Pp = 350 mW in HNLF. The arrows in the figure

show the EO for each case.
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5

Competing effects in a broadband SBS slow light

system

In this chapter, I discuss several competing nonlinear optical processes commonly

found in broadband SBS slow light systems: they are spontaneous Brillouin scattering,

Rayleigh backscattering, stimulated Raman scattering and Kerr-induced modulation

instability. Here, I discuss how these processes degrade the performance of SBS slow

light and various ways to avoid them or reduce their negative effects.

In the past several years, many advances have been made in slow light technol-

ogy that aim to improve the maximum achievable fractional delay (i.e. equivalent

to the delay-bandwidth product) while broadening the bandwidth up to GHz range

[9, 16, 36, 40–42, 75, 76], including the high-fidelity fast noise modulation method

introduced in Ch. 4. [9, 18]. In all the broadband SBS slow light experiments, pump

power requirements scale up with the bandwidth. As a result, the performance of

broadband SBS slow light devices are prone to competing nonlinear optical effects.

High input pump power is concentrated in the optical fiber, giving rise to high inten-

sities, which can trigger a number of competing nonlinear effects. These nonlinear
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optical effects take power away from the pump beam, and thus limit the SBS gain,

effectively restricting the delay. Moreover, some competing processes generate addi-

tional optical beams that propagate along with the SBS signal. These beams contribute

to un-correlated noise for the slow light system and must be filtered out to avoid degra-

dation of the true signal.

Particularly, I find that modulation instability (MI) is the dominant competing

process in an SBS medium with a background anomalous group velocity dispersion

(β20 < 0), which has not been reported before. This finding demonstrates that sign

of the dispersion of an optical fiber is crucial for its broadband SBS slow light per-

formance. I find that the MI process depletes most of the pump power for the SBS

process in a 9.2-GHz broadband SBS slow light device using a standard 20-km-long

single-mode LEAF fiber as the SBS medium. This result was obtained when the central

wavelength of the pump laser was set to 1.55 microns, where the LEAF fiber has a

anomalous group velocity dispersion. The dominance of MI in the LEAF-fiber-based

system suppresses the SBS gain, degrading the SBS slow light delay and limiting the

SBS performance in terms of gain-bandwidth. I find an improvement in the SBS slow

light delay in a dispersion-shifted optical fiber, where MI is suppressed by the normal

dispersion. I obtain a gain-bandwidth product of 344 dB·GHz, much increased com-

pared to 126 dB·GHz in the LEAF system. The new gain-bandwidth is limited only by

our available pump power of 0.82 W.

In this experiment, I set up a broadband slow light system described in Dr. Cabrera-

Granado’s paper [18]. Dr. Cabrera-Granado, Dr. Calderon and Dr. Melle have con-

tributed in the experiment setup. The interference from MI has been identified by me

and Prof. Gauthier. We collected data and performed data analysis. Dr. Okawachi

and Professor Gaeta have characterized the dispersion of the optical fibres used in the

experiment. We summarize the results in reference [8], in which Professor Gauthier

and I have been primarily responsible for drafting the manuscript.
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FIGURE 5.1: Geometry of the SBS interaction and competing nonlinear optical pro-

cesses. The complex field amplitudes for the signal, pump, Rayleigh back scattered

wave and modulation instability generated waves are denoted by Es, Ep, ER and EASE ,

respectively, and the Langevin noise source is denoted by f .

In Sec. 5.1, I describe the mechanism and protection measures for four competing

nonlinear processes that can possibly suppress the SBS process in our broadband SBS

slow light experiment. In Sec. 5.2 I experimentally study the suppression of SBS

caused by the modulation instability in a broadband SBS device, where a standard

single-mode LEAF fiber is used as the SBS medium. As a solution to the problem, I

show that the MI and the associated SBS slow light degradation are eliminated by

using a dispersion shifted fiber that has normal dispersion at the 1.55 µm wavelength

window. In Sec. 5.3, I compare the SBS gain-bandwidth-product limit imposed by the

MI with the limit imposed by SRS following the approach of Olsson et al.[39] in the

LEAF-based system. Conclusions are given in Sec. 5.4.

5.1 Competing processes in a broadband SBS slow light system

5.1.1 Stimulated Brillouin scattering

The geometry of the SBS interaction is shown in Fig. 5. Two beams (weak Stokes

and pump) counterpropagate through the slow-light medium (optical fiber) in the z

direction. The interference beating between the two beams generates a density wave

via electrostriction. The opto-acoustic coupling between the three waves becomes
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strong when the frequency of the signal beam is tuned to the Stokes line. In this case,

the Stokes beam experiences amplification due to the SBS gain resonance, which also

gives rise to the slow light effect. For slow light buffer applications, the data sequence

is encoded on the Stoke signal beam via a Mach-Zehnder modulator.

In our slow light device described below, we generate a nearly ideal flat-topped

SBS gain proifle with a spectral width (FWHM) Γ/2π = 9.2 GHz, by broadening the

spectrum of the pump laser diode using the periodic modulation method introduced

in Ch. 3 [8, 18].

As discussed in Ch. 3, even without competing effects, a strong initial signal beam

can cause pump depletion and SBS gain saturation. This is because the signal beam

is amplified exponentially as the pump power increases linearly. So the growth of the

signal power can eventually catch up with the pump power. If the input signal beam

has a power of Ps0, the output power of a on-resonance signal beam, whose spectral

width is narrower than Γ, is given approximately by

Ps = P
G0

s0 , (5.1)

where G0 is the SBS line center intensity gain, given in Eq. (3.14). The depletion takes

place when the Stokes beam becomes so strong that its magnitude is comparable to the

pump beam, i.e. Ps ∼ Pp. We therefore conclude that the SBS gain saturates around

the threshold value,

Gth0 ≈ ln(Pp/Ps0). (5.2)

As discussed in Chs. 3 and 4, we use a weak signal beam that does not deplete the

pump wave to avoid signal beam-induced gain saturation. In this case, the output of

the signal power spectrum ps(δω) is correctly described by the transfer function HSBS,

ps(δω) = exp(−αL)ps0(δω)exp[2g(δω)Leff] = HSBSPs0, (5.3)

where δω is the signal detuning from the center resonance, α is the material intensity

absorption coefficient, L and Leff are the natural fiber length and effective fiber length,
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respectively, and g(δω) is the gain profile given in Eq. (3.11). In this case, the SBS

gain threshold is determined by the amplified spontaneous Brillouin scattering.

5.1.2 Amplified spontaneous Brillouin scattering

The pump wave also generates scattered light in the absence of a coherent signal

due to amplified spontaneous Brilloiun scattering. Spontaneous Brillouin scattering

arises from thermal fluctuations in the fiber, which are subsequently amplified by the

SBS process. The amplification of the spontaneous Brillouin scattering also deplete

the power in the pump beam, setting a SBS gain threshold to Gth ∼ 10 in single

mode fibers [44, 69] for single-line SBS resonances. In addition, this noisy wave

counterpropagates with respect to the pump wave and has a similar spectral content

to the the input data stream. As a result, amplified spontaneous Brillouin scattering

cannot be removed from the signal beam and degrades the signal fidelity.

Following Boyd et al. [45], we account for amplified spontaneous Brillouin scat-

tering by assuming that the spontaneous scattering is a Langevin process described by

a δ-correlated Gaussian random variable with zero mean and correlation amplitude

Q th = (2kB Tρ0ΓB)/(v
2Aeff), where kB is Boltzmann’s constant, T is the temperature,

ρ0 is the average material density, v is the speed of sound in the fiber, and Aeff is

the effective cross-sectional mode area of the beams in the fiber [43–45]. The power

spectral density for amplified spontaneous emission (ASE) is then given by [73]

pA(δω) = KA[HSBS(exp(−αL) +
α

2g(δω)
)− (1+ α

2g(δω)
)], (5.4)

where KA = 2πkB Tc/nΩB. The ASE noise power is denoted by PA and is approximately

equal to pAΓ for a flat-top gain profile. This noisy optical field gives rise to current

fluctuations in the detector due to two effects. One effect is the beating of the signal

wave with the ASE wave, while the other source is the beating of the noisy ASE wave

with itself. This amplified SBS is the major competing process and the one that causes
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the most error.

5.1.3 Rayleigh backscattering

The pump wave also induces Rayleigh back scattering that co-propagates with the

signal, as illustrated in Fig. 5. Rayleigh scattering is the scattering of light beam from

the stationary non-uniform density variations in the material [68]. In the optical fiber,

although Rayleigh scattering is generally uniform in all directions, only the scattered

waves in the forward and backward directions stay confined in the waveguide and

propagate along the fiber. Due to Rayleigh backscattering (RB), a small portion of

the pump beam is backscattered and couples into the back propagating mode in the

optical fiber. The noisy backscattered wave [46] then travels in the same direction as

the signal beam, and mixes with the signal, causing additional noise. The power of

the RB wave is proportional to the pump beam and is expressed as

PRB = aRB Pp, (5.5)

where aRB is the RB parameter.

The RB process is weak and only detracts a small portion of the pump beam in the

fiber, typically on the order of aRB ∼ 10−5 [77, 78]. Therefore, the pump depletion due

to RB is negligible. On the other hand, the high pump power required for broadband

SBS slow-light techniques makes PRB an excess noise comparable to the signal power,

especially in the low gain region. Fortunately, Rayleigh scattering has an identical

spectrum to the pump wave spectrum and hence can be removed using a narrow-band

spectral filter that is centered at ωs. In our experiments, we use a fiber Bragg grating

to eliminate this potential noise source.

5.1.4 Stimulated Raman scattering

Stimulated Raman scattering (SRS) is another competing nonlinear effect in which

a pump beam is scattered by high-frequency optical phonons [68]. In optical fibers,
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the SRS gain resonance has a broadband spectrum with a central frequency down-

shifted by ∼13 THz from the frequency of the pump beam. Similar to the amplified

spontaneous Brillouin scattering, amplified spontaneous Raman scattering occurs in

the presence of a strong pump beam. Spontaneous Raman scattering initiated from

the quantum fluctuations is amplified by the pump beam. When the SRS gain reaches

a threshold value of ∼10 in single-mode fibers [19, 68], most of the pump power is

transferred to the Stokes beam and the pump beam is depleted. Unlike SBS, SRS has

a broad resonant spectrum as a result of the fast response time of SRS in single-mode

fibers (<1 ps) [79].

