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Abstract

With the development of modern data collection approaches, researchers may collect

hundreds to millions of variables, yet may not need to utilize all explanatory variables

available in predictive models. Hence, choosing models that consist of a subset of

variables often becomes a crucial step. In linear regression, variable selection not

only reduces model complexity, but also prevents over-fitting. From a Bayesian

perspective, prior specification of model parameters plays an important role in model

selection as well as parameter estimation, and often prevents over-fitting through

shrinkage and model averaging.

We develop two novel hierarchical priors for selection and model averaging, for

Generalized Linear Models (GLMs) and normal linear regression, respectively. They

can be considered as “spike-and-slab” prior distributions or more appropriately “spike-

and-bell” distributions. Under these priors we achieve dimension reduction, since

their point masses at zero allow predictors to be excluded with positive posterior

probability. In addition, these hierarchical priors have heavy tails to provide robust-

ness when MLE’s are far from zero.

Zellner’s g-prior is widely used in linear models. It preserves correlation structure

among predictors in its prior covariance, and yields closed-form marginal likelihoods

which leads to huge computational savings by avoiding sampling in the parameter

space. Mixtures of g-priors avoid fixing g in advance, and can resolve consistency

problems that arise with fixed g. For GLMs, we show that the mixture of g-priors
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using a Compound Confluent Hypergeometric distribution unifies existing choices in

the literature and maintains their good properties such as tractable (approximate)

marginal likelihoods and asymptotic consistency for model selection and parameter

estimation under specific values of the hyper parameters.

While the g-prior is invariant under rotation within a model, a potential problem

with the g-prior is that it inherits the instability of ordinary least squares (OLS)

estimates when predictors are highly correlated. We build a hierarchical prior based

on scale mixtures of independent normals, which incorporates invariance under ro-

tations within models like ridge regression and the g-prior, but has heavy tails like

the Zeller-Siow Cauchy prior. We find this method out-performs the gold standard

mixture of g-priors and other methods in the case of highly correlated predictors in

Gaussian linear models. We incorporate a non-parametric structure, the Dirichlet

Process (DP) as a hyper prior, to allow more flexibility and adaptivity to the data.
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1

Introduction

In linear regressions, variable selection is routinely used to reduce model complexity

and prevent over-fitting. From a Bayesian perspective, model selection is driven via

prior specifications. In this dissertation, we develop two novel hierarchical priors for

variable selection and model averaging. This chapter is organized as follows. Section

1 introduces the background of Bayesian model selection and model averaging in

normal linear models. Section 2 describes the “spike-and-slab” prior, the class of

prior distributions that contain point masses at zero as mixture components. Sections

3 and 4 review two widely utilized prior distributions, mixtures of g-priors and scale

mixtures of independent normals respectively. Overviews of our new methods are

included in these two sections.

1.1 Background: Bayesian Model Selection and Model Averaging in
Linear Regression

From a model selection prospective, suppose we have pq � pq number of potential

predictors, among which the first q ones X0 � pX0,1, . . . ,X0,qq should always be

included according to background information sources or the modeling structure
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(e.g. intercept); while a subset of the remaining p predictors V � pV1, . . . ,Vpq may

be redundant or null predictors and may be excluded. We denote a normal linear

regression model with predictors pX0,VMq as model M, which can be written as

Model M : Y � X0α0 �VMβM � ε, ε � Np0, σ2Inq (1.1)

where Y � py1, . . . , ynqT is the vector of n independent responses, and VM is the

design matrix that consists of certain pM columns of V.

Bayesian solutions to the model selection problem require prior specifications on

the model space, ppMq, and also on the parameters ψM � pα0,βM, σq. After the

prior specification, for each model M, its marginal likelihood fpY | Mq and its

posterior probability ppM | Yq can be computed as

fpY |Mq �
»
fpY | ψM,Mq ppψM |Mq dψM

ppM | Yq � fpY |Mq ppMq°
M1 fpY |M1q ppM1q

A widely used selection criterion is to select the model with the highest posterior

probability ppM | Yq. In addition, model posterior probabilities also serves as

weights in Bayesian model averaging (BMA), which uses the weighted average of

posterior mean estimates of coefficients given each model,

β̃j �
¸
M
ppM | Yq Epβj | Y,Mq 1tXjPXMu

Therefore, for both model selection and parameter estimation, calculating marginal

likelihoods fpY |Mq is essential.

1.2 Prior Distributions with Point Masses at Zero

For Bayesian model selection and model averaging, prior specification for parameters

plays an important role. The “spike-and-slab” type of priors are popular choices for
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regression coefficients. Originally, the spike-and-slab prior (Mitchell and Beauchamp,

1988) refers to a mixture distribution of a points mass at zero (the spike) and a uni-

form distribution on a bounded interval centered at zero (the slab). This concept

nowadays is usually used to describe a class of prior distributions that are mixtures

of point masses at zero and continuous distributions or “spike-and-bell” priors. With

the point masses, a subset of predictors can be excluded with positive probability,

which can be treated as direct shrinkage to zero. The continuous components in

the prior also pull the coefficients included in the model towards their prior cen-

ters, which are usually zero, to achieve another layer of shrinkage. When dealing

with high-dimensional data, in addition to the spike-and-slab type of priors, another

class of prior distributions, continuous shrinkage priors are also widely adopted. The

density functions of these priors have high peaks around zero (or even diverge at

zero), which can impose heavy shrinkage on the coefficients towards zero but can-

not strictly exclude predictors unless posterior mode estimates are used, or some

additional decision theoratic approach is adapted.

1.3 The g-prior and Mixture of g-priors

Among the spike-and-slab priors, Zellner’s g-prior is a very popular choice. In the

regression problem Y � NpXβ, σ2Inq, when there is some information about the

value of the coefficient β but little information about σ and the prior covariance of

β, Zellner (1986) proposes the g-prior on pβ, σq,

β | g, σ � N
�
β0, gσ

2pXTXq�1
�

ppσq 9 1{σ

which incorporates the possible value of the coefficient through the prior mean β0.

Since for variable selection problems, selecting variables X is equal to testing hy-

potheses H0 : β � 0 versus Ha : β � 0, hence here the possible value of the
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coefficient is β0 � 0. In the g-prior, the normal standard deviation σ typically has

an improper diffuse prior. Improper priors introduce arbitrary constants into the

marginal likelihoods generally leading to ill determined Bayes factors, which may

invalidate model comparison based on Bayes factors. Hence Bayarri et al. (2012)

proposes the Basic Criterion for priors in model selection, which suggests that all

model specific parameters should have proper conditional prior distributions. Com-

mon orthogonal parameters are exceptions, due to the cancellation of the vague

constants in the Bayes factors (Berger et al., 1998).

It is convenient to consider an equivalent parameterization of model (1.1) so that

the common predictors X0 and remaining model specific predictors are orthogonal

for all models. To achieve orthogonality, in (1.1) we decompose VM by projecting it

onto the hyper plane spanned by the columns of X0,

Model M : EpYq � X0α0 � PX0VMβM � pIn � PX0qVMβM (1.2)

� X0α�XMβM (1.3)

where α � α0�pXT
0 X0q�1XT

0 VMβM is the parameters on common predictors after

translation, PX0 � X0pXT
0 X0q�1XT

0 is the projection matrix, and

XM � pIn � PX0qVM (1.4)

is the new model specific predictors such that

XT
0 XM � 0 (1.5)

Formula (1.5) implies that the parameters α and βM are orthogonal in the sense of

the information matrix of pα,βMq being block diagonal. Note that the above orthog-

onality holds under all 2p models, so α can be considered as a common parameter

among different models. In the special case where the only common predictor is the

intercept X0 � 1n, in normal linear regression transforming VM to XM is equivalent
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to centering the columns of VM. And after this orthogonalization, the intercept α

can be considered as the center of Y, which does not change with any specific model

M. Therefore, in linear models according to the most widely used version of the

Zellner’s g-prior, the intercept α has an improper flat prior (e.g., Liang et al. (2008),

the null-based approach)

βM | g, σ,M � N
�
0, gσ2pXT

MXMq�1
�

(1.6)

ppα, σ |Mq 9 1{σ (1.7)

This version of the g-prior has several ideal properties. The marginal likelihoods

yielded by it are in closed form expression, and can be represented as simple func-

tions of the coefficient of determination or R2. In addition, it maintains the same

correlation structure in the prior distribution as the likelihood and is invariant un-

der orthogonal transformation of designs. However, choosing the value of the hyper

parameter g is not straight-forward. Arbitrary values of g in the g-prior usually

lead to the information paradox (Liang et al., 2008). In addition, Lindley’s paradox

occurs when g is large, because the prior density is too flat and hence always favors

the smaller model. To resolve these problems, fully Bayes approaches propose prior

distributions on g, e.g. Zellner and Siow (1980), Liang et al. (2008), Maruyama and

George (2011), Bayarri et al. (2012), Celeux et al. (2012), Ley and Steel (2012).

1.3.1 Overview of Chapter 2

New mixtures of g-priors have been extensively studied in linear models, however

choice of prior distributions in Generalized Linear Models (GLMs) remains an open

problem. In Chapter 2 of this thesis we extend mixtures of g-priors to Generalized

Linear Models (GLMs) by assigning a conjugate prior, the Confluent Hypergeometric

distribution, to the shrinkage factor g
1�g . Our CH-g prior encompasses common

mixtures of g-priors in the literature such as the Hyper-g prior, and naturally extends

them to be applicable in GLMs. Under a Laplace approximation, it yields marginal
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likelihoods in computationally tractable forms. We demonstrate theoretically the

asymptotic consistency for model selection and BMA estimation holds under the

CH-g prior. With our default choice of hyper parameters, the CH-g prior satisfies

the intrinsic consistency of Bayarri et al. (2012) implicitly. In addition, we illustrate

its use in simulation and real examples.

1.4 Scale Mixtures of Independent Normals

In addition to mixtures of g-priors, shrinkage methods with continuous priors in

the family of scale mixtures of independent normals (West, 1987) are also preva-

lently used, for example, the relevance vector machine (Tipping, 2001), the Normal-

exponential-gamma prior (Griffin and Brown, 2005), the Bayesian lasso (Park and

Casella, 2008), (Hans, 2009), the Bayesian elastic net (Li and Lin, 2010) and the

horseshoe (Carvalho et al., 2010). Under orthonormal designs, the (conditional)

posterior mean of each regression coefficient may can be represented as the MLE

multiplied by a shrinkage factor, which takes value between 0 and 1.

The posterior distribution under the g-prior inherits the instability of ordinary

least square (OLS) estimate when the design matrix is nearly singular. Ridge regres-

sion, lasso estimates or estimates under scale mixtures of independent normals are

not as affected by the correlation among the predictors. Carvalho et al. (2010) claim

that the horseshoe performs almost as well as the gold standard of Bayesian model

averaging (BMA) under the Zellner-Siow prior for prediction. However, continuous

priors cannot shrink coefficients to exact zeros, and lack selection procedures that can

be validated by optimizing any loss function. On the other hand, “spike-and-slab”

priors (Mitchell and Beauchamp, 1988; Ishwaran and Rao, 2005; Scott and Berger,

2006) allow coefficients to be exactly zero (so that they can be excluded from the

model) by adding positive probability masses at zero to the priors. Our results sug-

gest that scale mixtures of independent normals may out-perform the mixtures of
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g-priors if the predictors are highly correlated.

1.4.1 Overview of Chapter 3

In normal linear regression, empirical studies suggest that ridge regression outper-

forms the lasso in parameter estimation and prediction when regression coefficients

are small or covariates are highly correlated. Unlike the lasso, which depends on

the choice of coordinate system used to represent the model, ridge regression is in-

variant under the orthogonal rotation of the explanatory variables. Inspired by the

rotation invariant property of ridge regression, in Chapter 3 we propose the Local

Rotation Invariant prior (LoRI). This Bayesian approach has a local rotation invari-

ant structure, which is induced by the DP prior on variance parameters in normal

prior distributions for the regression coefficients. Due to the natural grouping struc-

ture induced by the DP, our shrinkage prior acts like a multivariate Cauchy prior

within the group. Point masses at zero in the DP base measure can achieve sparse

solutions like the lasso or “spike-and-slab” type of Bayesian variable selection priors.

Compared with continuous shrinkage methods, it has the advantage of valid built-in

variable selection. Meanwhile, the Cauchy tails of the prior lead to bounded prior

influence that can preserves large effects. Both simulation and real-world examples

show that the LoRI achieves high accuracy in parameter estimation and prediction.
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2

The Confluent Hypergeometric g-prior for GLMs

2.1 Introduction

In linear regression, mixtures of g-priors (Zellner and Siow, 1980; Liang et al., 2008;

Maruyama and George, 2011; Bayarri et al., 2012; Celeux et al., 2012; Ley and

Steel, 2012) are widely used for model selection and model averaging. They yield

(exact or approximate) marginal likelihoods in tractable form, which may avoid

sampling regression coefficients in MCMC to achieve computational efficiency. They

maintain correlation structure among predictors by allowing the correlation in the

prior covariance to mimic that induced by the likelihood, which also leads to their

invariance under change of measurement. Mixtures of g-priors not only inherit the

ideal features of the g-prior, but also resolve the information paradox (Liang et al.,

2008) and Lindley’s paradox (Lindley, 1968) that occur under fixed g.

In this paper, we build a unified framework of mixture of g-priors for GLMs. Our

hyper prior on g based on the Confluent Hypergeometric distribution encompasses

most common hyper priors, such as the Hyper-g prior, and naturally extends their

corresponding mixtures of g-priors to GLMs. Under a Laplace approximation, our
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choice of hyper prior is conjugate, and yields computationally tractable forms for

marginal likelihoods. We provide conditions for asymptotical consistency of model

selection and parameter estimation under our mixture of g-prior for GLMs.

Section 2 reviews the g-prior for GLMs. Section 3 develops the mixture of g-

priors for GLMs. Section 4 examines the model selection consistency, information

consistency and Bayesian model averaging consistency. Section 5 discusses our de-

fault choices of hyper parameters, and shows its performance in both simulation and

real examples.

2.2 The Generalized g-prior for GLMs

2.2.1 Generalized Linear Models

Suppose that the n dimensional response vector Y � pY1, . . . , YnqT follows a distri-

bution in the exponential family, and according to McCullagh and Nelder (1989),

the likelihood function can be written as

fpY | θ, φq �
n¹
i�1

exp

"
Yiθi � bpθiq

apφq � cpYi, φq
*
, (2.1)

where ap�q, bp�q and cp�, �q are specific functions which determine the GLM density.

The mean and variance for an observation Y can be written using these functions:

EpY q � b1pθq, (2.2)

VpY q � apφqb2pθq, (2.3)

where b1p�q and b2p�q are the first and second order derivatives. Due to (2.3), it is

reasonable to assume that b2p�q ¥ 0 in most cases. The canonical parameter θi � θpηiq
can be connected with the linear combination of predictors Vi, i.e.,

η � X0α0 �Vβ (2.4)

by the link function θp�q, where η � pη1, . . . , ηnq. In particular, the canonical link,

θipηjq � ηi, is the most widely used form of link. We restrict the scale apφq � 1,
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which includes many common exponential family distributions, such as Bernoulli,

Poisson and Normal with known variance (see Table 2.1).

Table 2.1: Three commonly used distributions in the exponential family.

distribution apφq θ bpθq b1pθq b2pθq
Npµ, σ2q σ2 µ θ2

2
θ 1

Berppq 1 log p
1�p logp1� eθq eθ

1�eθ
eθ

p1�eθq2
Poipλq 1 log λ eθ eθ eθ

Rather than using all predictors, we may wish to consider models based on a

subset of V. Suppose X0 is the set of predictors common all models and VM is the

subset of V in model M, then we can write model in (2.4) as

ηM � X0α0,M �VMβM, (2.5)

where typically, X0 � 1n.

In normal linear models, the most common variant of the g-prior is

βM | σ � N
�
0, g I�1

n pβMq� ,
where InpβMq � XT

MXM{σ2. The precision matrix (i.e., inverse covariance) of

this g-prior equals the inverse of the hyper parameter g multiplied by the expected

information matrix based on all n observations, which is the same as the observed

information. Extensions are more complicated for non-Gaussian distributions in

the exponential family, because their information matrices depend on the unknown

coefficient parameters. Bové and Held (2011) evaluate the expected information

matrix at the prior mode zero, while Hansen and Yu (2003) at the MLE estimates

β̂M. Wang and George (2007) also evaluate the information at the MLE, but use the

observed information matrix instead. Gupta and Ibrahim (2009) avoid this choice

by keeping the unknown parameter βM in the prior precision matrix, which leads to

intractable marginal likelihoods.
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2.2.2 “Centering” the Predictors

Bové and Held (2011) point out that majority of the current variants of g-priors for

GLMs do not treat the common parameters across models, usually the intercept,

differently from the model specific coefficients, so that X0 � ø. This means that

the intercept or other common parameters are shrunk towards zero along with the

coefficients, which may be problematic when the true intercept is large relative to

the regression coefficients. In the extreme case, in normal linear models if the true

intercept approaches infinity, and g is allowed to adapt to the data, then the null

model is selected. Hence it is desirable to assume the common parameters and the

model specific parameters are independent a priori. Motivated by the projection

procedure (1.4) in normal linear models, which ensures orthogonality between the

common variables X0 and the model specific predictors XM, we propose a “center-

ing” procedure for likelihood densities in the exponential family, to ensure that the

expected Fisher information is block diagonal.

Proposition 1. Under any modelM, we propose the following “centering” procedure

to transform its model specific predictors VM to XM,

XM �
�
In � P̂X0

�
VM, (2.6)

P̂X0 � X0

�
XT

0 Inpη̂MqX0

��1
XT

0 Inpη̂Mq, (2.7)

ηM � X0αM �XMβM, (2.8)

where Inpη̂Mq is the expected information matrix of ηM � pη1,M, . . . , ηn,MqT evalu-

ated at its MLE based on all n observations. After this reparameterization,

XT
0 Inpη̂MqXM � 0, (2.9)

which leads to the result that the expected information matrix for pαM,βMq evaluated
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at the MLE

In
�
α̂M, β̂M

	
�
�
Inpα̂Mq 0Tn

0n Inpβ̂Mq
�

(2.10)

is block diagonal. Note that P̂X0 is an orthogonal projection on the column space X0

with inner product xx,yy � xTInpη̂Mqy.

Proof. Since the linear combination ηM does not change under the translation op-

erator, due to the functional invariance of MLEs, η̂M remains the same after (2.6).

We can simply verify that the off-diagonal block of the information matrix equals

zero (2.9).

In most GLM variable selection problems, the only common predictor is the

intercept X0 � 1n. Then after the “centering” step (2.6), the j-th predictor

Xj � Vj � 1nṽj,M, (2.11)

where ṽj,M is a weighted average of elements of the vector Vj and the weights de-

pending on the information matrix Inpη̂Mq. In particularly, under normal linear

models, these weights are equal and thus ṽj,M becomes the column-wise average.

Except for normal distributions, the “centering” procedure (2.6) is model specific

due to its dependence on model specific MLEs in the inner product Inpη̂Mq. Due to

the asymptotic consistency of the MLE, we now treat the parameter αM as a com-

mon parameter across models, and αM and βM are treated differently by having

independent prior distributions, i.e.,

ppαM,βMq � ppαMq ppβMq. (2.12)

The “centering” step also simplifies the calculation of the marginal likelihood.

