Video Motion:

Finding Complete Motion Paths for

Every Visible Point
by
Susanna Maria Ricco

Department of Computer Science
Duke University

Date:

Approved:

Carlo Tomasi, Supervisor

Ronald Parr

Mauro Maggioni

Svetlana Lazebnik

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Computer Science
in the Graduate School of Duke University
2013

ABSTRACT

Video Motion:
Finding Complete Motion Paths for
Every Visible Point

by
Susanna Maria Ricco

Department of Computer Science
Duke University

Date:

Approved:

Carlo Tomasi, Supervisor

Ronald Parr

Mauro Maggioni

Svetlana Lazebnik

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Computer Science
in the Graduate School of Duke University
2013

Copyright (© 2013 by Susanna Maria Ricco
All rights reserved except the rights granted by the
Creative Commons Attribution-Noncommercial License

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

The problem of understanding motion in video has been an area of intense research
in computer vision for decades. The traditional approach is to represent motion
using optical flow fields, which describe the two-dimensional instantaneous velocity
at every pixel in every frame. We present a new approach to describing motion in
video in which each visible world point is associated with a sequence-length video
motion path. A video motion path lists the location where a world point would
appear if it were visible in every frame of the sequence. Each motion path is coupled
with a vector of binary visibility flags for the associated point that identify the frames
in which the tracked point is unoccluded.

We represent paths for all visible points in a particular sequence using a single
linear subspace. The key insight we exploit is that, for many sequences, this sub-
space is low-dimensional, scaling with the complexity of the deformations and the
number of independent objects in the scene, rather than the number of frames in
the sequence. Restricting all paths to lie within a single motion subspace provides
strong regularization that allows us to extend paths through brief occlusions, relying
on evidence from the visible frames to hallucinate the unseen locations.

This thesis presents our mathematical model of video motion. We define a path
objective function that optimizes a set of paths given estimates of visible intervals,
under the assumption that motion is generally spatially smooth and that the ap-

pearance of a tracked point remains constant over time. We estimate visibility based

v

on global properties of all paths, enforcing the physical requirement that at least
one tracked point must be visible at every pixel in the video. The model assumes
the existence of an appropriate path motion basis; we find a sequence-specific basis
through analysis of point tracks from a frame-to-frame tracker. Tracking failures
caused by image noise, non-rigid deformations, or occlusions complicate the problem
by introducing missing data. We update standard trackers to aggressively reinitialize
points lost in earlier frames. Finally, we improve on standard Principal Component
Analysis with missing data by introducing a novel compaction step that associates
these relocalized points, reducing the amount of missing data that must be over-
come. The full system achieves state-of-the-art results, recovering dense, accurate,

long-range point correspondences in the face of significant occlusions.

To Mac, who makes things better.

vi

Contents

Abstract iv
List of Tables X
List of Figures xi
List of Algorithms xiii
List of Abbreviations and Symbols xiv
Acknowledgements XV
1 Introduction 1
1.1 Motion Estimation Procedure 7
1.2 Summary of Contributions L. 9
2 Prior Work in Motion Estimation 10
2.1 The Brightness Change Constraint Equation 10
2.2 KLT Tracking 12
2.3 Optical Flow 14
2.4 Occlusion Detection L 19
2.5 Layered Models 22
2.6 Multiframe Constraints and Structure-from-Motion 23
2.7 Long-Range Motion Trajectories 26
3 Video Motion 30
3.1 Selecting Scene Points for Paths 30

Vil

3.2 Path Parameterization
3.3 Optimal Paths.
3.4 Optimal Visibility
Finding a Path Basis
4.1 Factorization in the Presence of Missing Data
4.2 Tracking with History-Sensitive Feature Snapping
4.3 Matrix Compaction
4.3.1 Optimization
4.3.2 Pre-solving and constraint generation
4.4 Results
4.4.1 Accuracy of compaction
4.4.2 Accuracy of recovered paths
4.4.3 Performance with incorrect rank estimation
4.5 Implementation for Video Motion Estimation
Extracting Paths from Video
5.1 Imitialization
5.2 Optimization
5.2.1 Estimating visibility for current paths
5.2.2 Non-linear minimization to improve paths
5.2.3 Heuristic update oL
5.2.4 Anchor management
5.3 Terminationo
Evaluation
6.1 Test Sequences

6.2 Qualitative Evaluation

viil

45
45
51
o4
26
99
61
63
64
69
69

73
74
76
76
79
79
80
82

6.3 Quantitative Evaluation 94

6.4 Sensitivity to Parameters o000 98
7 Proposed Extensions 102
8 Summary and Conclusions 109
A Trust-Region Newton-CG 111
A.1 Trust-Region Optimization 111
A.2 Trust-Region Newton-CG 113
A.3 Derivation of Gradient and Hessian 114
Bibliography 117
Biography 125

1X

List of Tables

4.1
6.1
6.2

7.1

Accuracy of compaction.o 64
Error in computed paths on the flag sequence. 95
Quantitative evaluation of video motion estimation in real sequences. 97

Running time after initialization for video motion estimation.. 103

List of Figures

1.1
1.2
2.1
3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.1
5.2
6.1
6.2
6.3

[llustration of video motion concepts.
A space-time slice in general video.
The aperture problem. oL
Robust penalty functions.
Observed visibility estimation.
Intensity-based penalties in the MRF data term.
[lustration of missing portions of frame-to-frame tracks.
Compaction speed-up using constraint generation.
Benefits of constraint generation on real sequences.
Test sequences for path basis extraction.
Selected temporal distance masks for generalization error computation.
Generalization error after compaction.
Compaction generates a superior path basis.
Recovery of true rank with compaction.
Example of incorrect association from compaction.
Anchor points at initialization and convergence.
Importance of heuristic update.
Selected frames from our test sequences.
Selected frames from the flag sequence.
Qualitative evaluation of video motion paths.

X1

6.4

6.5
6.6
6.7
6.8
7.1

Examples of incorrect or incomplete motion estimated by alternative

methods. L 92
Results on flag sequence.o 94
Lengths of visible intervals for computed paths. 99
Density of coverage of computed paths. 100
Effect of changing parameter values in visibility MRF. 101
Anchor points on the flag’s occluder. 107

xii

List of Algorithms

A.1 Trust region optimization. 112

A2 CG-Steihaug procedure. 113

xiil

List of Abbreviations and Symbols

Symbols

Throughout this document, we represent vector-valued quantities with bold, low-
ercase symbols; scalar values are not bold. Matrices are both bold and uppercase.
Whenever possible, we use f or t to refer to frame indices; other letters index tracked
points.

Here we collect the most important quantities for video motion.

x,(t) The location of point p in frame ¢ as defined by the video motion
path.
vp(t) The binary visibility state of point p in frame ¢; equal to one if
visible.
(up, Tp) The anchor point for point p. 7, is the point’s anchor frame. The

path must pass through w, in this frame, that is, x,(7,) = u,.

Pk A path basis function.

Abbreviations

SFM Structure-from-motion.

MRF Markov Random Field.

X1v

Acknowledgements

A complete list of those that deserve my thanks would surely double the length of
this document. Most I will thank in person, but a few deserve special recognition.

Thank you to my advisor, Carlo Tomasi, for the years of support and encour-
agement. Carlo taught me to ask big questions, to embrace the struggle for answers
without giving up, and to value deep insights over incremental advances.

Thank you to my committee: Ron Parr, for adopting me as an almost-member
of his research group; Svetlana Lazebnik, for her extraordinarily detailed comments
on early drafts; and Mauro Maggioni, for stepping in on short notice to allow for a
non-empty intersection of busy summer schedules.

I have been blessed with outstanding teachers at every school I have attended. I
would especially like to thank Zach Dodds and Christine Alvarado for introducing
me to computer science and encouraging me to pursue research in computer vision.

Thank you to my fellow graduate students for making Duke a wonderful place to
spend these many years. In particular, thank you to Neeti Wagle, for complaining
about the rain with me, and Gavin Taylor, for giving us a hard time about our
complaining.

Thank you to my officemates past and present. Cassi Carley and her remote-
controlled ghost computer have kept me company on many a late night. Jason Pazis
graciously surrendered his desk to my expanding disorganization.

Thank you to the departmental staff for organizing travel to conferences and

XV

generally keeping all the gears turning. Special thanks go to Pam Spencer for the
advance notice any time there was extra food to be found.

None of my accomplishments would have been possible without the unwavering
support of my family, both old and new. Thank you to my sister for reminding me
not to take myself too seriously. Thank you to my mother, the scientist, for being a
source of inspiration all my life, and to my father, the recovering scientist, for keeping
me grounded.

Finally, my thanks to the following agencies that have provided financial support
for my work: Duke University, the National Science Foundation (through an NSF
Graduate Research Fellowship, grant 11S-0534897, and grant 1IS-1017017), and the
Army Research Office grant no. W911NF-10-1-0387.

xXvi

1

Introduction

Chances are good that the next person I meet will have a video camera within easy
reach (although it will likely be disguised as a cell phone). People use these devices
constantly to document life’s events, from the momentous to the mundane. The
amount of data being generated is staggering, with recent estimates suggesting over
72 hours of video are uploaded to YouTube every minute (YouTube, 2013). Associ-
ated Press photographer Michael Sohn’s now-viral image of the faithful gathered to
witness the introduction of the newly elected Pope Francis testifies to the ubiquitous
presence of cameras in our modern world. The photo of the crowd blurs into a sea
of bright lights, as if each individual holds a candle in the night. In fact, the lights
are the screens of thousands of smartphones, capturing the historic moment.

For the computer vision researcher, the explosion of video data presents a chal-
lenge: understand the rich and complex motions contained within video sequences of
even moderate length. For decades, understanding motion meant extracting optical
flow. An optical flow field describes the (apparent) instantaneous velocity at every
pixel in a given frame. Each pixel stores a vector pointing to its matching location

in the next frame.

But typical videos consist of more than just two frames. As a scene is imaged
over a longer period of time, the projection of a single world point traces a curve
in the image plane. The shape of this curve is determined by the evolving position
of the point, the position of the camera, and the intrinsic properties of the camera
such as focal length and radial distortion. In the absence of occlusions, the points
on the curve are the images of the tracked point in each frame. An occlusion occurs
when another world point is located closer to the camera on the same projection ray.
When this happens, the image of the occluded point is hidden from view and only
the image of the visible point appears. In some frames, the projection of the scene
point may fall outside the boundaries of the image. The scene point will not appear
in these frames even if it is not occluded by another physical object. From here on,
we refer to these curves traced by moving points as paths. We will formalize the
definition mathematically in Chapter 3.

The goal of video motion estimation is to extract sequence-length paths for a
dense sampling of the visible surfaces in a scene. This separates the appearance of
the objects from their motion, permitting further analysis that disregards irrelevant
variation in appearance. Extracted paths should be robust to transient occlusions
so that points on objects that are momentarily occluded are connected across the
occlusion. The sampling of surfaces in the scene should be dense enough so that
there is some visible path within a small neighborhood of each pixel.

Simply applying established methods for optical flow computation fails to gen-
erate the desired paths. Paths built by concatenating optical flow vectors between
consecutive pairs of frames cannot follow points across occlusions because optical
flow fields do not capture the motion of points that are not visible in the source
frame. Paths created by computing optical flow from the first to every subsequent
frame (1 -2, 1 -3, 1 >4, etc.) could span occlusions, but optical flow estima-
tion fails when too much motion accumulates between distant frames. Truly reliable

2

100

70

frame

38

FIGURE 1.1: An illustration of the video motion concepts. We show a slice through a
single row of a synthetic video sequence that contains only horizontal motion. Video
motion paths follow lines of constant intensity; we highlight three in color. Paths
of occluded points (magenta) extend through detected occluded intervals. The full
solution includes a visible path through every pixel in every frame.

recovery of long-range video motion paths requires new solution techniques.

This dissertation proposes a solution to the problem of video motion estimation
with particular focus on the treatment of occlusions. Many motion estimation tech-
niques treat occlusions as noise. In contrast, we promote occlusions to first-class
citizens and model visible intervals explicitly for each path. Paths extend through
occlusion regions and allow for hallucinating the location of momentarily occluded
points. Because occlusions are actually quite common in general video, correctly
handling occlusions is crucial.

Figure 1.1 illustrates the key concepts in our work. For simplicity, we consider
a hypothetical sequence that contains only horizontal motion. Paths are curves in
the image plane, parameterized by frame. We can visualize these paths by lifting
them into space-time, so that the evolution over time is drawn explicitly in an added
spatial dimension. Because our toy sequence does not include any vertical motion,
each of these lifted curves is contained in an xt-slice through the space-time volume;
one zt-slice is shown in the figure, with time increasing in the vertical direction.

Here, a translating occluder temporarily obscures a portion of a moving background.

FIGURE 1.2: An example path extracted from general video, including both hori-
zontal and vertical motion. In this sequence, the camera pans to follow Miss Marple
as she walks from right to left. The path drawn in magenta follows Miss Marple’s
ear. The cube shows the bottom half of the first frame connected to the top half of
the last frame by an xt-slice. Note the significant occlusions visible in the crossing
intensity contours in this slice. This sequence will be used as a running example
throughout this dissertation.

We single out the paths of three particular scene points: p, ¢, and r. An occlusion
occurs in frame 38, where the paths for p (blue) and ¢ (magenta) intersect. The point
p is on the right edge of the occluding object, while ¢ is occluded. We denote this
by drawing the path ¢ with a dashed rather than solid line over the next few frames.
The point r (cyan) is on the opposite side of the translating occluder. Its path
intersects the path of point ¢ in frame 70, after which ¢ reappears. This corresponds
to a disocclusion event. After frame 70, the path ¢ is again drawn with a solid line
to indicate that the point is visible. Note that the two visible intervals are connected
by the estimates of ¢’s location during the occlusion. A potential dense sampling of
the visual surfaces in this example scene generates the rest of the paths drawn in

shades of gray. Note that every point in this slice has a visible path nearby.

Because real sequences do contain non-zero vertical motion, the paths we solve
for live in a three-dimensional space-time volume. Figure 1.2 shows just one of the
more than 100,000 video motion paths we extract from one of our test sequences.
This figure also shows an xt-slice in context within the space-time volume. Note the
significant occlusions visible in the xt-slice. Nearly every background point is either
occluded or out of the field of view in at least one frame.

If we had complete knowledge of the scene, consisting of a geometric model, its
evolution over time, the relative location of the camera in each frame, and the cam-
era’s intrinsic properties, we would be able to construct paths and reason about
occlusions through computer graphics, rendering the current scene at each frame.
Of course, it is entirely unreasonable to assume we have access to all this hidden
information. Our method bypasses scene reconstruction and instead extracts paths
directly from input video. Although we do not attempt reconstruction, the multi-
frame correspondences we find could be used as input to a structure-from-motion
routine to recover 3D structure if desired.

The dense multiframe correspondences that video motion paths supply support
many other high-level vision applications. Paths provide information about the long-
term interactions between objects that can be used to segment a scene. The extended
time frames allow for reasoning about occlusion relationships and create more dis-
criminative features by integrating small instantaneous differences to form very dis-
tinct paths. Segmenting video eases object recognition by eliminating confusing
clutter. If recognition is successful in any single frame, the resulting labels (or other
human annotations) can be propagated along the path to any frame in the sequence.
In other domains, the motion itself may be a key discriminative feature for recogni-
tion. Examples include medical imaging, gesture recognition, and event or activity
recognition. Long-term correspondences are beneficial when the events to recognize

have non-trivial temporal extent.

Our approach to video motion estimation relies on a few fundamental assumptions

that we outline here.

Appearance is constant.
We assume that the appearance of a world point does not change over time.
Because we work with grayscale video, this means that the intensity sampled
at points along the visible portions of a trajectory’s path should be constant.
There are many situations where this assumption is not valid: it rules out
specular surfaces, ignores shadows, and disallows global lighting changes that
affect the average illumination of the scene. Nonetheless, we find this assump-
tion is reasonable for many videos lasting as long as a few seconds. Unmodeled
brightness changes are included as part of the image noise process and dealt

with using a robust penalty function.

Motion discontinuities are continuous.
We assume that motions and occlusions are spatially smooth. Nearby points on
a single object will tend to follow similar paths because the distance between
the two paths in any particular frame is constrained by the real-world distance
between the points. As a result, two points visible in neighboring pixels in
a particular frame will tend to follow essentially parallel paths. Because the
paths are similar, they are likely to be occluded or visible at the same time.
This assumption breaks down at when points on different objects happen to
appear in neighboring pixels for a fleeting moment. We accommodate these

rare motion discontinuities by again using robust penalty functions.

Surfaces are opaque.
We assume that there are no semi-transparent objects in the scene. Semi-
transparent objects would allow a single pixel to contain more than one visible

object each of which would follow potentially very different paths.

6

Paths are correlated.
The crucial assumption we make is that the paths of all visible points in the
scene are highly correlated. Paths for any sequence lasting F' frames can be
represented using vectors of length 2F. We assume that all paths for the
given sequence actually lie within a K-dimensional linear subspace where K
is much smaller than 2F. This assumption makes it computationally feasible
to estimate paths for long sequences by decreasing the dimensionality of the
search space for paths from 2F N to KN (where N is the number of visible
points being tracked). This assumption is also what makes it possible to extend
paths through brief occlusions. Evidence from frames where the point is visible

can be used to constrain its location during occlusions.
1.1 Motion Estimation Procedure

This section provides a high-level overview of our approach to extracting video mo-
tion by finding paths and visibility estimates. It also outlines the remainder of the
document.

We begin with a review of past work in motion estimation in Chapter 2. Chapter 3
describes our mathematical model of video motion. Our formulation improves upon
our initial proposal in Ricco and Tomasi (2012a). We represent paths using a low-
dimensional path basis and attach them to world points by requiring that they each
pass through a different reference pixel in the video sequence while visible. By
selecting enough of these anchor points, we can ensure that all pixels in the video
sequence are covered by a nearby visible path. We define an objective function that
penalizes changes in the appearance of tracked points as well as differences in the
motion of nearby points. The best paths minimize this objective function.

The penalty for changes in appearance only applies when a path is considered
visible. Our visibility estimates are based on global properties of all paths. We

7

determine an initial estimate of the visible path at each pixel by measuring brightness
constancy in a small patch aligned with the motion of each path over a few frames.
The most consistent path at each pixel is considered visible, as are neighboring paths
that differ only slightly over the course of the sequence. This initial estimate is refined
using a global objective function formulated as a Markov Random Field (MRF) that
encourages spatial smoothness (nearby points with similar paths get occluded at the
same time) and temporal smoothness (changes in visibility along a path are rare).
We require at least one visible path near every pixel by forcing the most visually
consistent path at each pixel to be visible in the final solution.

Chapters 4 and 5 describe the process of solving for motion given this model.
Given an input video, the first step is to determine the sequence-specific subspace
we will use to parameterize paths. We track a representative set of points using a
frame-to-frame tracker that aggressively attempts to relocalize points lost to oc-
clusions in earlier frames. We supplement these tracks with tracks found using
frame-to-frame optical flow to improve coverage in low-texture areas. We find a
low-dimensional linear subspace that can adequately reconstruct the frame-to-frame
tracks using Principal Component Analysis (PCA) with missing data. This process
was presented in Ricco and Tomasi (2012b) and is described in detail in Chapter 4.

With the path basis fixed, we concatenate frame-to-frame flow fields into extended
tracks and project these onto the path subspace to create initial path estimates. We
attach these path estimates to an initial set of anchor points. We then alternate
between estimating which points are visible in each frame (assuming our estimate of
their paths is correct) and refining the estimates of the paths (assuming our visibility
estimates are correct). When paths do not change between iterations, we reconsider
the points we selected, adding or deleting points to track until the video coverage is
satisfactory.

Our path objective function is non-convex and our initialization is often poor,

8

especially near occlusion boundaries. To alleviate this problem, we apply a heuris-
tic update after a fixed number of descent steps. The update replaces paths and
visibility estimates with alternatives from nearby points if the change results in bet-
ter brightness constancy. Chapter 5 details the complete optimization routine from
initialization to convergence.

The remainder of this document contains our experimental results (Chapter 6),
a discussion of topics that warrant further investigation (Chapter 7), and some con-

cluding remarks (Chapter 8).
1.2 Summary of Contributions

The main technical contributions of this thesis are as follows:

1. We present a formal definition of long-range video motion through paths with

explicit treatment of occlusions.

2. We develop a technique to improve the estimation of the path subspace for
sequences with significant occlusions. The technique can be fully automated
or can run with limited user interaction. The extracted subspace improves
extrapolation of paths into distant frames and increases robustness to incorrect

estimates of the dimensions of the subspace.

3. We introduce a technique to determine the visibility of points based on global
properties of all paths. The estimates are causal, identifying the occluder

responsible for each occlusion.

4. We provide a complete pipeline that extracts full-length paths from input video,
guaranteeing dense coverage of all visible points and achieving state-of-the-art

performance.

2

Prior Work in Motion Estimation

Motion estimation is, in general, the problem of solving for pixel-level correspon-
dences between images evolving in time. Given a sequence of images [, Io, ..., Iy,
the goal is to associate particular locations in [;, with the matching locations in Iy,.
Approaches differ in what and how many locations are matched between images,
the number of images expected in the sequence, and the techniques used to find the
correspondences themselves. It is assumed, however, that the images to match are
provided in temporal order and that the difference in time between two consecutive
images is small. This assumption distinguishes motion estimation from the broader
field of image registration, where the goal is to find correspondences between pixels
in images captured of similar but not necessarily the same scene or object without

any knowledge of the temporal relationship between the images.
2.1 The Brightness Change Constraint Equation

The main assumption in motion estimation is that the appearance of a point in space
does not change as a result of motion. That is, if we assume that the images we see

are a discrete sampling of a continuous function I(z,y,t), the brightness constancy

10

assumption states that the total derivative with respect to time should be zero:

dl dx dy
— =L —+1,—=+1,=0. 2.1
dt at T hvge T (2.1)

In the second expression, the result of applying the chain rule to compute the total
derivative, subscripts denote partial differentiation. It is possible to estimate the
partial derivatives I,, I,, and I; from the image sequence using finite differences. The
values u = ‘Cll—’t““ and v = ‘2—? describe the 2D image motion of points in the scene and
thus specify pixel correspondences. Specifically, for small motions between frames,
the location (z,y) in frame ¢ approximately matches location (z + u,y + v) in frame
t+1.

It is important to note that equation (2.1) is almost never exactly satisfied, even
for infinitesimally small motions between frames. First, the reflectance at a point
on a Lambertian surface (and therefore the observed brightness at this point) is a
function of the angle between the surface normal and the illuminating light source,
so a point’s appearance can change under motions that change this angle. For non-
Lambertian surfaces, the appearance can also change due to specular reflection. A
point can pass through a shadow, resulting in a change of appearance due to a change
in the intensity of the illuminating light source. Occlusions (and disocclusions) result
in points not merely changing their appearance but actually disappearing from view
(or reappearing). Finally, the imaging process itself introduces noise, caused by
errors in measurement as well as discretization and quantization. In particular,
using discrete approximations of the derivatives introduces significant error when
the motion is large relative to the frame rate. In spite of all these potential sources
of error, equation (2.1) is still approximately satisfied in many real sequences.

