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Abstract

In this thesis, we develop some Bayesian mixture density estimation for univari-

ate and multivariate data. We start proposing a repulsive process favoring mix-

ture components further apart. While conducting inferences on the cluster-specific

parameters, current frequentist and Bayesian methods often encounter problems

when clusters are placed too close together to be scientifically meaningful. Cur-

rent Bayesian practice generates component-specific parameters independently from

a common prior, which tends to favor similar components and often leads to sub-

stantial probability assigned to redundant components that are not needed to fit

the data. As an alternative, we propose to generate components from a repulsive

process, which leads to fewer, better separated and more interpretable clusters.

In the second part of the thesis, we face the problem of modeling the conditional

distribution of a response variable given a high dimensional vector of predictors

potentially concentrated near a lower dimensional subspace or manifold. In many

settings it is important to allow not only the mean but also the variance and shape of

the response density to change flexibly with features, which are massive-dimensional.

We propose a multiresolution model that scales efficiently to massive numbers of

features, and can be implemented efficiently with slice sampling.

In the third part of the thesis, we deal with the problem of characterizing the

conditional density of a multivariate vector of response given a potentially high di-

mensional vector of predictors. The proposed model flexibly characterizes the density
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of the response variable by hierarchically coupling a collection of factor models, each

one defined on a different scale of resolution. As it is illustrated in Chapter 4, our

proposed method achieves good predictive performance compared to competitive

models while efficiently scaling to high dimensional predictors.
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1

Introduction

1.1 Motivation

For decades mixture models have been extensively used for classification, discrimina-

tion and density estimation. In analyses of finite mixture models, a common concern

is over-fitting in which redundant mixture components having similar locations and

scales are introduced. Over-fitting can have an adverse impact on density estima-

tion, since this leads to an unnecessarily complex model. Another common goal of

finite mixture modeling is clustering (Fraley and Raftery, 2002), and having compo-

nents with similar locations, leads to overlapping kernels and lack of interpretability.

Introducing kernels with similar locations but different scales may be necessary to

fit heavy-tailed and skewed densities, and hence low separation in clustering and

over-fitting are distinct problems.

Recently, Rousseau and Mengersen (2011) studied the asymptotic behavior of

the posterior distribution in over-fitted Bayesian mixture models having more com-

ponents than needed. They showed that a carefully chosen prior will lead to asymp-

totic emptying of the redundant components. However, several challenging practical

issues arise. For small to moderate sample sizes, the weight assigned to redundant
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components is often substantial. This can be attributed to identifiability problems

that arise from a difficulty in distinguishing between models that partition each of

a small number of well separated components into a number of essentially identical

components. This issue leads to substantial uncertainty in clustering and estima-

tion of the number of components, and is not specific to over-fitted mixture models;

similar behavior occurs in placing a prior on the number of components or using a

nonparametric Bayes approach such as the Dirichlet process.

The problem of separating components has been studied for Gaussian mixture

models (Dasgupta, 1999; Dasgupta and Schulman, 2007). Two Gaussians can be

separated by placing an arbitrarily chosen lower bound on the distance between their

means. Separated Gaussians have been mainly utilized to speed up convergence of

the Expectation-Maximization (EM) algorithm. In choosing a minimal separation

level, it is not clear how to obtain a good compromise between values that are

too low to solve the problem and ones that are so large that one obtains a poor fit.

Alternatively, we propose a repulsive prior discouraging closeness among component-

specific parameters without placing an hard constraint. This repulsive process leads

to better separated and more interpretable clusters while accurately estimating the

true density of the data.

Mixture models are also utilized to describe the conditional distribution of a

response variables given a set of predictors. In this framework an important issue is

the scalability of mixture models to massive numbers of predictors. Massive datasets

present statistical and computational challenges for machine learning because many

previously developed approaches do not scale-up sufficiently. Specifically, challenges

arise because of the ultrahigh-dimensionality, and relatively low sample size (the

“large p, small n” problem, Bernardo et al. (2003)). Parsimonious models for such big

data assume that the density in the ambient dimension concentrates around a lower-

dimensional and possibly nonlinear subspace. Indeed, a plethora of methodologies
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are emerging to estimate such lower-dimensional manifolds from high-dimensional

data (Rahman et al., 2005; Allard et al., 2012).

There is a rich machine learning and statistical literature on conditional density

estimation of a response y P Y given a set of features (predictors) x � px1, x2, . . . , xpq P

X . Common approaches include hierarchical mixtures of experts (Jacobs et al.,

1991; Jiang and Tanner, 1999), kernel methods (Fan et al., 1996; Fan and Yim, 2004;

Holmes et al., 2010; Fu et al., 2011), Bayesian finite mixture models (Nott et al., 2012;

Tran et al., 2012; Norets and Pelenis, 2012) and Bayesian nonparametrics (Griffin

and Steel, 2006; Dunson et al., 2007; Chung and Dunson, 2009; Tokdar et al., 2010).

In all these works, there has been limited consideration of scaling to large p settings,

with the variational Bayes approach of Tran et al. (2012) being a notable exception.

For dimensionality reduction, they follow a greedy variable selection algorithm. Their

approach does not scale to the sized applications we are interested in. For example,

in a problem with p � 1, 000 and n � 500, they reported a CPU time of 51.7 minutes

for a single analysis. We are interested in problems many orders of magnitude or

more larger than this, and require a faster computing time while also accurately es-

timating the conditional density of a response variable. To our knowledge, there are

no nonparametric density regression competitors to our approach, which maintain

a characterization of uncertainty in estimating the conditional densities; rather, all

sufficiently scalable algorithms provide point predictions and/or rely on restrictive

assumptions such as linearity.

A widely used method to estimate a covariates-dependent density is to partition

observations into a nested sequence of subsets based on feature similarity, with sim-

ple models fit within each subset. This is the basis for CART (Breiman et al., 1984),

modifications such as random forests (Breiman, 2001), boosting (Shapire et al., 1998)

and bagging (Breiman, 1996). Though these algorithms can substantially improve

mean square error performance, computation can be expensive and performance de-
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grades as the dimensionality of the predictor space increases. In fact, a significant

downside of divide-and-conquer algorithms is their poor scalability to high dimen-

sional predictors. As the number of features increases, the problem of finding the best

splitting attribute becomes intractable so that tree based models cannot be efficiently

applied. As the number of features increases, also mixture of experts models become

computationally demanding, since both mixture weights and dictionary densities

are feature-dependent. In an attempt to make mixtures of experts more efficient,

sparse extensions relying on different variable selection algorithms have been pro-

posed (Mossavat and Amft, 2011). However, performing variable selection in high

dimensions is effectively intractable: algorithms need to efficiently search for the

best subsets of predictors to include in weight and mean functions within a mix-

ture model, an NP-hard problem. In chapter 3 we propose an algorithm based on

a novel stick breaking process which can scale substantially better than competitors

to high dimensional predictors while efficiently estimating the conditional density of

a response variable.

In this thesis we also focus on the challenging problem of learning a multivariate

density of a vector y P Y � <p indexed by features x P X � <q. This is an

important problem in many domains. For example, one may want to learn the joint

density of brain activity across sensors from MEG, EEG or fMRI data as a function

of patient tasks and characteristics. In modeling such data, it is most common to

assume either independence across sensors or that the data are multivariate Gaussian,

with the emphasis then on estimating a covariates dependent mean vector µpxq and

covariance matrix Σpxq (Fyshe et al., 2012). Though flexible approaches have been

introduced to model the p � p feature-dependent covariance matrix (Pourahmadi,

1999; Chiu et al., 1996; Hoff and Niu, 2012; Gelfand et al., 2004; Williams, 1996),

the predictive performance of such models depends strictly on the validity of the

normality assumption.
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There has been relatively limited attention on multivariate conditional density es-

timation. Notable exceptions include Krauthausen and Hanebeck (2010) and Davis

and Hwang (1998). Krauthausen and Hanebeck (2010) models y through a mix-

ture of spherical Gaussians with feature-dependent weights, while Davis and Hwang

(1998) estimates fpy|xq by placing kernels with varying bandwidths at each of the

training data points. These algorithms have been tested only on low dimensional

datasets, and may become computationally intractable in bigger problems. Tree

based models, typically applied to settings involving a univariate response but can

be easily implemented in multivariate settings (Death, 2002; Larsen and Speckman,

2004; Hothorn et al., 2006; Lutz and Buhlmann, 2006). Although performance is

often excellent in small to moderate dimensions, scaling to large numbers of features

is a general problem for usual tree-based models.

1.2 Literature Review

1.2.1 Mixture Models

Finite mixture models characterize the density of y P Y � <m as

fpy|p, γq �
ķ

h�1

phφpy; γhq, (1.1)

where p � pp1, . . . , pkq
T is a vector of probabilities summing to one, and φp�; γq is

a kernel depending on parameters γ P Γ, which may consist of location and scale

parameters (McLachlan and Peel, 2000). There is a very rich literature on inference

for finite mixture models from both a frequentist (Figueiredo and Jain, 2002; Muthen

and Shedden, 1999) and Bayesian (Richardson and Green, 1997) perspective. In

practice, most of the frequentist literature focuses on maximum likelihood estimation,

with the Akaike information criterion (AIC) and other criteria used to estimate the

number of mixture components (Raftery and Fraley, 1998). Bayesian approaches
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instead rely on placing a prior on the number of components and the component-

specific parameters, and hence may have some advantages in terms of accounting

for uncertainty in estimating the number of components while also regularizing the

component-specific parameters (Escobar and West, 1995; Richardson and Green,

1997). However, due to ease in computation, it has become popular to use over-fitted

mixture models in which a conservative upper bound on the number of components

is chosen.

Considering the finite mixture model in expression (1.1), a Bayesian specifica-

tion is completed by choosing priors for the number of components k, the proba-

bility weights p, and the component-specific parameters γ � pγ1, . . . , γkq
T . Typ-

ically, k is assigned a Poisson or multinomial prior, p a Dirichletpαq prior with

α � pα1, . . . , αkq
T , and γh � P0 independently, with P0 often chosen to be conjugate

to the kernel φ. As an example, when φ is the normal kernel and γ is a vector

containing mean and standard deviation, i.e. γ � pµ, σqT , a normal inverse-Gamma

prior is assigned to γ.

Posterior computation can proceed via a reversible jump Markov chain Monte

Carlo (Richardson and Green, 1997) algorithm involving moves for adding or deleting

mixture components. Unfortunately, in making a k Ñ k� 1 change in model dimen-

sion, efficient moves critically depend on the choice of proposal density. Stephens

(2000a) proposed an alternate Markov chain Monte Carlo method, which treats the

parameters as a marked point process, but does not have clear computational ad-

vantages relative to reversible jump. For these reasons It has become popular to use

over-fitted mixture models in which k is chosen as a conservative upper bound on

the number of components. From a practical perspective, the success of over-fitted

mixture models has been largely due to ease in computation.

As motivated in Ishwaran and Zarepour (2002), simply letting αh � c{k for

h P t1, . . . , ku and a constant c ¡ 0 leads to an approximation to a Dirichlet process
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mixture model for the density of y, which is obtained in the limit as k approaches in-

finity. An alternative finite approximation to a Dirichlet process mixture is obtained

by truncating the stick-breaking representation of Sethuraman (1994a), leading to

a similarly simple Gibbs sampling algorithm (Ishwaran and James, 2001). These

approaches are now used routinely in practice.

When working with mixture models, an important issue is the identifiability of

mixture parameters pγ, pq. In general, parameters are identifiable if distinct param-

eter values lead to different densities. Let fpy|θq be a mixture density defined as

in 1.1 with θ being the vector of mixture parameters, i.e. θ � pγT , pT qT . It can

be easily shown that two different vectors θ and θ1 can lead to the same mixture

density, i.e. fpy|θq � fpy|θ1q. The lack of identifiability is mainly caused by the in-

variance of the likelihood to relabeling of the components and over-fitting. The first

identifiability issue does not create problems when the model is estimated through

maximum likelihood; however it causes major problems when dealing with Bayesian

methods based on Markov chains Monte Carlo. In the Bayesian literature the lack

of identifiability due to relabeling of the components is a challenging problem better

known as label switching problem (Stephens, 2000b; Lavine and West, 1992; Jasra

et al., 2005). An effective technique used to overcome this identifiability problem is

relabeling the clusters at each MCMC iteration using a post-processing algorithm.

Examples of such approach include Yao and Lindsay (2009), Stephens (2000b) and

Cron and West (2011). A more serious identifiability issue is due to the introduction

of equal components. As an example, consider two mixture models fpy|ppkq, γpkqq

and fpy|ppk�1q, γpk�1qq involving k and k � 1 components respectively. It can be

easily shown that parameters pppkq, γpkqq and pppk�1q, γpk�1qq satisfying the following

constraints

p
pk�1q
h � p

pkq
h , γ

pk�1q
h � γ

pkq
h , @h   k
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p
pkq
k � p

pk�1q
k�1 � p

pk�1q
k , γ

pk�1q
k�1 � γ

pk�1q
k

lead to the same mixture density, i.e. fpy|ppkq, γpkqq � fpy|ppk�1q, γpk�1qq. This iden-

tifiability issue may result in over-fitted mixtures where identical and consequently

unnecessary components are introduced. To our knowledge no methods have been

proposed to solve this identifiability issue.

1.2.2 Divide and Conquer Algorithms and Tree Based Models

Divide and conquer algorithms fit surfaces to data by explicitly dividing the input

space into a nested sequence of regions, and by fitting simple surfaces within these

regions. A well known example of such algorithms is CART (classification and re-

gression trees) (Breiman et al., 1984). Starting from a set including all observations

(root), tree based methods recursively splits each subset into subsets containing more

homogenous observations. Generally observations are allocated to different subsets

through greedy algorithms and the number of subsets is determined by pruning the

tree according to a model choice criterion such as AIC and BIC. Recently, tree based

methods relying on full Bayesian specifications have been introduced. Bayesian tree

models estimate the tree by placing a prior on the space of all trees and implementing

stochastic search algorithms to explore the entire space (Chipman et al., 1993; Wu

et al., 2007; Mallick, 1998).

Though CART models are appealing in providing a simple, flexible and inter-

pretable mechanism of dimensionality reduction, it is well known that single tree

estimates commonly have high variance and poor performance. There is a rich ma-

chine learning literature proposing improvements based on bagging (Breiman, 1996),

boosting (Shapire et al., 1998) and random forests (Breiman, 2001). All these meth-

ods overcome the limit associated to single tree models by combining results gen-

erated from multiple trees. The multiple trees setup can certainly leads to better

mean square errors by reducing the variability associated to the estimates. However,
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these approaches may become computationally intensive when dealing with massive

number of features.

Another divide-and-conquer algorithm particularly useful to reduce the variance

associated to single tree estimates is mixture of experts (Jacobs et al., 1991). As

opposed to other divide-and-conquer algorithms, mixture of experts relies on soft

partitioning algorithms that allows observations to lie simultaneously in different

subsets. A mixture of experts model is a mixture model in which the model parame-

ters, including mixture weights, are functions of covariates. In practice, observations

are assigned to different experts by a gating network through a probabilistic model.

Then, within each expert, observations are considered identically distributed. A

variety of mixture of experts models have been proposed in the last twenty years.

Some of them deal with infinitely many experts (Rasmussen and Ghahramani, 2002;

Meeds and Osindero, 2006), others propose a hierarchical structure where the den-

sity within each expert is a mixture model (Jordan and Jacobs, 1994; Bishop and

Svensen, 2003).

1.2.3 Factor Model and Mixture of Factor Analyzers

Factor analysis has been one of the most flexible tools utilized to model the depen-

dence structure of a p-dimensional vector of random variables through a sparse de-

composition of a p�p covariance matrix, Σ � ΘΘT �Σ0 with Σ0 � diagpσ1, . . . , σpq.

This covariance decomposition is obtained by considering the following model for

yi P <p

yi � µ0 �Θηi � εi ηi � Nkp0, Iq εi � Npp0,Σ0q (1.2)

with Θ being a p � k loading matrix and k    p. Model 1.2 implies that the

elements of yi are conditionally independent given the latent factors and the marginal

dependence among them is induced by the shared dependence on the latent factors.

