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Abstract

With the development of modern data collection approaches, researchers may collect
hundreds to millions of variables, yet may not need to utilize all explanatory variables
available in predictive models. Hence, choosing models that consist of a subset of
variables often becomes a crucial step. In linear regression, variable selection not
only reduces model complexity, but also prevents over-fitting. From a Bayesian
perspective, prior specification of model parameters plays an important role in model
selection as well as parameter estimation, and often prevents over-fitting through
shrinkage and model averaging.

We develop two novel hierarchical priors for selection and model averaging, for
Generalized Linear Models (GLMs) and normal linear regression, respectively. They
can be considered as “spike-and-slab” prior distributions or more appropriately “spike-
and-bell” distributions. Under these priors we achieve dimension reduction, since
their point masses at zero allow predictors to be excluded with positive posterior
probability. In addition, these hierarchical priors have heavy tails to provide robust-
ness when MLE’s are far from zero.

Zellner’s g-prior is widely used in linear models. It preserves correlation structure
among predictors in its prior covariance, and yields closed-form marginal likelihoods
which leads to huge computational savings by avoiding sampling in the parameter
space. Mixtures of g-priors avoid fixing ¢ in advance, and can resolve consistency

problems that arise with fixed g. For GLMs, we show that the mixture of g-priors
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using a Compound Confluent Hypergeometric distribution unifies existing choices in
the literature and maintains their good properties such as tractable (approximate)
marginal likelihoods and asymptotic consistency for model selection and parameter
estimation under specific values of the hyper parameters.

While the g-prior is invariant under rotation within a model, a potential problem
with the g-prior is that it inherits the instability of ordinary least squares (OLS)
estimates when predictors are highly correlated. We build a hierarchical prior based
on scale mixtures of independent normals, which incorporates invariance under ro-
tations within models like ridge regression and the g-prior, but has heavy tails like
the Zeller-Siow Cauchy prior. We find this method out-performs the gold standard
mixture of g-priors and other methods in the case of highly correlated predictors in
Gaussian linear models. We incorporate a non-parametric structure, the Dirichlet

Process (DP) as a hyper prior, to allow more flexibility and adaptivity to the data.
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1

Introduction

In linear regressions, variable selection is routinely used to reduce model complexity
and prevent over-fitting. From a Bayesian perspective, model selection is driven via
prior specifications. In this dissertation, we develop two novel hierarchical priors for
variable selection and model averaging. This chapter is organized as follows. Section
1 introduces the background of Bayesian model selection and model averaging in
normal linear models. Section 2 describes the “spike-and-slab” prior, the class of
prior distributions that contain point masses at zero as mixture components. Sections
3 and 4 review two widely utilized prior distributions, mixtures of g-priors and scale
mixtures of independent normals respectively. Overviews of our new methods are

included in these two sections.

1.1 Background: Bayesian Model Selection and Model Averaging in
Linear Regression

From a model selection prospective, suppose we have (¢ + p) number of potential
predictors, among which the first ¢ ones Xy = (Xq1,...,Xo,) should always be

included according to background information sources or the modeling structure



(e.g. intercept); while a subset of the remaining p predictors V.= (Vy,...,V,) may
be redundant or null predictors and may be excluded. We denote a normal linear

regression model with predictors (Xo, V() as model M, which can be written as
Model M : Y = Xgag + VuBum +€, €~N(0,0%,) (1.1)

where Y = (y1,...,9n)T is the vector of n independent responses, and V, is the
design matrix that consists of certain py, columns of V.

Bayesian solutions to the model selection problem require prior specifications on
the model space, p(M), and also on the parameters ¥ = (o, B, 0). After the
prior specification, for each model M, its marginal likelihood f(Y | M) and its

posterior probability p(M | Y) can be computed as

FOY | M) = f FOY |t M) plgpag | M) dip

fY | M) p(M
b | ¥) = AT M)

2o fY [ M) p(M)
A widely used selection criterion is to select the model with the highest posterior
probability p(M | Y). In addition, model posterior probabilities also serves as
weights in Bayesian model averaging (BMA), which uses the weighted average of

posterior mean estimates of coefficients given each model,

Bj = ZP(M | Y) E(ﬂj | YvM) l{XjGXM}
M

Therefore, for both model selection and parameter estimation, calculating marginal

likelihoods f(Y | M) is essential.
1.2  Prior Distributions with Point Masses at Zero

For Bayesian model selection and model averaging, prior specification for parameters
plays an important role. The “spike-and-slab” type of priors are popular choices for

2



regression coefficients. Originally, the spike-and-slab prior (Mitchell and Beauchamp,
1988) refers to a mixture distribution of a points mass at zero (the spike) and a uni-
form distribution on a bounded interval centered at zero (the slab). This concept
nowadays is usually used to describe a class of prior distributions that are mixtures
of point masses at zero and continuous distributions or “spike-and-bell” priors. With
the point masses, a subset of predictors can be excluded with positive probability,
which can be treated as direct shrinkage to zero. The continuous components in
the prior also pull the coefficients included in the model towards their prior cen-
ters, which are usually zero, to achieve another layer of shrinkage. When dealing
with high-dimensional data, in addition to the spike-and-slab type of priors, another
class of prior distributions, continuous shrinkage priors are also widely adopted. The
density functions of these priors have high peaks around zero (or even diverge at
zero), which can impose heavy shrinkage on the coefficients towards zero but can-
not strictly exclude predictors unless posterior mode estimates are used, or some

additional decision theoratic approach is adapted.
1.3 The g-prior and Mixture of g-priors

Among the spike-and-slab priors, Zellner’s g-prior is a very popular choice. In the
regression problem Y ~ N(Xg3,0%I,), when there is some information about the
value of the coefficient 3 but little information about ¢ and the prior covariance of

3, Zellner (1986) proposes the g-prior on (3, o),
Blg,0~N(Bo,go’(X"X)™)
po) o« 1/o
which incorporates the possible value of the coefficient through the prior mean 3.

Since for variable selection problems, selecting variables X is equal to testing hy-

potheses Hy : B = 0 versus H, : B8 # 0, hence here the possible value of the

3



coefficient is By = 0. In the g-prior, the normal standard deviation o typically has
an improper diffuse prior. Improper priors introduce arbitrary constants into the
marginal likelihoods generally leading to ill determined Bayes factors, which may
invalidate model comparison based on Bayes factors. Hence Bayarri et al. (2012)
proposes the Basic Criterion for priors in model selection, which suggests that all
model specific parameters should have proper conditional prior distributions. Com-
mon orthogonal parameters are exceptions, due to the cancellation of the vague
constants in the Bayes factors (Berger et al., 1998).

It is convenient to consider an equivalent parameterization of model (1.1) so that
the common predictors X, and remaining model specific predictors are orthogonal
for all models. To achieve orthogonality, in (1.1) we decompose V 5 by projecting it

onto the hyper plane spanned by the columns of Xj,
Model M : ]E(Y) = Xpg + PXOVMBM + (In - PXO)VMIBM (1.2)

= Xoax + XmBum (1.3)

where a = g + (X X) ' XTV B0 is the parameters on common predictors after

translation, Px, = Xo(XZXg) ' X? is the projection matrix, and
Xt = (I, — Pxo )Vt (1.4)
is the new model specific predictors such that
X{Xp =0 (1.5)

Formula (1.5) implies that the parameters a and By are orthogonal in the sense of
the information matrix of (e, B,) being block diagonal. Note that the above orthog-
onality holds under all 27 models, so a can be considered as a common parameter
among different models. In the special case where the only common predictor is the

intercept Xy = 1,,, in normal linear regression transforming V , to X is equivalent
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to centering the columns of V. And after this orthogonalization, the intercept a
can be considered as the center of Y, which does not change with any specific model
M. Therefore, in linear models according to the most widely used version of the
Zellner’s g-prior, the intercept o has an improper flat prior (e.g., Liang et al. (2008),
the null-based approach)

Bt | 9,0, M ~ N (0, 90*(X3 X)) (1.6)

pla,o0 | M) oc 1/o (1.7)

This version of the g-prior has several ideal properties. The marginal likelihoods
yielded by it are in closed form expression, and can be represented as simple func-
tions of the coefficient of determination or R%. In addition, it maintains the same
correlation structure in the prior distribution as the likelihood and is invariant un-
der orthogonal transformation of designs. However, choosing the value of the hyper
parameter g is not straight-forward. Arbitrary values of ¢ in the g-prior usually
lead to the information paradox (Liang et al., 2008). In addition, Lindley’s paradox
occurs when g is large, because the prior density is too flat and hence always favors
the smaller model. To resolve these problems, fully Bayes approaches propose prior
distributions on g, e.g. Zellner and Siow (1980), Liang et al. (2008), Maruyama and
George (2011), Bayarri et al. (2012), Celeux et al. (2012), Ley and Steel (2012).

1.3.1 Owerview of Chapter 2

New mixtures of g-priors have been extensively studied in linear models, however
choice of prior distributions in Generalized Linear Models (GLMs) remains an open
problem. In Chapter 2 of this thesis we extend mixtures of g-priors to Generalized
Linear Models (GLMs) by assigning a conjugate prior, the Confluent Hypergeometric
distribution, to the shrinkage factor 1%9. Our CH-g prior encompasses common

mixtures of g-priors in the literature such as the Hyper-g prior, and naturally extends

them to be applicable in GLMs. Under a Laplace approximation, it yields marginal
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likelihoods in computationally tractable forms. We demonstrate theoretically the
asymptotic consistency for model selection and BMA estimation holds under the
CH-g prior. With our default choice of hyper parameters, the CH-g prior satisfies
the intrinsic consistency of Bayarri et al. (2012) implicitly. In addition, we illustrate

its use in simulation and real examples.
1.4 Scale Mixtures of Independent Normals

In addition to mixtures of g-priors, shrinkage methods with continuous priors in
the family of scale mixtures of independent normals (West, 1987) are also preva-
lently used, for example, the relevance vector machine (Tipping, 2001), the Normal-
exponential-gamma prior (Griffin and Brown, 2005), the Bayesian lasso (Park and
Casella, 2008), (Hans, 2009), the Bayesian elastic net (Li and Lin, 2010) and the
horseshoe (Carvalho et al., 2010). Under orthonormal designs, the (conditional)
posterior mean of each regression coefficient may can be represented as the MLE
multiplied by a shrinkage factor, which takes value between 0 and 1.

The posterior distribution under the g-prior inherits the instability of ordinary
least square (OLS) estimate when the design matrix is nearly singular. Ridge regres-
sion, lasso estimates or estimates under scale mixtures of independent normals are
not as affected by the correlation among the predictors. Carvalho et al. (2010) claim
that the horseshoe performs almost as well as the gold standard of Bayesian model
averaging (BMA) under the Zellner-Siow prior for prediction. However, continuous
priors cannot shrink coefficients to exact zeros, and lack selection procedures that can
be validated by optimizing any loss function. On the other hand, “spike-and-slab”
priors (Mitchell and Beauchamp, 1988; Ishwaran and Rao, 2005; Scott and Berger,
2006) allow coefficients to be exactly zero (so that they can be excluded from the
model) by adding positive probability masses at zero to the priors. Our results sug-

gest that scale mixtures of independent normals may out-perform the mixtures of
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g-priors if the predictors are highly correlated.
1.4.1 Owerview of Chapter 3

In normal linear regression, empirical studies suggest that ridge regression outper-
forms the lasso in parameter estimation and prediction when regression coefficients
are small or covariates are highly correlated. Unlike the lasso, which depends on
the choice of coordinate system used to represent the model, ridge regression is in-
variant under the orthogonal rotation of the explanatory variables. Inspired by the
rotation invariant property of ridge regression, in Chapter 3 we propose the Local
Rotation Invariant prior (LoRI). This Bayesian approach has a local rotation invari-
ant structure, which is induced by the DP prior on variance parameters in normal
prior distributions for the regression coefficients. Due to the natural grouping struc-
ture induced by the DP, our shrinkage prior acts like a multivariate Cauchy prior
within the group. Point masses at zero in the DP base measure can achieve sparse
solutions like the lasso or “spike-and-slab” type of Bayesian variable selection priors.
Compared with continuous shrinkage methods, it has the advantage of valid built-in
variable selection. Meanwhile, the Cauchy tails of the prior lead to bounded prior
influence that can preserves large effects. Both simulation and real-world examples

show that the LoRI achieves high accuracy in parameter estimation and prediction.



2

The Confluent Hypergeometric g-prior for GLMs

2.1 Introduction

In linear regression, mixtures of g-priors (Zellner and Siow, 1980; Liang et al., 2008;
Maruyama and George, 2011; Bayarri et al., 2012; Celeux et al., 2012; Ley and
Steel, 2012) are widely used for model selection and model averaging. They yield
(exact or approximate) marginal likelihoods in tractable form, which may avoid
sampling regression coefficients in MCMC to achieve computational efficiency. They
maintain correlation structure among predictors by allowing the correlation in the
prior covariance to mimic that induced by the likelihood, which also leads to their
invariance under change of measurement. Mixtures of g-priors not only inherit the
ideal features of the g-prior, but also resolve the information paradox (Liang et al.,
2008) and Lindley’s paradox (Lindley, 1968) that occur under fixed g.

In this paper, we build a unified framework of mixture of g-priors for GLMs. Our
hyper prior on g based on the Confluent Hypergeometric distribution encompasses
most common hyper priors, such as the Hyper-g prior, and naturally extends their

corresponding mixtures of g-priors to GLMs. Under a Laplace approximation, our



choice of hyper prior is conjugate, and yields computationally tractable forms for
marginal likelihoods. We provide conditions for asymptotical consistency of model
selection and parameter estimation under our mixture of g-prior for GLMs.

Section 2 reviews the g-prior for GLMs. Section 3 develops the mixture of g-
priors for GLMs. Section 4 examines the model selection consistency, information
consistency and Bayesian model averaging consistency. Section 5 discusses our de-
fault choices of hyper parameters, and shows its performance in both simulation and

real examples.

2.2 The Generalized g-prior for GLMs

2.2.1 Generalized Linear Models

Suppose that the n dimensional response vector Y = (Y,...,Y,)T follows a distri-
bution in the exponential family, and according to McCullagh and Nelder (1989),

the likelihood function can be written as

Felvio) | 2.)

i=1
where a(-),b(-) and ¢(-,-) are specific functions which determine the GLM density.
The mean and variance for an observation Y can be written using these functions:
E(Y) =¥'(0), (2.2)
V(Y) = a(9)b"(9), (2.3)

where b'(-) and b”(-) are the first and second order derivatives. Due to (2.3), it is
reasonable to assume that b”(-) = 0 in most cases. The canonical parameter 6; = 6(n;)

can be connected with the linear combination of predictors V;; i.e.,

by the link function 6(-), where n = (n1,...,m,). In particular, the canonical link,

6;(nj) = m;, is the most widely used form of link. We restrict the scale a(¢) = 1,

9



which includes many common exponential family distributions, such as Bernoulli,

Poisson and Normal with known variance (see Table 2.1).

Table 2.1: Three commonly used distributions in the exponential family.

distribution a(¢) 7 b(0) b'(@) b"(0)
N, 0% o> p 2 0 1
60 86

Ber(p) 1 log ﬁ log(1 + €%) Tr ey
Poi(\) 1 log A e? e? e?

Rather than using all predictors, we may wish to consider models based on a
subset of V. Suppose Xy is the set of predictors common all models and V ,, is the

subset of V in model M, then we can write model in (2.4) as

Mm = Xooom + VB, (2.5)

where typically, Xy = 1,,.

In normal linear models, the most common variant of the g-prior is

Bulo~N(0,9Z, (Bm),

where Z,(Bum) = X4, Xum/o? The precision matrix (i.e., inverse covariance) of
this g-prior equals the inverse of the hyper parameter g multiplied by the expected
information matrix based on all n observations, which is the same as the observed
information. Extensions are more complicated for non-Gaussian distributions in
the exponential family, because their information matrices depend on the unknown
coefficient parameters. Bové and Held (2011) evaluate the expected information
matrix at the prior mode zero, while Hansen and Yu (2003) at the MLE estimates
B Mm. Wang and George (2007) also evaluate the information at the MLE, but use the
observed information matrix instead. Gupta and Ibrahim (2009) avoid this choice
by keeping the unknown parameter B, in the prior precision matrix, which leads to

intractable marginal likelihoods.
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2.2.2  “Centering” the Predictors

Bové and Held (2011) point out that majority of the current variants of g-priors for
GLMs do not treat the common parameters across models, usually the intercept,
differently from the model specific coefficients, so that Xg = ¢. This means that
the intercept or other common parameters are shrunk towards zero along with the
coefficients, which may be problematic when the true intercept is large relative to
the regression coefficients. In the extreme case, in normal linear models if the true
intercept approaches infinity, and ¢ is allowed to adapt to the data, then the null
model is selected. Hence it is desirable to assume the common parameters and the
model specific parameters are independent a priori. Motivated by the projection
procedure (1.4) in normal linear models, which ensures orthogonality between the
common variables Xy and the model specific predictors X »4, we propose a “center-
ing” procedure for likelihood densities in the exponential family, to ensure that the

expected Fisher information is block diagonal.

Proposition 1. Under any model M, we propose the following “centering” procedure

to transform its model specific predictors V y to Xy,

XM = [In - ﬁXo] VM7 (26)

A . ~1 .

7)Xo = XO (ngn(nM)XO) ngn(nM)7 (27)

v = Xoam + XmbBu, (2.8)
where L,,(nam) is the expected information matriz of My = My -+, Mar)’ evalu-

ated at its MLE based on all n observations. After this reparameterization,
X4 Zn(Aia)Xom = 0, (2.9)

which leads to the result that the expected information matriz for (s, Bam) evaluated

11



at the MLE

(2.10)

T, (dM,BM> _ [ L(am) 0y ]

15 block diagonal. Note that 75x0 s an orthogonal projection on the column space X

with inner product {x,y) = x L, (fm)y.

