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Abstract

The study of dynamics on networks has been a major focus of nonlinear science over

the past decade. Inferring network properties from the nodal dynamics is both a chal-

lenging task and of growing importance for applied network science. A subset of this

broad question is: How can one determine changes to the coupling strength between

elements in a small network of chaotic oscillators just by measuring the dynamics of

one of the elements (nodes) in the network? In this dissertation, I propose and report

on an implementation of a method to simultaneously determine: (1) which link is af-

fected and (2) by how much it is attenuated when the coupling strength along one of

the links in a small network of dynamical nodes is changed. After proper calibration,

realizing this method involves only measurements of the dynamical features of a single

node.

Previous attempts to solve this problem focus mainly on synchronization-based ap-

proaches implemented in low-speed, homogeneous experimental systems. In contrast,

the experimental apparatus I use to implement my method comprises two high-speed

(ps-timescale), heterogeneous optoelectronic oscillators (OEOs). Each OEO constitutes

a node, and a network is formed by mutually coupling two nodes. I find that the cor-

relation properties of the chaotic dynamics generated by the nodes, which are heavily

influenced by the propagation time delays in the network, change in a quantifiable

way when the coupling strength along either the input or output link is attenuated. By

monitoring multiple aspects of the correlation properties, which I call “time delay sig-

natures” (TDSs), I find that the affected link can be determined for changes in coupling

strength greater than 20%± 10%. Due to the sensitivity with which the TDSs change,

it is also feasible to determine approximately the time-varying coupling strength for

large enough attenuations.
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I also verify that the TDSs’ sensitivity to changes in coupling strength are captured

by a simple deterministic model that takes into account each OEO’s nonlinearities,

bandpass filtering, and time delays. I find qualitative agreement between my experi-

mental observations and numerical simulations of the model and also use the model

to explore the dependence of the TDS signature on the OEO heterogeneity. I find

that making the time delays identical leads to larger changes in TDSs, which improves

the precision with which the coupling strength can be determined. This also leads,

however, to a decrease in the ability to determine which link has been attenuated,

indicating that a balance must be struck between optimizing the network’s ability to

discern the new coupling strength and the affected link. To investigate the role of the

nonlinearity, I again test my method numerically using the same delay-coupled topol-

ogy, but with dynamics generated by a linear stochastic process. I find that sensing

can be achieved in the absence of nonlinear effects, but that, with regards to determin-

ing which link is affected, the performance is optimized differently in the linear and

nonlinear cases.

This method could be extended to design a low-profile intrusion detection system,

where several OEOs are spread around a scene and wirelessly coupled via antennas.

The ultra-wide-band signals emitted by the nodes (OEOs) can pass through building

materials with little attenuation, but would be strongly attenuated by a person who

enters the path between two nodes. Beyond practical applications, it also remains to

be seen if TDSs could prove to be a simple way to analyze information flow in networks

with chaotic dynamics and propagation delays between the nodes.
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Chapter 1

Introduction

The universe is composed of dynamical systems, many of which are nonlinear and

none of which are truly isolated from one another. As such, the last decade has seen

the merging of two fields (nonlinear dynamics and complex networks) into the study

of dynamics on networks. A few of the many fundamental questions that interest

dynamical network scientists are: How do you determine the topological properties of

a network from the dynamics of its nodes (the so-called “network inverse problem”)?

How does information flow in a network? How does the finite propagation time of

information impact the resulting dynamics and our ability to discern the network’s

properties?

These problems are relevant and interesting because networks, which are a collec-

tion of nodes connected by links, are ubiquitous both in nature (e.g., gene regulatory

networks, food webs, the brain) and in human-made structures (e.g., transportation

networks, power grids, financial markets). Additionally, many networks have dynam-

ics with timescales as fast or faster than the propagation time between nodes, which

means that the propagation time cannot be neglected and further complicates their

interaction.

This dissertation relates to a subset of these broader questions: How can one deter-

mine changes to the coupling strength between elements in a small network of chaotic

oscillators by measuring the dynamics of just one of the elements (nodes) in the net-

work? Besides the fundamental implications for network science, this work is also

partially motivated by the desire to exploit chaotic dynamical systems to build novel
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sensor networks. My contribution to this field is based on the idea that properties

of the dynamics change as a node is decoupled from the network (e.g., due to the

presence of an “intruder”), and that these properties change differently depending on

precisely how it is decoupled (e.g., where the intruder enters). The particular dynami-

cal characteristics I focus on are termed “time-delay signatures” (TDSs), which, as the

name implies, are features due to the inherent propagation delays in my network. I

find that TDSs are sensitive to the network properties and can be used in a simple way

to diagnose changes to the network. Furthermore, my method to “sense” changes in

network properties is applicable to high-speed (ps-timescale) dynamics.

In this first chapter, I give a general overview of chaos and networks. I also motivate

the choice of the experimental device central to this dissertation: the optoelectronic

oscillator (OEO). Finally, I briefly present the main results presented in this disserta-

tion.

1.1 Chaos and networks

It was once a common belief that if all the forces on a classical system could be un-

derstood fully, then the future behavior of the system would be known for all time.

This is now often referred to as the “Laplacian view,” after the Pierre Simon Laplace.

There is, however, something that Laplace’s argument was missing: There is more to

the prediction game than just knowing the rules (e.g. the equation of motion of the

system). When the dynamics are chaotic, which can happen when the equations of

motion are nonlinear, one also needs to know the exact starting point in order to win.

Since this is impossible to realize, long-term predictability of nonlinear, deterministic

systems cannot be guaranteed. Or, as Motter and Campbell recently wrote in a review

article appearing in Physics Today celebrating the 50th anniversary of the "discovery"
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of chaos in a dissipative dynamical system, “Determinism, surprisingly enough, does

not preclude chaos” [1].

The way chaotic dynamics defy predictability is through sensitive dependence on

initial conditions, popularly known as the “butterfly effect” [2]. This means that if

identical chaotic systems are initialized with arbitrarily small differences in their initial

conditions, then the difference between the states of the two systems grows exponen-

tially with time. On the surface, the unpredictable nature of chaos may make appli-

cations of, or even experimentation with, chaotic systems seem hopeless. However,

despite its unpredictability, researchers have found ways to reliably characterize and

exploit chaotic dynamics.

While the dynamics of isolated individual systems are important to understand,

it is also important to determine how these dynamics are influenced when two or

more systems are coupled together to form a network. A network is a mathematical

representation of a collection of systems, called nodes or vertices, that interact with

one another via links or edges [3]. An example of a network diagram is shown in Fig.

1.1(a), where the nodes are represented with circles and the links are represented with

lines. This network is: directional, with the direction of information propagation along

the links shown with arrows; weighted, where the interactions that take place via each

of the links can have varying strengths ci j; and time-delayed, with the propagation

time along each link given by τi j.

While commonly occurring networks typically have large numbers of nodes, these

networks often have a community structure where, due to structure or function, certain

nodes can be grouped together, and this subset of the network can be analyzed to

provide insight to the network as a whole [4]. Furthermore, researchers have found

that, out of all of the possible three-node networks, some appear as sub-networks

of real-life networks more frequently than random chance would predict [5]. These
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“motifs” are thought to have increased information processing capabilities. Both of

these properties motivate controlled studies of smaller networks, with hopes that, as

basic building blocks, they can provide insights to the behavior of larger networks.

I study a system that lies at the intersection of these two fields: a two-node, di-

rected network, where each of the nodes exhibits chaotic dynamics. I am interested in

how features of the dynamics at each of the nodes change as each of the link weights

that connect the two nodes are tuned from fully coupled to fully uncoupled. In do-

ing so, I find that the dynamics of just one of the nodes can, under the appropriate

circumstances, provide information about the global network properties. In principle,

this technique to infer global network properties can be extended to larger networks,

although one may have to measuring the dynamics of more than one of the nodes.

1.2 Why use OEOs?

My experiment comprises two OEOs, which I describe in detail in Ch. 2. For now, it is

important to know that each OEO has a nonlinear element, a time-delayed feedback

loop, and a delay-coupled output and input. Time delays are known to induce insta-

bilities in experimental systems and were originally considered to be nuisances that

should be avoided or controlled [6]. In the 1980s, however, researchers began to re-

alize that time-delay induced instabilities could provide insight about the fundamental

physics of the devices and that their resulting dynamics could be useful [6]. Further-

more, in applications with high-speed dynamics, time delays due to signal propagation

often cannot be ignored, making the study of their effects essential.

While semiconductor lasers with feedback are a popular system of choice for study-

ing nonlinear systems with delays, OEOs have the advantages that the nonlinearity is

simpler to model and agreement between experiments and theory are typically excel-
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lent [7]. Additionally, the chaos generated by these devices has noise-like properties

and a large bandwidth (20 kHz to 10 GHz), making it an attractive candidate for many

low-profile and high-speed applications [8, 9]. Thus, OEOs have recently become a

standard bench-top tool to investigate fundamental interactions between nonlinear-

ities and delay, as well as to demonstrate proof of principles for various applications

[10]. I extend the utility of these devices to study chaotic dynamics on a small network

and show its potential usefulness as a node in a sensor network.

1.3 Overview of thesis

In this dissertation, I investigate a method I developed to sense changes in the proper-

ties of a network via three different implementations: experimentation with the phys-

ical system comprising two OEOs, numerical simulation of a simplified model of the

network of OEOs, and numerical analysis of a network of stochastic maps with time-

delayed feedback and coupling. I introduce several characteristics of nonlinear and

time-delayed dynamical systems in Ch. 2, as well as describe the dynamics of single

OEOs that have been analyzed by other researchers and myself. The chapter culmi-

nates with my discovery that particular properties of the chaotic dynamics, its TDSs,

are sensitive to changes in the OEO parameters. Next, I describe other researchers’

attempts to extract information about the properties of a network by manipulating the

dynamics of the nodes in Ch. 3, focusing in particular on the experimental work by

Cohen et al. [11, 12].

I then present my experimental findings in Ch. 4. First, I show that the behav-

ior of the TDSs are sensitive to the coupling strengths along the links of the network.

Then I describe a method by which, under the appropriate conditions, an observer can

determine: (1) which link is affected, and (2) by how much it is attenuated through
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Figure 1.1: Brief illustration of sensing method. (a) To calibrate the network for

sensing, the coupling strength along each link, ci j, is independently varied from 0 to

1, while representative time series of the dynamics of one node are recorded. (b) The

dynamics of the same node are recorded as an unknown change is made to one of the

coupling strengths. (c) Quantitative measures, which I call “observables,” are extracted

from the time series and compared against the calibration to determine link location

and coupling strength.

6



monitoring changes in TDSs. This method is briefly illustrated in Fig. 1.1. I find ex-

perimentally that sensing can be achieved for an attenuation in coupling strength (link

weight) of roughly 20% or greater by monitoring two TDSs. In addition, the changes

in these TDSs, when either the input or output link to the observed node is blocked,

are on the order of 10 times greater than their experimental uncertainties, making it

possible to also approximate changes to the coupling strength of the attenuated link.

This method is reliable despite the inherent unpredictability of chaos, the presence of

experimental noise and parameter mismatch, and the unavoidable propagation time

between the nodes.

In Ch. 5, I first demonstrate that TDSs are present in the chaotic dynamics gener-

ated by numerical simulations of a simplified model of my experimental system. I then

show that, as with the experimental case, the TDSs are sensitive to both the nodal and

network parameters. After demonstrating a numerical proof of principle of my sensing

method, I then investigate how the heterogeneity (or lack thereof) in the time delays

impacts the performance. I also demonstrate the generality of my method by applying

it to a network of linear stochastic maps with the same topology as my experimental

network and show that sensing can be achieved without any nonlinear effects. The

optimal way in which to implement the sensing method, however, is different in the

nonlinear and linear cases.

In Ch. 6, I compare the results obtained from each of these approaches and con-

clude with some ideas for possible avenues to pursue in the future. In an effort not to

distract the reader with details, I save most of the discussion of my experimental ap-

paratus for Appendix A. In Appendix B, I show how a complexity metric, permutation

entropy, could be used instead of TDSs as observables in my sensing method. Finally,

in Appendix C I provide the details and code for my numerical analyses.
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Chapter 2

Nonlinear time-delay dynamical systems and

OEOs

In this chapter, I explain the important characteristics of both nonlinear and time-

delayed dynamical systems and show that combining the two results in very interest-

ing, and potentially useful, dynamics. I present the history of the theory and experi-

ments pertaining to nonlinear delayed-feedback devices. I then introduce the experi-

mental setup that is central to the rest of this dissertation: the optoelectronic oscillator

(OEO). This system is well-known in the field for being a versatile bench-top device

that is suitable for exploring fundamental aspects of nonlinear physics and delayed dy-

namics [10]. I then describe the new behavior I discovered and analyzed, part of which

was reported in Refs. [8–10, 13]. The features of these dynamics are be exploited later

in this dissertation to make a novel sensor network.

2.1 Nonlinear and delayed dynamics

Nonlinear systems are ubiquitous in both nature and human-made devices. In contrast

to linear systems, where small changes have similarly small effects, small changes can

have relatively large effects in nonlinear systems [2]. This potential for heightened

sensitivity makes nonlinear systems appealing candidates for use in applications where

one wants to indirectly measure small changes in a factor that influences a system by

relating it to large changes in the system’s dynamics.

Nonlinear systems are also capable of producing an interesting and paradigm-

altering dynamical phenomenon known as chaos. There are three hallmarks of chaos:

the behavior is aperiodic; the behavior is deterministic; and the behavior is sensitive
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to initial conditions (making it predictable in principle, but not in practice). Once re-

searchers recognized that chaotic behavior was not only possible, but also that it could

potentially be useful in certain applications, a large number of scientists began to de-

vote their research to developing simple chaotic devices. A nonlinear system needs

to have at least a three-dimensional phase space to be capable of producing chaos,

which sets limits on the simplicity of the chaos-generating devices. Furthermore, high-

dimensional chaos takes place in a phase space with a dimension much greater than

three, which, on the surface, seems to imply that the devices themselves must be rather

complex.

Putting the discussion of nonlinear systems on hold for a moment, another type of

system that produces interesting dynamics is one with inherent time delays: a system

that takes a non-negligible amount of time to acquire or process information before

responding to it. A good example from engineering is a control system, which relies

on measurements of the current state of the system before outputting an appropriate

perturbation to force the system toward the desired behavior. If the time required for

the controller to sense the state of the system and output the perturbation is much less

than the timescale on which the system responds, then this system can be modeled

without a time delay. If, on the other hand, the timescales are similar or the system

responds much more quickly than the controller can acquire and output information,

then the time delay due to the controller cannot be neglected. In the continuous time

limit, these systems obey delay differential equations (DDEs), rather than ordinary

differential equations (ODEs). A DDE is an equation in which the state of a dynamic

variable at a given time depends on the values of the dynamic variables at both current

and previous times, unlike ODEs where only values at current times matter [7].

To get a feel for what makes systems with delays special, I follow Ref. [7] and
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consider a linear DDE of the form

ẋ(t) = γx(t −τd), (2.1)

where x is the dynamic variable, the dot denotes a derivative with respect to time t ,

τd is the delay, and γ is a parameter that determines the strength of the feedback. The

only steady-state solution to Eq. 2.1 is x∗ = 0. If τd = 0 (reducing the DDE to an ODE)

the steady-state is stable (unstable) for γ < 0 (γ > 0), and perturbations away from

the fixed point exhibit exponential decay (growth). For τd 6= 0 new instabilities are

possible.

One can investigate the stability of the steady-state for τd 6= 0 by using the trial

solution x(t) = eλt to obtain the characteristic equation

λ− γe−λτd = 0. (2.2)

Equation 2.2 is transcendental and has an infinite number of roots (λ), which can be

real or complex, that determine the stability of the steady-state solution. The solution

is stable if Re(λ)< 0 for all λ. If x∗ is stable for a given set of parameters, it can

lose stability as one or more parameters are tuned via a bifurcation [2]. One type

of bifurcation, termed a Hopf bifurcation, occurs when a pair of complex conjugate

roots cross the imaginary axis and leads to oscillatory behavior. One can determine the

“Hopf curves” in parameter space where this bifurcation occurs by setting λ = iω in

the Eq. 2.2. After separating the real and imaginary terms one obtains

γ cosωτd = 0, (2.3)

ω+ γ sinωτd = 0. (2.4)
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These equations can be solved to obtain the condition for a Hopf bifurcation

γH =±n
π

2τd

, (2.5)

where n is odd. If τd is fixed and nonzero, one can show that the fixed point, x∗ = 0,

becomes unstable and begins to exhibit oscillatory behavior as γ is decreased below

−π/2τd . It can be seen that γH →∞ as τd → 0, which means that the corresponding

first-order ODE cannot oscillate. It is therefore the time delay (τd) that is responsible

for the instability.

Another substantial difference between ODEs and DDEs is that the former requires

an initial condition to determine a solution, whereas the latter requires an entire initial

history function (IHF) defined over a length of time equal to τd [7]. This amounts to

supplying an infinite number of initial conditions, which makes the phase space of any

DDE infinite-dimensional. Since the complexity of the dynamics is ultimately limited by

the number of available phase space dimensions, DDEs can have very simple functional

forms and still exhibit a wide variety of complicated behaviors.

Today, DDEs are used to model the behavior of many types of nonlinear systems:

physiological diseases [14], population dynamics [15], neuronal networks [16], and

nonlinear optical devices [17]. As one might guess from the preceding discussion, com-

bining a nonlinearity with a time delay allows for the possibility of chaotic solutions,

even if the systems themselves are relatively simple, due to the infinite dimensional

phase space that can be explored by the folding and stretching of the nonlinearity. In

the next section, I discuss how scientists began to construct nonlinear systems with

time-delayed feedback with the intent of studying the nonlinear dynamics produced

by these delay-induced instabilities.
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2.2 Nonlinear time-delayed feedback systems

Ikeda was one of the first scientists to study a nonlinear system subject to time-delayed

feedback [17–20]. Motivated by the optical bistability observed in the intensity of the

transmitted light from a Fabry-Pérot cavity (which proved to be very difficult to study

theoretically due to the spatial dependence of the counter-propagating electric fields),

Bonifacio and Lugiato proposed a slightly different system that was easier to model.

This system consisted of a nonlinear absorbing medium placed in an optical ring cavity

and subject to a constant-intensity light source, as shown in Fig. 2.1. By using a ring

cavity, they introduced the need for a time-delayed feedback term in the equations of

motion. Starting with the Maxwell-Bloch equations, Ikeda derived a set of coupled

DDEs, which, after a series of assumptions, can be reduced to

τl ẋ(t) + x(t) = γFIkeda[x(t −τd)], (2.6)

where x is proportional to the amplitude of the electric field at the output, τl is the

response time of the dielectric medium (which effectively acts as a low-pass filter with

corner frequency fl = 1/τl), γ characterizes the strength of the feedback, and F is a

nonlinear function characterizing the interference between the co-propagating electric

fields in the cavity. For this particular system, FIkeda = π[1+ 2B cos(x − x0)], where B

represents the dissipation of the electromagnetic field in the cavity and x0 corresponds

to a tuning parameter of the cavity.

