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Abstract

The inclusion of rich sensors on modern smartphones has changed mobile phones

from simple communication devices to powerful human-centric sensing platforms.

Similar trends are influencing other personal gadgets such as the tablets, cameras,

and wearable devices like the Google glass. Together, these sensors can provide a

high-resolution view of the user’s context, ranging from simple information like loca-

tions and activities, to high-level inferences about the users’ intention, behavior, and

social interactions. Understanding such context can help solving existing system-side

challenges and eventually enable a new world of real-life applications.

In this thesis, we propose to learn users’ context via multi-modal sensing. The

intuition is that human behaviors leave footprints on different sensing dimensions -

visual, acoustic, motion and even in cyber space. By collaboratively analyzing these

footprints, the system can obtain valuable insights about the user. The analysis

results can lead to a series of applications including capturing life-logging videos,

creating automatic online content ratings and even enabling new ways for human-

object interactions. Through these applications, we show that a wide spectrum of

previously ”invisible” behaviors can potentially be captured and revealed by tapping

into the rich set of sensors embedded in modern commercial mobile devices.
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1

Introduction

The information explosion in the mobile era makes users’ attention the most pre-

cious resource. Therefore, knowing the users’ context becomes vital for distilling and

presenting useful information to the user. Previous research work has extensively

investigated inferring users’ context from individual sensing dimensions. For exam-

ple, the computer vision community has examined various techniques to understand

users’ facial expression by analyzing the movement of facial muscles. The researchers

in signal processing have investigated how emotions impact human voices in terms

of pitch, pause and even semantic expressions. Similarly, people from gesture recog-

nition, text mining, and web analysis all have contributed to understanding human

behaviors from different aspects.

Our work attempts to combine multiple information sources to provide even richer

inferences about the users’ behaviors. We propose that a wide spectrum of previ-

ously “invisible” behaviors can be captured and revealed by tapping into the rich set

of sensors embedded in modern commercial mobile devices. Moreover, by exmining

these behaviors, we are able to understand users’ intentions and reactions in various

1



scenarios. These inferences range from low-level user behaviors like gesture interac-

tions to high-level user attributes such as attention and interests. We show that these

inferences can be useful in a series of applications – enabling touch-sensitiveness on

passive surfaces, understanding user’s reactions towards online content, and captur-

ing groups of users’ interests for generating life-logging video highlights.

Successfully translating this vision into usable systems entails many challenges.

For example, one challenge could be how to summarize raw data from each individ-

ual dimensions to valuable information towards an application Our work has bor-

rowed extensively from existing research in different fields and mostly concentrated

on one key challenge: how can we synthesize information from different dimensions

together to understand a specific type of user behavior, especially when these infor-

mation are of drastically different nature. There are several solutions to this problem

ranging from using ensemble classifiers, designing specific semi-supervised learning

algorithms, and to analyzing information from groups of users. We will discuss these

solutions in more detail later. The rest of the introduction elaborates on the back-

ground in mobile computing and our contributions.

1.1 Background - Opportunities in Mobile Computing

Mobile devices are evolving. The inclusion of rich sensors (camera, microphone,

accelerometer, gyroscope, etc.) in smartphones enables these devices to effectively

observe, analyze and understand the users’ context. In the future, this trend of ex-

panding sensing capabilities is expected to continue with many new sensors (barom-

eter, NFC, RFID readers, etc.) being embedded into mobile devices. In other words,

these mobile devices are transforming from simple communication tools to powerful

sensing/computing platforms. Fully equipped with powerful CPUs, large storage,

multiple network interfaces and a rich set of sensors, these devices have the hard-
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ware that can potentially change the horizon of computing.

Users’ behaviors have also changed during this new mobile era. Studies have

shown that people nowadays are using their mobile devices all day long and are car-

rying their devices to almost all occasions. As IEEE spectrum describes this, “Not

only is it always on, it is always somewhere on us”. As the result, these mobile

devices have become people’s companions to various activities and can potentially

be faithful observants of their daily lives.

Therefore, on one hand, the devices are now equipped with the sensing/computing

capability to acquire and analyze information from multiple dimensions; on the other

hand, users’ new usage patterns have provided the devices perfect opportunities to

continuously observe their activities from a close range. These two emerging trends

together present us an unprecedented opportunity to obtain a high-resolution view

of the users context, ranging from simple information like locations and activities,

to high-level inferences about the user’s intention, behavior, and social interactions.

Understanding such context can help solving existing system-side challenges and

eventually enable a new world of real-life applications.

1.2 Research Contribution

We propose to analyze users’ intention, activities and interests via multi-modal sens-

ing. Our intuition is that users’ actions leave a wide spectrum of footprints on

different sensing dimensions. Users’ physical movements can be captured by motion

sensors. Their mood may be reflected in their facial expressions or be modulated in

their voices – detectable respectively from the embedded camera and microphone.

Similarly, information sources such as users’ web browsing history, email content and

even calendar schedules can all provide useful hints regarding users’ broad context.

3



In this thesis, we introduce three major projects related to enabling and exploit-

ing context-awareness. Particularly, we attempt to show that different levels of users’

behaviors can all be captured by the rich set of sensors embedded in mobile devices.

These behaviors range from low-level activities such as gesture interactions to higher

level information such as users’ interests and attentions.

The first project targets to understand lower level user activities – gesture inter-

actions with passive surfaces. The goal is to enable touch-sensitiveness on passive

surfaces via sensing users’ gesture interactions. We explore how the vibrations gen-

erated from gesture interaction can be analyzed to understand which region of the

surface the user has been interacting with. When the interaction can be localized,

we can use this information to effectively turn the surfaces into touch-sensitive input

devices.

The second project is an example of understanding higher level user interest.

This project attempts to enable automatic online content rating by sensing users’

reactions. We explore how information from multiple sensing dimensions can be used

to infer users’ reactions when they watch movies from mobile devices. Moreover, the

information can be analyzed collaboratively to estimate users’ opinions towards the

content and eventually provides both personalized ratings and semantic descriptions.

The ratings and labels can be used as quality indicators for users to later make in-

formed choices.

The last project investigates how group behaviors can be collaboratively exam-

ined to understand users’ attentions and interests in social gatherings. The intuition

is that whenever interesting events happening within a social gathering, people tend

4



to switch their attention to focus on this new event. For example, people may all

start looking at a similar person or object. Such behaviors can be captured by col-

laboratively analyze sensing information from multiple devices. The next section

elaborates on each individual project.

1.3 Overview of Individual Research Projects

Understand Gesture interactions: Giving Passive Surfaces the Sense of Touch

This project is an example that shows how smartphone technology can help innovate

flexible and promising UI designs. The vision is to turn passive surfaces into interac-

tive interfaces by attaching a smartphone to them. Any interaction with the surfaces

can generate unique vibration signal patterns that can be captured by the motion

sensors inside the smartphones. The phone can then analyze such signals and use

the final results for multiple purposes (e.g., virtual keyboard, gaming boards).

Understand User’s Interest: Automatic Content Rating via Reaction Sensing

This project designs a system for automatically rating content - mainly movies and

videos - at multiple granularities. Our key observation is that the rich set of sensors

available on today’s smartphones and tablets could be used to capture a wide spec-

trum of user reactions while users are watching movies on these devices. Examples

range from acoustic signatures of laughter to detect which scenes were funny, to the

stillness of the tablet indicating intense drama. Moreover, unlike in most conven-

tional systems, these ratings need not result in just one numeric score, but could be

expanded to capture the user’s experience. In our experiments, encouraging results

show consistent correlation between the user’s actual ratings and those generated by

the system. With more rigorous testing and optimization, our system could be a
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candidate for real-world adoption.

Understand User’s Interests in Groups: Mobile Phone based Video Highlights via
Collaborative Sensing

Event coverage is a well established notion in conventional sensor networks, where

any event, such as a gas leak or a moving vehicle, can be detected, localized, and

tracked over time. In this work, we use smartphones as the sensing platform and

extend this notion to coverage of life events happening at social gatherings. We

envision a futuristic application where mobile phones collaboratively form groups

based on social context (e.g., people engaging in the same conversation), sense their

ambience and recognize socially “interesting” events. Whenever an event is detected,

the phone with a good view of the event triggers a video recording, and later, the

video-clips from different phones are “stitched” into a video highlights of the occasion.

With new devices like Google glasses looming on the horizon, this line of research

becomes even more promising than ever before.
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2

Giving Passive Surfaces the Sense of Touch

2.1 Introduction

Motion sensors were introduced in mobile devices primarily to enable new experiences

in gaming. While the gaming industry has certainly benefited, systems and applica-

tion developers have exploited these sensors in unanticipated ways. The Siri app, for

example, gets activated when users lift their iPhones to their ears – accelerometers

on the phone help identify the specific “lift” gesture. Localization systems differenti-

ate places, such as Starbucks from WalMart, based on the user’s movement patterns

within these stores Azizyan et al. (2009a). A PhonePen tool Agrawal et al. (2011)

demonstrates the ability to write English alphabets via hand gestures – users can

switch TV channels by writing “CNN” in the air. These and many other creative

apps Goel et al. (2012); Partridge et al. (2002) have enriched the mobile computing

market, justifying the inclusion of additional sensors, such as gyroscopes. We aim

to harness these inertial sensors in today’s smartphones, and together with machine

learning techniques, enable new capabilities for future app developers. Our key idea

is that we can enable touch-sensitivity in an ordinary laptop screen simply by attach-

7



ing a smartphone. Moreover, we show that the same approach may potentially be

extended to other surfaces too, enabling a new spectrum of touch-sensitive applica-

tions. We also compare TouchSense with recently proposed acoustic-based methods

and show how motion and acoustic sensing may potentially be combined to create a

even more powerful and accurate system.We present our intuition next, followed by

applications, challenges, and opportunities.

Consider Figure 2.1(a), where an off-the-shelf Android smartphone (with a 3-axis

accelerometer and a gyroscope) has been attached to the back of a Lenovo laptop

screen. When a user taps with her finger on the laptop’s display (Figure 2.1(b)), it

creates a response on both the inertial sensors. On the accelerometer, this response

will be in the form of linear acceleration, while for the gyroscope, one can expect

some degree of angular rotation (along the vertical axis on the plane of the display).

In such a set up, we submit the following hypothesis: the combined response on the

accelerometer and the gyroscope will vary based on the location of the finger tap,

but will remain almost the same for multiple taps on the same location. If such a

hypothesis can be proven, then it should be possible to develop a touch-sensitive

laptop display at zero cost. A smartphone application would only need to obtain the

location of the finger tap and feed it back to the laptop (perhaps through WiFi or

Bluetooth). The laptop could perform the corresponding task, agnostic of whether

the tap came from the mouse or a finger.

One could readily envision generalizing the central idea to other surfaces. As an

example, a smartphone could be attached to an easel that has a poster mounted

on it; when a visitor taps on a specific part of the poster, the smartphone can

compute the location of the tap and play a relevant video. Another example could

be in collaborative gaming where multiple users place a sensor-enabled tablet in the

center of a table, and tap their ends of the table to interact with the game. Of course,

these are visions of the future – we have not attempted to support such applications
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Figure 2.1: System set up: (a) a smartphone taped to the back of the laptop
display; (b) a user taps on the laptop screen.

running on different types of surfaces. Instead, we have focused on the specific case

of laptop screens, as a first step towards understanding the problem landscape and

building a stable, functional prototype. We call our system TouchSense.

Building even this constrained prototype entails a number of challenges: (1) The

core problem of modeling motion behaviors (based on a large number of features),

and learning a fingerprint from it, is a non-trivial problem. The raw inertial sensor

measurements are correlated, multi-dimensional and noisy. Since the gestures are

physical actions, no two gestures are identical, and there is natural variation even

within repetitions. (2) Models that scale across users without extensive per-user

training compound the problem, as do different laptops. (3) Finally, users do not

tap with consistency – a fatigued user after a day’s work may tap softer than when

she comes into the office in the morning. TouchSense copes with these challenges at

the expense of lower resolution. Test results derived from 16 different users and two

different laptop models (Lenovo and HP) demonstrate 84% tap detection accuracy

for a grid of size 3 ˆ 4. When errors occur, they are somewhat encouraging, i.e.,

the computed grid location is frequently adjacent to the one that the user actually

tapped. Finally, even with a grid of size 4 ˆ 6, the accuracy degrades gracefully to

65%. We also found that with two phones attached to the laptop, the opportunities

magnify, leading to a 7% gain in accuracy.
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Our contributions may be summarized as follows:

• We identify an opportunity to make passive surfaces touch-sensitive via the

use of off-the-shelf smartphones. We exploit the idea that touches at different

locations can cause distinct vibrations and rotations that can be sensed by the

phone’s motion sensors.

• We adopt a robust ensemble-based supervised machine learning approach to

make TouchSense usable across different users and laptop models. Our ex-

perimental results demonstrate promise, allowing for on-screen gestures like

tapping on large-sized icons, double-tapping to open applications, and swiping

to scroll webpages.

• We explore the potential of extending our approach to different surfaces and

combining it with acoustic methods. The early results show promising perfor-

mance on rigid surfaces such as conference tables.

The rest of the paper expands on each of these contributions, beginning with

overview and design details, followed by prototype implementation, and performance

evaluation. We conclude the paper with a summary and a brief discussion on future

work.

2.2 TouchSense Design

TouchSense extracts a fingerprint from the inertial motion sensors of off-the-shelf

smartphones, attached to the back of a laptop screen. This is of course a proof of

concept, but if the fingerprinting techniques indeed scale for real world deployments,

the actual packaging can be far more sophisticated. In fact, laptop manufacturers

could embed motion sensors directly into laptop displays as a cost-effective alterna-

tive to capacitive touch screens.
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Figure 2.2 shows the consequence of repeated taps on the smartphone’s 3-axis

accelerometer and gyroscope. Observe that the linear acceleration is along the Z axis,

perpendicular to the plane of the screen. The gyroscope fluctuations are dominantly

along the X-axis, indicating a rotation around the vertical direction on the plane of

the screen (also called roll). A slight rotation also emerges on the Y-axis, implying

that the top of the phone rotates away from the user (also called pitch). Clearly,

these rotations are an outcome of the torque and force, respectively, imposed by the

taps. Evident from the figure, these per-tap signal patterns are clear and consistent.
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Figure 2.2: Raw smartphone sensor data for three taps from a phone attached to
the laptop. True tap events (Tap/No Tap) shown along with associated accelerometer
and gyroscope signals.

The general workflow of the TouchSense is depicted in Figure 2.3. First, an inter-

action detection module running on the phone detects that some form of interaction

with the laptop screen has occurred. This module then polls the accelerometer and

gyroscope readings at 200Hz. When an interaction is indeed confirmed, the sensor

streams are segmented and fed to the following stages. We discuss each of these

stages next.
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Figure 2.3: A schematic showing the TouchSense system work flow. The text
describes the system and each component in more detail.

2.2.1 Detecting Interactions

Besides tapping on the screen, the user is likely to type on the keyboard, tap on

the table, or interact with objects around the laptop. This module is tasked to

avoid false alarms from such interactions, and only select signals that correspond to

screen taps or swipes. Towards this filtering task, TouchSense employs thresholds on

signal amplitude and looks into the active signal dimensions. Non-screen interactions

are either too soft or too strong, and not exactly on the accelerometer/gyroscope

dimensions induced by screen interactions. Thus, when a signal satisfies the filtering

constraints, say at time ti, TouchSense extracts the subsequent time-window of the

signal till the point the signal has faded. The fading time is bounded by 1s, hence,

our experiments ensure that distinct screen interactions are separated by at least that

duration. Of course, in the case of double-taps, they happen within the same signal
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window. This signal window, also called a segment, is passed on to the subsequent

stages for feature extraction and gesture classification.

2.2.2 Feature Extraction

The goal of the feature extraction module is to extract useful and informative features

from segmented stream of accelerometer and gyroscope readings. The intuition is

that taps on different regions of the screen cause the screen to vibrate/oscillate

distinctly. For example, tapping on the upper left corner of the screen causes it to

vibrate more significantly than the bottom right corner (a signal magnitude effect).

Also, because the taps propagate vibrations across the screen, certain parts of the

screen may vibrate earlier than other parts (a signal temporal effect). Other physical

effects of gestures such as taps and swipes on the screen include subtle rotations

and oscillations of the screen, and the corresponding induced correlations between

multiple sensing dimensions (e.g., taps causing correlated vibrations and rotations).

Thus, it should be possible to create distinct ’fingerprints’ of taps at any particular

region. While the fingerprint itself is the model we will learn (which we describe in

detail in the next section), the goal of the features we extract is to provide a rich

enough space of observations (in other words, to capture all the information related

to the event) so that we can then use these features to create accurate models. Since

the machine learning models we employ are relatively robust to large numbers of

noisy features (we describe these models in the next section), our goal with feature

extraction is to capture as much relevant information as possible.

The raw data we collect for each gesture event is a set of sensor time series

(see Figure 4.14). Classical timeseries analysis suggests that the salient features of

any particular timeseries can be described by summarizing the time and frequency

domains of that time series. Because a gesture may produce distinctive correlated

effects on the three axes of a sensor, we also want to extract features from the
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Figure 2.4: Schematic showing the form of the accelerometer and gyroscope data we
observe. The boxes around the rows and columns are groupings of the measurements
we use to extract features, see the text for details.

joint multidimensional (x,y,z) time series for each sensor. Hence, at a high-level, we

extract two types of features: column features and matrix features (see Figure 4.14).

