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Abstract

There has been an unprecedented growth in both the amount of data and the number of

users interested in different types of data. Users often want to keep track of the data

that match their interests over a period of time. A continuous query, once issued by a

user, maintains the matching results for the user as new data(as well as updates to the

existing data) continue to arrive in a stream. However, supporting potentially millions of

continuous queries is a huge challenge. This dissertation addresses the problem of scalably

processing a large number of continuous queries over a wide-area network.

Conceptually, the task of supporting distributed continuous queries can be divided into

two components—event processing (computing the set of affected users for each data up-

date) and notification dissemination (notifying the set of affected users). The first part of

this dissertation focuses on event processing. Since interacting with large-scale data can

easily frustrate and overwhelm the users, top-k queries have attracted considerable inter-

est from the database community as they allow users to focus on the top-ranked results

only. However, it is nearly impossible to find a set of common top-ranked data that every-

one is interested in, therefore, users are allowed to specify their interest in different forms

of preferences, such as personalized ranking function and range selection. This disserta-

tion presents geometric frameworks, data structures, and algorithms for answering several

types of preference queries efficiently. Experimental evaluations show that our approaches

outperform the previous ones by orders of magnitude.

The second part of the dissertation presents comprehensivesolutions to the problem
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of processing and notifying a large number of continuous range top-k queries across a

wide-area network. Simple solutions include using a content-driven network to notify all

continuous queries whose ranges contain the update (ignoring top-k), or using a server to

compute only the affected continuous queries and notifyingthem individually. The former

solution generates too much network traffic, while the latter overwhelms the server. This

dissertation presents a geometric framework which allows the set of affected continuous

queries to be described succinctly with messages that can beefficiently disseminated using

content-driven networks. Fast algorithms are also developed to reformulate each update

into a set of messages whose number is provably optimal, withor without knowing all

continuous queries.

The final component of this dissertation is the design of a wide-area dissemination net-

work for continuous range queries. In particular, this dissertation addresses the problem of

assigning users to servers in a wide-area content-based publish/subscribe system. A good

assignment should consider both users’ interests and locations, and balance multiple per-

formance criteria including bandwidth, delay, and load balance. This dissertation presents

a Monte Carlo approximation algorithm as well as a simple greedy algorithm. The Monte

Carlo algorithm jointly considers multiple performance criteria to find a broker-subscriber

assignment and provides theoretical performance guarantees. Using this algorithm as a

yardstick, the greedy algorithm is also concluded to work well across a wide range of

workloads.

v



Contents

Abstract iv

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Challenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Data Model and User Queries. . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 13

2.1 Geometric concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Publish/Subscribe Systems. . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Continuous Preference Top-k Queries 21

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Problem Statement. . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Duality and QRS. . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Query Primitives. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.4 Summary of Results. . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 From Reverse Top-k to Continuous Top-k Queries. . . . . . . . . . . . . 31

vi



3.3.1 A Static Solution for Reverse Top-k . . . . . . . . . . . . . . . . 31

3.3.2 A Fully Dynamic Solution. . . . . . . . . . . . . . . . . . . . . 32

3.4 Approximate Top-k Queries . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Computing a Coreset. . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Updating the Coreset. . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Updating Indexes and Top-k Lists . . . . . . . . . . . . . . . . . 44

3.5 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Static Reverse Top-k Queries. . . . . . . . . . . . . . . . . . . . 50

3.5.2 Continuous Top-k Queries . . . . . . . . . . . . . . . . . . . . . 52

3.5.3 Continuous Approximate Top-k Queries. . . . . . . . . . . . . . 55

3.5.4 Yahoo! Finance Data. . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Conclusion and Other Applications. . . . . . . . . . . . . . . . . . . . . 59

4 Top-k Preferences in High Dimensions 61

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Identifying Core Subspaces. . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Constructing Indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Core Subspace Indexes for Top-k Queries . . . . . . . . . . . . . 74

4.4.2 Core Subspace Indexes for Reverse Top-k . . . . . . . . . . . . . 76

4.4.3 Indexes for Uncovered Preferences. . . . . . . . . . . . . . . . 79

4.5 Query Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.1 Top-k Query Performance. . . . . . . . . . . . . . . . . . . . . 86

4.6.2 Reverse Top-k Query Performance. . . . . . . . . . . . . . . . . 93

vii



4.6.3 Algorithm parameters. . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Range Top-k Subscriptions 105

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.2 Overview of Algorithms. . . . . . . . . . . . . . . . . . . . . . 112

5.3 Geometric Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Exact Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.1 Subscription-Oblivious. . . . . . . . . . . . . . . . . . . . . . . 121

5.4.2 Subscription-Aware. . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Generalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5.1 Halfplane query. . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5.2 1.5-dimensional range subscriptions. . . . . . . . . . . . . . . . 133

5.5.3 Range Conditions in Higher Dimensions. . . . . . . . . . . . . 137

5.5.4 Combination of range conditions and user preferences. . . . . . 139

5.6 Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6.1 Batch Processing. . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6.2 Approximate Algorithms. . . . . . . . . . . . . . . . . . . . . . 144

5.6.3 Distributing the database. . . . . . . . . . . . . . . . . . . . . . 146

5.7 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.7.1 Main results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7.2 1.5-dimensional range subscriptions. . . . . . . . . . . . . . . . 158

5.8 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

viii



5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Dissemination Network Design 162

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Problem Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3 Two Greedy Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4 One-Level SA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.4.1 Preliminary Filter Assignment. . . . . . . . . . . . . . . . . . . 171

6.4.2 Subscription Assignment. . . . . . . . . . . . . . . . . . . . . . 179

6.4.3 Filter Adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.4.4 Solution Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.5 Multi-Level SA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.6 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.6.1 Solution Quality for a One-Level Broker Network. . . . . . . . . 188

6.6.2 Solution Quality for a Multi-Level Broker Network. . . . . . . . 193

6.6.3 Running Time ofSLP. . . . . . . . . . . . . . . . . . . . . . . . 195

6.6.4 Effect of Problem Parameters.. . . . . . . . . . . . . . . . . . . 196

6.6.5 Algorithm Parameters.. . . . . . . . . . . . . . . . . . . . . . . 197

6.6.6 Discussion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.6.7 A Difficult Workload forGr⋆. . . . . . . . . . . . . . . . . . . . 200

6.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.8 Conclusion and Future Work. . . . . . . . . . . . . . . . . . . . . . . . 203

6.9 Theorems and Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7 Conclusion and Future Work 208

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.2 Future work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

ix



Bibliography 212

Biography 223

x



List of Tables

4.1 Box-uniform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Sphere-uniform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Total number of messages received by subscriptions per event. . . . . . . 154

5.2 Redundancy in messages received by subscriptions.. . . . . . . . . . . . 155

5.3 Average number of calls per event; increasingk. . . . . . . . . . . . . . . 155

5.4 Average number of calls per event; increasingm. . . . . . . . . . . . . . 155

5.5 Redundancy in messages received; Yahoo! workload.. . . . . . . . . . . 157

5.6 Average number of calls per event; Yahoo! workload.. . . . . . . . . . . 157

5.7 Number ofmin queries.. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.8 Number ofsnap queries. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.1 Bandwidth comparison (workload set #1).. . . . . . . . . . . . . . . . . 191

6.2 Bandwidth comparison (other workload sets).. . . . . . . . . . . . . . . 191

6.3 lbf; varying broker distribution.. . . . . . . . . . . . . . . . . . . . . . . 196

6.4 An example forα = 3 andn = 3. . . . . . . . . . . . . . . . . . . . . . 201

xi



List of Figures

1.1 Example of a preference query.. . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Duality transform.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Illustration of coreset.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Data structures for range searching.. . . . . . . . . . . . . . . . . . . . 16

2.4 Publish/Subscribe.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Illustration of object insertion in dual.. . . . . . . . . . . . . . . . . . . 31

3.2 Leaves ofT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Coreset.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Correctness of the coreset construction algorithm.. . . . . . . . . . . . . 42

3.5 Illustration of object workloads.. . . . . . . . . . . . . . . . . . . . . . 48

3.6 Comparison between HSR and GRID for static reverse top-k queries. . . 49

3.7 Additional scalability comparison between HSR and GRID.. . . . . . . 50

3.8 More comparison between HSR and GRID.. . . . . . . . . . . . . . . . 51

3.9 Reverse top-k query on1 million preferences;d = 3. . . . . . . . . . . . 53

3.10 Numbers of grey-sparse and grey-dense leaves inT. . . . . . . . . . . . . 53

3.11 Preference-driven vs. hybrid.. . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Exact vs. coreset-based approximation.. . . . . . . . . . . . . . . . . . 54

3.13 Approximation error;|O| = 100,000. . . . . . . . . . . . . . . . . . . . . 55

3.14 Preference-driven vs. hybrid: Yahoo! Finance data;m = 100,000. . . . . 56

3.15 Preference-driven vs. hybrid: Yahoo! Finance data;k = 10. . . . . . . . . 56

xii



4.1 Illustration of coverage.. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Top-k queries when varying the fraction of non-sparse preferences. . . . . 88

4.3 Top-k queries when varying the number ofuniformgenerating subspaces. 89

4.4 Top-k queries when varying the number ofskewedgenerating subspaces. 89

4.5 Top-k queries when varyingd. . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Top-k queries for objects fromt-surface. . . . . . . . . . . . . . . . . . . 91

4.7 Sensitivity of top-k query performance to changes in preference distribution.91

4.8 Top-k queries for document subscription workload.. . . . . . . . . . . . 92

4.9 Top-k queries when varying incentive for multiple coverage.. . . . . . . 92

4.10 Reverse top-k queries when varyingd. . . . . . . . . . . . . . . . . . . . 94

4.11 Reverse top-k queries when varying the number of generating subspaces.95

4.12 Reverse top-k queries when increasingm. . . . . . . . . . . . . . . . . . 95

4.13 Reverse top-k queries for NBA workload. . . . . . . . . . . . . . . . . . 96

4.14 Reverse top-k queries for document subscription workload.. . . . . . . . 97

4.15 Reverse top-k queries when varying incentive for multiple coverage.. . . 97

4.16 Parameterβ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.17 Varyδ in Algorithm 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.18 Varyθ in Algorithm 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.19 Varyν in Algorithm 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 Event spaceE and Subscription spaceS. . . . . . . . . . . . . . . . . . . 112

5.2 Tiling IRnew(i) by CN messages. . . . . . . . . . . . . . . . . . . . . . 119

5.3 IR(i) andIR(j) change when objecti encounters objectj. . . . . . . . . 120

5.4 Partitioning of quadrant.. . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Effect onIRz(i) of encountering exposed objecthj during the sweep. . . 122

5.6 Sweep inE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xiii



5.7 Tiling IRold(i) \ IRnew(i) by CN messages.. . . . . . . . . . . . . . . . 122

5.8 Illustration of the rank-lowering update shown in Figure 5.6. . . . . . . . 124

5.9 Lower bound construction. . . . . . . . . . . . . . . . . . . . . . . . . 128

5.10 Reducing the number of rectangles coveringP. . . . . . . . . . . . . . . 129

5.11 Finding the next interesting exposed object.. . . . . . . . . . . . . . . . 129

5.12 Influence region for the case of halfplane.. . . . . . . . . . . . . . . . . 132

5.13 Influence rectilinear polygon inE for k = 3. . . . . . . . . . . . . . . . . 133

5.14 Influence region inS; k = 3. . . . . . . . . . . . . . . . . . . . . . . . . 135

5.15 Computing the influence region inS. . . . . . . . . . . . . . . . . . . . . 135

5.16 Effect of an exposed object on the influence rectilinearpolygon. . . . . . 136

5.17 Notification of an exposed object for1.5-dimensional range subscriptions.136

5.18 Lifting transform fork nearest neighbor query.. . . . . . . . . . . . . . 138

5.19 Covering regions using fewer rectangles by allowing false positives. . . . 145

5.20 Length of traversal (100 servers,100,000 objects).. . . . . . . . . . . . . 148

5.21 Average outgoing traffic (# bytes) from server per event. . . . . . . . . . 150

5.22 Average outgoing traffic (# bytes) from server per event. . . . . . . . . . 153

5.23 Unicastvs. Paint-Sparse . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.24 Traffic in broker network per event.. . . . . . . . . . . . . . . . . . . . 154

5.25 (a)Paint-Sparsevs.Paint-Dense. (b) Avg. outgoing traffic from server. . 156

5.26 Batch processing approaches.. . . . . . . . . . . . . . . . . . . . . . . . 156

5.27 Traffic in broker network per event; Yahoo! workload.. . . . . . . . . . . 157

5.28 (a) Avg. outgoing traffic from server; (b) Max. outgoingtraffic from server.158

6.1 An example of filterfi with complexity1 and2. . . . . . . . . . . . . . . 166

6.2 An example illustrating the problem definition in low dimensions. . . . . 169

6.3 Overview ofSLP1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

xiv



6.4 Illustration of coreset.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.5 Illustration of candidate filter generation.. . . . . . . . . . . . . . . . . . 175

6.6 Three steps of iterative reweighted sampling.. . . . . . . . . . . . . . . 176

6.7 Two main ideas for the rectangle generation step.. . . . . . . . . . . . . 179

6.8 Interest distributions inE for (IS:H, BI:H). . . . . . . . . . . . . . . . . . 187

6.9 Overall comparison (one-level network, workload set #1). . . . . . . . . . 189

6.10 Overall comparison (one-level network, workload set #2). . . . . . . . . . 190

6.11 Overall comparison (one-level network, workload set #3). . . . . . . . . . 190

6.12 Detailed comparison (one-level network, workload set#1). . . . . . . . . 192

6.13 Overall (multi-level network, workload set #1).. . . . . . . . . . . . . . 194

6.14 Other comparisons (multi-level network, workload set#1). . . . . . . . . 195

6.15 Running time ofSLP (multi-level network). . . . . . . . . . . . . . . . . 195

6.16 Effect of filter complexity (one-level network).. . . . . . . . . . . . . . 195

6.17 Effect of maximum delay.. . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.18 Actual Load balance factor vs.|Sb|. . . . . . . . . . . . . . . . . . . . . . 198

6.19 Bandwidth consumption vs.|Ξ|. . . . . . . . . . . . . . . . . . . . . . . 198

6.20 Cardinality of filter set vs.|Ξ|. . . . . . . . . . . . . . . . . . . . . . . . 199

6.21 Thresholdγ for the multi-level algorithm. . . . . . . . . . . . . . . . . . 199

6.22 Interests inE with α = 3 andn = 3. . . . . . . . . . . . . . . . . . . . . 201

6.23 Filters generated bySLP. . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.24 Filters generated byGr⋆. . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.25 Exponential grid.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

xv



1

Introduction

This is the age of data. We are witnessing the unprecedented growth in both the amount

of data and the number of users interested in different typesof data. When users look for

data that are relevant to their interests, each of their datarequests is generally expressed as

a queryto a database. To process a query, the database performs a sequence of operations

on the data and returns relevant answers to the query. The growth of data, however, brings

new challenges for efficient query processing.

The first challenge is to design algorithms that achieve fastresponse time. At any point

in time, thousands of user queries can be posed against a snapshot of a large database

through interactive interfaces. With the sheer volume of available data, millions of data

may be relevant to each query. A naive approach may take minutes to answer each query,

but typically users want to receive the answers immediately. For example, it was reported

that delay is one of the primiary sources of web users’ frustration [37] and that4 seconds is

all an average online shopper will wait for before potentially abondoning a retail site [14].

As another example, financial services need to provide real-time finanical information to

their clients. Consider an investor who wants to identify profitable trades in a stock mar-

ket. Since the market conditions can change in a matter of seconds, an investor may miss

1



buying/selling opportunities if stock tickers are not received within seconds. Obtaining

answers to the queries in a timely manner is a critical challenge for efficient query pro-

cessing.

The second challenge for query processing is that in addition to fast response time, the

query answers need to be of high quality. It is not enough to simply return all relevant an-

swers, because users would get overwhelmed by the sheer volume of query answers. This

often frustrates the users and deteriorates the query answers to the point of uselessness.

Fortunately, returningall relevant answers is unnecessary for most applications; users are

only interested to know a limited set of top-ranked relevantanswers. For example, Google

News prioritize the stories and cluster similar new articles together. This design allows

users to easily catch the news breaking stories and skim through the top news of the day.

Undoubtedly, allowing users to focus on the top-ranked relevant data is key to ensuring

high quality of results.

As the number of users continues to increase at an astoundingrate, finding a set of

common top-ranked data that everyone is interested in is nearly impossible. Since every

user has different interests and preferences for ranking data that match her interests, high-

quality query processing systems have to provide personalized results for user queries.

For example, a stock screener may list stocks with a wide range of numeric attributes, e.g.,

market capitalization, trade volume, price-to-earning ratio, etc. Representing different user

interests, user queries may have different range conditions. One user may be interested in a

stock only if its market capitalization is at least500 million, while another user may specify

other range conditions on other attributes. In addition, the stocks that satisfy a user’s range

conditions are ranked according to her preference, which depends on whether the list of

stocks identifies buying or selling opportunities, and willvary according to ones personal

investing style and tolerance for risk. As another example,in online sports communities,

sport fans share their opinions on players’performances with each other. Many of them

like to analyze players with respect to customized performance metrics, e.g., for NBA
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fans, a user query can be “Return top-10 players with the highest true shooting percentage

(TS%) who have at least2 steals and5 rebounds,” or “Return top-10 players with the most

field goals whose field goal percentage is at least45% and defensive rating is at most102.”

Today, cameras hang in a handful of NBA arenas are able to track every player on court

and record every move25 times per second [109]. The improvement on optical tracking

techniques creates not only lots of data events, but also lots of performance attributes, such

as speed/distance, passes made/received, individual touches, etc [109]. A big challenge

is to support queries on these high-dimensional data in a scalable way. Hypothetically

speaking, if a web-based NBA search engine allows millions of the NBA fans around the

world to query these high-dimensional data simultanenously, a more rigorous algorithmic

approach is needed for query processing in order to keep up with the growth of users.

Continuous query. Very often, users want to keep track of the data that match their in-

terests over a period of time. The answers to these continuous user queries continue

to be updated asevents(data insertion, deletion, and update) keep arriving in a stream.

Traditionally, users poll sources for information. However, users may miss important

events because those important events may arrive at any point in time. In addition, fre-

quently polling for updates is hardly scalable for many applications. Alternatively, the

publish/subscribe model, which pushes notifications to users with matching interests, ex-

pressed as subscriptions1, is better suited for ensuring scalability and timely delivery of

information. Even if events do not come at a very high rate, processing and pushing them

to the servers for affected queries at their published time improves query response time,

because answers to the queries can be found by simply retrieving the pre-computed results.

Furthermore, the quality of the answers is also improved because a better, but more costly,

algorithm can be used to precompute the answers. Supportingfor a large-scale set of sub-

scriptions is important in many application domains, including personal, commerical, and

1 In this dissertation, we will use “continuous query” and “subscription” interchangeably.
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security, etc. For example,

Portfolio monitoring. Financial services provide financial updates such as stock tickers

to their clients in real-time.

Web alerts. Instead of repeatedly querying a search engine with the sameset of search

terms, web monitoring systems such as Google Alerts automatically notify users of

the latest relevant new contents (from web, blogs, news, etc) based on users’ search

queries. Users can use the alerts to follow a developing newsstory, get the latest

news on a celebrity or their favorite sports teams, etc.