The covariance matrix Σ can be derived by marginalizing out ηi. Tipping and Bishop
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(2012) with their probabilistic principal component analysis showed that, under an

isotropic error model, i.e. Σ0 � σI, the maximum likelihood estimate of the k

columns of the loading matrix converges to the first k principal components of the

data as σ approaches zero. Therefore, considering an isotropic error, it is possible to

combine the advantages of a probabilistic model with those of principal component

analysis.

Often there is interest in estimating the latent factors, interpreted as underlying

processes characterizing the data. However, these factors are not identifiable without

imposing further constraints on the loading matrix (Bernardo et al., 2003; Lopes and

West, 2004). In fact, for any k � k orthogonal matrix Γ, Θ and Θ1 � ΘΓ, lead to

the same covariance decomposition. To solve this identifiability issue and uniquely

estimate the latent factors one could constrain the loading matrix to be lower tri-

angular (Geweke and Zhou, 1996; Aguilar and West, 2000) or orthogonal (Seber,

2004). Though inference on latent factors remains an interesting and open problem,

in many applications the main focus is the estimation of the covariance matrix Σ.

Latent factor models provide a low rank approximation of a large scale covariance

matrix and it is related to a set of articles, including Zou et al. (2006), Shen and

Huang (2008), Witten et al. (2009) and Johnstone and Lu (2009), which mainly

focused on sparse principal component analysis. In the analysis of factor models

another crucial point is the determination of the number of factors. The number of

latent factors can be determined through variable selection criteria (Onatski, 2005;

Minka, 2001), reversible jump algorithms (Lopes et al., 2011; Hastie and Green, 2012)

and adaptive Markov chains (Bhattacharya and Dunson, 2011).

Though factor model offers a flexible tool to describe the dependence structure

of a set of variables its applicability is limited by linearity. This limitation can

be overcome by combining local models in the form of finite mixture (Tipping and

Bishop, 1997). Mixtures of factor analyzers (MFA) model a p-dimensional vector of
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observations as follows

yi �
Ņ

h�1

phNp pµh,ΘhΘ
1
h � Σh0q (1.3)

with µh P <p, Θh P <p�k being the loading matrix, pp1, . . . , pNq
T being positive

weights summing up to one, Σh0 � diagpσh1, . . . , σhpq. According to model 4.1, ob-

servations are assumed to belong to the hth cluster with probability ph and, within

each cluster, observations are modeled through a linear factor model (equation 1.2)

with parameters pµh,Λh,Σh0q. Mixture of factor analyzers offers the potential to ad-

equately model the density of high-dimensional observations while also allowing for

both clustering and local dimensionality reduction. In order to estimate the parame-

ters of the MFA many approaches have been introduced. Some of them (Ghahramani

and Hinton, 1997; Zhou and Liu, 2008) estimate the model using the Expectation

Maximization algorithm (Dempster et al., 1977), others rely on variational infer-

ence (Ghahramani and Beal, 2000), others on full bayesian inference (Utsugi and

Kumagai, 2011).

1.3 Dissertation Outline

In this thesis we deal with different problems in mixture modeling such us identifia-

bility, over-fitting and scalability to massive number of features.

The second chapter offers a possible solution to the identifiability and over-fitting

problem characterizing finite mixture models. In contrast to the majority of the

Bayesian literature on discrete mixture models, instead of drawing the component-

specific parameters tγhu in 1.1 independently from a common prior, we propose a

joint prior for γ � pγ1, . . . , γkq
T that is chosen to assign low density to γh’s located

close together. We consider two types of repulsive priors, (i) priors guarding against

over-fitting by penalizing redundant kernels having close to identical locations and
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scales and case (ii) priors discouraging closeness in only the locations to favor well

separated clusters.

The third chapter focuses on learning the conditional density of a response vari-

able given an high dimensional vector of predictors. We present a multiresolution

approach which learns a multiscale dictionary of densities, constructed as Gaussian

within each set of a multiscale partition tree for the features. This tree is effi-

ciently learned in a first stage using a fast and scalable graph partitioning algorithm

(Karypis and Kumar, 1999). Then, the conditional density fpy|xq for each x P X is

expressed as a convex combination of coarse to fine scale dictionary densities. This

is accomplished in a Bayesian manner using a novel multiresolution stick-breaking

process, which allows the data to inform about the optimal bias-variance tradeoff.

The proposed model allows borrowing information across different resolution levels

and reaches a good compromise in terms of the bias-variance tradeoff. We show that

the algorithm scales efficiently to massive numbers of features.

Finally, the fourth chapter focuses on learning the conditional density of a mul-

tivariate vector of response given an high dimensional vector of predictors. In many

applications, there is interest in assessing how the density of a multivariate response

changes as function of features, with both the response and the predictor being

highly dimensional. To address this challenging problem, we propose a multiscale

predictor-dependent mixture of factor analyzers in which specific-component param-

eters depend on the path of the predictor vector through a multiscale partition tree.

By borrowing information across resolution levels, we allow local adaptivity in which

a single factor model may suffice in terms of the bias-variance tradeoff in certain

regions of the predictor space, while in other regions additional layers are required.
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2

Repulsive Mixtures

Mixture models have been extensively utilized for density estimation, clustering and

as a component in flexible hierarchical models. In using mixture models for clus-

tering, identifiability problems arise if mixture components are not sufficiently well

separated and the data for the different sub-populations contain substantial overlap.

Insufficiently separated components also create problems in using mixture models for

density estimation and robust modeling, as redundant components that are located

close together can be introduced leading to an unnecessarily complex model as well

as to various computational problems. Current practice in Bayesian mixture model-

ing generates the component-specific parameters from a common prior, which tends

to favor components that are close together. As an alternative, in this chapter, we

propose to generate mixture components from a repulsive process that favors placing

components further apart.
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2.1 Bayesian Repulsive Mixture Models

2.1.1 Repulsive Densities

We seek a prior on the component parameters in (1.1) that automatically favors

spread out components near the support of the data. Instead of generating the

atoms γh independently from P0, one could generate them from a repulsive process

that automatically pushes the atoms apart. This idea is conceptually related to the

literature on repulsive point processes (Huber and Wolpert, 2009). In the spatial

statistics literature, a variety of repulsive processes have been proposed. One such

model assumes that points are clustered spatially, with the vector of cluster centers γ

having a Strauss density (Lawson and Clark, 2002), that is ppk, γq9βkρrpγq where k is

the number of clusters, β ¡ 0, 0   ρ ¤ 1 and rpγq is the number of pairwise centers

that lie within a pre-specified distance r of each other. A possibly unappealing

feature is that repulsion is not directly dependent on the pairwise distances between

the clusters. We propose an alternative class of priors, which smoothly push apart

components based on their pairwise distances.

Def 1. A density hpγq is repulsive if for any δ ¡ 0 there is a corresponding ε ¡ 0

such that hpγq   δ for all γ P ΓzGε, where Gε � tγ : dpγs, γjq ¡ ε; s � 1, . . . , k; j   su

and d is a distance.

We consider two special cases (i) dpγs, γjq is the distance between the sth and jth

kernel, (ii) dpγs, γjq is the distance between sub-vectors of γs and γj corresponding to

only locations. Priors following definition 1(i) limit over-fitting in density estimation,

while priors following definition 1(ii) favor well-separated clusters.

As a convenient class of repulsive priors which smoothly push components apart,

we propose

πpγq � c1

�
k¹
j�1

g0pγjq

�
hpγq, (2.1)
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with c1 being a normalizing constant that can be intractable to calculate. The

dependence of c1 on k leads to complications in estimating k that motivate the use

of an over-specified mixture that treats k as an upper bound on the number of

components. The proposed prior is closely related to a class of point processes from

the statistical physics and spatial statistics literature called Gibbs processes (Daley

and Vere-Jones, 2008). We assume g0 : Γ Ñ <� and h : Γk Ñ r0,8q are continuous

with respect to Lesbesgue measure, and h is bounded above by a positive constant c2

and is repulsive according to definition 1 with d differing across cases. It follows that

density π defined in (2.1) is also repulsive. For location-scale kernels, let γj � pµj,Σjq

and g0pµj,Σjq � ξpµjqψpΣjq with µj and Σj being respectively the location and the

scale parameters. A special hardcore repulsion is produced if the repulsion function

is zero when at least one pairwise distance is smaller than a pre-specified threshold.

Such a density implies choosing a minimal separation level between the atoms.

We avoid hard separation thresholds by considering repulsive priors that smoothly

push components apart. In particular, we propose two repulsion functions defined as

hpγq �
¹

tps,jqPAu

gtdpγs, γjqu (2.2) hpγq � min
tps,jqPAu

gtdpγs, γjqu (2.3)

with A � tps, jq : s � 1, . . . , k; j   su and g : <� Ñ r0,M s a strictly monotone dif-

ferentiable function with gp0q � 0, gpxq ¡ 0 for all x ¡ 0 and M   8. It is

straightforward to show that h in (2.2) and (2.3) is integrable and satisfies definition

1. The two alternative repulsion functions differ in their dependence on the rela-

tive distances between components, with all the pairwise distances playing a role in

(2.2), while (2.3) only depends on the minimal separation. A flexible choice of g

corresponds to

gtdpγs, γjqu � exp
�
� τtdpγs, γjqu

�ν
�
, (2.4)

where τ ¡ 0 is a scale parameter and ν is a positive integer controlling the rate at

15



which g approaches zero as dpγs, γjq decreases. Figure 2.1 shows contour plots of the

prior πpγ1, γ2q defined as (2.1) and satisfying definition 1(ii) with γ1, γ2 P R, d the

Euclidean distance, g0 the standard normal density, the repulsive function defined as

(2.2) or (2.3) and g defined as (2.4) for different values of pτ, νq. As τ and ν increase,

the prior increasingly favors well separated components.

(I)

−5 0 5

−5

0

5

(II)

−5 0 5

−5

0

5

(III)

−5 0 5

−5

0

5

(IV)

−5 0 5

−5

0

5

Figure 2.1: Contour plots of the repulsive prior πpγ1, γ2q satisfying definition
1(ii) under p2.1q either p2.2q or p2.3q and p2.4q with hyperparameters pτ, νq equal
to pIqp1, 2q, pIIqp1, 4q, pIIIqp5, 2q and pIV qp5, 4q

2.1.2 Theoretical Properties

Theoretical properties of the proposed prior are considered under definition 1(ii),

though all results can be modified to accommodate definition 1(i). For some results,

the kernel will be assumed to depend only on location parameters, while for others

on both location and scale parameters. Let Π be the prior induced on
�8
j�1Fk,

where Fk is the space of all distributions defined as (1.1). Let } � }1 denote the L1

norm and KLpf0, fq �
³
f0 logpf0{fq refer to the Kullback-Leibler (K-L) divergence

between f0 and f . Density f0 belongs to the K-L support of the prior Π if Πtf :
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KLpf0, fq   εu ¡ 0 for all ε ¡ 0. Let the true density f0 : <m Ñ <� be defined

as f0 �
°k0
h�1 p0hφpγ0hq with γ0h P Γ and γ0js such that there exists an ε1 ¡ 0 such

that mintps,jq:s ju dpγ0s, γ0jq ¥ ε1, d being the Euclidean distance of sub-vectors of

γ0j and γ0s corresponding to only locations. Let f �
°k
h�1 phφpγhq with γh P Γ. Let

γ � π and π satisfy definition 1(ii). Let p � λ with λ � Dirichletpαq and k � ϑ

with ϑpk � k0q ¡ 0. Let θ � pp, γq. These assumptions on f0 and f will be referred

to as condition B0. The next lemma provides sufficient conditions under which the

true density is in the K-L support of the prior for location kernels.

Lemma 2. Assume condition B0 is satisfied with m � 1. Let D0 be a compact

set containing location parameters pγ01, . . . , γ0k0q. Let φ and π satisfy the following

conditions:

A1. for any y P Y, the map γ Ñ φpy; γq is uniformly continuous

A2. for any y P Y, φpy; γq is bounded above by a constant

A3.
³
f0

��log
 
supγPD0

φpγq
(
� log tinfγPD0 φpγqu

��   8

A4. π is continuous with respect to Lebesgue measure and for any vector x P Γk

with mintps,jq:s ju dpxs, xjq ¥ υ for υ ¡ 0 there is a δ ¡ 0 such that πpγq ¡ 0

for all γ satisfying ||γ � x||1   δ

Then f0 is in the K-L support of the prior Π.

Lemma 3. The repulsive density in (2.1) with h defined as either (2.2) or (2.3)

satisfies condition A4 in lemma 2.

The next lemma formalizes the posterior rate of concentration for univariate

location mixtures of Gaussians.

Lemma 4. Let condition B0 be satisfied, let m � 1 and φ be the normal kernel

depending on a location parameter µ and a scale parameter σ. Assume that condition

piq, piiq and piiiq of theorem 3.1 in Scricciolo (2011) and assumption A4 in lemma 2

are satisfied. Furthermore, assume that
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C1) the joint density π leads to exchangeable random variables and for all k the

marginal density of µ1 satisfies πmp|µ1| ¥ tq À exp p�q1t
2q for a given q1 ¡ 0

C2) there are constants u1, u2, u3 ¡ 0, possibly depending on f0, such that for any

ε ¤ u3

πp||µ� µ0||1 ¤ εq ¥ u1 expp�u2k0 logp1{εqq

Then the posterior rate of convergence relative to the L1 metric is εn � n�1{2 log n.

Lemma 4 is basically a modification of theorem 3.1 in Scricciolo (2011) to our

proposed repulsive mixture model. Lemma 5 gives sufficient conditions for π to

satisfy condition C1 and C2 in lemma 4.

Lemma 5. Let π be defined as (2.1) and h be defined as either (2.2) or (2.3), then

π satisfies condition C2 in lemma 4. Furthermore, if for a positive constant n1 the

function ξ satisfies ξp|x| ¥ tq À expp�n1t
2q, π satisfies condition C1 in lemma 4.

As motivated above, when the number of mixture components is chosen to be

conservatively large, it is appealing for the posterior distribution of the weights of

the extra components to be concentrated near zero. Theorem 6 formalizes the rate of

concentration with increasing sample size n. One of the main assumptions required

in theorem 6 is that the posterior rate of convergence relative to the L1 metric is

δn � n�1{2plog nqq with q ¥ 0. We provided the contraction rate, under the proposed

prior specification and univariate Gaussian kernel, in lemma 4. However, theorem

6 is a more general statement and it applies to multivariate mixture density of any

kernel.

Theorem 6. Let assumptions B0�B5 be satisfied. Let π be defined as (2.1) and h

be defined as either (2.2) or (2.3). If ᾱ � maxpα1, . . . , αkq   m{2 and for positive

constants r1, r2, r3 the function g satisfies gpxq ¤ r1x
r2 for 0 ¤ x   r3 then

lim
MÑ8

lim sup
nÑ8

E0
n

�
P

#
min
tιPSku

�
ķ

i�k0�1

pιpiq

�
¡Mn�1{2plog nqqp1�spk0,αq{sr2 q

+�
� 0
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with spk0, αq � k0 � 1 �mk0 � ᾱpk � k0q, sr2 � r2 �m{2 � ᾱ and Sk the set of all

possible permutations of t1, . . . , ku.

Theorem 6 is a modification of theorem 1 in Rousseau and Mengersen (2011) to

our proposed repulsive mixture model. Theorem 6 implies that the posterior expec-

tation of weights of the extra components is of order Opn�1{2plog nqqp1�spk0,αq{sr2 qq.

When g is defined as (2.4), parameters r1 and r2 can be chosen such that r1 � τ and

r2 � ν.

