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Abstract

In this work, I present four studies across the range of ’omics data types - a Genome-

Wide Association Study for gene-by-sex interaction of obesity traits, computational

models for transcription start site classification, an assessment of reference-based

mapping methods for RNA-Seq data from non-model organisms, and a statistical

model for open-platform proteomics data alignment.

Obesity is an increasingly prevalent and severe health concern with a substantial

heritable component, and marked sex differences. We sought to determine if the effect

of genetic variants also differed by sex by performing a genome-wide association study

modeling the effect of genotype-by-sex interaction on obesity phenotypes. Genotype

data from individuals in the Framingham Heart Study Offspring cohort were analyzed

across five exams. Although no variants showed genome-wide significant gene-by-sex

interaction in any individual exam, four polymorphisms displayed a consistent BMI

association (P-values .00186 to .00010) across all five exams. These variants were

clustered downstream of LYPLAL1, which encodes a lipase/esterase expressed in

adipose tissue, a locus previously identified as having sex-specific effects on central

obesity. Primary effects in males were in the opposite direction as females and

were replicated in Framingham Generation 3. Our data support a sex-influenced

association between genetic variation at the LYPLAL1 locus and obesity-related

traits.

The application of deep sequencing to map 5’ capped transcripts has confirmed
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the existence of at least two distinct promoter classes in metazoans: focused promot-

ers with transcription start sites (TSSs) that occur in a narrowly defined genomic

span and dispersed promoters with TSSs that are spread over a larger window. Pre-

vious studies have explored the presence of genomic features, such as CpG islands

and sequence motifs, in these promoter classes, and our collaborators recently inves-

tigated the relationship with chromatin features. It was found that promoter classes

are significantly differentiated by nucleosome organization and chromatin structure.

Here, we present computational models supporting the stronger contribution of chro-

matin features to the definition of dispersed promoters compared to focused start

sites. Specifically, dispersed promoters display enrichment for well-positioned nucle-

osomes downstream of the TSS and a more clearly defined nucleosome free region

upstream, while focused promoters have a less organized nucleosome structure, yet

higher presence of RNA polymerase II. These differences extend to histone vari-

ants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as

CTCF), independent of the expression levels of affected genes.

The application of next-generation sequencing technology to gene expression

quantification analysis, namely, RNA-Sequencing, has transformed the way in which

gene expression studies are conducted and analyzed. These advances are of particular

interest to researchers studying organisms with missing or incomplete genomes, as the

need for knowledge of sequence information is overcome. De novo assembly methods

have gained widespread acceptance in the RNA-Seq community for organisms with

no true reference genome or transcriptome. While such methods have tremendous

utility, computational complexity is still a significant challenge for organisms with

large and complex genomes. Here we present a comparison of four reference-based

mapping methods for non-human primate data. We utilize Bowtie2 and Stampy for

mapping to the human transcriptome, and TopHat2 and GSNAP for mapping to the

human genome. To compare the methods, we explore mapping rates, mapping loca-
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tions, number of detected genes, correlations between computed expression values,

and the utility of the resulting data for differential expression analysis. We show

that reference-based mapping methods indeed have utility in RNA-Seq analysis of

mammalian data with no true reference, and that the details of mapping methods

should be carefully considered when doing so. We find that shorter seed sequences,

allowance of mismatches, and allowance of gapped alignments, in addition to splice

junction gaps result in more sensitive alignments of non-human primate RNA-Seq

data.

Open-platform proteomics experiments seek to quantify and identify the proteins

present in biological samples. Much like differential gene expression analyses, it is

often of interest to determine how protein abundance differs in various physiological

conditions. Label free LC-MS/MS enables the rapid measurement of thousands of

proteins, providing a wealth of peptide intensity information for differential analy-

sis. However, the processing of raw proteomics data poses significant challenges that

must be overcome prior to analysis. We specifically address the matching of peptide

measurements across samples - an essential pre-processing step in every proteomics

experiment. We present a novel method for label-free proteomics data alignment

with the ability to incorporate previously unused aspects of the data, particularly

ion mobility drift times and product ion information. We compare the results of

our alignment method to PEPPeR and OpenMS, and compare alignment accuracy

achieved by different versions of our method utilizing various data characteristics.

Our method results in increased match recall rates and similar or improved mis-

match rates compared to PEPPeR and OpenMS feature-based alignment. We also

show that the inclusion of drift time and product ion information results in higher

recall rates and more confident matches, without increases in error rates. Based on

these results, we argue that the incorporation of ion mobility drift time and prod-

uct ion information are worthy pursuits. In addition, alignment methods should be
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flexible enough to utilize all available data, particularly with recent advancements

in experimental separation methods. The incorporation of drift times and/or high

energy into alignment methods and accurate mass and time (AMT) tag databases

can greatly improve experimenters ability to identify measured peptides, reducing

analysis costs and potentially the need to run additional experiments.

vii



For RRV and PSV.

viii



Contents

Abstract iv

List of Tables xiii

List of Figures xv

List of Abbreviations and Symbols xx

Acknowledgements xxiv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 GWAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Selecting Tag SNPs . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Considering Allele Frequency . . . . . . . . . . . . . . . . . . 2

1.2.3 Considering Population Structure . . . . . . . . . . . . . . . . 3

1.2.4 Multiple Hypothesis Testing . . . . . . . . . . . . . . . . . . . 3

1.2.5 GWAS Results and Missing Heritability . . . . . . . . . . . . 3

1.3 Transcriptomics via NGS . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Computational Challenges Raised by Library Construction . . 6

1.3.2 Read Quality Control . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Challenges of Mapping . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4 Challenges of Quantification and Normalization . . . . . . . . 12

1.3.5 Challenges of differential expression analyses . . . . . . . . . . 14

ix



1.4 Proteomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Open-Platform Proteomics Experiments . . . . . . . . . . . . 16

1.4.2 Open-Platform Proteomics Data Processing . . . . . . . . . . 17

2 GWAS for Measures of Adiposity 20

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Study Population . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Genotype Data and Quality Control . . . . . . . . . . . . . . 23

2.2.3 Statistical Analyses . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Genome-Wide Association Analysis of Gene-by-Sex Interac-
tion for WHR and WC and BMI . . . . . . . . . . . . . . . . 28

2.3.2 Replication of LYPLAL1 SNP Association with BMI in Fram-
ingham Generation 3 Subjects . . . . . . . . . . . . . . . . . . 29

2.3.3 Association of LYPLAL1 SNPs with Obesity-Related Traits . 29

2.3.4 Genome-Wide Association Analysis of Gene Main Effects for
BMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Classifying Transcription Start Sites 38

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Selection of Human Transcription Start Sites . . . . . . . . . . 41

3.2.2 Computing Nucleosome Profiles . . . . . . . . . . . . . . . . . 42

3.2.3 Computational TSS Models Using Chromatin and Sequence
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

x



3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 RNA-Seq Mapping of Non-Human Primate Data to Build Human
Clinical Models 53

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Mapping and Assembly . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 Reference-Based Mapping Methods . . . . . . . . . . . . . . . 56

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Detected Transcripts . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Correlation of Gene Expression . . . . . . . . . . . . . . . . . 73

4.3.3 Differential Expression Analysis . . . . . . . . . . . . . . . . . 75

4.3.4 Read Counts by Evolutionary Distance . . . . . . . . . . . . . 77

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Proteomics Alignment Model 83

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Open-Platform Proteomics . . . . . . . . . . . . . . . . . . . . 83

5.1.2 Open-Platform Proteomics Data Processing . . . . . . . . . . 84

5.1.3 Label-Free Proteomics Data Alignment . . . . . . . . . . . . . 86

5.1.4 Previous Alignment Approaches . . . . . . . . . . . . . . . . . 87

5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Alignment Model . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 E. coli Lysate Data . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.2 Human with E. coli Lysate Decoy . . . . . . . . . . . . . . . . 107

5.3.3 Hepatitis-C and Osteoarthritis Data . . . . . . . . . . . . . . . 109

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A Proteomics Alignment Model Supplemental Information 115

A.1 Software and Data Formatting . . . . . . . . . . . . . . . . . . . . . . 115

A.1.1 Data Processing and Formatting . . . . . . . . . . . . . . . . . 115

A.1.2 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2 Full Conditional Distributions . . . . . . . . . . . . . . . . . . . . . . 125

A.3 Exploration of Other HE Models . . . . . . . . . . . . . . . . . . . . 133

A.4 Supplemental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.4.1 Supplemental Results for E. coli Lysate Alignment . . . . . . 136

A.4.2 Supplemental Results for Decoy Experiment . . . . . . . . . . 139

A.4.3 Supplemental Results for Identification Carryover . . . . . . . 139

Bibliography 160

Biography 192

xii



List of Tables

2.1 Mean ˘ standard deviation for obesity-related traits in Framingham
subjects <50 years old. * - Significant Difference between Generation
2 and Generation 3 after controlling for age and age-squared (* - p
<0.001, ** - p <1e-5, *** - p <1e-10, **** - p <1e-20, ***** - p
<1e-50). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Distribution of Promoters Classes . . . . . . . . . . . . . . . . . . . . 41

4.1 Reference-Based Mapping Methods Overview - Summary of the four
categories of reference-based mapping methods compared in this study.
* - Bowtie2 may be considered a hybrid BWT-Seed Method, as multi-
ple substrings are taken from each read for the BWT lookup of candi-
date mapping loci, and the alignment at each candidate loci is extended. 57

4.2 Reference-Based Mapping Results Overview - Summary of mapping
metrics results for the four reference-based mapping methods assessed
in this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Summary of Comparison Results - Summary of the comparison results
for the four reference-based mapping methods examined in this study.
#- Good, G#- Better,  - Best. . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Alignments and Data Utilization. The alignment type names and data
utilized that were compared in the analysis. . . . . . . . . . . . . . . 101

A.1 Resulting P-values Comparing Recall Rates of Alignments. . . . . . . 137

A.2 Resulting P-values Comparing Mismatches of Alignments. . . . . . . 138

A.3 List of Inferred Proteins Associated with Osteoarthritis Progression. . 142

A.4 List of Inferred Proteins Associated with Hepatitis-C Treatment Re-
sponse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.5 GATHER Gene Ontology Results for Inferred Osteoarthritis Proteins. 144

xiii



A.6 GATHER Gene Ontology Results for Inferred Hepatitis-C Proteins. . 147

A.7 DAVID Gene Ontology Biological Process Results for Inferred Os-
teoarthritis Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.8 DAVID Gene Ontology Biological Process Results for Inferred Hepatitis-
C Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.9 GATHER Chromosome Location Results for Inferred Hepatitis-C Pro-
teins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.10 DAVID KEGG Pathway Results for Inferred Osteoarthritis Proteins. 159

xiv



List of Figures

1.1 Modern Open-Platform Proteomics Experiment. Proteins are digested
by a proteolytic enzyme into peptides, peptides are separated by hy-
drophobicity in liquid chromatography, converted to gas phase ions,
separated by cross-sectional area and charge by ion mobility, poten-
tially fragmented in the collision cell, and separated in the Mass Spec-
trometer by mass-to-charge ratio. The relative abundance of each
separated ion is measured by a detector. . . . . . . . . . . . . . . . . 17

2.1 QQ plots for gene by sex interaction (a) and main effect (b) GWAS
for body mass index (BMI) in Generation 2, exams 1, 2, 3, 4, and 5. . 35

2.2 Linkage disequilibrium (shown as r2) in the region encompassing LY-
PLAL1, the consensus SNPs associated with body mass index (BMI)
in our gene by sex interaction GWAS, and the sex-specific SNPs asso-
ciated with waist to hip ratio (WHR) in recent GWAS meta-analyses. 36

2.3 Mean body mass index (BMI) by genotype and sex across exams for
the top associated SNP in LYPLAL1 (rs7552206) with Standard Error
Bars and SNP P-values. . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Significance level of main effect (ME) and/or gene by sex interaction
(GxS) associations with body mass index (BMI) and/or waist to hip
ratio (WHR) for various loci of interest. . . . . . . . . . . . . . . . . 37

3.1 Computational Models Using Chromatin Features Show Different Ac-
curacy for Promoter Classes. Classification accuracy of two epige-
netic models (i.e., using chromatin features) was evaluated on test
sets for each promoter class (evaluated with auROC and auPRC).
Values of 1 indicate perfect classification; auROC values close to 0.5
and auPRC values close to 0 reflect random results. At the bottom,
relative weights of chromatin profile features included in each model
are depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xv



3.2 Including Fourier TransformBased Chromatin Features in a Compu-
tational TSS Model. We explored the effect of adding Discrete Fourier
Transform (DFT) coefficients as features, in addition to the epigenetic
profile features. The Fourier transform decomposes a signal into its
spectral components, and coefficients reflect the presence of period-
icities within the data. The DFT was computed in Matlab, on the
data pre-processed as described in the main text. As with the profile
features, DFT coefficients were computed for the 2 kb upstream and
2 kb downstream regions relative to the TSS, for the whole 2 kb win-
dows as well as smaller 500 bp sliding windows, moved within the 2 kb
regions 250 bp at a time. DFT coefficients were computed for Bulk,
H2A.Z, and H3K4 monomethyl, dimethyl, and trimethyl profiles, and
coefficients reflecting periodicity in the range of a nucleosome turn
were added to the features for model training. . . . . . . . . . . . . . 51

3.3 Computational Models Using Chromatin Features Show Different Ac-
curacy for Promoter Classes. Classification accuracy of two epige-
netic models (i.e., using chromatin features) was evaluated on test
sets for each promoter class (evaluated with auROC and auPRC).
Values of 1 indicate perfect classification; auROC values close to 0.5
and auPRC values close to 0 reflect random results. At the bottom,
relative weights of chromatin profile features included in each model
are depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Mapping Statistics for Reference Transcriptome and Reference Genome
Methods - Mapping, unique, duplication, base mismatch, and rRNA
rate for each of the four mapping methods. Error bars show plus/minus
one standard deviation. Mapping rate is computed as mapped reads
divided by total reads, unique rate is computed as unique mapped
reads divided by mapped reads, duplication rate is computed as du-
plicate mapped reads divided by mapped reads, base mismatch rate is
computed as the number of bases not matching the reference divided
by the number of aligned bases, and rRNA rate is computed as the
number of reads mapping to ribosomal RNA divided by the total reads. 68

4.2 Mapping Locations Reference Genome Methods - Mapping locations
for the two reference genome mapping methods. Each value is com-
puted as the number of reads mapping to a type of region divided by
the total reads mapped. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Detected Genes by Function - Mean and standard deviation of percent
detected genes (computed as detected genes within a list divided by
the number of genes within the list) for the full gene set, and 23
different Gene Ontology Biological Process groupings. . . . . . . . . . 72

xvi



4.4 Detected Genes by Evolutionary Distance - Mean and standard devi-
ation of percent detected genes at increasing evolutionary distance. . 73

4.5 Correlation of Gene Expression - Heat map of all pairwise Pearson
correlations between gene expression of each sample computed with
each of the four mapping methods. . . . . . . . . . . . . . . . . . . . 74

4.6 Correlation of Baseline Sample Gene Expression - Boxplots of the
correlations between gene expression of baseline samples (0 hours),
within each method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Correlation of Gene Expression Between Methods -Boxplots of the cor-
relations between gene expression of identical samples between methods. 76

4.8 Dendrogram of Gene Expression -Average dendrogram of gene ex-
pression, computed with the average Euclidean distance between gene
expression estimates for each sample. . . . . . . . . . . . . . . . . . . 77

4.9 Shared Differentially Expressed Genes - Venn diagram of the number
of differentially expressed genes found using each of the four mapping
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.10 Predictive Utility - Leave One Out Cross-Validation results of the Top
K, Elastic Net classifiers built on the gene expression data from the
four mapping methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.11 Read Count Comparison by Evolutionary Distance - Figure 4.11 com-
pares the number of reads assigned to genes by each of the four map-
ping methods, stratified by evolutionary distance. Each panel shows a
pairwise comparison of read counts between two methods. Each point
indicates a particular gene in a single sample, the log2 raw read count
in two methods. Points above the diagonal indicate higher read counts
in the Y-axis method, while points below indicate higher read counts
in the X-axis method. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Processing Open-Platform Proteomics Data. Raw proteomics data
requires several data processing steps, including peak detection, de-
isootoping, charge state determination, collapsing peaks into peptide
features, data de-warping, peptide identification, and peptide features
matching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Alignment Model. A Plate Diagram of our Peptide-Level Model. We
adapt a Dirichlet Process Gaussian Mixture Model to address open-
platform proteomics data alignment. . . . . . . . . . . . . . . . . . . 94

xvii



5.3 Mass-to-Charge Ratio Deserts. Mass-to-Charge Ratio Deserts are uti-
lized to split the data for parallelization, and to build product ion
profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Sample Product Ion Profile. Product ion profiles are contructed by
summing the intensity of product ions in mass-to-charge ratio bins,
and then normalizing by the total intensity of product ions assigned
to a given peptide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Algorithm Overview. This figure illustrates an overview and the order
of the alignment algorithm steps. . . . . . . . . . . . . . . . . . . . . 98

5.6 MSE Alignment Recall Rates. This figure shows the recall rates con-
sidering identifications having peptide score 5, 6, and 7 or greater for
our MZ-RT method, PEPPeR, and OpenMS. . . . . . . . . . . . . . 103

5.7 MSE Alignment Mismatch Rates. This figure shows the mismatch
rates considering identifications having peptide score 5, 6, and 7 or
greater for our MZ-RT method, PEPPeR, and OpenMS. The mis-
match rate is computed as the number of mismatches (pairwise match
with conflicting identifications) divided by the total matches. . . . . . 104

5.8 MSE Alignment Match Counts. This figure showsa bar plot of all cor-
rect, incorrect and unidentifiable matches for each method. Uniden-
tifiable matches are pairwise matches where neither peptide has a
putative peptide sequence, and so the accuracy cannot be inferred. . . 105

5.9 HDMSE Alignment Recall Rates. This figure shows the recall rates
considering identifications having peptide score 5 or greater across a
range of match probability cutoffs. . . . . . . . . . . . . . . . . . . . 106

5.10 HDMSE Alignment Mismatch Counts. This figure shows the number
of incorrect matches considering identifications having peptide score
5 or greater across a range of match probability threshold. . . . . . . 107

5.11 HDMSE Alignment Known Match Probabilities. A histogram of the
match probabilities of all shared identifications having peptide score
5 or greater, for each of the four alignments of the E. coli lysate data. 108

5.12 Decoy Alignment Results. This figure shows the number of matches
made to the correct species, and the number of matches made to the
incorrect species for each of the four alignments, across a range of
increasing match confidence thresholds from 0.1 to 1 in 0.1 intervals. . 109

xviii



A.1 Results of Additional High Energy Model Assessment. This figure
shows boxplots of match scores from the Dot Product, Multivariate
Normal PDF (MVN) and the sum of squared differences (SSD) metrics
for two different profile sizes. . . . . . . . . . . . . . . . . . . . . . . . 134

A.2 Compute Times from High Energy Model Assessment. This figure
shows the CPU time it took to compute the scores for the various met-
rics: Dot Product, 1-Norm, 2-Norm, Pearson Correlation, Spearman
Correlation, Kendall Correlation, Multivariate Normal PDF (MVN)
and the sum of squared differences (SSD) metrics for different profile
sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.3 Recall Rates for E. coli Lysate Data. This figure shows the recall rate
considering identifications having peptide score 6 or greater, for each
of the four alignments across a range of match probability cutoffs. . . 139

A.4 Incorrect Matches for E. coli Lysate Data. This figure shows the
number of incorrect matches considering identifications having peptide
score 6 or greater, for each of the four alignments across a range of
match probability cutoffs. . . . . . . . . . . . . . . . . . . . . . . . . 140

A.5 Recall Rates for E. coli Lysate Data. This figure shows the recall rate
considering identifications having peptide score 7 or greater, for each
of the four alignments across a range of match probability cutoffs. . . 141

A.6 Incorrect Matches for E. coli Lysate Data. This figure shows the
number of incorrect matches considering identifications having peptide
score 7 or greater, for each of the four alignments across a range of
match probability cutoffs. . . . . . . . . . . . . . . . . . . . . . . . . 141

A.7 Correct and Incorrect Matches for Decoy Analysis. This figure shows
the number of matches made to the correct species (E. coli), and the
number of matches made to the incorrect species (Human) for each
of the four alignments, across increasing match confidence thresholds
from 0.1 to 1 in 0.1 intervals. . . . . . . . . . . . . . . . . . . . . . . . 142

xix



List of Abbreviations and Symbols

Symbols

d Index of a proteomics dataset or sample.

i Index of a measured peptide.

xd,i Measured mass-to-charge ratio, retention time, and drift time
vector for peptide i of dataset/sample d.

ηd Dataset-specific mass-to-charge ratio, retention time, and drift
time shift vector for dataset d.

βd Dataset-specific mass-to-charge ratio, retention time, and drift
time scale vector for dataset d.

cd,i Indicator variable for the latent peptide assignment of xd,i.

zcd,i Mass-to-charge ratio, retention time, and drift time vector of the
latent peptide to which xd,i is assigned.

εd,i Residual mass-to-charge ratio, retention time, and drift time vec-
tor for xd,i shifted and scaled approximation of zcd,i .

Σ Covariance matrix of the mass-to-charge ratio, retention time,
and drift time residuals.

µcd,i Mean mass-to-charge ratio, retention time, and drift time vector
of latent peptide zcd,i .

σ Covariance matrix of the mass-to-charge ratio, retention time,
and drift time of a latent peptide. This covariance is shared
among all latent peptides.

a Prior mean for shift parameters.

b Prior covariance for shift parameters.

e Prior mean for scale parameters.

xx



f Prior covariance for scale parameters.

λ Prior mean for latent peptide means.

r Prior covariance for latent peptide means.

g Prior scale matrix for latent peptide covariance.

h Prior degrees of freedom for latent peptide covariance.

yd,i Product ion intensity profile vector for measured peptide xd,i.

wcd,i Product ion intensity profile vector for latent peptide zcd,i .

ψd,i Sum of squared differences between the measured product ion
intensity profile yd,i and the latent product ion intensity profile
wcd,i .

γ Rate parameter for the exponential distribution of ψd,i.

a0 Prior shape for the rate parameter.

b0 Prior scale for the rate parameter.

Abbreviations

AMT Accurate mass and time.

auPRC Area under the PRC.

auROC Area under the ROC curve.

BMI Body Mass Index.

BP Broad with peak.

CAGE Cap Analysis of Gene Expression.

DDA Data Dependent Acquisition

DIA Data Independent Acquisition

DPGMM Dirichlet process Gaussian mixture model.

GWAS Genome-wide association study.

GxS Gene by sex interaction.

HCV Hepatitis-C virus.

xxi



HDMSE Waters Corporation high-low switching fragmentation mass spec-
trometry coupled with ion mobility separation.

IM Ion mobility.

LD Linkage Disequilibrium.

MAP Maximum a posteriori.

MCMC Markov chain Monte Carlo.

ME Main effect.

MSE Waters Corporation high-low switching fragmentation mass spec-
trometry.

MS/MS Tandem mass spectrometry.

MZ-IM Mass-to-charge ratio and ion mobility drift time alignment.

MZ-RT Mass-to-charge ratio and retention time alignment.

MZ-RT-IM Mass-to-charge ratio, retention time, and ion mobility drift time
alignment.

MZ-RT-IM-HE Mass-to-charge ratio, retention time, ion mobility drift time, and
high-energy data alignment.

NFR Nucleosome free region.

NGS Next Generation Sequencing.

NP Narrow peak.

PCA Principal Component Analysis

PEAT Paired end analysis of transcription start sites.

PLGS ProteinLynx Global SERVER, The Waters informatics platform
for processing proteomics data.

pol II RNA polymerase II.

PRC Precision recall curve.

QQ Quantile-quantile.

RTCC Retention time calibration curve.

ROC Receiver operating characteristics.

xxii



SNP Single nucleotide polymorphism.

TSS Transcription start site.

WC Waist Circumference.

WHR Waist to Hip Ratio.

WP Weak peak.

xxiii



Acknowledgements

I would like to thank the NIH (training Grant T32 GM071340, and Clinical and

Translational Science Award 1UL1RR024128-01), and the Defense Advanced Re-

search Projects Agency (DARPA), number lN66001-07-C-0092 (G.S.G.) for generous

financial support. I would also like to acknowledge the American Society for Mass

Spectrometry for assisting with conference travel expenses, allowing me to present

my work.

Special thanks to Sunil Suchindran, Derek Cyr, and Ricardo Henao for their men-

torship during my time with the Lucas Lab. Thank you to Will Thompson, Erik

Soderblom, and the other members of the Duke Proteomics Core Facility for helping

me gain a better understanding of open-platform proteomics data, and providing

valuable experimental view points. Thank you to Virginia Kraus for granting me

access to information-rich Osteoarthritis proteomics data. Thank you to my fellow

CBB students - particularly the entering class of 2009 - for providing a strong student

support community. Thank you to Jeanette McCarthy, and Uwe Ohler for outstand-

ing mentorship during my first year at Duke. Thank you to Liz Labriola for always

being there to help with all things administrative, and being a sympathetic ear to

all problems - graduate school or otherwise. Thank you to all members of IGSP-IT,

and the administrators of DSCR. This work would not have been possible without

the availability of such computational resources. Thank you to Thomas Kepler and

Merlise Clyde for serving on my committee in the early months of my dissertation,

xxiv



and for my preliminary exam. Thank you to Geoffrey Ginsburg, Tim Veldman, Lori

Hudson, Tom Burke, Marshall Nichols, and the rest of the CGSU team for welcoming

me in to your exciting work over the past year.

Last but certainly not least, thank you to all of my current committee members

- Joe Lucas, Arthur Moseley, Greg Wray, Barbara Engelhardt, and Raluca Gordan

for your tremendous guidance and support.

xxv



1

Introduction

1.1 Background

Studies of all aspects of biological systems, including genetic variation, transcription

initiation, gene expression, and protein abundance, provide a wealth of information

advancing our understanding of life science. As these biological data become in-

creasingly high throughput and complex, the need for advanced computational data

processing and data analysis methods continues to rise.