The finite propagation time necessary for light to traverse the loop and its nonlinear

interaction with the dielectric material results in new types of instabilities. In particu-

lar, Ikeda showed that multiple stable steady-states and periodic states can coexist for

the same parameter values (multistability). Ikeda also showed numerically that, as γ

is increased slowly, the steady-state undergoes a Hopf bifurcation and a square-wave
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Figure 2.1: Schematic of the Ikeda system. Light from the constant-intensity laser

source propagates through the nonlinear medium and around the ring via a series of

fully and partially reflecting mirrors.

solution with a period approximately equal to 2τd appears. One can linearize the DDE

and then use the methods discussed in the first section to predict the value of γ where

the Hopf bifurcation occurs. Furthermore, as one continues to increase γ, this square-

wave solution undergoes a period-doubling bifurcation (with the universal properties

predicted by Feigenbaum) until the solution becomes chaotic. Shortly after Ikeda’s

prediction, this behavior was first observed experimentally by Gibbs et al. [21].

After the pioneering work of Ikeda, several more experiments were designed to

investigate Eq. 2.6. One reason these devices became so popular is that the chaos

generated could be of arbitrarily high dimension: Farmer showed that the dimension of

a chaotic attractor in a time-delayed system increases with the delay [22]. Additionally,

the speed of these systems began to increase with advances in technology, making

them even more attractive for certain applications, like secure chaos communication

[23]. Along with the increase in speed, however, came components that were AC-

coupled, meaning that signals below a certain frequency ( fh) were also blocked. This

led to a new class of DDE that incorporates bandpass filtering rather than just low-pass

filtering.

A popular way to increase the speed of Ikeda-like systems is to use a common
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Figure 2.2: MZM transmission function. (a) Schematic of method used to measure

MZM transfer function and characterize the widths of both the dc and rf ports. A

slowly varying ramp voltage ( f < 1 kHz) can applied to the dc port to characterize

the width of its interference fringe, and a rapidly varying ramp voltage ( f > 100 kHz)

can applied to the rf port to characterize the width of its interference fringe. (b) The

interference fringe for the dc (rf) port with the characteristic voltage Vπ,dc(rf) shown

as the voltage necessary to bring the transmission of the MZM from a maximum to a

minimum.

(nonlinear) telecommunication component: the electro-optic Mach-Zehnder modula-

tor (MZM). This device modulates the intensity of an incident optical signal by ex-

ploiting Pockels electro-optic effect in a lithium niobate crystal in one arm of a Mach-

Zehnder interferometer. As shown in Fig. 2.2 when the optical signals from each arm

of the interferometer are recombined at the output, their resulting interference de-

pends on a constant bias voltage (VB) and a fluctuating radio-frequency (rf) voltage

(Vin(t)) applied to two electrodes across the crystal. The optical power (Pout) transmit-

ted through the devices is given by

Pout = Pin cos2

�

π

2

�

VB

Vπ,dc

+
Vin(t)

Vπ,rf

��

, (2.7)

where Pin is the power incident on the MZM, and Vπ,dc and Vπ,rf characterize the widths

of the interference fringe corresponding to each of the two ports.

As shown in Fig. 2.3, a typical setup for an OEO incorporating an MZM is as follows:

light generated by a semiconductor laser propagates through an optical fiber to the
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Figure 2.3: Schematic of typical OEO experimental setup. This shows the key

system components and the order in which a signal originating from the laser diode

propagates through them. The measured electrical signal V is taken from one arm of

the power splitter. Inset: Nonlinear transmission of the MZM (ratio of the output to

input powers of the device) as a function of the dimensionless operating point Φ.

MZM. The light exiting the modulator is incident on a photodetector, and half of the

resulting voltage is amplified and fed back into one of the MZM’s electrodes (the rf

port). The other half is measured with a high-speed oscilloscope. The linear gain in

the feedback loop (γ), the bias voltage applied to the MZM (VB), and the length of the

time delay (τd) are all easily accessible parameters that determine the dynamics of the

measured voltage (V ).

The fundamental difference between this setup and the one studied by Ikeda is that

high-speed photodetectors and amplifiers are typically AC-coupled, and this additional

filtering needs to be taken into account when modeling the system. Approximately,

this amounts to incorporating a first-order high-pass filter in the model (with high-pass

corner frequency fh = 1/τh), in addition to the low-pass filter (with low-pass frequency

fl) that characterizes the finite response time (τl) of the system’s components. This
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leads to the dimensionless integro-delay differential equation (iDDE)

τl ẋ(t) + x(t)+
1

τh

∫ t

t0

x(t ′)d t ′ = γFMZM[x(t −τd)], (2.8)

where x is the dimensionless analog of the measured voltage, γ is the dimensionless

gain in the feedback loop, and the nonlinear function is given by

FMZM = cos2[x(t −τd) +Φ]− cos2Φ, (2.9)

with the dimensionless parameter Φ determined by the constant bias voltage applied

to the MZM according to

Φ =
π

2

�

VB

Vπ,dc

�

. (2.10)

Equation 2.8 differs from Eq. 2.6 by the inclusion of the integral term corresponding

to the high-pass filter.

It is important to note that Eq. 2.8 incorporates three timescales: the time delay

of the feedback (τd), the high-pass filter response time (τh), and the low-pass filter

response time (τl), where τl < τd < τh. In typical experiments, these timescales are

separated by many orders of magnitude, with τl on the order of ten picoseconds, τd

on the order of ten nanoseconds, and τh on the order of microseconds. A variety of

dynamics (fundamentally different from those of Eq. 2.6) have been found for different

values of Φ, γ and the three timescales [24–28].

Illing and Gauthier proved that the steady-state of Eq. 2.8 becomes unstable through

a Hopf bifurcation [29]. Additionally, they used linear stability analysis to show that

the frequencies of the periodic states that emerge right after the steady-state bifurca-

tion can be different than the “fundamental” frequency always observed in Ikeda sys-
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tems ( f = 1/2τd). This is because the gain of the bandpass filter is not perfectly flat

with respect to frequency. As γ increases, whichever frequency mode has the highest

gain overcomes the losses in the loop and achieves stability first. Since the frequencies

of each mode in the feedback loop depend on τd , the mode at threshold also depends

on τd . In a purely low-pass system, however, the lowest frequency mode always has

the highest gain, hence one always sees the fundamental frequency at the first steady-

state bifurcation regardless of the time delay.

A few years later, Peil et al. performed an exhaustive study of the dynamics of an

OEO (modeled with Eq. 2.8) analytically, numerically, and experimentally [26]. For

low feedback gain (γ ≈ 1), they found that there exist two distinct routes to oscilla-

tory dynamics. For −π/2 < Φ < 0, the Hopf bifurcation as γ is increased from below

threshold leads to fast square-wave solutions, with the period determined by τd . For

0 < Φ < π/2, however, they found that, as γ increases, the system bifurcates once

and then quickly bifurcates again to a low-frequency periodic solution with the period

determined by τh. While the former bifurcation is due to the delay, the latter bifur-

cation is due to the inclusion of the high-pass filter. As a result, the waveform of this

low-frequency solution only includes the timescales τl and τh.

As the feedback gain is increased further (γ ¦ 1), the low-frequency solution

evolves into a dynamical state termed “breathers” by Kouomou et al. [25]. This is

a hybrid regime where a fast oscillation is superimposed on the low-frequency oscil-

lation, and an example is shown in Fig. 2.4. The fast oscillations are periodic (quasi-

square wave) for lower gain and can become chaotic for higher gain. In a sense, the

low-frequency oscillations are essentially sweeping out an Ikeda-like period-doubling

bifurcation diagram (though no external parameters are being varied), where the scan-

ning time-period is related to τh. The chaotic fluctuations are on the order of τl , while

the square-wave oscillations are on the order of τd . Thus, all three (very different)
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Figure 2.4: Breather solution. (a) A zoomed out view of a breather solution obtained

with my experimental system with parameter values Φ = −0.23 and γ = 1.3. (b) A

zoomed in view of the fast timescale dynamics.

timescales are present in this dynamical regime. Using a multiple timescale analysis,

they were able to accurately predict the frequencies and damping rates present in the

breathers.

For high feedback gain (γ ≈ 4), Peil et al. observe broadband chaos spanning all

three timescales for all values of Φ. In this regime, the electric signal fed into the MZM

is large enough that it can scan up to three extrema of the nonlinear function shown

Fig. 2.2(b). This strong nonlinear feedback produces dynamics with a nearly Gaussian

probability density function.

It is interesting to note that the utility of this device has also been successfully

demonstrated in the realm of secure chaos communication [30]. The chaos generated

by this device was used to encode a message, and the resulting signal was transmitted

over 120 km of optical fiber using the metropolitan area network of Athens, Greece.

The message was then retrieved using chaos synchronization with a nearly identical

OEO at the end of the line. The transmission rates were on the order of gigabits per

second. In addition to communications applications, this system has also been used

as a stable multiple GHz frequency generator [31, 32] and in reservoir computing
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[33, 34].

2.3 The dynamics of my OEO

The OEO I study is similar to the one studied by Peil et al., with some important

differences. In the following section I describe the basics of my experimental setup

and model, as well as the characteristics of the high-speed dynamics I observe.

2.3.1 Experimental setup and model

The results of this subsection were first reported in Refs. [8, 9, 13].

The main difference between my experimental setup and the one described in the

previous section is that the high-speed modulator driver (amplifier) I use saturates

for high values of the feedback voltage. To account for this difference, I model the

saturation with a hyperbolic tangent function

Vout = Vsat tanh

�

gMDVin

Vsat

�

, (2.11)

where Vin (Vout) is the voltage input (output) of the modulator driver, gMD is the gain

in the linear region of the modulator driver, and Vsat is the maximum voltage output of

the modulator driver when it is saturated. The relevant parameters are labeled in Fig.

2.5.

By combining the effects of the transmission functions, bandpass characteristics,

and time-delay, I arrived at the following set of coupled DDEs (in mostly physical
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Figure 2.5: Modulator driver transmission function model. I use a hyperbolic tan-

gent model to show that small input voltages experience an approximately linear gain

with gMD < 0, while the output signal saturates for high input voltages at Vsat.

units) for the measured voltage V (t)

V̇ (t) = ∆
�−V (t)− U(t)+ F[V (t − τd)]

	

, (2.12)

U̇(t) = ∆ǫV (t), (2.13)

where the nonlinear function F[V ] is given by

F[V ] =
γg

d

�

cos2

�

Φ+ d tanh

�

V

g

��

− cos2 [Φ]

�

. (2.14)

Here, ∆= 2π( fl − fh), ǫ = fl fh/( fl − fh)
2, g = Vsat/gMD, d = πVsat/2Vπ,rf, and all other

parameters have been previously defined, with approximate values given in Tables 2.1

and 2.2. The variable U(t) is introduced as an auxiliary variable to account for the

integral that appeared in Eq. 2.8. I explain how I determine experimentally each of the

quantities that enter Eq. 2.12, 2.13, and 2.14 and their corresponding uncertainties in

Appendix A. In what follows, it is important to note that, in my current experimental

setup, I estimate my statistical uncertainty in Φ to be δΦ = 0.005π.
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Table 2.1: Approximate values of the fixed experimental parameters

Description Symbol Value Units

Filter high-pass frequency fh 20 kHz

Filter low-pass frequency fl 10 GHz

Filter high-pass timescale τh 50 µs

Filter low-pass timescale τl 100 ps

Filter bandwidth ∆ 2π× 1010 rad/s

MD gain gMD −20 –

MD saturation voltage Vsat 5 V

MZM dc port π voltage Vπ,dc 7.5 V

MZM rf port π voltage Vπ,rf 7.1 V

Re-scaled saturation voltage g −0.25 V

Dimensionless saturation voltage d 1.1 –

Dimensionless filter parameter ǫ 1× 10−6 –

Table 2.2: Approximate value ranges for the adjustable experimental parameters

Description Symbol Range Units

Feedback gain γ (0, 10) –

Time delay τd (20, 1000) ns

MZM operating point Φ (−π/2,π/2) –
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Figure 2.6: Featureless broadband chaos. The experimental time series (a) and

power spectral density (b) of the broadband chaotic behavior in the physical system

for Φ ≈ 0 and γ = 4.8 (upper trace). The power spectral density of the noise floor

obtained for Φ ≈ 0 and γ = 4.3 (lower trace) is also shown. For these parameters, the

system is just below the value of γ where the pulsing instability arises.

2.3.2 Featureless broadband chaos

The results of this subsection were first reported in Refs. [8, 9, 13].

In my experiment, I see similar behavior to other researchers, including square

wave oscillations, breathers, and broadband chaos. I was the first person to find,

however, that when Φ ≈ 0, which corresponds to the MZM being biased at a point

where the slope is nearly equal to zero, the power spectrum of the observed chaos is

essentially “featureless” over a wide range of frequencies (20 kHz to 10 GHz). A typical

time series and power spectrum for Φ ≈ 0 are shown in Fig. 2.6. One can see that the

power spectrum is essentially flat up to the cutoff frequency of the oscilloscope used to

measure the dynamics (8 GHz), with almost no signatures of the three characteristic

timescales, indicating that all frequencies are contributing with approximately equal

weight. This should be compared to the power spectrum of the (noisy) steady-state

behavior just below the steady-state bifurcation threshold also shown in Fig. 2.6(b)

(labeled “Noise Floor”), which has approximately the same degree of “flatness.”

In addition to the featureless power spectrum for Φ≈ 0, it is also interesting to note
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Figure 2.7: Transient pulsing behavior and critical pulse amplitude. (a) Experi-

mentally observed transient behavior that results for Φ ≈ 0 and γ = 4.36 when the

system leaves the steady-state. The pulses have a full width at half maximum ∼ 0.2 ns

and are separated by the time-delay τd. (b) The critical pulse amplitude as a function

of γ in the experiment (triangles) and simulation (stars) with the prediction from the

map superimposed as a solid curve.

that a linear stability analysis of the noise-free model (Eq. 2.8) predicts that steady-

state is stable for all values of the gain at this operating point. My finding that the

steady-state does transition into chaotic behavior at this operating point for sufficiently

large γ indicates that linear stability analysis is not sufficient to describe the dynamics

in this case. Furthermore, I find that increasing the noise level of the system causes

this transition threshold to lower further, indicating that the likely cause for why the

system transitions to this coexisting chaotic attractor is that noise is taking the system

outside of the basin of attraction of the linearly-stable fixed point. Since this discovery

in my system, Menck et al. have argued that the volume of basin of attraction gives

a more relevant measure of stability than linear stability analysis. They then used

this new metric to give an explanation to the perplexing question of why real-world

networks tend to be small-world rather than random, which is what linear stability

would suggest [35, 36].

To gain more insight about how the transition from fixed point to chaos occurs as γ

increases, I analyze the transient behavior at the transition threshold. An experimental
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time series of this transient behavior is shown in Fig. 2.7(a). An analysis of the time

series reveals that the transient is comprised of a series of narrow pulses separated in

time by τd and with an average full width at half-maximum (FWHM) of approximately

0.2 ns. These pulses grow in amplitude initially, but the amplitude remains approxi-

mately constant after about the sixth pulse. Around this time, a second train of pulses

appears to emerge, also with a time separation of τd . This pulsing behavior motivates

approximating the coupled DDEs 2.12 and 2.13 with a one-dimensional map

Vn+1 = F[Vn], (2.15)

which describes the amplitude of the pulse peak Vn for each successive round-trip time

τd . Using Eq. 2.15 with Φ = 0, I determine the critical value of V0 as a function of γ

that generates pulses that successively grow in amplitude until leveling off (similar to

the observed transient behavior). I then use this value to predict the critical noise level

or critical amplitude of an applied perturbation necessary to cause the system to leave

basin of attraction of the steady-state via a train of pulses. The excellent agreement

between the prediction of the map, experiment, and simulation is shown in Fig. 2.7(b).

2.3.3 Time-delay signatures

The results of this subsection have yet to be reported in the literature.

Another main difference between my results and those in Ref. [26] is that, while

Peil does not report a difference in the chaos observed for different values of Φ, I

find that the spectral properties within the chaotic regime are extremely sensitive to

this parameter. This sensitivity can only be observed, however, if the experimental

uncertainty in Φ is small relative to Vπ,dc, which is the case in my current setup as

described in Appendix A. I describe how I quantify the changes in the properties of the
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dynamics below.

In general, the chaotic dynamics produced by systems with inherent time delays

have signatures of those time delays [37]. One way to quantify these signatures is to

examine the (normalized) autocorrelation function (ACF) of the time series. The ACF

for a time series V (t) at a time lag θ is calculated by

ACF(θ ) =

∫ t f

ti
V (t)V (t + θ )d t
∫ t f

ti

V 2(t)d t
, (2.16)

where t i and t f are the initial and final times of the time series. The ACF of an infinitely

long and purely white noise signal is a delta function centered at zero, whereas the ACF

of a periodic signal with period T is also periodic, returning to unity for time lags that

correspond to integer multiples of T . The broadband chaotic signals that I observe,

on the other hand, tend to have sharp, well-defined peaks near integer multiples of

τd superimposed on the white noise ACF. An example of an experimentally obtained

chaotic time series and ACF for Φ = 0 is shown in Fig. 2.8(a) and (b). I define a

time-delay signature (TDS) at a time θ to be the amplitude of the peak in the ACF in

the vicinity of time lag θ . To make this more concrete, the TDS at τd is indicated by

the red bar in the inset of Fig. 2.8(b). The code I use to calculate TDSs is shown in

Appendix C. Repeated measurements of the ACF have remarkably similar structure, as

shown in Fig. 2.9 for the case with Φ = 0.08π. I find that the TDS at τd with the same

experimental parameters, but different IHFs, yield a standard deviation of 0.01, which

I take to be my statistical experimental uncertainty δTDS.

I observe that correlation properties, and hence the TDS at τd , are sensitive to

changes in Φ. Some examples of the ACF in the vicinity of τd for several different

values of Φ are shown in Fig. 2.10(a-f). This is also illustrated in Fig. 2.11(b), where

I plot the TDS at τd for values of Φ ranging from −0.08π to 0.08π. This shows that
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Figure 2.8: Experimental time series and ACF for Φ = 0. (a) A portion of an

experimental time series of V (t) for Φ = 0 and γ ≈ 5. The full time series lasts for

13.1 µs and was recorded with a high-speed oscilloscope (Agilent DSO90804A, 8 GHz

analog bandwidth, 40 GS/s sampling rate). (b) The ACF of V (t) over a range of time

lags from 0 to 200 ns. Peaks occur at multiples of τd = 56.4 ns. A zoomed in view of

the peak at τd with its corresponding TDS is shown in the inset. While the ACF and

TDS at τd were calculated in a post-processing stage, these measurements could be

done in real time.
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Figure 2.9: Experimental ACFs for Φ = 0.08π. Ten measurements of the ACF in the

vicinity of τd = 44.7 ns are overlayed. The structure surrounding the TDS is similar in

each of the ten measurements.

changing Φ by 0.01π (2δΦ) results in changes in the TDS of approximately 0.1, which

is on the order of 10 times greater than the measurement uncertainty (δTDS = 0.01).