Under most of the distributions in the GLM family (except for normal distribution),

the marginal likelihood does not have a closed form. To calculate the marginal like-

lihood, we apply a Laplace approximation (Tierney and Kadane, 1986) that utilizes

12



a second order Taylor expansion around the MLE pα̂M, β̂Mq.
ppY |Mq �

»
fMpY | αM,βMqppαMqppβMq dpαM,βMq (2.13)

� fMpY | α̂M, β̂Mq
»
e�

1
2
pαM�α̂MqT Inpα̂MqpαM�α̂Mq ppαMq dαM (2.14)

�
»
e�

1
2
pβM�β̂MqT Inpβ̂MqpβM�β̂Mq ppβMq dβM �Opn�1q. (2.15)

According to Kass et al. (1990), this Laplace approximation is precise to the order of

Opn�1q. The “centering” step combined with independent prior distributions for αM

and βM allows us to approximate the marginal likelihood by integrating out αM and

βM separately. Next, we will describe the g-prior for GLMs that we adopt, which

leads to closed form marginal likelihood under the Laplace approximation (2.14), as

well as extensions to mixtures of g-priors.

2.2.3 The g-prior for GLMs

In normal linear models, Zellner’s g-prior for (1.6) (1.7), assigns the model specific

coefficient βM a multivariate normal prior distribution centered at zero, and the

inverse of its prior covariance is proportional to the information matrix InpβMq �
XT

MXM{σ2. In GLMs, the expected information matrix becomes

InpβMq � XT
M InpηMq XM

� XT
M r∆pηMq InpθMq ∆pηMqs XM,

where ∆pηq denotes the diagonal matrix whose i-th element is dθi
dηi

evaluated at the

i-th linear predictor ηi,M � αM � xTi,MβM, and InpθMq denotes the expected in-

formation matrix of θM based on all n data points. Under canonical links, ∆pηMq
becomes the identity matrix, and hence InpηMq becomes the diagonal matrix with

elements b2pηi,Mq.
In GLMs, after “centering” the design matrix to XM, we propose the following

definition of the g-prior under modelM. We let βM have a normal prior with mean
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0 and covariance being proportional to inverse of the expected information matrix,

and let the intercept αM have an independent normal prior:

βM | g,M � NpM

�
0, g � Inpβ̂Mq�1

	
, (2.16)

ppαM |Mq � Np0, ncq, (2.17)

where g is a positive parameter, Inpβ̂Mq is the expected information matrix based

on all the data and evaluated at the MLE pα̂M, β̂Mq in the form of η̂M, and c is

a non-negative constant. In the literature, such data dependent priors have been

proposed, for example, Kass and Wasserman (1995), Hansen and Yu (2003) and

Wang and George (2007). Notice as when c � 8, (2.17) degenerates to the flat

prior ppαMq 9 1. Although in linear model, the flat prior on the intercept is a

prevalent choice in almost all existing variants of g-priors that treat the intercept

and coefficient separately, we will show in Section 2.4.2 that this may be problematic

for other GLM functions.

2.2.4 Laplace Approximate of the Bayes Factor

As discussed in (2.14), we utilize the Laplace approximation to calculate the marginal

likelihood for modelM. The normal densities of αM and βM from the likelihood can

be combined with the independent normal prior densities on αM and βM (2.16) (2.17)

respectively. Hence we obtain the approximate marginal likelihood in analytical form,

p pY | g,Mq �fM
�
Y | α̂M, β̂M

	
r1� Inpα̂Mqncs� 1

2 e
� Inpα̂Mqα̂2

M
2pInpα̂Mqnc�1q (2.18)

� p1� gq� pM
2 e�

QM
2p1�gq �Opn�1q, (2.19)

where

QM �
�
β̂TMXT

M

�
Inpη̂Mq

�
XMβ̂M

�
(2.20)

is the analogue of the regression sum of squares in the linear model, pM is the number

of predictors in XM, and Inpα̂Mq � 1TnInpη̂Mq1n is the expected information of the
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intercept. Note that for the null modelMø where pMø � 0, we can let QMø � 0 and

then (2.18) remains to hold. When comparing two models M2 to M1, the Bayes

factor under g-prior can be approximated as the ratio of their marginal likelihoods,

which can be rewritten as

BFM2:M1 � ΛM2:M1 � ΩM2:M1 �Opn�1q, (2.21)

which is decomposed to the product of

ΛM2:M1 �
fM2pY|α̂M2 , β̂M2q
fM1pY|α̂M1 , β̂M1q

�
1� Inpα̂M2qnc
1� Inpα̂M1qnc

�� 1
2

e
� 1

2

�
Inpα̂M2

qα̂2
M2

Inpα̂M2
qnc�1

�
Inpα̂M1

qα̂2
M1

Inpα̂M1
qnc�1

�

(2.22)

and

ΩM2:M1 �
p1� gq�

pM2
2 exp

!
� QM2

2p1�gq

)
p1� gq�

pM1
2 exp

!
� QM1

2p1�gq

) . (2.23)

The first term ΛM2:M1 consists of the maximized likelihood ratio and the penalties

contributed by the intercept. The second term ΩM2:M1 comes from the generalized

g-prior on the coefficients. In particular, the choice of g effects the Bayes factor only

through ΩM2:M1 .

Note that if c � 8, i.e., the prior distribution on αM is the flat prior, then the

approximate Bayes factor and its corresponding ΛM2:M1 become

p pY|g,Mq � fM

�
Y | α̂M, β̂M

	
p2πq 1

2 rInpα̂Mqs� 1
2 p1� gq� pM

2 e�
QM

2p1�gq �Opn�1q,

(2.24)

where

Λc�8
M2:M1

� fM2pY|α̂M2 , β̂M2q rInpα̂M2qs�
1
2

fM1pY|α̂M1 , β̂M1q rInpα̂M1qs�
1
2

. (2.25)
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2.2.5 Approximate Conditional Posterior Distributions

For any given model M, here we consider the conditional posterior distributions of

αM and βM under our g-prior (2.16), (2.17) for GLMs. For notation simplification,

when there is no ambiguity, we omit the subscript M. Except for the normal dis-

tribution, other likelihood densities in GLMs (2.1) are not conjugate with normal

prior on αM and βM. Fortunately, according to the standard Bayesian asymptotic

theory (see Bernardo and Smith (2000), p287), as n increases, the conditional poste-

rior densities based on observed data tY,Vu � tpY1,v1q, . . . , pYn,vnqu converges to

normal densities,

αM | Y,M dÝÑ N

�
Inpα̂Mq

Inpα̂Mq � 1
nc

α̂M,
1

Inpα̂Mq � 1
nc



, (2.26)

βM | Y, g,M dÝÑ N

�
g

1� g
β̂M,

g

1� g

�
Inpβ̂Mq

��1


, (2.27)

hence we can use these normal distributions as approximates to the conditional

posterior distributions. Note that when flat prior is assigned to αM, i.e., c � 8, its

approximate conditional posterior is

αM | Y,M dÝÑ N
�
α̂M, rInpα̂Mqs�1

�
.

Similar to the posterior distribution under Zellner’s g-prior in the normal lin-

ear models, the approximate conditional posterior mean of βM is shrunk from the

MLE β̂M towards 0. We donate the ratio z � g{p1 � gq between the posterior

mean EpβM | Y, g,Mq and the MLE β̂M as the shrinkage factor. Assume that

the expected information Inpβ̂Mq based on all data is proportional to n, then the

approximate posterior covariance of βM is proportional with 1{n. Therefor, the con-

ditional posterior ppβM | Y, g,Mq becomes more concentrated around its mean as

n increases.
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2.2.6 Inconsistency of the g-prior

For our model selection problem, suppose among all the 2p different models, there

exists a true modelMT that generates the data. Under the true modelMT , the MLE

β̂MT
converges to the true parameter β�MT

, while the conditional posterior mean

ErβMT
| Y, g,Ms becomes more concentrated around β̂MT

g{p1�gq. Therefore, with

any fixed value of g, the posterior mean estimate of βMT
is biased asymptotically.

In addition to the inconsistency in parameter estimation, g-priors with fixed g

also exhibits inconsistency in model selection. In normal linear models, Liang et al.

(2008) points out the selection inconsistency of g-prior with fixed g. They also

suggest that some fully Bayes methods that assigns prior distributions on g, such as

the Zellner-Siow prior (Zellner and Siow, 1980), the Hyper-g prior and the Hyper-g{n
prior (Liang et al., 2008) can partially or completely resolve this inconsistency. We

find that in GLMs, this inconsistency also exists with fixed g. The following counter

example shows that in normal linear model with fixed variance, when comparing two

nested models, if the smaller model is the true modelMT , the Bayes factor forMT

compared to M under g-prior does not go to 8 asymptotically.

Remark 1. Under normal linear model with known variance σ2 � 1, for any fixed

value of g and any modelM �MT , as the sample size n increases, the Bayes factor

under the g-prior (2.16), (2.17)

BFMT :M � Op1q,

which implies the selection consistency does not hold for g-prior with fixed g.

Proof: see Appendix A.2.1.
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2.3 The Confluent Hypergeometric Prior on g

We propose a hierarchical prior distribution on g to resolve the inconsistency. Based

on the g-prior (2.16), (2.17), we assign a hyper prior distribution,

ppg | a, b, sq �
g
a
2
�1p1� gq�a�b

2 exp
�
s
2

�
g

1�g

	�
Bpa

2
, b

2
q 1F1pa2 , a�b2

, s
2
q , (2.28)

where parameters a ¡ 0, b ¡ 0, s ¥ 0, and 1F1 is the confluent hypergeometric

function (Abramowitz and Stegun, 1970). (See Appendix A.1 for definition of the 1F1

function). Gordy (1998a) proposes the Confluent Hypergeometric (CH) distribution,

which can be considered as a generalization of Beta distribution and has the following

density function

pCHpz | a, b, sq � za�1p1� zqb�1 expp�szq
Bpa, bq 1F1pa, a� b,�sq , 0 ¤ z ¤ 1, (2.29)

where parameters a ¡ 0, b ¡ 0 and s P R. When s � 0, the CHpa, b, sq distribution

degenerates to Betapa, bq distribution. When transforming g to the shrinkage factor

z, the prior distribution (2.28) becomes a CH distribution on z, i.e.,

z � g

1� g
� CH

�
a

2
,
b

2
,�s

2



, (2.30)

which guarantees that the prior distribution (2.28) is well-defined. It is also a con-

jugate prior, in that the conditional posterior distribution of z also has a CH distri-

bution,

z | Y,M � CH

�
a

2
,
b� pM

2
,�s�QM

2



, (2.31)

where pM is the model size ofM, and QM � β̂TMXT
MIn pη̂MqXMβ̂M is the analogue

of RSS in GLMs. We denote the hierarchical g-prior (2.16), (2.17) and (2.28) as the

CH-g prior.
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2.3.1 Tail Behavior of the CH-g Prior

Heavy-tailed prior distributions on βM are desirable in model selection since they

are robust to large coefficients in terms of not over-shrinking them. Most state of the

art prior distributions on g yield the prior densities of ppβM |Mq with multivariate

Student tails, for example, Zellner and Siow (1980), Liang et al. (2008), Maruyama

and George (2011) and Bayarri et al. (2012). The following proposition shows that

under the CH-g prior, the prior distribution on βM also behaves as a multivariate

Student distribution in the tails.

Proposition 2. Under the CH-g prior (2.16), (2.17) and (2.28), the marginal prior

distribution under model M

ppβM |Mq �
»
ppβM | g,Mqppgqdg

has tails behave as multivariate Student distribution with degrees of freedom b and

scale matrix
�
Inpβ̂Mq

��1

, i.e.,

lim
}βM}Ñ8

ppβM |Mq9 �}βM}2
In

�� b�pM
2 , (2.32)

where }βM} � pβTMβMq 1
2 and }βM}In �

�
βTMInpβ̂MqβM

� 1
2
.

Proof: see Appendix A.2.2.

The choice of the hyper parameter b alone determines the tail behavior of the

marginal prior ppβM |Mq. In particular, b � 1 corresponds to Cauchy tails.

2.3.2 Approximate Bayes Factor under the CH-g Prior

Similar to the g-prior for GLMs, the CH-g prior also yields closed-form marginal like-

lihood under Laplace approximations. Denote u � 1� z, then the prior distribution
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on z (2.30) is equivalent to

u � 1

1� g
� CH

�
b

2
,
a

2
,
s

2



. (2.33)

Hence we can integrate g (in the form of u) out from (2.18) and obtain the approxi-

mate marginal likelihood under the CH-g prior for model M

ppY |Mq �
» 1

0

ppY | u,Mqppuqdu

� fM

�
Y|α̂M, β̂M

	
r1� Inpα̂Mqncs� 1

2 e
� Inpα̂Mqα̂2

M
2pInpα̂Mqnc�1q

� B
�
b�pM

2
, a

2

�
1F1

�
b�pM

2
, a�b�pM

2
,� s�QM

2

�
B
�
b
2
, a

2

�
1F1

�
b
2
, a�b

2
,� s

2

� �Opn�1q.

Therefore, the Bayes factor comparing M2 to M1 under the CH-g prior can be

approximated as

BFM2:M1 � ΛM2:M1 � ΩCH
M2:M1

�Opn�1q, (2.34)

where ΛM2:M1 remains the same as in (2.22) and

ΩCH
M2:M1

�
B
�
b�pM2

2
, a

2

	
1F1

�
b�pM2

2
,
a�b�pM2

2
,� s�QM2

2

	
B
�
b�pM1

2
, a

2

	
1F1

�
b�pM1

2
,
a�b�pM1

2
,� s�QM1

2

	 . (2.35)

We can further let hyper parameters a, b, s to be model specific, then the normalizing

constants from the prior in (2.35) can not be canceled, i.e.,

ΩCH
M2:M1

�
B
�
bM2

�pM2

2
,
aM2

2

	
1F1

�
bM2

�pM2

2
,
aM2

�bM2
�pM2

2
,� sM2

�QM2

2

	
B
�
bM1

�pM1

2
,
aM1

2

	
1F1

�
bM1

�pM1

2
,
aM1

�bM1
�pM1

2
,� sM1

�QM1

2

	 (2.36)

�
B
�
bM1

2
,
aM1

2

	
1F1

�
bM1

2
,
aM1

�bM1

2
,� sM1

2

	
B
�
bM2

2
,
aM2

2

	
1F1

�
bM2

2
,
aM2

�bM2

2
,� sM2

2

	 . (2.37)
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2.3.3 Connection with the Literature

Note that the density function of the Confluent Hypergeometric distribution (2.29)

is proportional to the densities of both Beta distribution and truncated Gamma

distribution, which implies that our CH
�
b
2
, a

2
, s

2

�
prior on u � 1{p1� gq encompasses

some of the exsiting prior distributions on the hyper parameter g.

In normal linear models, to achieve marginal likelihoods in closed forms, prior dis-

tributions on u originating from the Beta distribution are conventional. For example,

Liang et al. (2008) introduces the Hyper-g prior,

1

1� g
� Beta

�ah
2
� 1, 1

	
, (2.38)

where 2   ah ¤ 4. When ah � 4, the Hyper-g prior is equal to the uniform prior.

The recommended value of the hyper parameter ah � 3 corresponds to a proper prior

which puts more mass of 1{p1 � gq near 0. The choice ah � 2 corresponds to both

the reference prior and the Jeffrey’s prior, which is improper. While it yields proper

posterior distributions, because g does not appear in the model with just X0, Bayes

factors are ill-determined due to the arbitrariness of the constants of proportionality.

The Hyper-g prior (2.38) can be viewed as a special case of our CH-g prior, with

a � 2, b � ah � 2 and s � 0.

The marginal likelihoods under the Hyper-g prior in normal linear models have

closed forms that contain the Hypergeometric 2F1 function. To further simplify the

marginal likelihood, Maruyama and George (2011) proposes the Beta prior distribu-

tion on g,

1

1� g
� Beta

�
1

4
,
n� pM

2
� 3

4



, (2.39)

which eliminates the need to evaluate the 2F1 function in the marginal likelihood. An

additional benefit is the fact that the second parameter being proportional with n
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yields an implicit Opnq choice on g. According to the authors, g � Opnq in the prior

is desirable since it prevents the prior variance on βM from decreasing to zero and

prevents the likelihood from being dominated by g asymptotically. The Beta prior

(2.39) is also a special case of the CH-g prior, with a � n� pM � 1.5 and b � 0.5.

In GLMs, when the precision apφq is fixed, the likelihood under Laplace approxi-

mate usually contains an exponential term of u, for example, (2.18). Hence conjugate

prior densities of u should contain some form of Gamma distribution density. For

example, Wang and George (2007) proposes the truncated Gamma prior on u,

1

1� g
� Gammap0,1q pat, btq , (2.40)

where the domain is restricted to the interval p0, 1q, and at ¡ 0, bt ¡ 0. The authors

recommend to use a uniform prior on g, which can be achieved by setting at � 1, bt �
0. The CH-g prior also encompasses (2.40), with a � 2, b � 2at and s � 2bt.

Although our CH-g prior encompasses the above prior distributions on g, it does

not include the Hyper-g{n prior (Liang et al., 2008) and the Robust prior (Bayarri

et al., 2012). Since the Hyper-g prior cannot yield consistency for model selection

when the null model is true, Liang et al. (2008) modify it to the Hyper-g{n prior,

ppgq � ah � 2

2n

�
1

1� g{n

ah{2

, (2.41)

where 2   ah ¤ 4.

Under the Robust prior (Bayarri et al., 2012), after transforming the parameter

g to u � 1{p1� gq, we find that its prior density becomes

prpuq � ar rρrpbr � nqsar uar�1

r1� pbr � 1qusar�1 1t0 u  1
ρrpbr�nq�p1�brq

u, (2.42)

where ar ¡ 0, br ¡ 0 and ρr ¥ br
br�n . In normal linear models, the Robust prior yields

closed-form marginal likelihoods in the form of the Appell F1 function. Based on
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the various criteria for model selection priors proposed in Bayarri et al. (2012), the

recommended values of the hyper parameters in the Robust prior are ar � 0.5, br � 1

and ρr � 1{p1 � pMq. Both the Hyper-g prior and the Hyper-g{n prior are special

cases of the Robust prior. More specifically, (2.42) with ar � ah{2 � 1, br � 1, ρr �
1{p1� nq becomes the Hyper-g prior and (2.42) with ar � ah{2� 1, br � n, ρr � 0.5

corresponds to the Hyper-g{n prior. The CH-g prior cannot be obtained as a special

case of the Robust prior.

2.3.4 A More General Class of Prior Distributions on g

Both the Robust prior and the CH-g prior are special cases of a more general class of

distributions, the Compound Confluent Hypergeometric (CCH) distribution (Gordy,

1998b). The CCH distribution has 6 parameters and can be considered as a gener-

alized version of the Confluent Hypergeometric distribution. Suppose variable u has

CCH distribution, then its density function is

pCCHpu | t, q, r, s, v, θq (2.43)

� vt expps{vq
Bpp, qq Φ1pq, r, t� q, s{v, 1� θq

ut�1p1� vuqq�1e�su

rθ � p1� θqvusr 1t0 u  1
v
u, (2.44)

where t ¡ 0, q ¡ 0, r P R, s P R, 0 ¤ v ¤ 1, θ ¡ 0, and

Φ1pα, β, γ, x, yq �
8̧

m�0

8̧

n�0

pαqm�npβqn
pγqm�nm!n!

xmyn

is the confluent hypergeometric function of two variables (Gordy, 1998b). We can

extend the possible domain of the CCH distribution to p0, 1{vq with v ¡ 1, so that

the upper bound of u can be strictly below 1. The extended CCH distribution as

a prior distribution on u � 1{p1 � gq unifies a broader variety of prior distributions

including both the Robust prior and the CH-g prior. The Robust prior is equal to

u � CCH

�
ar, 1, ar � 1, 0, ρrpbr � nq � p1� brq, 1� 1� br

ρrpbr � nq
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and the CH-g prior is equal to

u � CCH

�
b

2
,
a

2
, 0,�s

2
, 1, 1



.