1.2 GWAS

The ability to genotype large numbers of single nucleotide polymorphisms (SNPs)

via microarrays has paved the way for association studies between phenotypes and

genetic variants. Genome-Wide Association Studies (GWAS) have been utilized to

study allelic variation underlying many diseases and other phenotypic differences, ad-

vancing genetics beyond small scale candidate gene studies McCarthy and Hirschhorn

(2008); Wang et al. (2005). Disease phenotypes result from complex interactions be-

tween genetic makeup and environmental factors. Identifying genetic variants under-
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lying disease risks can greatly advance biological understanding and clinical course

of action.

1.2.1 Selecting Tag SNPs

An important consideration of GWAS is the selection of a representative set of SNPs

for which genotypes will be obtained. The presence of Linkage Disequilibrium (LD),

a nonrandom association of alleles at nearby loci, allows inference of alleles for addi-

tional SNPs that are in strong LD with one or more nearby genotyped loci. Selecting

these tag SNPs has become a standard practice in GWAS, with the goal of maximiz-

ing the represented variation in any genomic region Wang et al. (2005).

1.2.2 Considering Allele Frequency

The power to detect phenotypic associations for complex traits is a function of sam-

ple size, genetic effect size, and allele frequency at both causal and marker loci Wang

et al. (2005); Stranger et al. (2011). GWAS require larger sample sizes to detect

phenotypic associations for more rare variants. Two main hypotheses have driven

GWAS - the common disease/common variant (CDCV) hypothesis, and the com-

mon disease/rare variant (CDRV) hypothesis. The CDCV hypothesis suggests that

common diseases are the result of common variants. The CDRV hypothesis suggests

that common diseases are a result of many variants that differ between individu-

als, and have low overall population frequencies Wang et al. (2005); Stranger et al.

(2011). Studies operating under the CDCV hypothesis would need relatively few

tag SNPs to represent LD blocks of variation and capture the effect of a common

variant Stranger et al. (2011). Rare variants require deeper genotyping. The 1000

genomes project has been driving the effort to generate a resource for common and

rare genetic variation studies, now containing genomes from 1092 individuals 1000

Genomes Project Consortium et al. (2012).
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1.2.3 Considering Population Structure

Careful study design is necessary to prevent false or missed associations in GWAS.

In case-control studies, a powerful and easily collected study group, the cohort may

contain population stratification, or systematic differences in allele frequency between

subpopulations Wang et al. (2005); McCarthy and Hirschhorn (2008); Stranger et al.

(2011). While concerning, several methods have been developed to correct for allele

frequency differences due to ancestry. Such methods include a variety of principal

component analysis (PCA) based corrections Hoggart et al. (2003); Satten et al.

(2001); Price et al. (2006a), as well as the use of ancestry-informative markers Tian

et al. (2008).

1.2.4 Multiple Hypothesis Testing

GWAS perform association tests for hundreds of thousands of SNPs with a given

phenotype, often utilizing linear regression for continuous traits, and logistic regres-

sion for categorical traits. The null hypothesis in these association tests is that a

given variant is not associated with the trait of interest Wang et al. (2005); Stranger

et al. (2011). Because these tests are performed on such a large number of loci,

correction for multiple hypothesis testing is necessary. The conservative Bonferroni

correction has been adopted as standard practice in GWAS, requiring a p-value of

less than 5e-8 to reach ”genome-wide significance” Stranger et al. (2011).

1.2.5 GWAS Results and Missing Heritability

GWAS provide researchers with association signal across the genome. It is often

difficult to identify the causal gene, and very rare to identify the causal variant

McCarthy and Hirschhorn (2008); Stranger et al. (2011). The associated locus,

however, does serve as a marker for the haplotype containing the causal variant.

While GWAS have contributed many identifications of important regions of variation,
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the majority of associations only account for a small proportion of heritability. This

may be due to overestimated heritability, incomplete LD between marker and causal

variants, undetected contributions from rare genetic variants, or simply many small

undetected contributions Stranger et al. (2011). Another possible explanation for

the limited discovery of heritability, is the large focus of GWAS on populations of

European decent McCarthy and Hirschhorn (2008); Stranger et al. (2011). In general,

association studies have found that the genetic variability underlying common disease

are the product of many small effects. In the cases where missing heritability is in

fact due to rare variants with large effects, recent advances in sequencing technology

and the 1000 genomes project will provide substantial insight Stranger et al. (2011).

1.3 Transcriptomics via NGS

In recent years, Next Generation Sequencing (NGS) technology has been utilized in

many ways to obtain high throughput genomics and transcriptomics data - including

but not limited to whole small genomes Walker et al. (2013); Didelot et al. (2012),

genetic variants Veltman and Brunner (2012); Bamshad et al. (2011); Goldstein

et al. (2013), cancer genomes Mwenifumbo and Marra (2013); Meyerson et al. (2010),

genomes of microbial communities Cho and Blaser (2012), gene expression quantities

Wang et al. (2009); Ozsolak and Milos (2011), RNA-protein interactions König et al.

(2011), DNA methlyation patterns Laird (2010), locations of DNA-binding proteins

Park (2009); Zhou et al. (2011), and locations of transcription start sites Ng et al.

(2005). The development of these massively parallel sequencing methodologies allow

experimenters to obtain remarkable amounts of sequence information in very little

time.

Identifying transcription start site (TSS) loci is an essential part of understand-

ing transcript regulation and expression. CAGE (Cap Analysis of Gene Expression)

is a high-throughput method used to identify TSS in a given sample Shiraki et al.
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(2003). The general CAGE protocol includes extraction of total RNA, first strand

cDNA synthesis from the RNA library, 5’ capture of cDNAs or ”cap-trapping”, 5’

ligation of biotinylated linkers, removal of RNA, second strand cDNA synthesis,

cleavage of the first 20 bases by restriction enzymes, 3’ ligation of linkers, amplifi-

cation, and sequencing. CAGE results in DNA tags from the first 20 bases of the

5’ end of mRNAs, which can be mapped to a reference genome to identify the TSS

and also reflect the expression level of the originating transcript Ng et al. (2005);

Nilsson and Virtanen (2006). Extensions of CAGE have been developed to improve

mapping specificity and throughput. Such extensions include deepCAGE Valen et al.

(2009), Paired End Analysis of Transcription Start Sites (PEAT) Ni et al. (2010),

nanoCAGE, and CAGEscan Plessy et al. (2010). The main computational processing

of CAGE sequence data includes mapping to a reference genome, and normalization

Balwierz et al. (2009).

An important application of NGS data gaining popularity is RNA-Sequencing

experiments, or RNA-Seq. RNA-Seq utilizes NGS technologies to obtain expression

information for any prepared RNA library. RNA-Seq allows for untargeted gene

expression (or non-mRNA expression) analysis in multiple tissues. RNA molecules

of interest are isolated from samples, and converted to a cDNA fragment library

via reverse transcription and fragmentation. Prior to cDNA synthesis, samples are

often depleted for highly abundant ribosomal RNA molecules. This depletion step

allows more sequencing reactions to be devoted to mRNA molecules, or other ncRNA

targets Martin and Wang (2011). Fragments undergo size selection based on the RNA

molecules being targeted, and specific NGS technology. Finally, adaptors are ligated

to one or both ends of each cDNA fragment, and each fragment is amplified and

sequenced to obtain short reads from one end (single-end sequencing) or both ends

(paired-end sequencing) Wang et al. (2009).

RNA-Seq offers several advantages over hybridization-based gene expression quan-
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tification approaches. Hybridization-based approaches to transcriptome profiling in-

volve hybridizing fluorescently labeled cDNA to custom-made or commercial mi-

croarrays. These methods are high throughput and relatively inexpensive, but rely

on knowledge of genomic sequence, result in high background noise levels, and thus

have a relatively low dynamic range Wang et al. (2009). RNA-Seq overcomes the

limitation to detecting known transcripts, has the ability to reveal sequence variation

in transcribed regions, has relatively low background noise, and has a large dynamic

range Ozsolak and Milos (2011); Zheng et al. (2011); Pickrell et al. (2010); Li et al.

(2010). However, processing of RNA-Seq data presents several bioinformatics chal-

lenges, many of which are not fully addressed. As with any other high throughput

sequencing data, informaticians must be able to store and process large datasets.

Aside from the typical data size challenges, RNA-Seq data requires several compu-

tational processing steps including quality control analyses, mapping of reads to a

reference genome or transcriptome, transcriptome reassembly, expression quantifica-

tion, and normalization Wang et al. (2009); Garber et al. (2011); Martin and Wang

(2011). These computational data processing protocols for RNA-Seq data are still

in their adolescence, with questions raised as to which are the optimal methods for

each processing step Oshlack and Wakefield (2009).

1.3.1 Computational Challenges Raised by Library Construction

RNA-Seq data are subject to some biases that may be introduced during library gen-

eration. Resulting abundance estimates are a function of true transcript expression

levels, and preferential sequence selection in library preparation protocols. Such bi-

ases include transcript coverage bias, nucleotide composition bias, GC bias and PCR

bias Wang et al. (2012); Roberts et al. (2011); Mortazavi et al. (2008). The order of

the reverse transcription and fragmentation steps when generating cDNA fragments

can lead to a coverage bias over the length of transcripts. These cDNA fragments are
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generated in one of two ways RNA fragmentation followed by reverse transcription,

or reverse transcription of whole RNA molecules followed by cDNA fragmentation.

In the former, RNA molecules are fragmented prior to reverse transcription resulting

in even 5’ to 3’ coverage of the majority of the transcript, but depleted transcript

ends. In cDNA fragmentation, RNA molecules are reverse transcribed prior to frag-

mentation, resulting in a 3’ bias as the reverse transcriptase falls off each transcript

Wang et al. (2009). Reverse transcription may introduce a nucleotide composition

bias. This step is often initiated with random hexamer primers, which are subject

to selective pressure with respect to priming efficacy. As a result, the priming is

not truly random and a nucleotide composition bias is observed in the first several

bases of each read Hansen et al. (2010). In addition, oligo dT priming of reverse

transcription can lead to a 3’ coverage bias across transcript lengths. Some recent

studies have reported correlation between GC content and expression levels Pickrell

et al. (2010); Benjamini and Speed (2012). It is currently thought that PCR am-

plification is the main source of GC bias Aird et al. (2011); Benjamini and Speed

(2012). Data generated in absence of an amplification step show reduced GC bias

Aird et al. (2011); Benjamini and Speed (2012). As with genomic sequence libraries,

amplification bias exists, although the detection and removal of PCR duplicates is

less straightforward with RNA-Seq data. The general assumption is that many iden-

tical short reads are the result of abundant RNA fragments, when in fact some may

be PCR artifacts. Removing these predicted PCR duplicates is still disputed in

RNA-Seq Analysis because it is very challenging to distinguish PCR duplicates from

abundant RNA fragments Wang et al. (2009). Correcting for such biases results in

improved mapping and gene expression estimates Mortazavi et al. (2008); Roberts

et al. (2011).
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1.3.2 Read Quality Control

As with any sequence data, and important pre-processing step is quality control as-

sessment. Before proceeding with read mapping, transcriptome reconstruction, and

expression quantification, it is essential to ensure reads are high quality and free

of contaminantsMartin and Wang (2011). Elegant software exists for QC of raw

sequence data Andrews (2010) prior to mapping procedures. Such tools perform

several quality checks including sequence quality, GC bias, and nucleotide composi-

tion bias. Such quality assessments can indicate poor library preparation or failed

sequencing reactions. More recently, QC software aimed at RNA-Seq data has been

developed Wang et al. (2012); DeLuca et al. (2012); Lassmann et al. (2011); Planet

et al. (2012), including important metrics of mapped reads in quality analysis. For

example, RNA-SeQC provides several post-mapping quality metrics including align-

ment rates, rRNA content, mapping locations (intron, exon, intergenic), transcript

coverage, number of detected transcripts, and correlation between samples. Post-

mapping metrics are important to consider, as adequate coverage and sequencing

depth are necessary to accurately profile transcript expression, detect splice vari-

ants, and identify novel isoforms Wang et al. (2012); DeLuca et al. (2012).

1.3.3 Challenges of Mapping

After a set of high quality sequences is obtained, reads are either assigned to tran-

scripts by mapping to a reference genome or transcriptome, or assembled without

the guidance of reference sequence. Methods utilizing a reference genome or tran-

scriptome are often termed reference-based alignment approaches, while methods

assembling transcripts using only the reads themselves are called de novo assembly

approaches.

In reference-based alignment methods, the sequence for each read (and it’s mate

in paired-end data) is used to find potential mapping locations by exact match or
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scoring sequence similarity. A read mapped to a given transcript indicates its origin,

and the number of reads originating from a given transcript informs on how much

of the transcript was present in the sample. While many short reads will easily map

to a contiguous region on the genome, the mapping of other reads is less straight-

forward. Because RNA-Seq reads originate from spliced transcripts, reads can span

exon junctions. The most straightforward approaches utilize ”unspliced aligners” to

align reads to a reference transcriptome Li et al. (2008, 2009); Li and Durbin (2009);

Langmead et al. (2009); Rumble et al. (2009); Lunter and Goodson (2011); Lang-

mead and Salzberg (2012). This alleviates the need to handle splice junctions, but

is limited to the analysis of known transcripts. Unspliced read aligners are gener-

ally divided into two subcategories based on their methodology seed methods and

Burrows-Wheeler transform methods Garber et al. (2011). Seed methods align short

subsequences, or seeds, from each read to a reference, requiring a perfect match in the

seed subsequence. More sensitive alignment methods are used to eliminate candidate

regions where seeds cannot be extended to full read alignments. Burrows-Wheeler

transform methods create a Burrows-Wheeler index of the reference genome and ef-

ficiently search for perfect matches. Mismatches can be allowed with an exponential

increase in computational complexity. In general Burrows-Wheeler transform meth-

ods are faster than seed methods, but seed methods provide increased sensitivity

Martin and Wang (2011).

A more common reference-based approach is alignment of reads to the reference

genome with ”spliced aligners”. Spliced aligners accommodate junction-spanning

reads by splitting them up into smaller segments and determining the best match

based on alignment scores and known di-nucleotide splice signals De Bona et al.

(2008); Trapnell et al. (2009); Au et al. (2010); Wang et al. (2010); Wu and Nacu

(2010). The spliced aligners also fall into two major categories based on their method-

ology exon first methods and seed and extend methods. Exon first methods begin
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by mapping whole reads to the genome using unspliced read aligners, and then

search for spliced alignments with the remaining reads. Exon first approaches are

efficient, but may miss true spliced alignments when an unspliced alignment is avail-

able in a pseudogene Garber et al. (2011). Seed and extend methods break reads into

seeds which are mapped to the genome, and much like seed-based unspliced aligners,

candidate mapping locations are examined with more sensitive alignment methods.

Iterative extension and merging of initial seeds is performed to determine the spliced

alignment. As with unspliced aligners, seed and extend methods are slower but more

sensitive, and perform better when mapping reads from polymorphic samples Garber

et al. (2011).

When spliced aligners are used to map reads to a reference genome, transcripts

must be assembled from clusters of reads mapping to different loci. This is ac-

complished by building a graph to represent all possible isoforms of an expressed

feature. Different paths through the graph represent individual isoforms. Two most

commonly-used software packages for transcript assembly are Cufflinks Trapnell et al.

(2010) and Scripture Guttman et al. (2010). Cufflinks reports the minimum set of

transcripts compatible with the set of splice junctions in the reads. Scripture reports

all possible transcripts having statistically significant coverage in the read set Martin

and Wang (2011).

De novo assembly approaches facilitate transcript reconstruction without the use

of a reference genome or transcriptome. De novo assembly of short-reads is a compu-

tationally challenging task, and many assemblers have been developed to tackle these

challenges, including Velvet Zerbino and Birney (2008), ABYSS Simpson et al. (2009)

and ALLPATHS Butler et al. (2008). Typically, de novo assemblers construct a De

Bruijn graph using the overlapping reads, and this graph is utilized to re-form tran-

scripts. Trinity Grabherr et al. (2011) and Oases Schulz et al. (2012) traverse the De

Bruijn graph to assemble each isoform, while Trans-ABySS Robertson et al. (2010)
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and similar tools Martin et al. (2010); Surget-Groba and Montoya-Burgos (2010)

build and traverse De Bruijn graphs several times, and merge resulting transcript

sets Martin and Wang (2011). Multiple-graph approaches often provide assembled

transcripts for a more broad range of expression levels.

Reference-based alignment and de novo assembly each have advantages and dis-

advantages. The optimal strategy is dependent on the experimental design and

available computational resources. Reference-based approaches are far less compu-

tationally intensive than de novo approaches. Leveraging a reference genome or

transcriptome can also reduce contamination concerns, as it is unlikely to align to

the reference in question. Reference-based approaches are well-suited for detection

of low abundance transcripts, and the detection of novel transcripts missing from

reference annotation Martin and Wang (2011). However, reference-based mapping

approaches do rely on the availability and accuracy of reference genomes and tran-

scriptomes. Mapping approaches must also handle single reads that map to more

than one location. Mapping uncertainty can arise from paralogous gene families,

repetitive sequence, and shared exons of alternatively spliced transcripts Li et al.

(2010). Effectively dealing with mapping uncertainty is necessary for accurately

measuring gene expression levels Li et al. (2010). Exclusion of ambiguous reads

will result in gaps in assembled transcripts, while random assignment can result

in false positive transcription detection Martin and Wang (2011). Recent meth-

ods have more effectively addressed mapping uncertainty with probabilistic methods

Mortazavi et al. (2008); Trapnell et al. (2010); Li et al. (2010). In the case of large

and complex transcriptomes, such as plants and mammals, reference-based mapping

methods can overcome the computational and isoform-resolving challenges faced by

de novo assemblers Martin and Wang (2011). In general, reference-based mapping

approaches are the appropriate choice when a reliable reference genome exists.

De novo assemblers have the advantage of not requiring a reference genome. This
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allows discovery of transcripts not present in a reference genome or transcriptome,

as well as transcripts from a potential external source. De novo assemblers overcome

challenges caused by mapping uncertainty, as well as long introns that may be missed

by reference-based mapping methods. As previously mentioned, de novo assemblers

require large amounts of computational resources, and assembly time. De novo as-

semblers also require higher sequencing depth than reference-based approaches for

adequate transcript assembly. De novo assembly can be very useful for organisms

with no reference genome, but is very computationally intensive and is most com-

monly used in cases of small genomes such as bacteria, archaea, and lower eukaryotes

Martin and Wang (2011).

It is possible to combine reference-based mapping and de novo assembly meth-

ods. Combined approaches can take advantage of the sensitivity of reference-based

mapping, and the flexibility of de novo assembly. This can be accomplished by either

aligning the reads to a reference, and then assembling reads that failed to align, or by

assembling the reads de novo, then aligning the assembled transcripts to a reference.

The ”align-then-assemble” approach would allow detection of more transcripts with

less computational cost than a de novo assembly alone Martin and Wang (2011).

1.3.4 Challenges of Quantification and Normalization

Once reads have been assigned to transcripts, abundance estimates are calculated

for each detected gene or transcript. Prior to normalization, RNA-Seq expression

quantities are represented as read counts. The main challenges include low abun-

dance transcripts, shared exons of isoforms for a given gene, and paralogous genes

with similar sequences that result in multiple mapping loci for a single read. In the

case of transcript-level quantification from reference-based approaches, ambiguous

read mappings must be handled as described above. In some cases, ambiguous read

assignment, expression quantification, and normalization are combined into one step
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with model-based expression estimation Trapnell et al. (2010). If the objective is

to quantify gene-level expression rather than transcript-level expression, there are

two main approaches to combining read counts from all isoforms of a given gene -

the ”exon union” method, and the ”exon intersection” method Garber et al. (2011)

The exon union method counts reads from all exons in all isoforms of a particular

gene, while the exon intersection method counts reads only from exons shared by all

isoforms.

In order to make inferences with RNA-Seq gene expression data systematic vari-

ability must be corrected as with microarray data. In RNA-Seq the two main sources

of systematic variability include transcript coverage bias from library construction,

and the total number of reads produced in each run. There are many existing nor-

malization techniques for RNA-Seq Data, and much debate as to which techniques

are best. Choice of normalization method has been shown to have an impact on sub-

sequent differential expression analyses Bullard et al. (2010). A common approach

is to utilize a global per-lane scaling factor to correct for differences between sam-

ples in total read counts. Examples include total count normalization, median count

normalization, upper-quartile count normalization Bullard et al. (2010), and house-

keeping gene count normalization. It has been shown that total count normalization

is largely affected by a small number of highly expressed genes Bullard et al. (2010).

Housekeeping gene count normalization has the disadvantage of requiring a priori

knowledge of a gene that is not differentially expressed, or investigation to find an

appropriate candidate Bullard et al. (2010). The length of the transcripts being se-

quenced has also been shown to impact downstream differential expression analyses,

particularly in lowly expressed genes Oshlack and Wakefield (2009); Bullard et al.

(2010); Zheng et al. (2011). Specifically, longer transcripts are over-represented in

differentially expressed gene sets. Methods such as reads per kilobase of exon model

per million reads mapped (RPKM) Mortazavi et al. (2008) or fragments per kilobase
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of exon model per million reads mapped (FPKM) Trapnell et al. (2010) have been uti-

lized to normalize read counts by gene length. However, this normalization increases

the variance of shorter transcripts, and reduces the statistical power for differential

expression analyses for these transcripts Zheng et al. (2011); Oshlack and Wakefield

(2009). Recent studies have shown that raw read counts and RPKM/FPKM normal-

ization methods are ineffective Bullard et al. (2010); Zheng et al. (2011); Dillies et al.

(2012). A recent study utilized a combination approach, scaling each read count by

the total reads, and performing quantile normalization - as is often performed in mi-

croarray experiments. Expression estimates were then corrected for unknown biases

with principal components a second quantile normalization was performed Pickrell

et al. (2010). It has been shown that quantile-based normalization procedures result

in improved differential expression analyses Bullard et al. (2010).

1.3.5 Challenges of differential expression analyses

Once transcript expression has been quantified and normalized, many RNA-Seq ex-

periments seek to find differential expression between physiological conditions. In

theory, the statistical approaches developed to analyze microarray gene expression

data are applicable to RNA-Seq gene expression data (provided appropriate normal-

ization techniques are used) Garber et al. (2011). As an alternative to parametric

analysis based on assumptions of normality, additional methods have been devel-

oped to accommodate the count-based nature of RNA-Seq data, employing Poisson

Marioni et al. (2008); Wang et al. (2010) or Negative Binomial Anders and Huber

(2010); Robinson et al. (2010) distributions. The validity of the Poisson distribution

has been called into question in the presence of biological replicates Bullard et al.

(2010); Anders and Huber (2010). Because it only has a single parameter - an equal

mean and variance - it predicts smaller than observed variations, resulting in type I

error Anders and Huber (2010).
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A recent comparison of differential expression tests compared a likelihood ratio

test, t-test, and fisher’s exact test Bullard et al. (2010). The authors point out that

likelihood ratio statistics have the advantage of being general enough to compare

many biological sample types, as well as adjust for potential covariates,t-statistics

are only applicable for testing differences between two groups, and Fisher’s exact

test makes no assumptions about sample size, but only adjusts for global experiment

effects. This study also found that technical variations resulting from flow cell or

library preparation differences do not have a substantial impact on differential ex-

pression analysis results. In some cases, genes will have zero counts in one or more

samples. This is a potentially interesting biological observation, but t-statistics can-

not adequately test in this case. Fisher’s exact test and likelihood ratio tests are

more appropriate for such situations. T-statistics also have low sensitivity if either

sample has low read counts. If both samples have reasonable gene counts, any of

these tests perform well Bullard et al. (2010). As previously mentioned, transcript

length has been shown to impact differential expression calls Oshlack and Wakefield

(2009); Bullard et al. (2010); Zheng et al. (2011). The over-representation of longer

transcripts in resulting DE gene lists may be approached by weighting test statistics

by transcript length, however an in-depth analysis of specific methodology has yet

to be done Bullard et al. (2010).

1.4 Proteomics

An organism’s proteome consists of the set of gene products present as proteins,

in constantly varying levels and compositions in different tissues. Untargeted pro-

teomics experiments seek to determine which proteins are present in biological sam-

ples, at what concentrations, and how these concentrations differ in various physio-

logical conditions. Analysis of protein expression plays an essential role in biomarker

discovery Service (2008), and the elucidation of the Human Proteome Pearson (2008).
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The comparative nature of biomarker studies is highly dependent on an accurate as-

sessment of differential protein levels in biological samples, requiring peptide peaks

that are accurately matched across LC-MS/MS runs Jeffries (2005). The complexity

of biological samples poses significant computational challenges in data processing

and analysis steps. Most samples contain tens of thousands of peptides, only a

fraction of which are identified Prince and Marcotte (2006). Here we briefly de-

scribe label-free LC-MS/MS methods, data processing steps, and their associated

challenges.

1.4.1 Open-Platform Proteomics Experiments

In a typical label-free proteomics experiment, proteins are digested by a proteolytic

enzyme into peptides. The peptide mixture is physically separated by Liquid Chro-

matography, providing a column retention time for each analyte. Eluting peptides

are converted to gas phase ions, which are then separated in the Mass Spectrometer

by mass-to-charge ratio. The relative abundance of each separated ion is measured

by a detector. LC-MS experiments utilize a single mass analyzer. In LC-MS/MS,

select peptide ions (precursor ions) are further fragmented into product ions and

sent through a second mass analyzer. The product ions are analyzed to determine a

peptide sequence, which is used to query a database and identify the parent protein.

Recently, a variation of LC-MS/MS has been introduced, provides product ion mea-

surements for nearly every precursor ion. Data Independent Acquisition (DIA), also

known as MSE SJ et al. (2009) utilizes a high-low switching fragmentation method

to accomplish this. More recently, a new methodology was introduced - HDMSE

Waters (2011) incorporating Ion Mobility (IM) spectrometry. IM spectrometry is

added for separation of peptide ions after LC, and before MSE, separating ionized

peptides based on charge and three-dimensional cross-sectional area. Figure 1.1

illustrates the experimental workflow of a typical HDMSE experiment.

16



Figure 1.1: Modern Open-Platform Proteomics Experiment. Proteins are digested
by a proteolytic enzyme into peptides, peptides are separated by hydrophobicity in
liquid chromatography, converted to gas phase ions, separated by cross-sectional area
and charge by ion mobility, potentially fragmented in the collision cell, and separated
in the Mass Spectrometer by mass-to-charge ratio. The relative abundance of each
separated ion is measured by a detector.