Additionally, the TDS at τd changes monotonically with respect to Φ, so that each TDS

corresponds to a unique value of Φ.

It is also interesting to note that the TDS at τd is asymmetric with respect to Φ. I had

initially hypothesized that the broadband chaos was the most “featureless” for Φ = 0.

However, further study in the experiment and numerical simulations of Eqs. 2.12 and

2.13 shows that this is not the case: the smallest TDS at τd occurs for Φ¦ 0 (the exact

value of Φ for which this occurs depends on the values of all the other parameters,

but to the best of my knowledge is always positive). The source of this asymmetry

is still unknown. In addition, I find that the TDS at τd of a single OEO cannot be

completely eliminated. The complete elimination of all TDS from the dynamics would

be advantageous for some applications, like secure communications [38] and random

number generation [39]. The smallest magnitude of the TDS at τd that I have observed

experimentally is 0.05± 0.01.
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Figure 2.10: ACFs in the vicinity of τd. As the value of Φ increases, the value of the

TDS at τd (indicated by the red circle) decreases, switching sign around Φ ≈ 0.015π.

2.4 Summary

In this chapter, I show that simple nonlinear time-delayed feedback systems can ex-

hibit a variety of complex dynamics. These systems can be divided into two classes

based on the filtering characteristics of the feedback (low-pass and bandpass), and

each class is found to have fundamentally different behaviors. One particular band-

pass feedback system (an OEO) has proven to be a useful device for studying this class

of time-delayed feedback, as the relevant parameters are easy to vary and the agree-

ment between theory and experiment is often excellent. Most importantly, I show that

a particular characteristic (the TDS at τd) of the chaotic dynamics I observe is sensitive

to small changes in parameters, which can be measured in real-time. This feature of

the high-speed and broadband chaos is central to my proposed sensing scheme.
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Figure 2.11: TDS at τd as a function of Φ. (a) Transmission function of an MZM as a

function of dimensionless operating point Φ with the relevant region of axes indicated.

(b) TDS at τd as a function of Φ over a range near Φ = 0.
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Chapter 3

Introduction to sensing with dynamical

networks

In Ch. 2, I introduce several characteristics of nonlinear and delayed dynamics, as well

as describe OEOs and the chaos they can generate. In this chapter, I give an overview

of a few of the approaches researchers have developed that utilize networks composed

of nonlinear dynamical nodes to sense changes in the environment to which they are

coupled. I focus, in particular, on one such approach that has been experimentally

demonstrated with a network of low-speed OEOs [11, 12, 40, 41].

3.1 Overview of the problem

Nonlinear dynamics, and chaotic dynamics in particular, are known for their sensitiv-

ity to perturbations [1, 2]. In addition, recent discoveries in complex network science

have shown that the interconnectedness of individual dynamical systems can have a

profound effect on the overall behavior [42]. With this in mind, researchers hypoth-

esize that, by building a network composed of chaotic nodes, the dynamics at each

of the nodes are sensitive to the coupling topology of the network. Furthermore, if

this network is then placed in an environment that influences the coupling topology,

then by measuring the dynamics of one, a few, or all of the nodes, it might be possi-

ble to determine the time-varying properties of the environment with a high degree of

precision.

One potential application of such a sensor network is an intrusion detection device.

For this application, the dynamics generated by each of the nodes are broadcast and
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received by antennas to form the proposed network. The dynamics should also be

ultra-wide-band (UWB), as defined by the Federal Communications Commission (FCC)

regulation 47CFR15.503. That is, they have a fractional bandwidth greater than 20%

or a bandwidth greater than 500 MHz; they operate below 10.6 GHz; and they are

low power. UWB radiation is desirable because it penetrates many building materials,

such as drywall and concrete [43], and does not penetrate substantially water (and

hence people). Therefore, these proposed networks have properties (e.g., link weights)

that depended upon the presence (or lack thereof) and position of any water-based

elements, which I refer to as intruders. An added advantage of using UWB devices is

that they are unregulated by the FCC, which means any devices that adhere to these

guidelines have the potential to be commercialized. In addition to being UWB, the

signals should also have wavelengths with roughly the same order of magnitude as the

length scales of potential intruders (i.e., λ ∼ 10−1 − 101 m, f ∼ 107 − 109 Hz) if one

hopes to image their presence with standard techniques. As I show in the previous

chapter, OEOs are ideal candidates for producing dynamics with the UWB and high-

speed properties required for this application.

This sensing task essentially boils down to: How does one identify certain proper-

ties of a network from limited measurements and available information? Thus far, the

methods that have been proposed to perform this task can mostly be divided into two

categories: perturbation-based and synchronization-based approaches (see Ref. [44]

and the references therein). Due to the complexity of this task, however, most of these

methods make assumptions such as: the parameters of the nodes are known and often

identical; the coupling between nodes is linear; communication between nodes hap-

pens instantaneously (no propagation delay); and the dynamics of each node can be

acquired simultaneously (see Ref. [45] and the references therein). For the application

I have in mind, many of these assumptions are impractical for sensing the properties
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of the network in real time. In the next section, I give an overview of an approach that

extracts information about the properties of a network in a way that is better suited

for the intrusion detection task.

3.2 Adaptive synchronization-based approach

One potential approach to uncovering network properties from the dynamics of one

or more nodes in real time is based on adaptive synchronization [40]. This method

was successfully implemented using a network of three bidirectionally coupled OEOs

in Ref. [11, 12]. I explain the basics of the method below.

The basic experimental setup is shown in Fig. 3.1. Each of the three nodes is an

OEO, similar to the ones described at the beginning of Ch. 2, but rather than incorpo-

rating just a time-delayed self-feedback signal, each OEO also receives a time-delayed

signal from its two neighbors. Each OEO also incorporates a digital signal processor

(DSP), which I discuss later. The strength of the signal that is allowed to propagate

from OEOi to OEO j is determined by the corresponding element of the weighted adja-

cency matrix Ai j, and the goal is to determine the unknown and time-varying elements

of this matrix, under the assumption that these coupling strengths are changing on a

much slower timescale than that of the dynamics on the nodes.

This method relies on the fact that, under certain circumstances, two or more

chaotic systems can synchronize [46]. That is, each chaotic system is doing the same

thing at the same time. Since its initial discovery, this counter-intuitive phenomena

has been demonstrated in numerous experiments. However, the criteria for synchro-

nization is often very strict. To determine whether or not a synchronized solution for

a given coupling topology is stable, one can use the master stability function approach

derived in Ref. [47]. Adaptive synchronization techniques use knowledge of the master

32



Figure 3.1: Adaptive synchronization experimental setup. (a) A simplified diagram

of the setup, with the nonlinear elements represented as nodes and the self-feedback

and coupling delay lines represented as links. (b) A detailed diagram of one of the

nodes in the setup. Each OEO consists of a laser diode (LD), polarization controller

(PC), Mach-Zehnder modulator (MZM), two 50/50 optical couplers, a circulator, two

photodiodes (PD), a digital signal processor (DSP) and a modulator driver (MD). The

signal exiting one MZM is split so that half is fed back to the itself and half is sent to

the other two OEOs via two bidirectional fiber optic channels.
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stability function to drive the network toward synchrony.

To make this more concrete, I follow Ref. [11] and consider a network of N dynam-

ical systems of the discrete-time form

xi(n+ 1) = F(xi(n)) + v
α0

ki

ri(n), (3.1)

where xi(n) denotes the state vector of one time-delay worth of sample points from

node i at time n, the vector function F(x) describes the internal dynamics, α0 is the

overall coupling strength, and v is a vector describing how the net received coupling

signal ri(n) is incorporated. This received signal is given by

ri(n) =
∑

j

Ai jH(x j(n)), (3.2)

where A is the weighted adjacency matrix that specifies the coupling strength of each

of the network’s links and H is a scalar function describing how the nodes are coupled.

Finally, the net coupling strength into node i is given by

ki =
∑

j

Ai j. (3.3)

The values Ai j are crucial to whether or not synchronization occurs, but are un-

known. Therefore, synchronization has to be maintained based solely on the physically

accessible signal ri(n). To do this, each node implements an adaptive strategy that

seeks to minimize the time-averaged synchronization error among the three nodes.

Equation 3.1 was designed such that a synchronized solution x1(n) = x2(n) = ... =

xN(n) ≡ xS(n) satisfies

xS(n+ 1) = F(xS(n)) + vα0H(xS(n)), (3.4)
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where ri(n) = kiH(xS(n)). Thus, if ki =
∑

j
Ai j = 1 for all i, the nodes synchronize.

However, the values of Ai j are unknown and time-varying, which is where the adaptive

strategy comes in. Re-expressing Eq. 3.1 as

xi(n+ 1) = F(xi(n)) + vβi(n)ri(n), (3.5)

the time-averaged synchronization error is minimized when the (controllable) weight

factor βi(n) is given by

βi(n) = α0/ki(n). (3.6)

If the variations in Ai j vary slowly compared to the length of time over which the

synchronization error is averaged, then the value of βi(n) necessary to achieve syn-

chronization is computed from H(xi(n)), ri(n), and α0. Once this βi(n) is known,

then so is ki(n). Thus, the interesting byproduct of this method is that, in the pro-

cess of maintaining synchronization, the adaptive algorithm at node i “learns” the net

coupling strength of the input signals ki(n).

This method was successfully implemented in an experimental three node network

of OEOs, generating high-dimensional chaos, to track both sudden and smoothly vary-

ing changes in the values of k1, k2, and k3 [11, 12]. In this experiment, the weighted

adjacency matrix A was taken to be symmetric, therefore the values of the coupling

strengths A12(n), A23(n), and A31(n) could be solved for using k1, k2, and k3. Fur-

thermore, the authors numerically implemented their method with a larger network

of OEOs (N = 25), but with mixed success, due to the fact that synchronization is

only possible for certain coupling configurations. Also, for these larger networks the

number of links can be greater than the number of nodes, making determination of the
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Table 3.1: Comparison of typical OEO parameter values with and without DSP

Parameter OEO without DSP OEO with DSP Units

fh 103 102 Hz

fl 1010 103 Hz

τd 10−9 10−3 s

values of Ai j from the values of ki impossible.

The limitations of this scheme are: (1) it relies on synchronization, which severely

limits the allowed parameter mismatch among the nodes and network topologies; (2)

it requires dynamical measurements of all nodes; (3) while probing each node, a sig-

nal (βi(n)) must be output based on the dynamical state; (4) for larger networks it

only provides the net input coupling strength to each node, rather than the coupling

strength along each link; and (5) it fails when the nodes are completely uncoupled

(ki = 0), as synchronization can no longer be maintained. The easiest way to meet

requirements (1) and (3) is to slow down the dynamics. The authors do this with the

use of a DSP at each node, which implements the bandpass filtering and delay digi-

tally to ensure that the bandpass characteristics and delays are uniform among all the

nodes. As a result, the use of the DSP allows for better agreement between experiment

and theory, and the DSP also performs the necessary calculations to properly rescale

the received signals. The addition of the DSP in their system decreases the speed of

the chaotic dynamics (which roughly scale with the time delay) by about six orders

of magnitude, as can be seen in Table 3.1. While the dynamics are UWB, their wave-

lengths are on the order of 105−106 m, making it unlikely that a person-sized intruder

would produce large enough changes to the coupling strengths to be detected.

In Ref. [41], the authors investigate numerically the influence of the propagation

delay between the nodes under a slightly different coupling strategy and find that
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keeping the time delays distinct improves the likelihood of identifying the coupling

strengths of the individual links (not just the net coupling strength into a given node).

Note that, in order for the propagation delay between nodes to be non-negligible in

a wireless network with the low-speed dynamics shown in Table 3.1, the nodes either

have to be separated by ∼ 105 m or incorporate a buffer. They also investigate the

effect of parameter mismatch, and find that, in order to keep their identification errors

less than 10%, the parameters need to be matched within a 3% tolerance. Finally,

they investigate an alternate version of their strategy that makes use of an additional

“maestro” node, whose coupling to the other nodes in the network is assumed to be

known and is responsible for maintaining the network synchrony. There have been no

experimental verification of these claims, however, and, to the best of my knowledge,

the only experimental implementations of an adaptive strategy to track time-varying

coupling strengths are reported in Ref. [11, 12, 48], where the experiments are carried

out with two- and three-node networks.

In Ref. [49], the authors use a similar adaptive strategy, but only rely on dynami-

cal measurements of a single node rather than all the nodes. Instead of maintaining

synchrony on the network, however, they seek to maintain syncrhony between the

N th node of the network with unknown coupling strengths and a replica network with

adaptable coupling strengths. They have demonstrated the ability to successfully track

the time-varying coupling strengths in numerical simulations with a chain of N = 3

nodes. Their method has the advantages that one only needs to measure one node

and the nodes can be heterogeneous (as long as the parameters are known), but suf-

fers from the disadvantages that the performance degrades with increasing N and its

speed is limited by the need to measure and respond to the dynamics. While it is not a

promising candidate for the application I have in mind, the authors conjecture that it

could be applied to estimating time-varying synaptic strengths within small neuronal
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networks.

3.3 Summary

In this chapter, I discuss an experimental demonstration of a method to track time-

varying coupling strengths in a small network of OEOs. However, this method requires

that: the OEOs be nearly identical; the dynamical measurements of all of the nodes are

continuously performed; and the received signals are appropriately scaled. The end re-

sult is that the dynamics have to be slowed down by six orders of magnitude than that

of a typical OEO. This million-fold decrease in frequency (and increase in wavelength)

is undesirable for applications, and, therefore, schemes that can be implemented with

high-speed dynamics must be explored. In the next chapter, I introduce a new method

I developed to track time-varying coupling strengths in a small network of heteroge-

neous, high-speed OEOs based on dynamical measurements of a single node.
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Chapter 4

Sensing method and experimental

implementation

I find in Ch. 2 that OEOs can produce high-speed and broadband chaos and that the

properties of this type of chaos are sensitive to the system’s parameters. I quantify the

changes in correlation properties by monitoring changes in TDSs. In Ch. 3, I discuss

recently developed methods for determining network parameters when two or more

chaotic systems are coupled together. These methods are often limited to low-speed

dynamics generated by homogeneous nodes. In this chapter, I show how I can take

advantage of the TDSs produced by a network of two coupled OEOs to “sense” changes

in the network parameters in real time with heterogeneous nodes generating high-

speed dynamics. I focus mainly on the utility of TDSs, as they are both sufficiently

sensitive to changes to the network parameters and relatively quick to calculate.

4.1 Experimental setup

I construct a two-node OEO network to investigate whether TDSs embedded in the

chaotic dynamics generated by the OEOs can be used for sensing changes to the net-

work properties. Both simplified and detailed experimental schematics are shown in

Fig. 4.1. I modify the single OEO setup shown in Ch. 2 by adding three additional

50/50 optical couplers and one additional high-speed photodiode. The first coupler

and photodiode serve to measure the signal coming directly out of the MZM, which I

denote X i(t). The other two couplers serve to split and combine the signals passing

between OEO1 and OEO2. The fixed parameters of each OEO differ by roughly 10%
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Figure 4.1: Experimental setup. (a) A simplified diagram of the setup, with the non-

linear elements represented as nodes and the self-feedback and coupling delay lines

represented as links. (b) A detailed diagram of the setup. Each OEO consists of a

laser diode (LD), polarization controller (PC), Mach-Zehnder modulator (MZM), three

50/50 optical couplers, a variable optical attenuator (VOA), two high-speed photodi-

odes (PD), and a modulator driver (MD). The signal exiting one MZM is split twice so

that half is measured, a quarter is sent to the other OEO, and a quarter is fed back to

itself.

and are given in Table 4.1. I discuss how the values of each of these parameters are

determined in Appendix A.

The adjustable parameters for my two-node network are: the self-feedback time de-

lays τ11 and τ22; the coupling time delays τ12 and τ21; the dimensionless self-feedback

gains γ1 and γ2; the (normalized) coupling strengths c12 and c21; and the MZM operat-

ing points Φ1 and Φ2. I use the notation x i j to denote the quantity x along a link that

passes from OEOi to OEO j (see Fig. 4.1(a)). Without adding any extra components,

the self-feedback times of each OEO and the coupling delay times are different from
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Table 4.1: Measured values of the fixed experimental parameters

Parameter Value for OEO1 Value for OEO2 Units

fh 16± 7 25± 11 kHz

fl 10± 0.4 10± 0.3 GHz

gMD −18.7± 1.5 −22.6± 1.1 –

Vsat 4.5± 0.2 5.0± 0.2 V

Vπ,dc 7.18± 0.02 7.62± 0.03 V

Vπ,rf 7.14± 0.07 7.15± 0.07 V

g −0.24± 0.02 −0.22± 0.02 V

d 0.98± 0.07 1.1± 0.07 –

ǫ (1.6± 0.7)× 10−6 (2.5± 1)× 10−6 –

each other: τ11 = 44.7 ns, τ22 = 56.4 ns, and τ12 + τ21 = 116.6 ns. This is due to the

fact that each fiber-optical component has a different length of fiber attached to it. A

general guide for fibers is that 1 meter of fiber corresponds to 5 ns of propagation time,

so these differences in time delay equate to fiber length differences on the order of a

few meters. In principle, these could be made to be equal to within less than a picosec-

ond by using additional components, but I hypothesize that keeping these timescales

distinct improves sensing. I, therefore, leave the study of the identical time delay situ-

ation for the next chapter. The gain of each feedback loop is determined by adjusting

the power of each laser diode, and I choose values of γ1 = γ2 = 5± 0.5, which results

in chaotic dynamics for a wide range of (Φ1,Φ2) values. The value ranges for each of

the adjustable parameters are given in Table 4.2. The experimental statistical uncer-

tainties are also shown, and I explain how each of these is determined in Appendix A.
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Table 4.2: Value ranges for the adjustable experimental parameters

Parameter Range Uncertainty Units

γ (0, 6) ±0.5 −
τ11,τ22,τ12+τ21 (20, 1000) ±0.050 ns

Φ (−π/2,π/2) ±0.005π −
c12, c21 (0, 1) ±0.01 −

4.2 Correlation properties of a two-node network of

OEOs

While a single OEO has only one time delay (τd), two bi-directionally coupled OEOs

have four time delays (τ11, τ22, τ12 and τ21). Here, the single self-feedback delay time

τd of the isolated OEO is replaced by two distinct self-feedback delay times τ11 and τ22.