Equation (2.1) is a single equation with two unknowns and is therefore not enough
to recover the full motion at any given point. Instead, it constrains the component of

the velocity in the direction of the image gradient at each pixel. Any values of v and

11

perceived
motion

projection onto
’ intensity gradient

actual direction
of motion

FiGURE 2.1: A barbershop pole demonstrates the aperture problem. Although the
objective motion is purely horizontal, any motion with the same component normal
to the isointensity contours is indistinguishable. Humans tend to perceive motion
parallel to the dominant direction of the surrounding aperture (in this case, vertical).

v that differ by motions along isocontours of image intensity are indistinguishable.
This is referred to as the aperture problem, and occurs in the human visual system as
well. A well-known example is the barbershop pole illusion (Guilford, 1929), depicted
in Figure 2.1, in which a pattern of diagonal lines is actually translating horizontally
as the pole rotates. However, the viewer perceives that the lines are translating
vertically, parallel to the vertically elongated aperture created by the curvature of
the pole (Wallach, 1935). The two vectors, pure horizontal motion and pure vertical
motion, have the same projection onto the line in the direction of the gradient.
Interestingly, if one views a barbershop pole through a pinhole, one will tend to
perceive diagonal motion in the direction of the gradient only. Mathematically, there
would be no reason to prefer horizontal, diagonal, or vertical motion over the others

without additional constraints on the solution.
2.2 KLT Tracking

One technique for constraining the solution to equation (2.1) is to assume that the
motion field is constant within a small spatial neighborhood. This technique was

proposed in 1981 and is still the basis for the widely used KLT tracker (Lucas and

12

Kanade, 1981; Tomasi and Kanade, 1991). The goal is to find the displacement u

and v that minimizes

2 [l (x,y,t) + vl (x,y,t) + L(x,y, DI (2.2)

z,yeQ)

where () defines a spatial neighborhood. This is equivalent to solving this system of

equations
le Iyl _Itl
B]| s
: v :
Ixn]yn *Itn

in the least-squares sense, where [,; is the partial derivative with respect to x evalu-
ated at pixel 7 in the neighborhood €2. I,; and I; are the corresponding values when

the partial derivative is taken with respect to y and ¢. The solution is simply

[

[“] — (ATA)'ATb (2.4)

with

ATA:[szﬁ,, Zzllg] ATb:[:%:]gﬁ]. (2.5)

The solution is unique when the 2 x 2 matrix AT A, called the structure tensor,
is invertible. Thus, rather than tracking arbitrary image locations, a KLT tracker
is usually restricted to tracking only good features to track (Shi and Tomasi, 1994),
defined as points where the second singular value of AT A exceeds a defined threshold.
These locations correspond to highly textured regions like corners.

A complete KLT tracker includes two additional steps. First, because equations
(2.1) and (2.2) hold for infinitesimal displacements but are used for finite motions,
the displacement is found through an iterative process. At each iteration, the tem-
poral derivatives [;; are recomputed after warping the second image according to the

13

current estimate of motion (u,v). The solution to equation (2.4) is then (du,dv),
a small update to the current motion estimate. Second, the quality of proposed
matches between the patches centered at (z,y) in frame ¢ and (x + u,y + v) in
frame ¢+ 1 is monitored by measuring the sum of squared differences between the
two patches after they are aligned with the optimal affine transformation between
them. Features with residuals exceeding a given threshold are considered lost and
the correspondence is rejected. Features are often lost either because the assumption
that motion is constant across the patch is violated (that is, the patch could straddle
an object boundary or there could simply be too much non-rigid deformation occur-
ring), or because the feature becomes occluded. Lost features are replaced by new
points according to the good features to track criteria.

We use a modified KLT tracker when finding a path basis for each sequence.
We improve on the standard feature reinitialization procedure by adding a step that

actively searches for and reacquires lost features.
2.3 Optical Flow

While KLT tracking provides motion estimates for a discrete set of selected points
with sufficient texture, optical flow defines the displacement between two consecutive
images using continuous flow fields u(z,y) and v(z,y). The estimates of motion at
different pixels (with non-overlapping neighborhoods) in a KLT tracker are indepen-
dent of each other. In optical flow, motion estimates at distant locations are coupled
through a spatial regularizer that eliminates the ambiguity in the solution caused by
the aperture problem. Our definition of video motion replaces optical flow with a
model that includes sequence-length correspondences. Like optical flow, we assume
brightness constancy holds and enforce spatial smoothness to address the aperture
problem.

In the original optical flow formulation, Horn and Schunck (1981) assume that the

14

desired motion field varies smoothly in space. They minimize an energy functional

E—J]U + Loy + L)%+ A 992+ @f2+ @52+ @32dcz (2.6)
B 2t LU R ox oy ox oy LY, A

where A is a non-negative regularizing parameter, balancing the relative importance
of the spatial smoothness of the flow field versus the data term that penalizes viola-
tions of the brightness change constraint equation.

The minimizing optical flow field is found using the calculus of variations by solv-
ing the corresponding Euler-Lagrange equations with natural boundary conditions.

The Euler-Lagrange equations for this functional are

L(Lu+ Ly + 1) — NAu=0
(2.7)
I(Lu+ Ly + L) — N*Av =0,

where A = a‘% + % is the Laplacian operator. Approximating partial derivatives
with finite differences results in a sparse (banded) system of linear equations that
can be solved using an iterative scheme such as the Jacobi method or successive
over-relaxation.

Hundreds of researchers have followed in Horn and Schunck’s footsteps, refining
the original formulation to address its limitations. One of the main problems with
the formulation is its sensitivity to outliers. Unmodeled changes in brightness due
to shadows or specular reflections cause large errors in the data term. Occlusions
result in outliers for both the data term and the smoothness term. Occlusions oc-
cur precisely at those locations where two neighboring objects in the image follow
different motions, causing large violations of the smoothness assumption. Although
occluded points by definition have no corresponding points in the second frame,
the optical flow field forces a correspondence, which is almost certain to violate the

brightness constancy assumption. In a recent paper, Sun et al. (2010b) present a

15

concise review of many of the proposed advances and evaluate their impact. Most
modern methods replace the quadratic penalties on both the data and smoothness
term with robust penalty functions, add new data terms penalizing changes in the
color or image gradient along with changes in brightness, and use structure-texture
decomposition (Aujol et al., 2006) as a preprocessing step to remove shadows.

Two remaining areas of research involve finding techniques for dealing with large
motions and improving the efficiency of the optimization procedure to enable real-
time computation. One example of a modern optical flow method that improves
on Horn and Schunck’s original formulation in all three areas is Large Displacement
Optical Flow (LDOF) (Brox et al., 2009; Brox and Malik, 2011). A fast, GPU-
accelerated version (Sundaram et al., 2010) is publicly available as an executable
distributed by the authors. We review the details here as a case study and because
we use its optical flow fields to provide an initial solution for our path estimates.

Before LDOF, the standard approach for dealing with large motions within the
variational framework introduced by Horn and Schunck was to estimate optical flow
using a coarse-to-fine pyramid (Anandan, 1989; Bergen et al., 1992; Black and Anan-
dan, 1996; Brox et al., 2004). The images are successively down-sampled to form a
scale-space pyramid, and optical flow is estimated at the coarsest scale first. At the
coarsest level, large displacements at full resolution become small — small enough
that the local linear approximation used in the data term is reasonable — and good
estimates of the motion can be found starting from an initial estimate of zero mo-
tion. The solution at a coarse scale is used to initialize motion estimates at the
next level of the pyramid, which are then refined using the new details revealed at
the finer scale. As with KLT tracking, the solution is found iteratively, with the
temporal derivative recomputed after each iteration according to the current motion
estimates. The process continues until motion estimates are propagated back up to

and refined at the original resolution of the images.

16

This process can recover large displacements for large objects, but it can miss
smaller objects that are smoothed away at the lower resolutions. To solve this prob-
lem, LDOF introduces a term into the objective function that encourages final optical
flow estimates to agree with sparse correspondences estimated by matching regions.
Regions could be matched by estimating correspondences between keypoints detected
by SIFT (Lowe, 2004), SURF (Bay et al., 2008), BRISK (Leutenegger et al., 2011),
or other similar algorithms. LDOF proposes using descriptors based on histograms
of oriented gradients sampled on a dense grid in both images. Tentative correspon-
dences are proposed between nearest neighbors in descriptor space and then refined
by running Horn-Schunck optical flow between small image patches centered at the
proposed matches and measuring image difference between the aligned patches. Mu-
tual best matches between frames are accepted as long as the matched patches con-
tain enough texture; each match is given a confidence ¢(x;) based on how much
better the best match is than the second best. An indicator function §(x) is set to
one at the locations where successful matches are found.

These sparse matches are integrated into an objective function of the form
E(d) = Ecolor(d) + /\Egradient(d) + aEsmooth(d) + BEmatch(d7 dl) 3 (28)

with

Ecolor(d> = JQ P(|I2<33 + d(QZ)) - II<33)|2)diB

Bypacion (d) — j (VI + d(z)) — VI,(@)])de

Eunsos(d) = | pl|Vul@) + [Vo(a))da
Q
Bua(d,ds) = | d@)e(@)o(|d(@) - du(e) e
Q
The optical flow field is d = (u,v) (with v and v functions of image locations),
p(s?) = +/s2+ €2 is a robust penalty function, and Q is the image domain. The

17

auxiliary flow “field” d; is defined only at those points with é(x) > 0 as d;(x;) =
x; — x;, the displacement defined by the sparse match (x;, x;).

Once sparse matches are computed, the energy function is optimized using the
standard coarse-to-fine approach, solving the Euler-Lagrange equations at each level
of the scale-space pyramid. This formulation differs slightly from the original Horn-
Schunck formulation because the linear approximation of the image intensities in the
data term has yet to be applied. The resulting Euler-Lagrange equations are non-
linear; the solution is found using nested fixed-point iterations (Brox et al., 2004).

Although LDOF computes reasonable flow fields for realistic sequences, it is no
longer among the highest performing published algorithms, at least on benchmark
datasets. The standard benchmark is the Middlebury dataset (Baker et al., 2011).
The benchmark contains eight sequences with publicly available ground truth flow
for a pair of frames. Another eight sequences, with hidden ground truth flow, are
used as a held-out test set to evaluate the performance of competing algorithms. The
current ranking of published methods (and anonymous submissions under review)
can be found at http://vision.middlebury.edu/flow/. By default, algorithms
are ranked based on average endpoint error, defined as the average of the Euclidean
distance between the estimated flow vector (u,v) and the ground truth flow vector
(ugr,ver) at each pixel. The benchmark has proved to be an extremely useful
scientific tool, but it has its limitations. For example, the longest sequence has
only eight frames, and ground truth is provided for only a single pair of frames per
sequence. The sequences contain mostly rigid motion of relatively small magnitude.
Occlusions, which cause problems for flow algorithms, are rare events. Finally, the
performance of competing algorithms on the benchmark sequences is converging. Of
the top 20 algorithms, only one has an average endpoint error greater than one pixel
on any sequence.

The MPI-Sintel Flow dataset (Butler et al., 2012) is a challenging new benchmark

18

http://vision.middlebury.edu/flow/

for optical flow containing long sequences of up to 50 frames with large non-rigid
motions complete with motion blur, significant occlusions, and numerous violations
of the brightness constancy assumption caused by shadows and specular reflections.
Although the sequences are synthetic, the creators of the dataset argue that both the
image and flow statistics are representative of real sequences. Ground truth flow for
every frame is provided for a training set and hidden for the held-out test set used
to rank submitted algorithms. Because the sequences are computer generated, the
true flow at a pixel can be computed by ray-tracing into the known scene geometry,
propagating that point according to the known 3D motion, and then computing the
projection of the point in the next frame. An interesting feature of this dataset is
that this process also computes ground truth flow for pixels that are occluded in
the following frame, and these pixels are included in the evaluation. The current
ranking for algorithms tested on MPI-Sintel can be found at http://sintel.is.
tue.mpg.de/results. The current results clearly demonstrate that, despite decades
of progress, optical flow remains an unsolved problem. Algorithms achieving subpixel
accuracy on the Middlebury benchmark report results with average endpoint errors
between 7 and 14 pixels on the new sequences.

Sadly, neither dataset provides the ground truth we need to fully evaluate our
results. The ground truth for MPI-Sintel comes closest, but the data at occlusions
are insufficient. MPI-Sintel only follows points into the frame immediately following
an occlusion; it does not follow the points until they reappear. In contrast, we return

long-range correspondences across occlusions.

2.4 Occlusion Detection

Our definition of video motion includes an explicit occlusion detection step. Although
detection of occluded pixels and the computation of optical flow are intimately con-

nected, occlusion handling often seems to be added as an afterthought to motion

19

http://sintel.is.tue.mpg.de/results
http://sintel.is.tue.mpg.de/results

estimation. In many optical flow algorithms — even advanced ones such as LDOF —
occlusions are handled only indirectly through the use of robust metrics for the data
and smoothness terms. Unsurprisingly, these methods can fail catastrophically when
faced with significant occlusions. For instance, the average endpoint error of LDOF
in unmatched regions of the MPI-Sintel dataset exceeds 42 pixels.

Algorithms that do explicitly detect occlusions base their estimates primarily
on local properties of the computed flow field. One simple technique is to set a
threshold on the maximum error in the brightness change constraint equation. Pixels
with a large intensity change between frames are marked as occluded and pay a
penalty defined by an occlusion penalty function instead of the penalty from the
data term (e.g., Xiao et al., 2006a; Ayvaci et al., 2012). For particular settings of
the occlusion penalty function, the joint estimation of occlusion and optical flow
is equivalent to using a properly chosen robust function for the data term without
occlusions (Black and Rangarajan, 1996). By making the occlusion detection process
explicit, it is possible to define more complicated diffusion processes for filling in
correspondences in the occlusion region. Techniques often ignore occluded pixels
while smoothing over a larger region using a weighted median (Sun et al., 2010b) or
bilateral (Xiao et al., 2006a) filter.

Another local cue commonly used to detect occlusion is the local divergence of
the flow field, g—z + 2—; (e.g., Sand and Teller, 2008; Sun et al., 2010b). The idea is
that negative divergence indicates the presence of multiple points in the first image
mapping to the same location in the second image, which occurs during an occlusion.
Other techniques count the number of pixels in the first frame that map to the
same pixel in the second frame (Xu et al., 2012b) and associate occlusions to counts
greater than 1. Finally, some have proposed computing bidirectional flow fields,
from frame 1 to frame 2 and from frame 2 back to frame 1, and declaring locations

where the two flows disagree to be occlusions (e.g., Alvarez et al., 2007; Ince and

20

Konrad, 2008). In all cases, the optical flow within the occluded region is filled in by
relying on the spatial smoothness of the flow field. These hallucinated flow vectors
are not necessarily any more accurate than those generated by methods that do not
explicitly handle occlusions. For example, Xu et al. (2012b) average almost one pixel
less endpoint error than Brox and Malik (2011) in the matched (unoccluded) regions
of the MPI-Sintel dataset but perform worse in the unmatched (occluded) regions.

Our method uses these traditional cues (specifically, violations of brightness con-
stancy and multiple points mapping to a single pixel) but in a multiframe setting.
The local techniques used in traditional optical flow are hampered by treating each
consecutive pair of images as an independent problem. We can more accurately pre-
dict the location of a point during an occlusion because the extrapolation is based
on the pattern of motion observed over many frames. Optical low methods can only
rely on the smoothness term to predict the location of an occluded point. Finally,
accumulating evidence from multiple frames makes it easier to distinguish between
violations of brightness constancy due to image noise and violations resulting from
occlusions.

It is possible in some cases to detect occlusions without recovering the exact
motion in the scene. Feldman and Weinshall (2008) propose detecting occlusion
(or disocclusion) boundaries by thresholding the smallest eigenvalue of the 3 x 3
structure tensor matrix >, VI(VI)T. Zero should be an eigenvalue of this matrix if
the motion is constant over the window and there are no occlusions. The method can
miss occlusions in regions with insufficient texture. Apostoloff and Fitzgibbon (2005)
find occlusions without explicitly estimating motion by training a classifier to detect
T-junctions in space-time patches that collect the appearance of a single row of an
image over time. Like our method, this approach can benefit from incorporating
evidence from multiple frames. However, it assumes that motion is locally linear and
primarily horizontal, while our approach works for all types of motion.

21

2.5 Layered Models

Occlusions result in high values of the smoothness term as well as the data term.
Layered optical flow methods define the motion field as a composition of K layers,
with a smoothness penalty between neighboring pixels in different layers that does not
depend on the difference in the flow field across the boundary. Motion within a single
layer may be parametric (e.g., Jepson et al., 2002; Jojic and Frey, 2001; Kumar et al.,
2008; Wang and Adelson, 1994), or non-parametric (e.g., Weiss, 1997; Sun et al.,
2010a, 2012, 2013) with a regularization term penalizing spatial variation, possibly
with respect to an underlying parametric representation. By collecting evidence over
multiple frames (Darrell and Fleet, 1995; Sun et al., 2012), it is possible to reason
about the depth ordering of the layers and to detect occlusions when layer assignment
changes between frames that are aligned according to the detected optical flow. The
number of layers used may vary during optimization or can be fixed at some low
value; two or three layers are popular choices, although methods that require that
motion fit a parametric form typically require more layers to capture the complexity
of real-world motions.

Layered techniques can be used to follow points through occlusions because the
flow field for each layer is defined over the entire frame, even at points where the layer
is occluded from view. However, the resulting correspondences are only correct when
the assumption that the motion is spatially parametric holds. Layered techniques
ignore evidence from surrounding frames when computing the flow field for a given
layer at a particular frame; temporal smoothness constraints are included for the
layer assignment but not for the flow fields. Our approach uses evidence from all
frames to predict the motion of occluded points, and our parameterization of motion
is temporal rather than spatial.

Layered techniques end up segmenting the video while simultaneously solving for

22

the motion in the sequence. Ristivojevic and Konrad (2006) also propose to detect
occlusions by segmenting video, although they do not place themselves within the
layered model framework. They assume a foreground object moves according to a
parametric motion model and occludes portions of the background, which moves
according to a different parametric motion model. The task is to extract 3D space-
time surfaces corresponding to (1) the evolving boundary of the foreground object
(the “object tunnel”), (2) the boundary of the background region that changes from
visible to occluded (the “background occlusion volume”), and (3) the boundary of
the background region that changes from occluded to visible during the sequence (the
“background exposed volume”). If there are multiple moving foreground objects that
occlude each other, the object tunnel may be split into object occlusion volumes and
object exposed volumes. A point is likely to be assigned to a an occluded volume if it
exhibits small variation in intensity up to some frame t; but large variations in frames
after ¢;. A point is likely to be assigned to an exposed volume if the reverse is true —
i.€., the intensity variance is large up to some frame t; and small for the remainder
of the sequence. The method encourages compact volumes by penalizing the total
surface area of each boundary surface. The reliance on parametric motion fields
is limiting, and it is unclear how well the approach would generalize to real-world

sequences, as the published results are primarily toy synthetic examples.
2.6 Multiframe Constraints and Structure-from-Motion

When optical flow fields between frames are coupled, it is typically done by assuming
smooth motion and adding a penalty that increases with the magnitude of the partial
derivative of the flow with respect to time to the regularization term that already
penalizes large spatial derivatives (Weickert and Schnérr, 2001). More advanced
constraints on the motion of points collected over many frames trace back to the

work in structure-from-motion (SFM).

23

Tomasi and Kanade (1992) introduced the factorization method for solving SFM.
A static scene is captured by a moving camera; the goal is to recover both the
unknown locations of the camera in each frame and the 3D structure of the scene. To
begin, feature points are tracked using a frame-to-frame tracker (see Section 2.2), and
the locations (uyp, vy,) of all P points in all F' frames are collected into a measurement
matrix W, a 2F x P matrix where each column corresponds to the track of a single
point. The first F' rows contain the horizontal location of each point in a given
frame; the last F' rows contain the vertical location of each point. The registered
measurement matriz W is constructed by subtracting the mean from each row of
W.

Under orthographic projection (and in the absence of noise) the registered mea-
surement matrix can be factored as W = RS , where R is a 2F x 3 matrix describing
the orientation of the camera over time and S is a 3 x P matrix defining the scene
structure. Although the observed registered measurement matrix is corrupted by
noise, the motion of the camera and the structure of the scene can be recovered
by solving for the best rank three approximation of w. Assuming all entries of the
matrix are observed and “best approximation” is measured in terms of the Frobenius
norm, the solution can be found through the singular value decomposition (SVD).

Static-scene SFM is now typically computed through bundle adjustment (Triggs
et al., 1999), a non-linear optimization that recovers intrinsic and extrinsic camera
parameters as well as the 3D structure of the scene by minimizing the total error
between the predicted image location of a 3D point under perspective projection and
the observed location. However, there has been a significant amount of work over
the last 20 years to extend the factorization method to apply to scenes with multi-
ple rigid objects (Costeira and Kanade, 1998; Vidal et al., 2008; Rao et al., 2010),

varying camera models (e.g., Poelman and Kanade, 1997; Christy and Horaud, 1996;

24

Sturm and Triggs, 1996), different noise models (Ke and Kanade, 2005), and even
articulated (Yan and Pollefeys, 2008) or non-rigid objects (e.g., Brand, 2005; Bre-
gler et al., 2000; Xiao et al., 2006b; Akhter et al., 2011). In the non-rigid case, the
standard assumption is that deformation can be expressed as a time-varying linear
combination of a set of basis shapes or, equivalently, that each point follows a trajec-
tory in 3D that can be expressed as a linear combination of a set of basis trajectories.
Sometimes, priors are included to encourage smoothness, both in the recovered shape
and the deformations. For example, Torresani et al. (2008) propose a hierarchical
generative probabilistic model of shape and motion and infer the parameters using
a expectation-maximization approach. We use the general factorization method as
a basis for our work on extracting a sequence-specific path basis.

A big challenge for factorization methods is missing data in the measurement ma-
trix resulting from lost tracks in the initial KLT tracker. Some previous approaches
can handle missing data, but they may require that at least some tracks be com-
plete (Rao et al., 2010) or that missing data not be too prevalent. For example,
performance on the motion segmentation task in Vidal et al. (2008) rapidly degrades
when over 20% of the entries in the measurement matrix are missing. By recogniz-
ing that columns of the matrix can be merged to reduce missing data, we perform
successful factorization with significant (up to 85%) missing data, without requiring
any complete tracks. We discuss the problem of missing data in much more detail
in Chapter 4.

Any SFM technique can be used to determine image motion by taking the recov-
ered structure and motion and computing the projected image locations according
to the camera model. In this view, SFM methods simply denoise pre-computed im-
age motion of a sparse set of trackable points by projection into a low-dimensional
subspace. Our approach to video motion avoids the difficult reconstruction step and

instead searches for multiframe correspondences within a defined linear subspace

25

from the start. We are not restricted to points that can be tracked frame to frame

but can recover video motion paths for all points in the scene.
2.7 Long-Range Motion Trajectories

Recent efforts in video segmentation and analysis have demonstrated the importance
of recovering motion estimates that can provide information about multiframe in-
teractions while maintaining the density available from optical low methods. Video
segmentation (e.g., Brox and Malik, 2010; Fragkiadaki et al., 2012; Lezama et al.,
2011) can use information about the multiframe motion of points to group objects
based on the principle of common fate (Koffka, 1935). Small differences in motion
in any single frame accumulate over time to form noticeable differences after many
frames, so collecting information over multiple frames often simplifies the clustering
problem. Multiframe motion trajectories are also popular features for gait analy-
sis (Perbet et al., 2009) and action recognition (Wang et al., 2011; Matikainen et al.,
2009; Prest et al., 2013).