1.4.2 Open-Platform Proteomics Data Processing

The generation of a peptide-by-sample intensity array requires several data process-

ing steps. Beginning with raw data, true peptide peaks must be discerned from

noise, precursor ion charge states must be determined, multiple isotopes of a sin-

gle peptide must be identified and often combined, and intensity measurements of

peptides must be matched across samples. A recent test study by Bell et al. il-

lustrated the challenging nature of computational processing steps. A sample of 20

proteins was distributed to 27 different labs, which used a variety of data-processing

methods. There were significant discrepancies in reported proteins, however, all raw

data was sufficient to identify all 20 proteins when centrally re-processed Bell et al.

(2009). The lack of standard data processing procedures may be the source of much

irreproducibilty.
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Peak Detection, Charge State Determination, and De-Isotoping

Many data processing pipelines begin with peak detection, charge state determi-

nation, and de-isotoping, though the order of data processing can vary between

packages. Raw data contains peptide and noise peaks, with each peptide presenting

as several peaks due to multiply charged ions and the presence of different isotopes

(i.e. the presence of one or more 13C). A common peak detection and de-isotoping

technique is to repeatedly determine the most intense peak in the dataset, and de-

termine the charge state and isotopic distribution from the frequency and intensity

of the neighboring peaks. Many methods utilize MS intensity and isotope patterns

Monroe et al. (2007); Mueller et al. (2007); Sturm et al. (2008); Li et al. (2005).

Other peak detection methods utilize LC peak shape Katajamaa et al. (2006); Hast-

ings et al. (2002); Andreev et al. (2003). Some methods utilize both the LC and the

MS dimensions of the raw data Leptos et al. (2006); Bellew et al. (2006); Du et al.

(2007). Current peak detection and de-isotoping methods are described in Dowsey

et al. (2010) and Zhang et al. (2009).

De-Warping

After peak detection, charge state determination, and de-isotoping, multiple LC-

MS/MS runs are aligned. As with any laboratory experiment, LC-MS/MS data are

subject to variability. The LC retention times often shift between runs. Pressure

fluctuations, changes in column temperature, column manufacturing differences, and

peptide interactions can cause changes in the elution time, and/or the elution order

of peptides Vandenbogaert et al. (2008). These experimental variations are typically

called warp. De-warping may performed on raw profile data (prior to or independent

of peak detection and de-isotoping), or on feature data (detected peptide peaks).

Many de-warping methods exist, performing linear or non-linear (or both) corrections

of two or more samples Listgarten and Emili (2005).
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Alignment

After de-warping, peptide features are matched, or aligned, across samples to gener-

ate a peptide-by-sample intensity array. Alignment methods utilize various aspects

of the data (i.e. charge, retention time, mass-to-charge ratio) to make match as-

signments. Matching is complicated by variations in retention time and/or mass-to-

charge ratio, errors in peak detection, and overlapping peptides. Many alignment

methods exist, utilizing different aspects of the data most commonly mass-to-charge

ratio and retention time Katajamaa et al. (2006); Pluskal et al. (2010); Mueller et al.

(2007); Bellew et al. (2006); Li et al. (2005); Silva et al. (2005). It is also possible to

utilize intensity measurements or peptide identifications Jaffe et al. (2006); Fischer

et al. (2006); Tang et al. (2011); Mueller et al. (2007). Not surprisingly, incorporating

additional data provides a higher degree of specificity Listgarten and Emili (2005).

Normalization

As with gene expression data, protein intensities must be normalized prior to com-

parative analyses, correcting for systematic variations such as injection volumes Riley

et al. (2010). This can be achieved by choosing a single run to serve as a reference,

and normalizing all other runs to that reference, simply computing the overall nor-

malization constant as the median intensity ratio between matches peptides of the

reference and sample in question Wang et al. (2003). Another approach is to di-

vide the intensity at each m/z value by the mean intensity of the whole m/z range

Zhu et al. (2003). Quantile-based normalization techniques have also been adopted

from microarray analyses, and other sophisticated methods have been developed with

proteomics data in mind Karpievitch et al. (2012). A noteable characteristic of such

proteomics-specific normalization methods is the ability to handle the prevalence of

missing values in these data sets Karpievitch et al. (2009); Wang et al. (2006).
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2

GWAS for Measures of Adiposity

2.1 Background

Obesity presents a major public health challenge in the developed world and is a

primary focus of preventative healthcare. Rates of both overall adiposity, measured

by body mass index (BMI), as well as central (intra- abdominal) adiposity, measured

by waist circumference (WC) or waist to hip ratio (WHR) have been steadily rising

during the past several decades, accompanied by increased rates of diabetes melli-

tus, cardiovascular disease, and other morbidities Wang and Beydoun (2007). In the

United States, regional, racial, and sex differences in adiposity have been noted, but

the patterns are complex and changing over time Wang and Beydoun (2007). Ac-

cording to U.S. national health survey data, men on average have had a higher BMI

than women, but since the mid 1990s the average BMI in women has been higher

than men Zhang and Wang (2004). Men also tend to have larger abdominal girth

than women, and this disparity has persisted over time Okosun et al. (2004, 2003).

Obesity is a heritable trait and recent genome-wide association studies have identi-

fied dozens of loci influencing measures of adiposity Speliotes et al. (2010); Willer
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et al. (2009); Thorleifsson et al. (2009); Heid et al. (2010). Sex differences in the

heritability of obesity-related traits have been noted as well in several studies Zil-

likens et al. (2008). In addition, linkage analysis in both rodent models and humans

have found evidence of sex-specific loci affecting obesity-related traits Sammalisto

et al. (2009); Atwood et al. (2006). Framingham Heart Study investigators found

widespread evidence for sex-specific effects of genetic loci on BMI, identifying several

chromosomal regions with suggestive linkage to BMI in one sex, but not the other

Atwood et al. (2006). Indeed some effects were only seen in sex-stratified analyses

and were not at all evident in the combined cohort of men and women. More recently,

two genome-wide association study meta-analyses of WHR examined their top loci

for sex differences and identified sex-specific effects for several loci Heid et al. (2010);

Lindgren et al. (2009). We sought evidence for significant differences in SNP effects

on adiposity traits in men and women across the genome by carrying out a genome-

wide association study modeling gene by sex interaction for WHR, WC, and BMI in

the population-based Framingham Heart Study. Genome- wide association analysis

of SNPs having main effects (as opposed to gene-by-sex interaction) on obesity were

reported earlier in the Framingham Heart Study using 100 K SNPs, but gene by sex

interactions were not considered at that time Fox et al. (2007). Subsequently, the

full genotype data (>500K SNPs) have been pooled with other studies and reported

in large meta-analyses, which found evidence of gene by sex interaction for WHR

but not BMI among the SNPs with main effects Speliotes et al. (2010); Heid et al.

(2010).

2.2 Methods

2.2.1 Study Population

We conducted this research using data from the Framingham Heart Study, a population-

based, longitudinal study of families living in the town of Framingham, Massachusetts
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collected over three-generations beginning in 1948. An overview of the study is

provided at the dbGap website (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap)

and detailed descriptions are available elsewhere Govindaraju et al. (2008); Cupples

et al. (2007). Briefly, the original study (Generation 1) enrolled 5209 individuals, pri-

marily Caucasian, and it later added the offspring of the original cohort (Generation

2), and the grandchildren (Generation 3) of the original cohort. Primary analyses

were carried out using data from the five first exams of subjects in Generation 2, col-

lected between 1971 and 1994. Obesity-related traits evaluated in this study included

BMI, measured at exams 1, 2, 3, 4, and 5, WHR, measured at exams 4 and 5, and WC

measured at exams 4 and 5. We limited our analyses to these exams due to a drop

in sample size at subsequent exams. Replication of genome wide association study

(GWAS) results was sought in subjects from Generation 3 (data collected from 2002

to 2005). Individuals with diabetes (n = 92, 94, 59, 27, 116, and 136 for generation

2 exams 1, 2, 3, 4, 5 and generation 3 exam 1, respectively) or thyroid disorder (n =

117, 94, 9, 36, 265, and 72 for generation 2 exams 1, 2, 3, 4, 5 and generation 3 exam

1, respectively) were removed because these diseases have an effect on both BMI and

fat distribution. The data were further trimmed, excluding individuals with outlier

trait values determined by taking the mean of the phenotype (independently for each

exam and each sex) and adding/subtracting three standard deviations. Removal of

outlier values in the BMI GWAS data was performed with weight, height, and BMI.

WC and hip circumference (HC) outliers were also eliminated in the waist phenotype

GWAS. Finally, we restricted our analysis to premenopausal women and individuals

under the age of 50 to enhance differences related to estrogen-mediated gene-by-sex

interaction and to reduce as much as possible the age-related differences in associa-

tion that may occur across exams. The total sample sizes for the BMI GWAS after

genotype quality control and trait outlier removal were 3150, 1991, 1630, 1330, 990,

and 2872 for generation 2 exams 1, 2, 3, 4, 5, and generation 3 exam 1, respec-
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tively. The sample sizes for the waist phenotype GWAS were 1330, 984, and 2872

for generation 2 exams 4, 5 and generation 3 exam 1, respectively.

2.2.2 Genotype Data and Quality Control

Genome-wide genotypes and detailed clinical data have been made accessible to the

research community through the SHARe project (SNP-Health Association Resource).

The study protocol was approved by Duke Universitys Institutional Review Board

and the Framingham SHARe Data Access Committee. The unfiltered genotype data

contained 9215 individuals (all generations) genotyped for 549782 SNPs. This in-

cluded 500568 SNPs from the Affymetrix 500K mapping array and 49214 SNPs from

the Affymetrix 50K supplemental array (Affymetrix, Santa Clara, CA, USA). We

used the toolset PLINK Purcell et al. (2007) to perform quality control. Individuals

were excluded if genotyping rates were less than 97%. Markers were excluded if geno-

typing rates were less than 97%, minor allele frequencies were less than 0.05, or if

Hardy-Weinberg P-values were less than .001. All SNP exclusions were made sequen-

tially in the preceding order. Using this filtered data, we checked for Mendel errors

using a 5% cutoff per family, and a 10% cutoff per SNP (as defined in PLINK), but

none were detected. Individuals were also excluded if the predicted sex-based on X-

chromosome genotypes did not match the recorded sex. Pairwise identity-by-descent

measures were calculated to detect replicated samples and unknown interfamilial re-

lationships. We detected 4 identical twins and randomly selected one member of each

pair for the analytic sample. After quality controls, the remaining sample consisted

of genotype data on 360811 SNPs, attaining a genotyping rate of 99.5%.

2.2.3 Statistical Analyses

Analysis of WHR and WC were based on data obtained at exam 4 (n = 1330) and

exam 5 (n = 984) of subjects from Generation 2. The gene-by-sex GWAS was run
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on data from each exam separately. We ran the full model for both WHR and WC

regressed on BMI, age, age-squared, genotype, sex, and the genotype-by-sex cross

product. BMI was available at all exams, with adequate sample sizes on the first

five exams. Five separate GWAS were run using the full model of BMI regressed on

age, age-squared, genotype, sex, and the genotype-by-sex cross product - one each

for exams 1, 2, 3, 4, and 5 of Generation 2. SNPs were evaluated for associations

in an additive genetic model. A main effect GWAS was also run for BMI across

the five exams, using the model specifications above without the cross product term.

Sex-specific associations were tested using the full model of BMI regressed on age,

age-squared, and genotype on each sex. To account for relatedness, we used general-

ized estimating equations while accounting for sibling correlation in the Yags package

Vince (2004) of the R statistical language. The P-values of the covariates were ob-

tained via the Wald test using robust standard errors. The Framingham population

has been studied extensively, and evidence for considerable population stratification

has not been detected. To test this assumption, we estimated the inflation factor

by dividing the median of the observed χ2 statistics for each GWAS, by the ex-

pected median in the absence of stratification (0.456) Devlin and Roeder (1999);

Bacanu et al. (2002). Also, adjusted for population stratification with the scores of

the first 10 principal components, computed with Eigenstrat Price et al. (2006b).

We defined genome-wide significance using a Bonferroni cutoff of 1.4x107, which cor-

rects for 360811 tests. Following genome-wide analysis, we annotated results using

the WGAViewer package Ge et al. (2008), Ensembl Hubbard et al. (2009), and the

UCSC genome browser. We generated plots using the Gap package Zhao (2007) of

the R statistical language and Haploview software Barrett et al. (2005). To enrich for

true positive associations, we took a strategy whereby associations that appeared in

all exams were considered to have a higher likelihood of being true associations. We

expected earlier exams to have greater power due to larger sample sizes, but other
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factors, including decreased heritability with age Atwood et al. (2006) may affect the

results as well. This strategy required us to make some decisions about what cutoff

to use when comparing results across exams. We took the consensus across exams

of the top most significant 10, 100, 1000, and 10000 hits and found 0, 0, 4, and 105

SNPs, respectively, and focused our analysis on the four SNPs from the top 1000

consensus.

2.3 Results

Characteristics of the subjects from Generations 2 and 3 of the Framingham Study

used in the current analyses are presented in Table 2.1, broken down by exam. For

each exam, we restricted our analyses to men and women <50 years of age, resulting

in a decrease in sample size over time, above and beyond the loss due to death or

non participation.
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2.3.1 Genome-Wide Association Analysis of Gene-by-Sex Interaction for WHR and
WC and BMI

None of the gene-by-sex interaction GWAS revealed genome-wide significant loci. For

BMI we noted marked heterogeneity in quantile-quantile (QQ) plots between exams

(Figure 2.1), which does not appear to be a function of sample size (which decreases

with exam). There is also some evidence of inflation in the QQ plots, which was not

alleviated after controlling for population stratification. In sex-stratified analysis,

the inflation appeared to be restricted to men. The top 1000 hits from each exam

for each trait (ordered by the P-value of the gene by sex interaction term) were

extracted (Supplementary Tables available online on doi:10.1155/2011/329038), and

the intersection of those datasets was sought for each trait.

For WHR, we identified 43 SNPs (28 unique loci) and for WC, we identified

43 SNPs (27 unique loci) appearing among the top 1000 in both exams 4 and 5.

When examining loci across these two traits, SNPs near SPOCK3, OSTF1, RAB31,

and RPF1 appear in the top 1000 consensus for WC and WHR. SPOCK3 stands

out as appearing among the top 100 hits across both exams 4 and 5 for WC (P

= 5.33x107 and P = 2.45x105) and WHR (P = 1.85104 and P = 7.95105). For

BMI, only four SNPs appeared among the top 1000 hits in all five exams. All four

SNPs localized to the same linkage disequilibrium block on chromosome 1 - 100kb

downstream of LYPLAL1. We were most intrigued by these findings as the LYPLAL1

locus has been reported as a sex-specific locus affecting central adiposity in two prior

genome-wide association meta-analyses Heid et al. (2010); Lindgren et al. (2009).

The extent of linkage disequilibrium (LD) surrounding the associated SNPs in the

region of LYPLAL1 was determined in the Hap Map phase 3 CEU population by

identifying the farthest SNP away in each direction that had r2 >0.5 for each of

the four SNPs. The LD block extends over 330 kb from position 217,321,833 to

217,655,426, and encompasses the LYPLAL1 gene (Figure 2.2). The block does not
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include the SNPs from Lindgren et al. (2009) or Heid et al. (2010), which are in

moderate linkage disequilibrium with each other and located an additional 55kb and

258kb downstream of LYPLAL1, respectively.

2.3.2 Replication of LYPLAL1 SNP Association with BMI in Framingham Gener-
ation 3 Subjects

We next sought to replicate the observed association in subjects from Generation 3

of the Framingham Study. Again, we restricted our analyses to those less than 50

years of age. A comparison of results by sex in the five exams of Generation 2 and

in Generation 3 are shown in Figure 2.3 for the top associated LYPLAL1 SNP. The

SNP-by-sex interaction for LYPLAL1 was significant in all Generation 2 exams, but

not significant in Generation 3 subjects. However, when stratified by sex, the minor

allele showed a consistent increase in BMI in men across generations (Figure 2.3). In

contrast, in women the minor allele was associated with lower BMI in Generation 2

but not in Generation 3.

2.3.3 Association of LYPLAL1 SNPs with Obesity-Related Traits

To understand the relationship between LYPLAL1 SNPs and obesity in greater de-

tail, we examined the top SNP from the present study (rs7552206) along with SNPs

from the Lindgren et al. (2009) and Heid et al. (2010) studies for association with

related phenotypes, including height, weight, WC, and WHR. The rs7552206-by-

sex interaction for BMI tracked with weight in all five exams, and with WC and

HC in the two exams that had these data available. However, the waist and hip

associations were completely or nearly completely attenuated when controlling for

BMI. For rs2605100 Lindgren et al. (2009), no compelling evidence of gene by sex

interaction in central adiposity was found. Heid et al. (2010) independently found

a female-biased WHR association with LYPLAL1 (rs4846567), an SNP in moderate

linkage disequilibrium with the Lindgren et al. SNP. We analyzed an available proxy
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for this SNP (rs2820446, HapMap CEU r2 = 1) and found a borderline significant

gene-by-sex interaction with WHR (P = 0.09).

2.3.4 Genome-Wide Association Analysis of Gene Main Effects for BMI

We also explored our cross-exam consensus approach for detecting significant main

effects for BMI, using the same age-restricted datasets as the gene by sex interaction

analyses. As with our gene by sex interaction analyses, the QQ plots show marked

heterogeneity between exams (Figure 2.1) and modest inflation, which was not ac-

counted for by population stratification. Only one SNP, located approximately 26

kb upstream of DUSP10 on chromosome 1, appeared among the top 1000 hits in all

five exams of Generation 2 and was borderline significant in Generation 3 subjects

(Figure 2.4). Interestingly, this locus is approximately 2.4 Mb away from the gene by

sex interaction LYPLAL1 SNPs. No SNPs from prior genome-wide association stud-

ies of BMI showed up among our top 1000 consensus, including SNPs in the genes

INSIG2, FTO Fox et al. (2007); Herbert et al. (2006), and MC4R Renstrom et al.

(2009) (Figure 2.4). Surprisingly, the SNPs identified with the consensus approach

yielded more significant P values than other loci.

2.4 Discussion

We carried out a genome-wide assessment of gene-by-sex interaction for standard

measures of obesity in men and women less than 50 years of age in the Framingham

Heart Study. We took advantage of longitudinal data from multiple exams to iden-

tify loci showing consistent evidence of SNP-by-sex interaction across exams. Among

the most prominent was a region approximately 100 kb downstream of LYPLAL1,

encoding the lysophospholipase-like 1 protein. We found evidence across five exams,

spanning a 20-year time frame, of opposite effects of genetic variants in this region

on BMI in men and women. An attempt to replicate this finding in a later genera-
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tion of Framingham Heart Study subjects found a consistent, significant association

in men, but not in women, possibly indicating a male-specific association. Ours is

not the first study to link LYPLAL1 to obesity: two other genome-wide associa-

tion meta-analyses identified this locus as having a sex-specific effect on WHR Heid

et al. (2010); Lindgren et al. (2009). While neither SNP is in linkage disequilibrium

with the region identified in our study, the coincidental discovery of two distinct re-

gions near the LYPLAL1 locus associated with obesity-related traits in a sex-specific

fashion warrants further attention. Moreover, a prior linkage analysis of BMI in

Generation 2 of the Framingham Heart Study identified a male-biased linkage for

BMI in the vicinity of LYPLAL1 on chromosome 1q41 Atwood et al. (2006). None

of the other sex-specific obesity loci from Heid et al. (2010) were found in our study.

LYPLAL1 is a member of the lysophospholipase gene family (EC number 3.1.1.5).

It was initially identified as a gene on chromosome 1 found incidentally during inves-

tigation of a familial chromosomal translocation David et al. (2003). It was named

on the basis of approximately 30% predicted amino acid sequence homology with

lysophospholipases I and II Wang and Dennis (1999). The sequence suggests an α{β

hydrolase fold typically found in many lipases and esterases. LYPLAL1 was subse-

quently identified as one of 23 esterolytic/lipolytic proteins extracted from mouse

adipose tissue. The presence of an active site serine was determined by activity

tagging with a fluorescent probe of broad specificity, resembling a single-chain car-

boxylic acid ester. Similar probes modeling triglyceride and cholesteryl ester did

not tag LYPLAL1 Birner-Gruenberger et al. (2005). LYPLAL1 protein has not yet

been isolated, however, and its substrate specificity is unknown. Along with the

gene for adipocyte triglyceride lipase and several others related to lipolysis, LY-

PLAL1 mRNA was expressed more abundantly in abdominal subcutaneous adipose

tissue from obese versus lean humans Steinberg et al. (2007). Given the minimal

characterization of LYPLAL1, we can only speculate about its sex-specific role in
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adiposity. It might be involved in triglyceride synthesis or lipolysis, similar to some

of the proteins with which it is co-expressed Zechner et al. (2009). If indeed it is a

lysophospholipase, it might play a role along with autotaxin, a secreted phospholi-

pase D, in regulating extracellular levels of lysophosphatidic acid in adipose tissue.

Via specific G protein-coupled receptors, lysophosphatidic acid has been shown to

have varying effects on adipocyte differentiation and growth Pages et al. (2000);

van Meeteren and Moolenaar (2007); Simon et al. (2005). Another possibility re-

lates to the endocannabinoid system, which has been a recent pharmacologic target

for investigative obesity treatments. The monoglyceride, 2-arachidonoyl glycerol, as

well as other esters or amides of long-chain polyunsaturated fatty acids belong to a

family of compounds that are natural ligands for cannabinoid receptors. These en-

dogenous signaling molecules affect physiologic and behavioral processes governing

appetite and energy metabolism Zechner et al. (2009). Interestingly lipolysis con-

trol has been shown to vary by sex in some studies Williams (2004) but not others

Bulow et al. (2006). The aforementioned study showing support for sex differences

in lipolysis suggests that women show greater sensitivity to lipolysis in abdominal

subcutaneous fat. The authors argue that the differences in lipolysis sensitivity are

due to the presence of fewer inhibitory alpha-adrenergic receptors in the abdominal

subcutaneous adipose tissue. This area of lipid metabolism is not well understood,

but recent discoveries and conflicting opinions warrant further studies on LYPLAL1

and its potential roles and sex-specific effects in lipid metabolism and obesity. Our

analysis revealed marked heterogeneity of effects across different exams of the study,

both in gene-by-sex interaction and main effect analyses, even among established

loci from other genome-wide association studies of BMI. The consensus approach

appears to be robust, identifying a locus with strong prior evidence of gene by sex

interaction for obesity-related traits. Using this approach, we also identified a possi-

ble novel candidate locus for BMI, located approximately 26kb upstream of DUSP10,
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encoding a dual specificity protein phosphatase. The DUSPs are a subclass of the

protein tyrosine phosphatase gene superfamily that controls MAP kinase function

Camps et al. (2000). Our study was carried out in the Framingham Heart Study

Offspring cohort, a longitudinal, population-based study. Although no loci reached

genome-wide significance in gene-by-sex interaction analyses, the longitudinal nature

of the data allowed us to prioritize SNPs based on consistency of effect across exams.

However, data on waist circumference were available only at two exams, limiting the

effectiveness of our approach for these traits. Nonetheless, for BMI, this approach

yielded a plausible candidate sex-specific locus and another sex-independent locus.

Interestingly, in both of these cases, results from Generation 3 were not as significant

as in Generation 2, possibly reflecting a cohort effect: Generation 2 subjects were en-

rolled nearly a decade or more prior to Generation 3 subjects. Generation 3 subjects

were on average more overweight than Generation 2 subjects at comparable ages,

consistent with temporal trends of increasing obesity observed in other population-

based studies. These differences, driven in large part by changes in diet and physical

activity over time, may impact the heritability over time and thus, the ability to

detect genetic effects.

2.5 Conclusions

Few studies have systematically modeled gene by sex interaction for obesity-related

traits on a genome-wide level. We confirm in our study that SNPs in the vicinity

of LYPLAL1 may exhibit sex-specific effects on obesity-related traits. By utiliz-

ing a well-designed population-based study, and taking advantage of longitudinal

data, we were able to demonstrate this effect using a much smaller sample size than

the original meta-analysis that identified this locus. This has implications for the

design of GWAS, where large samples sizes are often sought sometimes at the ex-

pense of population homogeneity. We suggest that smaller epidemiologically sound
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population-based studies may be more powerful than larger heterogeneous metaco-

horts. We also highlight the importance of considering longitudinal robustness of

association within a cohort as another means of prioritizing loci and reducing false

positive associations. Future studies of LYPLAL1 are needed to determine the basis

of the apparent sex-specific effect on obesity.
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Figure 2.1: QQ plots for gene by sex interaction (a) and main effect (b) GWAS
for body mass index (BMI) in Generation 2, exams 1, 2, 3, 4, and 5.
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Figure 2.2: Linkage disequilibrium (shown as r2) in the region encompassing LY-
PLAL1, the consensus SNPs associated with body mass index (BMI) in our gene by
sex interaction GWAS, and the sex-specific SNPs associated with waist to hip ratio
(WHR) in recent GWAS meta-analyses.
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Figure 2.3: Mean body mass index (BMI) by genotype and sex across exams for
the top associated SNP in LYPLAL1 (rs7552206) with Standard Error Bars and SNP
P-values.

Figure 2.4: Significance level of main effect (ME) and/or gene by sex interaction
(GxS) associations with body mass index (BMI) and/or waist to hip ratio (WHR)
for various loci of interest.
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3

Classifying Transcription Start Sites

3.1 Background

The development of high-throughput sequencing strategies, which generate millions

of 5’ sequence tags from capped RNAs transcribed by RNA polymerase II (pol II),

has enabled obtaining fine-grained pictures of transcription initiation. Each of the

tags originates from a transcription start site (TSS), and mapping the tags to the

genome identifies tag clusters for individual genes. In particular, the application

of Cap Analysis of Gene Expression (CAGE) produces comprehensive data sets for

mammalian promoters Carninci et al. (2006), and an extension of this methodology to

Paired End Analysis of Transcription Start Sites (PEAT) was used to map and cluster

millions of paired reads from Drosophila melanogaster embryos Ni et al. (2010). Tag

clusters exhibit different initiation patterns, i.e. distributions of tags within a cluster,

and have been used to define distinct promoter classes, generally falling into two

basic groups: Both flies and mammals have focused promoters in which transcription

occurs within a narrow genomic window of a few nucleotides, and dispersed promoters

in which TSSs spread out over a larger genomic region on the order of a hundred
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nucleotides. Promoter classes have distinct associations to core promoter motifs and

functional roles Juven-Gershon and Kadonaga (2010); Ohler and Wassarman (2010),

and evidence has pointed towards enriched pausing, or stalling, of Drosophila pol II

at focused promoters Nechaev et al. (2010).