Proof. Since the linear combination nys does not change under the translation op-
erator, due to the functional invariance of MLEs, fr( remains the same after (2.6).
We can simply verify that the off-diagonal block of the information matrix equals

zero (2.9). O

In most GLM variable selection problems, the only common predictor is the

intercept Xo = 1,,. Then after the “centering” step (2.6), the j-th predictor
X, = V; ~ L, 211)

where 7, A is a weighted average of elements of the vector V; and the weights de-
pending on the information matrix Z,(fr). In particularly, under normal linear
models, these weights are equal and thus v; o becomes the column-wise average.
Except for normal distributions, the “centering” procedure (2.6) is model specific
due to its dependence on model specific MLEs in the inner product Z, (). Due to
the asymptotic consistency of the MLE, we now treat the parameter ay( as a com-
mon parameter across models, and a; and B, are treated differently by having

independent prior distributions, i.e.,

plan, Bm) = planm) p(Bum)- (2.12)

The “centering” step also simplifies the calculation of the marginal likelihood.
Under most of the distributions in the GLM family (except for normal distribution),
the marginal likelihood does not have a closed form. To calculate the marginal like-
lihood, we apply a Laplace approximation (Tierney and Kadane, 1986) that utilizes
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a second order Taylor expansion around the MLE (&, B M)-

p(Y [ M) = ffM(Y | s Br)p(aa)p(Bat) d(cep; Ba) (2.13)
= fm(Y | b, B) JeﬁaMdM)TIn(dM)(aMdM) plan) day (2.14)

| f6_;(ﬁM_BM)Tzn(BM)(ﬂM—BM> p(Br) dBai + O(n). (2.15)

According to Kass et al. (1990), this Laplace approximation is precise to the order of
O(n™1). The “centering” step combined with independent prior distributions for a
and B, allows us to approximate the marginal likelihood by integrating out an, and
B separately. Next, we will describe the g-prior for GLMs that we adopt, which
leads to closed form marginal likelihood under the Laplace approximation (2.14), as

well as extensions to mixtures of g-priors.
2.2.3 The g-prior for GLMs

In normal linear models, Zellner’s g-prior for (1.6) (1.7), assigns the model specific
coefficient 3y, a multivariate normal prior distribution centered at zero, and the
inverse of its prior covariance is proportional to the information matrix Z,(Bum) =
X% Xnm/0?. In GLMs, the expected information matrix becomes
Zu(Brm) = Xy Ta(nr) X
=X [Amwm) Zu(0a) Ama)] X,

db;
dn;

where A(n) denotes the diagonal matrix whose i-th element is evaluated at the

i-th linear predictor m; v = ap + XZM,BM, and Z,(0,) denotes the expected in-
formation matrix of @, based on all n data points. Under canonical links, A(nu)
becomes the identity matrix, and hence Z, (1) becomes the diagonal matrix with
elements 0" (1; pm)-

In GLMs, after “centering” the design matrix to X, we propose the following
definition of the g-prior under model M. We let 3 have a normal prior with mean
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0 and covariance being proportional to inverse of the expected information matrix,

and let the intercept a, have an independent normal prior:
IBM | gaM ~ NpM (07 g IH(BM)71> s (216)

plaa | M) ~ N(0, ne), (2.17)

where ¢ is a positive parameter, In(B M) is the expected information matrix based
on all the data and evaluated at the MLE (dM,BM) in the form of N, and c is
a non-negative constant. In the literature, such data dependent priors have been
proposed, for example, Kass and Wasserman (1995), Hansen and Yu (2003) and
Wang and George (2007). Notice as when ¢ = o0, (2.17) degenerates to the flat
prior p(ap) oc 1. Although in linear model, the flat prior on the intercept is a
prevalent choice in almost all existing variants of g-priors that treat the intercept
and coefficient separately, we will show in Section 2.4.2 that this may be problematic

for other GLM functions.
2.2.4 Laplace Approzimate of the Bayes Factor

As discussed in (2.14), we utilize the Laplace approximation to calculate the marginal
likelihood for model M. The normal densities of ax and B from the likelihood can
be combined with the independent normal prior densities on ay and B (2.16) (2.17)

respectively. Hence we obtain the approximate marginal likelihood in analytical form,

Tn(apm)ady

P(Y 9, M) =fad (Y | ant, Bu) [+ To(@ndne] Fe 2@ (2.18)
(14 g) e 0¥ 4 O, (2.19)

where
Qui = | BRXE] Zuinn) [XniBud| (2.20)

is the analogue of the regression sum of squares in the linear model, p,, is the number
of predictors in Xy, and Z,,(&n) = 117, (9am)1,, is the expected information of the
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intercept. Note that for the null model M, where pprq, = 0, we can let Qaq, = 0 and
then (2.18) remains to hold. When comparing two models My to M;, the Bayes
factor under g-prior can be approximated as the ratio of their marginal likelihoods,

which can be rewritten as
BF pmty = Atoint, - Qatoem, + O(nh), (2.21)
which is decomposed to the product of

In(sz)fx%A2 Tn (G, )dfwl

A _1
Ao, = St (Y |Gty Bass) ll +In(5‘Mz)nC] ’ e_é|:In(&M2)"C+1_In(dM1)”C+1
U f (Ya, Ba) L1+ Za(G, Jne
(2.22)
and
(1+9) % exp {—52

Qptgim, = 2 (2.23)

Ma: My (1+ )—WTl " oy . .

g exp 2(1+9)

The first term Apq,.0q, consists of the maximized likelihood ratio and the penalties
contributed by the intercept. The second term {2aq,.nq, comes from the generalized
g-prior on the coefficients. In particular, the choice of g effects the Bayes factor only
through Qg -

Note that if ¢ = oo, i.e., the prior distribution on «, is the flat prior, then the

approximate Bayes factor and its corresponding Apy,.0q, become

PM

Q
(1+ g)_TeW(lyg) +0(n™),

[NIES

p(Ylg, M) = far (Y | éag Bu) 2m)? [Za(Gnd)]
(2.24)

where

A= . sz (Y|dM27BM2) [In(d/\/b)]i

© = ’ - (2.25)
M f/\/h (Y|d/\/(17/6/\/(1) [In(d/\/[l)]

NI=| N
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2.2.5 Approzimate Conditional Posterior Distributions

For any given model M, here we consider the conditional posterior distributions of
an and Bpg under our g-prior (2.16), (2.17) for GLMs. For notation simplification,
when there is no ambiguity, we omit the subscript M. Except for the normal dis-
tribution, other likelihood densities in GLMs (2.1) are not conjugate with normal
prior on ans and By. Fortunately, according to the standard Bayesian asymptotic
theory (see Bernardo and Smith (2000), p287), as n increases, the conditional poste-
rior densities based on observed data {Y,V} = {(Y1,v1),..., (s, v,)} converges to

normal densities,

Z.(anm) . 1
Y N (=M _— 2.2
d g g 5 7!

hence we can use these normal distributions as approximates to the conditional
posterior distributions. Note that when flat prior is assigned to a, i.e., ¢ = o0, its

approximate conditional posterior is
d . N
am | Y, M5 N (um, [Za(aa)] )

Similar to the posterior distribution under Zellner’s g-prior in the normal lin-
ear models, the approximate conditional posterior mean of B, is shrunk from the
MLE B towards 0. We donate the ratio z = g/(1 + g) between the posterior
mean E(By | Y, g, M) and the MLE B, as the shrinkage factor. Assume that
the expected information In(ﬁ A1) based on all data is proportional to n, then the
approximate posterior covariance of B, is proportional with 1/n. Therefor, the con-
ditional posterior p(Bax | Y, g, M) becomes more concentrated around its mean as

n increases.
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2.2.6 Inconsistency of the g-prior

For our model selection problem, suppose among all the 27 different models, there
exists a true model M that generates the data. Under the true model M, the MLE

BMT converges to the true parameter 33, , while the conditional posterior mean

E[Bu, | Y, g, M] becomes more concentrated around By, g/(1+g). Therefore, with
any fixed value of g, the posterior mean estimate of By, is biased asymptotically.
In addition to the inconsistency in parameter estimation, g-priors with fixed g
also exhibits inconsistency in model selection. In normal linear models, Liang et al.
(2008) points out the selection inconsistency of g-prior with fixed g. They also
suggest that some fully Bayes methods that assigns prior distributions on g, such as
the Zellner-Siow prior (Zellner and Siow, 1980), the Hyper-g prior and the Hyper-g/n
prior (Liang et al., 2008) can partially or completely resolve this inconsistency. We
find that in GLMs, this inconsistency also exists with fixed g. The following counter
example shows that in normal linear model with fixed variance, when comparing two
nested models, if the smaller model is the true model M, the Bayes factor for M

compared to M under g-prior does not go to oo asymptotically.

Remark 1. Under normal linear model with known variance o? = 1, for any fized
value of g and any model M > M, as the sample size n increases, the Bayes factor

under the g-prior (2.16), (2.17)
BF . m = O(1),
which tmplies the selection consistency does not hold for g-prior with fized g.

Proof: see Appendix A.2.1.

17



2.3 The Confluent Hypergeometric Prior on ¢

We propose a hierarchical prior distribution on g to resolve the inconsistency. Based

on the g-prior (2.16), (2.17), we assign a hyper prior distribution,

p(g|a,b,s)= - (2.28)

where parameters a > 0,b > 0,s > 0, and {F} is the confluent hypergeometric
function (Abramowitz and Stegun, 1970). (See Appendix A.1 for definition of the 1 F}
function). Gordy (1998a) proposes the Confluent Hypergeometric (CH) distribution,
which can be considered as a generalization of Beta distribution and has the following
density function

20711 — 2)b Lexp(—s2)
B(CL, b) lFl(a7 a + b? _S)

peu(z | a,b,s) = ,0< 2 <1, (2.29)

where parameters a > 0,b > 0 and s € R. When s = 0, the CH(a, b, s) distribution
degenerates to Beta(a, b) distribution. When transforming g to the shrinkage factor

z, the prior distribution (2.28) becomes a CH distribution on z, i.e.,

g ab s
=——~CH|=,=,—= 2.

which guarantees that the prior distribution (2.28) is well-defined. It is also a con-
jugate prior, in that the conditional posterior distribution of z also has a CH distri-

bution,

Y. M~ CH (g’bJrsz’_s +2QM)’

. (2.31)

where pa is the model size of M, and Q = 8%, X%, Z,, (fa1) X B is the analogue
of RSS in GLMs. We denote the hierarchical g-prior (2.16), (2.17) and (2.28) as the
CH-g prior.
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2.3.1 Tail Behavior of the CH-g Prior

Heavy-tailed prior distributions on B are desirable in model selection since they
are robust to large coefficients in terms of not over-shrinking them. Most state of the
art prior distributions on g yield the prior densities of p(Ba¢ | M) with multivariate
Student tails, for example, Zellner and Siow (1980), Liang et al. (2008), Maruyama
and George (2011) and Bayarri et al. (2012). The following proposition shows that
under the CH-g prior, the prior distribution on B, also behaves as a multivariate

Student distribution in the tails.

Proposition 2. Under the CH-g prior (2.16), (2.17) and (2.28), the marginal prior

distribution under model M
P8 | M) = [ (B | 9. M)plo)ds

has tails behave as multivariate Student distribution with degrees of freedom b and

A

—1
scale matriz [In(BM)} , i.e.,

_b+p
2

lim  p(Bu | M) (1Bul2)™ 2, (2.32)

1B —o0

where |Bul = (BNBxm)* and |Bulz, = | BLL.(Br)Bu| "

Proof: see Appendix A.2.2.
The choice of the hyper parameter b alone determines the tail behavior of the

marginal prior p(Ba | M). In particular, b = 1 corresponds to Cauchy tails.
2.3.2  Approximate Bayes Factor under the CH-g Prior

Similar to the g-prior for GLMs, the CH-g prior also yields closed-form marginal like-

lihood under Laplace approximations. Denote u = 1 — 2z, then the prior distribution
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on z (2.30) is equivalent to

1 b a s
= H{=-.=-,=]. 2.
1+g¢ ¢ (2’2’2) (2.33)

Hence we can integrate g (in the form of u) out from (2.18) and obtain the approxi-

mate marginal likelihood under the CH-g prior for model M

1
p(Y [ M) =f p(Y | u, M)p(u)du
0
1 Zn(dp)d5
a_/\/( TLC] 56 2(Zn (& pq)nc+1)

= fm (Y|@MaBM)

b+p s a+b+pM 51+ Qm

B(pg) uF (M e sy
D RN O e

Therefore, the Bayes factor comparing My to M; under the CH-g prior can be

approximated as
BF oty = Aoty - Qg + O, (2.34)
where Apg,. 0, remains the same as in (2.22) and
o B (b+;;M2 ’ %) F (b+pM2 ’ a+b-;pM2 , _s+Q2M2)
: b+pm; g b+pM1 a+b+pry s+HQ M,y
B 2 192 1F1 ) 9 T 2

We can further let hyper parameters a, b, s to be model specific, then the normalizing

constants from the prior in (2.35) can not be canceled, i.e.,
UMy TOMyHPMy  SMuHRM, )

bM2+pM2 AMo b./\/l2+p./\/12
QCH B ( 2 )2 1F1 2 ) 2 J 2 (2 36)
MMy ™ B by FPM, ammy F baty FPMy  amy Hoag FPAM, smy QM ’
2 172 141 2 J 2 » 2

bM amm bM am +bM SM
B( 217 21) 1F1( 2l7 12 l’_ 2l

. . 2.37

B bM2 aMy F bM2 aM2+bM2 S Moy ( )
2 0 2 H1y 72> 2 ) 2
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2.8.8 Connection with the Literature

Note that the density function of the Confluent Hypergeometric distribution (2.29)
is proportional to the densities of both Beta distribution and truncated Gamma
distribution, which implies that our CH(%, 5 %) prior on u = 1/(1 + g) encompasses
some of the exsiting prior distributions on the hyper parameter g.

In normal linear models, to achieve marginal likelihoods in closed forms, prior dis-
tributions on u originating from the Beta distribution are conventional. For example,

Liang et al. (2008) introduces the Hyper-g prior,
1 ap,
———~Baa05—1ﬂ), (2.38)

where 2 < ap, < 4. When a;, = 4, the Hyper-g prior is equal to the uniform prior.
The recommended value of the hyper parameter a;, = 3 corresponds to a proper prior
which puts more mass of 1/(1 + g) near 0. The choice a;, = 2 corresponds to both
the reference prior and the Jeffrey’s prior, which is improper. While it yields proper
posterior distributions, because g does not appear in the model with just X, Bayes
factors are ill-determined due to the arbitrariness of the constants of proportionality.
The Hyper-g prior (2.38) can be viewed as a special case of our CH-g prior, with
a=2b=a,—2and s =0.

The marginal likelihoods under the Hyper-¢g prior in normal linear models have
closed forms that contain the Hypergeometric o F; function. To further simplify the
marginal likelihood, Maruyama and George (2011) proposes the Beta prior distribu-

tion on g,

1 1l n—pm 3
—— ~ Beta { - — = 2.39
1+g ea(4’ 2 4)’ (2.39)

which eliminates the need to evaluate the 5 F} function in the marginal likelihood. An

additional benefit is the fact that the second parameter being proportional with n
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yields an implicit O(n) choice on g. According to the authors, g = O(n) in the prior
is desirable since it prevents the prior variance on B, from decreasing to zero and
prevents the likelihood from being dominated by g asymptotically. The Beta prior
(2.39) is also a special case of the CH-g prior, with a =n —py — 1.5 and b = 0.5.
In GLMs, when the precision a(¢) is fixed, the likelihood under Laplace approxi-
mate usually contains an exponential term of u, for example, (2.18). Hence conjugate
prior densities of u should contain some form of Gamma distribution density. For

example, Wang and George (2007) proposes the truncated Gamma prior on wu,

1
— ~G b)), 2.40
v ammao.1) (as, by) ( )

where the domain is restricted to the interval (0,1), and a; > 0,5, > 0. The authors
recommend to use a uniform prior on g, which can be achieved by setting a;, = 1,b; =
0. The CH-g prior also encompasses (2.40), with a = 2,b = 2a;, and s = 2b;.
Although our CH-g prior encompasses the above prior distributions on g, it does
not include the Hyper-g/n prior (Liang et al., 2008) and the Robust prior (Bayarri
et al., 2012). Since the Hyper-g prior cannot yield consistency for model selection
when the null model is true, Liang et al. (2008) modify it to the Hyper-g/n prior,

plg) = 42 ( ! )W, (2.41)

2n \1+g/n

where 2 < a;, < 4.
Under the Robust prior (Bayarri et al., 2012), after transforming the parameter

gtou=1/(1+ g), we find that its prior density becomes

uarfl

1
[1+ (b, — D]+ 0=~ mrmmmeo=m )

pr(u) = a, [pr (b, +n)]" (2.42)

by

where a, > 0,b, > 0 and p, = ;7=

. In normal linear models, the Robust prior yields

closed-form marginal likelihoods in the form of the Appell F} function. Based on
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the various criteria for model selection priors proposed in Bayarri et al. (2012), the
recommended values of the hyper parameters in the Robust prior are a, = 0.5,b, = 1
and p, = 1/(1 + pap). Both the Hyper-g prior and the Hyper-g/n prior are special
cases of the Robust prior. More specifically, (2.42) with a, = a,/2 — 1,b, = 1,p, =
1/(1 + n) becomes the Hyper-g prior and (2.42) with a, = ap/2 — 1,b, = n,p, = 0.5
corresponds to the Hyper-g/n prior. The CH-g prior cannot be obtained as a special

case of the Robust prior.
2.3.4 A More General Class of Prior Distributions on g

Both the Robust prior and the CH-g prior are special cases of a more general class of
distributions, the Compound Confluent Hypergeometric (CCH) distribution (Gordy,
1998b). The CCH distribution has 6 parameters and can be considered as a gener-
alized version of the Confluent Hypergeometric distribution. Suppose variable u has
CCH distribution, then its density function is

pocu(u | t,q,r s,v,0) (2.43)

B vt exp(s/v) w1 — vu)ilemsw

- 1 1
B(p,q) ®1(q,r,t +q,8/v,1—60) [0+ (1—0)vu] {o<u<l}

(2.44)

where t > 0,¢ > 0,7reR,se R0 <v <1,0 >0, and

o0 00 a
O (a, 8,7, 2,y) = ZZ u "’”y”

m=0n=0 Py m+nm‘n'

is the confluent hypergeometric function of two variables (Gordy, 1998b). We can
extend the possible domain of the CCH distribution to (0,1/v) with v > 1, so that
the upper bound of u can be strictly below 1. The extended CCH distribution as
a prior distribution on v = 1/(1 + g) unifies a broader variety of prior distributions
including both the Robust prior and the CH-g prior. The Robust prior is equal to
u~ CCH (ar, La, +1,0,p,(by + 1) +(1—b),1+ i)
pr(by + 1)
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and the CH-g prior is equal to

b a s
~ H{-.-.0,——,1,1}.
u CC (272707 27 ) )

In GLMs, under the extended CCH prior on u, the approximate marginal likeli-

hood also has a closed form.