Web page recommendations.Web search engines, such as Google, automatically detect

standing interests of their users from their search logs [119]. When new contents

match the users’ interests, they are presented to the users as recommendations.

Content delivery services.Content delivery services such as Akamai employ extensive

caching of database query results at their “edge servers” toimprove performance.

These caches need to be kept up-to-date when the central database is updated.

Social annotation of news.Social updates, e.g. tweets, on news events often reflect pub-

lic views of those events. They are nicely complementary to news articles written

by professional journalists. To automatically annotatingnews stories with social

updates at a news website, news stories are treated as subscriptions and tweets are

treated as data events [106].

Social networks. In social networking websites, such as Facebook, users see aconstantly

updated list of recent activity of their friends. Here, eachuser subscribes to events

from her friends who act as event publishers.

E-Commerce. Online aution and shopping sites such as eBay provides subscription ser-

vices for their customers to stay up-to-date with new and modified matching items.
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Network security. Internet Service Providers monitor network traffic in real-time at var-

ious routers to detect possible network attacks.

As in the case of snapshot queries, data is ranked based on personal preferences, and

subscriptions only receive top-ranked events that match their interests. For example, in

the case of portfolio monitoring, stock price updates may match a large number of sub-

scriptions. While many users may be interested in the same stock, each user may specify

a unique set of contraints. One user may want to be notified of astock update only if its

price-to-earning ratio is at least20 while another user may want to get a stock update only

if its debt-to-assets ratio is at most0.1. Since users want to be notified only when certain

customized conditions are met, the data needs are potentially different across users.

For applications that require low frequency of notification, query results can be batched

after they have been gathered over a period of time. For example, Google Alerts collects

at least thousands of events that match a subscription everyday. If all those events are sent

to a user’s email inbox at their occurring times, the user will most likely mark all those

messages as spams and unsubscribe to Google Alerts. Therefore, Google Alerts provide

options for users to choose the freqeuncy of receiving batchresults and to receive only the

best results in each batch.

1.1 Challenges

Supporting a large-scale set of subscriptions is challenging for many reasons:

Diversity of interests and personal preferences. Given an event update, how can we quickly

find the (small) set of users that need to be notified, in the presence of potentially millions

of subscriptions? A brute-force approach that scans through the whole set of subscriptions

does not scale. Second, every user has different interests and personal preferences. The

flexibility of user preferences together with the diversityof user interests demand more
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powerful event processing funtionalities, making the taskof event processing much more

difficult. At the same time, for applications such as portfolio monitoring, the stock updates

must reach relevant users in timely fashion. It is inefficient to support flexible user pref-

erences in two phrases—1) computing the set of matching subscriptions, and 2) testing

the notification conditions of each matching subscription individually. It is because the

number of matching subscriptions can be significantly larger than the number of match-

ing subscriptions whose notification conditions are met, i.e., many matching subscriptions

need not to be notified. The challenge lies in finding a way to group processing subscrip-

tions despite the diversity of interests and personal preferences.

Joint optimization of event processing and notification dissemination. An even more chal-

lenging application setting is when a large number of users are located across a wide-area

network. In this setting, each user maintains a list of top-ranked objects locally. For each

event updating the database, we must notify all subscriptions whose lists are affected. No-

tification messages should carry enough information so thatthe affected subscriptions can

update their top-ranked lists accordingly.

A naive approach would be to use a central server to compute the list of users who

needed to be notified and then unicast updates to each of them.However, the server could

become a bottleneck with processing and messaging costs at least linear in the number

of affected users. Alternatively, a publish/subscribe system can be leveraged as a means

for distributing the event updates to the users. A publish/subscribe system typically em-

ploys a network ofbrokersthat serve as the middleware between the data providers and

users. Traditionally, subscriptions are stateless: they can be processed by only examin-

ing the incoming event itself. Personalized results, however, often require stateful sub-

scriptions: whether a subscription is affected depends on how the updated objects ranks

against others that also satisfy the selection constraints. A straightforward solution is to

add post-processing logic and maintain additional information on the user side, but one
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has to leverage both ranking and selection criteria in orderto reduce network traffic.

Need for a well-designed dissemination network. Last but not least, a well-designed pub-

lish/subscribe network is key to ensuring efficient event processing and notification dis-

semination. A particular problem of interest is how to assign users to brokers, such that

event processing and notification dissemination are jointly optimized. Intuitively, it is

beneficial to assign subscriptions with similar interests to the same broker, because events

delivered to the broker serve multiple subscriptions, potentially saving communication.

On the other hand, we need to be careful in letting one broker handle users that are far

away in terms of network distance, because doing so may violate delivery latency require-

ments and increase communication costs. Balancing the two considerations—similarity of

interests in the event space and proximity of locations in the network space—is a hard op-

timization. The optimal trade-off between the two also depends on the amounts of events

matching shared versus disjoint interests. Therefore, thebest solution for a given system

must take into account subscription interests and locations as well as event distributions.

1.2 Data Model and User Queries

Conceptually, all data of interest can be modeled as a relational database. In this disser-

tation, we assume the data spaceE to be ad-dimensional Euclidean spaceRd. We are

given a setO of n objects. Eachobjecto ∈ O hasd real-valued attributes and is modeled

as a point(v1, . . . , vd) ∈ E. For example, one way to index text documents is based on

the vector space model of information retrieval. In this model, each attribute represents

an index term (resp. a concept if statistical model such as probabilistic latent semantic

analysis (PLSA) is applied to the collection of texts) and the space is referred to as a term

space (resp. semantic space). Each document (e.g., web page, news, blogs) is represented

as a point(v1, v2, · · · , vd) in the multi-dimensional term space (resp. semantic space). In

the simplest case,vi is the number of occurence of termi in the document (resp. weight
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Rebounds

FIGURE 1.1: Example of a preference query. PlayerA ranks first w.r.t. a user’s preference
(w1, w2) = (0.2, 0.8); playerB ranks first w.r.t. a user’s preference(0.5, 0.5).

of concepti in the document). In practice, the coordinatevi is rescaled based on the

importance of the document, inverse document frequency of termi, etc.

Eventsare modeled as modifications (insertions, deletions, or updates) to the database.

User queries can bestatic or continuous. Each snapshot query is a pair〈⋆, k〉, where

⋆ is either a user preferenceq or an objecto. For continuous queries, users express their

interests in terms of subscriptions. LetS denote the set of subscriptions. Each subscription

s ∈ S is a triple〈σ, q, k〉, whereσ ⊂ E is the data of interest,q is a user preference, andk

is the number of top-ranked objects (w.r.t. preferenceq) to track. Specifically, we consider

the following user queries:

Preference top-k query 〈q, k〉. A natural way of ranking objects is with an object scoring

function whose parameters are set according to a user’s preference. A simple but

effective scoring functionq is a linear combination of the attribute values, where the

weight associated with each attribute reflects the users’ interest in this attribute. For

example, a NBA fan may choose a scoring function

w1 × # points+ w2 × # rebounds+ w3 × # assists

for tracking all-around players, wherew1, w2, andw3 are the attribute weights; see

Figure1.1. As another example, an investor in a stock market may prioritize the
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stock with

w1 ×max. swing during last 30 min+ w2 × 52w price change.

Consider again the example of document retrieval. The score of a document w.r.t. a

query is a variant of the cosine similarity between the documentd and the querys.

For example, the scoring function in the open-source Lucene2 search engine is:

∑

i

si × idf(i)2 ×
√
di × ci,

wheredi (resp.si) is the frequency of termi in documentd (resp. querys), idf(i)

is the inverse document frequency of termi, ci is a constant depending on 1) the

length and importance of documentd and 2) the importance of termi. This scoring

function is an instance of preference top-k query, where thei-th coordinate of an

object isidf 2(i)×
√
di × ci and thei-th attribute weight issi/

√∑
i s

2
i .

Reverse top-k query 〈o, k〉. It was introduced by Vlachou et al. [115]. Here, eachs ∈ S

has a different user preferenceq. For a new objecto 6∈ O, we want to find which

subscriptionq would rank the new object in their topk. Reverse top-k queries have

applications market research [115] (e.g., what-if analysis of how much interest a

new product will generate).

Continuous preference top-k query 〈E, q, k〉. The problem of scalably processing a large

number of continuous top-k queries [85] can be thought of as a fully dynamic ver-

sion of the reverse top-k query processing problem. Again, eachs ∈ S has a differ-

ent user preferenceq. In addition to handling changes to the setS of subscriptions,

we need to maintain the topk objects forS when objects are inserted, deleted, or

updated.

2 lucene.apache.org
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Consider again the example of portfolio monitoring. An investor in a stock market

needs to monitor the stock market in real time to identify profitable trades. Her top-k

list of stocks must be maintained as the market moves. In markets such as stocks,

futures, and online auctions, both the volume of object updates and the number of

preferences can be large, and the processing time requirement is demanding.

Continuous range top-k query 〈σ, q∗, k〉. Consider a range top-k query over a database

of objects (e.g. stocks). The query examines a subset of the objects satisfying a

range condition (e.g., stocks with risk rating between medium high and high), and

picks the topk objects within this subset by a scoring functionq∗ (e.g., stocks with

thek lowest price-to-earning ratios). Here, we consider the same scoring function

q∗ for every subscriptions ∈ S, but q∗ needs not be linear. Similar to continuous

preference top-k query, when the set of objects or their attribute values change over

time, we keep the top-k objects of the subscriptions up to date.

1.3 Contributions

This dissertation presents geometric frameworks and scalable algorithms for answering the

top-k queries described above. By mapping data and users to anothergeometric space, the

set of affected subscriptions can be clustered more effectively; they can be described using

basic geometric shapes. Consequently, notification messages (descriptions of the affected

subscriptions) can be effectively compressed, and traffic can be reduced in a content-driven

network. This dissertation also presents solution for designing an efficient content-driven

network by joint optimizating event processing and notification dissemination. For more

details, below is a summary of each main chapter:

Scalable continuous query processing under user preferences.Chapter3 presents a scal-

able solution for reverse top-k queries and continuous preference top-k queries, through
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the use of geometric methods. This is the first work that a reverse top-k query can be

answered in sublinear time using linear-size index given fixed dimensionalityd. For low

dimensions (d ≤ 3), the query time isO(logm+k), which is optimal. For continuous pref-

erence top-k queries, a dynamic hybrid approach is developed to update the affected top-k

lists—driving through the individual preference or through the query response surface.

This chapter also defines an approximate version of the problem and present a solution

significantly more efficient than the exact one with little loss in accuracy.

Supporting user preferences in high dimensions. Supporting linear preference top-k queries

and reverse top-k queries are challenging for high dimensions. Existing algorithms do not

scale well in the sense that either query time or space complexity is exponential ind.

Chapter4 presents an efficient algorithm based on a dimension-reduction framework for

top-k and reverse top-k queries in high dimensions. It is effective when most of the pref-

erences are sparse—i.e., each of them specifies non-zero weights for only a small number

(say∼ 2—6) of attributes. They need not specify the same subset of attributes or similar

weights on attributes. Experiments show that for workloadswhere preferences are often

sparse—a case that arises naturally in practice—the algorithm offers a desirable trade-off

between speed and accuracy, which makes scalable processing of top-k and reverse top-k

queries in high dimensions a reality.

Processing and notifying range top-k subscriptions. Chapter5 considers how to support

a large number of users over a wide-area network whose interests are characterized by

range top-k continuous queries. Given an object update, users whose top-k results are

affected need to be notified. Simple solutions include usinga content-driven network

to notify all users whose interest ranges contain the update(ignoring top-k), or using a

server to compute only the affected queries and notifying them individually. The former

solution generates too much network traffic, while the latter overwhelms the server. In

11



this chapter, by using a geometric framework, the set of affected queries is described

succinctly with messages that can be efficiently disseminated through a content-driven

network. Fast algorithms are given to reformulate each update into a set of messages whose

number is provably optimal, with or without knowing all userinterests. This chapter also

presents several extensions to the solution, including an approximate algorithm that trades

off between the cost of server-side reformulation and that of user-side post-processing, as

well as efficient techniques for batch updates.

Dissemination network design. Chapter6 studies how to assign subscriptions to brokers

such that the network cost is minimized. In most previous work, subscribers are assigned

to brokers according to either the closest-broker strategy[13] or interest partitioning strat-

egy [53]. Neither approach is attractive: The former may propagateevery event to nearly

every broker and the latter one may assign a lot of subscribers to remote brokers. Some

previous work also assumes that subscribers are randomly assigned to brokers which sat-

isfy a set of constraints [91, 92]. In contrary to previous approaches which can be classified

into either event space optimization or network space optimization, this chapter shows the

importance of jointly considering the correlation betweenthe network and event spaces.

If one of the spaces is neglected, the strategy will perform very poorly on some of the

network metrics. Furthermore, this chapter presents a Monte Carlo algorithm and a simple

greedy algorithm for finding a broker-subscriber assignment. By simultaneously captur-

ing spatial coherence in the network space and subscriptionclustering in event space, the

Monte Carlo algorithm returns a broker-subscriber assignment that meets a set of network

performance goals. Because of its theoretical properties and robustness to workload vari-

ations, it can serve as a reasonable yardstick in evaluate other algorithms. With its help,

the greedy algorithm is concluded to work well for the subscriber assignment problem.
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2

Preliminaries

This chapter first introduces a few geometric concepts, which will be used in subsequent

chapters. Then it summarizes the basic concepts of publish/subscribe systems.

2.1 Geometric concepts

This section introduces few geometric concepts—duality, arrangement, coreset, and range

searching. Duality will be used to map the input data and queries to another geometric

space, where events can be processed more efficiently. In thenew geometric space, range

searching will be performed for each event update to computea set of users whose top-k

lists are changed. The arrangement of hyperplanes will alsobe used to explore opportuni-

ties to jointly process those affected users. Finally, if approximate solution is acceptable,

the coreset techniques will be applied to 1) obtain approximate answers to the top-k queries

and 2) maintain the approximate top-k list for each user.

Duality. Theduality transform(see [82] for details) maps a pointP = (p1, . . . , pd) ∈ R
d

to the hyperplaneP ∗ : xd = p1x1 + . . . + pd−1xd−1 − pd; and it maps a hyperplane

h : xd = a1x1 + . . . + ad−1xd−1 + ad to the pointh∗ = (a1, . . . , ad−1,−ad). It can be
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FIGURE 2.1: Duality transform.a) Primal space.b) Dual space.

verified that the dual ofP ∗ is P itself, i.e.,P ∗∗ = P , and that ifP lies above (resp. below,

on) h, thenh∗ lies above (resp. below, on)P ∗. For a unit vectorw ∈ S
d−1 with wd 6= 0,

the set of hyperplanes normal tow, i.e., those of the form〈x, w〉 = t wheret ∈ R, map

to the vertical (xd-axis parallel) rayw∗ = {(−w1/wd, . . . ,−wd−1/wd, t) | t ∈ R}; w∗ is

oriented in(+xd)-direction (resp.(−xd)-direction) ifwd > 0 (resp.wd < 0).

Let P = {Pi | 1 ≤ i ≤ n} be the set of points. LetP∗ = {P ∗
i | 1 ≤ i ≤ n} be

the set of hyperplanes dual to the points inP. For a unit vectorw, if 〈Pi, w〉 > 〈Pj, w〉,

then rayw∗ intersectsPi beforePj. Figure2.1illustrates this concept. In the primal space,

〈1, a〉 > 〈2, a〉 > 〈4, a〉 and〈3, b〉 > 〈2, b〉 > 〈1, b〉. In the dual space, hyperplanes1∗, 2∗,

and4∗ (resp.3∗, 2∗, and1∗) are the first three hyperplanes intersected by the raya∗ (resp.

b∗).

Arrangement. Let H be a set of hyperplanes inRd. The arrangementof H, denoted

by A(H), is the decomposition ofRd into facesinduced byH, such that each face is the

maximal connected region ofRd that lies in the same subset ofH. A(H) is composed of

O(|H|d) i-dimensional faces fori = 0, . . . , d. See [11] for details. Thelevel of a point

p with respect toH, denoted byλ(p,H), is the number of hyperplanes ofH lying on or

below p. Note that all points lying on the same face ofA(H) have the same level. For

1 ≤ k ≤ |H|, thek-levelof A(H), denoted byAk(H), is the closure of facets ofA(H)
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(a) (b)

FIGURE 2.2: a) Original point setO; b) A coreset forO which approximates the direc-
tional width ofO.

whose level isk. Ak(H) is a piecewise-linear surface, and any line parallel to thexd-axis

intersectsAk(H) once; see Figure2.1(b). Arrangement will be used for ranking objects

in the new geometric space.

Coreset. LetO be a set of data objects. For many geometric problems, there exists a small

coresetC ⊂ O, such that the optimal solution forC is an(1 + ǫ)-approximate solution to

the original setO, i.e., ‖f(OPTO) − f(OPTC)‖ ≤ ǫf(OPTO), wheref is an objective

function andǫ > 0. An example ofC is shown in Figure2.2. One important property of

C is that its size does not depend on the number of objects in thesystem; it depends on

ǫ. Therefore, even if|O| continues to increase at an astounding rate, the coreset size still

remains small. To compute an approximate solution, the coresetC is first computed and

then taken as input to the algorithm, which runs fast due to small input size. Thus, the

coreset technique can often be used to process a large-scaledata efficiently.

The coreset technique will be used for different geometric problems in different chap-

ters. Chapters3 and4 involve the computation of directional width; the directional width

of a point setO w.r.t. directionw ∈ S
d−1 is defined asmaxo∈O〈w, o〉 −mino∈O〈w, o〉. The
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(a) kd-tree (b) Quad-tree

FIGURE 2.3: Data structures for range searching.

directional width of coresetC ⊂ O is guaranteed to approximate the directional width of

O within a factor of(1 + ǫ). Chapter6 will solve a variant of the set covering problem:

Given a setO of hyper-rectangles and a setP of points, we choose a subset ofO to cover

all points inP such that the sum of volumes of the rectangles in the cover is minimized

subject to a set of constraints. If we choose rectangles fromC instead ofO, the sum of

volumes of the rectangles in the cover is still guaranteed tobe within(1+ ǫ) of the optimal

solution. More details will be provided later in those sections.

Range searching. For the range searching problem, a setO of n objects (e.g. points,

rectangles, polygons, etc.) is preprocessed such that the objects ofO lying inside a query

range (e.g. halfspace, axis-aligned rectangles, simplices, discs, etc.) can be reported or

counted efficiently. Although there can be2n possible subsets ofO, possible answers

usually consist of only a small fraction of those subsets. For example, the number of

possible answers to2-dimensional axis-aligned rectangles isn4. Depending on the object

and range types, different data structures have been developed for efficient range queries;

see survey [4].

LetO be a set of points. Practical data structures that work for a broad range of queries

are trees based on some hierarchical spatial partitioning scheme, such as a kd-tree or quad-
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tree; see Figure2.3. A kd-tree is a binary search tree which storesO(1) points ofO at each

leaf. Each internal nodev is split by a hyperplane perpendicular to one of thed-dimensions

(which may simply be chosen in round robin fashion). Supposex-axis is chosen as the

split dimension andOv is the set of points at nodev. All the points inOv with x-coordinate

less than the medianx-coordinate ofOv are on one side of the splitting hyperplane and the

remaining points are on the other side. A quad-tree, on the other hand, decomposes each

internal nodev into 2d children of equal size. LetBv be the bounding box at nodev; Broot

containsO. For each child ofv, the side length of its bounding box is exactly half the side

length ofBv. The space complexity can be reduced by compressing nodes with a single

child.