Our technique provides the desired dense multiframe correspondences. The ap-
proaches we review in this section come the closest to computing the desired infor-
mation but do not properly account for occlusions.

The simplest technique for constructing multiframe motion trajectories that are
more spatially dense than those provided by a KLT tracker is to concatenate flow
vectors computed using a two-frame optical low method. The point starting at
(x4, y,) is tracked to the next frame using the flow field in the current frame (uy, v;)

(a1, Yer1) = (e, Ye) + (we(@e, ye), vel@e, ye)) - (2.10)

Both Sundaram et al. (2010) and Wang et al. (2011) propose constructing trajecto-

ries based on concatenated flow vectors. The two methods differ in how they handle

26

occlusions and how they interpolate to find the optical flow vector at real-valued po-
sitions (x¢,y:). Wang et al. (2011) do not detect occlusions, but simply terminate all
trajectories after 15 frames. They compute the flow vector at (z, y;) using a median
filter with a 3 x 3 neighborhood on the flow field computed by the OpenCV (Bradski,
2000) implementation of the technique described by Farnebéack (2003).

The more sophisticated and more popular method of Sundaram et al. (2010) uses
bilinear interpolation to compute the optical flow vector at (zy,y;) from LDOF flow
fields. Trajectories extend until an occlusion is detected based on two criteria. First,
occlusions are detected by looking for regions where the forward flow (from ¢ to t+1)
and the backward flow (from ¢+1 to t) disagree. Second, trajectories terminate at
all motion boundaries. While these terminations do not necessarily correspond to
occlusions, they are essential for keeping trajectories from drifting across a boundary
from a foreground to a background object or vice versa.

While both techniques can create a trajectory for every pixel in a video sequence,
in practice they only initialize trajectories in textured regions. When pixels in later
frames have enough surrounding texture but do not have any trajectories within a
small neighborhood, new trajectories are initialized and propagate forward in time.

These methods introduce little computational overhead beyond that required to
compute the initial optical flow fields. However, they assume that the optical flow
fields are accurate, even though each flow field is computed based only on local
information. The local occlusion detection can be similarly inaccurate. Neither
method is capable of associating points across occlusions because the flow fields they
use do not estimate motion of occluded points.

The Particle Video method from Sand and Teller (2008) also starts with concate-
nated optical flow vectors but refines these post facto by optimizing a cost function
that includes multiframe data and smoothness terms. The data term penalizes tra-

jectories based on the difference between the appearance in a single frame and the

27

running average of the appearance over a few frames, computed by smoothing with
a Gaussian kernel with a standard deviation of five frames. The smoothness term
penalizes differences in motion between neighboring trajectories. Neighbors are de-
fined by computing a Delaunay triangulation in frames t—1, ¢, and t+1 and are
weighted according to the average difference in motion between the two trajectories
over all frames in the sequence. High-cost trajectories are terminated at suspected
occlusions. As with the other methods, new trajectories are initialized to fill holes.
Compared to Sundaram et al. (2010), this method is significantly more expensive.
Sadly, it does not result in more accurate trajectories, possibly because it relies on
slightly older, less advanced optical flow techniques to create the initial trajectories.
Like the two previous methods, it cannot associate the trajectories of reappearing
points across occlusions.

The final methods we review are the most closely related to the concept of video
motion we present in this thesis because they use the rank constraints from SFM
to return sequence-length correspondences akin to our definition of paths. However,
they do not account for occlusions.

Rank constraints for dense motion were first introduced by Irani (2002), but her
method only applied to rigid scenes. Torresani and Bregler (2002) track a sparse set
of reliable points through all frames using a KLT tracker and find a basis for these
tracks through PCA. Non-rigid motions are allowed as long as a suitably low rank
basis can be found to approximate them. The correspondences for untracked points
are found by estimating coefficients for each basis track using factored sampling
(Grenander et al., 1991). The likelihood distribution that is used models changes in
image intensity along a trajectory as independent and identically distributed Gaus-
sian random variables. The inferred coefficients correspond to the expected value of
the posterior distribution for each trajectory. There is no additional regularization
beyond the low rank assumption. This method makes two assumptions that are

28

often violated: that a KLT tracker will return enough full-length tracks of textured
points, and that the posterior distribution is unimodal. Our method makes no such
assumptions.

Garg et al. (2010) solve for motion using a variational framework similar to stan-
dard optical flow estimation but using a low-rank basis found as in Torresani and
Bregler (2002). The unknowns in the variational objective function are reconstruc-
tion coefficients for trajectories located on a uniform grid in a reference frame. The
objective function combines a data term with a quadratic penalty on changes in
intensity along a trajectory with a variational smoothness term with a quadratic
penalty on the spatial gradient of the coefficient fields. The solution is found us-
ing a direct extension of the nested fixed point iterations from variational optical
flow. Because occlusions are ignored, trajectories are unfairly penalized for changes
in appearance when they are not visible. (The method was developed to solve for
the multiframe registration of deforming surfaces in domains where occlusions are
rare.) In an extension, Garg et al. (2011) soften the hard subspace constraints in
their earlier approach to create a prior on image motion. The new method includes
robust penalty functions to provide some robustness to occlusions, but there is no
explicit detection of occlusion events. Garg et al. also experiment with using the
DCT basis for trajectories in place of the sequence-specific PCA basis.

In Chapter 6, we compare our video motion paths to the results from Sundaram
et al. (2010) and Garg et al. (2011). We use results from Sundaram et al. (2010)
to initialize our solution. We improve on their formulation by considering evidence
across all frames during optimization and maintaining correspondence across occlu-
sions. We improve on the results from Garg et al. (2011) by explicitly modeling
occlusions and reporting motion for all points, not just those visible in a privileged

reference frame.

29

3

Video Motion

The key contribution of this thesis is the definition of and a solution for video motion.
We begin with a formal definition. Consider a single world point, identified by the
index p, appearing in a video containing F' frames. The image projection of the point
moves along a path, denoted x, : {1,..., F} — R? where x,(t) is the location at
which the point would appear in frame ¢ if it were visible. We mark visible frames
using the visibility flag v, : {1,..., F'} — {0,1}. The value v,(t) is one if the point
is visible in frame ¢ and zero otherwise. Both x,(t) and v,(¢) are unknowns to be
estimated for all paths in a given video sequence. Video motion consists of the
paths and visibility flags for a dense sampling of each visible surface in a scene. In
the next sections we develop a model that allows for video motion to be extracted

automatically from a few seconds of video.
3.1 Selecting Scene Points for Paths

Points sampled on visible surfaces form a set of anchor points
{(ur, 1), ..., (up,7),...,(up,7p)} , (3.1)

30

where u = (u,v) is a position in the image plane at frame 7. We create one path per
anchor point and constrain the path to pass through its anchor point while visible,
i.e., Vp(1,) = 1 and x,(7,) = u,.

A set of anchor points is sufficient to explain the motion in the video if it results
in paths that can explain every pixel in the video. For each pixel (u,v,t), we want
some path p such that v,(t) = 1 and [|(u,v) — x,(t)|| < A for some small distance
A that defines a spatial neighborhood. An efficient representation of motion would
divide world surfaces into small patches and use a single anchor point for each unique
visible patch. This would guarantee full coverage provided that all the paths and
visibility flags can be found. However, it is difficult to identify unique world points
accurately without first knowing the motion that we are trying to find. Placing an
anchor point at every pixel in every frame of the sequence would guarantee that
every pixel is explained but would result in multiple paths for a single world point.
For example, a point visible in 7" frames would be associated with T" distinct paths
when only one would suffice.

An alternative to selecting every pixel as an anchor point is to first select a
few privileged reference frames and to locate anchor points at every pixel in each
of these selected frames (e.g., Garg et al., 2010, 2011; Ricco and Tomasi, 2012a).
Unfortunately, there is no guarantee that a deterministic selection of a few frames
will result in a set of paths that explain all pixels in the sequence because objects
cannot be guaranteed to be visible in any subset of frames. Our definition allows
anchor points to be located in any frame of the video sequence and there is no

requirement that nearby world points have paths anchored in the same frame.

31

3.2 Path Parameterization

A path is defined relative to its anchor point as a linear combination of a finite set

of basis paths, {¢1,..., 9K}, up to a shift. Specifically, we have

() = up + Y o (u(t) — @r(7)) - (3.2)
k=1

It is easy to see that any setting of ¢, = (cp1, . .., ¢pi) satisfies x,(7,) = u,, so that a
path cannot become dislodged from the world point it follows. It would be equivalent

to use a linear model in standard form

K+2

2,(t) = 3 cepult) (3.3)

with the last two basis functions set to the constant functions ¢x1(t) = (1,0) and
pr+2(t) = (0,1) and the coefficients ¢, k41, ¢, k12 defined as functions of u,, @i (7,),
and ¢y for all other k, computed so as to satisfy the constraint that x,(7,) = u,.
The formulation in (3.2) is used to eliminate these constrained variables, keeping
only the free variables. Note that we use the same set of basis paths to express the
paths of all visible points in a given sequence.

Representing all paths parametrically using a single finite set of basis functions
does not, in principle, restrict the variety or complexity of motions that can be
represented. Rather than representing paths as functions, we can write them as
vectors of length 2F. The ith entry is the z-coordinate in frame ¢ and the (i + F)th
entry is the y-coordinate in frame . From this representation we can see that a basis
for R2" would be able to describe any possible path lasting £ frames.

One particular setting of ¢ connects paths to optical flow. Consider the basis
where @ (t) = (1;2x,0) and @rir(t) = (0,14—f). The symbol 1;_; denotes the
indicator function taking the value 1 when ¢t = k. Represented as vectors, these

32

functions form the standard basis for R?!". The values (Cpk» Cp(k+r)) With this basis
correspond to the flow at u, in the optical flow field computed between frame 7, and
frame k.

A better choice for a basis could be the DCT basis, which has been a popular
choice in recent related work (Garg et al., 2011; Akhter et al., 2011). These basis
functions consist of cosine functions of increasing frequency. Each function contains
support in every frame, which makes the process of estimating paths (by estimating
coeflicients ¢y, given evidence from the video) more robust to noise in a single frame.
Additionally, if it is known that motions are sufficiently smooth, only the low-order
basis functions need to be used. This approach decreases the dimension of the search
space when estimating paths for long sequences and guarantees that the expected
smoothness properties hold.

Rather than use these pre-defined bases, we can select a sequence-specific basis.
For a particular sequence, it is often possible to find a much more compact basis that
can still express all possible paths with reasonable accuracy than would be possible
using a fixed basis for all sequences. A sequence-specific basis can provide dimension-
ality reduction that is equivalent to what can be achieved by using only the low-order
DCT basis functions without requiring that the motion be temporally smooth. In-
stead, the basis provides strong temporal regularization that forces extracted paths
to be consistent with all other paths in the sequence.

The theoretical justification for the existence of these compact, sequence-specific
bases traces back to the factorization method for SFM (Tomasi and Kanade, 1992)
we reviewed in Chapter 2. We postpone further discussion of how to find a sequence-
specific basis for an input sequence to Chapter 4 and assume for the moment that

the basis is given.

33

3.3 Optimal Paths

Let us assume that, in addition to having specified a basis, we have already selected
a set of anchor points and have estimated the visibility of each point in each frame.
The path for each point is determined by specifying the coefficients of the linear
combination c¢,. How do we determine the likelihood that this guess represents the
true motion of the scene?

First, we assume that the appearance of a point does not change over time. This
means that, if we sample the appearance of the video at points along a path in frames
where the point is visible, we expect constant measurements in the absence of noise.
The reference appearance of each point is given by the appearance of video at the
anchor point. In the context of this thesis, we work with grayscale video and define
the appearance of a point (u,, 7,) as the intensity at that location, I(u,, 7,). We use
interpolation to recover intensity values at real-valued locations u,,.

The value AI,(t) = I(x,(t),t) —I(u,, 7,) measures the difference in intensity
sampled along the path in frame ¢ and the reference intensity at the anchor point in

frame 7,,. The total penalty for changes in intensity along a path is given by

Ep(ey) = Y, vp(t)p(AL (1)) - (3.4)

This quantity is a function of the path coefficients ¢,, which determine the shape of
the path «,(¢). The function p is a symmetric penalty function, a non-decreasing
function of the absolute value of its argument, and multiplying by v, () ensures that
the penalty is levied only on visible points.
We use p(s) = v/s2 + €2 (with €2 = 0.001 as is standard), which is a differentiable
approximation of the function p(s) = |s|. When compared to the standard quadratic
2

penalty p(s) = s* our penalty function is less sensitive to the large changes in

appearance that can occur (even along the correct path) as a result of unmodeled

34

4 4 4

2 2 2

95 0 5 95 o 5 95 (0] 5
(a) Quadratic. (b) Huber. (c) Charbonnier.

6 6 6

4 4 4

2 2 \ / 2

% 5 s % 5 B
(d) Lorentzian. (e) Truncated quadratic. (f) Geman-McClure.

FIGURE 3.1: Examples of common penalty functions (see Black and Rangarajan
(1996) for more details). The quadratic penalty function, p(s) = s?, is sensitive to
outliers. The Huber function combines a quadratic penalty for small errors with a

linear penalty for large errors. It is defined as p(s) = % + 5 for |s| < € and p(s) = |s|
for |s| = e. The Charbonnier function, p(s) = +/s? + €2, is a differentiable approxi-

mation of the absolute value. The non-convex Lorentzian, p(s) = log (1 + % (5)2),

is differentiable and further reduces the effect of outliers. The truncated quadratic,
p(s) = min(s?, 3), assesses a constant penalty for outliers but is not differentiable.
The Geman-McClure function, p(s) = is differentiable and robust to outliers
but is not convex. We use (c).

s _
1+s27

lighting changes or incorrectly detected occlusions. The quadratic penalty would be
optimal if the changes in intensity due to noise were normally distributed. Many
other choices for p exist; see Figure 3.1 for a sample of popular functions. Some of
these functions are non-convex, and some, e.g., the Geman-McClure function, have
limg o p'(s) = 0 so that the penalty assessed for gross outliers does not increase
without bound. Using such functions improves robustness at the cost of (possibly
additional) non-convexity, which complicates minimization.

We sum together the penalties for intensity changes along all paths to get the first

35

term in our path objective function. This data term cannot distinguish between paths
that move along isocontours of intensity within the video sequence. This limitation
is the multiframe extension of the aperture problem from optical flow estimation. We
address this problem by adding spatial regularization based on our assumption that
nearby points should follow essentially parallel paths. Our final objective function to
be minimized is a weighted combination of the data term and a spatial smoothness
term penalizing differences in the path coefficients between pairs of paths. The full

objective function is

E(ci,....ep) =). Ep(e,) + % D> Eslepcy) (3.5)

pEP peP geP
with
K
Es(ep, ¢q) = g Z p(Cpk — Cqr) - (3.6)
k=1
We use the same robust function here as in the data term, although this is not a

requirement. The multiplier o, couples nearby paths that have similar reference

appearance and is equal to

(I(uy,7p) —](uq’Tq)>2> (3.7)

Opg = XP | —
Prq (0_2

if p # ¢ and the path p is both visible in the anchor frame of path ¢ (that is,
vp(1y) = 1) and close enough to the anchor of ¢ (that is, ||z,(7;) — u,|| < A).
Otherwise, a,, = 0. Both the use of a robust penalty function and the weight a,,
allow discontinuities at object boundaries (as object boundaries tend to coincide with
changes in intensity that decrease the strength of ay,, across the boundary).

The neighbor relationships defined by «,, are not known a priori and are instead
a function of the current estimate of the paths. The only relationships that can be

determined independent of the path coefficients are relationships between paths with

36

anchor points in neighboring pixels in a single frame. These are the relationships
exploited by variational formulations of the smoothness term in methods with refer-
ence frames defined a priori (Garg et al., 2010; Ricco and Tomasi, 2012a). Because
our placement of anchor points is unrestricted, there is no guarantee that there will
be sufficient neighbors to constrain the solution based on anchor points alone.

The parameter A allows for adjustment of the relative strength of the data and
smoothness term. Note that the relative weight between the two terms also depends
on the magnitude of the coefficients ¢,. The choice of basis paths will affect the
scaling of ¢,, as one could multiply a basis path by some non-zero scalar a and mul-
tiply the corresponding coefficient of each path by the reciprocal i without changing
the final paths. To make the range of ¢, consistent across sequences, we choose to
scale each basis path independently so that the average motion between consecutive
frames is one pixel. Other choices, such as making each basis path have unit norm
in vector form, are possible.

Although our standard penalty functions are convex functions of their arguments,
our full objective function is non-convex in the unknowns ¢, because Al,(t) is not
guaranteed to be convex. We describe our approach to constructing an initial solution

and searching for a local minimum in Chapter 5.
3.4 Optimal Visibility

The visibility flags v,(t) for each path and frame were treated as known in the data
term of the path objective function. However, these values are unknown in general;
they must also be estimated from data.

We model visibility flags as an MRF whose structure depends on the current
estimates @,(t) of the paths p € P. Formally, an MRF is a graphical model G =
(V, E) that defines a probability distribution over a set of random variables taking

values from a specified label set. Each random variable is associated with a node

37

in the graph, and edges in the graph represent dependencies. The graph structure
is defined so that the random variable at node wv; is conditionally independent of
all other nodes, given its immediate neighbors {v;|(v;,v;) € E}. Consequently, the
joint distribution can be written as a (sufficiently normalized) product of potential
functions defined over cliques in the graph. For general MRF's, most inference tasks
are NP-hard (Veksler, 1999; Kolmogorov and Zabih, 2004).

In computer vision, the most common MRFs have maximum cliques of size two
and are often defined in terms of their energy function, written as

E(x) = Z D(z,) + Z Voa(p, 24) - (3.8)

peV p,qeE

The value of « that minimizes E is the mazimum a posteriori (MAP) estimate given

some observations o when

P(o|@)oc | [e Pt (3.9)
is the likelihood and
P(z)oc [] e Voalerma) (3.10)
p,qEE

is the prior distribution. The functions D(z,) are referred to as data terms, and the
prior terms V,,,(z,, z,) are usually called smoothness terms because “smoothness” is
a very common prior in vision problems.

Our MRF has one node for each point v,(t) = (x,(t),t) along some path, for
t =1,...,F, and one binary random variable v,(t) per node. The neighborhood of
v,(t) consists of the set of points v,(t) with ¢ # p and ||v,(t) — v,(t)|| < A for some
small fixed A plus the two points v,(t — 1) and v,(t + 1). The latter two points are
the nodes temporally adjacent to v,(t) along the same path p and form the temporal
neighborhood. The other nodes in the neighborhood are spatial neighbors.

Each node in the MRF is associated with a binary observed visibility flag 0, (t).

This value is computed from the video using a less sophisticated model of spatial and

38

temporal smoothness than the MRF provides. The purpose of 7,(t) is to provide an
initial estimate of visibility to ground the estimate from the MRF in the evidence
from the video based on our assumptions that visible points do not change their
appearance over time and that a single object is visible at each video pixel.

Consider the video pixel with coordinates (x,y,t). We denote the set of paths
intersecting this video pixel as Q(z,y,t) = {q | ||z,(t) — (z,y)|| < A}. We may
have |@| > 1 for two reasons. First, there may be an occlusion, which occurs when
distant points in 3D project to the same location in the image. In this case, we
expect the intersecting paths to have different motions in the surrounding frames.
One of these motions corresponds to the movement of the visible surface; the others
correspond to estimated motions of the occluded surfaces. If we take a small image
patch and transport it along the different paths within a small temporal window,
we expect minimal intensity changes in the patches that follow the motion of the
visible surface. Because the appearance of the video and the motion of the occluded
object are uncorrelated, we expect larger changes in brightness when following paths
of occluded surfaces.

We measure the patch brightness constancy for each path p in each frame t as
follows. Let

C(p,t) =T(p,t, t)+ Y(p,t, 1), (3.11)

with
tt.t) = [[[wr = olran) + €1) ~ Hay) + £ O)ldear 312

and

— (el +72)

w(€,T)oce o2 . (3.13)

The value Y(p,t,t) measures the Gaussian-weighted absolute image differences be-

tween the image patch centered at x,(f) in frame ¢ and the volume of values ob-

39

tained by transporting the patch through the motion «,(¢). The parameter 7 in-
dexes frames, while £ is a spatial offset. The value Y(p,¢,7,) compares the trans-
ported volume to the reference patch for point p, located in the frame of its anchor
point, 7,. The surface may have deformed some between 7, and ¢, so we often have
Y(p,t,7) > Y(p,t,t). Including both terms allows for robustness to some deforma-
tion while still penalizing too much drift from the reference patch.

Thus, C(p,t) measures the severity of violations of our brightness constancy as-
sumption for path p in the vicinity of frame ¢. As stated, if the point p is visible at
time ¢, we expect C(p,t) to be low and high otherwise. Crucially, if p is occluded,
there must be some other point ¢ € () that is visible at time ¢ and hides p so that
C(q,t) < C(p,t). Let

p*(z,y,t) = arg min C(q,t) (3.14)
q€Q(@,y,t)

be the index of the path with the best patch brightness constancy in the neighborhood
of video pixel (x,y,t). We call this path a controlling path and set D« (t) = 1.

A video pixel may have multiple paths intersecting it without an occlusion occur-
ring if the same scene point is associated with multiple anchor points (and therefore
multiple paths). This frequently occurs when temporarily occluded points reappear

in a scene. To handle this case, we measure the average distance between paths

p,q € Q as
_ 1 &
dpg = fz e, () — 24 (2)]] - (3.15)
t=1

Paths that are essentially parallel to the controlling path are also likely to be visible
in this frame. We set 7,(t) = 1 if dyp+ < d for some small threshold d, say d = 4
pixels. Here, p* is the controlling path for the video pixel intersected by path p at
time t. (Note that this definition sets 7,x(t) = 1 automatically because dy,x = 0.)

Figure 3.2 illustrates these concepts with a concrete example. The paths drawn all

40

FIGURE 3.2: The space-time cube for our example sequence with vertical slices
showing frames 1, 12, and 25. Time increases to the right. The corner of the
crate (cyan) is occluded by Miss Marple’s arm (green) in frame 12. A small patch
(red dashed squares) is transported along each path and monitored for consistent
appearance. The arm patch (bottom left, outlined in green) is most consistent,
making this a controlling path. Points along paths that either coincide with or are
substantially parallel to a nearby controlling path have their observed visibility flag
,(t) set to 1. The observed visibility flags for the cyan paths are all 0 in this frame.
Observed flags feed into the data term in the visibility MRF. Visibility flags for
controlling paths are fixed at 1 in the final solution and removed from the set of
unknowns in the MRF, ensuring at least one path is visible at every pixel.

pass within a radius of one pixel of (109, 123) in frame 12. The repeated miniatures
show transported patches for the controlling path (outlined in green), as well as for
the least consistent path according to C,(t) (outlined in cyan). All paths drawn in
green are substantially parallel to the controlling path and so are marked as visible
in this frame in ,(¢). The paths drawn in cyan follow substantially different paths

than the controlling path and so are marked as occluded.