1

pY | M) = [ 6(Y | Mpp(a)da

0

N ~2
1 In(aM)aM

— fat (Yane B ) [1+ To(anne] 2 ¢ 2@

2+pag M _Om 204+2g+pam 25+Qm
B (544, q) v 2 em &y (g r, M, 21— 0)

B(t7Q) (I)l (Q7T7t+q7%71_6)

+O0(n™h).

Under the Robust prior with b = 1, the ®; function in p(Y | M) degenerates to a

truncated Gamma function, which is easier to compute; that is
p(Y [ M)

In(dM)an

(5 Gee) o (e gl oo

where I'(a) is the Gamma function and I'(a,s) = {”t*te~*dt is the incomplete

P
—PM_q,

Gamma function.
2.4 Model Selection Consistency

In this section, we will focus on the asymptotic model selection performance of the
CH-g prior for GLMs. In addition, we also study its behavior in a special but not
rare case, where the sample size is small and there exists a model that fits the data

perfectly.
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2.4.1 Asymptotic Consistency for Model Selection

When studying the asymptotic properties, we believe it is reasonable to assume that

the unit expected information matrices are non-singular.

Assumption 1. We here assume a mild condition on the predictors |1,,X] in the
full model. For any n-dim vector n in the space spanning by the predictors C(1,,X),
i.e., m = [1,,X]|w, where w is a (1 +p)-dim vector of weights, there exists a positive

definite matrix 3, such that

lim [1,, X]TIn("?) [1,, X]

n—aco n

— Yy (2.45)

In normal linear model, this assumption implies that X7 X /n converges to a pos-
itive definite matrix 3, which is a conventional assumption in the model selection
literature. Furthermore, if we treat the rows of the full design matrix X as indepen-
dent random samples from p-dimensional multivariate distributions which have the
same mean and bounded covariance, then (2.45) holds according to the Law of Large

Numbers.

Remark 2. Before studying the asymptotic consistency of the CH-g prior, we want
to point out that most asymptotic results which require i.i.d. samples as their con-
ditions also hold under GLMs. Although in GLMs, observations Yi,...,Y, are con-
ditionally independently but not identically distributed, we can assume that jointly
(Y1,x1),...,(Ys,Xx,) are i.i.d random samples. Thus as long as the marginal distri-
bution of x does not depend on the GLM parameters, the log-likelihood and the score
functions do not depend on the marginal distribution of x. Hence the asymptotic
results related to the MLE and likelihood ratio test also hold here. This underlying
assumption is adopted by van der Vaart (2000) (Ch5) when applying MLE consis-

tency in regression examples.
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According to Self and Mauritsen (1988), within the framework of GLM, for every
model M, the MLE of its parameters (&, B A1) converges to (', Biy) in probability

as n increases, where limit (o}, %) are the maximizers of the limit of the log-

likelihood,
(o, Bhy) = argmax(, g) lim - log fm(Yn | o, B).

In particular, in the true model My, (o}, B}, ) are true parameters which generate
the data.
We consider the same model selection consistency criteria discussed by Fernandez

et al. (2001), Liang et al. (2008) and Bayarri et al. (2012).

Definition 1 (consistency for model selection). Suppose the true model that gener-
ates the data is among the 2P potential models, and we denote it as My. We say

that the Bayes rule under the 0-1 loss is consistent for model selection if
plim, o, p((Mr|Y) =1 (2.46)

This means that for any model M # My, plim, p(M | Y) = 0. Hence a

sufficient condition for model selection consistency is that

n—0oo

for any M # M, assuming fixed prior odds. The counter example in Remark 1
shows that for any fixed g, the consistency for model selection do not hold under the
fixed g-prior for GLMs, thus we focus on results under the CH-g prior. According to
our previous decompositions of the Bayes factors (2.34), it is sufficient to examine
the asymptotic properties of Apq,.0q and Q%IT: M-

We will show in the following lemma that the first term A, a4 (2.22) of the Bayes
factor is dominated by the maximized likelihood ratio asymptotically. According to
Self et al. (1992), under the alternative model, the log likelihood ratio between My
and M converges in distribution to a non-central x? distribution.
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Lemma 1. As the sample size n increases, the asymptotic property of

R ~ R _1 Tn(&p )85 T (& pq)G2
fMT (Y|04MT, /BMT) [1 + In(CYMT)TLC] 2 67% { In(de;)nc+7£ 7In(6¢.//\:l)nc/\+41

fu(Ylan, Br) L 1+ Zu(Gagne

AMT:M =

15 that
1) if My < M, then A = O(1);
2) if Mrp & M, then Ay = O (€°7), where ¢ is a positive constant.

In addition, under the flat prior p(a)ocl, these properties also hold for

M=

N = fMT(Y|5éAMTa{§MT) [In(éiMT)]_
Faa(Ylaan, Bag) - L Znlénd)

Proof: see Appendix A.2.3.

The first term Aaq,.a in the Bayes factors can be considered as a measure of
goodness of fit. If the space spanned by the predictors of M does not contain all
predictors in the true model Ms, M cannot predict as well as M. Therefore, the
term Apq,.m overwhelmingly favors My by increasing at an exponential rate of n.
On the other hand, when the design space of M contains all predictors in My, M
has the same ability in explaining the response as M. Therefore, Apy,..1q alone does
not favor selecting M against a redundant model M. In this case, the second term
in the Bayes factors, (2.23) or (2.35), plays a more important role of placing more
penalty on the redundant model. In the case of fixed g, the term (1 + g)(pM_pMT)/ 2
in Qa0 penalizes M for the extra dimensions. However, the counter example in
Remark 1 illustrates that with fixed g, the penalty being imposed on the redundant
model is not strong enough asymptotically. Next, we will focus on the CH-g prior by

exploring the asymptotic properties of Q-(/%/Il_IT5 A Which yields a stronger penalty on
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the model size. We first study the asymptotic behavior of the analogue of regression

sum of squares (RSS) for GLMs, Q. and Q. in the following lemma.

Lemma 2. Let 3}, denote the limit of the MLE BM- The asymptotic properties of
Qm = [ﬁﬂxﬂ] Zn(fm) [XMBM]

under the true model My and under any other model M are

1) If My # My, then Qum, = O(n); for any other model M, if B4, # 0, then
Qm = O(n), and otherwise, Qp = O(1).

2) If My = M, then for any model M, Qr = O(1); and by the definition of Q
under the null model, Qam, = O(1).

Proof: see Appendix A.2.4

Theorem 1. With fized hyper parameters a,b > 0 and s = 0, the CH-g prior (2.28)
is consistent for model selection (2.47), except for My = M. In addition, this result
also holds with model specific hyper parameters anq, by, Spm that are independent of

n.

Proof: see Appendix A.2.5

Theorem 1 implies that the CH-g prior is desirable as a model selection prior in
most cases. However, it fails to impose a strong enough penalty in the case where
the null model is true. To resolve this inconsistency, we allow the hyper parameter
a to increase with n, such that

lim & = a*, where a* > 0. (2.48)
n—o N,

The following theorem shows that when a* > 0, the selection consistency holds under

any My, including when My = M,.
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Theorem 2. With hyper parameters b > 0,s > 0, and lim,_,,a/n = a* > 0,
the CH-g prior (2.28) is consistent under model selection universally, including the
case where My = M. In addition, this result also holds with model specific hyper

parameters ay, by, Spm, where lim,, o ap/n = a’y > 0.
Proof: see Appendix A.2.6
2.4.2 Perfect Fitting with Small Sample

We have demonstrated that the CH-g prior for GLMs is consistent for model selection
with large n. Now we will explore its selection performance with small samples, in
the case of perfect fitting.

In linear regression, Liang et al. (2008) points out that under the Zellner’s g-prior
with any fixed value of g, there exists the following information paradox. In principle,
for n » pay+ 1, if all the observations fall on a hyperplane (R? = 1), the Bayes factor
should support model M overwhelmingly over the null model M,. However, with
any fixed g, the BF y(. 0, under the g-prior is bounded. To resolve this information
paradox, the parameter g should be assigned certain hyper prior distributions in fully
Bayes approach, or be estimated by empirical Bayes approach.

Bayarri et al. (2012) provide a formal definition of the information consistency
for priors in model selection. If there exists a sequence of datasets with the same size
n such that the ratio of maximized likelihoods between M and M, go to infinity,
then their Bayes factors should also go to infinity. The condition of this criteria
describes the perfect fitting phenomenon under model M of a diverging likelihood
ratio, which is precise in linear regression since the estimate for the normal variance in
M is equal to zero, i.e., 62 = 0. However, this form of perfect fitting is not necessarily
true with most GLMs, including logistic regression and Poisson regression. Because
the response variable is discrete, the maximum likelihood under M has an upper

bound being 1, and no matter how minimal the amount of information the null
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model M, can reveal, its maximum likelihood is always greater than zero. Hence
for discrete distributions in the exponential family, even the GLMs can fit the data
perfectly, their likelihood ratios are bounded. For example, in logistic regression,
suppose model M fits each binary response perfectly, i.e., i; = 1 if ¥; = 1, and
i1; = 0 if Y; = 0; while the estimates of success probability in M, are fi; = 0.5. The
likelihood ratio

FaaY | G, B

~ = 4" < o0.
I, (Y | dng,)

We propose to use the fitted variance of all responses being zero to quantify the

perfect fitting phenomenon, that is, under model M,
V(Y;)=0, i=1,...,n, (2.49)

which is equivalent to fu(Y | & YN vm) = o0 in normal distribution. While in
the Bernoulli distribution, although the likelihood function is bounded, our criterion

(2.49) precisely describes the perfect fitting phenomenon. When the fitted values of

—

the expectation of every binary response E(Y;) equals to 0 or 1, the fitted values of
the variances are zero.

Another interesting difference we find between normal linear regression and GLMs
is whether to favor M over the null if perfect fitting occurs, but the sample size is
relatively small. In normal linear regression, as Liang et al. (2008) and Bayarri et al.
(2012) suggest, perfect fitting with any n > pa + 2 is strong evidence to favor M.
However with discrete responses, especially binary ones, perfect fitting is likely to
occur by chance when 7 is just slightly larger than pys + 1. In this case, the Bayes
factor should not overwhelmingly support M over M,;, unless n is large enough. This
problem is worth noticing because it is not rare in real world applications where p

is close to n, such as genetic studies. In logistic regression or Probit regression, the
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expected information of the ¢-th linear combination

A " or O)°
In(m) (1 + eﬁi)2 (1 — (I)(ﬁz))q)(ﬁz)

converges to zero as 1); = 00, where ¢(-), ®(-) are pdf and cdf of the standard normal
distribution. If perfect fitting occurs under model M, then Z,,(apq) = 0 and Qq = 0.
According to the Laplace approximation of marginal likelihoods, A%, = o0 (2.25).
Since both Qan, (2.23) and Q%I:M(a (2.35) are bounded, BF a4 pq, diverges under
both g-prior and CH-g prior. In contrast, under the normal prior on the intercept,
because Ay aq, is bounded, this problem is resolved. In Section 2.2.3, we recommend
using a proper prior (2.17) on the intercept instead of the commonly used improper
flat prior, to avoid inconsistency with perfect fitting with small n, where the Bayes
factor overwhelmingly supports the larger model.

On the other hand, if perfect fitting occurs under model M with sufficiently large
samples, it is reasonable to let the BF zq.04, go to infinity. We set the prior variance
of anq proportional to n, so that the normal prior converges to flat prior as n increase
which indicates model M is overwhelmingly favored if it can fit a large sample of

responses perfectly and the estimate of a is consistent.
2.5 BMA Estimation Consistency
2.5.1 Asymptotic Posterior Estimates

In each model M # M,, the conditional posterior mean
g

does not converge to the limit of the MLE asymptotically with any fixed g. In a fully
Bayes approach, convergence of the posterior distribution of the shrinkage factor

z =g/(1+g) to 1 is a necessary condition for the approximate conditional posterior
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Z,é v being consistent. Before examining the parameter estimation consistency of
the coefficients, we first study the asymptotic behavior of the conditional posterior
p(z | Y, M). in the following propositions. Since these results are studied under
each model M, they remain true if we allow the hyper parameters anq, bag, sp to be

model specific. For notation simplicity, we omit their subscript M here.

Proposition 3. For the CH-g prior with hyper parameters a > 0,b > 0,s = 0,
if the MLE of its coefficient converges to a mon-zero vector BM — By # 0, then
the conditional posterior distribution of z = g/(1 + g) under any model M # M,,

converges to 1 in probability
phmn—»oo p (Z | YvM) = 61(2) (250)
In particular, if the true model is not null My # Mg, (2.50) holds under Mr.

Proof: see Appendix A.2.7

Proposition 4. For the CH-g prior with hyper parameters b > 0,s = 0, and
lim, ,0a/n = a* > 0, for any true model My including My = M,, the condi-
tional posterior distribution of the shrinkage factor z = g/(1 + g) under any model

M #= M, converges to 1 in probability, i.e., (2.50).
Proof: see Appendix A.2.8
2.5.2  Parameter Estimation under BMA

Bayesian model averaging (BMA) estimates are widely used to incorporate model
uncertainty. We denote the variable B8 as the p dimensional vector of coefficients
corresponding to all the potential predictors. In this section, we slightly abuse the
notations By, by redefining that as a p-dimensional vectors filled with zeros for

variables not included in the model such that ny, = Xqag + VBr. The posterior
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distribution of 3 under BMA is

p(B1Y) =D p(M|Y) p(Br | Y, M), (2.51)
M

where the marginal posterior distribution under model M can be calculated as

P8 | Y. M) = [ p(But | Y0 M)p (% | Y,M) I (252)

To study the parameter estimation performance of the BMA estimates asymptoti-

cally, we propose the following estimation consistency.

Definition 2 (consistency for parameter estimation). The parameter estimation un-
der BMA is consistent if the posterior of 3 converges to the true parameter in prob-

ability as n increases, 1i.e.
plim, ., p(B1Y) = a1, (8). (2.53)

Under BMA, the posterior distribution p(83 | Y) can be decomposed as a weighted
average of the posterior under My and under other models,

p(B1Y) =pMr | Y) p(Buiy | Y Mz)+ D> p(M|Y) p(Bu | Y, M), (2.54)
M#EMp

To verify the BMA estimation consistency under the CH-g prior, we can use the
results on model selection consistency in Section 2.4.1. When the selection consis-
tency holds, i.e., p(Mr | Y) converges to 1, the second term in (2.54) diminishes
in the limit. Hence in this case, we just need to focus on the posterior distribution
of Bum,. On the other hand, when the selection consistency does not hold, which
only occurs where My = M, and a = O(1), we need to examine the limit distribu-
tion of p(Bam | Y, M) under every M. Fortunately, in this case the true parameter
B, = 0. Although shrinkage always exists, the limit of p(Br¢ | Y, M) remains 0.

Therefore, we have the following theorem.
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Theorem 3. With hyper parameters b > 0,s = 0, and lim, . a/n = a* > 0, the
CH-g prior (2.28) is consistent for parameter estimation of the coefficient under
BMA (2.53). In addition, this result also holds with model specific hyper parameters

am; b, Sm-
Proof: see Appendix A.2.9
2.5.8 BMA Estimation for a New Case

In addition to the current data {Y, V}, if we have a new case and know the values of
its exploratory variables v € RP, we want to estimate the mean of it response variable
= E(Y) under BMA. Under model M, suppose Xy = v — Vo is the vector of
new predictors after the “centering” step, where v, is a pr-dim vector consists of

Ujm as in (2.11). The BMA estimate for the mean of the new response is

p=EY|v,Y,V)

= Zp(,/\/l | Y) E [b’(aM +X7/;4,8M | YvM)]

<

=S M| Y) f b (on + X5 Br0plan | Y. M)p(Bac | Y, M)d(an, Ba)
M

where the conditional posteriors of ay and By are approximated by (2.26) and
(2.52). Similarly to the prediction consistency criterion introduced in Liang et al.

(2008), we define the estimation consistency under BMA for a new case for GLMs.
Definition 3. We say that the BMA estimation p for a new case v is consistent if

where My is the true model, x4, is the sub-vector of the “centered” new exploratory

variable corresponding to Mr, and o’y ., By, are the true intercept and coefficients.

34



We again decompose the BMA estimate y into the sum of two terms
= p(MT | Y) E [b,(OzMT + X%TﬁMT | Y,MT)]

+ ) PMIY) E[V (an +x3Bum | Y. M),
M#*Mr
In the following theorem, we find that the BMA estimation consistency for a new

case holds under the CH-g prior.

Theorem 4. With hyper parameters b > 0,s = 0, and lim,_,,a/n = a* > 0,
the BMA estimation for a new case under the CH-g prior (2.28) is consistent. In

addition, this result also holds with model specific hyper parameters anqg, bast, Sp-

Proof: see Appendix A.2.10
2.6 Simulation and Real Examples

In Section 2.3.3, we have established theoretical connections between our CH-g prior
and some of the commonly used prior distributions on the hyper parameter g pro-
posed for the g-prior, such as the uniform prior (Wang and George, 2007), the Hyper-
g prior (Liang et al., 2008), the Beta prior (Maruyama and George, 2011) and the
Robust prior (Bayarri et al., 2012). In this section, using both simulation studies
and a real example, we will compare model selection and parameter estimation per-
formance across these hyperpriors of g under our extension of the g-prior for GLMs
(2.16), (2.17). In addition to the above-mentioned approaches, we also examine the
Jeffrey’s prior on g (Celeux et al., 2012), the local empirical Bayes (EB) (Hansen
and Yu, 2001) method, the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC).