When the number of components is unknown, with only an upper bound known,

the posterior rate of convergence is equivalent to the parametric rate n�1{2 (Ishwaran

et al., 2001). In this case, the rate in theorem 6 is n�1{2 under usual priors or our

repulsive prior. However, in our experience using usual priors, the sum of the extra

components can be substantial in small to moderate sample sizes, and often has

high variability. As we show in Section 2.3, for repulsive priors the sum of the extra

component weights is close to zero and has small variance for small as well as large

sample sizes. When an upper bound on the number of components is unknown, the

posterior rate of concentration is n�1{2plog nqq with q ¡ 0. In this case, according

to theorem 6, using our prior specification the logarithmic factor in theorem 1 of

Rousseau and Mengersen (2011) can be improved.

2.2 Posterior Computation and Parameter Calibration

2.2.1 Posterior Computation

For posterior computation, we use a slice sampling algorithm (Neal, 2003), a class of

Markov chain Monte Carlo algorithms widely used for posterior inference in infinite

mixture models (Kalli et al., 2011). Letting g0 be a conjugate prior, introduce a
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latent variable u which is jointly modeled with γ through

πpγ1, . . . , γk, uq9

�
k¹

h�1

g0pγhq

�
1 thpγ1, . . . , γkq ¡ uu .

Here 1pBq is the indicator function, equalling 1 if the event B occurs and 0 otherwise.

Marginalizing out u, we recover the original density πpγ1, . . . , γkq. For a repulsion

function defined as (2.3), let Bj �
�

ts:s ��ju rγj : gtdpγs, γjqu ¡ us. When the repulsion

function is defined as (2.2), one can introduce a latent variable for each product

term. Under repulsive priors satisfying definition 1(i), the set Bj might not be easy

to compute. However, when covariance matrices are constrained to be diagonal,

vectors γjs can be easily sampled element-wise. For multivariate observations, the

location parameter vector can be sampled element-wise from truncated distributions.

For simplicity, assume that h is defined as 2.3, ψ is the Inverse-Gamma density

with parameters paσ, bσq, g0 is the m-variate standard normal density and φ is the

m-variate spherical normal kernel. Let Si P t1, . . . , ku be the variable indicating

which cluster the ith observation belongs to. Let nj be the number of data points

in the jth cluster and let ȳj be the average of observations in the jth cluster. Let

u� � g�1puq, αp � pα1 � n1, . . . , αk � nkq and γj � pµj, σjq. Then the sampling

algorithm can be summarized by the following steps:

Step 1. Update Si, for i P t1, . . . , nu, by multinomial sampling

pSi|�q �Multpl1, . . . , lkq, lj �
pjφpyi;µj, σjIq°k
h�1 phφpyi;µh, σhIq

;

Step 2. For repulsive priors satisfying definition 1(ii), sample pµj, σjq from

pµj|�q � fµj9N
 
p1� nj{σjq

�1ȳjnj{σj, Ip1� nj{σjq
�1
(

1tµj P Apµjqu
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pσj|�q � fσj � IG

$&
%aσ � njm

2
, bσ �

1

2

¸
ti:Si�ju

pyi � µjq
T pyi � µjq

,.
-

For repulsive priors satisfying definition 1(i) sample pµj, σjq from

µj � fµj ; 1{σj � f 1σj9fσj1tσj P Apσjqu

The set A is defined as Ap�q � t� : dpγj, γsq ¡ u�, @s �� ju with dp�, �q being defined as

the symmetric K-L divergence for repulsive priors satisfying definition 1(i) and the

Euclidean distance for repulsive priors satisfying definition 1(ii).

Step 3. Sample u and p from

pu|�q � Un t0, hpγqu , p � Dirichlet pαpq

2.2.2 Calibration

An important issue in implementing repulsive mixture models is elicitation of the

repulsion hyper-parameters pτ, νq. Although a variety of strategies can be considered,

we propose a simple approach that can be used to obtain a default hyper-parameter

choice in general applications. In case (i) we choose dp�, �q as the symmetric Kullback-

Leibler divergence defined for Gaussian kernels as

s12 � dpγ1, γ2q � trpΣ1Σ�1
2 q � trpΣ�1

1 Σ2q � 2m� pµ1 � µ2q
T pΣ�1

1 � Σ�1
2 qpµ1 � µ2q,

while in case (ii) we use the Euclidean distance between the location parameters.

For both case (i) and case (ii), define d̄ as the mean of pairwise distances between

atoms, d̄ � 1
npAq

°
ps,jqPA dpγs, γjq with A � tps, jq : s � 1, . . . , k; j   su and npAq

the cardinality of set A. Let f1 and f2 denote the densities of d̄ under repulsive and

non-repulsive priors respectively, with p%j, ςjq the mean and standard deviation of fj

for j � 1, 2. We choose pτ, νq so that f1 and f2 are well-separated using the following

definition of separation (Dasgupta, 1999).
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Def 7. Given a positive constant c, f1 and f2 are c-separated if %1�%2 ¥ cmaxpς1, ς2q.

We have found that ν � 2 and ν � 1 provide good default values in case (i) and

(ii) respectively and we fix ν at these values in all our applications below. For a

given value of ν, τ is found by starting with small values, estimating the mean and

variance of d̄ through Monte Carlo draws, and incrementing τ until definition 7 is

satisfied for a pre-specified c. We use c � 4 in our implementations. A sensitivity

analysis for different values of c can be found in appendix B.

2.3 Synthetic Examples

Simulation examples were considered to assess the performance of the repulsive prior

in density estimation, clustering and emptying of extra components. Figure 2.2 plots

the true densities in the various cases that we considered. For each synthetic dataset,

repulsive and non-repulsive mixture models were compared considering a fixed upper

bound on the number of components; extra components should be assigned small

probabilities and hence effectively excluded. The slice sampler was run for 10, 000

iterations with a burn-in of 5, 000. The chain was thinned by keeping every 10th

draw. To overcome the label switching problem, the samples were post-processed

following the algorithm of Stephens (2000b). Details on parameters involved in the

true densities, choice of prior distributions and methods used to compute quantities

presented in this section can be found in Appendix B.

Repulsive mixtures satisfying definition 1(i) and non-repulsive mixtures were com-

pared. For this experiment 1, 000 draws from a standard normal density and a two

component mixture of overlapping normals was considered. Both repulsive and non-

repulsive mixtures were run considering six as the upper bound of the number of

components. Table 2.1 shows posterior summaries of parameters involved in the

components with highest weights. Clearly, repulsive mixtures lead to a more parsi-
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Figure 2.2: pIq Standard normal density (solid), two-component mixture of nor-
mals sharing the same location parameter (dash) and Student’s t density (dash-dot),
referred as pIa, Ib, Icq, pIIq two-components mixture of poorly (solid) and well sep-
arated (dot-dash) Gaussian densities, referred as pIIa, IIbq, pIIIq mixture of poorly
(solid) and well separated (dot-dash) Gaussian and Pearson densities, referred as
pIIIa, IIIbq, pIV q two-components mixture of two-dimensional non-spherical Gaus-
sians

monious representation of the true densities and more accurate parameter estimates.

The mean and standard deviation of the K-L divergence under the first data example

were p0.003, 0.002q and p0.004, 0.002q for non-repulsive and repulsive mixtures respec-

tively; while under the second data example were p0.006, 0.003q and p0.009, 0.003q

for non-repulsive and repulsive mixtures respectively. Therefore, repulsive mixtures

were able to concentrate more on the reduced model while performing similarly to

non-repulsive mixtures in estimating the true density.

Repulsive mixtures satisfying definition 1 (ii) and non-repulsive mixtures were

compared to assess clustering performance. Table 2.2 shows summary statistics of

the K-L divergence, the misclassification error and the sum of extra weights under re-

pulsive and non-repulsive mixtures with six mixture components as the upper bound.
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Table 2.2 shows also the misclassification error resulting from hierarchical clustering

(Locarek-Junge and Weihs, 2009). In practice, observations drawn from the same

mixture component were considered as belonging to the same category and for each

dataset a similarity matrix was constructed. The misclassification error was estab-

lished in terms of divergence between the true similarity matrix and the posterior

similarity matrix. As shown in table 2.2, the K-L divergences under repulsive and

non-repulsive mixtures become more similar as the sample size increases. For smaller

sample sizes, the results are more similar when components are very well separated.

Since a repulsive prior tends to discourage overlapping mixture components, a re-

pulsive model might not estimate the density quite as accurately when a mixture of

closely overlapping components is needed. However, as the sample size increases, the

fitted density approaches the true density regardless of the degree of closeness among

clusters. Again, though repulsive and non-repulsive mixtures perform similarly in

estimating the true density, repulsive mixtures place considerably less probability on

extra components leading to more interpretable clusters. In terms of misclassifica-

tion error, the repulsive model outperforms the other two approaches while, in most

cases, the worst performance was obtained by the non-repulsive model.

Potentially, one may favor fewer clusters, and hence possibly better separated

clusters, by penalizing the introduction of new clusters more through modifying the

precision in the Dirichlet prior for the weights; in appendix B, we demonstrate that

this cannot solve the problem.

2.4 Real Data

We tested the performance of our proposed prior specification on three real datasets.

The first involves 82 measurements of the velocities in km/s of galaxies diverging
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Table 2.1: Posterior mean and standard deviation of weights, location and scale
parameters under dataset drawn from densities pIa, Ibq

Density Ia Density Ib
Comp 1 Comp 1 Comp 2

p̂1 µ̂1 σ̂1 p̂1 µ̂1 σ̂1 p̂2 µ̂2 σ̂2

True 1 0 1 0.7 0 0.2 0.3 0 2
N-R 0.53 �0.01 0.85 0.44 0.08 1.21 0.34 0.12 1.33

p0.16q p0.04q p0.25q p0.06q p0.10q p1.05q p0.06q p0.16q p1.11q

R 0.87 �0.00 0.84 0.67 �0.02 0.28 0.27 0.09 2.36
p0.07q p0.01q p0.04q p0.05q p0.03q p0.02q p0.09q p0.23q p0.75q

from our own (Escobar and West (1995), Richardson and Green (1997)), the second

consists of the acidity index measured in a sample of 155 lakes in north central

Wisconsin (Richardson and Green (1997)), and the third consists of 150 observations

from three different species of iris each with four measurements (Wang, 2010).

For the first two datasets, a repulsive mixture satisfying definition 1(i) was con-

sidered and a five-component mixture model was fit while for the third dataset a

repulsive mixture satisfying definition 1(ii) was considered and both six components

and ten components were considered as the upper bound. The same prior specifica-

tion, Markov chain Monte Carlo sampler, and relabeling technique as in section 2.3

were utilized.

For the galaxy data, figure 2.3 reveals that there are three non-overlapping clus-

ters with the one close to the origin relatively large compared to the others. Although

this large cluster might be interpreted as two highly overlapping clusters, it appears

to be well approximated by a single normal density. Richardson and Green (1997)

and Escobar and West (1995) estimated the number of components, obtaining a pos-

terior distribution on k concentrating on values ranging from 5 to 7. This may be

due to the non-repulsive prior allowing closely overlapping components, favoring rel-

atively large values of k. Figure 2.3 reveals that the non-repulsive prior specification

leads to two overlapping and essentially indistinguishable clusters. Under repulsive
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Table 2.2: Mean and standard deviation of K-L divergence, misclassification error
and sum of extra weights resulting from non-repulsive mixture and repulsive mix-
ture with a maximum number of clusters equal to six under different synthetic data
scenarios.

Ic IIa IIb IIIa IIIb IV

n=100 K-L divergence

N-R 0.05 0.03 0.07 0.05 0.08 0.22
p0.03q p0.01q p0.02q p0.02q p0.03q p0.05q

R 0.06 0.05 0.08 0.07 0.09 0.28
p0.03q p0.02q p0.03q p0.03q p0.03q p0.04q

Misclassification

HCT 0.12 0.11 0.04 0.12 0.08 0.21
N-R 0.69 0.26 0.06 0.17 0.05 0.13

p0.10q p0.10q p0.04q p0.09q p0.06q p0.05q

R 0.53 0.18 0.01 0.10 0.01 0.05
p0.10q p0.09q p0.02q p0.05q p0.01q p0.02q

Sum of extra weights

N-R 0.30 0.21 0.09 0.16 0.07 0.13
p0.10q p0.11q p0.07q p0.09q p0.07q p0.08q

R 0.08 0.08 0.02 0.04 0.02 0.06
p0.05q p0.07q p0.02q p0.05q p0.02q p0.03q

n=1,000 K-L divergence

N-R 0.01 0.01 0.01 0.01 0.01 0.02
p0.00q p0.00q p0.00q p0.00q p0.00q p0.01q

R 0.01 0.01 0.01 0.01 0.01 0.03
p0.00q p0.00q p0.00q p0.00q p0.00q p0.01q

Misclassification

HCT 0.05 0.42 0.01 0.42 0.01 0.20
N-R 0.65 0.24 0.03 0.14 0.03 0.19

p0.11q p0.08q p0.04q p0.09q p0.03q p0.02q

R 0.46 0.13 0.00 0.03 0.00 0.17
p0.16q p0.04q p0.01q p0.02q p0.01q p0.01q

Sum of extra weights

N-R 0.30 0.21 0.03 0.16 0.03 0.29
p0.11q p0.11q p0.04q p0.10q p0.03q p0.03q

R 0.10 0.09 0.00 0.01 0.00 0.25
p0.04q p0.06q p0.00q p0.01q p0.00q p0.03q
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priors, no clusters overlap significantly and unnecessary components receive a weight

close to zero.

For the acidity data, figure 2.3 suggests that two clusters are involved. Since

one of them appears to be highly skewed, we expect that three clusters might be

needed to approximate this density well. Richardson and Green (1997) obtained a

posterior for k almost equally concentrated on values of k ranging from 3 to 5. Figure

2.3 shows the estimated clusters for both repulsive and non-repulsive priors. With

non-repulsive priors, four clusters receive significant weight and two of them overlap

significantly. With repulsive priors, only three clusters receive significant weight and

all of them appear fairly separated.

The iris data were previously analyzed by Sugar and James (2003) and Wang

(2010) using new methods to estimate the number of clusters based on minimizing

loss functions. They concluded the optimal number of clusters was two. This result

did not agree with the number of species due to low separation in the data between

two of the species. Such point estimates of the number of clusters do not provide

a characterization of uncertainty in clustering in contrast to Bayesian approaches.

Repulsive and non-repulsive mixtures were fitted under different choices of upper

bound on the number of components. Since the data contains three true biological

clusters, with two of these having similar distributions of the available features, we

would expect the posterior to concentrate on two or three components. Posterior

means and standard deviations of the three highest weights were p0.30, 0.23, 0.13q

and p0.05, 0.04, 0.04q for non-repulsive and p0.56, 0.29, 0.08q and p0.05, 0.04, 0.03q for

repulsive. Clearly, repulsive priors lead to a posterior more concentrated on two

components, and assign low probability to more than three components. Figure

2.4 shows the density of the total probability assigned to the extra components.

This quantity was computed considering the number of species as the true number

of clusters. According to figure 2.4, our repulsive prior specification leads to extra
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component weights very close to zero regardless of the upper bound on the number of

components. The posterior uncertainty is also small. Non-repulsive mixtures assign

large weight to extra components, with posterior uncertainty increasing considerably

as the number of components increases.
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Figure 2.3: Histogram of galaxy data (I) and acidity data (IV) overlaid with a
nonparametric density estimate using Gaussian kernel density estimation. Estimated
clusters under galaxy data for non-repulsive (II) and repulsive (III) priors and under
acidity data for non-repulsive (V) and repulsive (VI) priors
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Figure 2.4: Density of sum of extra weights under k=6 for non-repulsive (solid)
and repulsive (dash) and k=10 components for non-repulsive (dash-dot) and repulsive
(dot)
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3

Dictionary Learning for Conditional Distributions

Estimation of the conditional distribution of a response given high-dimensional fea-

tures is a challenging problem arising in a number of important application areas,

including neuroscience, genetics, and video processing. For example, one might desire

automated estimation of a predictive density for a continuous or categorical neuro-

logic phenotype of interest, such as intelligence or a creativity score, on the basis

of available data for a patient including neuroimaging. The challenge is to estimate

the probability density function of the phenotype based on a high-dimensional im-

age of the subject’s brain. In real data applications, often the relationship between

predictors and response is non linear so that it is important to allow not only the

mean but also the variance and shape of the response density to change flexibly with

features, which are massive dimensional. In this chapter, we propose a novel stick

breaking multiresolution that can flexibly and efficiently characterize the density of a

response variable given high dimensional predictors. The algorithm scales efficiently

to massive numbers of features, and can be implemented with slice sampling.

