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Abstract 

Brain Machine Interfaces (BMI) strive to restore motor and sensory functions lost 

due to paralysis, amputation, and neurological diseases by interfacing brain circuitry to 

external actuators in form of a cursor on a computer screen or a robotic limb. There is a 

strong clinical need for sensory restoration as lack of somatosensory feedback leads to 

loss of fine motor control and one of the most common preferences for improvements 

according to individuals with upper-limb loss is the ability to require less visual 

attention to perform certain functions and to have a better control of wrist movement. 

One way to restore sensory functions is using electrical microstimulation of brain 

sensory areas as an artificial sensory channel; however, the ways of creating such 

artificial sensory inputs are poorly understood.  

This dissertation presents the use of intracortical microstimulation (ICMS) to the 

primary somatosensory cortex (S1) to guide exploratory arm movements without visual 

feedback.  Two rhesus monkeys were chronically implanted with multielectrode arrays 

in S1 and primary motor cortex (M1). The monkeys used a hand-held joystick to reach 

targets with a cursor on a computer screen. ICMS patterns were delivered to S1 when 

the cursor was placed over the target, mimicking the sense of touch. After the target or 

the cursor was made invisible, monkeys relied on ICMS feedback instead of vision to 

perform the task. For an invisible cursor, a random offset was added to the position of 
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the invisible cursor to rule out the possibility that monkeys relied on joystick position 

felt through proprioception. Learning to perform these tasks was accompanied by 

changes in both the parameters of arm movements and representation of those 

parameters by M1 and S1 neurons at a population and individual neuronal levels.  

Offline decoding of single neurons and population of neurons showed that 

overlapping, but not identical subpopulations of neurons represented movements when 

ICMS provided feedback instead of vision. 

These results suggest that ICMS could be used as an essential source of sensation 

from prosthetic limbs.  
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1 Introduction  

1.1 Clinical need for BMIs 

Trauma such as vehicle accidents and central nervous system disorders such as 

cerebral palsy and amyotrophic lateral sclerosis can cause spinal cord injuries (SCI) and 

the estimated size of the American population with traumatic SCI is 183,000 to 230,000 

(McDonald and Sadowsky 2002). Diabetes mellitus, dysvascular disease, trauma, and 

malignancy of the bone and joint cause an estimated 185,000 Americans to undergo limb 

amputations each year (Ziegler-Graham, MacKenzie et al. 2008). These injuries can affect 

the ability of these individual to move and to feel. Treating these conditions is an active 

area of interdisciplinary research in neuroscience and engineering.  

In patients with  SCI, the brain gets disconnected from the spinal cord 

disconnected and it most often means confinement to a wheelchair (McDonald and 

Sadowsky 2002). A traditional solution to amputations is the use of prosthetics. 

Although major developments have occurred in prosthetic technology in the areas of 

biomechanics, materials and robotic devices, it still needs vast enhancements in the area 

of control and feedback.  A subcategory of prosthetics that has recently formed is the 

field of Brain Machine Interfaces (BMIs) which allow ensembles of cortical neurons to 

directly control an external actuator such as a  robotic manipulator or a cursor on the 

computer screen  (Lebedev and Nicolelis 2006)  
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1.2 History of BMIs 

The inception of BMIs is attributed to Fetz (Lebedev and Nicolelis 2006) with his 

1969 study in which he showed that rhesus macaques could be conditioned to modulate 

the firing rates of single M1 neurons to receive a food reward (Fetz 1969). The cells’ 

firing rates increased 50 to 500 % of their baseline level once the macaque was 

conditioned to food pellet and auditory cues but once that association was extinguished 

the firing rate returned to the preconditioned level.   

The idea of using activity of motor cells to control an external device for 

immobile patients was reported first by Edward Schmidt in 1980 (Schmidt 1980) . In his 

article, he reported that intracortical electrodes could be chronically implanted in 

monkeys to establish a long-term connection to the brain. Furthermore he showed that 

monkeys could modulate the firing rate of a single motor neuron according to the 

displayed target. It is worth noting that Humphrey and Schmidt (Humphrey, Schmidt et 

al. 1970) had also previously shown that using multiple electrodes simultaneously to 

record from different brain areas and to predict the force generated by the monkey’s 

movement of a handle was possible.  

The next huge step to the conception of BMIs was the discovery that the 

combination or a population of a widely tuned individual motor cells coded a precise 
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movement direction was published in 1986 by Georgopoulos and colleagues 

(Georgopoulos, Schwartz et al. 1986). 

  It was in 1995 that Nicolelis and colleagues were able to show that chronic 

multielectrode recording was possible across multiple brain structures in the rat 

trigeminal sensory system (Nicolelis, Baccala et al. 1995). Finally, Chapin and his group 

(Chapin, Moxon et al. 1999) showed for the first time that rats with chronically 

implanted multiwire arrays could modulate their motor cortical and ventrolateral 

thalamic neural populations to control a robotic arm in real time.   

From this period, several landmark BMI studies were published in a relatively 

short period: Wessberg (Wessberg, Stambaugh et al. 2000) and colleagues demonstrated 

monkeys could control a robotic arm in both one and three dimensional movements just 

using their motor cortical activity (Wessberg, Stambaugh et al. 2000). Taylor et al. 2002 

(Taylor, Tillery et al. 2002) showed that three dimensional brain control of a cursor was 

possible in a closed loop system in which the visual feedback and constant update of 

decoder parameters were incorporated to the system. Carmena (Carmena, Lebedev et al. 

2003) showed that reaching and grasping with a robotic arm was possible using real-

time decoding of neuronal activity in different regions of the cortex and that neuronal 

tuning changes during learning of BMI control. Even a cognitive neural prosthesis was 

reported in 2004 (Musallam, Corneil et al. 2004) which mainly activity from the medial 
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intraparietal area (MIP), which is part of the parietal reach region thought to represent 

reaching movements and the goals of the reach in visual space, was used to decode the 

monkeys’ intention to move a cursor in the screen. 

Further experiments have shown that monkeys can use their motor cortical 

activity to control a robotic arm with five degrees of freedom for self-feeding (Velliste, 

Perel et al. 2008). Moritz and colleagues demonstrated that it is possible to control 

paralyzed muscles directly with the activity of motor cortical neurons (Moritz, 

Perlmutter et al. 2008) using functional electrical stimulation (FES) delivered to the 

paralyzed muscle based on motor cell firing. In 2012, restoration of grasp of paralyzed 

muscles was also shown to be possible by predicting the desired muscle activity using a 

large population of neurons and delivering FES to the temporarily paralyzed flexor 

muscles in the forearm and hand (Ethier, Oby et al. 2012).  As described here, there have 

been multiple studies and advances in decoding of movement from cortical motor 

activity.  

However, an area that remains poorly explored is spatial sensory restoration in 

which a patient can regain the sensation of limb position and the location of objects. One 

of the most common preferences for improvements according to individuals with upper-

limb loss is the ability to require less visual attention to perform certain functions and to 

have a better control of wrist movement (Atkins, Heard et al. 1996). In addition, 
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restoration of sensory feedback that can aid reaching movements for those suffering of 

diminished or lack of somatosensory feedback and alleviate phantom limb pain caused 

by somatosensory cortical reorganization (Flor, Elbert et al. 1998).  This is not surprising 

given that a projected movement is often modified according to sensory information. 

Incorporation of multiple sensory modalities improves BMI control as shown by 

Suminski and colleagues (Suminski, Tkach et al. 2010). They found that providing both 

visual and proprioceptive feedback improved performance of brain-controlled 

movement by decreasing both time to target and path length. Lesion to the sensory 

cortex has been found to negatively affect the ability of monkeys to discriminate the 

speed of moving tactile stimuli (Zainos, Merchant et al. 1997). Vision can provide 

feedback for proprioception and kinesthesia and even dominate over other senses in 

certain cases (Gallace and Spence 2008). However, visual feedback might not be 

sufficient in some cases such as those requiring precise movement (Blank, Okamura et 

al. 2008).  Studies in patients suffering from large fiber sensory neuropathy who have 

lost their sense of position, touch, and vibration but with intact muscle strength show 

errors in reaching for visual targets and a large increase in variability of limb position 

compared to intact sensory subjects (Ghez, Gordon et al. 1995). Deafferented monkeys 

have a degraded timing and fine control of their movements than the intact animals and 

this impairment worsens as the speed of task increases or when vision is eliminated 
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unless if it involves an activity that the monkey was overtrained (Taub, Goldberg et al. 

1975). These studies are some selective of the many that substantiate the importance of 

the role of sensory feedback during movement. 

 

1.3 Sensory substitution 

Somatosensory processing is intricate due to the involvement of tactile, 

proprioceptive, and temperature sensation when touching an object. It is not surprising 

then to find that there are different and mixed neural response types dispersed in the 

primary somatosensory cortex (Rincon-Gonzalez, Warren et al. 2011). Given the 

complexity of the sensory system, one approach to sensory restoration has been sensory 

substitution which instead of replicating the body’s natural sensory feedback seeks to 

replace an affected sensory channel with an artificial channel. 

1.3.1 Periphery: robotics and prosthetics 

One goal of prosthetics is for the artificial limb to move and feel like one’s own. 

Carroza and colleagues have developed an artificial hand with proprioceptive sensors 

with this goal in mind capable of processing EMG signals from two antagonist muscles 

in the forearm to control the robotic actuator (Carrozza, Vecchi et al. 2003). This is a 

promising device but it will require much more development to be user-friendly and to 

have any clinical efficiency.    
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Kuiken and his colleagues tackled the same problem by rerouting residual 

nerves of amputees to healthy muscles thus enabling a finer and a more natural control 

of prosthetics calling it targeted reinnervation. In an article published in 2004, they 

reported using this technique in a 54 year old patient who had lost both arms in an 

accident. They innervated what was left of the brachial plexus and median nerves to the 

healthy pectoralis major muscles. Then the surviving nerves connected to muscles were 

able to control a two degree of freedom prosthesis (Kuiken, Dumanian et al. 2004). 

Furthermore, in a later study they reported two patients who regained sensation of the 

hand by the same targeted reinnervation of the sensory nerves that used to innervate the 

amputated limb to the overlying chest skin so when that patch of skin was touched, the 

patients felt as if the missing limbs were touched (Kuiken, Marasco et al. 2007).  

1.3.2 Periphery: mechanical and electrical stimulation 

One approach to restore proprioception has been to obtain proprioceptive 

information from artificial sensors (position, speed, and joint angles) and relay that 

information to the other sensory modalities. Vibration and cutaneous electrical 

stimulation have been used extensively to mimic proprioceptive information. Mann and 

Reimers observed that amplitude modulated vibratory feedback near the stump of the 

joint angle in above-elbow amputees reduced errors by 50% when they performed 

reaching tasks with an EMG controlled prosthesis (Mann and Reimers 1970). Similarly, 
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Alles has also investigated the use of vibration with the ultimate goal of delivering 

elbow joint angle information  (Alles 1970).  

Another approach to peripheral stimulation is using electrical stimulation of the 

skin. Nohama and his colleagues have developed a system using the tactile phi 

phenomenon. In this phenomenon, through two or more pairs of electrodes produce a 

feeling of a moving image as if they are placed next to each other and if the amplitude of 

stimulation changes temporally and complementarily (Nohama, Lopes et al. 1995). This 

approach has the advantage of decreasing the number of stimulating points while 

improving quantity of information transmitted.       

The drawback of transferring feedback from artificial sensors to other parts of the 

body is that the patient has to learn the new feedback which interferes with 

physiologically relevant signals and that this particular feedback cannot be used in 

paralyzed patients and amputees without residual sensation in their body. 

1.3.3 Microstimulation in the brain for somatosensory sensation 

It has been shown that electrical stimulation in small areas of the sensory cortex, 

known as microstimulation, can be used to evoke artificial sensation in awake, behaving 

monkeys (Dobelle, Mladejovsky et al. 1976, Romo, Hernandez et al. 1998, Fitzsimmons, 

Drake et al. 2007, London, Jordan et al. 2008, O'Doherty, Lebedev et al. 2009). Thus, 
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cortical microstimulation has been shown to evoke sensation that can reproduce some 

characteristics of normal tactile sensations.  

