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Abstract

Ocean-based wireless sensor networks serve a variety of important purposes, includ-

ing monitoring and detection of tsunamis and seismic events, tracking the migration

of endangered species, drug interdiction, and anti-submarine warfare. Developing

energy harvesting devices that make these networks self-sufficient allows for reduced

maintenance cost and greater reliability. Many methods exist for powering these

devices, including internal batteries, photovoltaic cells and thermoelectric genera-

tors, but the most reliable method, if realized, would be to power these devices with

an internal kinetic energy harvester capable of reliably converting wave motion into

electrical power. Designing such a device is a challenge, as the ocean excitation envi-

ronment is characterized by shifting frequencies across a relatively wide bandwidth.

As such, conventional, linear kinetic energy harvesting designs are not capable of

reliably generating power. Instead, a nonlinear device is better suited to the task,

and the objective of this dissertation is to investigate the behaviors of devices that

could be employed to this end.

The purpose of this dissertation is to build a comprehensive set of analysis tools

that may be used in the design of an ocean energy harvester, and to apply those

tools in the preliminary design optimization of a nonlinear energy harvester design.

The first component of this dissertation focuses on the development of theoretical

and computational techniques that can be used to accurately and efficiently char-

acterize the response of a strongly nonlinear device through guided exploration of

iv



the parameter space. The second half of the dissertation applies these techniques in

conjunction with statistical methods to conduct a stochastic design optimization of

a strongly nonlinear energy harvesting device for various sea states.

The first half of this dissertation focuses heavily on the theory of approximation

methods and the development of computational tools to efficiently analyze the results

of these methods. These techniques are applied in the analysis of the torque-excited

pendulum and the nonlinear equations of motion of a piezoelectric inertial generator

as illustrative examples. Using the example of a torque-excited pendulum, methods

for obtaining approximate representations of the dynamical behavior of a rotating

system are investigated and new insights regarding the inefficacy of conventional

simplifying assumptions are found. It is shown that the conventional simplifying

assumption of harmonic behavior is inadequate in the study of a rotating system,

and an alternative method is presented to capture the rotating dynamics. Using the

nonlinear energy harvester equations as an example, numerical tools are developed

to conduct guided explorations of the parameter space and numerically quantify the

parametric uncertainty of the results, eliminating the need for complex symbolic

expressions of uncertainty and the reliance on closed-form solutions for the analysis

of these systems.

In the second half of the dissertation, these techniques are applied in the study of a

proposed nonlinear energy harvesting device. A phenomenological investigation and

parametric study of the proposed device are conducted, and the insights drawn from

the behavior of the system in simplified conditions are used to conduct a quasi-Monte

Carlo investigation of the device in various sea states and to conduct a stochastic

optimization of the design parameters to provide a first-order working estimate for

the construction of a physical experiment.
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In loving memory of my father, and of his jokes about the Thermos keeping hot

stuff hot and cold stuff cold.
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1

Introduction

Ocean-based autonomous wireless sensor networks serve a variety of important func-

tions in scientific research, civil disaster prevention and national security. These

sensor networks are typically comprised of tethered or untethered buoys, ranging in

size from several meters in diameter in the case of tsunami warning buoys to less than

a quarter of a meter in the case of sonobuoys. Such networks have been employed in

tasks including the study of whale migration, observation of weather patterns, track-

ing and detection of submarines, and providing early warning for tsunami events.

Each node in the sensor network collects and transmits data, expending electrical

energy in the process. While advances in low-power sensors have led to devices that

expend very little energy in collecting and transmitting data, the energy reserves of a

sensor node remain finite in the absence of an energy capture mechanism. Developing

such a mechanism is the focus of this work.

Figure 1.1 shows a schematic of a typical wireless sensor network with which this

research is concerned. Such a network would typically be comprised of many small,

untethered buoys with low-powered sensing equipment. Photovoltaic cells may be

used to power some of the device components but in certain operating environments
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Figure 1.1: A wireless sensor network of self-powered sensor buoys.

solar power is too unreliable to provide a reliable source of power. An alternative to

solar power is to extract electrical power from the kinetic energy of the ocean waves

through an electromechanical device known as an energy harvester. Kinetic energy

harvesters take many forms, ranging from magnet-coil designs [2] to piezolaminated

beams [3], but fundamentally, their operating premise is the same: the device con-

verts mechanical energy to electrical energy through a transduction mechanism such

as electromagnetism or piezoelectricity. Fundamental to the understanding of these

devices is the notion of coupling; any electromechanical system exhibits coupling

behavior between its electrical and mechanical components. Coupling behavior can

effect the dynamics of the system in unexpected ways [2, 3, 4, 5], so it is important

to consider the dynamic effects of coupling in any energy harvesting investigation.

Harvesting energy from ocean waves presents additional challenges due to the

excitation environment. Figure 1.2 illustrates the nature of the ocean spectral envi-

ronment. The spectrum is comprised of a relatively broad band of low frequencies
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Figure 1.2: Wave spectral data as reported by Pierson and Moskowitz [1].

that vary with wind speeds. The shifting nature of the frequency content is the

primary obstacle in designing a device to capture energy from this spectrum. It

has been demonstrated in the literature that nonlinear devices are well-suited to

the task of energy capture in broadband, shifting frequency environments [2, 3, 4];

thus a nonlinear device for kinetic energy capture is proposed and analyzed in this

dissertation.

Figure 1.3 shows a conceptual drawing of an energy harvesting device intended

for ocean applications. Inspired by the self-winding wristwatch, the device relies

on its ability to collect the intermittent bursts of energy provided by ocean waves

to maintain energy in the connected electrical energy storage devices. The stored

energy is then used to operate the sensors and transmit collected data.
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Figure 1.3: Conceptual design of an ocean energy harvester in a wireless sensor
buoy.

1.1 Research contributions

The primary objective of this research is to advance the process of designing an ocean

energy harvester from the conceptual design shown in figure 1.3 to a set of concrete

design recommendations for a prototype of the device that could be employed in

an ocean environment. In the course of studying this problem, several tangential

discoveries were made, which are detailed within this section.

1.1.1 Detailed comparison of harmonic and anharmonic generating solutions ap-
plied to the torque-forced pendulum

Chapter 3 contributes an improved strategy for averaging strongly nonlinear sys-

tems and provides a detailed justification for choosing the new approach. The work

presents a qualitative comparison of two generating solutions, shown in figure 1.4, as

applied to the method of averaging using the example of a torque-excited pendulum.
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Figure 1.4: Contours of harmonic (a) and anharmonic (b) generating solutions and
potential functions.

Prior work by Yuste [6] conducts a quantitative comparison of similar methods in the

context of generalized harmonic balance; this work adds a visual element to the argu-

ment and clearly demonstrates the importance of selecting an appropriate generating

solution when using the method of averaging. In the analysis of a torque-excited pen-

dulum, one may opt for a harmonic generating solution or an anharmonic generating

solution derived from the solution of the unforced pendulum equations. It is shown

that the harmonic generating solution provides poor results in comparison to the

anharmonic generating solution; in particular, the harmonic solution suffers from

accuracy problems at large amplitudes and does not capture the rotating solutions

that occur for higher amplitude forcing near resonance. In contrast, the anharmonic

solution compensates for the amplitude dependence of the solution period, increasing

accuracy at high amplitudes, and it captures the rotating solution organically.
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1.1.2 Efficient numerical methods for the analysis and uncertainty quantification of
nonlinear energy harvester models

Chapter 4 contributes a simplified method for parameter studies and uncertainty

quantification of the nonlinear energy harvester models of references [7, 3, 8, 4]. To

date, the energy harvesting community has not embraced the use of numerical meth-

ods beyond numerical integration of the ordinary differential equation models in the

energy harvesting literature, and most parameter studies are conducted using ana-

lytical (symbolic) methods to find a closed-form approximation of the periodic orbits

of the system. A major drawback to these approaches are extreme computational

expense for detailed studies of the parameter space and unnecessarily complex sym-

bolic computations, respectively. Computing the periodic orbits by psuedospectral

collocation and employing the techniques of numerical continuation and bifurcation

analysis surmounts both of these challenges by greatly reducing computational effort

and removing the need for unwieldy analytical solutions. Additionally, conducting

uncertainty quantification numerically avoids additional complex symbolic compu-

tations and can be performed at minimal additional computational cost.

1.1.3 Derivation and study of a mathematical model for a horizontal pendulum

Chapter 5 presents a novel device with interesting physical behaviors with a proposed

application as the mechanism of kinetic energy capture in an ocean-based energy

harvester. The device is inspired by the self-winding wristwatch, a proven energy

harvesting technology that has been in use for nearly a century [9]. The chapter

derives an equation of motion for the system and conducts a phenomenological and

parametric study of its behaviors. Insights are drawn and applied to the design

analysis in the subsequent chapter.
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1.1.4 Design analysis and optimization of a proposed energy harvester design

Chapter 6 utilizes a geostatistical approach to conduct a study of the parameter space

for the device proposed in chapter 5 in an ocean excitation environment. A represen-

tation of deep-water ocean random waves is presented, and analytical expressions for

the surface angle of the water and its temporal derivatives are presented and used to

numerically simulate the behavior of the system. A quasi-Monte Carlo investigation

is conducted in the parameter space to construct a response surface, which is then

fit by kriging (Gaussian process regression) [10]. This information is then used to

make recommendations for the design of an energy harvesting prototype from this

device.

1.1.5 Classification of price dynamics in equities markets

Chapter 7 focuses on an entirely different problem - characterizing the short-term

behavior of electronically traded securities. In this investigation, a new reduced-

order vector autoregression model is proposed and compared to an established model

from the literature. It is demonstrated that price formation is largely driven by

the forces of supply and demand on short time scales. The primary objective of

this investigation was to find a reduced feature space that could be used to form

a discriminative classifier for price movements; a feature space consisting of two

demand variables was constructed and it was shown that price movements are clearly

separated in the proposed feature space.

1.2 Organization of this dissertation

This dissertation is organized as follows: In chapter 2, a modeling framework for

physical systems encountered within the dissertation is developed and discussed.

Important theorems are proved and references are provided for the reader. Chapter

3 then employs the methods discussed in chapter 2 to investigate the dynamics of
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the driven vertical pendulum. Both the librating and rotating solutions are stud-

ied, and the influence of the generating solution on the quality of results obtained

is highlighted. Chapter 4 studies the numerical energy harvester equations using

numerical methods. Parameter studies and uncertainty quantification are conducted

numerically and it is demonstrated that numerical methods are capable of obtaining

the same results as analytical methods without the need for a complicated analytical

solution. Chapter 5 focuses on the development of a mathematical model for an

ocean energy harvester, employing techniques from the prior chapters in the analysis

of the device. Chapter 6 conducts a quasi-Monte Carlo investigation of the device

under random forcing in a wave environment simulated by the Pierson-Moskowitz

spectrum. Finally, Chapter 7 presents a study of the electronically traded fund QQQ

in the NASDAQ market. Price formation on short time scales is studied and the law

of supply and demand is observed even in the highly chaotic environment of the

market microstrucutre.
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2

Methods

Before presenting any investigations conducted in this dissertation, it is useful to

develop a common modeling framework to give the reader a top-level view of the

thought process behind each chapter. Despite any disparities in topical matters be-

tween the chapters, there is a consistent approach to the treatment of dynamical

systems in both modeling and analysis throughout the dissertation. Beginning with

a physical system, equations of motion are derived from first principles. These equa-

tions are investigated with numerical simulation, which allows for the visualization

of dynamic behavior for a given set of parameters and initial conditions. Reasonable

parameter values are typically determined by constructing an experiment and mea-

suring or fitting the parameters of the experimental device to the model. To obtain

a more global understanding of the system’s behavior, it is then analyzed using ei-

ther analytical or numerical methods such as the method of averaging or numerical

continuation.
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2.1 Mathematical models of physical systems

The first task in analyzing any complex system is to build a working model of the

system. When modeling a system, several considerations must be made regarding

the detail and complexity of the model. If too complex a model is chosen, analysis

becomes prohibitively difficult, while if too simplistic a model is chosen analysis may

provide misleading, oversimplified results. In practice we seek the optimal tradeoff

between the two.

Mathematical modeling is an enormously general term that encompasses a wide

swath of the applied mathematical community. The author recommends the M.H.

Holmes texts [11, 12] for introductions to the foundations of applied mathematics and

perturbation methods, respectively. The text by Bender and Orszag [13] is also highly

recommended. Hinch [14] is another excellent reference on perturbation methods.

For the statistical work within the dissertation, and in particular the work found in

chapter 7, the machine learning text by Bishop [10] is the definitive reference.

The literature on mathematical modeling is quite broad, and it is necessary to

narrow the focus of discussions on mathematical modeling to dynamical systems

theory for the purposes of this dissertation. Nestled at the intersection of physics and

mathematical modeling, the field of dynamical systems arose from the work of Henri

Poincaré and his contemporaries in the late 19th and early 20th centuries as they

sought to develop sophisticated mathematical tools to further the study of celestial

mechanics. As the field has evolved in the past century, the tools and methods

developed by Poincaré and others have been adapted for use in fields ranging from

biology to quantum mechanics. Still, the most rigorous implementation of these

theories is found in the physical sciences, providing scientists with the ability to

model physical phenomena with a high degree of accuracy. Recommended texts

include Greenwood’s text on advanced dynamics [15] and Gelfand and Fomin’s text
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on the calculus of variations [16].

2.1.1 Hamilton’s Principle or the Principle of Stationary Action

The standard approach to modeling physical systems taught in undergraduate courses

is to balance external forces with inertia in accordance with Newton’s Second Law1,

ÿ

Fx “ m:x, (2.1)

where the overdot p9q indicates a derivative with respect to time. By substituting

mathematical representations of external forces derived from empirical observations

and constitutive relationships, one arrives at an equation of motion in x that describes

the motion of physical system in question.

While Newtonian mechanics provides an excellent framework for modeling simple

physical systems, it quickly becomes unwieldy as the complexity of the physical sys-

tem increases. Modeling of more complex systems is typically done using a framework

known as Hamilton’s principle, or the principal of stationary action.

Definition 2.1 (Principle of Stationary Action). The principle of stationary action

states that the action Srqptqs, defined as

Srqptqs “
ż tf

t0

Lpqptq, 9qptq, tq dt (2.2)

is stationary at q˚ptq, the true trajectory of the system. That is, q˚ is the solution

of the functional equation

δS
δqptq

“ 0. (2.3)

1 Note: this is the simplest possible formulation of N2; there exist others.
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The interpretation of Hamilton’s principle is that natural systems seek to expend the

least energy possible in achieving any sort of reconfiguration: in other words, nature

seeks the path of least resistance. This provides a rigorous mathematical framework

under which the equations of motion of physical systems can be derived from first

principles. Given expressions for the kinetic and potential energy of a system, one

may use Hamilton’s principle to determine equations of motion in an arbitrary set

of coordinates.

A result of Hamilton’s principle are the Euler-Lagrange equations, which form a

necessary condition for the optimality of a trajectory as defined under the framework

of stationary action. As an example of how the kinetic and potential energy of the

system can be used to derive equations of motion, it is illustrative to derive the

Euler-Lagrange equations, and provide a simple example.

Lemma 2.2 (Euler-Lagrange Equations). The Euler-Lagrange equations

d

dt

ˆ

BL
B 9q

˙

´
BL
Bq
“ 0 (2.4)

are a necessary condition for stationary action.

Proof. Denote the optimal action by

S˚ “ Srq˚s “
ż tf

t0

Lpq˚, 9q˚, tq dt; (2.5)

thus, the Lagrangian L˚ “ Lpq˚, 9q˚, tq minimizes the action because q˚ptq is the path

of least action. Then a small perturbation from the optimal path, denoted as εhptq,

yields a Lagrangian Lε “ Lpq˚` εh, 9q˚` ε 9h, tq which results in an action greater than

that of the optimal path, that is

Srq˚s ě Srq˚ ` εhs. (2.6)
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A Taylor expansion of Srq˚ ` εhs yields

Srq˚ ` εhs “
ż tf

t0

"

L˚ ` ε
ˆ

BL˚
Bq

h`
BL˚
B 9q

9h

˙

`Opε2q
*

dt. (2.7)

This equation can be broken into two parts by neglecting the higher order terms

(Opε2q):

Srq˚ ` εhs “ Srq˚s ` ε
ż tf

t0

ˆ

BL˚
Bq

h`
BL˚
B 9q

9h

˙

dt. (2.8)

Note that the condition for optimality is

δS
δq
“

ż tf

t0

ˆ

BL˚
Bq

h`
BL˚
B 9q

9h

˙

dt “ 0. (2.9)

Integrating by parts yields

δS
δq
“

ż tf

t0

BL
Bq
h dt`

BL
B 9q
h

ˇ

ˇ

ˇ

ˇ

tf

t0

´

ż tf

t0

d

dt

ˆ

BL
B 9q

˙

h dt “ 0; (2.10)

utilizing the fact that the perturbation h vanishes at the endpoints yields

δS
δq
“

ż tf

t0

"

BL
Bq
´

d

dt

ˆ

BL
B 9q

˙*

h dt`

�
�

�
��

0

BL
B 9q
h

ˇ

ˇ

ˇ

ˇ

tf

t0

“ 0; (2.11)

and given the arbitrary nature of h within the endpoints, the condition

BL
Bq
´

d

dt

ˆ

BL
B 9q

˙

“ 0 (2.12)

is necessary to satisfy δqS “ 0.
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2.1.2 Example: Spring-Mass System

A simple example using the Euler-Lagrange equations to derive the equation of mo-

tion for a mass-spring system would proceed as follows. The kinetic and potential

energies of the system are

T “ 1

2
m 9x2 (2.13a)

U “ 1

2
kx2 (2.13b)

where m is the mass, and k is the spring constant. The variable x is known as

a generalized coordinate, but in this case is simply the displacement of the mass

attached to the spring relative to a fixed reference frame. The overdot 9p q is simply

a derivative with respect to time. The Lagrangian is formed by subtracting the

potential energy from the kinetic energy,

Lpx, 9x, tq “ T ´ U “ 1

2
m 9x2

´
1

2
kx2, (2.14)

and can be substituted into the Euler-Lagrange equations to determine the equation

of motion. Term by term, this yields

BL
Bx
“ ´kx restoring force terms (2.15a)

´
d

dt

ˆ

BL
B 9x

˙

“ ´m:x inertial force terms (2.15b)

Substituting into equation (2.12) and multiplying both sides by ´1 yields the familiar

equation for an undamped, unforced mass-spring oscillator,

m:x` kx “ 0, (2.16)
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and illustrates why the Euler-Lagrange equations are typically written as in equa-

tion (2.4) and not as in equation (2.12). In this case, “Euler-Lagrange equations”

is somewhat of a misnomer, as there is only one equation, but in the case of sys-

tems with more than one generalized coordinate there will be one equation for each

coordinate, hence the naming convention. Note that this formulation only admits

conservative terms arising from the exchange of kinetic and potential energy; more

complex formulations of the Euler-Lagrange equations incorporate generalized forces

and other nonconservative terms, but are not included here for the sake of brevity.

The reader is directed to Greenwood [15] for an exhaustive discussion of variational

modeling techniques.

2.2 Experimental parameter identification

Identifying a reasonable parameter set is an important step in any investigation.

Typically, most parameters can be identified through measurement or are provided

by the manufacturer’s specifications for any off-the-shelf components. However, there

are many cases when parameters must be determined experimentally. To do so, an

experimental device is constructed and operated within the limits of an available

analytical solution. Then, the analytical solution, which incorporates all of the model

parameters as variables, is fit to the experimental data. By fitting the analytical

solution to the experimental data, a best-fit set of parameters can be found that

describe the experimental system.

2.2.1 Least-squares parameter estimation

Consider an experimental data set yptq. Typically, several (n) channels of exper-

imental data would be sampled stroboscopically at a sampling frequency Fs for a
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total of m samples. Thus the data set y could be represented as a matrix

y “

¨

˚

˚

˚

˝

y1pt1q y2pt1q ¨ ¨ ¨ ynpt1q

y1pt2q
. . . . . .

...
...

. . . . . .
...

y1ptmq y2ptmq ¨ ¨ ¨ ynptmq

˛

‹

‹

‹

‚

(2.17)

where each yi for i P r1, ns is a channel and each tj for j P r1,ms is a sample time. Now

consider a candidate solution xptq “ Φpt;pq that is hypothesized to describe y; p is

a vector of parameters of length ď m that describe the model. In the simplest case,

Φ is linear in p. The classic example would be a polynomial series b` p1t` p2t
2 . . .,

Φptqp “

¨

˚

˚

˚

˝

t1 t21 ¨ ¨ ¨ tn1 1

t2
. . . . . .

... 1
...

. . . . . .
... 1

tn t2n ¨ ¨ ¨ tnm 1

˛

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

p1

p2
...
pn
b

˛

‹

‹

‹

‹

‹

‚

; (2.18)

while the polynomials are certainly nonlinear, the coefficients are linear and thus

techniques from linear algebra may be employed to solve the problem. This yields

the optimization problem

p “ arg min
p

m
ÿ

j“1

pyptjq ´ xptjqq
2
“ arg min

p

`

yJy ´ 2pΦpqJy ` pΦpqJΦp
˘

. (2.19)

By differentiating the residual with respect to p and setting it to zero,

B

Bp

`

yJy ´ 2pΦpqJy ` pΦpqJΦp
˘

“ ΦJΦp´ΦJy “ 0 (2.20)

the optimal parameter set p̂ is found to be

p̂ “
`

ΦJΦ
˘´1

ΦJy “ Φ`y (2.21)
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Figure 2.1: A sketch of a 2-D parameter space in the parameters α and β. The
system exhibits a certain type of behavior within the shaded region that is desirable
and thus in designing the system α and β are chosen to fall within the shaded region.

where
`

ΦJΦ
˘´1

ΦJ “ Φ`, the Moore-Penrose psuedoinverse. This produces an

optimal answer in ideal conditions (i.e. m " the number of parameters); for methods

to handle non-ideal conditions see [10].

In many cases, models used in vibrations will be nonlinear in the parameters; for

example fitting the frequency ω of a harmonic function (e.g. sinωt) is a nonlinear

optimization problem. To fit these models, a nonlinear optimization routine such as

the Levenberg-Marquardt method is recommended [17]. Those with access to MAT-

LAB’s Optimization Toolbox [18] should consider the routines fminunc and fmincon

for unconstrained and constrained nonlinear optimization problems, respectively.

2.3 Analysis of mathematical models

A next step in the analysis of any device is to conduct parameter studies. By speci-

fying a reasonable range for the device’s parameters and obtaining an analytical or

numerical representation of the behavior of the device, a parameter study can be

conducted that allows the device to be optimized in the parameter space.
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2.3.1 Analytical methods and the method of averaging

One such approach is to find an analytical, or symbolic, solution to the equations

of motion. Such solutions are computationally advantageous: a closed-form solution

eliminates the need for a numerical algorithm to find that solution at any point in

the analysis process. However, they are often difficult to obtain and may require

simplifying assumptions that degrade the quality of the analysis if the assumptions

made are too broad.

A plethora of analysis methods for nonlinear ordinary differential equations ex-

ist, and the literature ranges from abstract to applied. As engineers, we tend to

gravitate towards the applied literature. For an excellent introduction to the topic

of nonlinear oscillations, the author recommends the text by Jordan and Smith [19]

and accompanying sourcebook. Detailed worked examples are included, and many

are directly relevant to nonlinear vibrations. A classic text in the field of nonlinear

oscillations is the monograph by Guckenheimer and Holmes [20]. While less accessi-

ble as an introductory text, it is a thorough and detailed accounting of most of the

mainstream topics in the field. The texts by Holmes [12] and Hinch [14] prove use-

ful in understanding the perturbation method and asymptotic expansion techniques

used in both works.

Method of averaging

One such analysis method, featured in chapter 3, is the method of averaging. The

method of averaging is a mathematically rigorous way to replace a slowly-varying

periodic vector field with its average, which often greatly simplifies the equations and

transforms a previously intractable problem into a form that is amenable to analysis.

