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Abstract 

Project 1: Physics characterization of TLD-600 and TLD-700 

Purpose: 

It is suggested that a pair of TLD-600 and TLD-700 can measure the exposure in 

neutron-photon mix fields. However the basic information of physics characterization of 

TLD-600 and 700 is not available. The purpose of this work was to study the individual 

TLD variation and the energy dependence of TLD-600 and TLD-700.  

Methods: 

The individual calibration factors for 52 TLD-600 chips and 51 TLD-700 chips 

were determined under x-ray beams of 60 kVp, 80 kVp, 120 kVp, a mono-energetic 662 

keV gamma beam of a Cs-137 source, and an Am-Be neutron beam (4.4 MeV). The 

individual calibration factor was calculated as the ratio of the group average response in 

μC/mR and the individual response inμC/mR. In addition, energy corrections factors for 

the individual calibration factors were determined, from each of the x-ray beams (60 

kVp, 80 kVp and 120 kVp) to the 662 keV Cs-137 gamma beams. 

Results: 

For TLD-600, the range and relative standard deviation of the individual 

calibration factors are: 60 kVp (0.94003-1.0927, 3.5369%), 80 kVp (0.9395-1.0867, 3.0952%), 

120 kVp (0.83403-1.0796, 4.5732%), 662 keV (0.80465-1.1926, 9.2515%  ), AmBe (0.91740-
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0.94905, 3.0882% ); and the energy corrections factors relative to the 662 keV Cs-137 

beams are: 1.2223 (60kVp), 1.1013 (80kVp), 1.0299 (120kVp). 

For TLD-700 the range and relative standard deviation of the individual 

calibration factors are: 60 kVp (0.94351-1.0630, 2.6044%), 80 kVp (0.91690-1.0614, 

2.6996%), 120 kVp (0.95697-1.0474, 2.3606%), 662 keV (0.91348-1.2270 , 4.2243%), AmBe 

(0.79330-1.2268 , 9.1577%); and the energy corrections factors relative to the 662 keV Cs-

137 beams are: 1.0373 (60kVp), 0.97661 (60kVp), 0.88532 (60kVp). 

Conclusion: 

We have measured individual calibration factors and the average energy 

correction factors for photon beams and Am-Be neutron beams. Our results will be used 

in the future experiments and measurements with TLD-600 and TLD-700. 

Project 2: Acceptance testing of new X-RAD 160 Biological X-Ray Irradiator 

Purpose: 

An X-RAD 160 Biological X-Ray Irradiator was recently installed at Duke 

University to serve as a key device for cellular radiobiology research. The purpose of 

this study is to perform acceptance testing on the new irradiator for operator radiation 

safety and irradiation specifications.   

 Methods: 

The acceptance testing included the following tests: (1) Leakage radiation survey, 

(2) Half-value layer (beam quality), (3) Uniformity, (4) KVp accuracy, (5) Exposure at 
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varying mA (linearity of mA), (6) Exposure at varying kVp, (7) Inverse square 

measurements, (8) Field size measurement, and (9) Exposure constancy.   

The irradiation parameters for the first round of acceptance testing performed on 

September 21, 2012 were: Leakage radiation survey (none, 160 kVp, 18 mA, 200s), Beam 

quality (40cm, 50-140 kVp in 10 kVp incensement, 1 mA, 10s, none), Uniformity (40cm, 

160 kVp, 18 mA, 15s, F1), KVp accuracy (40cm, 50-150 kVp in 10 kVp incensement, 10 

mA, 15s, none), Linearity of mA (40cm, 160 kVp, 2-18 mA, 15s, none), Inverse square 

measurements (20-63cm, 160 kVp, 1mA, 30s, none), Field size measurement (40cm, 160 

kVp, 10 mA, 15s, none), and Exposure constancy (40cm, 160 kVp, 18 mA, 20s, none).   

The irradiation parameters for the second round of acceptance testing performed 

on November 18, 2012 were: Beam quality (40cm, 35-150 kVp, 1 mA, 10s, F1) , KVp 

accuracy (40cm, 35-150 kVp, 1 mA, 10s, F1), Variation of kVp (40cm, 160 kVp, 18 mA, 30s, 

F1), Linearity of mA (40cm, 160 kVp, 1-18 mA, 30s, F1), Uniformity (40cm, 160 kVp, 18 

mA, 30s, F1), and Inverse square measurements (20-63cm, 160 kVp, 18 mA, 30s, F1). 

Results:                              

The first round of acceptance testing performed on September 21, 2012 failed due 

to the fact that the measured exposure along the X-axis was significantly non-uniform; 

the exposure greatly decreases going in the left direction, which is a clear indication of 

un-corrected anode heel effect. After the X-ray tube was returned to the manufacturer, 

the beam was reconfigured by tilting the X-ray tube. Another round of acceptance 
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testing was performed on December 18, 2012. The results of second round of acceptance 

testing showed there was no radiation hazard for the researcher surrounding the new X-

RAD 160 Biological X-Ray Irradiator and the machine had a uniform and consistent 

beam. 

Conclusion: 

The acceptance testing fulfilled the initial purpose. A major problem was found 

and corrected. The machine is currently used normally in the following experiments; 

routine maintenance and quality assurance (QA) are required.  
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1. Introduction  

1.1 Overview 

There are two research projects related to radiation dosimetry discussed 

respectively in this thesis: 1) Physics characterization of TLD-600 and TLD-700 and 2) 

Physics characterization of a new orthovoltage X-ray irradiator. 

Radiation dosimetry is the process of measuring and analyzing the radiation 

dose to the medium [1].   

In this section, basic quantities and units in radiation dosimetry; the basic 

principles of radiation detectors used in the studies in this thesis will be discussed.  

1.2 Basic Quantities and Units in radiation Dosimetry 

Several basic quantities and units of radiation dosimetry are introduced in this 

section. These Quantities include exposure, absorbed dose, and the f-factor.  

Exposure, X is defined as the total charge liberated per unit mass in a small volume of 

air of mass by photon beams less than about 3MeV. The unit is coulomb per kilogram 

(C/kg) or roentgen [1]. 

                                                              𝑋 =
𝑄

𝑚
                                                                  1-1 

Absorbed Dose, D is defined as the energy deposited per unit mass from any kind of 

ionizing radiation in absorber medium [1]. 

                                                             𝑋 =
dε

dm
                                                                 1-2 
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where dε is energy absorbed by ionizing radiation to material, m is a finite mass. The 

unit of absorbed dose is Gray (Gy) (SI) or rad (old). 

The f-factor is a unit used to convert exposure in air to absorbed dose in a 

material.  

                                                𝑓 = 0.87
(

𝜇𝑒𝑛
𝜌

)
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

(
𝜇𝑒𝑛

𝜌
)

𝑎𝑖𝑟

 𝑟𝑎𝑑                                               1-3 

where quantity(
𝜇𝑒𝑛

𝜌
)

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
 is called the mass absorption attenuation coefficient of the 

material of choice, (
𝜇𝑒𝑛

𝜌
)

𝑎𝑖𝑟
  is the mass absorption attenuation coefficient of air, and f is 

the f-fator[1]. 