The discovery that electrical stimulation of the mammalian cortex could produce 

movements contralateral to applied stimulation was made in 1870 by Fritch and Hitzig 

(Fritsch and Hitzig 1870), and since then cortical electrical stimulation has been used to 

study brain function. In particular, Penfield and colleagues studied the effect of electrical 

stimulation of the human cortex (Penfield and Boldrey 1937, Penfield and Perot 1963).  

Stimulation applied to different points in the brain produced particular movements and 

sensations in a localized part of the body ranging from movement and sensation of the 

tongue to the leg and foot (Penfield and Boldrey 1937), as well as visual and auditory 

hallucinations. They observed that electrical stimulation near the central sulcus (both 

anterior and posterior) produced sensations of numbness, tingling, movement (or desire 

of movement), and sometimes pain.     

Operant conditioning to electrical stimulation in cats was demonstrated by Doty 

and colleagues in 1956 (Doty, Rutledge et al. 1956). In these experiments, cats responded 

by lifting the forelimb when electrical stimulation was applied to various points in 

cortex. 

A seminal study in the field of electrical stimulation to the brain was the one by 

Romo and colleagues (Romo, Hernández et al. 1998) in which monkeys were able to 
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discriminate different flutter frequencies delivered by vibration to the skin and via 

microstimulation.  

Graziano and colleagues (Graziano, Taylor et al. 2002) showed that 

microstimulation can elicit complex movements involving the eyes, shoulder, and the 

hand when applied to the ventral intraparietal area of the macaque brain, an area that 

responds to both visual and tactile stimuli.  

Another use of microstimulation has been to guide a rat through a maze (Talwar, 

Xu et al. 2002). By applying microstimulation in S1 as the cue for either left or right 

direction and applying microstimulation to the medial forebrain bundle as the “reward 

center”, rats were successfully able to navigate through a maze.   

Similar sensations are reported in stimulation of the somatosensory thamalus 

performed on patients undergoing deep brain stimulation (DBS) during surgery. 

Continuous and cycling high frequency stimulation (185 Hz, 0.21 ms pulse duration)  in 

the thalamus elicited different kinds of sensations in different patients but most people 

have reported tingling, movement, mechanical, pain, and temperature sensations. After 

the DBS electrodes were implanted for a mean of 29.1 months, more people have 

expressed “unnatural” sensations than when tested immediately after implantation 

(Heming, Choo et al. 2011).  
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Further recent studies support the premise that electrical stimulation to the 

somatosensory cortex can be a reliable and potential solution for providing sensory 

feedback with BMI devices. Johnson and colleagues 2013 (Johnson, Wander et al. 2013) 

applied electrical stimulation to the somatosensory cortex in humans undergoing 

surgical treatment for intractable epilepsy using electrocorticography electrodes.  They 

applied stimulation to the cortical sites corresponding to somatic sensation of the right 

hand in one patient and the lower lip and the middle finger in the other patient. Using 

amplitudes of 7-9.8 mA in one patient and 3-3.6 mA on the other, much greater than the 

one used for ICMS, and frequencies of 50-100 Hz, they found that both patients were 

able to discriminate different frequencies and amplitudes. These results suggest that 

changing the parameters of stimulation applied to the surface of the brain can produce 

different and reliable sensations. However, long term adaptation, effects of sub and 

suprathreshold stimulation and more complex and repetitive stimulation patterns using 

microwires still have to be investigated.  

Fitzsimmons and colleagues in the Nicolelis lab have demonstrated that 

delivering different spatial and temporal microstimulation patterns in the primary 

somatosensory cortex can be interpreted by monkeys as directional instructions for 

reaching movements (Fitzsimmons, Drake et al. 2007). This is a direct demonstration 

that microstimulation can be used as an artificial sensory channel. Furthermore, the 
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monkeys learned new microstimulation patterns more rapidly as compared to initial 

training. This could indicate that microstimulation can be used as reliable and stable 

artificial sensory channel.  Soon after,  O’Doherty and colleagues in the Nicolelis lab 

have shown that simultaneous recording of non-sensory cortical areas and active 

sensing of artificial tactile feedback based on ICMS of the sensory cortex can be achieved 

(O'Doherty, Lebedev et al. 2009). 

Microstimulation has also been applied to areas that handle proprioceptive 

information. London and colleagues have used electrical stimulation in area 3a 

corresponding to the proprioceptive cortex and have successfully trained a monkey to 

use microstimulation as a cue to reach left or right using a manipulandum (London, 

Jordan et al. 2008).  

Recent uses of microstimulation push beyond the boundaries of not just 

replacing bodily sensations but to crossing modalities such as perceiving invisible 

infrared (IR) light through microstimulation to S1 (Thomson, Carra et al. 2013) and to 

establishing a brain-to-brain interface (Pais-Vieira, Lebedev et al. 2013). Adult rats 

wearing an IR detector actively searched for a IR-emitting port out of three that would 

provide a reward with the correct cue was given by ICMS (Thomson, Carra et al. 2013). 

In the brain-to-brain machine interface, two rats exchanged behaviorally relevant 

information such as press of the correct lever that provided reward from the encoder rat 
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(the one that sent the information) to the decoder rat (the one that received the 

information) through microstimulation, and the performance of the decoded rat back to 

the encoder rat which affected the behavioral performance of the encoder rat (Pais-

Vieira, Lebedev et al. 2013).  

Electrical stimulation of neural circuitry potentially offers better resolution and 

information capacity compared to stimulation of the peripheral receptors. Another 

advantage of electrical stimulation in S1 is that the anatomy and the physiology of the 

receptors in the area have been studied extensively and computational models can even 

predict the spiking responses of different sensory receptors (Weber, Friesen et al. 2012).  

The drawbacks of microstimulation in the somatosensory cortex are the need for an 

invasive brain surgery and potential activation of misleading sensation such as phantom 

limb syndrome (Micera, Navarro et al. 2008).  

1.3.4  Microstimulation outside of somatosensation 

1.3.4.1 Vision 

A classic use of visual cortex stimulation is to enable ‘Braille’ reading to blind 

patients by eliciting cortical phosphenes (Dobelle, Mladejovsky et al. 1976). Brindley and 

Lewin reported that stimulation in the occipital cortex caused a blind patient to see 

phospenes (Brindley and Lewin 1968) and stimulating through several electrodes 

simultaneously allowed the patient to see more complex patterns.  Dobelle and 
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colleagues took this idea and they studied the effects of stimulation parameters and 

electrode configuration more systematically in more subjects to create a visual prosthesis 

for blind patients (Dobelle and Mladejovsky 1974). 

Furthermore, microstimulation in cortical areas processing vision has been 

demonstrated to influence behavior in animals. Stimulation in the middle temporal 

visual area (MT) biased monkeys’ perception of direction of motion (Salzman, Britten et 

al. 1990).  

Marzullo and colleagues (Marzullo, Lehmkuhle et al. 2010) stimulated the visual 

cortex of the rat and combined it with motor cortex activity modulation in order to 

develop a closed loop brain machine interface. Given the extensive ability of the visual 

cortex to react to microstimulation, Murphey and Mounsell explored the 

microstimulation threshold needed to evoke a behavioral percept in monkeys and found 

that there was no significant difference in threshold among the five visual areas tested 

V1,V2,V3A,MT, and the inferotemporal cortex (Murphey and Maunsell 2007). 

1.3.4.2 Auditory 

 

Microstimulation to the auditory cortex has been used to restore hearing as in the 

case of cochlear implants (Wilson and Dorman 2008) and as behavioral cues (Otto, 

Rousche et al. 2005). In a controlled experimental setting, microstimulation can elicit 

more accurate discrimination than natural auditory feedback (Otto, Rousche et al. 2005).   
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1.3.4.3 Face perception 

Microstimulation was also used to bias face categorization by monkeys. 

Stimulation of the inferior temporal cortex influences monkeys to choose faces rather 

than non-faces and this effect is increased as the duration of stimulation increases 

(Afraz, Kiani et al. 2006). 

 

1.4 Movement planning and the role of visual and proprioceptive 
feedback  

Planning and executing a movement is a complex process that involves constant 

feedback and involvement of several areas of the brain. In normal contexts, when a reach 

toward an object needs to be performed, the location of the object is detected through 

multiple sensory integration such as visual and proprioceptive  feedback and this 

information is then transformed into different coordinate frames (Batista, Buneo et al. 

1999, Sober and Sabes 2003).  

Sober and Sabes (Sober and Sabes 2005) found that the brain uses different 

combinations of feedback modalities depending on the type of target and composition of 

the feedback. They found that a target indicated by the position of the left hand relied 

less on visual feedback than the purely visual target. The exact mechanisms of the 

combination of visual and proprioceptive feedback are still not clear. What is known is 

that both feedback modalities contribute to movement direction. The target position is 
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usually given by visual feedback and the arm movement is initiated by visual feedback 

but its relative position during movement is given both by visual and proprioceptive 

feedback. It is thought that proprioception plays a role in control of movement distance. 

Given all the evidence of the importance of both visual and somatosensory 

feedback during movement it is important to develop a means to deliver somatosensory 

feedback to the brain for BMI users to ensure that their experience is as efficacious and 

useful as possible.  

 

1.5 Current state of BMIs in human 

Brain-Computer-Interfaces (BCIs) using electroencephalography (EEG) signals 

recorded at the scalp have been developed as a non-invasive method of providing 

control of motor intention to people suffering from motor diseases and paralysis. 

However it has the disadvantage of having very low spatial resolution and training. An 

intermediate level of invasiveness between BCIs with EEG and BMIs with single neuron 

recording is BCI with electrocorticographic (ECoG) activity. This technology in humans 

has been shown to be successful in controlling a cursor (Leuthardt, Schalk et al. 2004) 

although of less accuracy of a cortical microwire array.   

Invasive BMIs have been implemented in humans with some success. A patient 

with advanced stage of Amytrophic Lateral Sclerosis (ALS) with locked-in syndrome 
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was implanted with a neurotrophic electrode which contained neurotrophic factors in 

the right motor cortex and appeared to have stable signals (Kennedy and Bakay 1998). 

Hochberg and colleagues showed that a tetraplegic man was able to control a cursor on 

a computer screen using his motor cortical neurons and successfully used a computer 

interface that simulated some daily activities such as opening an email, controlling the 

volume and channel of a TV and displayed initial success in controlling robotic arms 

(Hochberg, Serruya et al. 2006). In 2012, they showed that two people with tetraplegia 

were able to use their neuronal activity to perform reach and grasp movements with a 

robotic arm such as drinking coffee from a bottle (Hochberg, Bacher et al. 2012). 
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2. Experimental methodology 

2.1. Background 

2.1.1. Multielectrode arrays 

There are mainly two types of multielectrode arrays being used nowadays in the 

BMI field: silicon based electrodes and microwire electrodes made of a metal with a 

coating of insulating material. The two main subtypes of silicon-based arrays are the 

Utah Electrode Array, which is created from one single block with needle-like recording 

electrode tips, and the Michigan probes which are planar arrays of electrode shanks with 

recording sites along the shank (Polikov, Tresco et al. 2005). The Nicolelis lab has 

pioneered the microwire multielectrode array technique (Nicolelis, Dimitrov et al. 2003, 

Nicolelis 2007). An array containing up to 96 microwires made of stainless steel usually 

coated with Teflon is attached to a printed circuit board (PCB) which is then connected 

to the tips of the microwires. A high-density, miniature connector is attached to the 

opposite side of the PCB (Nicolelis, Dimitrov et al. 2003). Since these early designs, 

microwire multielectrode array technology has been improved to include customized 

movable microwires that deliver robust recording signal quality for as long as four years 

post-implantation as described in the later section of this chapter.  

It is important to notice that although silicon micromachined electrodes have the 

capability of complex design, current silicon based arrays do not offer any major 
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advantage compared to microarray design and many of these kind have been found to 

be unreliable for chronic recording applications in the CNS (Polikov, Tresco et al. 2005) .   

2.1.2. Biocompatibility of chronically implanted electrodes 

In the brain there are mainly three types of tissues: neurons, glial cells and 

vascular-related tissue. The proximity of the electrode’s site to the neurons will affect the 

signal quality of the recording. Among the glial cells, the oligodendrocytes make up the 

myelin wrapping the axons of the neurons while astrocytes and microglia react to the 

presence of electrodes  (Polikov, Tresco et al. 2005) . 