41

The values of the observed visibility flags ,(¢) influence the hidden visibility flags
vp(t) through a data term in the MRF. Recall the data term of our path objective

function, which includes a term

2 (A1) (3.16)

equal to the total penalty incurred as a result of changes in brightness in the visible
frames along the path. The values v,(t) are unknown, but we can replace them
with the known observed visibility values and compute the average penalty along

the observed visible portion of path p:

A, = S BOpAL(0) -
S ()

For correctly estimated paths, this measure reflects variations of intensity caused by
unmodeled effects such as image noise or global illumination changes, rather than by
occlusions between points with intersecting paths.
The data term of the MRF is defined as follows:
D(yp(t) = 1) = p(ALp(t) + AL(l = 0(1))

D(v,(t) = 0) = A, + ALiy(t) .

(3.18)

The terms with multiplier A;, bias the estimated visibility values v,(t) toward the
observed values 7,(t). Declaring a point visible incurs an additional charge p(AI,(t)),
which increases with the magnitude of the change in intensity between the anchor and
current point. Marking the point as occluded incurs the additional charge A, that
accounts for the fact that intensity variations may have causes other than occlusions.
Figure 3.3 shows p(Al,(t)) and A, for one of the paths drawn in cyan in Figure 3.2.

The point is occluded from frame 9 to frame 19.

42

50| — @1 ®) ||
40} A
530’
o
o
20t
10
/_ I\ A
1 5 10 15 20 25
frame

FIGURE 3.3: The penalty p(AI,(t)) (in blue) for a path drawn in cyan in Figure 3.2
compared to the penalty A, (in magenta). The tracked point is occluded from frame
9 to frame 19, when the cost for the occlusion penalty A, is much lower than the
actual difference in intensity compared to the path’s reference appearance.

The weights on edges between the nodes of the MRF encourage both temporal

and spatial consistency among visibility values. Specifically, a penalty
Vir(vp(t), vp(t + 1)) = Ap|vp(t) — vp(t + 1)| (3.19)

is added between temporally adjacent neighbors to discourage frequent changes in

visibility along a path. The weight on the edge between spatial neighbors

Vs (1p(t), 4 (t)) = wpq (D) As|1p(t) — v (1)) (3.20)

adds an additional weight that depends on the paths p and ¢ and the frame ¢. This

weight is equal to

o

Wpq(t) = I +e) (3.21)
pq

<A1pq(t>2+m§,q)
€

where € > 0 prevents division by zero. In this expression,
Alpg(t) = I(xp(t), 1) — I(24(1), 1)
(3.22)
Al = 1(uy,) — (g, 7y) -
In words, AL, (t) measures the difference in appearance between paths in the frame

in which visibility is being estimated, and AI,, measures the difference in appearance

43

between paths at their anchor points. The combined effect of these two terms is to
push discontinuities in visibility closer to intensity boundaries.

The full energy function we wish to minimize is then

Eyrr = Y, 2. D) + 2. D V(g (t), vgt + 1)) + > Vs(wy(1), (1)) - (3.23)

Note that both V; and Vg satisfy
V(0,0)+ V(1,1) < V(0,1) + V(1,0) .

Therefore, this energy function is graph-representable as Kolmogorov and Zabih
(2004) show, and it is possible to find the global minimum efficiently. However, there
is no guarantee that this global minimum satisfies the physical requirement that each
video pixel must have some visible object that is responsible for the appearance at
that pixel. We enforce this constraint by fixing the visibility of the controlling paths.
If p* is a controlling path in frame ¢, we require that v,«(¢) = 1 in the final solution.
As long as there are enough paths for at least one path to pass through every video
pixel, this guarantees at least one wvisible path through every video pixel.

This formal definition of video motion satisfies our objectives. Each visible world
point is associated with a path that extends for the length of the sequence, defining
a correspondence in every frame in which the point is visible. The flexibility of our
definition of anchor points enables us to associate paths with world points regardless
of when those points become visible in the scene. Occlusions are given first-class
status, with each path reporting whether its associated point is visible in any given
frame. The occlusion model incorporates evidence from every frame and allows
occlusions only when an occluder can be found. Most importantly, our model is
practical; as the remainder of this dissertation demonstrates, we have successfully

used it to recover accurate video motion in realistic sequences.

44

4

Finding a Path Basis

In this chapter, we present our method for generating a sequence-specific path basis.
While it is possible to use a pre-defined basis, a sequence-specific basis can more
accurately and compactly represent the motion in a sequence, providing stronger
regularization during the path inference process and improving the computational
efficiency of the inference step. The work described here was first published in Ricco

and Tomasi (2012b).
4.1 Factorization in the Presence of Missing Data

Recall from our parameterization of video motion that we wish to find a set of K
basis paths {¢1,..., @Kk} that span the space of allowable paths in a sequence, up
to a shift. The size of the basis will vary for each sequence. Here we will use the
equivalent formulation to search for a basis of size K + 2 that spans the space of
allowable paths without a shift. The two constant basis functions ¢x1(t) = (1,0)
and @r12(t) = (0,1) can be separated out from the first K through Gram-Schmidt
orthogonalization during finalization.

We start by considering an ideal case. Let us assume that there exists a set of

45

representative points that can be reliably tracked through the entire image sequence.
Let (ugp, vysp) be the tracked location of point p in frame f returned by the frame-
to-frame tracker. Our assumption is that these tracks lie close to a low-dimensional

linear subspace so that we can write
M ~ LR" (4.1)

where the columns of M (a 2F x P matrix) collect the tracked locations of each
point, with s, in the first ' rows and vy, in the second F' rows, columns of L
(a 2F x K matrix) correspond to the vector representation of the basis paths, and
rows of R (a P x K matrix) contain the coefficients of the reconstructions of each
track. Equality is only approximate because of tracking noise and other unmodeled
non-linear effects. These points are representative if the track of any visible point in
the sequence could be expressed with equivalent accuracy using the same basis L.
The process of finding the optimal L and R for some matrix M is called matrix
factorization. If the errors in the entries of M are assumed to come from an inde-
pendently and identically distributed isotropic Gaussian noise process, so that the
Frobenius norm is the appropriate error metric, then the best basis can be found by

solving the optimization problem
L* = arg mgn mén |IM — LR"|]3 . (4.2)

The global optimum can be computed as the first K left singular vectors in the sin-
gular value decomposition (SVD) of the matrix M. If K is not known a priori, it can
be selected by, for example, requiring that the basis captures a certain percentage of
the variation in the original tracks. This process is equivalent to Principal Compo-
nent Analysis except for the missing centering step. It is also identical to the initial
steps of the work in factorization for SFM (again, disregarding centering), although
we do not assign any physical meaning to L or R, which in SFM correspond to the

46

frame number
(x-coordinate)

frame number
(y-coordinate)

track ID
FIGURE 4.1: A typical fill pattern showing the prevalence of missing data in matrices
collecting frame-to-frame tracks. Black entries are known; white entries are missing.
Tracks follow points on a small toy dinosaur rotating on a turntable (see Buchanan
and Fitzgibbon (2005)). The sequence is 36 frames long; we include only those tracks
that survived for at least 6 frames, sorted by the frame in which they were initialized.
The second 36 rows of the fill matrix (corresponding to y-coordinates of the tracks)

are duplicates of the first 36 (corresponding to z-coordinates), as a single observation
always contains both coordinates.

camera parameters and scene structure, respectively.

Of course, the assumption that a tracker will be able to follow enough features
through the entire sequence is completely unrealistic. In practice, tracking point
features is brittle because the appearance within a feature window changes as a
result of many factors including image noise, variations in lighting or viewpoint,
or object deformations. Even under perfect conditions, a track will be lost if the
feature becomes occluded. When features are lost, new features are initialized to
replace them, creating new columns of M with missing entries prior to initialization.
Similarly, the columns of M corresponding to features lost in frame ¢ have missing
entries in the rows corresponding to all frames after frame ¢t. Figure 4.1 shows
a typical fill pattern for M. Black regions correspond to known entries; missing
entries are white. Only 20% of the entries are known in this example.

With missing entries in the matrix, the SVD cannot be used unless imputed

47

values are used in place of the missing elements. Many researchers have addressed
this problem within the framework of factorization for SFM. Tomasi and Kanade
(1992) proposed imputing missing entries greedily, starting by solving the original
problem with a full submatrix of M and then predicting missing entries that overlap
the partial solution, thereby creating a larger submatrix that can be used to continue
the process.! If imputed values are not used, the optimization problem to solve
becomes

: B T\ (12
r%lHF@(M LR") |}, (4.3)

where F'is a binary fill matrix with f;; = 1 if and only if m;; is known and ‘©’ is the
Hadamard (i.e., entry-by-entry) product. The solution is typically found via alterna-
tion (Wiberg, 1976), where one iterates between solving for L with R fixed and vice
versa, or through direct non-linear numerical optimization. Buchanan and Fitzgib-
bon (2005) provide an excellent summary of many proposed alternation techniques
and present a damped Newton method to perform direct non-linear optimization.
Interest in this type of problem is by no means restricted to the computer vision
community. In particular, the problem of low-rank matrix completion is a widely
studied problem recently popularized by the Netflix Prize, a $1 million challenge
to improve movie recommendations for Netflix users through collaborative filtering

(Bennett and Lanning, 2007). The noise-free matrix completion problem solves

minimize rank(X)
(4.4)
subject to Po(X) = Po(M) ,
where € identifies the known entries of the matrix M and the function Pg(-) replaces

unknown entries of its argument with zeros. Minimizing the rank (equal to the

number of non-zero singular values of X) results in an NP-hard problem, which

! Unfortunately, the problem of finding the largest submatrix with which to start is NP-hard (by
reduction from max-clique).

48

is often replaced with its convex relaxation, the minimization of the nuclear norm
| X ||« (equal to the sum of the singular values of X). If entries of the matrix M are

corrupted by noise, then the problem becomes

minimize || X ||«

(4.5)

subject to ||Po(X — M)||r <0
for some 0 > 0. Candes and Recht (2009) proved that (with high probability)
the unique solution to this optimization problem with § = 0 (the noise-free case)
perfectly predicts the missing entries of an n; x ny matrix of rank r, provided that
m = Cn'*rlogn where m is the number of known entries and n = max(ny,ny). For
this theorem to apply, the matrix must satisfy certain incoherence properties. The
intuition behind the incoherence requirement is that it is not possible to recover a
matrix with non-zero entries concentrated in some small neighborhood unless those
entries are sampled. As a concrete example, consider trying to recover the matrix
that contains a single non-zero element in the upper-left corner (all other entries are
zero). This matrix has rank 1, but even if every other element of the matrix is known,
it is impossible to recover the non-zero element. Candes and Plan (2010) considered
the noisy case under similar assumptions and proved that recovery is stable, with
errors proportional to the noise level 9. We refer interested readers to the cited works
for the exact statements of these and other related theorems.

Unfortunately, neither of these theoretical guarantees (nor later improvements)
applies to our problem because both rely on one crucial assumption in addition to
the incoherence property: the assumption that the known entries of the matrix are
sampled uniformly at random (UAR). UAR sampling requires that whether the entry
at (i,7) is known or unknown is independent of both the value of the indices ¢ and j
and the value of the entry itself. This is clearly violated in the tracking case, where

entries are known over intervals of the frame index. The switch from known to

49

unknown often results from either an occlusion or track loss at the image boundary,
processes that depend on the value of the first missing entry. Because of this, and
as can be seen in Figure 4.1, the pattern of known elements is highly structured. As
a result, imputed entries are often of lower quality than would be predicted by the
theoretical results.

In our problem, the imputed entries extrapolate from the limited length tracks
available from a frame-to-frame tracker into full-length video motion paths. When
finding the optimal paths given the basis, we are able to leverage information about
the appearance of the video along the path that is not used in the traditional matrix
completion problem. Nevertheless, geometric information is valuable; if we can find
a basis that can accurately impute values based on the geometric information alone,
our task becomes that much easier.

We improve imputation of missing entries by recognizing that, although every
newly initialized feature creates a new column of the matrix M, in fact many of
these new features follow points that were tracked before. If we can recognize these
re-identified features, we can collapse the respective columns of M into a single col-
umn, forming a compact matrix M. The new matrix will have a greater percentage
of observed elements and the distribution of these observed entries will have less
structure than in the original matrix (although the sampling process will still not be
independent of the value of the elements). In the next sections, we present a history-
sensitive feature reinitialization procedure that actively works to identify previously
lost features in a frame-to-frame tracker. These tracks feed into an optimization rou-
tine that simultaneously searches for the best low-rank factorization and compacts
the matrix being factored by merging columns that correspond to the same world
point. At convergence, the path basis {¢1,..., @K} is computed by factoring out
the contribution of the constant basis functions from the columns of the matrix L.

Surprisingly, the opportunity for matrix compaction during factorization is rarely

50

considered in the SFM literature. When correspondences provided by the tracker are
considered as untrustworthy, it is most often within the framework of robust factor-
ization in which individual correspondences may be flagged as outliers and discarded
(e.g., Olsen and Bartoli, 2008; De la Torre and Black, 2001; Ke and Kanade, 2005).
This is the reverse of the problem we focus on, as we look for tracks that should
have been merged and were not rather than associations that were made and should
not have been. The work in Dellaert et al. (2000) is a noticeable exception to this
general rule. The authors assume that no correspondences are known at all and
propose a Monte Carlo approach for sampling possible correspondences. They solve
for perspective SFM to verify proposals. Our compaction approach differs in three
ways. First, we assume that some, but not all, correspondences are known; that is,
we assume that a point-feature tracker often works. Second, we use a more general
low-rank matrix model in place of the rigidity assumed in perspective SEFM, making
our approach applicable to multi-body or non-rigid motions. Finally, we allow the ap-
pearance of tracked points to inform predicted associations while the approach taken
by Dellaert et al. uses geometric information only. The “track gluing” experiment of
Olsen and Bartoli (2008) performs compaction, but it considers merging tracks only
after factorization is complete and does so based on geometric information only. In
contrast, we propose to interleave matrix compaction with matrix factorization and

include the appearance of tracks in the decision about compaction.
4.2 Tracking with History-Sensitive Feature Snapping

It is standard practice to initialize new tracks in a KLT tracker to replace lost tracks
based on a stateless analysis of the current frame. Points surrounded by sufficient
texture are found, and a predefined distance threshold is used to retain points that
are far enough from each other and from the live points still being tracked. Similarly,

optical flow-based trackers such as Sundaram et al. (2010) or Wang et al. (2011) also

o1

sample points with significant texture, although they may not necessarily filter based
on the distance between points. Since this approach to reinitialization only looks at
the current frame, new features may be detected at image locations that are close
but not necessarily identical to those of features that had been lost earlier and have
now reappeared. For example, a previously tracked feature will presumably once
again pass the texture threshold. However, new features are initialized at integer
pixel coordinates even though true motion between frames is generally real-valued.
If we were to merge two such columns, the tracks between the two would be slightly
misaligned, and doing so would introduce artificial jitter into the space of paths.

To address this problem, we introduce a history-sensitive form of feature reinitial-
ization that positions new tracks preferentially at points that have been previously
seen but were lost for a short amount of time. We call this procedure feature snap-
ping. To support feature snapping, we maintain a record of the temporally-averaged
image patch around each live feature. When a track dies, we move its patch record to
a catalog of lost patches. At reinitialization time, we first form a list of feature can-
didates with the traditional, stateless method. We then compute the affine motion
between each candidate in the list and the features in the catalog to adjust the initial
position of the candidate feature to better align with the historical appearance of a
previously tracked patch. We compute the photometric distance between the aligned
patches by computing the sum of squared differences in intensity. If this distance is
below a set threshold, we use the location of the center of the patch after alignment
as the coordinates of the new feature instead of the initial pixel coordinates.

The catalog of lost features can grow quickly, particularly in sequences with
frequent occlusions or significant non-rigid deformations. In this case, we may not
want to search the entire catalog for every new candidate feature. We can limit our
search by using geometric information. For example, we can augment the record

of the feature in the catalog with its last known location and only try to snap to

52

features that were last seen within some fixed distance. This assumes that features
do not move (much) when they are not seen and biases the system toward tracks
that are only briefly lost, e.g., due to image noise rather than true occlusions. If
motion in the scene is significant or occlusions are of considerable duration, we can
use more sophisticated models of motion to predict the location of a lost feature
in the current frame. For example, we could assume that velocity is constant and
predict locations based on the most recent (or average) observed velocity of each
feature in the catalog. The size of the search window centered on this predicted
location grows based on the amount of observed variation in the velocity during the
tracked interval and the time since the point was last observed. Of course, both these
proposals are simply heuristics used to reduce the amount of computation required.
More complicated prediction strategies could be used. Recall that we will eventually
be predicting the tracks of lost features using a general low-rank assumption that
incorporates information about the motion of all tracks in the scene, but that model
is not available at this point in the computation.

Importantly, when snapping occurs, we do not assume that the new feature and
the one it is snapped to should have their columns merged. We leave those decisions
to the compaction algorithm, which is able to use the stronger constraints from rank,
geometry, and photometric appearance to determine if merging is appropriate.

Our work here addresses only the feature reinitialization procedure, not the pro-
cess for tracking points once initialized. For that, we use a standard KLT tracker
or an optical flow-based tracker. The algorithm by Sundaram et al. (2010) is bet-
ter at tracking through large motions and can be used to add tracks in low-texture
areas for sequences without many otherwise trackable features. In both cases, we
tune parameters of the trackers to terminate tracks very conservatively (i.e., earlier
than one might normally terminate a track). We do this to eliminate as many out-

lier tracks as possible because the quadratic penalty in the matrix completion step

53

is sensitive to outliers. Early terminations result in more missing elements in the

original (uncompact) matrix M; we rely on our compaction step to compensate.
4.3 Matrix Compaction

Once feature tracks have been computed, we proceed with the compaction-and-
factorization step. Let C be an n x n binary symmetric compaction matriz with
entries ¢;; = 1 if and only if track ¢ and track j correspond to the same world point
and therefore should be merged into the same column. Because the compaction
matrix defines an equivalence relationship between track fragments, its entries are
required to obey the transitive property: If ¢;; = ¢j; = 1, then ¢;; = 1. The compact
version M of M consists of the unique columns of the matrix M C when we fill
missing elements of M with zeros. We encourage compaction by adding a term to
the standard factorization objective function (4.2) that is proportional to the number
of zeros in C'. Recall that we wish to minimize this objective.

We include additional heuristics and constraints to ensure that the recovered
compaction is plausible. First, two tracks ¢ and j are temporally consistent if they
do not overlap in time. Only temporally consistent tracks may be merged because
a single point cannot appear in two locations in a single frame. The fill matrix F'
indicates which tracks are observed in which frames; the entry at (f,i) of the fill
matrix after compaction F'C' counts the number of times a point associated with
track ¢ is observed in frame f. Recall that row f and row 2f of F' are identical, so
the entry at (2f,7) stores the same information. The requirement that associated
tracks must be temporally consistent can be enforced mathematically by adding the
constraint ||F,C||,, = 1 where F, denotes the matrix consisting of the first F' rows
of F (corresponding to the locations of observed x-coordinates). This constraint is

linear in the unknown variables c;;.

54

Two tracks are photometrically consistent if small image windows around them
look similar. Specifically, let I; be the average image over the frames in which track
1 was observed, with individual frames aligned according to the motion of the track.
That is, with the tracked point located at (z;,yy;) in frame f, and tracked between

frames f; and fs,

f2
1
Li(z,y) = —F——— e +axp—xpiy+yp— Ypi f) - 4.6
(z,9) f2_f1+1f=§f1 (@ + g — Tpiy + Ypi — Ypis f) (4.6)

We use bilinear interpolation to compute intensities at real-valued image locations
and replace missing values (out of the field of view of the frame) with zeros. Let I; be
this average image for track j. Note that the patch from I; centered at @; = (xf,:, Y1)
is the patch stored in the lost feature catalog during tracking. As before, we solve
for the affine deformation that best aligns the correct patches from the two images
and store the image difference in an n x n lower-triangular photometric discrepancy
matriz ® with entries

Gij = Am&g)igg@ﬂ%) [(x — @) — [;(A(x —x;) +d)||% for i>j. (4.7)
Because the same point should look similar in all the frames in which it is tracked,
merged tracks should be photometrically consistent. We encourage photometric con-
sistency by adding to the penalty function (4.2) a term proportional to ¢’c where
¢ = vec(®) and ¢ = vec(C). The expression vec(A) for a matrix A denotes the
column vector obtained by listing all the entries of A in an arbitrary but fixed order.

Finally, track fragments that are merged must be geometrically consistent, mean-
ing that the same reconstructed track (i.e., full length path) can approximate the
observations from both track fragments well. We can enforce this by adding a con-

straint that c¢;;(riy — rjx) = 0 for all ¢, j, k with ¢ > j. In words, either track ¢ and j

%)

are kept separate so that c;; = 0, or they are merged, in which case the corresponding
rows of R in equation (4.3) must be identical.
In summary, simultaneous compaction and factorization solves the following op-

timization problem:

Im%HchAJ—LRﬂH%+Aﬂ%1—cy+M¢ﬂz

L.R

st. C=C"
Cij+cip<cp+1 Vi jk (4.8)
IF2Clle = 1

Cz‘j(ﬁ'k - Tjk) =0 Vi,5,k

with L € R?F>*K R e R™K and C € {0,1}"*". The first two constraints ensure that
C is symmetric and satisfies the transitive property. The last two enforce temporal

and geometric consistency, respectively.
4.8.1 Optimization

The mixed integer quadratically constrained nonlinear program (4.8) is intractable;
solving it exactly is impractical for typical problem sizes. We find an approximate
solution by alternating between performing matrix factorization with a fixed com-
paction and finding a new candidate compaction matrix.

With compaction fixed, only the first term of the objective function and the last
constraint are relevant. We enforce the constraint by collapsing M into M and
performing factorization on the smaller matrix. We treat the actual factorization
of the compacted matrix as a black box. In our current implementation, we use
the factorization algorithm of Gotardo and Martinez (2011). This method supports
adding priors on the temporal smoothness of the motion by restricting the recovered
basis to be a linear combination of the low-frequency DCT basis vectors. We run the

algorithm with the complete DCT basis, so no smoothness is enforced. The solution

o6

to this step is a factorization M ~ LRT. We recover R by duplicating rows of R
according to the associations defined in the compaction matrix.

It is highly unlikely that factorization will recover identical entries in two columns
of R that have yet to be compacted. The entries in R are real valued and are
estimated from disjoint track fragments that have each been corrupted by noise. In
a two-step process, where a new estimate of C' must use a fixed estimate of L and
R, requiring strict equality for compacted track fragments would likely rule out all
correct associations. Instead, we want to relax the constraint so that two columns
may be compacted if they are similar but not identical. We replace the constraint
with a heuristic that measures how well the full-length reconstruction of one track
fits the observed entries of a different track. The idea is that if the reconstruction of
track ¢ fits the observations of track j nearly as well as the current (unconstrained)
reconstruction of track j does, then compacting these two columns is reasonable.