In GLMs, under the extended CCH prior on u, the approximate marginal likeli-

hood also has a closed form.

ppY |Mq �
» 1

0

ppY | u,Mqppuqdu

� fM

�
Y|α̂M, β̂M

	
r1� Inpα̂Mqncs� 1

2 e
� Inpα̂Mqα̂2

M
2pInpα̂Mqnc�1q

� B
�

2t�pM
2

, q
�
v�

pM
2 e�

QM
2v Φ1

�
q, r, 2t�2q�pM

2
, 2s�QM

2v
, 1� θ

�
B pt, qq Φ1

�
q, r, t� q, s

v
, 1� θ

� �Opn�1q.

Under the Robust prior with b � 1, the Φ1 function in ppY |Mq degenerates to a

truncated Gamma function, which is easier to compute; that is

ppY |Mq

� fM

�
Y|α̂M, β̂M

	
r1� Inpα̂Mqncs� 1

2 e
� Inpα̂Mqα̂2

M
2pInpα̂Mqnc�1qar rρrp1� nqsar

�
�
QM

2


� pM
2
�ar "

Γ
�pM

2
� ar

	
� Γ

�
pM
2

� ar,
QM

2ρrp1� nq

*

�Opn�1q,

where Γpaq is the Gamma function and Γpa, sq � ³8
s
ta�1e�tdt is the incomplete

Gamma function.

2.4 Model Selection Consistency

In this section, we will focus on the asymptotic model selection performance of the

CH-g prior for GLMs. In addition, we also study its behavior in a special but not

rare case, where the sample size is small and there exists a model that fits the data

perfectly.
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2.4.1 Asymptotic Consistency for Model Selection

When studying the asymptotic properties, we believe it is reasonable to assume that

the unit expected information matrices are non-singular.

Assumption 1. We here assume a mild condition on the predictors r1n,Xs in the

full model. For any n-dim vector η in the space spanning by the predictors Cp1n,Xq,
i.e., η � r1n,Xsw, where w is a p1�pq-dim vector of weights, there exists a positive

definite matrix Σw such that

lim
nÑ8

r1n,XsT Inpηq r1n,Xs
n

ÝÑ Σw (2.45)

In normal linear model, this assumption implies that XTX{n converges to a pos-

itive definite matrix Σ0, which is a conventional assumption in the model selection

literature. Furthermore, if we treat the rows of the full design matrix X as indepen-

dent random samples from p-dimensional multivariate distributions which have the

same mean and bounded covariance, then (2.45) holds according to the Law of Large

Numbers.

Remark 2. Before studying the asymptotic consistency of the CH-g prior, we want

to point out that most asymptotic results which require i.i.d. samples as their con-

ditions also hold under GLMs. Although in GLMs, observations Y1, . . . , Yn are con-

ditionally independently but not identically distributed, we can assume that jointly

pY1,x1q, . . . , pYn,xnq are i.i.d random samples. Thus as long as the marginal distri-

bution of x does not depend on the GLM parameters, the log-likelihood and the score

functions do not depend on the marginal distribution of x. Hence the asymptotic

results related to the MLE and likelihood ratio test also hold here. This underlying

assumption is adopted by van der Vaart (2000) (Ch5) when applying MLE consis-

tency in regression examples.
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According to Self and Mauritsen (1988), within the framework of GLM, for every

modelM, the MLE of its parameters pα̂M, β̂Mq converges to pα�M,β�Mq in probability

as n increases, where limit pα�M,β�Mq are the maximizers of the limit of the log-

likelihood,

pα�M,β�Mq � argmaxpα,βq lim
nÑ8

1

n
log fMpYn | α,βq.

In particular, in the true modelMT , pα�MT
,β�MT

q are true parameters which generate

the data.

We consider the same model selection consistency criteria discussed by Fernandez

et al. (2001), Liang et al. (2008) and Bayarri et al. (2012).

Definition 1 (consistency for model selection). Suppose the true model that gener-

ates the data is among the 2p potential models, and we denote it as MT . We say

that the Bayes rule under the 0-1 loss is consistent for model selection if

plimnÑ8 ppMT | Yq � 1 (2.46)

This means that for any model M � MT , plimn ppM | Yq � 0. Hence a

sufficient condition for model selection consistency is that

plimnÑ8 BFMT :M � 8 (2.47)

for any M � MT , assuming fixed prior odds. The counter example in Remark 1

shows that for any fixed g, the consistency for model selection do not hold under the

fixed g-prior for GLMs, thus we focus on results under the CH-g prior. According to

our previous decompositions of the Bayes factors (2.34), it is sufficient to examine

the asymptotic properties of ΛMT :M and ΩCH
MT :M.

We will show in the following lemma that the first term ΛMT :M (2.22) of the Bayes

factor is dominated by the maximized likelihood ratio asymptotically. According to

Self et al. (1992), under the alternative model, the log likelihood ratio between MT

and M converges in distribution to a non-central χ2 distribution.
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Lemma 1. As the sample size n increases, the asymptotic property of

ΛMT :M � fMT
pY|α̂MT

, β̂MT
q

fMpY|α̂M, β̂Mq

�
1� Inpα̂MT

qnc
1� Inpα̂Mqnc

�� 1
2

e
� 1

2

�
Inpα̂MT

qα̂2
MT

Inpα̂MT
qnc�1

� Inpα̂Mqα̂2
M

Inpα̂Mqnc�1

�

is that

1) if MT �M, then ΛMT :M � Op1q;

2) if MT �M, then ΛMT :M � O pecnq, where c is a positive constant.

In addition, under the flat prior ppαMq91, these properties also hold for

Λc�8
MT :M � fMT

pY|α̂MT
, β̂MT

q
fMpY|α̂M, β̂Mq

�
Inpα̂MT

q
Inpα̂Mq

�� 1
2

Proof: see Appendix A.2.3.

The first term ΛMT :M in the Bayes factors can be considered as a measure of

goodness of fit. If the space spanned by the predictors of M does not contain all

predictors in the true model MT , M cannot predict as well as MT . Therefore, the

term ΛMT :M overwhelmingly favors MT by increasing at an exponential rate of n.

On the other hand, when the design space of M contains all predictors in MT , M

has the same ability in explaining the response asMT . Therefore, ΛMT :M alone does

not favor selectingMT against a redundant modelM. In this case, the second term

in the Bayes factors, (2.23) or (2.35), plays a more important role of placing more

penalty on the redundant model. In the case of fixed g, the term p1 � gqppM�pMT
q{2

in ΩMT :M penalizes M for the extra dimensions. However, the counter example in

Remark 1 illustrates that with fixed g, the penalty being imposed on the redundant

model is not strong enough asymptotically. Next, we will focus on the CH-g prior by

exploring the asymptotic properties of ΩCH
MT :M, which yields a stronger penalty on
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the model size. We first study the asymptotic behavior of the analogue of regression

sum of squares (RSS) for GLMs, QMT
and QM in the following lemma.

Lemma 2. Let β�M denote the limit of the MLE β̂M. The asymptotic properties of

QM �
�
β̂TMXT

M

�
Inpη̂Mq

�
XMβ̂M

�
under the true model MT and under any other model M are

1) If MT � Mø, then QMT
� Opnq; for any other model M, if β�M � 0, then

QM � Opnq, and otherwise, QM � Op1q.

2) If MT � Mø, then for any model M, QM � Op1q; and by the definition of Q

under the null model, QMT
� Op1q.

Proof: see Appendix A.2.4

Theorem 1. With fixed hyper parameters a, b ¡ 0 and s ¥ 0, the CH-g prior (2.28)

is consistent for model selection (2.47), except forMT �Mø. In addition, this result

also holds with model specific hyper parameters aM, bM, sM that are independent of

n.

Proof: see Appendix A.2.5

Theorem 1 implies that the CH-g prior is desirable as a model selection prior in

most cases. However, it fails to impose a strong enough penalty in the case where

the null model is true. To resolve this inconsistency, we allow the hyper parameter

a to increase with n, such that

lim
nÑ8

a

n
� a�, where a� ¥ 0. (2.48)

The following theorem shows that when a� ¡ 0, the selection consistency holds under

any MT , including when MT �Mø.
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Theorem 2. With hyper parameters b ¡ 0, s ¥ 0, and limnÑ8 a{n � a� ¡ 0,

the CH-g prior (2.28) is consistent under model selection universally, including the

case where MT �Mø. In addition, this result also holds with model specific hyper

parameters aM, bM, sM, where limnÑ8 aM{n � a�M ¡ 0.

Proof: see Appendix A.2.6

2.4.2 Perfect Fitting with Small Sample

We have demonstrated that the CH-g prior for GLMs is consistent for model selection

with large n. Now we will explore its selection performance with small samples, in

the case of perfect fitting.

In linear regression, Liang et al. (2008) points out that under the Zellner’s g-prior

with any fixed value of g, there exists the following information paradox. In principle,

for n " pM�1, if all the observations fall on a hyperplane (R2 � 1), the Bayes factor

should support model M overwhelmingly over the null model Mø. However, with

any fixed g, the BFM:Mø under the g-prior is bounded. To resolve this information

paradox, the parameter g should be assigned certain hyper prior distributions in fully

Bayes approach, or be estimated by empirical Bayes approach.

Bayarri et al. (2012) provide a formal definition of the information consistency

for priors in model selection. If there exists a sequence of datasets with the same size

n such that the ratio of maximized likelihoods between M and Mø go to infinity,

then their Bayes factors should also go to infinity. The condition of this criteria

describes the perfect fitting phenomenon under model M of a diverging likelihood

ratio, which is precise in linear regression since the estimate for the normal variance in

M is equal to zero, i.e., σ̂2 � 0. However, this form of perfect fitting is not necessarily

true with most GLMs, including logistic regression and Poisson regression. Because

the response variable is discrete, the maximum likelihood under M has an upper

bound being 1, and no matter how minimal the amount of information the null
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model Mø can reveal, its maximum likelihood is always greater than zero. Hence

for discrete distributions in the exponential family, even the GLMs can fit the data

perfectly, their likelihood ratios are bounded. For example, in logistic regression,

suppose model M fits each binary response perfectly, i.e., µ̂i � 1 if Yi � 1, and

µ̂i � 0 if Yi � 0; while the estimates of success probability in Mø are µ̂i � 0.5. The

likelihood ratio

fMpY | α̂M, β̂Mq
fMøpY | α̂Møq

� 4n   8.

We propose to use the fitted variance of all responses being zero to quantify the

perfect fitting phenomenon, that is, under model M,

{VpYiq � 0, i � 1, . . . , n, (2.49)

which is equivalent to fMpY | α̂M, β̂Mq � 8 in normal distribution. While in

the Bernoulli distribution, although the likelihood function is bounded, our criterion

(2.49) precisely describes the perfect fitting phenomenon. When the fitted values of

the expectation of every binary response zEpYiq equals to 0 or 1, the fitted values of

the variances are zero.

Another interesting difference we find between normal linear regression and GLMs

is whether to favor M over the null if perfect fitting occurs, but the sample size is

relatively small. In normal linear regression, as Liang et al. (2008) and Bayarri et al.

(2012) suggest, perfect fitting with any n ¥ pM � 2 is strong evidence to favor M.

However with discrete responses, especially binary ones, perfect fitting is likely to

occur by chance when n is just slightly larger than pM � 1. In this case, the Bayes

factor should not overwhelmingly supportM overMø, unless n is large enough. This

problem is worth noticing because it is not rare in real world applications where p

is close to n, such as genetic studies. In logistic regression or Probit regression, the
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expected information of the i-th linear combination

Inpη̂iq � eη̂i

p1� eη̂iq2 or
φpη̂iq2

p1� Φpη̂iqqΦpη̂iq

converges to zero as η̂i � �8, where φp�q,Φp�q are pdf and cdf of the standard normal

distribution. If perfect fitting occurs under modelM, then InpαMq � 0 and QM � 0.

According to the Laplace approximation of marginal likelihoods, Λc�8
M:Mø

� 8 (2.25).

Since both ΩM:Mø (2.23) and ΩCH
M:Mø

(2.35) are bounded, BFM:Mø diverges under

both g-prior and CH-g prior. In contrast, under the normal prior on the intercept,

because ΛM:Mø is bounded, this problem is resolved. In Section 2.2.3, we recommend

using a proper prior (2.17) on the intercept instead of the commonly used improper

flat prior, to avoid inconsistency with perfect fitting with small n, where the Bayes

factor overwhelmingly supports the larger model.

On the other hand, if perfect fitting occurs under modelM with sufficiently large

samples, it is reasonable to let the BFM:Mø go to infinity. We set the prior variance

of αM proportional to n, so that the normal prior converges to flat prior as n increase

which indicates model M is overwhelmingly favored if it can fit a large sample of

responses perfectly and the estimate of αM is consistent.

2.5 BMA Estimation Consistency

2.5.1 Asymptotic Posterior Estimates

In each model M �Mø, the conditional posterior mean

ErβM | Y, g,Ms � g

1� g
β̂M

does not converge to the limit of the MLE asymptotically with any fixed g. In a fully

Bayes approach, convergence of the posterior distribution of the shrinkage factor

z � g{p1� gq to 1 is a necessary condition for the approximate conditional posterior
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zβ̂M being consistent. Before examining the parameter estimation consistency of

the coefficients, we first study the asymptotic behavior of the conditional posterior

ppz | Y,Mq. in the following propositions. Since these results are studied under

each modelM, they remain true if we allow the hyper parameters aM, bM, sM to be

model specific. For notation simplicity, we omit their subscript M here.

Proposition 3. For the CH-g prior with hyper parameters a ¡ 0, b ¡ 0, s ¥ 0,

if the MLE of its coefficient converges to a non-zero vector β̂M Ñ β�M � 0, then

the conditional posterior distribution of z � g{p1 � gq under any model M �Mø,

converges to 1 in probability

plimnÑ8 p pz | Y,Mq � δ1pzq (2.50)

In particular, if the true model is not null MT �Mø, (2.50) holds under MT .

Proof: see Appendix A.2.7

Proposition 4. For the CH-g prior with hyper parameters b ¡ 0, s ¥ 0, and

limnÑ8 a{n � a� ¡ 0, for any true model MT including MT � Mø, the condi-

tional posterior distribution of the shrinkage factor z � g{p1 � gq under any model

M �Mø converges to 1 in probability, i.e., (2.50).

Proof: see Appendix A.2.8

2.5.2 Parameter Estimation under BMA

Bayesian model averaging (BMA) estimates are widely used to incorporate model

uncertainty. We denote the variable β as the p dimensional vector of coefficients

corresponding to all the potential predictors. In this section, we slightly abuse the

notations βM by redefining that as a p-dimensional vectors filled with zeros for

variables not included in the model such that ηM � X0α0 � VβM. The posterior
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distribution of β under BMA is

ppβ | Yq �
¸
M
ppM | Yq ppβM | Y,Mq, (2.51)

where the marginal posterior distribution under model M can be calculated as

ppβM | Y,Mq �
»
p pβM | Y, g,Mq p

�
g

1� g
| Y,M



d

g

1� g
. (2.52)

To study the parameter estimation performance of the BMA estimates asymptoti-

cally, we propose the following estimation consistency.

Definition 2 (consistency for parameter estimation). The parameter estimation un-

der BMA is consistent if the posterior of β converges to the true parameter in prob-

ability as n increases, i.e.

plimnÑ8 ppβ | Yq � δβ�
MT

pβq. (2.53)

Under BMA, the posterior distribution ppβ | Yq can be decomposed as a weighted

average of the posterior under MT and under other models,

ppβ | Yq � ppMT | Yq ppβMT
| Y,MT q �

¸
M�MT

ppM | Yq ppβM | Y,Mq, (2.54)

To verify the BMA estimation consistency under the CH-g prior, we can use the

results on model selection consistency in Section 2.4.1. When the selection consis-

tency holds, i.e., ppMT | Yq converges to 1, the second term in (2.54) diminishes

in the limit. Hence in this case, we just need to focus on the posterior distribution

of βMT
. On the other hand, when the selection consistency does not hold, which

only occurs where MT �Mø and a � Op1q, we need to examine the limit distribu-

tion of ppβM | Y,Mq under every M. Fortunately, in this case the true parameter

β�MT
� 0. Although shrinkage always exists, the limit of ppβM | Y,Mq remains 0.

Therefore, we have the following theorem.
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Theorem 3. With hyper parameters b ¡ 0, s ¥ 0, and limnÑ8 a{n � a� ¥ 0, the

CH-g prior (2.28) is consistent for parameter estimation of the coefficient under

BMA (2.53). In addition, this result also holds with model specific hyper parameters

aM, bM, sM.

Proof: see Appendix A.2.9

2.5.3 BMA Estimation for a New Case

In addition to the current data tY,Vu, if we have a new case and know the values of

its exploratory variables v P Rp, we want to estimate the mean of it response variable

µ � EpY q under BMA. Under model M, suppose xM � vM � ṽM is the vector of

new predictors after the “centering” step, where ṽM is a pM-dim vector consists of

ṽj,M as in (2.11). The BMA estimate for the mean of the new response is

µ � EpY | v,Y,Vq

�
¸
M
ppM | Yq E �

b1pαM � xTMβM | Y,Mq�
�
¸
M
ppM | Yq

»
b1pαM � xTMβMqppαM | Y,MqppβM | Y,MqdpαM,βMq

where the conditional posteriors of αM and βM are approximated by (2.26) and

(2.52). Similarly to the prediction consistency criterion introduced in Liang et al.

(2008), we define the estimation consistency under BMA for a new case for GLMs.

Definition 3. We say that the BMA estimation µ for a new case v is consistent if

plimn µ � b1pα�MT
� xTMT

β�MT
q, (2.55)

whereMT is the true model, xMT
is the sub-vector of the “centered” new exploratory

variable corresponding toMT , and α�MT
,β�MT

are the true intercept and coefficients.
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We again decompose the BMA estimate µ into the sum of two terms

µ � ppMT | Yq E �
b1pαMT

� xTMT
βMT

| Y,MT q
�

�
¸

M�MT

ppM | Yq E �
b1pαM � xTMβM | Y,Mq� ,

In the following theorem, we find that the BMA estimation consistency for a new

case holds under the CH-g prior.

Theorem 4. With hyper parameters b ¡ 0, s ¥ 0, and limnÑ8 a{n � a� ¥ 0,

the BMA estimation for a new case under the CH-g prior (2.28) is consistent. In

addition, this result also holds with model specific hyper parameters aM, bM, sM.

Proof: see Appendix A.2.10

2.6 Simulation and Real Examples

In Section 2.3.3, we have established theoretical connections between our CH-g prior

and some of the commonly used prior distributions on the hyper parameter g pro-

posed for the g-prior, such as the uniform prior (Wang and George, 2007), the Hyper-

g prior (Liang et al., 2008), the Beta prior (Maruyama and George, 2011) and the

Robust prior (Bayarri et al., 2012). In this section, using both simulation studies

and a real example, we will compare model selection and parameter estimation per-

formance across these hyperpriors of g under our extension of the g-prior for GLMs

(2.16), (2.17). In addition to the above-mentioned approaches, we also examine the

Jeffrey’s prior on g (Celeux et al., 2012), the local empirical Bayes (EB) (Hansen

and Yu, 2001) method, the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC).