The SRS gain associated with a monochromatic pump is typically two orders-of-

magnitude smaller than the SBS gain, and therefore has little effect on the SBS pro-

cess. However, SBS gain is inversely proportional to the pump bandwidth, as shown

in Eq. (3.19). On the other hand, Raman resonance has a bandwidth on the order of

THz, a spectral broadened pump beam up to tens of GHz is considered monochromatic

in the Raman scattering process. As a result, the Raman gain is not affect in broadband

SBS slow light systems. As bandwidth increases, the SBS gain will eventually match

the SRS gain, setting the scale for competition between these processes.

5.1.5 Modulation instability

The modulation instability (MI) is yet another process that can compete with the

broadband SBS process. MI results from the interplay between the nonlinear Kerr ef-

fect and material dispersion. It is a four-wave-mixing process where two co-propagating

photons of the same frequency are converted into a frequency up-shifted and down-

shifted photon pair [19, 80, 81]. As a result, the MI broadens the spectrum of contin-

uous wave (cw) or quasi-cw beams, and can even turn a continuous wave beam into

a train of pulses [80, 82, 83] or generate a supercontinuum [84]. In the presence of a

strong cw or quasi-cw beam propagating through the optical fiber, noise components
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in the vicinity of the MI gain peaks experience exponential amplification. This leads

to the creation of two symmetric spectral side lobes [19, 80]. The gain profile of the

MI is given by [19]

GM I(ωM I) = 4π2|β20ωM I |
Æ

2Ω2
peak
−ω2

M I
L, (5.6)

where ωM I is the detuning from the pump frequency, Ωpeak (in cycles/s) is the fre-

quency shift at which the maximum gain is obtained, and β20 is the group velocity

dispersion (GVD) parameter, introduced in Ch. 2. Here [19],

Ωpeak =±
1

2π

È

2γPp

|β20|
, (5.7)

where γ is the Kerr nonlinear parameter. Similar to SRS, the MI is not affected by the

9.2 GHz pump broadening due to its fast response time (<10 fs)[19]. The generated

waves propagate in the same direction as the pump beam, so MI waves do not mix

with the signal beam. Instead, the MI can deplete the pump power in broadband SBS

slow light devices, as we show in the next section.

5.2 Experimental study of competition between MI and SBS in a 10-

GHz SBS slow light system

We study the competition between SBS and MI in a broadband SBS slow light system

shown in Fig. 7.2. We use a distributed feedback (DFB) laser operating at ∼1.55

µm as the pump source. I modulate the injecting current of the DFB laser with a

modified triangle function so that the output beam of the DFB laser has a square-

shaped spectrum with a bandwidth of 9.2 GHz [18]. The output of the DFB laser

is then amplified using an erbium-doped fiber amplifier (EDFA) to provide enough

pump power for the broadband SBS process. The EDFA also controls the input pump

power thereby controlling the SBS gain. I use another DFB laser to generate the
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FIGURE 5.2: Experimental Setup. The injection current of the pump laser (DFB2) is

modulated by an arbitrary wavefunction generator (AWG). The current modulation

function is tailored to produce a flat-topped broadened gain profile [18]. A Fiber

Bragg Grating (FBG) (bandwidth ∆ν = 24 GHz, central wavelength ∼1.55 µm) is

used to filter out unwanted frequency sidebands from the DFB laser. An EDFA amplifies

the pump beam before it is injected into the fiber via a circulator. The signal beam

(DFB1) is modulated with a Mach-Zehnder modulator (MZM) and is injected from the

other end of the fiber via a circulator. Fiber polarization controllers (FPC) are used

to match the polarization orientations of the pump and signal beams. A photodiode

(PD) measures the output power of the signal beam and an optical spectrum analyzer

(OSA) measures the spectrum of the output pump beam.

signal beam, which is tuned to the SBS resonance. To avoid probe-induced SBS gain

saturation, I attenuated the signal beam to a power of 2 µW before injecting it into the

SBS medium, where the signal beam counterpropagates and interacts with the pump

beam via the SBS process. The amplified and delayed signal is detected at the output

of the fiber. The gain G is obtained by measuring the output powers of the signal beam

with the pump beam on and off.

I use two different fibers as the SBS medium in the experiment, a 20-km-long LEAF

fiber from Corning and a 2-km-long HNLF fiber from OFS. I focus here on the LEAF

fiber because it is a readily available, relatively inexpensive fiber used in long-haul
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communication systems and hence is likely to be selected for SBS slow light devices.

The parameters of the fibers are shown in Table 7.1. I measure the background GVD

parameter β20 by the time-of-flight method [85]. In this method, I measure the group

velocity as a function of the wavelength by recording the transit time for optical pulses

to propagate through the fiber with different central wavelengths. I obtain the GVD by

dividing the group velocity differences by the wavelength shift. I then determine the

nonlinear parameter γ using γ = 2πn2/λAeff, where the nonlinear-index coefficient

n2 ∼2.5× 10−20m2/W is used for silica [68].

Table 5.1: Parameters of the fibers used in the experiment.

Aeff Leff G/Pp(linear region) γ β20

LEAF 72 µm2 12.8 km 10.5 W−1 1.4 W−1km−1 -5.29 ps2/km

HNLF 11.7 µm2 1.64 km 11.1 W−1 8.7 W−1km−1 0.08 ps2/km

As one of the most used, low-cost, standard, single-mode fibers, the LEAF fiber

offers great compatibility and would substantially lower the cost of SBS slow light

devices, which is why I used it in our experiment. However, the zero-dispersion wave-

length for the LEAF is shifted to ∼ 1.6 µm, resulting in a large anomalous background

dispersion β20 at ∼1.55 µm. The anomalous dispersion degrades the SBS slow light

performance, as shown below.

I measure the SBS gain as a function of Pp for the LEAF fiber and the result is

shown in Fig. 5.2(a). As Pp is increased from zero to 0.8 W, G first scales linearly

with Pp, with a slope of 10.5 W−1, and then starts to saturate and deviate from linear

growth at G ∼4, corresponding to an input power Pp ∼0.4 W (Fig. 5.2(a)). The early

saturation of the SBS gain limits the slow light delay.

The saturation behavior shown in Fig. 5.2(a) could be the result of pump depletion

due to the SBS process, but additional observations rule out this possibility. First, the

saturated value of the gain is ∼4, which is much smaller than the threshold gain Gth =

10, indicating that saturation is not induced by spontaneous Brillouin amplification.
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FIGURE 5.3: Early saturation of the SBS gain. (a) The SBS gain G as a function of input

pump power Pp. Saturation is observed around G ≈ 4 (vertical arrow), corresponding

to an input pump power of ∼0.4 W; (b) Total power Po transmitted through the fiber

in the pump beam direction (not spectrally resolved) as a function of the input pump

power Pp, indicating high fiber transparency. In the experiment, a weak continuous-

wave beam with an input power of 2 µW is used as the signal beam.

Second, the amplified signal power, Ps, is only 0.5 mW, which is small in comparison to

the input pump power 0.75 W, and is hence insufficient to deplete the pump. Moreover,

the total power, Po, transmitted through the fiber in the direction of the pump beam

grows linearly as Pp is increased from 0 to 0.8 W (Fig. 5.2(b)). This is a direct evidence

that the total transmitted pump power is not depleted.

To explain the early SBS gain saturation at G ∼4, I examine the transmitted pump

spectrum po passing through the 20-km-long LEAF fiber (Anritsu model MS9710B op-

tical spectrum analyzer). As Pp is increased from zero to 0.8 W, no significant Raman

gain is observed (Fig. 5.2(a)). On the other hand, in a spectral span of 10 nm, sym-

metric side lobe structures emerge and grow quickly as Pp increases (Fig. 5.2(b)). At

high Pp, the spectrum of the pump is flattened as a result of the emergence of sec-

ondary sidebands, and the power is spread into a broad frequency span of ∼200 GHz.

Notice that the pump power transferred to the side lobes is no longer on resonance

with the signal beam in the SBS interaction and therefore does not contribute to the

SBS gain process.

To determine the amount of power loss, I integrate the power spectral density po
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FIGURE 5.4: Modulation instability in the LEAF fiber. (a) Output power spectral density

po of the pump laser (span of 300 nm) with increasing input power Pp. The circle

indicates the Raman peak. (b) Output power density spectra po of the pump laser (

a span of 10 nm) with increased input power Pp. The input spectrum of the pump

laser (at 40 mW) is also shown. (c) Percentage (η) of power distributed in the central

peak (black square) and in the MI sidebands (red circle) for the output pump beam,

as functions of the input power Pp. The arrow indicates a threshold at ∼0.3 W. (d)

Experimental data (point) and theoretical prediction (line) of the frequency shift Ωpeak
of the MI side lobe peaks as a function of input power Pp.

in the side lobes. The results are shown as percentages of the total power Pp in Fig.

5.2(c). We see that a considerable portion (> 20%) of the pump power is transferred

to the sidebands when the input power exceeds Pp ∼0.3 W. I define this point as

the threshold for the MI process, and the corresponding input pump power as the

threshold power PM I
th

in the LEAF fiber. I obtain the threshold gain GM I
th

by Eq. (5.6) to

be ∼10. Note that PM I
th

is close to the location where the early saturation of SBS gain

occurs. I also compare the measured frequency shifts Ωpeak of the MI sidelobe peaks

with the theoretical prediction using equation Eq. (5.7) and obtain good agreement, as
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shown in Fig. 5.2(d). These observations lead us to conclude that the strong saturation

of the SBS gain is caused by the MI-induced pump broadening. In conclusion, we find

that MI dominates over SBS beyond a threshold pump power of PM I
th
= 0.3 W in the

LEAF fiber. In a broadband system where Γ = 9.2 GHz, the threshold pump power

corresponds to an SBS gain G ∼3.2, which leads to a limit of 29 GHz or 126 dB·GHz

on the SBS gain-bandwidth product.

FIGURE 5.5: Suppression of modulation instability in HNLF. (a) Output power spectrum

po of HNLF (red dash) and LEAF (black solid) at an input power of 0.8 W; (b) MI

detracted pump power as a function of input power Pp in HNLF (red dot) and LEAF

(black square).(c) SBS gain G in HNLF as a function of the input power Pp.