1.3 Ionization Chamber 

Due to the low cost, relative energy independence and simplicity in usage, the 

ionization chamber is the most widely used radiation detectors in performing 

measurement of the ionizing radiation. 

A schematic diagram of ionization chamber is shown in Figure 1.1. When 

radiation passes through the medium (gaseous, solid, or liquid, most often gaseous), it 

produces ion pairs in the medium. The positive ions and negative electrons then move 

to the cathode and anode, respectively. An electrometer can detect the ionization current 

created by this process. The accumulated charge is proportional to the total number of 

ion pairs generated by the radiation, and hence proportional to the radiation dose.  
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Figure 1.1: Schematic diagram of ionization chamber 

In the two studies in this thesis, a 6cc ionization chamber (10x5-6, Radcal, 

Monrovia, CA) and a 0.18 cc ionization chamber (10x5-0.18, Radcal, Monrovia, CA) were 

used. They were calibrated with a NIST traceable source and standard calibrated photon 

beams at the University of Wisconsin on August 4st, 2011 and August 11st, 2012, 

respectively. 

1.4 Thermoluminescent Dosimeter (TLD) 

The TLD is another type of radiation dosimeter used for measuring the ionizing 

radiation in monitoring and research field. Lithium fluoride with impurities is the most 

common crystal lattice of TLD used for recording the gamma and neutron exposure. 

TLDs are tissue equivalent and reusable [1]. 

As shown in Figure 1.2, when ionizing radiation interacts with the TLD, it 

deposits all or part of the energy in the material. Some of the atoms in the TLD can 
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produce free electrons from the valence band and holes which are areas that lack 

electrons after absorbing enough energy. The impurities in the crystal lattice can trap the 

free electrons and lock them in the crystal. The crystal structure release the trapped the 

electrons after being heated to a certain temperature. The released electrons return to the 

valance band, releasing the energy receiving from the ionization as photons.  Holes can 

also produce photons in an analogous process.  The photons can be counted by using a 

photomultiplier tube. The total number of the photons detected is proportional to the 

number of trapped electrons and holes, and hence is proportional to ionizing radiation 

as well [2]. 

In this work, TLD-600 and TLD-700 were used. Both TLD-600 and TLD-700 are 

made of lithium fluoride (LiF) which represents a tissue equivalent material [3]. The 

effective Z is 8.2 for both TLD-600 and TLD-700 [3]. Both types of TLDs can measure 

from 10 µGy to 100Gy [3]. The difference between TLD-600 and TLD-700 is the 

proportion of Li-6 and Li-7 in the LiF material. While TLD-600 is made up of 95.62% of 

6LiF which has a large cross section for neutron and 4.38% of 7LiF, TLD-700 is made up 

of 0.007% of 6LiF and 99.993% of 7LiF [3].TLD-600 can measure the photon beams and 

thermal neutron beams due to the 942 barn (or 9.42x10-26 m2) cross section of the 

6Li(n,α)3H reaction which means the probability of interaction between the neutron and 

the absorber is very high.  However TLD-700 can only detect the photon beam in the low 

and intermediate energy range [3].  
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Figure 1.2: An energy level diagram illustrating the principle of TLD  

1.5 Piranha Detector  

The Piranha detector (RTI Electronics, Fairfield, NJ) used for X-ray QA, can 

measure the X-ray beam quality for various energies in air. It has a sensitive detector 

equipped with Bluetooth, and a range of approximately 100 meters free in air [4]. It can 

be used for the measurement of the half value layer (HVL), time, total filtration, and kVp 

[4]. In addition, it can measure at low signal levels which are an advantage for this 

project due to the shielding of the cabinet. The result can instantly be shown in either a 

PC or specific browser software after each exposure [4].  
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A Piranha detector placed on the shelf is shown in Figure 1.3.  

 

Figure 1.3: Piranha detector in X-ray beam 

1.6 Geiger Muller Counter  

The Geiger Muller Counter is a gas-filled radiation counter that can indicate the 

presence of ionizing particles. The principle of Geiger Muller Counter is similarly to the 

ion chamber except the voltage carried on the detectors [1].  Geiger Muller Counter 

cannot identify the type or energy of ionizing radiation and is usually used as a means 

of determining the presence of radioactivity due to the high sensitivity to ionizing 

radiation [1]. 

1.7 Radiochromic films 

The radiochromic films (Gafchromic®  EBT 2, International Specialty Products, 

Wayne, New Jersey) are used as one type of radiation dosimeter for industrial and 
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medical applications. Radiochromic film consists of a single or double layer of radiation- 

sensitive organic microcrystal monomers [5]. When radiation interacts with the film, the 

color of the radiochromic films turns to a shade of blue [5]. The darkness of the film 

increases with increasing absorbed dose. The major advantages of radiochromic films 

are no processing is required to develop or fix the image and high resolution [5]. 
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2. Physics characterization of TLD-600 and TLD-700 with 
photon and neutron beams 

2.1 Introduction  

The purpose of this work was to study the individual TLD variation and the 

energy dependence of TLD-600 and TLD-700. The ultimate goal was to test the 

feasibility of quantifying gamma and neutron radiations using TLD-600 and TLD-700 at 

Triangle Universities Nuclear Laboratory (TUNL), Duke University.  

It is suggested that a pair of TLD-600 and TLD-700 can measure the exposure in 

neutron-photon mix fields [6]. Once the basic information of physics characterization of 

TLD-600 and TLD-700 is determined.  

Three accelerator facilities are operated in TUNL for nuclear physics research: 

the High Intensity Gamma-Ray Source (HIGS), the Tandem Accelerator Laboratory and 

the Laboratory for Experimental Nuclear Astrophysics. Two primary photon beams are 

available in HIGS: a photon beam with energies from 2 to 60 MeV and an optical beam 

of wavelength from infrared (IR) to Vacuum Ultraviolet (VUV) [7]. A neutron time-of-

flight target room is located in the Tandem Accelerator Laboratory. The energies of 

neutron beam produced in neutron time-of-flight target room are 8-14 MeV [8].  

Currently, neutron radiation is monitored by white Polyethylene “Rem Balls” which 

simulate a human body’s response to neutrons with BF3 tubes inside and gamma 

radiation is monitored by small Tan Metal Boxes Mounted on the walls which contain a 
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Geiger Muller Tube [5]. It will be beneficial to have additional detectors to monitor the 

radiation dose at these facilities  

TLDs in general have individual various responses. For example, the responses 

of 52 chips of TLD-700 might be not same to 60 kVp photon beams. In addition, the 

energy responses of TLDs to various photon energies for same amount of radiation 

might be different. Both characteristics are important to obtain a consistent and accurate 

measurement.  

This study would provide the physics characterization of TLD-600 and TLD-700 

for the future experiments and measurements in TUNL.  