Column features are extracted from the individual components of each sensor axis,

while matrix features capture the correlation between the three-axis accelerometer

and gyroscope vectors. In total, we use 250 features for each tap. The features we

use span both the time domain and frequency domains. The underlying physical

event of a tap motivates our choice of features, which are related to quantities like

the amount of energy in the tap signal, the rate of change of the sensor measurements

etc.

Time Domain Features:

Time domain features consist of three categories:

(i) Single sensor dimension features. These are event features that we extract per

axis of the accelerometer and gyroscope (classical single timeseries features). So, for

example, features we extract from the z-component of the accelerometer etc. We
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pick features that capture the broad temporal sequence of the event as a whole, as

well as various summary statistics from the event. This is useful because it allows

the classifiers to create models on important/sensitive sensor dimensions directly. To

this end, we extract (1) a fixed length cubic spline interpolation of the vector itself,

(2) extreme values (min/max) of the vector, (3) moments of the vector including

the mean, standard deviation and higher order moments including the skewness (to

measure the asymmetry of the vector components) and the kurtosis (to measure the

‘peaked’-ness of the vector components), and (3) a fixed length spline interpolation

of the first order numerical derivative of the signal.

(ii) Three-axis accelerometer and gyroscope features These are event features that

we extract from the joint multidimensional (x,y,z) measurements of the gyroscope

and the accelerometer (separately). These features are also important because we

measure accelerations and rotations as multidimensional (three-axis) vectors, and

thus treating each dimension/axis independently, we lose information in the corre-

lations between the dimensions. Treating the event data from the three axes of the

gyroscope (for example) as a matrix, we extract (1) various matrix norms – 1-norm

(maximum absolute column sum of the matrix), infinity norm (maximum absolute

row sum of the matrix), Frobenius norm (square root of the squared sum of the

entries in the matrix). These matrix norms provide various summary statistics of

the data in the matrix. (2) squared l2 norm (can be viewed as the norm of the

combined vector) of the rows in the matrix (3) features based on the magnitude of

the acceleration and angular rotation vectors (an estimate of taps’ energy).

(iii) Features based on interactions between sensor dimensions. These event fea-

tures capture information present in the correlation between different sensor dimen-

sions, as well as the different sensors themselves. For example, examining both the

x and y axis event measurements from the gyroscope can help decide whether the

screen made a subtle clockwise or counter-clockwise rotation during the event. Inter-
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action features we extract include (1) the angle between accelerometer and gyroscope

vectors and the rate these angles change (a concise representation of the correlation

between acceleration and rotation) (2) The Pearson correlation coefficients between

all pairs of sensor dimensions (which provides an estimate of the amount of linear

correlation between any pair of sensor dimensions) . In summary, these features ana-

lyze sensor dimensions in different combinations and capture the correlations between

them.

Frequency Domain Features:

In order to capture signal in the events more easily identified in the frequency domain,

we also extract various frequency domain features. These features include the (1)

Fast Fourier Transform (FFT) for all six sensor dimensions (3-axis accelerometer and

gyroscope) , and (2) power spectrum computed from the FFT vectors.

Cross Device Features:

Cross device features are designed for scenarios involving more than one measurement

device, for example, in the case where there are multiple phones mounted on the

laptop screen or laptop manufacturers mount several motion sensors on the back of

the screen. This features are useful, for example, in helping determine where someone

tapped by analyzing the relative signal strengths detected by the two devices. The

device spatially closer to where the tap occurred would then presumably observe a

larger magnitude signal than the device further away. An analogous opportunity

exists with respect to analyzing the temporal difference for an event between the

observation sequences at the two devices since the device closer to the tap would ’feel’

the event slightly faster than the device that is spatially further away. For these cross

device interaction features, we analyze column vectors on the same sensor dimension

from the two devices. The features include (1) the element-wise ratio between the
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values in these vectors (2) the norm of the difference between these vectors, and (3)

the angles between these vectors.

2.2.3 Gesture Identification

After feature extraction, the next step is to learn models that will accurately predict

events, in our case, distinguish between gestures, locate taps and identify swipe

directions. We model all of these problems as supervised classification problems.

Our overall strategy for classification is to use an ensemble classifier, which combines

multiple classifiers together in a non-linear fashion. Using an ensemble is well known

to be more robust and potentially more accurate than using any single classifier

Breiman (2001); Caruana et al. (2004); Jahrer et al. (2010). In our work, we use three

powerful individual classifiers to generate a large set of candidate/base classifiers

which we ensemble. These three classifiers are Support Vector Machines (SVM),

Bagged Decision Trees and Random Forests.

Support Vector Machine (SVM)

We use both linear and rbf kernel SVM (libLinear and libSVM, Schoelkopf et al.

(1998)). We vary the tuning parameters (regularization coefficient, and kernel band-

width parameter for the rbf) in order to obtain a set of SVM classifiers for both the

linear and non-linear cases. We find the kernel classifiers are quite a bit more accu-

rate for our application, and believe this is because our problem likely has strongly

non-linear decision boundaries.

Bagged Decision Trees

A set of bagged decision trees is an ensemble classifier by itself that is composed of a

collection of decision trees. Each component decision tree is trained on a bootstrap

sample of the original data, instead of training it on all the training data. The diver-

sity in the different bootstrap samples allows the ensemble to mitigate the impact of
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poor samples and improves the predictive performance. The bagged tree ensemble

classifier itself is a simple majority vote from the component trees. In our experi-

ments, several such bagged decision trees are used by varying the number of trees in

the model.

Random Forests

Random forests are another ensemble decision tree based classifier Breiman (2001).

Unlike bagged decision trees, the decision trees in random forest not only are learned

on a subset of samples but they also on a select subset of features from the whole set

of features. Thus random forests ensemble together an even more diverse collection

of decision trees and also employ a majority vote for the final classifier.

Ensemble - Training, Validation and Test

For any event we are trying to classify, the final ensemble classifier takes the out-

put from all the component classifiers (the various SVM, Bagged Decision Tree and

Random Forest models we learned) as inputs, and aims to produce an improved and

more robust estimate of the label (tap position, gesture etc.) as its output. To learn

this final ensemble classifier, we divide the data into three datasets: a training set,

a validation set, and a test set. The training set is used to train each individual

classifier. Then, the trained model is used to predict the labels for the examples in

the validation set. These form the inputs/features for the final ensemble classifier,

which is trained using the validation set (true) labels. We use random forests for our

ensemble learning method mainly due to their excellent predictive performance and

(relative) absence of tuning parameters. After all the classifiers are learned (both

individual and final ensemble random forest), we can make predictions for test data.

We do this for any test example by (1) obtaining the individual classifier predictions,

and then, (2) combining the individual predictions using the final ensemble random
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Table 2.1: Experiment/Users/Equipment

Experiment Users Laptop
Exp.1 Gesture 1-8 (120 gesturesˆ3) Lenovo
Exp.2 Swipe 1-8 (30 swipesˆ4) Lenovo
Exp.3 Tap (12 grids) 1-8 (60 tapsˆ12) Lenovo
Exp.3 Tap (12 grids) 9-16 (30 tapsˆ12) HP
Exp.3 Tap (24 grids) 1-8 (30 tapsˆ24) Lenovo
Exp.4 Two Device 9-16 (30 tapsˆ12) HP

forest to obtain our final predictions.

2.3 Evaluation

We evaluated the accuracy of TouchSense in a series of experiments, testing the

limits of our pseudo touchscreen with different input techniques. Experiment 1 eval-

uated TouchSense’s ability to recognize taps, double taps and swipes. Experiment

2 evaluated TouchSense’s ability to recognize swipe directions (left, right, up, down.

Experiment 3 evaluated TouchSense’s ability to detect the location of taps. Exper-

iment 4 evaluated whether using multiple phones improves TouchSense’s accuracy.

Experiment 5 evaluated TouchSense on a rigid surface. Finally, Experiment 6 com-

pared TouchSense with the acoustic approach.

In summary, we show that TouchSense can distinguish between tap, double tap

and swipe gestures with near perfect accuracy (M ą 99%), recognize swipe directions

precisely (M “ 90%) and detect tap locations well (M “ 84% on 3ˆ4 grid and M “

65% on 4ˆ6 grid), achieving good accuracy (M “ 63%) even when no training data is

available for a user. In addition, TouchSense’s accuracy improves with more sensors

(M “ 88%), is consistent across users and isn’t affected by the laptop type. Finally,

TouchSense achieves 96% accuracy on a conference table and could be combined with

acoustic sensing to achieve 97% accuracy.
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2.3.1 Data Collection

TouchSense performs its inferences using gyroscope and accelerometer readings col-

lected from a mobile phone attached to the back of the laptop display. Unless stated

otherwise, all experiments were conducted using sensor data from a single phone, at-

tached to the top left corner of the laptop. We tried a variety of different locations in

pilot studies and found that when the phone was placed there, TouchSense achieved

the best results.

Accelerometer and gyroscope sensor data was sampled at 200Hz from a Samsung

Galaxy Nexus phone. Our machine learning algorithms were run off-line, on a server,

using MATLAB routines and machine learning packages. Evaluation was performed

using five-fold cross validation. In total, we collected labeled data for more than

19, 560 gestures.

Overall, 16 users participated in our experiments. Two laptops were used. Table

2.1 summarizes the participants and the laptops used in each experiment. More

details are presented in the later experiment sections.

2.3.2 Detecting Interactions

As a first step, TouchSense needs to identify that a gesture has occurred and dif-

ferentiate actual gestures from external events (e.g., tapping on table). To study

the effectiveness of TouchSense at the task, we conducted a brief experiment where

3 users were asked to perform TouchSense-supported gestures (tap, double tap, and

swipes) as well as non-supported gestures (typing on keyboard and tapping on the

desk). Adding these spurious events allowed us to evaluate both how often Touch-

Sense misses supported events and produces false positives. We spaced out events

and ”non-events” between 2 to 4 seconds to ensure there was no overlap between

events. In total, 75 events were collected in a quiet office setting, of which 45 were

TouchSense-supported gestures and 30 were not. TouchSense did not miss any events
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and reported no false positives.

2.3.3 Experiment 1: Distinguishing Gestures

The purpose of this experiment was to evaluate whether we could distinguish between

three basic gestures that form the basis for many touch-based interfaces: tap, double

tap, swipe.

Eight right-handed volunteers (2 female) ranging in age from 21 to 27 (median

25) were recruited from a local university. All participants had experience with

touchscreens. Participants were asked to sit in front of a laptop and perform specific

gestures when prompted. Since this experiment was conducted on a 15.4” Lenovo

T500 laptop, we refer to this group of participants as the Lenovo group.

We wrote a simple application to visually prompt the user to provide input (tap,

double tap, or swipe). For taps and double taps, a red square was shown on the

middle of the screen. Every 3 seconds, the square would turn green, at which point

participants were instructed to tap or double tap it. For swipes, 4 squares were

shown on the screen (Figure 2.5). Every 3 seconds, two of the squares would turn

green and users were asked to swipe from one green square to the other one.

All data was collected for a particular input (tap, double tap, or swipe) before

moving on to the next one. 120 samples of each input were collected from each user,

totaling 120 ˆ 3 = 360 input events. The 120 swipe events consisted of 30 swipes in

each of the four cardinal directions: left, right, up and down. For this portion of the

evaluation, the four directional swipes were aggregated into one group of 120 swipe

events.

Figure 2.6 plots representative accelerometer and gyroscope readings collected

from this process for different inputs. Clearly, different gestures produce very distinct

responses.

Figure 2.7 shows that TouchSense can distinguish between gestures with near-
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Figure 2.5: Study setup for the swipe direction inference.

perfect accuracy. Since TouchSense could differentiate between different gestures

well, we decided to study swipes and taps in more detail.

0 1 2 3 4 5 6 7 8 9
Time (Seconds)

S
ig

na
l S

tr
en

gt
h

Tap Double Tap Swipe

Acc−z

Gyro−x

Gyro−y

Figure 2.6: Sample sensor readings generated by taps, double taps and swipes.
Shown here are the most visibly responsive sensor dimensions.
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Figure 2.7: TouchSense’s accuracy in differentiating between taps, double taps and
swipes. Error bars show 95% confidence interval.

2.3.4 Experiment 2: Detecting Swipe Directions

The purpose of this experiment was to evaluate how well TouchSense distinguishes

between swipe directions: left, right, up and down. We selected these directions since

they are commonly used on touchscreen devices such as tablets and smartphones,

for example, for scrolling. For this experiment, we used the swipes collected in

Experiment 1 (120 swipes per user).

Figure 2.8 shows TouchSense’s accuracy in distinguishing swipe directions. The

accuracies range from 82% to 91%, with a mean accuracy of 86%. We do not see a

significant difference in accuracy between the different directions.

2.3.5 Experiment 3: Recognizing the Location of Taps

In this five-part experiment, we studied the performance of TouchSense in identify-

ing different tap locations on our pseudo-touchscreen. We looked at: (a) absolute

accuracy, (b) differences between laptops, (c) coarse vs. fine grained localization of

taps, (d) training the classifier with other users’ data and (e) the relative importance

of the gyroscope and accelerometer sensors.

Recall that our approach is based on supervised learning, which is highly depen-
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Figure 2.8: Mean accuracy in distinguishing between different swipe directions.
Error bars report 95% confidence interval.

dent on the number of samples available for training the classifier. Generally speak-

ing, the larger the number of taps we collect from each user, the higher TouchSense’s

accuracy, up to a saturation point. Since our machine learning models are flexible,

larger amounts of training data allow these models to adapt to subtle characteristics

of the signal.

How many samples are needed?

As a preliminary part of this experiment, we wanted to get a sense of the limitations

of our approach by training our classifier with a large amount of training data. In

particular, we were curious about where accuracy would taper off with respect to the

number of training samples. We used the same data collection technique we used

in Experiments 1 and 2. However, this time participants were asked only to tap on

the screen when prompted by the application. For this experiment, our application

prompted the participant to tap on one of the 12 rectangles (a 3ˆ4 grid) drawn on

the laptop’s screen. Each rectangle measured 5.5cm high, 8cm wide, . This layout

is reflected in Figure 2.10. We chose this arrangement as it resembles the startup

screen of Windows 8.
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We collected data from 3 participants (75min. per person). The current tile

was marked by a red square. Every three seconds, the square would turn green,

prompting the user to tap it. All 90 taps were collected from each square, before the

application advanced to the next square. Squares advanced from left to right, top to

bottom.

Figure 2.9 shows that accuracy increases with the number of training samples up

to about 60 samples, where it levels off. Based on this result, we collected 60 taps

per tile from subsequent users.
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Figure 2.9: Tap localization accuracy as a function of number of training samples
for three users. Accuracy tapers off after 60 training samples.

Using the same experimental setup, we collected data from another 5 right-handed

participants (2 female), aged 21 to 27 (median 25), giving us a total of 8 partic-

ipants. We used 60 taps per person to train TouchSense. Data collection lasted

approximately 45min per user.

Figure 2.10 shows the mean accuracy for each tile with an overall accuracy of

84%. The accuracy tends to be lower in the central tiles, which is to be expected

since the higher number of neighbors increases potential misclassification. There

also appears to be a slight lowering of accuracy for tiles located on the right side of

the screen. This is reasonable, since our phone is mounted on the left corner of the
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Table 2.2: Confusion matrix for tap localization on the 3 ˆ 4 grid. The first column
shows the average tile inference accuracy. The 2nd, 3rd, 4th, and 5th columns show
the confusion percentage with, respectively, the 1st, 2nd, 3rd, and 4th most confused
tiles. Tiles are indexed by the row and column number of their position on the
screen.

Avg acc (%) 1st conf 2nd conf 3rd conf 4th conf
1,1: 89.35 2,1: 2.49 3,2: 2.13 3,1: 1.27 1,2: 1.25
1,2: 82.00 2,2: 9.98 3,2: 2.62 2,3: 1.29 1,3: 1.28
1,3: 78.58 1,4: 7.05 2,4: 4.98 2,3: 2.39 2,2: 2.16
1,4: 78.00 2,4: 10.90 1,3: 5.44 3,4: 1.56 3,2: 1.31
2,1: 84.00 3,1: 5.46 2,3: 2.82 1,1: 2.22 3,2: 2.19
2,2: 74.00 1,2: 7.88 3,2: 6.98 2,3: 6.62 2,4: 1.52
2,3: 72.00 2,2: 8.08 2,4: 6.75 1,3: 5.46 3,2: 2.81
2,4: 68.51 1,4: 13.22 2,3: 6.49 3,4: 2.86 3,2: 2.62
3,1: 82.00 3,2: 5.97 2,1: 4.10 3,3: 3.69 2,2: 1.72
3,2: 86.50 3,3: 9.72 3,1: 3.51 3,4: 0.43 -
3,3: 85.00 3,2: 7.44 3,4: 3.89 3,1: 1.31 2,3: 0.89
3,4: 84.51 3,3: 7.25 3,1: 3.46 2,3: 1.84 1,3: 0.69

screen1.