I next turn to the dispersion-shifted HNLF fiber, which has a small and normal

dispersion at 1.55 µm. Because it is widely known that the MI is suppressed due to

phase matching constraints in normally dispersive materials [19, 80, 86], I expect to

see suppression of the MI and improvement in the gain-bandwidth product for the

broadband SBS slow light with the HNLF fiber. Fig. 5.2 shows that the MI-induced

limit on the SBS gain-bandwidth product is indeed removed. With the same 9.2 GHz

broadband pump input, the transmitted pump spectrum through the HNLF shows no

significant MI peaks (Fig. 5.2(a)). The power converted into off-resonant frequencies

is negligible (Fig. 5.2(b)). As expected, early saturation of the SBS gain in the HNLF

does not appear (Fig. 5.2(c)), resulting in a larger SBS gain-bandwidth product of 344

dB·GHz, limited by our available pump power of 0.82 W. The result further confirms
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that MI induced pump broadening is the origin of the early saturation of SBS gain in

the LEAF fiber.

5.3 Comparison of MI with SRS

In this section, I compare the relative importance of the two effects that compete with

SBS in our broadband SBS slow light system. Following Olsson et al.’s approach [87],

I compare the pump power Pp requirements for the broadband SBS, SRS, and MI

processes in the LEAF fiber. Figure 5.3 shows the input pump power Pp required to

obtain a threshold gain of 10 as a function of the bandwidth Γ. The threshold pump

power for the SBS process is obtained from equation Eq. (3.19) taking G =10 and

g0 = 1.06× 10−11 m/W (obtained from Fig. 5.2(a)),

Pp = G
Γ

2ΓB

Aeff
g0 Leff arctan−1(Γ/ΓB). (5.8)

Note that I assume that a weak probe beam is used so that the probe-induced SBS

saturation does not appear.

The SRS gain is given by [19]

GSRS = 2gRPp Leff/Aeff, (5.9)

where gR = 1.26× 10−14 m/W [19]. The threshold power required for an SRS gain

of 10 is obtained by Pp = 10Aeff/(2gR Leff) = 2.23 W. The pump power required for a

MI gain GM I ∼10 is found to be ∼0.3 W, as mentioned previously.

As shown in Fig. 5.3, beyond a bandwidth of ∼3.2 GHz, the LEAF-fiber system hits

the MI threshold before it saturates the SBS gain. As a result, MI sets a limit on the

SBS gain-bandwidth product. The gain-bandwidth product limit is 29 GHz, or 126

dB·GHz using G=10 in the LEAF fiber. Figure 5.3 also shows that the SRS becomes

more efficient than SBS when the bandwidth goes beyond ∼22 GHz, and limits the
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FIGURE 5.6: Pump power Pp required for a G of 10 versus the bandwidth Γ.

SBS gain-bandwidth product up to 220 GHz or 955 dB·GHz. The result is consistent

with what Olsson et al. predicts [87]. In the LEAF fiber, the SBS gain-bandwidth

product is restricted by the tighter MI-induced limit. However, in normally dispersive

fibers where the MI is suppressed, SRS becomes the main limitation on the SBS gain-

bandwidth product.

5.4 Conclusion

In conclusion, I summarize four common competing nonlinear effects in optical fibers

in a broadband SBS slow light system. I calculate the noise power for the amplified

spontaneous Brilloun scattering and Rayleigh backscattering, while the pump deple-

tion effect is compared between SRS and MI. I also find that while Rayleigh backscat-

tering can be filtered out, ASE noise has the same spectrum as the signal beam and

thus cannot be removed. the quantitative analysis of noise for broadband SBS slow

light is present in [73], which was the first analysis of the field.

Moreover, in a 9.2 GHz SBS slow light system, I find for the first time that MI

dominates in the high pump power region and sets a limit on the SBS gain bandwidth

product, which is 126 dB·GHz in the LEAF fiber. However, in normally dispersive

materials, the SBS performance improves and there is little to no pump depletion. Our
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findings shows that fiber dispersion is a crucial criterion for the selection of broadband

SBS slow light medium. The results have been summarized in [8]
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6

SBS group velocity dispersion

In this chapter, I demonstrate the creation of a strongly dispersive material with large

chirp and small group delay using stimulated-Brillouin-scattering (SBS) based fast and

slow light in a phontonic crystal fiber. This is in contrast to previous SBS slow light

experiments, which have typically focused on the creation of a slow light material

with minimal dispersion and chirp. However, the same method of optimizing desired

optical properties with the tailoring of SBS resonance is applied here. The design of

large GVD parameter in optical fiber is an extension of slow light SBS into general

optical material design.

In the experiment, I demonstrate giant and adjustable GVD over the range ±7.5

ns2/m, appropriate for nanosecond-duration pulse, realized using an optical fiber

pumped by an auxiliary laser beam. The dispersion is ∼ 109 times larger than that

obtained in standard single-mode fiber. This is the first demonstration of all-optical

GVD control using SBS in optical fibers, which greatly reduces the experiment com-

plexity compared to previous experiments using atom gases. Following this work, the

dispersion profile can be optimized for specific applications by tailoring the pump-laser
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FIGURE 6.1: An input transform-limited optical pulse broadens temporally and devel-

ops a linear frequency chirp as it propagates through a material with group velocity

dispersion parameter β2 (illustrated here for the case when β2 > 0 ).

spectral profile.

The results in this chapter is summarized in a manuscript [10]. In this project, I

took the leading role in developing the experimental setup, collecting and analyzing

the data. I also wrote the manuscript. Dr. Joel Greenberg has developed the exper-

imental setup, collected and analyzed the data, and wrote the manuscript. Nor Ain

Husein has developed the experimental setup and collected preliminary data. Profes-

sor Gauthier has conceived the experiment, collected and analyzed the data, wrote the

manuscript, and supervised the overall project.

6.1 Group velocity dispersion in materials

Group velocity dispersion refers to the frequency-dependent group velocity of an op-

tical waveguide. Upon propagation in a GVD waveguide, a short optical pulse will be

broadened and will obtain a temporal frequency chirp as a result of the separation of

different frequency components in the temporal domain (Fig. 6.1). GVD materials are

widely used in various applications and crucial elements in recent research on tem-

poral domain Fourier optics [49, 50, 53]. Motivated by recent research [1, 88, 89]

that has demonstrated extreme values of group index ng using resonances to enhance

the material dispersion, I find that giant values of the GVD parameter β2 can be ob-
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tained when an amplifying resonance is placed next to an absorbing resonance. In

general terms, our approach can be understood by considering one-dimensional pulse

propagation along the z-direction in a linear dispersive material characterized by a

frequency-dependent refractive index n(ω). In this case, electromagnetic theory pre-

dicts that the spectral amplitude of the output field is related to its input through the

relation

A(z,ω) = eik(ω)zA(0,ω) (6.1)

where k(ω) = n(ω)ω/c is the pulse wavevector in the dispersive material and c is the

speed of light in vacuum [19]. For pulses with a narrow band spectrum centered at

the carrier frequency ω0 and slow variation of n(ω) over the pulse spectrum, a Taylor

series expansion of the complex wavevector magnitude

k(ω) = β0(ω0) + β1(ω−ω0) + β2(ω−ω0)
2/2!+ β3(ω−ω0)

3/3!+ · · · (6.2)

leads to approximate analytic solutions to the problem when the series is truncated,

where the complex dispersion parameters are defined by

βi =
d ik

dωi
|ω=ω0

. (6.3)

For the case when k is essentially real, as appropriate for transparent glasses, the

phase velocity of the pulse is given by

vp =
c

n(ω0)
=
ω0

β0

, (6.4)

and the group velocity is given by

vg =
c

ng(ω0)
=

1

β1

. (6.5)

An incident optical pulse will travel at the speed of vg with a stable profile in a non-

dispersive material where β2 = 0. On the other hand, as illustrated in Fig. 6.1, an
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incident transformed-limited pulse broadens and develops a linear frequency chirp

due to GVD. The characteristic distance over which these effects develop is known as

the dispersion length

LD =
t2

0

|β2|
, (6.6)

where t0 is the a measure of the pulse width. The substantial dispersion needed for

the applications mentioned above requires that the length of the material L > LD. The

quadratic scaling of LD with pulse width is the reason why it is difficult to observe

GVD effects for nanosecond-duration pulses for values of β2 characteristic of typical

dispersive materials and devices. For example, single-mode silica optical fibers has a

GVD value of β2 ∼ 20 ps2/km at the wavelength of 1.55 µm, which is restricted to

dispersion applications for ps optical pulses.

As an example, consider a transform-limited Gaussian pulse without initial chirp.

The amplitude profile is given in the form

A(0, t) = A0 exp(− t2

2t2
0

) (6.7)

where A0 is the magnitude, t0 is the half-width (at 1/e-intensity magnitude), related

to the full width at half magnitude (T0) by T0 = 2
p

ln 2t0 = 1.665t0.

The effect of GVD on optical pulse propagation in a linear dispersive material is

described by solving the paraxial wave equation [19]. In a transparent material where

k is real, the parameter β1 describing the group velocity does not affect the pulse

profile. The solution of the output pulse amplitude profile is given by

A(z, t) =
1

2π

∫ ∞

−∞
Ã(0,ω)exp(

i

2
β2ω

2z − iωT )dω, (6.8)

where Ã is the Fourier transform of the amplitude at z = 0. For the Gaussian pulse
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described by Eq. (6.7), the dispersed pulse is described by

A(z, t) =
A0
p

t2
0 − iβ2z

exp[− t2

2(t2
0 − iβ2z)

] (6.9)

where a phase term can be extracted that

φ(z, t) = −sgn(β2)(z/LD)

1+ (z/LD)
2

t2

2t2
0

+
1

2
arctan(z/LD). (6.10)

Clearly, a quadratic phase term is obtained due to frequency chirp. This expression

can be simplified when β2z << LD,

φ(z, t)≈ −sgn(β2)(z/LD)

2t2
0

t2 = a2 t2, (6.11)

where the quadratic coefficient is given by

a2 =−
β2z

2t4
0

. (6.12)

I will show next how to generate large β2 using a double-line resonance.

6.2 Theory of SBS-based group velocity dispersion

In the SBS-base group velocity dispersion system, I use a pump wave with two fre-

quency components, separated by roughly twice the Brillouin frequency. The resonant

properties are explored at the center region between the two pump lines. The group

velocity dispersion properties of the SBS system is derived base on theory in Ch. 2.