A range query can be answered using a kd-tree or quad-tree in astraightforward top-

down manner: Given a query rangeR, the tree is searched top-down as follows. At a node

v with bounding boxBv, if Bv does not intersectR, the search algorithm does nothing;

otherwise, the algorithm recursively searches all children of v, or, if v is leaf, return all

points indexed byv that lie insideR. In the worst case, kd-tree answers ad-dimensional

range query in timeO(n1−1/d + t) usingO(dn) space, wheret is the output size.

Since this dissertation is not focused on developing the best possible index for range

searching, akd-tree is implemented for a static set of points; a quad-tree,which avoids the

balancing issue, is implemented for a dynamic set of points.

2.2 Publish/Subscribe Systems

Publish/subscribeis a model of data dissemination, wherepublishers(data providers) se-

lectively and aperiodically pusheventsto subscribers(users) according to their specified

interests. A publish/subscribe system typically consistsof an overlay network ofbrokers

(servers). Publishers and subscribers are assigned to different brokers who are responsible

for routing events between publishers and subscribers.
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FIGURE 2.4: Publish/Subscribe.

The publish/subscribe model decouples publishers and subscribers in both time and

space. Publishers need not know the locations and interestsof their subscribers, who can

remain anonymous to each other. On the other hand, subscribers are not required to know

the identity of publishers and the time of event notifications. Because of the decoupled

communication between publishers and subscribers, the publish/subscribe model is better

suited for ensuring scalability, flexibility, and manageability.

Topic-based vs. content-based. Traditionally, publish/subscribe systems aretopic-based[89,

95], in which subscribers can subscribe only to a set of predefined topics. Each event is

tagged with one or more topic names and it is disseminated to all subscribers who have

subscribed to those topics by using routing table lookups. However, the topics are very

often too coarse-grained to fit the interests of subscribersat the individual level. In addi-

tion, if an event matches multiple topics, multiple copies of the event may have to be sent

over the same link, potentially causing link congestions. The growing need for hetero-

geneity and expressiveness to avoid propagating excessiveevents has led to the growing

interests incontent basedpublish/subscribe systems, in which events are not constrained

to belong to a specific topic. Instead, subscribers specify their interests as filters over the

event contents, and routing is based on the data being transmitted instead of specifying

destinations in notification messages. The two most popularcontent-based semantics are
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predicate-based [34] and XML-based [52, 53]. For the predicate-based semantics, each

event contains a list of attribute-value pairs and each subscription is a Boolean predicate

against arbitrary attributes in an event. For instance, attributes in a stock update may in-

cludeSymbol, Price, etc. A stock subscription may be(Symbol = “MSFT”, Price≥ 35).

For the XML-based semantics, events are constructed as XML documents, and subscrip-

tions are defined as XPath filters [16, 94] or other variants on individual XML documents.

The additional flexibility of content-based semantics on expressiveness comes at the ex-

pense of burdening the underlying system to perform subscription matching.

Network topologies. In the publish/subscribe model, brokers communicate with each

other to coorperatively distribute the subscription matching and event delivery tasks across

a wide-area network. The popular interconnection topologies includestar, hierarchical

tree, andgeneral graph. Star is a centralized server topology, which assumes thereexists

one single broker between publishers and subscribers. Hierarchical tree is a straightfoward

extension of a star topology. For content-based systems, a parent broker only forwards an

received event to the subtrees which contain matching subscriptions, therefore, unneces-

sary traffic would be filtered out by ancestral brokers and would never reach the low level

of the hierarchical tree. The drawback of this topology is that brokers high in the hier-

archical tree may be potentially overloaded. Furthermore,since there is only one single

path between every pair of brokers, every broker is a critical point of failure for the entire

network. On the other hand, general graph provides redundancy in the topology as well

as more flexibility for configuring the broker network. Its drawback is the need to avoid

cycles and choose the best paths.

Event dissemination. The common dissemination mechanisms for publish/subscribe sys-

tems includeunicast, broadcast, multicast, andcontent-based networking. A straight-

forward way for a server to notify a set of matching subscriptions is to unicast each of
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them individually. Alternatively, an event can be broadcast to the entire network whenever

a publisher issues the event. If the event matches a subscription, the subscriber will be

locally notified by its broker representative. These two approaches have their own disad-

vantages: For unicast, when the number of matching subscriptions is huge, the server may

be overwhelmed by the outgoing traffic. For broadcast, if subscribers who share common

interests are clustered together in the network, a lot of network traffic is unnecessary. On

the other hand, multicast provides a good interface for topic-based publish/subscribe ser-

vices. For publish/subscribe systems, multicast is more often supported at the application

level by using an overlay network [36, 100, 125], which implements a distributed hash

table (DHT) interface for addressing data in the network [101, 110].

For content-based publish/subscribe systems, a content-driven network [13, 35, 39] is

usually used to support filter subscriptions. In the content-driven network, each destina-

tion is specified as a set of predicates, so the flow of an event is driven by the content of the

event. Event is disseminated in a multi-hop manner over an overlay network of brokers.

Every broker maintains a forwarding table which stores predicates indicating the condi-

tions under which an event needs to be forwarded to a particular broker neighbor. When

an event arrives at a broker, the broker 1) determines the setof next-hop destinations by

matching the content of the event against the set of predicates in the forwarding table and

2) updates the forward table. The network is responsible fordisseminating every event to

all the nodes that have predicates matching the event. Many such systems have been built

using DHTs [1, 61, 105].
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3

Continuous Preference Top-k Queries

This chapter addresses the problem of scalably processing alarge number of continuous

preference top-k queries, through the use of geometric methods. It develops adynamic

index for supporting thereverse top-k query, which is of independent interest. Combining

this index with another one for top-k queries, a scalable solution for processing many

continuous preference top-k queries is developed by exploiting the clusteredness in user

preferences. This chapter also defines an approximate version of the problem and presents

a solution significantly more efficient than the exact one with little loss in accuracy.

3.1 Introduction

In many applications, users are interested only in a small number (say,k) of “top” objects

from a large set. If the objects have multiple numeric attributes, how to rank these objects

depends on each user’s preference, oftentimes specified as vector of weights that defines a

linear combination of the attribute values. The weight associated with an attribute reflects

the “importance” of that attribute to the user. For example,a real estate agency may list

houses for sale with attributes such as listing price, year built, size of living area, lot size,
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etc. Each user is shown the highest ranked houses according his or her preference, i.e.,

those with the highest results for the linear combination. Auser who cares most about

the size of living area may assign the largest weight to this attribute (assuming that values

of different attributes have been appropriately normalized relative to each other). On the

other hand, a user who enjoys a yard more than indoor space maygive the lot size a larger

weight than the size of the living area. Because of the wide range of applications, there

has been a lot of work on preference top-k queries [44, 49, 50, 67, 113].

Motivated by applications in business analysis, Vlachou etal. introduced the “reverse”

top-k query [115]. In this setting, a set of user preferences is given in addition to the set

of objects of interest. For a new object, the goal is to find which users would rank the

new object in their topk; this information would allow a business analyst to assess,for

example, the impact of a new product (object) on customers (users) relative to existing

products.

Beyond the reverse top-k query, application settings such as data stream monitoring

and publish/subscribe give rise to the problem of scalably processing a large number of

continuoustop-k queries [85], which can be thought of as a fully dynamic version of the

reverse top-k query processing problem. In addition to handling changes to the set of user

preferences, a list of top-k objects is maintained under each user preference when objects

are inserted, deleted, or updated. Consider again the example of real estate listing. Houses

may come on and go off the market, and their information may beupdated (such as lower-

ing the listing price); users need to be notified of the changes (if any) to their topk houses.

A new or updated house may make its way into some user’s top-k list, while a deleted

or updated listing may remove a house from a top-k list—in which case a replacement

k-th ranked house must be added to the list. As another example, consider an investor

who monitors the stock market in real time to identify profitable trades. The stocks will

be ranked according to a wide range of numeric attributes, including, for example, trade

volume and price change since market opening today, maximumswing during the last 30
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minutes, price-to-earning ratio, average analyst rating,etc. Ranking preferences depends

on whether the list identifies buying or selling opportunities, and will vary according to

one’s personal investing style and tolerance for risk. Eachtop-k list must be maintained

as the market moves. In markets such as stocks, futures, and online auctions, both the

volume of object updates and the number of preferences can belarge, and the processing

time requirement is demanding.

Despite much related work under various settings, e.g., [49, 85, 115], there still lacks

a scalable, comprehensive solution to the problem of processing a large number of con-

tinuous top-k queries. Earlier results [49, 85, 115] rely heavily on heuristics, which have

worked for the problem sizes they were intended for. However, they have linear query time

or quadratic space in the worst case, unable to handle dynamic updates efficiently, and are

difficult to scale up further. For example, Mouratidis et al.[85] capped evaluation at 5,000

preferences; Vlachou et al. [115] tested up to 150,000 preferences, but the workloads did

not include object updates, which are expensive under theirapproach. This chapter aims

to scale to a million preferences with both object and preference updates.

Approach and contributions. This chapter approaches the problem of processing a large

number of continuous top-k queries with a geometric framework. Preference top-k queries

are closely related to the concepts ofarrangementandk-level [11] in discrete geometry,

as previous work on ad hoc top-k queries by Das et al. [49] has identified. This chapter

offers an intuitive interpretation of thek-level as aquery response surface (QRS), which

geometrically represents thek-th ranked object over the space of all possible preference

vectors. Within this framework, three novel ideas are applied in the setting of scalable

continuous top-k query processing:

• Connection to halfspace range queries: This chapter draws the connection between

halfspace range queries[2, 8, 38, 45] and reverse top-k queries. This connection al-

lows us to leverage results in computational geometry on halfspace range searching
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to devise an index for reverse top-k queries, which, in addition to being of indepen-

dent interest, serves as a critical component of the solution to the scalable continuous

top-k query processing problem.

• Combining preference- and QRS-driven processing: Sometimes multiple prefer-

ence top-k queries need to be evaluated simultaneously. Specifically,deleting an

object may necessitate computing the newk-th ranked object for many preferences.

A preference-drivenapproach runs these queries independently, which is subopti-

mal for clusters of preferences that share common top-k results. AQRS-driven

approach identifies regions of the QRS within which top-k queries return the same

k-th ranked object, and evaluates a single query for all preferences in each such

region. However, the QRS, which depends only on the object distribution, can be-

come very complex in high dimensions, with many regions containing few or no

preferences at all. This chapter proposes a hybrid approachthat combines the best

of both approaches—using preference-driven processing for regions with few or no

preferences, and using QRS-driven processing for dense clusters of preferences.

• Approximation: Not all applications require exact answers. By approximating QRS

with a simpler surface, this chapter reduces its complexityand, in turn, improves

the efficiency of the algorithms to be presented in this chapter. Specifically, the

notion of coresets, which has been successfully used for geometric approximation

algorithms [5, 6], is used to maintain a small subset of objects that induce a QRS

closely approximating the QRS induced by the entire set of objects. Surprisingly,

the size of the subset depends only onk and the approximation error, and not on the

number of objects.

The framework and ideas to be presented in this chapter lead to the following results:

• Leveraging the connection between reverse top-k and halfspace range queries, data
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structures for reverse top-k queries are obtained with linear space and sublinear

query time in any fixed dimension. Experiments show orders-of-magnitude perfor-

mance improvement and better scalability over the previoussolution [115].

• A scalable, comprehensive solution is provided for processing a large number of

continuous top-k queries. Our solution is fully dynamic in that it handles both ob-

ject and preference updates efficiently. Experiments show that the hybrid approach

achieves good performance by exploiting the clusterednessin user preferences while

avoiding maintaining the full QRS.

• This chapter defines and solves a novel, approximate versionof the problem. Ex-

periments show that approximation significantly reduces processing costs with little

loss in accuracy, allowing the solution to scale to even larger problem sizes.

As we shall see in Section3.7, our framework and solutions can apply to settings beyond

those targeted in this chapter, such as reverse nearest-neighbor queries, and preferences

that are unknown or uncertain.

3.2 Preliminaries

3.2.1 Problem Statement

An object hasd real-valued attributes and is represented as a point(v1, . . . , vd) ∈ R
d.

A preferenceis represented as a unit vector, i.e., a point(w1, . . . , wd) on S
d−1, the (d −

1)-dimensional unit sphere embedded inRd. Eachwi ≥ 0 is the weight for the i-th

attribute. Thescoreof an objecto with respect to a preferenceq is 〈q, o〉 = ∑
1≤i≤d wivi.

A hyperplaneh normal to a preference vectorq is of the form〈q, x〉 = t for somet ∈ R.

All objects lying onh have the same score with respect toq, namelyt.

Let O = {o1, o2, . . . , on} ⊂ R
d denote the set ofn objects of interest. For simplicity,

assume that no two objects have the same score for any preference considered. With a

25



slight care, our framework and algorithms can be extended tohandle ties. For a preference

q, let πi(q,O) denote thei-th ranked objectin O with respect toq; i.e., there are exactly

i− 1 objectso′ ∈ O with 〈q, o′〉 < 〈q, o〉. Let π≤i(q,O) = {πj(q,O) | 1 ≤ j ≤ i} denote

the topi objects inO with respect toq. Geometrically, if the objects ofO are projected

onto a line parallel toq, thenπi(q,O) is thei-th farthest object on this line. Alternatively,

if a hyperplane normal toq is swept from+∞ to−∞, i.e., varyingt from+∞ to−∞ for

a hyperplane of the form〈q, x〉 = t, thenπi(q,O) is thei-th object met by this hyperplane.

For example, in Figure2.1(a),π≤5(a,O) = 〈1, 2, 4, 3, 5〉; π≤5(b,O) = 〈3, 2, 1, 5, 4〉. The

following two queries are subjects of interest:

• (Preference) top-kkk query: Given a query preferenceq, returnπ≤k(q,O).

• Reverse (preference) top-kkk query: Given a set ofm preferencesQ = {q1, q2, . . . , qm}

and a query objecto, find the subsetQo = {q ∈ Q | o ∈ π≤k(q,O ∪ {o})}, i.e., all

preferences inQ for whicho is one of the top-k objects.

In the fully dynamic version of the problem, calledscalable continuous (preference)

top-kkk query processing,1 given a setO of n objects and a setQ of m preferences, the

top-k objects,π≤k(q,O), are maintained for allq ∈ Q at all times under the following

operations.2

• Object insertion.Given a new objecto, find the subsetQo = {q ∈ Q | o ∈ π≤k(q,O∪

{o})} and addo to O.

• Object deletion.Given an objecto ∈ O to be deleted, find the subset of preferences

q such thato ∈ π≤k(q,O), computeπk(q,O \ {o}) for each suchq, and removeo

fromO.

1 “Scalable” highlights the emphasis on simultaneously processing a large number of preferences given as
Q. Contrast this problem to simply “continuous query processing,” which considers one continuous query.

2 In other words, a user with preferenceq will be able to maintainπ≤k(q,O) incrementally given the output
computed by our solution for the following operations. In fact, the solution by itself does not need to store
this list for every preference.

26



• Preference insertion.Add a preferenceq to Q. Findπ≤k(q,O).

• Preference deletion.Remove a preferenceq fromQ.

Note that updates of existing objects and preferences can bemodeled as deletions fol-

lowed by insertions. It is not difficult to extend the framework and algorithms to handle

updates directly, which would be more efficient than handling them as separate deletions

and insertions.

In some cases, users do not need to know the exact topk objects, as long as they

see a list sufficiently “close” to the exact one. Incontinuous approximate (preference)

top-kkk query processing, given a user-specified error toleranceε ∈ (0, 1), each user with

preferenceq maintains a set̃π≤k(q,O) of k objects such that, at all times, for allo ∈

π̃≤k(q,O), 〈q, o〉 ≥ 〈q, πk(q,O)〉−εd̄(q,O), whered̄(q,O) = maxo∈O〈q, o〉−mino∈O〈q, o〉

denotes theextentof the set of objects along the preference vector, i.e., the difference

between the maximum and minimum scores.3 Intuitively, all objects in approximate result

are guaranteed to score higher than or not far from the actualk-th ranked object.

3.2.2 Duality and QRS

This section presents the duality transform and introducesthe notion of aquery response

surface, which will be useful to our algorithms.

Duality. This chapter applies the duality transform (see Chapter2) on bothO andS.

Let O∗ = {o∗i | 1 ≤ i ≤ n} be the set of hyperplanes dual to the objects inO. Let

Q∗ = {q∗i | 1 ≤ i ≤ m} be the set of vertical rays dual to the preferences inQ. For a

preferenceq, if o = πi(q,O), theno∗ is thei-th hyperplane inO∗ intersected by the rayq∗.

Hence, the firsti hyperplanes ofO∗ intersected byq∗ are dual to the objects inπ≤i(q,O);

see Figure2.1(b).

3 εd̄(q,O) is used instead ofε〈q, π1(q,O)〉 as the error measure because the former is independent of the
choice of origin and is smaller than the latter if all object attributes have non-negative values. See the last
remark in Section3.4.1for more discussion on an alternative formulation.
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Top-kkk query response surface. The following lemma establishes the connection between

the concept ofk-level and top-k queries.

Lemma 1. For a preferenceq, letwd denote its weight for the last attribute. In the case of

wd > 0, if the intersection point of its dual rayq∗ withAi(O
∗) 4 lies on the hyperplaneo∗,

theno = πi(q,O). In the case ofwd < 0, if the intersection point of its dual rayq∗ with

An−i+1(O
∗) lies on the hyperplaneo∗, theno = πi(q,O).

Hence,Ai(O
∗) encodes, for any preference withwd > 0, the identity of itsi-th ranked

object; each facet ofAi(O
∗) corresponds to the set of preferences withwd > 0 sharing the

samei-th ranked object. Similarly,An−i+1(O
∗) encodes, for any preference withwd < 0,

the identity of itsi-th ranked object. Therefore,Ai(O
∗) andAn−i+1(O

∗) are viewed as the

query response surface (QRS)for the query returning thei-th ranked object under a pref-

erence. Overall,
⋃

i∈[1,k]∪[n−k+1,n] Ai(O
∗) encodesπ≤k(q,O) for any possible preference

q.

3.2.3 Query Primitives

Our algorithms will use the following two primitives repeatedly.

Halfspace range query. The problem is to preprocess a setP of n points inRd so that

all points inP lying above a query hyperplaneh can be reported quickly. In dual, this

problem corresponds to reporting all hyperplanes ofP ∗ lying below the pointh∗. Several

approaches have been proposed for this query. Ford ≤ 3, a query can be answered in

O(log n + t) time, wheret is the output size, usingO(n) space [45, 2]. For d ≥ 4, given

a parametern ≤ s ≤ n⌈d/2⌉, a query can be answered inO((n/s1/⌈d/2⌉) log n + t) time

usingO(s1+ε) space for anyε > 0 [83]. The known lower bounds [29] suggest that these

bounds are close to optimal. I/O-efficient indexing schemesfor halfspace range queries

were given in [3]; dynamic schemes were presented in [8, 38]; see also [44].

4 The description of ArrangementA can be found in Chapter2.

28



Since the focus of this chapter is not to develop the best possible index for halfspace

range searching, experiments in Section3.5 simply use a tree index onP based on some

hierarchical spatial partitioning scheme, such as a quad-tree or kd-tree, and answer halfs-

pace range queries as described in Chapter2. This chapter assumes that a halfspace range

query can be answered inO(q(n) + t) time, and a point can be inserted or deleted in

O(u(n)) time.