In the local EB approach, the estimate of g under each modelM is the maximizer

of the marginal likelihood ppY | g,Mq. Under the Laplace approximation (2.18),
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ĝEB
M is estimated as

ĝEB
M � arg max

g
ppY | g,Mq � max

�
QM

pM
� 1, 0



, (2.56)

and the marginal likelihood is obtained by plugging in this estimate pEBpY |Mq �
ppY | ĝEB

M ,Mq.
Table 2.2: For GLMs: methods to be compared.

a b s comments
CH-g n{2 0.5 0

2 2 0 Uniform prior
2 1 0 Hyper-g
2 0 0 Jeffrey’s prior

n� pγ � 1.5 0.5 0 Beta (Maruyama and George, 2011)
Robust prior, ar � 0.5, br � 1, ρr � 1{p1� pMq

Local EB (Hansen and Yu, 2001)
AIC
BIC

We summarize all these methods to be compared in Table 2.2. For AIC and BIC,

we select the model with smallest AIC and BIC; while for all other methods, we

select the modelM with the highest posterior probability, i.e., maximum a posterior

(MAP) estimate. In order to take into account the model uncertainty, for both

fully Bayes and empirical Bayes methods, we use Bayesian model averaging (BMA)

estimates for the parameter β and exceptions of new responses µ � EpY q. While for

AIC and BIC, these estimates are calculated only based on the selected model.

2.6.1 Default Choice of Hyper Parameters ta, b, su in the CH-g Prior

Before exhibiting the examples, we first give our recommendation on values of the

hyper parameters a, b, s in the CH-g prior. In general, when a or s is large, or when b

is small, the prior concentration of the shrinkage factor z � g{p1� gq is high near 1.
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In this case, little shrinkage is imposed on the posterior estimates of βM. Meanwhile,

this corresponds to high prior concentration of large g, which implies a flat prior on

βM that favors simple models in model selection, and hence is desirable for sparse

problems.

We choose a to be proportional with the sample size n, to allow the CH-g prior

to be consistent for model selection in all circumstances including when MT �Mø

(see Theorem 2). Some popular methods in linear regression such as Zellner and

Siow (1980), the Hyper-g{n prior (Liang et al., 2008), the Beta prior (Maruyama and

George, 2011) also recommend g � Opnq. Actually under the mild assumption (2.45),

the expected information matrix based on all n sample points InpβMq � Opnq. This

suggests that the g-prior on βM depends implicitly on n, and degenerates to a point

mass at zero in the limit. Hence the choice of g � Opnq is essential to avoid having

the g-prior to dominate the likelihood. To eliminates the dependency of the prior

distribution on specific features of model including the sample size n, Bayarri et al.

(2012) proposes the intrinsic consistency of model selection priors, which suggests

that as n increase, the prior distribution ppβM | αM,Mq should be proper. In the

context of g-prior (both for normal linear regression and our extension for GLMs),

the intrinsic consistency means proper prior distribution on g{n in the limit. With

a � Opnq, the CH-g prior yields an implicit g � Opnq choice, in the sense that the

prior expectation

Ep1{gq � B
�
a
2
� 1, b

2
� 1

�
1F1

�
a
2
� 1, a�b

2
, s

2

�
B
�
a
2
, b

2

�
1F1

�
a
2
, a�b

2
, s

2

� ÝÑ b

a� 2
� Op1{nq

To choose the default prior rate a� � a{n, empirical experience indicates no signifi-

cant difference in parameter estimation between a� � 0.5 and 1. To remain objective

and perform well in model selection under both sparse and non-sparse models, we

recommend to use a� � 0.5, i.e. a � n{2.

According to the approximate conditional posterior distribution of the shrinkage
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factor z (2.31), the parameter b in the CH-g prior is updated to b� pM after incor-

porating the data. In addition, b controls the tail behavior of the prior distribution

ppβMq. More specifically, ppβMq has tails similar to a multivariate Student distri-

bution with degrees of freedom b. Our choice b � 0.5 corresponds to a distribution

with even heavier tails than Cauchy. Under this choice, the CH-g prior has vanish-

ing prior influence on the estimation of β, and thus is capable of preserving large

signals. Maruyama and George (2011) also recommends a prior distribution with

flatter tails than Cauchy as their default choice. Bayarri et al. (2012) recommends a

prior with Cauchy tails but not heavier, because they think otherwise it strongly fa-

vors the smaller model, even with minimal sample size. Between the choices b � 0.5

and 1, the following simulation examples reveals no significant difference in BMA

estimation.

The parameter s is updated by the data to s � QM, and therefore serves as

a prior RSS. We recommend s � 0, which implies no information or variation a

priori. In addition, according to our empirical experience, when the parameter a �
Opnq, different values of s yield no significant difference in both model selection and

parameter estimation.

The parameter c is chosen according to the inverse variance of the response that

has mean zero, i.e. c � 1{Vpy0q where Epy0q � b1pθpη0 � 0qq. For example, for both

logistic regression and Probit regression, we let c � 4; while for Poisson regression,

c � 1. Note that as n increases, since the prior variance of the intercept nc goes to

infinity, i.e., choice of c hardly makes a difference with large samples.

2.6.2 Simulations: Logistic and Poisson Regressions

The logistic regression simulation study is based on the simulation example intro-

duced in Hansen and Yu (2003), and the Poisson regression example is based on

the one in Chen et al. (2008). To explain the output Y, p � 5 potential predictors
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V1, . . . ,Vp are considered to be included in the logistic regression model, and p � 3

in the Poisson regression model. Each predictor is drawn from a standard normal

distribution, with pairwise correlation

corpVi,Vjq � r|i�j|, 1 ¤ i   j ¤ p

Here we consider two cases: independent predictors (r � 0) and correlated predictors

(r � 0.75). For each realization, n � 100 and 500 independent samples are generated

for logistic regression and Poisson regression respectively, according to 4 scenarios of

different sparsity of the true underlying models (see Table 2.3 for the intercepts and

coefficients of the true models). For all Bayesian methods, we assign uniform prior

distribution to the model space, i.e., ppMq � 1{2p. We repeat the simulation for

N � 100 times, and compare their performance in model selection and parameter

estimation.

Table 2.3: GLM simulation: four scenarios of true models that generate the simula-
tion data, each represented by the true values of intercept and coefficients pα�,β�q
.

scenario logistic regression Poisson regression
null (0 0 0 0 0 0) (-0.3 0 0 0)
sparse (0 2 0 0 0 0) (-0.3 0.3 0 0)
medium (0 3 2 2 0 0) (-0.3 0.3 0.2 0)
full (0 5 1 1 1 1) (-0.3 0.3 0.2 -0.15)

To access the performance of the MAP estimates in model selection, we examine

the their selection accuracy under the 0-1 loss, by reporting the number of times the

correct underlying models being selected in Table 2.4 and 2.5. The results of both

logistic regression and Poisson regression yield similar trend in comparison across all

methods. In general, we find that the nine methods being compared can be roughly

divided into two groups. The CH-g prior, the Beta prior, the Robust prior and

BIC form the first group, since all of them prefer parsimonious models and hence
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outperform the rest of methods when the true model is sparse, or more extremely, the

null model. In contrast, the second group consists of the uniform prior, the Hyper-

g, Jeffrey’s prior, EB and AIC, all of which prefer complex models and yield more

accurate selection when the true model is the full model. The fact that AIC favors

larger models and BIC smaller models is well studied. Since the model complexity

penalty in the marginal likelihood under EB depends on the model fittingQM, the EB

tends to favor large models. Among the fully Bayes methods, the different preference

in model complexity is mainly contributed by the different prior concentration of g.

Large g corresponds to preference of small models. Since methods in the first group

(except the BIC) indicate g � Opnq a priori, they achieve model consistency, even

when the true model is the null. However, the Bayesian approaches in the second

group such as the Hyper-g perform poorly in this case, which confirms the theoretical

results in Liang et al. (2008). On the other hand, in reality the information about the

underlying true model is usually unavailable, good selection method should be able

to adapt to a wide spectrum of sparsity. Among the methods in the first group, the

CH-g prior performs the most accurately in model selection when data are generated

from the full model.

To evaluate the estimation performance, we report the median SSEpβq � °p
j�1pβ̃j�

β�j,MT
q2 in Table 2.6 and 2.7. Here β̃j represents either the BMA estimates of the

j-th coefficient for all mixtures of g-prior methods, or the MLE of it under the se-

lected model by AIC and BIC; and β�j,MT
is the value corresponding coefficient in

the true model that generates the data. In particular, β�j,MT
� 0 if the j-th predictor

is excluded in the true model. An overall trend of parameter estimation accuracy

among these methods is that the models perform better in model selection also yield

smaller estimation error. Note that the CH-g prior outperforms most methods in

the second group except EB where the true model is the full model in logistic regres-
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Table 2.4: Logistic regression: model selection accuracy under 0-1 loss. Number of
times the true model are selected out of 100. Column-wise largest value is in bold
type.

scenario r C
H
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st

E
B

A
IC

B
IC

null 0 94 33 50 0 95 93 0 40 86
0.75 93 36 55 0 94 93 0 48 90

sparse 0 83 52 59 72 86 75 60 46 86
0.75 83 54 64 74 84 79 65 52 84

medium 0 72 43 51 58 78 77 51 55 89
0.75 48 44 49 50 46 50 48 57 41

full 0 38 69 67 61 30 28 67 51 15
0.75 1 17 13 9 0 0 15 1 0

sion. Furthermore, to evaluate their performance in estimating new cases, we use

the pi� 1q-th dataset as the test set for the model studies by the i-th dataset, where

i � 1, . . . , N . We examine the median SSE loss in the expectation of the response°n
i�1pµ̂i�µi,MT

q2, which we omit here since it shows vey similar pattern to SSEpβq.
Furthermore, we also examine the out-of-sample classification error for logistic re-

gression, which we also omit here since it reveals almost no difference across methods

for this example.

2.6.3 Pima Indians Diabetes Data

We apply the CH-g prior to a real-world problem, the Pima Indians diabetes data,

along with other state of the art approaches that being compared with in Section

2.6.2. The dataset is previously studied using Bayesian model selection approaches

in Bové and Held (2011). It consists of n � 532 independent patients’ records, and

contains information including a binary response of diabetes signs y, and p � 7
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Table 2.5: Poisson regression: model selection accuracy under 0-1 loss. Number of
times the true model are selected out of 100. Column-wise largest value is in bold
type.

scenario r C
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A
IC

B
IC

null 0.00 97 53 64 0 99 96 1 55 96
0.75 99 59 76 0 100 99 1 61 97

sparse 0.00 95 81 86 90 95 94 86 71 95
0.75 97 86 89 94 97 97 89 78 97

medium 0.00 86 84 88 86 89 88 88 81 89
0.75 53 65 61 56 47 54 61 70 49

full 0.00 72 90 88 87 68 71 88 97 63
0.75 17 46 41 34 12 18 41 61 12

potential explanatory variables tX1, . . . , X7u such as number of pregnancies, plasma

glucose concentration, diastolic blood pressure, triceps skin fold thickness, BMI,

diabetes pedigree function and age. To account for multiplicity adjustment, instead

of uniform prior on the model space, we use the Beta-Binomialp1, 1q prior as suggested

by Scott and Berger (2010), i.e., ppMq � 1
p

�
p
pM

��1
. We enumerate all 2p possible

models. In Table 2.8, we show the marginal posterior inclusion probability for each

predictor ppβj � 0 | Yq for j � 1, . . . , p. For the two information criteria methods,

similarly as in Bové and Held (2011), we use e�AIC{2 and e�BIC{2 in the place of the

approximate marginal likelihood and average the posterior marginal inclusion over

all 2p models under the same prior of the model space.

The marginal posterior inclusion probabilities provide us with the knowledge

whether each predictor has significant impact on predicting the binary response.

Comparing different methods, we notice the same trend in overall selection perfor-
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Table 2.6: Logistic regression: median SSE of β:
°p
j�1pβ̂i � β�i q2 � 10 based on 100

realizations. Column-wise smallest value is in bold type. Friedman test shows that
(1) CH-g(50, 0.5, 0) is significantly different from the Beta-prime in all scenarios,
and (2) CH-g(50, 0.5, 0) is significantly different from the robust prior except for
Row 4.

scenario r C
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IC

null 0 0.08 0.08 0.10 0.17 0.04 0.09 0.01 1.04 0.00
0.75 0.08 0.11 0.15 0.24 0.04 0.09 0.01 0.96 0.00

sparse 0 1.70 2.37 2.10 1.93 1.55 1.67 2.13 3.06 1.18
0.75 1.97 3.17 2.67 2.37 1.78 1.94 2.67 4.22 1.06

medium 0 8.21 10.20 8.53 6.72 8.19 8.61 6.82 10.47 7.68
0.75 35.59 25.47 21.40 24.97 37.23 37.81 21.28 42.35 51.16

full 0 23.75 29.70 25.30 22.06 24.41 24.35 22.46 26.36 34.52
0.75 67.25 45.30 38.87 40.50 71.08 72.80 38.39 101.58 108.97

mance as in the previous simulation studies. The methods in the first group (the

CH-g, the Beta-prime prior, the robust prior and BIC) prefer smaller models while

those in the second group (the Uniform prior, the Hyper-g, Jeffreys’ prior, EB and

AIC) are in favor of larger models. As to individual predictors, all different methods

agree to include X1, X2, X5 and X6. According to most methods, X7 also should be

included, while X4 can be excluded. For X3, it is not clear whether it should be

included.

We also examine the out-of-sample BMA estimation performance by ten-fold

cross validation. Due to the somewhat high variability of Bernoulli distribution,

almost no significant difference in classification error can be revealed. In this case,

we recommend to use our CH-g prior, since most of the methods we compared here

are actually special cases of it.
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Table 2.7: Poisson regression: median SSE of β:
°p
j�1pβ̂i�β�i q2�1000 based on 100

realizations. Column-wise smallest value is in bold type. Friedman test shows that
(1) CH-g(50, 0.5, 0) is significantly different from the Beta-prime in all scenarios; (2)
CH-g(50, 0.5, 0) is significantly different from the robust prior except for Row 4, 5;
(3) AIC is highly right skewed in Row 1, 2.

scenario r C
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null 0 0.03 0.28 0.37 0.93 0.02 0.04 0.04 0.00 0.00
0.75 0.02 0.32 0.42 1.00 0.01 0.03 0.03 0.00 0.00

sparse 0 1.58 3.06 2.67 2.05 1.42 1.67 2.44 2.93 1.00
0.75 1.87 4.69 3.75 3.09 1.95 1.99 3.28 1.98 1.42

medium 0 4.56 5.14 4.90 4.81 4.54 4.52 4.77 5.89 3.79
0.75 26.05 18.40 18.69 22.48 29.74 24.73 18.94 9.66 41.85

full 0 10.26 8.25 8.44 8.67 11.36 10.42 8.45 6.07 10.62
0.75 48.66 35.03 34.20 37.01 51.96 48.14 33.94 27.04 66.11

2.7 Conclusion

In this chapter, we present a wide class of mixtures of g-priors, the CH-g prior,

which extends several commonly used mixtures of g-priors to GLMs. We show in

theoretical studies that the CH-g prior satisfies asymptotic criteria such as model

selection consistency and parameter estimation consistency under specific choices of

the hyper parameters.

We also propose a more generalized framework using the CCH prior, which en-

compasses but only CH-g prior itself, but also some hyper priors on g that are not

special cases of CH distribution as well. One direction of our future work is to under-

stand the theoretical and empirical performance of for GLMs with the CCH hyper

prior.

Since our CH-g prior yields marginal likelihoods in tractable form, it has the ad-
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Table 2.8: Pima Indian diabetes data: marginal posterior inclusion probability.
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X1 0.966 0.981 0.980 0.978 0.960 0.958 0.980 0.990 0.946
X2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
X3 0.290 0.536 0.507 0.471 0.221 0.196 0.506 0.684 0.100
X4 0.281 0.516 0.488 0.453 0.216 0.193 0.487 0.662 0.103
X5 0.998 0.999 0.999 0.999 0.998 0.998 0.999 0.999 0.997
X6 0.995 0.998 0.998 0.998 0.993 0.993 0.998 0.999 0.987
X7 0.580 0.785 0.764 0.737 0.503 0.479 0.764 0.884 0.334

vantage of computational efficiency in comparing models based on Bayes factors. We

study its selection and estimation performance empirically using data with relatively

small p, where enumerating the entire model space is feasible. However, when p in-

creases (e.g. larger than 25), it is almost impossible to visit all potential models. In

this case, we plan to incorporate stochastic search algorithms such as Bayesian adap-

tive sampling (Clyde et al., 2011), that may incorporate the approximate marginal

likelihoods, and thus avoid computationally expensive model search alternatives such

as reversible jump MCMC (Green, 1995).
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3

The Local Rotation Invariant Prior

3.1 Introduction

In real world applications, the number of potential predictors in linear regression

can be very large, while the response may be related to only a small proportion

of all the predictors. Selecting one model and making inferences solely based on it

ignores model uncertainty. Bayesian model averaging (BMA) (Hoeting et al., 1999)

addresses model uncertainty (Clyde and George, 2004) by averaging the quantity of

interest across all possible models, and thus often achieves more precise parameter

estimation and prediction.

Zellner’s g-prior (Zellner, 1986) and mixtures of g-priors (Liang et al., 2008)

are commonly used for Bayesian model selection and model averaging, because of

their computational efficiency and consistency (under regulatory conditions). Among

mixtures of g-priors, the Zellner-Siow prior (Zellner and Siow, 1980) is considered a

benchmark for BMA (Carvalho et al., 2009). The g-priors and mixtures of g-priors

have an advantage of being invariant to linear transformations of the linear predictors.

However, their inherent instability from ordinary least squares estimate (OLS) leads
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to their poor estimation accuracy when XTX is nearly singular. Moreover, according

to Maruyama and George (2011), the g-prior imposes unwanted shrinkage towards

zero along larger principle components, which is counter-intuitive.

Ridge regression (Hoerl and Kennard, 1970), the lasso (Tibshirani, 1996) and

Bayesian shrinkage approaches such as the horseshoe estimator (Carvalho et al., 2010)

use penalization methods to handle highly correlated design matrices. Simulation

studies in Tibshirani (1996) suggest that ridge regression outperforms the lasso when

regression coefficients are small and covariates are highly correlated. Ridge regression

is invariant to orthogonal rotation of the coordinate system, while the lasso and the

horseshoe prior are not, which requires that we should specify a coordinate system

of interest. In terms of model selection, the lasso has the advantage over ridge

regression, as it can shrink coefficients to exact zeros through modal estimators.

However, lasso’s selection procedure cannot be validated by optimizing any explicit

loss or utility function, since the estimate of its tuning parameter λ is obtained via

cross validation. The same issue exists for all the continuous Bayesian shrinkage

priors without positive masses at zeros, including the horseshoe.

Since ridge regression and the lasso cannot uniformly dominate each other, the

elastic net (Zou and Hastie, 2005) has been proposed to combine their strengths

by using a mixture of L1 and L2 penalties on the coefficients. The elastic net can

be considered as a stabilized generalization of the lasso, which is able to shrink

coefficients to exact zeros while resolving the problems the lasso has with highly

correlated predictors. Although globally predicting more accurately than the lasso,

the elastic net loses to ridge regression empirically when oracles are non-sparse.