30



3.1 Methodology

We aim to build a flexible and scalable model for the density of y P < given a

set of predictors. Let x P X � <p be a p-dimensional Euclidean vector-valued

predictor random variable. Let fpxq denote the marginal probability density of x.

We assume that fpxq concentrates around a lower-dimensional, possibly nonlinear,

subspace M. For example, M could be a union of affine subspaces, or a smooth

compact Riemannian manifold. Let y P Y � < be a real-valued target variable. Let

x and y be sampled from some true but unknown joint distribution. We would like

to learn fpy|xq. We assume that we obtain n independently and identically sampled

observations, pyi, x
T
i q

T for i P t1, . . . , nu.

3.1.1 Model Overview

We propose a general modular approach to learn the conditional distribution of y

given an high dimensional vector of predictors x consisting in two components: (i)

a tree decomposition of the feature space, (ii) an assumed form of the conditional

probability model. A tree decomposition T yields a multiscale partition of the data

or the ambient space in which the data live. Starting from the coarsest scale, cor-

responding to the entire set, each set is split into two or more mutually exclusive

subsets. This process continues until some convergence criteria is satisfied, e.g. the

number of observations allocated to the finest scales is below some chosen threshold.

Figure 3.1(i) shows a dyadic partition of the predictor space where a generic set Cj,s

is partitioned into two subsets Cj�1,s1 and Cj�1,s2 such that

Cj,s � Cj�1,s1
�
Cj�1,s2 , Cj�1,s1

�
Cj�1,s2 � H

For each scale j, the set of cells Cj � tCj,su
Kj

s�1 provides a partition of X . We define

j � 0 as the root node/cell. For each j ¡ 0, each Cj,s has a unique parent node
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Cj�1,s1 containing Cj,s, and conversely, any Cj,s � Cj�1,s1 is called a child of Cj�1,s1 .

Let the set of ancestors and descendants of Cj,s be respectively defined as:

Aj,s � tpj1, s1q : j1   j, Cj,s � Cj1,s1u , Dj,s � tpj1, s1q : j1 ¡ j, Cj1,s1 � Cj,su (3.1)

Considering a given tree decomposition T of X , each xi P X has an associated

path characterized by the sets including xi (see figure 3.1(iii)). We assume that

the density of yi depends on xi through this tree partition. Specifically, for each

node pj, sq in the partition tree, we define a weight πj,s and dictionary density fj,s

as shown in figure 3.1(ii). Then, the conditional density fpyi|xiq will be a mixture

of densities with components depending on the sets contained in the path of xi (see

figure 3.1(iv)). In the extreme case in which two predictor values x and x1 belong to

the same leaf partition sets, the conditional distributions fpy1|x1q and fpy|xq will be

identical. If the two paths differ only in the final generation or two, the conditional

densities will typically be similar but not identical.

3.1.2 Model Specification

Assuming that the number of levels in the partition tree is k, we define the condi-

tional density fpy|xq as the convex combination of densities tfj,sjpxqu
k
j�1 with weights

tπj,sjpxqu
k
j�1, i.e.

fpy|xq �
ķ

j�1

πj,sjpxqfj,sjpxq, (3.2)

with sjpxq being the subset located at level j containing x, pπj,sjpxq, fj,sjpxqq being

the weight and dictionary density associated to node pj, sjpxqq, 0 ¤ πj,sjpxq and°k
j�1 πj,sjpxq � 1. According to model 3.2, only observations with predictors allocated

to node pj, sq, i.e. tyi : xi P Cj,su, will have a mixture components with weight πj,s
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Figure 3.1: Partition tree schematic: (i) Multiscale partition of the data. (ii)
Estimate dictionary density and weight associated to each set. (iii) Nodes along the
tree containing xi P <p. (iv) Conditional density of yi given xi defined as a convex
combination of densities associated to the nodes containing xi.
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and density fj,s. Notice that, as the weight associated to the first level of resolution

approaches one, a non predictor-dependent density for y is obtained.

According to model (3.2), one observation can lie in subsets located at different

resolution levels. This is critical in achieving a good compromise between bias and

variance through borrowing information across different resolution levels. Though

the proposed approach is reminiscent of a mixture of experts model (Jacobs et al.,

1991), the two approaches are quite different, since under (3.2), neither mixture

weights nor dictionary densities directly depend on predictors. This allows our model

to scale efficiently to high dimensional predictors.

We let weights in 3.2 be generated by a stick-breaking process (Sethuraman,

1994b). For each node pj, sq in the partition tree, we define a stick length Vj,s �

Betap1, αq. Then, we define weights in 3.2 as follows

πj,s � Vj,s
¹

pj1,s1qPAj,s

r1� Vj1,s1s , for j   k

with Aj,s defined as in 3.1 and Vk,s � 1 for all s P t1, . . . ,Kku. This condition will

ensure that,
°k
j�1 πj,sj � 1 for any path s � ts1, . . . , sku. We refer to this prior as a

multiresolution stick-breaking process. The parameter α encodes the complexity of

the model, with α � 0 corresponding to the case in which fpy|xq � fpyq.

3.2 Estimation

We desire a strategy that estimates posteriors over all potential marginal distribu-

tions so as to automatically obtain estimates of uncertainty. Moreover, we would

like a procedure with a few hyper-parameters as possible. These motivate using a

fully Bayesian strategy. A fully Bayesian approach would construct a large num-

ber of partitions, and integrate over them to obtain our posteriors. However, such a

fully Bayesian is computational intractable for the ultrahigh-dimensionality problems
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that motivate this work (p P Op106q), so we adopt a hybrid strategy. This hybrid

strategy is based on a two stage algorithm where first the observations are allocated

to different subsets in a tree fashion using an efficient partitioning algorithm and

then, considering the partition as fixed, a multiresolution stick-breaking process is

estimated using Bayesian methods.

Specifically, we employ METIS (Karypis and Kumar, 1999), a well-known rela-

tively efficient graph partitioning algorithm with demonstrably good empirical per-

formance on a wide range of graphs. We construct a weighted graph as done for the

construction of diffusion maps (Coifman and Lafon, 2006). In practice, we add an

edge between each pairs pxv, xuq and assign to any such edge weight e�ρ
2
uv , where ρuv

is a given metric. In all applications below, ρuv is defined as the Euclidean distance

between predictors xu and xv. Starting from the coarse scale, subsets will be split

using METIS until the number of observations in the subsets located at the finest

scale will drop below some chosen threshold τ . More formally let us define the num-

ber of levels k as the one satisfying the following conditions

°n
i�1 1pxi P Cj,sjq ¥ τ , @Cj,sj with j ¤ k

°n
i�1 1pxi P Ck�1,sk�1

q   τ , f.s. sk�1 P t1, . . . ,Kk�1u

where 1p�q is the indicator function and n is the number of observations. The above

conditions imply that each subset located at the finest scale will have at least τ

observations. Once the tree is constructed, we define the conditional density of yi as

the mixture density in 3.2. Though more complicated densities can be considered,

dictionary densities fj,s will be estimated by assuming a normal form, i.e. fj,s �

N pµj,s, σj,sq. In particular, densities corresponding to a particular partition set will

be estimated considering only observations belonging to that partition set. To be

specific, for estimating density fj,s, we use observations Yj,s � tyi : xi P Cj,su.
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3.2.1 Full Conditionals

Parameters involved in the dictionary densities can be estimated using either fre-

quentist or Bayesian methods. Bayesian methods are appealing since they can avoid

singularities associated with traditional maximum likelihood inference, the prior has

an appealing role as a regularizer, and we can characterize uncertainty in dictionary

learning through the resulting posterior. Hence, parameters involved in dictionary

densities will be estimated through Bayesian methods and inference on stick break-

ing weights and dictionary density parameters will be carried out using the Gibbs

sampler.

For this purpose, introduce the latent variable Si P t1, . . . , ku, for i P t1, . . . , nu,

denoting the multiscale level used by the ith subject. Assuming data are normalized

prior to analysis, we let µj,s � N p0, Iq and σj,s � IGpa, bq for the means and vari-

ances of the dictionary densities associated to node pj, sq. Let nj,s be the number of

observations allocated to node pj, sq, i.e. nj,s �
°n
i�1 1pxi P Cj,sq1pSi � jq. Define

Ij,s � ti : xi P Cj,s , Si � ju. Each Gibbs sampler iteration can be summarized in the

following steps.

Step 1. Update Si by sampling from the multinomial full conditional with

ppSi � j | �q �
πj,sjpxiqfj,sjpxiqpyiq°k

h�1 πh,shpxiqfh,shpxiqpyiq

Step 2. Update Vj,s, for all s P t1, . . . ,Kju and j P t1, . . . , ku, by sampling from

p pVj,s|�q � Betapβp, αpq, βp � 1� nj,s αp � α �
¸

`PDpj,sq

n`

Step 3. Update µj,s, for all s P t1, . . . ,Kju and j P t1, . . . , ku, by sampling from

ppµj,s|�q � N pMj,snj,s{σj,sȳj,s,Mj,sq
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with Mj,s � p1� nj,s{σj,sq
�1, ȳj,s �

°
iPIj,s yi.

Step 4. Update σj,s, for all s P t1, . . . ,Kju and j P t1, . . . , ku, by sampling from

ppσj,s|�q � IG pa� nj,s{2, b� s̄{2q

where s̄ �
°
iPIj,s pyi � µj,sq

2.

3.2.2 Predictions

Consider the case we want to predict the response yn�1 for a future observation based

on predictors xn�1 and previous observations pxpnq, ypnqq with xpnq � px1, . . . , xnq and

ypnq � py1, . . . , ynq. Because the partitioning strategy that we adopted lacks an el-

egant out-of-sample embedding function (unlike other partitioning strategies), we

adopt a Voronoi expansion procedure by which the new vector of features xn�1 is al-

located to Cj,k’s having the closest centers with respect to some metric ρ. Summaries

of the predictive density of yn�1 will be computed as follows:

(i) for each scale j ¤ k, allocate predictors xn�1 to Cj,k’s having the closest centers

with respect to ρ

(ii) run the Gibbs sampler for H iterations, and at the hth iteration:

a) sample parameters
!
σ
phq
j,s , µ

phq
j,s , π

phq
j,s

)
@j,@s

from the posterior, following the

procedure explained in §3.2.1

b) sample ŷhn�1 from

ŷsn�1 �
ķ

j�1

π
phq
j,spxn�1q

N
�
µ
phq
j,spxn�1q

, σ
phq
j,spxn�1q

	

(iii) given the sequence
 
ŷhn�1

(H
h�1

, summaries of the predictive density of the

response variable such as mean, variance and quantiles can be computed.
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3.3 Simulation Studies

In order to assess the predictive performance of the proposed model, different sim-

ulation scenarios were considered. Let n be the number of observations, y P < the

response variable and x P <p a set of predictors. The Gibbs sampler was run consid-

ering 20, 000 as the maximum number of iterations with a burn-in of 1, 000. Gibbs

sampler chains were stopped testing normality of normalized averages of functions of

the Markov chain (Chauveau and Diebolt, 1998). Parameters pa, bq and α involved

in the prior density of parameters σj,ss and Vj,ss were set respectively equal to p3, 1q

and 1. The threshold τ used to determine the number of levels was set equal to

5. Let the metric utilized to allocate new predictors (defined as ρ in §3.2.2) be the

Euclidean distance.

In all simulation scenarios, predictors were assumed to belong to an r-dimensional

space, either a lower dimensional plane or a non linear manifold, with r    p. For

each synthetic dataset, the proposed model was compared with CART and lasso in

terms of mean squared error. For CART and Lasso standard Matlab packages were

utilized and the regularization parameter of Lasso was chosen based on the AIC.

3.3.1 Illustrative Example

Consider

xi � N pψpµiq, σ2Iq,

where Ψ � tψ : M Ñ <pu, µi PM, σ P p0,8q, I is the p � p dimensional identity

matrix. Let M be a smooth compact Riemannian manifold. For simplicity, let us

assume that M is a curve. Let ψpµq � 1µ with 1 being a p-dimensional vector

with all elements equal to 1. Define the conditional fpy|xq as a function of µ, i.e.

a mixture density with mixture weights depending on µ. We will show that our

construction facilitates an estimate of the density of y.
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Specifically, we created an equally spaced grid of points ti P t0, . . . , 20u. Then,

we let ηi � sinptiq and predictors be a linear function of ηi plus Gaussian noise, i.e.

xij � ηi � εij with εij � Np0, 0.1q for j P t1, . . . , pu. In particular, we set p � 1, 000.

The response was drawn from the following mixture of Gaussians

yi � wiN p�2, 1q � p1� wiqN p2, 1q (3.3)

with wi � |ηi|. Figure 3.2 shows the estimated density of four data points. These

estimates were obtained by performing leave-one-out prediction for different number

of observations in the training set. As the figure clearly shows our construction

facilitates an estimate of the density y approaching the true density as the number

of observations in the training set increases.

3.3.2 Linear Lower Dimensional Space

In this section, the vector of predictors is assumed to lie close to a lower dimensional

plane. In practice, predictors were modeled through a factor model as follows

xi � Ληi � εi εi � Npp0,Σ0q ηi � Nrp0, Iq (3.4)

with Σ0 � diagpσ1, . . . , σpq, Λ being a p � r matrix and r    p. In the first

simulation scenario the response y was assumed to be a function of the latent variable

η so that the dependence between response and predictors was induced by the shared

dependence on the latent factors. In practice, the vector zi � pyi, x
T
i q

T was jointly

sampled from a factor model. The loading matrix was derived as the product of a

matrix with orthogonal columns and a diagonal matrix with positive elements on the

diagonal, i.e. Λ � ΓΘ. In particular, the columns of Γ were uniformly sampled from

the Stiefel manifold while the diagonal matrix of Θ were sampled from an inverse

Gamma with shape and rate parameters p1, 4q.
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Figure 3.2: Illustrative example: Plot of true density (red line) and estimated
density (50th percentile: solid line, 2.5th and 97.5th percentiles: dashed lines) for
four data points pI, II, III, IV q considering different training set size (a:100, b:200,
c:300).

In the second simulation scenario, x was sampled from the factor model above,

while y was sampled from a normal with location and scale parameter p1, 1q if the

first variable was positive, i.e. x1 ¡ 0, and from a normal with location and scale

p�1, 1q otherwise. In both examples, an inverse Gamma prior with parameters p1, 4q

were utilized for σj with j P t1, . . . , pu.
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3.3.3 Non-Linear Lower Dimensional Space

In this section predictors were assumed to lie close to a lower dimensional non-linear

manifold. In the first simulation study, predictors and response were jointly sampled

from an N components mixture of factor analyzers so that the vector of predictors

and response were assumed to lie close to N lower dimensional planes. For each

mixture components, the loading matrix and variances were sampled as in the first

simulation scenario in §3.3.2, while mixture weights were sampled from a Dirichlet

distribution with parameter αj � 1 for j P t1, . . . , Nu. The number of latent factors

was considered to be increasing in the number of components. In particular, we let

the hth mixture component be modeled through h factors.

In the other two simulation scenarios predictors were assumed to lie close to the

Swissroll and the S-manifold, all two dimensional manifold embedded in <p, while

the response was sampled from a normal with mean equal to one of the coordinates

of the manifold and standard deviation one. Figure 3.3 shows the Swissroll and the

S-manifold embedded in <3.