Top-kkk query. There is a close relationship between halfspace range queries and top-k

queries. Indeed, letq be a query preference for which we wish to reportπ≤k(q,O). Let

h be a hyperplane normal toq of the form〈q, x〉 = t, wheret ∈ R. A halfspace range

query is performed overO with respect toh. If it returns fewer thank objects, we decrease

the value oft and try again. If it attempts to report more thank points, we stop, increase

t, and then try again. Thus, by doing a binary search, we can finda value oft such that

exactlyk objects are reported. This procedure takesO((q(n) + k) log n) time. Using the

index of [83], the running time can be improved toO(q(n) + k). Conversely, an index

for top-k queries, in which a user can specify the value ofk as part of the query, can

be adapted to answer halfspace range queries. This chapter will thus useO(q(n) + k)

to denote the query time for a top-k index andO(u(n)) to denote the update time. In

the implementation, simply a quad-tree or kd-tree is used toanswer top-k queries with a

branch-and-bound method. It can be easily replaced by a moresophisticated one without

affecting the rest of our solution.

Note that we are sometimes interested only in thek-th ranked object (instead of all top

k objects). Whenk is small (i.e.,k ≤ q(n)), simply running a top-k query and returning

only thek-th object works well.
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3.2.4 Summary of Results

First, this chapter shows that a reverse top-k query can be formulated as a halfspace range

query and thus can be answered inO(q(m)+t) time, wherem is the number of preferences

andt is the number of them affected by the query object. To the bestof our knowledge,

this is the first linear-size index that can answer this queryin sublinear time in any fixed

dimension. Ford ≤ 3, the query time isO(logm + k), which is optimal. Experiments

show that our approach is much faster than the current state of the art [115, 116].

Second, this chapter presents a scalable solution for processing many continuous top-

k queries, which maintainsπ≤k(q,O) for a setQ of preferences under both object and

preference updates. Section3.3.2starts by outlining two approaches—preference-driven

and QRS-driven—for finding the newk-th ranked object for each preference affected by an

object update. The preference-driven approach evaluates one such query for each affected

preference; the QRS-driven approach evaluates one query foreach facet ofAk(O
∗) (within

which all preferences have the samek-th ranked object). Section3.3.2adopts a hybrid

approach that uses the preference-driven one for sparse preferences and the QRS-driven

one for clustered preferences. Experiments show that this hybrid approach achieves good

performance by exploiting the clusteredness of preferences while avoiding maintaining

complex regions of the QRS with sparse preferences.

Third, Section3.4shows that if approximate answers as described in Section3.2.1are

acceptable, one can compute a subsetC ⊆ O of sizeO(k/ε(d−1/2)), such that〈q, π≤k(q,C)〉 ≥

〈q, πk(q,O)〉 − εd̄(q,O) for all preferenceq. The setC can be maintained efficiently un-

der insertion and deletion of objects. Experiments show that this approach significantly

reduces the complexity of QRS and improves running time with little loss of accuracy.

Finally, our results have a number of applications beyond those focused on by this

chapter; we discuss them in Section3.7.

30



1

2

3

4

cba hed f g

5

FIGURE 3.1: Illustration of object insertion in dual. Objects (1, . . . , 4) are shown as solid
lines and preferences (a, b, . . . , h) are shown as vertical lines. Prior to inserting object5
(shown as a hashed line), the2-level is shown as the thick polyline, and the cutoff points
are shown as white dots. Insertion of5 changes the top-2 lists for preferencesd, e, andg,
whose cutoff points lie above the newly inserted dual line.

3.3 From Reverse Top-k to Continuous Top-k Queries

This section presents the solutions for answering reverse top-k queries and for processing

a large number of continuous top-k queries. It starts with a static solution for reverse top-k

queries, ignoring object or preference updates. It then describes a fully dynamic solution

that handles both object and preference updates.

3.3.1 A Static Solution for Reverse Top-k

Given a setO of objects, a setQ of preferences, and a query objecto 6∈ O, we wish to report

the subset of preferencesQo = {q ∈ Q | o ∈ π≤k(q,O ∪ {o})}. Intuitively, a preference

q can be affected byo only if o scores higher than the currentk-th ranked object forq. In

dual, this intuition translates into the following lemma, which characterizes the setQo.

Lemma 2. For a query objecto, q ∈ Qo iff q∗∩Ak(O
∗) lies above the dual hyperplaneo∗.

Proof. Let p = πk(q,O). By Lemma1, q∗ ∩ Ak(O
∗) = q∗ ∩ p∗. If the new objecto

belongs toπ≤k(q,O ∪ {o}), thenp = πk+1(q,O ∪ {o}). By Lemma1, q∗ intersectso∗

before intersectingp∗, implying thatq∗ ∩Ak(O
∗) lies aboveo∗; see Figure3.1.
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In view of Lemma2, the point set̂Q = {q∗ ∩ Ak(O
∗) | q ∈ Q} is indexed in the dual

space, i.e., intersection points between the vertical lines inQ∗ and thek-level. These points

are referred to as thecutoff points. To create this index,̂Q is computed by performing a

top-k query onO with each preferenceq to findπk(q,O); an index onO supporting top-k

queries is described in Section3.2.3.5 Q̂ is then preprocessed into an index for halfspace

range queries so that all points ofQ̂ lying above a query hyperplane can be reported. By

Lemma2, a reverse top-k query can be answered inO(q(m) + t) time, wheret is the

output size.

Using the results in [2, 83], discussed earlier in Section3.2.3, the following result is

obtained for answering reverse top-k queries. As noted in Section3.2.3, simpler, more

practical methods can be used instead, but with weaker theoretical bounds.

Theorem 3. LetO be a set ofn objects inRd andQ a set ofm preferences. 1) Ford ≤ 3,Q

can be preprocessed inO((n+m) log n) time into an index of sizeO(m) so that a reverse

top-k query can be answered inO(logm+ t) time, wheret is the output size. 2) Ford ≥ 4

and for a parameterm ≤ s ≤ m⌈d/2⌉, there is an index of sizeO(s1+ε) for anyε > 0, so

that a reverse top-k query can be answered inO((m/s1/⌈d/2⌉) logm + t) time, wheret is

the output size.

Note that the above solution allows each user (preference) to choose a different value

of k; the cutoff point of each user would be defined by the value ofk specific to the user.

3.3.2 A Fully Dynamic Solution

Building on the static solution for reverse top-k queries, this section shows how to process

a large number of continuous top-k queries in a fully dynamic setting, with both object

and preference updates. Three approaches will be discussed, and they are distinguished

primarily by their handling of preferences affected by object updates. This section starts

5 Instead of performing each top-k query individually, they can be batched using, for example,the QRS-
driven or hybrid approach in Section3.3.2.
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by outlining two possible approaches with complementing strengths (and weaknesses),

and then describes the hybrid approach which combines the advantages of the first two

approaches. All three approaches employ an index on the set of n objectsO, which sup-

ports preference top-k queries inO(q(n) + k) time and object insertions and deletions in

O(u(n)) time, as discussed in Section3.2.3.

3.3.2.1 Preference-Driven Approach

In addition to the index onO for top-k queries, this approach employs an index on the

setQ̂ of cutoff points discussed in Section3.3.1. Inserting a preferenceq involves a top-k

query against the index onO to initialize q’s list of top k objects. Then the cutoff point

is computed forq from its k-th ranked object and inserted into the index onQ̂. Deleting

a preferenceq simply entails deleting its cutoff point from the index on̂Q. Thus, the

insertion and deletion times areO(u(m) + q(n) + k) andO(u(m)), respectively.

Now consider the insertion (or deletion) of an objecto. First, this approach issues a

halfspace range query witho∗ against the index on̂Q to find the set of affected preferences

Qo ⊆ Q, which correspond to the cutoff points lying above (or, for deletion ofo, on or

above)o∗, as in Section3.3.1. In addition, the index onO is updated witho. Next, for each

affected preferenceq ∈ Qo, this approach issues a top-k query withq against the index on

O to find the newk-th ranked objectp, and then updates the index onQ̂ with the new cutoff

point forq, given byq∗∩p∗. The list of topk objects forq can be easily maintained usingo

(or, for deletion ofo, o andp). The total update time isO(q(m)+u(n)+ t(q(n)+u(m))),

wheret is the number of affected preferences.

This approach is referred to aspreference-drivenbecause it issues a separate top-k

query for each affected subscription inQo, which can be expensive ifQo is large, and

wasteful if many preferences share the samek-th ranked object. Intuitively, for “nearby”

preferences with the samek-th ranked object, we would like to use only one query, which

leads to the next approach.
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3.3.2.2 QRS-Driven Approach

An alternative approach will be to leverage the query response surfaceAk(O
∗). Recall

from Section3.2.2that each facet of this QRS corresponds to a set of preferencessharing

the samek-th ranked object, giving us a natural way to process preferences in groups.

To this end, in addition to the index onO for top-k queries, theQRS-drivenapproach

maintains an index forAk(O
∗). If an objecto is inserted (or deleted), this approach updates

the index onO as well as the index forAk(O
∗), querying the index onO as needed. The

complexity of this operation does not depend on the number ofpreferences. Finally, for

each new facetϕ on the updated QRS, letp denote the object whose dual hyperplanep∗

containsϕ, and letQϕ denote the set of preferencesq whose dual linesq∗ intersectϕ.6 All

preferences inQϕ havep as their newk-th ranked object, and their lists of topk objects

can be maintained usingo (resp.o andp).

Note that updating of the QRS is oblivious to the actual set of preferences. Indeed, the

QRS-driven approach effectively computes, without any knowledge ofQ, a description

(based on facets ofAk(O
∗)) of the set of affected preferences, together with the incremen-

tal changes to their lists of top-k objects. This feature makes the QRS-driven approach

attractive for some applications (such asmonochromatic reverse top-k queries in business

analysis [115]), a point we shall come back to in Section3.7.

There are two difficulties with this approach, however. First, the QRS can be large

and complex to update, especially in higher dimensions. Second, many parts of the QRS

may have few or no preferences, so it would be a waste of effortto maintain the QRS

for these parts. These observations lead to the idea of combining this approach with the

preference-driven approach earlier.
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FIGURE 3.2: Leaves ofT. The QRS is shown as a thick polyline, and the dual lines of
preferences are shown as dotted lines. Solid lines show the partitioning of the dual space
into leaves; for clarity here equi-distance partitioning is used, though in practice it need not
be the case. Black leaves are filled with a dark (green) shade; grey-dense leaves are filled
with a medium (green) shade; grey-sparse leaves are filled with a light (yellow) shade;
white leaves are not shaded.

3.3.2.3 Hybrid Approach

For the preference-driven approach, the index onQ̂ can be updated efficiently, but in-

dependently computing the newk-th ranked object for each affected preference can be

inefficient. For the QRS-driven approach, identically affected preferences are processed

efficiently as a group, but maintaining parts of the QRS with few or no actual preferences

is wasteful. To get the best from both approaches, a hybrid approach is adopted to intelli-

gently switch between the two processing modes.

In addition to the index onO for top-k queries, the hybrid approach maintains a search

treeT based on a hierarchical spatial partitioning of the dual space (a quad-tree is used in

the implementation). Each nodev of T is associated with a bounding boxBv ⊆ R
d. Let

Q∗
v ⊆ Q∗ denote the set of vertical lines inQ∗ stabbingBv, and letO∗

v ⊆ O∗ denote the set

of hyperplanes inO∗ intersectingBv. The following three counters are stored at each node

v: mv = |Q∗
v|, nv = |O∗

v|, andb∆v , the number of hyperplanes inO∗
p(v) that lie belowBv,

wherep(v) is the parent ofv. The number of hyperplanes inO∗ lying belowBv, denoted

bv, can be computed by summingb∆u over each nodeu on the path from the root tov. At

6 This set can be either explicitly maintained for each facet of the QRS, or computed by searching another
data structure onQ.
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each leafv of T, the setsO∗
v andQ∗

v are also stored.

A leaf v can be one of the following types (whereτm andτn are user-defined parame-

ters):

• Whiteif bv > k; i.e.,Bv is strictly aboveAk(O
∗).

• Black if bv + nv < k; i.e.,Bv is strictly belowAk(O
∗).

• Grey-sparseif (bv ≤ k ≤ bv + nv) ∧ (mv < τm); i.e., Bv intersectsAk(O
∗) and

contains few cutoff points.

• Grey-denseif (bv ≤ k ≤ bv + nv) ∧ (mv ≥ τm) ∧ (nv < τn); i.e., Bv intersects

Ak(O
∗) and likely contains many cutoff points, andAk(O

∗) is not very complex.

These leaf types are depicted in Figure3.2. A nodev satisfying none of the conditions

above passes the followingsplitting condition:

(bv ≤ k ≤ bv + nv) ∧ (mv ≥ τm) ∧ (nv ≥ τn).

In this case,v is an interior node. Practically,τm andτn are chosen to reflect 1) the “tipping

point” when one of the preference- and QRS-driven approachesbecomes more efficient

than the other, and 2) the granularity at which such a decision is made.

Constructing TTT. Initially, T is a tree containing a single unvisited root node withBroot =

R
d, mroot = m, nroot = n, andb∆root = broot = 0. The splitting condition is tested at

each unvisited nodev. If v passes the splitting condition,v becomes a non-leaf andBv is

partitioned among its children, each of which will be visited. Otherwise,v is a leaf:Q∗
v

andO∗
v are stored, andv’s type is then determined.

Object insertion. For the insertion of a new objecto, T is first updated top-down. At a

nodev, nv is incremented by1 if o∗ intersectsBv, or incrementb∆v if o∗ lies belowBv.

There are three cases:
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1. v was a non-leaf.If now bv > k, the subtree rooted atv is contracted into a single

white leaf and stop. Otherwise,v remains a non-leaf and the same procedure is

repeated for each child ofv, but skipping any childu whereo∗ lies aboveBu.

2. v was a white or black leaf.The only case requiring action is when a previously

blackv becomes grey or non-leaf because nowbv + nv = k. In this case, a subtree

rooted atv is constructed forO∗
v,Q

∗
v using the construction procedure above.

3. v was a grey leaf.The only case requiring action is when a previously grey-dense

v turns into a non-leaf becausenv now reachesτn. In that case, the construction

procedure is used to build a subtree rooted atv.

After T has been updated,T is traversed to compute, for each grey leafv, the set of affected

preferences inQ∗
v:

• If v is grey-dense, the QRS insideBv must be simple because few dual hyperplanes

intersectBv, so a QRS-driven approach is taken. The new facets of the QRS inside

Bv (i.e.,Ak−bv(O
∗
v)∩Bv) is computed. For each new facetϕ, letp denote the object

whose dual hyperplanep∗ containsϕ. All preferences whose dual lines intersectϕ

havep as the newk-th ranked object.

• If v is grey-sparse,Q∗
v is small, so a preference-driven approach is taken, with one

top-k query issuing against the index onO for each preference inQ∗
v. If O∗

v happens

to be small too, instead of using the index onO, simply the(k− bv)-th ranked object

in O∗
v can be computed for each preference by scanningO∗

v.

Object deletion. For the deletion of objecto, againT is first updated top-down. At a node

v, nv is decremented by1 if o∗ intersectsBv, or decrementb∆v if o∗ lies belowBv. There

are three cases:
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1. v was a non-leaf.If bv +nv now drops belowk, the subtree rooted atv is contracted

into a single black leaf. Ifnv drops belowτn but still bv+nv ≥ k, the subtree rooted

atv is contracted into a single grey-dense leaf. Otherwise,v remains a non-leaf and

the same procedure is repeated for each child ofv, but skipping any childu where

o∗ lies aboveBu.

2. v was a white or black leaf.The only case requiring action is when a previously

whitev becomes grey or non-leaf because nowbv = k. In this case, a subtree rooted

atv is constructed using the construction procedure above.

3. v was a grey leaf.v becomes black ifbv + nv < k.

After T has been updated, the set of affected preferences and their newk-th ranked objects

are computed. As discussed in the case of object insertion, the update algorithm switches

between QRS- and preference-driven approaches as appropriate.

Preference insertion. For the insertion of a new preferenceq, a top-k query with q is

issued against the index onO to find Oq = π≤k(q,O). UsingOq, q’s cutoff point q̂ is

calculated, andT is searched for the grey leafv such thatq̂ ∈ Bv. For every nodeu

along the path from the root tov, mu is incremented by1. If v was grey-sparse and now

mv = τm, v would become grey-dense or non-leaf; in this case, a subtreerooted atv is

constructed using the construction procedure above.

Preference deletion. For the deletion of preferenceq, T is searched for the grey leafv

such thatBv contains the cutoff point ofq. For every nodeu along the path from the root

to v, mu is decremented by1. If (and as soon as)mu drops fromτm to τm − 1 for anyu

encountered during the search, the subtree rooted atu is replaced with a single grey-sparse

leaf.
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FIGURE 3.3: a) Illustration of coreset fork = 2. Points are shown as black dots and
members of the coreset are circled.b) ConvertingO into a fat point set using an affine
transform defined using anchor points{a0, a1, a2}. c) Constructing the coreset by finding
the k nearest neighbors inΓ(O) (showing in the bounding box) of each grid point inG
(shown on the sphere).

3.4 Approximate Top-k Queries

As mentioned in Section3.1, it suffices for users of many applications to have approximate

lists of top-k objects under their preferences. This section shows that inthis case the

index can be built on a small subset ofO, and the lists can be updated more efficiently.

Section3.4.1shows that such a small subsetC, calledcoreset, can be computed efficiently.

Section3.4.2describes how to update the coreset efficiently asO changes. Section3.4.3

further describes procedures for maintaining indexes based onC as well as the top-k lists

of all users. As we will see, maintaining them upon every change toC is unnecessary

and expensive—insertion or deletion of a single object inO sometimes causes multiple

changes toC. Therefore, these procedures are designed to perform maintenance lazily

only when necessary.

3.4.1 Computing a Coreset

For a unit vectorq ∈ S
d−1, theextentof O in directionq, denoted bȳd(q,O), is

d̄(q,O) = max
o∈O
〈q, o〉 −min

o∈O
〈q, o〉,

i.e., the difference between the maximum and the minimum scores for the preferenceq.

Given an integerk ≥ 1 and a parameterε > 0, a subsetC ⊆ O is called a(k, ε)-coreset
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(or simplycoresetfor brevity) if for all i ≤ k andq ∈ S
d−1,

〈q, πi(q,C)〉 ≥ 〈q, πi(q,O)〉 − εd̄(q,O). (3.1)

This section shows that a coreset of sizeO(k/ε(d−1/2)) can be computed efficiently.

Before describing the algorithm, we need a property of coreset, which will be critical

for the algorithm. A linear transformΓ : Rd → R
d is called anaffine transform if the

matrixΓ is nonsingular—it includes translation, rotation, and scaling.

Lemma 4. Let k > 0 be an integer,ε > 0 a parameter, andΓ an affine transform. A

subsetC ⊆ O is a (k, ε)-coreset ofO if and only ifΓ(C) is a (k, ε)-coreset ofΓ(O).

The proof of this lemma, a slight variant of the one given in [122], is omitted here.

Converting OOO into a fat point set. For a constantα > 0, O is calledα-fat if

max
q1,q2∈Sd−1

d̄(q1,O)/d̄(q2,O) ≤ α.