Many studies have shown a generic pattern of chromatin organization in promot-

ers, in which a nucleosome free region (NFR) upstream of the TSS is surrounded

by periodic arrangements of nucleosomes within the transcript and further upstream

Mavrich et al. (2008); Schones et al. (2008), illustrating the connection between

chromatin features and the accessibility of the DNA to transcription factors (TFs).

Nucleosomes containing H2 and H3 histone variants provide particularly strong sig-

nals for the beginnings of genes in eukaryotes Mavrich et al. (2008); Jin et al. (2009);

Raisner et al. (2005), as they are preferentially incorporated in or near areas of active

transcription. Data on frequent modifications to the N-terminal histone tails have

furthermore supported a histone code specifying functional domains in the genome;

for instance, the tri-methylation of H3K4 has been shown to mark the promoter

regions surrounding TSSs Barski et al. (2007). In addition, individual instances of

insulator elements have been shown or suggested to play a role in chromatin remod-

eling near promoter regions Tsukiyama et al. (1994); Fu et al. (2008).

Given that the distinct promoter classes are widely conserved throughout meta-

zoans, and nucleosomes are correlated with the accessibility of the DNA, it may be

surprising that virtually no analysis so far has directly examined whether focused

or dispersed promoters are associated with different nucleosome organization and

chromatin structure. Instead, the majority of reports have taken the approach of di-

viding genes according to chromatin or insulator patterns, and then associating the

promoters in each group with sequence features Mavrich et al. (2008); Ioshikhes et al.

(2006) or function Engström et al. (2007); Ganapathi et al. (2005). One of the main

limitations of this approach has been that these characteristics are present in only a
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fraction of promoters. For instance, the TATA box motif is present in only 10-20% of

all eukaryotic promoters, and 35% of focused promoters Ohler (2006). On the other

hand, CpG islands are a very frequent sequence feature of mammalian regulatory

regions Saxonov et al. (2006); Tillo et al. (2010) and have been repeatedly associated

with dispersed promoters. Yet, this property is by far not unique to one initiation

pattern: depending on the definition, 70-80% of dispersed promoters coincide with

the presence of a CpG island, but 50-60% of focused promoters do so as well (Table

3.1). Furthermore, while chromatin features and initiation patterns are conserved at

least in metazoans, CpG islands do not exist in the fruit fly genome Ponger et al.

(2001), suggesting that specific sequence features may lead to enrichments but not

be the sole or primary indicators of the underlying process.

Studies in different metazoans have identified several promoter classes based on

the size of the initiation region and the distribution of initiation events within each

region Carninci et al. (2006). In previous work in Drosophila Ni et al. (2010), three

specific classes were defined. Narrow Peak (NP) promoters are typical focused pro-

moters with high occurrences of initiation at one location. They typically contain

one or more canonical position-specific core promoter motifs such as the TATA box,

which have been found in genes with developmental regulation and tissue-specific

functions. Conversely, Weak Peak (WP) promoters are dispersed promoters, in which

transcription is distributed over a larger genomic span and lacks a clear preference for

a single start site. In flies, WP promoters are associated with distinct core promoter

sequence elements but largely lack the canonical eukaryotic-wide core promoter mo-

tifs, and are frequently associated with housekeeping genes Engström et al. (2007);

Rach et al. (2009). CpG islands, long stretches of CpG dinucleotides that play a role

in chromatin packing and nucleosome organization Davey et al. (1997, 2004), are a

feature of most mammalian promoters and are more frequently present in WP pro-

moters Carninci et al. (2006) . Finally, an intermediate class, Broad with Peak (BP)
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promoters, displays both a preference for a narrow location as in NP promoters, yet

with tags covering a larger genomic span as in WP promoters.

Table 3.1: Distribution of Promoters Classes

Class CpG/total (Frommer) CpG/total (Jones)
NP 827/1409 (58.7%) 689/1409 (48.9%)
BP 1375/1759 (78.2%) 1130/1759 (64.2%)
WP 6510/7656 (85.0%) 5244/7656 (68.5%)

Table 3.1 lists the number of promoters in each class, and indicates the presence

of CpG islands within TSS classes. As the table shows, individual sequence features

are enriched in certain promoter classes, but any single feature does not cover any

of the classes completely. CpG islands were defined using two sets of criteria: the

classic definition of Gardiner-Garden and Frommer (1987), and the more stringent

definition of Takai and Jones (2002) which aims at a better separation from Alu-

repetitive elements.

In this work, we show that computational models of promoter classes defined on

patterns of transcription initiation show class-specific enrichment of chromatin and

sequence features. This supports the presence of divergent strategies of transcription,

as recently proposed for yeast and for special functional classes of mammalian genes

Ramirez-Carrozzi et al. (2009); Tirosh and Barkai (2008).

3.2 Methods

3.2.1 Selection of Human Transcription Start Sites

Promoters of tag clusters in the initiation region as defined in ENSEMBL, were

classified as NP, BP, and WP based on the shape of their tag distributions. We

utilized the published alignments of 29 million tags in human, generated by the

FANTOM consortium Nechaev et al. (2010); Kawaji et al. (2009). Promoters were

classified by means of two features, genomic span of initiation events (as defined by
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the size of distinct 5’ tag clusters), and localization of initiation. For NP promoters,

tag clusters have to be smaller than 25 nt, and at least 50% of tags align at the

peak location (defined as the mode of the cluster 62 nt). BP promoters exceed the

50% tag cutoff at the mode, but are spread out over a genomic range >25 nt. WP

promoters are those which meet neither genomic span nor peak location cutoffs;

they do however still show a distinct albeit lower peak, frequently associated with

the presence of a minimal initiator sequence motif. This classification resulted in

1,409 NP, 1,759 BP, and 7,656 WP promoters falling in the initiation region that

contained more than 100 reads. The modes of the tag distributions were used as

representative TSS locations for all promoter classes.

3.2.2 Computing Nucleosome Profiles

Bulk nucleosome, H2A.Z, and H3K4 mono, di, and tri-methyl variant data from

human CD4+ T cells were obtained from Schones et al. (2008); Barski et al. (2007).

The nucleosome occupancy score for H2A.Z, H3K4 methylation, and bulk profiles

was calculated according to Schones et al, using raw short aligned reads mapping

to 5’ or 3’ nucleosome boundaries Schones et al. (2008). We divided each somatic

chromosome into 10 bp non-overlapping windows, and read counts for a window were

calculated by summing the number of reads that aligned in the 80 bp upstream (on

the sense strand) or 80 bp downstream (on the anti-sense strand) windows, assuming

that 5’ and 3’ reads mapping to the ends of the same nucleosome would be 140-160

bp apart. Promoters were analyzed in windows from -21 kb to +1 kb of the TSSs

identified by tag clustering; to reduce the noise in the bulk data, promoters with

outlier read counts less than 8 or greater than 2,400 were removed from the analysis.
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3.2.3 Computational TSS Models Using Chromatin and Sequence Features

To evaluate the contribution of chromatin and sequence features to the definition of

different promoter classes, separate linear classifiers for NP and WP promoters were

trained on chromatin features, or combinations of sequence and chromatin features.

These classifiers were then tested to determine how well they were able to distinguish

between TSSs from the three promoter classes and other genomic locations.

Training and test data

NP and WP TSSs were divided into training and test data, using two-thirds of each

set for training and the remaining samples for testing. For each TSS in the training

set, 20 intergenic locations were drawn at random from -24000 to -2100 bp relative to

the TSS. Additionally, one location was drawn from annotated CDS of human UCSC

Known Genes, and two locations from annotated CpG islands without evidence of

transcript activity (i.e. those without human CAGE aligned reads). CpG islands

were initially taken from the UCSC Genome Browser annotation, which follows the

definition by Gardiner-Garden and Frommer (1987): a >200 bp stretch with a G+C

content of at least 50% and an observed vs expected ratio of CG dinucleotides of >0.6.

We then filtered this initial set by the more recent criteria of Takai and Jones (2002),

which led to a strict subset of regions with length >500 bp, G+C content >55%, and

CG ratio >0.65. Intergenic, CDS, and CpG island locations together comprised the

negative examples. For each of the remaining independent TSSs in the test set, we

further randomly selected 100,000 CpG island locations (again sampled from those

without human CAGE tags) as well as locations from anywhere in the genome. To

ensure that each sample contained sufficient data for chromatin feature extraction,

all positive and negative training and test samples passed a filter of at least eight

aligned reads of the bulk nucleosome data. All analyses were also performed using

unfiltered data, with consistent results (data not shown).
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Feature generation

Chromatin or epigenetic features were designed to reflect similarity to the typical nu-

cleosome profile surrounding a TSS. Epigenetic features were calculated as the inner

product of an examples profile and a reference profile obtained from the respective

training set. Reference profiles were generated by averaging the profiles of the re-

spective TSS training set, split at the TSS in 2 kb upstream and 2 kb downstream

regions. A total of 10 profiles were thus generated for each model, corresponding

to Bulk, H2A.Z, and H3K4 monomethyl, dimethyl, and trimethyl profiles. The pro-

cessed chromatin data was binned into 10 bp intervals, and the closest datapoint to

the TSS location was used as the 0 location for relative profile coordinates. Each epi-

genetic profile was smoothed using a Discrete Fourier Transform Low Pass Filter with

a low pass limit of 150 bp, eliminating noise at frequencies higher than an average

nucleosome size. To select informative sequence features, position weight matrices

(PWMs) of transcription factors were obtained from the JASPAR Core Vertebrate

and RNA pol II datasets Portales-Casamar et al. (2010). We then followed the pro-

tocol described in Megraw et al. (2009), in which we previously described a classifier

for murine NP promoters. Briefly, for each promoter class, TFs were filtered to those

exhibiting match score enrichments in specific regions relative to the TSSs; these

factor- specific enriched regions were each subdivided into seven windows. For every

selected factor, background-normalized cumulative PWM scores were computed for

each of the windows and used as features.

Model training, testing, and evaluation.

Further following the example of Megraw et al. (2009), we used L1-regularized logistic

regression to learn a sparse linear classifier for each promoter class, as implemented in

the l1 logreg package Rach et al. (2011). Sparse logistic regression selects features by

assigning coefficients to each, while penalizing the use of large numbers of features.
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Thus, coefficients of features that are not important for the classification problem

are driven to zero and effectively excluded from the model. L1-regularized logistic

regression uses the L1 penalty parameter to set the balance of including features. We

performed 10-fold cross-validation to select the optimal L1 parameter for each model.

The training data was divided into 10 parts, each part having an equal number

of positive, negative intergenic, negative CDS, and negative CpG island examples.

For each round of cross-validation, 8 parts were used for training, one for testing

and selection of the optimal L1 parameter, and one for independent testing with

the optimal L1 parameter. The range of L1 parameters for each cross- validation

ranged from 0.0001 to 0.01. All training was performed using the l1 logreg data

standardization option, normalizing for potentially different scales between features.

After cross-validation, a final model was created by training on the entire training set

with the mean optimal L1 parameter. The models were tested on the independent

test data of each of the three classes, using the final NP and WP models generated

on the full respective training sets. Classification performance was evaluated with

two standard metrics: the receiver operating characteristics (ROC) and the precision

recall curves (PRC), and the area under ROC (auROC) and PRC curves (auPRC),

which summarize classifier performance when varying the true positive rate. While

ROC effectively normalizes for differences in size of positives and negatives, PRC

is sensitive to imbalanced datasets as is the case for promoters in which a small

number of TSS locations are outnumbered by the non-TSS locations in the genome.

This implies that ROC curves are comparable for different classifiers (e.g. NP and

WP), while PRC curves will reflect differences in the relative size of the positive

class. This partially explains the larger differences we observed for auPRC values,

which reflects the harder problem of identifying fewer NP than BP promoters within

a large genomic background. To visualize the importance of features for each class, a

modified version of l1 logreg was used to obtain standardized coefficients, representing
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input features normalized to the same scale. From these standardized coefficients,

we determined which features were consistently present during the ten-fold cross-

validation training step. For each model, we determined the features whose absolute

value was greater than 0.05 in at least 8 of the 10-fold cross-validations.

3.3 Results

We determined TSS clusters from available human CAGE tags in the FANTOM4

database Kawaji et al. (2009) (see Methods). 13% of promoter clusters fell into the

NP class, 16% into the BP class, and 71% were classified as WP. As core promoters

have traditionally been characterized and identified by the presence of regulatory se-

quence elements, we sought to quantify how informative chromatin features would be

to define human TSSs. Specifically, we were interested in how strongly the different

promoter classes were defined by sequence versus chromatin features. To this end,

we trained and applied computational models to classify between TSS versus non-

promoter genomic locations. Our goal was to identify potential differences between

promoter classes when comparing models under the same assumptions side-by-side,

similar in spirit to recent splicing simulators integrating sequence and chromatin fea-

tures Spies et al. (2009). We computed average profiles of the 2 kb upstream and

downstream regions of each TSS for bulk and H2A.Z nucleosomes as well as H3K4

mono-, di-, and trimethylation, for a total of 10 representative profiles for each pro-

moter class. The inner products of the representative profiles with those of a genomic

test location were used as input features for sparse linear classifiers, trained sepa-

rately for WP and NP promoters. Each model was then tested on independent data

of WP, NP, and BP promoters (Figure 3.1), as well as negative samples from other

genomic locations, including CpG islands without evidence of transcription. WP and

BP classification was much more accurate than NP.

Inspection of the model features showed that each class relied on similar features,
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selecting an informative subset of nucleosome profiles (Figure 4). The highest weight

was assigned to the H3K4 trimethylation downstream profile, followed by the H2A.Z

profiles, likely due to the strong periodic signal especially within the transcript. In

fact, applying the WP model for the recognition of NP promoters was more successful

than using the model trained on NP promoters themselves. Overall however, results

stayed well below those obtained on both WP and BP promoters. When adding

Fourier-transform based features to reflect the periodicity of nucleosomes, results

were slightly improved but highly consistent (Figure 3.2).

It has been demonstrated that NP promoters could be characterized with great

success by ensembles of transcription factor binding sites based on their enrichment

at specific locations relative to the TSS, using features beyond the strict core pro-

moter sequence motifs (including factors such as E2F, CREB, YY1, etc) Megraw

et al. (2009). Following this example, and using the performance of the chromatin

models as baseline, WP classifiers built on sequence features performed considerably

worse than the WP chromatin model (Figure 3.3). The opposite was true for NP

promoters, for which sequence models achieved higher success rates on NP and BP

promoters than chromatin models. Combining sequence and chromatin features in-

creased accuracy on all test sets, and demonstrated that WP TSSs relied much more

on chromatin features than NP TSSs. This was seen in both the relative changes

of classification accuracy as well as in the relative strength of features within the

combined models, in which chromatin features accounted for stronger contributions

for the WP compared to the NP model (Figure 3.3).

3.4 Discussion

The high-throughput sequencing of 5’ capped sequence tags has clearly shown that

eukaryotic promoters separate into at least two classes defined by focused and dis-

persed distributions of initiation events. Many recent studies have reported on the
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chromatin structure in eukaryotic genomes; our approach differed from most of these

efforts by assessing chromatin features from the basis of transcription initiation as

derived from 5’ tag data. In one exception, work concurrent to ours found differences

on H3K9 acetylation based on different promoter classes Kratz et al. (2010). Here,

we provide support that promoters from different classes not only contain differ-

ent core promoter sequence features, but also reflect distinct patterns of nucleosome

organization, and chromatin structure.

A separation of mammalian promoters has frequently been proposed based on the

presence of CpG islands. Differential regulation of some promoters with CpG islands

has been shown to result from unstable nucleosomes, contrary to the involvement of

chromatin remodelers at non-CpG island promoters Ramirez-Carrozzi et al. (2009).

Somewhat differently, we found that CpG islands are present across all initiation pat-

terns, which indicates that CpG islands are not a homogeneous class and do not all

encode constitutively unstable arrangements of nucleosomes. The work by Ramirez-

Carrozzi et al. Ramirez-Carrozzi et al. (2009) focused on a specific set of promoters,

those adjacent to stimulus-response genes, in which nucleosomes are pre-organized

to facilitate a regulated primary response. Such genes may form an intermediate

class between constitutively expressed genes typically associated with CpG islands,

and NP promoter genes, which contain genes like developmental TFs that are ex-

pressed in a precisely determined and highly regulated order. Multiple aspects may

contribute to the relationship between the promoter classes and chromatin features.

First, differences in chromatin architecture may be directly reflected in distinct ini-

tiation patterns, as illustrated by the nucleosome organization in constitutive versus

regulated genes in yeast Cairns (2009). Thus, dispersed promoters result from a

well-defined NFR increasing the accessibility of the DNA to the polymerase, causing

initiation to occur at multiple locations over a large region. In turn, the lower acces-

sibility of focused promoters provides for a more regulated transcription initiation
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due to the lack of a common NFR. Instead, TSSs of focused promoters are well-

defined by position-specific sequence elements including the canonical core promoter

motifs Ni et al. (2010); Megraw et al. (2009), which serve to actively recruit the

core complex to precise TSS locations. Our computational models clearly support

this idea: chromatin features contribute to NP promoter definition, but much less

so than for other classes, and with little improvement on sequence information. As

more data becomes available through large-scale efforts such as the modENCODE

and ENCODE projects, the presence of high-level divergent strategies of gene regu-

lation established at the basal promoter will become better characterized throughout

development and differentiation in model organisms as well as in human. Promoter

classes may have associations to epigenetic inheritance, cellular memory, evolvabil-

ity, and the development of disease Tirosh et al. (2009); Bernstein et al. (2007).

Understanding initiation patterns does not only help deepening our knowledge of

the core promoter sequence, but also provide insight into the epigenetic architecture

of regulatory regions. Together, they illustrate the interplay between chromatin and

sequence information to encode divergent strategies for gene expression.
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Figure 3.1: Computational Models Using Chromatin Features Show Different Ac-
curacy for Promoter Classes. Classification accuracy of two epigenetic models (i.e.,
using chromatin features) was evaluated on test sets for each promoter class (eval-
uated with auROC and auPRC). Values of 1 indicate perfect classification; auROC
values close to 0.5 and auPRC values close to 0 reflect random results. At the bottom,
relative weights of chromatin profile features included in each model are depicted.
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Figure 3.2: Including Fourier TransformBased Chromatin Features in a Compu-
tational TSS Model. We explored the effect of adding Discrete Fourier Transform
(DFT) coefficients as features, in addition to the epigenetic profile features. The
Fourier transform decomposes a signal into its spectral components, and coefficients
reflect the presence of periodicities within the data. The DFT was computed in
Matlab, on the data pre-processed as described in the main text. As with the profile
features, DFT coefficients were computed for the 2 kb upstream and 2 kb down-
stream regions relative to the TSS, for the whole 2 kb windows as well as smaller
500 bp sliding windows, moved within the 2 kb regions 250 bp at a time. DFT
coefficients were computed for Bulk, H2A.Z, and H3K4 monomethyl, dimethyl, and
trimethyl profiles, and coefficients reflecting periodicity in the range of a nucleosome
turn were added to the features for model training.
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Figure 3.3: Computational Models Using Chromatin Features Show Different Ac-
curacy for Promoter Classes. Classification accuracy of two epigenetic models (i.e.,
using chromatin features) was evaluated on test sets for each promoter class (eval-
uated with auROC and auPRC). Values of 1 indicate perfect classification; auROC
values close to 0.5 and auPRC values close to 0 reflect random results. At the bottom,
relative weights of chromatin profile features included in each model are depicted.
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4

RNA-Seq Mapping of Non-Human Primate Data to
Build Human Clinical Models

4.1 Background

For the past decade, microarray gene expression data has revolutionized all areas of

life science allowing quantification of thousands of genes in several samples simul-

taneously, and paving the way for countless research studies. With the advent of

RNA-Seq data, researchers now have the ability to perform untargeted gene expres-

sion analysis via next generation sequencing (NGS) technology, obtaining qualitative

sequence information as well as quantitative gene expression data. RNA-Seq provides

a comprehensive gene expression profile of each sample with the potential to quantify

and annotate all genes and isoforms. This untargeted approach proves particularly

useful when quantifying gene expression in polymorphic cell lines and in organisms

with a nonexistent or provisional reference genome where the sequence of features

to be quantified is unknown Wang et al. (2009); Hornett and Wheat (2012). Due to

the limited genomic resources available for under-characterized species, RNA-Seq is

a popular method of choice for differential gene expression analyses. We present a
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comparison of reference-based mapping methods for RNA-Seq data originating from

Non-Human Primates (NHPs), and their implications in downstream differential ex-

pression analysis.

4.1.1 Mapping and Assembly

RNA-Seq obtains gene expression estimates by assigning next-generation sequencing

(NGS) reads to transcripts, either by mapping to a reference sequence, or assembling

into contiguous stretches of sequence data (contigs) utilizing overlapping sequence

amongst the reads themselves. These methods are termed reference-based align-

ment approaches, and de novo assembly approaches, respectively. Reference-based

alignment and de novo assembly each have advantages and disadvantages. The op-

timal strategy likely depends on the experimental design and available genomic and

computational resources. Reference-based approaches are far less computationally

intensive than de novo approaches, and are well-suited for detection of low abundance

transcripts Martin and Wang (2011). However, reference-based mapping approaches

do rely on the availability and accuracy of reference genomes and transcriptomes.

Mapping approaches must also handle reads with more than one potential mapping

location. Such uncertainty can arise from paralogous gene families, repetitive se-

quences, and shared exons of alternatively spliced transcripts Li et al. (2010). De

novo assemblers have the advantage of not requiring a reference sequence. This al-

lows discovery of transcripts not present in a reference genome or transcriptome.

De novo assemblers overcome challenges caused by mapping uncertainty, as well as

long introns that may be missed by reference-based mapping methods. However,

de novo assemblers require large amounts of computational resources and assembly

time. In addition, higher sequencing depth is needed for adequate de novo transcript

assembly than is required by reference-based approaches Martin and Wang (2011).

De novo assembly can be very useful for organisms with no reference genome, but
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due to its computational demands is most commonly used in cases of small genomes

such as bacteria, archaea, and lower eukaryotes Martin and Wang (2011). In the case

of large and complex transcriptomes, such as plants and mammals, reference-based

mapping methods can overcome the computational and isoform-resolving challenges

faced by de novo assemblers Martin and Wang (2011). In general, reference-based

mapping approaches are the appropriate choice when a reliable reference genome ex-

ists. The choice becomes less clear when working with complex mammalian species

with little to no genomic resources, such as under-characterized NHPs. De novo

assembly-based approaches are computationally intensive, show reduced sensitivity

for genes expressed at low levels, and concerns have been raised over the quality

of de novo transcriptomes in comparison to reference-based approaches Martin and

Wang (2011). In large-scale NHP studies, de novo assembly may be cost and time

prohibitive.

We propose the use of a human reference genome (or transcriptome) for reference-

based mapping and expression quantification of NHP RNA-Seq data. An elegant

study by Hornett et al. Hornett and Wheat (2012) evaluated the utility of divergent

species gene sets for annotation of de novo assembly. When utilizing reference gene

sets from divergent species, the authors found that there was little bias in expression

levels and strong correlation in gene expression up to approximately a 100 million

year window. More divergent species (greater than 100 million years apart) suffered

from incorrect assignment of assembled contigs to genes. The authors found little

difference in the number of genes having contigs assigned, when using chimpanzee,

orangutan, macaque, or marmoset vs. human. In addition, the authors compared

the use of de novo assembled transcriptomes to mapping directly to the reference

predicted gene set for quantifying gene expression. When comparing the mapping of

the reads directly to the predicted gene set vs. the de novo assemblies, the authors

found that mapping to the gene set recovered expression data for more genes, and
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that within the shared detected gene sets, correlation was high Hornett and Wheat

(2012).

We examine the mapping efficacy and utility for differential expression analy-

ses of various reference-based approaches when the reference sequence originates

from a related species. Specifically, we utilize the human genome and transcriptome

as a reference for non-human primate RNA-Seq data from yellow baboons, Papio

cynocephalus. We compare four different reference-based mapping methods one

representative method from four different mapping method categories Garber et al.

(2011).

4.1.2 Reference-Based Mapping Methods

Reference-based alignment methods utilize the sequence for each read (and it’s mate

in paired-end data) to find potential mapping locations by exact match or scoring

sequence similarity. Mapping locations indicate transcripts of origin, and the number

of reads originating from a given transcript informs on how much of the transcript

was present in the sample. We briefly describe four categories of reference-based

mapping methods, and subsequently show the results of one representative method

from each category when mapping RNA-Seq reads from yellow baboon to a human

reference. A summary of the four categories and the representative methods tested

in this study is shown in Table 4.1.
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The first major category has been referred to as unspliced read aligners, which

align reads to a reference without allowing large gaps Li et al. (2008, 2009); Li and

Durbin (2009); Langmead et al. (2009); Rumble et al. (2009); Lunter and Goodson

(2011); Langmead and Salzberg (2012). Unspliced aligners may be used to align

reads to a reference transcriptome. This alleviates the need to handle splice junc-

tions, but is limited to the analysis of known transcripts. Unspliced read aligners

are generally divided into two subcategories based on their methodology seed meth-

ods and Burrows-Wheeler transform (BWT) methods Garber et al. (2011). Seed

methods align short subsequences, or seeds, from each read to a reference, requir-

ing a perfect match in the seed subsequence. More sensitive alignment methods

are used to eliminate candidate regions where seeds cannot be extended to full read

alignments. The unspliced seed method we chose to test is Stampy Lunter and

Goodson (2011). BWT methods create a Burrows-Wheeler index of the reference

genome and efficiently search for perfect matches. Mismatches can be allowed with

an exponential increase in computational complexity. In general, Burrows-Wheeler

transform methods are faster than seed methods, but seed methods provide increased

sensitivity Martin and Wang (2011). The unspliced BWT method we chose to test

is Bowtie2 Langmead and Salzberg (2012). A similar analysis reported that when

the true reference transcriptome is available BWT methods are faster with minimal

differences in alignment specificity. When the reference transcriptome of a distant

species is available, seed methods result in large increases in sensitivity Garber et al.