2.1.2.1.  Acute response 

When the electrode is lowered into the cortex, capillaries, extracellular matrix, 

glial and neuronal cell processes can be damaged. The insertion of the electrode causes 

edema and necrosis and the brain initiates the release of red blood cells, platelets, 

clotting factors and macrophage recruitment to heal the wound. Activated microglia and 

re-absorption decreases edema and cellular debris 6-8 days after electrode insertion 

(Polikov, Tresco et al. 2005).    

2.1.2.2.  Chronic response 

The presence of electrodes produces a chronic foreign body response in the 

brain. Astrocytes form a glial scar forming an encapsulated layer around the electrodes 

and activate microglia that will attempt to phagocytose the electrodes (Polikov, Tresco et 
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al. 2005, Grill, Norman et al. 2009). The glial scar layer can lead to electrode signal 

degradation although its effect seems to be different even in the same electrode 

implanted at different locations in the same animal.   

2.2. Experimental setup 

2.2.1. Subjects, cortical implants, and electrophysiological recordings 

All animal procedures were performed in accordance with the National Research 

Council’s Guide for the Care and Use of Laboratory Animals and were approved by the 

Duke University Institutional Animal Care and Use Committee. 

Two rhesus monkeys (Macacca Mulatta), one female (monkey N, 6.4 + 0.6 kg) 

and one male (monkey M, 8.2 + 0.7 kg) were chronically implanted with microelectrode 

arrays in both hemispheres. A total of 113-120 and 111-118 units were recorded per 

experimental session in monkeys N and M, respectively. After the monkeys were placed 

in the experimental setup, head stage amplifiers were attached to the connectors 

embedded in the implant. Flexible cables connected the headstages to a 128 channel 

Multichannel Acquisition Processor (MAP, Plexon, Inc., TX, USA). Neuronal units were 

sorted in real time using the templates defined in MAP software. 
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2.3 Surgery 
 

The surgery was performed by a neurosurgeon who has significant experience in 

multielectrode array implantation in a sterile environment. The head of the monkey was 

shaved, disinfected, the skin opened, and then small parts of the skull and dura were 

removed to allow implantation of arrays. While the animal was under anesthesia its 

blood pressure, ECG, and oxygen level were closely monitored. The head was placed in 

a stereotax apparatus to allow exact placement of the arrays. The electrode arrays were 

placed and fixed with surgical acrylic. Screws were placed to hold the cap together and a 

layer of acrylic was used to hold all the elements together (Nicolelis 2007, Lebedev, Tate 

et al. 2011). Both monkeys had four arrays implanted in 2009: two arrays in each 

hemisphere. Each array contained 96 channels that could be used for recording and 

stimulation and covers areas M1 or S1 of each hemisphere (Figure 2.1).  
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Figure  2.1. Multielectrode array implantation sites for both monkeys. A. In monkey 

M, M1 and part of the S1 area of the arm representation was recorded and part of the 

S1 area of the arm representation was used to for ICMS. B. In monkey N, the M1 and 

S1 areas of the arm representation were recorded and the leg representation of the S1 

area was used to for ICMS. 

 

2.3.  Multielectrode recording 
 

Multielectrode implants has proven to be a reliable way to simultaneously record 

of large numbers of neurons in long term. Recording a large number of neurons allows 

better predictive power and allows for obtaining information about multiple areas of the 

brain (Lebedev and Nicolelis 2006). Furthermore they allow electrical stimulation of a 
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specific area of the brain and also different combinations of simulation sites which is 

important for delivery of sensory feedback.  

Each array contained 32 screws, 3 connectors for recording headstages, and 96 

microwires grouped into triplets (Figure 2.2). Each screw moved three electrodes 

independently of others according to recording needs.  

 

 
Figure 2.2. Rendering of a complete multielectrode array.  

These arrays were contained in a headcap with a removable top (Figure 2.3.).  
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Figure 2.3. Top view of headcap assembly shown with cover plate removed and two 

electrodes installed onto a mock up skull. Blue plastic items cover the screws for 

moving electrodes.  

Each bundle of triplets was separated by 1 mm. Each bundle contained three 

microwires of different lengths and diameters (Figure 2.4).    
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Figure 2.4. Electrode array design. A. Top view of one array of 96 microwires. B. Side 

view of a group of triplets of microwires. C. Top view of a group of triplets of 

microwires.   

 
2.4.  Microstimulation 

 
ICMS was delivered using a multichannel stimulator designed and built in the 

Nicolelis laboratory (Hanson, Ómarsson et al. 2012). Both monkeys previously 

participated in a brain-machine-brain-interface (BMBI) task where they searched 
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through a set of visual targets, each associated with a pattern of ICMS applied to S1, and 

had to find a particular pattern (O'Doherty, Lebedev et al. 2011, Medina, Lebedev et al. 

2012, O'Doherty, Lebedev et al. 2012). For this dissertation, the same implanted 

microelectrodes for ICMS delivery were used. In monkey M, ICMS was applied to the 

hand representation of S1 (Figure 2.1 A), whereas in monkey N, ICMS was applied to 

the leg representation of S1 (Figure 2.1 B). ICMS consisted of 100 Hz trains of symmetric, 

biphasic charge-balanced pulses delivered in bipolar form through two pairs of 

microwires. For both monkeys, positive and negative pulses of stimulation had 

amplitudes of 100 µA, pulse widths of 100 µs, and were separated by an interpulse delay 

of 25 µs.  
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Figure 2.5. ICMS setup. A. Each pulse of microstimulation consisted of a cathodic-

anodic pulse pair of 100 µA of amplitude, 100 µs duration and 25 µs interpulse delay. 

B. The primary frequency was 100 Hz. C. ICMS was delivered in two pairs of 

electrodes (red circles). Different electrodes were used for each monkey. 
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2.5.  Additional Hardware 

 
A Multichannel Acquisition Processor for 228 channel (Plexon Inc., Dallas TX. 

USA) was used for signal acquisition. This box was synchronized with the computer 

through a National Instruments digital acquisition (nidaq) card. Strobes were sent each 

time an event such as cursor movement occurred.   

A 15 inch monitor was used to show the monkey the task display (cursor and 

target). 

2.6.  Behavioral setup 

Both monkeys were proficient in joystick reaching tasks (Ifft, Lebedev et al. 2011, 

O'Doherty, Lebedev et al. 2011, Ifft, Lebedev et al. 2012, Medina, Lebedev et al. 2012, 

O'Doherty, Lebedev et al. 2012), which they had performed for more than four years. 

These previous tasks required reaching with a visible cursor towards visible targets. In 

the present study, the same monkeys were introduced to tasks in which they had to use 

ICMS feedback instead of relying on vision. For this purpose either the target or the 

cursor was made invisible. 

Each monkey was seated in a Plexiglas primate chair, facing a 17-inch computer 

screen, which was placed 30-50 cm from the eyes from the monkey’s eyes (Figure 2.6). A 

joystick was mounted at the monkey’s waist level. The monkeys grasped the joystick 

with their left hands.  The position of the joystick was mapped to the position of a screen 
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cursor (open circle, 0.5 cm in diameter; made invisible in some experiments). Rightward, 

leftward, forward and backward movements of the joystick were translated to 

rightward, leftward, upward and downward movements of the cursor, respectively.  

A primate chair was customized to restrict monkeys’ neck movements while 

allowing free arm movement so they could grab and move the joystick during 

experiments. A neckplate was used to prevent the monkeys from reaching their heads to 

remove the headstages and other wires used during experimental sessions.  

 

 

Figure 2.6. Behavioral setup. The monkey was placed on a chair that will allowed free 

movement of the arm so it could move the joystick. A computer screen was placed in 
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front of the monkey and it displayed the visible target or the visible cursor. Once the 

monkey placed the cursor in the target, ICMS was delivered. 

All tasks required movements in only the horizontal dimension because targets 

were displayed at random locations along the horizontal axis. 

In each trial, monkeys could place the cursor at any position and then move it to 

the target. There was no specific go-cue. Monkeys were rewarded with fruit juice for 

holding the cursor over the target for a randomly selected hold time (800-1200 ms) 

(Figure 2.7).  

 

Figure 2.7.  General trial setup. 

If the monkey failed to reach the correct position of the target or did not hold 

enough time inside the target or exceeded a timeout interval of 10 s, no reward was 

given and a correction trial was issued with identical settings. The correction served to 

prevent the monkey from developing a strategy of always reaching in the same 

direction, with a 50% chance of getting a reward (Fitzsimmons, Drake et al. 2007, 

O'Doherty, Lebedev et al. 2009). These correction trials were not counted in calculating 

behavioral performance. Intertrial delay was 500 ms for all behavioral tasks. Each 

experimental session lasted from 40-120 minutes.   
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The visually guided task served as a baseline control. In that task, both the cursor 

and the target were visible throughout the trial (Figure 2.8). Each behavioral trial started 

with an appearance of a circular target (5 cm in diameter) 2.5-10 cm (drawn from a 

uniform distribution) to the left or to the right from screen center. Targets didn’t appear 

at the resting position of the joystick which was the center of the screen (0 cm) because 

that position increased the probability of reward even if the monkey didn’t move the 

joystick. Monkeys had to move the cursor over the target and hold it there for 800-1200 

ms (randomly selected) to obtain a fruit juice reward. ICMS was never applied during 

this task.  

 

 

Figure 2.8. Visually guided task (control) setup. 
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In the invisible target task, the requirements were the same as in the visually 

guided task, but the target was invisible to the monkey and cursor contact with the 

target was signaled by ICMS instead of visual feedback (Figure 2.9). The transition to 

invisible target was the most difficult component of training for the monkeys. To ease 

this transition, two parameters were gradually adjusted: the brightness of the target and 

the duration of target visibility. During the training, the target initially was the same as 

in the visually guided task, and then its brightness was gradually decreased. 

Additionally the target initially remained on the screen for the entire duration of the 

trial, but gradually its duration was decreased to 0s, which was equivalent to making the 

target invisible. This training continued for several days (20 and 9 days for monkeys N 

and M, respectively), and then the monkeys performed the final task (10 and 8 sessions 

for monkeys N and M). In the final task, there was no other cue of the location of the 

target other than ICMS that was continuously applied when the cursor was placed  

inside the target. ICMS stopped immediately when the cursor moved outside of the 

target but it was delivered again if the cursor reentered the target. Multiple target 

entrances and exits were allowed, but a trial was rewarded only if the cursor was held 

inside the target for 0.8-1.2 s (randomly selected). Trials were unrewarded if the monkey 

failed to find and hold the target within 10s after the beginning of the trial.  Catch trials 
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in which no ICMS was delivered were interweaved with regular trials (10% of total 

trials). 

A modification of the invisible target task involved targets of variable size. The 

requirements remained the same, except that the target diameter varied  from trial to 

trial from 2 to 5 cm.  

 

 

Figure 2.9. Invisible target task setup. 

In the invisible cursor task, the requirements were the same as in the other tasks, 

but the cursor was invisible to the monkey (Figure 2.10). Cursor contact with the target 

was signaled to the monkey by ICMS, as in the invisible target task. For training 

purposes, the cursor was initially visible and then gradually decreased in opacity until it 
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became invisible while the target was visible throughout the trial. This initial training 

took 3 days in monkey N and 10 days in monkey M. Then, 5 and 6 sessions were 

recorded for monkeys N and M, respectively, with the invisible cursor. Catch trials in 

which no ICMS was delivered constituted 10% of total trials. 

 

 

 

Figure 2.10. Invisible cursor task setup. 

In the invisible cursor task with spatial bias (called Noisy Cursor Task for 

simplicity from now on) we introduced a random spatial bias to the position of the 

cursor. At the beginning of each trial, the position of the invisible cursor was shifted by a 
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constant horizontal offset randomly drawn from the range from -17 to 17 cm. The targets 

were visible (Figure 2.11). Catch trials in which no ICMS was delivered constituted 10% 

of total trials. We tested this paradigm after the subjects had learned the invisible cursor 

paradigm, so no initial training was needed with variable cursor visibility. 8 and9 

sessions with this task were recorded in monkeys N and M, respectively.  