Figure 3.3: Swissroll-Manifold and S-Manifold embedded in R3
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3.3.4 Results

For each simulation scenario in §3.3.2 and §3.3.3, we sampled M � 20 datasets

involving up to 300 observations and for each method we performed leave-one-out

predictions. Table 3.1, 3.2, 3.3 and 3.4 show mean squared errors under the proposed

approach, CART and lasso for each data scenario. As shown, in almost all data

scenarios, our model is able to perform as well as or better than the model associated

to the lowest mean squared error. In particular, when the response is a non linear

function of predictors, CART performs better than Lasso (table 3.2), while when a

linear relationship is assumed lasso outperforms CART ( table 3.1, 3.3, and 3.4). The

tables also report the mean of CPU usage to predict a single point as a function of the

number of features. In particular, CPU time is expressed in seconds and codes have

been running on our workstation (Intel Core i7-2600K Quad-Core Processor memory

8192 MB). Clearly, the proposed model scale substantially better than others to high

dimensional predictors.

Beside running simulations and reporting the distribution of performance for each

algorithm, we compare the algorithms per simulation. Define rWm defined as

rWm � φpMSBq{φpWq,

where φ is the quantity of interest (for example, CPU time in seconds or mean

squared error), MSB is our approach and W is the competitor algorithm. To obtain

mean-squared error estimates from MSB, we select our posterior mean as a point-

estimate (the comparison algorithms do not generate posterior predictions, only point

estimates). For each simulation scenario, we sampled multiple datasets and compute

the matched distribution of rWm . This provides a much more informative indication of

algorithmic performance, in that we indicate the fraction of simulations one algorithm

outperforms another on some metric. This is akin to power gained by matched two-

sample tests. For each example, we sampled 20 datasets to obtain estimates of the
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distribution over rWm .

Figures 3.4 and 3.5 depict the relative mean-squared error and CPU time in sec-

onds of our approach, versus CART (red) and Lasso (black) for different simulation

scenarios. The three simulation scenarios are: linear subspaces, union of linear sub-

spaces (MFA) and the swissroll. MSB outperforms both CART and Lasso in all

three scenarios regardless of ambient dimension (rWmse   1 for all p).

Figure 3.4: Numerical results for various simulation scenarios. Top plot depicts
the relative mean-squared error of MSB (our approach), versus CART (red) and
Lasso (black) as a function of ambient dimension of x. Bottom plot depicts the
ratio of CPU time as a function of ambient dimension of x. The simulation scenario
considered is the linear subspace. MSB outperforms both CART and Lasso regardless
of ambient dimension (rWmse   1 for all p). MSB compute time is relatively constant
as p increases, whereas Lasso’s compute time increases, thus, as n or p increase,
MSB CPU time becomes less than Lasso’s. MSB was always significantly faster than
CART and PC regression, regardless of n or p. For all panels, n � 100 when p varies,
and p � 300k when n varies, where k indicates 1000, e.g., 300k� 3� 105.
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Figure 3.5: Numerical results for various simulation scenarios. Top plots depict
the relative mean-squared error of MSB (our approach), versus CART (red) and
Lasso (black) as a function of ambient dimension of x. Bottom plots depict the
ratio of CPU time as a function of sample size. The two simulation scenarios are:
MFA (left) and Swissroll (right). MSB outperforms both CART and Lasso in all two
scenarios regardless of ambient dimension (rWmse   1 for all p). MSB compute time
is relatively constant as n or p increase, whereas Lasso’s compute time increases,
thus, as n or p increase, MSB CPU time becomes less than Lasso’s. MSB was always
significantly faster than CART and PC regression, regardless of n or p. For all panels,
n � 100 when p varies, and p � 300k when n varies, where k indicates 1000, e.g.,
300k� 3� 105.

3.4 Real Application

We assessed the predictive performance of the proposed method on two very different

neuroimaging datasets. First, we consider a structural connectome dataset collected

at the Mind Research Network. Data were collected as described in Jung et al. (2010).
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For the analysis, all variables were normalized by subtracting the mean and dividing

by the standard deviation. The prior specification and Gibbs sampler described in

§3.3 were utilized.

In the first experiment we investigated the extent to which we could predict

creativity (as measured via the Composite Creativity Index (Arden et al., 2010)).

For each subject, we estimate a 70 vertex undirected weighted brain-graph using

the Magnetic Resonance Connectome Automated Pipeline (Gray et al., 2010) from

diffusion tensor imaging data (Mori and Zhang, 2006). Because our graphs are

undirected and lack self-loops, we have a total of p �
�

70
2

�
� 2, 415 potential weighted

edges. The p-dimensional feature vector consists of the natural logarithm of the

weight for each edge.

The second dataset comes from a resting-state functional magnetic resonance

experiment as part of the Autism Brain Imaging Data Exchange. We selected the

Yale Child Study Center for analysis. Each brain-image was processed using the

Configurable Pipeline for Analysis of Connectomes (Sikka et al., 2012). For each

subject, we computed a measure of normalized power at each voxel called fALFF (Zou

et al., 2008). To ensure the existence of nonlinear signal relating these predictors, we

let yi correspond to an estimate of overall head motion in the scanner, called mean

framewise displacement (FD) computed as described in Power et al. (2012). In total,

there were p � 902, 629 voxels.

Table 3.5 shows mean and variance squared error based on leave-one-out pre-

dictions. For each data example, we report the mean and standard deviation (s.d.)

across subjects of squared error, and CPU time (in seconds). For the first data ex-

ample, we compared our approach (multiscale stick-breaking; MSB) to CART, lasso

and random forests. Table 3.5 shows that MSB outperforms all the competitors in

terms of mean square error; this is in addition to yielding an estimate of the entire

conditional density for each yi. It is also significantly faster that random forests, the
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next closest competitor, and faster than lasso. For this relatively low-dimensional

example, CART is reasonably fast. For the second data application, given the huge

dimensionality of the predictor space, we were unable to get either CART or random

forest to run to completion, yielding memory faults on our workstation (Intel Core

i7-2600K Quad-Core Processor memory 8192 MB). We thus only compare perfor-

mance to lasso. As in the previous example, MSB outperforms lasso in terms of

predictive accuracy measured via mean-squared error, and significantly outperforms

lasso in terms of computational time.
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Table 3.1: Linear manifold example 1: Mean and standard deviations of squared
errors under multiscale stick-breaking (MSB), CART and Lasso for sample size 50
and 100 for different simulation scenarios. Variable time indicates the mean of CPU
usage to predict a single point, p is the dimensionality of the predictor space, n is the
sample size and k indicates 1, 000, i.e. 300k=300,0000. Bold indicates best MSE,
� indicates best CPU time. As shown, MSB outperforms both CART and Lasso
regardless of ambient dimension and sample size.

r � 5 r � 10
p n msb cart lasso msb cart lasso

10k 50
mse 0.18 0.31 0.25 0.22 0.58 0.22

(0.32) (0.30) (0.42) (0.24) (0.54) (0.30)

time 3 2 1� 3 3 1�

10k 100
mse 0.18 0.27 0.26 0.20 0.41 0.52

(0.26) (0.42) (0.46) (0.23) (0.46) (0.78)

time 5 5 2� 5 5 1�

100k 50
mse 0.35 0.45 0.89 0.16 0.33 0.20

(0.53) (0.77) (1.04) (0.21) (0.46) (0.31)

time 3 25 2� 13 27 2�

100k 100
mse 0.43 0.88 0.52 0.17 0.50 0.31

(0.59) (1.29) (0.70) (0.24) (0.75) (0.49)

time 7 50 5� 7 51 5�

500k 50
mse 0.11 0.16 0.15 0.83 2.26 0.92

(0.15) (0.24) (0.19) (1.01) (2.60) (3.69)

time 5� 90 11 5� 121 10

500k 100
mse 0.003 0.17 0.08 0.13 1.37 1.06

(0.16) (0.23) (0.13) (1.12) (1.80) (1.50)

time 10� 214 43 8� 227 42

700k 50
mse 1.70 1.48 1.47 0.66 1.65 1.07

(2.18) (2.47) (1.63) (0.87) (1.49) (0.95)

time 6� 121 12 7� 151 13

500k 100
mse 0.69 1.36 0.82 0.78 1.52 1.43

(0.94) (1.47) (1.28) (1.03) (1.34) (2.11)

time 13� 321 41 12� 325 44
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Table 3.2: Linear manifold example 2: Mean and standard deviations of squared
errors under multiscale stick-breaking (MSB), CART and Lasso for sample size 50
and 100. Variable time indicates the mean of CPU usage to predict a single point,
p is the dimensionality of the predictor space, n is the sample size and k indicates
1, 000, i.e. 300k=300,0000. In this case, given the non-linear relationship between
response and predictors, CART outperforms Lasso. However, our model results in
the lowest mean squared errors.

r � 2 r � 5
p n msb cart lasso msb cart lasso

10k 100
mse 1.54 1.78 2.37 0.84 1.25 1.62
std (1.70) (1.72) (0.89) (1.38) (1.35) (1.47)

50k 100
mse 0.76 0.97 1.77 0.88 1.53 1.43
std (1.04) (1.21) (3.13) (1.00) (1.59) (2.73)

100k 100
mse 0.77 1.01 1.61 0.67 0.46 0.97
std (0.94) (1.13) (1.85) (0.82) (0.61) (1.16)

200k 100
mse 0.86 0.90 1.41 0.74 1.09 0.78
std (1.30) (1.35) (1.41) (0.95) (1.98) (0.95)
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Table 3.3: Non-linear manifold - MFA: Mean and standard deviations of squared
errors under multiscale stick-breaking (MSB), CART and Lasso for sample size 50
and 100 for different simulations sampled from a mixture of factor analyzers. Variable
time indicates the mean of CPU usage to predict a single point, p is the dimensionality
of the predictor space, n is the sample size and k indicates 1, 000, i.e. 300k=300,0000.
Bold indicates best MSE, � indicates best CPU time. As shown, MSB outperforms
both CART and Lasso regardless of ambient dimension and sample size.

N � 10 N � 5
p n sim msb cart lasso msb cart lasso

50k 100
mse 0.23 0.42 0.36 0.17 0.43 0.22

(0.34) (0.59) (0.43) (0.18) (0.69) (0.23)

time 5 24 3� 7 27 3�

50k 200
mse 0.23 0.42 0.27 0.17 0.22 0.20

(0.33) (0.56) (0.23) (0.19) (0.38) (0.25)

time 10 51 8� 12 56 7�

100k 100
mse 0.67 1.35 1.32 0.15 0.17 0.22

(1.04) (2.26) (1.36) (0.23) (0.19) (0.23)

time 9 47 6� 6 44 5�

100k 200
mse 0.64 1.37 0.85 0.15 0.26 0.15

(0.95) (1.77) (1.29) (0.24) (0.42) (0.24)

time 14� 99 15 11� 89 15

300k 100
mse 0.26 0.39 0.31 0.63 1.40 1.01

(0.39) (0.51) (0.52) (0.80) (1.24) (1.46)

time 9� 125 18 9� 145 17

300k 200
mse 0.25 0.47 0.26 0.63 1.17 0.92

(0.36) (0.88) (0.43) (0.80) (2.11) (1.04)

time 15� 262 40 13� 283 43

300k 300
mse 0.25 0.30 0.30 0.62 1.42 0.70

(0.36) (0.41) (0.48) (0.89) (1.85) (0.94)

time 15� 463 73 16� 465 89
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Table 3.4: Non-linear manifold - Swissroll and S-Manifold: Mean and standard de-
viations of squared errors under multiscale stick-breaking (MSB), CART and Lasso
for sample size 50 and 100 for different simulation scenarios. Variable time indicates
the mean of CPU usage to predict a single point, p is the dimensionality of the pre-
dictor space, n is the sample size and k indicates 1, 000, i.e. 300k=300,0000. Bold
indicates best MSE, � indicates best CPU time. As shown, MSB outperforms both
CART and Lasso regardless of ambient dimension and sample size.

Swissroll S-Manifold
p n msb cart lasso msb cart lasso

100k 50
mse 0.24 0.44 0.25 0.38 0.38 0.84

(0.24) (0.42) (0.29) (0.40) (0.35) (0.80)

time 3 22 2� 5 7 1�

100k 100
mse 0.24 0.43 0.17 0.25 0.30 0.70

(0.26) (0.55) (0.22) (0.22) (0.25) (0.50)

time 6� 48 7 7� 50 7

200k 50
mse 0.24 0.67 0.29 0.35 0.40 0.73

(0.23) (0.50) (0.29) (0.22) (0.30) (0.40)

time 4� 38 5 3� 40 5

200k 100
mse 0.25 0.78 0.33 0.37 0.37 0.70

(0.26) (0.74) (0.36) (0.25) (0.27) (0.55)

time 6� 96 13 6� 98 14

500k 50
mse 0.17 0.47 0.23 0.16 0.20 0.35

(0.23) (0.43) (0.22) (0.20) (0.19) (0.40)

time 5� 126 10 5� 130 15

500k 100
mse 0.17 0.33 0.19 0.11 0.25 0.56

(0.21) (0.46) (0.23) (0.14) (0.20) (0.61)

time 11� 230 25 10� 254 27
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Table 3.5: Neuroscience application quantitative performance comparisons. Squared
error predictive accuracy per subject (using leave-one-out) was computed. We report
the mean and standard deviation (s.d.) across subjects of squared error, and CPU
time (in seconds). We compare multiscale stick-breaking (MSB), CART, Lasso and
random forest (RF). MSB outperforms all the competitors in terms of predictive
accuracy and scalability. Only MSB and Lasso even ran for the � 106 dimensional
application. Bold indicates best MSE, � indicates best CPU time.

data n p model mse (s.d.) time (s.d.)

creativity 108 2,415 MSB 0.56 p0.85q 1.1 p0.02q
CART 1.10 p1.00q 0.9 p0.01q
Lasso� 0.63 p0.95q� 0.40 p0.10q�

RF 0.57p0.90q 78.2 p0.59q

movement 56 � 106 MSB� 0.76 p0.90q� 20.98 p2.31q�

Lasso 1.02 p0.98q 96.18 p9.66q
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4

Bayesian factor trees

In this chapter, we focus on the problem of modeling the density of a vector of obser-

vations y P Y � <p given a set of predictors x P X � <q. One natural approach to

estimating conditional multivariate densities is to let z � pyT , xT qT and then model

the combined vector as iid from an unknown density g, with the conditional density

fpy|xq obtained as a byproduct. This joint modeling trick has been widely used for

univariate response (Muller et al., 1996; Shahbaba and Neal, 2009; Hannah et al.,

2011), and is just as applicable in the multivariate case. To characterize the unknown

density gpzq, one can use a mixture of multivariate Gaussian densities. However, as

p � q increases, the curse of dimensionality prevents one from obtaining adequate

performance. This problem can be overcome by incorporating dimensionality reduc-

tion within each component by using a factor model, leading to a mixture of factor

analyzers (MFA) (Tipping and Bishop, 1997). Under MFA the pp � qq-dimensional

vector is modeled as

gpzq �

»
Np�q

�
z|µ,ΛΛT � Σ

�
dPpµ,Λ,Σq (4.1)

Model 4.1 can efficiently characterize the density of high-dimensional observations,
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while conducting dimensionality reduction through learning the lower-dimensional

data manifold using a piecewise planar approximation (Chen et al., 2010). Unfor-

tunately, using the joint modeling trick to induce an estimate for fpy|xq from an

estimate for gpzq, with z � pyT , xT qT , tends to have poor performance in practice,

particularly when x is higher dimensional than y. One pays a heavy computational

price for estimating the high-dimensional nuisance parameter corresponding to the

marginal density of x, and additionally learning of a parsimonious low-dimensional

structure tends to be driven largely by the x marginal, leading to relatively poor per-

formance in estimating fpy|xq. One can alternatively use (4.1) for the conditional

density fpy|xq directly, with x dependence incorporated in the mixing measure or

factor analytic parameters. This can be accomplished using previous nonparametric

Bayes machinery (Ren et al., 2011; Rodriguez and Dunson, 2011; Hatjispyros et al.,

2011). However, as p and q increase, computation rapidly becomes prohibitively

slow. In this chapter, we propose a Bayesian factor tree model that can flexibly and

efficiently learn the density of a p dimensional response given an high dimensional

vector of features.