In the local EB approach, the estimate of g under each model M is the maximizer

of the marginal likelihood p(Y | g, M). Under the Laplace approximation (2.18),
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ghP is estimated as

~EB

Jng = argmaxp
g

(Y | g, M) = max (Q—M 1, o) , (2.56)

Pm

and the marginal likelihood is obtained by plugging in this estimate pgp(Y | M) =

p(Y | gif, M).
Table 2.2: For GLMs: methods to be compared.
a b | s | comments
CH-g n/2 050

2 0 | Uniform prior
2 1 | 0| Hyper-g

2 0 | 0| Jeffrey’s prior

n—py,—150.5 |0 | Beta (Maruyama and George, 2011)

Robust prior, a, = 0.5,b, = 1, p, = 1/(1 4+ pm)

Local EB (Hansen and Yu, 2001)

AIC

BIC

We summarize all these methods to be compared in Table 2.2. For AIC and BIC,

we select the model with smallest AIC and BIC; while for all other methods, we

select the model M with the highest posterior probability, i.e., maximum a posterior

(MAP) estimate. In order to take into account the model uncertainty, for both

fully Bayes and empirical Bayes methods, we use Bayesian model averaging (BMA)

estimates for the parameter 3 and exceptions of new responses p = E(Y). While for

AIC and BIC, these estimates are calculated only based on the selected model.

2.6.1 Default Choice of Hyper Parameters {a,b, s} in the CH-g Prior

Before exhibiting the examples, we first give our recommendation on values of the

hyper parameters a, b, s in the CH-g prior. In general, when a or s is large, or when b

is small, the prior concentration of the shrinkage factor z = ¢g/(1 + g¢) is high near 1.
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In this case, little shrinkage is imposed on the posterior estimates of 3. Meanwhile,
this corresponds to high prior concentration of large g, which implies a flat prior on
B that favors simple models in model selection, and hence is desirable for sparse
problems.

We choose a to be proportional with the sample size n, to allow the CH-¢g prior
to be consistent for model selection in all circumstances including when My = M,
(see Theorem 2). Some popular methods in linear regression such as Zellner and
Siow (1980), the Hyper-g/n prior (Liang et al., 2008), the Beta prior (Maruyama and
George, 2011) also recommend g = O(n). Actually under the mild assumption (2.45),
the expected information matrix based on all n sample points Z,(Br) = O(n). This
suggests that the g-prior on B depends implicitly on n, and degenerates to a point
mass at zero in the limit. Hence the choice of g = O(n) is essential to avoid having
the g-prior to dominate the likelihood. To eliminates the dependency of the prior
distribution on specific features of model including the sample size n, Bayarri et al.
(2012) proposes the intrinsic consistency of model selection priors, which suggests
that as n increase, the prior distribution p(Ba | aar, M) should be proper. In the
context of g-prior (both for normal linear regression and our extension for GLMs),
the intrinsic consistency means proper prior distribution on g/n in the limit. With
a = O(n), the CH-g prior yields an implicit ¢ = O(n) choice, in the sense that the

prior expectation

B(&—1,b+1) F (2 —1,0 ) b
E(1 _ 2 2 2 202/ =0(1
(/9) B(%,%) By (%’aTb’%) a—2 (/n)

To choose the default prior rate a* = a/n, empirical experience indicates no signifi-
cant difference in parameter estimation between a* = 0.5 and 1. To remain objective
and perform well in model selection under both sparse and non-sparse models, we
recommend to use a* = 0.5, i.e. a = n/2.

According to the approximate conditional posterior distribution of the shrinkage

37



factor z (2.31), the parameter b in the CH-g prior is updated to b + p after incor-
porating the data. In addition, b controls the tail behavior of the prior distribution
p(Bm). More specifically, p(Ba) has tails similar to a multivariate Student distri-
bution with degrees of freedom b. Our choice b = 0.5 corresponds to a distribution
with even heavier tails than Cauchy. Under this choice, the CH-g prior has vanish-
ing prior influence on the estimation of 3, and thus is capable of preserving large
signals. Maruyama and George (2011) also recommends a prior distribution with
flatter tails than Cauchy as their default choice. Bayarri et al. (2012) recommends a
prior with Cauchy tails but not heavier, because they think otherwise it strongly fa-
vors the smaller model, even with minimal sample size. Between the choices b = 0.5
and 1, the following simulation examples reveals no significant difference in BMA
estimation.

The parameter s is updated by the data to s + Quq, and therefore serves as
a prior RSS. We recommend s = 0, which implies no information or variation a
priori. In addition, according to our empirical experience, when the parameter a =
O(n), different values of s yield no significant difference in both model selection and
parameter estimation.

The parameter ¢ is chosen according to the inverse variance of the response that
has mean zero, i.e. ¢ =1/V(yy) where E(yo) = b'(0(ny = 0)). For example, for both
logistic regression and Probit regression, we let ¢ = 4; while for Poisson regression,
c = 1. Note that as n increases, since the prior variance of the intercept nc goes to

infinity, i.e., choice of ¢ hardly makes a difference with large samples.
2.6.2  Simulations: Logistic and Poisson Regressions

The logistic regression simulation study is based on the simulation example intro-
duced in Hansen and Yu (2003), and the Poisson regression example is based on

the one in Chen et al. (2008). To explain the output Y, p = 5 potential predictors
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Vi,...,V, are considered to be included in the logistic regression model, and p = 3
in the Poisson regression model. Each predictor is drawn from a standard normal

distribution, with pairwise correlation
cor(V,;,V;) = il 1<i<j<p

Here we consider two cases: independent predictors (r = 0) and correlated predictors
(r = 0.75). For each realization, n = 100 and 500 independent samples are generated
for logistic regression and Poisson regression respectively, according to 4 scenarios of
different sparsity of the true underlying models (see Table 2.3 for the intercepts and
coefficients of the true models). For all Bayesian methods, we assign uniform prior
distribution to the model space, i.e., p(M) = 1/2P. We repeat the simulation for
N = 100 times, and compare their performance in model selection and parameter

estimation.

Table 2.3: GLM simulation: four scenarios of true models that generate the simula-
tion data, each represented by the true values of intercept and coefficients (ax, 3%)

scenario | logistic regression | Poisson regression
null (000000) (-0.3000)

sparse | (02000 0) (-0.30.300)
medium | (03220 0) (-0.30.30.20)
full (051111) (-0.3 0.3 0.2 -0.15)

To access the performance of the MAP estimates in model selection, we examine
the their selection accuracy under the 0-1 loss, by reporting the number of times the
correct underlying models being selected in Table 2.4 and 2.5. The results of both
logistic regression and Poisson regression yield similar trend in comparison across all
methods. In general, we find that the nine methods being compared can be roughly
divided into two groups. The CH-g prior, the Beta prior, the Robust prior and

BIC form the first group, since all of them prefer parsimonious models and hence
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outperform the rest of methods when the true model is sparse, or more extremely, the
null model. In contrast, the second group consists of the uniform prior, the Hyper-
g, Jeffrey’s prior, EB and AIC, all of which prefer complex models and yield more
accurate selection when the true model is the full model. The fact that AIC favors
larger models and BIC smaller models is well studied. Since the model complexity
penalty in the marginal likelihood under EB depends on the model fitting Q) o, the EB
tends to favor large models. Among the fully Bayes methods, the different preference
in model complexity is mainly contributed by the different prior concentration of g.
Large g corresponds to preference of small models. Since methods in the first group
(except the BIC) indicate g = O(n) a priori, they achieve model consistency, even
when the true model is the null. However, the Bayesian approaches in the second
group such as the Hyper-g perform poorly in this case, which confirms the theoretical
results in Liang et al. (2008). On the other hand, in reality the information about the
underlying true model is usually unavailable, good selection method should be able
to adapt to a wide spectrum of sparsity. Among the methods in the first group, the
CH-g prior performs the most accurately in model selection when data are generated
from the full model.
To evaluate the estimation performance, we report the median SSE(8) = ;’:1 ( Bj—
* vp)” in Table 2.6 and 2.7. Here B3, represents either the BMA estimates of the
j-th coefficient for all mixtures of g-prior methods, or the MLE of it under the se-
lected model by AIC and BIC; and 7 . is the value corresponding coefficient in
the true model that generates the data. In particular, 57, = 0 if the j-th predictor
is excluded in the true model. An overall trend of parameter estimation accuracy
among these methods is that the models perform better in model selection also yield

smaller estimation error. Note that the CH-g prior outperforms most methods in

the second group except EB where the true model is the full model in logistic regres-
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Table 2.4: Logistic regression: model selection accuracy under 0-1 loss. Number of
times the true model are selected out of 100. Column-wise largest value is in bold

type.

=
=
S
3 £ P oz +
> g ¢ £ s =
' = 2 5 € £ 8§ xg £ 2
scenario r| O P O -, M~ @< M
null 0194 33 50 0 95 93 0 40 86
075193 36 55 0 94 93 0 48 90
sparse 018 52 59 72 8 75 60 46 86
07583 54 64 74 84 79 65 52 84
medium 0|72 43 51 58 78 77 51 55 89
0.75 148 44 49 50 46 50 48 57 41
full 0138 69 67 61 30 28 67 51 15
07| 1 17 13 9 0 0 15 1 0

sion. Furthermore, to evaluate their performance in estimating new cases, we use
the (i 4+ 1)-th dataset as the test set for the model studies by the i-th dataset, where
1 =1,...,N. We examine the median SSE loss in the expectation of the response
> (i — pimg)?, which we omit here since it shows vey similar pattern to SSE(3).
Furthermore, we also examine the out-of-sample classification error for logistic re-
gression, which we also omit here since it reveals almost no difference across methods

for this example.
2.6.3 Pima Indians Diabetes Data

We apply the CH-g prior to a real-world problem, the Pima Indians diabetes data,
along with other state of the art approaches that being compared with in Section
2.6.2. The dataset is previously studied using Bayesian model selection approaches
in Bové and Held (2011). It consists of n = 532 independent patients’ records, and

contains information including a binary response of diabetes signs y, and p = 7
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Table 2.5: Poisson regression: model selection accuracy under 0-1 loss. Number of
times the true model are selected out of 100. Column-wise largest value is in bold

type.

S
=
(@)
22 o=
& U 7
> S 2 2 s 3B
, = £ E € £ 9 m 2 2
scenario r| 0 B2 T = Mm A& F < M
null 00097 53 64 0 99 96 1 55 96
075199 59 76 0 100 99 1 61 97
sparse 00095 8 8 90 95 94 8 71 95
075197 8 89 94 97 97 89 78 97
medium 0.00 | 86 84 88 8 89 88 83 81 89
0.75 | 53 65 61 56 47 bH4 61 70 49
full 000 72 90 88 87 68 71 88 97 63
0.75 | 17 46 41 34 12 18 41 61 12
potential explanatory variables {X7, ..., X7} such as number of pregnancies, plasma

glucose concentration, diastolic blood pressure, triceps skin fold thickness, BMI,
diabetes pedigree function and age. To account for multiplicity adjustment, instead

of uniform prior on the model space, we use the Beta-Binomial(1, 1) prior as suggested

( P )71. We enumerate all 2P possible
M

by Scott and Berger (2010), i.e., p(M) = i
models. In Table 2.8, we show the marginal posterior inclusion probability for each

predictor p(5; # 0| Y) for j = 1,...,p. For the two information criteria methods,

AIC/2 BIC/2

similarly as in Bové and Held (2011), we use e~ and e~ in the place of the
approximate marginal likelihood and average the posterior marginal inclusion over
all 27 models under the same prior of the model space.

The marginal posterior inclusion probabilities provide us with the knowledge
whether each predictor has significant impact on predicting the binary response.

Comparing different methods, we notice the same trend in overall selection perfor-
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Table 2.6: Logistic regression: median SSE of 3: Z?Zl(ﬁi — B#)? x 10 based on 100
realizations. Column-wise smallest value is in bold type. Friedman test shows that
(1) CH-¢(50, 0.5, 0) is significantly different from the Beta-prime in all scenarios,
and (2) CH-¢(50, 0.5, 0) is significantly different from the robust prior except for

Row 4.

Uniform
Hyper-g
effreys

scenario r = < an)

o
S| CH-¢(50, 0.5, 0)

075 0.08 011 0.15 0.24 0.09 0.01 0.96 0.00

sparse 0 1.70 237 210 1.93 1.67 213 3.06 1.18

<5}
=
a
<
©
M
null 0 0.08 0.10 017 0.04 0.09 0.01 1.04  0.00
0.04
1.55
0.75( 197 317 2,67 237 178 194  2.67 422  1.06

medium 0 821 1020 853 6.72 819 861 682 1047 7.68
0.75135.59 2547 21.40 2497 3723 3781 21.28 4235 51.16

full 0(23.75 29.70 25.30 22.06 24.41 24.35 2246 26.36 34.52
0.75]67.25 45.30 38.87 40.50 71.08 72.80 38.39 101.58 108.97

mance as in the previous simulation studies. The methods in the first group (the
CH-g, the Beta-prime prior, the robust prior and BIC) prefer smaller models while
those in the second group (the Uniform prior, the Hyper-g, Jeffreys’ prior, EB and
AIC) are in favor of larger models. As to individual predictors, all different methods
agree to include X7, X5, X5 and Xg4. According to most methods, X, also should be
included, while X, can be excluded. For X3, it is not clear whether it should be
included.

We also examine the out-of-sample BMA estimation performance by ten-fold
cross validation. Due to the somewhat high variability of Bernoulli distribution,
almost no significant difference in classification error can be revealed. In this case,
we recommend to use our CH-g prior, since most of the methods we compared here

are actually special cases of it.
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Table 2.7: Poisson regression: median SSE of 3: Z§=1(Bi — B#)? x 1000 based on 100
realizations. Column-wise smallest value is in bold type. Friedman test shows that
(1) CH-¢(50, 0.5, 0) is significantly different from the Beta-prime in all scenarios; (2)
CH-¢(50, 0.5, 0) is significantly different from the robust prior except for Row 4, 5;
(3) AIC is highly right skewed in Row 1, 2.

o
S| CH-¢(50, 0.5, 0)

=S
= & > -
= & & 2 ST
scenario r ) a = e = < an)
null 0 0.28 0.37 0.93 0.04 0.04 0.00 0.00
0.75] 0.02 032 042 1.00 0.03 0.03 0.00 0.00

O
z
~
a
<
45
M
0.02
0.01
sparse 0 1.58 3.06 267 205 142 167 244 293 1.00
0.75 1.87 469 3.7 309 195 199 328 198 1.42
4.54
29.74
11.36
51.96

medium 0| 456 514 490 4281 452 477 589 3.79
0.75126.05 18.40 18.69 22.48 24.73 1894 9.66 41.85
full 0(10.26 8.25 844 8.67 1042 845 6.07 10.62
0.75 | 48.66 35.03 34.20 37.01 48.14 33.94 27.04 66.11

2.7 Conclusion

In this chapter, we present a wide class of mixtures of g-priors, the CH-¢g prior,
which extends several commonly used mixtures of g-priors to GLMs. We show in
theoretical studies that the CH-g prior satisfies asymptotic criteria such as model
selection consistency and parameter estimation consistency under specific choices of
the hyper parameters.

We also propose a more generalized framework using the CCH prior, which en-
compasses but only CH-g prior itself, but also some hyper priors on g that are not
special cases of CH distribution as well. One direction of our future work is to under-
stand the theoretical and empirical performance of for GLMs with the CCH hyper
prior.

Since our CH-g prior yields marginal likelihoods in tractable form, it has the ad-
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Table 2.8: Pima Indian diabetes data: marginal posterior inclusion probability.

m < <
& = =
X; 10966 0981 0.980 0.978 0.960 0.958 0.980 0.990 0.946
X5 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
X3 0.290 0.536 0.507 0.471 0.221 0.196 0.506 0.684 0.100
X4 0281 0516 0.488 0.453 0.216 0.193 0.487 0.662 0.103
X5 10.998 0.999 0.999 0.999 0.998 0.998 0.999 0.999 0.997
X6 | 0.995 0.998 0.998 0.998 0.993 0.993 0.998 0.999 0.987
X7 10580 0.785 0.764 0.737 0.503 0.479 0.764 0.884 0.334

CH-¢(266, 0.5, 0)
Beta-prime

Uniform
Hyper-g
effreys

robust

vantage of computational efficiency in comparing models based on Bayes factors. We
study its selection and estimation performance empirically using data with relatively
small p, where enumerating the entire model space is feasible. However, when p in-
creases (e.g. larger than 25), it is almost impossible to visit all potential models. In
this case, we plan to incorporate stochastic search algorithms such as Bayesian adap-
tive sampling (Clyde et al., 2011), that may incorporate the approximate marginal
likelihoods, and thus avoid computationally expensive model search alternatives such

as reversible jump MCMC (Green, 1995).
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3

The Local Rotation Invariant Prior

3.1 Introduction

In real world applications, the number of potential predictors in linear regression
can be very large, while the response may be related to only a small proportion
of all the predictors. Selecting one model and making inferences solely based on it
ignores model uncertainty. Bayesian model averaging (BMA) (Hoeting et al., 1999)
addresses model uncertainty (Clyde and George, 2004) by averaging the quantity of
interest across all possible models, and thus often achieves more precise parameter
estimation and prediction.

Zellner’s g-prior (Zellner, 1986) and mixtures of g-priors (Liang et al., 2008)
are commonly used for Bayesian model selection and model averaging, because of
their computational efficiency and consistency (under regulatory conditions). Among
mixtures of g-priors, the Zellner-Siow prior (Zellner and Siow, 1980) is considered a
benchmark for BMA (Carvalho et al., 2009). The g-priors and mixtures of g-priors
have an advantage of being invariant to linear transformations of the linear predictors.

However, their inherent instability from ordinary least squares estimate (OLS) leads
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to their poor estimation accuracy when XX is nearly singular. Moreover, according
to Maruyama and George (2011), the g-prior imposes unwanted shrinkage towards
zero along larger principle components, which is counter-intuitive.