There are many excellent sources on the method of averaging, including the theory

and mathematical fineries of the method. The author recommends the monograph

by Sanders, Verhulst and Murdock [21] for a heavily theoretical background on the
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subject from an applied mathematics perspective. The previously mentioned texts

by Jordan and Smith [19] and Guckenheimer and Holmes [20] offer simpler worked

examples. An additional text by Verhulst [22] offers a more casual discussion of the

topic while retaining a high level of mathematical rigor.

Borrowing from [21], averaging is concerned with solving a perturbation problem

of the form

9x “ εfpx, tq ` ε2gpx, t, εq, xp0q “ x0 (2.22)

where f and g are T -periodic in t. Averaging solves the truncated (ε2 Ñ 0) system

x 9zy “ εf̄pzq, zp0q “ x0 (2.23)

where

f̄pzq “
1

T

ż T

0

fpz, tq dt. (2.24)

As shown in [21], this yields an approximation zptq to the solution of the full vector

field xptq with the properties

||xptq ´ zptq|| ď C1ε for 0 ď t ď C2{ε, (2.25)

for positive constants C1 and C2. In other words, a solution that is asymptotically

equal (error ď ε times a constant C1) to the true solution for a period of time t ď 1{ε

times a second constant C2. The takeaway is that sources of error (i.e. the size of ε)

should be minimized if one desires the most accurate result. Chapter 3 provides a

more in-depth look at this topic.
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2.3.2 Numerical continuation and the Implicit Function Theorem

Numerical continuation is an important tool in the analysis of dynamical systems.

By finding an equilibrium point, the Implicit Function Theorem states that for small

variations in parameter values, the position of the equilibrium should not change

appreciably unless the system undergoes a bifurcation. This fact can be leveraged

to create an algorithm that follows the equilibria of a dynamical system, the roots

of a nonlinear equation, or even the periodic orbits of a nonlinear oscillator.

There is a wealth of excellent literature on continuation. The texts by Kuznetsov

[23], Seydel [24] and Govaerts [25] are excellent starting points. The author was first

introduced to and trained in numerical continuation through private correspondence

with Dr. David Barton (University of Bristol) in collaboration with Dr. Mann.

His expertise and assistance is greatly appreciated. Many software packages for

continuation exist, including AUTO and MATCONT, however in this dissertation

these packages are not used. For a detailed discussion of continuation methods used

within this dissertation, refer to chapter 4.

2.4 Conclusions

This chapter presents a systematic approach to the modeling and analysis of physical

systems encountered within this dissertation. It is hoped that the discussion and

references provided within this chapter will aid the reader in understanding the

modeling and analysis decisions made throughout the dissertation. There are of

course a multitude of other methods that could be used to achieve the same ends,

however, the methods listed herein are those preferred by the author in the modeling,

simulation and analysis of nonlinear dynamical systems.
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3

Comparison of Generating Solutions and the
Resulting Averaged Vector Fields in the Study of

the Torque-Excited Pendulum

In the course of investigating the horizontal pendulum system, it was discovered that

the equation describing a damped vertical pendulum often arose during the process

of transforming the system to a form amenable to averaging methods. Work stem-

ming from analytical investigations of the horizontal pendulum system yielded new

results regarding the efficacy of certain generating solutions in obtaining desirable

results. In the study of strongly nonlinear systems, one must choose a generating

solution for an averaging transformation that is capable of describing the behavior

one seeks to model or that behavior will not be represented in the results. A brief

quantitative argument to this effect regarding the generalized method of harmonic

balance was presented by Yuste in reference [6], but to my knowledge there has been

no such comparison for averaging methods presented in the literature. This chapter

contributes a detailed qualitative study of harmonic and anharmonic generating so-

lutions as applied to the analysis of the torque-excited pendulum, with the objective
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of providing an intuitive visual message regarding the choice of generating solution

to the reader through qualitative graphical comparisons.

3.1 Introduction

In the study of nonlinear vibrations, we often seek a closed-form approximation of

both the transient and periodic steady-state behavior of a system using a variety of

approximate analytical methods. One such method, averaging, functions by aver-

aging the perturbations of a slowly moving vector field. The method of averaging,

first proposed by Krylov and Bogoliubov1 [26], is well studied and its mathematical

properties are well understood [21]. However, the method itself cannot be directly

applied to the equations most commonly encountered in nonlinear vibrations without

first transforming from the state variables to amplitude-like and phase-like variables.

Herein we show that the choice of transformation has a strong influence on the accu-

racy of the averaged solution. We consider the example of a torque-forced, viscously

damped pendulum.

Conventionally, the method of averaging treats a nonlinear system as a slightly

perturbed harmonic oscillator of the form

:x` ω2x “ εfpx, 9xq (3.1)

where ε is a small parameter and ω is the linear natural frequency. This leads to to

a natural transformation from the variables px, 9xq ÞÑ pr, φq as

9r “ εfpr sinωt, ωr cosωtqωr cosωt (3.2)

r 9φ “ ´εfpr sinω, t, ωr cosωtq sinωt (3.3)

These equations are then averaged over one period of the unperturbed solution, i.e.

1 Transliterations from the Cyrillic spelling may vary.
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9r “
εω

2π

ż 2π{ω

0

fpr sinωt, ωr cosωtqωr cosωtdt (3.4)

r 9φ “ ´
εω

2π

ż 2π{ω

0

fpr sinω, t, ωr cosωtq sinωtdt (3.5)

and solved first for r and then φ to find an asymptotic approximation x0pt, εq to the

true solution xptq with properties

||xptq ´ x0pε, tq|| ď C1ε for 0 ď t ď
C2

ε
, (3.6)

where C1 and C2 are positive constants [21]. In other words, the method of averaging

yields an asymptotically valid approximation for xptq whose error is bounded within

some positive constant C1 times the size of the perturbation over a time proportional

to 1{ε. Thus it is easily seen that minimizing the size of the perturbation yields an

approximation with both lower error and a longer duration of validity.

In an effort to reduce the size of the perturbing terms, several authors have inves-

tigated averaging (and other) methods that incorporate the exact solution, or a closer

approximation to the exact solution, of the free vibrations of the strongly nonlinear

oscillator under study. By selecting an exact solution to the nonlinear free vibrations,

these authors have demonstrated improved accuracy in their results over conventional

KBM averaging. It is difficult to ascertain from where this idea originated, but there

are numerous examples of the approach in the literature. For example, Cap [27] and

Pocobelli [28] study variations of the Langevin equation (mathematically identical

to the pendulum equation) with elliptic functions and the method of averaging, and

the problem of passage through resonance in the pendulum equations using ellip-

tic functions is briefly considered in Sanders, Verhulst and Murdock’s treatise on

averaging and normal forms [21]. Roy studies several strongly nonlinear systems
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in a series of papers [29] using elliptic functions and the method of averaging and

develops a theory for the study of resonant excitation and stochastic excitation in

these systems using the method of averaging. Okabe and Kondou proposed a theo-

retical basis for a generalized averaging method in ref. [30] and studied the Duffing

oscillator in ref. [31]. Yuste, Bejarano, Garcia-Margallo and collaborators have con-

tributed a series of articles ranging from an elliptic harmonic balance method [32, 6]

to studies of nonlinear oscillators with elliptic functions as generating solutions for

Krylov-Bogoliubov-type averaging methods [33, 34]. Noting that the method can be

quite technical and difficult to carry out by hand, Coppola and Rand [35] developed a

procedure using the computer algebra system MACSYMA to implement the method

on a strongly nonlinear system. Outside of the method of averaging, Lakrad and

Belhaq [36] have investigated multiple time scale methods with elliptic functions.

This investigation is organized as follows: First, a description of the system to

be studied and its equations of motion are presented. In section 3.3, two averaging

methods are applied to study the behavior of the system: a method using circular

generating functions and a Taylor-expanded restoring force, and a method using

elliptic generating functions and the fully nonlinear restoring force. Owing to the

similarity of approach and the consistency of results obtained, the second method will

be referred to as “Roy’s Method”. Then, in section 3.4, the methods are compared

graphically and additional results obtained from the anharmonic method are shown

to highlight system behaviors. Finally, conclusions are drawn and recommendations

for future work are presented.

3.2 System description and equation of motion

The torque-forced pendulum is a cornerstone problem in dynamics and vibrations

and has been reported on in a number of investigations. In this section, specifics

regarding the system are rehashed and parameters are defined, and a dimensionless
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Figure 3.1: Schematic of a torque-excited vertical pendulum.

equation of motion is derived.

This investigation considers a pendulum mounted by a bearing onto a vertical

rod, as depicted in figure 3.1. The pendulum is free to swing in one direction, denoted

by the angle x, and is connected to the bearing with a rigid, massless rod of length

l. A point mass m is affixed to the end of the rod and the pendulum is driven by

an external harmonic torque τext. The bearing has a viscous damping coefficient

b. Given this information, the kinetic and potential energies of the system can be
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written as

T “ 1

2
ml2px1q2 (3.7a)

U “ mglp1´ cosxq, (3.7b)

respectively, and the external nonconservative forces can be written as

Dx “ ´bx
1 (dissipative) (3.8a)

Fx “ Γ cos Ωt (forcing). (3.8b)

By applying Lagrange’s equation,

d

dt

ˆ

BT
Bx1

˙

`
BU
Bx

“ Dx ` Fx, (3.9)

the equation of motion for a harmonically forced pendulum with viscous damping,

ml2x2 ` bx1 `mgl sinx “ Γ cos Ωt, (3.10)

is readily found.

It is advantageous to reduce the number of terms in the equation by rescaling

time. By choosing a timescale T “
a

g{l such that t “ Tτ , a new set of parameters

µ “
b

mg1{2l3{2
, γ “

Γ

mgl
, η “

Ωl1{2

g1{2
(3.11)

can be found yielding a rescaled form of the equation given by

:x` µ 9x` sinx “ γ cos ητ. (3.12)
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The overdot p9q indicates a derivative with respect to scaled time τ . For the purposes

of this investigation, we will assume that both γ and µ are small (! 1) and introduce

a bookkeeping parameter ε to indicate their smallness, yielding

:x` sinx “ εp´µ 9x` γ cos ητq. (3.13)

In state-space form, the equation can be written

ˆ

9x1

9x2

˙

“

ˆ

x2

´ sinx1 ` εp´µx2 ` γ cos ητq

˙

. (3.14)

Note that this vector field is rapidly varying in both x1 and x2. The objective

of the following section will be to find a transformation that yields a slowly varying

vector field to replace the original p 9x1, 9x2q vector field.

3.3 Periodic solutions by averaging

The method of averaging is a well-established procedure for approximating slowly-

varying vector fields. By averaging over the period(s) of the fast variation(s), a close

approximation of the original vector field can be found. The purpose of averaging

is to arrive at a vector field that is simple enough to admit closed form solutions

and thus is amenable to analysis. For an extremely detailed overview of averaging

methods and a thorough discussion of its mathematical underpinnings, the reader is

encouraged to consult ref. [21].

In forced vibrations, the method of averaging is a commonly used tool for finding

periodic orbits of a system, typically by transforming the state space p 9x, :xq into a

coordinate system of amplitude- and phase-like variables (e.g. r and φ). Let Ω be

the driving frequency of external harmonic forcing and ω be the resonant frequency

of the unforced system. Then what is sought is a near-identity transformation of the

27



−2 0 2
0

1

2

3

4

5

x

U
(x

)

( a)

−2 0 2
−4

−3

−2

−1

0

1

2

3

4

x

U
′ (
x
)

(b)

Figure 3.2: Potential Upxq (a) and restoring force U 1pxq (b) for the vertical pen-
dulum. The fully nonlinear potential and restoring force are shown by the solid
black line, a fifth-order approximation is shown by a dashed line and the harmonic
approximation is shown by a dotted line. Note that the fully nonlinear potential and
restoring force are periodic and repeat from the unit cell shown above along the x
axis.

form

T :

ˆ

9x
:x

˙

ÞÑ

ˆ

9r
9φ

˙

(3.15)

with the objective of transforming the rapidly-varying nonautonomous vector field

ˆ

9x
:x

˙

“

ˆ

g1px, 9x, tq
g2px, 9x, tq

˙

(3.16)

to a slowly-varying autonomous vector field

ˆ

9r
9φ

˙

“

ˆ

0
δ

˙

` ε

ˆ

f1pr, φq
f2pr, φq

˙

, (3.17)

where δ “ ω2´Ω2 “ Opεq is a small detuning parameter. The intermediate step that

transforms the equations of state into a slowly-varying vector field of these amplitude-

and phase-like variables is accomplished by assuming a particular generating solution,
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so called because it “generates” the transformation2. The generating solution is

typically an exact solution to the unperturbed equations of motion; for example, a

harmonic solution is often chosen as it is usually convenient to recast a nonlinear

system as a perturbed harmonic oscillator. After applying the transformation, any

rapidly varying angles that arise are eliminated by averaging over their periods to

ensure the system satisfies the form of equation (3.17). It can be shown that the

approximation error over one period of oscillations T is bounded by a constant C1

times the size of the perturbations ε as

ż T

0

||xeptq ´ xaptq|| dt ď C1ε, (3.18)

where xeptq is the exact periodic orbit of the system and xaptq is the periodic orbit

found by the averaging method, given some reasonable constraints on the smoothness

and continuity of the vector fields above (see ref. [21]).

As will be shown in this investigation, the choice of generating solution determines

both the depth and accuracy of analysis that can be performed. In the following

subsections, two different generating solutions are utilized to transform equation

(3.13) to the form of equation (3.17). Vastly different results are obtained when

using each method. The two solutions are developed in the following subsections

and compared in the next section.

3.3.1 Averaged vector field obtained via a harmonic generating solution

Recasting the equation of motion of a nonlinear oscillator as a perturbed simple har-

monic oscillator is a common approach in the study of nonlinear vibrations. Doing

so allows the investigator to assume a harmonic generating solution and incorporate

the perturbing terms, including the nonlinear restoring force terms and possibly the

2 Note that this “generating solution” has a different (less nuanced) meaning than the generating
functions found in the physics literature.
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ẋ

(b)

Figure 3.3: Comparison of global behavior for the fully nonlinear (a) and Taylor-
series expanded (b) vector fields for equation (3.13). The Taylor expansion retains
terms up to fifth order in the restoring force. A collection of trajectories are shown
for the unforced case for each vector field. The vector fields are very similar in the
neighborhood of the downward static equilibrium px, 9xq “ p0, 0q, but differ greatly
away from this neighborhood. Parameters are µ “ 0.05 and γ “ 0.

dissipative and forcing terms, into the solution parameters. In the case of the pendu-

lum equation, averaging the vector field obtained by assuming a harmonic generating

solution yields a solution that is valid in the neighborhood of the downward equilib-

rium. This solution is typically accurate for light forcing and damping provided that

the amplitude of the solution is moderate.

To obtain this solution, the restoring force is expanded in a Taylor series about

the origin and terms up to fifth order are retained. The results of this expansion can

be seen in figure 3.2 as the dashed line. Then, the nonlinear and nonconservative

terms are considered small perturbations and the system is recast as a perturbed

harmonic oscillator. This yields

:x` x “ ε

ˆ

1

6
x3
´

1

120
x5
´ µ 9x` γ cos ητ

˙

(3.19)
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as the new equation of motion for the system. A comparison of the truncated vector

field given by equation (3.19) to the fully nonlinear vector field can be seen in figure

3.3. Although the solution to the unperturbed system is simply x “ r sinpt ` φq,

where r and φ would be determined by the initial conditions, some forethought leads

to the choice of

x “ r sinpητ ` φq (3.20a)

9x “ rη cospητ ` φq (3.20b)

as a generating solution because of the frequency entrainment of periodic solutions

that will occur due to the harmonic forcing. This solution is then used to transform

the equations into an pr, φq vector field, which is slowly varying. Let θ “ ητ ` φ.

Then, to perform the transformation, a transformation matrix

A “

ˆ

Brx Bθx
Br 9x Bθ 9x

˙

“

ˆ

sin θ r cos θ
η cos θ ´rη sin θ

˙

(3.21)

is constructed such that

ˆ

9r
9θ

˙

“ A´1

ˆ

9x
:x

˙

“ A´1

ˆ

rη cos θ
´r sin θ ` εfpx, 9x, τq

˙

(3.22)

where εfpx, 9x, tq “ ε
`

1
6
x3 ´ 1

120
x5 ´ µ 9x` γ cos ητ

˘

. Recalling that θ “ ητ ` φ and

hence 9φ “ 9θ ´ η, equation 3.22 can be rewritten as

ˆ

9r
9φ

˙

“

ˆ

0
´η

˙

`A´1

ˆ

rη cos θ
´r sin θ ` εfpx, 9x, τq

˙

, (3.23)

yielding lengthy expressions for 9r and 9φ. By expanding equation (3.23), making the

substitution φ “ θ ´ ηt and averaging over all non-resonant angles (i.e. θ, nθ, etc.)
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we find the averaged equations for r and φ as

2ηx 9ry “ ε pγ cosφ´ µηrq (3.24a)

2ηx 9φy “ 1´ η2
` ε

ˆ

´
1

8
r2
`

1

192
r4
´
γ sinφ

r

˙

(3.24b)

Equation (3.24) is of the form given in equation (3.17); the detuning term 1 ´ η2

vanishes near resonance and is Opεq within a small neighborhood of the resonant

frequency of equation (3.19) (ω “ 1). The equilibrium solutions pre, φeq of equations

(3.24) specify the periodic orbits of (3.13) as approximated by the steps above. Then,

by recalling once more that θ “ ηt`φ, the approximate periodic orbits are given by

x “ re sinpηt` φeq (3.25a)

9x “ reη cospηt` φeq. (3.25b)

3.3.2 Averaged vector field obtained via an anharmonic generating solution (Roy’s
Method)

An alternative approach is to consider the solutions of equation (3.13) without alter-

ing the restoring force. This is the basis of the methods employed by Roy [29], Cap

[27] and doubtlessly others in seeking a more accurate approximation of the orbits

of equation (3.13) at high amplitudes or in the rotating domain. The unperturbed

system

:x` sinx “ 0 (3.26)
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has solutions

xl “ 2 arcsin rkl snpu, klqs (3.27a)

9xl “ 2kl cnpu, klq (3.27b)

for the librating (i.e. oscillating, non-rotating) case and

xr “ 2 ampu{kr, krq (3.28a)

9xr “ ˘
2

kr
dnpu{kr, krq (3.28b)

for the rotating case, where snpu, kq, cnpu, kq, dnpu, kq and ampu, kq are the Jacobi

elliptic functions “sine amplitude”, “cosine amplitude”, “delta amplitude” and “am-

plitude”, respectively. These functions are sometimes referred to as “anharmonic”

functions; they share many properties with harmonic functions but have many unique

properties of their own. Consult reference [37] for an engineering and physics ori-

ented treatment of elliptic functions and [38] for a detailed mathematical background

on the theory and application of these functions.

The solutions shown in equations (3.27) and (3.28) can be found by direct in-

tegration of equation (3.26), see reference [39] for a detailed approach. The Jacobi

elliptic functions (JEFs) accept two arguments: a phase, here denoted as u, and a

modulus, here denoted as k. The modulus k is restricted to the range k P r0, 1s;

at k “ 0, the JEFs degenerate into trigonometric and constant functions, while at

k “ 1 the JEFs become hyperbolic functions. For equation (3.26), the heteroclinic

orbits are a degenerate case of both equations (3.27) and (3.28) as k Ñ 1; in fact,

the solutions are equivalent to one another when k ą 1, which can be shown by

performing a modulus transformation (see [38]).
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In essence, the modulus k serves as the amplitude parameter for these solutions:

as k is varied, the amplitude and shape of the solutions change. However, as k is

varied, the period of the solution varies as well. This allows the amplitude dependence

of solution periods to be captured naturally. While this introduces a new set of

challenges in the analysis process, the goal of reducing equation (3.13) to the form

of equation (3.17) is fundamentally the same.

General approach

Much of the content of this section is based on the article by V. Roy [29]. While his

article as a whole considers several nonlinear systems, the section focusing on the

pendulum served as the inspiration for this investigation. A key insight offered by Roy

is that if a vector field can be made to be 2π-periodic in its angular variables, replacing

anharmonic functions such as the JEFs with their Fourier series approximations

greatly simplifies the averaging process in two ways: first, the static average is a

natural byproduct of a Fourier series expansion; second, by making an appropriate

choice of angle variables, the Fourier series can be used to compute the projection of

an arbitrary periodic vector field on a harmonic forcing function. This eliminates the

need to evaluate integrals of products of harmonic and anharmonic functions that

would otherwise require the use of complex analysis. Thus, once the system is placed

into the form of equation (3.17), the right-hand side will need to be Fourier expanded

so that the vector field is amenable to analysis (see [29, 21]). The computer algebra

system (CAS) Maple [40] is used to aid in the manipulation of the expressions that

follow.

To begin, a transformation matrix

B “

ˆ

Bkx Bux
Bk 9x Bu 9x

˙

(3.29)
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is obtained for both the librating (Bl) and rotating solutions (Br). In practice,

when using a computer algebra system (CAS), it is better to leave the terms of B

unevaluated as many may cancel easily when grouped but prove challenging for the

CAS to simplify when expanded. Then

ˆ

9k
9u

˙

“ B´1

ˆ

9x
:x

˙

“ B´1
l

ˆ

9x
´ sinpxq ` εfpx, 9x, τq

˙

(3.30)

in both cases. After expanding, a system of the form

9k “ ε
1

∆
9xfpx, 9x, τq (3.31a)

9u “ 1´ ε
1

∆

Bx

Bk
fpx, 9x, τq (3.31b)

is found for each generating solution, where ∆ is the determinant of B. As noted by

Roy in reference [29], the vector field in equation (3.31) is not 2π-periodic in u; thus

the equation for 9u must be transformed to a new angular variable that is 2π-periodic

by incorporating the period T of the solution. To do so, a new angular coordinate θ

is defined such that u “ Tθ. Note that T is a function of k, which is a function of τ ;

this yields

9k “ ε
1

∆
9xfpx, 9x, τq (3.32a)

9u “ T 9θ ´ 9Tθ “ 1´ ε
1

∆

Bx

Bk
fpx, 9x, τq (3.32b)
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and therefore

9k “ ε
1

∆
9xfpx, 9x, τq (3.33a)

9θ “
1

T

„

1`
BT

Bk
9kθ ´ ε

1

∆

Bx

Bk
fpx, 9x, τq



“
1

T

„

1´ ε
1

∆

ˆ

Bx

Bk
´ 9x

BT

Bk
θ

˙

fpx, 9x, τq



. (3.33b)

Terms in
`

Bx
Bk
´ 9xBT

Bk
θ
˘

cancel well when unexpanded, so the reader is again urged

to avoid prematurely expanding or simplifying the previous equations when using a

CAS.