2.2 Materials and Methods 

2.2.1 TLD-600 and TLD-700 and Calibration with Ionization Chamber 

2.2.1.1 TLD-600 and TLD-700 

In this study, 52 chips of TLD-600 and 51 chips of TLD-700 from Thermo 

Scientific Corporation (Hampton, New Hampshire) were used. Each TLD was assigned 

a unique number that was used in all the studies.  Both TLD-600 and TLD-700 chips 

numbered 1-50 were kept in two holders. TLD-600 chips numbered 51 and 52 and TLD-

700 chip number 51 were held in three separated containers which were marked with 

the corresponding number and type. The dimension of TLD chips was 0.3175 cm x 

0.3175 cm x 0.0889 cm [3].  Some TLD chips in a holder and separated containers are 

displayed in Figure 2.1 and Figure 2.2.  

http://en.wikipedia.org/wiki/Hampton,_New_Hampshire
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Figure 2.1: Containers for keeping TLDs. 

 

Figure 2.2: TLDs in a holder 

2.2.1.2 Calibration of TLD-600 and TLD-700 

A 6cc ionization chamber (10x5-6, Radcal, Monrovia, CA) calibrated by 

University of Wisconsin on August 4st, 2011 was used to calibrate the 52 chips of TLD-

600 and 51 chips of TLD-700. A Plexiglas frame was fabricated for placement of 

ionization chamber and TLDs. The dimension of the frame was 20cm long, 20 cm wide 

and 2cm high. There is a 3.2 cm diameter semicircular hole in the middle of one side of 

the frame which is for the placement of ionization chamber. The chamber then was 
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surrounded by 50 0.5cm diameter holes for TLDs placement (Figure 2.3). Because the 

number of holes is less than the total number of TLDs for TLD-600 and TLD-700, TLD-

600 and TLD-700 were irradiated three times. The placement of irradiation for extra 

TLDs was shown in Figure 2.4. The reason that these locations were chosen was that 

they were closer to the ionization chamber than other locations. Each TLD was placed in 

the hole in order corresponding to the number assigned. 

 

Figure 2.3: TLDs and ionization chamber in Plexiglas frame 
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Figure 2.4: The placement of irradiation of extra TLDs.  

2.2.1.3 Annealing and reading process for TLD-600 and TLD-700 

Before the first and after each use, TLDs must be annealed to release electrons 

that may still be trapped in electron traps. The TLDs were placed in an aluminum tray 

used for annealing and the number of each chips was recorded, see Figure 2.5. Figure 2.6 

shows one Radiation Products Design TLD Annealing Furnace (Model No. 168-001). 

This is done to erase TLD dose memory and prepare them for subsequent irradiation. 

Per manufacturer recommendation, the standard annealing procedure of LiF:Mg,Ti 

material (TLD-100, TLD-600, TLD-700) is a two temperature process. It is performed 

using two separate ovens with each oven set to one of the two temperatures. The first 

step is 400°C for one hour; after cooling down, the second step is 100°C for two hours [3]. 
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Figure 2.5: Aluminum tray used for annealing TLDs 

 

Figure 2.6: A picture of TLD Annealing Furnace 

After exposing the TLDs to radiation, a resting period of 24 hours is be required 

to stabilize prior to reading [9]. Harshaw Model 5500 Automatic TLD Reader (Figure 2.7) 

from Thermo Scientific Corporation with WinREMSTM ( Figure 2.8) software was used to 

read the TLDs. For different types of TLDs, there are different variations required when 

reading the TLDs. The key difference is the Time-Temperature Profile (TTP) in this 
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software. According to the manufacturer, the TTPs vary different types of TLDs. The 

TTP settings for TLD-600 and TLD-700 are listed in Appendix A provided by Thermo 

Scientific Inc [10]. The procedure of reading TLDs is shown in Appendix B.  

 

Figure 2.7: Harshaw Model 5500 Automatic TLD Reader 

 

Figure 2.8: The interface of WinREMS  
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2.2.2 X-RAD 320 Biological X-Ray Irradiator and Radiation Parameters 

The X-RAD 320 Biological X-Ray Irradiator (Precision X-RAY) in Genome Science 

Research Building II (GSRB II), Duke University was studied. The x-ray tube of this 

irradiator is displayed in Figure 2.9. The X-ray tube has a single source and it can 

produce a rectangular beam. The beam energies are from 5 to 320 kVp and the field sizes 

from 0 x 0 to 20 x 20 cm2. Two types of removable filter: F1 (2 mm Aluminum) and F4 

(0.1mm Cu + 2.5 mm Al) can be used in this machine [11]. The result of added filtration 

is to increase effective energy and reduce the intensity of x-ray.  In this study F4 filter 

was used, because of its lower exposure rate than that of the F1 filter, and hence a longer 

radiation time leading to a more precise dose measurement. 

 

Figure 2.9: The X-ray tube of irradiator 

In this project, TLDs were irradiated at approximately100mR exposure level with 

60 kVp, 80 kVp and 120 kVp X-ray beams. Radiation parameters for each energy are 

displayed in Table 2.1. 



 

16 

Table 2.1: X-ray radiation parameters 

kVp Height (cm) mA Filter Time (s) 

60 70 1 F4 28 

80 70 0.5 F4 20 

120 70 0.25 F4 15 

2.2.3 Cs-137 Irradiator and Radiation Parameters 

A Cs-137 calibration source was used to produce the 662 keV photon beams. The 

calibration source is located in Klystron Shack Storage #1, Free Electron Laser 

Laboratory (FELL) at Duke University. Figure 2.10 is an overview of the calibration 

source. Two sources can be used in this unit: 137 Cs Source 1 with a 30 mCi activity and a 

8.53 mR/hr dose rate at 1 meter distance on Aug. 01, 2012; 137 Cs Source 2 with a 4 Ci 

activity and a 1031.2 mR/hr dose rate at 1 meter distance on August 01, 2012. 

 

Figure 2.10: The Cs-137 Irradiator  

In this project, source 2 was used to irradiate the TLDs. A Plexiglas cover (20cm x 

20 cm x 1mm) and base were used to fix the TLDs and ionization chamber for calibration. 
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Each TLD was placed in the holder in corresponding order. The film was placed behind 

the Plexiglas frame to determine the field of view. A 0.18cc ionization chamber (10x5-

0.18, Radcal, Monrovia, CA) calibrated by University of Wisconsin on August 11 2012 

was used to measure the direct exposure of Cs-137 (Figure 2.9).  

 

Figure 2.11: TLDs, film and ionization chamber with Plexiglas frame 

TLDs were irradiated using the parameters in Table 2.2. The height in Table 2.2 

was the distance between the center level of ionization chamber and table in Figure 2.11. 

Table 2.2: Cs-137 Irradiator radiation parameters 

Height (inch) Distance (cm) Time (s) 

10 50 95 

2.2.4 Am-Be neutron source and Radiation Parameters 

A NIST traceable (NIST Test #273951, Service ID: 44010C) neutron calibration 

source-Am-Be source was used to calibrate neutron monitors and detectors at Triangle 
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Universities Nuclear Laboratory (TUNL), Duke University. The emission-rate of the 

source in August 03, 2007 was 1.233 x 106 n/sec. The half-life and average energy of this 

source are 458 years and 4.4 MeV neutrons, respectively. The source can provide a 

constant level of neutron flux from the source over approximately 20 years [12]. The 

Am-Be source also emits 60 keV photons (36% branching ratio) and 14 keV photons (42% 

branching ratio) [13].  