(2011). These increases in sensitivity have also been observed when aligning reads

to polymorphic regions Degner et al. (2009).

Methods in the unspliced read aligner category are limited to known exons and

splice sites. The second major category of mapping methods, spliced aligners, align

reads to the whole genome, with intron-spanning reads requiring large gaps. Spliced

aligners accommodate junction-spanning reads by splitting them up into smaller
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segments and determining the best match based on alignment scores and known di-

nucleotide splice signals De Bona et al. (2008); Trapnell et al. (2009); Au et al. (2010);

Wang et al. (2010); Wu and Nacu (2010). The spliced aligners also fall into two major

categories based on their methodology exon first methods and seed and extend

methods. Exon first methods begin by mapping whole reads to the genome using

unspliced read aligners, and then search for spliced alignments with the remaining

reads. Exon first approaches are efficient, but may miss true spliced alignments when

an unspliced alignment is available in a pseudogene Garber et al. (2011). Seed and

extend methods break reads into seeds which are mapped to the genome, and much

like seed-based unspliced aligners, candidate mapping locations are examined with

more sensitive alignment methods. Iterative extension and merging of initial seeds is

performed to determine the spliced alignment. As with unspliced aligners, seed and

extend methods are slower, but more sensitive, and perform better when mapping

reads from polymorphic samples. Garber et al. (2011) The exon-first and seed and

extend methods we chose to test are TopHat2 Kim et al. (2013), and GSNAP Wu

and Nacu (2010), respectively.

After mapping to a reference genome, a transcriptome reconstruction step is re-

quired to appropriately assign reads to transcipts. Aligned reads spanning splice

junctions are connected, and read counts to various isoforms of each gene are re-

ported. This is accomplished by building a graph to represent all possible isoforms

of an expressed feature. Different paths through the graph represent individial iso-

forms. Two commonly-used software packages for transcript assembly are Cufflinks

Trapnell et al. (2010) and Scripture Guttman et al. (2010).

We present a comparison of reference-based mapping methods for RNA-Seq data

having no true reference, but that of a closely related model organism. We assess

the various methods using mapping rates, mapping locations, correlation of gene

expression, as well as the utility of the data for differential expression analyses and
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building predictive models for a phenotype of interest.

4.2 Methods

Study Samples

We obtained data from 12 adult male yellow baboons (Papio cynocephalus), inoc-

ulated with five different levels of Streptococcus pneumoniae, a bacterial pathogen

causing pneumonia. The bacterial doses administered to the participants included

109 colony forming units (CFU) (n = 4), 108 CFU (n = 3), 107 CFU (n = 1), 106

CFU (n = 1), and 0 CFU (n = 3). Peripheral blood samples for gene expression

analysis were taken at five different time points immediately before inoculation, and

6, 24, 48, and 168 hours following inoculation. Antibiotics were administered imme-

diately following the 48 hour time point. Three of the 60 samples did not meet RNA

quality standards. Each participant was evaluated to determine clinical pneumo-

nia status using pre-determined criteria. A participant was classified as developing

clinical pneumonia if each of the three following conditions were met:

• A white blood cell count of greater than 15,400, less than 3,400, a 2fold change

from baseline measurement, or greater than or equal to 90% neutrophilia at 24

or 48 hours.

• A positive culture of Streptococcus pneumoniae from BAL or blood samples

at 48 hours.

• Any one or more of the following at 24 or 48 hours:

– Heart rate of greater than 100 bpm

– A 25

– Positive indication of infiltrate on a chest X-ray

– Decreased Activity
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– Decreased Food Intake

– A fever of 38.2 degrees Celsius or greater

– Cough

– Nasal Discharge

RNA Isolation and Library Preparation

Samples were collected in PreAnalytiX PAXgene Blood RNA collection tubes, and

total RNA was isolated using the PreAnalytiX PAXgene Blood RNA miRNA isola-

tion kit. RNA quality was assessed using Agilent Bioanalyzer and Nanodrop spec-

trophotometry, and samples with RNA integrity number greater than or equal to

7, and greater than or equal to 1 microgram of RNA were deemed sufficient for

RNA-Seq. Abundant globin transcripts were depleted with the GlobinClear Globin

RNA Reduction for RNA-Seq protocol. The fragment library was prepared with

the Illumina TruSeq RNA Seq protocol, and Illumina HiSeq RNA Sequencing was

performed, run in 6-plex per flow cell lane, obtaining 50 bp paired-end reads.

Read Quality Control and Trimming

Read quality analysis was performed on the raw data using FastQC version 0.10.1

Andrews (2010). Quality trimming and adapter clipping were performed using Trim-

momatic version 0.25 Lohse et al. (2012), trimming trailing bases below quality 20,

clipping Illumina adapters, and discarding clipped reads shorter than 25 bp. FastQC

was used to re-assess the integrity of the clipped reads prior to subsequent mapping

and analysis. Reads whose mates were discarded due to quality trimming and length

constraints were removed from the fastq files used for mapping.
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Read Mapping

The UCSC hg19 human reference genome and annotation was used as a refer-

ence, from the Illumina iGenomes download, March 2013. To generate a fasta file

of transcripts for unspliced mapping, the RSEM prepare reference tool was used

citeli2011rsem. Clipped reads were mapped to the hg19 transcriptome using Bowtie2

version 2.0.6. Langmead and Salzberg (2012), and Stampy version 1.0.17. Lunter

and Goodson (2011). Clipped reads were mapped to the hg19 human genome using

Tophat version 2.0.7 Kim et al. (2013), and GMAP (GSNAP) version 2013-03-12 Wu

and Nacu (2010). With Tophat, the unmapped reads were merged into the mapped

SAM file. Default parameter settings were used for all methods. SAM/BAM con-

versions, sorting, indexing, and marking of PCR duplicates were performed with

SAMtools version 0.1.18 Li et al. (2009) and Picard version 1.83 None. (2013).

Quantification and Normalization

Read counts for each transcript were obtained with HTSeq Planet et al. (2012),

specifically the intersection-nonempty mode of htseq-count. Conditional Quantile

Normalization was used to obtain normalized gene expression estimates Hansen et al.

(2012).

Mapping Comparisons

To compare the four reference-based mapping methods, we examined several mapping

metrics including mapping rates, mapping locations, transcripts detected, mate pair

concordance, and coverage over transcripts. Mapping metrics were computed with

RNA-SeQC version 1.1.7 DeLuca et al. (2012), for the entire gene set, as well as

subsets of genes in Gene Ontology Ashburner et al. (2000) functional groupings, and

evolutionary distance groupings. See the corresponding methods sections for more

details on the generation of these gene lists.

62



Functional Groups

To assess the number of detected genes within different functional groupings, we took

the set of genes present within each of the 23 top-level biological process ontology

terms. BEDtools version 2.17.0 Quinlan and Hall (2010) was used to select reads

mapping to each gene list from each of the BAM files, which were then analyzed with

RNA-SeQC.

Evolutionary Distance Groups

To assess the number of detected genes at various evolutionary distances, we ob-

tained the mRNA sequence of all olive baboon (Papio anubis) RefSeq genes from the

UCSC genome browser, and determined the human ortholog and evolutionary dis-

tance of each reference baboon gene. Orthologs were found by performing a BLASTN

Altschul et al. (1990) search against the human transcriptome, and taking the top

hit by percent identity. Jukes-Cantor distances Matsubara et al. (1968) were then

computed between the orthologous sequences. Five subset gene lists were created

using evolutionary distance: greater than or equal to 0.1 (n = 19), less than 0.1 and

greater than or equal to 0.075 (n = 20), less than 0.075 and greater than or equal

to 0.05 (n = 62), less than 0.05 and greater than or equal to 0.025 (n = 202), and

less than 0.025 (n = 155). As with the functional gene lists, BEDtools version 2.17.0

Quinlan and Hall (2010) was used to select reads mapping to each gene list from

each of the BAM files.

Differential Expression Analysis

For each of the four mapping methods, we determined the differentially expressed

transcripts using edgeR Robinson et al. (2010). We report the genes exhibiting

significant differential expression between healthy participants, and participants with

clinical pneumonia at maximal symptoms (48 hours) after Bonferonni correction. A
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4-way venn diagram web tool was used to generate the figure Oliveros (2007).

Predictive Model from Gene Expression Data

Using the normalized gene expression estimates, we built a statistical classifier for

clinical pneumonia using the 7 participants meeting clinical criteria for pneumonia at

maximal symptoms (48 hours), vs. all baseline samples, and all control participants

at 48 hours. The normalized expression estimates for the top 100 differentially ex-

pressed genes were used as predictive variables, and elastic net regularized regression

was used to fit the model. Leave one out cross-validation (LOOCV) was used to

obtain classification results for each sample, and to obtain an estimate of how well

the classifier would perform on an independent test set.

4.3 Results and Discussion

We mapped RNA-Seq reads from 57 yellow baboon (Papio cynocephalus) peripheral

blood samples to a human reference using four different mapping methods - Bowtie2

Langmead and Salzberg (2012), Stampy Lunter and Goodson (2011), TopHat2 Kim

et al. (2013), and GSNAP Wu and Nacu (2010). We then assessed the utility of

each mapping method with mapping rates, base mismatch rates, mapping locations,

detected transcripts, correlation of gene expression estimates, differential expression

analysis results, and the predictive utility of gene expression data. The 57 baboon

samples were taken from 12 different animals at 5 time points, where the phenotype

of interest is clinical bacterial pneumonia infection (see Methods for more details).

When mapping RNA-Seq reads from a distant NHP species to human reference

sequence, we see differences in the utility of various mapping methods with respect

to mapping rates, detected genes, correlation of expression values, and differentially

expressed genes. To better understand the differences between the methods, we

examine more closely the default behaviors of the four mapping methods used.
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Bowtie2 is a BWT-based unspliced aligner, with the recent addition of supported

gapped alignments. This method may actually be considered a combination BWT

and seed unspliced mapper. Bowtie2 extracts multiple substrings or seeds from each

read and aligns them using a BWT approach with no gaps, then extends alignments

using a Smith-Waterman-like scoring scheme. By default, seeds are 22bp and no

mismatches are allowed within the seed. Base call quality scores are incorporated

by assigning more severe mismatch penalties at high-quality read positions. Gap

initiation and extension penalties are also utilized, while the number and lengths

of gaps within extended alignments are not restricted. Bowtie2 does not guarantee

that the alignment reported is the best in terms of alignment score, and when there

is more than one potential mapping location of equal score, one reported location is

selected at random.

Stampy is a seed-based unspliced aligner that uses a hash table to store the

locations of 15-mers in the reference sequence. For each read, candidate alignment

locations are identified with a hash lookup of the 15-mers in the read, allowing for

one mismatch. Candidate mapping locations are screened for sequence similarity

with the read, and then full alignments are attempted at each remaining candidate

location. As with Bowtie2, Stampy also considers base quality calls, and allows gaps

in this alignment step. Stampy also allows the use of BWT as a ”pre-mapping”

step to increase speed, however the manual does not recommend this for paired-end

data. For this reason, and for method-comparison purposes, we did not use the BWT

option. Stampy uses a Bayesian probabilistic model to represent mapping quality,

and reports the single best alignment location.

TopHat2 is an exon-first spliced read aligner that uses Bowtie2 as a base algo-

rithm. TopHat2 has the recent additions of the ability to align reads across fusion

breaks. Like the original TopHat, potential splice sites are detected within candi-

date alignment locations, and used in a subsequent step to align reads spanning

65



exon-junctions. TopHat2 first maps to the transcriptome with Bowtie2. Remaining

whole reads are then mapped to the reference genome, and then spliced alignments

are attempted. Most of the default Bowtie2 parameters when run within Tophat2

are the same as the default standalone Bowtie2 parameters, with the exception of

seed length and intervals between seeds. TopHat2 seeds within Bowtie2 are 20bp,

and the interval between seeds is longer. TopHat2 reduces alignment to pseudo-

genes by aligning reads preferentially to genes within provided annotation. This use

of annotation by TopHat2 has been shown to increase sensitivity and accuracy of

mapping. We provided TopHat2 with annotation information for this purpose. In

addition to gapped alignment in the Bowtie2 step, TopHat2 also allows indels in the

spliced alignment detection step.

GSNAP is a seed-extend spliced aligner that allows for long and even chromosome

spanning gaps, likely resulting from gene-fusion events. GSNAP uses all 12-mers

in the read to identify candidate mapping locations, not favoring positions within

short reads. Alignments are extended at candidate loci, requiring that the read

has a consecutive stretch of 14 nucleotides exactly matching the reference sequence.

GSNAP allows multiple mismatches and long indels, but only allows one splice or

indel per read. Splicing is identified in two different ways - searching surrounding

sequence for splice signals, or a user-provided set of known exon-intron boundaries.

Mapping Statistics

For each of the four mapping methods, we computed the average and standard

deviation of several mapping statistics across the 57 samples. Table 4.2 shows a

summary of these mapping statistics.
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We first examine overall mapping rates and locations of the four methods, illus-

trated in Figure 4.1.

Figure 4.1: Mapping Statistics for Reference Transcriptome and Reference Genome
Methods - Mapping, unique, duplication, base mismatch, and rRNA rate for each
of the four mapping methods. Error bars show plus/minus one standard deviation.
Mapping rate is computed as mapped reads divided by total reads, unique rate
is computed as unique mapped reads divided by mapped reads, duplication rate is
computed as duplicate mapped reads divided by mapped reads, base mismatch rate is
computed as the number of bases not matching the reference divided by the number
of aligned bases, and rRNA rate is computed as the number of reads mapping to
ribosomal RNA divided by the total reads.

Examining the overall mapping rates of the four methods, we see that GSNAP

obtains the lowest mapping rates, ranging from 0.4497 to 0.4857. This is likely due

to the 14 nucleotide exact match requirement, and the single gap or splice restriction.

Any reads spanning exon junctions that would align well with an additional small gap

on either side of the intron will not be considered. Other reads mapping to divergent

regions may not have a continuous stretch of 14 conserved nucleotides. TopHat2 was
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reported to be more sensitive and accurate than GSNAP Kim et al. (2013), which was

of similar sensitivity as the original TopHat Wu and Nacu (2010). GSNAP was found

to perform poorly on short-anchored reads (small ”anchor” on either end of a splice

junction) Kim et al. (2013). TopHat2 and GSNAP were found to perform similarly

on single-end reads with small indels (1-3bp), but GSNAP performed better on indel

alignments with paired-end reads Kim et al. (2013). TopHat2 obtains significantly

higher mapping rates ranging from 0.5940 to 0.6365. Bowtie2 obtains higher still

mapping rates of 0.6269 to 0.7052. We see slightly lower mapping rates with TopHat2

than Bowtie2, regardless of the fact that Bowtie2 is the underlying algorithm of

TopHat2. As previously mentioned, the only difference in default parameters is the

seed length and interval between seeds. TopHat2 runs Bowtie2 with a shorter seed,

which would suggest increased sensitivity, but a longer interval between seeds, which

would lead to decreased sensitivity. Because the interval between seeds is longer,

less seeds are used to identify candidate mapping locations, and with the default

of no mismatches allowed within a seed some correct alignment loci would not be

considered. Finally, Stampy achieves the highest mapping rates ranging from 0.8199

to 0.9358. This is likely due to the shorter seed length, and the allowance for a single

mismatch in seeds. This allows more candidate loci to be considered. All increases

in mapping rates were significant.

We also observe higher base mismatch rates in the transcriptome mapping meth-

ods. This is likely due to the fact that these methods are more sensitive, and so

reads may be successfully mapped to more divergent regions. Another possible ex-

planation is the presence of splice variants in baboon not present in human. The

human reference transcripts may contain additional or missing exons with respect

to baboon, causing mapped reads that span the true exon junction to have a high

mismatch rate for a short stretch of sequence. Unique, duplication, and rRNA rates

are all similar across the four mapping methods.
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We also examined the mapping locations - intergenic and intragenic (exonic and

intronic). These results are shown in Figure 4.2

Figure 4.2: Mapping Locations Reference Genome Methods - Mapping locations
for the two reference genome mapping methods. Each value is computed as the
number of reads mapping to a type of region divided by the total reads mapped.

The transcriptome mapping methods obtain an intragenic mapping rate of 1,

simply due to the nature of the mapping procedure. When comparing the mapping

locations of the reference genome methods, we see that GSNAP obtains a significantly

higher intergenic mapping rate than TopHat2, ranging from 0.0856 to 0.1537, and

0.0248 to 0.0654, respectively. Conversely, TopHat2 obtains a significantly higher

exonic mapping rate than GSNAP, ranging from 0.8705 to 0.9258, and 0.7023 to

0.7938, respectively. This is likely due to TopHat2’s preferential mapping to the

reference transcriptome prior to exploration of genomic locations.
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4.3.1 Detected Transcripts

We computed the number of human transcripts detected by each method, defining a

transcript as detected if at least 5 reads mapped to an exon region. We found that

TopHat2 and Bowtie2 detect significantly more transcripts than GSNAP, and Stampy

detects significantly more transcripts than TopHat2 and Bowtie2. There was no

significant difference between number of detected transcripts between TopHat2 and

Bowtie2. The number of detected transcripts range from 25,069-28,585 for GSNAP,

29,427-32,556 for TopHat, 29,631-32,817 for Bowtie2, and 35,308-39,234 for Stampy.

We do not see 100 % of transcripts represented, but that is to be expected. The

transcripts present in a single tissue type will not contain an organisms full repertoire

of transcripts Hornett and Wheat (2012); Weber et al. (2007). There were a total

of 44,312 human transcripts in our annotation set (iGenomes download). We also

examined the detected genes, collapsing all splice variants, in functional groupings

determined by Gene Ontology Ashburner et al. (2000) annotations. Figure 4.3 shows

the percent of genes detected within each gene list.

We observe little differences in the ability of each mapping method to detect genes

in different functional groups compared to the full gene set. It is worth noting that for

some functional groups, the differences seem less or more pronounced. For example,

Stampy’s increased sensitivity seems less pronounced within immune system genes.

This may be due to the nature of our samples - we might expect immune system genes

to be highly expressed. Similarly, we examined the ability of each mapping method to

detect genes at varying evolutionary distances. Using Papio anubis RefSeq genes as

a surrogate for Papio cynocephalus, we identified human orthologs, computed Jukes-

Cantor evolutionary distance, and examine the percent of genes detected within

evolutionary distance strata (see methods). Figure 4.4 shows the mean and standard

deviation for percent of genes detected at increasing evolutionary distances, up until
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Figure 4.3: Detected Genes by Function - Mean and standard deviation of percent
detected genes (computed as detected genes within a list divided by the number of
genes within the list) for the full gene set, and 23 different Gene Ontology Biological
Process groupings.

the highest evolutionary distances, where the difference in sensitivity is minimized

as all methods lose the ability to detect genes.

We still see that Stampy detects the most genes, followed by Bowtie2, TopHat2,

and GSNAP.
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Figure 4.4: Detected Genes by Evolutionary Distance - Mean and standard devi-
ation of percent detected genes at increasing evolutionary distance.

4.3.2 Correlation of Gene Expression

We examined correlations of normalized gene expression between baseline samples

within the same mapping method, and correlations between normalized gene expres-

sion levels computed with results from the different mapping methods. Figure 4.5

shows a heat map of the Pearson correlations between all samples, and all methods.

We see strong correlation between samples for all four methods (the large blocks

along the diagonal). Similarly, Figure 4.6 shows the correlation between biological

replicates of baseline samples.

These correlations are very strong, with none falling below 0.9314, and the mean

of each method above 0.97. Comparing the correlations between methods, we see

that Bowtie2 obtains the highest correlation between samples, significantly higher

than TopHat2, GSNAP, and Stampy. Stampy and GSNAP both obtain significantly
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Figure 4.5: Correlation of Gene Expression - Heat map of all pairwise Pearson
correlations between gene expression of each sample computed with each of the four
mapping methods.

higher correlations than TopHat2, with no significant difference between GSNAP

and Stampy correlations.

We also computed the Pearson correlation between the different methods for

identical samples. This is illustrated by the blocks off the diagonal Figure 4.5, and

by the boxplots in Figure 4.7.

Bowtie2 and Stampy had the highest correlations, ranging from 0.9343 to 0.9712.

TopHat2 and Bowtie2 had the next highest correlations, ranging from 0.9265 to

0.9539, followed by GSNAP and TopHat2 correlations ranging from 0.9076 to 0.9585.

TopHat2 and Stampy had correlations ranging from 0.8875 to 0.9320, GSNAP and

Bowtie2 between 0.8749 and 0.9219, and finally GSNAP and Stampy from 0.8227 to

0.8940.

To further illustrate the concordance in gene expression estimates obtained with

each mapping method, we constructed a dendrogram, computing the Euclidean dis-
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Figure 4.6: Correlation of Baseline Sample Gene Expression - Boxplots of the cor-
relations between gene expression of baseline samples (0 hours), within each method.

tance in gene expression between methods for each of the 57 samples, and then aver-

aging the distances. Examining the dendrogram in Figure 4.8, we observe Bowtie2

and Stampy have the shortest distance between gene expression estimates, followed

by TopHat2, and then GSNAP. These results are in accordance with the correlations

shown above. The weakest correlations are seen between the most and least sensitive

methods, Stampy and GSNAP, respectively. This difference is less pronounced for

Bowtie2 and Stampy, the two most sensitive mapping methods. For the less sen-

sitive methods, it is likely that reads from divergent regions of transcripts are not

successfully mapped, affecting expression estimates.

4.3.3 Differential Expression Analysis

We used edgeR to identify differentially expressed genes between healthy and sick

participants from the expression estimates computed with each mapping method.

Sick participants were considered to be animals meeting clinical criteria for bacterial

pneumonia infection, at the time of maximal symptoms (48 hours). We define healthy
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Figure 4.7: Correlation of Gene Expression Between Methods -Boxplots of the
correlations between gene expression of identical samples between methods.

partipicants as all baseline samples, as well as the control doses (0 CFU) at 48 hours.

Figure 4.9 shows a 4-way venn diagram of the significant differentially expressed

genes after bonferonni correction, resulting from the four mapping methods.

There are a large number of differentially expressed (DE) genes shared by all

4 methods. Most of the other DE genes are shared between 3 methods, GSNAP,

Bowtie2 and Stampy. TopHat2 results in the fewest DE genes. Bowtie2 and Stampy

yield many additional differentially expressed genes, which is not surprising given

their increased sensitivity. We utilized the gene expression data from each method

to build a classifier of bacterial pneumonia status, using the groups described above.

Figure 4.10 shows the LOOCV results of the classifiers built on gene expression data

from each method.

We see that in all four mapping methods, the gene expression data is sufficient to

build an accurate classifier, obtaining perfect LOOCV classification. The ability to

detect differential gene expression and build predictive models will be less dependent

on mapping method, as the ability to map reads with a single method will be constant
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Figure 4.8: Dendrogram of Gene Expression -Average dendrogram of gene ex-
pression, computed with the average Euclidean distance between gene expression
estimates for each sample.

across samples. More sensitive methods, however, may identify more differentially

expressed genes simply because these genes are detected by these methods, and not

others.

4.3.4 Read Counts by Evolutionary Distance

Using the orthologous genes stratified by evolutionary distance described above, we

compared the number of reads mapping to homologous human genes of varying

evolutionary distance by each of the four mapping methods. Figure 4.11 shows read

count comparisons between methods for 453 orthologous genes, colored by Jukes-

Cantor evolutionary distance.

Points above the diagonal indicate a higher read count from the mapping method

indicated on the Y-axis, while points below the diagonal indicate a higher read count

from the mapping method indicated on the X-axis. Most notable is the read count

differences between GSNAP with the others. All three methods obtain higher read
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Figure 4.9: Shared Differentially Expressed Genes - Venn diagram of the number
of differentially expressed genes found using each of the four mapping methods.

counts for all evolutionary distances. As with the differences in mapping rates,

these differences are likely due to the constraints GSNAP places on alignments -

the requirement of 14 base identical stretches, and the allowance of a single gap or

splice site. We see strong concordance in read counts between Bowtie2 and Stampy,

with Bowtie2 obtaining slightly more read counts for more conserved genes, and

Stampy obtaining slightly higher read counts for less conserved genes. TopHat2

and Bowtie2 also show strong concordance, with fairly even ”spread” of read count

changes. TopHat2 and Stampy are similar, with Stampy obtaining slightly higher

gene counts for the most divergent genes. These results are in accordance with the

mapping rate differences.
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Figure 4.10: Predictive Utility - Leave One Out Cross-Validation results of the Top
K, Elastic Net classifiers built on the gene expression data from the four mapping
methods.

4.4 Conclusions

We present a comparison of reference-based mapping methods for mapping Non-

Human Primate RNA-Seq data to a human reference. Four different mapping ap-

proaches were assessed using mapping rates, mapping locations, detected transcripts,

correlation of gene expression, differential expression analysis, and predictive utility.

Table 4.3 shows a summary of our comparison of the four reference-based mapping

methods, when default parameter settings are used.
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Figure 4.11: Read Count Comparison by Evolutionary Distance - Figure 4.11
compares the number of reads assigned to genes by each of the four mapping methods,
stratified by evolutionary distance. Each panel shows a pairwise comparison of read
counts between two methods. Each point indicates a particular gene in a single
sample, the log2 raw read count in two methods. Points above the diagonal indicate
higher read counts in the Y-axis method, while points below indicate higher read
counts in the X-axis method.
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We show that when aligning RNA-Seq reads to a surrogate reference, it is im-

portant to consider the intricate details of the methods used. We have found that

the use of shorter seeds, allowance of mismatches within seeds, and the allowance for

alignment gaps in addition to splice junctions are essential for sensitive read map-

ping. Specifically, a seed length of approximately 15bp, allowing a single mismatch

within seeds, and allowing for at least 2 gaps and/or splice junctions in spliced align-

ments will facilitate effective read mapping. When utilizing the default behaviors of

the methods compared here for mapping NHP data to a human reference, we rec-

ommend Stampy for maximum sensitivity within known genes, and TopHat2 if the

detection of novel (or non-human) transcripts is desired. However, it should be noted

that all methods have adjustable alignment parameters, and in most cases could be

optimized for more sensitive alignment. With the proper parameter settings, each

may achieve suitable sensitivity for reference-based mapping of NHP species. We

also point out that a major limitation of reference-based mapping of NHP data to

a human reference will not identify all genes that may be implicated in a particular

phenotype. This will likely depend on the evolutionary distance between species,

and on the conservation of the genes of interest. However, for exploratory purposes

and hypothesis generation, reference-based mapping of NHP data may have great

utility.
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5

Proteomics Alignment Model

5.1 Background

The goal of many proteomics experiments is to determine the abundance of proteins

in biological samples, and the variation thereof in various physiological conditions.