We define a lower-triangular geometric discrepancy matriz G to have entries
gij = min(D(i, j), D(j,3)) for i>j, (4.9)

where

D(i,j) = |If; © (Lri —my) I3 . (4.10)
In this expression, f; is the jth column of F', which identifies the frames in which
track j is observed; r! is the ith column of R so Lv! is the reconstruction of
track 7; m; is the jth column of M, which contains the observed locations of track
j. In words, the distance term D(i,j) is the total distance between the imputed
version of track ¢ and the observed version of track j in the frames in which track j
is visible. The minimum of D(7, j) and D(j,4) yields a symmetric distance function
and represents the additional geometric fitting penalty that would be paid if the
factorization procedure selected the best of the two current reconstructions to use

for both track fragments. This quantity is an upper bound on the actual additional

57

penalty that would be paid in the original objective function if factorization were
allowed to search for the best single track to use for both tracks ¢ and j. In this way,
the value measures the predicted cost of enforcing the strict equality constraint.

To find a new compaction, we solve the integer linear program (IP)

rncivn glc+M1T(1 —c) + Mao'c

st. C=0C"
(4.11)

Cij + Cjk < Cii + 1 Vl,j,k

||F.Clle = 1.

In these expressions, g = vec(G). We iterate between proposing a compaction and
factoring with the constraints imposed by that compaction until the proposed com-
paction matrix stabilizes. The solution with the lowest cost according to the objective
function from (4.8) encountered during the iteration is returned as the final solution.
Because of the approximation used in place of the geometric consistency constraint,
some compactions may be missed. We greedily perform single compactions (in which
a single pair of columns of M are merged) until none are left that decrease the value
of the full objective function. Although this procedure does not guarantee that we
reach a global minimum of our original objective, we achieve good results in practice,
often recovering very close to the ground truth compaction.

The algorithm as described assumes that we know the rank of the matrix during
factorization. In practice, K is often not known. We select its value for a particular
sequence by slowly increasing K until the observed entries of M are reconstructed
to within a set threshold. More advanced model selection techniques could be used
to estimate K. We have observed that adding compaction during factorization tends
to make the solution more robust to overestimates of the rank. By this we mean
that the accuracy with which we can impute missing entries is stable for values

of K that slightly overestimate the true rank. It may be possible to correct for

58

an overestimated rank by examining the magnitude of the singular values from the
SVD of the imputed version of M at convergence. We present the details of these

experiments in Section 4.4.3.
4.3.2 Pre-solving and constraint generation

A naive implementation of the integer program (4.11) solves for n? variables, but
over half can be immediately eliminated because of the first set of constraints that
force ¢;; = ¢j;. Thus, we only actually need to solve for ¢;; with ¢ > j. Even more
unknowns can be eliminated in a pre-solve step based on the max-norm constraint;
we know that ¢;; = 0 for any pair of tracks visible in the same frame. This pre-solve
step often reduces the number of unknowns for sequences with approximately 100
tracks per frame to the point where the IP can be solved using standard off-the-shelf
techniques. In particular, we use the Gurobi Optimizer (Gurobi Optimization, Inc.,
2013), which solves IPs using linear programming-based branch-and-bound.

For larger problem sizes, the number of constraints needed to enforce the transi-
tivity property becomes prohibitive. However, very few of these constraints are tight
at the final solution. Instead of constructing all constraints from the start, we use
constraint generation to enforce only the constraints we believe will be tight. We
first solve using only the constraints from ||F,C||,, = 1. (The equality constraints
C = C7 have already been eliminated as described above.) We then check for
any violations of the transitivity property, that is, for ¢ # 5 # k,7 # k such that
¢ij = ¢ = 1 but ¢ = 0. If no violated constraints are found, the solution found
is an optimal solution to the problem with all constraints imposed. If violations are
found, we add the violated constraints and re-solve.

In Figure 4.2, we report the time to solve one iteration of the IP for synthetic
datasets of various sizes. The naive implementation quickly becomes prohibitively

expensive; pre-solving decreases the running time, but both versions require more

99

800

—&— naive
7001 with pre-solve
—o— with pre-solve and constraint generation

D

[}

o
T

a1

o

o
T

w

o

o
T

running time (seconds)
N
o
o

N

o

o
T

1001

0 50 100 150 200 250 300
number of tracks

FIGURE 4.2: Time to compute a single compaction proposal on synthetic datasets
with increasing numbers of tracks. A set of tracks of size 3N is generated by creating
N full tracks, breaking them into five random pieces, and considering the first, third,
and last segment of each track as separate observed track fragments. The compu-
tation scales to large problem sizes when pre-solving and constraint generation are
included (magenta). Pre-solving without constraint generation (cyan) results in a no-
ticeable speedup compared to the naive implementation (blue), but the improvement
is not enough to scale to sequences that generate many track fragments.

than 64GB of memory to solve for compactions with 600 track fragments. Adding
constraint generation greatly improves the situation: running times and memory
requirements scale gracefully, and the Gurobi Optimizer can compute solutions for
3000 tracks in just 45 seconds. (With the naive implementation, it takes 45 sec-
onds to solve a problem with just 150 tracks.) Behavior on real sequences is similar,
as demonstrated in Figure 4.3. Figure 4.3a shows the time required for computing
a proposed compaction using the naive implementation, pre-solving, or pre-solving
with constraint generation. Figure 4.3b shows the number of unknowns in the re-
sulting IP for the different methods; Figure 4.3c shows the number of constraints

enforced for each.

60

20 T T T T 18000

181 Il naive 1 Il naive

[with pre-solve 16000 [with pre-solve
16/ [with pre-solve and constraint generation 1 [with pre-solve and constraint generation

14000

12000

10000

80001

60001

running time (seconds)
number of unknowns in IP

4000+

20001

0
bears shoe car=full car-segmented bears shoe car=full car-segmented

(a) Time to compute a compaction proposal. (b) Number of unknowns in the IP.

number of constraints in IP

Il naive

[with pre-solve

[with pre-solve and constraint generation
e e e

bears shoe car-full car-segmented

(¢) Number of generated constraints.

F1GURE 4.3: Comparison of the naive implementation (blue), the integer program
after pre-solving (cyan), and the integer program with pre-solving and constraint
generation (magenta) on four real sequences. Note the logarithmic scale in the y-
axis of (c¢). See Section 4.4 for details on the sequences tested.

4.4 Results

Because our video motion technique relies so heavily on the existence of a good
sequence-specific basis, we present the results for basis extraction before continuing
to describe the rest of the optimization procedure. In order to use our full system as
designed, we need to find reliable bases for sequences without any full-length frame-

to-frame tracks. We prove that we can accomplish this task here. The results for the

61

1=

(c) car-full (d) car-segmented

FIGURE 4.4: Example frames, with tracked features marked, fill matrices before
compaction, and fill matrices after the correct compaction is applied for the four real
sequences we test. The matrices follow the layout of Figure 4.1. The 105-frame bears
sequence generates 130 tracks from 68 unique features. Before compaction, 62% of
the entries in M are missing. With the ground truth compaction applied, 28% of
the entries are missing. The 71-frame shoe sequence generates 96 observations of 25
unique features. M is 85% missing before compaction and 42% missing under perfect
compaction. Two car sequences track points through the same 31-frame sequence. In
car-full, there are 115 tracked features, 60 of which are unique. Perfect compaction
reduces the amount of missing data from 61% to 25%. Manually discarding the tracks
on the background leaves 49 tracks in the car-segmented sequence, 14 of which are
unique. Perfect compaction reduces the amount of missing data from 84% to 45%.

full video motion system can be found in Chapter 6.

We test simultaneous compaction and factorization on four sets of tracks. See
Figure 4.4 for details of each set. The tracks are generated using a KLT tracker
augmented to use history-sensitive feature reinitialization. We do not artificially
split any tracks; rather, column splitting is a result of feature loss and automatic
reacquisition. We determine the ground truth associations for the recovered tracks
and generate a ground truth measurement matrix M* by hand tracking the acquired
points throughout the sequence. We use fixed parameters \; = 30, Ay = 1 for all

runs. For the first two experiments, we assume we know the desired rank K.

62

4.4.1 Accuracy of compaction

Our first experiments test how well compaction is able to recover correct associations
between track fragments. We can evaluate performance using standard metrics for
clustering algorithms as ideally the compaction matrix partitions the columns of M
into clusters corresponding to unique world points. Given two partitions, P and Q,

of a set of n points, the Rand index (Rand, 1971) is defined as

a+d
(5)

where a counts the pairs of points in which the two elements of the pair are assigned

RI = (4.12)

to the same cluster in both P and Q and d counts the pairs of points whose elements
are assigned to different clusters in both P and Q. In words, the numerator counts
the pairs on which the two partitions agree, and the denominator counts all possible
pairs. This value can range between 0 and 1, but a value of 0 only occurs when P
groups all points in a single cluster and Q leaves every point in its own individual
cluster (or vice versa). For any other assignment, there will be many pairs of points
correctly placed in different clusters in P and Q even when both partitions are
completely random. The adjusted Rand index of Hubert and Arabie (1985) corrects
for the effects of chance, creating an index that ranges from —1 to 1 and is expected
to take values close to zero when comparing two random partitions. The formula for

this metric is

S () = 2 () 2 ()] /)
IO ESH I B P AG DA NG

ARI = , (4.13)

where n;; is the total number of points in cluster 7 in P and in cluster j in Q,
a; = X,;nij is the number of points in cluster i in P, and b; = 3, ny; is the number

of points in cluster j in O.

63

TABLE 4.1: Accuracy of compaction, measured using the Adjusted Rand Index
(ARI) between the computed and ground truth associations. Our technique returns
a more accurate estimate of the track fragments that should be associated than
techniques that consider geometric or photometric information in isolation.

Sequence Adjusted Rand Index (estimated vs. true)
Geo-only Photo-only Photo+Geo Compaction

car-segmented | 0.1659 0.3267 0.4632 1.0000

car-full | 0.0205 0.5120 0.5570 0.9146

bears | 0.0384 0.5078 0.1784 0.9637

shoe | 0.0416 0.2920 0.3886 0.9825

We compare to three baseline data association techniques: one that uses only
geometric evidence, one that uses only photometric evidence, and one that uses
photometric evidence to prime the geometric-only technique. The geometric-only
alternative runs factorization without compaction and then merges temporally con-
sistent tracks with geometric consistency g;; below a threshold corresponding to an
average geometric error of one pixel per observation. This method is modeled on
the track gluing procedure of Olsen and Bartoli (2008). The photometric-only al-
ternative associates two tracks if they are respective best-matches according to the
photometric discrepancy matrix ® (i.e., i = argmin; ¢;; and j = arg min; ¢;;) with
¢;; below a threshold. We use the parameter A; as the threshold. The photometric-
geometric bootstrapping technique uses the photometric-only step to compute asso-
ciations which are used during factorization. The geometric-only technique is then
applied to these reconstructed tracks to determine the final associations. As Table 4.1
shows, compaction recovers clusters of track fragments that are much more similar

to the ground truth than any of the baseline techniques.
4.4.2 Accuracy of recovered paths

Next, we examine whether the added constraints provided by compaction improve

the ability to extrapolate from a frame-to-frame track into a full-length path based

64

on geometric information alone. This is in contrast to the results we present in
Chapter 6, where we find video motion paths for all points, not just those initially
tracked with a frame-to-frame tracker, using photometric evidence and accounting
for occlusions.

Recall that M* collects the ground truth locations of the tracked points in every
frame. M is a noisy version of M* with only some entries observed. The total error
in the extrapolated paths is ||[M* — LRT||%. Rather than including the errors in
all entries in a single metric, we group the entries based on the temporal distance
to the nearest observation of the corresponding track. At the coarsest level, this
grouping separates errors in reconstruction of the observed entries, which measure
the denoising capacity of the low-rank assumption, from errors in imputation of the
unobserved entries, which measure the ability to generalize, i.e., the degree to which
the recovered basis L can constrain an entire path based on only a limited number
of observations. In general, we expect the accuracy of imputed entries to decrease
as the temporal distance to the nearest observation of the tracked point increases,
so we consider generalization error as a function of this temporal distance. That
is, if track j is tracked from frame 10 to frame 15, we expect better imputation
performance for the entries corresponding to frame 17 (a temporal distance of 2)
than the entries corresponding to frame 1 (a temporal distance of 9). Let F'(t) be a
2F x P binary matrix with non-zero entries identifying the corresponding entries of
M* with temporal distance t. F(0) is the original fill matrix used in our objective
function. Figure 4.5 shows examples with increasing values of t. Generalization error

is computed as

The numerator computes the sum of the squared errors in all the entries at a par-

65

=, K-\“_

i
‘ I\-\l'h\“\.ﬂ\ﬂ'\"". R

-‘I\‘.\\H

i
‘ I\-\l'h\“\.ﬂ\-"\"". R
(c) F(10)

(a) F(0)

FIGURE 4.5: Selected temporal distance masks for the fill pattern in Figure 4.1.

ticular temporal distance; the denominator computes the total number of entries at
that temporal distance.

Note that, although similar at first glance, GE(0) is not a function of the quantity
we minimize during factorization. Both measure error in the same entries of the
reconstructed matrix LR, but here the errors are computed with respect to the
ground truth locations, not to the observed locations in M.

We compare our results to two baseline methods. The first demonstrates the
overall difficulty of the imputation task by using the true compaction matrix to
form M and then factoring (true compaction). The opposite extreme is a standard
method that performs no compaction before factoring (no compaction). General-
ization performance should be best for the true compaction method because the
added geometric consistency constraint forces the reconstruction to be close to the
observed location of a point any time it is observed, which is potentially many frames
removed from the last observation of one of the corresponding fragments. Our re-
sults are summarized in Figure 4.6, with the performance of our algorithm shown
in magenta. In every case, our technique significantly increases imputation accuracy
over the standard approach.

The increase in imputation accuracy is the result of two factors. First, impu-

66

10

10"

10

10° |
10°

generalization error (pixels)
generalization error (pixels)

== no compaction C === 0 compaction
true compaction true compaction
o i ion L =©~ estimated compaction
10 . . . : T 10 . . . : :
0 5 10 15 20 25 30 0 5 10 15 20 25 30
generalization distance (frames) generalization distance (frames)
(a) car-segmented, K =3 (b) car-full, K =6

== 0 compaction
true compaction
=©- estimated compaction

generalization error (pixels)
generalization error (pixels)

=== no compaction
true compaction
=©- estimated compaction

0 20 40 60 80 100 120 0 10 20 30 40 50 60 70
generalization distance (frames) generalization distance (frames)

(c) bears, K =4 (d) shoe, K =4

FIGURE 4.6: The generalization error for the four test sequences with and without
compaction. Blue shows the results of factorization without any compaction. Our
algorithm (magenta) uses the estimated compaction during factorization and recovers
missing entries better than standard factorization. The oracle algorithm, shown
in cyan, achieves the best performance by using the ground truth associations to
compact the matrix before factorization. Our results are identical to the oracle for
the car-segmented sequence because we exactly recover the true associations.

tation improves simply because of the geometric consistency constraint; the same
reconstructed track must fit all associated track fragments equally well, so imputed
locations are highly accurate when associations are correctly recovered, regardless of
the basis. Second, the recovered basis L is more reliable with compaction included.
Figure 4.7 isolates the effects of these two different components of the solution. The

blue and magenta lines are copies of the same from Figure 4.6a; the magenta line is

67

generalization error (pixels)

10 ——no compaction E
® —©— full compaction
—A— constraints only
—e— basis only

L L L
0 5 10 15 20 25 30
generalization distance (frames)

FIGURE 4.7: Evaluation of the cause of the observed improvement in generalization
performance. The blue and magenta lines show generalization error on the car-
segmented sequence with (magenta) and without (blue) compaction. The green line
uses the basis L found without compaction, but computes final reconstruction coef-
ficients R using the added constraints from the estimated compaction. The added
constraints improve performance slightly, but the poor quality of the basis is appar-
ent. Of particular interest is the generalization error at a generalization distance
of zero. The no-compaction basis does not span the correct motion space and so
cannot accurately reconstruct the observed entries when the extra constraints are
included. The black line uses the basis estimated with compaction, but recomputes
the final reconstruction coefficients in R without using the extra constraints implied
by the inferred data association. The excellent generalization performance demon-
strates that the basis alone provides sufficient regularization to make the additional
constraints virtually redundant.

the error for the full algorithm, while the blue line is the error with no compaction
performed. The remaining two lines correspond to hybrid versions. The green line
shows generalization error when the basis L is taken from the no compaction results,
but the reconstruction coefficients R are replaced by ones computed with the geo-
metric consistency constraints from the estimated compaction applied. The black
line is the one we are most interested in for the larger video motion application; it

shows generalization error when using L computed with compaction but replacing

68

R with reconstruction coefficients computed using only the observed entries of the
original track, without the added constraints from the associated track fragments.
Generalization performance is nearly as good in this last case as it is with the con-
straints applied (compare black vs. magenta), showing that the basis we find spans
the correct motion space and provides sufficient regularization to make it possible
to generalize to full tracks from the individual track fragments. This experiment
validates our approach to initializing dense video motion (described in detail in Sec-
tion 5.1), which consists of extrapolating to full-length paths from short tracks built

from concatenated optical flow vectors.
4.4.8 Performance with incorrect rank estimation

Finally, we test our performance in situations where the rank of the true measure-
ment matrix is unknown and may be overestimated. We shatter synthetic tracks
into five track fragments, putting the first, third, and last fragment into individual
columns of a measurement matrix and discarding the remaining two. Each origi-
nal track is associated with a random patch from an image. We corrupt both the
shattered measurement matrix and the local image patches with Gaussian noise.
Figure 4.8 shows the generalization performance over 20 random datasets, both with
and without compaction. Adding compaction makes the reconstruction robust to an
estimated rank that is double the true rank. It also allows for recovery of the correct

rank through inspection of the singular values of the reconstructed matrix.
4.5 Implementation for Video Motion Estimation

We make two modifications to the basic compaction algorithm when it runs as part
of the full video motion estimation system. First, recall that feature snapping works
to ensure that two tracks that will be compacted follow exactly the same world

point. However, feature snapping places the new track at the best possible location

69

107 -

e ;_:If_ fhapitoiit ‘TW mﬁﬂﬁﬂﬂl I__-

| dl ?{g ’.T ..T
Il lﬂﬁﬁﬁﬂff T .
——K=4 =K =4, with compaction 11‘1‘ = *_-t i g

21— K=6 =K =6, with compaction 10° | ;

s K=8 K =8, with compaction o
B Il T Il Il
.
6

0 10 20 30 40 50
generalization distance (frames)

() (b)

FIGURE 4.8: Compaction adds robustness to overestimation of the rank of the true

matrix. We create 20 random track matrices with a true rank of 4 and run our
algorithm with an estimated rank of 4 (magenta), 6 (blue), and 8 (cyan). The average

motion between frames is approximately 2 pixels and the average noise added to the
tracks is 0.01 pixels. In (a), we plot the median of GE(t) for each generalization
distance over the 20 samples; error bars show the 25th and 75th percentile. Without
compaction, the missing entries cannot be recovered when an incorrect rank estimate
is provided. Compaction recovers the ground truth associations in every instance,

and reconstructs the full matrix with errors on the order of the added noise when
given the correct rank. Even when the rank is overestimated by a factor of two,

most entries can be recovered with sub-pixel accuracy. The decrease in error after a
generalization distance of 30 frames is due to successful compaction. These entries
are observed but not correctly associated in the original matrix. Most entries with a
generalization distance less than 30 are truly unobserved. In (b), we show the non-
zero singular values of the reconstructed matrix when the rank is 8, without (blue)
and with (magenta) compaction. Boxes contain the 25th-75th percentiles over the
20 samples. Based on the true rank, the last 4 singular values shown should be zero.
While they are still non-zero with compaction, they are consistently and significantly
lower than the first four, making it possible to correct the overestimate of the rank.

singular values

._.f::::::-::ﬂnn-r;--_
=] ===

generalization error (pixels)

4T MR
HIH
HIH
Th

10

“HIH

lil,
8

given the history of one track and the first frame of the new track. Once tracking is
complete, we can achieve more robust alignment by comparing the average patches
of the two tracks, thereby decreasing the effects of noise in the single frame. When
collapsing track j into track ¢, we allow it to shift by the translation that best aligns
the two average patches. The shift for each track pair is already computed while
building the photometric consistency matrix.

The second modification addresses a limitation of our compaction technique. The

70

factorization procedure we use is very sensitive to outliers, so it is important to
ensure that there are no incorrect associations corrupting the motion space during
the final factorization. Our technique can generate incorrect associations in sequences
with many missing observations and repetitive structures. For example, in the car-
full sequence, tracks on the front wheel of the car at the very end of the sequence
are matched to earlier tracks on the back wheel of the car (see Figure 4.9). For
challenging sequences, we can run compaction in an interactive mode, where a human
verifies proposed associations and can mark pairs of tracks as being different world
points that should never be compacted. This negative feedback is easy to provide;
it is, for instance, much simpler than manually specifying correct associations. For
the hardest sequences, it can be helpful to manually specify true associations as well
instead of repeatedly flagging incorrect associations. However, we stress that the
initial tracking and the computation of the basis from associated tracks is always
done without human input.

User input is also required to select the rank of the matrix. When the rank is
too low, the initial factorization step will fail to reconstruct the observed entries of
the matrix with sufficient accuracy. Numerous incorrect associations can indicate
that the selected rank is too large. As discussed, we can often correct for slight
overestimates of the rank by inspecting the singular values of the final reconstructed
matrix.

In a final step, we remove the contribution of the constant basis functions by
shifting each reconstructed track so that it passes through (0,0) in the first frame.
A path basis of size K is formed by scaling the first K left singular vectors of the

shifted matrix, as described in Section 3.3.

71

FiGure 4.9: Example of an incorrect association that can be rejected with an in-
teractive system. The two large images show the location of two track fragments
from car-full in the first frame in which they are tracked. We also show the corre-
sponding patches used to compute the photometric consistency between this pair of
tracks. Although the tracks are on different wheels, the local patches appear nearly
identical, causing problems for compaction. A human supervisor can quickly review
the results and disallow this association.

72

5

Extracting Paths from Video

Once we have defined a path basis according to the procedure described in Chapter 4,
we are ready to extract complete video motion paths for a new sequence according
to the model defined in Chapter 3. Given a selection of anchor points, the remaining
unknowns are a mix of continuous and discrete variables, and the path objective
function is non-convex. Finding the best anchor points is a difficult problem in its
own right, as we hope to densely sample each visible surface before we know the
correspondences between surfaces visible in different frames of the video.

We proceed by considering the discrete visibility flags separately from the contin-
uous path coefficients, using a local search in the continuous space that finds a local
optimum of the objective function. Initial path estimates consisting of the anchor
points and path coefficients are found through an analysis of two-frame optical flow
fields. For any set of paths, we can find the optimal visibility flags by minimizing
the MRF energy

Byrr =), 2. D) + 2. D V(v (t), vt + 1)) + D Vs(wp(t), (1) - (5.1)

73

From our initial estimate, we minimize the path objective function

F K
A
E(ey,....ep) =). > (1) p(AL(L) +5 DT o Y plenk — cqr) (5.2)
peP €=1 B peP qeP N k=1 .
ED?CP) ES(;;ch)

with respect to the path coefficients, updating the visibility estimates after a fixed
number of descent steps. We add new paths to fill unexplained regions if neces-
sary, converging to a solution that covers every pixel in the video sequence with a
visible path. (Equations (5.1) and (5.2) are identical to equations (3.23) and (3.5),

respectively. We restate them here for the reader’s convenience.)
5.1 [Initialization

Initial paths are defined by their anchor points and coefficients. We want the number
of paths we extract to be of the same order as the number of visible points in the
sequence, where a “visible point” covers more or less the extent of a pixel. Placing
anchor points at every pixel in the first and last frames in the sequence at worst
overestimates the true number of anchor points needed by a factor of two. However,
we also need to account for portions of the visible scene that happen to be occluded in
these two particular frames. We search for regions not known to correspond to scene
points covered by the first- or last-frame anchors by following a procedure inspired
by Sundaram et al. (2010).