A new Plexiglas frame was fabricated for both TLD-600 and TLD-700 placements 

(Figure 2.12). The dimension of the frame was 20 cm long, 20 cm wide and 2 cm high. 

There were 120 square holes with dimension 3.5 mm x 3.5 mm x 1 mm in the middle of 

one side of the frame for the placement of TLDs. 

 

Figure 2.12: TLDs and film badge in Plexiglas frame 

Radiation parameters are displayed in Table 2.3 
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Table 2.3: Am-Be neutron radiation parameters 

Distance (cm) Dose rate (mrem/hr) Time (min) 

50 45.12 133 

2.2.5 Individual calibration factor and Average energy correction 
Factor 

An individual calibration factor was defined as: 

Individual calibration factor =  
The average TLD exposure

Individual TLD exposure reading
                                      2-1 

The average exposure of TLD-600 and TLD-700 were calculated respectively 

from the raw reading. 

The average energy correction factor of TLD at photon energy E is defined as 

Average energy correction Factor =  
Average corrected TLD responseE

Average corrected TLD response662 keV
                   2-2 

2.3 Results and Discussion 

2.3.1 Physics characterization of TLD-600 and TLD-700 with photon 
beams 

The measured individual calibration factors of TLD-600 and TLD-700 for 60 kVp, 

80 kVp, 120 kVp and 662 keV are listed in Appendix C and Appendix D, respectively.  

The distribution of calibration factors of TLD-600 and TLD-700 for 60 kVp, 80 

kVp, 120 kVp and 662 keV are displayed in Figure 2.13-2.20. From the figures, the TLD 

response display variances at different energies, therefore individual calibration factors 

were recommended at each energy level. One possible explanation would be the 
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electronic configuration for one TLD is different compared to the others’.  The electronic 

configuration in valence band is subdivided into vibrational states of the molecule; 

thence the energy gaps between the conduction band and valence band are different [1]. 

This causes the energies of TL photons to be different. It is shown that the distribution of 

calibration factors of TLD-600 and TLD-700 for all the energies approximately follow the 

same trend. The reason for this phenomenon is the energy gap between the conduction 

band and valence band is kept same for the individual TLD with various radiation 

energies [1]. 

 

Figure 2.13: The distribution of calibration factors of TLD-600 for 60 kVp 

photon beams 
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Figure 2.14: The distribution of calibration factors of TLD-600 for 80 kVp 

photon beams 

 

Figure 2.15: The distribution of calibration factors of TLD-600 for 120 kVp 

photon beams 
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Figure 2.16: The distribution of calibration factors of TLD-600 for 662 keV 

photon beams  

 

Figure 2.17: The distribution of calibration factors of TLD-700 for 60 kVp 

photon beams 
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Figure 2.18: The distribution of calibration factors of TLD-700 for 80 kVp 

photon beams 

 

Figure 2.19: The distribution of calibration factors of TLD-700 for 120 kVp 

photon beams 
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Figure 2.20: The distribution of calibration factors of TLD-700 for 662 keV 

photon beams 

In the figure 2.20, the response of last chip was abnormal compared to others. 

Each time only 50 chips could be irradiated and read, so last one chip was separated 

from other 50 chips. If all the chips could be irradiated and read at same time, the results 

should be similar. It also could be due to the placement, different beam exposure for the 

two irradiation and difference in manufacture.  

The measured average energy correction factors of TLD-600 and TLD-700 for 60 

kVp, 80 kVp, 120 kVp and 662 keV with respect to 662 keV are listed in Table 2.4.  

Table 2.4: The average energy correction factors of TLD-600 and TLD-700 for 60 

kVp, 80 kVp, 120 kVp and 662 keV to 662 keV photon beams 

Energy TLD-700 TLD-600  

60 kVp 1.0373 1.2223 

80 kVp 0.9766 1.1013 

120 kVp 0.8853 1.0299 

662 keV  1 1 
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The average energy correction factors for these four energy photon beam ranged 

from 0.817 to 0.999 for TLD-600 and from 0.8 to 0.937 for TLD-700 would explain the 

energy dependence TLDs have.  

At the increased energy, the average energy correction factors decreased for 

TLD-600 and TLD-700. A potential possibility would be due to more and more electrons 

in higher vibrational ground states are free by ionizing process that only the electrons in 

lowest vibrational state is left to be excited. Another possible reason would be the 

dominance of the photoelectric effect for lower energy radiation that would produces a 

larger thermoluminescent yield.  

Table 2.5: The average response of TLD-600 and TLD-700 for 60 kVp, 80 kVp, 

120 kVp and 662 keV to 662 keV photon beams 

Energy TLD-700 (nc/mR) STDEV (nc/mR) TLD-600 (nc/mR) STDEV (nc/mR) 

60 kVp 0.0937 0.0035 0.0999 0.0024 

80 kVp 0.0882 0.0028 0.0900 0.0024 

120 kVp 0.0800 0.0041 0.0842 0.0019 

662 keV  0.0904 0.0079 0.0817 0.0035 

The measured average response of TLD-600 and TLD-700 for 60 kVp, 80 kVp, 120 

kVp and 662 keV are listed in Table 2.5. It can be seen that the average response of TLD-

600 and TLD-700 are different for each energy level. The average response of TLD-600 is 

larger than that of TLD-700 for each energy level except for the 662 keV energy photon 

beam. The possible reason would be due to the energy gaps between the valence band 

and conduction band for TLD-600 is larger than that of TLD-700.  Another possibility 

would be the excited energy from the traps for TLD-700 is closer to the edge of the band 
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gap which the electron could return to the conduction band easier during the 24 hours 

prior to reading.  

Figure 2.21 displays the response for different energies of LiF based TLD relative 

to Cs-137 and J E Ngaile et al. characterized the LiF TLD-100s using 40, 60, 80, 100, 120 

and 150kVp X-ray [14], The results in this study is similar to J E Ngaile’s result.  

 

Figure 2.21: The response of LiF based TLDs relative to Cs-137 

2.3.2 Physics characterization of TLD-600 and TLD-700 with neutron 
beams 

The measured individual calibration factors of TLD-600 for Am-Be neutron 

beams are listed in Appendix E.  
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Figure 2.22: The distribution calibration factors of TLD-600 for Am-Be neutron 

beams 

The distribution of calibration factors of the 51 TLD-600 chips for Am-Be neutron 

beams are displayed in Figure 2.22.   