High-throughput quantitative proteomics, specifically label-free LC-MS/MS, allows

rapid measurement of thousands of proteins, enabling large-scale studies of various

biological systems. Prior to analyzing these information-rich datasets, raw data must

undergo several computational processing steps. We present a method to address

one of the essential steps in proteomics data processing - the matching of peptide

measurements across samples.

5.1.1 Open-Platform Proteomics

In a standard ”bottom-up” proteomics experiment, proteins are first digested into

peptides by a proteolytic enzyme. Peptides in this mixture are then physically sep-

arated by Chromatography, often Liquid Chromatography (LC). Eluting peptides

are converted to gas phase ions, which are separated in a Mass Spectrometer (MS)

by mass-to-charge ratio, and the relative abundance of each ion is measured by a
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detector. LC-MS experiments utilize a single mass analyzer, resulting in a retention

time, mass-to-charge ratio, and intensity for each analyte. In LC, tandem MS experi-

ments, or LC-MS/MS, select precursor ions are further fragmented into product ions,

resulting in an additional level of information for each peptide ion. The product ions

are analyzed to determine a peptide sequence, which is used to identify the parent

protein. A recent variation of LC-MS/MS - Data Independent Acquisition (DIA) -

generates product ions for virtually every precursor ion, providing tremendous utility

for quantification and identification in a single data set. Examples of DIA include

SWATH Gillet et al. (2012) and MSE SJ et al. (2009). In MSE, precursor ions enter

a collision cell, rapidly alternating between high and low kinetic energy states. This

high-low switching fragmentation enables the measurement of both precursor and

product ions in a single experiment. An even more recent DIA approach to bottom-

up proteomics experiments - HDMSE incorporates Ion Mobility (IM) spectrometry,

an additional separation of peptide ions after LC, and before MSE. IM spectrome-

try separates ionized peptides based on charge and three-dimensional cross-sectional

area.

5.1.2 Open-Platform Proteomics Data Processing

Several data processing steps are required to elucidate individual peptide intensities

from raw label-free proteomics data. A typical data processing pipeline for a label-

free proteomics experiment with multiple samples is illustrated in Figure 5.1.

Peptide peaks must be discerned from noise, charge states determined, and iso-

topic distributions identified and often combined into peptide features. Further

details regarding current peak detection, de-isotoping, and charge state detection

methods are described in Dowsey et al. Dowsey et al. (2010) and Zhang et al. Zhang

et al. (2009). The LC retention times and elution order of peptides often shift be-

tween runs. Such variations in retention time are typically called warp. The process
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Figure 5.1: Processing Open-Platform Proteomics Data. Raw proteomics data
requires several data processing steps, including peak detection, de-isootoping, charge
state determination, collapsing peaks into peptide features, data de-warping, peptide
identification, and peptide features matching.

of correcting these distortions to allow accurate matching across runs is called de-

warping. Many de-warping methods exist, performing linear or non-linear (or both)

corrections of two or more samples Listgarten and Emili (2005). This de-warping

step is either performed on raw profile data (prior to or independent of peak detec-

tion and de-isotoping), or on feature data (detected peptide features). After gen-

eration of a peptide feature set, peptide identifications are made wherever possible,

and intensity measurements of both identified and unidentified peptides are grouped

across runs, creating a peptide-by-sample intensity array for subsequent analyses. It

should be noted that the order of data processing steps may vary within different
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pipelines. These data processing steps pose significant computational challenges,

and are thought to be the source of much irreproducibility. This was illustrated by

a recent test study by Bell et al. Bell et al. (2009). In the study, a sample of 20

proteins was distributed to 27 different labs, experimentally analyzed, and subjected

to a variety of computationsl data-processing methods. There were significant dis-

crepancies in reported proteins, however, all raw data was sufficient to identify all

20 proteins when centrally re-processed.

5.1.3 Label-Free Proteomics Data Alignment

We focus on the problems of simple data de-warping, and matching peptide intensi-

ties across multiple high-throughput proteomics runs - a combined processing step we

call alignment. Our analysis emphasizes the data matching step. Accurate alignment

is essential in large-scale proteomics experiments, particularly in biomarker discovery

where the comparative nature of these studies require intensities of the same peptide

to be compared across samples Jeffries (2005); Service (2008). In addition, accurate

matching across samples can increase identifications as information can be leveraged

from all individual runs Prince and Marcotte (2006). The complexity of biological

samples, however, poses significant computational challenges for both data align-

ment and peptide identification. Most samples contain tens of thousands of peptides

and measurements often reflect overlapping peptides, or co-eluting peptides having

nearly the same mass-to-charge ratio. These overlapping peptides complicate and

often prevent identification. However, recent experimental advancements provide

additional separation information that has not yet been leveraged in data alignment

- namely comprehensive product ion information with DIA, and IM drift times with

HDMSE. Product ions have been used extensively in database matching for peptide

identification Vissers et al. (2007); Silva et al. (2006), but are not widely used in

proteomics data alignment. Matching across samples is typically performed using
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experimentally measured and inferred characteristics of each peptide feature. Mea-

sured characteristics include precursor ion retention time, mass-to-charge ratio, and

intensity. Depending on the experimental methods, some or all peptide features may

have additional measured characteristics including the intensities, mass-to-charge ra-

tios, and retention times of product ions. In DIA experiments, virtually every peptide

feature has measured product ion data. In HDMSE experiments, all precursor and

product ions have a measured IM drift time as well. Inferred characteristics include

charge state for nearly every peptide feature, and an amino acid sequence for some

peptide features. Modern high-throughput proteomics experiments offer a great deal

of information, not all of which is currently utilized in data processing - specifically

in data alignment steps.

5.1.4 Previous Alignment Approaches

Matching methods utilize various aspects of the data to group peptide measurements

across samples. Previously utilized characteristics include retention time, mass-to-

charge ratio, intensity, and amino acid sequence. Incorporating additional data pro-

vides a higher degree of specificity when making matches Listgarten and Emili (2005).

The majority of existing alignment techniques utilize mass-to-charge ratio and re-

tention time information. Such methods include SpecArray Li et al. (2005), AMT

tag approaches Silva et al. (2005), Xalign Zhang et al. (2005), MZmine Katajamaa

et al. (2006), msInspect Bellew et al. (2006), XCMS Smith et al. (2006), PETAL

Wang et al. (2007), OpenMS Lange et al. (2007); Sturm et al. (2008), apLCMS Yu

et al. (2009), and MZmine2 Pluskal et al. (2010). Semi-supervised approaches such

as PEPPeR Jaffe et al. (2006) and a method by Fischer et al. Fischer et al. (2006),

take advantage of existing MS/MS peptide identifications. More recent alignment

methods by Tang et al. Tang et al. (2011) and Zhang et al. Zhang (2012) utilize

peptide intensity along with mass-to-charge ratio and retention time. SuperHirn
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Mueller et al. (2007) indirectly incorporates intensity information during multiple

alignments by performing pairwise alignments in a specific order based on LC-MS

similarity and intensity correlations.

In addition to utilizing novel data characteristics, our method is designed to avoid

common pitfalls of other approaches including static distance cutoffs, elution order

assumptions, and the selection of a single reference sample. Methods should not rely

on the fact that peptides always elute in the same order from the LC column as

this is a false assumption and can introduce matching errors Nielsen et al. (1998);

Prakash et al. (2006); Lange et al. (2008). Multiple alignment methods often require

a reference run to which all other runs are aligned. While this approach is successful

for the de-warping step, choosing a single reference run for the matching step can be

problematic. If the measurement variability is high in the reference sample, this can

result in incorrect matches. We present a novel statistical alignment method that

corrects for linear global variation, is not restricted by static distance cutoffs, and

has the ability to utilize retention time, mass-to-charge ratio, peptide identifications,

and previously ignored aspects of proteomics data - ion mobility drift times, and

product ion data. Our method is an adapted Bayesian Dirichlet Process Gaussian

Mixture Model (DPGMM) West (1992); Rasmussen (2000), adding sample-specific

shift and scale parameters. The proposed method is also easily extensible to incorpo-

rate additional dimensions, such as a second LC separation. We present the results

of our alignment model on various datasets, comparing alignment accuracies with

the inclusion of various data characteristics.

5.2 Materials and Methods

5.2.1 Alignment Model

We present a statistical model for the alignment of label-free proteomics data to

match peptide features across multiple samples after peak-detection and de-isotoping.
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Unlike any existing proteomics alignment method, our model has the ability to utilize

ion mobility drift time from HDMSE experiments, and product ion spectra from tra-

ditional LC-MS/MS Data Dependent Aquisition (DDA), or DIA (MSE or HDMSE)

experiments, along with the typical parent ion mass-to-charge ratio and retention

time - increasing the individuality of each peptide feature and providing a better

alignment. At the time of publication, no open-source proteomics file format was ca-

pable of storing ion mobility separation data. In order to allow incorporation of this

data into our alignment method, we wrote a small data-processing script to read Wa-

ters spectrum.xml and finalfrag.csv files into a Matlab data frame. The Matlab data

frame format and the data processing script are available in the Appendix and Sup-

plemental Files, respectively, and can be easily adapted to incorporate any additional

separation dimensions similar to ion mobility drift times and liquid chromatography

retention times, including retention times from multidimensional LC.

Model

We adapt a DPGMM West (1992); Rasmussen (2000) by adding sample-specific shift

and scale parameters. Gaussian Mixture Models lend themselves well to the prob-

lem of proteomics data alignment. Each peptide existing in nature has a theoretical

mass-to-charge ratio, retention time, etc. within a specific experimental condition,

and is represented in our model as a mixture component. We expect the measure-

ment of a peptide to have the same mass-to-charge ratio, retention time, etc., with

two different types of measurement error: systematic error and random error. As

with any laboratory experiment, LC-MS/MS data are subject to variability. The LC

retention times often shift between runs. Pressure fluctuations, changes in column

temperature, column manufacturing differences, and peptide interactions can cause

changes in the elution time, and/or the elution order of peptides Silva et al. (2005).

The mass-to-charge ratios are also subject to measurement error, albeit to a lesser
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degree than the LC dimension. We account for systematic error with a global shift

and scale. Such a transformation would most likely be the result of variations in

LC protocols (total run times), or in the time it takes for the first peptide to elute

from the column (gradient delays due to different tubing volumes). The remaining

random error is assumed to be a sum of small variations from many independent

sources of variation, and therefore have a Gaussian distribution. In addition, Gaus-

sian distributions are closed under linear transformations, allowing straightforward

computation of posterior distributions with the addition of the shift and scale pa-

rameters. Measurements assigned to the same mixture component, or latent peptide,

by the model are considered to be matched. Seed peptide matches are determined

with identified peptide sequences and charge states. To avoid introducing error with

incorrect identifications, outliers with respect to mass-to-charge ratio and retention

time are discarded. These matches are used to initialize hyperparameters, and re-

main matched at all iterations of the MCMC. Mixture component assignments are

given a Chinese Restaurant Process prior, allowing the addition of a new latent pep-

tide if no suitable match exists. Our model addresses simple linear de-warping of the

data, however, any preferred de-warping method may be applied prior to utilizing

our algorithm. We first describe the model for peptide-level alignment, and then

describe the extension to include product ions.

Peptide-Level Model A sample-specific linear shift (ηd) and scale (βd) is used for de-

warping. In the formulas that follow, samples or datasets are indexed by d, individual

measured peptides within a sample are indexed by i, and latent (theoretical) peptides

are indexed by j. As shown in equation 5.1, we assume that a measured peptide

feature, xd,i, is a shifted and scaled noisy measurement of a true peptide feature, zcd,i .

Let cd,i be an indicator variable for the latent peptide assignment of measurement
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xd,i, taking on values j “ 1 . . . J where J is unbounded.

xd,i “ ηd ` zcd,iβd ` εd,i (5.1)

εd,i „ Normalp0,Σq (5.2)

zcd,i „ Normalpµcd,i , σq (5.3)

Where εd,i are the residuals between the measured values (xd,i) and the shifted and

scaled latent values (ηd ` zcd,iβd), having a multivariate normal distribution - equa-

tion 5.2. Let Σ be the covariance of these residuals, and let each latent peptide

zcd,i be a draw from DPGMM mixture component cd,i “ 1 . . . J having mean µcd,i

and covariance σ, as shown in equation 5.3. Note that we make the simplifying

assumption of shared covariance across all latent peptides. This would suggest that

the measured values of each latent peptide show the same variation across the entire

mass-to-charge ratio, retention time, and drift time range. We acknowledge that

this is not likely the case, although we find this assumption works well in practice.

Conjugate priors are used for all model parameters as follows:

ηd „ Normalpad, bdq (5.4)

βd „ Normalped, fdq (5.5)

Σ „ Inverse´Wishartps, tq (5.6)

µj „ Normalpλ, rq (5.7)

σ „ Inverse´Wishartpg, hq (5.8)

Normal priors are assigned to the shift and scale parameters as shown in equations

5.4 and 5.5. The seed matches, for each peptide feature are averaged to generate

a list of implied-identified peptides. Robust fit linear regression is performed for

each dataset using the implied-identified peptides as predictors, and the measured

identified peptides as response. The resulting intercept is taken as the mean hyper-

parameter in the shift prior distribution (ad). Similarly, the coefficient is taken as
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the mean hyperparameter in the scale prior distribution (ed). The variance param-

eters on the shift and scale priors (bd and fd) are set tightly to the variance of the

regression estimate. This allows an optimal solution to be reached as latent peptides

are updated and added, while reducing shift and scale identifiability issues. Both the

match covariance (Σ), and latent peptide covariance (σ) matrices are given conjugate

inverse-Wishart priors as shown in equations A.2 and 5.8. The residuals of the shifted

and scaled identified peptide measurements, and their respective implied-identified

peptides are used set hyperparameters. The degrees of freedom parameters (h and t)

are set to the number of identified matches minus one, and the inverse-scale matrix

is set to the sum of squared residuals. The mean of each latent peptide (µj) is given

a conjugate normal prior with as shown in equation 5.7. The prior mean (λ) is set

to the empirical mean of all measured peptide features in all datasets, and the prior

covariance (r) is set to the sum of squared differences between this empirical mean

and all measured data. We express the likelihood of xd,i as follows:

P pxd,i | η, β,Σ, z1...zJ , cd,iq “ Normalpxd,i | ηd ` zcd,iβd,Σq (5.9)

Where z1...zJ indicates all existing latent peptides. We may also integrate out zcd,i

and re-express the likelihood as:

P pxd,i | η, β,Σ, µ1...µJ , σ, cd,iq “ Normalpxd,i | Acd,i , Bdq (5.10)

Acd,i “ ηd ` µcd,iβd

Bd “ βTd σβd ` Σ

The prior probability of an observation, xd,i, being assigned to latent peptide

component j given all other assignment indicators, c´pd,iq, is given in equation 5.11.

The notation c´pd,iq refers to all component indicators from all features in all datasets,

except d, i. Similarly the prior probability of observation xd,i being assigned to a new
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latent peptide component is shown in equation 5.12.

ppcd,i “ j | c´pd,iq, αq “
n´pd,iq,j
N´1`α

ˆ Ip!Di, cd,´i “ cd,iq (5.11)

ppcd,i ‰ c´pd,iq | c´pd,iq, αq “ α
N´1`α

(5.12)

Let α be the DPGMM concentration parameter, N the total number of observed

peptide features across all samples, and n´pd,iq the number of observed peptide fea-

tures other than xd,i assigned to latent peptide j. A constraint is imposed such that

only one measurement per dataset may be assigned to a given latent peptide feature.

The concentration parameter of the Dirichlet Process (α) is set to the number of

peptide feature observations across all samples being aligned. Latent peptide feature

assignments are updated from their full conditional posterior distributions, as shown

in equation 5.13.

P pcd,i “ j | ´q 9 α
N´1`α

ˆ
ş

P pxd,i | ´q ˆ P pµj | λ, rqdµj

`
ř

j

n´pd,iq,j
N´1`α

Normalpxd,i | Acd,i , Bdq ˆ Ip!Di, cd,´i “ cd,iq (5.13)

The integral above is tractable due to the shared covariance across latent peptide

components. Further details and full conditional distributions are available in the

Appendix. Figure 5.2 shows a plate diagram of the peptide-level alignment model.

Product Ion Model Extension To incorporate product ion data, we select up to the

50 most intense product ions for each peptide feature measurement, xd,i. We then

generate a K-dimensional product ion intensity profile for each xd,i. Each position,

yd,ik , in the product ion intensity profile, yd,i, is computed as:

yd,ik “

ř

p Ωp ˆ IpMp ď Bkq
ř

p Ωp
(5.14)

where k “ 1 . . . K, p “ 1 . . . 50, Ω is a 50-dimensional vector of intensities, M is a

50-dimensional vector of product ion mass-to-charge ratios, and B is a K-dimensional
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Figure 5.2: Alignment Model. A Plate Diagram of our Peptide-Level Model. We
adapt a Dirichlet Process Gaussian Mixture Model to address open-platform pro-
teomics data alignment.

vector of product ion profile mass-to-charge ratio bin upper limits. All values in yd,i

sum to one. The mass-to-charge ratio ranges, or bins (Bk), are determined at the

initialization of the alignment, such that bin boundaries fall on mass-to-charge ratio

deserts. In open-platform proteomics data, there are subsets of the mass-to-charge

ratio dimension not occupied by any peptide features. We term these subsets mass-

to-charge ratio deserts and utilize them to split the data for parallelization as well

as building product ion profiles. The deserts are empirically determined using all

datasets in the alignment. Figure 5.3 shows a histogram of measured m/z values for

E. coli lysate data, the empirical m/z deserts are indicated with vertical red lines.

These deserts are also used to build product ion profiles. The boundaries of the

product ion profile bins are placed within the m/z deserts, and each product ion

profile position is set to the sum of all intensities of product ions belonging to that

bin. A small example using a profile size of K = 10 is shown below the m/z desert

histogram. See the Parallelization section and for more details on bin boundary

determination.

In the experiments described here, we set K = 250 to ensure most product ions

94



Figure 5.3: Mass-to-Charge Ratio Deserts. Mass-to-Charge Ratio Deserts are
utilized to split the data for parallelization, and to build product ion profiles.

Figure 5.4: Sample Product Ion Profile. Product ion profiles are contructed by
summing the intensity of product ions in mass-to-charge ratio bins, and then nor-
malizing by the total intensity of product ions assigned to a given peptide.

would be assigned to their own bin in the product ion profile, and to avoid ad-

ditional computational complexity. Each existing latent peptide feature is given a

K-dimensional product ion profile (wj for latent peptide feature zj). To assess the

similarity of a measured product ion profile, yd,i, and a latent product ion profile,

wcd,i , we introduce a similarity score, ψ, which is computed as the sum of squared

differences of the two product ion intensity profiles, and is assumed to have an expo-

nential distribution to encourage distances close to zero, as shown in equations 5.15
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and 5.16.

ψd,i “ pydi ´ wcd,iq
T pyd,i ´ wcd,iq (5.15)

ψd,i „ Exponentialpγq (5.16)

We assign a conjugate gamma prior to the rate parameter, as shown in equation

5.17. The hyperparameters for profile scores are set to one.

γ „ Gammapa0, b0q (5.17)

At each iteration of the MCMC, the product ion profile, wj of an existing latent

peptide is updated empirically the product ion profile is set to the average of the

measured product profiles assigned to that latent peptide. The latent product ion

profile, w0, of a new latent peptide (one that currently does not exist) is a blank

profile - a uniform vector of size K with each element having value 1/K. Combining

the product ion model with the peptide-level model, we have the following likelihood

(equation 5.18) and conditional posterior (equation 5.19):

P pxd,i, yd,i | ´q “ Normalpxd,i | Acd,i , Bdq ˆ Exponentialpψd,i | γq (5.18)

P pcd,i “ j | ´q 9 α
N´1`α

ˆ
ş

P pxd,i | ´q ˆ P pµj | λ, rqdµj

ˆExponentialppydi ´ w0q
T pyd,i ´ w0q | γq

`
ř

j

n´pd,iq,j
N´1`α

ˆNormalpxd,i | Acd,i , Bdq ˆ Ip!Di, cd,´i “ cd,iq

ˆExponentialpψd,i | γq (5.19)

Further details and full conditional distributions are available in the Appendix.

We explored additional values of K, as well as implementations of different high en-

ergy models, the results and discussions of which can also be found in the Appendix.
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Model Fitting

Posterior Match Probabilities As our primary goal is obtaining a list of matches, we

are only interested in maximum a posteriori (MAP) estimates of the parameters.

We employ simulated annealing on all parameters after the initial burn-in period of

the MCMC. In addition, with the exception of the latent peptide means, the model

parameters are being updated with a large number of observations, and will have

fairly tight posterior distributions. Our model assumes that the product ion match

likelihoods are independent from the peptide-level match likelihoods. New peptide

match indicators are sampled from the full conditionals for each measured peptide

in a random order. We sample match indicators in accordance with Algorithm 2 for

sampling mixture component indicators in DPGMM from Neal, 2000. We impose a

restriction on match assignment such that only one measured peptide per dataset may

be assigned to a given latent peptide. All other parameters are sampled from their

full conditional distributions. After obtaining MAP estimates for all parameters, we

then iteratively re-sample only the component assignment indicators, keeping track

of how often each measurement is assigned to each latent peptide. These assignment

proportions are used to make final matches.

Estimating the Best Alignment Utilizing the assignment proportions from the final

assignment-only MCMC iterations, we use a greedy algorithm to determine the final

alignment. The best match (latent peptide-measurement pair) across the entire

alignment is selected, and then the assignment proportions for measurements in

each of the remaining datasets are examined for the current latent peptide. For each

dataset, the measurement with the maximum assignment proportion is selected.

All remaining match probabilities for the assigned measurements and the current

latent peptide are set to zero. This process is repeated until no non-zero assignment
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proportions remain. These assignment probabilities represent the probability that

a given measurement arises from a certain latent peptide. To compute the match

probability of two measurements from two datasets, we compute the probability

that both measurements are assigned to the same latent peptide the product of

the two individual latent peptide assignment probabilities. Users may utilize these

match probabilities to examine matches of varying confidence. An illustration of the

algorithm steps is shown in Figure 5.5.

Figure 5.5: Algorithm Overview. This figure illustrates an overview and the order
of the alignment algorithm steps.

Seed matches are determined using peptide identifications and charge states from

each dataset. These seed matches are used to initialize hyperparameters for prior

distributions. A product ion profile is then computed for each peptide measurement,

and data is split for parallelization of the alignment. For each split in the data, MAP

estimates of all parameters are obtained with Gibbs Sampling and the best alignment

is approximated with assignment proportions and a greedy algorithm. Finally, the
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results of each split are combined to report matches for the entire dataset.

Parallelization In order to make alignment of large datasets tractable, we split the

datasets being aligned in the mass-to-charge ratio dimension, and perform separate

alignments of each split in parallel. The boundaries of these splits fall only on mass-

to-charge ratio deserts, which are empirically determined using all datasets being

aligned. There exist gaps - also called ”forbidden zones” in the mass distribution of all

possible tryptic peptides AV et al. (2011). These gaps have been utilized to improve

peak de-noising techniques Mitra et al. (2012). We calculate these gaps empirically

based on the data in question, and utilize them to split the data for alignment. Such

mass-to-charge ratio deserts are shown in Figure 5.3. When determining these mass-

to-charge ratio deserts, we utilize the given matches to determine an approximate

shift, scale, and match standard deviation. We then obtain the number of measured

peptides in each mass-to-charge ratio bin the size of match standard deviation, and

split the datasets at mass-to-charge ratio deserts defined as stretches of five or more

empty bins. This ensures that any measured peptide features with the potential

for being aligned to the same latent peptide feature (any measurements that should

match one another) will be in the same alignment split. The hyperparameters set

in the model initialization are shared across all alignment splits. The boundaries of

the product ion profiles are determined in a similar way. Utilizing the product ion

annotations of the given matches, we obtain a mass-to-charge ratio match standard

deviation of product ions. We then obtain the number of measured product ions in

each mass-to-charge ratio bin the size of the match standard deviation, and set the

product ion profile boundaries on mass-to-charge ratio deserts defined as stretches of

three or more empty bins. The size of the product ion profile boundaries is as close

to 1/K of the spanning product ion mass-to-charge ratio range as possible, given the

boundaries are set within mass-to-charge ratio deserts.
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5.2.2 Data

All data used in this analysis was obtained under MSE and/or HDMSE conditions

(SYNAPT HDMS G2, Waters), and subject to Waters ProteinLynx Global SERVER

(PLGS) processing. We utilize peptide features that have already been subject to

peak detection, de-isotoping, charge state determination, and tentative identifica-

tion (although not all identifications are utilized for alignment). All samples were

separated by 1D nanoscale capillary ultraperformance Liquid Chromatography in a

90-minute gradient using a 5-40% acetonitrile/water (0.1% formic acid in each).

Three HCV cohorts were utilized in the alignment of serum samples from HCV

patients to urine samples from OA patients. The first cohort included 47 patients

ages 5 to 18 years from a clinical trial for HCV treatmentSchwarz et al. (2011). The

two additional HCV cohorts (n = 41,55) were selected from the Duke Hepatology

Clinical Research (DHCR) database Patel et al. (2011). The pediatric clinical trial

study was approved by the institutional review boards of the participating sites.

Written informed consent was provided by all parents or guardians, and written

assent was provided by all participants over 12 years of age. All patients present in

the DHCR database cohorts, as well as all OA patients, provided written informed

consent, and all study procedures were approved by the Duke University Institutional

Review Board.