Librating solution

For the librating solution, x and 9x are given by equations (3.27), ∆ “ 4k and

T “ 4 Kpkq where Kpkq is the complete elliptic integral of the first kind. Thus

9k “ ε
1

2
cnpu, kqfpx, 9x, tq (3.34a)

9u “ 1´ ε
1

4k

Bx

Bk
fpx, 9x, tq. (3.34b)

With u “ Tθ “ 4 Kpkqθ and simplification of

9k “ ε
1

2
cnpu, kqfpx, 9x, tq (3.35a)

9θ “
1

4 K

„

1´ ε
1

4k

ˆ

Bx

Bk
´ 8k cnpu, kq

BK

Bk
θ

˙

fpx, 9x, τq



. (3.35b)

the following equations,

9k “ ´εµk cn2 u`
1

2
ε pγ cos ητ cnuq (3.36a)

9θ “
1

4 K
´ ε

1

8kk12 K
rsnu dnu´ Zpuq cnuqs p´2µk cnu` γ cos ητq, (3.36b)
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are obtained, where pk1q2 “ 1 ´ k2 is the complimentary modulus. We then expand

the right-hand sides of equations (3.36) as Fourier series:

9k “ ´εµk
8
ÿ

n“0

bnpkq cos p4nπθq `
1

2
ε

˜

γ cos ητ
8
ÿ

n“0

cnpkq cos pp2n´ 1q2πθq

¸

(3.37a)

9θ “
1

4 K
´ ε

1

8kk12 K

«

8
ÿ

n“1

pαnpkq ´ βnpkqq sin rp2n´ 1q2πθs

ff

ˆ

«

´2µk
8
ÿ

n“1

cnpkq cos rp2n´ 1q2πθs ` γ cos ητ

ff

(3.37b)

The trigonometric terms can then be combined using multiplication identities, yield-

ing

9k “ ´εµk
8
ÿ

n“0

bnpkq cos p4nπθq `
1

2
εγ

˜

8
ÿ

n“0

cn

„

1

2
cosφn `

1

2
cosψn



¸

(3.38a)

9θ “
1

4 K
´ ε

1

8kk12 K

«

8
ÿ

n“1

pαnpkq ´ βnpkqq ¨

˜

„

1

2
sinφn `

1

2
sinψn



´ 2µk
8
ÿ

n“1

cnpkq cos rp2n´ 1q2πθs

¸ff

(3.38b)

where φn “ p2n ´ 1q2πθ ´ ητ and ψn “ p2n ´ 1q2πθ ` ητ . Averaging over all

non-resonant phase angles (i.e. eliminating all angles but φ1) and substituting 9φ1 “

2π 9θ ´ η creates an averaged vector field

x 9ky “ ´εµkb0pkq ` ε
1

4
Γc1pkq cosφ1 (3.39a)

x 9φ1y “
π

2 K
´ η ´ ε

πγ

8kk12 K
pα1pkq ´ β1pkqq sinφ1. (3.39b)
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of the form specified in equation (3.17). The stationary points of equations (3.39) de-

termine the parameter k and phase φ1 for periodic librating orbits. These parameters

can then be substituted into

x “ 2 arcsin

„

k sn

ˆ

4 K

2π
pητ ` φ1q , k

˙

(3.40a)

9x “ 2k cn

ˆ

4 K

2π
pητ ` φ1q , k

˙

(3.40b)

to compute the trajectory of the periodic orbits found by the averaged equations in

k and φ. Note that equations (3.40) are equivalent to equations (3.27). The Fourier

coefficients are given by

b0pkq “ 1´
1

k2

ˆ

1´
Epkq

Kpkq

˙

(3.41a)

cnpkq “
π{kKpkq

coshppn´ 1
2
qπKpk1q{Kpkqq

(3.41b)

αnpkq “ p2n´ 1q
π

2 Kpkq
cn (3.41c)

βnpkq “
1

2

8
ÿ

m“1

zm pcm´n`1 ´ cm`nq (3.41d)

znpkq “
π{Kpkq

sinhpnπKpk1q{Kpkqq
(3.41e)

where k1 “
?

1´ k2. The coefficients are also defined in [29] and derived in [37, 38].

In practice, the sum in equation (3.41d) is evaluated until convergence, which is

defined as |βn ´ βn´1| ă 10´6 for the purposes of this investigation.
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Rotating solution

For the rotating solution, x and 9x are given by equations (3.28), ∆ “ ´4k´3 and

T “ 2kKpkq. Let v “ u{k. Then

9k “ ´ε
1

2
k2 dnpv, kqfpx, 9x, tq (3.42a)

9u “ 1` ε
k3

4

Bx

Bk
fpx, 9x, tq. (3.42b)

With u “ Tθ “ 2kKpkqθ and simplification of

9k “ ´ε
1

2
k2 dnpv, kqfpx, 9x, tq (3.43a)

9θ “
1

2kK

„

1´ ε
k3

4

ˆ

Bx

Bk
´

8

k
dnpv, kq

BK

Bk
θ

˙

fpx, 9x, τq



. (3.43b)

the following equations,

9k “ εµk dn2 v ´
1

2
εk2
pγ cos ητ cnuq (3.44a)

9θ “
1

2kK
´ ε

k

4k12 K

“

k2 sn v cn v ´ Zpvq dn vq
‰

ˆ

´
2

k
µ dn v ` γ cos ητ

˙

, (3.44b)

are obtained, where again pk1q2 “ 1 ´ k2 is the complimentary modulus. We then
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expand the right-hand sides of equations (3.44) as Fourier series:

9k “ εµk
8
ÿ

n“0

anpkq cos p2nπθq ´
1

2
εk2

˜

γ cos ητ
8
ÿ

n“0

dnpkq cos p2nπθq

¸

(3.45a)

9θ “
1

2kK
´ ε

k

4k12 K

«

8
ÿ

n“1

`

k2ζnpkq ´ δnpkq
˘

sinp2nπθq

ff

ˆ

«

´
2

k
µ

8
ÿ

n“1

dnpkq cosp2nπθq ` γ cos ητ

ff

(3.45b)

The trigonometric terms can then be combined using multiplication identities, yield-

ing

9k “ εµk
8
ÿ

n“0

anpkq cos p2nπθq ´
1

2
εγk2

˜

8
ÿ

n“0

dn

„

1

2
cosφn `

1

2
cosψn



¸

(3.46a)

9θ “
1

2kK
´ ε

k

4k12 K

«

8
ÿ

n“1

`

k2ζnpkq ´ δnpkq
˘

¨

˜

„

1

2
sinφn ´

1

2
sinψn



´
2

k
µ

8
ÿ

n“1

dnpkq cosp2nπθq

¸ff

(3.46b)

where φn “ 2nπθ ´ ητ and ψn “ 2nπθ ` ητ . Averaging over all non-resonant phase

angles (i.e. eliminating all angles but φ1) and substituting 9φ1 “ 2π 9θ ´ η creates an

averaged vector field

x 9ky “ εµka0pkq ´ ε
1

4
γk2d1pkq cosφ1 (3.47a)

x 9φ1y “
π

kK
´ η ´ ε

πγk

4k12 K

`

k2ζ1pkq ´ δ1pkq
˘

sinφ1. (3.47b)
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of the form specified in equation (3.17). The stationary points of equations (3.47) de-

termine the parameter k and phase φ1 for periodic rotating orbits. These parameters

can then be substituted into

x “ 2 am

ˆ

2 K

2π
pητ ` φ1q, k

˙

(3.48a)

9x “
2

k
dn

ˆ

2 K

2π
pητ ` φ1q, k

˙

(3.48b)

to compute the trajectory of the periodic orbits found by the averaged equations in

k and φ. Note that equations (3.48) are equivalent to equations (3.28). The Fourier

coefficients are given by

a0pkq “
Epkq

Kpkq
(3.49a)

dnpkq “
π{Kpkq

coshpnπKpk1q{Kpkqq
(3.49b)

ζnpkq “ n
π

k2 Kpkq
dn (3.49c)

δnpkq “
1

2

8
ÿ

m“1

αm pzm`n´1 ´ zm´nq (3.49d)

where k1 “
?

1´ k2 and αn and zn are defined as above. The coefficients are also

defined in [29] and derived in [37, 38]. In practice, the sum in equation (3.49d) is

evaluated until convergence, which is defined as |δn ´ δn´1| ă 10´6 for the purposes

of this investigation.

3.4 Results

In this section, the averaging methods described above are implemented to predict

the existence and characteristics of period-1 orbits in equation (3.13). Results ob-
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ẋ

(c )

Figure 3.4: Comparison of amplitude decay predictions found by the anharmonic
(dashed lines) and harmonic (dotted lines) averaging methods against numerical
simulation (solid lines) of equation (3.13) for µ “ 0.04 and px0, 9x0q “ p´1.0, 0.1q.
Shown are the angle (a), angular velocity (b) and phase portrait (c) of the response.

tained from the anharmonic and harmonic generating solutions are compared where

appropriate comparisons may be drawn, and used to highlight interesting behaviors

of the system in the course of the comparisons. Unique characteristics of the aver-

aged vector field derived from the anharmonic generating solution are also presented,

allowing some insights into the rotating behaviors of the equation (3.13). Within this

section, the first subsection focuses on comparisons between the predicted amplitude

decay and period-1 librating orbits obtained from assuming harmonic and anhar-

monic generating solutions. The similarities and differences in solutions obtained by

the two methods are highlighted and conclusions are drawn regarding the efficacy

of each approach. The second subsection focuses solely on the period-1 rotating

solution that is only obtainable from the anharmonic generating solution.

As neither the anharmonic generating solution nor the harmonic generating solu-

tion transforms equation (3.13) into averaged vector field that admits a closed-form

solution for its equilibria, numerical root-finding methods are used to determine the
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equilibria pke, φeq and pre, φeq for the anharmonic and harmonic averaged vector fields,

respectively. To determine the stability of predicted orbits, a numerical linearized

stability analysis was conducted about the equilibrium points found in the root-

finding routine. The Jacobian matrix J at the equilibrium is a natural byproduct

of a Newton-like root-finding algorithm, so stability could be checked with minimal

additional computational cost. Orbits are considered stable when all eigenvalues λi

of J have negative real parts (i.e. Repλiq ă 0 @i).

To conduct parameter studies, numerical continuation techniques were used to fol-

low solution branches. One-parameter parameter studies follow the equilibria of the

averaged vector fields as the parameter of interest is varied; a psuedo-arclength crite-

rion is added to ensure that the system of equations remain square. Two-parameter

studies follow the equilibria at bifurcation points given by detpJq “
śdimpJq

i“1 λi “ 0,

adding an additional degree of freedom that allows a second parameter to be varied

while keeping the system of equations square.

3.4.1 Comparison of harmonic and anharmonic approaches

In this subsection, the results obtained by assuming harmonic and anharmonic gen-

erating solutions are compared. As a first point of comparison, the decaying response

under no forcing (γ “ 0) is considered. Figure 3.4 shows the high accuracy of both

solutions for a low-amplitude initial condition px0, 9x0q “ p´1.0, 0.1q. Both solutions

are capable of capturing the behavior of the system, as the oscillations still maintain

a harmonic character at this low amplitude. Figure 3.5 shows the loss of accuracy for

an initial condition px0, 9x0q “ p´3.0, 0.1q near the separatrix. There is a noticeable

phase error in both solutions, but while the anharmonic solution retains the shape

(amplitude) of the numerical solution, the harmonic solution exhibits noticeable am-

plitude errors.

Figure 3.6 shows a comparison of both approaches against a numerically inte-
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Figure 3.5: Comparison of amplitude decay predictions found by the anharmonic
(dashed lines) and harmonic (dotted lines) averaging methods against numerical
simulation (solid lines) of equation (3.13) for µ “ 0.04 and px0, 9x0q “ p´3.0, 0.1q.
Shown are the angle (a), angular velocity (b) and phase portrait (c) of the response.

grated orbit of equation (3.13). Both predicted solutions show excellent agreement

with numerical simulation, although both slightly overestimate the amplitude of the

solution and the harmonic generating function underestimates the peak velocities

of the solution. Both solutions remain well within the predicted error tolerance of

ε « 0.1 as dictated by γ “ 0.1.

For some parameter values, coexisting orbits exist. Figure 3.7 shows three coex-

isting orbits for γ “ 0.1, µ “ 0.07 and η “ 0.87. Predictions from both the harmonic

and anharmonic averaged vector fields yield accurate estimates of the system behav-

ior as determined by numerical integration of equation (3.13).

In order to find common grounds for comparison, both response amplitudes are

converted to the equivalent energy determined by the potential function

E ” Upxq “ 1´ cosx. (3.50)

For the anharmonic generating function in the librating regime this corresponds to
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Figure 3.6: Comparison of a predicted stable orbit found by the anharmonic
(dashed lines) and harmonic (dotted lines) averaging methods against numerical
simulation (solid lines) of equation (3.13) for γ “ 0.1, µ “ 0.04 and η “ 0.68. Shown
are the angle (a), angular velocity (b) and phase portrait (c) of the response.

E “ 2k2
e ; for the harmonic generating function E “ 1 ´ cospreq. By comparing the

energy of the predicted solutions, disparities in scale between predicted values of k

from the anharmonic generating solution and predicted values of r from the harmonic

generating solution are avoided.

For a first glance into the frequency response of the system, it is useful to de-

termine the amplitude and period of the undamped free response (i.e. γ “ µ “ 0).

Figure 3.8 shows the free response spines predicted by the anharmonic generating

solution and the harmonic generating solution. From these spines, it is apparent

that the system exhibits softening behavior. Forced response curves will exhibit

their peak along the spines shown in 3.8. In figure 3.8(b), the spine predicted from

the anharmonic generating solution is underlaid for comparison with the predicted

free response from the harmonic generating solution. Agreement is excellent until

E « 1.4, whereupon the anharmonic generating function begins to predict a slightly

more pronounced softening response.
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Figure 3.7: Comparison predicted coexisting orbits found by the anharmonic
(dashed lines) and harmonic (dotted lines) averaging methods against numerical
simulation (solid lines) of equation (3.13) for γ “ 0.2, µ “ 0.1 and η “ 0.8. Shown
are the angle (a), angular velocity (b) and phase portrait (c) of the response.

Figure 3.9 and figure 3.10 show several frequency response curves for various

values of the damping parameter µ to highlight the suppressing effects of higher

damping. In both figures, it is seen that increasing the damping parameter µ while

holding constant the forcing amplitude γ suppresses the domain of existence of coex-

isting solutions along the η axis. For sufficiently high values of µ, coexisting solutions

are eliminated altogether.

Figure 3.9(a) shows the energy response as predicted by the anharmonic generat-

ing solution while figure 3.9(b) shows the energy response predicted by the harmonic

generating solution; figure 3.9(c) and 3.9(d) shows phase responses of the anhar-

monic and harmonic generating solutions, respectively. Because of the low forcing

amplitude γ “ 0.05, there is excellent agreement in the predictions made by both

methods in both the amplitude and phase response of the system. The pendulum has

a softening response due to the shape of its potential well. The solution agreement

is due to the low error in the approximation of the potential well by the Taylor series
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Figure 3.8: Comparison of the predicted resonance spines (dash-dotted lines) from
the anharmonic (a) and harmonic (b) generating solutions representing the amplitude
and frequency of free vibrations (i.e. γ “ µ “ 0). In figure (b) the anharmonic spine
is shown in light gray for comparison. Note the slightly more pronounced softening
behavior predicted by the anharmonic model. These spines form a backbone for
all possible frequency response curves; an example curve is shown with parameters
γ “ 0.15 and µ “ 0.1. Stable solutions exist on the solid lines while unstable solutions
are found on the dotted lines.

expansion used in conjunction with the harmonic generating solution, as seen in fig-

ure 3.2. As would be expected in a nonlinear system, for reasonably low values of µ

multiple coexisting solutions are found near resonance: specifically, three coexisting

solutions, two stable and one unstable, are found to the left of the resonant peak.

As the forcing amplitude increases, the predictions from the anharmonic and

harmonic generating solutions begin to diverge. Figure 3.10 presents energy and

phase response curves that illustrate the breakdown in solution agreement as E Ñ 2.

The physical reason for this breakdown is the existence of the separatrix at E “

2; beyond the separatrix, the pendulum system transitions into hybrid rotating-

librating behaviors or purely rotating behaviors that are not predicted by either

method. The predictions generated by the anharmonic method in figure 3.10(a)
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Figure 3.9: Comparison of predicted frequency response curves for µ “

t0.040, 0.055, 0.070, 0.085, 0.100u, γ “ 0.05. Solid lines indicate stable period-1 orbits
while dashed lines indicate unstable orbits. Figures (a) and (c) show the energy and
phase response given by the nonlinear averaging method, while figures (b) and (d)
show the energy and phase response given by the harmonic averaging method.

indicate the existence of an unstable branch of solutions at E “ 2 beyond η «

0.7; these solutions are spurious and cannot be recreated by numerical integration.

Indeed, as E Ñ 2, it is difficult to accurately recreate the predicted solutions with

numerical simulation. Additionally, the solution curve is broken into two parts, one

on each side of the resonant spine, for sufficiently high γ and low µ. All of these

observations are due to complex physical behavior that occurs as the separatrix

begins to break under high-amplitude forcing. In contrast, the solutions predicted by

the harmonic generating function simply increase in amplitude as µ is decreased, as

shown in figure 3.10(b). This is due to the lack of a separatrix in the Taylor expanded

vector field. The distorted peak is due to the energy mapping from equation (3.50).

For an even more apparent view into the disparities in predictions as E Ñ 2,
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Figure 3.10: Comparison of predicted frequency response curves for µ “

t0.040, 0.055, 0.070, 0.085, 0.100u, γ “ 0.1. Solid lines indicate stable period-1 or-
bits while dashed lines indicate unstable orbits. Figures (a) and (c) show the energy
and phase response given by the nonlinear averaging method, while figures (b) and
(d) show the energy and phase response given by the harmonic averaging method.

figure 3.11 shows the energy and phase response as the forcing is varied for η “ 0.8

and several values of µ. As seen in figures 3.9 and 3.10, increasing µ while holding η

constant has the effect of suppressing the domain of existence coexisting orbits along

the γ axis. Coexisting high- and low-amplitude orbits for γ near 0.15 are clearly

visible; however as γ increases beyond γ « 0.35 the anharmonic generating solu-

tion ceases to predict librating orbits and instead predicts a fourth coexisting orbit

that approaches the separatrix, while the harmonic generating solution maintains

predictions of librating orbits indefinitely.

As a final point of comparison between the anharmonic and harmonic generating

solutions, figure 3.12 shows the domain of coexisting solutions in the pµ, γq plane for

various values of η. Inside the shaded regions, the viscous damping µ is low enough
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Figure 3.11: Forcing response for µ “ t0.040, 0.055, 0.070, 0.085, 0.100u, η “ 0.8.
Figures (a) and (c) show the energy and phase response given by the nonlinear
averaging method, while figures (b) and (d) show the energy and phase response
given by the harmonic averaging method.

and the forcing amplitude γ is high enough that solutions coexist for the forcing

frequency η shown to the right of each region. As seen in several of the previous

figures, the domain of existence of coexisting solutions in the η line occurs when η is

slightly less than 1. In figure 3.12(b), the predictions from the anharmonic generating

solution are underlaid as dotted lines for comparison. Agreement is excellent for

higher values of η, but as η decreases, the higher-amplitude resonant peaks distort

predictions made by the harmonic generating solution.

3.4.2 Rotating solutions from the anharmonic approach

A unique feature of the anharmonic generating solution is its ability to describe

rotating orbits for E “ 2 (corresponding to the change of modulus equation, see

[38]). As rotating solutions complete one entire orbit per period, the concept of
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Figure 3.12: Domain of coexisting librating solutions in the pµ, γq plane for
η “ t0.8, 0.85, 0.9u. Figure (a) shows the domains as estimated by the anharmonic
averaging method, while figure (b) shows the domains estimated by the harmonic
averaging method as solid patches with the predictions from (a) underlaid as dotted
lines for reference.

amplitude is not informative in characterizing their behavior. Instead, response

curves are shown with energy as defined above in equation (3.50). In the rotating

case, E “ 2k´2. Rotating solutions are indeed periodic orbits given the periodicity

of the rotation angle x P p´π, πs (e.g. x “ 2π is equivalent to x “ 0); in this

subsection the influence of forcing and damping on the response and existence of

periodic rotating orbits is examined.

Figure 3.13 shows an example rotating orbit for γ “ 0.4, η “ 2.5 and µ “ 0.01.

There is reasonable agreement between the predicted orbit and a numerically simu-

lated orbit with the same initial conditions. The orbit shown is a stable orbit; stable

rotating orbits tend only to exist when damping is low and the forcing amplitude is

high. Note that the mirror image orbit also exists.

In similar fashion to figure 3.8, the undamped free rotations of the system can

be studied to form a resonance spine. Figure 3.14(a) shows the resonance spine for
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Figure 3.13: Rotating orbit found by the anharmonic generating solution (dashed
line) compared to numerical simulation (solid line) of equation (3.13) for γ “ 0.4,
η “ 2.5 and µ “ 0.01. Shown are the angle (a), angular velocity (b) and phase
portrait (c) of the response. In (c), contours of the Hamiltonian, corresponding to
the orbits of the unperturbed system, are shown by faint dotted lines.

both librating and rotating orbits as well as a predicted frequency response for each.

Inset 3.14(b) focuses on the area where the resonance spines meet as the asymptote

towards the heteroclinic orbit at E “ 2 and η “ 0. The spine of rotating orbits

asymptotes to E “ 2 quickly for η ă 1.5; stable forced rotating orbits near E “ 2

are difficult if not impossible to find.

Figure 3.15 demonstrates the effects of increasing µ on the response of rotating

orbits. As seen with librating orbits, increasing µ suppresses the response energy.

However, while increasing µ gradually reduced the domain of coexisting orbits in the

librating case, increasing µ in the rotating case gradually eliminates the domain of

stable orbits altogether.

Figure 3.16 shows the domains of existence of stable rotating orbits in the pµ, γq

plane for various values of η. Stable rotating orbits were not observed for η ă 1.
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Figure 3.14: Resonance spines for the librating (E ă 2) and rotating (E ą 2)
solutions as predicted using the anharmonic generating solution. Figure (a) shows
both the librating and rotating spines and example frequency response curves (γ “
0.15, µ “ 0.1 and γ “ 1.1, µ “ 0.03 for the librating and rotating cases, respectively.
Inset (b) highlights the convergence of both spines to the heteroclinic orbit.

3.5 Conclusions

From this investigation it is simple to conclude that the appropriate choice of gener-

ating solution depends on the information one wishes to obtain from an approximate

solution. The anharmonic generating solution delivered results capable of describing

behaviors near the separatrix and in the rotating regime that were not well described

by the harmonic generating solution. However, the effort required to obtain the aver-

aged equations from the anharmonic generating solution is substantially higher than

what is required when using a harmonic generating solution. If an investigator were

solely interested in low-amplitude behaviors about the stable static equilibrium, or

perhaps even designing a control scheme to stabilize the upright unstable equilibrium,

an approximation that is valid in the neighborhood of the appropriate equilibrium

point could prove sufficiently descriptive for the task at hand while reducing the

symbolic computation workload. On the other hand, if an investigator were more

53



2 2.5 3
2

4

6

8

10

12

14

16

η

E

(a)

2 2.5 3
4.5

5

5.5

6

6.5

7

7.5

8

η

φ
s

(b)

Figure 3.15: Predicted frequency response of rotating orbits for γ “ 1, µ “

t0.020, 0.025, 0.030u. Solid lines indicate stable period-1 rotating orbits. Figure (a)
shows the energy response while figure (b) shows the phase response of the orbits.

interested in studying the behavior of rotating solutions, the more descriptive an-

harmonic generating solution would be the better option. Further still, investigation

of bifurcation behaviors such as period-doubling or subharmonic responses would

require yet another approach beyond what is detailed here. Again, the investigator

must use his or her discretion in choosing an appropriate generating solution so that

the information sought may be obtained.

Future work in this specific area offers somewhat limited possibilities, as this

investigation focuses more on comparing existing work in the literature. The field

of applied mathematics has made substantial developments in the theory and appli-

cation of averaging methods over the past half-century, and it is a widely adopted

technique in the study of applied differential equations in fields ranging from engi-

neering to biology. It is the author’s hope that the results presented herein offer

some useful perspective and intuition to the vibrations community with regards to

choosing an appropriate generating solution for an analytical investigation.
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4

Numerical Bifurcation, Stability and Uncertainty
Analysis of the Nonlinear Energy Harvester

Equations

A common approach in the study of nonlinear vibrations is to study the periodic

orbits of a system by either solving the equations exactly or approximately to arrive

at a symbolic representation of the response of the system. Such an approach is

typically referred to as an analytical method, and it provides a general solution

for arbitrary parameter values that usually requires little computational effort to

evaluate for specific values of the parameters. An example of such an approach is

found in the previous chapter. Analytical methods have the advantages of generality

and abstraction, but they can be difficult to obtain in strongly nonlinear systems

while still maintaining a reasonable degree of accuracy and readability of the result.