We use the method in Brox et al. (2009) to solve for bi-directional pairwise
optical flow fields. We concatenate optical flow vectors into tracks, breaking the
tracks when the optical flow fields fail a forward-backward consistency check or when
the tracks pass too close to a motion boundary (according to equations (5) and (6)
from Sundaram et al. (2010), respectively). To prevent merging foreground and

background tracks, we create a thin empty buffer around the regions where tracks

74

terminate. We initialize a new track whenever we find a pixel that is at a distance
greater than one pixel from any track propagated from the previous frame, including
at pixels with low texture that would be discarded by Sundaram et al. (2010). The
track fragments that start in the first frame of the sequence are converted into paths,
with anchor points in the first frame. If the track fragments are long enough, the
coefficients for the paths are determined by projecting the fragments onto the path
basis. Specifically, consider the track fragment that starts at u = (u,v) in the first
frame, passes through points (2, ys), and is terminated in frame ¢. The anchor point

is (u,1). We form the 2¢ x 1 vector m and 2t x K matrix A as

2 o) =) o) - k)]
| mw | and a=| @il eic(t) = ic(1)
m = yi —v d A pi(1) — i(1) (1) —l(1) | (5.3)
- yt;v : L 1(t) —ei(1) - er(t) — k(1)]

The notation ¢ (f) represents the z-coordinate of the kth basis path, evaluated
in frame f; pY(f) is the y-coordinate of the basis path in that frame. The initial
coefficients are the solutions of Ac = m, as long as 2t > K so that A is full rank.
If the track fragment is too short and A is rank deficient, we select coefficients by
testing the coefficients from other nearby track fragments. We pick the coefficients
that create the path with the best brightness constancy measured over a few frames.

Track fragments that reach the last frame of the sequence are converted into
paths anchored at points in the last frame using the same procedure. For all other
track fragments, we place a (possible) anchor point in the frame in which they are
initialized and construct initial coefficients using the same technique as before. We
iterate through these potential paths and only add those that differ from already

included paths by more than an average of 2 pixels per frame. Figure 5.1a shows the

75

anchor points of the initial paths for one of our test sequences. Anchor points are
drawn in color on top of the frames of the sequence; colors correspond to the value
of ¢,1, the coefficient of the first basis path.

The anchor points are generally fixed during optimization, although they can be
deleted and new ones can be added to ensure complete coverage of the video sequence.
We describe this process in Section 5.3. Optimization primarily changes the values
of the coefficients for the paths emanating from the anchor points. Figure 5.1b shows

the color-coded anchor points for the test sequence after optimization is complete.
5.2 Optimization

Starting with the initial path estimates, we interleave two steps: a combinatorial
optimization step finds visibility flags 1,(t) for the current path estimates, and a
continuous optimization step updates path coefficients ¢, given the current visibility
estimates. The initial path estimates are often poor along occlusion boundaries
because visibility was not properly accounted for during initialization. We use a
heuristic procedure to take large steps in the search space, replacing the parameters
of a path with the parameters from a nearby path if this replacement reduces the

overall data cost.
5.2.1 FEstimating visibility for current paths

We can find the best values for the visibility flags for a set of paths by minimizing the
MRF energy function using graph cuts (Boykov and Kolmogorov, 2004; Kolmogorov
and Zabih, 2004). However, we must first compute the spatial neighbors for each
MRF node and the observed visibility flags 7,,(¢). We find the controlling path at each
video pixel in O(PF') time for P paths over F' frames by storing the path with the
best brightness constancy seen at each pixel. We walk along each path, computing

its patch brightness constancy at each frame and replacing the stored value at the

76

(b) At convergence.

FIGURE 5.1: Anchor points selected during initialization and at convergence. Anchor
points are drawn in false color on the frames of the sequence (time increases right-
to-left, top-to-bottom). Colors are chosen according to the value of the first path
coefficient; similar colors (in the jet colormap) denote similar sets of path coefficients.
Note the improved segmentation of Miss Marple after convergence.

7

pixels it passes through if necessary. On a second pass, we check whether the current
path is the controlling path at the nearest pixel to () in frame ¢.

Actually computing ,(t) for all p and ¢ takes O(PF?) time because we need to
compute the average distance between the path p and the controlling path p* when
the two are not equal. This takes an extra F' operations for every new pair, and the
controlling path may change at every time step along the current path. In practice,
we can save a lot of computation by caching this value so that we do not have to
recompute the distance when the same pair appears in different frames.

It is possible to compute the spatial neighbors by storing the set

Qx,y,t) = {q | llzg(t) — (z, 9| < A} (5.4)

while finding the controlling path at each video pixel (z,y,t). If (x,y) is the nearest
video pixel to x,(t), then all neighbors of p are listed in Q(z',y',t) for |z —2'| <1
and |y —v'| < 1.

Remember that we enforce the constraint that controlling paths are visible in the
final solution. We do this by eliminating these nodes from the MRF, incorporating
the smoothness terms for the incident edges into the data terms for the remaining
vertices. We also eliminate the nodes for all frames and paths where @, () is outside
the field of view of the camera because we know these must have v,(¢) = 0.

The strength of the connection between two spatial neighbors is determined by
the weight w,,(t) defined in equation (3.21). This weight decreases rapidly as the
geometric and photometric distances between the two paths increase. For very large
problems, we can limit the memory requirements by setting a threshold on the
weights and only including edges with large enough w,,(t). We found that only
including an edge when wy,(t) > 0.01 eliminates many edges without changing the
optimal solution significantly. For example, on the marple7 sequence (our running
example), we discard nearly one third of the edges in the MRF, reducing computa-

78

tion time from 310 seconds to 90 seconds. The optimal solution in the reduced MRF

differs in fewer than 0.1% of the unknown visibility flags.
5.2.2 Non-linear minimization to improve paths

With visibility estimates fixed, we update path coefficients by minimizing the energy
function (3.5) via trust-region Newton Conjugate Gradients optimization (Nocedal
and Wright, 2006). The pseudocode for the optimization scheme is included in Ap-
pendix A. The idea is to find each descent step by solving the Newton step approx-
imately using conjugate gradients (CG) on each iteration. This requires computing
vectors of the form Hwv, where H is the Hessian, but it does not require computing
(or inverting) H itself. The Hessian of our objective function is very large but sparse.
The sparsity pattern changes over time because the coupling coefficients ay,, depend
on the path coefficients. When computing successive conjugate gradients, we treat
the terms oy, as constants — a good approximation for small path perturbations —
and recompute them between full descent steps. The derivations of the gradient and

the Hessian are included in Appendix A.3.
5.2.83 Heuristic update

After a fixed number of descent steps, we allow a path to copy its coefficients and
visibility flags from one of its neighbors if doing so improves the path’s fit to data.

Specifically, path p copies from path ¢ if:
e ¢ is visible in the anchor frame for p: v,(7,) = 1,
e ¢ is anchored in a different frame: 7, # 7,
e ¢ is a neighbor of p in frame 7,: ||x,(7,) — u,|| < A,

e ¢ is visible for enough frames: Y, v,(t) > £, and

9

79

e copying parameters improves the data fit for p the most out of all possible

neighbors.

Replacing the parameters of the path always decreases the data term, but it is not
guaranteed to be a descent step in the full objective function because the smooth-
ness term is ignored. However, the large steps this procedure permits improve the
final solution by letting the optimization routine jump out of bad local optima. Fig-
ure 5.2 illustrates the benefits of this step on our test sequence. Without the heuristic
update, the solution is stuck in an undesirable local optimum, where the incorrect
initial estimates of the motion of the background persist in the final solution. The
background points are initialized with the foreground motion because they are oc-
cluded within just a few frames of their anchor frame. With the heuristic update,
these wrong initial estimates have been replaced by correct estimates that propagated

from paths of similar points anchored in frames farther away from the occlusion.
5.2.4 Anchor management

The most efficient description of video motion would use a single anchor point for
each unique world point visible in the scene. According to this metric, our selection
of anchor points is suboptimal. We start out with multiple anchor points for each
point. For example, even completely static surfaces that are never occluded will
be associated with two paths per point: one anchored in the first frame and one
anchored in the last frame of the sequence. However, this slight oversampling is
actually beneficial in our approach because it allows us to quickly correct from poor
initial estimates as described in Section 5.2.3. We have not addressed the problem
of merging paths to eliminate unnecessary duplicates.

We also have not considered the problem of selecting the optimal anchor frame
for each path. The anchor frame determines the reference appearance of each path,
which plays a unique role in the objective function. It may be possible to reduce the

80

(b) ()

FIGURE 5.2: Effect of the heuristic update step. Motion estimates are shown for
paths anchored in the first and last frames only, using the same color scheme as in
Figure 5.1. In (a), we show the initial path estimates derived from the concatenated
optical flow vectors. Note the significant errors in regions affected by occlusions
(directly in front of Miss Marple in frame 1 and behind her in frame 25). The other
two image pairs show the solution at convergence with the heuristic update either
ignored or included. Without the heuristic update (b), the solution cannot escape
the poor local optimum nearest to this incorrect initialization. The heuristic update
(¢) compensates for the poor initialization, achieving a much better final solution.

81

objective function without actually changing any path by simply sliding the anchor
points along their respective paths to the frame that minimizes Ep(c,). However,
predicting the full effect of this change is complicated because the anchor frames are
also used to define neighbors for the smoothness term. The anchor frames also play
an important role when computing the controlling paths because patch brightness
constancy (3.11) includes a term measuring total image distance from a patch cen-
tered on the point in its anchor frame. Selecting an anchor frame that is as far as
possible from any occlusion events could be beneficial because it would decrease the
chance that the reference patch includes portions of an occluding object. We have
not fully investigated what impact allowing paths to change anchor frames would

have on the overall convergence.
5.3 Termination

After one round of Newton-CG descent steps and before we recompute visibility,
we check for convergence by computing the maximum change in any path in any
frame in which it is visible. Convergence occurs when the maximum change from
the solution at step zero of this minimization round is less than one pixel.

We then test the solution for adequate coverage of the video. We first eliminate
paths that are within the field of view of the camera for multiple frames but are only
marked as visible in their anchor frame. These one-point paths occur when visibility
estimation correctly identifies an outlier with an incorrect path estimate. Next, we
compute the distance from each video pixel to the nearest visible path in its frame.
An unexplained pixel has a distance of greater than one pixel to the nearest visible
path. If fewer than 0.5% of the pixels are unexplained, we accept the solution and
terminate optimization. If too many unexplained pixels are detected, we add paths
by creating new anchor points at every unexplained pixel and resume optimization.
In principle, we could continue optimization as long as any unexplained pixels are

82

found. Eventually we would terminate after, in the worst case, adding an anchor
point at every pixel. We selected our chosen threshold to balance coverage with
computational burden.

The parameters for newly created paths are set by interpolating from the existing
paths. We implemented the simplest possible nearest-neighbor interpolation where
the path with anchor point (Upey, Thew) cOpies its initial parameters from the closest
visible path ¢ = argmin, |, (rye)=1 ||Zp(Thew) — Unew||. Another option would be to
average over multiple nearby neighbors, weighted by the similarity of the appearance
of the various points, as is commonly done to fill in occluded regions in optical flow
computation. It is only necessary to initialize the path coefficients, as the optimal

visibility flags can be recomputed quickly once the coefficients are known.

83

6

Evaluation

The experiments in this chapter validate our approach to computing video motion.
Our experiments demonstrate that we can successfully recover sequence-length cor-
respondences for all visible points, with world points correctly associated before and

after identified occlusion intervals.
6.1 Test Sequences

Although there exist extensive benchmark datasets for the problem of optical flow
estimation, these sequences are not well suited for our problem. The Middlebury
sequences (Baker et al., 2011) are too short and lack sufficient occlusions. Ground
truth optical flow is available between a single pair of frames per sequence, but no
information is provided about the motion in other frames. The MPI-Sintel sequences
(Butler et al., 2012) are long enough and include very challenging, realistic motions.
In fact, the sequences are so challenging that current frame-to-frame trackers struggle
to maintain tracks, limiting our ability to find an appropriate path basis. Current
trackers allow us to recover bases for the motion of the backgrounds, but they fail

to track points on the foreground objects for more than a few frames. A benefit

84

of using synthetic sequences like those in MPI-Sintel is the availability of ground
truth. However, even though MPI-Sintel provides ground truth optical flow between
each consecutive pair of frames, the information to connect points across occlusions
is not provided. This lack of long-term information is unfortunate, as the ability to
maintain correspondence across occlusions is one of the key features we wish to test.

Both Sand and Teller (2008) and Sundaram et al. (2010) evaluated their tech-
niques on a set of contrived sequences formed by temporally mirroring short video
clips so that frame F'— f +1 is a copy of frame f. The length of the sequences ranges
from 50 to 70 frames (corresponding to 25 to 35 unique frames). The purpose of
mirroring the sequences is so that performance can be measured by comparing the
starting and ending positions of extracted point trajectories that extend throughout
the entire sequence. This metric does not necessarily accurately represent the quality
of the solution. Consider an algorithm that always returns zero motion with no oc-
clusions. This algorithm would be unbeatable with respect to the “return-to-start”
metric but could not be called a successful video motion algorithm. Furthermore,
recall that both algorithms terminate trajectories at suspected occlusion boundaries,
meaning that the most difficult points to track are never evaluated. In fact, the
criteria for labeling a point as occluded in Sand and Teller (2008) is a fixed threshold
on a smoothed version of the particle’s energy, causing all potential tracking failures
to be removed from the set of full trajectories. The temporally mirrored motion is
itself a problem because it is in no way representative of real motions one would
observe.!

We test our approach on five real sequences with increasingly complex motion.
Each sequence was selected because it contains significant but temporary occlusion

of a textured background, allowing us to test the novel components of our algorithm

! Peter Sand acknowledges the limitations of his experiment. His dissertation describes his evalu-
ation as “for descriptive purposes only” and recommends that the reported results “not be used to
compare the algorithm with future particle video algorithms.” (Sand, 2006)

85

by measuring how well we maintain correspondences across the occlusion interval.
Selected frames from each sequence are shown in Figure 6.1.

The first sequence we include is the popular MPEG flowerbed sequence, contain-
ing a total of 29 frames. This sequence was used in Wang and Adelson (1994). The
rigid motion in the sequence is the result of a panning camera imaging a static scene.
A foreground tree occludes a significant portion of the background, with the average
occlusion lasting approximately six frames. The second sequence, called truck, is a
new sequence collected for this work. It captures a truck driving behind a bus stop
sign, viewed from an almost stationary camera. This sequence contains 33 frames;
the start and end frame were selected so that a significant portion of the truck is
occluded in both frames. The bus stop sign occludes portions of the truck for an av-
erage of 12 frames. The truck occludes much of the background, but these occluded
regions do not reappear before the end of the sequence.

The remaining three sequences are clips from the Berkeley motion segmentation
dataset (Brox and Malik, 2010) containing significant occlusions caused by a non-
rigid foreground object (a person). We use 25 frames from marple7, 60 frames from
marplel, and 72 frames from marpleS. We have been using the marple7 sequence as
our running example. Miss Marple occludes regions of the background for an average
of ten frames. The two longest sequences are significantly more difficult than the
other three. Marplel contains many shadows that violate the brightness constancy
assumption; marple8 includes a moving object in the background that is almost
entirely occluded by Miss Marple in frame 32. Background points are occluded for
approximately 14 frames.

We also include experiments on the 60-frame synthetic flag sequence introduced
in Garg et al. (2011). This sequence was created by deforming a textured surface
according to motion-capture data from a flag waving in the wind. Because the
sequence is synthetic, ground-truth, full-length paths are available starting at every

86

FIGURE 6.1: Selected frames from our test sequences.

87

pixel in the first frame. The sequence does not contain any significant occlusions
(although a version of the sequence with extremely unrealistic synthetic occlusions
is available). Despite the lack of occlusions, the sequence is challenging because
the motion is highly non-rigid. As a result, it challenges our assumption that all
paths can be represented in a single low-dimensional linear subspace. Figure 6.2
shows selected frames from the original sequence, the versions with added Gaussian
or salt-and-pepper noise, and the version with toy occlusions.

We compare our results to trajectories from Sundaram et al. (2010), using the
executable provided by the authors. We call these LDOF trajectories.? Another
natural comparison is to the work from Garg et al. (2010) and Garg et al. (2011).
There are published results for the latter method on the flag sequence, so we can
compare our method directly on that sequence. Unfortunately, the authors have not
provided a public implementation of their algorithm, so a direct comparison on the
real sequences is difficult. We use an earlier version of our work (Ricco and Tomasi,
2012a) as a proxy for these sequences. Our earlier method was developed in parallel
with and shares many of the features of the approaches from Garg et al. We call
the results of our earlier method Lagrangian Motion Estimation (LME) paths. LME
paths are computed using a variational framework that finds paths for the visible
pixels in both the first and last frames of a sequence. Similarly, Garg et al. compute
motion for points visible in a single selected reference frame. LME paths include
occlusion detection, while the other methods do not. However, the LME occlusion
model is less sophisticated than the one we use for video motion paths and can miss
occlusions caused by objects not visible in the first or last frame. When occlusions
are caused by these objects, the method functions similarly to one that does not

explicitly detect occlusions. Although the methods from Garg et al. have not been

2 The results from Sundaram et al. (2010) are trajectories not paths because they do not extend
through the full length of the sequence but instead terminate at detected occlusions.

88

(d) occlusions

FIGURE 6.2: Selected frames from the flag sequence. Four versions are available:
original (noise-free), added Gaussian noise, added salt-and-pepper noise, and noise-
free with toy occlusions.

89

tested on sequences with significant occlusions, we believe that LME paths represent
a reasonable approximation of the results one might expect.

We tried constructing paths by computing optical flow independently between all
pairs of frames, but the results were so poor that they are not worth including in
detail. We do not compare against Particle Video trajectories from Sand and Teller
(2008) directly because LDOF trajectories have been shown to be significantly and

consistently more accurate.
6.2 Qualitative Evaluation

For a qualitative evaluation, we use computed motion to warp all frames of a sequence
to align with a selected reference frame. For example, to warp all frames back to
the first frame, we first find the closest path to every pixel in that frame. This
path defines the location of the corresponding point in the second frame, the third,
and so on. Let us assume that the selected path through pixel (7,) has location
(x,y) in the second frame. We render the second frame of the warped sequence by
coloring the pixel at (i,j) with the intensity at (x,y) (computed through bilinear
interpolation). When the closest path to pixel (7,7) is marked as occluded in the
frame we are rendering, we do not use the appearance of the pixel at (z,y) because
that would be the appearance of the occluding object. Instead, we search for another
path that is within half a pixel of (4,) and visible in both the reference frame and
the frame to render. If no such path exists, we paint the pixel (i, 7) white to mark it
as occluded. (To follow this procedure with motion computed via LDOF trajectories,
missing correspondences are treated as detected occlusions.) This process is repeated
for all pixels in all frames to create a full-length warped sequence. The result is a
motion-compensated video that should appear static except for the white regions

replacing occluded pixels.

90

o a?

(¢) Marplel. Eight basis functions. Shadows cause problems for occlusion detec-
tion, so not all of the man is recognized as visible in both frames.

(e) Marple8. Eight basis functions. Miss Marple (off-screen in both the first and
last frames) walks past during the sequence, completely occluding the entire scene.
Intermediate frames with Miss Marple visible can be seen in Figure 6.1e.

FIGURE 6.3: Results of our method. For each sequence, we show the first and last
frames, followed by the last frame warped to align with the first frame, and vice
versa. Regions detected as occluded in the source frame of the warp are marked in

white.

91

(¢) Warp from frame 13 to frame 1 of marple8.

FiGURE 6.4: Examples of mistakes made by alternative methods. Results from
video motion paths (rightmost column) are consistently higher quality. The left
two columns show the source and target frames of the warp. Correct warps should
match the first image in each row. The third column shows the inferior result from
a competing method. In (a), few correspondences survive with LDOF trajectories.
Surviving trajectories suffer from drift. In (b), LME paths rely on reference frames,
so they lack correspondences for the portions of the scene that are occluded in the
first and last frames. In (c), LME paths do not track Miss Marple because she is
off-screen in the first and last frame. As a result, this method cannot reliably detect
the occlusion she causes. Video motion paths track every visible point and correctly
mark the background as occluded.

We cannot include the complete videos here. However, Figure 6.3 shows the last
frame of the five real sequences aligned to the first frame, as well as the first aligned
to the last, using the computed video motion paths. Figure 6.4 shows examples of
common mistakes made by the competing algorithms. LDOF trajectories are unable
to bridge occlusions, resulting in very few correspondences between distant frames.

They also suffer from drift, which manifests in the misalignment of the man’s face in

92

Figure 6.4a. The LME paths maintain correspondences across occlusions, but points
that are not visible in the first or the last frame are not tracked. This limitation
causes two types of artifacts. First, these untracked points must be treated as always
being occluded (because they have no correspondences defined), resulting in holes in
the warped frames (see Figure 6.4b). Also, because the points are not tracked, they
cannot cause occlusions, so any points that they do occlude are mistakenly considered
visible. These points are rendered in warped frames using the appearance of their
occluder, instead of being marked in white (see Figure 6.4c). Video motion paths
give better results. Correspondences are correctly maintained across occlusions and
the detected occlusion regions are plausible.

Figure 6.5 shows the result of warping every tenth frame of the flag sequence
back to the first frame. We also show the corresponding warped images from the
LDOF trajectories for this sequence and the warped images from paths created by
computing optical flow from the first image to all the rest using LDOF (Brox et al.,
2009) without any occlusion detection. Because the absolute displacement from the
first frame does not grow too large, first-to-rest optical flow did not suffer from the
extreme errors we observed on the real sequences.

The complexity of the motion in this sequence required 30 path basis functions;
the largest basis used for any of the first five sequences contained eight path basis
functions. The sequence is also much higher resolution than our other five sequences.
As a result, computing video motion was much slower. For efficiency, we downsam-
pled the images by 1/2 and subsampled the initial anchor points. We recover paths
for the full resolution sequence through linear interpolation. LME paths could not

be computed for this sequence due to the problem size.

93

(d) Warps from video motion.

FIGURE 6.5: Estimated motion in the flag sequence. In (a), we show every tenth
frame of the sequence. The remaining rows are the corresponding frames warped
backward to align with the first frame of the sequence. With perfect motion esti-
mates, every image would be a copy of the leftmost image. Warps are computed
using (b) LDOF trajectories, (¢) LDOF optical flow computed between frame 1 and
frame f for all f, and (d) video motion paths.