5.2.3 Analysis

All alignments were performed using Matlab on the Duke Shared Computing Re-

source, a cluster of Intel x86 compute notes running Linux. Each alignment was

partitioned into a maximum of 250 splits, and each alignment partition was run on

a single node with at least 8GB of memory. Our method does require considerable

computation time - approximately 2 to 6 hours for the E. coli Lysate and HCV-OA

alignments not utilizing product ions, and approximately 20-24 hours for the E. coli
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Lysate alignments utilizing product ions. Times vary by the number and size of

datasets being aligned.

5.3 Results

5.3.1 E. coli Lysate Data

To assess both the performance of our alignment method, and the utility of various

data characteristics, we aligned technical replicates of E. coli lysate data. Three

technical replicates of 500ng of E. coli lysate were analyzed with Waters MSE and

HDMSE. The MSE data was used to compare our alignment method with PEPPeR

Jaffe et al. (2006), and the feature matching functionality of OpenMS Lange et al.

(2007); Sturm et al. (2008). The PEPPeR PeakMatch module was downloaded from

GenePattern Reich et al. (2006) and run locally using default parameter settings.

Similarly, the MapAlignerPoseClustering, and FeatureLinkerUnlabeled functions of

OpenMS version 1.11.0 were run using default parameter settings to align peptide

features of MSE data. The HDMSE data was used to compare the results of our

alignment method when utilizing various data characteristics. Table 5.1 shows the

four different combinations of data characteristics utilized for alignment. We assess

alignment performance using held-out peptide identifications resulting from product

ion spectra.

Table 5.1: Alignments and Data Utilization. The alignment type names and data
utilized that were compared in the analysis.

Alignment Name Parent Ion Parent Ion Parent Ion Product Ion
Monoisotopic Peak Centroid Drift Time Profile

Mass-to-Charge Time
Ratio

MZ-RT X X
MZ-IM X X
MZ-RT-IM X X X
MZ-RT-IM-HE X X X X
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The MSE E. coli lysate data was aligned using PEPPeR, OpenMS, and our align-

ment method, utilizing precursor ion mass-to-charge ratio and retention time (MZ-

RT). Each alignment method was provided with the same 15 given matches to ini-

tialize model hyperparameters the 15 identifications shared by all three replicates

having the highest average ProteinLynx Global SERVER (PLGS) IdentityE Li et al.

(2009) peptide score. When assessing alignment performance, we examine matches

between each replicate pair ID0821901 vs. ID0821902, ID0821901 vs. ID0821903,

and ID0821902 vs. ID0821903. Correct matches occur when two identified peptides

shared between the pair of technical replicates are aligned. Mismatches occur when

two identified peptides with conflicting identifications are aligned. Since PEPPeR

allows multiple peptides from a single sample to be present in a ”cluster”, there may

be more than one identification from a single replicate. In these cases, we counted

a correct match if shared identifications were present in the same cluster. Similarly,

we counted a mismatch if conflicting identifications were present in the same cluster.

As there are varying levels of confidence in peptide identifications, we present the re-

sults of each alignment method considering identifications having a PLGS IdentityE

Li et al. (2009) peptide score of five, six, and seven or greater. Figure 5.6 shows the

recall rate for each alignment method.

Similarly, Figure 5.7 shows the mismatch rate for each alignment method.

As PEPPeR does not directly report match confidence, recall and mismatch rates

were computed from all reported matches for each method. We see that our align-

ment method obtains significantly higher recall rates than OpenMS FeatureLinker

and PEPPeR, for identified peptides of each confidence level. When comparing

the mismatch rates, computed as the number of mismatches divided by the total

matches, we see that our method obtains mismatch rates comparable with OpenMS,

while PEPPeR obtains significantly higher mismatch rates, particularly at lower pep-

tide scores. It should be noted that this mismatch rate is not a false positive rate.
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Figure 5.6: MSE Alignment Recall Rates. This figure shows the recall rates con-
sidering identifications having peptide score 5, 6, and 7 or greater for our MZ-RT
method, PEPPeR, and OpenMS.

The total match count includes many matches which cannot be identified as correct

or incorrect, as neither peptide has a putative peptide sequence. When examining

the total match counts in Figure 5.8, we see that our method obtains match counts

comparable to PEPPeR, and significantly more matches than OpenMS.

The HDMSE E. coli lysate data was aligned using different data characteristics

to compare their utility for alignment. As with the MSE data, each alignment was

provided with the same 15 given matches to initialize model hyperparameters and the

remaining identifications were used to assess alignment performance. We present the

results of each alignment only considering identifications having a PLGS IdentityE

Li et al. (2009) peptide score of five or greater. Results at additional peptide score

thresholds are provided in the Appendix. Comparing the HDMSE alignments with

various data combinations informs about the utility of each dimension in data align-
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Figure 5.7: MSE Alignment Mismatch Rates. This figure shows the mismatch rates
considering identifications having peptide score 5, 6, and 7 or greater for our MZ-RT
method, PEPPeR, and OpenMS. The mismatch rate is computed as the number
of mismatches (pairwise match with conflicting identifications) divided by the total
matches.

ment. We examine matches between each replicate pair ID0822001 vs. ID0822002,

ID0822001 vs. ID0822003, and ID0822002 vs. ID0822003. A match across two sam-

ples occurs when a measured peptide feature from each sample is assigned to the

same latent peptide feature. Figures 5.9 and 5.10 show the recall rate and the

number of mismatches, respectively, for each of the four alignments.

When examining the results of the two-dimensional parent ion alignments, MZ-

RT and MZ-IM, we see that the MZ-RT alignment obtains significantly higher recall

rates for matches of all confidence levels. Utilizing all parent ion data characteristics

obtained via HDMSE with a three-dimensional alignment (MZ-RT-IM) results in

significantly higher recall rates than the two-dimensional alignments, with a small
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Figure 5.8: MSE Alignment Match Counts. This figure showsa bar plot of all cor-
rect, incorrect and unidentifiable matches for each method. Unidentifiable matches
are pairwise matches where neither peptide has a putative peptide sequence, and so
the accuracy cannot be inferred.

increase in mismatches from the MZ-RT alignment, and a significant increase in

mismatches from the MZ-IM alignment. When including product ion profiles, we see

significant increases in recall rates, particularly with more confident matches. We see

an insignificant increase in mismatches from the MZ-RT and MZ-RT-IM alignments.

The alignment including product ion profiles results in much more confident matches

overall. It should be noted that the results presented for the E. coli lysate analysis

assume that all peptide identifications having an IdentityE Li et al. (2009) peptide

score 5 or greater are correct. We also assume that a match of two peptides differing

only by a leucine vs. isoleucine amino acid call or by amino acid order in the peptide

sequences, still represents an mismatch. The resulting p-values across the range

of match probability stringencies are available inthe Appendix. We also examined
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Figure 5.9: HDMSE Alignment Recall Rates. This figure shows the recall rates
considering identifications having peptide score 5 or greater across a range of match
probability cutoffs.

the match probabilities of all shared identifications the peptides that should be

matched - between the replicates, for each of the four alignments. Histograms of the

match probabilities are shown in Figure 5.11. We see many more confident match

probabilities (near 1) of the shared identifications for the MZ-RT-IM when comparing

to both two-dimensional alignments. When including product ion profiles with the

MZ-RT-IM-HE alignment, we also see an increase in confident match probabilities,

with a migration of all intermediate match probabilities to near-zero.

We see many more confident match probabilities (near 1) of the shared identi-

fications for the MZ-RT-IM when comparing to both two-dimensional alignments.

When including product ion profiles with the MZ-RT-IM-HE alignment, we also see

an increase in confident match probabilities, with a migration of all intermediate

match probabilities to near-zero.
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Figure 5.10: HDMSE Alignment Mismatch Counts. This figure shows the number
of incorrect matches considering identifications having peptide score 5 or greater
across a range of match probability threshold.

5.3.2 Human with E. coli Lysate Decoy

In order to assess alignment performance without experimental identification bias,

we aligned technical replicates of E. coli lysate data with a Human plasma decoy,

and technical replicates of Human plasma with an E. coli lysate decoy. One technical

replicate of the E. coli lysate sample was aligned with another E. coli lysate technical

replicate combined in silico with a decoy Human plasma sample. To combine the

samples, we append the human plasma peak list onto the peak list of one of the E.

coli replicates. The Human plasma was a pooled sample from 20 individuals, run

with 2 technical replicates. Similarly, one replicate of the human plasma was aligned

with another plasma technical replicate combined with an E. coli lysate sample. As

with the E. coli lysate data, we performed the four different alignments described

in Table 5.1. Each alignment was provided with the same 15 given matches the

15 identifications shared by the technical replicates, and having the highest average
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Figure 5.11: HDMSE Alignment Known Match Probabilities. A histogram of the
match probabilities of all shared identifications having peptide score 5 or greater, for
each of the four alignments of the E. coli lysate data.

PLGS IdentityE Li et al. (2009) peptide score. To assess alignment performance,

we determine the proportion of incorrect species alignments. This provides a false

discovery rate that avoids experimental identification bias - assuming the set of shared

peptides across species is negligible Wilkins and Williams (1997). Figure 5.12 shows

the correct and incorrect species match counts for each of the four alignments.

We see that the MZ-RT-IM and MZ-IM alignments yield similar results, while

the MZ-RT alignment obtains fewer incorrect species matches, but fewer matches

overall. The MZ-RT-IM-HE alignment obtains the least incorrect species matches,

and many more correct species matches at reasonably confident match levels. The

results of the inverse decoy analysis (aligning technical replicates of E. coli lysate

with a Human plasma decoy) are available in the Appendix.
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Figure 5.12: Decoy Alignment Results. This figure shows the number of matches
made to the correct species, and the number of matches made to the incorrect species
for each of the four alignments, across a range of increasing match confidence thresh-
olds from 0.1 to 1 in 0.1 intervals.

5.3.3 Hepatitis-C and Osteoarthritis Data

To illustrate the utility of aligning datasets obtained from two different tissues, we

aligned MSE serum samples of Hepatitis-C patients with MSE human urine samples

from an Osteoarthritis cohort using peptide ion mass-to-charge ratio and retention

time. Peptide identifications from the urine samples were carried over to the serum,

and from the serum to the urine via alignment. For each of the datasets, we ex-

amined the 500 peptides having the most significant differential expression with

a phenotype of interest treatment response in Hepatitis-C, and disease progres-

sion in Osteoarthritis. Significance was assessed with two-sample t-tests assuming

equal variance, on peptide intensities that were log-transformed, mean-centered by

sample, and standardized by peptide. We explored the inferred identifications that

were carried over via alignment from the other tissue, in order to identify potential
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biomarkers. Specifically, we looked at the previously unidentified peptides exhibit-

ing significant differential expression having an inferred identification from the align-

ment results. We analyzed these inferred identifications using GATHER Chang and

Nevins (2006) and DAVID Dennis et al. (2003) to search for functional and path-

way enrichment. The lists of proteins from these inferred identifications and their

GATHER and DAVID analysis results are available in the Additional File 2. The

inferred identifications of peptides exhibiting differential expression for Hepatitis-C

treatment response totaled 42 corresponding proteins. These proteins were signif-

icantly enriched for defense response (GO0006952 - 15 proteins), immune response

(GO0006955 15 proteins), and response to biotic stimulus (GO0009607 14 pro-

teins), having GATHER p-values 1.56e-9, 3.76e-9, and 9.81e-9, respectively. These

functional annotations are very much in accordance with what one would expect with

a response to viral infection, suggesting that useful identifications were obtained with

the alignment. In addition, the genes encoding 6 of these proteins were located at

14q32, indicating significant chromosome location enrichment with GATHER p-value

1.27e-5. This is the location of the immunoglobulin heavy locus a region containing

genes encoding the heavy chains of antibodies. Differential expression of genes in

this region is also in accordance with what one would expect for HCV treatment

response. Similarly, the inferred identifications of peptides exhibiting significant dif-

ferential expression for Osteoarthritis progression totaled 47 corresponding proteins.

These proteins were significantly enriched for complement activation (GO0006956 -

14 proteins), response to pest, pathogen, or parasite (GO0009613 20 proteins), and

response to external biotic stimulus (GO0043207 20 proteins), having GATHER p-

values 2.39e-24, 5.71e-16, and 1.97e-15, respectively. In addition, 16 of these proteins

are involved in the Complement and Coagulation Pathway with a DAVID p-value of

3.0e-24. These findings are in accordance with recent evidence that the complement

pathway has been found to play a critical role in the pathogenesis of osteoarthritis
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Wang et al. (2011).

5.4 Discussion

We have developed a novel method for label-free proteomics data alignment that

incorporates aspects of the data ignored by other open-source data alignment meth-

ods. Our alignment method incorporates ion mobility separation data and MS/MS

product ion data. Our results suggest that the inclusion of more data characteristics

increases alignment sensitivity, and increases matching robustness.

When comparing to OpenMS, our method obtains significantly higher recall rates

(Figure 5.6 ), as well as more overall matches. This is likely due to the density of

the data we use for comparison, and the matching technique of OpenMS. After the

de-warping step, OpenMS makes pairwise matches between samples, or ”maps”, if

the putative match is the nearest neighbor and the distance to the second-nearest

neighbor is significantly greater. This results in low false positive rates, as seen in

Figure 5.7. However, in dense datasets this appears to result in lower recall rates

as many true matches are not considered. In Figure 5.8 , we also observe that for

OpenMS, one pairwise combination of technical replicates shows significantly more

matches than the other pairwise combinations. This may be the result of selecting

a single reference sample to which all other samples are aligned. OpenMS first se-

lects the sample with the most features as the reference. Each remaining sample

is then aligned to the reference, estimating a ”consensus” with each pairwise align-

ment. The density and number of features within the consensus increases with each

pairwise alignment, resulting in fewer matches meeting the nearest-neighbor criteria

at each step. It should be noted that we only evaluated the peptide feature-based

functionality of OpenMS as a comparison to our feature-based alignment method.

The ability to work with raw data, alignment specificity and ease-of-use of OpenMS

are advantageous for many applications.
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Our alignment model before the addition of the product ion component is very

similar to PEPPeR Jaffe et al. (2006) both methods are built on the principles of

Gaussian Mixture Models. Our results in the MSE comparison reflect the similarity

of our approaches. The three main differences between PEPPeR and our MZ-RT

method are the technique for inferring the number of mixture components, PEP-

PeRs splitting of the data by charge state, and our constraint allowing only one

measured peptide per sample in a given mixture component. We chose to ignore

charge state information to avoid propagation of errors from earlier data-processing

steps, although alignments can easily be stratified by charge state with our method.

Figures 5.9, 5.10, and 5.11 illustrate the significant improvements resulting

from the inclusion of ion mobility and product ion data, while maintaining low levels

of mismatches. In addition, the inclusion of more data particularly the product

ion profile information results in increased confidence and robustness of alignment

matching. We note that none of the alignments reach a recall rate of 1. This is

likely due to to the tendency of our method to generate new latent peptide when a

confident match to an existing latent peptide does not exist. This same behaviour

avoids large numbers of false positive matches.

In our decoy experiment, we observed that the addition of product ion data results

in a dramatic decrease in false matches, this is likely due to the lack of confounding

product ion assignments to precursor ions as the decoy data is a separate experiment.

However, if one were utilizing product ion data to align measurements to an AMT

tag-like database, we would expect a comparable situation. These results also speak

to the importance of accurate product ion to precursor ion assignment in DIA if

peptides were well separated experimentally and accurate product ion assignments

were made, alignment accuracy would increase dramatically. Aligning data from dif-

ferent experiments can actually yield additional identifications, as illustrated by the

alignment of human urine data to human serum. Due to the diverse protein compo-

112



sition of different types of samples, specific peptides may be identified more easily in

certain types of samples. It is worth noting that this behavior is much like spectral

library searching Lam (2011), because surrounding peptides will not confound the

product ion assignments to precursor ions. We show that the alignment of data from

different tissues (even when only utilizing precursor ion data) has utility for inferring

peptide identifications. If this were extended to a database and data from many tis-

sues were used to update the database, it could have a comprehensive identification

set of measured peptides, and be utilized as an additional resource or replacement

for de novo identification. This is particularly useful in biomarker analyses when per-

forming a label free experiment for an initial analysis, and then identifying proteins

of interest for a subsequent targeted analysis. Also, the addition of product ion data

will provide more confident alignments, and thus more confidence in identifications

that may be carried over. Although we argue that the incorporation of product ion

data can result in more matches of increased confidence, it should be noted that

the method in which these data are incorporated has importance. If the presence of

additional product ions, or the lack of product ions is highly penalized, alignments

are likely to obtain fewer matches due to the variability in measurement of product

ions. Conversely, if differences in product ions are not penalized enough, alignments

are likely to obtain more matches, and more incorrect matches particularly because

nearby peptides with respect to mass-to-charge ratio, retention time and drift time,

will be those with incorrect, but similar product ion profiles. When incorporating

product ion data, researchers should consider the penalization of extra and missing

product ions within the data being aligned. We found that similarity functions based

on sums rather than products worked well, specifically, the sum of squared differ-

ences. Our exploration of other product ion profile similarity functions is described

in the Appendix.
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5.5 Conclusions

Presented here is a novel method for open-platform proteomics data alignment with

the ability to incorporate previously unused aspects of the data, particularly ion

mobility drift times and MS/MS product ion data. Our method results in increased

match recall rates and similar or improved mismatch rates compared to PEPPeR and

OpenMS feature-based alignment. We also show that the incorporation of product

ion data when aligning to a different dataset (or a database) can improve results

dramatically. This is likely due to the lack of confounding by incorrect product ion

assignments to nearby precursor ions. Based on these results, we argue that the

incorporation of ion mobility drift times and product ion information are worthy

pursuits. The addition of drift times and/or high energy to AMT tag databases can

greatly improve experimenters ability to identify measured peptides, reducing analy-

sis costs and the need to run additional experiments. In addition, alignment methods

should be flexible enough to utilize all potential data, particularly with the recent

advancements in experimental separation methods. When incorporating high-energy

data, researchers should consider the penalization of extra and missing product ions

from data being aligned. The results presented here provide motivation for further

exploration of incorporating additional separation information into proteomics data

processing, particularly as experimental advancements are made in the field.
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Appendix A

Proteomics Alignment Model Supplemental
Information

A.1 Software and Data Formatting

A.1.1 Data Processing and Formatting

Data Processing Script

We have written a data-processing script to read Waters spectrum.xml and final-

frag.csv files into a Matlab data frame for subsequent alignment with our software.

The script and accompanying functions are in the software archive. The prepare-

Datasets function takes a variety of input file formats, pre-processes intensities, and

creates a data structure for the alignment software. It can be called as follows

from the Matlab command window: datasets = prepareDatasets(file names, options,

data range, peptide list, sample list) The variable file names should be a cell array

of strings. Each row should be a dataset (or single sample), with each column con-

taining a different file for that dataset. This function is designed to handle 4 different

input types:

1. 2 files listed in this order: spectrum.xml, finalfrag.csv (Water’s pipeline output)
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2. 1 file: spectrum.xml (Water’s pipeline output)

3. 1 file: finalfrag.csv (Water’s pipeline output)

4. 1 file: data.mat (un-processed matlab data frame).

The variable options should be a 7x1 or 1x7 vector of numbers indicating a user’s

selections for the following options (in order): set very low intensity values to missing

(0 for off, or a raw intensity lower limit), impute the missing intensity values (0

for off and 1 for on), combine replicates (0 for off and 1 for on), the maximum

number of product ions to store per peptide (most intense stored first), a peptide

annotation quality limit (1 for ”Pass 1”, 2 for ”Pass 1” and ”Pass 2”), an option

for log-transforming the intensities (0 for off and 1 for on), and an option for mean-

centering the intensities for each sample. This input vector is optional, but must

be included if any of the subsequent input parameters are used. To use the default

values, the user may simply specify an empty vector [] in its place. The variable

data range should be a 3x2 matrix of numbers indicating the minimum and maximum

(inclusive) data ranges for the mass-to-charge ratio, retention time, and drift time

dimensions, respectively. The first column should contain the minimum values and

the second, the maximum values. This input matrix is optional, but must be included

if any of the subsequent input parameters are used. To use the entire data range, the

user may simply specify an empty matrix [] in it’s place. To only specify a minimum

OR a maximum, or only limit certain dimensions, use NaNs in the unlimited slots.

The variable peptide list should be a cell array of peptide ids to include in the

prepared data. Each row should correspond to a dataset, and each column a peptide

id. This input cell array is optional, but must be included if any of the subsequent

input parameters are used. To use all peptides, the user may simply specify an empty

vector [] in it’s place. The variable sample list should be a cell array of sample ids

to include in the prepared data. Each row should correspond to a dataset, and each
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column a sample id. With single-sample files, the corresponding sample ID in this

list will be used in the resulting data frame. With aggregate data, the sample IDs

in this list will be used to select specific samples to include in the data frame. This

input cell array is optional. To use all samples for aggregate data, the user may

simply specify an empty vector [] in its place.

Data Frame Format

The output, ”datasets”, will be a list of data frames containing the following fields:

sids Sample IDs

pids Peptide IDs

data Mass-to-Charge Ratio, Retention Time, and Ion Mobility

xpr Intensities (Rows-Peptides, Columns-Samples)

key Sample Key Information

keyHead Key Header

anno Peptide Annotation Information

annoHead Annotation Header

e Peptide Charge State

pep Modified Peptide Sequence (or ”-” if missing)

pCode Protein Code (or ”-” if missing)

productmz Product Ion Mass-to-Charge Ratios

productints Product Ion Intensities (Raw)
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productanno Product Ion Annotations (y1, y2, b7, etc.)

The prepareDatasets function can be easily adapted to incorporate any additional

separation dimensions similar to ion mobility and liquid chromatography by append-

ing additional columns into the data field. If you wish to use your own files in other

formats, you may adapt the prepareDatasets function, or write your own function to

generate a data frame as specified above.

A.1.2 Alignment

Alignment Setup

To run your own alignment, you should set up a config file much like sampleconfig.txt.

In your config file, there should be the following specifications in order:

%DESCRIPTION: On the line following this tag, include a description of your

alignment. This is for your record-keeping purposes only and does not affect

the alignment.

%FILENAMES: On the lines following this tag, you should include the file(s) for

your datasets being aligned. These should be one dataset (or sample) per line,

and may be specified 4 different ways:

• Two files separated by commas and listed in this order: spectrum.xml,finalfrag.csv

(Water’s pipeline output)

• One file: spectrum.xml (Water’s pipeline output)

• One file: finalfrag.csv (Water’s pipeline output)

• One file: data.mat (file containing a matlab data frame in the format

specified above)

%DIMNAMES: On the line following this tag, you should list the peptide-level

separation dimensions you wish to use in your alignment, separated by commas.
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If you are using HDMSE data and want to use all three dimensions, the line

should read: Monoisotopic m/z,Peak Centroid Time,Ion Mobility

%NGIVEN: This is the number of shared identifications that the model will trust.

These will remain matched at all iterations of the MCMC and be used as the

seed matches to set hyperparameters. If you would like to trust all identifica-

tions in your data, specify inf.

%MEASHE: The value on the line following this tag should be the maximum

number of measured product ions to use per peptide (most intense used first).

If you dont want to run a HE alignment, set this to 0.

%HEVECT: The value on the line following this tag should be the profile size K

of the product ion profiles.

%ITERATIONS: There should be three value lines following this tag. The first

is the number of burn-in iterations for the Gibbs Sampler, the second is the

number of iterations post burn-in, and the third is the number of assignment-

only iterations used to estimate match probabilities and the final alignment.

%NSPLIT: The value following this tag is the maximum number of splits to use

to parallelize data alignment. If you are running your alignment on a cluster,

each split will be set up as a separate job. If you are running your alignment

locally, each split will be run consecutively after the previous split finishes.

%CODE: The line following this tag should contain the path of the directory con-

taining the alignment software.

%OUT: The line following this tag should contain the path of the desired directory

for results files.
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%START COMBINE: The line following this tag should contain either START,

or COMBINE. The keyword START instructs the software to either start

the alignment (if run locally) or set up the alignment (if run on a cluster. The

keyword COMBINE instructs the software to combine the alignment splits this

should be run after all alignment partitions are finished and is only necessary

if NSPLIT was set to a value greater than one.

%LOCAL CLUSTER: The line following this tag should contain either LOCAL,

or CLUSTER. The keyword LOCAL instructs the software to start the align-

ment on the local machine. The keyword CLUSTER sets up as many as

NSPLIT qsub files and a submission bash script submitall.sh to be submit-

ted to a SGE queue.

Running Your Alignment

If you are running your alignment locally using only 1 split, you can simply use

the Align function provided in the software with your config file: Align(config.txt).

If you are running your alignment locally using multiple splits, you should do the

following:

1. Make sure the value line of the START COMBINE tag in your config file says

START, and then run Align(config.txt) in your Matlab command window.

2. Modify the value line of the START COMBINE tag in your config file to say

COMBINE.

3. After all alignment partitions have finished, run Align(config.txt) in your Mat-

lab command window once more.

If you are running your alignment in many partitions on a cluster, you should make

a queue file for setting up your alignment like the file sampleconfig.q, and do the

following:
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1. Run qsub sampleconfig.q to set up your alignment.

2. Once the job in 1 finishes, run the submission script to start your alignment:

bash submitall.sh.

3. Modify the value line of the START COMBINE tag in your config file to say

COMBINE.

4. After all alignment partitions have finished, run qsub sampleconfig.q once more

to collect your alignment results.

Alignment Results Format

After your alignment, There will be 6 files containing various aspects of your align-

ment results. Each file is a matlab data frame and their contents are described in

detail below.

split datasets.mat This file contains your original datasets as they were split into

mass-to-charge ratio positions

split datasets A data structure of size NSPLIT x the number of datasets.

Each element in the structure is a subset of the original data within a

determined m/z range, having the format specified in section 1.1.2.

db.mat This file contains the new inferred dataset, combining the information from

your aligned datasets into a single data frame.

db A data structure containing inferred peptide sequences, protein names,

charge states, peptide intensities, and peptide ids for the latent peptides.