A second approach is to utilize computational techniques to compute the orbits,

yielding a numerical result directly. While this is certainly less general, as only one

result is obtained from a computation, it is possible to use numerical techniques in

an intelligent way to conduct a guided exploration of the parameter space in much

56



the same way as would be done with an analytical solution. By casting the problem

of finding periodic orbits of a differential equation as a boundary value problem,

numerical techniques such as finite difference, finite element or spectral methods

can be employed to compute the orbits. Then, by using numerical continuation

techniques, parameter studies can be conducted without a need for an analytical

representation of the periodic orbits. This is advantageous for systems with orbits

that are difficult to determine analytically or when a higher fidelity representation

of model behavior is required.

In developing this methodology for the study of the system in chapter 5, it was

found that the method is well suited for the analysis of equations describing nonlin-

ear energy harvesting devices. Recent investigations conducted by S. Stanton and B.

Mann led to the development of mathematical models for lead-zirconate-titanate

(PZT) coated cantilever-beam energy harvester devices with nonlinear restoring

forces arising from magnet-magnet interactions at the free end of the beam [4, 3].

These models have taken hold in the literature and are the standard for modeling

any similar device. The magnet-magnet interactions contribute nonlinear stiffness

effects that necessitate the use of approximate analytical or numerical methods in

the analysis of the model equations.

The primary focus of this chapter is to adapt the models presented in [4, 3, 8, 7]

into a simplified general model and analyze the performance of three common con-

figurations of energy harvesting devices as parameters are varied using numerical

methods. The current literature tends to focus on analytical methods (e.g. [8]) and

numerical approaches are usually reserved for analysis of random vibrations or phe-

nomenological investigations using numerical integration. This chapter presents a

numerical approach to finding the periodic orbits of the energy harvesting systems

and conducting parameter studies numerically, rather than analytically. The chapter

also demonstrates that uncertainty quantification is easily accomplished by numer-
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ical methods. Typically, performing an uncertainty analysis analytically requires

heavy symbolic computation and management of unwieldy expressions for the sen-

sitivity coefficients. A numerical approach using finite differences for the sensitivity

coefficients circumvents this difficulty entirely. By applying numerical techniques to

the problem, the mathematical workload is greatly lessened for a minimal amount

of additional computational effort.

4.1 Introduction

The challenge of vibrational energy harvesting in uncertain excitation environments

has prompted a large movement towards nonlinear designs that broaden the usable

bandwidth of energy harvesting devices [41]. Environmental excitation sources may

be distributed over a wide, non-stationary spectrum [42], and as such, there has been

a movement away from passive linear devices and their inherently narrow resonant

peaks towards more complex devices (or systems of devices) tuned to have wider

resonant peaks. One active area of research is the intentional use of nonlinearities

in the harvester response to widen the usable bandwidth in an effort to better cover

the excitation spectrum. A range of studies have been conducted on electromagnetic

and piezoelectric systems with a variety of nonlinear restoring forces [2, 3, 4]; while

each system described is quite different from the others physically, the literature has

gravitated towards a common modeling framework for these nonlinear harvesters in

using a modified form of the Duffing oscillator.

Recently harmonic balance was used by Stanton et al. [8] to determine the peri-

odic orbits of the bistable electromechanical Duffing oscillator. Another recent article

by Mann [7] demonstrated that harmonic balance methods can be used to conduct

uncertainty analyses of the various configurations of the electromechanical Duffing

oscillator. However, to the author’s knowledge, only one study of the nonlinear en-

ergy harvesting system using numerical continuation has been performed to date.

58



Barton et al. used a continuation method to follow both the solution branches of

a model and a physical experiment in [43]. Previous literature on numerical meth-

ods has focused on time-marching algorithms for general investigations of system

behavior (e.g. Stanton et al. [4]) or simulation of systems undergoing stochastic

forcing.

The purpose of this investigation is to demonstrate that numerical methods are

a viable approach in the analysis of nonlinear energy harvesting systems. Herein we

demonstrate that computation of periodic orbits can be accomplished by spectral

methods, and parameter studies with sensitivity analysis can be accomplished by

numerical continuation. The paper is organized as follows. First, the equations of

motion for the electromechanical Duffing oscillator are reviewed. A time-periodic

boundary value problem is then constructed using spectral methods to form a resid-

ual function that may be zeroed to find the periodic orbits of the system. Details

regarding a linearized sensitivity analysis of the orbit are presented, as well as a

method of continuing the periodic orbits and a method of computing the Floquet

matrix numerically. Finally, a series of results are presented for the different config-

urations of the nonlinear energy harvester.

4.2 Energy harvesting device and mathematical model

While a variety of devices have been proposed for the conversion of mechanical

motion to electrical power, this investigation focuses specifically on the cantilever

beam designs discussed by Stanton, Erturk and others.

4.2.1 Device description and physical attributes

The purpose of this investigation is to demonstrate the merits of a structured nu-

merical approach to analyzing energy harvesting systems in general. The analysis

methods presented herein are applicable to any energy harvesting system that can
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Figure 4.1: Schematic of an energy harvesting device consisting of a cantilevered
brass beam (thin line) with a partial coating of PZT-5H (thick line). The beam has

a magnetic proof mass and is in the presence of an external magnetic field ~Bext. The
PZT-5H laminates are connected to an electrical load RL.

be modeled as a system of smooth ordinary differential equations with time-periodic

excitation. However, it is helpful to base the investigation on a system that could

be constructed in a laboratory setting. Foundational investigations by Erturk et al.

[44] and Erturk and Inman [45] focused on the performance of a partially laminated

piezoelectric cantilever in a bistable configuration, and within the energy harvesting

literature this design has become widely recognized and generated many subsequent

investigations. Additionally, the modeling and phenomenological investigation con-

ducted by Stanton [4] has served as a foundation for much of the mathematical

modeling a device in a magnetic potential well. As such, this investigation focuses

on a similar device. The model presented herein represents a brass cantilever beam,

partially laminated on both sides with PZT-5H (i.e. bimorph laminates), with a

magnetic end mass in an external magnetic field. The device is connected to a sim-

ple electrical circuit consisting only of a resistor and the piezolaminate layers, and

the harvested voltage is measured across the resistor. A schematic of the device and

circuit is shown in figure 4.1, and relevant physical parameters are shown in table
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Table 4.1: Physical parameters for a nonlinear energy harvesting device.

Parameter Symbol Value

Brass Substrate
Length Ls 101.6 mm
Width Ws 6.4 mm
Thickness hs 0.25 mm
Bimorph PZT-5H Laminates
Length Lp 25.4 mm
Width Wp 6.4 mm
Thickness hp 0.27 mm
Magnetic Proof Mass
Mass mt 3 g
Residual Flux Density Br 1.48 T

4.1. The electromechanical properties of the PZT-5H laminates are the same as in

ref. [46].

An extensive survey of the electromechanical properties of this device has been

conducted by Stanton, Erturk, Mann and Inman in a series of investigations [46,

47, 5]. In these investigations, it was found that the piezolaminates exhibit nonlin-

ear coupling behavior even under moderate excitation loads [47], energy harvesting

devices are intrinsically nonlinear even in the absence of nonlinear stiffness effects

created by a magnetic proof mass [5], and energy harvesting devices exhibit non-

linear damping effects [46]. These investigations provide a solid foundation for a

mathematical model that describes the device shown in figure 4.1.

4.2.2 Nondimensionalization and mathematical model

As detailed in the previous subsection, the model presented herein is motivated by

the piezoelectric inertial generators discussed in [4, 3, 8]. Key characteristics of

these devices are the presence of a relatively large end mass, which concentrates

the majority of the response in the first bending mode. Thus the devices are well-

approximated by either a one-mode Ritz or Galerkin approximation of the full PDE.

Following the notation and derivation presented in [8], an energy harvesting device
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Figure 4.2: Sketch of the restoring forces and potentials for the (a,d) softening,
(b,e) hardening and (c,f) bistable electromechanical oscillators. The top row shows
the restoring forces; the bottom row shows the potential energy. The nonlinear
restoring force and potential is shown by a solid line, while a linear restoring force
and potential are shown by a dashed line for comparison.

with a nonlinearity that is well-represented by a cubic polynomial approximation, a

capacitive circuit, and undergoing excitation at the base can be represented as

m
d

dt2
x̂` pda ` dbx̂

2
q

d

dt
x̂` αx` βx3

´Θv̂ “ fz
d

dt2
ẑ (4.1a)

C
d

dt
v̂ `

1

R
v̂ `Θ

d

dt
x̂ “ 0. (4.1b)

The signs of α and β determine whether the model represents a hardening (α and

β both ą 0), softening (α ą 0, β ă 0) or bistable (α ă 0, β ą 0) system. Then

by substituting τ “ t
a

|α|{m, x “ x̂
a

|β|{|α|, z “ ẑ
a

|β|{|α|, v “ v̂
a

|β|C{α, a
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dimensionless equation

:x` pµa ` µbx
2
q 9x` U 1pxq ´ θv “ :z (4.2a)

9v ` µcv ` θ 9x “ 0 (4.2b)

can be formed, with dimensionless variables pτ, x, z, vq, where 9p q indicates a derivative

with respect to dimensionless time τ , and where U 1pxq “ ´x`x3 for a bistable system,

U 1pxq “ x` x3 for a hardening system and U 1pxq “ x´ x3 for a softening system. In

terms of the original physical parameters,

µa “
da

a

m|α|
, µb “

db
|β|

c

|α|

m
, µc “

1

RC

c

m

|α|
, θ “

Θ
a

|α|C
. (4.3)

In this investigation, we consider harmonic forcing of the form d
dt2
ẑptq “ A cos Ωt.

In dimensionless form, the forcing is written

:z “ Γ cos ητ, Γ “ fzA
a

|β|{|α|3{2, η “ Ω
a

m{|α|. (4.4)

At this juncture, the form of the dimensionless equations matches [8]; the har-

monic balance analysis from [8] will be compared with the procedure detailed in

the following section to demonstrate that similar results are obtained and to high-

light additional information that can be obtained from a numerical approach to the

problem.

4.3 Parameter Studies with Numerical Continuation

After determining a sensible model for the energy harvesting device, the next task is

often to conduct parameter studies with the model that can be used to predict the

behavior of experiments. Much of the current literature has focused on analytical
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methods such as harmonic balance [8, 7] and the method of multiple scales [48] to

derive closed-form parameterized expressions that can be used to create response

curves. These methods are excellent choices for many of the models shown in the

literature so far as they yield reasonably compact symbolic expressions that can

provide some intuition into the behavior of the system, even without creating graphs.

However, as the modeling of nonlinear phenomena in energy harvesters becomes more

detailed, these expressions become unwieldy and they lose any intuitive value.

One method, detailed herein, is numerical continuation, coupled with a numerical

strategy for solving the boundary value problem for periodic orbits. To begin, the

equations of motion are recast as a system of parameterized first-order differential

equations

9x “

¨

˚

˚

˚

˝

x1

x2
...
xk

˛

‹

‹

‹

‚

“ fpx, t; pq “

¨

˚

˚

˚

˝

f1px, t; pq
f2px, t; pq

...
fKpx, t; pq

˛

‹

‹

‹

‚

, (4.5)

where x “ px1, x2, . . . , xKq
J P RK are the states, fkpx, t; pq : RK`1 Ñ R are the

K non-autonomous state equations and p is the set of physical parameters. For

example, the bistable system would be represented as:

¨

˝

9x1

9x2

9x3

˛

‚“

¨

˝

x2

´pµa ` µbx
2q 9x` x´ x3 ` θx3 ` Γ cos Ωt
´µcx3 ´ θx2

˛

‚ (4.6)

where x1 is the dimensionless displacement of the harvester, x2 is the dimension-

less velocity and x3 is the dimensionless voltage, with the set of parameters p “

tµa, µb, µc, θ,Γ,Ωu. Given this first order system, closed orbits are found by solving

64



−0.1 0 0.1
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

(a)

x

ẋ
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Figure 4.3: Comparison of numerical integration (-) and collocation (˝) solutions
for the softening (a), hardening (b) and bistable (c) oscillators for a stable orbit.
Parameter values used in all cases are µa “ 0.08, µb “ 0.01, µc “ 0.01, θ “ 0.1,
Γ “ 0.08 and η “ 0.1. The agreement is nearly exact for stable solutions; unstable
solutions diverge gradually. The equal spacing of the collocation points in time is
clearly visible here.

the periodic boundary value problem

ˆ

9x
0

˙

“

ˆ

Tfpx, τ ; pq
xp1q ´ xp0q

˙

(4.7)

where premultiplying fpx; pq by the period of the orbit T rescales t P r0, T s Ñ τ P

r0, 1s and the overdot now signifies a derivative with respect to τ . The boundary

condition xp1q “ xp0q enforces periodicity. This time-periodic BVP (TP-BVP) may

now be discretized and solved numerically.

4.3.1 Solution of the TP-BVP by psuedospectral collocation

To formulate the numerical boundary value problem, the orbit is discretized into a

set of n collocation points τ “ pτ0, τ1, . . . , τnq
J P Rn, a set of n ˆ k sample states

y “ pxJpτ0q,x
Jpτ1q, . . . ,x

Jpτnqq
J P Rnˆk and a differentiation matrix D P Rnˆn is
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created such that

¨

˚

˚

˚

˝

9xJpτ0q
9xJpτ1q

...
9xJpτnq

˛

‹

‹

‹

‚

«D

¨

˚

˚

˚

˝

xJpτ0q
xJpτ1q

...
xJpτnq

˛

‹

‹

‹

‚

`Opεq (4.8)

or more compactly 9y “Dy `Opεq. Rows of y, yi “ px1pτiq, . . . , xKpτiqq, correspond

to samples at the collocation points τi while columns correspond to states xk; D

is a square matrix whose rows correspond to the derivative approximation at τi

and whose columns correspond to the influence of neighboring samples ypτiq on the

approximation of the derivative. The matrix D can be constructed in a number of

ways; a Fourier spectral differentiation matrix is chosen for this investigation because

it enforces the periodic boundary conditions explicitly, but other matrices such as

a finite difference, finite element, or spectral element matrix could be used, as well

as a different set of basis functions for determining the collocation points such as

Chebyshev or Legendre polynomials. See [49] or [50] for numerous examples as well

as details for generating D.

Assuming equation (4.8) is valid, Dy “ Tfpy, τ ; pq is a valid approximation of

equation (4.7). We can then write a residual for the boundary value problem as

Rpy; pq “Dy ´ Tfpy, τ ; pqJ, (4.9)

where the substitution 9y « Dy has been made1. In a collocation method, zeros of

the residual function correspond directly to discretized solutions (periodic orbits) of

equation (4.7); other methods (Galerkin, etc.) have a slightly different interpretation

(c.f. [50, 17]). An example solution of equation (4.9) is shown in Figure 4.3.

1 As a convention throughout, any arguments that follow a semicolon are assumed to be fixed
during the solution of the TP-BVP. In the energy harvesting context, examples would be damping,
forcing frequencies or amplitudes, or coupling parameters.
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Figure 4.4: Schematic of the vertically concatenated residual for a system with
three states.

To enforce the boundary condition yp0q “ yp1q, the last row of D, which cor-

responds to τ “ 1 is typically replaced with p1, 0 . . . , 0,´1q to enforce periodicity

(typically referred to as “boundary bordering the matrix”); however, when using a

Fourier spectral differentiation matrix periodicity is implicitly enforced and the last

row and column (corresponding to τ “ 1) are removed to avoid problems of collinear-

ity. See [49] for an overview of including boundary conditions and [50] for a more

detailed discussion of boundary conditions.

Let

Rτipxk; pq “Dτi

¨

˚

˚

˚

˝

xkpτ0q

xkpτ1q
...

xkpτnq

˛

‹

‹

‹

‚

´ Tfkppx1pτiq, . . . , xkpτiqq
J, τi; pq (4.10)

be the residual at the ith collocation point τi for the kth state xk with Dτi the ith

row of the differentiation matrix D. Hence Rτipxk; pq is scalar and corresponds to

the error at collocation point xi,k given all other collocation points of the same state
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and all states at the same time. Then the total residual matrix has the form

Rpy; pq “

¨

˚

˝

Rτ1px1; pq . . . Rτ1pxK ; pq
...

. . .
...

Rτnpx1; pq . . . RτnpxK ; pq

˛

‹

‚

(4.11)

with Rpy; pq P RnˆK . This form is compact, but computationally inefficient due

to the matrix-matrix multiplication of D and y. It is advantageous to vertically

concatenate the columns of y and fpy, τ ; pq and instead write the residual

Rpy; pq “ pIk bDq vecttyu ´ T vecttfpy, τ ; pqJu (4.12)

where b is the Kronecker product and IK is the K ˆ K identity matrix (3 ˆ 3 in

the case of the 3-state energy harvester model). Now we have Rpy; pq P Rn¨K . A

schematic of the concatenated residual structure is shown in figure 4.4. This vector

residual is computationally preferable to the matrix residual above as a modified

Newton method will be used to solve Rpy; pq “ 0 to find periodic orbits.

The final remaining question is how to determine the appropriate number of

collocation points: for this investigation, a solution generated by collocation was

compared to a solution generated by numerical integration, as seen in Figure 4.3, for

varying numbers of collocation points. As can be seen in Figure 4.5, the error falls

off exponentially as the number of points used increases. For this investigation, 32

collocation points2 were used to balance error against computational expense. This

formulation of the TP-BVP is used to compute periodic orbits, conduct uncertainty

analyses and follow the orbits as parameters are varied using numerical continuation.

2 Note that selecting a number of collocation points n “ 2m, where m is a whole number, creates
a problem that is easily parallelizable across multiple CPU cores.
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Figure 4.5: Convergence of error ||yi ´ yc|| in collocation solution yc relative to a
numerically integrated trajectory yi for the softening (a), hardening (b) and bistable
(c) cases where n is the number of collocation points.

4.3.2 Linearized uncertainty analysis of a periodic orbit

As discussed in [7], determining the sensitivity of orbits to variance in system param-

eters is an important step in determining real-world limits on performance. Here,

a linearized uncertainty analysis is performed as discussed in [51] and used in [7] in

conjunction with harmonic balance to study the energy harvester equations. Note

that a more detailed method such as generalized polynomial chaos could be used,

but for proof of concept, linearized uncertainty analysis is satisfactory. Those inter-

ested in more powerful methods such as generalized polynomial chaos should consult

ref. [52]. Lacking an analytical solution, the uncertainty analysis must be performed

numerically.

To begin, assume that the solution y which solves Rpy; pq “ 0 is a function of the
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P parameters p, that is

yppq “ ypp1, p2, . . . , pP q. (4.13)

Then, assume there is an uncorrelated, normally distributed perturbation pε1, ε2, . . . , εnq

with each εi representing the uncertainty in each pi; the assumption of normality is

used to make the analysis tractable [51]. The solution with stochastic parameters

can be written as ys “ ypp1 ` ε1, p2 ` ε2, . . . , pP ` εP q. The mean and variance of S

are given by

µS “ E ryss “ ypp1, p2, . . . , pP q (4.14)

σ2
S “ Ery2

s s ´ Eryss2 “
P
ÿ

i“1

ˆ

By

Bpi

˙2

Erε2i s, (4.15)

which can be found by Taylor expanding and canceling terms (see [51]). Note that

σ2
pi
“ Erε2i s is simply the variance of εi. Now, define Upi “ nσpi as the uncertainty in

parameter pi, and

θ2
i “

ˆ

By

Bpi

˙2

(4.16)

as the sensitivity coefficient corresponding to pi. If n is chosen to be an integer it

will correspond to a confidence interval at n standard deviations. Then the total

uncertainty in the solution Uy is given by

U2
y “

P
ÿ

i“1

θ2
iU

2
pi
. (4.17)

Lacking an analytical expression for Sppq, we determine the coefficients θi, with
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a simple forward difference, that is

θi “
ypp` δq ´ yppq

δ
, (4.18)

where δ is a small perturbation applied to pi. In this investigation we use δ “ 0.005¨pi

(i.e. a 0.5% perturbation in pi) to balance accuracy against roundoff errors. The

solutions yppq and ypp ` δq are found by solving yppq “ ty | Rpy; pq “ 0u and

ypp` δq “ ty | Rpy; p` δq “ 0u.

4.3.3 Numerical continuation of periodic orbits

In the context of energy harvesting, an investigator is most often interested in ob-

taining the response of a system as forcing frequencies and amplitudes are varied,

as well as determining the influence of tuning parameters on the behavior of the

system. Thus, computing the response trends of the TP-BVP to variations in a

parameter is fundamental to any useful energy harvesting investigation. To do so,

begin by finding a reference solution y0 “ ty | Rpy, α0; p̂q “ 0u with a fixed subset

of parameters p̂ Ă p and one bifurcation parameter α chosen from the full set of

parameters p. For example, one might choose α to be the forcing frequency; p̂ would

be the remainder of the parameters such as the forcing amplitude, electromechanical

coupling and dissipative parameters. To avoid repetitive notation, let Rpy, α; p̂q be

Rpy, αq.

Given y0, one then seeks to follow the branch of solutions on which y0 lies over

a certain range of α. For a TP-BVP strategy with n collocation points, numerical

continuation can be used to find a discretized representation of the n-dimensional

manifoldM embedded in the n` 1 dimensional py, αq space of collocation variables
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y and the continuation parameter α. M is defined as

M “ tpy, αq | Rpy, αq “ 0, α P rαmin, αmaxs, D a path from y0 to yu , (4.19)

i.e. the zero-set of Rpy, αq in the parameter range rαmin, αmaxs that is connected

to y0 [53]. Note that in general numerical continuation algorithms will not find

disconnected branches without user intervention. In the energy harvesting context,

an example of disconnected branches would be the inter- and intra-well solution

curves of the bistable oscillator.

It is important to note that the manifoldM is embedded in the n`1 dimensional

space that includes both collocation variables y and the continuation parameter α:

M is an implicit function of both. A naive strategy of marching incrementally from

αmin to αmax would fail at points where the Jacobian Rypy, αq becomes singular. A

physical example of this would be at the points in a nonlinear frequency response

function when the slope becomes vertical. Hence an additional degree of freedom is

included by allowing α to become a free parameter and adding a constraint equation

to keep the system square. Let Md “ tpy0, α0q, . . . , pyj, αjq, . . .u be the discretized

manifold. Then by repeatedly solving

ˆ

0
ds

˙

“

ˆ

Rpy, αq
||p∆y,∆αq||2

˙

” R`py, αq (4.20)

a collection of pyj, αjq can be found that represent the manifold. In equation (4.20)

∆y “ yj ´ yj´1 and ∆α “ αj ´ αj´1 are the vectors from the previous solution for y

and α and the final additional equation ||p∆y,∆αq||2 “ ds enforces a step length of

ds. Including this final equation ensures that the Jacobian R`y py, αq does not become

singular at turning points and keeps the system square with the addition of the extra

free variable α. This choice of a constraint equation is by no means unique; other
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choices are detailed in [24, 23, 25]. A secant predictor

ŷ “ yj´1 ` pyj´1 ´ yj´2q (4.21)

α̂ “ αj´1 ` pαj´1 ´ αj´2q (4.22)

is used as the initial guess for each new solution yj and a trust-region dogleg algorithm

is used to find the zeros of R`py, αq.

4.3.4 Numerical bifurcation and stability analysis

Finally, a method is required to detect any bifurcations that might occur in the

system. Again, lacking analytical expressions for the orbits, numerical methods

must be used. To find a bifurcation, a test function φpy, αq is constructed such that

φpy, αq “ 0 at a bifurcation [23, 25, 24]. This test function is constantly monitored

during the continuation process, creating a series of test function values φj “ φpyj, αjq

corresponding to the pairs pyj, αjq of Md. Then the condition

φj´1φj ă 0 (4.23)

indicates that the test function changed signs between steps j and j ´ 1. At this

point, the continuation is halted and a new step from j ´ 1 is made with the added

condition of zeroing the test function, that is:

ˆ

0
0

˙

“

ˆ

R`py, αq
φpy, αq.