Figure 2.10: Tap localization accuracy for each tile on the laptop screen for the
case of 12-tile grid (3ˆ4).

Table 2.2 displays the mean classification accuracy, along with the percentage of

confusions with the top-most confused tiles. These results show that our misclassifi-

cations are spatially correlated.In other words, when a mistake is made in locating a

tile, it is likely made due to confusion with a nearby tile. Knowledge of this fact may

help an application to derive an effective UI to mask misclassifications. For example,

1 Note that our preliminary experiments showed that attaching the phone to the center of the
screen resulted in lower overall accuracy than our chosen position. With the phone mounted in the
center, accuracy in the corner and edge tiles dropped.
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if an application’s UI does not require the resolution offered by a 3ˆ4 grid a UI

designer can place touch-enabled titles in regions with higher inference accuracy.

Training with fewer samples

Although training with 60 samples obtains accuracy that is close to the limits of our

algorithm, we were curious about how accuracy would degrade with fewer training

samples since it would reduce the required training time for each user.

For this set of users, we compared the accuracy of a classifier trained on the first

30 samples to one trained on all 60. Figure 2.11 shows the difference in accuracy

between training with 60 taps and 30 taps per tile for the same set of users. Training

the classifier with 60 taps results in a statistically significantly higher accuracy (t(7)

= 3.97, p ă .01). However, training with 30 taps still achieves an average accuracy

of 80%. Since using 30-tap training effectively halves the training time to roughly

25min, we believe it could be a compelling choice for certain kinds of applications.

0 20 40 60 80 100
Accuracy (%)

60 Taps

30 Taps

Figure 2.11: Mean tap location inference accuracy when training with different
number of samples. Error bars report 95% confidence interval.

Does the laptop matter?

We next examined whether the particular model of the laptop would affect Touch-

Sense’s performance. We used the same procedure used in the earlier part of this
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experiment to collect data from an additional 8 right-handed volunteers, aged 27 to

34 (median 30), but on a different laptop. 30 taps were collected from each partic-

ipant for each of the 12 tiles, this time on a 15.6” HP Elite8560P. We refer to this

group as the HP group.

Figure 2.12 shows the accuracy the system achieves for each user in both HP

and Lenovo groups. The difference in performance between the two groups was not

statistically significant. At the very least, Figure 2.13 suggests that TouchSense’s

performance is not tied to a single piece of equipment.

1 2 3 4 5 6 7 8
50

60

70

80

90

100

1 2 3 4 5 6 7 8
50

60

70

80

90

100

User ID

A
cc

ur
ac

y 
(%

)

HP Group Lenovo Group

Figure 2.12: Accuracy for all 16 users on the 12-tile tap localization experiment.
Users are grouped based on which laptop they used (Left: HP group, Right: Lenovo
group).

Coarse vs. Fine-grained Localization

Having established TouchSense’s performance on the 12-tile grid, we attempted to

examine its limitations in terms of localization granularity. In this experiment, we

examined whether our approach would work on a finer-grained 4ˆ6 arrangement of

tiles. We used the same experimental setup as in the previous section with partic-

ipants from the Lenovo group. The only difference was that we used a 4ˆ6 grid

instead of a 3ˆ4 grid. Each tile was 4.5cm high, 5.4cm wide. To keep the data
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Figure 2.13: Mean tap location inference accuracy using data collected from the
two laptops: HP and Lenovo. Error bars show 95% confidence interval.

collection time reasonable, we collected 30 taps per position for each of the 24 tiles.

Data collection lasted approximately 45min per user. Figure 2.14 compares over-

all accuracy between the coarse-grained and fine-grained conditions. As expected,

overall accuracy for the fine-grained condition is significantly lower than that of the

coarse-grained condition t(7) = 9.2537, p ă .001.

0 20 40 60 80 100
Accuracy (%)

Coarse Grid

Fine Grid

Figure 2.14: Mean tap localization accuracy for two different granularities: 3ˆ4
(coarse grid) vs. 4ˆ6 (fine grid). Error bars show 95% confidence interval.

Figure 2.15 shows the mean accuracy at a per tile level, with an The average

accuracy per tile is 65%. Similar to with the 12-tile grid, accuracy trends lower for
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center tiles and tiles farther from the top left corner.

Figure 2.15: Figure showing the tap location detection accuracy per tile mapped
to the 24-tile grid (4ˆ6).

Training With Other Users’ Data

The approach we have described so far relies on collecting training data from a user in

order to infer tap locations for that user. Clearly, limiting or eliminating this training

data collection requirement is desirable. To explore this limitation, we conducted a

set of experiments where we evaluated how TouchSense could infer a particular user’s

tap locations without collecting training data from that user. Instead, we train the

system on data collected from other users. We then examine how TouchSense’s

performance changes as we add data for that user to the training set.

We randomly selected a user to ”leave out,” training the classifier with data from

the other 7 users. Then, we measured TouchSense’s accuracy as we added that user’s

data into the training set. This was measured with 0, 5, 10, and 15 tap samples for

the user. We did this test for all users, leaving one user out at a time. Figure 2.16

shows TouchSense’s accuracy when aggregated across all users. The results show

that with no training from a particular user, TouchSense achieves 62% accuracy. As

training samples are added, accuracy gradually increases.
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Figure 2.16: Plot shows the mean tap location inference accuracy when training
with other users’ data. Results are aggregated across all users. Accuracy improves
as a user’s data is added to the training set.

Relative Importance of Gyroscope and Accelerometer

Our results so far are based on using sensor data collected from both the accelerome-

ter as well as the gyroscope. To test how each sensor contributed to overall accuracy,

we re-ran the tap localization experiment on the Lenovo group’s 3ˆ4 grid data, using

only one sensor at a time. Figure 2.17 shows that a classifier using only the gyro-

scope (78% accuracy), performs almost as well as one that uses both the gyroscope

and the accelerometer (80% accuracy). Using the only the accelerometer yields 60%

accuracy.

2.3.6 Experiment 4: Increasing accuracy with more phones

The purpose of this experiment was to examine whether using two phones would

improve accuracy over the single phone case, and if so, by how much.

For this experiment, a similar setup was used as in Experiments 1–3, but with

an additional Samsung Galaxy Nexus phone attached to the bottom right corner of

the laptop display. 30 taps were collected for each tile of a 3ˆ4 grid from the 8 users

of the HP group. We chose the bottom right location to minimize the area on the

screen with no nearby phones. With the additional sensing, we expected accuracy

to improve.
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Figure 2.17: Localization accuracy when using only the accelerometer, only the
gyroscope, and the combination of the two.
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Figure 2.18: Mean tap location inference accuracy for one and two device scenarios.
Error bars show 95% confidence interval.

Figure 2.18 shows the accuracy of the two different approaches when aggregated

over all users. Using two devices led to a significant increase in accuracy (t(7) =

-2.1514, p ă .05). On average, using two devices increases the accuracy by 7%.

2.3.7 Experiment 5: Using TouchSense on a rigid surface

The purpose of this experiment is to examine the applicability of using TouchSense on

a rigid surface, in our case, a conference table. The ability to differentiate between tap

positions on a table could be used for controlling devices or sharing content between
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participants. For this experiment, we chose the sharing scenario. We assume eight

participants are sitting across a wooden conference table (1.2m ˚ 2.4m). One user

places her phone on the table and shares a file with one of the other users by tapping

on a table along the direction toward the file sharing target. See our experimental

setup in Figure 2.19.

To test how well TouchSense differentiates between various positions we con-

ducted four sets of experiments. In each experiment, a person tapped 30 times per

location on one of the seven positions marked by the red crosses. The TouchSense

bar in Figure 2.20 shows that TouchSense works well, achieving 96% mean accuracy.

Although these initial results are very encouraging, we plan to conduct more tests

to quantify TouchSense’s accuracy on other kinds of rigid surfaces.

2.3.8 Experiment 6: Comparing with the acoustic approach

The purpose of this experiment is to compare TouchSense with detecting tap po-

sitions using an acoustic approach. For fair comparison, we used the embedded

microphone in the smartphone to capture the acoustic events. Our implementation

uses both time domain and frequency domain acoustic features. The time domain

features include the mean and variance of the acoustic signal within 0.1 second of

when the tap is detected. The frequency domain features include the FFT features

up to 3kHz, aggregated into 10 bins.

We repeated the experiment described in Experiment 5, this time capturing both

acoustic and motion data. Figure 2.20 shows that an acoustic method in a quiet set-

ting achieves 94% accuracy. Combining acoustic features with TouchSense features

improves the overall accuracy further to 97%.

Unfortunately, the acoustic approach does not work in a noisy setting, when,

for example, people talk while tapping. In this case, it is hard to separate tapping

signals from the background noise as we illustrate in Figure 2.21. The figure shows
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Figure 2.19: Experiment on a conference table.

90 92 94 96 98 100
Accuracy

Acoustic

TouchSense

Combined

Figure 2.20: Comparison with an acoustic-based method.

audio signals acquired in both quiet and noisy settings. The gray curve in the figure

is the acoustic signal and the red circles are the identified taps. Since it is much

harder to separate taps from the noise, the acoustic method performs very poorly.

We conclude that combining TouchSense with the acoustic method may be beneficial

if one uses the acoustic features obtained in a quiet setting.

2.4 Related Work

Past research has looked at ways to enable touch-input on arbitrary surfaces. These

approaches generally fall into three categories based on whether they require instru-
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Figure 2.21: Taps in both quiet (top) and noisy (bottom) settings. The noise
comes from users’ conversation.

mentation of the environment: Vision-based, Acoustic and Electrical, and Sensor-

based Techniques.

2.4.1 Vision-based Techniques

Projection-camera systems are a popular way of enabling input on surfaces, with-

out requiring instrumentation. The Microsoft Surface and Touchlight use multiple

cameras to detect contact with a table or wall Wilson (2004). Alternatively, Han’s

approach requires only a single camera by using the surface as an infrared waveguide

and detecting when a user’s finger frustrates the surface Han (2005). SixthSense uses

a wearable projector-camera setup Mistry and Maes (2009), detecting when a user’s
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hand interacts with a projected image. SideSight uses infrared LEDs and optical sen-

sors to enable interaction at the sides of a mobile device Butler et al. (2008). Vision

can also be used without infrared if configured to detect the user’s skin tone Kane

et al. (2009) or his shadows Cowan and Li (2011). The usage of depth cameras can

enable curved surfaces for touch-input Wilson (2010). Though cameras can enable a

variety of surfaces with touch-input detection, they involve expensive computation.

Additionally, vision-based solutions can be sensitive to changing environments and

require that they be mounted a distance away from the surface.

2.4.2 Acoustic and Electrical Techniques

Acoustic sensing overcomes some of the limitations of vision-based approaches by

augmenting the surface with an audio sensor. Paradiso Paradiso et al. (2002) and

Ishii Ishii et al. (1999) mounted multiple microphones on a surface and used time

of flight to detect touch events. Scratch Input Harrison and Hudson (2008) and

TapSense Harrison et al. (2011) use a classifier to distinguish between different types

of touch events on a given surface, either from different materials or different finger

interaction. Skinput detects touch input on the user’s arm by using an armband

of acoustic sensors Harrison et al. (2010). Touché adds touch-input to objects by

using custom circuitry in their swept frequency capacitive sensing technique Sato

et al. (2012). These approaches are effective but can require non-standard hardware.

We have also experimented with acoustic sensing and found that combining it with

motion sensing improves the accuracy of either technique alone. More importantly,

in contrast with previous acoustic- and electrical-based work that only distinguishes

between different types of interactions, TouchSense also attempts to locate the posi-

tions of interactions.
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2.4.3 Sensor-based Techniques

Most relevant to TouchSense is the TapPrints project Miluzzo et al. (2012). Using

the accelerometer and gyroscope, TapPrints detects where a user is tapping on a

mobile phone or tablet. Using machine learning techniques, TapPrints demonstrates

good detection accuracy. While TapPrints focuses on the security implications of us-

ing motion sensor data to snoop sensitive information such as passwords, TouchSense

focuses on enabling touch-input detection on laptop screens.

2.5 Conclusion and Future Work

Anecdotal evidence suggests that toddlers are getting so used to touch screens on

smartphones and tablets, that they are beginning to tap passive surfaces, such as

laptop screens, TVs, and even books, and expecting results out of them. The Touch-

Sense project was inspired by these observations. Our central goal is to inexpensively

enhance passive surfaces with a sense of touch, even if at a much coarser granularity

than real capacitive screens. As a first step, we develop a proof of concept using

off-the-shelf smartphones taped to laptop displays. We find that the position of the

tap on the laptop screen generates distinct motion fingerprints on the accelerometer

and gyroscope of the phone. Results show that different kinds of taps and swipes

can be recognized, while tap localization can be achieved at reasonable granularity,

enabling simple gaming, scrolling, and icon selection applications.

Additional work is certainly necessary before TouchSense is ready for deployment

– diversity induced by varying screen tilts, disparate phone hardware, and different

phone positions, needs to be accommodated. Finer resolution is also needed to

support a larger set of applications. Nonetheless, we believe that the techniques

from this research bode promise. We see the viability of a future in which children

books come instrumented with inertial sensors, facilitating new kinds of human-

37



surface interactions.
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3

Automatic Content Rating via Reaction Sensing

3.1 Introduction

Online content ratings serve as “quality indicators” to help a user make more in-

formed decisions. While these ratings have been effective, we believe that there is

room for improving the value and experience with ratings. Our observations are

two-fold: (1) Today’s ratings are most often a simple number, such as a “4 star”

for a Netflix movie, a 87% red-tomato by Flixster, or simply 23 Likes for videos

in YouTube. These numbers may be viewed as a highly-lossy compression of the

viewer’s experience, that often leaves the new user asking for more. (2) Eliciting a

carefully considered rating from users is difficult, partly due to the lack of incentives.

Providing a brief review can take up a good amount of user’s time. Once a user has

watched the video, she may not be willing to make this time investment. We envision

that content rating systems of the future will require minimal user participation and

yet provide rich, informative ratings. Figure 3.1 shows an example – a movie thumb-

nail could not only have a star rating, but also a tag-cloud of user reactions, and

even short clips indexed by these reactions (such as, all scenes that were hilarious).
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This paper makes an attempt to realize this vision through a system called Pulse.

The opportunity arises from the growing number of sensors that are entering the

mobile platform, especially smartphones and tablets. We hypothesize that when

users watch a movie on these devices, a good fraction of their reactions leave a

footprint on various sensing dimensions. For instance, if the user frequently turns

her head and talks – detectable through the front facing camera and microphone –

one could infer the user’s lack of attention to that movie. Other kinds of inferences

may arise from laughter detection via the microphone, the stillness of the device from

the accelerometer, variations in orientation from gyroscope, fast forwarding of the

movie, etc. Pulse learns the mapping between the sensed reactions and these ratings.

Later, the knowledge of this mapping is applied to users to automatically compute

their ratings, especially when they do not provide one. The sensed information is

also used to create a tag-cloud of reactions, expected to offer a “break-up” of the

different emotions evoked by the movie. If one wishes, she may also be able to watch

a set of short clips that pertain to any of these emotions. Pulse can provide them

since it logs user reactions for each segment, across many users. The result is like a

customized trailer Jacob and Steglich (2010), one per user reaction.

The core ideas in Pulse may generalize to a variety of applications: (1) The time-

line of a movie can be annotated with reaction labels (e.g., funny, intense, warm)

so that viewers could jump ahead to desired segments. (2) The advertising industry

may use Pulse to offer free or subsidized movies in exchange for more targeted ads. A

user who reacts to a particular scene could be presented with corresponding ads. (3)

It may be feasible to create an automatic highlights of a movie, perhaps consisting of

all action scenes. (4) Finally, Pulse may offer educational value to film institutes and

mass communication departments – students can use reaction logs as case studies

from real-world users.
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Figure 3.1: Envisioned movie ratings for the future – a conventional 5-star rating;
a tag-cloud of user reactions; movie clips indexed by these reactions.

Of course, translating Pulse to reality, and enabling these applications, entails a

number of challenges. The viewer’s head pose, lip movement, and eye blinks need to

be detected and monitored over time to infer reactions Cherubini et al. (2010). The

user’s voice needs to be separated from the sounds of the movie (which may be audible

if the user is not wearing headphones), and classified as either laughter or speech.

Patterns in accelerometers and gyroscopes need to be identified and translated to

user focus or distractions. Finally, the function that translates reactions to ratings

needs to be estimated through machine learning, and the learnt parameters used

to generate semantic labels as a summary about the movie Paolucci et al. (2008);

Teevan et al. (2009).

This paper incorporates these ideas into a Samsung tablet running the Android

OS, and distributes these tablets to real users for evaluation. Results indicate that
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Pulse’s final ratings are consistently close to the user’s ratings (mean gap of 0.46

on a 5 point scale), while the reaction tag-cloud reliably summarizes the dominant

reactions. The highlights feature also extracted the appropriate segments, while the

energy footprint remained small and tunable. A small-scale user study generated an

enthusiastic response to Pulse.

The main contributions may be summarized as follows.