6.3 Quantitative Evaluation

The flag sequence contains ground truth paths starting at every pixel in the first
frame. For this sequence, we can measure geometric error between the estimated
location of each of these points in each frame and the ground truth location. Table 6.1
reports the root mean squared (RMS) error between the predicted and true locations
of each point. We compare our results to results from LDOF trajectories, results

from LDOF first-to-rest flow, and the published results from Garg et al. (2011). Our

94

method forces all computed paths to lie within a subspace with 30 dimensions while
the other methods are nonparametric.

Garg et al. (2011) uses a motion subspace as a prior to regularize the solution.
They report results using a full-rank DCT basis or a 75-dimensional basis computed
via PCA on tracks from Pizarro and Bartoli (2012). To isolate the effect of errors
in our extracted basis from other sources of error, we also ran our method using a
30-dimensional basis constructed from the ground truth. This basis can reconstruct
the ground truth paths with an RMS error of 0.4 pixels and a maximum error of
4.8 pixels. To recover the ground truth motion exactly we would need a higher-
dimensional representation.

There is no reason we could not use our video motion paths to initialize a non-
parametric method that would solve for small deviations from the motion subspace.
We would expect this step to improve our results in this sequence with due to its

highly non-rigid motion. The focus of our work is on improving this initial solution,

TABLE 6.1: Root Mean Squared (RMS) pixel error for computed paths on the
flag sequence. We report results on all four versions of the sequence: no noise added
(orig), Gaussian noise added (GN), salt-and-pepper noise added (SPN), and synthetic
occlusions added (occ). Note that the good performance of the LDOF trajectories is
somewhat misleading. The results are missing over 70% of the correspondences for
the original sequence due to terminated trajectories (see the warps in Figure 6.5 for
examples); the coverage for the noisy sequences is even sparser. The method from
Garg et al. (2011) uses a full-rank DCT basis (120-dimensional) or a 75-dimensional
basis computed via PCA on tracks from Pizarro and Bartoli (2012). Our basis for
video motion is computed automatically as described in Chapter 4. The last row
reports errors if we are allowed to use the optimal 30-dimensional basis constructed
from the ground truth tracks. The bases we use for the version with occlusions
include the motion of the synthetic occluder, which Garg et al. (2011) do not track.

Method | RMS endpoint error 99th percentile error
orig. GN SPN occ. | orig. GN SPN occ.
Garg et al. (2011), DCT basis | 1.06 2.78 229 1.72 | 6.70 792 853 5.18
Garg et al. (2011), PCA basis | 0.98 228 1.84 133 | 3.08 833 7.09 492
LDOF trajectories | 1.29 1.34 1.26 1.33 | 4.53 4.29 420 4.74
LDOF first-to-rest low | 1.71 4.35 5.05 2.01 | 3.72 18.15 20.35 6.63
Video Motion | 1.81 3.08 2.88 3.18 | 596 10.83 9.63 11.09
Video Motion, true PCA basis | 1.18 2.25 2.20 2.56 | 3.81 7.41 7.34 844

95

particularly in sequences with significant occlusions that Garg et al. neglect.

To measure geometric error for the real sequences, we would have to resort to
using hand-tracked paths as a surrogate for ground truth. Manual tracking for real
sequences is both painstaking and unreliable, particularly for complex motions or
low-texture regions.

Instead, we measure the degree to which intensities remain constant along com-
puted paths as a proxy for geometric accuracy. We use the median intensity value
along the estimated visible portion of each path as the expected appearance of the

corresponding point. Let fp denote this value, computed as

A~

I, = argminz vp(t)|1(cy, t) —al . (6.1)
t

We use a summary statistic instead of the appearance at the path’s anchor point
so that our metric is invariant to the selection of the anchor frame and only varies
if the actual computed motion or visibility changes. We use the median intensity
to increase robustness to errors in the visibility estimates. The all-path interpola-
tion error (APIE) is the absolute deviation from the expected appearance of the
appropriate path, averaged over all visible frames for all paths. Mathematically, this

quantity is expressed as

Zp 2 (O (ep,t) — fp| '

APIE == S0

(6.2)

When computing this metric (and the ones that follow) for the LDOF trajectories,
we treat missing correspondences as if they were marked occlusions.

In using this metric, we assume that the brightness constancy assumption holds.
Every realistic sequence will have some violations of brightness constancy, even along
the correct paths, so we should not expect an APIE equal to zero. However, in

general, lower values for APIE indicate better performance.

96

TABLE 6.2: Solution quality metrics. APIE measures average intensity constancy
along estimated paths (smaller is better, assuming the brightness constancy assump-
tion holds). Path length is the number of frames in which a path is reported as visible
(in general, longer is better). Pixel distance measures path density by reporting the
distance to the nearest visible path for each pixel. We report the 50th, 95th, and
99th percentiles (smaller is better). Better values for each sequence are highlighted
in bold.

Pixel distance
Sequence Method APIE Path length to closest path
Mean Std. dev. | 50th 95th 99th percentile
LDOF traj. 4.54 11.2 10.5 0.47 8.5 15.2
Flowerbed LME paths | 3.65 23.9 7.3 0.31 0.79 1.3
Video Motion 2.59 23.1 7.4 0.29 0.66 0.85
I LDOF traj. | 540 | 68 75 | 1.2 470 70.0
Truck LME paths 5.97 23.4 7.4 0.39 1.9 4.4
Video Motion | 3.56 20.9 9.1 0.28 0.67 0.91
I B LDOF traj. | 2.50 | 67 64 | 047 69 133
Marple7 LME paths 2.64 15.9 7.5 0.43 5.7 9.7
Video Motion | 2.27 14.7 6.8 0.30 0.68 0.87
I B LDOF traj. | 457 | 94 114 | 051 147 26,7
Marplel LME paths 4.11 25.9 19.4 0.62 9.1 18.9
Video Motion 2.61 11.21 14.7 0.32 0.84 1.0
I LDOF traj. | 3.70 | 149 147 | 047 74 164
Marple8 LME paths 5.17 59.9 15.7 0.35 1.9 6.0
Video Motion | 2.79 29.5 25.3 0.24 0.65 0.90

One way to decrease the APIE is to recover many more paths that are flagged as
occluded in all but very few frames. Such a solution will tend to have lower APIE
simply because the brightness constancy assumption is more likely to hold over short
intervals. We want to discourage this type of solution because recovering long-range
correspondences between distant frames is one of our driving goals in video motion
estimation. We ensure that our solution is not overwhelmed by numerous short
tracks by examining the distribution of the visible lengths of computed paths. The
visible length of path p is simply), v;,(t). We report the cumulative distribution as
well as the mean and standard deviation of the visible lengths of the paths.

Finally, we measure the density of the computed paths within the sequence. For
each video pixel, we compute the distance to the closest visible path in its same

frame. We examine the cumulative distribution of this pixel distance measurement

97

and report the 50th, 95th, and 99th percentile.
Our results are summarized in Table 6.2. Figures 6.6 and 6.7 show the cumulative
distribution functions for path lengths and pixel distance for each sequence. Video

motion paths report high-quality motion estimates for nearly all pixels.
6.4 Sensitivity to Parameters

Our objective functions for both visibility and path optimization include parameters
that can be tuned to increase the importance of spatial smoothness relative to bright-
ness constancy. We used the same setting of these parameters for every sequence
that we tested. We set A = 1 in (3.5), and o = 50 in (3.7), with intensity values
in the range [0,255]. We tried varying A in the range [0.25,4] and achieved similar
results for the flowerbed sequence in all cases.

The system is much more sensitive to the parameters in the visibility MRF. We
use A\, = 0.75, Ay = 0.5, and A\g = 0.25, and we scale intensity values to [0, 1].
These values were tuned manually to achieve the best performance for the flowerbed
sequence and were then used for all other sequences. Decreasing A\ and increasing
Ag usually results in missed occlusions. Figure 6.8 shows an example of the detected
occlusions in the flowerbed sequence when we use A\, = 0.5 and Ag = 0.75 instead of

the default values.

98

fraction of trajectories occluded
for fewer than f frames

fraction of trajectories occluded
for fewer than f frames

0 10 20 30 0 10 20 30 40

f frames f frames
(a) Flowerbed (29 frames). (b) Truck (33 frames).

fraction of trajectories occluded
for fewer than f frames

fraction of trajectories occluded
for fewer than f frames

0 20 40 60 0 5 10 15 20 25

f frames f frames
(c) Marplel (60 frames). (d) Marple7 (25 frames).

LDOF trajectories
—— LME paths
—+— video motion paths

for fewer than f frames

fraction of trajectories occluded

0 20 40 60 80
f frames

(e) Marple8 (72 frames).

FIGURE 6.6: Cumulative distribution functions for path length. Video motion paths
track points that are occluded in the LME reference frames, allowing for detection of
true occlusions that LME paths miss. (For example, there should be no unoccluded
points in marple8 but 40% of the LME paths are mistakenly marked as always
visible.) LDOF trajectories are comparatively very short for all sequences.

99

fraction of pixels less than

d pixels away from closest trajectory
fraction of pixels less than

d pixels away from closest trajectory

0 1 2 3 4 5 0 1 2 3 4 5

d pixels d pixels
(a) Flowerbed. (b) Truck.

fraction of pixels less than

d pixels away from closest trajectory
fraction of pixels less than

d pixels away from closest trajectory

0 1 2 3 4 5
d pixels d pixels

(¢) Marplel. (d) Marple?.

0 1 2 3 4 5

LDOF trajectories
—6— LME paths
—+— video motion paths

fraction of pixels less than
d pixels away from closest trajectory

0 1 2 3 4 5
d pixels

(e) Marple8.

FiGURrRE 6.7: Cumulative distribution functions for pixel distance. LDOF trajec-
tories are only located in areas with enough texture. LME paths miss points not
visible in the first or last frames. Video motion paths provide much more complete
coverage, explaining virtually all pixels in any frame of the sequence.

100

(c) Points detected as occluded (in blue) with A\, = 0.5 and Ag = 0.75.

FIGURE 6.8: The visibility MRF can be sensitive to its parameters. In (b), we show
the detected occlusion region in three frames (10, 20, and 29, respectively) with the
default parameter settings used for all previous experiments. In (c), we show the
detected occlusion region with larger Ag and smaller Ay, increasing the importance
of spatial smoothness and decreasing the importance of the causal signal. Many
occlusions are missed with this parameter setting. Detected occlusions are drawn as
colored dots superimposed on the points in the first frame. For visual reference, (a)
shows the frames in which the occlusions are detected.

101

7

Proposed Extensions

Our work advances the state of the art in video motion estimation. To scale our work
to larger and longer sequences, there remain unanswered questions. In this chapter,
we enumerate a few research directions we consider most important.

First, the creation of a good benchmark for video motion estimation would be
an invaluable contribution to the scientific community. The Middlebury sequence
has had a tremendous impact on research in optical flow in just a few short years.
It introduced a standard set of metrics, allowing for quantitative analysis of com-
peting ideas. An equivalent set of sequences for video motion estimation should
include realistic rigid and non-rigid motion and should contain significant occlusion.
The accompanying ground truth information should include correspondences across
ephemeral occlusions. Computer graphics makes creation of such a dataset possible,
but unfortunately both the creation and maintenance of the dataset amounts to a
significant amount of work that is often not adequately rewarded in the research
community.

In addition to improving our motion estimation results, we would like to use the

extracted motion information to support higher-level computer vision tasks. Video

102

segmentation is one obvious application. We expect the shapes of video motion
paths, or of paths collected into video motion tubes, to be useful features for activity
or event recognition and the related problem of content-based video retrieval. For
all these applications, we would need to develop ways to describe and compare video
motion paths, perhaps through their representation in the path motion basis.

The main limitation of our work is the computation time required with the current
implementation, as we have focused primarily on accuracy rather than speed. We
report running time for each sequence (after initialization) in Table 7.1. One iteration
of the solver corresponds to 40 trust-region descent steps to adjust path estimates,
visibility estimation using graph cuts, and the heuristic path update. The number of
iterations required depends on the quality of the initial solution from the optical flow
fields. Generally, sequences with more occlusion require more iterations to converge
because we spend considerable computational effort recovering from errors inherited
from the frame-to-frame optical flow fields. Developing techniques for initializing
without estimates of optical flow would be useful. One possible approach would be
to adapt the coarse-to-fine scheme used in traditional optical low methods, starting

from an initial estimate of all zero path coefficients. Because we also use optical flow

TABLE 7.1: Running time after initialization for video motion estimation. Our
algorithm was implemented in a combination of Matlab and C++ and ran on shared
machines using dual Intel 8-core Xeon processors (2.53GHz or 2.66GHz) with between
48GB and 96GB RAM. Marplel was terminated after 91 calls to the trust-region
optimizer. At this point, the path estimates had converged, but there remained
slightly too many unexplained pixels as a result of shadows causing paths to be
marked as occluded.

Iterations | Video motion LDOF traj.

Sequence Size completed time time
Flowerbed | 120 x 175 x 29 8 1.4 hours 32 seconds
Truck | 167 x 200 x 33 15 5.8 hours 71 seconds
Marple7 | 175 x 225 x 25 15 10.5 hours 54 seconds
Marplel | 144 x 175 x 60 91 150.0 hours 88 seconds
Marple8 | 175 x 225 x 72 33 89.4 hours 171 seconds
Flag | 250 x 250 x 60 7 29.1 hours 163 seconds
Flag (full res.) | 500 x 500 x 60 - - 2089 seconds

103

to estimate the number and location of anchor pixels, we would need to reconsider
that step as well.

We could decrease running times by using more efficient numerical optimiza-
tion techniques that do not require knowledge of the exact gradient. The fastest
optical flow techniques (including the technique implemented in Sundaram et al.
(2010)) leverage the parallel computing power of the GPU to speed computation.
The challenge in porting our algorithms to the GPU lies in the variable nature of
our neighborhood relationships. Unlike optical flow, the spatial neighbors of a path
are not known a priori and do not form a lattice. Similarly, the graph representa-
tion of the visibility MRF does not have the regular connectivity that is common in
computer vision problems.

It may also be possible to increase computation speed by adapting our mathemat-
ical model to incorporate a hierarchical approach. Currently, each path is essentially
one pixel thick; we use a number of paths proportional to the area of the visible
surfaces in the scene, regardless of the spatial complexity of the motion. We could
instead define a tube-like object with non-trivial spatial thickness that could de-
scribe the motion of a larger surface patch with fewer parameters. Techniques for
extracting superpixels in a single image (Ren and Malik, 2003) or intensity-based
video segmentation (Grundmann et al., 2010; Xu et al., 2012a) could give an idea of
the cross-section of each tube. Each tube would be associated with a single path or
parametric family of paths, reducing the complexity of the model but ideally not its
expressive power.

If we moved to a tube model, we would need to decide what it means for a tube
to be partially occluded. In our current model, the visibility state of a path is binary;
a world point is either completely occluded in a frame or completely visible. If we
instead describe the motion of larger regions, we will need to correctly model the

cost of a partial occlusion of an object. Rather than use our point-based model of

104

occlusions, it would presumably be better to model the occlusion surfaces directly.
Occlusion surfaces partition the space-time video cube into regions corresponding to
individual objects. The point-based occlusion events could be recovered by detecting
intersections between the extracted surfaces and paths.

We want to extend our approach to much longer sequences containing hundreds
of frames. One way to approach this problem would be to break the larger sequence
down into more manageable temporal chunks and compute video motion separately
in each chunk. These partial solutions would need to be stitched together to form the
full solution. We could stitch together paths for points that are visible in overlapping
frames, but stitching together paths for occluded points is more difficult. There
may be many layers of occluded points that project to the same pixel, so simply
attaching two co-located occluded paths may not be correct. Paths on points that
are never again visible do not need to be continued into neighboring chunks (and
indeed should not be, as it is unlikely that the motion basis in the other chunks will
correctly represent the motion of independent objects that are completely occluded).
However, identifying these paths that may be terminated is a non-trivial problem.

Our path objective function assumes that brightness constancy holds along the
entire length of a path. As we scale our approach to longer sequences, this assumption
will become less and less reliable. It would be straightforward to change our objective
function to evaluate color constancy or gradient constancy. However, we may want
to include descriptors that are more likely to be invariant to appearance changes that
are independent of motion in the scene. For example, we could use region descriptors
(e.g., SIFT (Lowe, 2004), SURF (Bay et al., 2008), etc.) in the data term, particularly
in conjunction with the hierarchical approach that tracks regions. We would likely
want to retain some pinpoint features such as the actual pixel intensities because
most region descriptors are not designed to localize features with subpixel accuracy

as is desired in motion estimation. These changes to the data term would impact

105

the choice of numerical optimization routine. For example, it is not immediately
clear that it would be possible to compute the analytic gradient of a descriptor with
respect to the path coefficients.

Longer sequences are more likely to contain multiple independently moving ob-
jects, increasing the size of the required path basis. However, if the motion of the
different objects is sufficiently independent, there should exist a basis for which only
a few path coefficients are non-zero at each point. We could encourage this by
adding a sparsity-inducing regularization term on the path coefficients (Costeira and
Kanade, 1998; Rao et al., 2010). We would need to incorporate this term into the
factorization algorithm that finds the initial basis as well. Our initial experiments
suggest that combining motion estimation with motion segmentation through this
term would significantly improve results. For example, we computed motion for the
flag sequence with occlusions using a basis that included both the motion of the flag
and the motion of the occluder and got an RMS endpoint error of 2.56 pixels for the
paths on the flag. When we used a basis that included only the motion of the flag,
without the motion of the occluder, our error dropped to 1.31 pixels.

Interestingly, the recovered paths include many that track the occluder for just a
few frames (and are marked as visible in only those few frames) before being forced
to diverge from the occluder’s motion by the constraints of the subspace. Figure
7.1 shows the anchor points associated with paths that are visible for less than half
of the frames in the sequence. The majority of these points are located along the
linear tracks of the two synthetic occluders. These paths do not accurately report
the motion of specific points on the occluders (because the true motion lies outside
the path subspace), but they could be used to carve out the space-time volume that
corresponds to the occluding object.

At its core, our method assumes that it is possible to find a path basis for a

sequence. The experiment described above suggests that our technique may degrade

106

FiGURE 7.1: Using an incorrect motion subspace can still provide useful information.
Here, we recover paths for the flag sequence with occlusions but provide a basis that
represents the motion of the flag but not the occluder. Magenta points mark the
location of anchor points for all paths marked as visible for fewer than 30 of the 60
frames of the sequence. These points are almost all located on the two synthetic

occluders, which are small black disks that move with constant velocity through the
scene.

gracefully as long as the basis represents most of the motion in the scene. (Note that
the basis we used above accurately captured the motion of the dominant object.)
While we have made significant progress in finding path bases, there are sequences
for which it is currently too difficult to track enough points from frame to frame to
make factorization possible, even with compaction working to decrease the amount
of missing data. We encountered this problem when attempting to extract video mo-
tion for the MPI-Sintel sequences. Current frame-to-frame trackers could maintain
enough tracks to model the motion of the background of many scenes but could not
track foreground points for more than a few frames at a time. It may be that we
could run our algorithm with a basis that fits the motion of the background only
and still recover some useful information about foreground object without explictly

recovering its motion. We could also represent the motion of the foreground object

107

nonparametrically and use nonparametric regularization to encourage similarity to
frame-to-frame track fragments when they are available.

Ultimately, one should consider not just the level of detailed motion information
that can be recovered from a video sequence but also the level of detail that is
required to support desired higher-level applications. In our work, we aim for the
most complete representation of motion available without actually reconstructing the
scene. We believe our results can be improved by considering the extensions outlined
above. However, for some applications, it may not be necessary to carefully track
every point through every frame of the sequence. Instead, it may only be necessary
to recover the occluding surfaces corresponding to object boundaries, and this may
be possible without ever explicitly solving for the motion of point features. If that is

the case, then solving for full video motion would be overkill for those applications.

108

8

Summary and Conclusions

Understanding motion in video is key to meeting numerous challenges, from forensic
analysis of public safety surveillance video to tracking cells in scientific experiments,
and from management of personal video collections to autonomous navigation. In all
of these applications, important questions can be answered by analyzing the motion
of objects over significant temporal intervals. Our work addresses the problem of
extracting this long-range motion information from general video sequences.

The defining feature of our work is our treatment of occlusions. Most frame-to-
frame motion estimation techniques treat occlusions as the result of some spatially
sparse but otherwise unknowable noise process. Occluded points are abandoned,
as if swallowed up by a black hole, never to be seen again. This approach makes it
difficult to analyze motions over long timespans because tracks keep getting destroyed
by sometimes brief occlusions.

In contrast, we model occlusions as physical events with limited temporal extent.
We recognize that it is often possible to associate points to each other across brief
occlusions, and even to infer their locations during the intervening frames, by ana-

lyzing their motion during visible intervals in relation to the motion of other nearby

109

points. To this end, we define video motion as a set of sequence-length paths covering
the visible surfaces in the scene, representable in a single low-dimensional subspace
and coupled with visibility flags that mark the frames in which each point is oc-
cluded. We find a sequence-specific basis from a representative set of frame-to-frame
tracks. We do not require that these tracks be full length. Instead, we introduce a
novel compaction-and-factorization algorithm that associates track fragments from
rediscovered points to reduce the amount of missing data during the factorization
step. We augment traditional frame-to-frame trackers with a history-sensitive feature
initialization routine to ensure that points are rediscovered after being lost.

We use the estimated basis to compute paths, ensuring that nearly every pixel
in the video is covered by some visible path. We simultaneously estimate the visible
intervals for each path so that motion estimates are not corrupted by the appearance
of occluders. Our occlusion model requires that some point be visible at every pixel
and detects occlusions based on global analysis of the geometric properties of ex-
tracted paths and the appearance of the video when tracing each path. Our results
on real sequences are state of the art, successfully tracking points on moving objects
through significant occlusions.

The idea that motion can be accurately predicted through and across occlusions
is still controversial. For example, the new MPI-Sintel dataset penalizes errors in
optical flow estimates in “unmatched” (occluded) regions. Some researchers con-
sider this unfair, protesting “How could you possibly estimate the location of the
point when it isn’t visible?” Our work suggests that there exist realistic sequences
where this may be possible. Although we are not yet at the level of processing the
MPI-Sintel data, we can track points through occlusions by relying on photometric
evidence during visible intervals combined with geometric constraints provided by

other visible points.

110

Appendix A

Trust-Region Newton-CG

The algorithms included here are reproduced from Nocedal and Wright (2006).
A.1 Trust-Region Optimization

The objective function to minimize is f, with f, = f(xy) the value at the solu-
tion found on step k. At each step, the objective function is approximated by the

quadratic function

1
mi(p) = fe +gip + §pTka , (A1)

where g;, = V f(x},) is the gradient of the function and By, = V?f(x;) is the Hessian,
both evaluated at the current solution a.

The ratio

f(zr) — f(xx + Dr)
m(0) — m(pr) (4.2

Pr =

is the fraction of the predicted improvement (the denominator) that would be actually

realized after the update proposed by pi. The update is found by solving

pr = min mg(p) . (A.3)
llpll<Ak

111

Here, A, determines the size of the trust region, where we expect the approximation
my, to be close to the function f. If p, « 1, then the quadratic approximation is poor
and the size of the trust region should be decreased. If p; < 0, the approximation
is so poor that the predicted descent step is not a descent in the actual objective
function and so should not be accepted.