˙

(4.24)

This finds the bifurcation point directly. Either a Newton-type method or a secant-

type method can be used to find the bifurcation point; as the Jacobian of eq. (4.24)

is sometimes expensive to compute, secant-type methods are sometimes preferable

despite their slower convergence than Newton methods. In this investigation we

consider three types of bifurcations: the turning point bifurcation, given by

φTP “ detpRypy, αqq, (4.25)

73



where Rypy, αq is the Jacobian of the collocation residual; the period-doubling bifur-

cation, given by

φPD “ detpΦ´ IKq, (4.26)

where Φ is the monodromy matrix; and the symmetry-breaking bifurcation, given

by

φSB “ detpΦ` IKq. (4.27)

All of these test functions are can be found in either [24, 23] or [25]. Calculation

of Rypy, αq is straightforward and in practice one simply uses all but the last row

and column of R`y py, αq, as R`y py, αq is calculated in the process of solving equation

(4.20). Determining the monodromy matrix Φ is less straightforward. To find Φ, the

system

ˆ

9x
9Φ

˙

“

ˆ

fpx, t; xα, p̂yq
fxpx, t; xα, p̂yqΦ

˙

(4.28)

is numerically integrated with initial conditions xp0q taken from the current orbit,

computed in equation (4.20), and Φp0q “ Ik (the k ˆ k identity matrix). In prac-

tice, the matrix ODE for Φ is reshaped into a vector to ensure compatibility with

numerical routines. Solving this coupled pk ` k2q-state ODE on t “ r0, 1s yields

Φp1q ” Φ, the monodromy matrix. Monitoring the eigenvalues of Φ allows us to de-

tect bifurcations: when an eigenvalue µi of Φ satisfies |µi| “ 1, a bifurcation occurs.

This investigation considers only two (period-doubling and symmetry-breaking) of

the three types of bifurcations related to the monodromy matrix in this investigation;

the third, Neimarck-Sacker bifurcations, were not detected in the systems studied.

This is typically the most expensive computation during each step as equation (4.20)

usually converges within a few iterations if a reasonable step size is maintained.
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Figure 4.6: Response trends in average power (Pav) per cycle illustrating the sup-
pressing effects of increasing µb for the softening (a), hardening (b) and bistable (c)
configurations. Other parameter values are µa “ 0.08, µc “ 0.01, Γ “ 0.07 and
θ “ 0.9. Stable solutions exist on the solid lines; dotted lines indicate unstable
solutions.

4.4 Results

In the previous section, methods for analysis of a mathematical model of a harmonically-

excited energy harvester were detailed, including: obtaining a periodic orbit through

the solution of a periodic boundary value problem via psuedospectral collocation;

determining the sensitivity of the orbit to uncertainties in the model parameters;

following the solution curve of the model as parameters are varied; determining the

stability of orbits and identifying bifurcations on the solution curves. While the

process detailed above differs in approach from much of the existing literature, the

fundamental goal is the same: determining performance trends in various excita-

tion environments and determining the effects of tunable parameters on the device’s

performance.

In this section, we implement the procedures discussed in the previous section to
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conduct three series of investigations. First, we observe the influence of the damping

parameters and the electromechanical load on the overall response trends of each

system; these results are compared to [8] to emphasize the ability of the collocation

method to obtain similar results to harmonic balance. Second, we illustrate the

effects of uncertainties in the parameters; these results are compared to [7] to show

that calculating the sensitivities numerically yields similar results to the analytical

methods used in [7]. Finally, we investigate the bifurcations in each system and

observe behaviors that were not found by harmonic balance.

4.4.1 Response trends and energy harvesting implications

In [8], response trends were shown as the nonlinear damping µb and electrical load µc

parameters were varied, highlighting the effects of these parameters on the behavior

of the bistable system. Here we consider all three configurations and illustrate the

response trends as µb and µc are varied.

In figure 4.6, the suppressing effect of the nonlinear damping parameter µb can

be clearly seen. With a sufficiently high nonlinear damping parameter, the cusp

bifurcation causing a loss of stability and multiple coexisting solutions disappears in

all three systems. This effect is consistent for both high and low amplitude excitations

and matches with the results found in [8].

Varying the electrical load µc has a more noticeable effect on the resonant peak of

the system. Increasing the electrical load decreases the amplitude of the response but

increases the average power (Pav) up to a certain limit. Additionally, the resonant

peak of the device shifts in frequency as µc is varied, again in all three configurations.

This can be seen in figure 4.7. This is an important consideration in the design

of a device because in addition to being an easily tunable parameter, the circuit

resistance alters the resonant peak and bandwidth more drastically than any of the

other parameters.
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Figure 4.7: Response trends in average power (Pav) per cycle for electrical loads
µc “ t0.01, 0.1, 1, 10u for the softening (a), hardening (b) and bistable (c) configu-
rations. Other parameter values are µa “ 0.08, µb “ 0.01, Γ “ 0.07 and θ “ 0.9.
Stable solutions exist on the solid lines; dotted lines indicate unstable solutions.

Figure 4.8 illustrates the nature of the system response with respect to the elec-

trical load. For each system, there is a clear peak in power output. This peak shifts

as the frequency or amplitude of excitation shifts, indicating that determining an

optimal circuit load is a nontrivial optimization problem.

4.4.2 Bifurcation behavior

In the previous subsection, response trends were shown that demonstrated the effects

of nonlinear damping and the electrical load on the behavior of the system. In this

section, results are presented that focus on the bifurcations that occur in the system

as the forcing amplitude is varied.

It is well known that Duffing-type oscillators exhibit period-doubling and sym-

metry breaking bifurcations as forcing amplitude is increased. Similar behavior is

observed in all three configurations of the energy harvesting device. Figure 4.9 shows

trends as the forcing amplitude is increased near the resonant peak of each device.

Notably, each device exhibits coexisting solutions, as has been reported in several
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Figure 4.8: Response trends of average power per cycle (Pav) as the electrical load
µc is varied. In each case, there is a clear peak, highlighting the presence of an
optimal impedance value for each harvester design. The softening case is shown in
(a), hardening in (b) and bistable in (c). Parameters shown are µa “ 0.08, µb “ 0.01,
θ “ 0.9, Γ “ 0.07 and Ω “ 1.2.

prior investigations. In this investigation, we identified several period-doubling and

symmetry-breaking bifurcations and found evidence of physical behavior that has

not yet been thoroughly discussed in the literature to the best of our knowledge.

For each configuration of the device, a small-amplitude solution persists through

moderate values of Γ, the forcing amplitude. The solution coexists with a higher-

amplitude solution that would typically be unstable in a purely mechanical Duffing-

type oscillator but is stable in the electromechanical version shown here, as confirmed

by numerical simulation and a test on the Floquet multipliers of the system. As the

Γ is increased further, the low-amplitude solution ceases to exist altogether and all

three configurations go through a cascade of period-doubling bifurcations intermixed

with symmetry breaking bifurcations.

The presence of a symmetry-breaking bifurcation indicates the formation of a

solution with a winding number ‰ 1: that is to say, the solution folds over itself
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Figure 4.9: Bifurcations observed as the forcing amplitude is increased near the
resonance of each device. TP indicates a turning point or cusp-type bifurcation,
SB indicates a symmetry breaking bifurcation, and PD indicates a period doubling
bifurcation. PL P tΓmin,Γmaxu represents a parameter limit that terminated the
continuation algorithm.

when viewed in a two-dimensional phase plane and is no longer symmetric about the

displacement axis, and the solution is no longer homeomorphic to the circle. Period-

doubling solutions often appear visually similar to symmetry breaking solutions, but

indicate the presence of a symmetric orbit of doubled period. In each system, the

presence of period doubling bifurcations causes a different phenomenon to occur.

In the softening system, period-doubling bifurcations occur in rapid succession

as the forcing intensity nears Γ « 0.2, the system undergoes a well escape and

the amplitude of the response goes to infinity. This is of course a non-physical

response and represents an inherent shortcoming in the modeling of the restoring

force. Had the restoring force been truncated at fifth order rather than third order,

the potential well for the softening configuration (as seen in figure 4.2) would resemble

a flattened parabola rather than an inverted bistable potential well, thus avoiding

the nonphysical numerical/modeling problem of well escapes altogether. A clearer
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Figure 4.10: Period doubling cascade observed in the softening device approaching
the well escape. A drawback of the truncating the stiffness approximation at third
order is the manifestation of non-physical well escape behavior in the softening sys-
tem. TP indicates a turning point or cusp-type bifurcation, SB indicates a symmetry
breaking bifurcation, and PD indicates a period doubling bifurcation.

view of the bifurcation sequence can be seen in figure 4.10.

In the hardening system, the succession of period-doubling bifurcations are less

meaningful as the system alternately loses and regains a stable period-1 orbit as the

forcing intensity is increased. The hardening configuration is by far the most robust

in terms of maintaining stable period-1 orbits even under high forcing amplitudes

and near resonant conditions. This is potentially advantageous as it eliminates the

need for complicated circuit designs to efficiently harvest power from the device.

In the bistable system, the period doubling bifurcations again correspond to a

well escape, but unlike the softening system the well escape in the bistable system

has a physical meaning corresponding to the transition from single-well to cross-well

solutions. The intrawell solution (represented by the branch shown in figure 4.9c)

is intermittently stable even through very high forcing amplitudes. This highlights

an important challenge in the design of a bistable harvester that many others have

already noted in the literature - the low-energy intrawell solution persists even at high
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Figure 4.11: Uncertainty in the frequency response of the softening (a), hardening
(b) and bistable (c) configurations. The mean response is shown by a black line;
the 95% confidence interval is shown by gray dotted lines. The uncertainty is not
shown when it approaches numerical infinity; additionally unstable branches of the
response are not shown.

amplitudes and maintaining a high-energy interwell solution would usually require

intervention through a control scheme.

4.4.3 Uncertainty quantification

In a physical system, parameters can never be identified exactly. There is always

some measure of uncertainty in the measured parameters, and if the measurement

uncertainty is small, the linearized sensitivity analysis detailed above is an excellent

way of determining the influence of these uncertainties on the performance of the

device. In figure 4.11, the general trend of response uncertainty is clearly visible.

There is little variance in the response away from the resonant peak, but near the

resonant peak, all three devices show considerable variance in the response magni-

tude. Specifically, the bistable device has the greatest relative uncertainty in response

near resonance, followed by the softening device. The hardening device has a fairly

81



robust response with low variance near resonance. Given the uncertain nature of en-

ergy harvesting environments, computing the response uncertainties provides useful

information to the investigator, and by using the method described in the previous

section, the uncertainties are trivial to calculate while in the process of calculating

the mean response of the system.

4.5 Conclusions

This investigation has demonstrated the merits of a numerical approach to charac-

terizing the response of energy harvesting systems to harmonic forcing. While many

prior investigations have utilized numerical integration to characterize system behav-

ior, the approach detailed herein allows the systems to be studied in greater detail,

including finding unstable orbits, finding bifurcations of orbits, and finding the sensi-

tivity of orbits to uncertainties in physical parameters. The methods presented allow

for the influence of all system parameters to be investigated with ease. Addition-

ally, the methods presented in this investigation are not computationally intensive

compared to a brute-force search of the parameter space with numerical integration;

it takes tenths of a second to find a point on a solution curve, check its stability,

conduct a sensitivity analysis and monitor for bifurcations, allowing entire solution

curves to be built in less than a minute in most cases. The method also circumvents

difficulties that might arise in symbolic computation while finding approximate ana-

lytical solutions, instead allowing the investigator to conduct parameter studies from

the original system of ODEs directly. However, there is still great value in obtaining

symbolic solutions for the intuition they provide into the behavior of a system.

Future numerical continuation work on energy harvesting systems should focus on

devices which either do not admit approximate analytical solutions, or are beyond

the level of complexity at which a reasonably compact analytical solution can be

obtained. This will allow for more thorough investigations of the wide range of
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nonlinear behaviors present in these devices. Additionally, stochastic forcing and

higher-fidelity uncertainty quantification should be considered using the methods

presented in [52]. Branching behavior at bifurcation points should be considered

and solution curves emanating from the bifurcation points should be considered;

for a theoretical overview see [23]. To aid in the visualization of response trends

against multiple parameters, the multiparameter continuation method detailed in [53]

could be used. Finally, continuation techniques should be employed in a laboratory

setting as demonstrated in [43] and combined with a real-time controller to follow

the solution branches of physical devices for comparison with mathematical models.
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5

Phenomenological Investigation of a Tilt-Excited
Pendulum

As discussed in chapter 1, the construction of an effective energy harvester in an ocean

environment almost certainly necessitates the use of a nonlinear device. While linear

devices benefit from a consistent, predictable response, even in random excitation

environments, they are fundamentally limited by a narrow bandwidth from which

energy can be harvested. Nonlinear devices lack the predictability of linear devices,

but they often exhibit highly energetic behaviors over a wider range of the frequency

spectrum than their linear counterparts.

One such nonlinear device is a proof mass affixed to a generator via a lever arm on

a rotating bearing. As the buoy or vessel heaves and pitches in the ocean waves, the

changing tilt of the apparatus relative to the vertical axis induces motion by altering

the gravitational potential energy of the proof mass. Energy is then harvested when

the lever arm rotates and turns the generator, converting the kinetic energy of the

proof mass into electrical energy in the harvesting circuitry.

A significant advantage of this design is its proven history as one of the oldest and

most persistent kinetic energy harvesting technologies. The principle of a rotating
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proof mass driven by tilt-induced changes in gravitational potential is a well-tested

technology that has been employed in self-winding, or automatic, watches since the

eighteenth century. In the 1770’s, Abraham-Louis Perrelet is said to have invented

the first self-winding watch mechanism for a pocketwatch, utilizing a pendular device

excited by the motion of the watches user to incrementally wind the mainspring

[9]. His mechanism was later improved by Abraham-Louis Breguet, but the limited

motion experienced by the watches in their owner’s pockets limited the commercial

success of the devices [9].

The self-winding wristwatch was not invented until the twentieth century, when

John Harwood developed the “bumper” watch. Patented in 1923, the design em-

ployed a pendular mechanism with a limited range of motion that encouraged librat-

ing behaviors to gradually wind the mainspring [9]. Due to the increased motion

experienced at the wrist, the self-winding mechanism functioned well and the watch

was a commercial success until the Great Depression. The first design to incorpo-

rate a self-winding mechanism capable of unrestricted rotation was the Rolex Oyster

Perpetual, which employs a semicircular proof mass affixed to the central axis of the

watch [9]. The Rolex design, which evolved from Harwood’s original design, remains

in use today by many high-end watch manufacturers in the construction of automatic

wristwatches. Given the effectiveness of this design in providing mechanical energy

to watch designs in the stochastic excitation environment of human wrist movement,

it seems appropriate to consider the fitness of such a device as an energy harvester

for ocean-based devices.

The objective of this chapter is provide a mathematical model and theoretical

basis for the study of a tilt-excited gravitational inertial generator. Such a device may

effectively be modeled as a horizontally mounted pendulum with a varying tilt angle.

This chapter contributes a fully nonlinear model for a simplified version of the system

and conducts a phenomenological and parametric study of its behaviors to provide a
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basic understanding of its dynamics before undertaking a design optimization study

of the device for energy harvesting.

5.1 Introduction

Mounting a pendulum arm to a bearing with a perfectly vertical axis of rotation

creates an interesting astable system that is characterized by the absence of a restor-

ing force. The system is neutrally stable over its entire range of motion, and in the

absence of damping, it would continue to rotate at constant velocity indefinitely.

The damped system simply spins until its energy is expended through dissipation

and the system comes to a halt. Introducing a tilt in the rotational bearing relative

to the gravity vector introduces a pair of equilibria: a stable equilibrium at the low-

est point in the range of motion, and an unstable equilibrium directly opposite the

stable equilibrium. As the tilt angle is changed, the stable equilibrium continuously

tracks the lowest point in the range of motion, and the device responds by seeking

this equilibrium point.

Because of the tendency of the system to settle into a stable equilibrium arising

from any subtle change in its orientation relative to the gravitational field, and due

to the exceptionally long natural period of oscillations that occur for very slight tilt

angles, the horizontal pendulum has found use in a wide range of applications requir-

ing high-precision measurement. Variations on the prototypical horizontal pendulum

have been used to determine the density of the Earth [54], in geological tilt measure-

ment [55], and in seismometry [56]. The seismometry community has made the

greatest contributions to the modeling and analysis of the sprung horizontal pendu-

lum, with contributions from Graizer [56, 57] forming the bulk of prior work related

to the device. Graizer’s work considered devices consisting of one horizontal and two

vertical pendula oriented such that the combined measurements of the three could be

used to resolve six-degree of freedom (rotational and translational) seismic activity.
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In reference [57] he studies the effects of ground tilt on the response and accuracy of

the device. Consistent with the application of his research to seismometry, he makes

the simplifying assumption of linear pendulum behavior, which is justifiable given

the presence of a torsional restoring force in the measurement devices. This chapter

expands on the sparse literature base covering this device by providing a model for

the fully nonlinear system and studying its behaviors.

The nearest comparable physical system to this device is the planar (vertical)

pendulum. Indeed, for a static tilt angle other than horizontal, the device is math-

ematically equivalent to a vertical pendulum. The driven planar pendulum readily

displays a wide range of phenomena, including simple harmonic and subharmonic

motion [19] as well as complex behavior such as chaos [58]. The parametrically

forced pendulum is of particular interest because of the similarity of the equations

of motion to those of a rocking horizontal pendulum. Research by Bartuccelli [59]

and Scmitt [60] has shown that high frequency excitation of a parametrically ex-

cited pendulum will result in oscillations about a non-zero mean angle. Additionally,

parametric excitation can be used for dynamic stabilization of otherwise unstable

equilibria [61, 59, 62, 63]. Of particular relevance to this work is reference [64],

which considered the influence of tilt on the behavior of a horizontally and verti-

cally excited pendulum, which is similar in mathematical form to the system studied

herein. Noting differences in experiment and theoretical results in the references

listed above, investigations by Mann [64] identified symmetry-breaking bifurcations

resulting from sensitivity of the pendulum’s tilt relative to the excitation source.

This chapter is organized as follows: first, a mathematical model for the horizon-

tal pendulum system is derived from first principles. The equations are simulated

numerically and example behaviors are shown for the case of harmonic forcing. Three

representative behaviors are shown: rotation, oscillation-rotation, and chaos. Of the

three, rotating behaviors are the most energetic and thus the most favorable in an
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Figure 5.1: Schematic of the rocking horizontal pendulum.

energy harvesting context. To further study the rotating solution, a parametric study

is conducted using psuedospectral collocation and numerical continuation methods.

Conclusions are drawn regarding the basic properties of the device and the informa-

tion gained is used in the subsequent chapter to guide the design analysis for the

device in an ocean environment.

5.2 Physical system and mathematical model

In this section, a mathematical model of the horizontal pendulum system is derived

from its physical attributes using Lagrange’s equation. In order to maintain a rea-

sonable number of parameters in the physical model, for the purpose of this study

the motion of the platform is restricted to tilt about the horizontal axis only.

Figure 5.1 shows a pendulum positioned a vertical distance h above a tilted

platform; the angular orientation of the platform is given by the angle x and the

angle of the platform is given by φ. For a rod of mass m with radius of gyration l

measured from the axis of rotation about which x is defined, the kinetic and potential
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energies are

T “ 1

2
m

„

´

l 9x sinx` h 9φ
¯2

`

´

l 9φ cosx
¯2

` pl 9x cosxq2


(5.1a)

and

U “ mg rh cosφ` l p1´ sinφ cosxqs , (5.1b)

respectively. It is assumed that φptq is a known, time-varying function and not

a generalized coordinate; thus by applying Lagrange’s equation for the generalized

coordinate x,

d

dt

ˆ

BT
B 9x

˙

´
BT
Bx
`
BU
Bx

“ ´b 9x, (5.2)

the equation of motion

:x` µ 9x`
´

9φ2 cosx` d:φ` ω2 sinφ
¯

sinx “ 0 (5.3)

is found, where the nonconservative forceQx “ ´b 9x corresponds to the viscous damp-

ing effects at the bearing, µ “ b
ml2

, d “ h
l

and ω2 “
g
l
. Equation (5.3) is similar to the

equation for a vertical parametrically excited pendulum, although it lacks a constant

restoring force term. The complicated restoring force presents difficulties in studying

this model with approximate analytical methods; hence, empirical observations are

made using numerical integration to study the behaviors of the system.

5.3 Phenomenology

The previous section provides a model for the horizontal pendulum with an arbitrary,

known tilt angle φptq. This section conducts a phenomenological investigation into
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Figure 5.2: A stable rotating orbit for parameters µ “ 0.05, d “ 0.2, ω “ 1,
Γ “ 0.7, and Ω “ 1. Shown are the (a) angle, (b) angular velocity and (c) phase
portrait of the response for the initial condition px0, 9x0q “ p´1.7903, 0.7592q. The
response is shown as a light gray line and the stroboscopic sections are shown as
black dots.

the behaviors of the harmonically forced system with tilt angle φ “ Γ sin Ωt. Given

φ, the system is now

:x` µx`
`

Γ2Ω2 cos2 Ωt cosx´ dΓΩ2 sin Ωt` ω2 sinpΓ sin Ωtq
˘

sinx “ 0. (5.4)

To explore the behaviors of the system, the state-space equations are numerically

integrated using MATLAB’s ode45 integrator [18]. Stroboscopic sections are taken

once per forcing period Tf “
2π
Ω

to determine the periodicity of a solution. These

stroboscopic sections form a Poincaré map in the phase space, and by observing the

attractor of the Poincaré map, the periodicity of a solution can be classified.
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5.3.1 Numerically integrated trajectories

This subsection considers the representative behaviors of equation (5.3) as observed

through numerical integration. The harmonically-forced system exhibits three princi-

pal behaviors: periodic rotation, periodic oscillation-rotation, and chaotic oscillation-

rotation. Figure 5.2 shows an example of a stable rotating orbit simulated for 100

forcing periods. From the figure, it is evident that the orbit is periodic because only

one “dot” appears from the stroboscopic section. In this case, the orbit is counter-

clockwise, as the sign of 9x is positive. There also exists a symmetric counterclockwise

orbit due to the symmetry of the system. Stable rotating orbits exist for Γ « r0.7, 1.2s

near Ω “ 1 for µ “ 0.05, d “ 0.2 and ω “ 1. Investigating the nearby parameter

space reveals that a sufficiently large Γ is the largest deciding factor in the presence

of stable rotating orbits. In the energy harvesting context, rotating orbits are the

most energetically favorable, so it makes sense to design a system that satisfies these

conditions.

Figure 5.3 highlights a second type of behavior often encountered in this system.

Shown is a periodic oscillating-rotating solution, simulated for 100 forcing periods.

Again, the solution is shown to be periodic by the stroboscopic section. Periodic

oscillating-rotating solutions often manifest for low forcing frequencies and ampli-

tudes. This behavior contains a superharmonic, as seen by the pinched shape of

the phase portrait. Oscillation-rotation occurs when the system swings through one

rotation, reverses direction, and swings back in the opposite direction.

Figure 5.4 shows a very common behavior for high-amplitude low-frequency forc-

ing. 100 forcing periods of a chaotic trajectory are shown. The stroboscopic section

reveals the chaotic nature of the response, and the trajectory highlights the structure

of the chaotic attractor. While the time series for x and 9x appear completely random,

the phase portrait tx, 9xu is highly structured. Indeed, when the system is simulated
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Figure 5.3: An oscillating-rotating orbit for parameters µ “ 0.05, d “ 0.20, ω “
1.00, Γ “ 0.30, Ω “ 0.23. Shown are the (a) angle, (b) angular velocity and (c)
phase portrait of the response for the initial condition px0, 9x0q “ p´3.14, 3.00q. The
response is shown as a light gray line and the stroboscopic sections are shown as
black dots.

for 10,000 periods, the strange attractor appears quite structured, as seen in figure

5.5. The system tends to oscillate chaotically around the alternating stable equilibria

at x “ t0,˘nπu and occasionally rotate through to the opposite equilibrium point.