• We identify an opportunity to automatically rate content at a few dif-

ferent granularities. Our approach requires minimal user participation and

harnesses multi-dimensional sensing available on modern tablets and smart-

phones.

• We design a practical system, Pulse, that senses user reactions and

translates them to an overall system rating. In addition, we process the

raw sensor information to produce rating information at variable granularities

– a tag-cloud and a reaction-based highlight.

• We develop Pulse on Android based Samsung Galaxy tablets and

evaluate it with 11 volunteers, each of whom watched 4 to 6 movies.

Results show that the average gap between human and system ratings is 0.46

(on a 5 point scale). The tag-cloud exhibits similarity to the user’s true reac-

tions, thereby capturing reasonably, the user’s overall experience.

The rest of the paper expands on each of these contributions, beginning with a

high level overview, and followed by design, implementation, and evaluation.
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3.2 System Overview

Pulse has been implemented on Android tablets and focuses specifically on movies

and videos. Figure 3.2 envisions the high level architecture. This section briefly de-

scribes the three main modules, namely (1) Reaction Sensing and Feature Extraction

(RSFE), (2) Collaborative Labeling and Rating (CLR), and (3) Energy Duty-Cycling

(EDC).
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Figure 3.2: Architectural overview of Pulse.

(1) Reaction Sensing/Feature Extraction (RSFE)

When a user watches a video via the Pulse media player, all relevant sensors are

activated, including the (front-facing) camera, microphone, accelerometer, gyroscope,

and available location sensors. The raw sensor readings are forwarded to the RSFE

module, which is tasked to distill out the features from them. These features inlude

visual features collected through the front-facing camera, acoustic features extracted

from embedded microphone, motion features (acceleration, rotation) captured by

motion sensors, and control operations (e.g., fast forward) detected by the media
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player. RSFE collects all these features and forwards them to the collaborative

labeling and rating (CLR) module.

Visual: The inputs from the front-facing camera are processed to first detect a

face, and then track its movement over time. Since the user’s head can temporarily

move out of the tablet camera, the face is tracked even when it is partly visible. The

visual sub-module extracts sophisticated features related to the face, eyes, and lips,

and then feeds them to the learning module.

Acoustics: The acoustic sub-module is tasked to identify when the user is laugh-

ing or talking, which offer useful information about the corresponding segments in the

movie. The challenge here is that users often use the tablet’s in-built speakers while

watching a movie, and this sound gets recorded back by the microphone. Pulse uses

speech enhancement techniques to separate the user’s voice from the movie sounds.

Motion: Motion sensors also provide insight into the user’s reactions. Of interest

are motions like stillness of the tablet (perhaps during an intense scene), or frequent

jitters and random fluctuations (perhaps when the user’s attention is less focused).

Control Operations: In addition to sensory inputs, Pulse also exploits how

the user alters the natural playback of the movie. For instance, moving back the

slider to a recent time-point may indicate stronger interest in a scene; forwarding the

slider multiple times may suggest impatience. RSFE collects all these features and

forwards them to the collaborative labeling and rating (CLR) module.

(2) Collaborative Labeling and Rating (CLR)

Content storage and streaming, especially with movies and videos, is moving towards

the cloud based model. The ability to assimilate content from many cloud users nat-
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urally offer insights into behavior patterns of a collective user base Sarwar et al.

(2001) – Netflix, Amazon, Hulu, are examples of service providers that leverage this

approach to provide recommendation and personalization. Pulse is also positioned to

benefit from access to the cloud. In particular, Pulse employs collaborative filtering

methods where ratings are used across users to help improve accuracy. With more

labeled data from users, Pulse will improve in its ability to learn and predict user

ratings.

Sensing user reactions and exporting to the cloud raises privacy concerns Li et al.

(2010), especially with face detection. However, we observe that none of the raw

sensor readings need to be shared. Upon approval from the user, only ratings and

semantic labels (or any subset of them with which the user is comfortable) can be

exported. In the degenerate case, Pulse uploads the final star rating and discards

the rest. This mimics today’s systems, except that the rating will be determined

automatically.

(3) Energy Duty-Cycling (EDC)

When the tablet is connected to a power-outlet, the EDC module is not necessary.

In fact, we find that Pulse’s energy consumption is marginal compared to the en-

ergy consumed by the tablet’s display and CPU, while playing the movie. However,

when running on smartphones, EDC’s task is to minimize the energy consumption

due to sensing. As mentioned earlier, the key idea is to sense each user during non-

overlapping time segments, and then “stitch” the user reactions to form the overall

rating. The evaluation section presents measurement results.

Figure 3.3 shows how the different sub-modules lead up to the final rating. The

RSFE module processes the raw sensor readings and extracts features to feed to CLR.
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The CLR module processes each (1 minute) segment of the movie to create a series

of “semantic labels” as well as “segment ratings”. Techniques such as collaborative

filtering, Gaussian process regression (GPR), and support vector machines (SVM)

are employed to address different types of challenges. Finally, the segment ratings

are merged to yield the final “star rating” while the semantic labels are combined

to create a tag-cloud. Thus, from the raw sensor values to the final star rating,

Pulse distills information at various granularities to generate the final summary of

the user’s experience. We begin the technical discussion with the RSFE module.

Raw Sensor Readings 
Sensor Hardware 

Features: Facial, Acoustic, Motion, Control 
Reaction Sensing/Feature Extraction 

Collaborative Labeling and Rating 
Semantic Labels Segment Rating 

Cloud 

Crowd  
Information 

Tag Cloud Final Rating 

Figure 3.3: The RSFE and CLR modules distill raw sensor readings to a rating,
tag-cloud, and video trailers

3.3 System Design: RSFE

We discuss the design of the Reaction Sensing and Feature Extraction module (RSFE).
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3.3.1 Reaction Features: Visual

Pulse records visual information from the front camera to assess human reactions.

Several prior efforts have attempted to achieve this using techniques involving face

detection, eye tracking, and lip tracking Morris et al. (2002). However, our applica-

tion presents a few unique challenges and opportunities compared to the traditional

scenarios. First, the front facing camera on a mobile device usually does not capture

the user’s face from an ideal angle. In the case of our tablet, the top-mounted camera

usually captures a tilted view of the face and eyes, requiring us to compensate for

a rotational bias. Second, due to relative motion between the user and the tablet,

the user’s face may frequently move out of the camera view, either fully or partially.

This derails contour matching methods, making continuous face detection difficult.

Third, practical issues such as users wearing spectacles adds to the complexity. For-

tunately, however, the field of view of the tablet is usually limited, making it easier

to filter out unknown objects in the background, and extract the dominant user’s

face. Also, for any given user, particular head-poses are likely to repeat more than

others (due to the user’s head-motion patterns).

Pulse employs a combination of face detection, eye tracking, and lip tracking,

using techniques from contour matching, speeded up robust feature (SURF) detection

Bay et al. (2006), and frame-difference based blink detection algorithms Morris et al.

(2002). The flow of operations is as follows:

1. Pulse continuously runs a contour matching algorithm on each frame for face

detection.

2. If a face is detected, the system runs contour matching for eye detection as well

as lip detection, and identifies the SURF image keypoints in the region of the
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face. These image keypoints may be viewed as small regions of the face that

maintains similar image properties across frames.

3. Now, if a full face is not detected, Pulse still tracks keypoints similar to previ-

ously detected SURF keypoints – this allows detecting and tracking a partial

face, which occurs frequently in real life.

4. Pipelined with the face detection, Pulse runs an algorithm to perform blink-

detection and eye-tracking. The difference in two consecutive video frames

are analyzed to identify a blink. Essentially, if the pixels that change across

consecutive frames form two nearly-symmetric ellipses, then the pixels are likely

to be the blink. For eye-tracking, contour matching-based techniques fail when

users are wearing spectacles – blink-detection is effective here. In other words,

even if the eyes are blurred by the spectacles, the blinks can approximate the

eye positions.

Figure 3.4 shows an intermediate output of the algorithm. Here Pulse detects the

face through the tablet camera, detects the eyes using blink detection, and finally

tracks the keypoints.

Pulse draws out the following features: face position, eye position, lip position,

face size, eye size, lip size, relative eye and lip position to the entire face, and the

variation of each over the duration of the movie. We believe these features reasonably

capture some of the reaction footprints useful for ratings Lang et al. (1993).

3.3.2 Reaction Features: Acoustic

The Pulse video player activates the microphone and records ambient sounds while

the user is watching the movie – this sound file is the input to our acoustic sens-

ing sub-module. The key challenge is to separate the user’s voice from the movie

soundtrack, and then classify the user’s voice as either laughter or speech. Since
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Figure 3.4: Visual sensing in Pulse: Face, eye, and blink detection for a user with
spectacles.

the movie soundtrack played on the tablet’s speakers can be loud, separation is not

straightforward. We describe Pulse’s approaches as follows.

Voice Detection

Given that the human voice exhibits a well-defined footprint on the frequency band

(bounded by 4kHz), Pulse’s first approach was to extract this band using a low

pass filter and then perform separation Sohn et al. (1999). However, the tablet al-

ready performs this filtering (to improve speech quality for phone calls). Figure 3.5

demonstrates this by comparing the Power Spectral Densities of the following: (1)

the original movie soundtrack, (2) the sound of the movie recorded through the tablet

microphone, and (3) the sound of the movie and human voice, recorded by the tablet

microphone. Evidently, the recorded sounds drop sharply at around 4kHz. At less

than 4kHz, the movie soundtrack with and without human voice are comparable,
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Figure 3.5: Comparing power spectral density – original and recorded soundtrack
with human voice.

and therefore non-trivial to separate.

Pulse adopts two heuristic techniques to address the problem, namely (1) energy

detection before and after speech enhancement and (2) per-frame spectral density

comparison. We describe them here and show how they are applicable in different

volume regimes.

(1) Energy Detection with Speech Enhancement:

Well established speech enhancement tools in literature can suppress noise and am-

plify the speech content in an acoustic signal. Pulse uses this to its advantage by

measuring the (root mean square) signal energy before and after speech enhance-

ment. For each frame, if the RMS energy diminishes considerably after speech en-

hancement, we regard this frame as noise. The simple intuition is that signals that

contain speech will pass background noise suppression without being affected signif-

icantly; other noises should be reduced.

(2) Per-frame Spectral Density Comparison:
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We observe that the power spectral density within [0, 4] kHz is impacted by whether

the user is speaking, laughing, or silent. In fact, the conversation from the movie

can also impact this frequency regime. Figure 3.5 demonstrates an example case.

Therefore, we compare the (per-frequency) amplitude of the recorded sound with

the amplitude from the original soundtrack in each frame. If the amplitude of the

recorded signal exceeds the soundtrack significantly, we deem that this video frame

contains the user’s voice.

Heuristic Selection based on Volume Regimes:

The two heuristics above perform differently depending on the volume of playback.

Figure 3.6(a) reports their performance when the tablet volume is high – the dark

horizontal lines in the top window represents the time windows when the user was

actually speaking. The dark horizontal lines in the other two windows represent

system detected speaking. Evidently, the second heuristic – per-frame spectral den-

sity comparison – exhibits better discriminative capabilities. This is because at high

volumes, the human speech gets drowned by the movie soundtrack, and speech en-

hancement tools become unreliable. However, in low-volume cases, the soundtrack

power is still low while the human voice is high, thereby allowing energy detection

to identify the voice. Figure 3.6(b) shows this situation.

Laughter Detection

Pulse assumes that acoustic reactions during a movie are either speech or laughter –

so, once human voice is detected, it needs to classified to one of the two categories.

We use a support vector machine (SVM) and train it on the Mel-Frequency Cepstral

Coefficients (MFCC) as the principle features. In sound processing, Mel-frequency

cepstrum is a representation of the short-term power spectrum of a sound, and are

commonly used in speech recognition McKinney and Breebaart (2003). To reduce
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Figure 3.6: Comparison of voice detection. Top: High Volume; Bottom: Low
Volume.

false positives, Pulse performs a simple outlier detection. If a frame is suspected

as laughter, but the 4 preceding and following frames are not, then these outlier

frames are eliminated. Figure 4.7 reports results showing high accuracy and few

false positives.

3.3.3 Reaction Features: Motion

Accelerometer and gyroscope readings are also likely to contain information about

the user’s reactions. The mean of the sensor readings over the playback of the en-

tire movie may capture the typical holding position/orientation of the device, while

variations may be indicators of potential events. Figure 3.8 shows an example where
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mean and variance (after some smoothing) appear well correlated to when users

change their ratings. It is possible that users are perform micro-movements at the

beginning or end of logical segments, and the sensors seem to be capturing them.

Pulse attempts to gain insights from these motion signatures.
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Sensor
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Rating
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Change

Figure 3.8: Motion correlates with rating changes.

3.3.4 Reaction Features: Touch Screen

Users tend to skip boring segments of a movie and, sometimes, may roll back to

watch an interesting segment again. The information about how the user moved the

slider can reveal the user’s reactions for different movie segments. If Pulse observes
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a developing trend for skipping certain segments, or a trend in rolling back, the

corresponding segments are assigned ratings proportionally (lower/higher).

3.4 System Design: CLR

This section describes the machine learning components in Pulse. The key goals are

to model the sensed data and use the models to: (1) estimate segment ratings; (2)

generate the final star rating from the segment ratings; (3) estimate semantic labels;

(4) generate the tag-cloud from the semantic labels. To this end, Pulse requests

multiple users to watch a movie, label different segments of the movie, and provide

a final star rating as ground truth.

Ratings. Segment ratings are ratings for every short segment of the movie, nec-

essary to compute the overall movie quality as well as to select enjoyable segments.

A key challenge here is the ambiguity in how reaction features map to segment rat-

ings. Laughter in a comedy movie may be a positive reaction, while laughter in a

horror movie may mean the opposite. Some users may get excited and fidget in

an intense scene, while others may watch it motionless. Pulse employs Collaborative

Filtering and Gaussian Process Regression (GPR) to cope with such ambiguities (de-

tailed later). To convert segment ratings to the final rating, Pulse uses a weighted

averaging function.

Labels. Semantic labels are English labels assigned to each segment of the movie.

CLR generates two types of such labels – reaction labels and perception labels. (1)

Reaction labels are direct outcomes of reaction sensing, reflecting on the viewer’s raw

behavior while watching the movie (e.g., laugh, smile, focused, distracted, nervous,

etc.). (2) Perception labels reflect on subtle emotions evoked by the correspond-

ing scenes (e.g., funny, exciting, warm, etc.) While identifying reaction labels is
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straightforward, identifying perception labels is more challenging. Pulse employs

a semi-supervised learning method combining Collaborative Filtering and SVM to

predict perception labels. Then, Pulse aggregates all the predicted labels, counts

their relative occurrences, and develops the tag-cloud description of the movie. The

efficacy of prediction is quantified through cross-validation. The following subsection

elaborates on the methodology and techniques.

3.4.1 Modeling and Prediction Challenges

We begin by describing our experimentation methodology, which will help explain

the challenges we faced during modeling and prediction. Thereafter, we describe the

solutions.

Experiment Methodology

To obtain labeled user data, we conducted a formative user study. We initially re-

cruited 11 volunteers (4 females), aged 24–28. We provided volunteers with Android-

based Samsung tablets pre-loaded with 6 movies (3 comedies, 2 dramas, and 1 hor-

ror), and asked them to watch only those movies they have not watched earlier. The

volunteers were required to watch the movie using our Pulse video player, which

activates and records sensor readings during playback. Because we needed data from

natural settings, we let users watch movies at any place and time they chose; most

users took the tablets home. We also provided a software tool that allowed users to

rate the movie soon after they watched it. This tool scans through the movie minute

by minute (like fast-forwarding) and allows volunteers to rate segments on a scale

from 1 to 5 (1 being “did not like”, 5 being “liked”). Volunteers also labeled some

segments with “perception” labels, indicating how they perceived the attributes of

that segment. The perception labels were picked from a pre-defined set – some ex-

amples are “funny”, “scary”, “intense”. Finally, volunteers were asked to provide a
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final (star) rating for the overall movie, again on a scale of 1 to 5.

Challenges

Pulse’s goal is to model user behavior from the collected labeled data, and use this

model to predict (1) segment ratings, (2) perception labels, and (3) the final (star)

rating for each movie. Note that this is a high bar for Pulse – predicting human

judgment, minute by minute, is quite difficult. The difficulty gets exacerbated by 3

types of heterogeneities, described next.

(1) Heterogeneity in users behavior: Some users watch movies attentively,

while others are more fidgety. Such diversities are common among users, and particu-

larly so when observed through the sensing dimensions. As a result, a naive universal

model trained from a crowd of users is likely to fail in capturing useful behavioral

signatures for any specific user. In fact, such a model may actually contain little

information since the ambiguity from diverse user-behaviors may mask (or cancel

out) all useful patterns. For example, if half of the users hold their devices still

when they are watching a movie intensely, while the other half happen to hold their

devices still when they feel bored, a generic model learned from all this information

will not be able to use “stillness” as a discriminator between intensity and boredom.