According to Eq. (2.23), in the presence of an SBS resonance, the property of the

waveguide is modified so that the signal beam traveling in the z direction As(z,ωs) is

given by

As(z,ωs) = As(0,ωs)e
iKz, (6.13)
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FIGURE 6.2: Illustration of the SBS resonances with dual pump beams. A counterprop-

agating pump beam of frequency ω1(ω2) induces an anti-Stokes absorption (Stokes

gain) line (shown in red) at frequency ω1 + ΩB(ω2 − ΩB) and full-width at half-

maximum width ΓB. The spacing between the gain and absorption lines is 2∆, shown

here for the case when ∆ < 0

where the SBS wavevector is given by

K = k0 − i g̃ Ip/2. (6.14)

Here k0 = nω/c is the background wavevector, g̃ is the complex SBS resonance factor

and Ip is the intensity of the pump beam. In a single-line SBS resonance, g̃ is given in

Eq. (2.20) and Eq. (2.21) by

g̃+ =
−i g0

1− 2i(−ωs +ωp −ΩB)/ΓB

(6.15)

for the Stokes gain and

g̃− =
i g0

1− 2i(ωs −ωp −ΩB)/ΓB

(6.16)

for the anti-Stokes absorption. Here g0 is the SBS gain coefficient,ωp is the frequency

of the pump beam, ΩB is the Brillouin frequency and ΓB is the resonance linewidth

(half width at half magnitude).

As shown in Fig. 6.2, in our SBS system, I use two pump beams whose frequencies

are placed symmetrically across the central frequency of the signal beam ω0. The

83



frequency separation is set to |ω1 −ω2| = 2ΩB + 2∆, where ∆ is a small detuning.

At the vicinity of ω0, the SBS gain resonance of one pump beam overlaps with the

SBS absorption resonance of the other pump beam. The strength of the resonances

are identical in magnitude and the complex profiles are given by g̃± I j/2, where g̃±

is the SBS gain/absorption factor and I j is the pump intensity of the pump beam at

frequency ω j, ( j = 1, 2). The center of the composite SBS resonance is at frequency

ω0 and the signal frequency relative to this value is denoted by δω=ωs −ω0.

The evolution of a weak signal beam in a dual-frequency pump system is given by

Eq. (2.31), and the effective wavevector for our experiment setting is given by

K(δω) = k0 − i g̃− I1/2− 2i g̃+ I2 (6.17)

= k0 +
i g0 I1/2

1− 2i(δω−∆)/ΓB

− i g0 I2/2

1− i(δω+∆)/ΓB

. (6.18)

Figure 6.3 (a) shows the real and imaginary magnitudes for complex wavevector

given by Eq. (6.17) assuming I1 = I2 = Ip. It is seen that the real part of K is symmetric

about δω= 0 (as opposed to anti-symmetric for a single Lorentzian resonance) and is

approximately quadratic, which results in large positive GVD. The profiles are inverted

by changing the sign of ∆, which allows easy control over the sign of the GVD.

The dispersion parameter β2 is obtained by taking the second derivative of the

wavevector, shown in Fig. 6.3(b). Evaluating the derivative at the center frequency

ω0 yields the center dispersion

β2(ω0) =
d2k

dδω2
|δω=0 =

8g0 Ip

Γ2
B

∆(∆2− 3Γ2
B
/4)

ΓB(Γ
2
B
/4+∆2)3

=
8G

Γ2
B
L

∆(∆2− 3Γ2
B
/4)

ΓB(Γ
2
B
/4+∆2)3

, (6.19)

where G = g0 Ip L is the SBS central intensity gain, L is the length of the optical fiber.

For the case when δω= 0, β2L is purely real and is proportional to g0 Ip/Γ
2
B
. Thus,

large GVD can be obtained for modest values of G and narrow-linewidth resonances
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FIGURE 6.3: (a) Wavevector magnitude for a medium containing oscillators with a

double resonance described by the wavevector given by Eq. (6.17) with ∆/ΓB =

−1.03. (b) Group velocity dispersion parameter for the double-resonance medium for

the same conditions as in (a).

that can be obtained, for example, in atomic gases [52] and via stimulated Brillouin

scattering resonances induced in optical fibers [48, 56]. Figure 6.3(b) shows that β2

is approximately constant over a bandwidth of ΓB.

6.3 Experiment of SBS-based group velocity control

6.3.1 Dispersive SBS gain profile

To realize this dispersion profile experimentally, I induce stimulated Brillouin scatter-

ing (SBS) resonances in a commercially-available photonic crystal fiber (PCF). The

expreiemnt setup is shown in Fig. 6.4. In the typical SBS process, a weak input beam

interacts with a strong counterpropagating pump beam through wave mixing with

an induced acoustic field [68], creating narrow Stokes (amplifying) and anti-Stokes

(absorbing) resonances whose strength is proportional to the pump beam intensity.
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FIGURE 6.4: Experiment setup. MZM, Mach-Zehnder modulator. RF, radio frequency

signal. EDFA, Erbium Doped Fibre Amplifier. PCF, photonic crystal fiber. Giant GVD

is achieved using a 10-m-long PCF (NKT Photonics Inc., NL-1550-NEG-1, ΓB/2 =

24.2 MHz) that is pumped by a 1.55-µm-wavelength bichromatic pump beam. The

pump beam is created by modulating the output of a telecommunications laser (Fitel

47X97A04) with a Mach-Zehnder modulator (EOSpace AX-0K1-12-PFAP-PFA-R3-UL)

operating in carrier-suppression mode and driven by a sinusoidal waveform produced

by a microwave frequency source (Agilent E8267D). The modulated pump beam is

passed through an erbium-doped fiber amplifier (IPG Photonics EAD-1K) and a Fara-

day circulator before injection into the PCF so that it counterpropagates with respect

to the signal beam.

SBS resonances can be induced at any frequency where the material is transparent by

adjusting the pump laser frequency, thus making this approach broadly tunable. To ob-

tain adjacent amplifying and absorbing resonances as required by Eq. (6.17), I pump

the PCF using a two-frequency pump beam, which allows us to place the anti-Stokes

resonance arising from one of the pump frequency components close to the Stokes

resonance arising from the other component as illustrated in Fig. 6.2.

As a first step in characterizing the dispersive material, I inject a weak continuous-

wave signal beam into the bichromatically-driven PCF and measure the gain spectrum

of the composite SBS resonances as shown in Fig. 6.5. To measure the gain spectra, I

use an auxiliary signal laser beam (Agilent HP81862A, power 5 mW), whose frequency

is scanned via current tuning. This beam is passed through a circulator before injection
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FIGURE 6.5: Experimentally observed probe beam transmission profile for different

values of ∆, showing the output probe beam intensity divided by the input intensity.

Here, ΓB/2π= 24.2± 0.6 MHz and G = 0.28± 0.03 .

into the PCF. The signal beam is passed to a photoreceiver (New Focus 1611) via the

other circulator and measured with an oscilloscope.

As shown in Fig. 6.5, when ∆ = 0, there is essentially no change in the trans-

mitted signal beam, demonstrating that the Stokes and anti-Stokes resonances do not

depend on the relative phases of the pump beam frequency components and hence the

wavevector given by Eq. (6.17) is appropriate. When ∆ < 0 , I obtain a gain profile

corresponding to the imaginary part of K shown in Fig. 6.3(a) and the profile inverts

as discussed above when ∆ > 0 .

6.3.2 Dispersion of a 28-ns Gaussian pulse

I next inject nanosecond-scale-duration, chirp-free Gaussian-shaped signal pulses with

ωs = ω0 into the PCF and measure the frequency chirp using a homodyne detection

technique (illustrated in Fig. 6.5). For the pulsed experiments, I generate the signal

beam by splitting a small fraction of the power from the pump beam, thereby assur-

ing that the frequency is locked to the pump beam. This beam is passed through a

Mach-Zehnder modulator (OTI 10 Gb/s) driven by an arbitrary waveform generator

(Tektronix AFG 3251).
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FIGURE 6.6: Experiment setup for the homondyne measurement. A reference arm

splits part of the signal beam and mixes it with the dispersive pulse at the detector.

The optical path lengths are balanced by matching the fiber lengths in the two arms.

To measure the chirp of the signal beam output pulse, I use a homodyne detector

that mixes a small fraction of the signal source light with the output pulse and detected

with the photoreceiver. Fig. 6.6 shows the experiment setup for the homodyne mea-

surement. The interference waveform is captured with an 8-GHz-analog-bandwidth,

40 Gsample/s oscilloscope (Agilent DSO80804B) and downloaded to a computer for

offline analysis. I fit the resulting waveform that assumes that the signal beam has

a Gaussian envelope and a phase that is a second-order polynomial. The quadratic

coefficient a2 is directly related to β2 by Eq. (6.12), where t0 = 16.94± 0.1 ns is the

half width at 1/e magnitude of the Gaussian pulse, obtained by fitting the input pulse

profile to a Gaussian in Fig. 6.7(b). A quadratic phase fitting to the interference profile

is shown in Fig. 6.7(a) for G = 0.

Figure 6.8(a) shows that β2 increases linearly with G (proportional to Pp) as ex-

88



−50 0 50

0

2

4

6

8

10

I (
m

V
)

 

 

−50 0 50

0

2

4

6

8

10

t(ns)

I (
m

V
)

 

 

fit φ=−0.63π+0.0009t+0.00001t2

interference profile

fit
pulse profile

(a)

(b)

FIGURE 6.7: (a) Interference profile with quadratic phase fitting for G = 0, φ is the

relative phase with the reference beam. (b) Input pulse profile with a Gaussian fit. The

vertical axis shows the measured optical intensity via the voltage of the photoreceiver.

pected, demonstrating all-optical control of the GVD. I obtain a maximum value of

|β2| = 7.5 ns2/m. Given that β2 ≈ 20 ps2/km in a single-mode optical fiber, this

value demonstrate a ∼109 times increasement at the 1.55 µm. Negative GVD can

be obtained by inverting ∆ (see Fig. 6.5). Our observations are in good agreement

with the solution to Eq. (6.19), which predicts that β2L = −20.9 Sgn(∆)G (ns2) for

|∆/ΓB|= 1.03, where Sgn is the sign function.

I also measure the output pulse intensity for different values of G, and hence β2, as

shown in Fig. 6.8(b). As expected, the pulse broadens and approximately maintains

its Gaussian shape, also in good agreement with simulated predictions, which are
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FIGURE 6.8: Observation of giant GVD in a laser-pumped optical fiber. a Linear vari-

ation of the GVD parameter with SBS gain, which is proportional to the intensity of

the pump laser. b Temporal variation of the output pulse after passing through the

GVD material for different values of the SBS gain. c Change in the width and d output

peak intensity Iout as a ratio of the input peak intensity Iin and delay of the pulse after

passing through the GVD material as functions of the SBS gain. The bars on the data

points indicate typical errors.

based on the exact profile of wavevector given in Eq. (6.17). Figure 6.8(c) shows the

observed and predicted increase in pulse width as a function of the SBS gain, where

the agreement between the two is good.