 

 

 

Figure 2.11. Invisible cursor with spatial offset task (noisy cursor) setup. 
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2.7 Software  

 
 

A custom software suite called BMI3 built in the lab coded in C++ was used to 

control task parameters.   

For the tasks, a state machine program was used so at any point the task was 

only in one state and a change of behavior would trigger change of state. The code was 

modified from existing tasks from the lab.  There were seven states: Ready, Explore with 

Target, Explore without Target, In Target, Reward, Error Timeout Trial, and intertrial.  

Ready: the start of the trial. It has the option to move to the next trial only if the monkey 

touches the joystick 

Explore with Target: in this state the target can be made visible and a timer was added 

to transition to the state of Explore without Target. This state is most useful during 

training for a new task. No ICMS is delivered. 

Explore without Target: the target is invisible, and if the cursor is placed inside the 

target then it moves to the In Target state. If the cursor doesn’t move inside the target 

after a certain time then it is moved to the Error Canceled state. No ICMS is delivered.    

In Target: if the cursor remains inside the target for a predetermined hold time, then the 

state changes to Reward. However if the cursor leaves the target area then it returns to 

Explore Without Target state. ICMS is delivered throughout this state.  
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Reward: juice is rewarded in this state and then is automatically transitioned into the 

Intertrial state. This is one of the two possible outcomes of the trial. No ICMS is 

delivered. 

Error Timeout:  the other possible outcome of the trial. A penalty time can be added 

here. It is automatically changed into Intertrial state after penalty time. 

Intertrial: after a pause time between trials it is automatically changed into the Ready 

state.  
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3. Behavioral and neuronal responses under different 
visual feedback 

3.1. Introduction 

Ever since the pioneering studies of sensory and motor effects in response to 

electrical currents applied to nervous structures in animals (Fritsch and Hitzig 1870, 

Ferrier 1873, Ferrier 1875, Brown and Sherrington 1911) and humans (Ransom 1892, 

Penfield and Boldrey 1937, Penfield and Rasmussen 1950) electrical stimulation has 

evolved to become a widely used tool for exploration of the connectivity and function of 

the brain. Modern studies often employ injection of small electrical currents, termed 

intracortical microstimulation , to evoke local effects that mimic the function of the 

stimulated area (Tehovnik 1996, Cohen and Newsome 2004, DeAngelis and Newsome 

2004, Tehovnik, Tolias et al. 2006). In particular, ICMS applied to different sensory areas 

in nonhuman primates has been shown to evoke sensations similar to vision (Bartlett, 

DeYoe et al. 2005), perception of visual motion (Salzman, Britten et al. 1990, Salzman, 

Murasugi et al. 1992, Britten and van Wezel 1998)  and the somatosensory sensation of 

flutter (Romo, Hernández et al. 1998, Romo, Hernández et al. 2000, de Lafuente and 

Romo 2005). In humans, ICMS of the visual cortex has been shown to evoke sensations 

of light (Bak, Girvin et al. 1990, Schmidt, Bak et al. 1996).  

With the emergence of multielectrode implants (Nicolelis, Dimitrov et al. 2003) 

and rapid development of brain–machine interfaces (BMIs) (Chapin, Moxon et al. 1999, 
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Wessberg, Stambaugh et al. 2000, Taylor, Tillery et al. 2002, Carmena, Lebedev et al. 

2003, Lebedev, Carmena et al. 2005, Lebedev and Nicolelis 2006), there have been an 

increased interest in  ICMS as the method of delivering artificial sensory inputs to the 

brain (Fitzsimmons, Drake et al. 2007, O'Doherty, Lebedev et al. 2009, O'Doherty, 

Lebedev et al. 2011, O'Doherty, Lebedev et al. 2012, Johnson, Wander et al. 2013). Such 

artificial sensations could act as communication channels (Fitzsimmons, Drake et al. 

2007, Weber, Friesen et al. 2012, Johnson, Wander et al. 2013)  or could provide sensory 

feedback from prosthetic limbs (Berger, Ahuja et al. 2005, Middlebrooks, Bierer et al. 

2005, Lebedev and Nicolelis 2006, Wickelgren 2006). Recent studies support that ICMS 

of S1 can be a solution to providing sensory feedback for BMI devices. It has been 

demonstrated that monkeys can gradually learn to discriminate temporal and spatio-

temporal ICMS patterns delivered to S1 through chronically implanted microelectrode 

arrays (Fitzsimmons, Drake et al. 2007). Moreover, we have developed a brain-machine-

brain interface (BMBI), where motor signals are extracted from an M1 implant go control 

avatar search, and an S1 implant is used to deliver an ICMS feedback that mimics active 

touch (O'Doherty, Lebedev et al. 2011, O'Doherty, Lebedev et al. 2012).  

Notwithstanding these demonstrations, it is still not well understood to what 

extent ICMS could be useful in clinical neuroprosthetic devices to substitute normal 

somatic sensations. In particular, it is unknown if ICMS-based feedback could be used 
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alone, without a need for visual feedback, to subserve exploratory tasks, such as locating 

(Murthy and Fetz 1992) and apprehending objects through touch (Klatzky, Lederman et 

al. 1985). The ability to use the limb and receive sensations from it without having it in 

sight is one of the primary needs of the users of prosthetic limbs (Atkins, Heard et al. 

1996). To explore ICMS as the means to provide this ability, we chronically implanted 

two rhesus monkeys with cortical multielectrode arrays and introduced them to 

behavioral tasks that required relying on ICMS of S1 instead of vision as the sensory 

feedback that guided arm reaching.  

 

3.2. Methods 

3.2.1.  Analysis of behavioral performance 

The performance was evaluated as 1) the percentage of correct random trials and 

2) the number of rewarded trials per minute (Fig. 3.1). Correction trials were excluded 

from both analyses, and catch trials were analyzed separately.  

The monkeys’ behavior was compared to chance performance, which was 

evaluated using two approaches. In the first approach, we applied a shuffle test to 

recorded behavioral data. Target locations were randomly reassigned for each trial. We 

then tested if the cursor trajectory could satisfy the successful performance requirements 

for those random target locations. In the second approach, we analyzed behavioral 
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performance in catch trials in which monkeys did not receive ICMS feedback. Chance 

performance was estimated using two approaches (figure 3.1). 

For the task with variable target size we analyzed the time to target acquisition 

(Fig. 3.2). This metric was defined as the time from the start of the trial to the final 

entrance of the cursor into the target (i.e., the entrance followed by holding the target for 

the required duration).  

The time to target acquisition was defined as the time from the start of the trial to 

the onset of the cursor position that was within the target for the established hold time 

and immediately before juice reward.  

The length of cursor trajectory was calculated as the sum of cursor position 

difference until the onset of the successful target hold time.  

3.2.2. Analysis of neuronal responses 

Peri-event time histograms (PETHs) were used to analyze neuronal modulations 

for different neurons, target locations and tasks. PETHs were visualized for the entire 

neuronal population using color plots in which horizontal rows represented neurons, 

position in the row represented time, and firing rate was color coded (Figures 3.8 and 

3.9). PETHs were aligned to peak velocity <10 cm/s. A maximum peak detection analysis 

was used to detect the start of the highest normalized firing rate of each neuron. Only 

neurons that had a maximum peak >1.2 were used. For monkey M a window of -1 to 0 s 
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from the peak of velocity was used while for monkey N a window of -0.5 to 0 s was 

used.  

Neuronal tuning to position and velocity was analyzed using color diagrams, 

where the x-axis represented position and the y-axis represented velocity, and color 

represented average firing rate (Figures 3.11 and 3.12). In these diagrams, position and 

velocity were binned into 2 cm and 2 cm/s bins, respectively, and it was required that 

each square bin represented average data for at least 4 data points. If the number of data 

points was insufficient, the bin was left blank. 

The tuning to position and velocity was also quantified using a multiple linear 

regression:  

                          
          

                      (3.1) 

where f is firing rate of a neuron,      is x coordinate,      is the x component of 

velocity,     and     are coefficient for linear terms, and     and    are coefficients for 

quadratic terms.  

To estimate stability of neuronal recordings across different sessions, we plotted 

probability density of the interspike interval each neuron of one session and compared it 

to the interspike interval of the same neuron and other neurons recorded in the same 

channel in a different session. Neurons were considered stable if the p value of the 
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Kolmogorov–Smirnov test for binned probability distribution of interspike intervals (ISI) 

during reward times was more than 0.05 (Ganguly and Carmena 2009). 

 

3.3. Results 

3.3.1. Behavioral results in the absence of visual feedback 

3.3.1.1. Visually Guided paradigm 

Because of previous overtraining, both monkeys achieved better than 90% correct 

performance from the very first session of the visually guided task. Their performance 

remained at this high level for the rest of the visually guided sessions.  

3.3.1.2. Invisible Target paradigm 

In the invisible target task, following preliminary training with barely visible and 

short-duration targets (9 and 20 days for monkeys M and N, respectively), both 

monkeys reached 90 % correct performance on the very first day of the final task (Fig. 

3.3). Their performance remained at this high level during the next recording sessions. 

This level of performance was highly statistically different (P<0.05; t-test) from the 

performance on catch trials and baseline level (Fig. 3.3).  

The pattern of movements was different in the invisible target task compared to 

the visually guided task. Both the velocity and the position traces become less 

stereotypical and there were more variability in the before and after the peak velocity 
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(Figure 3.8 and 3.9 B,C,E,F). Both monkeys increased the number of cursor direction 

changes, the number of crossing the target, but not holding, and the length of cursor 

trajectory (Table 1). 

For monkey M, under this paradigm, the time to movement initiation was much 

less than in the visually guided case (Table 1) and as the monkey was overtrained the 

time to movement initiation decreased (0.29 + 0.21 s in session 1 to 0.16 + 0.11 s in session 

8). There was no clear cue to trial start as the target was always invisible and the cursor 

was always visible.  

For monkey N, the time to movement initiation was not different than in the 

visually guided paradigm (Table 1) as there was no significant difference among 

sessions. 

The time to reward was longer as the size of the target became smaller (figure 

3.1). This was expected as the size of the target increased the probability of the monkeys 

finding an area where ICMS was delivered increased.  

 



 

45 

 

 

Figure 3.1. The effect of target size on the time from the start of the trial until 

reward under the invisible target paradigm for both monkeys. 

 

3.3.1.3. Invisible Cursor paradigm 

Once the invisible target task was learned, the next question was whether 

monkeys could perform without visual feedback of the end-effector, the cursor. Both 

monkeys were able to learn the task (9 sessions for monkey M and 3 sessions in monkey 

N). Monkey M’s performance of catch trials was higher than monkey N’s suggesting 

that they developed different strategies to perform in the task (Fig. 3.3). Monkey M 

probably relied on its sense of joystick position’s correspondence to the cursor position 

and ICMS while monkey N relied mainly on ICMS only to identify whether the cursor 



 

46 

 

was placed on the target.   For the invisible cursor task, similarly to the invisible target 

task, training was needed for the monkeys to perform this task. During the initial 

training sessions, monkeys couldn’t perform trials in which the cursor was completely 

invisible thus the dimness of the cursor was gradually decreased.  Monkeys M started to 

perform the invisible cursor task after 9 days of training, and monkey N after 3 days and 

their performance improved to more than 90% and remained at >90% for the rest of the 

sessions. Monkey M’s performance of catch trials (56 + 9%) was higher than monkey N’s 

performance (31 + 5 %) and higher than the baseline level (18%), which possibly 

indicated that monkey M was able to derive the cursor position from the position of the 

joystick position, which it felt through the arm proprioception. The task was then 

modified to make this behavioral strategy impractical.   

3.3.1.4. Invisible Cursor with bias (noisy cursor) paradigm  

To effectively uncouple the very well trained sense of joystick position and 

cursor position, a random spatial bias was added to each trial. This spatial bias consisted 

of shifting the start position of the invisible cursor in each trial. The spatial bias did not 

decrease the performance of regular trials but it did affect the performance of catch trials 

(Fig. 3.3). The monkeys were able to perform without any additional learning (they 

achieved >90% performance from session 1 indicating that they were mostly paying 

attention to the ICMS rather than its own joystick position sense.  
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The cursor bias did not affect the time that the monkeys needed to reach the 

reward further suggesting that monkeys were guided by the ICMS rather than the 

joystick sense (figure 3.2). 