Thus, a good one-fit-all model may not exist. To confirm this, we created a regres-

sion model for estimating segment ratings using all available labeled data. Figure

3.9 plots the cross-validation results for the leave-one-video-out test, comparing the

model’s estimated segment ratings vs. the actual user ratings. The results show that

the model’s estimates fail to track the actual user ratings, and mostly converges on

the mean rating of training data.
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Figure 3.9: Poor results from regression when attempting to learn a model appli-
cable to all users.

(2) Heterogeneity in environment factors: Even for the same user, her

“sensed behavior” may differ from time to time due to different environmental factors.

For instance, the behavior associated with watching a movie in the office may be

substantially different from the behavior during a commute, which is again different

from when at home. Figure 3.10 shows the gyroscope sensor data distribution from

the same user watching two movies. The distribution clearly varies even for the same

user, indicating that the way the user holds the device may not always be similar.
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Figure 3.10: Orientation sensor data distribution

(3) Heterogeneity in user tastes: Finally, users may have different tastes,

resulting in different ratings/labels given to the same movie scene. Some scenes
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may appear hilarious to one, and may not be so to another. Figure 3.11 shows the

deviation in ratings given to the same scenes by 5 different users. Clearly, there is

dissimilarity in taste.
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Figure 3.11: High Std. Dev. in ratings across users.

3.4.2 Pulse’s Learning Approach

The heterogeneities described above highlight the core challenge – we need to develop

a model that will capture the unique taste/behavior of a user under different envi-

ronments. One (brute force) approach would be to train a series of per-user models,

each tailored to a specific viewing environment and for a specific genre of a movie.

However, it is nearly impossible to enumerate all such environments, and worse, the

user would have to provide ratings and labels for all combinations of movie genres

and environments. This is impractical.

Pulse overcomes this problem by basing its solution on the following intuition.

Although users exhibit heterogeneity overall, their reactions to certain parts of the

movie are remarkably similar (or coherent). Therefore, we analyze the collective

behavior of multiple users to extract only these coherent signals – i.e., segments for

which most users exhibit agreement in their reactions. Similarly, for perception la-

bels, Pulse also learns from segments on which most users agree. Collaborative filter-
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ing techniques Sarwar et al. (2001) provide the ability to draw out these segments of

somewhat “universal” agreement. We designed two separate semi-supervised learn-

ing methods – one for segment ratings and another for perception labels. For segment

ratings, we combine collaborative filtering with Gaussian Process Regression (GPR).

For perception labels, we combine collaborative filtering with support vector machines

(SVM).

When a new user watches a movie, Pulse uses the sensed data from only the

“universally agreed” segments to train a customized model, which is then used to

predict the ratings and labels of the rest of the user’s segments. In other words,

Pulse bootstraps using ratings that are agreeable in general, and by learning how

the new user’s sensing data correlates with these agreeable ratings, Pulse learns the

user’s “idiosyncrasies” (which is the most difficult aspects of automatic content rat-

ing). Now, with knowledge of these idiosyncrasies, Pulse can “extrapolate” to other

segments of the movie (that users did not agree upon), and predict the ratings for

this specific user Ouyang and Li (2012). Figure 3.12 illustrates our method. From

the ratings of users A, B, and C, Pulse learns that minute 1 is intense (I) and minute

5 is boring (B). Then, when user D watches the movie, his sensor readings during

the first and the fifth minutes are used as the training data to create a personalized

model. This model is then used to predict the 2nd, 3rd, and 4th segment ratings.

Figure 3.13 shows that Pulse’s approach works reasonably well, with Pulse’s es-

timated ratings tracking the actual user ratings. We will discuss additional results –

precision, recall, and fallout – on segment rating and label prediction in the evalua-

tion section.

Besides coping with inherent heterogeneity of users, we observed additional chal-
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Figure 3.12: Pulse learns a custom model from high-confidence segments.
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Figure 3.13: Collaborative filtering and GPR improve prediction – circles are the
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lenges emerging from (1) time-scale of ratings and (2) sparsity of labels. The first

problem arises from the mismatch between the time-scale of sensed reactions (a

laughter lasts a few seconds) and the time-scale of human ratings (one for each

minute). As a result, the human labels we obtain are not necessary labeling the

specific sensor pattern, but rather an aggregate of useful and useless patterns over

the entire minute. This naturally raises the difficulty for learning the appropriate

signatures. The situation is similar for labels. It is unclear exactly which part within

the 1-minute segment was labeled as hilarious, since the entire minute may include

both “hilarious” and “non-hilarious” sensor signals. To cope with this, we assume

that each 3 second window in the sensing data has the label of the corresponding
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minute. In our prediction, once Pulse yields a rating/label for each 3-second entry,

we aggregate them back to the minute granularity, allowing us to compute both pre-

diction accuracy and false positives.

The second problem relates to how labels gathered in each movie are sparse

(volunteers did not label each segment, but opted to label only scenes that seemed

worthy of labeling). As a result, we found 65.9% of the segments unlabeled. This

warrants careful adjustment of the SVM parameters – otherwise SVM may classify

all segments as “none of the valid labels”, and appear to achieve high accuracy (since

much of the data indeed has no valid label). Precisely recognizing and classifying

the few minutes of the labeled segments, from thousands of minutes of recordings,

is an ambitious task. We designed under these constraints while ensuring we do not

over-fit – the next section reports on the results.

3.5 Evaluation

In this section, we demonstrate the feasibility of predicting (1) segment ratings, (2)

final ratings, and (3) semantic labels, through multi-dimensional sensing.

3.5.1 Metrics

We adopt three measures commonly used in information retrieval, namely, Precision,

Recall, and Fallout. These metrics essentially are methods to compute overlaps (and

non-overlaps) between two sets of items. Consider the case of segment rating. One

set is the set of movie segments that the user truly enjoyed (i.e., segments manually

rated as 4 or 5) – we call this the Human Selected set. The other set contains

segments that Pulse believes the user enjoyed – called the Pulse Selected set. Then,

61



the 3 metrics can be defined as:

Precision “
|tHuman SelectedX Pulse Selectedu|

|tPulse Selectedu|

Recall “
|tHuman SelectedX Pulse Selectedu|

|tHuman Selectedu|

Fall ´ out “
|tNon-RelevantX Pulse Selectedu|

|tNon-Relevantu|

Higher values of precision and recall are better; the converse for fallout. These

metrics apply for the semantic labels as well, where one set is provided by humans,

and the other generated by Pulse.

3.5.2 Summary of Results

1. Segment Rating: Predicted segment ratings closely follow users’ segment

ratings, with an average error of 0.7 on a 5-point scale. This is a 40% improve-

ment over estimations based on only distribution or collaborative filtering (the

improvement is more pronounced in terms of recall). More importantly, Pulse

is able to capture enjoyable segments with an average precision of 71%, an

average recall of 63%, and a minor fallout of 9%.

2. Final Rating: Pulse’s overall star rating demonstrates an average error of

0.46 in the 5 point scale.

3. Label quality: On average, Pulse covers 45% of the perception labels with a

minor average fallout of 4%. We also observe an order of magnitude improve-

ment over a pure SVM-based approach and modest gains over collaborative

filtering. The reaction labels capture the audience’s reactions well. The tag-

clouds were received with enthusiasm (a qualitative feedback). Detailed results

follow.
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3.5.3 Performance of Segment Rating

To quantify Pulse’s accuracy at predicting segment ratings on the 5-point scale, we

compared the results of four prediction algorithms: Random, Collaborative Average,

Collaborative High Confidence and Pulse. Random predicts the scores randomly.

Collaborative average uses the average of all user’s segment ratings as the predic-

tion. Collaborative High Confidence assigns the average user’s score for only those

segments that were given consistent ratings by most users and assigns the scale’s

average score (3 in our case) to other segments. Finally, Pulse, uses collaborative

filtering results as a starting point and exploits sensing data as described in previous

sections to provide a more accurate prediction. Figure 3.14 plots the mean predic-

tion errors of the four algorithms as black bars. Pulse outperforms other algorithms,

achieving 0.7 mean error. This result shows the value that sensing data may bring

to automatic segment rating.

Often, people are interested in finding good movies (rated above 3) and may not

care whether a movie is rated 1.4 or 2.4. This observation can be used to optimize

Pulse further by treating ratings from 1 to 3 as the same. In doing so, we are

essentially reducing the resolution of expressing that a movie is not worth watching

to a single score. The mean prediction errors of the four algorithms, when the rating

score is reduced to a 3-point scale, are shown as grey bars in Figure 3.14. Here, Pulse

again outperforms other algorithms, achieving 0.25 mean error.
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Figure 3.14: Mean Pulse segment rating error.
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Segment Selection.

Pulse selects the “enjoyable” segments, i.e., ones rated as 4 and above, to generate

a highlights of the movie. To evaluate whether Pulse’s selection matches with the

user’s, we evaluate Pulse using precision, recall, and fallout. Figure 3.15 shows the

average precision ranges from 57% to 80%, an average recall of 63%, and a minor

fallout usually less than 10%. Pulse performed well on 2 comedy and 2 dramas,

corresponding to the first four bars in each group. The performance was weaker in

the remaining 2 movies (1 comedy and 1 horror).
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Figure 3.15: Precision/Recall/Fallout per video

Figure 3.16 shows the average per-user performance. Except for one outlier (the

second user), the precision is above 50% with all recalls above 50%. Fallout ranges

from 0 to 19%. Given the sparse labels we have, the accuracy we believe is reasonable

– on average Pulse creates less than one false positive every time it includes five true

positives. One may observe that the second user might be characterized as “picky” –

the low precision, reasonable recall, and small fallout, suggest that she rarely assigns

high scores. We note that all the above selections are personalized; a good segment

for one user may be boring to another and Pulse can identify these inter-personal

differences.

Figure 3.17 illustrates the break-up of contributions from collaborative filtering

and sensing. The four bars show the number of true positives, total number of
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positive samples (segments with ratings of 4 or 5), false positives, and total number of

negative samples (segments with rating 1 to 3), respectively. As the figure illustrates,

the contribution from sensing is substantial.
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Figure 3.17: Break-up of contributions.

3.5.4 Performance of Final “Star” Rating

Pulse generates final ratings by thresholding the mean scores of per-minute segment

ratings. This thresholding function essentially tries to learn how users map their

mean scores for each segment to the final score. Figure 3.18(a) shows the means of

predicted and true segment ratings (dashed and solid lines), as well as the true final

rating. Pulse tracks the user’s mean rating well. We observed that users are often

conservative in rating the movie segments, but more generous with the final rating.

Figure 3.18(b) shows Pulse’s prediction of final ratings using a confusion matrix.
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Higher values concentrate around the diagonal, indicating desired performance. We

are aware that we may have over-fitted our data with the thresholds, and intend to

investigate this more carefully in future.
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Figure 3.18: (a) Mean segment ratings and corresponding users’ final ratings. (b)
Confusion matrix.
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3.5.5 Performance of Label Quality

Pulse associates semantic labels to each movie segment and eventually generates a

tag cloud for the entire movie. This section evaluates the efficacy to predict labels.

Recall that our semantic labels consist of reaction labels and perception labels; we

evaluate them separately. As a ground truth, we intend to know the user’s reactions

and perceptions at every time point. However, providing this information (while

the user is watching the movie) would have interfered with their viewing experience.

Therefore, we asked the users to provide the perception labels to each movie segment

after watching the movie. For reaction labels, we recruited two volunteers to view

the video recording from the tablet camera, and label the viewer’s reactions – we

used this as ground truth Ekman and Friesen (2003).

Reaction Label Quality

Reaction labels capture users’ actions while watching a movie (e.g., laugh, smile,

etc.). The (limited) vocabulary is shown in Table 3.1. Figure 3.19 shows the com-

parison between Pulse’s prediction and the ground truth – the gray portion is ground

truth while the black dots denote when Pulse detects the corresponding labels. Al-

though Pulse sometimes mislabels on a per-second granularity, the general time frame

and weight of each label is reasonably well captured.

Table 3.1: Label Vocabulary

Label Category Vocabulary
Perception Funny, Intense, Warm
Reaction Laugh, Smile, Shaking,

Focused, Distracted, Speaking

Perception Label Quality

Perception labels represent a viewer’s perception of each movie segment (e.g., funny,

warm, intense). Figure 3.20 shows the performance of perception label prediction for
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Figure 3.19: Reaction label prediction vs. groundtruth

each label, averaged over all users. These labels are hard to predict because (1) their

corresponding behaviors can be subtle and implicit; (2) users provided these labels

for few segments. Our performance is proportionally weaker: average precision is

50%, recall is 35%; however, fallout is satisfactory: 4%.

Figure 3.21 compares the performance between pure-SVM (using cross valida-

tion), collaborative filtering, and Pulse. From top to bottom, the figures show pre-

cision, recall, and fallout, respectively. Pulse demonstrates substantial improvement

over SVM alone, but is comparable to collaborative filtering.

3.5.6 Tag Cloud and User Feedback

We attempted to visually summaries the results of Pulse using a tag cloud similar

to Figure 3.1. The terms used within the tag-cloud combine perception and reaction

labels, each weighted by its normalized occurrence frequency. We informally asked

users who watched the episode (using Pulse) to comment on this tag-cloud. The

feedback was resonantly enthusiastic, with comments like “very cool”, and “certainly

useful information with zero extra burden”. Some users correctly pointed out that

“a richer tag set is needed”.
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3.5.7 Power Consumption

We measured the power consumption of Pulse on the Samsung tablets and Nexus

S smartphones, using the Monsoon Power monitor. Figure 3.22 compares Pulse’s

performance with conventional media players – with no active sensors. Given the

high playback and display power on tablets, Pulse-based sensing adds only 16%

more energy. The energy burden is higher on smartphones, and would call for duty

cycling the sensors, perhaps to only sense the decisive segments. We leave this to

future work.

3.6 Related Work

Pulse builds on work that falls roughly in two areas: activity inferencing and multi-

media annotation. We discuss some of the related work here.

Activity Inference: The large number of sensors on mobile devices have been

leveraged as a rich sensing platform. Accelerometers are useful beyond motion Bao

et al. (2004); microphones often effective in detecting environments Lu et al. (2009),

and user’s reaction Kennedy and Ellis (2004); front-facing cameras are valuable to-

wards face/eye tracking in real-time video streams. Combined with machine learn-

ing and inferencing, these platforms are lending themselves to intent and context

recognition Luther et al. (2008) The future is poised for more activities along these

directions. Of course, such forms of continuous sensing causes substantial power

drain. Existing proposals include offloading to the cloud Cuervo et al. (2010) or

duty cycling techniques Wang et al. (2009). In future, efforts such as Little Rock

could offload sensing to DSP chips, allowing the CPU to sleep Priyantha et al. (2011).
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Multimedia Annotation: A powerful technique to annotating multimedia is

to aggregate sensor data across multiple devices as a way of supersampling Honicky

et al. (2008). TagSense is one example, using sensor data from multiple devices,

to annotate images Qin (2011). Pulse uses a similar approach, but asynchronously

aggregated across users. Recommender systems often annotate items using a set of

known attributes – this maintains calibration across users, while capturing diversity

in opinions Yu et al. (2009). Though these results tend to yield diverse results, they

are resource intensive, require lots of time Rosenfeld and Morville (1998). We hope

to address some of these issues with a sensor based approach, available free in today’s

devices.

3.7 Conclusion

Advances in personal sensing and machine learning are empowering machines to

better understand human behavior. This paper guides this opportunity into an ap-

plication that automatically rates content on behalf of human users. The core idea

is to leverage device sensors, such as cameras, microphones, accelerometers, and gy-

roscopes, to sense qualitative human reactions while she is watching a video;learn

how these qualitative reactions translate to a quantitative value; and visualize these

learnings in an easy-to-read format. Thus, when using our system, a movie automat-

ically gets tagged not only by a conventional star rating, but also with a tag-cloud

of user reactions, as well as highlights of the movie for different emotions.

At this stage, Pulse is still a prototype with many limitations. On the technical

side, the current label vocabulary is still limited. We intend to explore additional

optimizations in machine learning to improve performance, while taking advantage

of more sensors that enter the tablet platform. On the social side, pulse may raise

privacy concerns especially for exporting information to the cloud. Though we do
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not have a clear solution to this problem yet, Pulse should certainly place most of

its functionalities locally on the user’s device and potentially only needs to upload

ratings in the end. Different methods for data fusion can also help anonymize the

data.

With these limitations, we still believe there is value in building a sensing-based

automatic rating system. With the universe of content growing at a rapid pace, the

need for associating meta data to content will become increasingly relevant. Pulse

is an early attempt towards this goal, with direct applications in recommendations

systems and information retrieval Cantador et al. (2008).
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Figure 3.20: Performance for each label (averaged across users).
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4

MoVi: Mobile Phone based Video Highlights via
Collaborative Sensing

4.1 Introduction

The inclusion of multiple sensors on a mobile phone is changing its role from a simple

communication device to a life-centric sensor. Similar trends are influencing other

personal gadgets such as the iPods, palm-tops, flip-cameras, and wearable devices.