4.1 Methodology

4.1.1 Model Structure

We aim to reduce dimensionality for tractability in building a flexible and scalable

model for the predictor-dependent density of y P <p. The density of y will depend on

covariates through the multiscale representation of the data presented in §3.1.1 (refer

to this section for further details). Given the multiscale partition, the conditional

density fpy|xq is defined as

fpy|xq �
ķ

j�1

πj,sjpxqfj,sjpxq, (4.2)
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with 0 ¤ πj,sjpxq and
°k
j�1 πj,sjpxq � 1. The dictionary densities are chosen as mul-

tivariate normal, fj,sj � Nppµj,sj ,Ψj,sjq, with a factor analytic form chosen for the

covariance to reduce dimensionality

Ψj,sj � Θj,sjΘ
T
j,sj

� Σj,sj (4.3)

with Θj,sj being a p� `j,sj matrix and Σj,sj � diag
�
σ1
j,sj
, . . . , σpj,sj

	
. The covariance

decomposition in 4.3 can be induced through the latent factor model

yi � µj,sj �Θj,sjηi � εi, ηi � N`j,sj p0, Iq, εi � Npp0,Σj,sjq. (4.4)

Therefore, for each node pj, sjq, fj,sj will be induced marginalizing out the latent

variable ηi in the factor model specific to that node. The number of columns of Θj,sj

(number of factors) varies across nodes and is estimated through an adaptive Gibbs

sampler (see §4.2.2).

For the probability weights on the dictionary densities corresponding to each path

through the tree, we choose the novel stick-breaking process defined in chapter 3. For

each node pj, sjq in the partition tree, define a stick length Vj,sj � Betap1, αq for nodes

pj, sjq located from generation 1 to k � 1. The parameter α encodes the complexity

of the model, with α � 0 corresponding to the case in which fpy|xq � fpyq. We

relate the weights in (4.2) to the stick-breaking random variables as follows:

πj,sj � Vj,sj
¹

ζPApj,sjq

r1� Vζs ,

with Vk,sj � 1 for any sj P t1, . . . ,Kju. This condition will ensure that
°k
j�1 πj,sj � 1

for any path ts1, . . . , sku.
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4.2 Estimation

We first partition observations in a tree fashion applying recursively METIS (Karypis

and Kumar, 1999) until the stopping criteria presented in chapter 3 is satisfied (re-

fer to section §3.2 for further details). Then, the sequence of dictionary densities

tfj,sju and stick-breaking weights tVj,sju are estimated using Bayesian methods and

inference is carried out using the Gibbs sampler. Under model 4.4, estimating the

sequence of dictionary densities is equivalent to estimate sequences
 
Λj,sj

(
,
 
µj,sj

(
and

 
Σj,sj

(
.

4.2.1 Prior Specification

Following Bhattacharya and Dunson (2011), we will consider a shrinkage priors for

the columns of the factor loadings in 4.4. Define θhιj,sj as the ph, ιq element of Θj,sj

and consider the following prior specification

θ
phιq
j,sj

� N

�
0,

1

τ
pιq
j,sj
ρ
phιq
j,sj

�
, τ

pιq
j,sj

�
ι¹

d�1

φ
pdq
j,sj

ρ
phιq
j,sj

� Gapa1, a2q, φ
p1q
j,sj

� Gapa3, 1q, φ
phq
j,sj

� Gapa4, 1q @h ¡ 1

Choosing a4 ¡ 1 implies that τ
pιq
j,sj

stochastically increases with ι, shrinking the

elements of Θj,sj toward zero increasingly as the number of columns grows. This

prior specification allows an adaptive choice of the number of factors. We assign a

standard normal density for the intercept parameter µj,sj associated to each node

pj, sjq, i.e. µj,sj � Npp0, Iq. Finally, we specify the prior for Σj,sj via the usual inverse

gamma priors on its diagonal elements, i.e. σ
phq
j,sj

� IGpασ, βσq for h P t1, . . . , pu.
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4.2.2 Selection of the Number of Factors

In order to select the number of factors, we directly apply the method proposed by

Bhattacharya and Dunson (2011). Basically, the number of factors will be adapted

as the Gibbs sampler progresses, with adaptation designed to satisfy the diminish-

ing adaptation condition in Theorem 5 of Roberts and Rosenthal (2007). Directly

following Bhattacharya and Dunson (2011), at the hth iteration, adaptation occurs

with probability pphq � exp p�pt1 � t2hqq and pt1, t2q chosen such that adaptation

occurs every ten iterations at the beginning of the chain and decreases exponentially

in the number of iterations. When adaption occurs, the number of columns having

all elements in some a priori chosen neighborhood of zero, i.e. p�ε̃,�ε̃q with ε̃ close

to zero, are counted. We can intuitively assume that the factors corresponding to

such columns have a negligible contribution, therefore we discard these columns and

continue the sampler with a reduced number of factors. Otherwise, if the number of

such columns drops to zero we may be missing important factors, therefore we add

a column to the loading. The other parameters are modified accordingly and, when

a factor is added, the new parameters are sampled from the prior. This adaptation

scheme was thought for a single factor model but it can be easily implemented for a

mixture of factor analyzers and consequently for our model. When adaptation occurs

columns of all loading matrices Θj,sjs will be monitored and the number of factors

of each loading will be either decreased or increased.

4.2.3 Full Conditionals and Gibbs Sampler Steps

For ease of explanation, we assume in this section a fixed number of factors. The

number of levels k and, consequently the number of subsets in T , strictly depends on

the number of observations. Therefore, especially for large sample sizes, the dimen-

sionality of the parameter space may become huge and it may lead to computational

problems. To solve this computational issue, we implement the slice sampling al-
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gorithms proposed by Kalli et al. (2011). For each observation a latent variable

u P r0, 1s is introduced and the vector pyT , uqT is modeled as

fpy, u|xq �
ķ

j�1

1
�
u   πj,sjpxq

�
fj,sjpxq, (4.5)

with 1pAq being equal to one if the event A occurs. Notice that marginalizing out

the latent variable u, the mixture density in 4.5 is recovered. Under model 4.5,

components with weights close to zero, and therefore considered unnecessary, will be

automatically excluded. Let gi P t1, . . . , ku be the indicator variable indicating the

level used by observation yi. Define Ij,m � ti : gi � j, xi P Cj,mu with nj,m being the

cardinality of Ij,m. Considering model 4.5 and the prior specification in §4.2.1, the

Gibbs sampler iterates through the following steps.

Step 1. Sample ui for i P t1, . . . , nu

Prpui | �q � Un
�
0, pgi,sgi

�

Step 2. For each node pj, sq, with j � t1, . . . , ku and s P t1, . . . ,Kju, denote θ
phq
j,s the

jth row of Θj,s and sample θ
phq
j,s , for h P t1, . . . , pu from:

Prpθ
phq
j,s | �q � N`j,s

�
�D̄�1

h

¸
iPIj,s

ηi

�
y
phq
i � µ

phq
j,s

	
{σ

phq
j , s, D̄�1

h

�



with µ
phq
j,s being the hth element of µj,s, y

phq
i being the hth element of yi, D̄h ��

Dh � Ai{σ
phq
j , s

	
with Dh � diag

�
ρ
ph1q
j,s τ

p1q
j,s , . . . , ρ

phkq
j,s τ

phq
j,s

	
and Ai �

°
iPIj,s ηiη

T
i .

Step 3. Update ηi, for i P t1, . . . , nu, from:
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Prpηi | �q � N`gi,sgi
�
D̄�1
η ΘT

gi,sgi
Σ�1
gi,sgi

pyi � µgi,sgi q, D̄
�1
η

	

with D̄η �
�
I �ΘT

gi,sgi
Σ�1
gi,sgi

Θgi,sgi

	
.

Step 4. Update σ
phq
j,s , for h P t1, . . . , pu and j � t1, . . . , ku and s P t1, . . . ,Kju, from:

Pr
�
σ
phq
j,s | �

	
� IG

�
�aσ � nj,s{2, bσ �

¸
iPIj,s

�
yih � µ

phq
j,s � θ

phq
j,s ηi

	2

�



Step 5. Update µj,s, for j � t1, . . . , ku and s P t1, . . . ,Kju, from

Pr pµj,s | �q � Np

�
��

nj,sΣ
�1
j,s � I

��1
¸
iPIj,s

pyi �Θj,sηiq ,
�
nj,sΣ

�1
j,s � I

��1

�



Step 6. Update gi by sampling from the multinomial full conditional with

Prpgi � j | �q91
�
ui   pj,sjpxiq

�
fj,sjpxiqpyiq

with fj,sjpxiq � N
�
µj,sjpxiq,Θj,sjpxiqΘ

T
j,sjpxiq

�Θj,sjpxiq

	
Step 7. Update stick-breaking random variable Vj,s from

PrpVj,s | �q � Beta

�
�1� nj,s, α�

¸
vPDpj,sq

nv

�



for any set j, s located from tree level 1 to k � 1. Let Vk,s � 1 for all s and let

πj,s � Vj,s
±

υPApj,sq p1� Vυq. In particular, Apj, sq and Dpj, sq are defined as the set

of ancestors and descendants of node pj, sq as in chapter 3.

Step 8. Update ρ
ph,ιq
j,s , for h ¤ p, ι ¤ `j,s, j ¤ k and s P t1, . . . ,Kju from

Prpρ
ph,ιq
j,s | �q � G

�
a1 � 1{2, a2 � τ ij,s

�
θ
ph,ιq
j,s

	2

{2
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Step 9. Update φ1
j,s, j ¤ k and s P t1, . . . ,Kju from

Prpφ
p1q
j,s | �q � G

�
a3 � p`j,s{2, 1�

`j,s¸
h�1

τ
phq
j,s

p̧

w�1

ρ
pwhq
pjsq

�
θ
pwhq
j,s

	2

{2

�

Step 10. Update φdj,s, for 1   d ¤ `j,s, j ¤ k and s P t1, . . . ,Kju from

Prpφ
pdq
j,s | �q � G

�
a4 � p`j,s � d� 1qp{2, 1�

`j,s¸
h�d

τ
phq
j,s

p̧

w�1

ρ
pw,hq
pjsq

�
θ
pwhq
j,s

	2

{2

�

In order to proceed with the chain, it is not required to sample all pµj,s,Λj,s,Σj,sqs.

We only need to sample parameters necessary to do Step 6 exactly. Therefore,

only parameters involved in components with non-negligible weights will need to be

sampled. This will reduce dramatically the computational burden of the proposed

algorithm.

4.3 Synthetic Example

In the following simulation examples, we test the predictive performance of the pro-

posed model relative to competing alternatives. We initially consider the case in

which xi is a two dimensional vector defined over a bounded set and then move to

the more general case in which xi P <q. In all examples, the proposed model will be

compared to mixture of factor analyzers (MFA) and covariate dependent mixture of

factor analyzers (dMFA). The latter provides additional flexibility by allowing the

mixing weights to change flexibly with covariates. In particular, covariate dependent

weights will be modeled through the probit stick breaking process (Rodriguez and

Dunson, 2011). The three models will be compared in terms of mean squared er-

ror in leave-one-out cross validation. Predictions will be carried out using the same

methodology described in §3.2.2. We used 10, 000 Gibbs sampling iterations and a

burn-in of 1, 000. We set the hyperparameters at the following fixed non-optimized
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values for all simulations and real data experiments and do not tune: a1 � a2 � 2,

a3 � 1, a4 � 4, ασ � 1, βσ � 0.3 and α � 1. We set parameters used to select the

number of factors as ε̃ � 0.01, t1 � 1 and t2 � 5� 10�4.

4.3.1 Two Dimensional Predictors

We initially assume xi is sampled iid from a uniform distribution overr0, 1s2. In

the first simulation scenario, yi is drawn from a feature-dependent Gaussian density.

Specifically,

yi � Nppµ0pxiq,Ψ0pxiqq, Ψ0pxiq � Λ0pxiqΛ0pxiq
T � Σ0

with Λ0 being a p� `0 matrix, Σ0 a p�p identity matrix and `0    p. We generated

µ0pxiq and Λ0pxiq as follows

pµ0hpx1q, . . . , µ0hpxnqq
iid
� Nn p0, Cpxqq , h P t1, . . . , pu

�
λ0
jspx1q, . . . , λ

0
jspxnq

� iid
� Nn p0, Cpxqq , j P t1, . . . , pu , s P t1, . . . , `0u

with µ0hpxiq and λ0
jspxiq being respectively the hth element of µ0pxiq and the pj, sqth

element of Λ0pxiq. We define the pj, hqth element of Cpxq as Cjhpxq � υ expt�dpxj, xhqu

with dpxj, xhq being the Euclidean distance between vectors xj and xh, υ � 2, and

the number of factors equal to `0 � 5 or `0 � 10.

In the second simulation scenario, yi is drawn from a mixture of factor analyzers

with feature-dependent mixture weights. Let k0 P t3, 5u be the number of mixture

components and let Φp�q be the cumulative distribution function of the standard

normal density. Mixture weights were derived through a probit stick breaking spec-

ification (Rodriguez and Dunson, 2011). Model stick breaking weights as

π0jpxiq � V0jpxiq
j�1¹
s�1

p1� V0spxiqq
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with V0jpxiq � Φ pϑj1xi1 � ϑj2xi2q for j   k0 and V0k0 � 1. Let µ0j and Ψ0j �

Λ0jΛ
1
0j � Σ0j be respectively the intercept and the covariance of the jth mixture

component, with Λ0j being a p� `0 loading matrix and Σ0j a p� p diagonal matrix

with positive entries on the diagonal. In particular, sample each element of the

loading Λ0j and µ0j, for j P t1, . . . , k0u, independently from a normal with mean m0j

and unitary variance. For k0 � 3, we set

m0 � p2, 0,�2q , pϑ11, ϑ21q � p0.5, 0q , pϑ12, ϑ22q � p�0.5, 0q

while for k0 � 5 we set

m0 � p2, 0,�2,�1, 1q , pϑ11, ϑ21, ϑ31, ϑ41q � p0.5, 0,�1, 1q

pϑ12, ϑ22, ϑ32, ϑ42q � p�0.5, 0, 1,�1q

The diagonal elements of Σ0j are drawn from an inverse Gamma density with scale

and rate parameter equal to 5 and 3 respectively. The number of factors was set

equal to 5.

Table 4.1 shows mean squared errors based on leave-one-out predictions. In

essentially every case considered, our Bayesian factor trees (BFT) approach produced

the lowest MSE followed by dMFA, with MFA having the worst performance. In

the second simulation scenario, when observations are sampled from a dMFA, our

approach and dMFA perform similarly.

To visualize the performance of our model, we define a grid of 100 evenly spaced

points in U � r0, 1s2. We sampled yi P <p with p � 50 and i P U from the above

three component mixture of factor analyzers. Figure 4.1 shows the true value and

the estimate of five variables in yi for each i P U . At each Markov Chain iteration,

we sampled the five variables conditionally on the other p�5 variables, then in figure

4.1 we plot the mean of those values over Markov chain iterations. As shown, the

proposed model performs similarly to dMFA in estimating elements of yi, while MFA
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is not able to capture most of the spatial structure. The associated mean squared

errors were pε̂2MFA, ε̂
2
dMFA, ε̂

2
BFT q � p0.33, 0.27, 0.27q, revealing that we were able to

perform similarly to dMFA.