The measured individual calibration factors of TLD-700 for Am-Be neutron 

beams are listed in Appendix F.  
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Figure 2.23: The distribution calibration factors of TLD-700 for Am-Be neutron 

beams 

The distribution of calibration factors of TLD-700 for Am-Be neutron beams are 

displayed in Figure 2.23. Because the TLD-700 can only measure photon beam and the 

photon energies include several energy levels, the individual response pattern of 

calibration factors for the Am-Be neutron beams is completely different from that for 60 

kVp, 80 kVp, 120 kVp and 662 keV  photon beams by comparing Figure 2.23 to Figure 

2.17- 2.20. 

During the analysis, it was noted some TLD reading were abnormally higher 

than the others.  After exposing 60 kVp X-ray beams, TLD-600 were read firstly. It was 

found that the response of the initial 5 chips of TLD-600 after warming up the machine 

was much greater than others. It was possible that the reader was not fully warmed it up 

and has been recommended that 30 chips of TLD-100s were read prior to reading any 

exposed TLDs. After the dummy chips were read, the TLD-600 and TLD-700 results 
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came out consistent without high variation.  Therefore, after this finding, the TLDs were 

re-exposed to various energies and followed this procedure to obtain more accurate 

results. 

2.3.3 General discussion 

As the energy of photon beams approaches 662Kev, the average energy 

correction factor approaches one. For all energy after 662 Kev, the energy correction 

factor is one. The energy of the photon beams in TUNL ranges from 2 to 60 MeV. 

Therefore, for TUNL environmental monitoring, it is suggested that individual 

calibration factors from the 662 keV photon beams is applied to TLD-700. For TLD-600, 

the individual calibration factors only obtained from 4.4 MeV neutron beams. The 

energy of neutron beam produced in the TUNL ranges from 8 to 14 MeV. Therefore, to 

achieve the goal of TUNL environmental monitoring, the next step is to study the 

individual various responses and the energy responses of TLD-600 by irradiating the 

TLD-600 using 8-14 MeV neutron beams. 

2.4 Conclusion 

We have measured individual calibration factors and the average energy 

correction factors for photon beams and Am-Be neutron beams. Our results will be used 

in the future experiments and measurements with TLD-600 and TLD-700. 
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3. Acceptance testing of new X-RAD 160 Biological X-
Ray Irradiator 

3.1 Introduction 

A new X-RAD 160 Biological X-ray irradiator (Figure 3.1) was purchased from 

Precision X-ray Inc. (North Branford, CT) and installed in Levine Science Research 

Center (LSRC) at Duke University. The general application of this machine is for cellular 

radiobiology research, with the specific application being cell and molecular biology 

experiments.  

This will describes the acceptance test procedures employed for the irradiator. 

Acceptance testing is extremely important, because it ensures that all researchers can 

work safely while doing experiments with the machine and that the irradiation 

specifications are sufficient for quality research. 

 For diagnostic or therapeutic X-ray equipment, well defined protocol or 

procedures are available for acceptance testing, e.g. AAPM Report No. 14 [15].  

For this project, the specifications were not available and therefore the 

components or the acceptance in this study were determined based on the actual 

application of this system, e.g. leakage radiation survey, the tests of tube current 

linearity (linearity of mA), kVp accuracy, field size measurements, beam quality, 

exposure consistency and field uniformity, etc. 

The leakage radiation survey can check if leakage radiation is present. The test of 

linearity of mA is measure the radiation exposure at various mA to check whether the 
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machine can produce a constant radiation output, linearity with tube current is expected 

[15]. The kVp accuracy is most critical because a small error of kVp would have a greater 

effect on the dosimetric experiments than any other parameters [15]. The field size is 

measured by determining the effective radiation field size at a certain distance between 

the radiation source and detector [15]. The test of beam quality is to measure the half 

value layer (HVL), which means to test the penetrability of the beam when no energy 

spectrum of x-ray beam is known [15].  Exposure consistency tests whether the radiation 

exposure is precisely the same if any or all of the radiation parameters are changed and 

then returned to the previous value [15]. The test of field uniformity is to measure 

whether the intensity of the beam in a horizontal plane is uniform [15]. 

Mohaupt et al performed the acceptance testing using a 60 kVp X-ray irradiator 

[16]. This acceptance testing of this project applied some methods from Mohaupt’s study.  
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Figure 3.1: One example of biological X-Ray irradiator 

3.2 Material and Methods  

3.2.1 X-RAD 160 Biological X-Ray Irradiator  

             The X-ray irradiator includes of an X-ray tube, a cooling unit and a shielded 

cabinet. It can be operated at voltages of 5-160 kVp in 0.1 kVp increments and currents 

of 0.1-18 mA in increments of 0.01 mA [17]. The exposure time can be set from 1 to 9999 

seconds [17]. Water cooling allows the tube to be operated continuously. A 45 degree 

angle in the tungsten target was used to minimize anode heel effects [17]. An inherent 

filtration of 0.8mm of beryllium (Be) was used for beam hardening [17].  

The control panel is a multi-user, password protected touchable graphical 

interface. It can show and save all exposure parameters and data can be transportable. 

The programmable exposure settings allow for fast and repeated exposure setup [17]. 
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The dimensions of the cabinet are 42 cm x 42.75 cm x 55 cm (Figure 3.2). The 

shielded cabinet consists of an adjustable specimen shelf ranged from 0-48 cm from the 

source to the shelf, sample viewing window and beam hardening filter station.  

Aluminum (Al) filters were added the exit port of the Be window to increase the 

effective energy of the X-ray beam by removing many of the low-energy X -rays. A filter 

of 2 mm thick Al was used for all dosimetric measurements [17]. 

 

Figure 3.2: The cabinet of the irradiator 

A safety light is turned on at the head of the irradiator when the machine is on to 

alert occupants in the room that x-ray are being produced. When the cabinet door is 

open during X-ray generation, the beam is turned off automatically by an interlock 

mechanism [17]. 
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3.2.2 Components 

3.2.2.1 Acceptance testing on September 21, 2012 

3.2.2.1.1 Leakage Radiation Safety Survey 

When the irradiator was on at maximum power (160 kVp, 18mA, 200s) , the 

Radiation surveys were taken at the exterior surface of the irradiator using the Victoreen 

451 survey meter (Serial # 3516 Cal Due: 11/01/2011). The exposure rate was recorded in 

µR/hr. 

3.2.2.1.2 Beam Quality  

The distance between the detector and the source was 40 cm. The Half Value 

Layer (HVL) was measured without filter at several kVps and 1 mA. 

3.2.2.1.3 KVp accuracy 

The distance between the source and the Piranha, the time and the tube current 

maintained at 40 cm, 15s and 10mA without filter, respectively. The kVp was recorded 

from 50 kVp to 150 kVp in 10 kVp incensement using the Piranha. Then the irradiator 

kVp was compared to the kVp measure by the Piranha to check the kVp accuracy. 

3.2.2.1.4 Linearity of mA 

The distance between the source and the chamber was 40 cm without filter. The 

peak tube voltage and time were maintained at 160 kVp and 15 Secs. The exposure of the 

irradiator was read in R by the ionization chamber as the tube current varied from 2 mA 

to 18mA.  
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3.2.2.1.5 Exposure Consistency 

The distance between the source and the ionization chamber was 40 cm without 

filter. The peak tube voltage, tube current, and time was maintained at 160 kVp, 18 mA, 

and 20s, respectively.  A series of three exposures of the irradiator of at the same setting 

was read in R by the ionization chamber. 