Together, these sensors are beginning to “absorb” a high-resolution view of the events

unfolding around us. For example, users are frequently taking geo-tagged pictures

and videos Gaonkar et al. (2008); Torniai et al. (2007), measuring their carbon foot-

print Dada et al. (????), monitoring diets Reddy et al. (2007), creating audio journals

and tracking road traffic Mohan et al. (2008); Lu et al. (2009). With time, these

devices are anticipated to funnel in an explosive amount of information, resulting in

what has been called as an information overload. Distilling the relevant content from

this overload of information, and summarizing it to the end user, will be a prominent

challenge of the future. While this challenge calls for a long-term research effort, as

a first step, we narrow its scope to a specific application with a clearly defined goal.
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We ask, assuming that people in a social gathering are carrying smart phones, can

the phones be harnessed to collaboratively create a video highlights of the occasion.

An automatic video highlights could be viewed as a distilled representation of the

social occasion, useful to answer questions like “what happened at the party?” The

ability to answer such a question may have applications in travel blogging, journal-

ism, emergency response, and distributed surveillance.

This paper makes an attempt to design a Mobile Phone based Video Highlights

system (MoVi). Spatially nearby phones collaboratively sense their ambience, look-

ing for event-triggers that suggest a potentially “interesting” moment. For example,

an outburst of laughter could be an acoustic trigger. Many people turning towards

the wedding speech – detected from the correlated compass orientations of nearby

phones – can be another example. Among phones that detect a trigger, the one with

the “best quality” view of the event is shortlisted. At the end of the party, the indi-

vidual recordings from different phones are correlated over time, and “stitched” into

a single video highlights of the occasion. If done well, such a system could reduce

the burden of manually editing a full-length video. Moreover, some events are often

unrecorded in a social occasion, perhaps because no one remembered to take a video,

or the designated videographer was not present at that instant. MoVi could be an

assistive solution for improved social event coverage1. The video highlights created

by MoVi can be used to cover the missed moments in manually taken videos.

A natural concern is: phones are often inside pockets and may not be useful for

recording events. While this is certainly the case today, a variety of wearable mobile

devices are already entering the commercial market Berry et al. (2007). Phone sen-

1 This bears similarity to spatial coverage in sensor networks, except that physical space is now
replaced by a space of social-events, that must be covered by multiple sensing dimensions.

76



sors may blend into clothing and jewelry (necklaces, wrist watches, shirt buttons),

exposing the camera and microphones to the surroundings. Further, smart homes

of the future may allow for sensor-assisted cameras on walls, and on other objects

in a room. A variety of urban sensing applications is already beginning to exploit

these possibilities Miluzzo et al. (2008); Mistry. (2009). MoVi can leverage them too.

Translating this vision into a practical system entails a range of challenges.

Phones need to be grouped by social contexts before they can collaboratively sense

the ambience. The multi-sensory data from the ambience needs to be scavenged for

potential triggers; some of the triggers need to be correlated among multiple phones

in the same group. Once a recordable event (and the phones located around it) is

identified, the phone with the best view should ideally be chosen.

While addressing all these challenges is non-trivial, the availability of multiple

sensing dimensions offers fresh opportunities. Moreover, high-bandwidth wireless ac-

cess to nearby clouds/servers permits the outsourcing of CPU-intensive tasks Cuervo

et al. (2010). MoVi attempts to make use of these resources to realize the end-goal

of collaborative video recording. Although some simplifying assumptions are made

along the way, the overall system achieves its goal reasonably well. In our experi-

ments in real social gatherings, 5 users were instrumented with iPod Nanos (taped

to their shirt pockets) and Nokia N95 mobile phones clipped to their belts. The

iPods video-recorded the events continuously, while the phones sensed the ambience

through the available sensors. The videos and sensed data from each user were trans-

mitted offline to the central MoVi server.

The server is used to mine the sensed data, correlate them across different users,

select the best views, and extract the duration over which a logical event is likely
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to have happened. Capturing the logical start and end of the event is desirable,

otherwise, the video-clip may only capture a laugh and not the (previous) joke that

may have induced it. Once all the video-clips have been shortlisted, they are sorted in

time, and “stitched” into an automatic video highlights of the occasion. For a baseline

comparison, we used a manually-created video highlights; multiple users were asked

to view the full length iPod videos, and mark out events that they believe are worth

highlighting. The union of all events (marked by different users) were also stitched

into a highlights. We observe considerable temporal overlap in the manual and

MoVi-created highlights (the highlights are 15 minutes while the full length videos

are around 1.5 hours). Moreover, end users responded positively about the results,

suggesting the need (and value) for further research in this direction of automatic

event coverage and information distillation.

The rest of the paper is organized as follows. The overall system architecture

is proposed in Section 4.2, and the individual design components are presented in

Section 4.3. Section 4.4 evaluates the system across multiple real-life and mock social

settings, followed by user-surveys and exit-interviews. Section 4.5 discusses the cross-

disciplinary related work for MoVi. We discuss the limitations of the proposed system

and future work in Section 4.6. The paper ends with a conclusion in Section 4.7.

4.2 System Overview

Figure 4.1 shows the envisioned client/server architecture for MoVi. We briefly de-

scribe the general, high level operations and present the details in the next sections.

The descriptions are deliberately anchored to a specific scenario – a social party –

only to provide a realistic context to the technical discussions. We believe that the

core system can be tailored to other scenarios as well.

In general, MoVi assumes that people are wearing a camera and are carrying
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Figure 4.1: The MoVi architecture.

sensor-equipped mobile devices such as smart phones. The camera can be a separate

device attached on a shirt-button or spectacles, or could even be part of the wearable

phone (like a pocket-pen, necklace, or wrist watch Virpioja et al. (2007)). In our

case, an iPod Nano is taped onto the shirt pocket, and the phone is clipped to a

belt or held in the hand. Continuous video from the iPod and sensor data from the

phone are sent to the MoVi server offline.

At the MoVi server, a Group Management module analyzes the sensed data to

compute social groupings among phones. The idea of grouping facilitates collaborative-

inferring of social events; only members of the same social group should collaborate

for event identification. If real time operations were feasible, the Group Management

module could also load-balance among the phones to save energy. Each phone could

turn off some sensors and be triggered by the server only when certain events are

underway. We are unable to support this sophistication in this paper – optimizing

energy consumption and duty-cycling is part of our future work. A Trigger Detection
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module scans the sensed data from different social groups to recognize potentially

interesting events. Once an event is suspected, the data is correlated with the data

from other phones in that same group.

Confirmed of an event, the View Selector module surveys the viewing quality of

different phones in that group, and recruits the one that is “best”. Finally, given

the best video view, the Event Segmentation module is responsible for extracting the

appropriate segment of the video, that fully captures the event. The short, time-

stamped video segments are finally correlated over time, and stitched into the video

highlights.

Challenges

The different modules in MoVi entail distinct research challenges. We briefly state

them here and visit them individually in the next section.

(1) The Group Management module needs to partition the set of mobile de-

vices based on the social context they are associated to. A social zone could be a

gathering around an ice-cream corner, a group of children playing a video game, or

people on the dance floor. The primary challenges are in identifying these zones,

mapping phones to at least one zone, and updating these groups in response to hu-

man movement. Importantly, these social groups are not necessarily spatial – two

persons in physical proximity may be engaged in different conversations in adjacent

dinner tables.

(2) The Event Detection module faces the challenge of recognizing events

that are socially “interesting”, and hence, worth video recording. This is difficult

not only because the notion of “interesting” is subjective, but also because the space
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of events is large. To be detected, interesting events need to provide explicit clues

detectable by the sensors. Therefore, our goal is to develop a rule-book with which

(multi-modal) sensor measurements can be classified as “interesting”. As the first

step towards developing a rule book, we intend to choose rules shared by different

events. Our proposed heuristics aim to capture a set of intuitive events (such as

laughter, people watching TV, people turning towards a speaker, etc.) that one may

believe to be socially interesting. Details about event detection will be discussed in

Section 4.3.2.

(3) The View Selection module chooses the phone that presents the best view

of the event. The notion of “best view” is again subjective, however, some of the

obviously poor views need to be eliminated. The challenge lies in designing heuris-

tics that can achieve reliable elimination (such as ones with less light, vibration, or

camera obstructions), and choose a good candidate from the ones remaining. Details

regarding our heuristics will be provided in Section 4.3.3.

(4) The Event Segmentation module receives a time-stamped event-trigger,

and scans through the sensor measurements to identify the logical start and end of

that event. Each social event is likely to have an unique/complex projection over

the different sensing dimensions. Identifying or learning this projection pattern is a

challenge.

MoVi attempts to address these individual challenges by drawing from existing

ideas, and combining them with some new opportunities. The challenges are certainly

complex, and this system is by no means a mature solution to generating automated

highlights. Instead it may be viewed as an early effort to explore the increasingly

relevant research space. The overall design and implementation captures some of
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the inherent opportunities in collaborative, multi-modal sensing, but also exposes

unanticipated pitfalls. The evaluation results are limited to a few social occasions,

and our ongoing work is focused on far greater testing and refinement. Nevertheless,

the reported experiments are real and the results adequately promising to justify the

larger effort. In this spirit, we describe the system design and implementation next,

followed by evaluation results in Section 4.4.

4.3 System Design and Basic Results

This section discusses the four main modules in MoVi. Where suitable, the de-

sign choices are accompanied with measurements and basic results. The measure-

ments/results are drawn from three different testing environments. (1) A set of

students gathering in the university lab on a weekend to watch movies, play video

games, and perform other fun activities. (2) A research group visiting the Duke

SmartHome for a guided-tour. The SmartHome is a residence-laboratory showcasing

a variety of research prototypes and latest consumer electronics. (3) A Thanksgiving

dinner party at a faculty’s house, attended by the research group members and their

friends.

4.3.1 Social Group Identification

Inferring social events requires collaboration among phones that belong to the same

social context. To this end, the scattered phones in a party need to be grouped

socially. Interestingly, physical collocation may not be the perfect solution. Two

people in adjacent dinner tables (with their backs turned to each other) may be in

physical proximity, but still belong to different social conversations (this scenario can

be generalized to people engaging in different activities in the same social gathering).

Thus people should not video-record just based on spatial interpretation of a social

event. In reality, a complex notion of “same social context” unites these phones into
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a group – MoVi tries to roughly capture this by exploiting multiple dimensions of

sensing. For instance, people seated around a table may be facing the same object

in the center of the table (e.g., a flower vase), while people near the TV may have

a similar acoustic ambience. The group management module correlates both the

visual and acoustic ambience of phones to deduce social groups. We begin with the

description of the acoustic methods.

(1) Acoustic Grouping

Two sub-techniques are used for acoustic grouping, namely, ringtone and ambient-

sound grouping.

Grouping through Ringtone. To begin with an approximate grouping, the

MoVi server chooses a random phone to play a short high-frequency ring-tone (sim-

ilar to a wireless beacon) periodically. The ring-tone should ideally be outside the

audible frequency range, so that it is not interfered by human voices and also not

annoying to people. With Nokia N95 phones, we were able to play narrow-bandwidth

tones at the edge of the audible range and use it with almost-inaudible amplitude

2. The single-sided amplitude spectrum of the ringtone is shown in Figure 4.2. The

target is to make the ringtone exist only on 3500Hz. This frequency is high enough

to avoid being interfered by indoor noises.

Phones in the same acoustic vicinity are expected to hear the ringtone3. To detect

which phones overheard this ringtone, the MoVi server generates a frequency-domain

2 Audible range differs for different individuals. Our choice of frequency, 3500Hz, was limited by
hardware. However, with new devices such as the iPhone, it is now possible to generate and play
sounds at much higher frequencies.

3 We avoid bluetooth based grouping because the acoustic signals are better tailored to demarcate
the context of human conversations while bluetooth range may not reflect the social partition
among people. However, in certain extremely noisy places, bluetooth can be used to simplify the
implementation.
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Figure 4.2: Single-sided amplitude spectrum of the ringtone

representation of the sounds reported at each phone (a vector,
ÝÑ
S , with 4000 dimen-

sions), and computes the similarity of these vectors with the vector generated from

the known ring-tone (
ÝÑ
R). The similarity function, expressed below, is essentially a

weighted intensity ratio after subtracting white noise (Doppler shifts are explicitly

addressed by computing similarity over a wider frequency range).

Similarity “
Maxt

ÝÑ
S piq|3450 “ă i ă“ 3550u

Maxt
ÝÑ
Rpiq|3450 “ă i ă“ 3550u

Therefore, high similarities are detected when devices are in the vicinity of the

ringtone transmitter. The overhearing range of a ringtone defines the auditory space

around the transmitter.

Figure 4.3 shows the similarity values over time at three different phones placed

near a ring-tone transmitter. The first curve is the known transmitted ringtone and

other three curves are the ones received. As shown in Figure 4.3, the overheard

ringtones are in broad agreement with the true ringtone. All phones that exhibit

more than a threshold similarity are assigned to the same acoustic group. A phone

may be assigned to multiple acoustic groups. At the end of this operation, the party
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is said to be “acoustically covered”.

Figure 4.3: Ringtone detection at phones within the acoustic zone of the transmit-
ter.

Grouping through Ambient Sound. Ringtones may not be always detectable,

for example, when there is music in the background, or other electro-mechanical hum

from machines/devices on the ringtone’s frequency band. An alternative approach

is to compute similarities between phones’ ambient sounds, and group them ac-

cordingly. Authors in Nakakura et al. (2009) address a similar problem – they use

high-end, time-synchronized devices to record ambient sound, and compare them

directly for signal matching. However, we observed that mobile phones are weakly

time-synchronized (in the order of seconds), and hence, direct comparison results

will yield errors. Therefore, we classify ambient sound in stable classes using an

SVM (Support Vector Machine) on MFCC (Mel-Frequency Cepstral Coefficients),
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and group phones that “hear” the same classes of sound. We describe the process

next.

For classification, we build a data benchmark with labeled music, human con-

versation, and noise. The music data is a widely used benchmark from Dortmund

University Homburg et al. (2005), composed of 9 types of music. Each sample is

ten seconds long and the total volume is for around 2.5 hours. The conversation

data set is built by ourselves, and consists of 2 hours of conversation data from dif-

ferent male and female speakers. Samples from each speaker is around ten minutes

long. The noise data set is harder to build because it may vary entirely based on

the user’s background (i.e., the test may arrive from a different distribution than

the training set). However, given that MoVi is mostly restricted to indoor usage, we

have incorporated samples of A/C noises, microwave hums, and the noise of phone

grazing against trousers and table-tops. Each sample is short in length but we have

replicated the samples to make their size equal to other acoustic data.

MFCC (Mel-Frequency Cepstral Coefficients) Logan (2000); Rabiner and Juang

(1993) are used as features extracted from sound samples. In sound processing,

Mel-frequency cepstrum is a representation of the short-term power spectrum of a

sound. MFCC are commonly used as features in speech recognition and music infor-

mation retrieval. The process of computing MFCC involves four steps: (1) We divide

the audio stream into overlapping frames with 25ms frame width and 10ms forward

shifts. The overlapping frames better capture the subtle changes in sound (leading

to improved performance), but at the expense of higher computing power. (2) Then,

for each frame, we perform an FFT to obtain the amplitude spectrum. However,

since each frame has a strict cut-off boundary, the FFT causes leakage. We employ

the Hann window technique to reduce spectral leakage. Briefly, Hann window is a
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raised cosine window that essentially acts as a weighting function. The weighing

function is applied to the data to reduce the sharp discontinuity at the boundary

of frames. This is achieved by matching multiple orders of derivatives, and setting

the value of the derivatives to zero Harris (1978). (3) We then take the logarithm

on the spectrum,and convert the log spectrum to Mel (perception-based) spectrum.

Using Mel scaled units Logan (2000) is expected to produce better results than lin-

ear units because Mel scale units better approximate human perception of sound.

(4) We finally take the Discrete Cosine Transform (DCT) on the Mel spectrum. In

Logan (2000), the author proves that this step approximates principal components

analysis (PCA), the mathematically standard way to decorrelate the components of

the feature vectors, in the context of speech recognition and music retrieval.

After feature extraction, classification is performed using a two-step decision,

using support vector machines (SVM), a machine learning method for classification

Chang and Lin (2001). Coarse classification tries to distinguish music, conversation,

and ambient noise. Finer classification is done for classes within conversation and

music McKinney and Breebaart (2003). Classes for conversation include segregating

between male and female voices, which is useful to discriminate between, say, two

social groups, one of males, another of females. Similarly, music is classified into

multiple genres. The overall cross validation accuracy is shown in Table 4.1. The

reported accuracy is tested on the benchmarks described before. Based on such

classification, Figure 4.4 shows the grouping among two pairs of phones – ăA,Bą

and ăA,Cą – during the Thanksgiving party. Users of phones A and C are close

friends and were often together in the party, while user of phone B joined A during

some events as in. Accordingly, A and C are more often grouped as in Figure 4.4(b)

while user A and B are usually separated (Figure 4.4(a)).
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Table 4.1: Cross Validation Accuracy on Sound Benchmarks

Classification Type Accuracy
Music, Conversation, Noise 98.4535%

Speaker Gender 76.319%
Music Genre 40.3452%

Figure 4.4: Grouping based on acoustic ambience: (a) users A and B’s acoustic
ambiences’ similarity. (b) users A and C’s acoustic ambiences’ similarity.

(2) Visual Grouping

As mentioned earlier, acoustic ambience alone is not a reliable indicator of social

groups. Similarity in visual ambience, including light intensity, surrounding color,

and objects, can offer greater confidence on the phone’s context Azizyan et al.