An affine transformΓ can be computed such thatΓ(o) is αd-fat for some constantαd that

depends ond. To this end, the approximate minimum-volume bounding boxB for O is

first computed with the algorithm of Barequet and Har-Peled [24], as follows. The setA

of d anchor objectsa0, . . . , ad is picked, one by one.a0 is chosen arbitrarily, andai+1

is chosen to be the farthest object fromspan(a0, . . . , ai), i.e., the span of all previously

chosen anchors. The setA of anchor objects defines the bounding boxB: a0 lies in the

center ofB; the vector fromai+1 to span(a0, . . . , ai) gives an direction orthogonal to the

directions defined by{a0, . . . , ai} (see Figure3.3(b)). Next, a transformΓ is computed,

such thatΓ(B) maps to[−1,+1]d. It can be checked thatΓ(O) is αd-fat for a constantαd

(see, e.g., [5]).

Constructing CCC. GivenO, the affine transformΓ is first computed, as described above, so

thatΓ(O) is fat andΓ(O) ⊂ [−1,+1]d. Let S be the sphere of radius
√
d + 1 centered
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at the origin inRd. A setG of grid points is constructed onS as follows. Set parameter

δ = β
√
ε for a sufficiently small constant0 < β < 1. A setG ⊂ S of O(1/βd−1) =

O(1/ε(d−1)/2) points is chosen, so that for any pointx ∈ S there is a grid pointp ∈ G such

that‖x− p‖ ≤ δ.

Next, for each grid pointp ∈ G, σk(p), the (ε/2)-approximatek nearest neighbors

of p in Γ(O), is computed; see Figure3.3(c). C is set to
⋃

p∈G σk(p). By adapting the

methods for answering approximate nearest-neighbor queries [18], the(ε/2)-approximate

k nearest neighbors of a query point can be computed inO(log n+k/εd) time. In practice,

a branch-and-bound algorithm (similar to the one used for answering a top-k query) can

be used.

Theorem 5. Given a setO of n objects, an integerk > 0, and a parameterε > 0, a

(k, ε)-coreset ofO of sizeO(k/ε(d−1)/2) can be computed inO(n log n+ k/ε3d/2) time.

Proof. Since|G| = O(1/ε(d−1)/2), |C| = O(k/ε(d−1)/2); the running time of the algorithm

follows from the query time of the approximatek-nearest neighbor data structure. It thus

suffices to prove thatC is a(k, ε)-coreset.

For eachq ∈ S
d−1 and for alli ≤ k, we show that (3.1) holds. We prove this claim

by induction oni. Suppose this claim holds for up toi − 1. Supposeo = πi(q,O). Let

x ∈ S be the intersection point ofS with the ray emanating fromo in directionq. Refer

to Figure3.4. Let g ∈ G be the closest grid point tox ∈ S. If o is the i-th nearest

neighbor ofg, theno is included inC. Otherwise, thei-th nearest neighbor must lie in the

shaded (blue) region. The error is within‖w − z‖, which can be shown to be less than

‖h − x‖ < (ε/2)d̄(q,O), provided thatβ is chosen sufficiently small; see [122]. Recall

that we computed the(ε/2)-approximatek-nearest neighbors ofg, so we can argue that if

õ is the(ε/2)-approximatei-th nearest neighbor ofg, then〈q, õ〉 ≥ 〈q, o〉 − εd̄(q,O).
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FIGURE 3.4: Correctness of the coreset construction algorithm.

Remarks. Note thatC approximatesπ≤k(q,O) for all q ∈ S
d−1. If we are interested in

preferencesq = (q1, . . . , qd) for which qi ≥ 0 for all i ≤ d, then we choose only those

points ofG that are within or not far from the first orthant (The implementation uses those

with coordinates no less than−0.3). The asymptotic bound on the size ofC does not

change, but the constant changes.

Agarwal et al. [7] define a coreset using a stronger definition of approximation which

ensures that

〈q, πi(q,C)〉 ≥ (1− ε)〈q, πi(q,O)〉 (3.2)

for all 1 ≤ i ≤ k and for all directionsq ∈ S
d−1 if all attributes are non-negative. Using

a similar algorithm they show that a coreset of sizeO(k/ε(d−1)/2) can be computed under

this stronger definition. A result in [9] shows that the coreset can be maintained efficiently

under insertion and deletion of objects. The definition presented in this section provides

a weaker theoretical guarantee because the error is boundedin terms of extent, which de-

pends on the position of highest ranked object. In particular, if the score ofπk(q,O) is

much smaller thanπ1(q,O), then the bound in (3.1) could be large. However, the pre-

sented definition is chosen because in practice it also produces a very good approximation

of π≤k(q,O) for everyq, and updatingC under insertion or deletion of an object is consid-

erably simpler.
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3.4.2 Updating the Coreset

This section discusses how to maintain the coresetC under insertion and deletion of ob-

jects, i.e., maintain the set of anchor pointsA, the bounding boxB, and the affine trans-

form Γ. To help reduce the amortized cost of reconstructing the coreset, the coreset is

maintained as the union of two sets, i.e.,C = Cin ∪ Cout, whereCout is used to “buffer”

new objects that would otherwise trigger coreset reconstruction immediately; details now

follow.

Object insertion. Suppose the new objecto is inside the bounding boxB. For each grid

pointg ∈ G, if Γ(o) is one ofg’s new (approximate)k nearest neighbors amongΓ(O∪{o}),

o is inserted intoCin and the oldk-th nearest neighbor ofg is removed fromCin. Overall,

C does not change unlesso becomes one of thek nearest neighbors of some grid point, in

which caseo is inserted toCin and one or more objects are deleted fromCin.

If the new objecto is outsideB, the naive approach would be to reconstructC because

Γ needs to be recomputed. To reduce the frequency of expensivecoreset reconstructions,

o is simply buffered inCout, and coreset reconstruction is postponed until|Cin| = |Cout|.

Immediately following a reconstruction,Cout = ∅ andC = Cin.

When reconstructing the coreset, the update algorithm attempts to reuse the objects in

the current coreset whenever possible. LetC′ denote the content ofC before reconstruction.

Let Og be the set of newk nearest neighbors for a grid pointg ∈ G. For each object

o ∈ Og \ C′, if there exists an objecto′ ∈ C′ \ Og, such that the distance fromg to o′ is

approximately the same as the distance fromg to o, theno is substituted witho′. This

technique reduces the number of changes in the coreset membership, which in turn helps

reduce the cost of maintaining the data structures built on the coreset.

Object deletion. Suppose an objecto ∈ O is deleted. Ifo 6∈ C, there is nothing to do. If

o ∈ Cout, o is simply deleted fromCout. Next, supposeo ∈ Cin.
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If o is not an anchor point inA defining the affine transformΓ, letGo denote the subset

of grid pointsg ∈ G such thatΓ(o) is one ofg’s approximatek nearest neighbors.o

is deleted fromCin, and for eachg ∈ Go, the approximatek-th nearest neighbor ofg is

computed and added toCin.

If o happens to be an anchor point inA, a new affine transform is needed. Thus, the

reconstruction of the coreset is triggered. Again, as discussed in the case of object inser-

tion, the update algorithm attempts to reuse the objects in the current coreset whenever

possible.

3.4.3 Updating Indexes and Top-k Lists

Recall from Section3.3.2that a number of indexes is maintained for scalable processing

of continuous top-k queries. For example, the preference-driven approach maintains an

index I of objects (for preference top-k queries) and an indexJ of cutoff points. The

hybrid approach maintainsI and a search treeT. With the coreset approach, these indexes

are now based onC instead ofO. WhenC changes, these indexes need to be updated as

well as the approximate top-k lists for all preferences. Naively, they can be simply updated

for every change toC, but this strategy is expensive because a single insertion or deletion

in O may sometimes translate to many changes toC, as discussed in Section3.4.2. The

key observation is that it is unnecessary to carry out some updates to the indexes and top-k

lists immediately. To illustrate, suppose that the insertion of an objecto from O causes

another objecto′ to disappear fromC. There is no need to removeo′ from the top-k list

of a preference, becauseo′ has not been deleted fromO, and the old list will continue to

serve correctly as an approximate top-k list. Likewise, there is no need to deleteo′ from

the indexes.

Therefore, following this intuition, a lazy approach is used to update the indexes and

the top-k lists. Two buffers are maintained:

• Deletion bufferstores the set∇ of objects that have been deleted fromC but not
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fromO; these objects are still present in the indexI of objects and the tree structure

T.

• QRS bufferstores a set∆ of objects that have been inserted intoC because of other

object updates (i.e.,o itself was already present inO before it is inserted intoC);

these objects are inserted intoI andT, but they are not used to update the indexJ of

cutoff points or the top-k lists.

The ramainder of this section is devoted to describe the procedures for updating the indexes

and top-k lists when an object is inserted or deleted inO. The description covers the

maintenance ofI, J, andT; in practice, only the subset of these indexes used by the

approach chosen from Section3.3.2needs to be maintained.

Object insertion. Suppose a new objecto is inserted intoO. Recall the coreset update

algorithm in Section3.4.2. If o does not affectC, there is nothing to do and the algorithm

stops. Ifo is added toC, it is inserted intoI andT. The set of affected preferences is com-

puted as discussed in Section3.3, and update their top-k lists as well as their corresponding

cutoff points inJ.

Furthermore, if the insertion ofo causes a setC− of objects to be removed fromC, C−

is inserted into the deletion buffer∇ and avoid updatingI andT.

Finally, if the insertion ofO causes a setC+ of objects to be added toC (which happens

whenC is reconstructed), eacho′ ∈ C+ is processed as follows. Ifo′ ∈ ∇, it is simply

removed from∇ and nothing further needs to be done; otherwise,o′ is inserted intoI, T,

and the QRS buffer∆, without updatingJ or any top-k lists.

Object deletion. Suppose an existing objecto is deleted fromO. If o is in neither the

current coreset nor the deletion buffer∇, the algorithm simply stops. Otherwise,o is

deleted from there and fromI andT. The set of affected preferences is also computed, and

their top-k lists as well as their corresponding cutoff points inJ are updated.
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Recall the coreset update algorithm in Section3.4.2. If o was in theC and the coreset

is not reconstructed, then the deletion ofo can cause insertion of a setC+ of objects into

C. As in the case of object insertion discussed above, for eacho′ ∈ C+, if o′ ∈ ∇, it is

simply removed from∇; otherwise,o′ is inserted intoI, T, and the QRS buffer∆, again

without updatingJ or any top-k lists.

Finally, if C was reconstructed as the result of deletingo, let C+ denote the set of

objects inserted intoC and letC− denote the set of objects deleted fromC. Each object

of C− is inserted into the deletion buffer∇. The processing ofC+ is more involved. Let

O′ = (C+ \ ∇) ∪∆. The objects inC+ \ ∇ are inserted intoI andT, and delete those in

C+ ∩ ∇ from∇. By performing a reverse top-k query for each object inO′, the setQo of

preferences that need updating is identified. Their top-k lists as well as their corresponding

cutoff points inJ are updated. Further details are omitted.

3.5 Experimental Evaluation

Approaches compared. For static reverse top-k queries, the approach based on halfspace

range queries (Section3.3.1) has been implemented using a quad-tree as the underlying

index for cutoff points;7 this algorithm is referred to asHSR for short. For comparison, the

RTOP-Gridalgorithm by Vlachou et al. [115] has been implemented, which is the most

recent and most relevant to the work presented in this chapter; this algorithm is referred to

asGRID for short.

For the problem of processing a large number of continuous top-k queries, all three

approaches discussed in Section3.3.2have been implemented: preference-based, QRS-

based, and hybrid. They are not compared with GRID in this case, because GRID does

not handle object updates efficiently, and is already significantly outperformed by our

approach in the static case (as we will see in Section3.5.1).

7 Experiments have also been performed with a kd-tree implementation, which showed comparable perfor-
mance: it works better than the quad-tree ford > 4 and worse ford < 4. Since the choice does not change
any conclusion drawn in this section, results for the kd-tree are not shown in this chapter.
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For the three approaches, again quad-trees are used for the underlying indexes when

applicable. For the QRS-based approach, a quad-tree is used to store the QRS, stopping

when a nodev’s bounding boxBv is strictly above or below the QRS, or intersects fewer

thanτn hyperplanes inO∗—analogous to the hybrid approach in Section3.3.2.3with τm =

0 such that there are no grey-sparse nodes.

Finally, the coreset-based approach has been implemented for the approximate version

of the problem. All algorithms are implemented in C++.

Performance metrics. The following metrics are considered when evaluating competing

approaches:

• Time (per request): The wall-clock time for handling a request, be it a reverse top-k

query in the static case, or an object or preference update inthe dynamic case (which

includes maintenance of data structures, processing of affected preferences, etc.).

• # calls: The number of calls to query primitives—halfspace range or top-k queries—

discussed in Section3.2.3. This metric allows performance to be measured indepen-

dent from particular implementations of the primitives.

• Approximation error (estimated): The relative error observed in the answers pro-

duced by the coreset-based approximation approach in Section 3.4. For a coreset

C ⊆ O, the error in the top-k answer for preferenceq is measured as

max
i∈{1,...,k}

1− 〈q, π≤i(q,C)〉
〈q, π≤i(q,O)〉

.

This measure is more stringent than what is bounded in (3.1) for the presented def-

inition of approximation; it in fact corresponds to the stronger definition of approx-

imation in (3.2) in Section3.4.1. To estimate the average error whenQ is large or

unknown,1,000 preferences are randomly chosen and their average is computed.
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(a) Annulus (α = 0.9), all
objects

(b) Annulus (α = 0.9),
coreset

(c) Stock data, all objects (d) Stock data, coreset

FIGURE 3.5: Illustration of object workloads.

Experiments were conducted on a Dell OptiPlex 990 with3.40GHz Intel Core i7-2600

CPU,8M cache, and8GB memory.

Workloads. A number of synthetic and real object workloads are used in the experi-

ments. This section chooses to focus on the results for the syntheticannulus-uniform and

annulus-clustered, because they enable testing with a wide range of data characteristics.

Objects are drawn from the portion inside the positive orthant of an annulus inRd centered

at the origin with outer radius1 and inner radiusα ∈ [0, 1]. For annulus-uniform, objects

are uniformly distributed inside the annulus. For annulus-clustered, objects are distributed

across a mixtures of20 Gaussians (clipped to the annulus); parameters of the Gaussians al-

low further control of the clusteredness. For example, Figure3.5(a)shows a set of objects

O from annulus-uniform withα = 0.9, and Figure3.5(b)illustrates a coreset forO.
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FIGURE 3.6: Comparison between HSR and GRID (previous approach) for static reverse
top-k queries;α = 0.9.

To generate an object update for the workload, either insertion or deletion is first cho-

sen with equal probability. For insertion, a new object is drawn from the same distribution

used to draw the initial object set. For deletion, an existing object is chosen at random

with equal probability.

Annulus-uniform and annulus-clustered are related to the synthetic workloads (corre-

lated, anti-correlated, anduniform) described in [28]. Note thatα gives us some control

over the “hardness” of the problem. Asα approaches to0, more and more objects, particu-

larly those closer to the origin, do not participate in any top-k lists. The object distribution

becomes uniform inside the ball. It remains harder for the problem than uniform distri-

bution inside the unit box, for which only few objects close to the corners of the unit box

participate in any top-k lists. The distribution of objects for annulus-clustered,generated

with one single Gaussian, resembles correlated. Asα approaches1, the objects lie on the

sphere, the distribution of objects becomes more anti-correlated, and any object can appear
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FIGURE 3.7: Additional scalability comparison between HSR and GRID.

in a top-k list; this is in some sense captures the worst-case behavior.

In addition to synthetic object workloads, data for2,374 stocks on NYSE and NAS-

DAQ from Yahoo! Finance were obtained. For each stock, its estimated earnings per stock

(EPS) and weekly historical quotes (opening, closing, lowest, and highest prices and vol-

ume) in 2011 were collected. EPS can be used to convert each price to a price-to-earning

ratio (PER), which is a more normalized metric than raw price for comparing different

stocks. In the experiments only2 dimensions are used: volume, and PER based on the

closing price (although PER can be generated from various available prices, they would

be extremely similar). Figure3.5(c)shows the objects from this dataset, and Figure3.5(d)

shows its coreset. Note that the extreme points are well-represented in the coreset, while

the cluster near the origin requires few representatives.

Preferences are generated from one of the following two distributions. WithUniform,

preference is drawn uniformly at random from the unit sphereS
d−1 inside the positive or-

thant ofRd. With Clustered, preferences are distributed across a mixtures of20 Gaussians

over the sphere; parameters of the Gaussians allow further control of the clusteredness.

3.5.1 Static Reverse Top-k Queries

First, we compare HSR with GRID [115]. Unless specified otherwise,d = 3,m = 10,000,

n = 10,000, andk = 20 in this section. The objects are generated from annulus-uniform

with α = 0.9 (unless specified otherwise). One thousand query objects are drawn from the
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FIGURE 3.8: More comparison between HSR and GRID.

same distribution.

Figures3.6(a)and3.6(b)compare the average query time asm (the number of prefer-

ences) andn (the number of objects) increase, respectively. HSR, which uses a linear-size

data structure, performs one to two orders of magnitude better than GRID. Results are not

shown for GRID whenm = 256,000 and1,024,000, because it becomes too expensive.

HSR’s scalability advantage over GRID is reflected not only in terms of query time, but

also preprocessing time (Figure3.7(a)) and space consumption (Figure3.7(b)). Prepro-

cessing for GRID involves reordering of preferences and manyreverse top-k computa-

tions for materialized views, and it takes more than3 hours form > 64,000. GRID also

consistently uses two orders of magnitude more space than HSR; here, the space of GRID

is measured by the number of preferences it materializes, and the space of HSR by the

number of cutoff points it indexes, both of which ared-dimensional vectors.

Figure3.6(c)shows that whenk increases, the average query time increases for GRID

but remains almost the same for HSR. The reason is that the number of top-k queries

made by GRID depends onk, which becomes clear when we examine Figure3.8(a). Fig-

ure3.8(a)shows the number of top-k queries made by GRID forα = 0.9 (the workload

used by Figure3.6(c)), and the number forα = 0.1. Both exhibit growth linear ink, and

we see thatα = 0.9 is indeed “harder” thanα = 0.1. On the other hand, HSR always is-

sues one halfspace range query per request (and therefore itis not shown in Figure3.8(a)),
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regardless ofk andα.

Figure 3.6(d) shows how HSR and GRID perform as the dimensionality increases.

We see that the advantage of HSR over GRID is maintained asd increases. Ford = 2,

HSR answers a reverse top-k query in0.38 milliseconds on average, which, if shown in

Figure 3.6(d), would have been below the horizontal axis (note the log-scaled vertical

axis).

Figure3.8(b)summarizes the comparison between HSR and GRID when varyingα,

the inner radius of the annulus. The query time generally increases as the annulus becomes

thinner (approaching a sphere), but HSR maintains its lead over GRID across allα values.

Figures3.9 shows the performance of HSR when the number of preferences scales

up to one million. GRID becomes too slow to run in this case. Twocurves are shown

in Figure 3.9(a): one forα = 0.1 and one forα = 0.9. For α = 0.1, the algorithm

performs better whenn is bigger, because more objects actually lower the chance that a

query object becomes relevant to the preferences. Figure3.9(b)shows the average query

time slightly increases ask increases. Compared with Figure3.6(c), the average query

time increases by a factor of10 when the number of preferences increases by a factor of

100. The reason is that the size of the index for halfspace range queries depends on the

number of preferences.