Table 4.1: Two dimensional predictors: Mean and standard deviations of squared
errors under our bayesian factor tree (BFT), a mixture of factor analyzers (MFA)
and covariate dependent mixture of factor analyzers (dMFA) under the first (1) and
second (2) simulation scenario. Bold indicates best MSE. As shown, in almost all
data scenarios, BFT leads to the lowest MSE.

k0 � 3 k0 � 5
sim p n bft mfa dmfa bft mfa dmfa

(1) 100 50 0.11 0.15 0.11 0.14 0.19 0.20
(0.09) ( 0.12) (0.07) (0.08) (0.17) (0.15)

100 0.06 0.33 0.13 0.08 0.17 0.13
(0.02) (0.46) (0.06) (0.03) (0.14) (0.07)

500 50 0.08 0.16 0.11 0.08 0.21 0.20
(0.06) (0.12) (0.13) (0.06) (0.16) (0.11)

100 0.05 0.12 0.10 0.14 0.20 0.18
(0.05) (0.11) (0.09) (0.14) (0.16) (0.16)

`0 � 5 `0 � 10
sim p n bft mfa dmfa bft mfa dmfa

(2) 100 100 0.14 0.25 0.25 0.26 0.27 0.29
(0.09) (0.06) (0.09) (0.14) (0.18) (0.28)

200 0.16 0.20 0.19 0.17 0.19 0.19
(0.11) (0.16) (0.16) (0.08) (0.10) (0.13)

500 100 0.14 0.16 0.15 0.22 0.23 0.26
(0.06) (0.05) (0.05) (0.12) (0.14) (0.17)

200 0.11 0.15 0.12 0.25 0.26 0.19
(0.06) (0.07) (0.04) (0.21) (0.24) (0.10)
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Figure 4.1: True value and estimate under MFA, dMFA and BFT of five variables
of yi given xi � pxi1, xi2q

T for i � t1, . . . , 100u. Each row correspond to a different
element of the response vector y, while each column correspond to a different method
utilized to predict y. As shown, BFT performs similarly to dMFA in estimating the
five elements of y, while a simple MFA (not depending on covariates) is not able to
capture most of the spatial structure.

4.3.2 Higher Dimensional Predictors

In this section we consider examples involving a large number of predictors. In all

scenarios, the response variable yi was sampled from a mixture of factor analyzers

with feature-dependent weights (see §4.3.1). Two different models are considered for

the feature vector. First, we assume xi � Nqp0,Ψq, with ps, jq-element of Ψ defined

as Ψsj � j, s%|s�j|, % � 0.9 and j, s � 1. Given xi, yi is sampled from a mixture of
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factor analyzers with stick breaking weights depending only on the first covariate xi1,

i.e. V0jpxiq � Φpϑjxi1q for j   k0 and V0k0pxiq � 1. In the second data scenario, xi

is sampled from the Swissroll manifold, a two dimensional manifold embedded in <q

(see figure 3.3(a)). In this case, stick breaking weights are assumed to depend only

on one coordinate of the Swissroll, i.e. V0jpxiq � Φpϑjsi1q for j   k0 and V0k0pxiq � 1

with si1 being a coordinate of the manifold. For both scenarios, we consider k0 � 3

and pϑ1, ϑ2q � p�2, 2q. The intercepts and loading matrices are drawn considering

the same model as in §4.3.1.

We sampled 20 datasets for each data scenario. Table 4.2 shows mean squared

errors based on leave-one-out predictions under experiments involving different com-

bination of pn, p, qq. As shown, in almost all data scenarios, our model is able to

perform as well as or better than the model associated to the lowest mean squared

error. As expected, the dependent MFA leads to better MSE compared to MFA.

Figure 4.2 shows the relative CPU time of our approach versus dMFA. The rela-

tive CPU time was computed as in chapter 3, i.e. rAm � φpMSBq{φpAq, where φ

is the CPU time in seconds and A is the competitor algorithm. As shown, our

approach can scale substantially better than dMFA to large number of predictors.

Notice, that in this section we have considered examples involving few thousands of

predictors. However, in many real world applications the number of predictors can

grow up to hundreds of thousands. In this framework, a dependent MFA becomes

computationally prohibitive.

4.4 Real Application

In order to test the predictive performance of the proposed model, we considered

two datasets involving a moderately high number of features. The first real data

experiment comprises 40 genes (response) involved in the isoprenoid pathway of

Arabidopsis thaliana. This set of genes were found to be highly correlated with 795
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Table 4.2: Higher dimensional predictors: Mean and standard deviations of squared
errors under our bayesian factor tree (BFT), a mixture of factor analyzers (MFA)
and covariate dependent mixture of factor analyzers (dMFA). Bold indicates best
MSE.

Normal model Swissroll
p q n bft mfa dmfa bft mfa dmfa

100 1,000 50 0.10 0.31 0.29 0.09 0.28 0.13
(0.09) (0.29) (0.27) (0.06) (0.32) ( 0.19)

100 0.18 0.49 0.29 0.15 0.41 0.20
(0.20) (0.45) (0.30) (0.28) (0.73) (0.35)

5,000 50 0.14 0.26 0.20 0.21 0.37 0.29
(0.10) (0.24) ( 0.84) (0.25) (0.63) (0.45)

100 0.18 0.40 0.33 0.14 0.44 0.20
(0.29) (0.57) (0.21) (0.09) (0.66) (0.61)

10,000 50 0.08 0.56 0.44 0.25 0.47 0.36
(0.03) (0.98) (0.56) (0.23) (0.20) (0.24)

100 0.30 0.44 0.35 0.26 0.59 0.42
(0.22) (0.32) (0.32) (0.14) (0.45) (0.30)

500 1,000 50 0.45 0.57 0.47 0.43 0.93 0.76
(0.17) (0.31) (0.68) (0.22) (0.64) (0.96)

100 0.40 0.83 0.79 0.44 0.67 0.50
(0.28) (0.61) (0.47) (0.23) (0.48) (0.90)

5,000 50 0.62 0.59 0.58 0.92 0.96 0.94
( 0.63) (0.37) (0.33) (0.34) (0.31) (0.34)

100 0.35 0.59 0.59 0.85 0.88 0.73
(0.15) (0.23) (0.66) (0.28) (0.28) (0.33)

10,000 50 0.33 0.58 0.42 0.29 0.83 0.70
(0.32) (0.34) (0.35) (0.16) (1.08) (0.68)

100 0.33 0.36 0.35 0.40 0.34 0.32
(0.27) (0.25) (0.26) (0.30) (0.23) (0.21)
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Figure 4.2: Plots depicts the relative CPU time of BFT (our approach), versus
dMFA as a function of ambient dimension of x, under the normal and the swissroll
simulation scenario with q � 500 and n � 100. The x-axis is the number of predictors
involved in the experiment, where k equals 1 thousand, so that 2k=2,000. BFT
outperforms dMFA regardless of ambient dimension (rcpu   1 for all p).

genes (predictors) from 56 other metabolic pathways in Arabidopsis thaliana (Wille

et al., 2004). All variables have been log-transformed and standardized to zero mean

and unit variance.

The second dataset is a large population dataset involving 518 subjects from the

capital region of Finland. For each subject a set of 138 metabolites and about 35, 000

genes are measured. Inouye et al. (2010) identified a set of highly correlated genes,

the lipidleukocyte (LL) module, as having a prominent role in over 80 metabolites.

Therefore, gene levels should be informative about the two third of metabolites. All

variables were standardized to zero mean and unit variance.

The predictive accuracy of each method was estimated by leave-one-out cross-
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validation. Table 4.3 shows percentiles of squared errors for the two data examples

above. For the first data example, we compare our model to MFA and dMFA. For

the second data example, given the ultra-high dimensionality of the predictors space,

we only compared our approach to MFA. As shown, our approach leads to the best

predictive performance.

Table 4.3: Real dataset: Percentiles (2.5%, 50% and 97.5%) of squared errors under
our Bayesian Factor Tree (BFT), a mixture of factor analyzers (MFA) and covariate
dependent mixture of factor analyzers (dMFA). For the second data example, given
the ultra-high dimensionality of the predictor space, we compared our approach only
to MFA.

n p q mfa bft dmfa
(2.5%, 50%, 97.5%) (2.5%, 50%, 97.5%) (2.5%, 50%, 97.5%)

(1) 118 40 795 (0.50, 0.97, 1.15) (0.40, 0.74, 0.90) (0.45, 0.89, 0.95)

(2) 518 138 35k (0.60, 0.87, 1.20) (0.50, 0.71, 0.95)
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5

Concluding Remarks and Future Direction

To summarize, we have dealt with two problems in this thesis. For the first problem

we have proposed a new repulsive mixture modeling framework, which should lead

to substantially improved unsupervised learning (clustering) and density estimation

performance in general applications. A key aspect is soft penalization of components

located close together to favor, without sharply enforcing, well separated clusters that

should be more likely to correspond to the true missing labels. We have focused on

Bayesian MCMC-based methods, but there are numerous interesting directions for

ongoing research, including fast optimization-based approaches for learning mixture

models with repulsive penalties.

The other problem, we have dealt with, is to learn a the density of a response

variable given high dimensional features. In chapter 3, we have introduced a general

formalism to estimate conditional distributions via multiscale dictionary learning.

We developed a novel multiresolution stick breaking process that can scale substan-

tially better than other existing algorithms to massive number of features, while

resulting in good predictive performance. An important property of any such strat-

egy is the ability to scale up to ultrahigh-dimensional predictors. We considered
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simulations and real-data examples where the dimensionality of the predictor space

exceeded several thousands. To our knowledge, no other approach to learn condi-

tional distributions can run at this scale. Our approach explicitly assumes that the

posterior fpy|xq can be well approximated by projecting x onto a lower-dimensional

space. Note that this assumption is much less restrictive than assuming that x

is close to a low-dimensional space; rather, we only assume that the part of fpxq

that “matters” to predict y lives near a low-dimensional subspace. Because a fully

Bayesian strategy remains computationally intractable at this scale, we developed

an empirical Bayes approach, estimating the partition tree based on the data, but

integrating over scales and posteriors.

We demonstrate that even though we obtain posteriors over the conditional distri-

bution fpy|xq, our approach, dubbed multiscale stick-breaking (MSB), outperforms

standard machine learning algorithms in terms of both predictive accuracy and com-

putational time, as the sample size and ambient dimension increase. In future work,

we will extend these numerical results to obtain theory on posterior convergence.

Indeed, while multiscale methods benefit from a rich theoretical foundation (Allard

et al., 2012), the relative advantages and disadvantages of a fully Bayesian approach,

in which one can estimate posteriors over all functionals of fpy|xq at all scales, re-

mains relatively unexplored.

In chapter 4, we have extended the multiresolution stick breaking model pro-

posed in chapter 3 to handle multivariate responses. For this purpose, dictionary

densities were defined as multivariate normal with a factor analytic form chosen for

the covariance to reduce dimensionality. The proposed model results in a mixture of

factor analyzers defined over different levels of resolution. As illustrated, inference on

component-specific parameters is carried out using Gibbs sampler. Our model leads

to good predictive performance and can scale to high number of features. However,

the proposed model may face computational problems as the number of response
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variables increases. In fact, at each Gibbs sampler step and for each observation,

the likelihood function (a mixture of multivariate Gaussians) needs to be computed.

This step can become computational prohibitive as the number of response variables

increase, reducing dramatically the efficiency of our model. There are a variety of

real worlds applications involving a large number of response variables depending on

huge number of features. For this applications, a more efficient algorithm relying

on some likelihood approximation needs to be considered. In future works, we will

extend our algorithm to efficiently handle situations in which not only the predictors

but also the response is high dimensional.

Another possible direction for future work is using parallelized and distributed

systems to estimate the proposed multiresolution stick breaking model. Though this

model can scale substantially better than competitors to high dimensional features,

we may gain more efficiency by using parallelized and distributed systems. For this

purpose, we should adopt other estimation techniques rather than Bayesian method

relying on Markov chain Monte Carlo. In fact, given the serial structure of MCMC

algorithms, they cannot fully be learned using parallelized systems. Alternatively,

we may use an hybrid model where dictionary densities are estimated in parallel

using frequentist methodologies, such as maximum likelihood estimation, and then

stick breaking weights are estimated through Markov chain Monte Carlo.
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Appendix A

Chapter 2: Theory

A.1 Cited Theorems and Assumptions

Assumptions of theorem 3.1 in Scricciolo (2011)

(i) The prior on σ has a continuous and positive Lebesgue density ψ on an interval

containing σ0 and its distribution function Ψ, for constants e1, e2, e3 ¡ 0, satisfies

Ψpsq ¤ expp�e1s
�e2q as sÑ 0 and 1�Ψpsq ¤ s�e3 as sÑ 8

(ii) The prior for the number of components is such that, for constants d1, d2 ¡ 0,

0   ϑpkq ¤ d1 expp�d2kq for all k P N

(iii) For each k, the prior for the weights is a Dirichlet with parameters pα1, . . . , αkq

such that, for constants a1, a2 ¡ 0, a3 ¥ 1 and for 0   ε ¤ 1{pa3kq and j � 1, . . . , k

a2ε
a1 ¤ αj ¤ a3

Assumptions B1-B5

Assumptions B1-B5 corresponds to assumptions A1-A5 in Rousseau and Mengersen
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(2011). Assumptions differ only in the conditions concerning the prior on the component-

specific parameters in assumption A5. In condition B5, we assume that π is defined

as (2) and h is defined as either (3) or (4). For the sake of clarity, let us state

assumption B1:

B1) There exists a q ¥ 0 such that for δn � plog nqqn�1{2 the following holds

lim
MÑ8

lim sup
nÑ8

E0
n tΠ p}f � f0}1 ¥Mδn|Ynqu � 0

Ghosal et al. (2000)’s Theorem

Theorem 8. Let πn be a sequence of priors on a class of densities F equipped

with a metric d that can be either the Hellinger or the one induced by the L1-norm.

Assume that for positive sequences ε̄n, ε̃n Ñ 0 such that nminpε̄n, ε̃nq Ñ 8, constants

d1, d2, d3, d4 ¡ 0 and sets Fn � F , we have

logDpε̄n,Fn, dq ¤ d1nε̄
2
n (A.1)

πnpFzFnq ¤ d3 exp
 
�pd2 � 4qnε̃2n

(
(A.2)

πn
 
BK�Lpf0; ε̃2nq

(
¥ d4 expp�d2nε̃

2
nq (A.3)

where BK�Lpf0; ε̃2nq �
 
f :

³
f0 logpf0{fq ¤ ε̃2n;

³
f0 logpf0{fq

2 ¤ ε̃2n
(

.

Then, for εn � maxpε̄n, ε̃nq and a sufficiently large constant M ¡ 0, the posterior

probability

πntf : dpf, f0q ¡Mεn|Ynu Ñ 0

in P n
0 probability, as nÑ 8.

A.2 Proofs

Throughout the appendix we write all constants whose values are of no consequence

to be equal to 1.
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Proof of lemma 1. By assumption B0, ϑpk � k0q ¡ 0. We consider the case f is

a finite mixture with k0 components. By assumption A1, for each η ¡ 0 there

is a corresponding δ ¡ 0 such that, for any given y P Y and for all γ1, γ2 P Γ

with |γ1 � γ2|   δ, we have that |φpy; γ1q � φpy; γ2q|   η. Let Sδ � Pδ � Γδ with

Γδ � tγ : |γj � γ0j| ¤ δ, j ¤ k0u and Pδ � tp : |pj � p0j| ¤ δ, j ¤ k0u. By assumption

A1 and A2, for any given y and for any η ¡ 0, there is a δ ¡ 0 such that |f0� f | ¤ η

if θ P Sδ. This means that, f Ñ f0 as θ Ñ θ0, for any given y. Equivalently, we can

say that | logpf0{fq| Ñ 0 pointwise as θ Ñ θ0. Notice that

|log pf0{fq| ¤

����log

"
sup
γPD0

φpγq

*
� log

"
inf
γPD0

φpγq

*����
By assumption A3 and applying the dominated convergence theorem, for any ε ¡ 0

there is a δ ¡ 0 such that
³
f0 logpf0{fq   ε if θ P Sδ. By the independence of the

weights and the parameters of the kernel,

ΠpKLpf0, fq   εq ¥ λpPδqπpΓδq

Assumption A4 combined with the fact that tγ : ||γ � γ0||1 ¤ δu � Γδ result in

πpΓδq ¡ 0. Finally, since λ � Dirichletpαq, it can be shown that λpPδq ¡ 0.