In addition to the elastic net, some other penalization methods also incorporate

both L1 and L2 penalties. For example, the group lasso (Yuan and Lin, 2006)

targets regression problems with known group structures among covariates, such as

multilevel factors. By imposing an intermediate between L1 and L2 penalties, the
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group lasso enjoys the desirable property of selecting predictors in the same group

together.

Motivated by these methods, we propose an alternative fully Bayes approach that

shrinks coefficients to zero more efficiently than the lasso in sparse cases, yet performs

as well as ridge regression in non-sparse cases. We assign a Dirichlet Process (DP)

mixture hyperprior, which naturally induces groups among coefficients, and uses a

rotation invariant prior within each group. Compared with the group lasso, this

approach does not require pre-specified group structure, and takes into account the

uncertainty of groups.

Section 2 introduces our Local Rotation Invariant (LoRI) prior. We illustrate its

adaptivity to both sparse and non-sparse regressions by examining its marginal and

joint shrinkage properties. We also demonstrate that LoRI has bounded influence,

which ensures its ability to preserve large signals. Section 3 details the Markov

chain Monte Carlo procedure we implement for posterior computation. Section 4

compares parameter estimation accuracy of LoRI and other widely used methods

including the horseshoe, the Bayesian lasso, g-prior, mixtures of g-prior, the lasso

and ridge regression on two simulation examples. Section 5 shows LoRI’s prediction

accuracy on a protein activity dataset. Section 6 contains a discussion and direction

of future work.

3.2 The Local Rotation Invariant Prior

In linear regressions, responses yi are predicted by a linear combination of p-dimensional

explanatory variables xi � pxi,1, . . . , xi,pqT with an independent Gaussian noise:

yi � α �
p̧

j�1

xi,jβj � εi, εi
iid� N

�
0,

1

φ



, i � 1, . . . , n (3.1)
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where α is the intercept and β � pβ1, . . . , βpqT are the regression coefficients. The

precision parameter φ equals the inverse variance of the errors. Without loss of

generality, we assume that Y � py1, . . . , ynqT and columns of design matrix Xj �
px1,j, . . . , xn,jqT , j � 1, . . . , p are centered and furthermore Xj are also scaled to have

norm 1.

According to Diaconis and Ylvisaker (1985), in the exponential families, any

prior distribution can be well approximated by finite mixtures of conjugate priors.

In linear regressions, scale mixtures of normals priors can be denoted as mixtures of

(normal-gamma) conjugate priors, with a distribution placed on the precision of the

normal distribution. A popular alternative is to assign Dirichlet process (DP) priors

on hyper parameters, which automatically induces discrete mixtures of conjugate pri-

ors. These DP mixture models achieve flexible mixtures by circumventing parametric

specification of hyperpriors. Furthermore, the DP induces a discrete structure, which

yields an automatic grouping among coefficients. For example, MacLehose and Dun-

son (2010) proposes a DP mixture model to shrink coefficients into a small number

of clusters.

We propose a Local Rotation Invariant (LoRI) prior. This semi-parametric

shrinkage prior can be considered as a mixture of normals with a DP hyperprior

on the normal variances, i.e.,

βj | ωj ind� N p0, ωjq (3.2)

ωj � D (3.3)

D | m,D0 � DPpm D0q (3.4)

D0pω | φ, ρq �
» 8

0

IG

�
ω;

1

2
,
η2

2



�
"
p1� ρqδ0pωq � ρ C�

�
η; 0,

1?
φ


*
dη (3.5)

Each dimension βj has conditionally independent normal prior with mean zero and

variance ωj. The hyper variance parameters ωj are assigned a random prior prob-
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ability measure D. This unknown measure D is further assigned a prior measure

DPpm D0q, where the base measure D0 corresponds to our best prior guess for D

and the DP precision parameter m controls the similarity between D and D0.

3.2.1 Independent Cauchy versus Multivariate Cauchy

After marginalizing D out, our DP mixture prior has the Polya Urn (Blackwell and

MacQueen, 1973) representation:

ωk�1 | ω1, . . . , ωk,m,D0 � m

m� k
D0 �

ķ

h�1

1

m� k
δωh , (3.6)

which iteratively gives the prior distribution of ωk�1 conditional on the previous

parameters tω1, . . . , ωku, for any k � 0, . . . , p�1. Because some ωj can take the same

values, the Polya Urn scheme (3.6) implies the prior dependency among tω1, . . . , ωpu.
In this sense, tβ1, . . . , βpu are also dependent a priori. Suppose there are K distinct

values tω�1 , . . . , ω�Ku, where each of them has independent D0 prior; then the original

p parameters can be clustered to K different groups, such that all the parameters in

the k-th group tωk1 , . . . , ωkmk u take the value ω�k . Denote a vector of group indicators

as c � pc1, . . . , cpqT , where cj � k if and only if ωj � ω�k , for j � 1, . . . , p.

Given the group structure c, the marginal prior of the jth regression coefficient

βj can be decomposed as the following hierarchical form after introducing a latent

variable η�cj :

βj | c,ω� ind� Np0, ω�cjq (3.7)

ω�cj | η�cj
ind� IG

�
1{2, η�2

cj
{2
	

(3.8)

with hyperprior

η�cj
iid� p1� ρq δ0 � ρ C�

�
0,

1?
φ



(3.9)
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Here we generalize the Inverse Gamma distribution with scale parameter being zero

to represent degenerate distribution of positive point mass at zero. After integrating

ω�cj out in (3.7) and (3.8), the marginal prior on βj becomes a univariate Cauchy

distribution with scale parameter η�cj :

βj | c, η�cj � Cpβj; 0, η�cjq (3.10)

With tails heavier than a normal distribution, Cauchy priors, along with other

prior distributions in the Student t family, are considered more robust and can bet-

ter adapt to large signals. Jeffreys (1961) justifies the use of the Cauchy prior on

normal location parameters in terms of information consistency, which suggests that

the Bayes factor on testing location against zero goes to infinity if the observations

are overwhelmingly far from zero. Dawid (1973) shows that under the Cauchy prior,

the posterior mean of a normal location parameter converges to the observation as

the observation goes to infinity. Therefore, in Bayesian model selection and model

averaging, Student t distributions, especially the Cauchy distribution, are used con-

ventionally as prior distributions on regression coefficients. For example, Zellner and

Siow (1980) proposes a multivariate Cauchy prior distribution on regression coeffi-

cients. Tipping (2001) applies independent Student t prior distributions whose scale

parameters and degrees of freedom are small to sparse problems.

We find that as shrinkage priors for multi-dimemsional coefficients, independent

univariate Cauchy distribution performs differently from multivariate Cauchy distri-

bution. We will illustrate this property of the shrinkage prior ppβq in the framework

of penalized regression, whose estimate is obtained by minimizing the sum of squared

errors (SSE) and a penalty fpβq,

β̂f � arg minβ

#
ņ

i�1

pyi � xTi βq � fpβq
+
. (3.11)

In particular, the maximum a posteriori (MAP) estimate under prior ppβq equals
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β̂f if fpβq � � 2
φ

log ppβq. For example, independent normal priors and independent

double exponential (Laplace) priors are Bayesian counterparts to ridge regression

and the lasso respectively.

We first show the bivariate contour plots of the negative logarithm of prior den-

sities of independent double exponentials and independent normals in the two upper

panels of Figure 3.1. Between ridge regression and the lasso, the latter can yield

sparse solutions while the former cannot. From a Bayesian point of view, this dif-

ference of their posterior solutions lies in the shapes of their prior densities. The

diamond-shaped contours indicate that the double exponential priors place more

probability mass along the axes, where one regression coefficients is set to zero. In

contrast, the circular contours imply that the independent normal priors place equiv-

alent probability in all directions rather than favoring the directions along the axes.

With respect to shrinking all directions equally, the difference between univariate

independent Cauchy and multivariate Cauchy distributions resembles that between

the lasso and ridge regression (see the lower two panels in Figure 3.1). The contours

of independent Cauchy priors are somewhat round near the origin, which is similar

to the contours of ridge regression and the lasso combined. However, as the norm

}β} increases, it gradually becomes star-shaped, which suggests that the independent

Cauchy prior distribution imposes even stronger shrinkage than the lasso towards the

axes. On the contrary, the contour shape of a bivariate Cauchy distribution remains

circular, which indicates equal shrinkage along all directions.

When considered as scale mixtures of normal distributions, the independent

Cauchy priors have different hyper parameters governing the prior variance of ev-

ery dimension. These different parameters contributes to heterogeneous amounts of

shrinkage along each regression coefficients. Given the group structure induced by

DP, for any pair of parameters pβj, βj1q, if they belong to different groups, their have
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Figure 3.1: Contour plots of � log ppβ1q versus � log ppβ2q. From upper left to
lower right, β1 and β2 are independent and identically distributed as Laplacep0, 1q,
Normalp0, 1q, independent Cauchyp0, 1q, bivariate Cauchyp0, 1q.

conditionally independent Cauchy prior:

ppβj, βj1 | η�, cj � cj1q �
»
ppβj | ω�cjqppω�cj | η�cjqdω�cj �

»
ppβj1 | ω�cj1 qppω�cj1 | η�cj1 qdω�cj1

� Cpβj; 0, η�cjq � Cpβj1 ; 0, η�cj1 q

On the other hand, if regression coefficients βj and βj1 belong to the same group

(cj � cj1), then their conditional joint prior is a bivariate Cauchy:

p

��
βj
βj1



| η�, cj � cj1



�
»

N

��
βj
βj1



; 0, ω�cjI



IG

�
ω�cj ; 1{2, η�2

cj
{2
	
dω�cj

� C2

��
βj
βj1



; 0, η�2

cj
I



Because this bivariate Cauchy has circular contours, it does not favor sparse models

a priori. Furthermore, this prior can be considered as a scale mixture of normals

with a single variance parameter, which alone controls the magnitudes of shrinkage

in all dimensions.
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3.2.2 Local Rotation Invariance

To rigorously differentiate between the independent and multivariate Cauchy prior

distributions, we adopt the concept of rotation invariance. We note that the spar-

sity of regression problems changes under transformation of design matrices. For

example, an orthogonal rotation U of the coordinate systems X

Y � Xβ � ε � pXUqpUTβq � ε (3.12)

transforms the predictors X to XU, and the vector of coefficients β to UTβ. If

under the original design the true model is sparse, i.e., some of the true coefficients

β0 are zeros, then after the rotation all dimensions in UTβ0 are probably nonzero.

We say a prior distribution ppβq is rotation invariant if ppUTβq has the same prior

density. Such priors place similar amount of shrinkage before and after the rotation

of coordinate systems. In contrast, rotation variant priors such as the independent

double exponential cannot achieve sparse solution in all coordinate systems. In

particular, in group selection problems, rotation invariant priors are assigned to

regression coefficients in the same group, so that all the predictors in the same group

are imposed similar amounts of shrinkage. For example, the group lasso (Yuan and

Lin, 2006) has a local L2 penalty within each group.

Conditional on the group structure c, we denote βpkq � pβk1 , . . . , βkmk qT as the

vector that consists all coefficients in the kth group. Rewrite LoRI prior (3.2)-(3.5)

in a hierarchical form for the kth group

βpkq | ω�k � N p0, ω�kImkq

ω�k | η�k � IG

�
1

2
,
η�2
k

2




After integrating ω�k out, we obtain a mk dimensional multivariate Cauchy distribu-
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tion as the prior for the coefficient in group k, i.e.,

p
�
βpkq | η�k

�9 1

|Σpkq|1{2
�
1� β1pkqΣ�1

pkqβpkq
�p1�pkq{2

with Σpkq � η�2
k Imk . For any positive η�k , this corresponding penalty term of βpkq

has spherical contours. This implies that the multivariate Cauchy prior with a single

scale parameter is rotation invariant. Therefore, conditional on the group structures,

our method assigns a spherical multivariate Cauchy prior to the vector of coefficients

in each group, which has a “local” rotation invariance property. Without loss of

generality, suppose the the order of regression coefficients and their corresponding

predictors are rearranged according to the groups,

β � �
βTp1q, . . . ,β

T
pKq

�T
X � �

Xp1q, . . . ,XpKq
�

If we rotate the predictors in each group βpkq by an mk�mk orthogonal matrix Upkq,

which transforms the regression model (3.14) to

Y � Xp1qβp1q � . . .�XpKqβpKq � ε

� �
Xp1qUp1q

� �
UT

p1qβp1q
�� . . .� �

XpKqUpKq
� �

UT
pKqβpKq

�� ε,
then after the rotation, ppUT

pkqβpkq | η�kq remains the same multivariate Cauchy den-

sity. Thus our prior can be considered locally rotation invariant in this sense.

We visualize the prior contours of β in a simple case that only contains three

covariates. Suppose the first two coefficients are in the same group and the third

coefficient is in a different group, ω1 � ω2 � ω�1 and ω3 � ω�2 . Table 3.1 shows

its 3D contour plot, where x, y, z axes represent β1, β2, β3 respectively. Specifically,

2D contours on the horizontal hyper plain of β1 vs β2 have circular shapes and 2D

contours on the vertical hyper plain of β1 vs β3 or β2 vs β3 have the contour shapes

of 5 Cauchy distributions, round in the inside and star-shaped in the outside.
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Table 3.1: 3D Contour plots of pβ1, β2, β3q with η�1 � 1 and η�2 � 1.

β1 vs β2

β1 vs β3

β2 vs β3

The local rotation invariant structure of LoRI can also be shown from the penal-

ized regression perspective. The corresponding penalty term in (3.11) for LoRI can

be written as

β̂ � arg minβ

#
ņ

i�1

pyi � x1iβq �
Ķ

k�1

h
�
βpkq, η�k

�+
, (3.13)

where hpx, ηq is the negative logarithm of multivariate Cauchy density with Σ � η2I.

The penalty term in (3.13) has a similar form to the group lasso’s penalty term.

However, our model is different from the group lasso in the following three aspects.

First, the group lasso is designed for group selection with pre-specified group

structures among covariates, while LoRI aims to solve more general questions, in-

cluding the ones without known group information. In fact, LoRI is even capable

of revealing group structures among covariates, according to the strength of their

impacts on the response variable, rather than their correlation with each other. (See

the simulation example in Section 3.4.2.)

Second, LoRI takes into account the uncertainty of group structures. Consider
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two very extreme cases: i) all covariates exist in the same group or ii) each covariate

forms its own group. In the former case, LoRI is equivalent to a mixture of a ridge

estimator with hyperprior Gp1{2, 1{2q assigned on the normal precision parameter

and a point mass at the origin. This case appears when all covariates have similar

strength in predicting the response. LoRI degenerates to a rotation invariant prior

in this case, which is desirable since it imposes the same amount of shrinkage on each

dimension. In the latter case, LoRI performs the same as independent mixtures of

univariate Cauchy distributions and point masses at zeros. Therefore, when covari-

ates are heterogeneous in prediction, LoRI treats each dimension differently and is

capable of yielding sparse solutions.

Finally, while the group lasso only has one tuning parameter for all the groups,

LoRI has different parameters η�k to control shrinkage for each group. This flexibility

yields different amounts of shrinkage that can better adapt to the data.

3.2.3 Point Mass at Zero

According to the base measure D0 (3.5), ωj has a “spike and slab” type marginal

prior, which is a mixture of point mass at zero with weight 1 � ρ and a continuous

distribution with weight ρ. Since the positive probability mass at zero on ωj implies

a positive probability mass at zero on βj, each regression coefficient βj can be consid-

ered as having a “spike and slab” prior marginally. The positive point mass at zero

component in the prior leads to multiple shrinkage (George, 1986) in the Bayesian

model averaging estimator. Given the group structure c, the point mass at zero in

the prior of ω�k yields to a positive posterior probability on the models which do not

contain the whole vector of the coefficients in the kth group βpkq.

Furthermore, the point mass at zero enable LoRI to have valid selection rules

that can be justified by optimizing certain loss functions. For example, by using

the posterior median estimator which minimizes the L1 loss, some predictors can be
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excluded from the model if the majority of samples drawn from their posterior dis-

tributions are zeros. In this way, LoRI prior can be considered as a variable selection

prior. On the other hand, according to Tipping (2001), independent Cauchy priors

with small scale parameters can also yield strong shrinkage. However, without the

point mass at zero, the shrinkage prior that only consists of continuous distributions

ignores uncertainty in the model space, even though it may achieve sparse point

estimates under the posterior mode.

3.2.4 Robustness to Large Coefficients

LoRI achieves a balance between shrinking trivial coefficients to zeros and preserving

large ones. We will demonstrate in the following special case of orthonormal design

that LoRI’s prior influence is bounded and vanishes in the limit.

Orthonormal designs have tractable analytical forms under many penalized re-

gression methods, and can be obtained in real world applications from well-designed

experiments or in signal processing applications using XXT � I wavelets, for example

Clyde and George (2004). Suppose X is a squared orthogonal matrix (XTX � I).

Then the regression model (3.1) can be transformed into the following form by a

rotation

XTY � XTXβ �XTε, (3.14)

where XTε remains a vector of independent Gaussian errors with the same variance

1{φ. Notice that the response vector after the transformation XTY equals the max-

imum likelihood estimate β̂. Thus (3.14) can be rewritten as independent normal

observations β̂j with different locations βj and a common precision parameter φ

β̂j � βj � ej, ej
iid� N

�
0,

1

φ



, for j � 1, . . . , p. (3.15)

Therefore, if the number of potential predictors p in an orthogonal-designed linear

regression equals the sample size n, it can be represented in the form of (3.15). We

58



call this special case the normal means case, which includes many common models.

For example, a random effect model

zj,r � Npβj, σ2q,

where zj,r is the rth observation within the jth subject, for r � 1, . . . ,m, can be

obtained by substituting β̂j in (3.15) with the sufficient statistics z̄j, the sample

mean of tzj,1, . . . , zj,mu, and changing the variance 1{φ to σ2{m accordingly. In

addition, nonparametric regressions that naturally have orthonormal bases such as

splines and wavelets can also be represented in the format of model (3.15).

For the normal means case, Bayesian shrinkage methods such as the empirical

Bayes approach (Clyde and George, 2000; Johnstone and Silverman, 2004) and the

horseshoe (Carvalho et al., 2010) were originally created to estimate sparse signals

among βj’s while eliminating the disturbance caused by background noise.

We can use the normal means case (3.15) to illustrate the shrinkage mechanism of

LoRI. Under standard normal errors, i.e. φ � 1, the marginal conditional posterior

mean is

E
�
βj|β̂,ω

�
�
�

1� 1

ωj � 1



β̂j (3.16)

The term enclosed in the parentheses in (3.16) takes value on interval r0, 1q and can be

considered a shrinkage factor. Small ωj indicates a high prior concentration around

zero, which results in a small shrinkage factor which suggests strong shrinkage. In

particular, ωj � 0 shrinks the posterior mean of the location parameter to exact

zero. On the other hand, large ωj indicates a large dispersion in prior density, which

associates with a shrinkage factor close to 1 and thus avoids over-shrinking a large

signal.

According to the Polya Urn scheme (3.6), the marginal prior on the first parame-

ter ω1 equals to exactly the base measure D0. Because of exchangeability, (3.6) holds
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under all permutation of the order among ωj. Therefore, for any j � 1, . . . , p, the

marginal prior measure of LoRI for ωj is also D0.