3.5.2 Continuous Top-k Queries

An object update is costly for GRID because a lot of materialized views need to be recom-

puted for the object update. Many top-k queries are called as subroutines even if the object

update does not affect any preference’s top-k results. For annulus-uniform withα = 0.8,

d = 2, m = 10,000, n = 1,000, andk = 10, the average update time of GRID is40

seconds. In comparison, HSR takes only0.014 seconds per update. Since the performance

of HSR clearly dominates that of GRID for continuous top-k queries, GRID is omitted

in the remainder of this section. Unless specified,α = 0.8, k = 10, d = 2, objects are
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FIGURE 3.9: Reverse top-k query on1 million preferences;d = 3.
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FIGURE 3.10: Numbers of grey-sparse and grey-dense leaves inT.

drawn from annulus-uniform, and preferences generated from the clustered distribution.

For hybrid approach, bothτm andτn are set to1 (recall Section3.3.2.3).

We first see how the hybrid approach automatically adapts to the object and preference

workloads. Figure3.10(a)shows that as the number of preferences increases, more grey-

sparse nodes inT are converted into grey-dense nodes. Those preferences in grey-dense

nodes are not processed individually, making hybrid approach more scalable to a large

number of preferences. Figure3.10(b)shows the number of grey-sparse and grey-dense

leaves when varying the variance of the Gaussian distributions from which preferences are

generated. When variance is small, many parts of the QRS have few or no preferences,

so hybrid uses fewer grey-dense nodes and takes a preference-driven approach for these

parts.

Next, we compare the preference-driven and hybrid approaches for continuous top-
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FIGURE 3.11: Preference-driven vs. hybrid.
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FIGURE 3.12: Exact vs. coreset-based approximation.

k queries. The number of objects is set to1,000, and the number of preferences varies

from 1,000 to one million. Figures3.11(a)and3.11(b)compare the performance of the

preference-driven (denoted HSR in figures) and hybrid approaches for annulus-clustered

and annulus-uniform, respectively; preferences are drawnfrom clustered and uniform,

respectively. The combinations of (annulus-clustered objects, uniform preferences) and

(annulus-uniform objects, clustered preferences) are omitted because they show similar

trends. For these workloads, when the ratio between the number of preferences and the

number of objects becomes large, the hybrid approach performs significantly better than

the preference-driven one, as it avoids multiple computations for many preferences sharing

the samek-th ranked object.
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FIGURE 3.13: Approximation error;|O| = 100,000.

3.5.3 Continuous Approximate Top-k Queries

In this section, the number of preferences is set to100,000; k = 20, d = 3, andα = 0.9.

Figure3.12shows the effect of the number of input objects on the coreset-based approx-

imation algorithm, in comparison with the exact one; here, the size of the coreset is fixed

roughly at1,000. Figure3.12(a)shows the top-k query time when the number of objects

varies from10,000 to one million. While the query time for the exact algorithm increases,

it remains roughly the same for the coreset-based algorithm, because the size of the top-k

index is proportional to|C| instead of|O|. Since an insertion or deletion of a preference in-

volves a top-k query, the coreset-based algorithm will be able to handle preference updates

better than the exact one for a large set of objects. Figure3.12(b)shows the processing

time per object update when the number of objects varies from10,000 to one million. The

gap between the performances of the exact and coreset-basedapproximation algorithms

widens as the number of objects increases, because 1) when|O| becomes large, most ob-

ject updates would not affect the coreset if an object updateis randomly chosen, and 2) the

top-k query can be answered more efficiently on a smaller coreset.

Figure3.13(a)shows how the size of the coreset affects the quality of the approxima-

tion. As expected, the larger the coreset, the higher the accuracy. By choosing roughly500

objects in the coreset, the estimated maximum and average errors are less than0.05 and

0.01, respectively. Moreover, majority of the errors are small,as indicated by the closeness
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FIGURE 3.14: Preference-driven vs. hybrid: Yahoo! Finance data;m = 100,000.
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FIGURE 3.15: Preference-driven vs. hybrid: Yahoo! Finance data;k = 10.

between the average error and error at the75th percentile. Figure3.13(b)further plots the

distribution of errors over the preferences inQ. Preferences at the boundary tend to have

slightly higher approximation errors.

3.5.4 Yahoo! Finance Data

Experiments in this section study the performance of the exact algorithms (preference-

based and hybrid) on the object (stock) data collected from Yahoo! Finance. Since user

data are not disclosed to the public, synthetic preferencesgenerated from clustered and

uniform are used in the experiments. While the distribution of objects and update workload

are considerably different from the synthetic ones (as illustrated in part by Figure3.5),

performance results are similar to those in Section3.5.2.

Figure3.14shows the average update time ask increases. As expected, the number of

affected preferences increases ask increases. For the preference-based approach, a top-k
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query is called for each affected preference. For the hybridapproach, the complexity of

thek-level depends on the value ofk, and a largerk increases the size of the search tree

T. Figure3.15 shows the average update time as the number of preferences increases.

Similar to the synthetic workloads (Figure3.11), all curves exhibit growth proportional

to m, because the number of affected preferences increases asm increases. For a small

number (up to around a thousand) of preferences, the preference-based approach may be

more attractive because of the overhead of hybrid’s flexibility and the small workload size

in this case, but hybrid remains the better choice ifm is reasonably large.

3.6 Related Work

There is a large body of literature on top-k query processing (see [69] for a survey); much

of it concerns the linear preference top-k queries and variants [44, 67, 113, 85, 50, 49, 115]

that are considered in this chapter. This section elaborates on three pieces of work that are

most related to the ones presented in this chapter.

Das et al. [49] considered the problem of supporting ad hoc (i.e., non-continuous)

top-k queries over streams. They also took a geometric approach and developed a data

structure based on maintaining an arrangement of lines in the dual space. Their solution

uses halfspace range queries as a primitive, but not for the purpose of solving reverse top-k

queries as proposed in this chapter. Time and space complexities are improved by pruning

the set of objects to a superset of thek-skyband, which is computed by partitioning the

arrangement into “strips” and using the top-k query results for the borders of the strips

to prune dual lines from each strip. The query and update operations take linear time,

and heuristics are required in choosing the partitioning. There was some discussion on

the case ofd > 2, but the solution was only evaluated ford = 2. In comparison, the

coreset-based approach to approximating thek-level provides guarantees and generalizes

to higher dimensions.
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Mouratidis et al. [85] proposed theTMA algorithm (and the more specializedSMA)

for supporting multiple continuous top-k queries over data streams. TMA partitions the

primal space into grids, and for each cell, stores an “influence list” of queries (those re-

turned by a reverse top-k query with the cell’s top-right corner). Given an object update,

TMA identifies affected queries by searching for affected cells in an order that minimizes

the number of cells visited. Since TMA materializes the top-k answer for each query, it

requires more space than the approach of recording only the cutoff points. They also target

fewer number (thousands) of queries than the work presentedin this chapter (hundreds of

thousands). A direct comparison with the work presented in this chapter is difficult be-

cause TMA and SMA also have features specific to the object update pattern under the

sliding-window semantics.

Most relevant to this chapter is the work by Vlachou et al. [115]. Their monochro-

matic reverse top-k algorithm can compute, without knowing the actual preferences, a

description of the set of possible preferences that would beaffected by a given object. The

algorithm works ford = 2, based on similar observations asranked join indices[113]. The

QRS-based framework and techniques can solve the same problem in higher dimensions

as well; see Section3.7for more details. For thebichromaticreverse top-k problem, where

the set of preferences is given, two algorithms were proposed. RTAheuristically orders the

preferences to be processed based on similarity, to increase the chance that the top-k query

result for the current preference can be reused for the next preference.RTOP-Griduses a

grid data structure for pruning. For each cell, a reverse top-k query is run for the lower-

left and upper-right corners, and the result lists are stored in the cell. These lists are used

to reduce the set of preferences to be further evaluated using RTA. RTOP-Grid provides

no theoretical performance guarantees, and object updatesare particular expensive for the

grid data structure. The experimental evaluation in Section 3.5compares RTOP-Grid with

the solutions presented in this chapter.
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3.7 Conclusion and Other Applications

This chapter studied the problem of scalably processing a large number of continuous top-

k queries, each with a different preference vector for ranking multi-attribute objects. The

notion of QRS (query response surface) was proposed and the solutions were developed

within a geometric framework. By recognizing the connectionto halfspace range queries,

data structures were obtained for reverse top-k queries with linear space and sublinear

query time. Building on this result, a fully dynamic solutionwas developed to support

both object and preference updates efficiently. This chapter also defined and solved an ap-

proximate version of the problem, further improving efficiency with little loss of accuracy.

Experimental evaluation confirmed the effectiveness of thepresented ideas such as selec-

tive QRS-driven processing and coreset-based QRS simplification, which helped advance

the presented solutions in both scalability and functionality.

In closing, we briefly discuss several settings beyond thosefocused on by this chapter,

where the techniques presented in this chapter may be applicable.

Reversek-nearest-neighbor queries have been widely studied by the database commu-

nity; see [90] for an overview. Though these queries are not the focus of this chapter, they

can also be handled by the approach presented in this chapter. More precisely, a setO of

points inRd can be mapped to a setÔ of points inRd+1 so that thek-nearest-neighbor

query for a pointq ∈ R
d can be formulated as the top-k query for a preferencêq ∈ S

d;

more details will be provided in the generalization sectionin Chapter5.5.

In some settings, the setQ of preferences is not given explicitly. Instead, given an

object update, we are interested in obtaining (a description of) the set of all possible pref-

erences affected by it. This query is termedmonochromatic reverse top-k by [115], with

applications in business analysis [115] and in publish/subscribe systems using themessage

reformulation paradigm[41]. The concept of QRS and the QRS-driven approach in Sec-

tion 3.3.2offer a solution that generalizes to high dimensions. Maintaining the full QRS

59



is expensive, however. When approximation is acceptable, the coreset-based approach in

Section3.4 can simplify the QRS, improve running time, and reduce the complexity in

describing the affected preferences.

Recently, there is growing interest in handling uncertaintyin preference vectors and

assessing sensitivity in ranking to perturbations in preferences [108]. The notion of QRS

provides a natural framework for these problems, and the coreset-based approximation

can be readily applied to improve solution scalability. Further investigation would be a

promising direction of future work.

Finally, preference top-k queries also have applications in information retrieval (where,

e.g., a multi-keyword search can be seen as a preference top-k query over documents in

a high-dimensional keyword vector space) and in information integration (where results

from multiple sources are merged and ranked according to a preference function). Recent

work [70] has studied how to share the work involved in processing multiple such queries.

It would be interesting to investigate whether the techniques presented in this chapter can

be applied help improve scalability in a complementary manner.
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4

Top-k Preferences in High Dimensions

This chapter extends the solution in the previous chapter, which is effective only in low

dimensions, to much high dimensions (in up to high tens). Thesolution presented in

this chapter is efficient if many preferences exhibitsparsity—i.e., each specifies non-zero

weights for only a handful (say5–7) of attributes (though the subsets of such attributes

and their weights can vary greatly). The main idea is to carefully select a set of low-

dimensionalcore subspacesto “cover” the sparse preferences in a workload. These sparse

preferences can be indexed more effectively in these subspaces than in the full-dimensional

space. Being multi-dimensional, each subspace covers many possible preferences; further-

more, multiple subspaces can jointly cover a preference, thereby expanding the coverage

beyond the dimensionality of each subspace. Experimental evaluation validates the effec-

tiveness of the solution presented in this chapter and its advantages over previous solutions.

4.1 Introduction

Challenge: curse of dimensionality. Supporting linear preference top-k queries and the

reverse top-k queries becomes challenging for high dimensions (say40). For preference
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top-k queries, the Threshold Algorithm (TA) [58] is efficient if every top-k object is ranked

high in at least one dimension. However, as the dimensionality d grows, there is a higher

chance that an object has a low rank even if it ranks high alongone dimension. The layer-

based approach, represented by [44], indexes layers of convex hulls for the objects in the

full-dimensional space; computing a convex hull takesO(n⌊d/2⌋ + n log(n)) time, and the

outer layers grow in size quickly withd. The view-based approach [68, 50] uses a set of

materialized top-k views to compute top-k queries, but in high dimensions, a large number

of materialized views are required to provide adequate support for queries. Recently, Heo

et al. [65] combined the layer-based technique with TA-style dimension-wise filtering for

top-k queries involving arbitrary subset of attributes. All workmentioned above tested no

more than7 dimensions.

For reverse top-k queries, the approach of [115] reduces a reverse top-k query tom

top-k queries, wherem is the number of preferences in the worst case. Chapter3 uses

a duality approach to construct a linear-size index that cananswer a reverse top-k query

in sublinear time given fixed dimensionalityd. For low dimensions (d ≤ 3), the query

time isO(logm + k), which is optimal. Although the solution is scalable in the number

of preferences, support for reverse top-k queries in high dimensions is still inadequate.

The duality approach reduces a reverse top-k query to halfspace reporting, whose tradeoff

between query time and space complexity has been studied [83]. If the storage require-

ment is near-linear, sayO(npolylog(n)), then the query time of best known algorithms is

Ω(n1−1/⌊d/2⌋+ t) [83], wheret is the number of results, and the hidden constant of propor-

tionality is exponential ind. Furthermore, these algorithms are too complex to implement.

For practical data structures such as quad-trees and kd-trees, a halfspace query requires

Ω(n) time in the worst case and roughlyO(n1−1/d + t) for uniformly distributed points.

Hence, for high-dimensional data, existing approaches will not outperform a simple linear

scan.
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Opportunity: sparse preferences. In practice, even if data have high dimensionality, users

are usually interested in only a small subset of attributes—few users are able to specify

preferences with non-zero weights for a large number of attributes in a meaningful way.

Thus, there is an opportunity to develop techniques for handling such “sparse” preferences

differently from and more efficiently than the general case.If many preferences are sparse,

overall performance can be greatly improved by speeding up the common case.

This observation and the techniques to be presented in this chapter differ from the ex-

isting dimensionality reduction techniques, such as principal component analysis (PCA),

random projection, and low-distortion embedding techniques, which are usually applied to

the object set. It is arguable that reducing object dimensionality alone is neither a perfect

or a complete solution: While these methods are effectively in projecting data to moderate

dimensions, say100’s to 10’s, using these methods to project objects onto5–7 dimensions

can create significant error. Therefore, objects need to be projected on multiple subspaces

if we wish to work with low-dimensional spaces. Also, attributes in the reduced space are

harder for users to work with as they may no longer have intuitive meanings. Although

preferences in the original space can be mapped to ones in thereduced space, they may

become more difficult to handle because they may no longer retain their sparsity. The idea

of dimensionality reduction is, in fact, used in this chapter, but objects and preferences are

jointly considered in a careful way to avoid these above problems. Moreover, our tech-

niques are still applicable even if the objects cannot be embedded into low-dimensional

spaces.

Approach and contributions. This chapter presents efficient data structures and algo-

rithms for top-k and reverse top-k queries in high dimensions. Our approach is effective

when most of the preferences are sparse—i.e., each of them specifies non-zero weights

for only a small number (say2–6) of attributes (but they do not need to specify the same

subset of attributes or similar weights on attributes). Fortop-k queries, in order to take ad-
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vantage of sparsity in query preferences, our approach needs to assume the distribution of

whichattributes are specified by the preferences, but the approach still works well without

accurate knowledge of the distribution ofwhat weightsare specified by the preferences for

these attributes.

Roughly speaking, this chapter follows a dimension-reduction framework, but objects

and preferences are not projected on a single low-dimensional subspace. Instead, they are

projected on many subspaces. For each subspace, an index is built on a subset of objects.

To answer a top-k or reverse top-k query, only a small number of subspaces is chosen; a

low-dimensional query is performed on each of them and then their results are combined

to answer the overall query. In addition, approximation methods are used to reduce the

size of the index and to expedite the query procedure. Experimental evaluation confirms

the effectiveness of our approach, which allows a desktop machine to handle hundreds of

thousands of objects or preferences in20 to 100 dimensions with speed and accuracy. To

the best of our knowledge, our approach is the first to demonstrate this degree of scalability

in both problem size and dimensionality.

Outline of solution. In more detail, a setH of low-dimensional subspaces, calledcore

subspaces, is carefully chosen based on the given distribution of preferences. For each

core subspaceH ∈ H, a small subset of objects that are “relevant” forH is chosen and

projected onH. Let OH denote the resulting projections. Building on the techniques

for handling low-dimensional preferences in Chapter3, OH is indexed for eachH. To

answer a top-k query with respect to a sparse preferenceq, a small subsetΓq ⊂ H of core

subspaces, which “cover” the query preferenceq, is chosen. For eachH ∈ Γq, the top-βk

ranked objects ofOH are computed for a parameterβ ≥ 1, with respect to the preference

q (or rather w.r.t. the projection ofq onH). Finally, the topk objects are returned among

the union of these objects.

To support reverse top-k queries for a setO of objects and a setS of preferences, each
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preferenceq ∈ S is assigned to a small subset ofΓq ⊂ H of core subspaces that cover

q. For each core subspaceH ∈ H, let SH denote the projections onH of preferences

assigned toH. SH is indexed to support reverse top-βk queries againstOH andSH . To

answer a reverse top-k query for a query objecto, the core subspaces that are “relevant”

for o are identified; a reverse top-βk query witho is performed on each of them; all result

preferences are collected, and false positives are filteredout.

Technical challenges. There are several technical challenges that need to be addressed to

complete this solution. First, how are the core subspaces chosen? A naive approach will be

to make any subspace that contains some preferences to be a core subspace. For example,

if preferences specify non-zero weights for attribute subsets{1, 2}, {1, 3}, and{2, 3, 4},

then they are selected as core subspaces and indexes are built for them:2-dim indexes for

{1, 2} and{1, 3}, and3-dim for {2, 3, 4}. This approach is not practical, however, because

there are too many possible low-dimensional subspaces. Forexample, if objects have20

attributes and each preference specifies at most three of them, one might have to build
(
20
3

)
= 1,140 different indexes.

Another possibility is to cluster the preferences into a small number of clusters and

choose a representative preference, called aview, from each cluster. This view-based ap-

proach [68, 50] works if preferences are tightly clustered, objects are “well distributed,”

and the weights of query preferences for top-k queries follow the same distribution of

S. As we will see later, this approach does not always work well, because each view is

very “specific” and many more views will be needed as dimensionality grows. This chap-

ter shows how to overcome the limitations of this approach with multi-dimensional core

subspaces, each of which effectively serves as a “super”-view that subsumes an infinite

number of preference-based views lying in it. Section4.3 describes this core-subspaces

approach.

Second, it will be too expensive to build an index on the entire set of objects for each
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core subspace, so Section4.4.1describes a method, which builds on the results in Chap-

ter 3, for choosing a small set of objects to index. Analogously, it is expensive to index

all preferences in each core subspace, so Section4.4.2introduces a method for assigning

each preference to a small number of core subspaces where it will be indexed. Then, using

the indexes described in Section4.4, Section4.5 shows how to answer top-k and reverse

top-k queries.

Finally, we cannot assume that all preferences are sparse orall can be covered by

the selected core subspaces. Therefore, Section4.4.3shows how to build full-dimensional

indexes for uncovered preferences. In particular, Section4.4.3describes an approximation

method similar to the one in [7], but with an improvement: if input objects lie on a low-

dimensional surface, say of dimensionτ , then one can choose a subsetC of objects whose

size is exponential only onτ , but polynomial ind, which provides top-k query answers

that approximate those obtained by querying the entire set of objects.