5.3.2 Basins of attraction of rotating solutions

The rotating solution shown in figure 5.2 is the primary behavior of interest in this

system. In designing an energy harvester with this device, it may prove valuable to

exploit clockwise or counterclockwise rotations because of the design of the energy

harvester. As the device is symmetric, for every clockwise stable rotating orbit, there

also exists a counterclockwise stable rotating orbit. The device will settle on one or

the other depending on the choice of initial conditions. This can be demonstrated

with a basins of attraction diagram, which scatters initial conditions tx0, 9x0u over
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Figure 5.4: A chaotic trajectory for parameters µ “ 0.05, d “ 0.20, ω “ 1.00, Γ “
0.70, Ω “ 0.23. Shown are the (a) angle, (b) angular velocity and (c) phase portrait
of the response for the initial condition px0, 9x0q “ p´3.14, 3.00q. The response is
shown as a light gray line and the stroboscopic sections are shown as black dots.

an interval of interest and classifies each initial condition as precursor to either a

clockwise or counterclockwise orbit.

Figure 5.6 shows the basins of attraction for two symmetric rotating solutions

for the range of initial conditions x P r´π, πs and 9x P r´2, 2s. A 500 by 500 grid of

evenly spaced initial conditions was chosen and categorized based on the direction

of spin observed (i.e. the sign of 9xptf q). Clockwise rotations are originate from the

initial conditions in the gray regions, while counterclockwise rotations originate from

the initial conditions in the white regions. The basin boundaries are fractal, as is

typical in a nonlinear system with coexisting solutions, and they illustrate the high

sensitivity of the system to initial conditions.
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Figure 5.5: Strange attractor for parameters µ “ 0.05, d “ 0.20, ω “ 1.00,
Γ “ 0.70, Ω “ 0.23, simulated for 10,000 periods.

5.4 Numerical continuation of periodic rotating orbits

In the previous section, typical behaviors were discussed and representative examples

were shown. Of the behaviors shown, the periodic rotating orbits are of the most

interest in an energy harvesting context. In order to study this behavior further,

psuedospectral collocation is used in conjunction with numerical continuation to

follow the orbits as parameters are varied.

The horizontal pendulum system presents a unique challenge for the continuation

of rotating orbits with psuedospectral collocation. Because of the periodicity of the

angular variable x in addition to the time-periodicity of the system, a Fourier basis,

the typical basis of choice when solving a periodic BVP, is no longer useable. Instead,

a Chebyshev basis is used and boundary conditions are incorporated that specify the

type of orbit sought. This section describes the procedure used to obtain these orbits

from the construction of the time-periodic boundary value problem (TP-BVP) to the
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Figure 5.6: Basins of attraction in the phase space for stable rotating solutions
for parameters µ “ 0.05, ω “ 1, Γ “ 0.7, Ω “ 1. The shaded area corresponds
to a clockwise rotating solution, while the unshaded area corresponds to a counter-
clockwise rotating solution.

use of numerical continuation to follow the orbits.

5.4.1 Formulation of the TP-BVP

This section formulates the TP-BVP used to compute the periodic orbits of equation

(5.3). In order to compute the periodic orbits of equation (5.3), it is necessary to

rewrite the equation in state-space form. Equation (5.3) can we rewritten in state-

space form as

ˆ

9x1

9x2

˙

“
1

Ω

ˆ

x2

´µx2 `
`

9φ2 cosx1 ` d:φ` ω2 sinφ
˘

sinx1

˙

“ fpx, t;pq (5.5)

where φ “ Γ sinp2πtq and the factor 1
Ω

rescales the equation to the domain t P r0, 1s.

The parameter set p includes µ, the viscous damping coefficient, d “ h
l
, the relative
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Figure 5.7: Example orbit found by collocation (o) overlaid on numerical simulation
(-) for µ “ 0.05, d “ 0.2, ω “ 1, Γ “ 1 and Ω “ 1. The collocation points are
clustered near points corresponding to t “ 0 and t “ 1.

height above the platform, ω, the linear natural frequency, Γ, the forcing amplitude

and Ω the forcing frequency.

To discretize the problem, a Chebyshev differentiation matrix D is generated

along with a set of collocation points tc as described in [49]. Unlike the Fourier

differentiation matrix discussed in chapter 4, periodic boundary conditions are not

explicitly included in the Chebyshev differentiation matrix. Thus D must be altered

as follows to incorporate the boundary conditions:

D “

¨

˚

˚

˚

˚

˚

˝

D1,1 D1,2 ¨ ¨ ¨ D1,n´1 D1,n

D2,1
. . .

...
...

. . .
...

Dn´1,1 Dn´1,2 ¨ ¨ ¨ Dn´1,n´1 Dn´1,n

1 0 ¨ ¨ ¨ 0 ´1

˛

‹

‹

‹

‹

‹

‚

(5.6)
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Figure 5.8: RMS velocity of rotating solution as the rocking amplitude Γ is varied
for parameters µ “ t0.05, 0.10, 0.15, 0.20u, d “ 0.2, ω “ 1 and Ω “ 1. Stable
solutions exist on the solid lines, while unstable solutions are found on the dotted
lines.

Then, by zeroing the residual

Rpxptcq;pq “ I2 bDx´ fpx, t;pq (5.7)

periodic rotating orbits of the system can be found. Note that for the rows of D

corresponding to boundary conditions, fpx, t;pq is replaced with the appropriate

boundary condition: xp0q ´ xp1q “ ˘2π (depending on the direction of rotation

desired) and 9xp0q ´ 9xp1q “ 0. This residual is then continued using the methods

previously described in this dissertation.

5.4.2 Response trends of the rotating orbits

By solving the TP-BVP presented in the previous subsection and continuing the

solution as parameters are varied, the effects of changing model parameters on the

existence and stability of rotating orbits can be observed.
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for parameters µ “ t0.05, 0.10, 0.15, 0.20u, ω “ 1, Γ “ 1 and Ω “ 1. Stable solutions
exist on the solid lines, while unstable solutions are found on the dotted lines.

From this investigation, it is observed that the parameters with the most notable

effect on the response are µ and Γ. The rocking amplitude Γ seems to have the

strongest effect on the response. It is observed that stable rotating orbits only exist

for moderate ranges of Γ. Figure 5.8 shows the influence of Γ on the root-mean-square

velocity of periodic rotating orbits. It can be seen that the peak predicted orbit is

unstable, and is also affected by the damping parameter µ. As µ increases, the orbits

generally trend downwards, but the trend is not linear (c.f. µ “ t0.15, 0.20u).

Figure 5.9 shows the influence of arm height above the platform. As the arm is

raised above the platform (and thus d “ h{l increases), the response trends downward

linearly. In this case, the influence of the damping parameter µ is again nonlinear,

as can be seen by the spacing of the lines in figure 5.9.
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5.5 Conclusions

From the investigations conducted in this chapter, it is apparent that the most

desirable behavior for energy harvesting exhibited by this system is rotation. The

rotating solutions of the system exist only in a limited region of the parameter space,

as can be seen by the numerical continuation results. Of the parameters studied, the

tilt angle Γ appears to have the greatest effect on the existence of rotating solutions,

provided that the linear natural frequency ω is somewhat commensurate with the

forcing frequency Ω. In tuning ω, it makes the most sense to ensure that ω « Ω,

but to err on the side of ω ă Ω. Given the sensitivity of the rotating orbits to

changes in the parameters, it is unlikely that a purely rotating orbit will manifest in

the stochastically forced system to be considered in the following chapter. However,

solutions with a predominately rotating component may appear, and such solutions

would be the most favorable from an energy harvesting perspective.
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Figure 5.10: Experimental verification of the natural frequency curve.

Supplement: Experimental parameter measurement and identification

Early in the process of investigating this device, an experiment was constructed with

the intent of conducting a range of experimental tests to confirm the model shown in

equation (5.3). While the device proved difficult to control and was unable to conduct

extensive verification of the model presented in this chapter, we were able to verify

the natural frequency curve for various tilt angles. The linear natural frequency for

a tilted pendulum is given by

ω2
n “

g

l
sinφ. (5.8)

In figure 5.10, experimentally measured tilt angles and natural frequencies are com-

pared with the predictions of equation (5.8). By using MATLAB’s fminunc, a nonlin-

ear optimization routine for unconstrained objective functions, the radius of gyration

l for the experimental system was determined to be 0.1407 m, providing the fit seen

in figure 5.10.
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6

Design of an Ocean Energy Harvester

Designing an energy harvester that functions effectively in an ocean environment

requires consideration of the stochastic effects introduced by ocean wave forcing. The

tilt-excited gravitational inertial generator device proposed in the previous chapter

exhibits high-energy rotating behavior that is desirable for energy harvesting, but

in the absence of an active or passive control system, it is unlikely that a stable

rotating orbit will manifest in the random ocean excitation environment. Rather,

the device will need to function in much the same way as the self-winding wristwatch

mechanisms, by providing spurts of energy to an energy storage medium at random

intervals when a sufficiently energetic behavior manifests itself. Thus, optimizing

the design of such a device should focus more on the long-term availability of kinetic

energy that could be converted to and stored as electrical energy, rather than on

maintaining any one type of behavior in particular.

The objective of this chapter is to propose a set of design recommendations for the

construction of a prototype device to be used in future in-situ experiments. In order

to determine an effective design strategy for the ocean energy harvesting system, it is

necessary to collect a large amount of empirical data and determine a design strategy

101



Figure 6.1: Conceptual drawing of the gravitational inertial generator with key
components labeled. The device includes an adjustable mass for tuning.

from empirical observations. This chapter employs a computational model based on

the physical model derived in the previous chapter to conduct numerical experiments

on the device over a reasonable range of parameters and sea states. From the data

collected, a response surface is constructed that can be used to optimize the system

and guide future design decisions when constructing a physical device.

6.1 Introduction

In creating design recommendations for a prototype of the energy harvesting system

shown in figure 6.1, it is necessary to step beyond deterministic analyses of the device

as a benchtop experiment and consider how it will behave in its target environment.

By employing the lessons learned from the deterministic investigations discussed in

the previous chapter, this chapter conducts a design study for a range of sea states

and design parameters.
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Figure 6.2: Pierson-Moskowitz wave spectra for wind speeds U19.5 “ t10, 13, 17, 20u
m/s.

Ocean waves are generated by many physical processes, including convection from

thermal energy absorbed from solar radiation, gravitational effects from the moon,

and the interaction of the atmosphere with the water surface in wind currents. When

the sea reaches a state of equilibrium where the energy added by wind currents is

matched by the energy transported in wave motion and dissipated in wave breaking,

the sea is said to be fully developed. In a fully developed sea, the power spectral

density (PSD) of the waves is stationary, and representations of PSDs for fully devel-

oped seas are frequently used in marine engineering and oceanography. A frequently

used model of the PSD of fully developed seas arose from the work of Willard Pierson

and Lionel Moskowitz [1]. By observing sea states and wind speeds using weather

ships, they were able to construct an empirical PSD of ocean waves for various wind

speeds and fit an analytical model to their observations. Their model, now known

as the Pierson-Moskowitz spectrum, is used in this investigation to simulate random
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ocean waves.

This chapter is organized as follows: first, a discussion of ocean excitation envi-

ronments is presented to familiarize the reader with the process of modeling randomly

generated ocean waves. The Pierson-Moskowitz spectrum is used in conjunction with

the Bennett-Rice approximate formulation of a stochastic process to generate real-

izations of the surface elevation and slope of ocean waves. The model presented in

the previous chapter is then reviewed in the context of random forcing and exam-

ples of randomly forced behavior are shown. A series of experiments are designed

using the Sobol sequence [65], and numerical experiments are conducted from this

design. Finally, the results of the numerical experiments are fit by a response surface

reconstruction and conclusions are drawn regarding the effective design of an energy

harvesting device with the horizontal pendulum system as the method of kinetic

energy capture.

6.2 Power spectra of ocean waves

In this section, the Pierson-Moskowitz spectrum is presented along with the details

of simulating random waves.

6.2.1 The Pierson-Moskowitz spectrum

The Pierson-Moskowitz spectrum is given by

Spωq “
αg2

ω5
exp

„

´β
´ω0

ω

¯4


, (6.1)

where ω “ 2πf is the wave frequency in radians per second (f is the wave frequency

in Hertz), α “ 8.1ˆ 10´3, β “ 0.74, ω0 “ g{U19.5 and U19.5 is the windspeed at 19.5

meters1 above the surface [1]. A plot of the Pierson-Moskowitz spectrum for various

1 This was the height of the anemometers on the weather ships used in their investigation [1].
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Figure 6.3: Significant wave height (a) and period (b) of deep-water waves in fully
developed seas as a function of wind velocity 19.5 meters above the surface U19.5 as
determined by the Pierson-Moskowitz spectrum.

windspeeds U19.5 is shown in figure 6.2.

Deep-water ocean waves in fully developed seas are characterized by long periods

and significant wave heights ranging from a few meters to the height of a four-

story building [1, 66], as can be seen in figure 6.3. Other interesting properties of the

spectrum can be observed by manipulating equation (6.1). By solving BSPMpωq{Bω “

0, the peak frequency is found to be

ωp “
0.877g

U19.5

. (6.2)

From this information, the wave speed cp of the waves at the peak frequency can be

determined as

cp “
g

ωp
“ 1.14U19.5. (6.3)
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Figure 6.4: One realization of a wave-height wptq time history generated from the
Pierson-Moskowitz spectrum for U19.5 “ 20 m/s.

In addition to describing the frequency content of ocean waves, the Pierson-

Moskowitz spectrum implicitly describes the spatial attributes of the waves through

the dispersion relation [66]. The dispersion relation for deep water waves relates the

frequency of the wave to its wavelength as

λ “
2πg

ω2
. (6.4)

This information can now be used to generate random waves from the Pierson-

Moskowitz spectrum.

6.2.2 Generating random waves

To generate a random wave, it is assumed that the power spectrum can be divided

into N frequency components ωi and reconstructed as a series of sinusoids with

random phase angles. Under these assumptions, the surface elevation ηpx, tq can be
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written

ηpx, tq “
N
ÿ

i“1

ai sinpkix´ ωit` ψiq (6.5)

where ki “
2π
λi

, ai “ r2Spωkq∆ωs
1{2, and the random phase angle ψi is drawn from

a uniform distribution over r0, 2πs. Figure 6.2 shows one realization of a Pierson-

Moskowitz process as realized through this approximation, measured at a single

location.

For the energy harvester design considered in this chapter, the wave height does

not appear in the equation. Rather, the wave slope angle φpx, tq and its temporal

derivatives appear in the equation as forcing terms. To find the wave slope, ηpx, tq

is differentiated with respect to x, yielding

Bηpx, tq

Bx
“ tan rφpx, tqs “

N
ÿ

i“1

aiki cospkix´ ωit` ψiq. (6.6)

To simplify the model, it is assumed that the buoy does not drift from a single

location x. Given this assumption, substituting

ki “
2π

λi
“
ω2
i

g
(6.7)
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for U19.5 “ 20 m/s using the formulae given in equations (6.8).

yields

φptq “ arctan

«

N
ÿ

i“1

ai

ˆ

ω2
i

g

˙

sinpωit` ψiq

ff

(6.8a)

9φptq “

řN
i“1 ai

´

ω3
i

g

¯

cospωit` ψiq

1`
´

řN
i“1 ai

´

ω2
i

g

¯

sinpωit` ψiq
¯2 (6.8b)

:φptq “ ´

řN
i“1 ai

´

ω4
i

g

¯

sinpωit` ψiq

1`
´

řN
i“1 ai

´

ω2
i

g

¯

sinpωit` ψiq
¯2

´

2
´

řN
i“1 ai

´

ω3
i

g

¯

cospωit` ψiq
¯2 ´

řN
i“1 ai

´

ω2
i

g

¯

sinpωit` ψiq
¯

ˆ

1`
´

řN
i“1 ai

´

ω2
i

g

¯

sinpωit` ψiq
¯2
˙2 . (6.8c)
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Note that due to assumption of a fixed spatial location and the arbitrary phase

angles ψi, cosine may be replaced with sine and x may be eliminated without loss of

generality. These expressions may now be substituted into the model for the system

and used in numerical simulations.

6.3 Mathematical model and numerical considerations

The previous section described a method for generating random ocean waves. The

purpose of this section is to discuss how to apply those results to the model derived

in the previous chapter. From chapter 5, it is know that the equation of motion for

a horizontal pendulum with tilt angle φ is given by

:x`
b

ml2
`

„

h

l
:φ` 9φ2 cosx`

g

l
sinφ



sinx “ 0. (6.9)

Chapter 5 considered the case φ “ Γ cos Ωt, whereas the present chapter considers φ

to be defined as in equation (6.8). To study the effects of random forcing on equation

(6.9), the equation may be numerically integrated.

Figure 6.6 shows an example of a response for randomly generated waves from a

Pierson-Moskowitz spectrum. The device exhibits chaotic behavior and does not lock

into a steady-state solution because of the random excitation. This is uniformly the

case for random excitation of this device. Thus it no longer makes sense to consider

the Poincaré section or similar metrics in classifying the device’s behavior. Instead,

root mean square velocity

9xRMS “

d

1

Tf

ż Tf

0

9x2ptq dt (6.10)

is used to delineate between the performances of the different simulations.
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Figure 6.6: Response of the device with Pierson-Moskowitz wave forcing for U19.5 “

20 m/s. Other parameters are b
m
“ 0.05, h “ 0.2 and l “ 1.

6.3.1 Numerical considerations

Accomplishing the primary objective of this investigation, reconstructing the re-

sponse surface of equation (6.9), requires many thousands of simulations scattered

across the parameter space to determine a reliable estimate for the surface. Although

equation (6.9) is relatively straightforward to numerically integrate, there are a few

items to consider with regards to code optimization given the fact that many thou-

sands of simulations will be performed. Three major concerns are presented in this

subsection: the length of simulation needed to accurately estimate 9xRMS; efficiently

generating φ and its derivatives; and sampling φptq at arbitrary time intervals.

In order to construct an accurate representation of the response surface, it is

necessary to ensure that the RMS velocity of equation (6.9) is accurately observed

at each iteration. This requires the equation to be simulated for a long period of

time to ensure transient behavior does not influence the results. Figure 6.7 shows the

110



0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

ẋ
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Figure 6.7: The RMS velocity slowly converges to a stable value as the length of
the simulation is increased. Shown here are ten simulations for l “ 1, ξ “ 0.05 and
h “ 0.2.

trend in measured RMS velocity of equation (6.9) simulated for several realizations

of a Pierson-Moskowitz wave history. As the length of the simulation increases, all

realizations converge to the same RMS velocity. Experimentation yielded an effective

simulation length of 800 periods, i.e.

Ts “ 800
2π

ω
(6.11)

to ensure convergence of the estimate for 9xRMS.

For each iteration of the numerical experiment presented in the following sec-

tion, a new realization of φ and its derivatives must be computed from equations

(6.8). In order to complete this task efficiently, it is advantageous to eliminate

the summation and utilize MATLAB’s strong linear algebra capabilities. MATLAB

is built on the Intel Math Kernel Library (IMKL), and as such, replacing sum-
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mations with dot products allows MATLAB to access the highly optimized IMKL

Basic Linear Algebra Subprograms (BLAS) library. For a frequency range of N

sample frequencies ω “ tω1, ω2, . . . , ωNu
J P RNˆ1, corresponding amplitudes a “

ta1pω1q, a2pω2q, . . . , aNpωNqu
J P RNˆ1, and a time span of T times t “ tt1, t2, . . . , tT u P

R1ˆT , equations (6.8) can be rewritten as

phi = atan((1/g)*(w.*w.*a)’*sin(w*t + psi));

and so forth (rather than using the sum command). Precomputing φ and its deriva-

tives rather than using an explicit formula during numerical integration of equation

(6.9) often reduces computational time by several seconds, an important savings

considering the number of runs required to reconstruct the response surface.

To efficiently sample φ and its derivatives, simple linear interpolation over the

precomputed wave realization is simple and effective. MATLAB’s interp1q utility

performs the interpolation quickly (without error checking) and is useful given the

large number of runs to be performed in the following investigation. By providing a

way to sample φ and its derivatives at arbitrary values of t, the integrator is able to

take adaptive step sizes, greatly reducing computational time.

6.4 Design of a numerical experiment for response surface reconstruc-
tion

The previous section reviewed the model derived in chapter 5 and provided an ex-

ample of the response for one realization of a Pierson-Moskowitz wave history. The

focus of this section is to construct the response surface over a range of wind speeds

and design parameters to provide a basis for design decisions.

6.4.1 Quasi-Monte Carlo sampling with the Sobol sequence

Given the random nature of the ocean wave forcing and the nonlinearities in the

response of the device, parametric studies such as those in the previous few chapters

112



0 0.5 1 1.5 2
10

11

12

13

14

15

16

17

18

19

20

l

U
1
9
.5

(a)

0

1

2

10

15

20

0

0.5

1

1.5

2

(b)

lU19 .5

r
(l
,
U
)

Figure 6.8: Results of a qMC experiment Ep1000, 2q for the horizontal pendulum
system. Figure (a) shows the sample coverage of the tl, Uu space, while figure (b)
shows the response of samples projected into the tl, Uu space.

are of little use in predicting the response of the device. In this section, a quasi-Monte

Carlo (qMC) investigation of the parameter space is conducted using the Sobol se-

quence to ensure an accurate representation of the response surface [65]. Utilizing

qMC sampling as opposed to purely random MC sampling or latin hypercube sam-

pling ensures better coverage of the sample space in fewer iterations than would be

required with a true MC method.

Denote by EpN,P q the qMC experiment with N samples in a space of P param-

eters. Each parameter Pi is formally assumed to be uniformly distributed, but in

practice each realization of Pi is drawn from the Sobol sequence scaled to its range,

i.e. Pn,i „ SobolpnqprPi,min, Pi,maxsq. Then the qMC experiment EpN,P q can be
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Table 6.1: Distributions on the parameters for the qMC experiment.

Parameter Distribution

l unifpr0.05, 2sq
ξ 0.1
h 0.02
U19.5 unifpr10, 20sq

written

LpN,P q “

¨

˚

˚

˚

˝

P1,1 P1,2 P1,3 ¨ ¨ ¨ P1,P

P2,1 P2,2 P2,3 ¨ ¨ ¨ P2,P
...

...
...

...
...

PN,1 PN,2 PN,3 ¨ ¨ ¨ PN,P

˛

‹

‹

‹

‚

(6.12)

such that each row τn “ tPn,1, Pn,2, Pn,3, . . . , Pn,P u of LpN,P q is a randomly drawn

set of parameters called a trial. Then for all N trials τn, the system to be studied

is examined for the parameter set τ . For each trial, a response variable rn is mea-

sured, and the experiment E ultimately yields a set of trials and response variables

tEpN,P q,Ru. The response surface can then be reconstructed as a function of the

experimental parameters.

6.4.2 Sampling and reconstruction of the response surface

In the case of the horizontal pendulum system, the parameters of interest are the

radius of gyration2 l, normalized damping ξ “ b
m

, height of the arm above the

platform h, and windspeed U , forming the parameter set tl, ξ, h, Uu. To conduct

the qMC experiment, equation (6.9), where φ and its derivatives are defined as in

equation (6.8), is simulated using MATLAB’s ode45 numerical integrator for Ts “

800 2π?
g{l

seconds for each trial. Table 6.1 provides information on the distribution

of each parameter. The RMS velocity is then calculated and stored as the response

variable rn corresponding to the point τn.

2 Note that l is not the same as the length of the pendulum arm.
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Figure 6.9: Response surface reconstruction by kriging. Units: U19.5 (m/s), l (m),
and 9xRMS (m/s).