For the normal means case, Dawid (1973), Pericchi and Smith (1992), Pericchi

and Sanso (1995), and Carvalho et al. (2010) show that certain heavy tail priors such

as the double exponential prior, the Student t prior and the horseshoe have bounded

influence. According to the following theorem, marginally, LoRI also has bounded

prior influence. Furthermore, LoRI’s prior influence vanishes for large observation in

the limit.

Theorem 5. Suppose β̂j � βj�ej and ej � Np0, 1{φq, where the location parameters

βj are unknown and the precision parameter φ is known. Then according to LoRI,

the marginal prior on βj

p1� ρqδ0pβjq � ρ

» 8

0

» 8

0

N pβj; 0, ωq � IG

�
ω;

1

2
,
η2

2



� C�

�
η; 0,

1?
φ



dηdω, (3.17)

1) has bounded prior influence Epβj|β̂jq � β̂j, for any β̂j P R;

2) Prior influence vanishes for large β̂j:

lim
|β̂j |Ñ8

Epβj|β̂jq � β̂j � 0 (3.18)

Proof: see Appendix B.1.

3.2.5 Hyper Priors and Parameters

On the choice of hyperpriors, Gelman (2006) suggests using a half-t prior on the

hierarchical normal standard deviation parameter; the horseshoe has half-Cauchy

priors on both the local and the global scale parameters (Polson and Scott, 2012) .

According to (3.5), we take the priors of the scale parameters ηj in the continuous

component of D0 to be half-Cauchy distributions with the common scale 1?
φ
, which
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can adapt to different variations in the observation errors. Because of the flexibility

achieved by the DP structure, LoRI does not require another hierarchy of a global

shrinkage parameter.

The marginal inclusion probability ρ controls the model size. We assign a hyper-

prior ρ � Betapaρ, bρq with hyper parameters aρ � 1 and

bρ � pc,

where c takes value between 0 and 1. Choices of c reflect different prior beliefs

in model sparsity. In the case of c � 0, the prior on ρ degenerates to a uniform

distribution on p0, 1q, which implies that on average half of the covariates should be

included. In the case of c � 1, the prior mean of ρ decreases to p{p1 � pq, which

yields a more sparse solution with a model size close to 1. This choice is desirable to

solve sparse problems, where expected model sizes do not increase with p. Without

prior knowledge of the sparsity of the true model, we avoid specifying extreme values

such as 0 or 1 on hyper parameter c. Instead, we recommend default value c � 1{2,

which allows LoRI to better adapt to different model size p and sparsity.

The Polya Urn Schemes (3.6) indicates that the DP precision parameter m con-

trols the number of different values among tω1, . . . , ωpu. Larger m yields more clus-

ters, since ωk�1 is more likely to differ from ω1, . . . , ωk; and vice versa. In the

absence of prior information on the number of clusters, we recommend a hyperprior

m �Gammapam, bmq with am � bm � 1.
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3.3 Posterior Computation

In a stick-breaking representation, the posterior of ωj:

P pωjq �
8̧

k�1

pk � δω�k pωjq (3.19)

pk � vk
¹
l k
p1� vlq (3.20)

vk
iid� Betap1, αq, k � 1, 2, . . . (3.21)

where ω�k are posterior samples of ωj as if under the same prior in the base mea-

sure D0. Conventional sampling algorithms for the DP prior such as the blocked

Gibbs sampler (Ishwaran and James, 2001) truncate (3.19) to a finite number of

components, which treat the DP models as finite mixture models. Some new DP

sampling approaches circumvent the unnecessary finite truncation step and remain

simple to implement. We apply the exact block Gibbs sampler algorithm proposed

by Papaspiliopoulos (2008), which combines the ideas of two efficient algorithms

for non-parametric model sampling: retrospective sampling (Papaspiliopoulos and

Roberts, 2008) and slice sampling (Walker, 2007). To draw posterior samples of the

DP precision α, we apply the Gibbs sampler by introducing an auxiliary variable

(Escobar and West, 1995).

We marginalize β out to improve MCMC mixing. Since closed forms of full

conditionals are not available, we use the Metropolis-Hastings algorithm within the

Gibbs sampler. We use a Gaussian random walk proposal to sample the conditional

posterior of pω�k , η�kq and φ. To obtain appropriate value of proposal variance, we

apply the adaptive Metropolis (AM) algorithm (Haario et al., 2001), whose choice

of proposal variance depends on historical draws of posterior samples. Although

the adaptive Metropolis is not Markovian, this tuning free algorithm still achieves

ergodicity.
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Because parameters are updated univariately, the AM chain can get stuck in local

modes, especially when covariates are highly correlated. To resolve this problem, a

simple random swap step (Ghosh and Clyde, 2011) is added in each iteration of the

AM chain. For a pair of highly correlated covariates tXi, Xju where only one of

their η being zero, we propose to swap the values of their corresponding parameters

pωi, ηiq and pωj, ηjq with a small probability.

Detailed posterior sampling steps are listed in Appendix B.2.

3.4 Simulation Studies

3.4.1 Normal Means

The empirical Bayes method proposed by Johnstone and Silverman (2004) is consid-

ered a benchmark among shrinkage priors for detecting sparse signals. Carvalho et al.

(2010) compares it with the horseshoe prior in the following simulation design. Sup-

pose n � 250 independent observations β̂i are drawn independently from Npβi, 1q.
The true values of the location parameters βi are generated from independent mix-

tures of a Student t distribution tξp0, 3q with weight w and a point mass at zero with

weight 1 � w. Combinations of different levels of model sparsity w P t0.05, 0.2, 0.5u
and signal strength ξ P t2, 10u are examined. For each combination 500 simulated

datasets are generated.

We compare LoRI with both the horseshoe and empirical Bayes on the above

simulated data. Empirical results suggest that different choices of priors on model

precision φ do not lead to significant differences in posterior inferences. In fact, the

reference prior ppφq91{φ and half-Cauchy prior on the inverse squared root of φ yield

almost identical posteriors. Without loss of generality, we report the results under

the half-Cauchy prior, which is a proper prior.

Similar to the horseshoe approach, we first use the posterior means as our default

estimates for βi. Table 3.2 shows the L2 loss from the 500 independent simulations.
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Table 3.2: Simulation study of normal means case: median sum of squared errors
(SSE),

°n
i�1pβi � β̃iq2, from 500 simulations. β̃i are posterior mean estimators for

LoRI and the horseshoe. We use bootstrap with 500 samplings to estimate the
corresponding standard errors of medians and report them in parentheses. Column-
wise smallest error is in bold type.

w � 0.05 w � 0.2 w � 0.5
ξ 2 10 2 10 2 10

LoRI 27 (0.6) 30 (0.7) 90 (1.3) 91 (1.2) 175(1.6) 174 (1.4)
Horseshoe 31 (0.5) 30 (0.8) 98 (0.8) 94 (1.0) 174 (0.9) 199 (3.3)

Empirical Bayes 29 (0.8) 33 (1.0) 113 (1.8) 124 (2.0) 388 (4.5) 441 (6.4)

The empirical Bayes method almost systematically yields largest estimation errors.

Between LoRI and the horseshoe, LoRI performs as accurately as the horseshoe

in the sparse small signal scenario pw � 0.05, ξ � 10q and non-sparse large signal

scenario pw � 0.5, ξ � 2q, and achieves smaller errors than the horseshoe in all other

scenarios. Both methods have heavy tailed priors with high concentrations near

zero, and thus are able to both shrink noises and preserve large signals. The left

panel of Figure 3.2 compares these three methods in the sparse large signal scenario

pw � 0.05, ξ � 2q. Similar to the empirical Bayes and the horseshoe, LoRI estimates

for large signals remain almost identical to the observed values, which agrees with

the bounded influence property. For small observations, LoRI shrinks them severely

to almost zeros. Thanks to the positive mass at zero, LoRI has flatter posterior

slopes near the origin, which indicates better handling of noise in sparse scenarios.

On the other hand, in non-sparse scenarios, LoRI’s local rotation invariant property

makes it perform similarly to ridge regression, and thus avoids over sparse solutions.

The posterior median estimate used by the empirical Bayes method is not op-

timal for L2 loss, which explains the systematically large errors from the empirical

Bayes method in Table 3.2. For a fair comparison, we also explore posterior me-

dian estimates for the two fully Bayes methods, LoRI and the horseshoe, and report
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Figure 3.2: Simulation study of normal means case: observations β̂j vs posterior
estimates of location parameters β̃j, from one simulation in scenario w � 0.05, ξ � 2.
Grey line and dots are 45-degree diagonal line and values of observations. Left:
posterior mean estimator for LoRI and the horseshoe. Right: posterior median
estimator for LoRI and the horseshoe.
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Table 3.3: Simulation study of normal means case: median sum of absolute errors
(SAE),

°n
i�1 |βi � β̃i|, from 500 simulations. β̃i are posterior median estimators for

LoRI and the horseshoe. We use bootstrap with 500 samplings to estimate the
corresponding standard errors of medians and report them in parentheses. Column-
wise smallest error is in bold type.

w � 0.05 w � 0.2 w � 0.5
ξ 2 10 2 10 2 10

LoRI 16 (0.3) 17 (0.4) 59 (0.7) 61 (0.7) 130 (0.7) 132 (0.8)
Horseshoe 21 (0.5) 19 (0.4) 89 (1.1) 78 (0.7) 156 (0.5) 149 (0.8)

Empirical Bayes 16 (0.3) 17 (0.4) 62 (0.6) 64 (0.7) 179 (1.6) 193 (2.0)

the L1 loss in Table 3.3. LoRI beats the horseshoe systematically, and outperforms

the empirical Bayes in moderately sparse and non-sparse scenarios. In contrast, the

horseshoe yields the largest L1 errors in all scenarios, probably due to its lack of com-

plete shrinkage to zero. Furthermore, the right panel of Figure 3.2 illustrates that

the posterior median estimates of LoRI can reach exact zeros for small observations,

while the horseshoe cannot.

3.4.2 Regression

To understand LoRI’s performance in linear regressions with different correlation

structures among covariates and different values of true coefficients, we compare

LoRI with several commonly used Bayesian and non-Bayesian methods: the Zellner-

Siow prior, the unit information prior (Kass and Wasserman, 1995), the horseshoe,

the Bayesian lasso, the lasso, ridge regression, the elastic net and the OLS estimator

on the simulation example originally designed in the lasso paper (Tibshirani, 1996).

In this example, observations are simulated according to

Y � Xβ � ε, ε � Nnp0, σ2Iq,

with sample size n � 200, number of covariates p � 8, standard deviation in normal

likelihood σ � 3 and pairwise correlation corrpXi,Xjq � r|i�j|. Measurement for
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correlation r is originally set to 0.5 in the lasso paper. In order to compare different

correlation levels, we also consider the cases r P t0, 0.99u. The following two scenarios

represent different structures of the true values of coefficients β:

Scenario 1: β � p3, 1.5, 0, 0, 2, 0, 0, 0q

Scenario 2: βj � 0.85, for all j � 1, . . . , 8.

Table 3.4 shows the estimation accuracy measured by the sum of squared errors

for β under combinations of all three correlation levels and two coefficient structure

scenarios. Among all the methods, the Zellner-Siow and the unit information prior

are variations of g-prior. The Zellner-Siow has a multivariate Cauchy prior density

and can be represented as a mixture of g-prior with inverse Gamma hyperprior on

g. The unit information prior is the g-prior with g � n and acts similarly to the

BIC criteria. The Bayesian lasso is the posterior mean estimate on coefficients under

independent Laplace prior. For all Bayesian approaches, we use the default estimates,

which are posterior means.

In Scenario 1, the true model is sparse and the nonzero coefficients have compar-

atively large values. For cases with independent or moderately correlated predictors

(r � 0, 0.5), the two g-prior methods result in the most precise estimations. LoRI

slightly underperforms in relation to them but outperforms all other methods. An-

other Bayesian method, the horseshoe, also outperforms all non-Bayesian methods.

Among the three non-Bayesian methods, the elastic net acts similarly to the lasso,

and both of them outperform ridge regression, which is consistent with its reputation

in sparse regression. These three methods all outperform the Bayesian lasso as they

may shrink coefficients exactly to zero while the Bayesian lasso estimate retains all

coefficients. However, in a highly correlated case pr � 0.99q, we notice an obvious

change in estimation performance. The Bayesian lasso yields the most accurate esti-

mation, while the two g-prior related methods become the least reliable, due to their
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Table 3.4: Simulation study of regression: median sum of squared error
°8
j�0pβj �

β̃jq2, from 500 simulations. β̃j are posterior mean estimates for Bayesian methods.
We use bootstrap with 500 samplings to estimate the corresponding standard errors
of medians and report them in parentheses. Column-wisely, smallest error is in bold
type and second smallest error in italic type.

Scenario 1
r 0 0.5 0.99

LoRI 0.14 (0.01) 0.17 (0.01) 5.85 (0.22)
Zellner-Siow 0.13 (0.01) 0.15 (0.01) 8.76 (0.42)

Unit Info 0.13 (0.01) 0.15 (0.01) 8.35 (0.35)
Horseshoe 0.20 (0.01) 0.26 (0.01) 6.52 (0.28)

Bayesian lasso 0.29 (0.01) 0.38 (0.01) 4.88 (0.13)
Lasso 0.27 (0.01) 0.32 (0.01) 7.08 (0.28)
Ridge 0.34 (0.01) 0.50 (0.01) 6.13 (0.16)

Elastic net 0.28 (0.01) 0.33 (0.01) 6.69 (0.21)
OLS 0.34 (0.01) 0.53 (0.01) 26.92 (1.18)

Scenario 2
r 0 0.5 0.99

LoRI 0.33 (0.01) 0.46 (0.02) 4.64 (0.16)
Zellner-Siow 0.47 (0.02) 1.20 (0.04) 8.30 (0.31)

Unit Info 0.57 (0.02) 1.41 (0.03) 8.15 (0.36)
Horseshoe 0.44 (0.02) 0.66 (0.02) 4.71 (0.22)

Bayesian lasso 0.42 (0.01) 0.51 (0.02) 1.76 (0.08)
Lasso 0.33 (0.01) 0.52 (0.02) 7.44 (0.14)
Ridge 0.32 (0.01) 0.35 (0.01) 0.27 (0.02)

Elastic net 0.34 (0.01) 0.49 (0.01) 0.04 (0.00)
OLS 0.33 (0.01) 0.52 (0.02) 27.83 (1.05)

inherent instability from nearly singular designs. Notably, LoRI remains the second

best in this highly correlated case.

In Scenario 2, the true model is non-sparse while all true coefficients are small.

When r � 0 or 0.5, ridge regression outperforms all other methods, which is gener-

ally consistent with the comparison between the lasso and ridge regression. Similar

to Scenario 1, LoRI yields the second smallest estimation error by slightly under-

performing compared to ridge regression. Interestingly, when r � 0.99, the elastic
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net becomes the best method. One possible reason is that the L2 penalty dominates

and thus the elastic net becomes a soft thresholding method on univariate regres-

sion coefficients, which ignores the dependence among predictors. Since the oracle is

the full model, pure shrinkage methods solely based on the full model, such as the

Bayesian lasso and the horseshoe, perform more accurately than the methods which

average all sub-models, such as the Zellner-Siow and the unit information prior. In

addition, these two g-prior methods also show instability when predictors are highly

correlated. We notice that although LoRI also averages all sub-models, it generally

performs more accurately than the pure shrinkage methods.

Table 3.5: Simulation study of regression: marginal inclusion probability of LoRI for
r � 0.5, averaged over 500 simulations.

Scenario 1
βj 3 1.5 0 0 2 0 0 0

P pβj � 0 | Yq 1.00 1.00 0.22 0.22 1.00 0.22 0.21 0.21

Scenario 2
βj 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

P pβj � 0 | Yq 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

LoRI systematically performs with accuracy in both scenarios, which makes it a

good default method, since in real word applications, people usually lack the knowl-

edge about true sparsity. To better understand the contribution of the positive mass

at zero component in LoRI, we compare the posterior marginal inclusion probability

in the above two different scenarios (see Table 3.5). In LoRI, although the continuous

component with high concentration around zero leads to severe shrinkage, point mass

at zero component alone sets the coefficient to exact zero, or equivalently, excludes

the corresponding predictor. In the sparse scenario, predictors in the true model are

100% included, while the rest predictors only have about 20% inclusion probabili-

ties. In the non-sparse scenario, all predictors are included 99% of the time. The DP
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Figure 3.3: Simulation study of regression: pairwise posterior probability of being
assigned to the same group by LoRI. For r � 0.5, averaged over 500 simulations.
Values in diagonal cells equal 1.

hierarchical prior in LoRI introduces more flexibility than any parametric prior, and

thus allows LoRI’s point mass at zero component to adapt to different sparsity levels.

If a variable selection procedure is of interest, under the median probability model

(Barbieri and Berger, 2004) that includes the variables whose posterior marginal in-

clusion probabilities exceed 0.5, LoRI selects the correct models in both sparse and

non-sparse scenarios.

In addition, grouping structures among coefficients induced by the DP in LoRI

correspond to the characteristics of true coefficients. In Figure 3.3, we use heat

maps to represent pairwise posterior probability of βi and βj in the same group, for

i � j. In Scenario 1, eight coefficients seem to be divided into two groups tβ1, β2, β5u
and tβ3, β4, β6, β7, β8u, which are consistent with the covariates to be included and

excluded according to the true model. Coefficients within the same group have a

higher probability of being selected together than coefficients between groups. In
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Scenario 2, LoRI assigns all coefficients to the same group, which suggests that in

non-sparse scenario LoRI performs similarly as rotation invariant methods such as

ridge regression. Notice that the correlation structures of design matrices X are the

same across different scenarios. Therefore, the difference in LoRI’s grouping reflects

the structures of coefficients rather than correlations. This property of LoRI further

differentiates it from the group lasso.

3.5 Protein Activity Example

We apply LoRI to a protein activity dataset, which has been previously studied by

Clyde and Parmigiani (1998) and Clyde et al. (2011). This dataset was collected

from a well-designed experiment studying the relationship between the protein ac-

tivity level and different factors of storage conditions as well as their two-way interac-

tions. This dataset consists of n � 96 observations and p � 88 potential exploratory

variables. The heat map of the correlation matrix among predictors (Figure 3.4) sug-

gests that some of the variables are highly correlated. 348 pairs (9.1%) of predictors

have absolute correlations larger than 0.5, and among them, 19 pairs have absolute

correlations larger than 0.95.

We apply LoRI on this dataset and report the posterior mean estimate and

marginal posterior inclusion probability for each dimension in Figure 3.5. By av-

eraging all sub-models, the six variables that have the largest absolute values of

posterior mean are the main effects protein concentration (con), two detergent levels

(detT, detN), two-way interactions between buffer and temperature (bufPO4.temp),

buffer and detergent (bufTRS.detN), concentration and detergent (con.detT). These

predictors also have the highest posterior inclusion probabilities, and thus form the

median probability model. The grouping pattern (Figure 3.6) of LoRI for this dataset

seems similar to the one in Section 3.4.2, since these six predictors are more likely

to form their own group rather other than join the other 82 predictors.
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Figure 3.4: Protein activity data: heat map of correlation matrix among predictors.
The pi, jq cell corresponds to the correlation between the i-th and the j-th predictor,
1 ¤ i, j ¤ 88. Diagonal cells have value 1.