   

Figure 3.2. The effect of cursor bias on time from the start of the time trial until 

reward for both monkeys. 

 

 However this task proved to be the most difficult task that required most 

exploratory movement for both monkeys given the greatest number of cursor direction 

change and cursor trajectory length (table 1). 

For monkey M, under this paradigm this premovement phase (period in which 

the movement is planned) was much longer than in control paradigm. The movement 

was exploratory with many more target touches, cursor direction changes, and trajectory 

length compared to Visually Guided paradigm. But as the monkey learned the 

paradigm better, the time to movement initiation period was reduced (reaction time of 

session 1 for noisy cursor was 0.456 + 0.14 s but the reaction time of session 6 was 0.315 + 
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0.21 s). For monkey N, the time to movement initiation in this task is comparable to the 

visually guided. 

 

 

Figure 3.3. Behavioral results under different paradigms for both monkeys. 

Top row contains data for monkey M and the bottom row contains data for monkey 

N. The performance of regular trials for each paradigm was significantly higher than 

the performance of the catch trials (t-test, p<0.05) and higher than the baseline level 

indicated by a horizontal bar. The data from each session is plotted on the right 

column. 
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3.3.1.5. Comparison of all paradigms 

 

 

Figure 3.4. Mean reward rate per session per monkey. 

The mean reward rate was always higher for regular trials than catch trials for 

both monkeys under all conditions (the Visually Guided paradigm did not have catch 

trials thus their data are not depicted in this figure). 

 No significant differences of time from the start of trial to reward were found 

based the starting point of the trial within a paradigm for neither monkeys (figure 3.6).    
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Figure 3.5. The effect of starting cursor position under different paradigms for both 

monkeys (errorbars represent s.t.d). 

 

 There was a significant difference of time to reach the target and hold the 

position for monkey M under different paradigms. The time was much longer under the 

Noisy Cursor paradigm (Figure 3.6). This was due to the exploratory behavior of the 

movement indicated by the increased number of target touches, cursor trajectory length, 

and movement direction changes. For monkey N, there was no significant difference of 

time to reach the target and hold the position under different paradigms but the data 

was more variable (Figure 3.6). 
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Figure 3.6. Average time to reach the target from the start of the trial under different 

paradigms for both monkeys. 

 

 

 

 

Table 3.1 Behavioral parameters of both subjects under different experimental 

paradigms. 

 

  Visually 

Guided 

Invisible 

Target 

Invisible  

Cursor 

Noisy 

Cursor 

Number of 

Target touch 

+ s.t.d. 

Monkey M 1.06 + 0.27 2.32 + 1.71 2.04 + 1.30 4.15 + 4.40 

Monkey N 1.50 + 0.88 1.72 + 1.21 2.40 + 2.29 2.55 + 2.22 
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Number of 

Cursor 

direction 

change 

+ s.t.d. 

Monkey M 1.05 + 0.62 2.79 + 2.35 2.06 + 1.76 6.08 + 5.4 

Monkey N 1.98 + 1.34 3.09 + 2.26 2.91 + 2.91 4.20 + 3.03 

Cursor 

trajectory 

length (cm) + 

s.t.d. 

Monkey M 9.67 + 2.09 54.19 + 12.60 31.99 + 8.08 147.00 + 

41.98 

Monkey N 18.12 + 9.96 39.22 + 2.55 33.14 + 1.58 85.06 + 3.96 

Average 

initial velocity 

peak (cm/s) + 

s.t.d. 

Monkey M 1.97 + 0.12 4.15 + 0.40 3.39 + 0.27 4.71 + 0.23  

Monkey N 2.58 + 0.18 2.05 + 0.14 2.20 + 0.13 3.44 + 0.73 

Time to 

movement 

initiation 

(s) 

Monkey M 0.28 + 0.01 0.19 + 0.04 0.26 + 0.05 0.34 + 0.11 

Monkey N 0.49 + 0.01 0.43 + 0.06 0.27 + 0.04 0.41 + 0.03 

 

3.3.2. Neuronal ensemble responses in absence of visual 
feedback  

3.3.2.1. Visually Guided paradigm 

PETHs aligned on peak velocity revealed clear modulation patterns in cortical 

neurons during the visually guided task for both monkey M (figure 3.7) and monkey N 

(figure 3.8). In monkey M, M1 and S1 neurons had similar modulation patterns, but M1 
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modulations led those in S1 for both leftward and rightward directions of movements 

(Table 3.2) as was evident from the analysis of the difference of maximum firing time. In 

monkey N, M1 and S1 had different firing patterns. While the majority of M1 neurons 

modulated, S1 neurons didn’t modulate significantly and those S1 neurons that did 

modulate were asynchronous with each other. Thus the difference between M1 and S1 

maximum peak time was not significant for movements to both leftward and rightward 

directions of movements.   

3.3.2.2. Invisible Target paradigm 

PETHs constructed for the invisible target task and aligned on peak were clearly 

different from similar PETHs for the visually guided task (Figures 3.7 and 3.8).  For 

monkey M, both M1 and S1 neurons modulated simultaneously as there was no 

significant difference in their maximum peak firing time for both leftward and 

rightward directions of movements (Table 3.2). The overall peak of velocity was higher 

than in the Visually Guided sessions (Table 3.1.) and the activity before and after the 

velocity peak was variable. For monkey N, there was more dispersion in timing of their 

peak firing rate (more in the leftward movement) and there was no significant difference 

between M1 and S1 maximum firing peak timing. There was an overall decrease of peak 

velocity compared to the Visually Guided sessions (Table 3.1).   
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3.3.2.3. Invisible Cursor paradigm 

PETHs constructed for the Invisible Cursor task and aligned on peak were 

different from the Invisible Target paradigm but comparable to the Visually Guided 

paradigm except that there was a slight increase activity of S1 before reaching their peak 

firing rate. For monkey M, modulations of M1 and S1 cells were synchronous thus no 

significant difference in maximum firing peak timing (table 3.2.) for both leftward and 

rightward movements.  The activity after the velocity peak was much less variable than 

the Invisible Target sessions as was the variability of position traces. The velocity peak 

was comparable to the Invisible Target sessions (Table 3.2). For monkey N, there was a 

significant difference of maximum firing peak timing for M1 and S1 (Table 3.2), S1 

maximum peak activity preceded M1 activity.  The peak of velocity was comparable to 

the Invisible Target sessions (Table 3.1) 

3.3.2.4. Invisible Cursor with bias (Noisy Cursor) paradigm 

PETHs constructed for the Noisy Cursor task and aligned on peak were different 

from the other paradigms. For both monkeys M1 cells modulated synchronously. For 

monkey M, S1 cells modulated synchronously while for monkey N S1 cells had more 

dispersion in timing of their peak firing rate. The criteria used for only analyzing 

velocity peaks <10 cm/s resulted in selection of <20% of total number of regular trials per 

session. For both monkeys, the maximum firing peak activity of S1 preceded M1 in a 
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statistically significant manner for both leftward and rightward movements. For both 

monkeys, there was an increase of velocity peak (Table 3.1) and an increased activity 

post velocity peak (Figure 3.8).   
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Figure 3.7. Population response of monkey M under different experimental 

paradigms. A. Averaged PETHs for M1 and S1 neurons aligned to the peak of velocity 

for each trial when the joystick movement was to the right.  B. Overlayed velocity 

traces of each trial when the joystick movement was to the right. C. Overlayed 

joystick position traces of each trial when the joystick movement was to the right. D. 

Averaged PETHs for M1 and S1 neurons aligned to the peak of velocity for each trial 

when the joystick movement was to the left.  E. Overlayed velocity traces of each trial 

when the joystick movement was to the left. F. Overlayed joystick position traces of 

each trial when the joystick movement was to the left. 
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Figure 3.8. Population response of monkey N under different experimental 

paradigms. A. Averaged PETHs for M1 and S1 neurons aligned to the peak of velocity 

for each trial when the joystick movement was to the right.  B. Overlayed velocity 

traces of each trial when the joystick movement was to the right. C. Overlayed 

joystick position traces of each trial when the joystick movement was to the right. D. 

Averaged PETHs for M1 and S1 neurons aligned to the peak of velocity for each trial 

when the joystick movement was to the left.  E. Overlayed velocity traces of each trial 

when the joystick movement was to the left. F. Overlayed joystick position traces of 

each trial when the joystick movement was to the left. 

 

The effect of ICMS on the normalized firing rate of the neuronal ensemble was 

analyzed (figure 3.9). During regular trials where ICMS was applied during the hold 

time (0.8-1.2 s), the normalized firing rate of the cells appear to be inhibitory by 

decreasing the firing rate compared to the rate during the reward period (figure 3.9A).   

However in a minority of cells, the effect seems excitatory. It is not clear the effect of 

ICMS on the cells during ICMS thus there was no analysis performed on data contained 

during ICMS.  

As expected, during catch trials when ICMS was not applied, there was no 

significant difference during the hold period and the reward period (figure 3.9B). 
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Figure 3.9. Population response to regular trials and catch trials. A. Averaged PETHs 

for M1 and S1 neurons aligned to the reward time for regular trials within a session. 

B. Averaged PETHs for M1 and S1 neurons aligned to the reward time for each catch 

trials within a session.   

 

 

Additional PETH analysis was performed. The normalization of firing rate was 

performed by subtracting the average binned firing rate of each cell from the start of the 

trial to the peak velocity (1s) to each bin and then dividing by the standard deviation of 

the same period from the start of the trial to the peak velocity. This analysis revealed no 

significant difference (figure 3.10) between using the period of 1s before and 1s after 

peak velocity as the average and standard deviation of normalization as performed for 

figures 3.7 and 3.8.  
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Figure 3.10. Averaged PETHs for M1 and S1 neurons aligned to the peak of velocity 

for each trial when the joystick movement was to the right with different 

normalization procedure for monkey M under two different paradigms. Same color 

scale as figures 3.7-3.9. 
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Table 3.2. Maximum peak detection for M1 and S1 cells (mean + s.t.d. in ms). The time 

was centered at the peak of velocity as in figures 3.8 and 3.9. 
   

 Monkey M Monkey N 

 M1 S1 M1 S1 

Visually Guided (R) -468 + 32 * -364 + 54 -192 + 29 -219 + 45 

Visually Guided (L) -441 + 38 * -299 + 39 -190 + 16 -218 + 57 

Invisible Target (R)     -526 + 74 -547 + 177 -234 + 16 -230 + 18 

Invisible Target (L) -509 +113 -537 + 64 -253 + 74 265 + 54 

Invisible Cursor (R) -461 + 78 -429 + 50 -190 + 24 * -220 + 21 

Invisible Cursor (L) -510 + 89 -670 + 173 -180 + 5 * -281 + 26 

Noisy Cursor (R) -386 + 120 * -449 + 140 -168 + 70 * -248 + 33 

Noisy Cursor (L) -461 + 93 * -499 + 104        -197 + 63 * -253 + 74 

 

 

3.3.3. Individual neuronal responses in the absence of visual 
feedback 

To compare the pattern of individual neurons across different sessions and 

experimental paradigms, stable neurons were analyzed. Stable neurons were 

determined as neurons that did not have significantly different intertrial spike interval 

(ISI) during the reward period from session to session (figure 3.9).    
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Figure 3.11. Example of probability distribution of ISI in neurons. A. Example 

of a neuron considered unstable (p<0.05 Kolmogorov-Smirnov test). B. A. Example of 

a neuron considered stable (p>0.05 Kolmogorov-Smirnov test). 

 

Decreased visual feedback of target and cursor affected the neuronal firing 

(Figures 3.10-3.12). The firing rate of cells modulated to different ranges of position and 

velocity under different paradigms. To illustrate this result, represented cells (two from 

monkey M, figure 3.10 and two from monkey N, figure 3.11) are presented.  