In Ch. 2, I see that the ACF for broadband chaotic dynamics generated by a single OEO

has sharp peaks at time lags equal to integer multiples of τd , and I refer to the height

of a peak in the vicinity of time lag θ as the TDS at θ . For my two-node OEO network

operating in an analogous broadband chaotic regime, the correlation properties are

quite different. In particular, the ACF of a time series taken from one of the two nodes

has sharp peaks at time lags equal to integer multiples of: the self-feedback time delays

τ11 and τ22; the round-trip coupling delay time τ12 + τ21; and sums and differences

of these three timescales. The differences in dynamics, correlation properties, and

spectral properties between a single OEO and two coupled OEOs are illustrated in Fig.

4.2. I use the following notation to refer to the TDSs that characterize the dynamics

of OEO1 (OEO2) at the various delay times: τ11 (τ22) is τself; τ22 (τ11) is τother; and

τ12 +τ21 is τcoupling.

To investigate what happens to the correlation properties as the coupling strengths

of the network change, I select values for Φ1 and Φ2 (the operating points of the non-
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Figure 4.2: Comparing the dynamics of a single OEO and two coupled OEOs.

The experimental (a) time series, (b) ACF, and (c) power spectral density (PDS) of

a single OEO with adjustable parameters γ = 5, Φ = −0.08π, and τd = 56.4 ns.

These should be compared to the experimental (d) time series, (e) ACF, and (f) PSD

generated by two coupled OEOs with adjustable parameters of the two coupled OEOs

are γ1 = γ2 = 5, (Φ1,Φ2) = (0,−0.08π), c12 = c21 = 1.00, τ11 = 44.7 ns, τ22 = 56.4

ns, and τ12+τ21 = 88.3 ns. Note that in both cases I measure dynamics of OEO2, and

the PSD incorporates an 8 MHz median filter.
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linear MZM) and allow the dynamics of the two nodes to evolve while fully coupled

(c12 = c21 = 1). I record representative time series (13.1 µs of data at 40 GSa/s) of

the dynamics after all transients have died away. Then, using a variable optical atten-

uator placed along one of the two links connecting the nodes, I successively decrease

the effective coupling strength in steps of ∼ 10% and record representative time series

for each step. I then calculate the ACF and extract the TDSs at various time lags in a

post-processing stage. Note that these measurements could also be done realistically

in real time as the network changes, assuming that these changes are slow compared

to the length of the acquired time series.

Figure 4.3 shows representative time series from OEO2 with (Φ1,Φ2) = (0,−0.08π)

for three different values of c12 (the coupling strength along the link that is on the input

of this node), with c21 = 1 (the coupling strength along the output link). Only 50 ns

portions of the time series are shown so that the fast timescale fluctuations can be

seen. There are no noticeable differences in the time series of the chaotic dynamics

as changes are made to the network parameters. Even the maximum and minimum

signal amplitudes (taken from the entire 13.1 µs of data, denoted with red dashed

lines) have only minor changes.

Figure 4.4, on the other hand, shows the ACFs for these same time series. Here, I

show 150 ns portions so that the features at time lags τ11, τ22, and τ12+τ21 are visible.

Viewed this way, it is easy to discern visually differences in the correlation properties of

the dynamics due to the different coupling strengths. Most notably, as c21 increases the

ACF transitions from having TDSs only at multiples of τ22, the self-feedback time of

the OEO being measured, to having peaks at several different time lags. For example,

when c12 = 0, the TDSs at τother and τcoupling are both zero, which they must because

OEO2 is isolated. As c21 increases, the TDSs at τother and τcoupling also increase from

zero. However, the TDS at τself decreases as c12 increases and the dynamics from
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Figure 4.3: Experimental time series as the input coupling strength varies. The

adjustable parameters are γ1 = γ2 = 5, (Φ1,Φ2) = (0,−0.08π), c21 = 1.00, and (a)

c12 = 0.00, (b) c12 = 0.40, and (c) c12 = 0.77. The red horizontal lines correspond to

the global maximum and minimum signal amplitudes over the entire 13.1 µs.
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OEO1 begin to influence that of OEO2. While the correlation properties change as the

coupling strength is varied, I do not see any bifurcations to other attractors, which

implies that multistability is not an issue for this scheme.

In Fig. 4.5, I show how the correlation properties of OEO2 change as the coupling

strength on the output link (c21) is varied, while c12 = 1. As with the previous case,

the TDS at τ12 +τ21 starts at zero when c21 = 0, and grows as c21 is increased. In this

case, however, OEO2 is never completely isolated, so the TDSs at both τself and τother

are nonzero for all values of c21. In addition, these TDSs have the opposite behavior

from the previous case: the TDS at τself (τother) increases (decreases) as c21 increases.

It is also important to note that these TDSs not only experience a change in a different

direction, but they also change less than they did when the coupling on the input was

varied. This seems reasonable because the effect of changing the output coupling only

reaches OEO2 after passing through OEO1, making link21 more “distant” than link12.

The changes in correlation properties can be more easily viewed by plotting the TDS

at each of the three relevant timescales as a function of the varying coupling strength

of one of the links. This is shown in Fig. 4.6, where the blue (red) curves correspond

to the situation where c21 (c12) varies with c12 = 1 (c21 = 1). The data characterizing

the dynamics of both OEOs are shown. Due to the parameter mismatch between the

nodes, the actual values of the TDSs are different, but the trends are similar. Note that,

for OEO1, the blue curve corresponds to changing the input link, while the red curve

corresponds to changing the output link. The situation is reversed for OEO2. From

these plots one can see that the TDSs at τself and τother are sensitive to which link is

being attenuated, while the TDS at τcoupling exhibit similar behavior regardless of the

location of the attenuator.

To determine whether these qualitative behaviors can be general, I select new val-

ues for Φ1 and Φ2 (0.08π and −0.06π, respectively) and repeat the experiment. The
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Figure 4.4: Experimental ACFs as the input coupling strength varies. The ad-

justable parameters are γ1 = γ2 = 5, (Φ1,Φ2) = (0,−0.08π), c21 = 1.00, and (a)

c12 = 0.00, (b) c12 = 0.40, and (c) c12 = 0.77. The red circles correspond to the TDSs

at τ11, τ22, and τ12 +τ21.
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Figure 4.5: Experimental ACFs as the output coupling strength varies. The ad-

justable parameters are γ1 = γ2 = 5, (Φ1,Φ2) = (0,−0.08π), c12 = 1.00, and (a)

c21 = 0.00, (b) c21 = 0.40, and (c) c21 = 0.77. The red circles correspond to the TDSs

at τ11, τ22, and τ12 +τ21.
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TDSs as a function of coupling strength for each of the two links are shown in Fig.

4.7. As with the first example, the magnitude of the TDS at τself decreases as the cou-

pling strength on the input link increases. Also, when the coupling strength of the

output link is changed, the TDS at τself changes by a smaller amount. However, while

the TDSs at τcoupling start and end at the same values, their behavior at intermediate

coupling strengths is different for each link.

Quantitatively, I calculate difference between the TDSs at each of the three de-

lay times (rescaled by δTDS) when the OEOs are fully coupled (c12 = c21 = 1) and

when one of the links is fully attenuated (c12 = 0 with c21 = 1, and c12 = 1 with

c21 = 0). The results are shown in Tables 4.3 and 4.4. For the experiment with

(Φ1,Φ2) = (0,−0.08π), the values of ∆̃TDS at τcoupling are equal, within the experi-

mental uncertainty of
p

2, regardless of which link is attenuated and which node is

measured. However, none of the other values are equal. The situation is similar for

the experiment with (Φ1,Φ2) = (0.08π,−0.06π), where only the values of ∆̃TDS at

τcoupling for the same node are equal. This indicates that the majority of the changes

in the correlation properties are not only dependent on the precise changes in the

network parameters, but also depend sensitively on the parameters of the nodes them-

selves. So while it seems promising that some qualitative behavior could be general, it

is also clear that much of the behavior depends in a complicated way on the parameters

of each node, which are different in this experimental network.

4.3 Using TDSs for sensing

One can use the results shown in Figs. 4.6 and 4.7 to calibrate the two-node network

for sensing changes to the coupling strength along one of the links1 I illustrate how

1Note that this is done under the assumption that these changes are slow relative to the timescale of

the dynamics. Also, the coupling is fiber-optical, and thus the changes in coupling strength cannot be

brought about by the presence of an intruder, as discussed in Ch. 1.
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Figure 4.6: Experiment: TDSs for (Φ1,Φ2) = (0,−0.08π). Data for both nodes is

shown. The red data points correspond to c12 varying (with c21 = 1) and the blue data

points to c21 varying (with c12 = 1). TDSs at (a,b) τself, (c,d) τother, and (e,f) τcoupling

are shown. The errors bars represent a statistical error of 0.01, estimated with the

standard deviation of several measurements of the TDSs with the same parameters.

Note that the vertical scales for side-by-side plots are chosen to be the same for ease of

comparison, although the maximum and minimum values may be shifted so that all of

the data are displayed.
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Figure 4.7: Experiment: TDSs for (Φ1,Φ2) = (0.08π,−0.06π). Data for both nodes

is shown. The red data points correspond to the situation where c12 varying (with

c21 = 1) and the blue data points are for c21 varying (with c12 = 1). TDSs at (a,b) τself,

(c,d) τother, and (e,f) τcoupling are shown. The errors bars represent a statistical error of

0.01, estimated with the standard deviation of several measurements of TDSs with the

same parameters. Note that the vertical scales for side-by-side plots are chosen to be

the same for ease of comparison, although the maximum and minimum values may be

shifted so that all of the data is displayed.
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Table 4.3: Changes in TDSs for (Φ1,Φ2) = (0,−0.08π)

Node Link ∆̃ TDS τself ∆̃ TDS τother ∆̃ TDS τcoupling

1 2→ 1 -52 26 30

1 1→ 2 0 -23 29

2 1→ 2 -24 5 31

2 2→ 1 8 -23 33

Table 4.4: Changes in TDSs for (Φ1,Φ2) = (0.08π,−0.06π)

Node Link ∆̃ TDS τself ∆̃ TDS τother ∆̃ TDS τcoupling

1 2→ 1 8 -7 -6

1 1→ 2 3 -2 -5

2 1→ 2 -40 -2 -16

2 2→ 1 -15 -12 -16

this works using the experiment with (Φ1,Φ2) = (0,−0.08π). If the OEOs are initially

fully coupled and the coupling strength along one of the links is decreased, this leads

to changes in the TDSs of both OEOs, as described in the previous section. To track any

changes in the coupling strength along either link, one could, for example, monitor the

TDS at τ22 of node 1, ignoring for the moment the many other TDSs present in the

ACF. This particular TDS has a value of 0.26± 0.01 when the network is fully coupled

(c12 = c21 = 1). If c12 changes, then the TDS at τ22 increases, but if c21 changes, it de-

creases. Using the criterion that the TDSs have to separate (and stay separated) by an

amount greater than twice their experimental uncertainty to be considered different,

I require that the coupling strength of one of the links be attenuated by at least 23%

(c = 77%, which is the next highest value of the coupling strength after full coupling)

in order to resolve which link was effected. Due to the fact that most of the data points

are separated by roughly ±10%, I take this to be my experimental uncertainty in the

minimum attenuation (or maximum coupling strength) required to distinguish the af-
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fected and unaffected links. (See Appendix A for details about changing the coupling

strength along each link.)

Once I have determined which link has been attenuated, I approximate the value of

the new coupling strength by inverting the appropriate graph in Fig. 4.6(c). However,

this only works if, like as in this case, the TDS change monotonically with coupling

strength. If this criterion is met, then the precision with which I determine the coupling

strength depends on the slope of the inverted graph in the vicinity of the measured

TDS. As one can see from Figs. 4.6 and 4.7, this can vary greatly. I therefore use the

change in TDSs (rescaled by their uncertainties) as each link goes from fully open to

fully blocked as a measure of how precise the coupling strength can be determined

(with higher values corresponding to better precision). For the case shown in Fig.

4.6(c), those values are −24×δTDS for the input link and 5×δTDS for the output link.

As the discussion above indicates, this method has limited applicability. First, it

fails to distinguish which link is attenuated for some choices of TDSs. For example, if I

choose to monitor the TDS at τ12+τ21 of either node, the ranges for when c12 and c21

vary overlap, making distinguishability impossible. Second, it fails to provide a unique

value for the coupling strength when behavior is non-monotonic or has a slope of zero

(within experimental uncertainty). For example, if choose to monitor the TDS at τ11

for node 1, then it is impossible to detect that there is a change in coupling strength

when c12 changes.

Using these two metrics, an observer can detect changes to the network’s coupling

strengths by monitoring: (1) the TDS at τother of node 1, (2) the TDS at τself of node

2, and (3) the TDS at τother of node 2. The network’s ability to sense changes is worse

for the experiment with (Φ1,Φ2) = (0.08π,−0.06π). As shown in Fig. 4.7), each of

the three TDSs at both nodes either has overlapping ranges (making distinguishabil-

ity impossible), non-monotonic behavior (making determining the coupling strength
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impossible), or both.

4.4 Using multiple TDSs for sensing

I saw in the previous section that the value of one TDS alone was not always enough to

determine the two quantities that characterize the changes to the network parameters:

the location of the attenuated link and the value of its new coupling strength. For

example, if the TDS takes on similar values regardless of which link is altered (i.e., if

the ranges overlap), then it is impossible to distinguish which link is affected no matter

how great the change in coupling strength. Or, if the TDS undergoes a non-monotonic

change, then the coupling strength is also impossible to determine since one value of

the TDS corresponds to multiple values of the coupling strength.

Because it is two quantities I want to determine, however, it is natural to extend the

number of TDSs I rely on to determine the desired information from one to two. This

idea is best illustrated graphically. Figure 4.8 shows the data from the experiment with

(Φ1,Φ2) = (0,−0.08π), where I use a three-dimensional plot to show the relationship

between the values of two TDSs for given coupling strengths, c12 and c21. Viewed

in this way, changing the coupling strength from 0 to 1 along one of the links traces

out a “strand” in the three dimensional space. (Due to experimental uncertainty, this

curve actually has a finite volume.) Changing the coupling strength along the other

link produces a strand that starts at the same location as the first strand, but takes a

different path through the TDS1-TDS2-coupling strength space.

An observer using this network to sense changes in coupling strengths would only

have knowledge of the TDSs measured. The measured TDSs would then need to be

compared to the projection of the strands in the TDS1-TDS2 plane, shown in Fig. 4.9,

to determine if any of the links have been attenuated, and, if so, by how much. Due
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to the fact that the strands (and their projections) must start at the same location

and have some experimental uncertainty, there always exists a minimum change in

coupling strength below which it is impossible to determine which of the two links was

attenuated. If the attenuation is great enough that the affected link can be determined,

then it is possible to determine the approximate coupling strength of the link (with

varying precision) by inverting the graph with the largest change in TDS.

This method is just a higher-dimensional version of what I discussed in the previous

section, where Figs. 4.6(a-f) are projections of the strands onto the appropriate TDS-

coupling strength plane. Expanding to higher dimensions can increase the sensing

capabilities of the network by circumventing issues caused by overlapping ranges. For

example, with these nodal parameters, only three of the six sensing scenarios can

distinguish link location and approximate coupling strength using one TDS. Using two

TDSs, all six possible combinations of TDSs provide this information, as can be seen by

the separation of the projection of the strands in Fig. 4.9.

For the experiment with (Φ1,Φ2) = (0.08π,−0.06π), I see that sensing with only

one TDS is impossible for each of the six scenarios shown. Applying the method with

two TDSs helps to alleviate some of the issues, as shown in Figs. 4.10 and 4.11. With

the higher-dimensional method, sensing is now possible for two of the six scenarios for

attenuations greater than 40% (TDSs at τself and τcoupling for (1) node 1 and (2) node

2), and four of the six for attenuations greater than 60% (node 2 TDSs at (3) τself and

τother and (4) τother and τcoupling).

4.5 General sensing method

In the previous sections I discuss two ways to use TDSs to calibrate a two-node network

so that it can sense changes in the network parameters (i.e., which link is attenuated
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Figure 4.8: Experiment: Strands in TDS-coupling strength space. The TDSs were

taken from the experiment with (Φ1,Φ2) = (0,−0.08π) and c12 (red) and c21 (blue)

varied from 0 to 1. The projections of the strands onto the TDS plane are also shown.
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Figure 4.9: Experiment: Projection of strands in TDS1-TDS2 plane. The TDSs were

taken from the experiment with (Φ1,Φ2) = (0,−0.08π) and c12 (red) and c21 (blue)

varied from 0 to 1. The minimum attenuation necessary to distinguish the links (if it

exists) is approximated by the first value of the coupling strength were the projections

are distinct (taking into account experimental uncertainty, shown with error bars).
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Figure 4.10: Experiment: Strands in TDS-coupling strength space. The TDSs were

taken from the experiment with (Φ1,Φ2) = (0.08π,−0.06π) and c12 (red) and c21

(blue) varied from 0 to 1. The projections of the strands onto the TDS plane are also

shown.
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Figure 4.11: Experiment: Projection of strands in TDS1-TDS2 plane. The TDSs

were taken from the experiment with (Φ1,Φ2) = (0.08π,−0.06π and c12 (red) and

c21 (blue) varied from 0 to 1. The minimum attenuation necessary to distinguish the

links (if it exists) is approximated by the first value of the coupling strength were

the projections are distinct (taking into account experimental uncertainty, shown with

error bars).
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and by how much) for sufficiently large changes in coupling strength. These two

schemes can be thought of as one- and two-dimensional versions of a more general

sensing method: To calibrate the network, D different “observables” are monitored

as the coupling strength along each of the L links is changed from its minimum to

its maximum value. Here, I define an observable to be any number that quantifies

some aspect of a single time series. After proper calibration, these same D observables

are continually monitored and compared against the calibration to sense any potential

changes in network parameters. The measured observables lie closest to the projection

of the strand that corresponds to the attenuated link. The coupling strength is then

determined from the height of the strand at the values of the measured observables. A

cartoon illustration of this method shown in Fig. 4.12.

As I saw in the previous sections, extending to higher values of D can improve the

network’s sensing capabilities by making the links more distinguishable, but at the ex-

pense of added complexity of the analysis and decreased ease of visualization. It is

important to note, however, that all of the observables are taken from the same time

series, so the D-dimensional method still only relies on limited dynamical measure-

ments (and D calculations) and can still be implemented with high-speed dynamical

systems.

I find experimentally that the TDSs at τself, τother, and τcoupling can be used as ob-

servables in this sensing method with mixed success depending on the parameters of

the nodes in the network. In principle, any quantity that can be calculated from a

single time series and that changes with the properties of the network can be used.