Given the three model parameters l (radius of gyration), ξ “ b
m

(mass-normalized

damping) and h (height of the arm above the platform), the one forcing parameter

U19.5, and the response data collected at each of these points, a response surface can

be fit to the data and relevant statistics of the fit can be determined. Here, the

response surface is reconstructed by kriging the data generated from the qMC exper-

iment over a grid in the tl, U19.5u space, as can be seen in figure 6.9. This response

surface can now be used to make informed design decisions for an experimental device

intended for ocean testing.

6.4.3 Design recommendations

Figure 6.9 shows the estimated response surface kriged from data generated by the

qMC experiment. From this information, and other observations made in the investi-

gation of this device, a series of design recommendations can be made for a prototype

design.
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• The radius of gyration l should be chosen such that the design point is slightly

greater than the peak value seen in figure 6.9 near l “ 0.8. There is slight

variation in the optimal value of l as wind speed varies, however, the most

important consideration in choosing l is to ensure that the design point is not

to the left of the peak value to account for any uncertainties that might drive

the response to the lower shelf seen in the plot. Increasing l far beyond the

peak value also sacrifices available RMS velocity and should be avoided.

• The normalized damping ξ “ b
m

in a physical device would arise from both the

mass of the rotating assembly and the characteristics of the rotating bearing.

As observed in chapters 3 and 5, it is always beneficial to reduce damping if

rotating behaviors are desired. This can be accomplished by adding mass to

the rotating assembly if needed, but added mass would also affect the dynamics

of the buoy in which the device was installed, potentially altering the response

of the buoy in an unfavorable way or even sinking the entire assembly. Thus

it is always advantageous to choose bearing with extremely low friction. Note

that increasing ξ suppresses rotating behaviors and consequentially increases

the optimal l. An exact relationship was not determined in this investigation.

• Adding electromechanical coupling will certainly have a drastic effect on the

response of the system. Results shown in chapter 4 illustrate the effects of elec-

trical loads on the frequency response of a nonlinear electromechanical system:

the frequency at which peak power output occurs is shifted noticeably as the

electrical load is varied. Again, the simplest strategy to mitigate these effects

would likely be to add mass to the rotating assembly and increase the radius of

gyration to provide additional torque on the generator; however, future work

should investigate the effects of electromechanical coupling on the dynamics of

the system.
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• Increasing h, the height of the arm above the platform, typically seems to

suppress the response of the system. Thus in designing a prototype the system

should be mounted as near to the center of rotation as possible.

• Wind speed U19.5 seems to have little effect on the response provided ξ is low

and l is sufficiently large. Higher wind speeds do slightly increase the observed

RMS velocity of the device, but the effect seems largely independent of l.

6.5 Conclusions

This chapter provided a model of random ocean waves and simulated the horizontal

pendulum system in a stochastic environment. Analytical expressions for the wave

angle and its derivatives were derived and used in the numerical investigations of the

model. A quasi-Monte Carlo experiment was performed to characterize the response

of the device over a typical range of wind speeds and a reasonable parameter range

for a physical device. From these observations, preliminary design objectives are

constructed to aid in the construction of a physical experiment.
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7

Visualizing a Decision Boundary for Prediction of
the Price Movements of a Security

As a result of the rapid growth of high-frequency trading in financial markets, char-

acterization of market behaviors of very short time scales has become an area of

great interest in quantitative finance [67]. One technique commonly used to study

financial time series is regression modeling. Regression modeling is often employed

in macroeconomic analyses to study the sensitivities of a macroeconomic variable of

interest (e.g. the unemployment rate) to small changes in control parameters (e.g.

interest rates). Hasbrouck and Saar brought the idea of vector autoregression to

the analysis of financial time series in equities markets in reference [68], with the

objective of determining the effects of small changes in the market structure on the

price of a security.

Dr. Howle, David Martorana1 and I collaborated to adapt the approaches pre-

sented in references [68, 69] to the development of a low-order discriminative classifier

with the objective of using the classifier to determine a boundary in the market pa-

rameter space at which increasing price movements and decreasing price movements

1 Duke B.S.E. in Mechanical Engineering and Economics, class of 2013
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could be separated to a reasonable degree of accuracy. This resulted in the use of

vector autoregression (VAR) and support vector machine (SVM) modeling and clas-

sification techniques to describe the evolution of a stock price on very short time

scales (usually t ă“ 1 second) and to generate a set of classification variables from

the variables with the highest information content. Leveraging the order management

system built by Howle and documented in reference [70], we conducted an investi-

gation of the 2011 trading year for the NASDAQ-tracking electronically traded fund

(ETF), symbol QQQ. This chapter presents the results of our collaborative efforts in

determining the information content of the limit order book and building a discrimi-

native classifier in a subspace of the market parameters. In addition to verifying the

results found in reference [69] and providing a discussion of the information content

of the limit order book, this work contributes a visual representation of market be-

havior to a field that tends to eschew visual results in favor of tabulated numerical

results. It is discovered that an effective ex-post-facto classifier2 can be built in a

limited two-dimensional subspace, and the law of supply and demand is empirically

observed from the results.

7.1 Introduction

Over the past several decades there has been a marked increase in the complexity

of financial markets. Sophisticated mathematical tools coupled with fast computers

and the deluge of information available over the Internet have given rise to financial

markets that evolve quickly in ways we struggle to comprehend. These changes have

shaken the confidence of retail investors and made speculation even by institutional

investors increasingly difficult and fiercely competitive [67]. Increasingly, algorithmic

trading has come to dominate the financial markets in various forms ranging from

2 The author cautions against the use of this method as trading strategy unless one desires to lose
money as rapidly as possible.
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ultra-low-latency arbitrage to sophisticated buying and selling algorithms used by

large investors such as mutual funds to avoid price scalping [67].

In an effort to better understand the financial markets, traders have increasingly

turned to statistical methods originating from the hard sciences in an effort to instill

a sense of order in what is becoming an increasingly disordered business. This has

given rise to the field of econophysics, which has its roots in Bachelier’s study of

cotton prices [71], the observations of Mandelbrot [72] regardning non-Gaussianity

of price movements, options pricing (e.g. Black and Scholes [73]) and in statistical

physics in general. The term itself was coined by Stanley in 1995 and the book by

Mantegna and Stanley [74] is a comprehensive introduction to the topic. A book by

Chakrabarti [75] gives a good overview of recent trends in the field.

The predecessor of econophysics is known as technical analysis. In the field of

technical analysis [76], traders and brokers use historical stock market price, vol-

ume, news, and other information in an attempt to predict future price movements.

Traditionally, technical analysis has relied on a mixture of mathematics, heuristics

and luck to create profitable trading strategies. Of late, several technical indica-

tors, including simple algorithms such as moving averages, volume weighted average

prices, support and resistance levels or more complicated algorithms such as neu-

ral networks, support vector machines, or genetic algorithms are being studied in a

more rigorous manner by econophysicists in an attempt to identify the buy and/or

sell signals for a given financial instrument, and applied with great enthusiasm in

the financial sector [67]. Indeed, high-frequency algorithmic trading (HFAT) has be-

come more and more prevalent [77] with one estimate placing the volume of trades

resulting from HFAT at 60% in the US equity markets for the 2009 market year [78].

However, despite advances in trading strategies, speed of execution, and the shift

from broker-dealers to electronic matching engines, the fundamental principle of

exchanges matching buyers and sellers of financial instruments has not changed [79].
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In very general terms, stock orders may be described as either limit orders or market

orders. For a limit order, the agent placing the order is guaranteed an execution

price but is not guaranteed execution. In fact, for the data we analyzed in [70],

for every order execution that occurred, there were 29.6 orders placed. For market

orders, on the other hand, the agent placing the order has a guarantee of execution

but no guarantee of order fill price [79].

The pool into which the orders are placed and through which the transaction

occurs is frequently called an order book. There is a separate order book maintained

for every financial instrument traded on a given stock exchange. Each order book

can be further broken down into bid (buy) and ask (sell) books. A trade execution

can occur either through a crossing limit order or through a market order. When a

transaction occurs it is said to occur at the inside of the order book. That is, the

order fills at the inside (most favorable to the agent placing the market or crossing

order) price. These transactions at the inside price are the data frequently used in

technical analysis. However, focusing only on the time and sales information, as is

typically done with technical analysis, ignores the majority of the data available on

the order book.

7.1.1 Organization of this investigation

The objective of this paper is to investigate the information content of order book

information, including quote depth and order modifications, of the NASDAQ symbol

QQQ, and to visualize a boundary between upticks and downticks in a subset of the

the order book feature space. Our hope is that a visual representation will provide

some insight into the market dynamics at a basic level. We approach this objective

in two steps: first, we determine the information content of the features of the order

book; then, we build a discriminative classifier by fitting a support vector machine to

the data projected onto the two most informative features. This allows us to overlay
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a decision boundary onto the projected data, hopefully yielding some intuition into

the basic mechanisms of price formation.

Our first step is to determine the information content of the various features of

the order book. We consider a wider range of features is typically present in the

literature, to the best of our knowledge. Specifically, we look beyond transaction

data and consider the information content of liquidity near the inside of the order

book, as well as information regarding order modifications such as cancellations,

deletions, replacements and trades. Several studies have investigated the informa-

tion content of the limit order book of various securities with varying conclusions

as to the information content of order book features. Some studies have focused on

the statistical properties of the order book. Potters, Bouchaud and collaborators

studied the statistical properties of the Paris Bourse and NASDAQ exchanges, in-

cluding volume at depth and order cancellation [80, 81]. Challet and Stinchcombe

studied the over-diffusive properties of prices on the NASDAQ Island order book [82].

Other studies have focused on regression modeling or other forecasting techniques to

measure the information content of various market parameters. Kozhan and Salmon

studied the economic value of exploiting order book information with a genetic al-

gorithm trading strategy [83]. Cao et al. considered the information content of an

open limit-order book and found that it had a moderate (22%) contribution to price

discovery [84]. Hillman and Salmon considered a nonparametric approach in [85].

Harris and Panchapagesan found that the order book is informative in the decisions

of NYSE specialists [86].

Of particular relevance to this investigation are the vector autoregressive models

of Hasbrouck [68] and Mizrach [69]. An early investigation by Hasbrouck measured

the information content of stock trades and determined the quote revision response to

trades [68]. Mizrach expanded on the Hasbrouck model significantly by considering

additional information present in the limit order book and determined the relevance
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of order book information as well as the market impact of trades [69]. Our investi-

gation seeks to expand on the model proposed by Mizrach, but rather than attempt

to characterize the market impact of trades, we seek to determine if it is possible to

form a set of features that can yield and effective 2D discriminative classifier for price

movements. Specifically, we consider two vector autoregression (VAR) type models

and draw conclusions regarding the significance of market data from the weightings

found in each model. From our conclusions we design a set of two features and build

a discriminative classifier for price movements using a support vector machine.

To that end, we have organized the paper as follows. First, the methods used

to process and analyze the data are shown and discussed. We review a previously

developed message processing system [70] that allows us to reconstruct the order book

from NASDAQ TotalView-ITCH data. We then describe the Mizrach VAR model

and our proposed principal component VAR model (PCVAR). We test each model

on the entirety of the 2011 QQQ3 dataset and generate weighting and significance

estimates for each parameter. We observe similarities between the two models that

indicate a parameter set which can be used to visualize a boundary between positive

and negative price movements. Finally, we build a maximum-margin discriminative

classifier in the subspace using a support vector machine (SVM) and interpret the

results.

7.2 Data

Analyzing financial markets on short time scales is a big-data problem. Gigabytes

of data are produced each day, and even the task of reassembling the time history of

the order book requires an advanced software platform. In a previous investigation,

we designed, programmed and evaluated an object-oriented order processing system

built to parse NASDAQ TotalView-ITCH market data [70]. A brief review of the

3 Note that for part of 2011 QQQ held the symbol QQQQ.
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Figure 7.1: QQQ on 07 Jan 2011.

system is presented here for the convenience of the reader. The NASDAQ TotalView-

ITCH system provides data in the form of messages; each message is encoded with

identifying information including a type and any other relevant information pertain-

ing to the message. A table of messages, their type, and daily frequency of appearance

is shown in table 1. As can be seen from the table, an average of over 400 million

messages per day are posted on by the NASDAQ TotalView-ITCH system. The

sheer volume of messages has led many financial institutions to invest in high tech,

bespoke hardware specifically tuned to the task of analyzing a particular exchange’s

data [87]. As we are not concerned with slight delays in data processing, and we lack

the budget of a major financial institution, we sought to develop an object-oriented,

easily reconfigurable system to parse the data and prepare it for statistical analysis.
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Table 7.1: Message types (left column), average number of daily messages (center
column) and standard deviation of the daily message count for the 251 trading days
in the 2011 NASDAQ market year. The bolded message types affect the maintenance
of the order book.

Message type µ σ

AddOrder 1.812e+08 6.641e+07
AddOrderMPID 7.989e+06 3.753e+06

BrokenTrade 9.976e+01 7.462e+02
CrossTrade 1.572e+04 9.008e+01

MarketParticipantPosition 1.822e+05 2.622e+04
NOII 1.132e+06 6.477e+03

OrderCancel 1.618e+06 5.748e+05
OrderDelete 1.829e+08 6.700e+07

OrderExecuted 7.523e+06 2.214e+06
OrderExecutedWithPrice 1.659e+05 1.053e+05

OrderReplace 3.849e+07 1.905e+07
RegSHORestriction 6.829e+03 2.916e+03

StockDirectory 7.996e+03 9.781e+02
StockTradingAction 8.005e+03 9.645e+02

SystemEvent 5.000e+00 0.000e+00
Timestamp 4.676e+04 7.152e+02

Trade 7.691e+05 2.205e+05

Total 4.220e+08 1.570e+08

For this task, we turned to the versatility of the Microsoft .NET platform, and devel-

oped an object-oriented order processing system in the C# language [88], which we

will refer to as the NASDAQ Order Processing System (NOPS). NOPS is capable of

either receiving messages in real-time or processing historical message databases. For

the purposes of this investigation, we used our software solution to reconstruct the

order book and stroboscopically sample the data in one second intervals. As messages

arrive on a nanosecond timescale, this relatively long sample period greatly reduces

the size of the data set, permitting easier analysis with user-friendly statistical tools

such as those built into MATLAB [18].
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Figure 7.2: Typical structure of the order book during the trading day. On the
horizontal axis, orders are arranged by price. The vertical axis denotes the size of
each order. Each order ranges in volume and its execution is prioritized by its time
of arrival. The price level of an order is simply the distance of the order from the
inside. There may be more than one order at a given price level. The central price
is defined as the midpoint between the bid and ask sides of the book. NOPS is able
to convert raw message data into market snapshots such as this.

7.2.1 Reconstructing the order book

As mentioned above, each message contains information regarding some aspect of

the order book; by assembling and organizing the stream of messages, the order

book can be constructed either in real time or from recorded message logs. After

reconstructing the time history of the order book, the next step is to separate the

orders into categories for analysis. The “inside” of the order book is where executions

happen; this is what drives the price of security. On the inside, there are bid and ask

orders. When these orders match, an execution occurs, and the price of security is

updated. There are also orders away from the inside; in this investigation we consider

not only the orders at the inside but orders up to four tiers away from the inside price.
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Additionally, we examine the influence on price movement of order cancellations,

deletions, replacements and executions. By post-processing and stroboscopically

sampling the order book at one-second intervals, we can export a preliminary set of

features that includes not only price and volume data but also order modification

activity such as cancellations and replacements (c.f table 7.1).

7.2.2 Features of the order book and creation of feature matrices

The order book itself contains only a list of limit orders, with details for each order

that include price, volume and priority data. We utilize NOPS to flatten this infor-

mation into a list of features and response variables that can be used for modeling.

We consider two response variables, rt and xt, the simple periodic return and the

signed sum of executed trades, respectively. Let pbt be the inside bid price at time t

and pat be the inside ask price at at time t. Then we can define the simple periodic

return as

rt “
1

2
ppbt ` p

a
t q ´

1

2
ppbt´1 ` p

a
t´1q, (7.1)

i.e. the first difference of the central price. In addition to changes in price, it can also

be useful to consider trade executions. Let xt be the sum of signed trades executed

between time t and t´ 1:

xt “ Number of shares bought´ Number of shares sold. (7.2)

We then define a series of features that may be used to forecast rt and xt. These

features include quantity features, difference features, and other specifically defined

features. Quantity or volume features are defined as

• qbk,t (qak,t), the quantity of shares at bid (ask) tier k at time t, with k “ 1 at the

inside;

127



• qbt (qat ), the total number of shares on the bid (ask) side of the order book;

• qb,Xt (qa,Xt ) the quantity of shares modified by the action “X”, where “X” is add,

delete, cancel, replace, trade, execute, or execute with price.

Difference features are constructed from quantity features as follows:

• Qt “ qbt ´ q
a
t ,

• Qk,t “ qbk,t ´ q
a
k,t,

• Qx
t “ qb,Xt ´ qa,Xt .

We also introduce a demand function as defined in [69] as

Dt “

ř5
k“1 q

b
k,t ¨ p

b
k,t

ř5
k“1 q

b
k,t

; (7.3)

which can be seen as a weighted average price on the bid side and is an indicator of

demand (buying pressure).

We can then assemble a feature matrix with n of these features as follows:

Φ “

¨

˚

˚

˚

˝

φ1pt0q φ2pt0q φ3pt0q ¨ ¨ ¨ φnpt0q
φ1pt1q φ2pt1q φ3pt1q ¨ ¨ ¨ φnpt1q

...
...

...
...

...
φ1ptmq φ2ptmq φ3ptmq ¨ ¨ ¨ φnptmq

˛

‹

‹

‹

‚

(7.4)

where Φ P Rmxn, t P rt0, tms and each φiptq is a feature sampled at time t; each row

is an observation in time. The choice of features is determined by the model, which

in turn determines Φ.
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7.3 VAR models

With data in hand, we now seek to formulate a model of the order book. Vector

autoregression (VAR) models are a useful tool for understanding the information

content of various aspects of market microstructure. Given a set of observations, a

VAR(p) model forecasts future observations from linear combinations of the p most

recent past observations and a set of weights fit to training data.

In [68], Hasbrouck considers several VAR models that relate quote revision rt and

trade executions xt. In general, the models are of the form

rt`1 “ ar,0 `
p
ÿ

i“1

ar,irt´i `
p
ÿ

i“1

br,ixt´i ` εr,t (7.5a)

xt`1 “ ax,0 `
p
ÿ

i“1

ax,irt´i `
p
ÿ

i“1

bx,ixt´i ` εx,t (7.5b)

where the ap,iq and bp,iq coefficients determine the impact of lagged information in

predicting the next observation. In [69], Mizrach proposes an extension to the Has-

brouck/Saar VAR model

rt`1 “ ar,0 `
5
ÿ

i“1

ar,irt´i `
15
ÿ

i“1

br,ixt´i `
5
ÿ

k“1

αr,k
`

qbk,t ´ q
a
k,t

˘

`

15
ÿ

i“1

δr,i∆Dt´i ` γr
`

qbt ´ q
a
t

˘

(7.6a)

xt`1 “ ax,0 `
5
ÿ

i“1

ax,irt´i `
15
ÿ

i“1

bx,ixt´i `
5
ÿ

k“1

αx,k
`

qbk,t ´ q
a
k,t

˘

`

15
ÿ

i“1

δx,i∆Dt´i ` γx
`

qbt ´ q
a
t

˘

(7.6b)

which makes use of the additional information present in the order book beyond the
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autoregressive terms, including tiered volume differences qbk,t ´ qak,t and the demand

function Dt.

7.3.1 PCVAR model

We seek to include the additional information at our disposal in a similar manner

to the Mizrach and Hasbrouck/Saar VAR models; however we adopt a slightly dif-

ferent approach in doing so. Rather than include the features directly, we propose

a dimensionality reduction to the first n principal components of the data. Given a

matrix of observations Φ, we can compute its singular decomposition

Φ “ UΣV J (7.7)

from which we can determine the principal components (columns of V ), the principal

component scores S “ UΣ, and the spectral power of each component Σ2
i,i. We then

form a VAR model from a subspace of the scores (i.e. the first n columns). As the

principal components are eigenvectors of the covariance matrix ΦΦJ, they provide

insight into which parameters are covariant. Creating a VAR model from the scores

then allows us to determine the relative importance of each principal component in

price formation. Then we seek a mixed VAR(p)/regression model of the form

rt`1 “ ar,0 `
p
ÿ

i“1

ar,irt´i `
p
ÿ

i“1

br,ixt´i `
p
ÿ

i“1

«

n
ÿ

k“1

wrk,isk,t´i

ff

` εr,t (7.8a)

xt`1 “ ax,0 `
p
ÿ

i“1

ax,irt´i `
p
ÿ

i“1

bx,ixt´i `
p
ÿ

i“1

«

n
ÿ

k“1

wxk,isk,t´i

ff

` εx,t (7.8b)

where sk “ Φck and ck is the kth principal component.

130



7.3.2 General form of the models and fitting

Both the Mizrach and PCVAR models can be written as

Yt “
p
ÿ

i“1

Φt´iAi ` ε, (7.9)

or more compactly as

Y “ Zw ` ε. (7.10)

The matrix Z P Rmˆn¨p contains n features and their p lags, sampled at m points

in time t0 through tm´1, and the matrix Y P Rmˆr contains the r response variables

sampled at the m points in time t1 through tm. The weights, w, are an n ¨ p ˆ r

matrix of coefficients corresponding to the n features with p lags and the r response

variables in Y . The ordinary least-squares (OLS) estimate of the weights is given by

w “ pZJZq´1ZJY ; (7.11)

we use OLS to fit the weights for both models.

7.4 Results

For all 251 trading days in 2011, we applied both the Mizrach VAR model and the

PCVAR model to arrive at weightings for each feature of the order book or each

principal component. A report was generated containing a set of weights for each

model on each day and summary statistics were generated for each model. Here we

present both the summary statistics for the entire year and an example from January

2011.
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7.4.1 Yearlong statistics

For the Mizrach VAR model, the results indicate that rt is strongly anti-autocorrelated,

xt has a somewhat random effect on returns, Dt is strongly correlated with positive

returns, and excess bid (ask) volume in the first few price tiers tends to drive the

price up (down). Figure 7.3 gives a visual representation of these results and table

7.2 gives a table of the mean coefficients and their standard deviations.

For the PCVAR model, the results indicate that the first two to three princi-

pal components are the most informative, and that only one or two time lags are

informative. We were able to compute an averaged representation of the principal

components for the entire year, as shown in table 7.3. These components are inter-

esting and yield some insight into the structure of correlations present in the market.

From inspection of 7.3, one should notice a trend of nearly antisymmetric weightings

across the order book. This indicates that the most important drivers of variance

(and thus information content) are differences in information on the bid and ask sides

of the order book. Considering table 7.4, the components are weighted such that the

most significant drivers of price movements appear to be the differences in liquidity

at various price tiers near the inside of the book, with a significant correlation time

of only a few seconds. Note that the components c1 through c5 are ordered by their

weights in table 7.3. Figure 7.4 gives a visual representation of each component’s

weight for up to five time lags.

We observe that demand-like variables that measure either a difference in liquidity

on the bid and ask sides of the book or simply the liquidity available on the bid

side tend to dominate both models. This is an interesting result as it indicates

that the basic principle of supply and demand is tied to price formation (as one

might readily expect), and that despite two different approaches to the problem the

statistics indicate that demand-like variables are the most informative with respect
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to changes in price. The weightings found in the Mizrach model are consistent with

the findings in [69] and simply indicate that buying pressure drives price increases,

and the weightings found in the PCAVAR model indicate that excess liquidity on

the bid (ask) side drives price increases (decreases), all with p ă 0.01.
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Figure 7.5: Example model outputs for 07 Jan 2011. The upper graph shows
the price of the equity over a one-day period (solid black line), as well as in-sample
predictions from the Mizrach VAR model (dashed red line) and the PCVAR model
(dash-dotted green line). The lower graph shows the profit or loss of adhering to one
of three strategies: buy and hold (solid black line), trade on the predicted |x0| ě 0
from the Mizrach VAR model (dashed red line), and trade on the predicted |x0| ě 0
from the PCVAR model (dash-dotted green line). Positions were held for one second
and transaction costs were neglected.