Ridge regression (Hoerl and Kennard, 1970), the lasso (Tibshirani, 1996) and
Bayesian shrinkage approaches such as the horseshoe estimator (Carvalho et al., 2010)
use penalization methods to handle highly correlated design matrices. Simulation
studies in Tibshirani (1996) suggest that ridge regression outperforms the lasso when
regression coefficients are small and covariates are highly correlated. Ridge regression
is invariant to orthogonal rotation of the coordinate system, while the lasso and the
horseshoe prior are not, which requires that we should specify a coordinate system
of interest. In terms of model selection, the lasso has the advantage over ridge
regression, as it can shrink coefficients to exact zeros through modal estimators.
However, lasso’s selection procedure cannot be validated by optimizing any explicit
loss or utility function, since the estimate of its tuning parameter X is obtained via
cross validation. The same issue exists for all the continuous Bayesian shrinkage
priors without positive masses at zeros, including the horseshoe.

Since ridge regression and the lasso cannot uniformly dominate each other, the
elastic net (Zou and Hastie, 2005) has been proposed to combine their strengths
by using a mixture of L; and Ly penalties on the coefficients. The elastic net can
be considered as a stabilized generalization of the lasso, which is able to shrink
coefficients to exact zeros while resolving the problems the lasso has with highly
correlated predictors. Although globally predicting more accurately than the lasso,
the elastic net loses to ridge regression empirically when oracles are non-sparse.
In addition to the elastic net, some other penalization methods also incorporate
both L; and Lo penalties. For example, the group lasso (Yuan and Lin, 2006)
targets regression problems with known group structures among covariates, such as
multilevel factors. By imposing an intermediate between L; and L, penalties, the
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group lasso enjoys the desirable property of selecting predictors in the same group
together.

Motivated by these methods, we propose an alternative fully Bayes approach that
shrinks coefficients to zero more efficiently than the lasso in sparse cases, yet performs
as well as ridge regression in non-sparse cases. We assign a Dirichlet Process (DP)
mixture hyperprior, which naturally induces groups among coefficients, and uses a
rotation invariant prior within each group. Compared with the group lasso, this
approach does not require pre-specified group structure, and takes into account the
uncertainty of groups.

Section 2 introduces our Local Rotation Invariant (LoRI) prior. We illustrate its
adaptivity to both sparse and non-sparse regressions by examining its marginal and
joint shrinkage properties. We also demonstrate that LoRI has bounded influence,
which ensures its ability to preserve large signals. Section 3 details the Markov
chain Monte Carlo procedure we implement for posterior computation. Section 4
compares parameter estimation accuracy of LoRI and other widely used methods
including the horseshoe, the Bayesian lasso, g-prior, mixtures of g-prior, the lasso
and ridge regression on two simulation examples. Section 5 shows LoRI’s prediction
accuracy on a protein activity dataset. Section 6 contains a discussion and direction

of future work.

3.2 The Local Rotation Invariant Prior

In linear regressions, responses y; are predicted by a linear combination of p-dimensional

explanatory variables x; = (z; 1, ... ,:BZ-J,)T with an independent Gaussian noise:
p id 1
yiza—i—in,jﬁj—i—ei, GZI’I\JN(O,a), izl,...,n (31)
j=1
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where « is the intercept and 8 = (fi,...,8,)" are the regression coefficients. The

precision parameter ¢ equals the inverse variance of the errors. Without loss of

generality, we assume that Y = (y1,...,y,)? and columns of design matrix X; =
(14,20 )T, j=1,...,pare centered and furthermore X are also scaled to have
norm 1.

According to Diaconis and Ylvisaker (1985), in the exponential families, any
prior distribution can be well approximated by finite mixtures of conjugate priors.
In linear regressions, scale mixtures of normals priors can be denoted as mixtures of
(normal-gamma) conjugate priors, with a distribution placed on the precision of the
normal distribution. A popular alternative is to assign Dirichlet process (DP) priors
on hyper parameters, which automatically induces discrete mixtures of conjugate pri-
ors. These DP mixture models achieve flexible mixtures by circumventing parametric
specification of hyperpriors. Furthermore, the DP induces a discrete structure, which
yields an automatic grouping among coefficients. For example, MacLehose and Dun-
son (2010) proposes a DP mixture model to shrink coefficients into a small number
of clusters.

We propose a Local Rotation Invariant (LoRI) prior. This semi-parametric
shrinkage prior can be considered as a mixture of normals with a DP hyperprior

on the normal variances, i.e.,

ind
B |wj ~ N(0,w;) (3.2)
wj ~ D (33)
D | m, Dy ~ DP(m D) (3.4)

D 6.0) = [ 16 (w5, %) {a=ms +oct (wo. a6

Each dimension j3; has conditionally independent normal prior with mean zero and

variance w;. The hyper variance parameters w; are assigned a random prior prob-
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ability measure D. This unknown measure D is further assigned a prior measure
DP(m Dy), where the base measure Dy corresponds to our best prior guess for D

and the DP precision parameter m controls the similarity between D and D,.
3.2.1 Independent Cauchy versus Multivariate Cauchy

After marginalizing D out, our DP mixture prior has the Polya Urn (Blackwell and

MacQueen, 1973) representation:

k

m 1
b W, My, Do ~ Dy + — Oy, 3.6
Wk+1|W1 Wk, M, Dy mak 0 };m+k h ( )

which iteratively gives the prior distribution of wy.; conditional on the previous
parameters {wy, ... ,w}, for any k = 0,...,p—1. Because some w; can take the same
values, the Polya Urn scheme (3.6) implies the prior dependency among {wy, ..., w,}.
In this sense, {f1,..., 3,} are also dependent a priori. Suppose there are K distinct
values {wf, ... ,wk}, where each of them has independent Dy prior; then the original
p parameters can be clustered to K different groups, such that all the parameters in
the k-th group {wy,, . .. ,wkMk} take the value wj. Denote a vector of group indicators
as ¢ = (cy,...,¢,)T, where ¢; = k if and only if w; = wf, for j =1,...,p.

Given the group structure c, the marginal prior of the jth regression coefficient
B can be decomposed as the following hierarchical form after introducing a latent

variable 77 :

B; | e, w* N0, w}) (3.7)
Wt L, MG (1/2,m22/2) (38)

with hyperprior

e K (1—p)Go+pCT (0, \%) (3.9)
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Here we generalize the Inverse Gamma distribution with scale parameter being zero
to represent degenerate distribution of positive point mass at zero. After integrating

*®

wy out in (3.7) and (3.8), the marginal prior on f; becomes a univariate Cauchy

distribution with scale parameter 77 :

By | ety ~ C(8;:0.n7) (3.10)

With tails heavier than a normal distribution, Cauchy priors, along with other
prior distributions in the Student t family, are considered more robust and can bet-
ter adapt to large signals. Jeffreys (1961) justifies the use of the Cauchy prior on
normal location parameters in terms of information consistency, which suggests that
the Bayes factor on testing location against zero goes to infinity if the observations
are overwhelmingly far from zero. Dawid (1973) shows that under the Cauchy prior,
the posterior mean of a normal location parameter converges to the observation as
the observation goes to infinity. Therefore, in Bayesian model selection and model
averaging, Student t distributions, especially the Cauchy distribution, are used con-
ventionally as prior distributions on regression coefficients. For example, Zellner and
Siow (1980) proposes a multivariate Cauchy prior distribution on regression coeffi-
cients. Tipping (2001) applies independent Student t prior distributions whose scale
parameters and degrees of freedom are small to sparse problems.

We find that as shrinkage priors for multi-dimemsional coefficients, independent
univariate Cauchy distribution performs differently from multivariate Cauchy distri-
bution. We will illustrate this property of the shrinkage prior p(3) in the framework
of penalized regression, whose estimate is obtained by minimizing the sum of squared

errors (SSE) and a penalty f(3),
By = argming {Z(yz —x; B) + f(ﬁ)} : (3.11)
i=1
In particular, the maximum a posteriori (MAP) estimate under prior p(3) equals
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Bf if f(B) = —% log p(B). For example, independent normal priors and independent
double exponential (Laplace) priors are Bayesian counterparts to ridge regression
and the lasso respectively.

We first show the bivariate contour plots of the negative logarithm of prior den-
sities of independent double exponentials and independent normals in the two upper
panels of Figure 3.1. Between ridge regression and the lasso, the latter can yield
sparse solutions while the former cannot. From a Bayesian point of view, this dif-
ference of their posterior solutions lies in the shapes of their prior densities. The
diamond-shaped contours indicate that the double exponential priors place more
probability mass along the axes, where one regression coefficients is set to zero. In
contrast, the circular contours imply that the independent normal priors place equiv-
alent probability in all directions rather than favoring the directions along the axes.

With respect to shrinking all directions equally, the difference between univariate
independent Cauchy and multivariate Cauchy distributions resembles that between
the lasso and ridge regression (see the lower two panels in Figure 3.1). The contours
of independent Cauchy priors are somewhat round near the origin, which is similar
to the contours of ridge regression and the lasso combined. However, as the norm
|8| increases, it gradually becomes star-shaped, which suggests that the independent
Cauchy prior distribution imposes even stronger shrinkage than the lasso towards the
axes. On the contrary, the contour shape of a bivariate Cauchy distribution remains
circular, which indicates equal shrinkage along all directions.

When considered as scale mixtures of normal distributions, the independent
Cauchy priors have different hyper parameters governing the prior variance of ev-
ery dimension. These different parameters contributes to heterogeneous amounts of
shrinkage along each regression coefficients. Given the group structure induced by

DP, for any pair of parameters (5;, 8, if they belong to different groups, their have
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FIGURE 3.1: Contour plots of —logp(/31) versus —logp(2). From upper left to
lower right, 8; and 3, are independent and identically distributed as Laplace(0, 1),
Normal(0, 1), independent Cauchy(0, 1), bivariate Cauchy(0, 1).

conditionally independent Cauchy prior:
P55, By | "5 # ) = | 8y [ ol | ), - | By | 2 Do, ),
= C(Bﬁ Oa 77:]) ’ C(ﬁ]’v 07 77:]-/)

On the other hand, if regression coefficients 3; and [;; belong to the same group

(¢; = ¢jr), then their conditional joint prior is a bivariate Cauchy:

P ((gj/) | n*,c; = er) = fN ((5;) ; Oaw:]-:[) IG (w:j; 1/2,77:].2/2) dw;,
_ 6]) *2 )
=C I
’ ((&" 0.1

Because this bivariate Cauchy has circular contours, it does not favor sparse models
a priori. Furthermore, this prior can be considered as a scale mixture of normals
with a single variance parameter, which alone controls the magnitudes of shrinkage
in all dimensions.
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3.2.2 Local Rotation Invariance

To rigorously differentiate between the independent and multivariate Cauchy prior
distributions, we adopt the concept of rotation invariance. We note that the spar-
sity of regression problems changes under transformation of design matrices. For

example, an orthogonal rotation U of the coordinate systems X
Y = X8 +e=(XU)(U'B) +¢€ (3.12)

transforms the predictors X to XU, and the vector of coefficients 3 to UT3. If
under the original design the true model is sparse, i.e., some of the true coefficients
By are zeros, then after the rotation all dimensions in U7 3, are probably nonzero.
We say a prior distribution p(3) is rotation invariant if p(U?3) has the same prior
density. Such priors place similar amount of shrinkage before and after the rotation
of coordinate systems. In contrast, rotation variant priors such as the independent
double exponential cannot achieve sparse solution in all coordinate systems. In
particular, in group selection problems, rotation invariant priors are assigned to
regression coefficients in the same group, so that all the predictors in the same group
are imposed similar amounts of shrinkage. For example, the group lasso (Yuan and
Lin, 2006) has a local Ly penalty within each group.

Conditional on the group structure c, we denote By = (B, .- -, ﬁkmk)T as the
vector that consists all coefficients in the kth group. Rewrite LoRI prior (3.2)-(3.5)

in a hierarchical form for the kth group

ﬁ(k) | w;: ~N (07wZImk)
L
Wi |77k (27 9 )

After integrating wj out, we obtain a my dimensional multivariate Cauchy distribu-
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tion as the prior for the coefficient in group k, i.e.,

1

|0 |12 [1 + By Z i) Bew)

P (Bewy | m) o ](l—i-pk)/Q

with X,y = 9}?L,,,. For any positive 7}, this corresponding penalty term of By
has spherical contours. This implies that the multivariate Cauchy prior with a single
scale parameter is rotation invariant. Therefore, conditional on the group structures,
our method assigns a spherical multivariate Cauchy prior to the vector of coefficients
in each group, which has a “local” rotation invariance property. Without loss of
generality, suppose the the order of regression coefficients and their corresponding

predictors are rearranged according to the groups,

B= (Bl Blo)

If we rotate the predictors in each group B by an my x my, orthogonal matrix Uy,
which transforms the regression model (3.14) to

Y = X(l),@(l) + ...+ X(K)B(K) + €

= (XUw) (UnBw) + - + XU (Ul B + €,

then after the rotation, p(U%;C),B(k) | mi) remains the same multivariate Cauchy den-
sity. Thus our prior can be considered locally rotation invariant in this sense.

We visualize the prior contours of B in a simple case that only contains three
covariates. Suppose the first two coefficients are in the same group and the third
coefficient is in a different group, w; = wy = w{ and w3y = wj. Table 3.1 shows
its 3D contour plot, where x,y, z axes represent 31, 52, 83 respectively. Specifically,
2D contours on the horizontal hyper plain of 8; vs 5 have circular shapes and 2D
contours on the vertical hyper plain of 5, vs 83 or 55 vs 83 have the contour shapes
of 5 Cauchy distributions, round in the inside and star-shaped in the outside.
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Table 3.1: 3D Contour plots of (31, fa, 83) with i =1 and nj = 1.

B vs B2

\k
\Y/ i
S \Y/ s 5

,‘x
J ’Od
.LL ’z’

The local rotation invariant structure of LoRI can also be shown from the penal-
ized regression perspective. The corresponding penalty term in (3.11) for LoRI can

be written as

n K
B = arg ming {Z Z (B> i } (3.13)
i=1 k=1
where h(x,n) is the negative logarithm of multivariate Cauchy density with ¥ = L.
The penalty term in (3.13) has a similar form to the group lasso’s penalty term.
However, our model is different from the group lasso in the following three aspects.

First, the group lasso is designed for group selection with pre-specified group
structures among covariates, while LoRI aims to solve more general questions, in-
cluding the ones without known group information. In fact, LoRI is even capable
of revealing group structures among covariates, according to the strength of their
impacts on the response variable, rather than their correlation with each other. (See
the simulation example in Section 3.4.2.)

Second, LoRI takes into account the uncertainty of group structures. Consider
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two very extreme cases: i) all covariates exist in the same group or ii) each covariate
forms its own group. In the former case, LoRI is equivalent to a mixture of a ridge
estimator with hyperprior G(1/2,1/2) assigned on the normal precision parameter
and a point mass at the origin. This case appears when all covariates have similar
strength in predicting the response. LoRI degenerates to a rotation invariant prior
in this case, which is desirable since it imposes the same amount of shrinkage on each
dimension. In the latter case, LoRI performs the same as independent mixtures of
univariate Cauchy distributions and point masses at zeros. Therefore, when covari-
ates are heterogeneous in prediction, LoRI treats each dimension differently and is
capable of yielding sparse solutions.

Finally, while the group lasso only has one tuning parameter for all the groups,
LoRI has different parameters n; to control shrinkage for each group. This flexibility

yields different amounts of shrinkage that can better adapt to the data.
3.2.83 Point Mass at Zero

According to the base measure Dy (3.5), w; has a “spike and slab” type marginal
prior, which is a mixture of point mass at zero with weight 1 — p and a continuous
distribution with weight p. Since the positive probability mass at zero on w; implies
a positive probability mass at zero on 3;, each regression coefficient 3; can be consid-
ered as having a “spike and slab” prior marginally. The positive point mass at zero
component in the prior leads to multiple shrinkage (George, 1986) in the Bayesian
model averaging estimator. Given the group structure c, the point mass at zero in
the prior of w;} yields to a positive posterior probability on the models which do not
contain the whole vector of the coefficients in the kth group B).

Furthermore, the point mass at zero enable LoRI to have valid selection rules
that can be justified by optimizing certain loss functions. For example, by using

the posterior median estimator which minimizes the L loss, some predictors can be
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excluded from the model if the majority of samples drawn from their posterior dis-
tributions are zeros. In this way, LoRI prior can be considered as a variable selection
prior. On the other hand, according to Tipping (2001), independent Cauchy priors
with small scale parameters can also yield strong shrinkage. However, without the
point mass at zero, the shrinkage prior that only consists of continuous distributions
ignores uncertainty in the model space, even though it may achieve sparse point

estimates under the posterior mode.
3.2.4 Robustness to Large Coefficients

LoRI achieves a balance between shrinking trivial coefficients to zeros and preserving
large ones. We will demonstrate in the following special case of orthonormal design
that LoRI’s prior influence is bounded and vanishes in the limit.

Orthonormal designs have tractable analytical forms under many penalized re-
gression methods, and can be obtained in real world applications from well-designed
experiments or in signal processing applications using XX = I wavelets, for example
Clyde and George (2004). Suppose X is a squared orthogonal matrix (X7X = I).
Then the regression model (3.1) can be transformed into the following form by a
rotation

XTY = XTX3 + XT¢, (3.14)

where X”'e remains a vector of independent Gaussian errors with the same variance
1/¢. Notice that the response vector after the transformation X7Y equals the max-
imum likelihood estimate 3. Thus (3.14) can be rewritten as independent normal

observations [3; with different locations 3; and a common precision parameter ¢

5 i 1 .
B = B; + ey, ejgN(O,QE),forj:l,...,p. (3.15)
Therefore, if the number of potential predictors p in an orthogonal-designed linear
regression equals the sample size n, it can be represented in the form of (3.15). We

58



call this special case the normal means case, which includes many common models.

For example, a random effect model
Zjr N(ﬁﬁ 02)7

where z;, is the rth observation within the jth subject, for r = 1,...,m, can be
obtained by substituting Bj in (3.15) with the sufficient statistics Z;, the sample
mean of {z;1,...,2;m}, and changing the variance 1/¢ to o?/m accordingly. In
addition, nonparametric regressions that naturally have orthonormal bases such as
splines and wavelets can also be represented in the format of model (3.15).

For the normal means case, Bayesian shrinkage methods such as the empirical
Bayes approach (Clyde and George, 2000; Johnstone and Silverman, 2004) and the
horseshoe (Carvalho et al., 2010) were originally created to estimate sparse signals
among 3;’s while eliminating the disturbance caused by background noise.