For example, one could use the largest D TDSs, rather than those that occur at these

three “special” time lags, as observables. Alternatively, one could integrate the abso-

lute value of the ACF in either the vicinity of the TDS or over its entire extent, which

would effectively incorporate the magnitude of all TDSs into one observable. Initial
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Figure 4.12: Illustration of sensing method with a two-node network. (a) The

coupling strength along each link is varied from 0 to 1 and representative time series

of the dynamics of one node are recorded. This serves to calibrate the network for

sensing. (b) The dynamics of the same node are recorded as an unknown change

to one of the network parameters is made. (c) The observables extracted from the

measured time series are compared against the calibration and used to determine link

location and coupling strength.

investigations show, however, that in the cases where sensing with one or two TDSs

failed, none of these new choices of observables were successful. Other examples of

observables include: maximum and minimum signal amplitudes, permutation entropy

[50], and statistical complexity [51, 52]. I choose to use TDSs as observables because,

for my experimental system, I find that they are more sensitive to the network’s pa-

rameters and more robust to experimental noise than the maximum and minimum

signal amplitudes, as shown in Fig. 4.13, and are much faster to compute than permu-

tation entropy and statistical complexity. An example of an analysis using permutation

entropies as observables is shown in Appendix B.
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Figure 4.13: Experiment: Maximum and minimum signal amplitudes. The (a)

maximum and (b) minimum signal amplitudes were taken from the experiment with

(Φ1,Φ2) = (0,−0.08π) and c12 (red) and c21 (blue) varied from 0 to 1. The (c) strands

in observable-coupling strength space and (d) projections onto the observables plane

are also shown. Note that the changes relative to the experimental measurement un-

certainty are much lower than in the cases where TDSs are used as observables.

My proof of principle experiment is conducted with a two-node network with two

links. The same method can be used to analyze a network with a higher number of

nodes and links. For example, with D = 2, the number of strands in the observable-

coupling strength space would be equal L, the number of links. Increasing L makes the

observables-coupling strength space more crowded, which can be alleviated by using

a higher value of D. Another potential problem is that links that are too “distant”
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from the node being measured may not cause the observables to undergo statistically

significant changes. This can be circumvented by acquiring time series, and hence

observables, from more than one node in the network.

4.6 Toward optimization

While I have shown that, under appropriate conditions, my sensing method can be

implemented experimentally in two-node network of OEOs, it remains unclear what

choice of nodal parameters are optimal for sensing the network parameters. Even with

just this simple two-node network, the parameter space for which this method can

be implemented is large. In addition, the sensing capabilities depend on two metrics,

the maximum coupling strength at which the links are distinguishable and the preci-

sion with which the coupling strength can be determined, which are not necessarily

optimized for the same choice of nodal parameters. It is therefore difficult to answer

questions like: Is it better to use nodes with the same parameter values, different

parameter values, or does it depend on the parameter?

To begin to answer the question of what nodal parameters yield the best possible

determination of the coupling strength, I record time series for a range of values of

(Φ1,Φ2), with all other nodal parameters held fixed. I do this with the network fully

coupled (c12 = 1, c21 = 1), one link blocked (c12 = 0, c21 = 1), and the other link

blocked (c12 = 1, c21 = 0). I then compare how the value of each observable oi changes

(relative to its corresponding measurement uncertainty δoi) when one of the two links

is blocked for each value of (Φ1,Φ2) using

63



∆̃oi,12 =
oi,c12=1,c21=1 − oi,c12=0,c21=1

δoi

, (4.1)

∆̃oi,21 =
oi,c12=1,c21=1 − oi,c12=1,c21=0

δoi

. (4.2)

In terms of precision with which the coupling strength can be determined, sensing

is generally improved for larger values of |∆̃oi,12|+|∆̃oi,21|, which corresponds to larger

changes in the observables. An example of this analysis is shown in Fig. 4.14. One can

see that, for each node and all combinations of observables, the optimal operating

point according to this metric is (Φ1,Φ2) = (0,−0.08π). It is interesting to note that

the greatest changes in observables in this (already heterogeneous) network occur for

Φ1 6= Φ2, lending credence to the idea that sensing can not only take place despite

nodal hererogeneities, but might also be improved by them.

4.7 Summary

In this chapter, I demonstrate a proof of principle experiment of a novel sensing method

with high-speed (> 10 GHz) dynamical systems with non-identical nodes and non-

negligible delays in the interactions. My method exploits the fact that correlation

properties of the nodal dynamics in an experimental nonlinear, delayed network are

sensitive to changes in the network parameters in a statistically significant and repro-

ducible way. The TDSs, which I first introduce in Ch. 2, are one such example. I also

explore ways to optimize the method by choice of parameters and observables. I find

that, for the optimal choice of nodal parameters, an observer can determine which link

is affected for an attenuation of roughly 20% or greater by monitoring two of the three

TDSs at τself, τother, and τcoupling. In addition, the maximum changes in these TDSs,
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when either the input or output link to the observed node is blocked, are on the order

of 10 times greater than their experimental uncertainties, making approximation of

the coupling strength possible.
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Figure 4.14: Determining optimal parameters for sensing. Data from both nodes

using all combinations of the three TDSs as observables. For each value of (Φ1,Φ2),

|∆̃o| is computed for both observables using Eqs. 4.1 and 4.2 and then averaged.

Higher values (red) correspond to improved sensing performance, with respect to de-

termining the coupling strength.
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Chapter 5

Numerical implementation of the sensing

method

In Ch. 4, I demonstrate experimentally how to calibrate a two-node network of OEOs

so that an observer can sense changes to the network parameters by monitoring the

dynamics of a single node. In this chapter, I confirm qualitatively my experimental

findings by numerically integrating a DDE model describing the coupled OEOs. I then

investigate the performance of the sensing network when the four time delays, which

are originally taken to be distinct, are successively made identical. Finally, I explore the

necessity of deterministic chaos as the dynamics on the nodes in my sensor network by

replacing it with dynamics generated by a linear stochastic map.

To numerically integrate the DDE models describing the OEOs, I use a multi-

step predictor-corrector method known as the four-point Adams-Bashforth-Moulton

method, which is described in Ref. [53]. The code for the integrator I use was origi-

nally written by Dr. Damien Rontani, and I modify it to suit my purposes, with details

given in Appendix C.

5.1 Model and integration

In Ch. 2, I introduce a DDE model for the single OEOs used in my experiments,

V̇ (t) = ∆
�−V (t)− U(t)+ F[V (t − τd)]

	

, (5.1)

U̇(t) = ∆εV (t), (5.2)
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Figure 5.1: Mathematical block diagram. (a) Single OEO. (b) Two coupled OEOs.

where the nonlinear function F[V ] is given by

F[V ] =
γg

d

�

cos2

�

Φ+ d tanh

�

V

g

��

− cos2 [Φ]

�

. (5.3)

Recall that V (t) denotes the voltage directly at the output of the bandpass filter, which

is approximately equal to the voltage I measure in the experiments with a single OEO.

Also, U(t) is introduced as an auxiliary variable to account for the integral term (due

to the high-pass filter), which cannot be measured physically. A mathematical block

diagram of corresponding to Eqs. 5.1 and 5.2 is shown in Fig. 5.1(a).

To determine how well my model captures the behavior of the TDSs, I integrate

Eqs. 5.1 and 5.2 for a range of values of Φ. Since many of my experimental parameters

have rather large fractional uncertainties (see Table 4.1), I use a gradient descent

method [54] to more precisely determine the model parameters that yield the best
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Figure 5.2: Single OEO comparison between experiment and simulation. The

experimental TDSs at τd (solid line) for γ= 5.5±0.5, d = 1.1±0.07, g = −0.22±0.02

is used as an input to a gradient descent algorithm to find the parameters that yield

the best agreement with the numerical TDSs at τd (dashed line). The parameters

obtained are γ = 5.38, d = 1.1242, g = −0.2188, which fall within the experimental

uncertainty.

match between the TDSs at τd in the simulation and the experiment. The results are

shown in Fig. 5.2. While the trend and asymmetry about Φ = 0 are clearly similar, the

average difference between the experimental and numerical TDSs is approximately 3×
δTDS, indicating that the precise values of the TDSs cannot be matched because there

is either something important is missing from the model, or an unknown systematic

experimental error, or both. However, since I am mostly interested in changes in TDSs

and not their absolute values, this model suffices for my purposes.

Building upon Eqs. 5.1 and 5.2, I find that the model for the two OEOs coupled in

the block diagram configuration shown in Fig. 5.1(b) is given by a set of four coupled
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DDEs

V̇1(t) = ∆1

�−V1(t)− U1(t) + F1[V1(t −τ11)] + c21F2[V1(t −τ21)]
	

, (5.4)

U̇1(t) = ∆1ε1V1(t), (5.5)

V̇2(t) = ∆2

�−V2(t)− U2(t) + F2[V2(t −τ22)] + c12F1[V1(t −τ12)]
	

, (5.6)

U̇2(t) = ∆2ε2V2(t). (5.7)

Here, the subscripts 1 (2) refer to the variables and parameters of OEO1 (OEO2), the

subscripts 11 (22) refer to parameters characterizing the link from OEO1 (OEO2) to it-

self, and the subscripts 12 (21) refer to parameters characterizing the link from OEO1

(OEO2) to OEO2 (OEO1). Note that each OEO is driven by two time-delayed nonlinear

feedback terms: one corresponding to the self-feedback loop, and the other corre-

sponding to the signal coming from the nonlinearity of the other OEO, which may or

may not be attenuated.

5.2 Proof of principle numerical simulation

To see if my sensing results from the previous chapter are captured by the model, I

first numerically integrate Eqs. 5.4−5.7 with c12 = c21 = 1 and calculate the ACFs

of V1(t) and V2(t). As described in Appendix C, the integrator uses a fixed timestep

of 0.005 ns, and the IHF is a 2-ns FWHM Gaussian pulse, with an amplitude large

enough to cause the system to leave the basin of attraction of the fixed point. For this

simulation, I take the fixed parameters of both OEOs to be equal to the experimentally

determined parameters of OEO1 (given in Table 4.1). For the adjustable parameters,

I take γ1 = γ2 = 5, Φ1 = 0.03π, Φ2 = 0, and set the time delays to be equal to their

experimental counterparts. Thus, the only differences between the two OEOs are the
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Figure 5.3: Simulation time series and ACF of two coupled OEOs. The numerical

time series (a,c) and ACF (b,d) of two coupled OEOs with γ11 = γ22 = 5, (Φ1,Φ2) =

(0.03π, 0), c12 = c21 = 1.00, τ11 = 44.7 ns, τ22 = 56.4 ns, and τ12 + τ21 = 116.6 ns.

The simulation is initialized with a sufficiently large amplitude pulse for the IHF. The

step size is 0.005 ns, and 10 µs of data are analyzed after discarding the first 200 µs of

data to ensure that the steady-state has been reached. Only every fifth point has been

plotted to improve clarity and match the experimental sampling rate.

values of their self-feedback time delays and MZM operating points. The results of the

simulation are shown in Fig. 5.3.

As with the experiment, there are sharp peaks in the ACFs at time lags equal to

integer multiples of: τ11, τ22, τ12 + τ21, and sums and differences of these three
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timescales. In this case, the TDSs at τ11 and τ12 + τ21 are much more prominent

than those at τ22. This is another indication that the TDSs depend sensitively on the

system’s parameters, as the two OEOs only differ in their values of Φ and τself. It is also

interesting to note that, unlike the case for the single OEO, the TDSs corresponding to

the self-feedback time of each OEO are completely eliminated for Φ1 = Φ2 = 0. It is

still an open question why the coupled OEOs obey this symmetry, while the single OEO

does not.

I then successively decrease the coupling strength along one of the links with the

other held fixed at unity, using the end of the time series at the previous step as the

IHF for the next simulation. The results of the one-dimensional and two-dimensional

calibrations are shown in Figs. 5.4, 5.5, and 5.6. The one-dimensional sensing method

fails to differentiate between the two links and provide an approximation of the cou-

pling strength in all cases shown in Fig. 5.4, as either the ranges of the TDSs overlap,

the slope is zero, or the behavior is non-monotonic. The two-dimensional method,

however, can differentiate between links for high enough attenuation in five of the six

cases shown in Figs. 5.5 and 5.6. It only fails if the observer relies on the TDSs from

node 2 at τself and τcoupling, as their projections lie ontop of one another, making distin-

guishability impossible. For all other choices of two TDSs as observables, however, the

affected link can be determined for sufficiently large attenuations. Also, the maximum

changes in the TDSs, when either the input or output link to the observed node is

blocked, are also on the order of 10 times greater than the experimental uncertainties.

While this shows qualitative agreement for changes in the TDSs between the exper-

iment and model, this model does not show quantitative agreement between the two.

Most notably, the range of (Φ1,Φ2) values for which the dynamics have the desired

correlation properties (well-defined sharp peaks superimposed on a delta function-like

background) is much smaller in the simulation than in the experiment. In addition,
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Figure 5.4: Simulation: TDSs for (Φ1,Φ2) = (0.03π, 0). Data for both nodes is

shown. The red data points correspond to c12 varying (with c21 = 1) and the blue data

points to c21 varying (with c12 = 1). TDSs at (a,b) τself, (c,d) τother, and (e,f) τcoupling

are shown. For consistency of comparison, the error bars represent the experimental

statistical error of 0.01, which is about a factor of five greater than the estimated

numerical error. Note that the vertical scales for side-by-side plots are chosen to be

the same for ease of comparison, although the maximum and minimum values may be

shifted so that all of the data are displayed.
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Figure 5.5: Simulation: Strands in TDS-coupling strength space. The TDSs were

taken from the simulation with (Φ1,Φ2) = (0.03π, 0) and c12 (red) and c21 (blue)

varied from 0 to 1. The projections of the strands onto the TDS plane are also shown.
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Figure 5.6: Simulation: Projection of strands in TDS1-TDS2 plane. The TDSs were

taken from the simulation with (Φ1,Φ2) = (0.03π, 0) and c12 (red) and c21 (blue)

varied from 0 to 1. The minimum attenuation necessary to distinguish the links (if it

exists) is approximated by the first value of the coupling strength were the projections

are distinct (taking into account the experimental uncertainty, shown with error bars).
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the dynamics that I measure in the experiment with two coupled OEOs (denoted X1(t)

and X2(t)) are not V1(t) and V2(t), but rather a bandpass filtered version of F1

�

V1(t)
�

and F2

�

V2(t)
�

. However, I find that taking this into account suppresses many of the

TDSs and actually makes the agreement between experiment and simulation worse.

The differences between experimental and numerical results for the coupled OEOs

could be due to several reasons, some of which are: the model greatly simplifies be-

havior of each component (see Appendix A); the model does not include any effects of

noise; and there is a greater chance of multistability when the number of time delays

is increased, which may impact the experimental and numerical systems differently.

5.3 Other types of observables

In Ch. 4, I state that TDSs are not the only choice of observables. In principle, any

number that can be calculated from a single time series and that changes with the

properties of the network can be used. The simplest quantities to track are the global

maximum and minimum signal amplitudes. One would expect that, if the signal input

to a node in a network is being attenuated, then the amplitude of the measured signal

would also change. How it changes, however, depends on where the signal is being

measured. While the experimentally accessible values Xmax and Xmin (at the output of

the nonlinearity) do not change enough to be useful for sensing, I find numerically that

Vmax and Vmin (at the output of the bandpass filter) experience relatively large changes,

as shown in Fig. 5.7. For the case shown, the one dimensional sensing method using

Vmax as an observable can distinguish between links for attenuations as low as 10%.
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Figure 5.7: Simulation: Maximum and minimum signal amplitudes. The (a) max-

imum and (b) minimum signal amplitudes are taken from the dynamics of node 1 in

the simulation with (Φ1,Φ2) = (0.03π, 0) and c12 (red) and c21 (blue) varied from 0 to

1. The (c) strands in observable-coupling strength space and (d) projections onto the

observables plane are also shown.

5.4 Impact of the relative values of the time delays

In Ch. 4, I hypothesize that keeping the time delay of each link different improves the

network’s ability to sense changes with my method using TDSs as observables. This

hypothesis is based on the ideas that (1) there are more distinct TDSs to observe al-

lowing for higher-dimensional sensing methods and (2) the changes in different TDSs

are more likely to be independent from one another if the corresponding time delays
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Table 5.1: Values of the time delays in each of the four scenarios

Scenario τ11 (ns) τ22 (ns) (τ12+ τ21)/2 (ns)

1 44.7 56.4 58.3

2 44.7 58.3 58.3

3 44.7 44.7 58.3

4 44.7 44.7 44.7

are incommensurate, allowing for improved distinguishability. To investigate the im-

pact that the heterogeneities in the propagation delays have on the network’s ability

to sense changes, I numerically integrate Eqs. 5.4−5.7 and perform a two-dimensional

calibration for four different scenarios:

1. τ11 6= τ22 6= (τ12 +τ21)/2,

2. τ11 6= τ22 = (τ12 +τ21)/2,

3. τ11 = τ22 6= (τ12 +τ21)/2,

4. τ11 = τ22 = (τ12 +τ21)/2.

Note that in the homogeneous case, where all of the links have identical propagation

delays, the round-trip coupling time delay is still different from the self-feedback time

delays. The values of the time delays I use are shown in Table 5.1. I again use two

metrics to quantify the quality of sensing: the average change in observables when

each link is blocked, given by Eqs. 4.1 and 4.2; and the coupling strength at which

the affected link is first distinguishable. I calculate both quantities for each pair of

observables and each node for all four scenarios. The results are shown in Figs. 5.8

and 5.9.

A few conclusions can be drawn from this analysis. First, as the delay times are

made successively identical for both nodes, the average change in the TDSs at τself,

78



Figure 5.8: Simulation: Average change in observables. The change in each ob-

servable (TDSs at τself, τother, and τcoupling; maximum and minimum amplitude) are

calculated for when each link is blocked using Eqs. 4.1 and 4.2 and then averaged.

These quantities are then taken in pairs and averaged again to give a sense of how

well each combination of observables performs. Due to the different values of Φ1 and

Φ2, the average change in observables are different for (a) node 1 and (b) node 2.

τother, and τcoupling undergo statistically significant increases from the completely het-

erogeneous case. This contradicts my original hypothesis that sensing is optimized

when the time delays are distinct, in the sense that a larger change in observables al-

lows for better resolution of the coupling strength. This is likely because making the

time delays commensurate with one another increases the correlation at one particular

time lag, which makes it more sensitive to changes. However, for the completely iden-

tical case, the ability to use TDSs to distinguish which link is attenuated vanishes, as
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Figure 5.9: Simulation: Coupling strength necessary to distinguish link. This is

approximated (±10%) with the criterion that the projection of the observables for each

strand have to separate by an amount greater than their experimental uncertainty to be

considered distinct. Due to the different values of Φ1 and Φ2, these values are different

for (a) node 1 and (b) node 2.

can be seen in Fig. 5.9. This supports my hypothesis, in the sense that distinguishablity

is decreased for identical time delays. In fact, even though the TDSs in Scenario 4

undergo the greatest changes, sensing via my method fails because the projections of

the strands never separate. Therefore, it seems that, when using TDSs as observables

in this type of network, a balance must be struck between optimizing the resolution of

the coupling strength and the distinguishability of the links. Based on this analysis, the

best way to implement my sensing method with two numerical OEOs is to use Scenario

2 (where τ11 6= τ22 = (τ12+τ21)/2) and monitor the TDSs of node 2. This results in a
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relatively high measure of distinguishability (c = 60%) between the TDSs at τother and

τcoupling, and a high average change in observables for τself and τcoupling.