Proof of lemma 2. Recall that, under assumptions in lemma 1, γ is a vector of only

location parameters. For any given x P Γk, define Dx � tγ : ||γ � x||1   υ{2u. By

the assumptions on h, for any given x satisfying condition A4 in lemma 2, hpγq ¡ 0

for γ such that dpγs, xsq   υ{2 for s � 1, . . . , k. Since,

D � tγ : dpγs, xsq   υ{2; s � 1, . . . , ku,

it follows that hpγq ¡ 0 on D. By assumption, g0 is positive on Γ, therefore it follows

that πpγq ¡ 0 on D.
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Proof of lemma 3. To prove lemma 3 we need to show that the three conditions of

theorem 2.1 in Ghosal et al. (2000) are satisfied. First, define Dpε,F , dsq as the

maximum number of points in F such that the distance, with respect to metric ds,

between each pair is at least ε. Let ds be either the Hellinger metric or the one

induced by the L1-norm. For given sequences kn, an, un Ò 8 and bn Ó 0 define

F pkq
n �

#
f : f �

ķ

j�1

pjφpγj, σq, γ P p�an, anq
k, σ P pbn, unq

+

and Fn � Ykn
j�1F

pjq
n . As it is shown in Scricciolo (2011), for constants f2 ¥ f1 ¡ 0 and

l1, l2, l3 ¡ 0, derived below to satisfy condition (2) and (3) in Ghosal et al. (2000),

and defining f1 log n ¤ kn ¤ f2 log n, an � l3 plog ε̄�1
n q

1{2
, bn � l1plog ε̄�1

n q�1{e2 and

un � ε̄�l2n , logDpε̄n,Fn, dsq À nε̄2n with ε̄n � n�1{2 log n.

Let An,j � p�an, anq
j. In order to show condition (2) of theorem 2.1. in Ghosal

et al. (2000), we need to show that there is a constant q1 ¡ 0 such that πpACn,kq À

expp�q1a
2
nq. From the exchangeability assumption it follows

prpACn,k|k � sq �
°s
j�1

s!
j!ps�jq!

π
�
ACn,j � An,s�j

�
¤ s

°s
j�1

ps�1q!
pj�1q!ps�jq!

π
�
ACn,j � An,s�j

�
¤ sπmpA

C
n,1q

Therefore, condition C1 implies that, for a positive constant q1 we have πpACn,kq À

Epkq expp�q1a
2
nq with Epkq   8 by condition (ii). Given a positive constant z2

chosen to satisfy condition (3) in theorem 2.1 of Ghosal et al. (2000), let f1 ¥

pz2�4q{d2, l1 ¤ te1{4pz2 � 4qu1{e2 , l2 ¥ 4pz2�4q{e3 and l3 ¥ t4pz2 � 4q{q1u
1{2. Under

these values of f1, l1, l2 and l3, following Scricciolo (2011), assumptions (i), (ii) and

assumption C1 imply ΠpFzFnq À exp t�pz2 � 4qnε̃2nu with ε̃n � n�1{2plog nq1{2.

To show condition (3) of theorem 2.1 in Ghosal et al. (2000), we can again follow

the proof of theorem 3.1. in Scricciolo (2011). The only thing we need to show is
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that, there are constants u1, u2, u3 ¡ 0 such that for any εn ¤ u3

πp||γ � γ0||1 ¤ εnq ¥ u1 exp t�u2k0 logp1{εnqu

that is guaranteed by condition C2. Therefore, it can be easily showed that, for

sufficiently large n, z2 ¡ 0 and ε̃n � n�1{2plog nq1{2, Π tBKLpf0, ε̃
2
nqu Á expp�z2nε̃

2
nq.

Proof of lemma 4. First, let us check that condition C1 is satisfied. Clearly, under

the assumptions on h, π leads to exchangeable atoms. Under the assumptions on π,

the following holds

πmp|γ1| ¥ tq �

»
|γ1|¥t

πmpγ1qdγ1 ¤ c1c2

»
|γ1|¥t

g0pγ1qdγ1

with c1 and c2 defined as in (2). It follows that there exists a constant n1 ¡ 0 such

that πmp|γ1| ¥ tq À expp�n1t
2q.

Now let us verify condition C2. Assumptions on h imply that for any 0   ε   1

there is a corresponding 0   δ � g�1pεq and constants w1 ¡ 0 such that hpγq ¥ w1ε
k0

for all γ satisfying mintps,jq:s ju dpγj, γsq ¥ δ. Let u3 be defined as

u3 � min rε1{2, g pδ1qs

with ε1 defined as in assumption B0 and δ1 � ε1p1�1{k0q. By assumption ε   u3

and therefore δ   δ1. Let us define Mpγ, xq and Npγ, xq as follows,

Mpγ, xq �

"
γ : min

tps,jq:s ju
dpγj, γsq ¥ x

*
, Npγ, xq � tγ : |γj � γ0j| ¤ x; j � 1, . . . , k0u

Then,
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πp||γ � γ0||1 ¤ εq ¥
³
t||γ�γ0||1¤εuXMpγ,δq

πpγqdγ

Á
³
t||γ�γ0||1¤εuXMpγ,δq

εk0
±k0

j�1 g0pγjqdγ

Á
³
Npγ,ε{k0qXMpγ,δ1q

εk0
±k0

j�1 g0pγjqdγ

Now let us show that Npγ, ε{k0q � Mpγ, δ1q. Consider pairs ps, jq with s �� j.

Without loss of generality assume γ0s ¡ γ0j. Now, consider the possible values of

pγj, γsq contained in the set Npγ, ε{k0q. The smallest distance between values of γs

and γj contained in Npγ, ε{k0q is

pγ0s � ε{k0q � pγ0j � ε{k0q ¥ ε1 � 2ε{k0 ¥ ε1p1� 1{k0q � δ1

Since the previous holds for any pair ps, jq with s �� j, we have Npγ, ε{k0q �

Mpγ, δ1q. Therefore,

πp||γ � γ0||1 ¤ εq Á
³
Npγ,ε{k0q

εk0
±k0

j�1 g0pγjqdγ

Á εk0 exp t�g1k0 logp1{εqu

Á exp t�pg1 � 1qk0 logp1{εqu

for a constant g1 ¡ 0.

Proof of theorem 6. Only for this proof and for ease of notation the density f will

be referred as fθ. Define the non identifiability set as T � tθ : fθ � f0u. In

order to define each vector in T , let 0 � t0   t1   t2 . . .   tk0 ¤ k and γj � γ0i for

j P Ii � tti�1�1, tiu. Let p0i �
°ti
j�ti�1�1 pj and pj � 0 for j ¡ tk0 . Define qj � pj{p0i

for j P Ii. Define An �
!

minσPSk

�°k�k0
i�1 pσpiq

	
¡ δnMn

)
and A1

n � AnXt}f�f0}1 ¤

Mδnu. Let Dn �
³
t}f�f0}1 δnu

expplnpθq� lnpθ0qqdpπ�λqpθq with lnpθ0q being the log-

likelihood evaluated at θ0. Along the line of Rousseau and Mengersen (2011)’s proof,

to prove theorem 1 we need to show that for any ε ¡ 0 there are positive constants
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m1,m2 and a permutation σ P Sk such that

Dn ¥ m1n
�spk0,αq{2 (A.4)

ΠpA1
nq ¤ m2δ

spk0,αq
n M ᾱ�m{2�r2

n (A.5)

with spk0, αq � k0 � 1 � mk0 �
°k�k0
j�1 ασpjq. Following Rousseau and Mengersen

(2011)’s proof, we can show that, under condition B5, (A.4) is satisfied for sufficiently

large n. Concerning (A.5), Rousseau and Mengersen (2011) showed that on A1
n, there

is a set Ii containing indices j1 and j2 such that

|γj1 � γ0i| ¤ pδn{qj1q
1{2 , |γj2 � γ0i| ¤ pδn{qj2q

1{2

with qj1 ¡ ε{k0 and qj2 ¡ δnMn{2. The triangle inequality implies

|γj1 � γj2 | ¤ 2 tδn{minpqj1 , qj2qu
1{2

Now, for sufficiently large n, minpqj1 , qj2q ¡ δnMn{2 and therefore |γj1�γj2 | ÀM
�1{2
n .

Since g is bounded above by a positive constant, it exists a constant c ¡ 0 such that

hpγq ¤ cg tdpγj1 , γj2qu ¤ cg
�
M�1{2

n

�
(A.6)

for γ P A1. Let the prior probability of the set A1
n be defined as ΠpA1

nq �
³
A1n
dpπ �

λqpγ � pq. To find an upper bound for this integral, directly apply the proof of

Rousseau and Mengersen (2011) showing that ΠpA1
nq ¤ g

�
M

�1{2
n

	
δ
spk0,αq
n M

ᾱ�m{2
n .

By assumption, for sufficiently large n, g
�
M

�1{2
n

	
¤ r1M

�r2
n . Letting sr2 � r2 �

m{2� ᾱ, it follows

ΠpA1
nq ¤M

�sr2
n δspk0,αqn
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Appendix B

Chapter 2: Additional Results

B.1 Synthetic examples

Densities in figure 2.2 were defined as follows. Density pIaq is a standard normal den-

sity, density pIbq is a two components mixture of Gaussians with weights p0.7, 0.3q,

location parameters p0, 0q and scale parameters p0.2, 2q. Density pIcq is a Students

t density with eight degrees of freedom. Density pIIaq is a two-components mixture

of Gaussians with mixture weights p0.3, 0.7q, location parameters p�0.8, 0.8q and

variances p0.2, 0.2q. Density pIIbq is a mixture having the same weights and scale

parameters as density pIIaq but location parameters p�1.5, 1.5q, resulting in better

separated clusters. Density pIIIaq is a mixture of a Gaussian with mean 0.7, vari-

ance 0.2 and weight 0.7 and a Pearson density with mean �0.7, variance 0.2, weight

0.3, skewness parameter �0.5 and kurtosis parameter 3. Density pIIIbq is a mixture

having the same weights, scale parameters, skewness and kurtosis parameters as den-

sity pIIIaq but having location parameter p�1.2, 1.2q, resulting in better separated

clusters. Density pIV q is a bivariate mixture of two Gaussians with weight 0.5, lo-

cation parameters p0, 0q and p2, 1q, variances p0.2, 0.2q and p0.1, 0.1q and correlation
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coefficients 0.7 and 0.

Hyperparameters paσ, bσq for the density of the scale parameter were set to p3, 1q.

Parameters αjs were all set equal to the same value α̃ and in accordance with

Rousseau and Mengersen (2011)’s specification for the density of the weights. For

the non-repulsive model, the kernel locations were given independent standard nor-

mal priors. For the repulsive model, we considered a repulsion function defined as

(4), with g defined as (5) and we chose g0 to be the standard normal. The distance

involved in the repulsion function was chosen to be the symmetric K-L divergence

for repulsive priors satisfying definition 1(i) and the Euclidean distance for repulsive

priors satisfying definition 1(ii). We chose parameters τ as described in §2.2.2. In

particular, the separation level c used to calibrate τ was fixed at six.

Section 2.3 presents results such as misclassification errors and K-L divergences.

These quantities were derived as follows. The misclassification error was calculated

based on the posterior similarity matrix. Letting n be the number of observations,

the similarity matrix is defined as a n-dimensional square matrix with pi, jq element

equal to one if the ith and the jth observation belong to the same group and zero

otherwise. Let S be the true similarity matrix and Ŝh be the similarity matrix

obtained at the hth Markov chain Monte Carlo iteration. Let Spi, jq be the pi, jq

element of the matrix S and define the misclassification error mh as

mh �
1

np

ņ

i�1

ņ

j�i�1

1
�
Ŝhpi, jq �� Spi, jq

	

with np being the number of distinct pairs in which n observations may be combined

and 1p�q the indicator function. The approximation of the K-L divergence at the hth

iteration was calculated through

klh �
ş

j�1

log tf0py0jq{fpy0j; θhqu
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with f0 being the true density, f the fitted density, θh the posterior sample at the

hth iteration of parameters involved in f and y0 � ty01, . . . , y0su being s draws from

the true density f0. In all the experiments s was chosen to be 10, 000.

B.2 Additional results

As mentioned in §2.3, knowing that the smoothing parameter α̃ directly affects the

behavior of the mixture weights, it might be argued that under an accurate choice

of α̃, the non-repulsive prior may perform as well as the repulsive prior in emptying

the extra components. Hence, we ran the non-repulsive model for different values of

α̃. This comparison was done by utilizing 1, 000 draws from density IIb. The upper

bound on the number of components was chosen to be six and the repulsive prior

was chosen to satisfy definition 1(ii). The slice sampler was run for 10, 000 iterations

with a burn-in of 5, 000. The chain was thinned by keeping every 10th draw. Table

B.1 provides posterior summary statistics for parameters involved in the repulsive

model and non-repulsive model for different choices of α̃. Clearly, as α̃ decreases,

the non-repulsive model empties the extra components. However, we also see that

the 95% credible interval of the location parameters now does not include the true

value. This might be explained by the fact that as lower values of α̃ are considered,

the posterior can concentrate on too few components leading to degenerate results

in terms of estimates of specific component parameters.

Table B.2 shows extra components weights and K-L divergence for datasets drawn

from density pIIa, IIbq under repulsive and non-repulsive atoms with six and ten

components. As the number of components increases, the probability weight on the

extra components remains close to zero under repulsive mixture priors, while the

probability weight can grow substantially under non-repulsive priors. Hence, the

degraded performance in clustering reported for non-repulsive mixtures relative to

repulsive mixtures for the k � 6 case becomes more pronounced in the k � 10 case.
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Table B.1: Percentiles 2.5th and 97.5th of sum of extra weights (sewq and location
parameters involved in the two components with highest weights (µ1, µ2) under re-
pulsive and non-repulsive atoms for different values of α̃ considering 1, 000 draws
from density IIb

N-R R
α̃ 1{3 1{10 1{100 1{3

true 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

µ1 1.50 1.51 1.54 1.52 1.53 1.52 1.52 1.49 1.52
µ2 �1.50 �1.51 �1.44 �1.50 �1.47 �1.49 �1.47 �1.54 �1.43
sew 0.00 0.00 0.14 0.00 0.02 0.00 0.01 0.00 0.01

Concerning the estimation performance, the K-L divergences resulting from repulsive

and non-repulsive mixtures are very similar for high sample sizes.

Table B.2: Mean and standard deviations of the total probability weight placed on
extra components (more than used in generating data) and K-L divergence under
non-repulsive and repulsive mixtures in different synthetic data cases.

k=6 k=10

Data IIa IIb IIa IIb

Model N-R R N-R R N-R R N-R R
Extra weights

n � 100 0.21 0.08 0.09 0.02 0.34 0.23 0.15 0.06
p0.11q p0.07q p0.07q p0.02q p0.11q p0.09q p0.09q p0.04q

n � 1000 0.21 0.09 0.03 0.00 0.32 0.15 0.05 0.01
p0.11q p0.06q p0.04q p0.01q p0.11q p0.08q p0.04q p0.01q

K-L

n � 100 0.03 0.05 0.07 0.08 0.03 0.06 0.08 0.10
p0.01q p0.02q p0.02q p0.03q p0.02q p0.03q p0.02q p0.04q

n � 1000 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
p0.00q p0.00q p0.03q p0.03q p0.00q p0.00q p0.00q p0.00q

The value of τ in the repulsive prior 2.4 relies upon the choice of the separation

level c. In order to assess the sensitivity of results to this choice, the K-L divergence

was computed for different separation levels. For this comparison, observations were

drawn from densities pIIaq and pIIbq. Mixtures of six and ten components were
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fitted using a Gibbs sampler. The slice sampler was run for 10, 000 iterations with

a burn-in of 5, 000. The chain was thinned by keeping every 10th draw. Figure B.1

shows the median of the K-L divergence between the true and the estimated density.

Clearly, as the separation level increases, the K-L divergence remains stable.
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Figure B.1: Plot of K-L divergence under six and ten components p6 : I, 10 : IIq
for different choice of separation level c under density pIIaq for different sample sizes
(100:solid ; 1000:dash) and density pIIbq for different sample sizes (100:dash-dot;
1000:dot)
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