7.4.2 Example: 07 January 2011

Given the fact that demand-like variables that measure the difference in liquidity

tend to dominate in both the Mizrach and PCVAR models for the entire year’s data

set, we expect to find similar results when we consider a single trading day. To test

this hypothesis, we considered all 251 trading days in 2011 and fit both the Mizrach

and PCVAR models to every day, generating weights, p-values and figures for each
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Table 7.5: Table of relative weights for the Mizrach VAR model, rt. Weights are
normalized to 1. Insignificant weights not shown. Time lags τi are shown as columns.
See equation (7.6) for context.

τi i “ 1 i “ 2 i “ 3 i “ 4 i “ 5

Bias - - - - -
ar,i -1.00 -0.64 -0.48 -0.32 -0.16
br,i -0.03 - 0.04 0.08 -
αr,0 0.57 - - - -
αr,1 0.32 - - - -
αr,2 0.15 - - - -
αr,3 -0.02 - - - -
αr,4 -0.07 - - - -
δr,i 1.00 0.66 0.47 0.28 0.23
γr 0.13 - - - -

day. As the resulting report is too long to include here, we have included one day,

07 January 2011, as a sample to illustrate the approach.

Mizrach VAR Model

We begin by fitting the Mizrach VAR model. The parameters for rt are shown

in table 7.5. The most significant parameters are a and δ, indicating that returns

are anti-autoregressive (a ă 0) but strongly correlated with demand (δ ą 0). The

tiered volume differences αk were also significant, but primarily near the inside as

the contribution from higher tiers drops off rapidly. We found the Spearman rank

correlation coefficient to be r “ 0.174 with p ă 0.01.

PCVAR Model

Next we consider the PCVAR model. First, we determine the principal components

cn, which are shown in table 7.6. We note that there is a high degree of symmetry

in all of the principal components shown with respect to the bid and ask sides of the

order book: each component seems to include a balance of effects from each side of

the book. The first principal component represents the difference in total bid and
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Table 7.6: Table of relative principal component weights for the first five components.
Small components are indicated with a dash.

c1 c2 c3 c4 c5

Bid Ask Bid Ask Bid Ask Bid Ask Bid Ask

qt -0.79 1.00 1.00 0.79 - - - - - -
r1,t - - - - - - - - - -
q1,t - - - - - - -0.85 1.00 -0.24 -
r2,t - - - - - - - - - -
q2,t - - - - -0.14 - -0.69 0.52 - -0.20
r3,t - - - - - - - - - -
q3,t - - - - - - 0.16 -0.21 -0.13 -
r4,t - - - - - - - - - -
q4,t - - - - - - - - -0.10 -
r5,t - - - - - - - - - -
q5,t - - - - - - - - - -
qadded
t - - - - 0.95 0.95 - - -0.92 1.00
qcancelled
t - - - - - - - - - -
qdeleted
t - - - - 1.00 0.98 - -0.12 -0.93 0.96

qreplaced
t - - - - 0.51 0.50 - - -0.34 -
qexecuted
t - - - - - - - - - -

q
ex. w/ p.
t - - - - - - - - - -
qtraded
t - - - - - - - - - -

ask volume, the second represents the total volume open, the third represents total

order modifications, the fourth represents tiered volume differences, and the fifth

represents the difference in order modifications across the book.

It is crucial to note that the spectral power of each principal component is not

necessarily related to its significance in the PCVAR model. The model indicates that

the fourth component (tiered volume differences) is the most significant, followed by

the first component (total volume difference). The second and third components

(total volume and total order modifications, respectively) are insignificant, and the

fifth component (total order modification difference) is somewhat significant. From

this we conclude that volume imbalances, specifically near the inside, drive the price

up (down) if there are more shares on the bid (ask) side of the book. Additionally,

if there is a large turnover of shares on the bid (ask) side compared to the ask
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Table 7.7: Table of relative weights for PCA regression, returns model. The notation
wn,i means the weight of the n-th principal component at time lag i. Insignificant
weights not shown; weights are normalized to 1.

wn,0 wn,1 wn,2 wn,3 wn,4

x1 -0.40 - - - 0.14
x2 - - - - -
x3 - - - - -
x4 -1.00 0.20 - - 0.12
x5 -0.11 - - - -

(bid) side, the price tends to go up (down). For the PCVAR model, we found the

Spearman rank-correlation coefficient to be r “ 0.306 with p ă 0.01. The results

of each model and the P/L from a “trading strategy” that employed each model

are shown in Fig. 7.5. Note that the trading strategy only held positions for one

second, assumed no transaction costs, and did not account for its own impact on the

market behavior, so it is not an accurate measure of what one might expect to gain

or lose during a trading day using either of the VAR models as a forecasting tool;

rather, it is an indicator of how informative the models are relative to the baseline

of “buy-and-hold”.

7.5 Determining a classification boundary

With the insights we gathered from the analysis of the Mizrach VAR model and the

PCVAR model, we can see that the demand-like variables that display a difference

in liquidity between the bid and ask sides of the book are the primary drivers of

price movements. Hence it seems natural to construct artificial variables Qk such

that Qk “ qbk ´ qak , i.e. the difference in bid and ask volume at the kth tier. Our

purpose in doing so is to (hopefully) find a space of two or three Qk’s that provide

clear separation for uptick and downtick samples scattered in that space. We stress

that this is an exercise in visualization, not forecasting, and the results we seek to

find are a clear, visual boundary separating the two classes (upticks and downticks)
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in a low-dimensional space rather than a quantitative representation of their division

in an arbitrary space.

Considering Qk for k ranging from 1 to 5, we found that Q1 and Q2 offered the

greatest separation between observations of up and downticks. For k ě 3, there was

little visible separation. However, the separation shown in Q1 and Q2 was sufficient

to build a discriminative classifier using a support vector machine with a radial basis

function kernel. The results of the SVM test are shown in Fig. 7.6.

We found it particularly exciting that the decision boundary was simple. From

Fig. 7.6, we can almost define a heuristic for predicting the direction of a tick based

on the relative buy and sell volume at the first tier, i.e. the law of supply and

demand. For Q1 ą 0, the next tick will likely be an uptick, and vice-versa. This is of

course not a novel observation in economics, but it is exciting nonetheless to recover

this observation from our data.

7.6 Conclusions

Our findings indicate that the primary driver of price movement is demand. Whether

demand is modeled as a volume-weighted price or as a difference in liquidity seems

not to make a difference: in either case, an imbalance in liquidity is indicative of an

upcoming price movement. When there is excess liquidity on the buy (sell) side of

the order book, the price tends to go up (down). This is an intuitive result that is

consistent with the basic economic principle of supply and demand.

Principal component analysis of the market data sets yielded a surprisingly con-

sistent set of principal components for all 251 trading days in 2011. Qualitatively,

the first five principal components were almost exclusively (1) differences in liquidity

at the first two to three price tiers, (2) total difference in liquidity on the bid and

ask sides of the book, (3) differences in order modifications between the buy and

sell sides of the book, (4) total trading volume, and (5) total order modifications.
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Figure 7.6: Decision boundary as determined by SVM. A coordinate system Q1

and Q2 was specified based on observations, with Q1 “ qb1 ´ q
a
1 and Q2 “ qb2 ´ q

a
2 . In

this space of near-inside demand-like variables, there is a clear separation of upticks
(red) and downticks (blue) as denoted by the gray region (upticks) and the white
region (downticks). The size of the dot indicates the volume of shares executed. The
white area in the lower right hand corner is an artifact of the radial basis function
kernel used in the SVM as there is no nearby data. Samples taken from 07 Jan 2011.

The PCVAR model consistently ranked the importance of the principal components

in the order listed in the previous sentence. This is intriguing, as it seems to sug-

gest that imbalances in information on the buy and sell sides of the order book are

the most informative (more so than the amount of total information). However,

we note that our analysis is not capable of determining whether this pattern drives

price movements or is driven by price movements: we have only determined that this
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information is correlated with future price movements.

We were able to use this information to generate two artificial features Q1 and

Q2, which represent the difference in liquidity between the buy and sell sides of the

order book at the inside and the first tier respectively. Utilizing these features we

were able to create a scatterplot of the data with clear separation between upticks

and downticks. We utilized a support vector machine with a radial basis function

kernel to form a decision boundary that maximizes the separation between the two

classes while minimizing misclassification rates. The boundary is simple and seems

to indicate that Q1, the difference in liquidity at the inside is a significantly more

reliable classifier (less overlap) than Q2, the difference in liquidity at the first tier.

Plotting this decision boundary allows us to gain some visual intuition into the

market structure of price movements. From this information we conclude that the

simplest predictor of price movement is simply the sign of Q1.

We note that our research does not attack the problem of when the next tick

will occur, and that the “trading strategy” shown in Fig. 7.5 assumes that a price

movement will occur every second. This is of course a false assumption, and would

need to be tackled before attempting to implement any model shown in a trading

strategy.
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8

Conclusions

8.1 Summary and Conclusions

This dissertation provides advances in several topics related to nonlinear energy har-

vesting. An anharmonic averaging method for strongly nonlinear systems is devel-

oped and compared with the conventional harmonic averaging method. An efficient

numerical approach to the study of the nonlinear energy harvester equations is de-

signed and employed to study the nonlinear piezoelectric inertial generator. A new

device for energy harvesting is proposed and studied to facilitate the development

of an experimental prototype. A side investigation is conducted into the behavior

of equities markets on short time scales, allowing for visualization of the market

dynamics.

In chapter 2, a standardized modeling and analysis approach was presented that

is used throughout the dissertation for all physical systems. Important theorems are

shown and proved and a framework is provided for the discussions in chapters 3-5.

Chapter 3 arose from an attempt to apply averaging methods to the system in

chapter 5. In so doing, results were found regarding the efficacy of harmonic and
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anharmonic generating solutions in describing the behaviors of rotating systems. It

is demonstrated that the choice of generating solution determines what results may

be obtained: unless a generating solution that describes rotating behaviors is used,

no information regarding rotating behaviors is obtained.

Chapter 4 applies numerical methods to the analysis of energy harvesting equa-

tions that have as yet only attracted analytical approaches in the literature. The

chapter demonstrates that numerical methods can be applied in a systematic way to

achieve the same results as analytical results have in the literature, but without the

need for a possibly difficult-to-compute analytical solution.

Chapters 5 and 6 detail the motivation for and development of an ocean energy

harvesting device. Characteristic behaviors of the device are shown for both harmonic

and random forcing, and the investigation is focused on behaviors that would be

observed should the device be placed in an ocean environment. A design study is

conducted and a set of design recommendations is made.

Finally, chapter 7 investigates the effects of market microstructure on price for-

mation. The chapter defines an effective classification boundary for price movements

motivated both by observed market behaviors and the law of supply and demand.

8.2 Future Directions for Research

A multitude of future investigations could be conducted based on the research pre-

sented within this dissertation. Future contributions are broken down into four areas:

(1) anharmonic averaging methods, (2) numerical continuation of periodic orbits in

energy harvesting, (3) the horizontal pendulum system, and (4) research in financial

markets.
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8.2.1 Anharmonic averaging methods

Anharmonic averaging methods, although extremely challenging to implement, offer

a rich description of behaviors in strongly nonlinear systems. Some future directions

include:

1. Generalization of the method to systems of coupled oscillators. Mathematical

details involving the convolution of Fourier series with mismatched periods will

require effort to ensure usable results.

2. Generalization of the method to functions with arbitrary numbers of periods.

Elliptic functions are biperiodic and are capable of describing systems with

third-order polynomial restoring forces and trigonometric restoring torques.

Multiperiodic (ą 3) functions such as the hyperellpitic Abelian functions would

be required to describe systems with more complex restoring forces or torques.

Alternatively, a semi-numerical method could be devised that relied on Fourier

expansion of the periodic, non-harmonic terms.

8.2.2 Numerical analysis of energy harvester models

As a whole, the energy harvesting literature tends to focus on analytical methods to

find periodic orbits of energy harvesting systems and numerical methods to conduct

phenomenological investigations of devices. As the complexity of models increases,

analytical methods tend to become unwieldy, so a structured numerical approach is

a viable alternative. Possible research opportunities include:

1. Investigation of the subharmonics of energy harvesting devices. Finding sub-

harmonic orbits with analytical methods is a very involved process, but with

a numerical approach finding subharmonics should be a much easier task. As

some energy harvesting devices may be designed to harvest energy from a sub-

harmonic, this research deserves further investigation.
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2. Investigation of the response with multifrequency excitation. Energy harvest-

ing devices often operate in environments with multiple driving frequencies. In

nonlinear systems, this can drastically affect the response of the system. An

analysis in a multifrequency excitation environment should be conducted in a

future investigation.

3. Higher-fidelity uncertainty quantification using spectral methods. Finite dif-

ference approximations are a locally-valid approximation of the uncertainty.

The assumption made is that the uncertainty varies linearly and is normally

distributed; both assumptions are not necessarily the case in physical systems.

For example, normally distributed errors in the length of a cantilever beam

are nonsensical, as there is zero probability of an infinitely long or infinitely

short beam. Spectral methods would allow for uniform distributions to be used

to approximate the errors due to tolerances in the design of the device more

accurately.

4. Uncertainty quantification specifically focused on physical parameters. In the

investigation shown within the dissertation, uncertainties are taken with re-

spect to the dimensionless parameters. In the development of an energy har-

vesting device, a more valid metric would be to compute the uncertainties in

the physical parameters of the device such as magnet strength or component

sizes.

5. Analysis of models incorporating more physically accurate magnet models (and

thus more complex restoring forces) and more physically accurate damping

models. Numerical methods permit higher-fidelity representations of nonlinear

behaviors such as magnet-magnet interactions and structural damping effects

that affect the performance of these devices in subtle but important ways.
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8.2.3 Development of an ocean energy harvester

The primary focus of this research was to begin the development of an ocean energy

harvester based on the horizontal pendulum system. As noted in the dissertation,

analyzing this device proved to be an extremely challenging task. There is ample

future work in the development of this device, including:

1. Further statistical investigations into the random vibrations of the device un-

der Pierson-Moskowitz or similar wave forcing. As any device will ultimately

operate in an ocean environment, it is logical to generate results with ocean-

wave-like forcing. A large-scale numerical investigation on the Duke Scalable

Computing Resource Center cluster is recommended.

2. Construction of a device and testing in the Dynamical Systems Laboratory

wave flume. Preliminary results indicate that a sufficiently small device could

be constructed and placed in the wave tank to experimentally verify the model

behaviors. Work on the wireless data acquisition system begun in collaboration

with the ME160 Blue Team and Marquese Pollard could be resumed to help

in this investigation.

3. Development of a more detailed model, incorporating gyroscopic, pitch, heave,

and buoyancy effects for a version of the device contained within a buoy. Anal-

ysis of this model will be computationally demanding and would best be com-

pleted in collaboration with the Dolbow laboratory.

8.2.4 Investigation of behaviors in financial markets

There is a nearly unending list of work to be done in characterizing the behavior of

financial markets. Additional work should be performed in the following areas:

1. Characterization of the empirical distributions for all aspects of the limit order
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book. Certain message types and behaviors may be more informative than

others w.r.t. predicting price movements, so conditional distributions should be

constructed and techniques from information theory should be used to analyze

their predictive capacity.

2. Additional work in the visualization of market dynamics should be conducted.

The visualization package developed by L. Howle should be reported in the

literature alongside other results obtained over the course of this collaboration.
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Appendix A

Properties of Elliptic Functions

In the course of searching for an approximate analytical solution to the horizontal

pendulum system, efforts to describe the rotating solutions prompted an investi-

gation of the utility of a higher-order averaging method using elliptic functions.

The motivation for using elliptic functions as generating functions for an averaging

transformation is their ability to describe rotating behavior, a high-energy behavior

exhibited by the horizontal pendulum system that we believe to be advantageous

for energy harvesting purposes. In order to more fully understand the approach, I

conducted an investigation into the behavior of the librating and rotating solutions

of the vertical pendulum under torque excitation using an approach described in

[29, 27]. I found that a major barrier to understanding the approach lies in a lack of

intuition with regards to the behaviors and graphs of the Jacobi elliptic functions.

The objective of this appendix is to provide a mathematic and visual background for

the Jacobi elliptic functions to aid the reader in understanding the approach taken

in Chapter 3.
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A.1 Jacobi Elliptic Functions

The Jacobi elliptic functions are a subset of elliptic functions, which are defined as the

inverses of elliptic integrals (more on elliptic integrals to follow). The Jacobi elliptic

functions are particularly useful because they are analogous to the trigonometric

functions and can be used in the solution of several nonlinear ODEs.

A.1.1 Preliminary Definitions and Graphs

Jacobi elliptic functions arise from inverting the elliptic integral of the first kind1,

u “ Fpφ, kq “

ż φ

0

dt
?

1´ k2 sin2 t
(A.1)

where k P r0, 1s is the elliptic modulus, and φ is the Jacobi amplitude, which is

actually more similar to an angular variable and is measured in radians. We define

the Jacobi amplitude function as follows:

φ “ F´1
pu, kq “ ampu, kq. (A.2)

In other words, ampu, kq “ ampFpφ, kq, kq “ φ: hence ampu, kq is the inverse of the

integral. At φ “ π
2

the integrals are referred to as “complete”: that is, Fpπ{2, kq ”

Kpkq, the complete elliptic integral of the first kind, and Epπ{2, kq ” Epkq, the

complete elliptic integral of the second kind.

Before continuing, it is important to obtain a visual understanding of these func-

tions. Figure A.1 shows the complete elliptic integrals of the first and second kinds for

values of k P r0, 1s; figure A.2 shows surface plots of the incomplete elliptic integrals

of the first and second kinds against their amplitude and parameter. More detailed

1 Oddly enough it is the elliptic integral of the second kind, Epφ, kq “
şφ

0

a

1´ k2 sin2 tdt, that
is used to calculate the arc length of an ellipse, but the elliptic integral of the first kind arises in a
number of important contexts in physics.
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Figure A.1: Complete elliptic integrals of the first and second kind vs. the param-
eter k. In Matlab, the calling sequence is [K,E] = ellipke(m); where m “ k2.
In Maple, the calling sequence is K = EllipticK(k);, E = EllipticE(k);.

properties of elliptic integrals will be covered in later sections, but for the purpose

of introducing the Jacobi elliptic functions this basic understanding will suffice.

A.1.2 The Jacobi Elliptic Functions and their Graphs

The Jacobi elliptic functions are all defined in terms of the Jacobi amplitude ampu, kq.

The function ampu, kq is periodic when restricted to the interval r0,Kpkqs, with

period 2 Kpkq, and its behavior for various values of k can be seen in figure A.3 (a).

In practice we do not treat the function as restricted to any interval as it is useful

for modeling behaviors such as the angular position during continuous rotation of a

pendulum.

The primary Jacobi elliptic functions are defined and read as follows:

“sine amplitude” sin ampu, kq “ snpu, kq ” sinφ (A.3a)

“cosine amplitude” cos ampu, kq “ cnpu, kq ” cosφ (A.3b)

“delta amplitude”
b

1´ k2 sin2pampu, kqq “ dnpu, kq ”

b

1´ k2 sin2 φ (A.3c)
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Figure A.2: Incomplete elliptic integrals of the first (a) and second (b) kind. In
Matlabthe calling sequence is [F,E] = elliptic12(φ,m), where m “ k2. This
requires the elliptic package, see ref. [? ]. In Maple the calling sequences are F =

EllipticF(φ,k); and E = EllipticE(φ,k); respectively.

These functions are generalizations of trigonometric functions; to see this, set k “ 0,

which yields u “
şφ

0
dt?
1´0

“ φ:

snpu, 0q “ sinu (A.4a)

cnpu, 0q “ cosu (A.4b)

dnpu, 0q “ 1 (A.4c)

Similarly, substituting k “ 1 yields u “ arctanhpsinpφqq, which leads to

snpu, 1q “ tanhu (A.5a)

cnpu, 1q “ sechu (A.5b)

dnpu, 1q “ sechu, (A.5c)

so the functions are also generalizations of the hyperbolic trigonometric functions.
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Figure A.3: The Jacobi amplitude (a), delta amplitude (b), sine ampli-
tude (c) and cosine amplitude (d) functions for various values of k, with k P

t0, 0.2, 0.4, 0.6, 0.8, 0.95u increasing as the function tends towards the right. Note
that the periods T “ 2 Kpkq (a,b) and T “ 4 Kpkq (c,d) change as a function of k.
Two periods of (a,b) are shown while only one period of (c,d) is shown.

Essentially, the Jacobi elliptic functions are a bridge between trigonometric and

hyperbolic trigonometric functions. Plots of each function are shown in figure A.3.
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[52] O.P. Le Mâıtre and O.M. Knio. Spectral Methods for Uncertainty Quantification.
Scientific Computation. Springer Science + Business Media, New York, 2010.

[53] M.E. Henderson. Multiple parameter continuation: Computing implicitly de-
fined k-manifolds. International Journal of Bifurcation and Chaos, 12(3):451–
476, 2002.

[54] H. Cavendish. Experiments to determine the density of the earth. Philosophical
Transactions of the Royal Society of London, 88:469–526, 1798.

[55] R. Peters. Mechanically adjustable balance and sensitive tilt meter. Meas. Sci.
Technol., 1:1131–1135, 1990.

[56] V. Graizer. Inertial seismometry methods. Izvestiya, Earth Physics, 27(1):51–
61, 1991.

[57] V. Graizer. Effect of tilt on strong motion data processing. Soil Dynamics and
Earthquake Engineering, 25:197–204, 2005.

[58] J. Hubbard. The forced damped pendulum: Chaos, complication and control.
The American Mathematical Monthly, 106(8):741–758, 1999.

[59] M. Bartuccelli, G. Gentile, and K. Georgiou. On the dynamics of a vertically
driven damped planar pendulum. Proceedings of the Royal Society of London
A, 47:3007–3022, 2001.

[60] J. Scmitt and P. Bayly. Bifurcations in the mean angle of a horizontally shaken
pendulum: Analysis and experiment. Nonlinear Dynamics, 15:1–14, 1999.

[61] S. Bishop, D. Xu, and M. Clifford. Flexible control of the parametrically ex-
cited pendulum. Proceedings: Mathematical, Physical and Engineering Sciences,
452(1951):1789–1806, 1996.

[62] E. Butcher and S. Sinha. Symbolic computation of secondary bifurcations in a
parametrically excited simple pendulum. Int. J. Bifurcation Chaos, 8:627–637,
1998.

[63] M. Clifford and S. Bishop. inverted oscillations of a driven pendulum. Proceed-
ings of the Royal Society of London A, 454:2811–2817, 1997.

[64] B. Mann and M. Koplow. Symmetry breaking bifurcations of a parametrically
excited pendulum. Nonlinear Dynamics, 46:427–437, 2006.

[65] I.M. Sobol. Distribution of points in a cube and approximate evaluation of
integrals. Comput. Maths. Math. Phys., 7:86–112, 1967.

[66] Robert H. Stewart. Introduction to Physical Oceanography. Department of
Oceanography, Texas A&M University, 2008.

159



[67] S. Patterson. Dark Pools. Crown Business, New York, 2012.

[68] J. Hasbrouck and G. Saar. Measuring the information content of stock trades.
Journal of Financial Markets, 46:179–207, 1991.

[69] Bruce Mizrach. The next tick on NASDAQ. Quantitative Finance, 8(1):19–40,
2008.

[70] L.E. Howle, C.C. McGehee, and B.P. Mann. An object-oriented library for
real-time processing of NASDAQ order book data. JCEIT, 1(2), 2012.
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