The following algorithm implements the minimization procedure:

input: A > 0,7 € (0, A),n e [0, %), and initial guess xg
for k=0,1,2,... do

Determine py from (A.3)

Evaluate py according to (A.2)

BW N =

// Change trust region size.
5 if p, < }l then
// Approximation is poor.
6 Apyr = iAk
Ise if py > 2 and ||pi|| = Ay then
// Progress impeded by size of trust region.

~

K
®

8 Agi1 = min(2A,, A)
9 else

10 ‘ AVERIE AV

11 end

12

// Update solution.
13 if pr > n then

14 ‘ Tp1 = T + D

15 else

16 ‘ L1 = T

17 end

18

19 if converged then return x;
20 end

ALGORITHM A.1: Trust region optimization.

112

A.2 Trust-Region Newton-CG

The trust-region Newton-CG algorithm uses conjugate gradient iterations to solve
for py approximately rather than exactly on line 2 of Algorithm A.1. The version

presented here is from Steihaug (1983).

input: trust region size Ay, tolerance ¢, > 0, gradient V fi, and Hessian By

1 Initialize 20 = 0, 7 = Vfi, dy = —19
2 if ||rg|| < €, then return p, =0
3 for j =0,1,2,... do
4 if d]TBkdj < 0 then

// Non-positive curvature found.

// Minimum occurs on trust region boundary.
5 Find 7 such that p, = z; + 7d; minimizes my(py) with ||px|| = Ay.
6 return p;, = z; + 7d;
7 end

rTr;

8 Qj = d?%kfdj
9 Zji+1 = Zj + Oéjdj
10 if ||z;41]] = Ay then

// Next search step is outside trust region.

// Min must be on boundary.
11 Find 7 > 0 such that p, = z; + 7d; satisfies ||py|| = Ay.
12 return p;, = z; + 7d;
13 end
14 Ti41 = T; + a;Bid;

// Check convergence within tolerance.
15 if ||r;+1]| < & then return p;, = z;44
16
T .

17 | B = ‘Tj:]%?j“
18 dji1=—7ji1 + Bjnd;
19 end

ALGORITHM A.2: CG-Steihaug procedure for solving the Newton step (A.3).

113

A.3 Derivation of Gradient and Hessian

The algorithm described above requires the gradient and the Hessian of the objective

function (3.5). The entries in the gradient are

OF 0

—=—F —E : A4

0ok OCpn n((Z 3con s(ep,cq) + Z 0o s qucp)> (A.4)
Let us begin with %Eg(cp, c,):

0

ank

(cp,cq) = pqz 56 plep = cq) (A.5)
k

Cpk — Cqk
o) . A6
pq \/(Cpk. - qu)z + 62 ()

Here we use the fact that p(s) = v/s2 + €2 so p/(s) =

. The last term simplifies

52+
to the same expression:
0 50
—F = — A7
e D50 @) = 25l =) (A7)
(1) (A.8)

«
w \/(ch — Cpi)? + €2

Cpk‘ — qu
a : (A.9)
" \/(Cpk — Cqr)? + €2

The last line follows from the fact that our definition of a,, is symmetric and that
(—x)? = 2%, Note that we treat a,, as a constant with respect to c,y.
The contribution of the first term is more complicated. Recall that Ep(c,) =

S v (t)p(AL(t)). By the chain rule, we have

0 < ALy(t) 0
() = Xl 5, (man0). @

OCpi A AL)?2 + €2 \ dep,

114

AT, (t) is a difference of two terms: I(x,(t),t), which depends on ¢,; because x,(t) is
a function of ¢,, and I(u,, 7,), which is a constant with respect to c,;. Let @, (t) =

(Tpy Yp)s Up = (Up,vp), and @i (t) = (¢F(t), #1(t)). From our parameterization,

K
Tp =y + Y e (OF (1) — 67 (7)) (A.11)
=1
SO,
¢ = @) H A.12
ka% = ¢k(t) - Cbk;(Tp) . (A.12)

Similarly, we can see that

0

@yp = QbZ(t) - ¢Z(Tp) . (A.13)

So, by application of the chain rule again, we have

[1 610 - 615 + 1,610 - 1)) |

(A.14)
where I, and I, are the partial derivatives of the image I(x,y,t), evaluated at x,(t).

Combining all three terms, we have:

(A.15)

To compute the Hessian, we must take another derivative. Each element can be

computed through applications of the chain rule and the product rule following the

0 0

Ocpr, Ocqr

example of the gradient computation. The entry for E' is non-zero only if

115

p=qorifp#qgbut b =1and a,, > 0. In the first case, the entry includes a
contribution from the data term Ep(c,) and from the smoothness term if k = [. If

p # q, there is only a contribution from the smoothness term.

116

Bibliography

Akhter, 1., Sheikh, Y., Khan, S., and Kanade, T. (2011), “Trajectory space: a dual
representation for nonrigid structure from motion,” IEEFE Transactions on Pattern
Analysis and Machine Intelligence, 33, 1442-1456.

Alvarez, L., Deriche, R., Papdopoulo, T., and Sanchez, J. (2007), “Symmetrical
dense optical flow estimation with occlusions detection,” International Journal of
Computer Vision, 75, 371-385.

Anandan, P. (1989), “A computational framework and an algorithm for the measure-
ment of visual motion,” International Journal of Computer Vision, 2, 283-310.

Apostoloff, N. and Fitzgibbon, A. (2005), “Learning spatiotemporal T-junctions for
occlusion detection,” in Computer Vision and Pattern Recognition (CVPR).

Aujol, J.-F., Gilboa, G., Chan, T., and Osher, S. (2006), “Structure-texture image
decomposition — modeling, algorithms, and parameter selection,” International
Journal of Computer Vision, 67, 111-136.

Ayvaci, A., Raptis, M., and Soatto, S. (2012), “Sparse occlusion detection with
optical flow,” International Journal of Computer Vision, 97, 322-338.

Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M. J., and Szeliski, R. (2011),
“A database and evaluation methodology for optical flow,” International Journal
of Computer Vision, 92, 1-31.

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008), “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, 110, 346-359.

Bennett, J. and Lanning, S. (2007), “The Netflix Prize,” in KDD Cup and Workshop.

Bergen, J. R., Anandan, P., Hanna, K. J., and Hingorani, R. (1992), “Hierarchical
model-based motion estimation,” in Furopean Conference on Computer Vision
(ECCV).

Black, M. J. and Anandan, P. (1996), “The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields,” Computer Vision and Image Un-
derstanding, 63, 75-104.

117

Black, M. J. and Rangarajan, A. (1996), “On the unification of line processes, outlier
rejection, and robust statistics with applications in early vision,” International
Journal of Computer Vision, 19, 57-91.

Boykov, Y. and Kolmogorov, V. (2004), “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26, 1124-1137.

Bradski, G. (2000), “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools.

Brand, M. (2005), “A direct method for 3D factorization of nonrigid motion observed
in 2D,” in Computer Vision and Pattern Recognition (CVPR).

Bregler, C., Hertzmann, A., and Biermann, H. (2000), “Recovering non-rigid 3D
shape from image streams,” in Computer Vision and Pattern Recognition (CVPR).

Brox, T. and Malik, J. (2010), “Object segmentation by long term analysis of point
trajectories,” in European Conference on Computer Vision (ECCYV).

Brox, T. and Malik, J. (2011), “Large displacement optical flow: descriptor matching
in variational motion estimation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33, 500-513.

Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. (2004), “High accuracy op-
tical flow estimation based on a theory for warping,” in Furopean Conference on

Computer Vision (ECCYV).

Brox, T., Bregler, C., and Malik, J. (2009), “Large displacement optical flow,” in
Computer Vision and Pattern Recognition (CVPR).

Buchanan, A. M. and Fitzgibbon, A. (2005), “Damped Newton algorithms for matrix
factorization with missing data,” in Computer Vision and Pattern Recognition

(CVPR).

Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J. (2012), “A naturalistic open
source movie for optical flow evaluation,” in European Conference on Computer

Vision (ECCYV).

Candes, E. and Plan, Y. (2010), “Matrix completion with noise,” Proceedings of the
IEEE, 98, 925-936.

Candes, E. and Recht, B. (2009), “Exact matrix complection via convex optimiza-
tion,” Foundations of Computational Mathematics, 9, 7T17-772.

Christy, S. and Horaud, R. (1996), “Euclidean shape and motion from multiple
perspective views by affine iterations,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 18, 1098-1104.

118

Costeira, J. P. and Kanade, T. (1998), “A multibody factorization method for inde-
pendently moving objects,” International Journal of Computer Vision, 29, 159—
179.

Darrell, T. and Fleet, D. (1995), “Second-order method for occlusion relationships
in motion layers,” Tech. Rep. 314, Massachusetts Institute of Technology.

De la Torre, F. and Black, M. J. (2001), “Robust principal component analysis for
computer vision,” in International Conference on Computer Vision (ICCV).

Dellaert, F., Seitz, S., Thorpe, C. E., and Thrun, S. (2000), “Structure from motion
without correspondence,” in Computer Vision and Pattern Recognition (CVPR).

Farnebéck, G. (2003), “Two-frame motion estimation based on polynomial expan-
sion,” in Image Analysis.

Feldman, D. and Weinshall, D. (2008), “Motion segmentation and depth ordering
using an occlusion detector,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30, 1171-1185.

Fragkiadaki, K., Zhang, G., and Shi, J. (2012), “Video segmentation by tracing dis-
continuities in a trajectory embedding,” in Computer Vision and Pattern Recog-

nition (CVPR).

Garg, R., Pizarro, L., Rueckert, D., and Agapito, L. (2010), “Dense multi-frame
optic flow for non-rigid objects using subspace constraints,” in Asian Conference
on Computer Vision (ACCYV).

Garg, R., Roussos, A., and Agapito, L. (2011), “Robust trajectory-space TV-L1 op-
tical flow for non-rigid sequences,” in Energy Minimization Methods in Computer
Viston and Pattern Recognition.

Gotardo, P. F. and Martinez, A. M. (2011), “Non-rigid structure from motion

with complementary rank-3 spaces,” in Computer Vision and Pattern Recogni-
tion (CVPR).

Grenander, U., Chow, Y., and Keenan, D. M. (1991), Hands: a pattern theoretic
study of biological shapes, Springer-Verlag New York, Inc., New York.

Grundmann, M., Kwatra, V., Han, M., and Essa, 1. (2010), “Efficient hierarchical
graph-based video segmentation,” in Computer Vision and Pattern Recognition
(CVPR).

Guilford, J. P. (1929), “Illusory movement from a rotating barber pole,” The Amer-
ican Journal of Psychology, 41, 686—687.

119

Gurobi Optimization, Inc. (2013), “Gurobi Optimizer Reference Manual,”
http://www.gurobi.com.

Horn, B. and Schunck, B. (1981), “Determining optical flow,” Artificial Intelligence,
17, 185-203.

Hubert, L. and Arabie, P. (1985), “Comparing partitions,” Journal of Classification,
2, 193-218.

Ince, S. and Konrad, J. (2008), “Occlusion-aware optical flow estimation,” IEEFE
Transactions on Image Processing, 17, 1443-1451.

Irani, M. (2002), “Multi-frame correspondence estimation using subspace con-
straints,” International Journal of Computer Vision, 48, 173—-194.

Jepson, A. D., Fleet, D. J., and Black, M. J. (2002), “A layered motion represen-
tation with occlusion and compact spatial support,” in Furopean Conference on
Computer Vision (ECCV).

Jojic, N. and Frey, B. J. (2001), “Learning flexible sprites in video layers,” in Com-
puter Vision and Pattern Recognition (CVPR).

Ke, Q. and Kanade, T. (2005), “Robust L; norm factorization in the presence of
outliers and missing data by alterative convex programming,” in Computer Vision
and Pattern Recognition (CVPR).

Koftka, K. (1935), Principles of Gestalt Psychology, Harcourt, New York.

Kolmogorov, V. and Zabih, R. (2004), “What energy functions can be minimized via
graph cuts?” IEEFE Transactions on Pattern Analysis and Machine Intelligence,
26, 147-159.

Kumar, M. P., Torr, P. H., and Zisserman, A. (2008), “Learning layered motion
segmentations of video,” International Journal of Computer Vision, 76, 301-319.

Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011), “BRISK: Binary robust invari-
ant scalable keypoints,” in International Conference on Computer Vision (ICCYV).

Lezama, J., Alahari, K., Sivic, J., and Laptev, I. (2011), “Track to the future: spatio-
temporal video segmentation with long-range motion cues,” in Computer Vision
and Pattern Recognition (CVPR).

Lowe, D. G. (2004), “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, 60, 91-110.

Lucas, B. and Kanade, T. (1981), “An iterative image registration technique with
an application to stero vision,” in 7th International Joint Conference on Artificial
Intelligence (IJCAI).

120

http://www.gurobi.com

Mason, J., Ricco, S., and Parr, R. (2011), “Textured occupancy grids for monocu-
lar localization without features,” in Proceedings of the 2011 IEEE International
Conference on Robotics and Automation.

Matikainen, P., Hebert, M., and Sukthankar, R. (2009), “Trajectons: Action recogni-
tion through the motion analysis of tracked features,” in Proceedings of the ICCV
Workshop on Video-Oriented Object and Event Classification.

Nocedal, J. and Wright, S. J. (2006), Numerical Optimization, Springer Series in
Operations Research, Springer Verlag, 2nd edn.

Olsen, S. and Bartoli, A. (2008), “Implicit non-rigid structure-from-motion with
priors,” Journal of Mathematical Imaging and Vision, 31, 233-244.

Perbet, F., Maki, A., and Stenger, B. (2009), “Correlated probabilistic trajectories

for pedestrian motion detection,” in International Conference on Computer Vision
(I1CCV).

Pizarro, D. and Bartoli, A. (2012), “Feature-based deformable surface detection with
self-occluison reasoning,” International Journal of Computer Vision, 97, 54-70.

Poelman, C. J. and Kanade, T. (1997), “A paraperspective factorization method for
shape and motion recovery,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19, 206-218.

Prest, A., Ferrari, V., and Schmid, C. (2013), “Explicit modeling of human-object
interactions in realistic videos,” IFEFE Transactions on Pattern Analysis and Ma-
chine Intelligence, 35, 835-848.

Rand, W. M. (1971), “Objective criteria for the evaluation of clustering methods,”
Journal of the American Statistical Association, 66, 846-850.

Rao, S., Tron, R., Vidal, R., and Ma, Y. (2010), “Motion segmentation in the pres-
ence of outlying, incomplete, or corrupted trajectories,” IEEFE Transactions on
Pattern Analysis and Machine Intelligence, 32, 1832—-1845.

Ren, X. and Malik, J. (2003), “Learning a classification model for segmentation,” in
International Conference on Computer Vision (ICCV).

Ricco, S. and Chen, M. (2009), “Classification of scan location in retinal optical

coherence tomography,” in IEEE International Symposium on Biomedical Imaging
(ISBI °09).

Ricco, S. and Tomasi, C. (2009), “Fingerspelling recognition through classification
of letter-to-letter transitions,” in Asian Conference on Computer Vision (ACCV).

121

Ricco, S. and Tomasi, C. (2012a), “Dense Lagrangian motion estimation with occlu-
sions,” in Computer Vision and Pattern Recognition (CVPR).

Ricco, S. and Tomasi, C. (2012b), “Simultaneous compaction and factorization of

sparse image motion matrices,” in Furopean Conference on Computer Vision
(ECCV).

Ricco, S., Chen, M., Ishikawa, H., Wollstein, G., Xu, J., and Schuman, J. (2009),
“Correcting motion artifacts in retinal spectral domain optical coherence tomogra-
phy via image registration,” in International Conference on Medical Image Com-
puting and Computer Assisted Intervention (MICCAI).

Ristivojevic, M. and Konrad, J. (2006), “Space-time image sequence analysis: object
tunnels and occlusion volumes,” IEEFE Transactions on Image Processing, 15, 364—
376.

Sand, P. (2006), “Long-range video motion estimation using point trajectories,”
Ph.D. thesis, Massachusetts Institute of Technology.

Sand, P. and Teller, S. (2008), “Particle Video: long-range motion estimation using
point trajectories,” International Journal of Computer Vision, 80, 72-91.

Shi, J. and Tomasi, C. (1994), “Good features to track,” in Computer Vision and
Pattern Recognition (CVPR).

Steihaug, T. (1983), “The conjugate gradient method and trust regions in large scale
optimization,” SIAM Journal on Numerical Analysis, 20, 626—637.

Sturm, P. and Triggs, B. (1996), “A factorization based algorithm for multi-image

projective structure and motion,” in Furopean Conference on Computer Vision
(ECCV).

Sun, D., Sudderth, E. B., and Black, M. J. (2010a), “Layered image motion with
explicit occlusions, temporal consistency, and depth ordering,” in Advances in
Neural Information Processing Systems 23.

Sun, D.; Roth, S., and Black, M. (2010b), “Secrets of optical flow estimation and their
principles,” in 2010 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Sun, D., Sudderth, E. B., and Black, M. J. (2012), “Layered segmentation and optical
flow estimation over time,” in Computer Vision and Pattern Recognition (CVPR).

Sun, D., Wulff, J., Sudderth, E. B., Pfister, H., and Black, M. J. (2013), “A fully-
connected layered model of foreground and background flow,” in Computer Vision
and Pattern Recognition (CVPR).

122

Sundaram, N., Brox, T., and Keutzer, K. (2010), “Dense point trajectories by GPU-
accelerated large displacement optical flow,” in Furopean Conference on Computer
Vision (ECCYV).

Tomasi, C. and Kanade, T. (1991), “Detection and tracking of point features,” Tech.
Rep. CMU-CS-91-132, Carnegie Mellon University.

Tomasi, C. and Kanade, T. (1992), “Shape and motion from image streams under
orthography: a factorization method,” International Journal of Computer Vision,
9, 137-154.

Torresani, L. and Bregler, C. (2002), “Space-time tracking,” in Furopean Conference
on Computer Vision (ECCV).

Torresani, L., Hertzmann, A., and Bregler, C. (2008), “Nonrigid structure-from-
motion: Estimating shape and motion with hierarchical priors,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 30, 878-892.

Triggs, B., McLauchlan, P. F., Hartley, R., and Fitzgibbon, A. (1999), “Bundle
adjustment — a modern synthesis,” in Proceedings of the International Workshop
on Vision Algorithms: Theory and Practice.

Veksler, O. (1999), “Efficient graph-based energy minimization methods in computer
vision,” Ph.D. thesis, Cornell University.

Vidal, R., Tron, R., and Hartley, R. (2008), “Multiframe motion segmentation with
missing data using PowerFactorization and GPCA,” International Journal of Com-
puter Vision, 79, 85—-105.

Wallach, H. (1935), “Uber visuell wahrgenommene Bewegungsrichtung,” Psycholo-
gische Forschung, 20, 325-380.

Wang, H., Klédser, A., Schmid, C., and Liu, C.-L. (2011), “Action recognition by
dense trajectories,” in Computer Vision and Pattern Recognition (CVPR).

Wang, J. Y. and Adelson, E. H. (1994), “Representing moving images with layers,”
IEEFE Transactions on Image Processing, 3, 625-638.

Weickert, J. and Schnérr, C. (2001), “Variational optic flow computation with a
spatio-temporal smoothness constraint,” Journal of Mathematical Imaging and
Viston, 14, 245-255.

Weiss, Y. (1997), “Smoothness in layers: motion segmentation using nonparametric
mixture estimation,” in Computer Vision and Pattern Recognition (CVPR).

Wiberg, T. (1976), “Computation of principal components when data are missing,”
in Second Symposium on Computational Statistics, pp. 229-326.

123

Xiao, J., Cheng, H., Sawhney, H., Rao, C., and Isnardi, M. (2006a), “Bilaterial
filtering-based optical flow estimation with occlusion detection,” in Furopean Con-
ference on Computer Vision (ECCV).

Xiao, J., Chai, J., and Kanade, T. (2006b), “A closed-form solution to non-rigid
shape and motion recovery,” International Journal of Computer Vision, 67, 233~
246.

Xu, C., Xiong, C., and Corso, J. J. (2012a), “Streaming hierarchical video segmen-
tation,” in European Conference on Computer Vision (ECCYV).

Xu, L., Jia, J., and Matsushita, Y. (2012b), “Motion detail preserving optical flow
estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
34, 1744-1757.

Yan, J. and Pollefeys, M. (2008), “A factorization-based approach for articulated
nonrigid shape, motion, and kinematic chain recovery from video,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 30, 865-877.

YouTube (2013), “Statistics — YouTube,” http://www.youtube.com/yt/press/
statistics.html.

124

http://www.youtube.com/yt/press/statistics.html
http://www.youtube.com/yt/press/statistics.html

Biography

Susanna Maria Ricco was born February 1, 1984 in Albuquerque, New Mexico, where
she learned to appreciate green chile and hate rain. She attended Harvey Mudd
College in Claremont, CA, where she was seduced into studying computer science
by an artificial Connect Four player and an arrow-following, scavenger-hunting robot
named Twitchy. She graduated with a B.S. in Computer Science - Mathematics
in May 2006. She obtained an M.S. in Computer Science from Duke University in
December 2009 and a Ph.D. in September 2013.

Ricco was the recipient of an NSF Graduate Research Fellowship. In addition to
her work on video motion estimation (Ricco and Tomasi, 2012a,b), she has published
work on fingerspelling recognition (Ricco and Tomasi, 2009), analysis of and auto-
matic artifact removal in retinal images (Ricco and Chen, 2009; Ricco et al., 2009),
and robot localization with a single camera (Mason et al., 2011).

She joined Google Research in September 2013.

125

	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations and Symbols
	Acknowledgements
	1 Introduction
	1.1 Motion Estimation Procedure
	1.2 Summary of Contributions

	2 Prior Work in Motion Estimation
	2.1 The Brightness Change Constraint Equation
	2.2 KLT Tracking
	2.3 Optical Flow
	2.4 Occlusion Detection
	2.5 Layered Models
	2.6 Multiframe Constraints and Structure-from-Motion
	2.7 Long-Range Motion Trajectories

	3 Video Motion
	3.1 Selecting Scene Points for Paths
	3.2 Path Parameterization
	3.3 Optimal Paths
	3.4 Optimal Visibility

	4 Finding a Path Basis
	4.1 Factorization in the Presence of Missing Data
	4.2 Tracking with History-Sensitive Feature Snapping
	4.3 Matrix Compaction
	4.3.1 Optimization
	4.3.2 Pre-solving and constraint generation

	4.4 Results
	4.4.1 Accuracy of compaction
	4.4.2 Accuracy of recovered paths
	4.4.3 Performance with incorrect rank estimation

	4.5 Implementation for Video Motion Estimation

	5 Extracting Paths from Video
	5.1 Initialization
	5.2 Optimization
	5.2.1 Estimating visibility for current paths
	5.2.2 Non-linear minimization to improve paths
	5.2.3 Heuristic update
	5.2.4 Anchor management

	5.3 Termination

	6 Evaluation
	6.1 Test Sequences
	6.2 Qualitative Evaluation
	6.3 Quantitative Evaluation
	6.4 Sensitivity to Parameters

	7 Proposed Extensions
	8 Summary and Conclusions
	A Trust-Region Newton-CG
	A.1 Trust-Region Optimization
	A.2 Trust-Region Newton-CG
	A.3 Derivation of Gradient and Hessian

	Bibliography
	Biography