We can use the normal means case (3.15) to illustrate the shrinkage mechanism of
LoRI. Under standard normal errors, i.e. ¢ = 1, the marginal conditional posterior

mean is

E[mﬁ,w]:(l— 1 )Bj (3.16)

wj +1

The term enclosed in the parentheses in (3.16) takes value on interval [0, 1) and can be
considered a shrinkage factor. Small w; indicates a high prior concentration around
zero, which results in a small shrinkage factor which suggests strong shrinkage. In
particular, w; = 0 shrinks the posterior mean of the location parameter to exact
zero. On the other hand, large w; indicates a large dispersion in prior density, which
associates with a shrinkage factor close to 1 and thus avoids over-shrinking a large
signal.

According to the Polya Urn scheme (3.6), the marginal prior on the first parame-

ter wy equals to exactly the base measure Dy. Because of exchangeability, (3.6) holds
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under all permutation of the order among w;. Therefore, for any j = 1,...,p, the
marginal prior measure of LoRI for w; is also Dj.

For the normal means case, Dawid (1973), Pericchi and Smith (1992), Pericchi
and Sanso (1995), and Carvalho et al. (2010) show that certain heavy tail priors such
as the double exponential prior, the Student t prior and the horseshoe have bounded
influence. According to the following theorem, marginally, LoRI also has bounded
prior influence. Furthermore, LoRI’s prior influence vanishes for large observation in

the limit.

Theorem 5. Suppose Bj = B;+e; andej ~ N(0,1/¢), where the location parameters
B; are unknown and the precision parameter ¢ is known. Then according to LoRI,

the marginal prior on [3;
" s Ly 0. L
) 4o [ [ W00 16 (w5, T ) 0 (0, ) dnda, (317

1) has bounded prior influence E(B;]5;) — B;, for any B; € R;

2) Prior influence vanishes for large Bj :

lim E(8]8;) — B =0 (3.18)

|B5|—00

Proof: see Appendix B.1.
3.2.5 Hyper Priors and Parameters

On the choice of hyperpriors, Gelman (2006) suggests using a half-t prior on the
hierarchical normal standard deviation parameter; the horseshoe has half-Cauchy
priors on both the local and the global scale parameters (Polson and Scott, 2012) .
According to (3.5), we take the priors of the scale parameters n; in the continuous

component of Dy to be half-Cauchy distributions with the common scale \/La, which
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can adapt to different variations in the observation errors. Because of the flexibility
achieved by the DP structure, LoRI does not require another hierarchy of a global
shrinkage parameter.

The marginal inclusion probability p controls the model size. We assign a hyper-

prior p ~ Beta(a,, b,) with hyper parameters a, = 1 and
bp = pc,

where ¢ takes value between 0 and 1. Choices of ¢ reflect different prior beliefs
in model sparsity. In the case of ¢ = 0, the prior on p degenerates to a uniform
distribution on (0, 1), which implies that on average half of the covariates should be
included. In the case of ¢ = 1, the prior mean of p decreases to p/(1 + p), which
yields a more sparse solution with a model size close to 1. This choice is desirable to
solve sparse problems, where expected model sizes do not increase with p. Without
prior knowledge of the sparsity of the true model, we avoid specifying extreme values
such as 0 or 1 on hyper parameter c. Instead, we recommend default value ¢ = 1/2,
which allows LoRI to better adapt to different model size p and sparsity.

The Polya Urn Schemes (3.6) indicates that the DP precision parameter m con-
trols the number of different values among {wy,...,w,}. Larger m yields more clus-
ters, since w4y is more likely to differ from wq,...,ws; and vice versa. In the
absence of prior information on the number of clusters, we recommend a hyperprior

m ~Gamma(a,, b,,) with a,, = b,, = 1.
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3.3 Posterior Computation

In a stick-breaking representation, the posterior of w;:

P(wj) = > pi - 0x (w)) (3.19)
k=1
Dk = Uk n(l — ) (3.20)
<k
or ¢ Beta(1,a),k = 1,2, ... (3.21)

where wj; are posterior samples of w; as if under the same prior in the base mea-
sure Dy. Conventional sampling algorithms for the DP prior such as the blocked
Gibbs sampler (Ishwaran and James, 2001) truncate (3.19) to a finite number of
components, which treat the DP models as finite mixture models. Some new DP
sampling approaches circumvent the unnecessary finite truncation step and remain
simple to implement. We apply the exact block Gibbs sampler algorithm proposed
by Papaspiliopoulos (2008), which combines the ideas of two efficient algorithms
for non-parametric model sampling: retrospective sampling (Papaspiliopoulos and
Roberts, 2008) and slice sampling (Walker, 2007). To draw posterior samples of the
DP precision a, we apply the Gibbs sampler by introducing an auxiliary variable
(Escobar and West, 1995).

We marginalize 8 out to improve MCMC mixing. Since closed forms of full
conditionals are not available, we use the Metropolis-Hastings algorithm within the
Gibbs sampler. We use a Gaussian random walk proposal to sample the conditional
posterior of (wj,ny) and ¢. To obtain appropriate value of proposal variance, we
apply the adaptive Metropolis (AM) algorithm (Haario et al., 2001), whose choice
of proposal variance depends on historical draws of posterior samples. Although
the adaptive Metropolis is not Markovian, this tuning free algorithm still achieves
ergodicity.
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Because parameters are updated univariately, the AM chain can get stuck in local
modes, especially when covariates are highly correlated. To resolve this problem, a
simple random swap step (Ghosh and Clyde, 2011) is added in each iteration of the
AM chain. For a pair of highly correlated covariates {X;, X;} where only one of
their 1 being zero, we propose to swap the values of their corresponding parameters
(wi,m;) and (wj,n;) with a small probability.

Detailed posterior sampling steps are listed in Appendix B.2.

3.4 Simulation Studies

3.4.1 Normal Means

The empirical Bayes method proposed by Johnstone and Silverman (2004) is consid-
ered a benchmark among shrinkage priors for detecting sparse signals. Carvalho et al.
(2010) compares it with the horseshoe prior in the following simulation design. Sup-
pose n = 250 independent observations BZ are drawn independently from N(f;, 1).
The true values of the location parameters (3; are generated from independent mix-
tures of a Student t distribution ¢¢(0, 3) with weight w and a point mass at zero with
weight 1 —w. Combinations of different levels of model sparsity w € {0.05,0.2,0.5}
and signal strength £ € {2,10} are examined. For each combination 500 simulated
datasets are generated.

We compare LoRI with both the horseshoe and empirical Bayes on the above
simulated data. Empirical results suggest that different choices of priors on model
precision ¢ do not lead to significant differences in posterior inferences. In fact, the
reference prior p(¢)ocl/¢ and half-Cauchy prior on the inverse squared root of ¢ yield
almost identical posteriors. Without loss of generality, we report the results under
the half-Cauchy prior, which is a proper prior.

Similar to the horseshoe approach, we first use the posterior means as our default

estimates for ;. Table 3.2 shows the L, loss from the 500 independent simulations.
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Table 3.2: Simulation study of normal means case: median sum of squared errors
(SSE), 37 (B — B;)?, from 500 simulations. (; are posterior mean estimators for
LoRI and the horseshoe. We use bootstrap with 500 samplings to estimate the
corresponding standard errors of medians and report them in parentheses. Column-
wise smallest error is in bold type.

w = 0.05 w = 0.2 w = 0.5
1S 2 10 2 10 2 10
LoRI 27 (0.6) 30 (0.7) 90 (1.3) 91 (1.2) 175(1.6) 174 (1.4)
Horseshoe 31(0.5) 30(0.8) 98(0.8) 94 (1.0) 174 (0.9) 199 (3.3)
Empirical Bayes | 29 (0.8) 33 (1.0) 113 (1.8) 124 (2.0) 388 (4.5) 441 (6.4)

The empirical Bayes method almost systematically yields largest estimation errors.
Between LoRI and the horseshoe, LoRI performs as accurately as the horseshoe
in the sparse small signal scenario (w = 0.05,£ = 10) and non-sparse large signal
scenario (w = 0.5,& = 2), and achieves smaller errors than the horseshoe in all other
scenarios. Both methods have heavy tailed priors with high concentrations near
zero, and thus are able to both shrink noises and preserve large signals. The left
panel of Figure 3.2 compares these three methods in the sparse large signal scenario
(w = 0.05,¢ = 2). Similar to the empirical Bayes and the horseshoe, LoRI estimates
for large signals remain almost identical to the observed values, which agrees with
the bounded influence property. For small observations, LoRI shrinks them severely
to almost zeros. Thanks to the positive mass at zero, LoRI has flatter posterior
slopes near the origin, which indicates better handling of noise in sparse scenarios.
On the other hand, in non-sparse scenarios, LoRI’s local rotation invariant property
makes it perform similarly to ridge regression, and thus avoids over sparse solutions.

The posterior median estimate used by the empirical Bayes method is not op-
timal for Lo loss, which explains the systematically large errors from the empirical
Bayes method in Table 3.2. For a fair comparison, we also explore posterior me-

dian estimates for the two fully Bayes methods, LoRI and the horseshoe, and report
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FIGURE 3.2: Simulation study of normal means case: observations Bj vs posterior
estimates of location parameters 3;, from one simulation in scenario w = 0.05,& = 2.
Grey line and dots are 45-degree diagonal line and values of observations. Left:

posterior mean estimator for LoRI and the horseshoe.

estimator for LoRI and the horseshoe.
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Table 3.3: Simulation study of normal means case: median sum of absolute errors
(SAE), 3", |8 — Bi|, from 500 simulations. §; are posterior median estimators for
LoRI and the horseshoe. We use bootstrap with 500 samplings to estimate the
corresponding standard errors of medians and report them in parentheses. Column-
wise smallest error is in bold type.

w = 0.05 w = 0.2 w = 0.5
13 2 10 2 10 2 10
LoRI 16 (0.3) 17 (0.4) 59 (0.7) 61 (0.7) 130 (0.7) 132 (0.8)
Horseshoe | 21 (0.5) 19 (0.4) 89 (1.1) 78 (0.7) 156 (0.5) 149 (0.8)
Empirical Bayes | 16 (0.3) 17 (0.4) 62 (0.6) 64 (0.7) 179 (1.6) 193 (2.0)

the L; loss in Table 3.3. LoRI beats the horseshoe systematically, and outperforms
the empirical Bayes in moderately sparse and non-sparse scenarios. In contrast, the
horseshoe yields the largest L errors in all scenarios, probably due to its lack of com-
plete shrinkage to zero. Furthermore, the right panel of Figure 3.2 illustrates that
the posterior median estimates of LoRI can reach exact zeros for small observations,

while the horseshoe cannot.
3.4.2 Regression

To understand LoRI’s performance in linear regressions with different correlation
structures among covariates and different values of true coefficients, we compare
LoRI with several commonly used Bayesian and non-Bayesian methods: the Zellner-
Siow prior, the unit information prior (Kass and Wasserman, 1995), the horseshoe,
the Bayesian lasso, the lasso, ridge regression, the elastic net and the OLS estimator
on the simulation example originally designed in the lasso paper (Tibshirani, 1996).

In this example, observations are simulated according to
Y = X3 + €, € ~N,(0,0°1),

with sample size n = 200, number of covariates p = 8, standard deviation in normal
likelihood o = 3 and pairwise correlation corr(X;, X;) = ri=il. Measurement for
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correlation r is originally set to 0.5 in the lasso paper. In order to compare different
correlation levels, we also consider the cases r € {0,0.99}. The following two scenarios

represent different structures of the true values of coefficients 3:
Scenario 1: 8 = (3,1.5,0,0,2,0,0,0)

Scenario 2: 3; = 0.85, forall j =1,...,8.

Table 3.4 shows the estimation accuracy measured by the sum of squared errors
for B under combinations of all three correlation levels and two coefficient structure
scenarios. Among all the methods, the Zellner-Siow and the unit information prior
are variations of g-prior. The Zellner-Siow has a multivariate Cauchy prior density
and can be represented as a mixture of g-prior with inverse Gamma hyperprior on
g. The unit information prior is the g-prior with g = n and acts similarly to the
BIC criteria. The Bayesian lasso is the posterior mean estimate on coefficients under
independent Laplace prior. For all Bayesian approaches, we use the default estimates,
which are posterior means.

In Scenario 1, the true model is sparse and the nonzero coefficients have compar-
atively large values. For cases with independent or moderately correlated predictors
(r = 0,0.5), the two g-prior methods result in the most precise estimations. LoRI
slightly underperforms in relation to them but outperforms all other methods. An-
other Bayesian method, the horseshoe, also outperforms all non-Bayesian methods.
Among the three non-Bayesian methods, the elastic net acts similarly to the lasso,
and both of them outperform ridge regression, which is consistent with its reputation
in sparse regression. These three methods all outperform the Bayesian lasso as they
may shrink coefficients exactly to zero while the Bayesian lasso estimate retains all
coefficients. However, in a highly correlated case (r = 0.99), we notice an obvious
change in estimation performance. The Bayesian lasso yields the most accurate esti-

mation, while the two g-prior related methods become the least reliable, due to their
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Table 3.4: Simulation study of regression: median sum of squared error Z?:o(ﬁj —

Bj)z, from 500 simulations. Bj are posterior mean estimates for Bayesian methods.
We use bootstrap with 500 samplings to estimate the corresponding standard errors
of medians and report them in parentheses. Column-wisely, smallest error is in bold
type and second smallest error in italic type.

Scenario 1

r 0 0.5 0.99
LoRI 0.14 (0.01) 0.7 (0.01) 5.85 (0.22)
Zellner-Siow | 0.13 (0.01) 0.15 (0.01) 8.76 (0.42)
Unit Info | 0.13 (0.01) 0.15 (0.01) 8.35 (0.35)
Horseshoe 0.20 (0.01) 0.26 (0.01) 6.52 (0.28)
Bayesian lasso | 0.29 (0.01) 0.38 (0.01) 4.88 (0.13)
Lasso 0.27 (0.01)  0.32 (0.01) 7.08 (0.28)
Ridge 0.34 (0.01) 0.50 (0.01) 6.13 (0.16)
Elastic net 0.28 (0.01) 0.33 (0.01) 6.69 (0.21)
OLS 0.34 (0.01) 0.53 (0.01) 26.92 (1.18)

Scenario 2

r 0 0.5 0.99
LoRI 0.33(0.01) 0.46 (0.02) 4.64 (0.16)
Zellner-Siow | 0.47 (0.02)  1.20 (0.04)  8.30 (0.31)
Unit Info | 0.57 (0.02) 1.41 (0.03) 8.15 (0.36)
Horseshoe 0.44 (0.02) 0.66 (0.02) 4.71 (0.22)
Bayesian lasso | 0.42 (0.01) 0.51 (0.02) 1.76 (0.08)
Lasso 0.33(0.01) 0.52 (0.02) 7.44 (0.14)
Ridge 0.32 (0.01) 0.35 (0.01) 0.27(0.02)
Elastic net | 0.34 (0.01) 0.49 (0.01) 0.04 (0.00)
OLS 0.33 (0.01)  0.52 (0.02) 27.83 (1.05)

inherent instability from nearly singular designs. Notably, LoRI remains the second
best in this highly correlated case.

In Scenario 2, the true model is non-sparse while all true coefficients are small.
When r = 0 or 0.5, ridge regression outperforms all other methods, which is gener-
ally consistent with the comparison between the lasso and ridge regression. Similar
to Scenario 1, LoRI yields the second smallest estimation error by slightly under-

performing compared to ridge regression. Interestingly, when r = 0.99, the elastic
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net becomes the best method. One possible reason is that the Ly penalty dominates
and thus the elastic net becomes a soft thresholding method on univariate regres-
sion coefficients, which ignores the dependence among predictors. Since the oracle is
the full model, pure shrinkage methods solely based on the full model, such as the
Bayesian lasso and the horseshoe, perform more accurately than the methods which
average all sub-models, such as the Zellner-Siow and the unit information prior. In
addition, these two g-prior methods also show instability when predictors are highly
correlated. We notice that although LoRI also averages all sub-models, it generally
performs more accurately than the pure shrinkage methods.

Table 3.5: Simulation study of regression: marginal inclusion probability of LoRI for
r = 0.5, averaged over 500 simulations.

Scenario 1
B; 3 1.5 0 0 2 0 0 0
PB;#0|Y)|100 1.00 0.22 0.22 1.00 0.22 0.21 021
Scenario 2
B 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
PB;#0]|Y) 099 099 099 0.99 099 0.99 0.99 0.99

LoRI systematically performs with accuracy in both scenarios, which makes it a
good default method, since in real word applications, people usually lack the knowl-
edge about true sparsity. To better understand the contribution of the positive mass
at zero component in LoRI, we compare the posterior marginal inclusion probability
in the above two different scenarios (see Table 3.5). In LoRI, although the continuous
component with high concentration around zero leads to severe shrinkage, point mass
at zero component alone sets the coefficient to exact zero, or equivalently, excludes
the corresponding predictor. In the sparse scenario, predictors in the true model are
100% included, while the rest predictors only have about 20% inclusion probabili-

ties. In the non-sparse scenario, all predictors are included 99% of the time. The DP
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Scenario 1 Scenario 2
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

F1GURE 3.3: Simulation study of regression: pairwise posterior probability of being
assigned to the same group by LoRI. For » = 0.5, averaged over 500 simulations.
Values in diagonal cells equal 1.

hierarchical prior in LoRI introduces more flexibility than any parametric prior, and
thus allows LoRI’s point mass at zero component to adapt to different sparsity levels.
If a variable selection procedure is of interest, under the median probability model
(Barbieri and Berger, 2004) that includes the variables whose posterior marginal in-
clusion probabilities exceed 0.5, LoRI selects the correct models in both sparse and
non-sparse scenarios.