(2009b). We describe our visual grouping schemes here.

Grouping through Light Intensity. In some cases, light intensities vary across

different areas in a social setting. Some people may be in an outdoor porch, others
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in a well-lit indoor kitchen, and still others in a darker living room, watching TV.

We implemented light-based grouping using analogous similarity functions as used

with sound. However, we found that the light intensity is often sensitive to the user’s

orientation, nearby shadows, and obstructions in front of the camera. To achieve ro-

bustness, we conservatively classified light intensity into three classes, namely, bright,

regular, and dark. Most phones were associated to any one of these classes; some

phones with fluctuating light readings, were not visually-grouped at all. Figure 4.5

illustrates samples from three light classes from the social gathering at the university.

Figure 4.5: Grouping based on light intensity – samples from 3 intensity classes.

Grouping through View Similarity. A second way of visual grouping per-

tains to similarity in the images from different phone cameras. Multiple people may

simultaneously look at the person making a wedding toast, or towards an entering

celebrity, or just towards the center of a table with a birthday cake on it. MoVi

intends to exploit this opportunity of common view. To this end, we use an image

generalization technique called spatiogram Birchfield and Rangarajan (2005). Spa-

tiograms are essentially color histograms encoded with spatial information. Briefly,

through such a representation, pictures with similar spatial organization of colors and

edges exhibit high similarity. The second order of spatiogram can be represented as:

hIpbq “ xnb, µb, σby, b “ 1, 2, 3 ¨ ¨ ¨B
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where nb is the number of pixels whose values are in the bth bin (each bin is a range

in color space), and µb and σb are the mean vector and covariance matrices, respec-

tively, of the coordinates of those pixels. B is the number of bins. Figures 4.6(a)

and (b) show the view from two phones while their owners are playing a multi-player

video-game on a projector screen. Both cameras capture the screen as the major

part of the picture. Importantly, the views are from different instants and angles,

yet, the spatiogram similarities are high. Comparing to the top two pictures, the

views in Figure 4.6(c) and (d) are not facing the screen, therefore exhibiting a much

lower view similarity.

Figure 4.6: Grouping based on view similarity – top two phones (a, b) are in the
same group watching video games, while the bottom two (c, d) are in the same room
but not watching the games..

The MoVi server mines through the acoustic and visual information (offline), and

combines them to form a single audio-visual group. View similarity is assigned high-

90



est priority, while audio and light intensity are weighed with a lower, equal priority.

This final group is later used for collaboratively inferring the occurrence of events.

Towards this goal, we proceed to the discussion of event-triggers.

4.3.2 Trigger Detection

From the (recorded) multi-sensory information, the MoVi server must identify pat-

terns that suggest events of potential social interest. This is challenging because of

two factors. First, the notion of interesting is subjective; second, the space of social

events (defined by human cognition) is significantly larger than what today’s sens-

ing/inferring technology may be able to discern. We admittedly lower our targets,

and try to identify some opportunities to detect event-triggers. We design three cat-

egories, namely (1) Specific Event Signature, (2) Group Behavior Pattern, and (3)

Neighbor Assistance.

(1) Specific Event Signatures

These signatures pertain to specific sensory triggers derived from human activities

that, in general, are considered worth recording. Examples of interest include, laugh-

ter, clapping, shouting, whistling, singing, etc. Since we cannot enumerate all pos-

sible events, we intend to take advantage of collaboration using triggers related to

group behavior instead of relying heavily on specific event signatures. Therefore,

as a starting point, we have designed specific acoustic signatures only for laugh-

ter Kennedy and Ellis (2004) using MFCC. Validation across a sample of 10 to 15

minutes of laughter, from 4 different students, offered evidence that our laughter-

signature is robust to independent individuals. Negative samples are human con-

versation and background noise. Figure 4.7 shows the distribution of self-similarity

between laughter-samples and cross similarity between laughter and other negative
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samples. In other words, the laughter samples and negative samples form different

clusters in the 12 dimensional space. We achieved a cross-validation accuracy of 76%

on our benchmark.

Figure 4.7: The CDFs show the distances between pairs of laugh samples, and
distances between laugh and other sound samples.

(2) Group Behavior Pattern

The second event-trigger category exploits similarity in sensory fluctuations across

users in a group. When we observe most members of a group behaving similarly,

or experiencing similar variances in ambience, we infer that a potentially interesting

event may be underway. Example triggers in this category are view similarity detec-

tion, group rotation, and acoustic-ambience fluctuation.

Unusual View Similarity. When phone cameras are found viewing the same

object from different angles, it could be an event of interest (EoI). As mentioned

earlier, some examples are people watching the birthday cake on a table, paying

92



attention to a wedding toast, or everyone attracted by a celebrity’s arrival. Recall

that view-similarity was also used as a grouping mechanism. However, to qualify as

a trigger, the view must remain similar for more than a threshold duration. Thus,

augmenting the same notion of spatiogram with a minimum temporal correlation

factor, we find good event-triggers. In Figure 4.8, each curve shows a pairwise simi-

larity between two views in a group. The arrows show the two time-points at which

three (2 pairs) out of four users are watching the same objects, that is i.e. their views

show higher similarity than the threshold (empirically set as 0.75). Those three users

are all triggered at the two time-points. Of course, such a trigger may be further

correlated with other similarities in the acoustic and motion domains. Multi-sensor

triggers is a part of our ongoing work.

Figure 4.8: Pair-wise view similarity, at least among 3 phones, qualifies as a video
trigger. Users 3, 1, and 4 are all above the threshold at around 4100 seconds; users
3, 1, and 2 see a trigger at around 4500 seconds.
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Group Rotation. An interesting event may prompt a large number of people

to rotate towards the event (a birthday cake arrives on the table). Such “group

rotation” – captured through the compasses in several modern phones – can be used

as a trigger. If more than a threshold fraction of the people turn within a reasonably

small time window, MoVi considers this a trigger for an interesting event. For this,

the compasses of the phones are always turned on (we measured that the battery

consumption is negligible). The compass-based orientation triggers are further com-

bined with accelerometer triggers, indicating that people have turned and moved

together. The confidence in the trigger can then be higher. Such a situation often

happens, e.g., when a break-out session ends in a conference, and everyone turns

towards the next speaker/performer.

Ambience Fluctuation. The general ambience of a social group may fluctuate

as a whole. Lights may be turned off on a dance floor, music may be turned on,

or even the whole gathering may lapse into silence in anticipation of an event. If

such fluctuations are detectable across multiple users, they may be interpreted as a

good trigger. MoVi attempts to make use of such collaborative sensor information.

Different thresholds on fluctuations are empirically set – with higher thresholds for

individual sensors, and relatively lower for joint sensing. The current goal is to satisfy

a specific trigger density, no more than two triggers for each five minutes. Of course,

this parameter can also be tuned for specific needs. Whenever any of the sensor’s

reading (or combined) exceed the corresponding threshold, all the videos from the

cameras become candidates for inclusion in the highlights. Figure 4.9 shows an

example of the sound fluctuation in time domain, taken from the SmartHome visit.

The dark lines specify the time-points when the average of one-second time windows

exceed a threshold. These are accepted as triggers. The video-clips around these

time-points are eventually “stitched” into the video highlights.
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Figure 4.9: The fluctuations in the acoustic ambience are interpreted as triggers
(time-points shown in black lines).

(3) Neighbor Assistance

The last category of event-trigger opportunistically uses human participation. When-

ever a user explicitly takes a picture from the phone camera, the phone is programmed

to send an acoustic signal, along with the phone’s compass orientation. Other cam-

1 2 3

1 2 3 4

4

Figure 4.10: View selection based on a multiple sensing dimensions. The first view
is chosen for inclusion in the highlights because of its better lighting quality, more
number of distinct human faces, and less acceleration.
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eras in the vicinity overhear this signal, and if they are also oriented in a similar

direction, the videos from the camera are recruited as candidates for highlights. The

intuition is that humans are likely to take a picture of an interesting event, and

including that situation in the highlights may be worthwhile. In this sense, MoVi

brings the human into the loop.

4.3.3 View Selection

The view selection module is tasked to select videos that have a good view. Given

that cameras are wearable (taped on shirt pockets in our case), the views are also

blocked by objects, or pointed towards uninteresting directions. Yet, many of the

views are often interesting because they are more personal, and captures the per-

spectives of a person. For this, we again rely on multi-dimensional sensing.

Four heuristics are jointly considered to converge on the “best view” among all

the iPods that recorded that event. (1) Face count: views with more human faces

are given the highest priority. This is because human interests are often focused

on people. Moreover, faces ensure that camera is facing a reasonable height, not to

the ceiling or the floor. (2) Accelerometer reading ranking: to pick a stable view,

the cameras with the least accelerometer variance are assigned proportionally higher

points. More stable cameras are chosen to minimize the possibility of motion blurs

in the video. (3) Light intensity: to ensure clarity and visibility, we ranked the views

in the “regular” light class higher, and significantly de-prioritize the darker pictures.

This is used only to rule out extremely dark pictures, which mostly are caused by

blocking. (4) Human in the loop: finally, if a view is triggered by “neighbor assis-

tance”, the score for that view is increased.

Figure 4.10 shows two rows corresponding to two examples of view selection;
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pictures were drawn from different iPod videos during the Thanksgiving party. The

first view in each instance is selected and seems to be more interesting than the

rest of views. Figure 4.11 illustrates the same over time. At each time-point, the

blue circle tags the human selected view while the red cross tags the MoVi select

one. When two symbols overlap, the view selection achieves right result. The most

common reason that view selection fails is that all four views exhibit limited quality.

Therefore, even for human selection, the chosen one is only marginally better.

Figure 4.11: MoVi selects views that are similar to human selected ones.

4.3.4 Event Segmentation

The Event Segmentation module is designed to identify the logical start and end of

an event. A clap after the “happy birthday” song could be the acoustic trigger for

video inclusion. However, the event segmentation module should ideally include the

song as well, as a part of the highlights. The same applies to a laughter trigger;

MoVi should be able to capture the joke that perhaps prompted it. In general, the

challenge is to scan through the sensor data received before and after the trigger,
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and detect the logical start and end that may associate with the trigger.

For event segmentation, we use the sound state-transition, computed during the

sound classification/grouping phase, time as clues Lu et al. (2009). For example,

when laughter is detected during conversation, we rewind on the video, and try to

identify the start of a conversation. Gender based voice classification offers a finer

ability to segment the video – if multiple people were talking, and a women’s voice

prompted the joke, MoVi may be able to identify that voice, and segment the video

from where that voice started. Figure 4.12 shows our key idea for event segmentation.

Figure 4.12: The scheme for segmenting events.

4.4 Evaluation

This section attempts to asses MoVi’s overall efficacy in creating a video highlight.

Due to the subjective/social nature of this work, we choose to evaluate our work by

combining users’ assessment with metrics from information retrieval research. We

describe our experimental set-up and evaluation metrics next, followed by the actual

results.
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4.4.1 Experiment Set-up

Our experiments have been performed in one controlled setting and two natural so-

cial occasions. In each of these scenarios, 5 volunteers wore the iPod video cameras

on their shirts, and clipped the Nokia N95 phones on their belts. Figure 4.13 shows

an example of students taped with iPod Nanos near their shirt pockets. The iPods

recorded continuous video for around 1.5 hours (5400 seconds), while the phones

logged data from the accelerometer, compass, and microphone. In two of the three

occasions, a few phone cameras were strategically positioned on a table or cabinet, to

record the activities from a static perspective. All videos and sensor measurements

were downloaded to the (MATLAB-based) MoVi server. Each video was organized

into a sequence of 1 second clips. Together, the video clips from the volunteers form

a 5 ˆ 5400 matrix, with an unique iPod-device number for each row, and time (in

seconds) indexed on each column. The sensor readings from the phones are similarly

indexed into this matrix. MoVi’s target may now be defined as the efficacy to pick

the “socially interesting” elements from this large matrix.

The MoVi server analyzes the ă device, time ą-indexed sensor readings to first

form the social groups. During a particular time-window, matrix rows 1, 2, and 5

may be in the first group, and rows 3 and 4 in the second. Figure 4.14(2) shows

an example grouping over time using two colors. Then, for every second (i.e., along

each column of the matrix), MoVi scans through the readings of each phone to

identify event triggers. Detecting a possible trigger in an element of the matrix, the

server correlates it to other members of its group. If correlation results meet the

desired threshold, MoVi performs view selection across members of that group. It is

certainly possible that at time ti, phone 2’s sensor readings match the trigger, but

phone 5’s view is the best for recording this event(Figure 4.14(3)). MoVi selects
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Figure 4.13: Users wearing iPods and Nokia phones.

this element ă5, ti ą, and advances to perform event segmentation. For this, the

system checks for the elements along the 5th row, and around column ti. From these

elements, the logical event segment is picked based on observed state-transitions.

The segment could be the elements ă5, ti´1 ą to ă5, ti`1 ą, a 3 second video clip

(Figure 4.14(4)). Many such video clips get generated after MoVi completes a scan

over the entire matrix. These video clips are sorted in time, and “stitched” into

a “movie”. Temporal overlaps between clips are possible, and they are pruned by

selecting the better view.

4.4.2 Evaluation Metrics

We use the metrics of Precision, Recall, and Fall-out for the two uncontrolled exper-

iments. These are standard metrics in the area of information retrieval.

Precision “
|tHuman SelectedXMoVi Selectedu|

|tMoVi Selectedu|
(4.1)
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x x

Figure 4.14: MoVi operations illustrated via a matrix.

Recall “
|tHuman SelectedXMoVi Selectedu|

|tHuman Selectedu|
(4.2)

Fall ´ out “
|tNon-RelevantXMoVi Selectedu|

|tNon-Relevantu|
(4.3)

The “Human Selected” parts are obtained by requesting a person to look through

the videos and demarcate time windows that they believe are worth including in a

highlights. To avoid bias from a specific person, we have obtained time-windows

from multiple humans and also combined them (i.e., a union operation) into a single

highlight4. We will report results for both cases. “Non-Relevant” moments refer to

those not selected by humans. The “MoVi Selected” moments are self evident.

4 For each experiment, one human reviewer has watched one full video from one camera, which
lasts for more than an hour. All video sources from all cameras are covered.
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4.4.3 Performance Results

(1) Controlled Experiment

The aim of the controlled experiment is to verify whether all the components of

MoVi can operate in conjunction. To this end, a weekend gathering is planned with

pre-planned activities, including watching a movie, playing video-games, chatting

over newspaper articles, etc. This experiment is assessed rather qualitatively, en-

suring that the expected known exciting events are captured well. Table 4.2 shows

event-detection results. The first two columns show the designed events and their

occurrence times; the next two columns show the type of triggers that detected them

and the corresponding detection times. Evidently, at least one of the triggers were

able to capture the events, suggesting that MoVi achieves a reasonably good event

coverage. However, it also included a number of events that were not worthy of

recording (false positives). We note that the human-selected portions of the video

summed up to 1.5 minutes (while the original video was for 5 minutes). The MoVi

highlights covered the full human-selected video with good accuracy (Table 4.3), and

selected an additional one minute of false positives. Clearly, this is not a fair evalua-

tion, and will be drastically different in real occasions. However, it is a sanity check

that MoVi can achieve what it absolutely should.

(2) Field Experiment: Thanksgiving Party

The two field experiments were performed to understand MoVi’s ability to create a

highlights in real social occasions. This is significantly more challenging in view of

a far larger event space, potentially shaking cameras from real excitement, greater

mobility within the party, background music, other noise in the surroundings, etc.

The first experiment was at a Thanksgiving party, attended by 14 people. Five at-

tendants were instrumented with iPods and phones. After the party, videos from

the five cameras were distributed to five different people for evaluation. Manually
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Table 4.2: Per-Trigger results in single experiment (false positives not reported)

Event Truth Time Trigger Det. Time

Ringtone 25:56 RT, SF 25:56
All watch a game 26:46 IMG 27:09

Game sound 26:58 SF 27:22
2 users see board 28:07 IMG 28:33
2 users see demo 28:58 SF 29:00

Demo ends 31:18 missed
Laughing 34:53 LH, SF 34:55
Screaming 36:12 SF 36:17

Going outside 36:42 IMG, LI 37:18

RT:ringtone SF:sound fluctuation LI:light intensity
IMG:image similarity LH:fingerprint

Table 4.3: Average Trigger Accuracy and Event Detection latency (including false
positives)

Triggers Coverage Latency False Positive.
RT 100% 1 second 10%

IMG 80% 30 seconds 33%
LH 75% 3 seconds 33%
LI 80% 30 seconds 0%
SF 75% 5 second 20%

selecting the highlights from the full-length video was unanimously agreed to be a

difficult and annoying task (often done as a professional service). However, with

help from friends, we were able to obtain the Human Selected moments. The MoVi

generated highlights were also generated, and compared against the manual version.