We also compare LoRI with all other methods mentioned in Section 3.4.2. To

assess the prediction accuracy across different methods, we conduct leave-one-out

cross validation. For each observation i, we put it aside and use the other 95 obser-

vations in the dataset to estimate the regression parameters and obtain a predicted

value ỹpiq for the i-th observation. The RootMSE (Table 3.6), squared root of mean

squared prediction error, are computed to measure prediction accuracy:

RootMSE �
d

1

n

ņ

i�1

�
yi � ỹpiq

�2
.
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Figure 3.5: Applying LoRI on protein activity dataset; from upper to lower: pos-
terior means of coefficients, marginal posterior inclusion probability.

Due to the high correlation among variables, predictions from g-prior methods and

the lasso are not as reliable as those from other Bayesian shrinkage methods along

with ridge regression. Notably, LoRI yields the smallest prediction error, which

confirms LoRI as an ideal option of default approach.

3.6 Discussion

We have proposed LoRI as a novel semi-parametric shrinkage prior for Bayesian

model averaging and recommended it as a default method. Both simulation and real
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Figure 3.6: Applying LoRI on protein activity dataset: heat map of pairwise
posterior probability of being assigned to the same group. The pi, jq cell corresponds
to the pairwise posterior between the i-th and the j-th predictor, 1 ¤ i, j ¤ 88.

examples show that LoRI adapts to model sparsity, values of true coefficients as well

as correlation structures among predictors, and yields accurate parameter estimation

and prediction. Thanks to its Dirichlet Process hyperprior, LoRI exhibits flexibility

as well as yields groupings. When the true model is sparse, LoRI performs similar

to independent mixtures of Cauchy priors and its point masses at zeros components

further contribute to sparse solutions. LoRI’s bounded prior influence allows it to

preserve large coefficients. When the true model is non-sparse, LoRI groups most

variables together and performs similar to a rotation invariant prior.
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Table 3.6: Protein activity dataset: prediction errors measured by RootMSE.
Column-wise smallest error is in bold type.

RootMSE
LoRI 0.484

Zellner-Siow 0.646
Unif Info 0.552
Horseshoe 0.494

Bayesian lasso 0.499
Lasso 0.547
Ridge 0.502

Elastic net 0.507
OLS 1.743

In this article, our focus lies on model averaging rather than model selection,

since utilizing information contained in all sub-models can avoid bias and lead to

more accurate predictions, as well as measures of uncertainty. However, if model

selection is of interest, the point mass at zero component in LoRI provides coherent

model selection procedures related to optimizing certain loss functions. For example,

we have shown in the simulation study that by using the posterior median estimator,

which minimizes the L1 loss, LoRI can recover the true model. One area of future

research is to propose detailed selection rules for LoRI, and assess their performance

in the framework of model selection.
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4

Discussion

We have developed two new hierarchical prior distributions for normal linear regres-

sion and Generalized Linear Models (GLMs) respectively. Both of them have positive

probabilities at zero for each coefficient, which are capable of yielding sparse solu-

tions under valid variable selection criteria. They both can be considered as scale

mixtures of normal distributions with heavy tails that are robust to large signals

in coefficients while accommodating many zero coefficients. For the LoRI prior, we

incorporate a non-parametric hyper prior, through a Dirichlet process prior to gain

extra flexibility. The essential discreteness of the DP prior reveals group structure

among predictors, and thus makes LoRI adaptive to datasets with different densities

of sparsity. For the CH-g prior used in GLMs, we assign a generalized Beta distri-

bution as hyper prior, which is very flexible to encompass most conventional hyper

priors on g in mixtures of g-priors.

4.1 Future Directions

We think a major difference between LoRI and the CH-g prior is the incorporation

of the correlation structure among predictors in the prior dependence of coefficients.
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Recall that LoRI prior is a scale mixtures of independent normals. Each predictor is

standardized so that the prior is invariant to scale and location transformations of the

predictors but not more general linear transformations. On the other hand, the CH-g

prior is based on the g-prior, whose prior precision matrix is proportional to XT
MXM

in normal linear regression, or the information matrix in GLM. Although this setting

automatically adjusts for linear transformations of the design matrix, estimation

may suffer greatly of coefficients under g-prior and mixtures of g-priors with nearly

singular design matrices. This issue is verified empirically in the simulation example

in Section 3.4.2. In contrast, with independent predictors, g-prior variants yield

smaller estimation error than methods in the independent scale mixtures of normals

family. One of our future directions is to conduct an in-depth comparison between

these two types of model selection priors, to obtain a better understanding of their

strength and weakness when being applied to different types of problems.

We also plan to extend LoRI prior to GLMs. Based on its ideal empirical per-

formance in selection and prediction in linear models, we are interested to learn if

it will become a good model selection prior for questions with binary or categorical

responses. Note that LoRI prior is not conjugate for a normal likelihood. When

extending it to GLMs, the computational expense will almost remain the same since

an almost identical MCMC algorithm can be applied.
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Appendix A

Appendix for Chapter 2

A.1 Confluent Hypergeometric Function

1F1pa, b, sq � Γpbq
Γpb�aqΓpaq

³1

0
za�1p1� zqb�a�1 exppszqdz is the confluent hypergeometric

function (Abramowitz and Stegun, 1970), for a ¡ 0 and b ¡ 0. Since Gamma

function Γpxq does not converge for non-positive integer x, here we assume b�a ¡ 0.

A.2 Proofs

A.2.1 Proof to Remark 1

Proof. Without loss of generality, we assume for first pMT
columns of XM forms

XMT
. In addition, Inpη̂MT

q � Inpη̂Mq � In identity matrix. Because

BFMT :M � fMT
pY|α̂MT

, β̂MT
q

fMpY|α̂M, β̂Mq p1� gq
pM�pMT

2 exp

"
RSSM � RSSMT

2p1� gq
*

� p1� gq
pM�pMT

2

�
fMT

pY|α̂MT
, β̂MT

q
fMpY|α̂M, β̂Mq

� g
1�g

can be written as a function of the maximized likelihood ratio, which is in the order

of Op1q in the case of MT �M. Therefore, the Bayes factor is also in the order of
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Op1q.

A.2.2 Proof to Proposition 2

Proof. The marginal prior on βM after integrating g out is

ppβM |Mq9
» 8
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We will show that as }βM}, or equivalently, }βM}In ÝÑ 8, both the lower bound

and upper bound of (A.1) are proportional to
�}βM}2

In

�� b�pM
2 .

We first find a lower bound of (A.1) up to a constant. Since s ¥ 0,
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then according to the Watson’s Lemma (see (Olver, 1997), p71), the limit of the

lower bound
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Next we will find an upper bound.
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According to (Abramowitz and Stegun, 1970) formula (13.1.4), the limit behavior of

1F1pa, b, sq function for large positive s is

1F1pa, b, sq � Γpbq
Γpaq exppsqsa�br1�Op|s|�1qs, when s ¡ 0. (A.2)

Hence the limit of the upper bound

lim
}βM}InÑ8
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Therefore, as }βM}In increases, or equivalently, as }βM} increases, both the lower

bound and upper bound of ppβM |Mq are proportional to
�}βM}2

In

�� b�pM
2 .

A.2.3 Proof to Lemma 1

Proof. Note that for any modelM, Inpα̂Mq � 1Tn Inpη̂Mq 1n equals the first diagonal

element of r1n,XsT Inpη̂Mq r1n,Xs. According to the Assumption 1, there exists a

positive constant cM such that

plimnÑ8
Inpα̂Mq

n
� cM

Therefore, we have

plimnÑ8

�
1� Inpα̂MT

qnc
1� Inpα̂Mqnc
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2

e
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qnc�1

� Inpα̂Mqα̂2
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Hence the asymptotic behaviors of both ΛMT :M and Λc�8
MT :M are dominated by the

likelihood ratio. Next we will study the asymptotic property of the likelihood ratio

in two difference cases: 1) MT �M and 2) MT �M.

In the first case where MT � M, from the well-known results of likelihood

ratio test, the logarithm of ratio of maximized likelihoods has a central chi-square

distribution χ2
pM�pMT

. This suggests that the log-likelihood ratio does not depend

on n, i.e., ΛMT :M � Op1q.
In the second case where MT �M, we first examine the sub-case where M �

MT . Without loss of generality, we assume the space spanned by the first pM

columns of XMT
and 1n equals the space spanned by XM and 1n, i.e.,

Cp1n,X1,MT
, . . . ,XpM,MT

q � Cp1n,XMq

For notation simplicity, we denote the parameters as ψM � pαM,βMq, the log-

likelihood as lMpψMq � log fMpY | ψMq, and the i-th row of the original design

matrix r1n,VMs as vi,M. According to the power calculation results for GLM in

(Self et al., 1992), when testing nested models, if the larger model is true, then we

have that the logarithm of likelihood ratio converges in distribution to a non-central

χ2, that is

ΛMT :M
dÝÑ exptχ2

pMT
�pMppM � 1� trpM�1

1 M2q �Ψqu, (A.3)

where χ2
kpmq is a non-central χ2 distribution with degrees of freedom k and non-
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centrality parameter m; and
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ņ

i�1

a�1
i pφq  b1pη�i,MT

q �η�i,MT
� η�i,M

�� �
bpη�i,MT

q � bpη�i,Mq�(
where the expectation in M1 and M2 are taken with respect to the true parameters

ψ�MT
� pα�MT

,β�MT
q; θ�i,M is the i-th canonical parameter and η�i,M is the i-th linear

predictor under parameters ψ�M in model M. Both (Self et al., 1992) and (Shieh,

2000) point out that empirical experience suggests that trpM�1
1 M2q is very close to

pM � 1. Furthermore, if we treat the explanatory variables as random independent

samples, then we can easily show that trpM�1
1 M2q only depends on pM, not n. There-

fore, we can say that the non-centrality parameter in (A.3) pM�1� trpM�1
1 M2q�Ψ

is dominated by Ψ. Because M �MT , which means the limits of parameter in M

do not equal the true parameters, i.e., pα�M,β�M,0q � pα�MT
,β�MT

q, it is reasonable

to assume that limnÑ8 Ψ{n converges to a constant c. Since the non-centrality pa-

rameter in a χ2 distribution must be positive, this limit c must be positive, which

implies that ΛMT :M � Opecnq.
In the case where the two modelsM andMT are not nested, we introduce a third

model M1 which includes all the predictors in both M and MT . Notice that using

a similar method as in (Self et al., 1992), we can easily show that ΛM1:M also has an

82



non-central χ2 distribution. Hence we decompose ΛMT :M � ΛMT :M1 � ΛM1:M. Since

both pairs pMT ,M1q and pM1 : Mq are nested models, we can apply the previous

results twice: ΛMT :M1 � Op1q and ΛM1:M � O pecnq. Therefore, we can conclude

that ΛM:M � O pecnq in this case.

A.2.4 Proof to Lemma 2

Proof. We will show the asymptotic results about the RSS for GLM in two steps:

under model MT and under model M. According to our Remark 2, under MT ,

the MLE estimator β̂MT
converges in probability to the true coefficients β�MT

as n

increases. Furthermore, there exists the asymptotic normality,

?
npβ̂MT

� β�MT
q dÝÑ N

�
0, rIpβ�MT

qs�1
�
,

where Ipβ�MT
q is the expected information matrix based on a single observation

evaluated at the true parameters. Note the columns of XMT
are in the space spanned

by Cp1n,Xq; so based on the Assumption 1,

Inpβ̂MT
q

n
� XT

MT
Inpη̂MT

q XMT

n

converges to a positive definite matrix in probability. The consistency of MLE sug-

gests that this limit is

plimnÑ8
Inpβ̂MT

q
n

� Ipβ�MT
q

We apply Slutsky’s theorem to rewrite the asymptotic normality as

�
XT

MT
Inpη̂MT

qXMT

� 1
2 β̂MT

� �
XT

MT
Inpη̂MT

qXMT

� 1
2 β�MT

dÝÑ N
�
0, IpMT

	
,

Therefore, the RSS for GLM under the true model

QMT
� β̂TMT

�
XT

MT
Inpη̂MT

qXMT

�
β̂MT
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has a non-central χ2 distribution with degrees of freedom pMT
, and non-centrality

parameter β�TMT

�
XT

MT
Inpη̂MT

qXMT

�
β�MT

. Its expectation is

EpQMT
q � pMT

� β�TMT

�
XT

MT
Inpη̂MT

qXMT

�
β�MT

,

so if the true coefficient β�MT
� 0, then the non-centrality parameter increases in the

order of Opnq. On the other hand, the non-centrality parameter equals 0 if and only

if β�MT
� 0, which only occurs under the null model Mø. Therefore, we have the

asymptotic behavior of QMT
, that is, ifMT �Mø, then QMT

� Opnq; ifMT �Mø,

then QMT
� Op1q.

For any model M � MT , according to the asymptotic properties of the M-

estimators (see (van der Vaart, 2000) Chapter 5), there also exists a limit of the

MLE β̂M and similar asymptotic normality results: β̂M
PÝÑ β�M and

?
npβ̂ � β�q dÝÑ

N

��0,

#
E

�
B2lM
Bβ2

M

����
β�
M

�+�1

E

�� BlM
BβM


� BlM
BβM


T ����
β�
M

�#
E

�
B2lM
Bβ2

M

����
β�
M

�+�1
�,

where lMp�q � log fMp�q and all the expectations are taken with respect to the true

modelMT and the true parameters pα�MT
,β�MT

q. Hence the above normal precision

is not the Fisher’s information matrix. To simplify the notification, we denote the

above covariance matrix as A. It is reasonable to assume that A is a positive definite.

Denote ξ � ?
nA� 1

2 β̂M, then

ξ �?
nA� 1

2β�M
dÝÑ N p0, IpMq ,

and thus its quadratic form has a χ2 distribution in the limit

ξTξ
dÝÑ χ2

pM

�
nβ�TMAβ�M

�
So when β�M � 0, ξTξ � Opnq, and otherwise, ξTξ � Op1q. Based on assumption

(2.45), limnÑ8 XT
MInpη̂MqXM{n converges to a positive definite matrix C. This
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results in that the pM�pM matrix A
1
2 CA

1
2 is also positive definite. Suppose λ1 and

λpM are its largest and smallest eigenvalues, then

λpMξ
Tξ ¤ QM � β̂TM

�
XT

MInpη̂MqXM
�
β̂M � ξT

�
A

1
2 CA

1
2

�
ξ ¤ λ1ξ

Tξ (A.4)

Therefore, if β�M � 0, then QM � Op1q; In particular, when MT �Mø, under any

model M, since β̂M converges to a vector of zeros, QM does not increase with n.

On the other hand, if β�M � 0, then QM � Opnq.

A.2.5 Proof to Theorem 1

Proof. We have shown in Lemma 1 that the asymptotic property of the first term

ΛMT :M in the approximate Bayes factor under the CH-g prior

BFMT :M � ΛMT :M � ΩCH
MT :M �Opn�1q

So here we focus on the asymptotic behavior of the second term

ΩCH
MT :M �

B
�
b�pMT

2
, a

2

	
1F1

�
b�pMT

2
,
a�b�pMT

2
,� s�QMT

2

	
B
�
b�pM

2
, a

2

�
1F1

�
b�pM

2
, a�b�pM

2
,� s�QM

2

�
According to (Abramowitz and Stegun, 1970) formula (13.1.5), the limit of the

Confluent Hypergeometric 1F1pa, b, sq function for large |s| when s is negative can

be approximated by

1F1pa, b, sq � Γpbq
Γpb� aqp�sq

�ar1�Op|s|�1qs, when s   0. (A.5)

We will show the asymptotic result about ΩCH
MT :M in two separate cases: 1) MT �

Mø and 2) MT �Mø.

In the first case where MT � Mø, then according to Lemma 2, QMT
� Opnq.
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For any other model M, if QM � Opnq, then

ΩCH
MT :M �

Γ
�
b�pMT

2

	�
s�QMT

2

	� b�pMT
2 p1�Opn�1qq

Γ
�
b�pM

2

� �
s�QM

2

�� b�pM
2 p1�Opn�1qq

� O

�
n�

pMT
�pM
2




Similarly, if QM � Op1q, then ΩCH
MT :M � O

�
n�

pMT
2

	
. Therefore, as to the Bayes

factor, we can conclude that if MT �M, then pM ¡ pMT
, and

BFMT :M � Op1q �O
�
n
pM�pMT

2



PÝÑ 8

On the other hand, if MT �M, then

BFMT :M ¥ O pecnq �O
�
n�

pMT
2

	
PÝÑ 8

In the second case where MT �Mø, Lemma 2 suggest both QMT
and QM are

in the same order Op1q. In addition, since any model M � MT , we have both

ΛMT :M � Op1q and ΩCH
MT :M � Op1q. In this case the Bayes factor BFMT :M is

bounded, which suggests the selection consistency does not hold when MT �Mø.

Additionally, this theorem also holds if we allow a, b, s to be model specific, since

it is reasonable to let the hyper parameters depend on pM. In the case whereMT �
Mø, the formula of ΩCH

MT :M does not change. The only difference is that all a, b, s

are substituted with aM, bM, sM. In the case where MT � Mø, as long as for all

model M, aM, bM, sM do no diverge as n increase, then

ΩCH
MT :M �

B
�
bMT

�pMT

2
,
aMT

2

	
1F1

�
bMT

�pMT

2
,
aMT

�bMT
�pMT

2
,� sMT

�QMT

2

	
B
�
bM�pM

2
, aM

2

�
1F1

�
bM�pM

2
, aM�bM�pM

2
,� sM�QM

2

�
� B

�
bM
2
, aM

2

�
1F1

�
bM
2
, aM�bM

2
,� sM

2

�
B
�
bMT

2
,
aMT

2

	
1F1

�
bMT

2
,
aMT

�bMT

2
,� sMT

2

	
is in the order of O

�
n�

pMT
�bMT

�pM�bM
2



.
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A.2.6 Proof to Theorem 2

Proof. We have shown in Lemma 1 that the asymptotic property of the first term in

the approximate Bayes factor under the CH-g prior

BFMT :M � ΛMT :M � ΩCH
MT :M �Opn�1q

So here we focus on the asymptotic behavior of the second term

ΩCH
MT :M �

B
�
b�pMT

2
, a

2

	
1F1

�
b�pMT

2
,
a�b�pMT

2
,� s�QMT

2

	
B
�
b�pM

2
, a

2

�
1F1

�
b�pM

2
, a�b�pM

2
,� s�QM

2

�
We will show the asymptotic result about ΩCH

MT :M in two separate cases: 1) MT �
Mø and 2) MT �Mø.

IfMT �Mø, then Lemma 1 shows ΛMT :M � Op1q, and Lemma 2 indicates that

both QM � Op1q and QMT
� Op1q. According to (Slater, 1960) formula (4.3.3): if

b is large, and a, s are bounded, then the limit of 1F1 function can be approximated

as

1F1pa, b, sq � 1�Op|b|�1q. (A.6)

Along with the Stirling’s Formula

Γpnq � e�nnn�
1
2 p2πq 1

2 p1�Opn�1qq, (A.7)

we can conclude that

ΩCH
MT :M � B

�
b
2
, a

2

�
1F1

�
b
2
, a�b

2
,� s

2

�
B
�
b�pM

2
, a

2

�
1F1

�
b�pM

2
, a�b�pM

2
,� s�QM

2

�
ÝÑ C � B

�
b
2
, a

2

�
B
�
b�pM

2
, a

2

� � C � Γ
�
a�b�pM

2

�
Γ
�
a�b

2

� � O
�
n
pM

2

	
,

which means that the Bayes factor

BFMT :M � Op1q �O
�
n
pM

2

	
PÝÑ 8.