In addition, grouping structures among coefficients induced by the DP in LoRI
correspond to the characteristics of true coefficients. In Figure 3.3, we use heat
maps to represent pairwise posterior probability of 8; and 3; in the same group, for
i # 7. In Scenario 1, eight coefficients seem to be divided into two groups {31, B2, B5}
and {53, B4, B¢, O7, B}, which are consistent with the covariates to be included and
excluded according to the true model. Coefficients within the same group have a

higher probability of being selected together than coefficients between groups. In

70



Scenario 2, LoRI assigns all coefficients to the same group, which suggests that in
non-sparse scenario LoRI performs similarly as rotation invariant methods such as
ridge regression. Notice that the correlation structures of design matrices X are the
same across different scenarios. Therefore, the difference in LoRI’s grouping reflects
the structures of coefficients rather than correlations. This property of LoRI further

differentiates it from the group lasso.
3.5 Protein Activity Example

We apply LoRI to a protein activity dataset, which has been previously studied by
Clyde and Parmigiani (1998) and Clyde et al. (2011). This dataset was collected
from a well-designed experiment studying the relationship between the protein ac-
tivity level and different factors of storage conditions as well as their two-way interac-
tions. This dataset consists of n = 96 observations and p = 88 potential exploratory
variables. The heat map of the correlation matrix among predictors (Figure 3.4) sug-
gests that some of the variables are highly correlated. 348 pairs (9.1%) of predictors
have absolute correlations larger than 0.5, and among them, 19 pairs have absolute
correlations larger than 0.95.

We apply LoRI on this dataset and report the posterior mean estimate and
marginal posterior inclusion probability for each dimension in Figure 3.5. By av-
eraging all sub-models, the six variables that have the largest absolute values of
posterior mean are the main effects protein concentration (con), two detergent levels
(detT, detN), two-way interactions between buffer and temperature (bufPO4.temp),
buffer and detergent (bufTRS.detN), concentration and detergent (con.detT). These
predictors also have the highest posterior inclusion probabilities, and thus form the
median probability model. The grouping pattern (Figure 3.6) of LoRI for this dataset
seems similar to the one in Section 3.4.2, since these six predictors are more likely
to form their own group rather other than join the other 82 predictors.
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FIGURE 3.4: Protein activity data: heat map of correlation matrix among predictors.
The (i, 7) cell corresponds to the correlation between the i-th and the j-th predictor,
1 < 4,7 < 88. Diagonal cells have value 1.

We also compare LoRI with all other methods mentioned in Section 3.4.2. To
assess the prediction accuracy across different methods, we conduct leave-one-out
cross validation. For each observation ¢, we put it aside and use the other 95 obser-
vations in the dataset to estimate the regression parameters and obtain a predicted
value ;) for the i-th observation. The RootMSE (Table 3.6), squared root of mean

squared prediction error, are computed to measure prediction accuracy:

RootMSE = Z y(Z
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Ficure 3.5: Applying LoRI on protein activity dataset; from upper to lower: pos-
terior means of coefficients, marginal posterior inclusion probability.

Due to the high correlation among variables, predictions from g-prior methods and
the lasso are not as reliable as those from other Bayesian shrinkage methods along
with ridge regression. Notably, LoRI yields the smallest prediction error, which

confirms LoRI as an ideal option of default approach.

3.6 Discussion

We have proposed LoRI as a novel semi-parametric shrinkage prior for Bayesian

model averaging and recommended it as a default method. Both simulation and real
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FIGURE 3.6: Applying LoRI on protein activity dataset: heat map of pairwise
posterior probability of being assigned to the same group. The (i, j) cell corresponds
to the pairwise posterior between the i-th and the j-th predictor, 1 < i, 5 < 88.

examples show that LoRI adapts to model sparsity, values of true coefficients as well
as correlation structures among predictors, and yields accurate parameter estimation
and prediction. Thanks to its Dirichlet Process hyperprior, LoRI exhibits flexibility
as well as yields groupings. When the true model is sparse, LoRI performs similar
to independent mixtures of Cauchy priors and its point masses at zeros components
further contribute to sparse solutions. LoRI’s bounded prior influence allows it to
preserve large coefficients. When the true model is non-sparse, LoRI groups most

variables together and performs similar to a rotation invariant prior.
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Table 3.6: Protein activity dataset: prediction errors measured by RootMSE.
Column-wise smallest error is in bold type.

RootMSE
LoRI 0.484
Zellner-Siow 0.646
Unif Info 0.552
Horseshoe 0.494
Bayesian lasso 0.499
Lasso 0.547
Ridge 0.502
Elastic net 0.507
OLS 1.743

In this article, our focus lies on model averaging rather than model selection,
since utilizing information contained in all sub-models can avoid bias and lead to
more accurate predictions, as well as measures of uncertainty. However, if model
selection is of interest, the point mass at zero component in LoRI provides coherent
model selection procedures related to optimizing certain loss functions. For example,
we have shown in the simulation study that by using the posterior median estimator,
which minimizes the L, loss, LoRI can recover the true model. One area of future
research is to propose detailed selection rules for LoRI, and assess their performance

in the framework of model selection.
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4

Discussion

We have developed two new hierarchical prior distributions for normal linear regres-
sion and Generalized Linear Models (GLMs) respectively. Both of them have positive
probabilities at zero for each coefficient, which are capable of yielding sparse solu-
tions under valid variable selection criteria. They both can be considered as scale
mixtures of normal distributions with heavy tails that are robust to large signals
in coefficients while accommodating many zero coefficients. For the LoRI prior, we
incorporate a non-parametric hyper prior, through a Dirichlet process prior to gain
extra flexibility. The essential discreteness of the DP prior reveals group structure
among predictors, and thus makes LoRI adaptive to datasets with different densities
of sparsity. For the CH-g prior used in GLMs, we assign a generalized Beta distri-
bution as hyper prior, which is very flexible to encompass most conventional hyper

priors on ¢ in mixtures of g-priors.
4.1 Future Directions

We think a major difference between LoRI and the CH-g prior is the incorporation

of the correlation structure among predictors in the prior dependence of coefficients.
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Recall that LoRI prior is a scale mixtures of independent normals. Each predictor is
standardized so that the prior is invariant to scale and location transformations of the
predictors but not more general linear transformations. On the other hand, the CH-g
prior is based on the g-prior, whose prior precision matrix is proportional to X%,X v
in normal linear regression, or the information matrix in GLM. Although this setting
automatically adjusts for linear transformations of the design matrix, estimation
may suffer greatly of coefficients under g-prior and mixtures of g-priors with nearly
singular design matrices. This issue is verified empirically in the simulation example
in Section 3.4.2. In contrast, with independent predictors, g-prior variants yield
smaller estimation error than methods in the independent scale mixtures of normals
family. One of our future directions is to conduct an in-depth comparison between
these two types of model selection priors, to obtain a better understanding of their
strength and weakness when being applied to different types of problems.

We also plan to extend LoRI prior to GLMs. Based on its ideal empirical per-
formance in selection and prediction in linear models, we are interested to learn if
it will become a good model selection prior for questions with binary or categorical
responses. Note that LoRI prior is not conjugate for a normal likelihood. When
extending it to GLMs, the computational expense will almost remain the same since

an almost identical MCMC algorithm can be applied.
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Appendix A

Appendix for Chapter 2

A.1 Confluent Hypergeometric Function

1Fi(a,b,s) So a=1(1 — z)’=2Lexp(s2)dz is the confluent hypergeometric

function (Abramowitz and Stegun, 1970), for @ > 0 and b > 0. Since Gamma

function I'(x) does not converge for non-positive integer z, here we assume b—a > 0.
A.2 Proofs

A.2.1 Proof to Remark 1

Proof. Without loss of generality, we assume for first paq, columns of X, forms

Xy In addition, Z,, () = Z,(m) = I, identity matrix. Because

fMT(Y|aMT’IBMT) PM™PMp {RSSM —RSSMT}
BFMTM = 1

Faa(Y[ént. Bua) 2(1+g)

PM=P M A 2 T4y
(149 [fm(YiaMT,ﬂMT)]

Fa(Y [éat, Ba)
can be written as a function of the maximized likelihood ratio, which is in the order
of O(1) in the case of My < M. Therefore, the Bayes factor is also in the order of
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O(1). O
A.2.2  Proof to Proposition 2

Proof. The marginal prior on 3, after integrating g out is

a+b

o0 2 atb
bl | M [ e [P | g (L) T e 2y (ay

0

We will show that as ||Ba|, or equivalently, |Ba]z, — o0, both the lower bound

_b+papm
and upper bound of (A.1) are proportional to ([|Ba|2, )" 2

We first find a lower bound of (A.1) up to a constant. Since s > 0,

a+b

v 1BmIZ, ] e 1 2
Az | ¢ WM st (=) g
(A1) Jog eXp[ 29 ]g (1+9) g

a+b b+pag—2
G) G e ] )
o \I+yg g 2g q)’

then according to the Watson’s Lemma (see (Olver, 1997), p71), the limit of the

lower bound

. (g N (1) 1BMl17, 1
lim —— - exp | ————=|d{ -
IBmlz,—0 Jo \1+g g 29 g
_btpm
o (IBml7,) 2

Next we will find an upper bound.

a+b

o 1Brl3, ] o1\ 59
<o ”Xp[‘m]g l(m) exp[m]dg

2 1 (s+uﬁ 1% )
o \1+yg l+g

— 6—7“3"2”%713 (a —pm b +PM) (a —pM a-+ b 5+ BM%)
= 2 9 ) 2
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According to (Abramowitz and Stegun, 1970) formula (13.1.4), the limit behavior of

1Fi(a, b, s) function for large positive s is

1Fi(a,b,s) = %exp(s)sab[l +O(Js| )], when s > 0. (A.2)

Hence the limit of the upper bound

1BrMmIZ, — b — b s+ 2
lim e‘MzIB<a pm +pM> 1F1(a pm a+b s ”ﬂM“In>

1Bz, —0 2 72 2 7 27 2

9 9 9 _ bt
B 1BMIIz, b+ pa s+ |Bmlz, s+ |Bmlz, 2
=exp|— 5 r —5 exp 5 . 5

_b+p
2

o (|1Bmllz,)

Therefore, as |Bu|z, increases, or equivalently, as ||Ba]| increases, both the lower

7b+pM
bound and upper bound of p(Bu | M) are proportional to (|Bun]3,) % . O
A.2.8 Proof to Lemma 1

Proof. Note that for any model M, Z,,(dp) = 17 Z,,(fa) 1, equals the first diagonal
element of [1,,, X]" Z,,(f)a¢) [1n, X]. According to the Assumption 1, there exists a

positive constant cnq such that

7, (dM)

plim,_, ., = CMm

Therefore, we have

~ _1 1 In(éMT)é?/\/l I’rz(13¢j\/1)5<2 -1
. 1+ In(OéMT)TLC 2 73 { In(dMT)nc+€ 7In(é¢M)ncAf1 CMp 2
plim,,_, - = < 0,
1+ Z,(&pm)ne M
and
T, (ary) |
. O{M 2 CM 2
plim,, ., [H—AT] = ( T) <
In(CEM) CM
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Hence the asymptotic behaviors of both Aprg.a and AG” \ are dominated by the
likelihood ratio. Next we will study the asymptotic property of the likelihood ratio
in two difference cases: 1) My < M and 2) My ¢ M.

In the first case where My < M, from the well-known results of likelihood
ratio test, the logarithm of ratio of maximized likelihoods has a central chi-square
distribution Xf; MDAy This suggests that the log-likelihood ratio does not depend
on n, i.e., Ay = O(1).

In the second case where My ¢ M, we first examine the sub-case where M c
My, Without loss of generality, we assume the space spanned by the first pay

columns of X, and 1,, equals the space spanned by X and 1,, i.e.,

C(L, X1 Mgy -+ s Xppymz) = C(1n, Xm)

For notation simplicity, we denote the parameters as ¥ = (o, Bum), the log-
likelihood as Iy(¥aq) = log fam(Y | ¥aq), and the i-th row of the original design
matrix [1,, V] as viam. According to the power calculation results for GLM in
(Self et al., 1992), when testing nested models, if the larger model is true, then we
have that the logarithm of likelihood ratio converges in distribution to a non-central

x?2, that is
Antremt == eXDEXGy, —pp (Daa + 1= tr(M; ' My) + W)}, (A.3)

where x%(m) is a non-central x? distribution with degrees of freedom &k and non-
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centrality parameter m; and

N a2lMT (¢MT)
Ahm)?

(¥34,0)

2
1! k 692* / ES / ES 6281*
a; ' (¢) 3 0" M) < ,;M> — [b'(0 ) — O ZM)]&TI—*QM Vi,MVZM
1

i M M
(azMTwMT)) (alMTwMT))T
0 Ypm 0 Y (¥%,.,0)

n ae*M 2 PMp
=Za;1(¢)b"(9;MT)< L > D Vimvim

*
Mt ) jmpmsn

n

2

M, =

&=

=3 (0) {V0faag) [y = 1] = [ aty) = D0nEa0)]}

where the expectation in M; and Mj are taken with respect to the true parameters
Vi, = (@, B, ); 0F o 1 the i-th canonical parameter and 7}, is the i-th linear
predictor under parameters 1%, in model M. Both (Self et al., 1992) and (Shieh,
2000) point out that empirical experience suggests that tr(IM, 'M,) is very close to
pam + 1. Furthermore, if we treat the explanatory variables as random independent
samples, then we can easily show that tr(IM; *Ms) only depends on p, not n. There-
fore, we can say that the non-centrality parameter in (A.3) pu+1—tr(M;'My) + W
is dominated by W. Because M & M, which means the limits of parameter in M
do not equal the true parameters, i.e., (o}, By, 0) # (y,, B, ), it is reasonable
to assume that lim, ., ¥/n converges to a constant c¢. Since the non-centrality pa-
rameter in a y? distribution must be positive, this limit ¢ must be positive, which
implies that Api.m = O(e).

In the case where the two models M and M are not nested, we introduce a third
model M’ which includes all the predictors in both M and M. Notice that using

a similar method as in (Self et al., 1992), we can easily show that Axy.a also has an
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non-central x? distribution. Hence we decompose Apgm = At - Apgrpg Since
both pairs (Mp, M') and (M’ : M) are nested models, we can apply the previous
results twice: Apny = O(1) and Apppg = O (e"). Therefore, we can conclude

that Ay = O (e“") in this case. O
A.2.4  Proof to Lemma 2

Proof. We will show the asymptotic results about the RSS for GLM in two steps:
under model M and under model M. According to our Remark 2, under Mr,
the MLE estimator B My converges in probability to the true coefficients 8}, as n

increases. Furthermore, there exists the asymptotic normality,

Vi(Buig — Bin,) 5 N (0,[Z(8%,,)] 7).

where Z(3},,) is the expected information matrix based on a single observation
evaluated at the true parameters. Note the columns of Xy, are in the space spanned

by C(1,,X); so based on the Assumption 1,

IR(BMT) _ X,Z-/;/(T I”(IflMT) XMT
n n

converges to a positive definite matrix in probability. The consistency of MLE sug-

gests that this limit is

Z, 3 T #
phmnﬁ@% = I(IBMT)

We apply Slutsky’s theorem to rewrite the asymptotic normality as
. 1. . S d
[X%Tzn(WMT)XMT] : /6MT - [XXATIN("MT)XMT] : /6MT — N (07 IpMT) )

Therefore, the RSS for GLM under the true model

A

Qmy = ,éij;T [ X0, T () Xtz | Baar
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has a non-central x? distribution with degrees of freedom p,., and non-centrality

parameter 34 [X%(, Zo(Mmr)Xoms | By~ Its expectation is

E(Qurr) = Par + Bty [ Xty Lo (Matr ) X vtz | Biays

so if the true coefficient 3%, # 0, then the non-centrality parameter increases in the
order of O(n). On the other hand, the non-centrality parameter equals 0 if and only
if B}, = 0, which only occurs under the null model M,. Therefore, we have the
asymptotic behavior of Qu,., that is, if My # My, then Qo = O(n); if Mgy = M,
then Qu, = O(1).

For any model M # My, according to the asymptotic properties of the M-

estimators (see (van der Vaart, 2000) Chapter 5), there also exists a limit of the

MLE ,é v and similar asymptotic normality results: B M LN B and

Vn(8 - 8*) %
Ve[ (2 ] e

1
0y
N[0 m| LM ,
{ [‘3'% %]}

where [x() = log fa(-) and all the expectations are taken with respect to the true

model Mz and the true parameters (a’i,., B},,). Hence the above normal precision
is not the Fisher’s information matrix. To simplify the notification, we denote the

above covariance matrix as A. It is reasonable to assume that A is a positive definite.
Denote & = \/ﬁA’%BM, then
€~ VnAT:B5 > N(0.T,,,).
and thus its quadratic form has a x? distribution in the limit
€76 5 1, (MBUABL)
So when 8%, # 0, £7€¢€ = O(n), and otherwise, £7¢ = O(1). Based on assumption

(2.45), lim, 00 X4 Z (1) X a1/n converges to a positive definite matrix C. This
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results in that the py X pa matrix A2CA: is also positive definite. Suppose \; and

Ay, are its largest and smallest eigenvalues, then

Mosi€T€ < Qui = BL [XNT. ()X | B = €7 [ATCAT € < ngTe  (A)

Therefore, if B}, = 0, then Qs = O(1); In particular, when My = M, under any
model M, since B v converges to a vector of zeros, Q¢ does not increase with n.

On the other hand, if B}, # 0, then Q¢ = O(n). ]
A.2.5 Proof to Theorem 1

Proof. We have shown in Lemma 1 that the asymptotic property of the first term

A, in the approximate Bayes factor under the CH-g prior
BFMT:M = AMT:M ' Q/C\/Il{T:M + O(n_l)

So here we focus on the asymptotic behavior of the second term

B(b+pMT g) F (b+PMT at+b+pmp _8+QMT)
2 2/ 141 2 2 ) 2

QCH _
Mrp:M b+tpm a b+pm  atbtpm s+Qm
B ( 2 5) 1y ( 2 2 T2 )

According to (Abramowitz and Stegun, 1970) formula (13.1.5), the limit of the
Confluent Hypergeometric 1 Fy(a, b, s) function for large |s| when s is negative can
be approximated by

()

1F1(a, b, S) = m

(—s) *[1 +O(|s| )], when s < 0. (A.5)
We will show the asymptotic result about QS}I{T: A In two separate cases: 1) My #

MQ; aIld 2) MT = M@.
In the first case where My # M, then according to Lemma 2, Q. = O(n).
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For any other model M, if Q¢ = O(n), then

btp +Q —HPQAT

M S M —

o D) ()T 00T
gz-/\/tTl/Vl= ~ btppg = n 2

D (bpae) (280) 77 (14 0(n 1)

PMp
Similarly, if Qg = O(1), then Q/CVI;IT:M =0 (n* 2 ) Therefore, as to the Bayes

factor, we can conclude that if My < M, then prys > pa,., and

PM~PMy P
BFMTMZO(I)O n 2 —> O
On the other hand, if My & M, then

_PMp

BF vt:m 20(65”)-0(71 2 ) B

In the second case where My = M, Lemma 2 suggest both Qa, and Qq are
in the same order O(1). In addition, since any model M > Mgy, we have both
Anvipm = O(1) and QP = O(1). In this case the Bayes factor BF v is
bounded, which suggests the selection consistency does not hold when My = M,,.