In addition, I observe that the pulse amplitude increases somewhat and the pulse

is delayed (Fig. 6.8(d)), which is not expected based on our discussion above that

assumes an idea transparent dispersive medium. These non-ideal effects are due pre-

dominately to frequency-dependent gain and absorption arising from the imaginary

part of K (see Fig. 6.3), which is unavoidable for a material satisfying the Kramers-

Kronig relation [67]. For β2 > 0, the high- (low-) frequency components of the pulse
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spectrum are absorbed (amplified) in an approximately linear-in-frequency fashion,

giving rise to a slight shift of the spectrum to lower frequency. Nevertheless, this small

non-ideal behavior does not disrupt the GVD-induced linear frequency chirp and pulse

broadening.

6.4 Conclusion

I have obtained a large GVD in a commercial photonic crystal fiber by using a double-

line SBS resonance. The resultant GVD parameter is as high as β2 = 7.5 ns2/m, 109

larger than the that of silica optical fibers. The GVD work presented is very recent

and I believe it’s the first experiment in the world to use the SBS process to realize

such large GVD. In this work, I have used two pump lines and only one detuning pa-

rameter ∆ in the optimization procedure. However, the principle of the arbitrary SBS

resonance tailoring technique is applied in the procedure and finer tailoring with more

tuning parameters can readily applied. I expect a lot of following work to come, for

example, by using the readily available SBS resonance tailoring techniques to obtain

a broadband GVD.

The result can also be extended to applications in the even longer temporal region

by using resonances with narrow bandwidth that matches the temporal scale. For ex-

ample, recoil resonances in laser-pumped ultra-cold gases [90] should display large

GVD for millisecond-scale pulses. The GVD control is also easily extended to applica-

tions requiring larger bandwidth by using the broadband SBS technique, introduced

in the previous chapters. Fano-type resonances in photonic crystal [91], plasmonic

[92] and metamaterial [93] devices are also promising avenues to explore for high-

bandwidth GVD engineering.
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7

Forward SBS scattering in optical fiber

In this chapter, I return to the physics of the SBS process in optical fiber and report

the observation of strong forward stimulated Brillouin scattering (FSBS) in a standard

2-km-long highly nonlinear fiber [94]. The interaction of two co-propagating optical

beams arises from the coupling to the acoustic vibrations in the transverse direction,

in contrast with the longitudinal acoustic waves in conventional backwards SBS. The

strong FSBS coupling was previously considered inefficient due to the different con-

finement areas of the optical and acoustic waves. However, an especially large gain

coefficient of 34.7 W−1 is observed at the resonance frequency of 933.8 MHz, which

is explained by theoretical work as well. The forward SBS is an extension to the SBS

theory presented in Ch. 2.

In this project, I am the leading contributor in design and setting up the experi-

ment, deriving the theory and analyzing the data. Jing Wang has contributed equally

in the experiment setup, data collection and analyzing. Dr. Rui Zhang has also con-

tributed in the experiment setup and data collection. Professor Gauthier has conceived

the experiment and supervised the overall project. We have summarized the results in
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this chapter in reference [94].

An overview of forward SBS is presented in Sec. 7.1. The theory describing interac-

tion of the light and radial acoustic fields are discussed in Section 7.2, where a model

including optical Kerr effect is also presented. The experiment and measured FSBS

resonance profiles are shown in Sec. 7.3. Additional discussion on FSBS linewidth

trend are given in Sec. 7.4, and Sec. 7.5 is the conclusion.

7.1 Introduction of forward stimulated Brillouin scattering

Interactions between tightly confined optical and acoustic waves have attracted much

research interest over the past few years [2, 8, 43]. As discussed in Ch. 2, stimulated

Brillouin scattering is an efficient nonlinear light scattering process that has stimulated

research interest. In the previous chapter, I emphasis on discussions on the backward

SBS where the pump and the probe beams counter-propagate with each other so that

phase-matching conditions can be fulfilled for the slowly-propagating acoustic wave.

However, the acoustic dispersion relation Eq. 2.4 is true only for longitudinal waves

in the waveguide [68]. When I include consideration of the transverse acoustic waves

trapped in the cylindric optical fiber, new types of optical-acoustic coupling emerge

[58, 64]. Such coupling enables the forward stimulated Brillouin scattering (FSBS)

process, which involves the coupling between two co-propagating optical beams (sig-

nal beam with frequency ωs and pump beam with frequency ωp) with the so-called

guided acoustic modes vibrating (with frequency Ω) in the radial direction, as shown

in Fig. 7.1.

7.1.1 Guided acoustic mode in an optical fiber

The structure of an optical fiber, as shown in Fig. 2.1, consists of a small core, a

larger cladding area, and an outer buffer layer [65]. In conventional optical fibers,

the same material (silica) is used for both the core and the cladding. Slight doping in
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FIGURE 7.1: Forward stimulated Brillouin scattering in an optical fiber. The co-

propagating optical beams are coupled to transverse vibrational modes in the optical

fiber. The picture shows the signal beam on the Stokes side.

the core area induces refractive index difference to confine the optical field, but such

doping does not substantially affect the mechanical properties of the core material. As

a result, for acoustic waves, optical fiber is considered as an isotropic cylindrical bar

throughout the core and the cladding area. Outside the cladding however, the buffer

material (usually plastic) often strongly dumps acoustic waves, causing them to vanish

very soon into this region. Thus, the buffer is usually treated as a hard boundary for

the the acoustic waves.

Many possible acoustic vibrational modes exist in a cylindrical bar [95]. Figure 7.2

shows the density distribution of a longitudinal acoustic wave and a radial acoustic

wave in a cylindrical structure. As shown in the figure, the longitudinal wave has a

density distribution that varies only along the fiber axis, which I take as the z direc-

tion. The radial wave has a density variation along the r direction, which is confined

inside the core and cladding area of the fiber with typical diameter of 125 µm. Due

to this confinement, the radial acoustic wave has multiple discrete vibrational modes

corresponding to different characteristic dispersion relations and density variation dis-

tributions. These radial modes are denoted as R0(m) where m is the mode number.

Note that the longitudinal mode and the radial modes are just two kinds of acous-

tic waves out of many possible vibrations for a cylindric structure. More complicated

vibrations include 2-dimensional torsional modes and 3-dimensional flexural modes,

usually having dispersion curves similar to those of the radial modes. There are re-
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FIGURE 7.2: Acoustic longitudinal wave (a) and radial wave (b) in an optical fiber

ports on the observations of acoustic-optical coupling due to these higher dimensional

modes [58, 59]. However, the coupling to the higher-dimensional modes in our exper-

iment is much weaker than the radial modes. This is due to the fact that higher-order

radial modes tend to concentrate into the center part of the cylindrical bar, and overlap

with the optical field efficiently, and thus enhance the coupling strength.

7.1.2 Cascaded Forward SBS

In Sec. 2.2.2, I derive resonant frequency and wavevector using the energy and phase-

matching conditions for the backward SBS process. In the FSBS process, the dispersion

relation for a radial guided acoustic mode in an optical fiber is given by [64],

Ω =
p

(qv)2 +Ω2
a
, (7.1)

where q(Ω) is the wavevector (frequency) of the radial guided acoustic wave, Ωa is

a characteristic cutoff frequency at zero axial wavevector [64]. Combined with the

optical dispersion relation given in Eq. (2.4), I solve for the energy and phase matching

conditions in Eq. (2.3) and obtain the resonant frequency

Ω ≈ Ωa. (7.2)

95



FIGURE 7.3: Energy and phase matching for forward SBS. The solid curve is the optical

dispersion relation and the dashed curve is the radially guided acoustic wave disper-

sion relation. There is always an intersection between the two curves near the cutoff

frequency Ωa.

As shown in Fig. 7.3, the radial guided acoustic modes in an optical fiber typically

have a flat dispersion curve starting from a characteristic cutoff frequency Ωa at zero

axial wavevector. The radial guided acoustic dispersion curve (dashed) intersects with

the linear optical dispersion curve (solid) near the cutoff frequency Ωa. I find that this

dispersion relation allows automatic phase matching between the beat of the two co-

propagating optical beams (frequency ωp,ωs) and the transverse acoustic excitation

(Ωa).

Since the resonant frequency is independent on the optical frequencies of the cou-

pled beams, an acoustic wave with frequency Ωa can be coupled to any co-propagating

optical beam pairs with a frequency difference of Ωa. As a result, cascaded generation

of multiple Stokes and anti-Stokes beams with frequency-spacing of Ωa [58, 63] is

enabled. This is in contrast with the backward SBS, where the resonant frequency ΩB

is linearly dependent on the optical frequency of the pump beam ωp. Moreover, the

direction of the wavevector for the resonate longitudinal acoustic wave alternates be-

tween adjacent cascaded beam pairs in backward SBS processes. As a result, cascaded
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backward SBS is not observed in optical fibers.

In addition to cascaded frequency generation, multiple transverse acoustic modes

exist in typical optical fibers, corresponding to distinct modes of vibration, yielding

a rich FSBS spectrum [57]. The rich spectrum of the FSBS process provide many

interesting research topics such as high-speed optical delay using co-propagating pump

beams [96].

7.1.3 Acoustic-optical overlap

In previous research on FSBS, Kang’s work shows that the R(0(m)) acoustic resonance

enhances cascaded Stokes and anti-Stokes scattering [58, 63] in a phontonic crystal

fiber, where the cladding is made of air so that the sounds is also confined in a small re-

gion. The claim is that the tight confinement of both light and sound waves in the small

core of the PCF enables a large overlap between the fundamental transverse radial

acoustic and optical modes, thereby enhancing the acousto-optical coupling efficiency

and simultaneously increasing the FSBS resonance frequency up to the application-

suitable gigahertz frequency range [59, 63]. On the other hand, because the radial

acoustic waves R0(m) in standard single mode fibers (SMFs) are mainly confined in the

fiber cladding (typical diameter 125 µm), these guided acoustic modes in SMFs tend

to have a much wider spatial distribution than the core-confined optical field. For this

reason, it is believed that coupling between guided acoustic waves and optical waves

in SMFs is weak due to their partial spatial overlap [57, 58]. Likely for this reason,

there has been little research on FSBS in standard single-mode fibers.