3.2.2.1.6 Field Size Measurements 

The peak tube voltage, tube current, and time was set to 160 kVp, 10 mA, and 15s, 

respectively. The effective field size at a distance 40 cm between the source and the film 

with filter 1 was measured using film. 

3.2.2.1.7 Beam Uniformity in the X-Y Plane 

The exposure of the irradiator recorded in R was measured at a 40cm distance 

between the source and shelf in the horizontal plane with the ionization chamber and 

without a filter. The peak tube voltage, tube current, and time was set to 160 kVp, 18 mA, 

and 15s, respectively. Along the geometrical center, the output was measured toward 

the x and y directions. 

3.2.2.1.8 Inverse Square Measurements 

The peak tube voltage, tube current and time was set to 160 kVp, 1 mA, and 30s, 

respectively. The exposure of the irradiator was read in R by the ionization chamber 

with increasing distance between the source and shelf was measured without filtration. 

3.2.2.2 Acceptance testing on November 18, 2012 
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3.2.2.2.1 Beam Quality  

The distance between the detector and the source was 40 cm. The Half Value 

Layer (HVL) was measured with F1 filter at several tube currents and tube voltages.  

3.2.2.2.2 KVp accuracy 

The distance between the source and the Piranha, the time and the tube current 

maintained at 40 cm15s and 1mA with F1 filter, respectively [21]. The kVp was recorded 

after one shot from35 kVp to 150 kVp using the Piranha. The actual kVp was compared 

to the kVp recorded by the Piranha to check the kVp accuracy. 

3.2.2.2.3 Variation of kVp 

The distance between the source and the ionization chamber was 40 cm with 

filter 1 in-place. The time and tube current were set at 30s and 18mA, respectively. The 

exposure of the irradiator was read in R by the ionization chamber with the varying tube 

voltages. 

3.2.2.2.4 Linearity of mA 

The distance between the source and the chamber was 40 cm with F1 filter in-

place. The peak tube voltage and time were maintained at 160 kVp and 30s. The 

exposure of the irradiator was read in R by the ionization chamber as the tube current 

varied from 1 mA to 18mA.  

3.2.2.2.5 Beam Uniformity in the X-Y Plane 

The exposure of the irradiator recorded in R was measured at a 40cm distance 

between the source and shelf in the horizontal plane with the ionization chamber and F1 
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filter in-place. The peak tube voltage, tube current, and time was set to 160 kVp, 18 mA, 

and 30s, respectively. Along the geometrical center, the output was measured toward 

the x and y directions. Film was used to verify the uniformity of the irradiator. 

3.2.2.2.6 Inverse Square Measurements 

The peak tube voltage, tube current and time was set to 160 kVp, 18 mA, and 

30s, respectively. The exposure of the irradiator was read in R by the ionization chamber 

with increasing distance between the source and shelf was measured without filtration. 

3.3 Results and Discussion  

There were two tests and maintenance tasks in between the two dates. 

3.3.1 Acceptance testing on September 21, 2012 

3.3.1.1 Leakage Radiation Safety Survey 

The results showed there was no additional radiation exposure due to leakage of 

the beam, and all exposure readings were found to be at background level. The radiation 

survey data is in Appendix G. 

3.3.1.2 Beam Quality 

Table 3.1 shows beam quality data. As the peak tube voltage increases, the HVL 

increases. 
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Table 3.1: Parameters of Beam Quality 

SID(cm) kVp mA Filter TF(mm) HVL(mm) 

40 50 1 None 1 1.07 

40 60 1 None 1 1.28 

40 70 1 None 1 1.50 

40 80 1 None 1 1.76 

40 90 1 None 1 2.06 

40 100 1 None 1 2.35 

40 110 1 None 1 2.67 

40 120 1 None 1 3.00 

40 130 1 None 1 3.42 

40 140 1 None 1 3.81 

40 150 1 None 1 - 

3.3.1.3 KVp accuracy 

Table 3.2 shows the reading of Piranha with the varying tube voltage. The 

differences between the kVp of the irradiator and the kVp of reading ranged from 0.0667% 

to 1.860%. The error in  kVp was found to be less than 2% for all kVp settings. 

Table 3.2: The kVp accuracy 

kVp Reading-kVp Difference 

50 50.93 1.9% 

60 60.89 1.5% 

70 70.69 0.99% 

80 80.82 1.0% 

90 91.29 1.4% 

100 100.8 0.80% 

110 110.4 0.36% 

120 119.8 0.17% 

130 131.1 0.85% 

140 141.1 0.786% 

150 150.1 0.0667% 
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3.3.1.4 Linearity of mA 

Figure 3.3 displays the response of the ionization chamber as the tube current 

varied. The results show the linearity of the X-ray output fulfills the agreement over the 

entire range of tube current.  

 

Figure 3.3: Linearity of X-ray output with tube current 

3.3.1.5 Exposure Consistency  

 Table 3.3 shows response of the ionization chamber of a series of three exposures 

at the same setting.  The differences between the individual exposure and the average 

exposure ranged from -0.18 to 0.10%.  
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Table 3.3 Exposure Consistency  

 

 

3.3.1.6 Field Size Measurements  

Figure 3.4 displays the effective field size, which was a circular with a 12 cm 

diameter. 

 

Figure 3.4: The field size of the irradiator at 40 cm 

3.3.1.7 Beam Uniformity in the X-Y Plane 

Figure 3.5 and 3.6 display exposure distribution along the field of view in x-

direction and y-direction, respectively. The geometrical center of the X-ray beam was the 

same as the center of the field. 

No. Exposure (R) 
Difference 

From Average 

1 529.61 0.10% 

2 529.51 0.08% 

3 528.17 0.18% 

Average 529.09 
 

STDEV 0.8059  
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Figure 3.5: Field uniformity measurement at x-direction 

 

Figure 3.6: Field uniformity measurement at y direction 

Figure 3.5 shows that the x-axis reading was not uniform. Since the measured 

exposure along the X-axis is from speaking in very non-uniform and the exposure 
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effect was present. Consequently, for any dosimetric validation we could not use this 

machine because common 6-well cell plates cannot be under uniform exposure. The unit 

failed this component of the acceptance testing, and was returned to the vendor for 

modifications. Recommendations have been made by staff and students of the DRDL to 

the vendor about the potential design flaw of the x-ray tube positioning. 

3.3.1.8 Inverse Square Measurements 

Figure 3.7 shows the relationship between the source-detector distance and 

measured exposure. The data in Figure 3.9 were fitted with a power function, as shown.  

 

Figure 3.7: Radiation output measurements of Inverse Square Law 

3.3.2 Acceptance testing on November 18, 2012 after remodeling 

The X-ray tube was returned to the manufacturer, who reconfigured the beam by 

tilting the X-ray tube which is shown is Figure 3.8. The holder of the X-ray tube was to 
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remove the gap between X-ray tube and base. Once the tube was returned, another 

round of acceptance testing was performed on November 18, 2012. 