Additionally, this theorem also holds if we allow a, b, s to be model specific, since
it is reasonable to let the hyper parameters depend on pps. In the case where My =
M, the formula of Q%{Ti  does not change. The only difference is that all a,b, s
are substituted with ang, b, Spq. In the case where My # M., as long as for all

model M, anq, bag, S do no diverge as n increase, then

B (bMT+PMT GMT) Fy (bMT+PMT amp oMy +PMp _SMT+QMT)

OCH 2 » T2 2 J 2 ) 2
Mp:M T B (mtpm am) o (bmtpm amtbmtpm  smAQum
2 2 151 2 2 ) 2
bym am b amFbym _sm
3(272)1]?1(27 2 2)

' bm aprm bm apmn+bm SM
B( 2T7 2T> 1F1( 2T7 T2 T7_ 2T

is in the order of O (n_

PMptOMp —PM M )
2
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A.2.6 Proof to Theorem 2

Proof. We have shown in Lemma 1 that the asymptotic property of the first term in

the approximate Bayes factor under the CH-g prior
BFMT:M = AMT:M . Q%{T:M + O(n_l)

So here we focus on the asymptotic behavior of the second term

B (b+PMT g> F (b+pMT a+b+pay _S+QMT>
72

2 2 2 ) 2
QCH _
Mp:M T b+pm a b+pm  atbtpm s+Qm
B ( 2 ’5) 1y ( 2 2 T2 )

We will show the asymptotic result about QS/}[IT: A In two separate cases: 1) My =
M, and 2) Mr # M,.

If My = M, then Lemma 1 shows Ay, = O(1), and Lemma 2 indicates that
both Qu = O(1) and Q. = O(1). According to (Slater, 1960) formula (4.3.3): if
b is large, and a, s are bounded, then the limit of ; F} function can be approximated

as

1Fi(a,b,s) =1+ 0(p| ™). (A.6)

Along with the Stirling’s Formula
[(n) = e ™n" 2 (2m)2 (1 + O(n 1)), (A7)

we can conclude that

Qg}l{ M T bt bt - fb; +Q
T B () o (e, e, — )
B b a F a+b+pamg »
—C- bgj’j\f)a =C- ( a<2H; ) :O(n%)’
B (%54,5) I (%)

which means that the Bayes factor

BFMT:M = O(l) -0 (n 2
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On the other hand, if My # M,, then Qrq, = O(n). According to (Slater, 1960)

formulas (4.3.7): if b is large, s = by, and a,y are bounded, then

1Fi(a,b,s)=(1—y)* [1 _ a(a +1) ( Y

= y) + O(|b|2)] . (Ag)

In both cases Qs = O(1) or O(n),

B (b+pMT g) P (b+pMT a+b+p _s+QMT>
12

2 2 ) 2 ) 2
QCH _
MM B (b+pM g) F (b+pM atbtprm s+QM)
2 32/ 141 2 2 2

b+p a
—)CB<— T7§):O<an2pMT).
B

Therefore, as to the Bayes factor, we can conclude that it My < M, then py > pat,,

and

PM~PMp P
BFMTM=O(1)O n 2 —> 0

If My ¢ M, then

_PMp p
BFMTMZO(GCTL)O(TL 2 )—)OO

Additionally, this theorem also holds if we allow a,b, s to be model specific. It
is reasonable to let the hyper parameters depend on p4, for example, in the Beta-
prime prior on g (Maruyama and George, 2011), a = n — ppy — 1.5. In the case of
Mrp = M,, the formula of Q%IT:  does not change. The only difference is that all

a,b, s are substituted with aa, bag, Spq. In the case of My # M, as long as for all
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model M, by, sy do no diverge as n increase, and ay = O(n), then

B bmp+tpmy  amyp F bmptPmy  ampTOMptPMy  SMpTQMp
2 172 141 2 J 2 ) 2

OCH =
Mp:M = bmtpm am bmt+pm  amtbap+pm Sm+Qm
B( 2 2 ) 151 ( 2 2 T2 )

2 2 ) 2

(. 50) o (b, it o)
T
?

' bm amMp bMT aMT+bMT SMp
B( 2 2 ) 1F1( 2 2 T T2
bMT+pMT aMT b a
r YT 7T OM AM
B( ;) B (%) PM_PMp
— - ; - - =0(n 2 .
MAEDPM am Mg AMrp
B( 2 )2 )B( 2 7 2 )

A.2.7 Proof to Proposition 3

Proof. We use the characteristic function to show that the degenerate distribution
at 1 is the limit distribution of the conditional posterior of (z | Y, M). The charac-

teristic function

¢.(t) = E () (A.9)

dz (A.10)
b+ ) 1F1(a a+b;rPM 3+QM)

:Jzz 1 - )b%ﬂ_lexp[(HQM +it) z]
B(3,

B 1F (a zz+b-2i-pM s+QM +Zt) (A 11)
1F1(a a—i—b% S+QM) .

Lemma 2 shows that if 3%, # 0, then Qo = O(n). According to (Abramowitz and
Stegun, 1970) formula (13.1.4),

T(b)
I'(a)

the characteristic function

1Fi(a,b,s) = exp(s)s®°[1 + O(|s|™)], when Re(s) > 0. (A.12)

oxp(SFQML it . (D 4 )= EM

z ) — b+p = t )
¢-(t) eXp(s+QM) . (5+QM)7 oy exp(it)

where exp(it) is the characteristic function of the degenerated distribution at 1. [
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A.2.8 Proof to Proposition 4

Proof. We also use the characteristic function (A.9) here.

a atb+pag s+Q M .

1P (5, 5P, 25+ it)
a atbtpm s+HQm
1F1(§7 2 » T2 )

¢=(t) =

Since a* > 0, under model M if Q¢ = O(1), we can use (Slater, 1960) formulas

(4.3.6): when a,b are large, and b — a, s are bounded,
1 Fi(a,b,s) = ¢ [1+O0(|b|™)]; (A.13)

if Qum = O(n), we can use (Slater, 1960) formulas (4.3.7): when a, b are large, and
b — a,s/b are bounded,

Fifabys) = e (1+ g) [1+ 0] (A.14)
Similarly as in the proof of Proposition 3, we find that ¢,(t) — exp(it). O

A.2.9 Proof to Theorem 3

Proof. For notation simplicity, we omit the subscript M in a4, bag, Sp where these is
no ambiguity and denote 3, \s = [In(,éM)]l = [X%In(ﬁM)XM]fl. Then (2.27)
and (2.31) can be simplified to

B | 2 MY “LN(z B, 2 Zom)

Z|M’Y~CH<CL a+b+pm _S+QM)

2 2 7 2
We will prove this theorem in two steps: 1) My # M, and 2) My = M,,.

When M7 # M, the model selection consistency holds, so we just need to show
the estimation consistency under the true model Myp. According to (2.54) , it is
sufficient to focus on the true model. We again use the characteristic function of
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the posterior distribution of 3,,. Notice that the integrand ¢t Arm has a bounded

modulus, so according to Fubini’s Theorem, the two integral can be interchanged.

0 (t) = [ 7 p(Br | M.Y) B (A.15)
_ J (it B { f p(Bt | 2 M,Y) p(= | M,Y)dz} B (A.16)
-| { [0 pipn ) 2.1, dﬁM}m MY)dz (A7)
— Jez(itTﬁMéth”’Mt) p(z | M, Y)dz (A.18)
Similar to the proof of Propositions 3, 4, when Q¢ = O(n), the limit of (A.18) is

LT - 1
lim | (" Am— gt B0 mt) p(z | M,Y)dz = exp (itT,BM — —tTEth)

n—0o0 2
Since under the true model ﬁMT — By, and 3,y = O(n™') — 0, hence

Dore, (t) — exp (it" By, )

which is the characteristic function of a degenerated distribution at B},

On the other hand, when My = M,, the model selection consistency does not
hold. Hence we need to examine the limit of posterior distribution of B, under
all models. Under model M, the MLE of the coefficient ,é v converges to the true
parameters 0. Since the modulus of (A.18) is bounded by a constant 1, which is

integrable if regarded as a function of z, so according to the dominated convergence

theorem,
lim X B3t mt) (2 | MY )dz
—»f [lir{}o ez(itTéM—%tTEn,Mt)] p(z | M, Y)dz =1
Therefore, the posterior of 3y, under any model converges to O. O
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A.2.10 Proof to Theorem 4

Proof. For notation simplicity, we omit the subscript M in a4, bag, Sar Wwhere these
is no ambiguity. We will show this consistency in two steps: 1) My # M, and 2)
Mp = M,.

When Mp # M,, the model selection consistency holds. In this case it is suffi-
cient to prove this consistency under M. According to the consistency of the MLE,
as n — oo, BMT converges in probability to the true coefficients 83, and
converges to the true intercept a’,,.. According to Assumption 1, 7, (dn) = O(n).

The approximate posterior mean of of apy,. in (2.26) converges to the MLE

Hence the estimation of azy,. is consistent, i.e.
phmn—mo p(aMT | Y7 MT) = 60{7\/17« (OZMT)

Similarly, under the flat prior, the posterior of a4, also converges to the true value
@\, asymptotically. The proof of Theorem 3 indicates that the estimation of B,

is also consistent,
plimn—»oo p (/BMT | Y7 MT) = 6ﬁLT (ﬁMT)

Therefore, the estimation p under My is consistent, that is
plim,, o, ¢ = plim,, E[0'(am, + Xp, By | Y, M7)]
* T *
= bl(aMT + XMTIBMT)'
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Next we discuss in the case where My = M,. In this case, the selection con-
sistency does not hold, and a sufficient condition for estimation consistency under
BMA is estimation consistency for p under each model M. Since for each model
M, the true model M is nested in it. Hence the MLE of intercept and coefficients
under M converge to the true value ajy, and 0. Therefore, similar method that

proves the consistency in the previous case is also applicable here. O
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Appendix B

Appendix for Chapter 3

B.1 Proof to Theorem 5

Proof. For notation simplicity, we use 3 to represent [3; and z to represent Bj in the
following proof. Denote A = 1?/w, then prior p(3 | n) has two equivalent hierarchical

representations

i. latent parameter w:

8w~ N(0,w) (B.1)
w | ~1G(1/2,7°/2) (B-2)

ii. latent parameter A:
Bl A ~N(©O,n*/A) (B.3)
A~ G(1/2,1/2) (B.4)

In the following proof, we will use the second representation, i.e. transform w to .

Without loss of generality, assume ¢ = 1. We first show that the theorem holds if
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the prior just contains the continuous component:

- [[5(5) e (o) o(s3)om

Let m(z) denote the marginal likelihood under prior 7 (3):

e =g ) ) e (‘1 i/zf/A) A+ = e (A 5 ;) i

Its easy to show that the m(z) > 0 for all z € R. According to (Carvalho et al.,

2010) Theorem 2,

E(B|z) —z = %logm(z). (B.5)

According to (Carvalho et al., 2010) proof of Theorem 3,

24/ \ 22\ [® 1 3 22 11
m(z) = exp (——)L o, (2,1,2 5 1—)\>G()\,§,§> d\

273 2

d 423/ X 2\ (* 15 22 11
L) = — G I I (R TR o
dZm(Z) BWGXP< 2>L 1<2a 727 27 )\)G<)\a272)d)\
Therefore (B.5) becomes:
2: (0@ (1,1,2,2,1-X) G (N 3,3)dA
d o P\ bHa 122
—10gm(Z) = = e} 1 3 22 1 1 (B6)
dz 35 21(3.1.3. 5, 1= A) G(Xi5,5) dA

In the numerator, when 0 < A <1

1 5 22
®1 _71’_’2_71_)\
2 22

~o () 3 BN S (2) o)
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and when A > 1

1 .5 22
b (=,1,-,—,1—A
1<277272a )

where (a), is rising factorial. As |z| — o0, the numerator in (B.6) converges to:

22 2\ 3PS =1 s 40 5
2 ) (=) - 2 N veddh+ - | A re 2dA
“mp<2> (2> [4V%RL2;F(§+n) ¢ 3£ ¢

It is easy to show that in (B.7), the second integral is finite. For the first integral,

according to the monotone convergence theorem, we can exchange limit and integral,

and
e} 1 o0 1
A=D" 1 L'(1+n)T(3) (13 1)
g 2¢ 2 = E Fl == S B
nﬂL1%%+@A P Sy T I R I AR B

By expanding

13 N _S @), (9
Fi(parns) = N

we find 1 F} (%, % +n, —%) decreases with n. Therefore, (B.8) converges. The numer-

ator in (B.6) can be simplified as

2 2\ —2
2z exp (%) . (%) - (1,
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where ) is a constant. Similarly, the denominator in (B.6) can be simplified as

22 2\
3 — )= - C.
() (3) o
where C, is also a constant. Therefore, < logm(z) — 0 as |z| — 0. This means
(3.18) holds under 7(3).

Next we show that this results still holds after introducing a component of point

mass at zero, i.e. () = (1 — p) do(B) + p 7(5) for any 0 < p < 1. Since
E(B|2)= P(B=0]2)-0+ P(8 %0 | 2)E(B | 2 5 % 0)

where E(3 | z, 8 # 0) is the posterior mean of § under prior density 7(5), to prove

(3.18) it is sufficient to show

lim P(5=0]|2)=0 (B.9)

|z]—00

According to the Bayes rule,
P(B=0]2)
= 0)P(3 =0)
0)+ P(z | B#0)P(B #0)

N(z0,1) (1-p)
N(z;0,1) (L=p) +p Sy §o N(2;0,1 4+ n2/A)C*(n;0,1)G(X; 3, 2)dndA

Pi|p
P8 =0)P( =

|
L+ 12§ 5y MEe S22 CH (00, 1)G(A; 3, 3)dndA
2 2 1 1 !
_ J f expl )] C*(0:0,1)C ()\ > 2) dnd)

In the above integral, the integrand is positive and increases with |z|, so we can
interchange integral and limit. Apparently, this integral reaches infinity in the limit

|z| — co. Therefore, (B.9) holds.
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Thus we have proved that the prior influence E(S | z) — z vanishes as |z| goes to
infinity. Notice that prior influence is 0 when z = 0. According to continuity, we can

conclude that prior influence is bounded. O
B.2 Posterior Sampling Steps

Similar as in Section B.1, we reparametrize the regression problem by transforming

parameters (5}, w;,n;) to (55, Aj,n;), see (B.1) - (B.4). Suppose in the current itera-

tion of MCMC, m, is the number of pairs (n;, A;) in group &, i.e. my = 3 7_ 1(c; = k)
for K =1,2,... According to the slice sampling idea, we introduce an latent variable
u; for each j = 1,...,p; and to eliminate confusion, in this section we denote «

as the precision parameter of DP, instead of m which we use previously. thus the
class indicator c¢; can only take value from a finite set. We update all the model

parameters according to the following scheme. For each iteration:

1. Update v, k =1,2,...
k

v ~ Beta(l + my,a + p — Zml)
1=1

2. Update wg, k =1,2,...

Wi = Vg n(l — Ul)

<k

3. Update u;, j=1,...,p
u; ~ Unif(0, w,,)

4. Update n;, k =1,2,...
Let ny = &g, where & = 1(n; # 0). When & = 1, ¢ = n;; when & = 0,
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the value of ¥} does not affect n;. After this decomposition, a priori,

&; ~ Bernoulli(p)

¥y ~ Cauchy ™ <O, \/La)

We use the Metropolis-Hastings algorithm to update £ according to

P&k 1Y, ¢, 801y, ¥™ A%, ¢)op(Y | ¢, €%, 9%, A%, 9) - p(&K)

where the p(Y | ¢, &%, 9%, A*, ¢) is the likelihood after marginalized out 3y and
(3 as shown in (2.1).

To update 15, we use the adaptive Metropolis algorithm on log(¢;) according

to

P | Y, €. €5 (1, A", 9)oep(Y | ¢, &%, 9", A%, ¢) - p(vy)
. Update ¢;: for j =1,...,p

¢; =k with probability 1(wy > u;)p(Y | ¢; = k,c(_j), &, ", X", ¢),

k
for k=1,...,k* where k* = argmkin{Zpl > 1 — min (u])}

. Update \;, k =1,2,...

Apply the adaptive Metropolis algorithm on log(\}) according to
PR Y, ¢, €5 9%, Ay, d)op(Y | ¢, €5, 9%, A%, 9) - p(Af)

. Simple random swap: if both sets A = {i : n; # 0} and B = {j : ; = 0} are
nonempty, randomly draw index 7 € A with equivalent weights, and draw j € B

with weight

|COI'I'(XI', XJ) |
Zj’eB |Corr(X;, X )]
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With probability pswap, use the Metropolis-Hasting algorithm to propose to

swap (Ciﬂ?i,/\z’) with (ijnjﬂ\j)-

8. Update p: the Gibbs sampler

k* k*
p ~ Beta (ap + 38 #0),b, + > Sy = 0))

k=1 k=1

9. Update a: the Gibbs sampler by introducing an auxiliary variable x:
alz,d~m,Glag +d by, —logx) + (1 —7,)G(ae +d —1,b, — log z)

x| o ~ Beta(a + 1,n)

k*

where d is the number of non-empty classes: d = > d(my = 1), and 7, =
k=1
ag+d—1
p(ba—logax) *

10. Update ¢: the adaptive Metropolis algorithm on log(¢) according to

p(@ 1Y, ¢, & 9" A" )op(Y [ ¢, £, 9% A%, 6) - p(¢)
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