However, I observer strong FSBS in a standard 2-km-long highly-nonlinear fiber

(HNLF, OFS Inc.) with a core/cladding diameter of 125 µm and an effective optical

mode area of 11.5 µm2. I observe multiple radially-guided acoustic resonances R0(m),

with frequencies ranging from 80 MHz (R0(2)) to 1.1 GHz (R0(23)) limited by the fre-

quency response of our detection scheme. Even though the acoustic waves are only
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loosely confined in the larger cladding area, I find that good overlap between acoustic

and optical modes is possible because the peak acoustic power is concentrated near

the fiber core for larger m. For our 2-km-long HNLF, the gain coefficient is observed

to be 34.7 W−1 at a frequency of 933.8 MHz (corresponding to R0(20)) when pumped

by a 1550-nm-wavelength continuous-wave pump beam with a power of 8 mW. This

value is more than two times larger than that obtained by Kang et al. [58] for the R0(1)

mode in a 10-m-long PCF. The pump power is limited in our case by the threshold

for backward SBS, which could be suppressed using a pulsed pump beam. The line-

shape of the FSBS resonances is studied for both the Stokes and anti-Stokes scattering

processes.

I observe asymmetric gain profiles, especially for the anti-Stokes side, which is

explained by interference between the optical Kerr effect and the FSBS process and

agrees with the prediction of the analytic solution to the coupled equations. I also find

a linearly increasing trend for the measured linewidth of the FSBS resonances from

425 MHz to 1.1 GHz for Stokes scattering.

7.2 Theoretical description of the FSBS and Kerr effect

In this section, I derive the coupled amplitude equations for the evolution of optical

waves in an optical fiber where both FSBS and the Kerr effect are important.

7.2.1 Acoustic-optical coupling equation for the radial guided acoustic modes

In the cylindric coordinates z,r and ϕ, the interactions of the acoustic density variation

ρ(r,ϕ, z, t) and the optical field E(r,ϕ, z, t) are described by the coupled equations Eq.
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2.6 and Eq. 2.7 [68]

∂ 2E

∂ z2
− n2

c2

∂ 2E

∂ t2
=

1

ε0c2

∂ 2PN L

∂ t2
(7.3)

∂ 2ρ

∂ t2
− (V 2

L
+Γ
∂

∂ t
)∇2ρ = ∇ ·−→f = −1

2
ε0γe∇2E2, (7.4)

where the speed of sound v in Eq. 2.7 is the longitudinal acoustic velocity VL . Here, we

assume the optical wave propagates along the z-direction with slow variation along

the polar coordinates r,ϕ.

Consider the interaction between a strong pump beam ωp and a weak signal beam

frequency downshifted by ωs = ωp −Ω with respect to the pump beam. In the FSBS

process, it necessary to consider all possible cascaded Stokes and anti-Stokes fields

with an equal frequency interval Ω generation via acoustic-optical coupling. A general

form of the optical field in the fiber is thus given by

E(r,ϕ, z, t) = Eo(r,ϕ)
∑

j

a j(z, t)ei[(k− jq)z−(ω0− jΩ)t]+ c.c., (7.5)

where Ep(r,ϕ) is the normalized transverse distribution of the optical fundamental

(HE11) mode, j is an integral representing the order of the cascaded optical fields in

the fiber (negative j’s refer to the Stokes fields, positive j’s refer to the anti-Stokes

fields, and j = 0 refers to the pump beam), a j is the slowly varying field amplitude of

j th order optical beam, q(Ω) is the propagation constant (frequency) of the acoustic

phonon and k− jq(ω0 − jΩ) is the propagation constant (frequency) of the j th order

optical field.

We now consider the acoustic waves and the associated nonlinear polarization.

In describing the acoustic wave, the nearly azimuthally symmetric radial profile of

the HE11 mode is considered neglecting the small azimuthal dependence. Including a

series of guided acoustic resonances generated over a broad frequency range for fibers
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with a large cladding diameter [57], the density variation of the mth-order acoustic

phonons is given in the form of

ρm(r,ϕ, z, t) = ρ0(m)(r)bm(z, t)ei(qmz−Ωm t) + c.c., (7.6)

where qm(Ωm) is the propagation constant (frequency) of the mth-order acoustic phonons,

and bm is the slowly-varying acoustic amplitude and ρ0(m) is the normalized radial

profile of the acoustic density variation of the mth mode R0((m), which is obtained by

solving Eq. 2.7 without the source term

∇2
r,ϕ
ρ0 −ω2ρ0 = 0. (7.7)

The solution is expressed by the Bessel Functions ρ0(m) ∝ Jm(qmr), with the dispersion

relation given in Eq. (7.1) [97]. The mode number m represents the number of ripples

in the cladding area.

The nonlinear polarization produced by the acoustic vibrations is given by Eq. (2.9)

as Pm = (ε0γe/ρ0)ρm [68]. Inserting Eqs. (7.5), (7.6) and the nonlinear polarization

Pm into Eq. (7.3) and considering all acoustic modes, we find that the amplitude

evolution of the jth-order optical field a j is described by

da j

dz
=
∑

m

i(γAma j−1

∑

h

a∗
h−1

ah+ γ
∗
Am

ai+1

∑

h

ah−1a∗
h
), (7.8)

where h is an integer representing the order of the optical fields. The FSBS coupling

coefficient γAm is given by

γAm =
ε0ω0γ

2
e
Q0(m)Q1(m)

2ncρ0

1

Ω2
m
−Ω2

Am
+ iΩmΓBm

, (7.9)

where ΓBm = ΓΩ
2
Am

is the resonance linewidth, ΩAm is the cutoff frequency for the mth
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radial mode, and the factors Q0(m) and Q1(m) take the form

Q0(m) = 〈E2
o
,ρ0m〉 ≡
∫ 2π

0

∫ a

0

E2
o
ρ0mrdrdϕ, (7.10)

Q1(m) = 〈∇2
⊥E2

o
,ρ0m〉 ≡
∫ 2π

0

∫ a

0

∇2
⊥E2

o
ρ0mrdrdϕ. (7.11)

The coupled equations (7.8) are solved for the case of a strong pump beam and a weak

single Stokes sideband of the mth-order. The output field amplitude is given by

am(L) = am(0)e
g(m) Ip/2 ≈ am(0)(1+ g(m) Ip/2), (7.12)

where L is the length of the optical fiber. The line-center gain parameter of the mth-
order FSBS Stokes resonance is given by

g0(m) =
ω0γ

2
e
|Q0(m)Q1(m)|

2n2c2ρ0ΓBmΩAm

, (7.13)

and the gain coefficient g(m) is given by g(m) = g0(m)L. The approximation is valid for

small gain g(m) Ip/2≪ 1.

We see that the magnitude of g0(m) in Eq. (7.13) is determined by the factors

Q0(m),Q1(m) and linewdith ΓBm. I will discuss acoustic damping mechanisms and

linewidth ΓBm in greater detail in Sec. 7.4. Now first take a look at the factors

Q0(m),Q1(m), which represent the ability of the optical field to generate the acoustic

excitation and for the acoustic excitation to scatter the incident field, respectively. The

profiles of the acoustic density variation ρ0(m)(r,ϕ) for different modes overlap with

the optical field quite differently. As a result, the values of the corresponding Q0(m)

and Q1(m) vary substantial for different modes.

We plot in Fig. 7.4 the spatial distribution in the r direction of the acoustic modes

and optical mode in a HNLF fiber. The optical field E(r,ϕ) is determined by solving

the boundary condition problem for the optical fundamental mode distribution [65].
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FIGURE 7.4: (a) Intensity of the fundamental optical HE11 mode (black line) and the

density variation of the acoustic mode R0(1) (red dash and dot line) and R0(20) (blue

dash line). (b) The transverse second derivative of the intensity of the fundamental

optical mode (black line) and the density of acoustic mode R0(1) (red dashed and

dotted line) and R0(20) mode (blue dashed line). The parameters for silica fibers are

[19, 97]: γe = 1.17,ρ0 = 2.20 × 103 kg/m−3 , VL = 5590 m/s. Also, we use ε0 =

8.85×10−12 F/m and ω0 = 2π×193.5 THz for 1550 nm laser beam. As I will discuss

in Sec. 7.2, ΓBm is a slowly increasing function of ΩAm and is approximately equal to

2π× 7.5 MHz over the range of our experiment

The acoustic field ρ0(m)(r,ϕ) is plotted for the fundamental mode m= 1 mode and for

m = 20. As clearly shown in the figure, the fundamental radial acoustic mode extends

over all the cladding area, and thus poorly overlaps with the core-concentrated optical

field. However, as the mode number increases, the acoustic density variations get

more and more concentrated into the first ripple around the core area. The overlap

between the optical field and the acoustic field is substantially increased for m = 20,

where the first ripple of the acoustic wave overlaps with the core area.

As expected, the calculated value for Q0(m),Q1(m) is substantially larger for mode

R0(20) (with resonant frequencyΩA(20) =933.8 MHz) than for mode R0(1) (with resonant

frequency ΩA(1) =30 MHz) in the HNLF. In fact, Q0(20) ∼ 4Q0(1) and Q1(20) ∼ 150Q1(1)

according to calculation. The FSBS gain parameters induced by these two modes are

given by g0(1) = 2.1× 10−3 W−1m−1 and g0(20) = 2.4× 10−2 W−1m−1. And the gain

coefficient gm is found to be 48 W−1 for m = 20 in a 2-km HNLF. This prediction is

three times larger than the experimentally observed value obtained in a 10-m-long
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small-core PCF (15 W−1) previous reported by Kang et al. [58].

7.2.2 Including Kerr nonlinearity

In the experiment of FSBS, I also observe the interplay with Kerr effect. This is because

the HNLF used in the FSBS experiment has a high nonlinear coefficient γl and a flat

dispersion curve that phase matches any nonlinear process for wavelengths around

1550 nm. As a result, strong Kerr nonlinearity occurs in the HNLF and it is necessary

to include the interference from the Kerr effect in the model for the evolution of op-

tical waves. The Kerr effect couples Stokes and anti-Stokes sidebands via parametric

amplification (also known as four-wave mixing, as discussed in Ch. 2.1.2). Consider-

ing only the nonlinear process due to the Kerr effect, I find that the evolution of the

slowly varying field amplitude is described by [68]

da j

dz
= iγK[(|a j|2+ 2

∑

p 6= j

|ap|2)a j + (2
∑

p,q,l 6=i;p+q−l= j

apaqa∗
l
eiθpql +
∑

p,q 6=i;2p−q= j

a2
p
a∗

q
eiθpq)]

(7.14)

where p, q, l, j are integers representing the order of the optical fields. The Kerr coeffi-

cient γK is denoted by γK = (2nε0c)γI with nonlinear coeffecient γI = 11.7 km−1W−1

for the HNLF. Because of the small frequency difference between the pump and the

sidebands (on the order of 1 GHz) and the near-zero dispersion of our HNLF at 1550

nm, the parametric processes are phase matched. Thus, we take θpql,θpq ≈ 0.