Under the Visually Guided paradigm where both the target and the cursor were 

visible, Cell 1 (figure 3.10 A) was strongly tuned to velocity of both directions. Under 

Invisible Target paradigm, strong velocity tuning still remained but the range of velocity 

for which the cell modulated its firing rate increased. Under the Invisible Cursor 

paradigm, the cell also had strong tuning to velocity but the range of both position and 

velocity were not significantly different from the Visually Guided paradigm.  
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The most dramatic change of tuning occurred under the Noisy Cursor paradigm. 

Tuning to velocity was strong and the range of velocity and position to which the cell 

modulated was much wider compared to the other paradigms. This trend can observed 

in the 3D tuning model (Figure 3.10 B) as the model curvature to velocity significantly 

decreased from the Visually Guided paradigm to Noisy Cursor paradigm. Tuning to 

position did not change significantly despite the increased range of cell modulation to 

position.  

Cell 2 of Figure 3.10 also had a significant change of tuning to both velocity and 

position.  Under the Visually Guided paradigm the cell was tuned to both directions of 

velocity and positions.  Under the Invisible Target paradigm, the cell was mostly tuned 

to the positive direction of velocity. In addition the range of velocity for which the cell 

modulated its firing rate also increased. Under Invisible Cursor paradigm the strong 

tuning to the positive direction of velocity remained while the range of velocity for 

which the cell modulated its firing rate was more comparable to the Visually Guided 

tuning. As in Cell 1, under the Noisy Cursor paradigm, the range of velocity and 

position for which the cell modulated its firing rate increased significantly compared to 

other paradigms. The cell was strongly tuned to velocity in the positive direction only.  

Cells of monkey N also had change of tuning under different experimental 

conditions. Cell 1 of figure 3.11 was tuned to both directions of velocity under the 
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Visually Guided paradigm. Under the Invisible Target paradigm there was no clear 

tuning to either position but there was a slight tuning to velocity. In addition, the range 

of position to which the cell modulated its firing rate was decreased. Under the Invisible 

Cursor there was clear tuning to velocity. Under the Noisy Cursor paradigm, as the cells 

of figure 3.11, the range of velocity and position for which the cell modulated its firing 

rate increased significantly. Tuning to velocity also remained strong. 

Cell 2 of figure 3.11 showed a strong tuning to velocity and position under the 

Visually Guided paradigm. Under the Invisible Target paradigm the cell was slightly 

tuned to velocity while the range of position for which the cell modulated its firing rate. 

Under the Invisible Cursor paradigm, the cell also had a slight tuning to velocity while 

the range of position and velocity for which the cell fired remained comparable to the 

Invisible Target paradigm. Under the Noisy Cursor paradigm, as in previous cells, the 

range of velocity and position for which the cell modulated its firing rate increased. 

Tuning to velocity became strong to both directions of velocity but not for position.   
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Figure 3.12. Individual cell tuning to velocity and position in monkey M. A. This cell 

exhibits different tuning width and intensity to both directions of velocity under 

different experimental paradigms. B. A regression 3D model fitted to match the data 

from A. C. This cell exhibits different tuning width and intensity to positive velocity 

under different experimental paradigms. D. A regression 3D model fitted to match the 

data from C. 
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Figure 3.13. Individual cell tuning to velocity and position in monkey N. A. This cell 

exhibits different tuning width and intensity to velocity under different experimental 

paradigms. B. A regression 3D model fitted to match the data from A. C. This cell 

exhibits different tuning width and intensity to positive velocity under different 

experimental paradigms. D. A regression 3D model fitted to match the data from C. 
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The change of tuning for velocity and position was further examined by aligning 

the normalized firing rate of each neuron to velocity and position for both monkeys 

(figure 3.12). There was a clear increase in the range of velocity for which cells 

modulated their firing rates from Visually Guided paradigm to Noisy Cursor paradigm 

while the normalized firing rates remain comparable for both monkeys. The ranges of 

velocity under Visually Guided paradigm were -4 to 8 cm/s for monkey M and -6 to 6 

cm/s for monkey M. The ranges under Noisy Cursor were -12 to 16 cm/s for both 

monkeys. When the normalized firing rate was aligned with position, the range for 

which the cells modulated their firing rates remained stable but the maximum and 

minimum velocities under Visually Guided, Invisible Target, and Invisible Cursor 

greatly decreased under Noisy Cursor paradigm for both monkeys.     
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Figure 3.15. Cell tuning to velocity and position under different experimental 

paradigms.  A. Overlayed cell tuning to velocity in monkey M. Each trace represents 

one cell. The tuning width widens significantly in noisy cursor paradigm compared to 

visually guided. B. Overlayed cell tuning to position in monkey M. C. Overlayed cell 

tuning to velocity in monkey N. Each trace represents one cell. The tuning width 

widens significantly in noisy cursor paradigm compared to visually guided.  D. 

Overlayed cell tuning to position in monkey N. 
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3.4. Discussion 

Here we show for the first time that ICMS can be used to detect a target. These 

results compliment previous results of using ICMS to provide sensorized 

neuroprosthetics (London, Jordan et al. 2008, O'Doherty, Lebedev et al. 2011, 

Venkatraman and Carmena 2011, Weber, London et al. 2011, O'Doherty, Lebedev et al. 

2012). This is a step closer to providing sensory feedback that can aid reaching 

movements for those suffering of diminished or lack of somatosensory feedback and 

alleviate phantom limb pain caused by somatosensory cortical reorganization as 

described in chapter 1.  

3.4.1. ICMS as artificial texture 

Active sensing has been a recent area of interest in the BMI field. Recent studies 

showed that active tactile exploration of virtual objects was possible in monkeys using 

ICMS of different frequencies to code for different identical-looking virtual objects and 

the monkeys are able to discriminate the correct virtual “texture” (O'Doherty, Lebedev 

et al. 2011, O'Doherty, Lebedev et al. 2012).  Venkatraman and Carmena (Venkatraman 

and Carmena 2011) also showed that rats could use their whiskers to detect a software-

defined target indicated by ICMS although not necessarily by active searching but by 

high frequency of whisker movement.  
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3.4.2. Reaching for an invisible target 

The Invisible Target paradigm forces the monkeys perform an exploratory 

movement rather than a goal-directed movement since the end-point is not visible.  If 

the target location is provided via visual feedback, then the information is first 

processed in the retina and there is a visuomotor transformation and the target is 

described in a retinotopic coordinates, while when the location of the target is provided 

purely by somatosensory feedback then the position of the target might be trunk-

referenced (Neggers and Bekkering 1999). The view of planning for movement based on 

the visual feedback of the target does not apply here but it is possible that the monkeys 

had a plan on how to perform an exploratory movement.  

 These ideas explain the different behavior under this paradigm compared to the 

Visually Guided paradigm when visual feedback of the target and cursor were 

provided. This task proved more difficult than the Visually Guided given the increased 

number of target touches, direction changes, and cursor trajectory length (Table 3.1). The 

increase of these variables were consistent with other tactile exploration strategy 

without visual feedback in which human subjects performed several back and forth 

right-left sweeping movements (Smith, Gosselin et al. 2002). However the time to 

movement initiation is less than in the Visually Guided paradigm possibly correlated to 

less planning of movement given the lack of visual feedback of the target. It is 
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conceivable that monkey M interpreted the appearance of the target as the go-signal in 

the Visually Guided task but in this paradigm the target was always invisible thus there 

was no particular cue to when to start the trial which led to the exploration behavior of 

starting the movement at the beginning of the trial.  

The size of the target has an impact on the trial duration again in accordance to 

human active tactile exploration task in which the time to find small target was 

significantly greater (Smith, Gosselin et al. 2002). In human experiments, higher force 

and slower speed are used when searching for smaller targets (Fitts 1954, Ifft, Lebedev et 

al. 2011) although this relationship was observed only in experiments with visual 

targets. 

3.4.3. Reaching with an invisible cursor and invisible cursor with bias 

During a reaching movement, subjects make a plan according to the location of 

the desired end point, e.g. a target, and the initial position of the arm by integrating 

visual and proprioceptive feedback from the body (Sober and Sabes 2003).   

A study has suggested that cursor feedback is more important than the target 

location to the visual representations within M1 especially when constant feedback is 

required for movement (Eisenberg, Shmuelof et al. 2011). They reasoned that in their 

reaching task in which human subjects were required to perform a center-out task with 

and without a 45 degree rotation of the cursor while the activity of M1 was monitored 
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through fMRI M1 activity had a visual component that was not present in other studies 

which contained a visual target.  The results of that study agrees with the results from 

the Noisy Cursor task in which more target touches, cursor direction changes and cursor 

trajectory length (Table 3.1) were needed to complete the Noisy Cursor paradigm 

compared to the Invisible Target paradigm.  

The high percentage of correct catch trials under the Invisible Cursor paradigm 

by monkey M could be due the strategy of relying on its well learned sense of joystick 

movement and cursor position which enabled it to estimate the approximate position of 

the invisible cursor. This strategy did not work under the Noisy Cursor task in which 

the mapping of joystick position to cursor position was altered at every single trial. 

Trained monkeys that received surgical deafferentiation of the limb can still perform the 

trained task of reaching to a target with just the visual feedback of target position even 

without visual feedback of the position of their arm but when their posture was changed 

by moving the shoulder and elbow, the deafferented monkeys could not perform the 

task (Polit and Bizzi 1979).  Deafferented monkeys also took longer time to reach the 

target (Taub, Goldberg et al. 1975). The results from the deafferented monkeys support 

our results of monkeys able to perform simple invisible end-effector tasks (Invisible 

Cursor) but when the task is slightly changed (Noisy Cursor) they have difficulty 

performing unless guided by an additional feedback such as ICMS.  
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3.4.4. Neuronal: ensemble 

 Given that the motor cortex changes behavior when visual information is 

modified (Eisenberg, Shmuelof et al. 2011) coupled with movement and it shows no 

response when the feedback is visual only it can be expected that when visual feedback 

of the target or the cursor disappear the pattern of neurons firing could be affected.   

When the target or the cursor becomes invisible, the cell changes its strategy and 

maybe optimize whether change in velocity or position is more important. 

It can hypothesized that the increased activity before movement onset in control 

of the neuronal ensemble is because when the target or the cursor are visible, the brain 

forms a plan to reach but when the target and the cursor are invisible the brain has to 

explore and search for the target, thus no clear initial plan of movement is formed. 

The timing of maximum peak of firing rate of S1 occurs before the timing of 

maximum peak of firing rate of M1 under the Noisy Cursor paradigm (Table 3.2) could 

be that during exploratory movement, movement planning is first dependent on sensory 

feedback. This is a different type of movement from visually cued experiments in which 

M1 neurons increase activity 60-80 ms before S1 neurons activity (Evarts 1972).    
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3.4.5. Neuronal: single neuron 

M1 cells represent multiple parameters such as muscles and movements (Kakei, 

Hoffman et al. 1999) and usually they represent the most relevant parameter during a 

particular task. Furthermore, M1 controls the muscle, direction of movement in space, 

and the direction of movement at the joints (Kakei, Hoffman et al. 1999) and are tuned to 

hand position, speed, direction of motion, and force (Paninski, Fellows et al. 2004) and 

individual cortical neurons can encode more than one of these parameters  (Ashe and 

Georgopoulos 1994, Sergio and Kalaska 1998, Carmena, Lebedev et al. 2003). Another 

subset is known to have limb-dependent preparatory activity by increasing activity 

before a flexion or extension regardless of the direction of the target (Alexander and 

Crutcher 1990, Shen and Alexander 1997) and complex neurons that respond to both. 

Tuning properties of neurons in M1 can change when perturbations are applied during 

reaching movements (Gandolfo, Li et al. 2000) or learning new visually guided 

movements (Paz, Boraud et al. 2003). The plasticity and tuning of cells have shown to 

change during BMI learning and control (Carmena, Lebedev et al. 2003, Lebedev, 

Carmena et al. 2005, Jarosiewicz, Chase et al. 2008, Koralek, Jin et al. 2012). 

In this chapter it is shown for the first time that M1 and S1 cells can also 

modulate the range of velocity for which they modulate their firing rate (Figure 3.12). 