Figure 4.15 shows the comparative results at the granularity of one second. The

X-axis models the passage of time, and the Y-axis counts the cumulative highlights

duration selected until a given time. For instance, Y-axis = 100 (at X-axis = 1200)

implies that 100 seconds of highlights were selected from the first 1200 seconds of the

party. Figure 4.16 presents a zoom-in view for the time windows 2700-3500 and 1000-

1400 seconds. We observe that the MoVi highlights reasonably tracks the Human
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Figure 4.15: Comparison between MoVi and human identified event list (Thanks-
giving)

Selected (HS) highlights. The curve (composed of triangles) shows the time-points

that both MoVi and HS identified as interesting. The non-overlapping parts (i.e.,

MoVi selects that time, but HS does not) reflect the false positives (curve composed

of squares).

Figure 4.16: Zoom in view for two parts of Figure 4.15. Dark gray: MoVi, light
gray: human selected
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Figure 4.17: Comparison between MoVi and human identified event list
(SmartHome)

Based on this evaluation, we computed the overall Precision to be 0.3852, Recall

to be 0.3885, and Fall-out to be 0.2109. Notice that the overall precision is computed

by using the union of all human selected video as the retrieval target. Therefore,

if a moment is labeled as interesting by one user, it is considered interesting. We

also compared the improvement over a random selection of clips (i.e., percentage

of MoVi’s overlap with human (MoH) minus percentage of Random’s overlap with

Human (RoH), divided by RoH). MoVi’s improvement is 101% on average.

In general, the false positives mainly arise due to two reasons: (1) Falsely de-

tected triggers: since the sensor-based event detection method cannot achieve 100%
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accuracy, false positives can occur. Since we assign more weight to infrequently hap-

pening triggers such as laughter, we trade off some precision for better recall. (2)

Subjective choice: the user reviewing the video may declare some of the events (even

with triggers) as not interesting. Since this is a subjective judgment, false positive

will occur.

Table 4.4 shows the per-user performance when the MoVi highlights is compared

with individual user’s selections. Since each user only selects a very small portion of

the entire video, according to equation 4.1, the computed precision is expected to be

low. As a result, Recall and performance gains over the Random scheme are more

important metrics in this case. The average improvement proves to be 101%.

The results are clearly not perfect, however, we believe, are quite reasonable. To

elaborate on this, we make three observations. (1) We chose a strict metric wherein

MoVi-selected clips are not rewarded even if they are very close (in time) to the Hu-

man Selected clips. In reality, social events are not bounded by drastic separations,

and are likely to “fade away” slowly over time. We observed that MoVi was often

close to the human selected segments; but was not rewarded for it. (2) We believe

that our human selected videos are partly biased – all users enthusiastically picked

more clips towards the beginning, and became conservative/impatient over time. On

the other hand, MoVi continued to automatically pick videos based on pure event-

triggers. This partly reduced performance. (3) Finally, we emphasize that “human

interest” is a sophisticated notion and may not always project into the sensing do-

mains we are exploring. In particular, we observed that humans identified a lot of

videos based on the topics of conversation, based on views that included food and

decorative objects, etc. Automatically detecting such interests will perhaps require

sophisticated speech recognition and image processing. In light of Google’s recent
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launch of the Google Goggles, an image search technology, we are considering its

application to MoVi. If MoVi searches its camera pictures through Google Goggles,

and retrieves that the view is of a wedding dress, say, it could be a prospective trig-

ger. Our current triggers are unable to achieve such levels of distinction. Yet, the

MoVi-generated highlights was still interesting. Several viewers showed excitement

at the prospect that it was generated without human intervention.

Table 4.4: Per-user performance (Thanksgiving party)

User Precision Recall Fall-out Over Random
1 21% 39% 23% 51%
2 5% 33% 12% 162%
3 9% 37% 25% 46%
4 18% 74% 20% 222%
5 4% 22% 17% 26%

Field Experiment: SmartHome Tour

The Duke SmartHome is a live-in laboratory dedicated to innovation and demonstra-

tion of future residential technology. Eleven members of our research group attended

a guided tour into the SmartHome. Five users wore the iPods and carried the N95

phones. Figure 4.17 shows the results.

In this experiment, the human highlights creator did not find too many interest-

ing events. This was due to the academic nature of the tour with mostly discussions

and references to what is planned for future. The human selected moments proved

to be very sparse, making it difficult to capture them precisely. MoVi’s Precision

still is 0.3048, Recall is 0.4759, and Fall-out is 0.2318. Put differently, MoVi captured

most of the human selected moments but also selected many other moments (false

positives). Compared to Random (discussed earlier), the performance gain is 102%

on average. Table 4.5 shows the performance when manual highlights was created
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from the union of multiple user-selections.

Table 4.5: Per-user performance (SmartHome)

User Precision Recall Fall-out Over Random
1 21% 62% 23% 124%
2 19% 45% 25% 67%
3 6% 50% 22% 116%

In summary, we find that inferring human interest (especially semantically de-

fined ones) is hard. Although this is a current limitation, MoVi’s trigger mechanism

can capture most events that have an explicit sensor clue. The highlighted video

is of reasonably good quality in terms of camera-angle, lighting, and content. Al-

though not a human-videographer replacement, we believe that MoVi can serve as

an additional tool to complement today’s methods of video-recording and manual

editing.

4.5 Related Work

The ideas, algorithms, and the design of MoVi is drawn from a number of fields in

computer science and electrical engineering. Due to limited space, it is difficult to

discuss the entire body of related work in each of these areas. We discuss some of

the relevant papers from each field, followed by works that synthesize them on the

mobile computing platform.

Wearable Computing and SenseCam. Recent advances in wearable devices

are beginning to influence mobile computing trends. A new genre of sensing devices

is beginning to blend into the human clothing, jewelry, and in the social ambi-

ence. The Nokia Morph Virpioja et al. (2007), SixthSense camera-projectors Mistry.

(2009), LifeWear, Kodak 1881 locket camera, and many more are beginning to enter
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the commercial market. A large number of projects, including MIT GroupMedia,

Smart Clothes, AuraNet and Gesture Pendant Mann (1997); ?); ? have exploited

these devices to build context-aware applications. Microsoft Research has recently

developed SenseCam, a wearable camera equipped with multiple sensors. The cam-

era takes a photo whenever the sensor readings meet a specified degree of fluctuations

in the environment (e.g., change in light levels, above-average body heat). The pho-

tos are later used as a pictorial diary to refresh the user’s memory, perhaps after a

vacation Berry et al. (2007). MoVi draws from many of these projects to develop a

collaborative sensing and event-coverage system on the mobile phone platform.

Computer Vision. Researchers in Computer Vision have studied the possibility

of extracting semantic information from pictures and videos. Of particular interest

are works that use audio-information to segment video into logical eventsZhang and

Kuo (1998); Baillie and Jose (2004). Another body of work attempts scene under-

standing and reconstruction Li et al. (2008) by combining multiple views of the same

scene/landmark to a iconic scene graph. On a different direction, authors in Ke et al.

(2006) have investigated the reason for longer human-attention on certain pictures;

the study helps in developing heuristics that are useful to shortlist “good” pictures.

For instance, pictures that display greater symmetry, or have a moderate number

of faces (identifiable through face recognition), are typically viewed longer Nilsson

et al. (2007). Clearly, MoVi is aligned to take advantage of these findings. We are by

no means experts in Computer Vision, and hence, will draw on the existing tools to

infer social events and select viewing angles. Additional processing/algorithms will

still be necessary over the other dimensions of sensing.

Information Retrieval. Information retrieval (IR) Baeza-Yates and Ribeiro-

Neto (1999) deals with the representation, storage, and organization of (and access
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to) information items. Mature work in this area, in collaboration with Artificial

Intelligence (AI) and Natural Language Processing (NLP), have attempted to inter-

pret the semantics of a query, and answer it by drawing from disparate information

sources Grossman and Frieder (2004). Some research on mobile information retrieval

Carpineto et al. (2009) have focused on clustering retrieval results to accommodate

small display devices. Our objective of extracting the “highlights” can be viewed as

a query, and the mobile phone sensors as the disparate sources of information. MoVi

is designed to utilize metrics and algorithms from information retrieval.

Sensor Network of Cameras. Recently, distributed camera networks have

received significant research attention. Of interest are projects that observe and

model sequences of human activity. For example, BehaviorScope Teixeira and Sav-

vides (2007) builds a home sensor network to monitor and help elders that live home

alone. Distributed views are used to infer networked cameras’ locations. Smart

cameras Bramberger et al. (2004) are deployed to track real time traffic load. These

works provide us useful models to organize information from multiple sensors/mobile

nodes in a manner that will provide good coverage and correlation.

People-Centric Sensing. In mobile computing, people-centric, participatory

sensing through mobile devices are gaining rapid popularity. Example applications

include CenseMe Miluzzo et al. (2008), which detects the user’s activity status

through sensor readings and shares this status over online social networks. Sound-

Sense Lu et al. (2009) implements audio processing and learning algorithms on the

phone to classify ambient sound types – the authors propose an audio journal as an

application. While these systems are individual specific, others correlate informa-

tion from multiple sources to generate a higher level view of the environment. PEIR,

Micro-Blog, Urban Tomography Mun et al. (2009), are few examples in this area.
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Our work may be considered a mash-up of diverse techniques that together

realize a fuller system. Customizing the techniques to the target application often

presents new types of research challenges that are imperceptible when viewed in iso-

lation. As an example, deducing human collocation based on ambient acoustics have

been a studied problem Eagle (2003). Yet, when applied to the social context, two

physically nearby individuals may be participating in conversations in two adjacent

dinner tables. Segregating them into distinct social groups is non-trivial. MoVi

makes an attempt to assimilate the rich information feeds from mobile phones and

process them using a combination of existing techniques drawn from vision, data-

mining, and signal processing. In that sense, it is a new mash-up of existing ideas.

Our novelty comes from the collaboration of devices and the automatic detection of

interesting events. Our preliminary ideas have been published in Bao and Choudhury

(2009).

4.6 Limitations and Ongoing Work

MoVi is a first step towards a longer term project on collaborative sensing in social

settings. The reported work has limitations, several of which stem from the non-

trivial nature of the problem. We discuss these limitations along with avenues to

address some of them.

Retrieval accuracy. The overall precision of our system certainly has room

for improvement. Since “human interest” is a semantically sophisticated notion, to

achieve perfect accuracy is challenging. However, as an early step towards social

event retrieval, the precision of around 43% can be considered encouraging Gross-

man and Frieder (2004); Lew et al. (2006); Baillie and Jose (2004).
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Unsatisfying camera views. Though view selection is used, cameras in a

group may all have unsatisfying views of a specific event. The video highlights

for these events exhibit limited quality. This problem can be partly addressed by

introducing some static cameras into the system to provide a degree of all-time per-

formance guarantee. The ideas in this chapter can be extended to these static wall

mounted/wearable cameras equipped with multiple sensors.

Energy consumption. Continuous video-recording on the iPod Nanos persists

for less than 2 hours. The mobile phone sensors can last for around 4 hours. Thus,

in parallel to improving our event detection algorithms, we are beginning to consider

energy as a first class design primitive. One option is to explore peer to peer coordi-

nation among phones – few phones may monitor a social zone, allowing other phones

to sleep. Lightweight duty cycling, perhaps with periodic help from the server, is a

part of our future effort.

Privacy. User privacy is certainly a concern in a system like MoVi. For this

chapter, we have assumed that attendants in a social party may share mutual trust,

and hence, may agree to collaborative video-recording. This may not scale to other

social occasions. Certain other applications, such as travel blogging or distributed

surveillance may be amenable to MoVi. Even then, the privacy concerns need to be

carefully considered.

Greater algorithmic sophistication. We have drawn from preliminary ideas,

tools, and algorithms, in data mining, information retrieval, signal processing, and

image processing. A problem such as this requires greater sophistication in these al-

gorithms. Our ongoing work is focused towards this direction, with a specific goal of

prioritizing among different event triggers. One advantage of prioritizing will permit
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relative ranking between event-triggers; this may in turn allow for creating MoVi

highlights for a user-specified duration. At present, the MoVi highlights are of a

fixed duration.

Dissimilar movement between phones and iPods. We often observed that

the acceleration in the phone was not necessarily correlated to the vibration in the

video-clip. This is a result of the phone being on the belt and the iPod taped to

the chest. Sensors on different parts of the body may sense differently, leading to

potential false positives. One possibility is to apply image stabilization algorithms

on the video itself to gain better view quality.

4.7 Conclusion

this chapter explores a new notion of “social activity coverage”. Like spatial cov-

erage in sensor networks (where any point in space needs to be within the sensing

range of at least one sensor), social activity coverage pertains to covering moments

of social interest. Moreover, the notion of social activity is subjective, and thus iden-

tifying triggers to cover them is challenging. We take a first step through a system

called Mobile Phone based Video Highlights (MoVi). MoVi collaboratively senses

the ambience through multiple mobile phones and captures social moments worth

recording. The short video-clips from different times and viewing angles are stitched

offline to form a video highlights of the social occasion. We believe that MoVi is

one instantiation of social activity coverage; the future is likely to witness a variety

of other applications built on this primitive of collaborative sensing and information

distillation.
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5

Conclusion and Future Work

We conclude this thesis with a summary of the overall research goals and a discus-

sion about future work directions. My research goal is to explore the techniques

that can support the next generation of mobile systems that can change the way

people acquire, process and digest information. The leading companies in the mo-

bile industry are already offering intelligent applications (e.g., googlenow, passbook)

that aim to provide the exactly needed information at the correct time and location

right at the user’s finger tips. Future applications will continue this trend and even

further blur the information boundary between the physical world and online spaces.

Information in the physical world will be automatically perceived by sensors, instan-

taneously transmitted to the cloud, processed and presented to human users in the

most informative yet meaningful manor.

For example, when a future tourist comes to NYC, her personal device should be

able to plan a best tour route based on her interests and what shows or games are

currently being held in the city. The system should also help her navigate through

any part of the city without trouble, even inside the Metropolitan museum or at
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the platforms of NY subway. Whenever her attention is attracted by any scene, a

beautifully structured building or a street performer with bizarre outfits, the system

should capture that moment and tag it with meaningful descriptions. Around dinner

time, the system may recommend the restaurant that best suits her taste, health

constraints, and exhibits the right social dynamics (e.g., filled with people of similar

tastes and engaging in interesting conversations). When she finally goes back to her

hotel room, the system can optimize the room settings to suit her current status (e.g.,

dimmed lighting for better sleep). All the operations should be tailored to the user’s

taste to avoid being excessive or intrusive. In other words, human users should be

liberated from both the struggle of seeking information and the burden of distilling

it. The materialization of this vision entails many challenges and calls for innovations

across different research domains in computing. The following sections elaborate on

my visions in designing applications, integrating machine learning techniques and

preserving user privacy.

Small Apps: Achieve Detailed Activity Recognition

In my future research, I would like to investigate how we can enable applications

to further understand users’ behaviors in deep details. Previous work has exploited

context information for general activity recognition (e.g., movement modality, house

activities). However, a gap still exists between the explored territory of general ac-

tivities and the demand for detailed understanding of micro-activities (e.g., users’

reactions during reading). One way to gradually bridge this gap is to pinpoint spe-

cific scenarios that can benefit the most from user behavioral analysis and tailor the

machine learning methods for each scenario specifically.

My latest work on automatic content rating reflects my effort along this direction.

The goal of this project is to identify how much a user likes a video through sensing
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her reactions while she is watching the video on mobile devices. Example reactions

range from acoustic signatures of laughter to detect which scenes were funny, to

the stillness of the tablet indicating intense drama. The final output of the system

provides detailed ratings for each segment of the video, giving viewers informative

hints about the quality of a video. This work is an example of how we can identify

relations between sensing information and detailed activities and use them towards

a specifically defined goal.

Big Data: Integrate Machine Learning with the Cloud

With mobile applications relying more on multi-dimensional sensing, it is time to

adopt machine learning modules in the system design. One potential direction for

such adoption is to integrate machine learning with cloud based platforms. This

cross-application platform should be able to analyze sensing data collected from mo-

bile devices in large-scale and allow applications to exchange data as well as the

learned semantics. For example, a traffic analysis application can benefit from valu-

able insights of a driving detection application. Knowing how people are driving at a

particular region can certainly facilitate deduce the traffic conditions. A cloud-based

platform can help such two applications to collaborate by sharing data, classifiers and

inference results, and eventually enable modularized cross-application development.

Privacy Concern: Preserve Privacy by Analyzing Inferences

With mobile devices capable of collecting massive sensing data, the privacy concern

has caught unprecedented attention. Current practice of explicitly asking users’ per-

mission achieves little to alleviate the situation. The uncomprehensive descriptions

of privacy permissions can rarely help the user to make their intended decisions.

Moreover, the static settings have not taken into account the correlation between

different sensing dimensions, leaving rooms of potential information leakage through
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cross inferences (e.g., a malware can infer sensitive locations from WiFi information,

bypassing the related privacy settings).

In my opinion, the solution lies in in-depth analysis of sensing information sources.

By closely analyzing the relations between sensing data and activities, we can not

only understand how different sources correlate with each other, but also acquire

detailed knowledge about what features in each information source are the most crit-

ical for activity inferences. With such understanding, we could provide users with

comprehensive descriptions of permissions, preserve privacy by holding important

features of sensing data, and automatically personalize each user’s privacy setting

that fits their true intention by knowing their preference towards different activities.
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