Now consider both the FSBS and Kerr effect in the HNLF and describe the evolution

of the optical field amplitudes by combining both Eq. (7.8) and (7.14). We have a

set of coupled evolution equations for the optical field, where each of the cascaded

Stokes/anti-Stokes beams are coupled to every other order in the series.

Solutions can be find for the case where the Stokes and anti-Stokes beams are weak

compared to the pump beam. In the non-depleted-pump condition, energy transferred

out of the pump beam is small. In this case, the higher-order Stokes and anti-Stokes
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beams are much weaker than the first-order beams and thus can be ignored. The

nonlinear coupled equations are simplified to a set of equations governing only the

amplitudes of the first-order Stokes wave a−1 and the anti-Stokes wave a1. The cou-

pled equations are given by

da−1

dz
+
α

2
a−1 = i
∑

m

(ξma−1 + κma∗
1
), (7.15)

da1

dz
+
α

2
a1 = i
∑

m

(ξ∗
m

a1 + κ
∗
m

a−1), (7.16)

where ξm = |a0|(γ∗Am
+ 2γK) and κm = a2

0
(γ∗

Am
+ γK) are coupling coefficients for each

acoustic mode m,α is the fiber loss and a0 is the amplitude of pump, which I take as a

real constant without loss of generality.

Equation (7.15) is a pair of coupled equations that describe comprehensively the

evolution of the optical waves inside the HNLF. When considering the initial condition

a−1|t=0 = a−1(0) and a1|t=0 = 0, and ignoring the fiber loss (α = 0 ) the solution to

Eqs. (7.15)and (3.15) are given by

a−1(z) = a−1(0)[cosh(smz) + i
ξm

sm

sinh(smz)], (7.17)

a1(z) = i
ξ∗

m

s∗
m

a∗−1
(0) sinh(s∗

m
z), (7.18)

where sm =
p

κ
2
m
− ξ2

m
.

The result is used to describe FSBS without the Kerr effect by setting γK = 0, where

a−1(z) = a−1(0)(1+ iξmz), (7.19)

a1(z) = ia∗−1
(0)κ∗

m
z. (7.20)

The power of each frequency component is given by Pk = 2neffε0c|ak|2 . Using this

definition and Eq. (7.19), the optical powers are P−1(z) = P−1(0)[1 + 2a2
0
Im(γAm)z +
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FIGURE 7.5: Frequency dependence of the Stokes/anti-Stokes gain near the R0((20)

resonance at 933.8 MHz. Stokes beam gain without (a) and with (c) the Kerr effect.

Anti-Stokes gain without (b) and with (d) the Kerr effect.

a4
0
|γ2

Am
|z2] and P1(z) = P1(0)a

4
0
|γ2

Am
|z2. We notice that the FSBS coefficient is a function

of frequency Ωm in Eq. (7.9), so that both P−1(L) and P1(L) have Lorentzian shapes

owing to the term (ΓBm/2)
2/[∆Ω2 + (ΓBm/2)

2] in Im(γAm) and |γAm|2 of Eq. (7.17)

with ∆Ω= Ωm−ΩAm .

We determine the output gain spectrum of the Stokes and anti-Stokes beams with

and without the Kerr effect using Eqs. (7.17) and (7.19), as shown in Fig. 7.5. The

power of the Stokes and anti-Stokes beams are normalized to the input power of the

Stokes beam P−1(0) . The lineshapes at both the Stokes and anti-Stokes frequencies

are Lorentzian without the Kerr effect, as discussed above. However, the lineshapes be-

come asymmetric due to the contribution of the Kerr effect to the coupling coefficients.

The Kerr coefficient γK is pure real and its contribution to ξm is 2 times larger than

to cm, explained by the nonlinear phase evolution along the fiber. It is also observed

that the Kerr nonlinearity distorts the anti-Stokes resonance more than the Stokes res-

onance, which is due to the absence of an initial anti-Stokes beam. The experiment

results shown in the next section are consistent with these theoretic expectations.
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7.3 Experiment and results

In the experiment, I use a dual-module Mach-Zender Modulator (DMZM) to generate

both the pump and the probe beams. A electrical sinusoid wave and its 90 degree

phase-shifted version are feed into the two modules of the DMZM respectively. In this

way, a single-frequency optical sideband is generated with a frequency shift equal to

the modulation wave frequency. The frequency difference of the carrier and sideband

stays stable even if the source DFB laser experience a frequency drift, and enables

accurate measurement of the FSBS bandwidth.

To spectrally resolve the probe beam and the pump beam separately, we gener-

ate a reference beam from the same laser source using a single-module Mach-Zender

modulator (SMZM) and measured the beat signal arising from their interference. By

shifting the frequency of the reference beam away from the pump beam, I am able to

measure the Stokes and anti-Stokes signals separately. The setup is shown in Fig. 7.6.

In the experiment, I scan the probe beam frequency by changing the modulating

electric wave frequency and measure the magnitude of the beat signal between the

probe and the reference beam. In this way, we are able to resolve the FSBS resonance

spectrum. It is desirable to increase the pump power as high as possible for large

FSBS gain. However, once the input power reaches the backward SBS threshold, the

intensity of the pump beam becomes depleted, thus causing the FSBS gain to saturate

[44]. As a result, I launched a maximum pump power of 8 mW into the fiber, which

is the measured backward SBS threshold for our HNLF. This limitation can be avoided

using a pulsed pump beam with pulse duration <10 µs. In doing that, the spatial

pulse width is smaller than the fiber length. As a result, the spatial overlap between

the pump beam and the backward SBS signal beam is reduced.

The gain spectra of the first-order Stokes and anti-Stokes beams are shown in Fig.

7.7, with the theoretical prediction of Eq. (7.15) considering the fiber loss (0.76
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FIGURE 7.6: The experiment setup of FSBS in HNLF. DMZM, dual-module Mach-Zender

modulator; SMZM, single-module Mach-Zender modulator; EDFA, erbium-doped fiber

amplifier; FBG, fiber Bragg grating; FPC; fiber polarization controllers; PR, photore-

ceiver; SA, electronics spectrum analyzer. Seed beam from a DFB laser is modulated

by a DMZM (FTM7921ER, Fujitsu, Inc). Sinusoid signals from an electric signal gen-

erator are split into two sine waves with a 90◦ phase difference. Modulation of the

two optical paths in the DMZM with these electrical signals results in the generation

of a single sideband beam whose frequency is shifted from the carrier beam by the

sine-wave frequency. Because both the probe and the pump beams are generated from

a same laser, their relative frequency does not jitter. The pump and the probe beams

are then injected into the 2-km HNLF and interact via the FSBS process. Another part

of the beam from the DFB laser is modulated by a SMZM (EO SPACE Inc.). The bias

voltage of the SMZM is set to suppress the carrier frequency and I filter out one of the

sidebands using a fiber Bragg grating (bandwidth 0.19 nm). The other sideband is

then amplified and goes through a 2-km-long single mode fiber (SMF) for optical path

balancing, and then it is mixed with the pump beam and the probe beam. A 12-GHz

fast photoreceiver is used detect the interference and an electric spectrum analyzer

resolves the beat signal.
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FIGURE 7.7: FSBS Stokes and anti-Stokes gain spectra with a pump power of 8 mW.

Blue solid line is experimental results and red dashed line is theoretical simulation.

dB/km at 1550 nm) in solving the coupled amplitude equations. I observe a series

of resonance peaks corresponding to the acoustic frequencies in the experiment from

425 MHz to 1.1 GHz (the discontinuity at 700 MHz is due to the operation gap for

the two 90◦ phase shifters). The measured resonance frequencies show good agree-

ment (root-mean-square error=0.36 MHz) with the numerical predictions, as shown

in Table 7.1, where I adjust the fiber diameter to 127 µm to find the best agreement.

The FSBS Stokes gain G = Pout/Pin (signal output power Pout = P−1(L) for Stokes

beam and P1(L) for anti-Stokes beam, signal input power Pin = P−1(0) ) is found to

be 1.32 at the resonant frequency of 933.8 MHz with a pump power of 8 mW, giving

a gain coefficient of 34.7 W−1, which agrees with the simulated prediction in Fig.

7.7(c). The spectra in Fig. 7.7(a) also clearly shows that G for the Stokes beam is

a function of the acoustic mode number, taking on its largest value in the gigahertz

range where the acousto-optical coupling is maximized. The linewidth is also different
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Table 7.1: Measured and calculated FSBS resonant frequencies in the NHLF. A cladding

diameter of 127 µm is used in the calculation.

Mode number m 11 12 13 14 15 16 17 18

Experiment ΩAm/2π (MHz) 462.2 508.2 555 602.8 650 745 792.1 839.5

Theory ΩAm/2π (MHz) 460.7 508.1 555.4 602.7 650 744.6 791.9 839.2

Mode number m 19 20 21 22 23 24 25 26

Experiment ΩAm/2π (MHz) 886.5 933.8 980.3 1026.5 1074.3 1121.3 1169.5 1216.4

Theory ΩAm/2π (MHz) 886.5 933.8 981.1 1028.4 1075.6 1122.9 1170.2 1217.5

for each resonances, showing that the mode number also affects the FSBS resonance

bandwidth, as discussed below. The measured largest gain appears at the frequency

of 933.8 MHz (corresponding to mode R0(20)), agreeing with theoretical prediction. A

separate calculation corresponding to the parameters for standard single mode fiber

(SMF-28) reveals that the largest gain occurs for the R0(8) mode at 275 MHz with a

much smaller gain (γ0(8) = 8×10−3 m−1W−1) [58], demonstrating that a small change

in core size as in our HNLF gives rise to a large increase in G. The fact that I observe

good agreement between theory and experiment indicates that ignoring the difference

in acoustic velocities in the core and cladding is a reasonable assumption.

7.4 Linewidth discussion

Figure 7.8(a) shows the measured Stokes beam resonance around the acoustic fre-

quency 933.8 MHz. A Lorentzian fit yields a linewidth of 7.5 MHz (full width at half

maximum or FWHM). In this way, I measure the linewidth of the FSBS resonances in

the frequency range from 425 MHz to 1.1 GHz. Figure 7.8(b) shows the dependence

of ΓBm on the acoustic frequency. The results are fit to a linear model given by

ΓBm = 2π× [0.004(Ωm/2π) + 4.2 (MHz)], (7.21)

with a reduced chi-square value of 0.35 MHz.