   

Figure 3.8: The scheme of the X-ray tube after fixing 

3.3.2.1 Beam Quality 

Table 3.4 shows beam quality at several kVps. As the peak tube voltage increases, 

the HVL increases.  

Table 3.4: Parameters of Beam Quality 

SID(cm) kVp mA Filter TF (mm) HVL (mm) 

40 35 1 F1 - - 

40 50 1 F1 1.8 1.46 

40 70 1 F1 1.6 1.86 

40 90 1 F1 1.4 2.36 

40 120 1 F1 1.4 3.40 

40 140 1 F1 1.2 4.02 

40 150 1 F1 1.2 - 

X-ray tube 
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3.3.2.2 KVp accuracy 

Table 3.5 shows the reading of Piranha with the varying tube voltage. The 

differences between the kVp of the irradiator and the kVp of reading ranged from 0.43% 

to 2.1%. The error in kVp was found to be less than 2.1% for all kVp settings. 

Table 3.5: The kVp accuracy 

kVp Reading kVp Difference 

35 35.74 2.1% 

50 50.81 1.6% 

70 70.3 0.43% 

90 90.85 0.94% 

120 119.1 0.75% 

140 141.6 1.1% 

150 151.1 0.73% 

 

3.3.2.3 Variation of kVp 

Figure 3.9 shows the response of the ionization chamber with the varying tube 

voltage. Power function curves were used to compare the data in Figure 3.11, as shown. 

The power function correlation coefficient was greater than 0.998. 
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Figure 3.9: X-ray output as a function of tube voltage 

3.3.2.4 Linearity of mA 

Figure 3.10 displays the response of the ionization chamber as the tube current 

varied. The results show the linearity of the X-ray output fulfills the agreement over the 

entire range of tube current.  
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Figure 3.10: Linearity of X-ray output with tube current 

3.3.2.5 Beam Uniformity in the X-Y Plane 

Figure 3.11 and 3.12 display exposure distribution along the field of view in x-

direction and y-direction, respectively.  The geometrical center of the X-ray beam was 

same as the center of the field. 

Figure 3.13, 3.14 and 3.15 were obtained from the film. Compared to Figure 3.5 

and 3.6 the new data shows that the beams were uniform.  
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Figure 3.11: Field uniformity measurement in x-direction 

 

 

Figure 3.12 Field uniformity measurements in y-direction 
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Figure 3.13: Film of field uniformity measurement  

 

 Figure 3.14: Line Profile from uniformity measurement in x-direction 
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Figure 3.15: Line Profile from uniformity measurement in y-direction 

3.3.2.6 Inverse Square Measurements 

Figure 3.16 shows the relationship between the source-detector distance and 

measured output of the ionization chamber. The data in Figure 3.18 were fitted with a 

power function, as shown.  
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Figure 3.16: Radiation output measurements of Inverse Square Law 

 

3.3.3 General discussion 

The purpose of the acceptance testing was completed by these tests, but several 

limitations were available in the testing: (1) in the measurement of uniformity, the 

exposure was measured in only two axes. The exposure was also measured in the four 

quadrants. But the anode heel effect was the most important problem and was found 

and addressed. (2) In the test of kVp accuracy, due to the Piranha’s limited measuring 

range in kVp (35 – 155 kVp)and machine, only several kVps was measured. But the 

numbers of kVps were enough to check the kVp accuracy.   
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The acceptance testing was the first round of benchmark that various geometric 

setups for cellular radiological research would be performed with the data from the 

acceptance testing.  The passing of the acceptance is only the initial part of our quality 

assurance (QA) program, routine maintenance and QA measurements are required in 

the future. In addition, the training of operators is equally important to ensure the 

correct operation procedures are followed.  

3.4 Conclusion 

The first round of acceptance testing performed on September 21, 2012 failed 

because the measured exposure along the X-axis was significantly non-uniform. After 

the X-ray tube was returned to the manufacturer, the beam was reconfigured by tilting 

the X-ray tube and another round of acceptance testing was performed on December 18, 

2012. The results of second round of acceptance testing showed there was no radiation 

hazard for the researcher surrounding the new X-RAD 160 Biological X-Ray Irradiator 

and the machine had a uniform and consistent beam. The data established baseline 

values for the parameters for future QA program. In the following research, routine 

maintenance and quality QA are required.  
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Appendix A 

Table Appendix: The TTP for TLD-600 and TLD-700 [10] 

TLD Preheat 

Temp 

(0C) 

Preheat 

Time 

(Sec.) 

Acquisition 

Rate 

(0C/Sec.) 

Acquisition 

Max Temp 

(0C) 

Acquisition 

Time 

(Sec.) 

Anneal 

Temp 

(0C) 

Anneal 

Time 

(Sec.) 

600 50 0 15 300 20 300 0 

700 50 0 15 300 20 300 0 
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Appendix B 

1. Turn of the nitrogen tank 

2. Switch on TLD Reader via switch 

3. Allow TLD Reader to warm up for 45 minutes 

4. Connect TLD Reader USB to USB port of laptop 

5. Power on laptop 

6. Launch the TLD Reader program “WinREMS” 

7. Click File and select “1 Reader. wrw” as your workspace                                                                                                                                             

8. Click TTP on the toolbar to set up the TTP for each type of TLDs and save the TTP with a 

unique title.  
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9. Chose the TTP established in step 8 for corresponding TLDs that will be read in TTP columns.  

 