This result suggests that the brain controls neuronal modulation. Each neuron has a 
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fixed firing modulation range and this range is modified to represent an important 

parameter, in this case, velocity, and the cell optimizes the firing modulation range to 

match the task. Other studies have shown that M1 neurons can be tuned to velocity and 

position or either and that velocity tuning can be temporary during pursuit task 

(Paninski, Fellows et al. 2004) and that M1 cells can be tuning to position only, velocity 

only, to both position and velocity, as well as to neither (Wang, Chan et al. 2007)showing 

the adaptability of M1 neurons.    

Moran and Schwartz (Moran and Schwartz 1999) reported that both speed and 

movement are continuously changing during reaching in a center-out task. Speed 

profiles for movements to the different targets were similar across targets although there 

was some variety within profiles reaching the same targets. Furthermore they found that 

the firing rate of the neurons increase with increase of speed to any direction but the 

amount of change is dependent of direction. Our result is due to the exploratory 

movement of our tasks thus even at different velocities the firing rate of the cells remain 

comparable.     

The results shown in this chapter demonstrate once again that cortical cells in 

particular M1 cells are very plastic to different parameters and provide evidence for 

optimal feedback control theory which describes the motor system as a stochastic 
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feedback controller that optimizes only those motor parameters that are necessary to 

achieve task goals (Lebedev, Carmena et al. 2005). 
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4. Decoding of movement parameters under different 
visual feedback conditions 

4.1. Introduction 

It has been more than ten years since the first BMI paper was published (Chapin, 

Moxon et al. 1999). Since then there has been many seminal BMI studies and there has 

been an interest in characterizing the neuronal behavior during BMI experiments. Most 

experiments report results from one experimental paradigm such as center out tasks or 

pursuit tasks. However as technical advances in the field are achieved as well as for 

clinical purposes it is necessary to learn how the neural ensemble behaves under several 

different conditions. The purpose of this chapter was to investigate the behavior of the 

neuronal ensemble and single neurons under four different experimental paradigms. 

BMI implant and recording techniques have improved dramatically by 

increasing the number of neurons to be recorded and by maintaining signal stability for 

longer periods, hopefully lasting a life-time. As the recording techniques and electrode 

designs have improved, so have the life of implants since one group has reported 

recording for seven years (Krüger, Caruana et al. 2010) and our lab has shown that 

signal quality in owl monkeys can easily remain stable for over five years (Fitzsimmons 

2009) and the subjects used for this dissertation have been implanted since 2009 and 

even currently they possess stable and reliable quality of cell recording. Given the 

longevity of implants in animal experimental subjects it is not unexpected for these 
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subjects to perform different kinds of experiments thus decreasing the number of 

animals needed to perform experimental tasks. Candidates for BMI implants will use 

variety of movements related to everyday life not just restricted currently found in BMI 

experiments. Thus as BMI research is advanced, more complex movement pattern and 

operations as well as the neuronal changes related to these paradigms should be 

studied.  

 

4.2. Methods 

4.2.1.  Wiener Filter 

To characterize the relationship between firing of individual neurons and their 

populations with movements, we used a linear decoding algorithm Wiener Filter; 

(Haykin 2005). The decoding for an individual neuron was represented by the equation: 

 ( )     ∑        (   )   
      ( )                                                         (4.1) 

where X(t) is the value of the decoded parameter (e.g., joystick position) at time t, 

n is the firing rate of the neuron, N is the number of taps, (   )  is the time delay for 

tap i,    is the weight at time tap i, b is the y-intercept, and   ( ) is the residual error. 

The model weights were calculated first by converting equation 4.1 into 

        (3)             (4.2) 
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Where X is the matrix of kinematics (position), N is the matrix of binned firing 

rate with taps, and   was the residual error. Then W can be solved using ridge 

regression  

  (        )
  

                  (4.3) 

where     is the ridge regression parameter and I is the identity matrix (Haykin 

2005). 

The decoding for neuronal populations was represented by the equation: 

 ( )     ∑ ∑          (   )   
   

 
      ( )         (4.4) 

where X(t) is the value of the decoded parameter (e.g., joystick position) at time t, 

n is the firing rate of the neuron, N is the number of taps, (   )  is the time delay for 

tap i,    is the weight at time tap i, b is the y-intercept, and   ( ) is the residual error. 

The model weights were calculated using equations 4.2 and 4.3 (Haykin 2005). 

The Wiener filter was trained using 80% of the session data to get the weights for 

the model and then the remaining 20% was used for analyze our prediction accuracy 

with five taps and a bin size of 100 ms. 

4.2.2. Signal-to-Noise Ratio and Correlation Coefficient 

Decoding accuracy was evaluated using two metrics. The signal to noise ratio 

(SNR) was calculated as:  

    (   ̂)            
    ( )

   ( ̂)
                                                                              (4.5) 
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where X is the actual parameter and  ̂ is the predicted value of that parameter. 

Var is the variance and mse is the mean squared error, that is mean squared difference 

between the actual and predicted parameter. 

 The decoding accuracy was also quantified as Pearson’s correlation 

coefficient (CC): 

   (   ̂)  
    (   ̂)

    ̂

                                                                                                     (4.6) 

where X is the actual data and  ̂ is the predicted data, cov is the covariance, and 

   is the standard deviation of X and   ̂ is the standard deviation of  ̂.  

4.2.3. Linear Discriminant Analysis 

To predict whether a trial was an attention trial or a non-attention trial, linear 

discriminant analysis (LDA (Fisher 1936) was performed per session.  An attention trial 

was considered as a trial in which the monkey tried to reach the target by moving the 

joystick and non-attention trial was considered as a trial a monkey was not paying 

attention to the task and didn’t even touch the joystick. 

 The firing rate of each neuron for 1.5s from the start of the trial was binned in 100 

ms bin per trial. Each trial was grouped into attention or non-attention trial. A 

multivariate normal density was fit for each group so the mean, the variance and the 

covariance were estimated. Then likelihood ratios using the training data are used to 

create boundary linear equation   

    ⃗⃗⃗     ⃗          (4.7) 
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where k represents a constant term,   ⃗⃗⃗   represents the observation set and  ⃗  is the weights 

assigned to each observation.  

If equation 4.7 was larger than zero  then that observation set was determined to 

be an attention trial and if  equation 4.7 was less than zero then that observation set was 

determined to be a non-attention trial (figure 4.1). Then the outcome of the classifier was 

compared to the actual outcome during experiments and their ratio was computed in 

percentage values. 80% of each type of trials was used for training sets and the reminder 

was used to verify the accuracy of the classifier. 

 For single neuron LDA, the training and the sample sets contained only the firing 

rates of that particular neuron while for ensemble LDA, the training and the sample sets 

contained the firing rates of all the neurons. 

 The accuracy of the classifier was cross-validated using the real group of the 

sample set.   
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Figure 4.1. Graphical example of trial type decoding using LDA. 

 

4.2.4.  Neuron dropping analysis 

Based on previous studies (Wessberg, Stambaugh et al. 2000, Carmena, Lebedev 

et al. 2003), the data from the entire ensemble was used to predict the joystick position. 

One neuron was randomly removed from the ensemble, then a new prediction was 

generated. This process was repeated 100 times.   
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4.3. Results 

4.3.1.  Correlation of single neuron decoding 

We investigated the decoding power of the neuronal ensemble and individual 

neurons under different conditions. We found that under the same experimental 

condition, the decoding correlation of each neuron of one session is strongly correlated 

to the decoding correlation of other sessions (Figures 4.1 and 4.2 top row). However 

under different experimental conditions, there is almost no correlation (Figures 4.1 and 

4.2 row row). 

 

 

Figure 4.2. Correlation of decoding SNR for joystick position of single neuron under 

different task conditions. 
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Figure 4.3. Correlation of decoding correlation coefficient (R) for joystick 

position of single neuron under different task conditions. 
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Figure 4.4. Example of decoding performance. The top row is a total ensemble of 81 

neurons decoding of position. The bottom row is decoding of position by one neuron. 

 

The decoding capability was much higher for the data for the entire ensemble 

was used (top row) versus the decoding of one single neuron (bottom row).  
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Figure 4.5. Average correlation of the decoding SNRs of single neurons of one 

session to the decoding SNRs of single neurons of another session. 

 

The correlation of the decoding SNRs of single neurons was the strongest when 

the sessions of the same paradigm were compared for both monkeys (Figure 4.4). This 

strong correlation among sessions for decoding was for joystick position and joystick 

velocity. There is a slight correlation between Invisible Target and Invisible Cursor. This 
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might be due to the fact that the Invisible Cursor sessions were recorded immediately 

after the Invisible Target sessions.  

 

Figure 4.6. Average correlation of the decoding correlation coefficients of 

single neurons of one session to the decoding correlation coefficients of single 

neurons of another session. 

 

Similarly, the correlation of the decoding correlation coefficients of single 

neurons was the strongest when the sessions of the same paradigm were compared for 
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both monkeys (Figure 4.5). This strong correlation among sessions was for decoding for 

joystick position and joystick velocity.   

The correlation of decoding SNR’s during learning sessions was much lower. The 

correlation of single neuron decoding SNR during training for the Invisible Target was 

0.22 dB for monkey M and monkey N. The correlation for neuron decoding SNR during 

learning the Invisible Cursor task was 11 % for monkey M.  
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4.3.2. Single neuron and ensemble decoding for position 

 

Figure 4.7. Single neuron decoding correlation under different experimental 

paradigms for both monkeys. 
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Some individual neurons contributed strongly to decoding only under certain 

paradigms, while some others have a strong decoding power under all conditions. In 

monkey M, an example of a neuron whose decoding correlation coefficient is task-

dependent is marked with an arrow in Figure 4.6. This neuron’s strongest decoding 

correlation coefficient is under the Noisy Cursor paradigm at 0.35, while under other 

conditions is 0.14, 0.14, and 0.18 for Visually Guided, Invisible Target, and Invisible 

Cursor respectively. An example of a neuron that has a stronger decoding correlation 

coefficient under all conditions is marked with an asterisk in Figure 4.6. In Monkey M, 

that neuron’s decoding correlation coefficient was 0.24, 0.33, 0.33, and 0.23 for Visually 

Guided, Invisible Target, Invisible Cursor, and Noisy Cursor respectively. In monkey N, 

an example of a neuron whose decoding correlation coefficient is task-dependent had 

the strongest value under the Invisible Target paradigm of 0.36 while under other 

conditions had a value of 0.04, 0.03, 0.10, under Visually Guided, Invisible Cursor, and 

Noisy Cursor respectively. An example of non-tasks dependent neuron is marked with a 

asterisk and had the decoding correlation coefficient of 0.32, 0.06, 0.12, and 0.24 under 

Visually Guided, Invisible Target, Invisible Cursor, and Noisy Cursor respectively.   
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Figure 4.8. Decoding of position by the total neuronal ensemble, by M1 

neurons only, and by S1 neurons only under different experimental paradigms for 

both monkeys. 

 

Predictive power of position was always greater when more of the entire 

neuronal ensemble was used to train the decoding filter. Decoding using just M1 

neurons yielded comparable decoding power but it was less than the decoding of using 

the entire ensemble. Predictive power using just S1 neurons resulted in the least 

decoding power under all paradigms and for both monkeys.  
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Figure 4.9. Decoding performance of cursor position vs. joystick position for all 

sessions under different experimental paradigm for both monkeys.  Each trace 

represents one session. 

 

Due to the large ensembles, similar decoding was achieved for different 

paradigms (Figure 4.8). However under the Noisy Cursor paradigm, decoding for 

joystick position resulted in higher decoding SNR than decoding for cursor position.  
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Figure 4.10. Neuron-dropping curves of monkeys M and N under different 

paradigms for both monkeys. Top row shows R of prediction and bottom row shows 

SNR of prediction. 

 

As the number of contributing neurons increased, whether it had a very low 

single contribution, as an ensemble the prediction of position improved. This increasing 

trend is consistent with both R and SNR metrics.  
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4.3.3. Single neuron decoding and population decoding for trial type 
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Figure 4.11. Prediction of attention trials vs. non-attention trials under an 

average of all conditions and under Invisible Target, Invisible Cursor, and Noisy 

Cursor paradigms for both monkeys. The solid horizontal bar represents accuracy of 

prediction using the neuronal ensemble. The dashed horizontal bar represents the 

baseline probability of accuracy of prediction. 
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Using LDA, non-attention trials in which the monkey didn’t move the joystick 

and did not participate in the task and attention trials in which the monkey performed 

the trial were predicted.  Most single neurons’ decoding are above chance and several 

perform the decoding to the level of the neuronal ensemble accuracy. However, similar 

to the decoding for positive case, the neurons that have the highest decoding power vary 

from condition to condition.  