4.2 Preliminaries

Note that the algorithms for answering preference and reverse top-k queries1 in a low-

dimensional space have been presented in Chapter3; this chapter will use them as black-

boxes to solve the high-dimensional case. Note that Chapter3 also formally defines the

coreset for answering approximate preference top-k queries. In addition to the geomet-

ric concepts (duality transform, arrangement, coreset, and top-k query response surface)

introduced in Chapters2 and3.2.2, the following concepts will be used throughout this

chapter:

Span. Let thexi-axis represents thei-th attribute. Letei denote the unit vector in di-

rectionxi, i.e., thei-th coordinate ofei is 1 and the rest are0. A subsetI ⊆ [1, d] of at-

tributes defines an axis-parallel subspaceSp(I) of Rd in which only the attributes ofI have

1 Both preference top-k query and reverse preference top-k query are formally defined in Chapter3.
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non-zero values. Formally,Sp(I) = {∑j∈I λjej | λj ∈ R}. For two axis-parallel sub-

spacesH1 = Sp(I1) andH2 = Sp(I2), let span(H1, H2) denote the smallest axis-parallel

subspace that contains bothH1 andH2; equivalently,span(H1, H2) = Sp(I1 ∪ I2) =

{λ1x1 + λ2x2 | x1 ∈ H1, x2 ∈ H2, andλ1, λ2 ∈ R}.

Sparse preference. Recall that apreferenceis represented as a unit vector inRd. , i.e.,

a point(w1, . . . , wd) on S
d−1, the (d − 1)-dimensional unit sphere embedded inRd. In

this chapter, eachwi ∈ [−1, 1] is theweight for the i-th attribute (weights can be nega-

tive). For a preferenceq, Sp(q) is defined to be the subspace spanned by the non-zero

attributes ofq. Note thatdim(Sp(q)) may be much smaller thand. For example, if

q = (1/
√
2, 1/
√
2, 0, . . . , 0), thenSp(q) is the2-dimensionalx1x2-plane.

Projection on subspace. q is 〈q, o〉 =
∑

1≤i≤d wivi. For a pointx ∈ R
d and an axis-

parallel subspaceH, let xH denote the projection ofx on H. For example, ifx =

(x1, . . . , xd) andH is spanned by attributes{1, 2, 4}, thenxH = (x1, x2, x4). Recall

that thescoreof an objecto with respect to a preferenceq is 〈q, o〉 = ∑
1≤i≤d wivi. For a

preferenceq and an objecto, 〈q, o〉 = 〈qH , oH〉 whereH = Sp(q); in other words, when

computing the score ofo w.r.t. q, it suffices to do so for their projections on the subspace

Sp(q).

4.3 Identifying Core Subspaces

This section describes the algorithm for computing the setH of core subspaces, which is

used to build low-dimensional indexes. For these indexes tobe practically efficient, the

maximum dimensionality of a core subspace is capped atτ̂ = 5.

Let S be a set of preferences. It can be a set of given preferences for reverse top-k

queries, or a past workload of forward top-k queries that can be used to inform index

construction.
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The algorithm works in three stages. The first stage identifies the initial setK of can-

didatesubspaces from the “sparse” preferences ofS (the formal definition of “sparseness”

will follow shortly). If K is small, letH = K and the algorithm terminates. Otherwise,

the algorithm proceeds to the next stage, adding toK a few additional subspaces that span

multiple subspaces ofK and are “popular” (roughly speaking, a popular subspace canhelp

“cover” many sparse preferences—the notion of “coverage” is intuitive but will be made

more clear in Section4.4.2). The last stage chooses a subset ofK to cover most of the

sparse preferences ofS. The remainder of this section is devoted to describe each stage in

detail.

Initializing candidate subspaces. For the purpose of finding core subspaces, the algorithm

ignores insignificant attribute weights in preferences. Consider each preferenceq ∈ S.

The algorithm rounds off any attribute weight to0 if no greater than0.01 (which would

decrease‖q‖, theL1-norm ofq, by no more than1%), and rescales the resulting preference

so that it remains a unit vector.

Following this preprocessing, a preferenceq is said to beτ -denseif dim(Sp(q)) ≤ τ

(i.e., q has non-zero weights for at mostτ attributes). Since the algorithm is practically

limited to core subspaces with dimensionality up toτ̂ = 5, it focuses on the subsetSs of

sparse preferences, i.e., those that are(τ̂ +△τ)-dense. Here,△τ is a small slack (△τ is

set to2) that reflects the ability of the core-subspace approach to handle denser preferences

using multiple core subspaces.

The setK of candidate core subspaces is computed from the setSs of sparse prefer-

ences as follows. First, anŷτ -dense preference gives us an axis-parallel candidate sub-

space:K← {Sp(q) | q ∈ Ss andq is τ̂ -dense}. Second, for each sparse preferenceq ∈ Ss

that is not̂τ -dense (but still(τ̂ +△τ)-dense), all̂τ -dimensional axis-parallel subspaces of

Sp(q) are considered as candidates:K← K ∪ {Sp(I) | Sp(I) ⊂ Sp(q) and|I| = τ̂}.

If the size ofK is small, the algorithm setsH to K and stops, otherwise, it proceeds to
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the next two stages. As mentioned in Section4.1, however,K can be large. For example,

for d = 20, τ̂ = 5, and△τ = 2, |K| can be as large as21,699.

Adding popular subspaces. To capture the notion of “popularity,” theweightof a subspace

H (with respect to the set of sparse preferencesSs) is defined as

w(H) =
∑

q∈Ss

‖qH‖2/(dim(H))µ, (4.1)

whereqH denotes the projection ofq onH, andµ is a parameter (further explained below).

Intuitively, the weight function favors those subspaces that have low dimensionality but

preserve most information about preferences, in the sense that‖qH‖ is large.

‖qH‖2 is chosen instead of‖qH‖ in this definition, because we wish to reward sub-

spaces that preserve most information about a preference (i.e., ‖qH‖ is close to1), and

penalize those that preserve little information about a preference (i.e.,‖qH‖ is close to

0). For example, given two preferences, consider 1) two subspaces, where each contains

one preference (whose projection has norm of1) but is orthogonal to the other preference

(whose projection has norm0), versus 2) two subspaces for which both preferences have

projections of norm0.5. Intuitively, the two subspaces in the first case are better because

they provide “full coverage” for each of the two preferences, while the two subspaces in the

second case only provide “partial coverage” for both preferences. The presented weight

definition captures this intuition with the use of‖qH‖2. Had‖qH‖ been used instead, these

subscriptions would have identical weights.

If all preferences inSs lie within H, thenw(H) = |Ss|/(dim(H))µ, which is the max-

imum possible weight for subspaces with the same dimensionality. The term(dim(H))µ

penalizes high-dimensional subspaces because constructing indexes for them is more ex-

pensive than for low-dimensional subspaces. The term also serves to “normalize” popular-

ity, because a high-dimensional subspace is expected to be able to cover more preferences.
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By adjusting the parameterµ, a trade-off is obtained between keeping the indexing costs

low and covering more preferences.µ is set to1
4

for experiments in Section4.6.

We are now ready to describe how to add popular subspaces toK. SupposeK has two

overlapping subspaces of significant weights. It might be more efficient to build a single

index forspan(H1, H2) rather than building two separate indexes—one forH1 and another

for H2. To enable this possibility, givenH1, H2 ∈ K, H = span(H1, H2) is added toK if

all following conditions hold:

• dim(H) < dim(H1) + dim(H2); i.e.,H1 andH2 overlap.

• w(H1), w(H2) ≥ median{w(K) | K ∈ K}, andw(H) ≥ 0.8(w(H1) + w(H2));

i.e., the subspaces considered are sufficiently popular.

• dimH ≤ τ̂ , whereτ̂ is maximum dimensionality of a core subspace (introduced

at the beginning of this section); the algorithm does not consider adding subspaces

with higher dimensionality, because indexing them would betoo costly.

The addition of popular subspaces is implemented by sortingK in decreasing order of

weights.

Selecting core subspaces.Continuing with the setK of candidate subspaces, this stage

computes a smaller setH ⊆ K, ascore subspaces, to cover most of the sparse preferences

in Ss. Note that the algorithm cannot simply choose the subspaceswith the top weights

because, together, they may overlap and end up covering onlya small fraction of the

preferences.

Algorithm 1 gives the pseudo-code of this approach. In each step, the subspaceH with

the highest weight is selected out fromK. Importantly, every time someH is picked, the

set of preferences is “updated” in a way to reduce their contributions to subspace weights

for those preferences covered byH. Thus, subsequent selections will focus on covering

preferences that remain uncovered.
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Algorithm 1 : SelectCoreSubspaces(K; δ).

H← ∅ ;1
ms ← |Ss|; remember the original value for eachq ∈ Ss (denoted̃q);2
while 1

ms

∑
q∈Ss
‖q‖ ≥ δ do3

foreachK ∈ K do computew(K) using Eq. (4.1);4
H ← argmaxK∈Kw(K);5

H← H ∪ {H}; K← K\{H};6

foreach q ∈ Ss do7
q ← q − ‖q̃H‖ · qH ;8

if ‖q‖ < δ then Ss ← Ss \ {q};9

return H;10

If a preferenceq is contained inH, q is fully covered byH. Otherwise,q is only

partially covered. In this case,qH , the projection ofq onH, provides information about

some of the attributes ofq in the sense that the ranking of objects w.r.t.qH gives some

information about ranking of objects w.r.t.q—for those attributes that are present inH.

the algorithm reduces the weights of those attributes inq that are present inqH , so that

subspaces the algorithm selects in the future will capture the information ofq w.r.t. the

attributes ofq not present inq. The simplest method will be to letq ← q − qH ; i.e.,

the algorithm simply clearsq of any weights of attributes inH. However, this method is

suboptimal; for a concrete example, see Figure4.1.

Intuitively, for a partially covered preference, we would ideally like to cover each of

its attributes with non-zero weights by multiple core subspaces. To this end,q is updated

usingq ← q − ‖q̃H‖ · qH , whereq̃ denotes the original vector for the preference (while

q denotes the current vector, whose value changes over the course of the algorithm). The

multiplier ‖q̃H‖ ensures that if̃q is partially covered byH (i.e.,‖q̃H‖ < 1), some residual

weights will remain for attributes inH to encourage additional future coverage. On the

other hand, if̃q is contained inH, the vector will become zero after the update, and there

is no need to considerq further. Consider the same example in Figure4.1. After H has

been selected,q will become(0.2, 0.06, 0.1). SupposeH ′ = (a1, a3) is chosen. As shown
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qH ′
a3

a1

o3

o5

o1

o2

o4
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FIGURE 4.1: Illustration of coverage. Here,d = 3, k = 2, q = (0.2, 0.3, 0.5), and
O = {o1, . . . , o5}, whereo1 = (0, 3, 6), o2 = (0, 10, 5), o3 = (9, 0, 1), o4 = (8, 1, 1),
ando5 = (5, 3, 5). Thus,π≤2〈q,O〉 = {o2, o5}. SupposeH = (a2, a3) is selected. Then
π≤2〈qH ,OH〉 = {o2, o1}, as shown in Figure4.1(a). If the algorithm simply clears any
weights of attributes inH, q becomes(0.2, 0, 0) and the top2 projected objects w.r.t.
attributea1 areo3 ando4. In this case, the correct second-ranked objecto5 will not be
reported.

in Figure4.1(b), π≤2〈q′H ,O′
H〉 = {o5, o1}. Hence, the union of the top2 objects inH and

H ′, {o1, o2, o5}, contains the exact top-2 objects,o2 ando5.

This idea of reducing weights slowly have been used in many different contexts, e.g.,

computing set covers of smaller sizes (see the survey [17]) than the standard greedy al-

gorithm [30]. Section4.6 presents experimental results that validate the effectiveness of

multiple coverage in the context of this chapter.

In general, the algorithm stops covering a preference when its norm has dropped below

a given significance thresholdδ (e.g.,0.05). The algorithm stops selecting additional core

subspaces altogether once the average norm of all preferences drops belowδ.

Remarks.If Algorithm 1 tries to select too many core subspaces, it can simply termi-

nate after reaching the desired number of core subspaces. Inthis case, the selected core

subspaces may not be able to cover all sparse preferences. The uncovered preferences are

handled using full-dimensional indexes (discussed in Section 4.4.3).

If |Ss| is large, instead of using the entire set to select core subspaces, the algorithm
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can work with a subset ofSs. Specifically,Ss is partitioned into buckets, such that within

the same bucket, all preferences are “close”; e.g., for any two preferencesqi, qj in the same

bucket,〈qi, qj〉 ≥ cos(π/6). Then, a random sample is chosen from each bucket and work

with the samples to find core subspaces.

As mentioned in Section4.1, the approach presented in this chapter can be seen as a

generalization of the view-based approach [50, 68]. The indexes the algorithm builds for

each core subspaceH can be seen as a “super”-view that effectively provides the same

power as materializing an infinite number of vector views whose vectors lie inH. On the

other hand, unlike vector views, the core subspaces are axis-parallel. This restriction not

only makes the problem more tractable, but also the attributes retain their meaning and

if Sp(q) is a k-dim, then it will bek-dimensional even after the projection—number of

non-zero attributes does not increase. It does not pose any issue for sparse preferences,

because a multi-dimensional core subspace subsumes all vector views therein, including

those that are not axis-parallel. Such degrees of freedom provided by multi-dimensional

subspaces also make the core-subspace approach more robust—while the choices of vector

views are susceptible to errors and changes in the distributions of attribute weight values

in preferences, the core-subspace approach will still workwell as long as preferences

continue to specify non-zero weights, which can vary arbitrarily, for the same subsets of

attributes.

4.4 Constructing Indexes

This section describes the indexes the presented algorithmbuilds. First, for each core

subspace inH, an object index is built for top-k queries (Section4.4.1) and a preference

index for reverse top-k queries (Section4.4.2). The collection of these indexes for core

subspaces aims at handling most (if not all) sparse preferences. Next, to handle all prefer-

ences not covered by these indexes, object and preference indexes are separately built for
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the full-dimensional space (Section4.4.3).

For reverse top-k queries, in addition to these indexes, the score of thek-th ranked

object is also stored for each preference.

4.4.1 Core Subspace Indexes for Top-k Queries

For each core subspaceH ∈ H, a straightforward approach would to be projectO onto

H, and build an index on thedim(H)-dimensional projected points that, given a query

preferenceq, return the topk points with respect toq. This approach, however, has several

issues. First, unlessq is contained inH, there is a good chance that the some answers will

be missed by looking only at the topk objects forq in H, even when the algorithm looks

in multiple core subspaces partially coveringq. Second, indexing all points inO for every

core subspace results would requireO(n|H|) space, which is too much. Third, looking in

multiple core subspaces per query means that the index for each core subspace must be

fast.

To address these issues, for each core subspaceH, a small subset of objects is carefully

chosen to build an index that supports top-βk queries inH. The index is small and fast,

but approximate—a sensible trade-off because the top answers in a subspace in any case

only approximate those in the full-dimensional space. Here, β ≥ 1 is a small constant to

increase the chance of catching a top-k object in the full-dimensional space.β is set to3

in the experiments in Section4.6; additional evaluation on the choice ofβ is presented in

Section4.6.3.

In more detail, letOH denote the projection ofO, the set of input objects, onH, and

let ε > 0 be the error allowance. An(βk, ε)-coreset ofCH ⊆ OH is constructed, as

defined in Section3.4.1. By definition, for any preferenceq in H, and for anyj ≤ βk,

〈q, πj(q,CH)〉 ≥ 〈q, πj(q,O)〉 − εd̄j(q,O), i.e., the scores of top-βk objects ofCH are

roughly the same as those ofO. In Chapter3, we described an algorithm for computing

coresets. Roughly speaking, it first applies an affine transformation to makeOH lie inside
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a unit sphere centered at origin, and then proceeds in2βk + 1 passes. In each pass the

algorithm carefully chooses a setU of O(1/ε(dim(H)−1)/2) points on a sphere of radius

2 centered at origin. For each pointu ∈ U, it computes an(ε/2)-approximate nearest

neighbor ofu in OH , saypu. It adds the set{pu | u ∈ U} to CH , removes it fromOH ,

and proceeds with the next iteration. The details of how the points inU are chosen can be

found in Chapter3. In the worst case,|CH | = O(βk/ε(dim(H)−1)/2), but in practices the

size ofCH is much smaller.

Next, an index is built onCH such that for a query preferenceq in H andκ ≥ 1, it

returnsπ≤κ(CH , q). By the definition of coreset, forκ ≤ βk, the score ofπ≤κ(CH , q) will

be roughly the same as those ofπ≤κ(OH , q). Many indexes are known for forward top-k

queries; some provide provable bounds on their performance. Since this component is not

the main focus of this chapter, the implementation simply usesdim(H) sorted lists onCH

and the TA algorithm for answering top-κ queries.

In the worst case, the total size of the index, summed over allcore subspaces, is

O(
∑

H∈H βk/ε(dim(H)−1)/2). Since the dimensionality of core subspaces is capped atτ̂ ,

the size isO(βk|H|/ε(τ̂−1)/2).

Remarks.Note that a preference workload influences the object indexes built in this

section only through the choice of core subspaces. With a core subspaceH, the object

index is capable of handling any preference inH. This property makes the core-subspace

approach more robust than the (vector) view-based approach[50, 68] with respect to errors

and changes in the distributions of attribute weight values. Therefore, the core-subspace

approach does not require a very detailed or accurate model of expected preference work-

load in order to support top-k queries effectively. Section4.6 validate this observation

experimentally.
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4.4.2 Core Subspace Indexes for Reverse Top-k

Let S be the set of preferences with respect to which we wish to answer reverse top-k

queries. On a high level, a small number of “covering core subspaces” is identified for each

q ∈ S. Then, the subset of preferences thatH covers is indexed for each core subspace

H ∈ H. Before describing the indexes, we first discuss how to cover apreference.

Covering a preference with core subspaces. A cover of a preferenceq, denotedΓq, is

a subset ofH, onto which the projections ofq are intended to preserve the information

aboutq, in the sense described in Section4.3. A coverΓq is β-perfectwith respect toO if

for any query objecto 6∈ O ando ∈ π≤k(q,O ∪ {o}), there exists a subspaceq ∈ Γq such

that oH ∈ π≤βk(qH ,OH ∪ {oH}). However, perfect covers are difficult to find. Ifq lies

within a core subspace, then that subspace obviously is a1-perfect cover ofq. However, if

none of the core subspaces containsq by itself, the best we can hope for is a small cover

that preserves as much ofq as possible.

A simple strategy would be to chooseΓq to be those core subspaces that “overlap” with

q (or more precisely, those on whichq has a non-zero projection). However, there may be

too many such subspace; picking them all would increase the index space and slow down

queries. The top subspaces could be picked based on the normsof q’s projections on them;

however, doing so does not guarantee that all non-zero attribute weights ofq are covered.

Alternatively, the top subspaces could be picked accordingto their weights as defined in

Section4.3; however, weights are globally defined overS and not relevant for a particular

q.