The linewidth of the FSBS resonances depend on the various acoustic damping

mechanisms in the HNLF, mainly depend on the material, structure and deformations.
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FIGURE 7.8: (a) The spectrum of the Stokes resonance for FSBS at 933.8 MHz. Exper-

iment data are shown as blue dot and black dash line is the Lorentzian fitting. The

linewidth is ∼ 7.5 MHz at frequency 933.8 MHz. (b) Measured linewidth (blue dot)

of the FSBS resonances from 425 MHz to 1.1 GHz, linear fitting is shown in red line.

I classify the contributions to the linewidth by an inhomogeneous term, a viscosity

damping term, and a surface damping term [98]

ΓBm = Γinhomo+Γvisosity+Γsurfae, (7.22)

respectively. The inhomogeneous term comes from structural non-uniformities along

the fiber length, which plays an important role in the 2-km HNLF. The variation of

the fiber diameter δφ causes a change in the acoustic mode frequency and hence

broadens the resonance linewidth. As shown in Ref. [58], Γinhomo = (δφ/φ)Ωm . The

first term in Eq. (7.21) accounts for this effect. The coefficient of the linear parameter

is consistent with the specified variation in the fiber cladding diameter of ±0.5 µm.

The bulk viscosity damping term Γvisosity is inversely related to the viscosity life-

time τvisosity of acoustic phonons [99]. This term is likely to be a small contribution

to the total linewidth in HNLFs. Previous estimation of the viscosity damping contri-

bution is on the order of 100 kHz [58, 98], much smaller than the non-uniformity

term. Therefore, I neglect this term for the HNLF.

Damping due to acoustic absorption at the surface between the cladding and the

plastic fiber jacket is another important contribution in our HNLF. For protecting the
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fiber, there is a soft polymer coating between the cladding and air, which strongly

damps acoustic vibrations [58]. Damping of the acoustic radiation as it passes into

the polymer coating only depends on the radial displacement, which is nearly constant

for higher-frequency modes [95, 98]. As a result, Γsurfae is nearly a constant, and is

determined to be 2π×4.4±0.3 MHz from the experimental fit. Based on this scaling, I

conclude that the dominant contribution to the linewidth is structural non-uniformities

along the fiber and surface damping due to the fiber jacket.

7.5 Conclusion

I observe strong FSBS in a 2-km-long HNLF pumped by a monochromatic pump beam

with a power of 8 mW. Although the coupling efficiency of the optical and acoustic

fields was considered low due to poor spacial overlapping, I verify both experimen-

tally and theoretically that the spacial overlapping improves for higher order acoustic

vibration modes, which leads to strong FSBS resonances at gigahertz range. A large

FSBS gain coefficient of 34.7 W−1 is obtained at the frequency of 933.8 MHz. Other

than that, multiple acousto-optical resonant peaks are observed for both the first-order

Stokes and the anti-Stokes beams. The resonant frequencies of the FSBS process for

the Stokes beams extend from 80 MHz (corresponding to R0(2) to 1.1 GHz (corre-

sponding to R0(23)), limited by the bandwidth of our detection method. Our results

agree well with the predicted frequencies of the guided acoustic modes trapped in

the fiber. The observed FSBS gain profile is well explained by the theory of the field

evolution in the HNLF, where both FSBS and the Kerr effect are considered. The ana-

lytical solutions for the coupled equations are obtained, which explains the observed

asymmetric resonances and is especially pronounced for the anti-Stokes resonances.

I also find a linear increasing trend of the linewidth for the FSBS resonances, which

is accounted for by contributions from the structural non-uniformities along the fiber
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and surface damping. The results open up new possibilities for FSBS in standard fibers

for applications such as slow and fast light [96].
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8

Conclusions and outlook

8.1 Conclusions

In this thesis, we introduce the all-optical control of the group velocity in optical fibers

using the nonlinear process of stimulated Brillouin scattering. We include both the

fundamental theory of the nonlinear coupling between acoustic and optical waves in

a cylindrical waveguide (optical fiber) and the applications of group velocity control

in a slow-light optical buffer and a large group velocity disperser. The most salient

results in this thesis can be summarized as follows:

• Backward SBS and application in group velocity control.

In the fundamental theory part, we derive an equation for the wavevector ex-

perienced by the signal beam under the modulation of SBS resonances, and

demonstrate the tailoring of the wavevector profile using multi-line and broad-

band pump beams. As one of the earliest groups to demonstrate the fundamental

principles for spectrally tailored SBS-based group velocity control, our work has

made SBS slow light a very popular research topic in the recent years, giving rise

to many interesting applications.
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Among the SBS slow light applications, one of the most important is the broad-

band optical buffer. We are among the groups that first demonstrate broadband

optical buffer with 10’s of GHz bandwidth. In addition, we design the profile

of the SBS and obtain an optimized shape for optical buffer performance. In

the broadband optical buffer, we use a broadband pump beam with tailored

spectrum profile to generate a flat-topped SBS gain profile, which minimizes

the pulse distortion and improves the delay. Particularly, we develop a novel

method of noise current modulation that jitters the frequency of the pump beam

on a fast temporal scale of sub-ns, making the pump beam truly broadband even

for fast decaying phonons on the ns scale. The fast noise modulation method

significantly stabilizes the SBS gain and improves the signal fidelity. Using this

method, we obtain a tunable fractional pulse delay up to 1 and a peak signal to

noise ratio of 5.2.

We also find in a broadband SBS slow light buffer that modulation instability

is the dominate competing effect in an anomalously dispersive LEAF fiber. The

modulation instability depletes the power from the pump beam and limits the

SBS gain-bandwidth product to 126 dB·GHz. This is the first report of the mod-

ulation instability competing in a broadband SBS system.

We demonstrate the generation of a giant group velocity dispersion using SBS

in optical fibers. This is the first demonstration of all-optical control of group

velocity dispersion using SBS and a series of future work is expected to follow. In

the GVD experiment, we place a gain resonance next to an absorption resonance

to produce a slope for the group velocity. The SBS profile is tailored so that the

GVD parameter is roughly constant over the spectrum range of ΓB. We obtain

a large GVD parameter of 7.5 ns2/m, which is 109 larger than the value of a

single-mode fiber. The large GVD enables dispersion of a ns optical pulse, which
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is far beyond the scope of other GVD techniques. The technique of GVD control

can be applied to any wavelength that is transparent in optical fibers and offers

a wide range of tunability.

• Forward SBS observation and characterization.

Based on the derivation of backward SBS, we extend the basic SBS theory to

describe the observed efficient forward SBS resonances in a highly nonlinear

fiber, where Kerr nonlinearity plays an important role. We find in a highly non-

linear optical fiber that a strong resonance occurs at 933 MHz with a large gain

coefficient of 34.7 W−1. This is due to a good overlap between the guided ra-

dial acoustic and optical waves in the single mode fiber, despite the fact that

the acoustic wave is only loosely confined in the cladding area while the optical

wave is tightly confined in the central core. We also find that the Kerr effect

induces asymmetry to the SBS resonance profiles and enhances the anti-Stokes

beam via 4WM. This finding revokes the previous ideal that FSBS is inefficient

due to lack of overlap between acoustic and optical fields in single mode fibers,

and opens up possibility for FSBS applications in inexpensive commercial optical

fibers.

8.2 Outlook

There are many possible future directions for the work presented here. For example,

group velocity can also be controlled using FSBS. In FSBS, since the pump beam travels

with the signal beam, changes in the pump beam power will immediately be reflected

onto the signal beam, enabling faster controlling. A pulsed pump beam can also be

used to modulate the pulsed signal beam to lower the power requirement. Moreover,

by utilizing the depletion of the pump pulse, logic operations can be built based on

the interplay between the pump pulse and the signal pulse.
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Moreover, the noise current modulation techniques applied to the broadband SBS

optical buffer in Chs. 5 and 6 can be immediately applied to SBS-based GVD control

described in Ch. 4. This technique will allow for complete control of GVD in optical

materials over a wide range of pulse parameters. For the SBS-based GVD investigated

here, the resonances can be broadened to the 10’s of GHz range by tailoring the pump

spectrum [9, 16, 42], thereby realizing large GVD for pulses from the nanosecond to

the sub-100-ps range. It will also be interesting to characterize the pulse distortion

and data fidelity for such a tunable GVD system.

Finally, there is sustained progress in realizing chip-scale SBS-based devices [100–

102] which will allow compact slow light and dispersive devices. In the quantum

regime, it will be possible to delay and disperse single-photon wavepackets without

adding excess noise if the SBS device is cooled to its quantum mechanical ground

state, which is now within reach [103].
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Appendix A

Operation principles of a Mach-Zehnder

modulator

Mach-Zehnder modulator is a electro-optic modulator that converts electric signals

into optical intensity variations. Mach-Zehnder modulators use nonlinear materials

that exhibit electro-optic effect to modulate optical waves. A commonly used nonlinear

material in Mach-Zehnder modulators is the LiNbBO3 crystal, which demonstrates

Pockles effect and changes its refractive index with the applying of an electric field. In

the operation range, the refractive index change is proportional to the applied electric

voltage. As a result, the phase of the optical waves transmitted through the crystal

can be modulated by the electric voltage applied. This phase modulation transmission

path is duplicated with the applied voltage sign flipped, and these two optical paths

are combined to form a Mach-Zehnder interferometer, as shown in Fig. A.1.

An input optical field E0 is first split into two waves with amplitude E0/2. After

propagation in the crystals, the split waves pick up a phase ϕ with opposite signs. The

phase modulated waves are then combined at the output. The output wave E is given

by
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FIGURE A.1: Configuration of a zero-chirp Mach Zenhder modulation

FIGURE A.2: Transmission of a MZM as a function of applied voltage

E = E0/2exp(iϕ) + E0/2exp(iϕ) = E0 cos(ϕ). (A.1)

And the output intensity I is given by

I = I0 cos2(ϕ). (A.2)

The transmission of a MZM oscillates with ϕ. Because the phase modulation ϕ is

proportional to the applied electric voltage, the intensity of the MZM output optical

beam is controlled by the applied voltage. The proportionality is expressed by ϕ =

πV/(2Vπ), where Vπ is the characteristic voltage for the MZM to go from full open to

full close, as shown in Fig. A.2.

An electric signal sequence is encoded onto the optical beam with high fidelity if

the voltage levels corresponding to the “0” and “1” are set to the close and open points

of the MZM. In this case, small fluctuations of voltage barely change the transmission

of the MZM. This encoding scheme is used in the generation of signal pattern sequence

in Chap. 5 and 6.
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