At first it may appear that some single neurons have better predictive power 

than the ensemble. However these neurons have strong predictive power only under 

specific conditions. For example, in monkey M, the neuron indicated by an arrow in 

Figure 4.10 has a decoding accuracy of 89% under the Noisy Cursor condition greater 

than the accuracy of prediction by the ensemble of 83 + 1 %. However this neuron gives 

a lower accuracy than the neuronal ensemble in all other conditions (77%, 72%, 69% in 

overall average, Invisible Target, and Invisible Cursor respectively). Similarly, in 

monkey N, the neuron indicated by an arrow in Figure 4.10 has a decoding accuracy of 

84 % under the Invisible Target paradigm which is higher than the one given by the 

ensemble (73 + 10%). However the same neuron underperforms the neuronal ensemble 

under all other paradigms (66 %, 63%, and 63% in overall average, Invisible Cursor, and 

Noisy Cursor respectively). These results suggest that the predictive power of an entire 
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neuronal ensemble is more reliable than the prediction of one single neuron under 

general conditions.   

 

4.4. Discussion 

The results from this chapter show for the first time how decoding of movement 

of single neurons and population of neurons can vary under different visual feedback 

and ICMS paradigms because neurons contribute differently to decoding depending on 

the feedback condition and the variable that it decodes. They also show that some single 

neuron decoding might appear to be as powerful as the decoding given by an ensemble 

of multiple neurons, but the ensemble’s performance is superior overall. 

4.4.1. Decoding under different paradigms 

The possibility that the decoding differences in single neurons and ensemble 

observed in my results was due to the inherent variability of neurons was considered 

but discarded. Although some variability of neurons is expected (Carmena, Lebedev et 

al. 2003, Carmena, Lebedev et al. 2005, Suner, Fellows et al. 2005, Chestek, Batista et al. 

2007, Chestek, Gilja et al. 2011) and change of preferred direction (PD) is also expected 

(Carmena, Lebedev et al. 2003, Carmena, Lebedev et al. 2005, Chestek, Batista et al. 2007) 

overall neurons have been shown to maintain good quality and high SNR during 

recording sessions spanning 61-210 days (Suner, Fellows et al. 2005).  Chestek  found 
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that the change in firing rate, PD change, and contribution of single neurons to 

kinematic decoding remain very stable over time and even in a long experimental 

session lasting over 6 hours (Chestek, Batista et al. 2007). Furthermore the contribution 

of a single neuron decoding stays very stable over time as measured by the correlation 

coefficient between the predicted and the actually kinematic parameter of the actual 

data.  

Given that neurons of monkey in M1 change tuning properties during learning 

to reach in different environments and maintain that change after learning (Gandolfo, Li 

et al. 2000, Zach, Inbar et al. 2008) the results of my experiments are likely due to 

adjusting to a new experimental condition when the visual feedback was modified and 

ICMS was added.  

It has also been shown that an ensemble of motor cortex neurons for prosthetic 

control can remain stable across time once it has been formed and consolidated through 

overtraining (Suner, Fellows et al. 2005, Ganguly and Carmena 2009). A neuronal unit is 

considered stable if its firing properties does not significantly change from day to day 

(Ganguly and Carmena 2009).  Waveform shapes have been shown to vary between 

days suggesting different neuronal population recorded (Suner, Fellows et al. 2005) 

although a stable population tends to maintain a similar waveform shapes (Ganguly and 

Carmena 2009) and if the probability distribution of the interspike interval (ISI) 
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throughout sessions (Dickey, Suminski et al. 2009, Ganguly and Carmena 2009). Once 

the ensemble is stable, it would be expected that the tuning properties of the units and 

its contribution to the decoder to remain stable. Ganguly and Carmena found that the 

tuning properties of the units remain stable in an ensemble of 15 units and that the 

ensemble achieved high performance with a fixed decoder after several sessions 

(Ganguly and Carmena 2009).    

My subjects were implanted over four years ago thus any variability associated 

with initial implant surgery issues such as edema and necrosis (Polikov, Tresco et al. 

2005) can be discarded. Intra-day signal instabilities which affect decoding performance 

(Perge, Homer et al. 2013) have been reported. However, their observed instability 

might be due to the data being from early post-implantation in which the acute and 

initial chronic response to the presence of electrodes is still expected (Polikov, Tresco et 

al. 2005) although it isn’t specified whether the data collected was from early days. It 

could also be that during a “learning” period of cursor control there might not be 

stability and the neuronal population ensemble has not consolidated.  Their findings are 

useful nonetheless since they point out that the change of waveform shape might make a 

particular unit not cross the firing threshold thus affecting the performance of the 

decoder, which is dependent on the number of units and the firing rate of those units, 

although there was a study suggesting that spiking sort does not improve decoder 
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performance (Fraser, Chase et al. 2009). Also firing rate of a neuron might be dependent 

on the attention that the subject is paying to the task as the state of attention or 

inattention indicated by moving the joystick (Figure 4.13) can be reliably predicted. My 

data does not suggest intra-day instability and only neurons that have been shown to be 

stable were analyzed.  

M1 has better predictive power than S1. That is not surprising given that the 

activity of S1 was very variable (chapter 3).  However the combination of both neuronal 

ensembles gives a superior decoding performance than each ensemble alone suggesting 

that both ensembles carry movement-related information content (Figure 4.7). 

The performance of the decoder can be affected by the parameter being decoded 

as suggested by the significant difference between cursor position decoding and joystick 

position decoding under the Noisy Cursor paradigm (Figure 4.8).  This difference might 

be especially significant under this paradigm because the sense of cursor position was 

uncoupled from the joystick position due to the invisible initial cursor bias and that the 

monkeys were more certain of the joystick position that the cursor.  

4.4.2.  Single neuron vs. population decoding 

This finding is in accordance with other studies which also show that the 

decoding power of single neurons is very weak compared to the decoding power of an 

entire ensemble (Wessberg, Stambaugh et al. 2000, Carmena, Lebedev et al. 2003, 
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Carmena, Lebedev et al. 2005) and that contribution of single neuron to position, 

velocity and gripping force are different (Carmena, Lebedev et al. 2003). However it 

hasn’t been studied whether the same neurons contribute equally to decoding of 

parameters that are useful during BMI control such as position. 

However, studying single neuron decoding can yield an important insight if the 

goal of the study is to examine a specific cell type under different conditions.  
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5. Discussion 

5.1. ICMS 

This dissertation presents ICMS as a possible solution to delivering 

somatosensation that can act alone without the need of other sensory modalities. 

However there remain many issues that need to be solved before ICMS can be clinically 

relevant such as the use of ICMS for continuous feedback. 

I tried delivering spatial sense to monkeys by using different ICMS frequencies 

(figure 5.1) but failed. Although several experiments have shown that rat, monkeys, and 

humans can discriminate ICMS frequencies (Romo, Hernández et al. 1998, Fitzsimmons, 

Drake et al. 2007, O'Doherty, Lebedev et al. 2011), my experiments using four different 

frequencies to signal their position failed because either of the two monkeys, who 

learned the experiments from the previous chapter, never became proficient in this task.  

 
 

Figure 5.1. Schematic of invisible cursor with continuous ICMS task. A. When the 

trial starts the target was visible and the cursor was invisible. Initial cursor position 

changed in every trial with a spatial bias. B. ICMS was delivered throughout the 

entire trial depending on the position of the cursor. If the cursor was in the first area, 

an ICMS of 25 Hz was delivered. C. Once the cursor was in the target, the ICMS 



 

105 

 

corresponding to the area was delivered. If the cursor remained in the target for a pre-

determined time (0.8-1.4 s) then reward in form of juice was delivered. 

 

Different parameters of ICMS and experimental parameters were changed to 

train the subjects to learn the task. I used different frequency parameters (25, 50, 75, 100 

Hz) as well as 10, 20, 40, 80, Hz. Four different pairs of stimulating electrodes with 

different RF areas were also used. I also added visual feedback (bars and color and 

intensity) per different stimulation frequency area. The target duration and target size 

were increased. But even after 6 months of training neither monkeys had learned the 

task. 

 There are several possibilities of why this experiment did not work. 1) The 

monkeys were overtrained to only detect the onset of detect and they were not 

accustomed to continuous ICMS. 2) The transition from one frequency to the next was 

too fast. 3) ICMS should be delivered to areas with very different RF and even different 

parts of the body such as from hand, forearm, and shoulder 4) More complex patterns of 

ICMS frequency that increases gradually to one direction but decreases to another could 

be used. Overall, my negative results suggest that more complex sensory feedback 

might need more complex ICMS patterns.  

 Another important yet unsolved issue in the field of ICMS research is the 

“sensation” that the subjects feel when ICMS is applied initially and in a chronic matter. 
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It is impossible to know what the monkeys felt but what is clear is that ICMS produces a 

sensation whether artificial or natural and that they can use this sensation as a source of 

information to detect that the cursor is inside the target without any additional 

information.   

 For the tasks in this dissertation, the arm representation area of S1 was used for 

ICMS application in monkey M and the leg representation of area S1 was used for 

monkey N. These locations were chosen based on the area in each monkey that 

presented the strongest receptive fields. There was no significant difference in ICMS 

efficacy in terms of sessions that each monkey required for learning the tasks and the 

ICMS parameters (amplitude, frequency and duration). This is possibly due to the fact 

that the sensation given by ICMS was strong enough to be detectable during the task 

once they were accustomed.   

 ICMS produces artifacts during recording (Heffer and Fallon 2008). Thus for the 

data shown in this dissertation data from periods that contain ICMS application was not 

analyzed. However, despite the artifacts created by ICMS, ICMS is very useful as 

monkeys in this dissertation learned the tasks and it is still a viable option for sensory 

BMIs because it has been shown that blacking of neuronal data of up to 10 ms after 

stimulation that contain potential artifact has no significant difference on position 

decoding accuracy (O'Doherty, Lebedev et al. 2012) 
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5.2. BMI recording 

In the future more neurons from different cortical and deeper structures of the 

primate brain should be recorded. The Nicolelis lab reported recordings from 1874 

neurons from S1 and M1 of monkeys in 2013. The motor and the sensory systems 

involve many different structures of the brain and I predict that simultaneous recording 

of neurons from all different areas will provide better decoding of movement 

parameters and will also serve as a valuable tool to study the motor and the sensory 

system.  

5.3. BMI for humans 

For patients with severe SCI, locked-in syndrome, and patients without any 

residual limb control or complete sensory denervation, invasive BMIs could be an only 

solution. Furthermore invasive BMIs utilize the brain directly to extract and to implant 

information which leads to the possibility of a seamless integration in the future.  

Peripheral prosthetics have the advantage of being less invasive but they will always 

have the disadvantage of interfering with the current use of a particular limb. For 

example, providing vibration as sensation of movement of a prosthetic arm to the elbow 

will always interface with the natural sensory sensation of the elbow.  

However, for invasive BMIs to be as common as pacemakers, first of all the long 

term effects of BMI arrays should be examined. The longest recording that has been 
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reported was seven years (Krüger, Caruana et al. 2010) however in a human an implant 

should guarantee a lifetime efficiency especially since implants in the brain pose great 

risks when they are attempted to be removed.  Maybe to alleviate the acute and chronic 

effects of the implants mentioned in Chapter 2 neurotrophic factors used in some 

implants (Kennedy and Bakay 1998) could be considered.  

Another important issue that needs to be solved is that the BMI system should be 

small, wireless, and power-efficient so it could ideally fit under the patient’s scalp. 

Exposed headcaps can be susceptible to infections and greater risk of being broken.  

I believe if these issues are solved BMIs could become as common of DBS 

systems and pacemakers. In the future, somatosensory feedback will be as essential as 

the haptic feedback provided in smartphones nowadays. The patient will be able to 

voluntarily switch the feedback on and off or set it on an “automatic” mode such the 

somatosensory feedback is provided when the light conditions prevents visual feedback 

or a fine motor control is needed.  
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