10. Load TLDs in disk holder 

11. Press GO to read TLDs 

12. Click RSP to access data 

13. Export as ASCII file: File/export/filename/export 

14. Enter data of reading on envelope 

15. Turn off nitrogen tan 
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Appendix C 

TLD 

ID 
 Calibration Factor TLD 

ID 
 Calibration Factor 

60 

kVp 

80 

kVp 

120 

kVp 

662 

keV 

60 

kVp 

80 

kVp 

120 

kVp 

662 

keV 

1 1.058 1.005 0.915 0.983 27 0.990 1.007 0.988 1.040 

2 1.017 0.948 0.891 1.013 28 0.945 0.987 1.005 1.046 

3 0.995 0.979 0.834 1.086 29 0.976 1.001 1.014 1.075 

4 0.941 0.973 0.950 0.805 30 1.008 1.007 0.997 1.116 

5 0.975 0.991 0.939 0.896 31 0.962 0.939 0.990 1.003 

6 0.941 0.949 0.945 0.971 32 1.001 1.012 1.028 1.061 

7 0.993 0.987 0.985 0.903 33 0.996 1.030 1.029 1.051 

8 0.982 1.000 0.966 1.000 34 1.013 1.009 1.001 0.881 

9 1.009 1.010 0.965 0.959 35 0.990 0.997 1.008 0.813 

10 1.053 1.052 0.951 1.109 36 1.004 1.011 1.017 0.934 

11 1.016 1.034 1.014 1.089 37 1.057 1.020 1.037 0.980 

12 1.024 0.995 1.030 1.032 38 1.039 1.019 1.040 0.883 

13 1.093 1.034 1.013 1.073 39 1.067 1.059 1.074 0.992 

14 1.018 1.011 1.012 0.942 40 0.983 0.980 0.990 0.886 

15 0.940 0.947 0.978 0.930 41 1.011 1.003 1.013 0.868 

16 1.019 1.003 1.009 1.073 42 0.993 0.972 1.000 1.037 

17 0.961 1.002 1.015 1.030 43 1.007 0.983 1.028 0.951 

18 0.958 0.964 1.022 0.913 44 0.987 0.991 1.051 0.988 

19 1.031 1.028 1.051 1.139 45 1.018 1.028 1.033 0.984 

20 0.982 0.960 1.051 1.018 46 0.976 0.995 1.035 1.015 

21 1.036 1.024 1.008 0.837 47 0.973 1.025 1.065 1.166 

22 0.990 0.990 0.965 0.995 48 1.018 0.992 1.034 1.158 

23 1.080 1.087 1.040 1.193 49 1.025 1.041 1.024 1.140 

24 1.000 1.043 1.030 1.070 50 0.991 1.039 1.041 1.121 

25 0.974 1.005 1.079 0.957 51 1.034 0.968 0.995 1.077 

26 0.952 0.954 0.943 1.117 52 0.962 0.960 0.976 1.058 
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Appendix D 

TLD 

ID 

 Calibration Factor TLD 

ID 

 Calibration Factor 

60 

kVp 

80  

kVp 

120 

kVp 

662 

keV  

60  

kVp 

80 

kVp 

120 

kVp 

662 

keV  

1 1.00374 1.00374 0.97673 0.99324 27 0.98805 1.0065 1.00535 1.01219 

2 0.99401 0.99401 0.9681 0.96869 28 0.9591 0.9872 1.00865 1.01152 

3 0.99519 0.99519 0.97697 0.98861 29 0.94351 1.0012 0.9796 0.9784 

4 1.03561 1.03561 0.96892 1.02143 30 1.00746 1.0068 1.01738 1.02998 

5 1.01623 1.01623 0.98201 1.02398 31 0.99691 0.9965 1.01454 1.02296 

6 1.02628 1.02628 0.99311 1.04042 32 0.99648 0.9711 1.00422 0.99228 

7 0.99605 0.99605 0.9837 0.99646 33 0.98227 0.9713 0.96939 1.00986 

8 1.03375 1.03375 1.0192 1.02654 34 0.99896 0.9797 1.02076 0.94635 

9 1.02174 1.02174 0.97222 1.00689 35 1.02617 1.0227 1.02324 0.96778 

10 1.0248 1.0248 1.00321 0.9716 36 0.96391 0.9586 0.98068 0.91348 

11 1.00494 1.03433 0.98613 0.99678 37 0.98605 1.0117 0.99163 0.97129 

12 1.01477 0.99467 0.95869 0.96793 38 0.99745 0.9969 0.99016 0.977 

13 1.01712 1.0342 0.96599 0.97329 39 1.05695 1.0351 1.02495 0.99292 

14 1.01188 1.01086 1.00523 1.00099 40 1.04404 1.0253 1.04029 1.02757 

15 1.03006 0.94676 1.04164 1.0262 41 0.98039 0.9904 0.99559 0.9834 

16 0.9779 1.00307 0.98467 0.96854 42 0.99358 1.0073 1.04696 0.9285 

17 1.016 1.00197 1.01544 1.02364 43 0.9906 1.0071 1.01184 0.99775 

18 0.99241 0.96414 1.03477 0.99308 44 1.01166 0.9993 1.01933 1.02415 

19 1.04063 1.02849 1.02429 1.05234 45 0.98248 0.9762 0.99336 0.99324 

20 0.96876 0.96041 0.98153 0.97824 46 0.95671 0.9721 0.95697 0.98042 

21 1.06304 1.02387 1.04737 1.00821 47 1.02083 1.0059 1.01287 1.03361 

22 0.99273 0.98999 1.01377 0.98655 48 0.99187 0.9783 1.00245 1.02228 

23 1.02344 1.08671 1.03557 1.02211 49 0.98018 0.9816 1.01108 1.02041 

24 0.96876 1.04262 0.98881 0.98703 50 0.98605 0.9612 0.9837 0.99986 

25 0.97759 1.00454 0.99509 1.00738 51 0.96332 0.9169 1.02041 1.22697 

26 0.98143 0.95359 0.97924 0.98687 52     
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Appendix E 

Am-Be 

TLD 

ID 

CF TLD 

ID 

CF 

1 0.949046 27 0.947417 

2 1.005584 28 0.965914 

3 0.973592 29 0.95242 

4 0.980223 30 0.947185 

5 0.962192 31 1.015007 

6 1.004886 32 0.942531 

7 0.965798 33 0.926245 

8 0.953699 34 0.944974 

9 0.944509 35 0.956375 

10 0.906701 36 0.942997 

11 0.92194 37 0.935202 

12 0.958702 38 0.935668 

13 0.922057 39 0.900768 

14 0.943346 40 0.973476 

15 1.007213 41 0.950675 

16 0.950675 42 0.980921 

17 0.951722 43 0.969753 

18 0.989065 44 0.962541 

19 0.927175 45 0.927641 

20 0.992904 46 0.958353 

21 0.931363 47 0.9302 

22 0.963239 48 0.961145 

23 0.877501 49 0.915775 

24 0.914611 50 0.917403 

25 0.949279 51 0.985527 

26 1 52 0.99366 
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Appendix F 

Am-Be 

TLD 

ID 

CF TLD 

ID 

CF 

1 0.887365 27 1.039367 

2 0.944614 28 1.052359 

3 0.959416 29 1.008248 

4 0.930262 30 1.135767 

5 0.941972 31 1.070763 

6 0.855794 32 0.920095 

7 0.991914 33 0.869045 

8 1.084557 34 0.980364 

9 1.079343 35 0.976101 

10 1.074178 36 0.951285 

11 1.12439 37 0.97328 

12 1.044201 38 0.95398 

13 0.944614 39 1.025129 

14 0.980364 40 1.133855 

15 1.070763 41 1.028259 

16 1.067369 42 1.049081 

17 1.052359 43 0.960784 

18 1.040973 44 0.993377 

19 1.105927 45 1.069063 

20 1.098711 46 1.131949 

21 1.029832 47 1.050717 

22 0.793298 48 1.022018 

23 0.925151 49 1.209174 

24 0.839788 50 1.226794 

25 0.939344 51 0.834585 

26 0.959416 52  
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Appendix G 

Radiation Survey  

Background reading: 0-1µR/hr 

 

 

 

 

 

 

 

 

 

Location kVp mA Time(s) Reading(µR/hr) 

1 160 18 200 0-1 

2 160 18 200 8 

3 160 18 200 2-4 

 

 

 

Irradiator 

Refrigerator 

Refrigerator 

1 

2 

3 
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