87



On the other hand, ifMT �Mø, then QMT
� Opnq. According to (Slater, 1960)

formulas (4.3.7): if b is large, s � by, and a, y are bounded, then

1F1pa, b, sq � p1� yq�a
�

1� apa� 1q
2b

�
y

1� y


2

�Op|b|�2q
�
. (A.8)

In both cases QM � Op1q or Opnq,

ΩCH
MT :M �

B
�
b�pMT

2
, a

2

	
1F1

�
b�pMT

2
,
a�b�pMT

2
,� s�QMT

2

	
B
�
b�pM

2
, a

2

�
1F1

�
b�pM

2
, a�b�pM

2
,� s�QM

2

�
ÝÑ C �

B
�
b�pMT

2
, a

2

	
B
�
b�pM

2
, a

2

� � O

�
n
pM�pMT

2



.

Therefore, as to the Bayes factor, we can conclude that ifMT �M, then pM ¡ pMT
,

and

BFMT :M � Op1q �O
�
n
pM�pMT

2



PÝÑ 8

If MT �M, then

BFMT :M ¥ O pecnq �O
�
n�

pMT
2

	
PÝÑ 8

Additionally, this theorem also holds if we allow a, b, s to be model specific. It

is reasonable to let the hyper parameters depend on pM, for example, in the Beta-

prime prior on g (Maruyama and George, 2011), a � n � pM � 1.5. In the case of

MT �Mø, the formula of ΩCH
MT :M does not change. The only difference is that all

a, b, s are substituted with aM, bM, sM. In the case of MT �Mø, as long as for all
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model M, bM, sM do no diverge as n increase, and aM � Opnq, then

ΩCH
MT :M �

B
�
bMT

�pMT

2
,
aMT

2

	
1F1

�
bMT

�pMT

2
,
aMT

�bMT
�pMT

2
,� sMT

�QMT

2

	
B
�
bM�pM

2
, aM

2

�
1F1

�
bM�pM

2
, aM�bM�pM

2
,� sM�QM

2

�
� B

�
bM
2
, aM

2

�
1F1

�
bM
2
, aM�bM

2
,� sM

2

�
B
�
bMT

2
,
aMT

2

	
1F1

�
bMT

2
,
aMT

�bMT

2
,� sMT

2

	

ÝÑ C �
B
�
bMT

�pMT

2
,
aMT

2

	
B
�
bM
2
, aM

2

�
B
�
bM�pM

2
, aM

2

�
B
�
bMT

2
,
aMT

2

	 � O

�
n
pM�pMT

2



.

A.2.7 Proof to Proposition 3

Proof. We use the characteristic function to show that the degenerate distribution

at 1 is the limit distribution of the conditional posterior of pz | Y,Mq. The charac-

teristic function

φzptq � E
�
eitz

�
(A.9)

�
»
z
a
2
�1p1� zq b�pM2

�1 exp
��

s�QM
2

� it
�
z
�

Bpa
2
, b�pM

2
q 1F1pa2 , a�b�pM2

, s�QM
2

q dz (A.10)

� 1F1pa2 , a�b�pM2
, s�QM

2
� itq

1F1pa2 , a�b�pM2
, s�QM

2
q (A.11)

Lemma 2 shows that if β�M � 0, then QM � Opnq. According to (Abramowitz and

Stegun, 1970) formula (13.1.4),

1F1pa, b, sq � Γpbq
Γpaq exppsqsa�br1�Op|s|�1qs, when Repsq ¡ 0. (A.12)

the characteristic function

φzptq ÝÑ
expp s�QM

2
� itq � p s�QM

2
� itq� b�pM

2

expp s�QM
2

q � p s�QM
2

q� b�pM
2

� exppitq,

where exppitq is the characteristic function of the degenerated distribution at 1.
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A.2.8 Proof to Proposition 4

Proof. We also use the characteristic function (A.9) here.

φzptq � 1F1pa2 , a�b�pM2
, s�QM

2
� itq

1F1pa2 , a�b�pM2
, s�QM

2
q

Since a� ¡ 0, under model M if QM � Op1q, we can use (Slater, 1960) formulas

(4.3.6): when a, b are large, and b� a, s are bounded,

1F1pa, b, sq � es
�
1�Op|b|�1q� ; (A.13)

if QM � Opnq, we can use (Slater, 1960) formulas (4.3.7): when a, b are large, and

b� a, s{b are bounded,

1F1pa, b, sq � es
�

1� s

b

	a �
1�Op|b|�1q� (A.14)

Similarly as in the proof of Proposition 3, we find that φzptq ÝÑ exppitq.

A.2.9 Proof to Theorem 3

Proof. For notation simplicity, we omit the subscriptM in aM, bM, sM where these is

no ambiguity and denote Σn,M �
�
Inpβ̂Mq

��1

� �
XT

MInpη̂MqXM
��1

. Then (2.27)

and (2.31) can be simplified to

βM | z,M,Y
dÝÑ Npz β̂M, z Σn,Mq

z |M,Y � CH

�
a

2
,
a� b� pM

2
,�s�QM

2




We will prove this theorem in two steps: 1) MT �Mø and 2) MT �Mø.

WhenMT �Mø, the model selection consistency holds, so we just need to show

the estimation consistency under the true model MT . According to (2.54) , it is

sufficient to focus on the true model. We again use the characteristic function of
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the posterior distribution of βM. Notice that the integrand eit
TβM has a bounded

modulus, so according to Fubini’s Theorem, the two integral can be interchanged.

φβMptq �
»
eit

TβM ppβM |M,Yq dβM (A.15)

�
»
eit

TβM

"»
ppβM | z,M,Yq ppz |M,Yqdz

*
dβM (A.16)

�
» "»

eit
TβM ppβM | z,M,Yq dβM

*
ppz |M,Yqdz (A.17)

�
»
ezpit

T β̂M� 1
2
tTΣn,Mtq ppz |M,Yqdz (A.18)

Similar to the proof of Propositions 3, 4, when QM � Opnq, the limit of (A.18) is

lim
nÑ8

»
ezpit

T β̂M� 1
2
tTΣn,Mtq ppz |M,Yqdz � exp

�
itT β̂M � 1

2
tTΣn,Mt




Since under the true model β̂MT
Ñ β�MT

, and Σn,M � Opn�1q Ñ 0, hence

φβMT
ptq ÝÑ exp

�
itTβ�MT

�
,

which is the characteristic function of a degenerated distribution at β�MT
.

On the other hand, when MT �Mø, the model selection consistency does not

hold. Hence we need to examine the limit of posterior distribution of βM under

all models. Under model M, the MLE of the coefficient β̂M converges to the true

parameters 0. Since the modulus of (A.18) is bounded by a constant 1, which is

integrable if regarded as a function of z, so according to the dominated convergence

theorem,

lim
nÑ8

»
ezpit

T β̂M� 1
2
tTΣn,Mtq ppz |M,Yqdz

ÝÑ
» �

lim
nÑ8

ezpit
T β̂M� 1

2
tTΣn,Mtq

�
ppz |M,Yqdz � 1

Therefore, the posterior of βM under any model converges to 0.
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A.2.10 Proof to Theorem 4

Proof. For notation simplicity, we omit the subscriptM in aM, bM, sM where these

is no ambiguity. We will show this consistency in two steps: 1) MT �Mø and 2)

MT �Mø.

When MT �Mø, the model selection consistency holds. In this case it is suffi-

cient to prove this consistency underMT . According to the consistency of the MLE,

as n Ñ 8, β̂MT
converges in probability to the true coefficients β�MT

, and α̂MT

converges to the true intercept α�MT
. According to Assumption 1, Inpα̂Mq � Opnq.

The approximate posterior mean of of αMT
in (2.26) converges to the MLE

Inpα̂Mq
Inpα̂Mq � 1

nc

α̂M ÝÑ α̂M

and its posterior variance converges to zero

1

Inpα̂Mq � 1
nc

� Opn�1q

Hence the estimation of αMT
is consistent, i.e.

plimnÑ8 ppαMT
| Y,MT q � δα�MT

pαMT
q

Similarly, under the flat prior, the posterior of αMT
also converges to the true value

α�MT
asymptotically. The proof of Theorem 3 indicates that the estimation of βMT

is also consistent,

plimnÑ8 p pβMT
| Y,MT q � δβ�

MT
pβMT

q

Therefore, the estimation µ under MT is consistent, that is

plimnÑ8 µ � plimn E
�
b1pαMT

� xTMT
βMT

| Y,MT q
�

� b1pα�MT
� xTMT

β�MT
q.
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Next we discuss in the case where MT � Mø. In this case, the selection con-

sistency does not hold, and a sufficient condition for estimation consistency under

BMA is estimation consistency for µ under each model M. Since for each model

M, the true model MT is nested in it. Hence the MLE of intercept and coefficients

under M converge to the true value α�MT
and 0. Therefore, similar method that

proves the consistency in the previous case is also applicable here.
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Appendix B

Appendix for Chapter 3

B.1 Proof to Theorem 5

Proof. For notation simplicity, we use β to represent βj and z to represent β̂j in the

following proof. Denote λ � η2{ω, then prior ppβ | ηq has two equivalent hierarchical

representations

i. latent parameter ω:

β | ω � Np0, ωq (B.1)

ω | η � IGp1{2, η2{2q (B.2)

ii. latent parameter λ:

β | η, λ � Np0, η2{λq (B.3)

λ � Gp1{2, 1{2q (B.4)

In the following proof, we will use the second representation, i.e. transform ω to λ.

Without loss of generality, assume φ � 1. We first show that the theorem holds if
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the prior just contains the continuous component:

π̃pβq �
» 8

0

» 8

0

N

�
β; 0,

η2

λ



� C�

�
η; 0,

1?
φ



�G

�
λ;

1

2
,
1

2



dλdη.

Let mpzq denote the marginal likelihood under prior π̃pβq:

mpzq � 1?
2π3

» 8

0

» 8

0

exp

�
� z2{2

1� η2{λ



1

p1� η2qa1� η2{λG

�
λ;

1

2
,
1

2



dηdλ

Its easy to show that the mpzq ¡ 0 for all z P R. According to (Carvalho et al.,

2010) Theorem 2,

Epβ|zq � z � d

dz
logmpzq. (B.5)

According to (Carvalho et al., 2010) proof of Theorem 3,

mpzq � 2
?
λ?

2π3
exp

�
�z

2

2


» 8

0

Φ1

�
1

2
, 1,

3

2
,
z2

2
, 1� λ



G

�
λ;

1

2
,
1

2



dλ

d

dz
mpzq � � 4z

?
λ

3
?

2π3
exp

�
�z

2

2


» 8

0

Φ1

�
1

2
, 1,

5

2
,
z2

2
, 1� λ



G

�
λ;

1

2
,
1

2



dλ

Therefore (B.5) becomes:

d

dz
logmpzq � �

2z
³8
0

Φ1

�
1
2
, 1, 5

2
, z

2

2
, 1� λ

	
G
�
λ; 1

2
, 1

2

�
dλ

3
³8
0

Φ1

�
1
2
, 1, 3

2
, z

2

2
, 1� λ

�
G
�
λ; 1

2
, 1

2

�
dλ

(B.6)

In the numerator, when 0   λ ¤ 1,

Φ1

�
1

2
, 1,

5

2
,
z2

2
, 1� λ




� exp

�
z2

2


 8̧

n�0

�
1
2

�
n
p1qn�

5
2

�
n

p1� λqn
n!

1F1

�
2,

5

2
� n,�z

2

2




� exp

�
z2

2


 8̧

n�0

�
1
2

�
n
p1qn�

5
2

�
n

p1� λqn
n!

Γp2q
Γ
�

1
2
� n

� �z2

2


�2  
1�Opz�2q(
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and when λ ¡ 1

Φ1

�
1

2
, 1,

5

2
,
z2

2
, 1� λ




� exp

�
z2

2



λ�1Φ1

�
2, 1,

5

2
,�z

2

2
,
λ� 1

λ




� exp

�
z2

2



λ�1 exp

�
�z

2

2


 8̧

n�0

p2qn p1qn�
5
2

�
n

�
λ�1
λ

�n
n!

1F1

�
1

2
,
5

2
� n,

z2

2




�
8̧

n�0

p2qn p1qn�
5
2

�
n

pλ�1qn
λn�1

n!

Γ
�

1
2

�
Γ
�

5
2
� n

� exp

�
z2

2



�
�
z2

2


�2�n  
1�Opz�2q(

where paqn is rising factorial. As |z| Ñ 8, the numerator in (B.6) converges to:

2z exp

�
z2

2



�
�
z2

2


�2

�
�

3

4
?

2π

» 1

0

8̧

n�0

pλ� 1qn
Γ
�

5
2
� n

�λ� 1
2 e�

λ
2 dλ� 4

3

» 8

1

λ�
3
2 e�

λ
2 dλ

�
(B.7)

It is easy to show that in (B.7), the second integral is finite. For the first integral,

according to the monotone convergence theorem, we can exchange limit and integral,

and

8̧

n�0

» 1

0

pλ� 1qn
Γ
�

5
2
� n

�λ� 1
2 e�

λ
2 dλ �

8̧

n�0

Γ p1� nqΓ
�

1
2

�
Γ
�

5
2
� n

�
Γ
�

3
2
� n

�1F1

�
1

2
,
3

2
� n,�1

2



(B.8)

By expanding

1F1

�
1

2
,
3

2
� n,�1

2



�

8̧

k�0

�
1
2

�
k�

3
2
� n

�
k

��1
2

�k
k!

,

we find 1F1

�
1
2
, 3

2
� n,�1

2

�
decreases with n. Therefore, (B.8) converges. The numer-

ator in (B.6) can be simplified as

2z exp

�
z2

2



�
�
z2

2


�2

� C1,
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where C1 is a constant. Similarly, the denominator in (B.6) can be simplified as

3 exp

�
z2

2



�
�
z2

2


�1

� C2,

where C2 is also a constant. Therefore, d
dz

logmpzq Ñ 0 as |z| Ñ 0. This means

(3.18) holds under π̃pβq.
Next we show that this results still holds after introducing a component of point

mass at zero, i.e. πpβq � p1� ρq δ0pβq � ρ π̃pβq for any 0   ρ ¤ 1. Since

Epβ | zq � P pβ � 0 | zq � 0� P pβ � 0 | zqEpβ | z, β � 0q

where Epβ | z, β � 0q is the posterior mean of β under prior density π̃pβq, to prove

(3.18) it is sufficient to show

lim
|z|Ñ8

P pβ � 0 | zq � 0 (B.9)

According to the Bayes rule,

P pβ � 0 | zq

� P pz | β � 0qP pβ � 0q
P pz | β � 0qP pβ � 0q � P pz | β � 0qP pβ � 0q

� Npz; 0, 1q p1� ρq
Npz; 0, 1q p1� ρq � ρ

³8
0

³8
0
Npz; 0, 1� η2{λqC�pη; 0, 1qGpλ; 1

2
, 1

2
qdηdλ

� 1

1� ρ
1�ρ

³8
0

³8
0

Npz;0,1�η2{λq
Npz;0,1q C�pη; 0, 1qGpλ; 1

2
, 1

2
qdηdλ

�
$&%1� ρ

1� ρ

» 8

0

» 8

0

1b
1� η2

λ

exp

�
z2η2

2pη2 � λq
�

C�pη; 0, 1qG
�
λ;

1

2
,
1

2



dηdλ

,.-
�1

In the above integral, the integrand is positive and increases with |z|, so we can

interchange integral and limit. Apparently, this integral reaches infinity in the limit

|z| Ñ 8. Therefore, (B.9) holds.
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Thus we have proved that the prior influence Epβ | zq � z vanishes as |z| goes to

infinity. Notice that prior influence is 0 when z � 0. According to continuity, we can

conclude that prior influence is bounded.

B.2 Posterior Sampling Steps

Similar as in Section B.1, we reparametrize the regression problem by transforming

parameters pβj, ωj, ηjq to pβj, λj, ηjq, see (B.1) - (B.4). Suppose in the current itera-

tion of MCMC,mk is the number of pairs pηj, λjq in group k, i.e. mk �
°p
j�1 1pcj � kq

for k � 1, 2, . . . According to the slice sampling idea, we introduce an latent variable

uj for each j � 1, . . . , p; and to eliminate confusion, in this section we denote α

as the precision parameter of DP, instead of m which we use previously. thus the

class indicator cj can only take value from a finite set. We update all the model

parameters according to the following scheme. For each iteration:

1. Update vk, k � 1, 2, . . .

vk � Betap1�mk, α� p�
ķ

l�1

mlq

2. Update wk, k � 1, 2, . . .

wk � vk
¹
l k
p1� vlq

3. Update uj, j � 1, . . . , p

uj � Unifp0, wcjq

4. Update η�k , k � 1, 2, . . .

Let η�k � ξ�kψ
�
k , where ξ�k � 1pη�k � 0q. When ξ�k � 1, ψ�k � η�k ; when ξ�k � 0,
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the value of ψ�k does not affect η�k . After this decomposition, a priori,

ξ�k � Bernoullipρq

ψ�k � Cauchy�
�

0,
1?
φ




We use the Metropolis-Hastings algorithm to update ξ�k according to

ppξ�k | Y, c, ξ�p�kq,ψ
�,λ�, φq9ppY | c, ξ�,ψ�,λ�, φq � ppξ�k q

where the ppY | c, ξ�,ψ�,λ�, φq is the likelihood after marginalized out β0 and

β as shown in (2.1).

To update ψ�k , we use the adaptive Metropolis algorithm on logpψ�kq according

to

ppψ�k | Y, c, ξ�,ψ�
p�kq,λ

�, φq9ppY | c, ξ�,ψ�,λ�, φq � ppψ�kq

5. Update cj: for j � 1, . . . , p

cj � k with probability 1pwk ¡ ujqppY | cj � k, cp�jq, ξ�,ψ�,λ�, φq,

for k � 1, . . . , k�, where k� � arg min
k

"
k°
l�1

pl ¡ 1� min
1¤j¤p

pujq
*

.

6. Update λ�k, k � 1, 2, . . .

Apply the adaptive Metropolis algorithm on logpλ�kq according to

ppλ�k | Y, c, ξ�,ψ�,λ�p�kq, φq9ppY | c, ξ�,ψ�,λ�, φq � ppλ�kq

7. Simple random swap: if both sets A � ti : ηi � 0u and B � tj : ηj � 0u are

nonempty, randomly draw index i P A with equivalent weights, and draw j P B
with weight

|CorrpXi,Xjq|°
j1PB |CorrpXi,Xj1q|
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With probability pswap, use the Metropolis-Hasting algorithm to propose to

swap pci, ηi, λiq with pcj, ηj, λjq.

8. Update ρ: the Gibbs sampler

ρ � Beta

�
aρ �

k�¸
k�1

δpη�k � 0q, bρ �
k�¸
k�1

δpη�k � 0q
�

9. Update α: the Gibbs sampler by introducing an auxiliary variable x:

α | x, d � πxGpaα � d, bα � log xq � p1� πxqGpaα � d� 1, bα � log xq

x | α � Betapα � 1, nq

where d is the number of non-empty classes: d �
k�°
k�1

δpmk ¥ 1q, and πx �

aα�d�1
ppbα�log xq .

10. Update φ: the adaptive Metropolis algorithm on logpφq according to

ppφ | Y, c, ξ�,ψ�,λ�q9ppY | c, ξ�,ψ�,λ�, φq � ppφq
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