The performance of the method using Vmax and Vmin as observables with regard to

either metric is not affected by changes to the time delays in a statistically significant

way. An advantage of using these as observables instead of TDSs is that the links

remain distinguishable in all four scenarios. However, in my experiment, I do not have

access to V due to the nonlinearity and filtering effects, which may very well be the

case in many experimental realizations, making TDSs a more attractive observable due

to their apparent sensitivity to changes in network parameters despite experimental

measurement effects.

5.5 Replacing deterministic chaos with stochasticity

While I show that my method is able to determine changes in the network prop-

erties of delay-coupled nonlinear dynamical nodes, it remains unclear whether these

sensing capabilities are due to the nonlinear dynamics, the particular network topol-

ogy, or both. In Ref. [55], the authors show that delay-coupled unidirectional rings

with chaotic nodes have correlation properties that obey the same scaling laws as

those composed of linear stochastic nodes. In particular, they demonstrate that one

can construct the correlation properties of a node in the network from the correlation

properties of a collection of single nodes with time-delayed self-feedback. This works

in both the deterministic and stochastic cases. One conclusion they draw from this

is that emergent properties of the nodal dynamics can result solely from the network

topology. Motivated by this work, I investigate to what extent the nonlinearity provides

the sensitivity in my sensing scheme by implementing my method using a network with

same coupling topology as in my experiment and previous numerical simulations, but
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where the dynamics of the nodes are based on a linear stochastic process.

The two dynamical systems compared in Ref. [55] are a discrete-time linear stochas-

tic map and a continuous-time chaotic Stuart-Landau oscillator. Again, since they

found that the correlation properties of each type of system obeyed the exact same

scaling laws, it seems reasonable to use the same linear stochastic map for my pur-

poses. I modify the topology to include not only delay-coupling, but also time-delayed

self-feedback. In particular, I investigate a two-node network with linear stochastic

dynamics given by

x1(t + 1) = α1x1(t) + ξ1(t) + β1 x1(t −τ11) + c21β2x2(t −τ21), (5.8)

x2(t + 1) = α2x2(t) + ξ2(t) + β2 x2(t −τ22) + c12β1x1(t −τ12). (5.9)

Here, x i(t) is the dynamic variable of node i at the discrete time step t; αi is a param-

eter that accounts for node i’s dynamics; ξi is an independent white noise term; and

βi is a parameter characterizing the self-feedback gain of node i. As with the coupled

OEOs, τii is the self-feedback time delay, τi j is the coupling time delay between node

i and node j, and ci j is the normalized coupling strength between node i and j.

An example of the dynamics produced for α1 = α2 = 0.1, β1 = β2 = 0.4, τ11 = 47,

τ22 = 56, and τ12 + τ21 = 120 is shown in Fig. 5.10. The correlation properties are

qualitatively similar to those of two coupled (nonlinear) OEOs, where sharp peaks

are superimposed on a delta function-like background. The peaks are located near

multiples of: τ11 + 1, τ22 + 1, τ12 + τ21 + 2, and sums and differences of these three

timescales. Note that the peaks are shifted by one time step from the self-feedback

time delays (two time steps from the round-trip coupling time delay) due to the fact

that correlations arise between x i(t + 1) and x i(t − τii) (x j(t − τi j)) in this discrete

time system. I still refer to these peaks, however, as the TDS at τi j.
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Figure 5.10: Two coupled linear stochastic maps. The time series (a,c) and ACF

(b,d) of two coupled linear stochastic maps with α1 = α2 = 0.1, β1 = β2 = 0.4,

c12 = c21 = 1.00, τ11 = 47, τ22 = 56, and τ12 + τ21 = 120. The coupled maps are

initialized with a random IHF and then iterated for 106 time steps.

Figure 5.11 shows the TDSs as the coupling strength along each link is varied,

and Figs. 5.12 and 5.13 show the strands and projections that the TDSs make in the

TDS1-TDS2 plane. One-dimensional sensing is impossible with these observables, due

to the fact that the ranges overlap in all six cases shown in Fig. 5.11. Two-dimensional

sensing, however, is possible in four of the six cases shown in Figs. 5.12 and 5.13.

This demonstrates that sensing can be achieved in a two-node network with stochas-
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tic dynamics that do not involve any nonlinear effects, due to the fact that changes

in the network properties result in statistically significant changes in the correlation

properties.

Interestingly, the four cases where two-dimensional sensing is successful all involve

using the TDS at τother, as this is the only TDS that responds differently depending on

which link is attenuated. In the cases with the experimental and numerical nonlinear

nodes, however, the TDSs at both τself and τother often have different behavior depend-

ing on which link is attenuated. This could be due to the fact that, in the nonlinear

cases, some of the nodal parameters were different, whereas in the linear case they are

all identical, with the exception of the self-feedback time delays.

As with the numerical simulation of the OEOs, I investigate the impact that the

relative values of the time delays in the network have on my sensing method. I use

the same four scenarios described in the previous section, and the results are shown

in Figs. 5.14 and 5.15. Comparing this analysis to that of the numerical simulation

of nonlinear nodes, there are some similarities. First, the average change in the TDSs

at τself, τother, and τcoupling increase from the completely heterogeneous case as the

time delays are made successively identical, indicating that this is a generic trend of

networks with this topology. Second, the distinguishability vanishes for Scenarios 3

and 4 when the TDSs at τself and τother are used as observables, which it has to since

τself = τother in these cases. However, unlike the nonlinear case, the distinguishability

does not vanish for these two scenarios when the TDSs at τself and τcoupling are used.

This is particularly surprising because, in the heterogeneous case (Scenario 1), I see

that only the TDS at τother has different behavior for different links. One might think

that setting τother = τself = τcoupling would eliminate its distinguishability, but this is not

the case, as shown in Fig. 5.16.
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Figure 5.11: Stochastic map: TDSs as coupling strength varies. Data for both nodes

is shown. The red data points correspond to c12 varying (with c21 = 1) and the blue

data points to c21 varying (with c12 = 1). TDSs at (a,b) τself, (c,d) τother, and (e,f)

τcoupling are shown. The errors bars of 0.002 represent the standard deviation of the

TDSs obtained from iterating the coupled maps for 106 time steps starting with random

IHFs several times.
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Figure 5.12: Stochastic map: Strands in TDS-coupling strength space. The TDSs

were taken from the stochastic map with c12 (red) and c21 (blue) varied from 0 to 1.

The projections of the strands onto the TDS plane are also shown.
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Figure 5.13: Stochastic map: Projection of strands in TDS1-TDS2 plane. The min-

imum attenuation necessary to distinguish the links (if it exists) is approximated by

the first value of the coupling strength were the projections are distinct (taking into

account statistical uncertainty, shown with error bars).
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Vmax and Vmin cannot be used as observables in the stochastic case, however, because

distinguishability fails in all four scenarios. In the nonlinear case, the maximum and

minimum signal amplitudes are mostly determined by the saturations of the nonlinear-

ity and the auxiliary variable U . There is no saturation in the stochastic case, however,

making the maximum and minimum signal amplitudes behave more erratically.

Thus, this analysis shows that sensing can be achieved without any nonlinear ef-

fects, as long as the topology includes time-delayed coupling and feedback. However,

the observables and relative values of the time delays must be chosen differently de-

pending on the type of dynamics (nonlinear or linear) on the nodes in the network.

5.6 Summary

In this chapter, I demonstrate two proof of principle simulations of my sensing method:

one with a deterministic DDE model describing the nonlinear dynamics of two coupled

OEOs, and one with a linear stochastic map. I use these models to investigate the roles

that heterogeneities in the time delays and different types of nodal dynamics play in

my sensing scheme. In doing so, I find that equating the different time delays increases

the average change in the TDSs, which in turn increases the precision with which the

coupling strength can be determined, but only if the links are distinguishable. In the

case with nonlinear dynamics, making the time delays identical erases distinguishabil-

ity, but this does not happen in the case with linear stochastic dynamics. Therefore, my

method can be applicable to networks with heterogeneous or homogeneous time de-

lays and linear or nonlinear nodes, but the performance must be optimized differently

for each type of network.
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Figure 5.14: Stochastic map: Average change in observables. The change in each

observable (TDSs at the measured node’s self-feedback delay time, the other node’s

self-feedback delay time, and round-trip coupling delay time; maximum and minimum

amplitude) are calculated for each link using Eqs. 4.1 and 4.2 and then averaged.

These quantities are then taken in pairs and averaged again to give a sense of how

well each combination of observables performs. Due to the different values of the time

delays, the average change in observables can be different for (a) node 1 and (b) node

2.
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Figure 5.15: Stochastic map: Coupling strength necessary to distinguish link. This

is approximated (±10%) with the criterion that the projection of the observables for

each strand have to separate by an amount greater than their experimental uncertainty

to be considered distinct. Due to the different values of the time delays, these values

can be different for (a) node 1 and (b) node 2.
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Figure 5.16: Stochastic map: Identical delays. (a) The strands in observable-

coupling strength space and (b) projections of the strands onto the observables plane

are shown for τ11 = τ22 = τ12 = τ21 = 47. The observables are the TDSs at τ11 and

τ12 +τ21.
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Chapter 6

Conclusions

In this dissertation, I develop and perform a proof of principle demonstration of a

method to infer changes in the properties of a network by monitoring characteristics

of the chaotic dynamics of one of its nodes. In this chapter, I summarize the main

contributions from each chapter and provide an outlook for future research.

6.1 Summary of results

In the first chapter, I provide the necessary background information on chaotic dy-

namics and networks to motivate my research question. I then briefly introduce the

well-studied experimental device, an OEO, which I make use of throughout the rest of

the dissertation.

In Ch. 2, I give an overview of the characteristics of nonlinear, time-delayed dy-

namical systems. OEOs belong to this class of systems, and I provide highlights of

recent research with OEOs, including my own published and unpublished work. My

finding that, for a particular choice of parameters, an OEO generates nearly feature-

less, broadband chaos appears in Refs. [8–10]. My subsequent discovery, however, that

this chaos contains TDSs with values that depend sensitively on a particular parameter

of the OEO has yet to be reported in the literature. The behavior of these TDSs are

important for my proposed sensing method.

Other researchers have proposed potential solutions to the research question I am

interested in, and I present one particular approach in Ch. 3. This approach is also
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implemented with a small network of OEOs, but is done using dynamics with speeds

that are six orders of magnitude slower than the dynamics used in my work. Fur-

thermore, this approach relies on chaos synchronization, which often requires that the

nodal parameters be nearly identical. This motivates my search for a method that can

be implemented with high-speed and heterogeneous dynamical nodes.

In Ch. 4, I return to studying the behavior of TDSs, only now in an experimental

network of two coupled OEOs as the coupling strengths along each of the links are

varied. I find that TDSs at the self-feedback time delay of each node, denoted τ11 and

τ22, are sensitive to which of the two links is attenuated. While the TDS at the round-

trip coupling time, τ12 + τ21, also changes with coupling strength, it is not necessarily

sensitive to which link is attenuated. In general, I find that the behavior of the TDSs

depend not only on the network parameters, but also on the parameters of each node.

I then propose and demonstrate a method to use one or two TDSs to track potential

changes in coupling strength along either of the links. I generalize this method to use

D observables, which can be TDSs or other quantities computed from the time series of

one of the nodes, and find that the sensing capabilities can be improved by increasing

D, but at the expense of additional computations and decreased ease of visualization.

I quantify the performance of my sensing network with two metrics: (1) the average

change in observables, which relates to the precision with which the coupling strength

can be determined; and (2) the minimum attenuation necessary to distinguish which

link is affected. I find that the first metric is optimized when a particular parameter of

the nodes is made to be heterogeneous. For this choice of parameters, I find that the

affected link can be determined for changes in coupling strength greater than 20%±
10%. Also, if the coupling strength along either link is changed from fully coupled to

fully attenuated, then, on average, the TDSs change by approximately 40 times their

experimental uncertainty, making it feasible to approximate the new coupling strength
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for large enough perturbations. It is important to note that these measurements are

based solely on ∼ 10 µs worth of data collected from a single node generating chaos

with a bandwidth of ∼ 10 GHz.

To verify that the behavior of the TDSs are captured by simple models describing

an isolated OEO and two coupled OEOs, I perform numerical integrations of both

models in Ch. 5. I then use the model for two coupled OEOs to demonstrate a proof

of principle of my sensing method numerically and to explore its performance as the

time delays are successively made identical. In contrast to my original hypothesis, the

average change in TDSs is greatest for the completely identical time delay scenario,

which corresponds to improved precision in determining the coupling strength. In this

scenario, however, it is impossible to determine which link was attenuated, indicating

that a balance must be struck between the network’s ability to discern the new coupling

strength and the affected link.

I also test my method numerically with a network of linear stochastic maps. I find

that, as long as the topology includes time-delayed coupling and feedback, sensing

can be achieved without nonlinear effects. The performance, however, is optimized

differently than in the nonlinear, deterministic case. For example, unlike the numerical

OEO case, in the scenario where all of the time delays are identical it is possible to

determine both the coupling strength and the attenuated link.

Finally, I conclude here with a graphical comparison of the performance of all three

implementations of my method (experimental OEOs, numerical OEOs, and numerical

stochastic maps) in Figs. 6.1 and 6.2. By these metrics, when the TDSs at τother and

τcoupling are used as observables, the numerical simulations of the stochastic map out-

perform both implementations with the OEO in terms of ability to precisely determine

the coupling strength. This is likely due to the small uncertainty in the TDSs that can

be achieved numerically, and it remains unclear what the uncertainty and performance
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would be in an experimental realization with stochastic nodes. It is also interesting to

note that, when TDSs are used as observables, the OEO experimental implementation

outperforms that of the OEO numerical implementation in terms of distinguishability.

In the experimental implementation with deterministic chaos, all three combina-

tions of TDSs allow the observer to determine which link was attenuated, while only

two of the three combinations are successful in the numerical stochastic case. This

could be due to the effects of the nonlinearity or of the different nodal parameters.

Distinguishability is also achieved in the numerical OEO implementation, but for lower

values of coupling strength (higher attenuation). In the experimental and stochas-

tic implementations, the maximum and minimum signal amplitudes fail to determine

which link is affected, indicating that this is a poor choice for observables in certain

settings. All of these observations show that TDSs, which are relatively simple to com-

pute, can be used to infer changes to the properties (coupling strengths along the links)

of a two-node network. In addition, the success and similarities of my sensing method

in all the three different implementations indicate that the dynamical properties of a

network of high-dimensional chaotic systems are not all that different than those of a

network composed of stochastic nodes.

6.2 Future directions

While I successfully demonstrate a method to detect sufficiently large changes in the

coupling strength along one of the links in a two-node network, this is only a modest

step toward the potential realization of a high-speed sensing network and answers to

the broader questions I present at the beginning of this dissertation (e.g. the network

inverse problem and information flow in networks).

To continue to push forward, understanding how my method scales with the size of
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the network is the next important step. I know that each additional link corresponds to

an additional strand in observable-coupling strength space. In theory, these L strands

should be distinct. Experimentally, however, it is unclear whether additional strands

will be distinct when taking into account experimental uncertainty and if the observ-

ables corresponding to “distant” links will change enough for the coupling strength to

be determined. Initial investigations into three-node networks of numerical OEOs and

stochastic maps show that the third strand can be made distinct, but that the changes

in observables decrease relative to those of the corresponding two-node networks.

Additionally, this method needs to be modified to detect multiple intruders (or

changes in coupling strength along multiple links). One possibility is that, instead of

using calibration strands for changes in the properties of one link, surfaces will be

formed when calibrating the network for simultaneous changes along two links. This

analysis will be aided with the use of a “statisticians” model, where the value of each

observable has both an average value and a probability spread for each choice of the

network’s parameters.

After these issues have been addressed, a wireless rf prototype that responds to

attenuations due to water-based intruders should be built and analyzed. This will allow

for the investigation of how additional complications (such as changes in propagation

delay between the nodes due to the presence of an intruder and reflections off of the

environment) impact the network’s ability to sense intruders. It will also be interesting

to build a stochastic prototype and test it against the deterministic one.

Beyond building a real sensor network, it remains to be seen if and how knowledge

of the response of TDSs to changes in network properties corresponds to changes in

information theoretical measures, such as transfer entropy [56]. If such a correspon-

dence could be established, then measuring TDSs could prove to be a much simpler

way to analyze information flow in networks with chaotic dynamics and time delays.
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Figure 6.1: Comparison: Average change in observables. The results from the

OEO experiment (with (Φ1,Φ2) = (0,−0.08π), τ11 = 44.7 ns, τ22 = 56.4 ns, and

τ12 + τ21 = 116.6 ns), OEO simulation (with (Φ1,Φ2) = (0.03π, 0), τ11 = 44.7 ns,

τ22 = 56.4 ns, and τ12 + τ21 = 116.6 ns), and stochastic map simulation (with α1 =

α2 = 0.1, , τ11 = 47, τ22 = 56, and τ12 + τ21 = 120) are shown. Due to differences

in the parameter values, the average change in observables are different for (a) node

1 and (b) node 2.
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Figure 6.2: Comparison: Coupling strength necessary to distinguish link. The

results from the OEO experiment (with (Φ1,Φ2) = (0,−0.08π), τ11 = 44.7 ns, τ22 =

56.4 ns, and τ12+τ21 = 116.6 ns), OEO simulation (with (Φ1,Φ2) = (0.03π, 0), τ11 =

44.7 ns, τ22 = 56.4 ns, and τ12 + τ21 = 116.6 ns), and stochastic map simulation

(with α1 = α2 = 0.1, , τ11 = 47, τ22 = 56, and τ12 + τ21 = 120) are shown. Due to

differences in the parameter values, these values are different for (a) node 1 and (b)

node 2.
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Appendix A

Experimental apparatus

The experimental results presented in this dissertation are obtained with a network

of two high-speed optoelectronic oscillators (OEOs) that I developed. In this chapter, I

describe and characterize the components that comprise each of the OEOs.

This chapter is based partly on Ref. [8].