The peptide intensities are collected from measured peptides aligned to

the specific latent peptide, and are in the same order as the input datasets

column-wise.
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latentpeps A data structure containing the inferred monoisotopic m/z, re-

tention time, and drift time, and the inferred product ion profiles of each

latent peptide.

matchinfo.mat This file contains the original datasets and match information from

the alignment.

datasets The original datasets in the format specified in section 1.1.2.

matches For each latent peptide (row), the indices of the assigned measured

peptide from each dataset (column).

matched pids For each latent peptide (row), the peptide ID (pids) of the

assigned measured peptide from each dataset (column).

peps For each latent peptide (row), the peptide sequences of the assigned

measured peptide from each dataset (column).

pcodes For each latent peptide (row), the protein name of the assigned mea-

sured peptide from each dataset (column)

accuracy.mat This file contains information about the number of matches, correct

matches, and incorrect matches based on the identifications in your data. This

is only relevant if the number of seed matches given to the model was fewer

than the number of shared identifications.

nummatches The number of matches obtained between dataset i (dimension

1) and dataset j (dimension 2) at match probability cutoff k (dimension

3) or greater. Values of match probability cutoffs are 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, and 1.

case1 The number of correct matches obtained between dataset i (dimension

1) and dataset j (dimension 2), considering identifications of peptide score
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cutoff k (dimension 3) or greater, at match probability cutoff l (dimension

3) or greater. Values of peptide score cutoffs are 3, 4, 5, 6, 7, 8, 9 and 10,

and values of match probability cutoffs are as listed above.

case2 The number of incorrect matches obtained between dataset i (dimension

1) and dataset j (dimension 2), considering identifications of peptide score

cutoff k (dimension 3) or greater, at match probability cutoff l (dimension

3) or greater. Values of peptide score cutoffs are 3, 4, 5, 6, 7, 8, 9 and 10,

and values of match probability cutoffs are as listed above.

case3 The number of matches of unknown accuracy, resulting from neither

dataset having an identification, between dataset i (dimension 1) and

dataset j (dimension 2), considering identifications of peptide score cutoff

k (dimension 3) or greater, at match probability cutoff l (dimension 3) or

greater. Values of peptide score cutoffs and values of match probability

cutoffs are as listed above.

case4 The number of matches of unknown accuracy, resulting from one dataset

having an identification that is not known to exist in the other, between

dataset i (dimension 1) and dataset j (dimension 2), considering iden-

tifications of peptide score cutoff k (dimension 3) or greater, at match

probability cutoff l (dimension 3) or greater. Values of peptide score cut-

offs and values of match probability cutoffs are as listed above.

case5 The number of incorrect matches, resulting from one dataset having

an identification that exists elsewhere in the other, between dataset i

(dimension 1) and dataset j (dimension 2), considering identifications of

peptide score cutoff k (dimension 3) or greater, at match probability cutoff

l (dimension 3) or greater. Values of peptide score cutoffs and values of

match probability cutoffs are as listed above.
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possible case1 The number of possible correct matches (shared identifica-

tions) between dataset i (dimension 1) and dataset j (dimension 2), con-

sidering identifications of peptide score cutoff k (dimension 3) or greater.

Values of peptide score cutoffs are as listed above.

model.mat This file contains information about the estimated model parameters.

mcmcparams A structure of size NSPLIT containing MAP estimates for the

shift, scale, match covariance, and latent peptide covariance parameters

for each partition of the alignment.

parameters A structure of size NSPLIT containing hyperparameters set by

the seed matches, and alignment parameters as specified in the config file.

matchprobs For each latent peptide (row), the probability of assignment for

the final matched measured peptide from each dataset (column).

matchinit A structure of size NSPLIT containing seed matches for each align-

ment split. For each latent peptide (row), the indices of the seed matched

peptide from each dataset (column).

maxpepperds The maximum number of measured peptides from the datasets

being aligned (the size of the largest dataset).

matchaverages.mat This file contains the results from the assignment-only itera-

tions of the sampler.

matchaverages A sparse matrix containing the match probability of each

measured peptide to each latent peptide, from the assignment-only itera-

tions of the sampler.
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A.2 Full Conditional Distributions

The full conditional posterior distributions used to update the shift, scale, resid-

ual covariance, latent peptides, latent peptide covariance, and match indicators are

shown below.

Given D open-platform proteomics datasets/samples X “ x1,1...xD,ND of N total

peptide features, where
řD
d“1Nd “ N and xd,Nd is k-dimensional, we fit the DPGMM,

matching each measurement to one of J latent peptide features, Z “ z1, ..., zJ where

J is unbounded. A global, linear shift and scale of peptide-level data is simuta-

neously estimated to de-warp experimental variation. We first describe the model

assuming for peptide-level, or precursor ion data, and then describe the extension

to incorporate product ion information. The measurement xd,i, assigned to latent

peptide feature j is expected to be a shifted and scaled approximation of zj, with

dataset or sample-specific shift and scale parameters with Gaussian noise. The latent

peptide features are modeled as components of the DPGMM - with zj having mean

µj and covariance σ, making the simplifying assumption that latent peptide feature

precision is the shared across all latent peptide features. Conjugate priors are used
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for all model parameters.

xd,i “ ηd ` zjβd ` εd,i (A.1)

εd,i „ Normalp0,Σq

zj „ Normalpµj, σq

ηd „ Normalpad, bdq

βd „ Normalped, fdq

µj „ Normalpλ, rq

σ „ iWishartpg, hq

Σ „ Inverse´Wishartps, tq (A.2)

We adapt the Chinese Restaraunt Process formulation of the DPGMM, introducing

indicator variables cd,i for latent peptide feature assignment, where d “ 1...D, and

i “ 1...Nd (one for each measurement) and cd,i P t1, 2, ...Ju. Occupation numbers nj

for j “ 1...J are also introduced, where nj is the number of c “ j. We express the

likelihood conditioned on the indicators.

P pX |η, β,Σ, z1...zJ , c1,1...cD,NDq “

D
ź

d“1

Nd
ź

i“1

Normalpxd,i | ηd ` zcd,iβd,Σq
(A.3)

We may also integrate out Z and re-express the likelihood as follows:

P pX |η, β,Σ, µ1...µJ , σ, c1,1...cD,NDq “

D
ź

d“1

Nd
ź

i“1

Normalpxd,i | ηd ` µcd,iβd, β
T
d σβd ` Σq

(A.4)

Given the above likelihood and prior distribution, we obtain the full conditional

distribution of the global shift parameter, ηd, as follows:
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P pηd | ´q9P pX | ηd, βd,Σ, µ1...µJ , σ, cd,1...cd,Ndq ˆ P pηd | ad, bdq

9

Nd
ź

i“1

Normalpxd,i | ηd ` µcd,iβd, β
T
d σβd ` Σq ˆNormalpηd | ad, bdq

9p2πq´
k
2 | bd |

´ 1
2 e´

1
2
pηd´adq

T b´1
d pηd´adq ˆ

Nd
ź

i“1

p2πq´
k
2 | pβTd σβd ` Σq |´

1
2

ˆ exp

ˆ

´
1

2
pxd,i ´ ηd ´ µcd,iβdq

T
pβTd σβd ` Σq´1

pxd,i ´ ηd ´ µcd,iβdq

˙

9Normal

˜

W´1

«

b´1
d ad `

`

βTd σβd ` Σ
˘´1

˜

Nd
ÿ

i“1

xd,i ´ µcd,iβd

¸ff

,W´1

¸

W “
“

b´1
d `Ndpβ

T
d σβd ` Σq´1

‰

(A.5)

Similarly, we obtain the full conditional distribution of the global scale parame-

ter, βd, as follows:

P pβd | ´q9P pX | ηd,k, βd,k,Σk,k, Z1,k...ZJ,k, cd,1...cd,Ndq ˆ P pβd,k | cd,k, dd,kq

9

Nd
ź

i“1

Normal

˜

xd,i,k ´ ηd,k
Zcd,i,k

´ βd,k | 0,
Σk,k

Z2
cd,i,k

¸

ˆNormalpβd,k | cd,k, dd,kq

9p2πq´
1
2d
´ 1

2
d,k e

´ 1
2
pβd,k´cd,kq

2d´1
d,k ˆ

Nd
ź

i“1

p2πq´
1
2

Σk,k

Z2
cd,i,k

´ 1
2

e
´ 1

2
p
xd,i,k´ηd,k
Zcd,i,k

´βd,kq
2p

Σk,k

Z2
cd,i,k

q´1

9Normal

¨

˚

˝

cd,k
dd,k

`
řNd
i“1

Zcd,i,k

Σk,k
pxd,i,k ´ ηd,kq

1
dd,k

`
řNd
i“1

Z2
cd,i,k

Σk,k

,
1

1
dd,k

`
řNd
i“1

Z2
cd,i,k

Σk,k

˛

‹

‚

(A.6)

We obtain the full conditional posterior distribution for the mean of each latent

peptide as follows:
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P pµj | ´q9P pX | ηd, βd,Σ, µj, σ, c1,1...cD,NDq ˆ ppµj | λ, rq

9
ź

d,i:cd,i“j

Normalppxd,i ´ ηdqβ
´1
d | µcd,i , σ ` β

´1
d Σβ´1

d q ˆNormalpµj | λ, rq

9
ź

d,i:cd,i“j

p2πq´
k
2 | σ ` β´1

d Σβ´1
d |

´ 1
2 e´

1
2
ppxd,i´ηdqβ

´1
d ´µjq

T pσ`β´1
d Σβ´1

d q´1ppxd,i´ηdqβ
´1
d ´µjq

ˆ p2πq´
k
2 | r |´

1
2 e´

1
2
pµj´λq

T r´1pµj´λq

9Normal

¨

˝R´1

»

–r´1λ`
ÿ

d,i:cd,i“j

pσ ` β´1
d Σβ´1

d q
´1
pxd,i ´ ηdqβ

´1
d

fi

fl , R´1

˛

‚

R “

»

–r´1
`

ÿ

d,i:cd,i“j

pσ ` β´1
d Σβ´1

d q
´1

fi

fl

´1

(A.7)

We derive the full conditional distribution for the residual covariance as follows:

P pΣ | ´q9P pX | η, β,Σ, Z1...ZJ , c1,1...cD,NDq ˆ P pΣ | s, νq

9

D
ź

d“1

Nd
ź

i“1

Normalpxd,i ´ ηd ´ zcd,iβd | 0,Σq ˆ inverseWishartpΣ | s, νq

9

D
ź

d“1

Nd
ź

i“1

p2πq´
k
2 | Σ |´

1
2 e´

1
2
pxd,i´ηd´zcd,iβdq

TΣ´1pxd,i´ηd´zcd,iβdq

ˆ

«

2νk{2πp
k
2q{2 | s |´ν{2

K
ź

k“1

Γppν ` 1´ kq{2q

ff´1

| Σ |´pν`k`1q{2 e´trpsΣ
´1q{2

9iWishartprs` sθs
´1, ν `Nq

sθ “
D
ÿ

d“1

Nd
ÿ

i“1

pxd,i ´ ηd ´ zcd,iβdq
T
pxd,i ´ ηd ´ zcd,iβdq

(A.8)

The full conditional distribution for the shared latent peptide covariance is ob-

128



tained as follows:

P pσ | ´q9P pZ | µ1...µj, σq ˆ ppσ | g, hq

9

J
ź

j“1

Normalpzj | µj, σq ˆ inverseWishartpσ | g, hq

9

J
ź

j“1

p2πq´
k
2 | σ |´

1
2 e´

1
2
pzj´µjq

TΣ´1pzj´µjq

ˆ

«

2hk{2πp
k
2q{2 | g´1

|
´h{2

K
ź

k“1

Γpph` 1´ jq{2q

ff´1

| σ |´ph`k`1q{2 e´trpg
´1σ´1q{2

9 | σ |´
J
2 e´

trpgθσ
´1q

2 ˆ | σ |´ph`k`1q{2 e´trpg
´1σ´1q{2

9iWishartprg ` gθs
´1, h` Jq

gθ “
J
ÿ

j“1

pzj ´ µjq
T
pzj ´ µjq

(A.9)

Conjugate Gaussian priors are given to the latent peptide feature means, with

each latent peptide feature sharing the same hyperparameters, and an inverse-Wishart

prior to the universal component covariance. As in Rasmussen (2000) the prior for

a single assignment indicator given the rest is:

ppcd,i “ j | c´pd,iq, αq “
n´pd,iq,j ` α{J

N ´ 1` α
(A.10)

Where ´pd, iq indicates all indices from all LC-MS runs except d, i, and n´pd,iq,j is

the number of measurements besides measurement i, in sample d assigned to latent

peptide feature j. To prevent multiple features from the same run being assigned to

the same latent peptide feature, we impose a restriction on measurement assigment

to latent peptide features such that only one measurement per LC-MS run may be
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assigned to a given latent peptide feature, making the conditional prior for a single

assignment indicator given the rest:

ppcd,i “ j | c´pd,iq, αq “
n´pd,iq,j ` α{J

N ´ 1` α
ˆ IpE cd,´i “ cd,iq (A.11)

where cd,´i indicates all indices except i from LC-MS run d. If we consider the case

where the number of latent peptide features is unknown, we take the limit as J

approaches 8. Taking the limit for the conditional prior distribution on the latent

peptide feature assignment indicators yields:

ppcd,i “ j | c´pd,iq, αq “
n´pd,iq,j

N ´ 1` α
ˆ IpE cd,´i “ cd,iq (A.12)

ppcd,i ‰ c´pd,iq | c´pd,iq, αq “
α

N ´ 1` α
(A.13)

Where A.12 represents the prior probability of introducing a new latent peptide

feature. Combining these priors with the likelihood conditioned on the assignment

indicators, we obtain the following conditional posteriors on peptide feature assign-

ment:

P pcd,i “ j | ´q9
n´pd,iq,j

N ´ 1` α
ˆ | pβTd σβd ` Σq |´

1
2

ˆ e´
1
2
pxd,i´ηd´µcd,iβdq

T pβTd σβd`Σq´1pxd,i´ηd´µcd,iβdq

ˆ IpE cd,´i “ cd,iq

(A.14)

P pcd,i ‰ c´pd,iq | ´q9
α

N ´ 1` α
ˆ | pσ ` β´1

d Σpβ´1
d q

T
q |
´ 1

2 | r |´
1
2

ˆ | pr´1
` pσ ` β´1

d Σpβ´1
d q

T
q
´1
q |
´ 1

2

ˆ e´
1
2ppxd,i´ηdqβ

´1
d q

T
pσ`β´1

d Σpβ´1
d qT q

´1
pxd,i´ηdqβ

´1
d `λT r´1λ´BTA´1B

A “ pr´1
` pσ ` β´1

d Σpβ´1
d q

T
q
´1
q

B “ pr´1λ` pσ ` β´1
d Σpβ´1

d q
T
q
´1
rxd,i ´ ηdsβ

´1
d q

(A.15)
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The computation of A.15 is possible because we assume all latent peptide features

share the same covariance. We now describe the extension of the model to incorporate

product ion spectra. To incorporate product ion data, we select up to the 50 most

intense product ions for each peptide feature measurement, xd,i. We then generate a

K-dimensional product ion intensity profile for each xd,i. Each position, yd,ik , in the

product ion intensity profile, yd,i, is computed as:

yd,ik “

ř

p Ωp ˆ IpMp ď Bkq
ř

p Ωp
(A.16)

where k “ 1 . . . K, p “ 1 . . . 50, Ω is a 50-dimensional vector of intensities, M is a

50-dimensional vector of product ion mass-to-charge ratios, and B is a K-dimensional

vector of product ion profile mass-to-charge ratio bin upper limits. All values in

yd,i sum to one. The mass-to-charge ratio ranges, or bins, are determined at the

initialization of the alignment, such that bin boundaries fall on mass-to-charge ratio

deserts. See section 2.1.2.3 and Figure 5.4 for a detailed description of bin boundary

determination. To assess the similarity of a measured product ion profile and a latent

product ion profile, wj for latent peptide feature zj, we introduce a similarity score,

ψ , which is computed as the sum of squared differences of the two product ion

intensity profiles, and is assumed to have an exponential distribution to encourage

distances close to zero.

ψd,i “ pydi ´ wcd,iq
T
pyd,i ´ wcd,iq

ψdi,j „ Exponentialpγq
(A.17)

We assign a conjugate gamma prior to the rate parameter. The hyperparameters

for profile scores are set to one.

γ „ Gammapa0, b0q (A.18)

The likelihood for the high energy component of the alignment model is expressed
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as:

P pY | ´q “
D
ź

d“1

Nd
ź

i“1

Exponentialppydi ´ wcd,iq
T
pyd,i ´ wcd,iq | γq (A.19)

At each iteration of the MCMC, the product ion profile, wj, of an existing latent

peptide is updated empirically. The latent product ion profile is set to the average

of the measured product profiles assigned to that latent peptide feature. The latent

product ion profile, w0, of a new latent peptide (one that currently does not exist)

is a blank profile - a uniform vector of size K with each element having value 1/K.

We update the rate parameter of the distribution on the similarity score as follows:

P pγ | ψ, a0, b0q9P pψ | γq ˆ ppγ | a0, b0q

9

D
ź

d“1

Nd
ź

i“1

Exponentialpψd,i | γq ˆGammapγ | a0, b0q

9

D
ź

d“1

Nd
ź

i“1

γe´γψd,i ˆ
1

ba0
0

1

Γpa0q
γa0´1e

´
γ
b0

9Gamma

˜

a0 `N, b0 `

D
ÿ

d“1

Nd
ÿ

i“1

ψd,i

¸

(A.20)

Combining the product ion model with the peptide-level model, we have the

following conditional posterior:

P pcd,i “ j | ´q9
n´pd,iq,j

N ´ 1` α
ˆ | pβTd σβd ` Σq |´

1
2

ˆ e´
1
2
pxd,i´ηd´µcd,iβdq

T pβTd σβd`Σq´1pxd,i´ηd´µcd,iβdq

ˆ IpE cd,´i “ cd,iq

ˆ γe´γpydi´wcd,i q
T pyd,i´wcd,i q

(A.21)
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P pcd,i ‰ c´pd,iq | ´q9
α

N ´ 1` α
ˆ | pσ ` β´1

d Σpβ´1
d q

T
q |
´ 1

2 | r |´
1
2

ˆ | pr´1
` pσ ` β´1

d Σpβ´1
d q

T
q
´1
q |
´ 1

2

ˆ e´
1
2ppxd,i´ηdqβ

´1
d q

T
pσ`β´1

d Σpβ´1
d qT q

´1
pxd,i´ηdqβ

´1
d `λT r´1λ´BTA´1B

ˆ γe´γpydi´w0q
T pyd,i´w0q

A “ pr´1
` pσ ` β´1

d Σpβ´1
d q

T
q
´1
q

B “ pr´1λ` pσ ` β´1
d Σpβ´1

d q
T
q
´1
rxd,i ´ ηdsβ

´1
d q

(A.22)

A.3 Exploration of Other HE Models

We explored additional values of K, as well as implementations of different high

energy models. To assess the utility and computational complexity of various high

energy models, we utilized shared identifications having peptide score 5 or greater,

among the first two replicates of the E. coli Lysate data. We constructed product ion

profiles of various sizes, K = {50, 100, 250, 500}, and assessed correct matches, nearby

incorrect matches, random incorrect matches, a blank profile, and an empirical profile

using eight different scoring schemes. Correct matches are shared identifications,

nearby incorrect matches are the 3 closest peptides in 3-dimentionsional space (m/z,

retention time, drift time) excluding the correct match, random incorrect matches

are a random peptide excluding the correct match and nearby incorrect matches,

a blank profile is a uniform vector of size K with each element having value 1/K,

and an empirical profile is the mean of all measured product ion profiles. The eight

metrics assessed were dot product, 1-norm, 2-norm, Pearson correlation, Spearman

correlation, Kendall correlation, K-dimensional multivariate normal PDF, and the

sum of squared differences. For each metric, we examined box plots of the scores from

different match types, and measured the CPU time it took to compute the scores for
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all match types. In order to the alignment model to perform as desired that is to

make correct matches, and avoid incorrect matches the appropriate metric should

favor correct matches above incorrect matches and new latent peptides (blank and

empirical profiles), but favor new latent peptides above incorrect matches. Figure

A.1 shows boxplots from three of the metrics for two different profile sizes, illustrating

different scenarios.

Figure A.1: Results of Additional High Energy Model Assessment. This figure
shows boxplots of match scores from the Dot Product, Multivariate Normal PDF
(MVN) and the sum of squared differences (SSD) metrics for two different profile
sizes.

We see that in all three of the presented metrics, correct matches are favored

above incorrect matches (larger values in the dot product and multivariate normal

PDF, closest to zero in the sum of squared differences). However, in the dot product
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and multivariate normal box plots, we see that the incorrect matches appear to be

more favorable than the addition of a new latent peptide. This would be detrimental

to our alignment results by encouraging mismatches. The correlation coefficients

and norms gave similar results. The sum of squared differences metric gives us a

desirable result, where correct matches and the addition of new latent peptides are

more favorable than incorrect matches. With regard to product ion profile size, we

saw only minor differences in performance with regards to match scores and compute

times (Figure A.2).

Figure A.2: Compute Times from High Energy Model Assessment. This figure
shows the CPU time it took to compute the scores for the various metrics: Dot
Product, 1-Norm, 2-Norm, Pearson Correlation, Spearman Correlation, Kendall Cor-
relation, Multivariate Normal PDF (MVN) and the sum of squared differences (SSD)
metrics for different profile sizes.

We decided to use K = 250 for our analyses to minimize the potential for over-

lapping product ions within a single peptides product ion profile, without a drastic

increase in computational overhead.
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A.4 Supplemental Results

A.4.1 Supplemental Results for E. coli Lysate Alignment

The recall rates and number of mismatches for the E. coli alignment have been

presented considering identifications having peptide score 5 or greater. To assess the

significance of the differences in these measures, we performed a series of two-sample

t-tests assuming equal variance for the recall rates and incorrect matches to assess

differences between alignments. The resulting p-values across the range of match

probability stringencies are shown in Supplemental Tables A.1 and A.2.
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Figures A.3, A.4, A.5, and A.6 show the recall rates and mismatch counts

when considering identifications having peptide score 6 or greater, and 7 or greater,

respectively.

Figure A.3: Recall Rates for E. coli Lysate Data. This figure shows the recall
rate considering identifications having peptide score 6 or greater, for each of the four
alignments across a range of match probability cutoffs.

The results considering identifications of higher stringencies are consistent with

those considering identifications having peptide score 5 or greater.

A.4.2 Supplemental Results for Decoy Experiment

We presented the results of an alignment of two technical replicates of human plasma

samples with an E. coli lysate decoy. Figure A.7 shows the results of the inverse

decoy analysis (aligning technical replicates of E. coli lysate with a Human plasma

decoy).

A.4.3 Supplemental Results for Identification Carryover

By aligning datasets from different human tissues, we were able to infer identifications

for several of the top peptides exhibiting differential expression for a phenotype of
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Figure A.4: Incorrect Matches for E. coli Lysate Data. This figure shows the
number of incorrect matches considering identifications having peptide score 6 or
greater, for each of the four alignments across a range of match probability cutoffs.

interest treatment response for the hepatitis-C data, and disease progression for the

osteoarthritis data. The lists of proteins inferred by this analysis are shown in Tables

A.3 and A.4.

We searched for functional enrichment of these proteins using GATHER and

DAVID. The Top 15 GATHER Gene Ontology results on each of these protein sets

are shown in Supplemental Tables 5 and 6. The Top 15 DAVID Biological Process

Gene Ontology results are shown in Supplemental Tables 7 and 8. The GATHER

chromosome location enrichment results for the Hepatitis-C inferred protein set are

shown in Supplemental Table 9, and the DAVID KEGG Pathway results for the

Osteoarthritis inferred protein set are shown in Supplemental Table 10.
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Figure A.5: Recall Rates for E. coli Lysate Data. This figure shows the recall
rate considering identifications having peptide score 7 or greater, for each of the four
alignments across a range of match probability cutoffs.

Figure A.6: Incorrect Matches for E. coli Lysate Data. This figure shows the
number of incorrect matches considering identifications having peptide score 7 or
greater, for each of the four alignments across a range of match probability cutoffs.

141



Figure A.7: Correct and Incorrect Matches for Decoy Analysis. This figure shows
the number of matches made to the correct species (E. coli), and the number of
matches made to the incorrect species (Human) for each of the four alignments,
across increasing match confidence thresholds from 0.1 to 1 in 0.1 intervals.

Table A.3: List of Inferred Proteins Associated with Osteoarthritis Progression.

A1BG HUMAN AACT HUMAN AFAM HUMAN
ALS HUMAN ANT3 HUMAN APOA4 HUMAN

APOB HUMAN APOC3 HUMAN APOE HUMAN
APOH HUMAN BTD HUMAN C1QC HUMAN
C1R HUMAN C1S HUMAN CERU HUMAN

CFAB HUMAN CFAH HUMAN CFAI HUMAN
CLUS HUMAN CO2 HUMAN CO4B HUMAN
CO5 HUMAN CO7 HUMAN CO9 HUMAN

CPN2 HUMAN FETUA HUMAN FINC HUMAN
GELS HUMAN HEMO HUMAN HEP2 HUMAN
HRG HUMAN IC1 HUMAN ITIH1 HUMAN
ITIH2 HUMAN ITIH3 HUMAN ITIH4 HUMAN
K2C1 HUMAN KNG1 HUMAN PLMN HUMAN
RET4 HUMAN SAMP HUMAN TETN HUMAN
TEX15 HUMAN VTDB HUMAN ZA2G HUMAN

BP1 HUMAN
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Table A.4: List of Inferred Proteins Associated with Hepatitis-C Treatment Re-
sponse.

A1AG1 HUMAN A1AT HUMAN A1BG HUMAN
A2GL HUMAN ALBU HUMAN AMYP HUMAN
APOD HUMAN ARC HUMAN B2MG HUMAN
CATD HUMAN CD59 HUMAN COFA1 HUMAN
CRNN HUMAN CYTB HUMAN DNAS1 HUMAN
EGF HUMAN FETUA HUMAN GUC2A HUMAN

HEMO HUMAN HPT HUMAN IBP7 HUMAN
IGHA1 HUMAN IGHA2 HUMAN IGHG1 HUMAN
IGHG2 HUMAN IGHG4 HUMAN IGKC HUMAN
ITIH4 HUMAN KI26B HUMAN KV206 HUMAN

LG3BP HUMAN LYAG HUMAN NID1 HUMAN
P3IP1 HUMAN PIGR HUMAN QPCT HUMAN
SAP3 HUMAN SCTM1 HUMAN SH3L3 HUMAN
TRFE HUMAN UROM HUMAN VASN HUMAN
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