A.1 OEO overview and components

The optoelectronic network under investigation is comprised of commercially available

high-speed components which, due to the presence of a delayed-feedback, delayed-

coupling and nonlinear elements, can display a variety of behaviors. As shown in

Fig. A.1, the setup of each OEO is as follows: light with a wavelength of 1550 nm

generated in a semiconductor laser propagates through a single mode optical fiber,

a polarization controller, and a Mach-Zehnder modulator (MZM). The light exiting

MZMi is split by an optical coupler, and half of the power is split again and incident

on two photodetectors: one to measure the dynamical variable X i(t) and the other to

determine relevant properties of MZMi (to be described later). The other half of the

signal is also split again, so that half can continue through the self-feedback loop of

OEOi and the other half can be sent to OEO j via a variable optical attenuator. The

signals from OEOi and OEO j are then combined by a fourth optical coupler, incident

on a high-speed photodetector, and the resulting voltage is amplified by a modulator

driver and fed back into MZMi via a radio-frequency (rf) port. By adjusting the gain in

each feedback loop, the operating point of the nonlinearity, the lengths of the four time

delays, and the coupling strengths along the links from OEOi to OEO j, the dynamics
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of the system can be tuned. The following subsections describe each of the system

components in greater detail.

Figure A.1: Detailed experimental setup. Each OEO consists of a laser diode (LD),

polarization controller (PC), Mach-Zehnder modulator (MZM), four 50/50 optical cou-

plers, two high-speed photodiodes (PD), one slow-speed photodiode, and a modulator

driver (MD). The signal exiting MZMi is split such that a quarter is measured by a

high-speed photodiode (X i(t)), a quarter is used to determine Vtop,i, a quarter is sent

to OEO j, and a quarter is fed back to itself. A variable optical attenuator (VOA) can be

placed between the couplers connecting OEO1 to OEO2 or OEO2 to OEO1.

A.1.1 The laser diodes

Laser diodes are an essential element of many optoelectronic systems [57, 58]. Lasers

of this type can produce radiation with wavelengths anywhere from 0.3 to 100 µm.

Due to the low-loss transmission window in optical fibers at 1550 nm, many laser

diodes are designed to emit infrared radiation at this wavelength. The Sumitomo

InGaAsP/InP distributed-feedback multi-quantum-well laser diode used in my experi-

mental setup (model SEI SLT5411) emits at this wavelength.

100



One can derive rate equations that govern the optical power emitted by a laser

diode as a function of the injection current, I [57]. Linear stability analysis of these

equations shows that, beyond a threshold Ith, the laser emits steady-state power that

increases linearly with I . To verify this dependence, I measured the output power with

a photoreceiver (Thorlabs DET01CFC) for several values of the current, as shown in

Fig. A.2. I find that, above ∼10 mA, the measured steady-state power PLD (in milli-

watts) as a function of current I (in milliamperes) for one my lasers is approximately

given by

Figure A.2: Characterizing laser diode. A least-squares-fit of the linear regime is

superimposed.

PLD ≈ 0.179 [mW/mA](I− Ith), (A.1)

with Ith = 9.77 mA, based on a least-squares fit for the data points in the linear regime.
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A.1.2 The polarization controllers

The MZM (described in the next section) is a polarization sensitive device and only

functions properly for light linearly polarized along a particular direction. The light

exiting the laser diode is linearly polarized, but the polarization can change along the

optical fiber due to birefringence. This can be understood by noting that the index of

refraction of glass decreases when it is compressed and increases when it is expanded

[59]. Bending the fiber compresses the glass one direction and expands it in another,

which induces birefringence and leads to a change in the polarization state.

The polarization controller I use consists of a quarter-waveplate, half-waveplate,

and another quarter-waveplate connected in series. The waveplates are constructed

by simply looping fiber around a spool (with the half-waveplate having twice as many

loops as the quarter-waveplates) to compress the glass in the direction parallel to the

plane of the spool and expanding it in the plane perpendicular to the spool, thus in-

ducing birefringence. The quarter-waveplates introduce a π/4 phase shift between

the two polarization axes and convert linearly polarized light into elliptically polarized

light or vice versa. The half-waveplate introduces a π/2 phase shift, which causes the

direction of polarization to flip about the fast axis. By manually rotating the fast axis

of each of the waveplates, I can can adjust the polarization state of the light exiting the

polarization controller and incident on the MZM.

A.1.3 The Mach-Zehnder modulators

The MZMs I use are 10 Gb/s Integrated Optic Intensity Modulators. An MZM modu-

lates the intensity of an incident optical signal by exploiting Pockels electrooptic effect

in a Lithium Niobate crystal situated in one arm of a Mach-Zehnder interferometer.

The Pockels effect causes the index of refraction for a particular polarization state to
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depend linearly on the applied electric field [59]. By splitting an optical signal with

a 50/50 splitter and passing one beam through the crystal, which is sandwiched by a

parallel plate capacitor, one can control the phase difference between the two beams.

To control the phase difference, one simply varies the voltage across the capacitor,

which alters the optical path length for one of the beams. Upon recombination, the

resulting optical signal can have an intensity anywhere from zero up to the intensity

of the incoming signal multiplied by the insertion loss of the device (which is around

25% for the MZMs I use).

In Ch. 2, I describe the output power Pout of an MZM with

Pout = Pin cos2

�

π

2

�

VB

Vπ,dc

+
Vin(t)

Vπ,rf

��

, (A.2)

where Pin is the power incident on the MZM, VB is a constant bias voltage applied to

the dc port, Vin(t) is a time-varying voltage applied to the rf port, and Vπ,dc and Vπ,rf

characterize the widths of the interference fringe corresponding to each of the two

ports. Equation A.2, however, neglects the insertion loss of the device and a (generally

nonzero) phase shift term. Taking these effects into account, I obtain

Pout = gILPin cos2

�

π

2

�

VB − Vtop

Vπ,dc

+
Vin(t)

Vπ,rf

��

, (A.3)

where gIL is the insertion loss of the MZM and Vtop is the dc voltage that corresponds

to the top of the interference fringe (i.e., yields maximum transmission). Thus, the

operating point Φ is now given by

Φ =
π

2

�

VB − Vtop

Vπ,dc

�

. (A.4)

I find experimentally that Vtop, and hence Φ, changes with temperature. Thus, it
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is important that each component has a proper heat sink to stabilize the tempera-

ture and that Vtop is measured repeatedly to ensure that the desired operating point

is maintained. To do this, I use a National Instruments 68-Pin Shielded Desktop Con-

nector Block (model number SCB-68) and a LabVIEW program (written with the help

of David Rosin) to slowly scan (< 1 kHz) the voltage across the dc port of the MZM

and measure the output power. This has to be done with the system at the fixed point

(V (t) = 0) and with a gain γ < γH for all values of Φ. This data is recorded with a

slow-speed photodiode (New Focus 2011-FC, bandwidth dc−200 kHz), as shown in

Fig. A.1, and is then fit with a cosine-squared function to simultaneously determine

Vtop and Vπ,dc. The result of one such measurement is shown in Fig. A.3. After allowing

enough time for the components to warm up and reach an approximately constant

temperature, I repeatedly implement this protocol to determine how much Vtop fluctu-

ates on average. Based on the standard deviation of these repeated measurements, I

estimate my uncertainty in Φ to be δΦ = 0.005π.

Figure A.3: Characterizing Vπ,dc. The experimental data (blue) and cosine-squared fit

(red) are shown for MZM2. Only every 50 experimental data points are shown.

104



To determine Vπ,rf, I apply a 1 MHz ramp voltage to the rf port of the MZM for a

fixed value of Pin and measure Pout. I do this for several values of Φ, and piece the

data together to construct a plot of Pout versus Vin, as shown in Fig. A.4. By fitting this

data to a cosine-squared function, I determine the values of Vπ,rf for each MZM. The

95% confidence intervals are small (fractional uncertainty of < 0.1%), however I find

that the value of Vπ,rf experiences larger changes (fractional uncertainty of ∼ 1%) with

frequency changes of a few MHz. I therefore use this as an estimate of the fractional

uncertainty of Vπ,rf.

Figure A.4: Characterizing Vπ,rf. The experimental data (blue) and cosine-squared fit

(red) are shown for (a) MZM1 and (b) MZM2. Only every 50 experimental data points

are shown. The 95% confidence intervals of the fit do not extend beyond the fit curve

shown, so are not plotted.

A.1.4 The photodetectors

To convert the optical signals to electrical signals, I use optical receivers manufactured

by Miteq (model DR-125G). Like laser diodes, photodiodes are essentially p-n junctions

with an applied potential difference [60]. Unlike laser diodes, however, the junction is

typically reversed biased so that the width of the depletion region is extended. When

radiation within a particular frequency range is incident on this region, electron-hole

pairs are created and swept out of the region in opposite directions due to the external
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bias. This photocurrent is proportional to the intensity of the light. In these particular

photodetectors, the optical signal is coupled to the photodiode via a single-mode opti-

cal fiber, making it ideal for my purposes. Additionally, the large bandwidth (30 kHz

to 13 GHz) allows for the high speed dynamics I am interested in.

A.1.5 The bandpass filters

The electronics that comprise the OEOs are bandpass filtered by the inherit bandwidth

limitations of each device. For simplicity, I model the entire feedback loop of each OEO

as if there is one high-pass and one low-pass corner frequency (i.e., a two-pole band-

pass filter placed at the output of the photodetector). The transfer function for such a

filter with angular bandwidth ∆ and angular frequency of maximum transmission ω0

can be expressed in the frequency domain as

H(s) =
∆s

s2 +∆s+ω2
0

, (A.5)

where s = iω. In terms of the high-pass and low-pass corner frequencies, ∆ =

2π
�

fl − fh

�

and ω2
0
= (2π)2 fl fh.

By definition, the transfer function is the ratio of the output signal to the input

signal in the frequency domain. I am interested, however, in how the input and output

to the filter relate in the time domain. In the time domain, the bandpass-filtered signal

VBP is given by

VBP+
1

∆

dVBP

d t
+
ω2

0

∆

∫ t

0

VBP(l)dl = VPD, (A.6)

where VPD is the input voltage to the bandpass filter. To verify that this is equivalent to

Eq. A.5, one can simply take the Laplace transform of Eq. A.6 and recover H(s).
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To find the approximate values of fh and fl , I open up the feedback loop, set Φ =

π/4 and γ < γH , and inject a small sinusoidal voltage into the modulator driver. Using

an Agilent PSA Spectrum Analyzer (E4440A) and PSG Vector Signal Generator, I vary

the frequency of the input signal while monitoring the amplitude of the output signal.

This generates a transfer function of the entire feedback loop, as shown in Fig. A.5.

I fit Eq. A.5 to this data, which is clearly an oversimplification. In Ch. 2, however, I

Figure A.5: Characterizing bandpass filter. The experimental data (blue) and fit

(red) are shown for (a) OEO1 and (b) OEO2.

find that modeling a single OEO with a two-pole bandpass filter such as this yields

good agreement between experiment, numerical simulation, and analytics. I take the

95% confidence intervals of the fits of fh and fl as estimates of their experimental

uncertainty. I measure γ by injecting a single frequency sine wave ( f = 4 MHz) into

the same open-loop setup, and therefore take the 95% confidence intervals on the

value of the maximum transmission of the transfer function to be an estimate of the

experimental uncertainty for γ.

A.1.6 The modulator drivers

I use 10 Gb/s JDSU optical modulator drivers (model H301) to amplify the rf signal

used to drive the MZMs. Each driver has a bandwidth ranging from approximately 75
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kHz to 10 GHz and a nonlinear response - the response saturates at high drive voltage.

In greater detail, for sinusoidal inputs with low amplitude, the output of the driver is

also sinusoidal. As the amplitude of the input is increased, the driver saturates and

the output begins to square off. I model the output voltage Vout as a function of input

voltage Vin with

Vout = Vsat tanh

�

gMDVin

Vsat

�

, (A.7)

where gMD is the linear gain of the driver (which is a negative quantity since the am-

plifier is inverting) and Vsat is the saturation voltage of the driver.

To determine gMD and Vsat for each driver, I input a sinusoidal signal with varying

amplitude. Given the large bandwidths of the device and dynamics I am interested

in, I do this for two different frequencies (1 MHz and 1 GHz). The results are shown

in Fig. A.6. I find that the saturation characteristics are frequency dependent: higher

Figure A.6: Characterizing modulator driver. The output voltage as a function of

input voltage for (a) MD1 and (b) MD2. Input frequencies of 1 MHz (circles) and

1 GHz (squares) have different saturation characteristics. The fit (solid) and 95%

confidence intervals (dashed) are also shown.

frequencies saturate at a lower voltage than lower frequencies. Rather than further

complicate the model, I fit a curve to both sets of data, knowing that this is an over-
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simplification. The good agreement between experiment and model in Ref. [8, 9] help

to validate this assumption in the case of a single OEO.

A.1.7 The variable optical attenuator

To change the value of the coupling strength along the link from OEO1 to OEO2 or

OEO2 to OEO1, I use a JDS Uniphase VCB Voltage Controlled Attenuator (VCB-Z013).

This attenuator uses as graded neutral density filter, which translates using a step

motor and an internal precision potentiometer, to provide attenuation ranging from

1 to 30 dB. To control the attenuation I use a National Instruments 68-Pin Shielded

Desktop Connector Block (model number SCB-68) and a LabVIEW program (written

with the help of David Rosin). Due to the non-negligible insertion loss, I only place an

attenuator along one of the links in order to keep the coupling along the other link at

full strength.

A.1.8 The time delays

There are three time delays that are important in my analysis: the self-feedback time

delays τ11 and τ22, and the round-trip coupling time delay τ12 + τ21. I found in Ch. 2

that the broadband chaotic dynamics generated by a single OEO have TDSs at integer

multiples of the self-feedback delay time. Therefore, to estimate the two self-feedback

delay times, I record chaotic dynamics for each OEO when uncoupled, compute the

corresponding ACFs, and determine the location of the peaks. To estimate the round-

trip coupling time delay, I fully couple the OEOs and block the self-feedback loops and

repeat the same experiment. Numerical simulations show that the TDSs can be shifted

by at most 45 ps from the true value of the time delay. Since the oscilloscope I use

to measure the dynamics (Agilent DSO90804A) has a maximum sampling rate of 40
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GSa/s, I take my systematic experimental uncertainty in each of the time delays to be

50 ps (two time bins).

Since the variable optical attenuator has an insertion loss of around 20%, I cannot

achieve full coupling with it in place. Therefore, to achieve full coupling, I completely

remove it from the setup, which changes the value of τ12 + τ21 from 116.6 ns to 88.3

ns. This is important to note, since numerical simulations show that the values of the

TDSs have a slight dependence on the values of the round-trip coupling time delay.

This could explain the non-smooth behavior in the vicinity of c12 = c21 = 1 in the

experimental measurements of TDSs versus coupling strength.

A.2 Summary

In this chapter, I describe and characterize the components that comprise my network

of two delay-coupled OEOs that are used in Ch. 4 to implement my sensing method.

The values and corresponding experimental uncertainties of each are given in Tables

4.1 and 4.2. In order to keep a tractable model for the two OEO network, I simplify

many of the non-ideal behaviors in a similar manner to the approaches taken in Refs.

[8, 9, 27], which deal with chaotic and excitable dynamics in single OEOs.
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Appendix B

Permutation entropies of experimental

dynamics

Throughout this dissertation, I characterize the correlation properties of chaotic and

stochastic time series with TDSs. I then use these quantifiable changes in correlation

properties to sense changes in the properties of a network of dynamical nodes. In this

appendix, I introduce the notion of permutation entropy (PE), which is a quantity that

is proposed to characterize the complexity of a time series. I then investigate how this

complexity metric changes with the network properties, and thus determine how it

performs as an observable in my sensing method. The idea to incorporate this metric

was suggested to me by Dr. Damien Rontani.

B.1 Definition of PE

Bandt and Pompe introduce PE as a complexity measure for a time series, where this

measure is based on comparisons between neighboring values [50]. They argue that

this metric is faster to compute and more robust to noise than other proposed com-

plexity metrics, such as entropies, fractal dimensions, and Lyapunov exponents. It is

interesting to note that, for some chaotic systems, this metric has been show to exhibit

similar behavior to that of the largest Lyapunov exponent, which is far more resource-

intensive to calculate.

To understand how to calculate PE with order n and time-delay embedding τemb,

consider a discrete time series {x t}t=1,...T . Then select n points from the time series sep-

arated by a time τemb (i.e., {x i, x i+τemb
, ...x i+(n−1)τemb

}) and assign each point a number

111



based on its relative value to the other points in the set (i.e., 1 = largest, 2 = second

largest, ..., n = smallest). This number assignment is called an ordinal pattern π and

is calculated for all {x i, x i+τemb
, ...x i+(n−1)τemb

}. After calculating the relative frequency

with which each ordinal pattern is observed p(π), the PE with order n and time-delay

embedding τemb is then given by

PE(n,τemb) = −
∑

p(π) log p(π), (B.1)

where the sum is over all n! possible ordinal patterns π. This value should fall in the

range 0 ≤ PE(n,τemb) ≤ log n!, and, for the calculations that follow, I normalize the

PE by its maximum possible value. Note that what makes PE more robust to noise

than other entropies is that only the relative order of the values, and not the absolute

values, enter into the calculation. Noise is less likely to have an effect on the relative

values than it is on the absolute values.

B.2 Using PEs as observables

I take the same experimental time series for (Φ1,Φ2) = (0,−0.08π) that I analyze

in Ch. 4 with TDSs and maximum and minimum signal amplitudes, and instead cal-

culate PEs to see if sensing is improved with this new choice of observables. I take

the embedding dimension n = 4, which is within the range of recommended values

(3 ≤ n ≤ 7) [50] and yields a reasonable computation time. Repeated measurements

of the PE with fixed n and τemb, the same experimental parameters, and different IHFs,

yield a standard deviation of 4× 10−4, which I take to be my statistical experimental

uncertainty δPE in measuring PEs.

I find that the value of the PE is sensitive to the embedding time τemb, as shown
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in Fig. B.1. For most values of τemb, I find that the PE does not change much with

changes in coupling strength. Changing τemb to match the time lag corresponding

to a TDS, however, results in a statistically significant change in PE with coupling

strength. Note that for the optimal embedding time (magenta curve), the change in

PE is only around 0.07, but this is approximately 170 times greater than the associated

experimental uncertainty.

It seems reasonable that the PE would only experience appreciable changes for

proper embedding times because, as the delta function-like nature of the ACFs indi-

cate, there is essentially no correlation between nearby neighbors in the chaotic time

series I am interested in. Therefore, it makes sense to group points together that are

separated by a timescale over which correlations are known to occur, as indicated by

the appreciable TDSs at these times. To the best of my knowledge, this apparent rela-

tionship between TDSs and PEs in time-delayed systems has yet to be explored in the

literature.

As with TDSs, I choose to calculate the PE of each time series corresponding to

three special values: τself, τother, and τcoupling. Figure B.2 shows the PEs as the coupling

strength along each link is varied, and Figs. B.3 and B.4 show the strands and pro-

jections that the PEs make in the PE1-PE2 plane. One-dimensional sensing is possible

for two of the six scenarios shown, but two-dimensional sensing is possible for all six

scenarios. Furthermore, in all six of these two-dimensional scenarios, the links are

distinguishable with the minimum change in coupling strength (23%).

I also calculate the change in each observable (rescaled by δPE) for both nodes, as

shown in Table B.1. These values should be compared to those in Table 4.3. One can

see that the PE at τself undergoes much larger changes than the corresponding TDS.
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Figure B.1: PE for different values of the embedding time. The sensitivity of PE

to changes in coupling strength c21 is maximized for τemb = 44.725 ns, which is the

time lag corresponding to the TDS at τ11. The experimental data for node 1 and

(Φ1,Φ2) = (0,−0.08π) is used in this analysis with embedding dimension n = 4.

Table B.1: Changes in PEs for (Φ1,Φ2) = (0,−0.08π)

Node Link ∆̃ PE τself ∆̃ PE τother ∆̃ PE τcoupling

1 2→ 1 170 -6 -14

1 1→ 2 0 14 -14

2 1→ 2 200 0 -22

2 2→ 1 -7 3 -22

B.3 Summary

The advantages of using PEs as opposed to TDSs as observables are that (1) distin-

guishability is improved and (2) one of the observables (corresponding to τself) un-

dergoes much larger changes over the course of fully blocking the input link. The

main disadvantage, however, is that PE, while intended to be faster to compute than

other complexity measures, takes longer to compute than a TDS. For example, using

standard Matlab functions the difference in computation time is a factor of about 10.
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Figure B.2: Experiment: PEs for (Φ1,Φ2) = (0,−0.08π). Data for both nodes is

shown. The red data points correspond to c12 varying (with c21 = 1) and the blue data

points to c21 varying (with c12 = 1). PEs at (a,b) τself, (c,d) τother, and (e,f) τcoupling

are shown. The errors bars represent a statistical error of 4 × 10−4, estimated with

the standard deviation of several measurements of the PEs with the same parameters.

Note that the vertical scales for side-by-side plots are chosen to be the same for ease of

comparison.
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Figure B.3: Experiment: Strands in PE-coupling strength space. The PEs were

taken from the experiment with (Φ1,Φ2) = (0,−0.08π) and c12 (red) and c21 (blue)

varied from 0 to 1. The projections of the strands onto the PE plane are also shown.
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Figure B.4: Experiment: Projection of strands in PE1-PE2 plane. The PEs were

taken from the experiment with (Φ1,Φ2) = (0,−0.08π) and c12 (red) and c21 (blue)

varied from 0 to 1. The minimum attenuation necessary to distinguish the links is ap-

proximated by the first value of the coupling strength were the projections are distinct

(taking into account the experimental uncertainty, shown with error bars).
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Furthermore, in order to calculate a maximally sensitive PE, one needs to first compute

the time lag values corresponding to the TDSs.

An interesting byproduct of this analysis is that there seems to be a previously

unexplored relationship between TDSs and PEs. Since PE has been shown to be a

reliable complexity metric, this lends credence to the idea that TDSs in coupled chaotic

oscillators could also be a relevant measure of complexity.
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Appendix C

Numerical analysis and code

C.1 ABM Integration

To numerically integrate the DDE models describing the OEOs, I use a multi-step

predictor-corrector method known as the four-point Adams-Bashforth-Moulton method

[53]. The code for the integrator was written by Dr. Damien Rontani in C, and then

compiled using a MEX function so that it could be implemented in MATLAB (see be-

low). The details of the simulations are: the fixed time step is 0.005 ns; the IHF is a

2-ns FWHM Gaussian pulse, with a length equal to the length of the longest time delay;

I discard the first 200 µs worth of data, which is ∼ 3 times longer than the slowest time

scale (τh); I keep the last 10 µs worth of data (2 million points); and each simulation

takes ∼ 2 minutes.// Adams-Bashforth-Moulton Method for 2 OEOs with time-delay// Copyright 2012, Damien Rontani for// Qeletron Lab at Duke University#inlude "mex.h"#inlude "math.h"#inlude "stdlib.h"double a[4℄ = { 55.0/24.0 , -59.0/24.0 , 37.0/24.0 , -9.0/24.0};double b[4℄ = { 9.0/24.0 , 19.0/24.0 , -5.0/24.0 , 1.0/24.0};int maxidelay,idelay11, idelay12,idelay21, idelay22,M, S = 4, NDIM=4, D;
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// Parameters OEO #1double Delta1, epsilon1, d1, g1, gamma11, phi1, tau11;// Parameters OEO #2double Delta2, epsilon2, d2, g2, gamma22, phi2, tau22;// Parameters Couplingdouble gamma12, gamma21, tau12, tau21;// Parameters Simulationdouble h, tf, ti;double *Xvals, *Xinit, *dX, *Corr,*param1, *param2, *param, *params;// Nonlinear funtion assoiated with thOEOdouble FNL11(double X){return gamma11*g1/d1*(pow( os(phi1+d1*tanh(X/g1)), 2)-pow(os(phi1), 2));}double FNL22(double X){return gamma22*g2/d2*(pow( os(phi2+d2*tanh(X/g2)), 2)-pow(os(phi2), 2));}double FNL12(double X){return gamma12*g1/d1*(pow( os(phi1+d1*tanh(X/g1)), 2)-pow(os(phi1), 2));}double FNL21(double X){return gamma21*g2/d2*(pow( os(phi2+d2*tanh(X/g2)), 2)-pow(os(phi2), 2));}// Differential system assoiated with the OEOvoid OEOFun(double *dX, double *X , int i, int iidelay11,int iidelay12, int iidelay21, int iidelay22){ // OEO #1dX[0℄ = Delta1*epsilon1*X[1+NDIM*i℄;
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dX[1℄ = Delta1*(-X[1+NDIM*i℄ - X[0+NDIM*i℄+ FNL11(X[1+NDIM*(iidelay11)℄)+ FNL21(X[3+NDIM*(iidelay21)℄));// OEO #2dX[2℄ = Delta2*epsilon2*X[3+NDIM*i℄;dX[3℄ = Delta2*(-X[3+NDIM*i℄ - X[2+NDIM*i℄+ FNL12(X[1+NDIM*(iidelay12)℄)+ FNL22(X[3+NDIM*(iidelay22)℄));}void simulate(){int i, j, k;// imod;dX = (double *)mallo(NDIM *sizeof(double));Corr = (double *)mallo(NDIM *sizeof(double));// Initialization of vetor dXfor(j=0;j<NDIM;j++){dX[j℄=0.0;}// Assign initial values of Xvals from Xinit// i stands for time step// j stands for the various oordinates of the state vetorfor (i=0; i<maxidelay+S; i++){for(j=0;j<NDIM;j++){Xvals[j+NDIM*(i\%(D))℄ = Xinit[j+NDIM*(i\%(D))℄;}}// Atual simulationfor (i=maxidelay+S; i<M; i++){// initialize new step for Xval and Corr// with previous stepfor(j=0;j<NDIM;j++){Xvals[j+NDIM*(i\%(D))℄ = Xvals[j+NDIM*((i-1)\%(D))℄;Corr[j℄ = Xvals[j+NDIM*((i-1)\%(D))℄;}// Predition// uses x(i-1),x(i-2),x(i-3),x(i-4) to alulate state ifor(k=0;k<S;k++){OEOFun(dX, Xvals, (i-1-k)\%(D),(i-1-k-idelay11)\%(D), (i-1-k-idelay12)\%(D),(i-1-k-idelay21)\%(D), (i-1-k-idelay22)\%(D));
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for(j=0;j<NDIM;j++){Xvals[j+NDIM*(i\%(D))℄ += h*a[k℄*dX[j℄;}}// Corretion// step 1: using in-plae value of Pred[i℄:// stored temporarily in Xvals[i℄for(k=0;k<S;k++){// uses pred(i),x(i-1),x(i-2),x(i-3)// to alulate state iOEOFun(dX, Xvals, (i-k)\%(D), (i-k-idelay11)\%(D),(i-k-idelay12)\%(D),(i-k-idelay21)\%(D),(i-k-idelay22)\%(D));for(j=0;j<NDIM;j++){Corr[j℄ += h*b[k℄*dX[j℄;}}// step 2: replae the in-plae Pred[i℄ value// by Corr[i℄ in Xvals[i℄;// the ode used Xvals[j+NDIM*i℄ to store temporarily// Pred[j+NDIM*i℄ after predition step// for oding symmetry purposesfor(j=0;j<NDIM;j++){Xvals[j+NDIM*(i\%(D))℄ = Corr[j℄;}}free(dX);free(Corr);}void mexFuntion (int nlhs, mxArray * plhs [ ℄,int nrhs, onst mxArray * prhs [ ℄){ // Chek number of input s and output sif ( nlhs != 1)mexErrMsgTxt ( "Wrong number of outputs ! " ) ;if ( nrhs != 5)mexErrMsgTxt ( "Wrong number of inputs ! " ) ;// Getting input sXinit = mxGetPr ( prhs [0℄ );param1 = mxGetPr ( prhs [1℄ );param2 = mxGetPr ( prhs [2℄ );
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param = mxGetPr ( prhs [3℄ );params = mxGetPr ( prhs [4℄ );// param OEO1Delta1 = param1[0℄;epsilon1 = param1[1℄;d1 = param1[2℄;g1 = param1[3℄;gamma11 = param1[4℄;phi1 = param1[5℄;tau11 = param1[6℄;// param OEO2Delta2 = param2[0℄;epsilon2 = param2[1℄;d2 = param2[2℄;g2 = param2[3℄;gamma22 = param2[4℄;phi2 = param2[5℄;tau22 = param2[6℄;// param OEO2gamma12 = param[0℄;gamma21 = param[1℄;tau12 = param[2℄;tau21 = param[3℄;// param simulationh = params[0℄;ti = params[1℄;tf = params[2℄;maxidelay = params[3℄;// Compute delay and final instantM = tf/h;idelay11 = tau11/h;idelay12 = tau12/h;idelay21 = tau21/h;idelay22 = tau22/h;D = (tf-ti)/h;if ( M\%D != 0)
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mexErrMsgTxt ("The number of points saved (D)should be a multiple of thetotal number of points M ! ");// Defining outputsplhs[0℄ = mxCreateDoubleMatrix(NDIM*D,1,mxREAL);Xvals = mxGetPr(plhs[0℄);simulate();}}
C.2 Algorithm to calculate TDSs

To find the peaks in the ACF that correspond to TDSs, I first define a small time win-

dow (typically 1 ns) to look for the peaks. I then use MATLAB’s standard “findpeaks”

function to find all of the positive and negative peaks in this window, along with the

corresponding time lags at which they occur. I then take the maximum peak amplitude

(which could correspond to positive or negative peaks) to be the TDS.funtion [maxpk,tpk℄ = findpk(ti,tf,ACF,Lags,dt)% initial and final times to find peaks withininitial=max(find(ACF(:,1)<ti));final=min(find(ACF(:,1)>tf));% finding peak amplitudes and loations[pks,los℄ = findpeaks(ACF(initial:final,2));los=los*dt+Lags(initial-1)*dt;% finding negative peak amplitudes and loations[npks,nlos℄ = findpeaks(-ACF(initial:final,2));nlos=nlos*dt+Lags(initial-1)*dt;if ~isempty(pks)[maxp,ip℄=max(pks);
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tp=los(ip);elsemaxp=0;tp=0;endif ~isempty(npks)[maxn,in℄=max(npks);tn=nlos(in);elsemaxn=0;tn=0;endif maxp>maxnmaxpk=maxp;tpk=tp;elsemaxpk=-maxn;tpk=tn;end
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2010.

[49] R. Autariello, R. Dzakpasu, and F. Sorrentino. Estimating the structure of small

dynamical networks from the state time evolution of one node.

[50] C. Bandt and B. Pompe. Permutation entropy : A natural complexity measure for

time series. Phys. Rev. Lett., 88:174102, 2002.

[51] J. P. Crutchfield and K. Young. Inferring statistical complexity. Phys. Rev. Lett.,

63:105–108, 1989.

[52] R. Lopez-Ruiz, H. L. Mancini, and X. Calbet. A statistical measure of complexity.

Phys. Lett. A, 209:321–326, 1992.

[53] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes,

Third Edition. Cambridge University Press, New York, NY, 2007.

[54] Y. Bard. Nonlinear Parameter Estimation. Academic Press Press, New York, 1974.

[55] O. D’Huys, I. Fischer, J. Danckaert, and R. Vicente. Spectral and correlation

properties of rings of delay-coupled elements: Comparing linear and nonlinear

systems. Phys. Rev. E, 85:056209, 2012.

[56] T. Schreiber. Measuring information transfer. Phys. Rev. Lett., 85:461–464, 2000.

[57] G. P. Agrawal and N. K. Dutta. Long-Wavelength Semiconductor Lasers. Van Nos-

trand Reinhold Company, New York, 1986.

[58] K. Petermann. Laser Diode Modulation and Noise. Kluwer Academic Publishers,

Boston, 1988.

[59] K. Iizuka. Elements of Phonotics, Volume I. John Wiley and Sons, Inc., New York,

2002.

[60] R. W. Boyd. Radiometry and the Detection of Optical Radiation. John Wiley and

Sons, New York, 1983.

129



Biography

Kristine Elizabeth Callan was born in Bend, Oregon, on June 28, 1983. As a child, she

enjoyed playing with Cabbage Patch Kids, memorizing TV commercials, and talking to

her fingers as a means of entertainment. Her creativity and ability to memorize lengthy

dialogue served her well at Bend Senior High School, where she was a captain of the

basketball and powder puff football teams, a valedictorian of her class, and known

for being able and willing to quote lines from “Tommy Boy” on demand. In 2001 she

matriculated at Pacific University, where she was encouraged to take her first physics

class. While graduating summa cum laude with a B.S. in physics and mathematics,

Kristine also earned awards such as Outstanding Student in the Natural Sciences and

runner-up in the campus-wide Halloween costume contest, in addition to averaging a

team-high 3.4 fouls per game and fouling out of six contests as a promising freshman

point guard.

In 2005, Kristine made the 2,842-mile drive from Oregon to North Carolina to

begin her graduate studies in physics at Duke University. After telling her surprisingly

understanding advisor, “I don’t know what I will be doing next year, but I know it’s

not this,” she earned an M.S. in the summer of 2008 and took a leave of absence

from the Ph.D. program. She found a position teaching physics to high school junior

and senior girls at the Winsor School in Boston, Massachusetts. This turned out to

be an amazing fit, and not just because Kristine was often mistaken for a student at

the school. After learning a great deal from her colleagues and students about physics

and herself, Kristine returned to Duke in the fall of 2010 to continue the pursuit of

her Ph.D. “Phase II” of graduate school, as she calls it, included highlights such as two

intramural basketball championships and the Dean’s Award for Excellence in Teaching,

and culminated in the completion of her Ph.D. in 2013.

130



Publications

K.E. Callan, L. Illing, and D. J. Gauthier, “Broadband Chaos,” in Nonlinear Laser

Dynamics: From Quantum Dots to Cryptography, edited by Kathy Lüdge, Ed.

(Wiley-VCH Verlag, Weinheim, 2012), Ch. 13, pp. 317-332.

D. P. Rosin, K. E. Callan, D. J. Gauthier, and E. Schöll, “Pulse-train solutions and

excitability in an optoelectronic oscillator,” Eur. Phys. Lett. 96, 34001 (2011).

K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broadband Chaos Gener-

ated by an Optoelectronic Oscillator,” Phys. Rev. Lett. 104, 113901 (2010).

R. J. Wiener, K. E. Callan, S. C. Hall, and T. Olsen, “Proportional feedback control of

chaos in a simple electronic oscillator,” Am. J. Phys. 74, 200 (2006).

Presentations

K. E. Callan, D. Rontani, and D. J. Gauthier, “Detecting the position and strength of

attenuating elements in a small network.” Poster presented at Dynamics Days

2013, Denver, Colorado, Jan. 3-6, 2013

K. E. Callan, D. Rontani, and D. J. Gauthier, “Sensing capabilities of optoelectronic

oscillators due to changes in complexity measures.” Poster presented at the

12th Experimental Chaos and Complexity Conference 2012, Ann Arbor, Michi-

gan, May 16-19, 2012.

K. E. Callan, D. Rontani, and D. J. Gauthier, “Time-delay signatures in broadband

chaos generated by optoelectronic oscillators.” Poster presented at Dynamics

Days 2012, Baltimore, Maryland, Jan. 4-7, 2012.

K. E. Callan, L. Illing, D. Rosin, D. J. Gauthier, and E. Schöll, “Switching from steady-

state to chaos via pulse trains in an optoelectronic oscillator.” Poster presented

at Dynamics Days 2011, Chapel Hill, North Carolina, Jan. 5-8, 2011.

K. E. Callan, L. Illing, D. J. Gauthier, “High Speed Chaos Generated in an Optoelec-

tronic Oscillator.” Poster presented at Gordon Research Conference: Nonlinear

Science, Waterville, ME, June 24-29, 2007.

K. E. Callan, L. Illing, D.J. Gauthier, “High Speed Chaos Generated in an Optoelec-

tronic Oscillator.” Fitzpatrick Institute of Photonics Annual Meeting, Duke Uni-

versity, Sep. 28-29, 2006.

K. E. Callan, S. C. Hall, R. J. Wiener, and T. Olsen, “Controlling Chaotic Dynamics in

a Simple Electronic Oscillator.” Contributed talk at the Northwest Section of the

American Physical Society Spring Meeting, Victoria, British Columbia, 2005.

131


	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Chaos and networks
	Why use OEOs?
	Overview of thesis

	Nonlinear time-delay dynamical systems and OEOs
	Nonlinear and delayed dynamics
	Nonlinear time-delayed feedback systems
	The dynamics of my OEO
	Experimental setup and model
	Featureless broadband chaos
	Time-delay signatures

	Summary

	Introduction to sensing with dynamical networks
	Overview of the problem
	Adaptive synchronization-based approach
	Summary

	Sensing method and experimental implementation
	Experimental setup
	Correlation properties of a two-node network of OEOs
	Using TDSs for sensing
	Using multiple TDSs for sensing
	General sensing method
	Toward optimization
	Summary

	Numerical implementation of the sensing method
	Model and integration
	Proof of principle numerical simulation
	Other types of observables
	Impact of the relative values of the time delays
	Replacing deterministic chaos with stochasticity
	Summary

	Conclusions
	Summary of results
	Future directions

	Appendix Experimental apparatus
	OEO overview and components
	The laser diodes
	The polarization controllers
	The Mach-Zehnder modulators
	The photodetectors
	The bandpass filters
	The modulator drivers
	The variable optical attenuator
	The time delays

	Summary

	Appendix Permutation entropies of experimental dynamics
	Definition of PE
	Using PEs as observables
	Summary

	Appendix Numerical analysis and code
	ABM Integration
	Algorithm to calculate TDSs

	Bibliography
	Biography