To avoid these problems, a limitν is set on the maximum number of core subspaces in

any cover, and use a greedy procedure (shown as Algorithm2) to coverq. The algorithm

is similar to Algorithm1 in spirit (though now only oneq is being covered). In each step,

the algorithm always pick the core subspaceH for which qH has the largest norm. More
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Algorithm 2 : PreferenceCover(H, q; ν, θ)

Γ← ∅, q̃ ← q;1
while ‖q‖ ≥ θ and|Γ| < ν do2

H ← argmaxH∈H ‖qH‖;3

if ‖qH‖ = 0 then break;4
Γ← Γ ∪ {H}; H← H \ {H};5

q ← q − ‖q̃H‖ · qH ;6

if ‖q‖ ≥ θ then return ∅;7
return Γ;8

importantly, the algorithm updatesq for each step in a way that let subsequent picks focus

on uncovered dimensions, while still encouraging multiplecoverages for each dimensions

(as discussed in Section4.3). This process is repeated untilq is “mostly covered,” i.e., the

residual norm is less than a given thresholdθ, or the cover size exceeds the limitν. The

choices ofν andθ allow the trade-off between coverage completeness and cost. ν andθ

are set to3 and0.5 in the experiments in Section4.6, respectively; additional evaluation

on their choices is presented in Section4.6.3.

Remarks.Not all preferences can be covered. Algorithm2 returns∅ if it cannot cover

a preference. It is even possible (though not very likely) that some sparse preference

cannot be covered. On the other hand, it is also possible to cover a non-sparse preference.

Preferences that cannot be covered will be handled separately by full-dimensional object

and preference indexes (Section4.4.3). The hope is that in practice, most preferences are

sparse, can be covered, and will thus benefit from the core-subspace approach.

Building the preference index. For each core subspaceH, let S(H) = {qH | H ∈ Γq}

denote the subset of the preferences withH in their covers (as chosen by Algorithm2).

Given a query objecto 6∈ O, the goal is to build an index for finding all preferenceq ∈ S(H)

for which oH ranks among the topβk objects inOH ∪ {oH} for qH . Assuming “near”

β-perfect covers for all preferences, as discussed above, ifo enters the top-k answer of

any preferenceq, thenq will be returned by querying the preference index of some core
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subspace inΓq.

To build this preference index forS(H), the algorithm considers, for each preference

q ∈ S(H), the score of the(βk)-th ranked object inOH with respect toqH , i.e.,〈qH , πβk(qH ,OH)〉.

This score is called thecutoff score. Intuitively, it can be determined whether a query ob-

ject oH enters the top-k answer ofqH simply by comparing〈qH , oH〉 with qH ’s cutoff

score. However, instead of working directly withOH , which is big, the algorithm works

with CH , the(βk, ε)-coreset ofOH discussed in Section4.4.1, which is much smaller. By

definition, the score of the(βk)-th ranked object inOH with respect toqH is roughly the

same as that of the(βk)-th ranked object inCH .

Let SH = {qH | q ∈ S(H)} denote the projection ofS(H) ontoH. Indexing preferences

in SH and their cutoff scores inH is easier in the dual space (recall Section4.2): the

dual ofCH is a setC∗
H of hyperplanes inRdim(H), and each preferenceqH ∈ SH maps to

a vertical rayq∗H . In the following, it is assumed that preferences have positive weights

for the last dimension ofH (i.e., q∗H is oriented toward the positive direction); the case

of negative weights is analogous. LetA(CH) be theβk-level of A(CH), i.e., the query

response surface for top-βk query. If the rayq∗H intersectsA(CH) at a hyperplaneo∗H ∈

C∗
H , thenoH = πβk(qH ,CH). As discussed in Section4.2, the intersection, denoted by

χqH , is thecutoff pointof qH . For any query objectz 6∈ CH , z ∈ π≤βk(qH ,CH ∪ {z}) iff

the hyperplane dual toz lies belowχqH .

Let ΞH = {χqH | qH ∈ SH} denote the set of cutoff points for preferences inSH .

An index is built forΞH such that given a query hyperplaneγ, it can report all points

of ΞH lying aboveγ. As discussed in Section4.2, there are several known indexes for

this halfspace range query. The implementation is simply based on kd-tree, but with an

additional optimization. Each nodev of the index treeT is associated with a bounding

box Bv and withΞv = Bv ∩ ΞH . In a standard kd-tree, as long as|Ξv| is above some

constant (node capacity),v is further split. The standard kd-tree construction algorithm is

modified as follows. During construction, at each nodev, the algorithm considersC∗
v, the
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subset of the hyperplanes inC∗
H that intersectBv. If |C∗

v| is small and all cutoff points in

Ξv lie within a small neighborhood,v is not split even if|Ξv| is still above node capacity.

Instead,v becomes a leaf and one cutoff point is chosen fromΞv to represent all ofΞv.

Intuitively, in this case, if any query hyperplane lies above (or below) the representative

cutoff point, then it will likely lie above (or below, resp.)all other cutoff points ofΞv. This

optimization reduces the index size for highly clustered preferences.

Remarks.For a preferenceq ∈ S(H), the closer‖qH‖ is to ‖q‖, the more likely it is

for an object highly ranked w.r.t.qH to also rank high w.r.t.q. Thus, instead of defining

the cutoff point using always the(βk)-th ranked object w.r.t.qH , it can be defined using

the(β′k)-th ranked object, whereβ′ ∈ [1, β] is customized based on how close‖qH‖ is to

‖q‖. This heuristic expedites reverse top-k queries by tightening the cutoff condition; see

Section4.6.3for more detailed discussion and evaluation.

4.4.3 Indexes for Uncovered Preferences

As discussed in Section4.4.2, not all preferences are covered by the core subspaces. To

handle such preferences, an object index (for forward top-k queries) and a preference index

(for reverse top-k queries) are built in the full spaceRd.

Full-dimensional index for top-kkk queries. To make the index smaller and faster, instead

of working with the entire set of objectsO, the algorithm works with a coreset (just

like in Section4.4.1, but now in the fulld-dimensional space). A(k, ε)-coreset of size

O(k/ε(d−1)/2) can be computed using the algorithm described in [7]. Because of the expo-

nential dependence ond, the coreset can be large even for moderate values ofd. While it is

known that this size is required for the worst case [7], as shown below, if the input objects

lie on a low-dimensional algebraic surface of constant degree, then a smaller coreset can

be computed.

Theorem 6. LetO be a set of points inRd that lie on at-dimensional algebraic surface
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of constant degree, fort < (d − 1)/2. Then, a(k, ε)-coreset of sizeO((d3/2/ε)t) can be

computed in timedO(1)n+O((d3/2/ε)t).

Proof. The algorithm by Agarwal et al. [7] is modified for computing a(k, ε)-coreset.

Their algorithm works ink+1 phases, and in each phase computes a(1, ε)-coreset of size

O(1/ε(d−1)/2), using the technique in [5, 6]. The following technique from [5, 6] computes

a (1, ε)-coreset of size ofO(1/εd): By applying an affine transform onO and its bounding

boxB, B is transformed to the hypercube[0, 1]d, so W.L.O.G. assumeB = [0, 1]d. Draw

ad-dimensional grid insideB so that the side length of each grid cell is at mostε/
√
d. Let

C denote the set of resulting grid cells.C is induced byd families of hyperplanes, each

consisting of⌈
√
d/ε⌉ hyperplanes. LetΓ be the set of theseO(d3/2/ε) hyperplanes. For

each cellC ∈ C, if C ∩ O 6= ∅, choose one point ofC ∩ O. It was shown in [5] thatC is a

(1, ε)-coreset ofO. Obviously,|C| = O((
√
d/ε)d).

We prove an improved bound on|C| for our setting. LetΣ be at-dimensional surface

of constant degree that containsO. That is,Σ is the common zero set of a family ofd− t

d-variate polynomials, each of constant degree. We claim that Σ intersectsO((d3/2/ε)t)

cells ofC; the constant proportionally depends ont as well as on the degree ofΣ. Note

thatΣ can intersect onlyO(1) cells without intersecting their boundaries, so it sufficesto

bound the number of cells ofC whose boundaries intersectΣ. We prove this bound by

induction ont.

For t = 1, Σ is a curve. It can intersect each hyperplane ofΓ at O(1) points, and

therefore can intersectO(|Γ|) = O(d3/2/ε) cells ofC. For t > 1, fix a hyperplaneγ ∈ Γ.

The hyperplanes from the otherd − 1 families ofΓ induce a(d − 1)-dimensional grid

Cγ on γ. Furthermore,γ ∩ Σ is a (t − 1)-dimensional algebraic surfaceΣγ of constant

degree. By induction hypothesis,Σγ intersectsO((d3/2/ε)t−1) cells ofCγ. Note that each

(d − 1)-dimensional face of a cell inC is a cell ofCγ for someγ ∈ Γ. Hence, summing

over all hyperplanes ofΓ, Σ intersectsO((d3/2/ε)t) cells ofC. Therefore, ifΣ intersects
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the boundary of a cell ofC, there exists aγ ∈ Γ such thatΣγ intersects a grid cell ofCγ.

Therefore, the size of the coreset isO((d3/2/ε)t).

It is hard to compute the smallest box containingO, but as observed in [5, 6], it suffices

to compute a bounding box ofO whose volume is within a constant factor of the minimum

volume. Barequet and Har-Peled [24] described a simpleO(dn) time algorithm to compute

such a box. We then repeat the above construction with this box. We omit some of the

technical details here and conclude thatC can be computed indO(1)n+O((d3/2/ε)t) time.

Full-dimensional index for reverse top-kkk queries. After computing the coresetC of O, an

index is built for the set̄S ⊆ S of uncovered preferences (i.e., those for which Algorithm2

returns∅). The procedure is the same as that described in Section4.4.2 for indexing

preferences for a core subspace, except that cutoff points are defined by thek-th ranked

object instead of the(βk)-th.

4.5 Query Procedure

This section describes the procedure for answering top-k and reverse top-k queries using

the indexes described in Section4.4.

Top-kkk query. Given a query preferenceq ∈ S
d−1, PreferenceCover(H, q) (Algorithm 2)

is first called to computeΓq, a cover ofq by core subspaces. There are two cases.

First, if Γq = ∅ (i.e., a cover ofq cannot be found byH), a query is issued to the

full-dimensional object index described in Section4.4.3with q andπ≤k(q,C) is returned.

SinceC is a coreset ofO, the objects returned by the procedure approximateπ≤k(q,O).

Otherwise,|Γq| > 0 andq is covered. For eachH ∈ Γq, qH , the projection ofq on

H, is computed. A query is issued to the object index forH described in Section4.4.1in

order to obtain the set of objectsSH ∈ O corresponding toπ≤κH
(qH ,CH), whereκH = k
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if ‖qH‖ ≈ 1, or κH = βk otherwise. Then,π≤k(q,
⋃

H∈Γq
SH), i.e., the topk objects

among all returned objects, is computed by calculating their actual scores w.r.t.q.

Remarks.Note that more sophisticated methods for choosingκ are possible (see re-

lated discussion on flexible definition of cutoff points in the remarks at the end of Sec-

tion 4.4.2). Intuitively, as‖qH‖ increases,qH becomes more likeq, and a smallerκH

(closer tok) will be enough to include top-k objects w.r.t.q with all high probability. The

setting ofκ = k when‖qH‖ ≈ 1 captures an important special case of this observation.

See Section4.6.3for additional discussion and evaluation.

Reverse top-kkk query. Given a query objecto ∈ R
d, we want to report all affected prefer-

ences, i.e., any preferenceq ∈ S for which o is a top-k object inO ∪ {o} w.r.t. q. First,

affected preferences among the uncovered preferencesS̄ ⊆ S (i.e., those for which Al-

gorithm 2 returns∅) are found by querying the full-dimensional preference index on S̄

described in Section4.4.3.

Next, affected preferences are found among the covered preferences,S \ S̄. For each

subspaceH ∈ H, we determine whethero is “relevant” toH, in the sense whether there

can be some preferenceq in H for which oH is potentially one of the top-βk objects of

CH ∪ {oH} w.r.t. q. The procedure for testing relevance is given in Chapter3; it takes

O(k/ε(d−1)/2) time in the worst case. Ifo is relevant toH, a query is issued to the prefer-

ence index witho for H described in Section4.4.2in order to find the affected preferences

in H with their cutoff points. For each such preferenceq found,o’s actual score w.r.t.q

in the full space is further calculated, andq is returned only ifo’s score is higher thanq’s

k-th score that is stored (as discussed at the beginning of Section 4.4).

Remarks.In the worst case, a query objecto may be relevant to all core subspaces, but

in practice,o is often relevant to only a few core subspaces, so the relevance test is useful.
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4.6 Experimental Evaluation

Approaches compared. This section compares the core-subspace approach, hereafter re-

ferred to asCSI (for Core-Subspace-basedIndexing), with a number of alternatives. All

approaches are implemented in C++.

For top-k queries, the following alternatives are considered.Scan is a brute-force

method that examines all objects.BB indexes all objects in ad-dim kd-tree and uses a

branch-and-bound algorithm to search for the topk objects.TA, the Threshold Algorithm,

keeps a list of objects sorted by each attribute; to find the top k objects give a query pref-

erenceq, it uses the lists for attributes with non-zero weights specified byq. PCA+TA first

applies PCA (principal component analysis) to reduce the dimensionality of the objects,

and then usesTA. Views, the view-based approach, randomly selects as views a set ofunit

vectors from a given preference distribution, and materializes their topβk objects. Given

a query preferenceq, it retrieves the topβk objects fromν views most similar toq and

computes the topk among these objects.

For reverse top-k queries, all approaches store the score of thek-ranked object for each

preference.Scan examines all preferences.HSR, for halfspace range search, answers

the query in the dual space using ad-dim kd-tree on the cutoff points, as described in

Section4.2. PCA+HSR first applies PCA and then usesHSRin the reduced space.Views

selects its views as described above, and assigns each preference toν views; given a query

objecto, it retrieves all preferences assigned to views for whicho enters their top-βk list,

and filters these preferences to find those affected byo.

SinceCSI is approximate,ε is set to0.08 to be the error allowance, such that coresets

are sized to provide answers whose scores are withinε times the directional width of the

objects with respect to a query preference (recall Eq. (3.1)). To ensure fair comparison

betweenCSIandviews, the same settings ofβ = 3 andν = 3 are used, and the number of

views is chosen such that the total space consumption ofviewsis the same as that ofCSI.
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Performance metrics. For a given query workload, the average wall-clock time per query

over the workload is reported, as measured on a Dell OptiPlex990 with 3.40GHz Intel

Core i7-2600 CPU,8MB cache, and8GB memory.

For approximate approaches to top-k queries (CSI, PCA+TA, andviews), the approxi-

mation error is measured for each query objecto as follows. Let̃oi denote thei-th ranked

object returned by an algorithm. The error is computed asmaxi∈[1,k]
〈q,πi(q,O)〉−〈q,õi〉

εd̄i(q,O)
, where

ε is the error allowance as set above. Thus, an error of1 or less is considered “acceptable.”

The RMS (root mean square) error over the query workload is reported. If RMS error is1

or higher, it is likely that a significant fraction of the errors are unacceptable.

For approximate approaches to reverse top-k queries (CSI,

PCA+HSR, andviews), their approximate qualities are measured usingfalse negative rates

defined as follows. Given a query objecto, a preferenceq is considered to besignificantly

affected byo iff 〈q, o〉 > 〈q, πk(q,O)〉+ εd̄k(q,O); here, the sameε we set earlier defines

the amount of acceptable slack. If a significantly affectedq is missing from the result

query result, it is counted as a false negative. The total number of false negatives is di-

vided by the total actual number of significantly affected preferences over the entire query

workload, and this ratio is reported as the false negative rate.

Synthetic object workloads. Objects are generated using a number of distributions. With

box-uniform, objects are distributed uniformly and randomlywithin the unit box inRd.

With sphere-uniform, objects are distributed uniformly and randomlyon the surface of

the unit sphere inRd. With sector-select, objects are drawn randomly from a spherical

cap inRd with apex at the origin, and with radius1 and cone angle15◦; furthermore, an

object is generated if it ranks high w.r.t. some preference in the preference workload. With

ttt-surface, objects lie on at-dimensional algebraic surface embedded in the original space.

The surface is defined usingt parameters. For each attribute, a multivariate polynomial

of constant degree is defined from thet parameters. To generate an object, values are

84



first generated for thet parameters and then the object coordinates are computed using the

polynomials.

Synthetic preference workloads. The preference workload generator uses a number of pa-

rameters to control workload characteristics. Given afraction of non-sparse preferences,

this fraction of the preferences is generated in the workload by picking unit vectors inRd

uniformly at random; assuming a sufficiently larged, such preferences are almost always

non-sparse. The remaining (sparse) preferences are generated from a setG of “generating

subspaces,” where|G| = hgen, thenumber of generating subspaces, and for eachG ∈ G,

dim(G) ≤ τgen, themaximum generating density. G is picked in two ways: withuni-

form generating subspaces, every subspace with dimensionality no more thanτgen has

an equal probability of being picked; withskewed generating subspaces, each attribute

is assigned a popularity, such that popular attributes are more likely to be included in a

generating subspace. To generate a preference, a generating subspaceG ∈ G is selected at

random. Then, the preference is generated in two ways: withuniform preferences within

subspaces, a unit vector inG is uniformly drawn at random; withclustered preferences

within subspaces, preferences are drawn from a mixture distribution centered around a

small number of randomly chosen unit vectors inG.

NBA workload. The dataset contains17 career stats for3,861 NBA players. Preferences

are still generated synthetically.

Document subscription workload. This workload is intended to approximate an applica-

tion scenario where users subscribe to documents of their interest. The set of objects is

generated to represent documents from the collection of approximately300,000 NY Times

news articles [19]. A singular value decomposition (SVD) is performed on the documents

to discover the underlying20 most relevant topics. Hence, each document is mapped a
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point in the20-dimensional space, where each attribute represents a topic.

Next, the Yahoo! search query collection [118] is used to extract the set of preferences

for this workload. This collection contains a random sampleof 4,496 queries posted to

Yahoo!’s US search engine in January, 2009. The queries are preprocessed to discard stop

words and words that are not present in the document collection. Then, using the same

SVD matrices, each query is mapped to a unit vector in the20-dimensional space; if a

component of the vector is below a thresholdt, it is set to0. The table below shows,

for two different t values, the density (number of non-zero components) distribution of

resulting vectors (recall thatd = 20):

density 0 1 2 3 4 5 6 7 8 9 10 11 12

# vectors (t = 0.05) 1558 0 0 3 32 11334274986456720951 8
# vectors (t = 0.1) 159233810101084390 80 2 0 0 0 0 0 0

In the experiments,t is set to0.1. To get a larger set of preferences, they are generated from

the above set of “seed” vectors. Each word is associated withits 5 most “probable” topics

(derived from the same SVD). Let two words be neighbors if they are associated with a

common topic. Starting from a seed vector, new preferences are generated by iteratively

replacing one of its words with a neighboring word.

4.6.1 Top-k Query Performance

Varying the fraction of non-sparse preferences. We begin by studying the effect of the

fraction of non-sparse preferences on top-k queries for various approaches. Here,d = 80,

k = 5, and100,000 objects are generated frombox-uniform. The query workload consists

of 10,000 preferences; the sparse ones among them areuniform preferencesdrawn from

200 uniform generating subspaceswith maximum dimensionalityτgen= 6. CSIandviews

are given10,000 preferences generated from the same distribution in constructing their

indexes. In Figure4.2, the fraction of non-sparse preferences varies from0 to 0.8. For

CSI, the RMS error is comfortably below1 at all times, but the overall average query
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time rises with more non-sparse preferences. The table below shows the fraction of query

preferences that are covered by core subspaces, which has a roughly linear relationship

with the fraction of sparse preference:

Fraction of non-sparse preferences0.0 0.2 0.4 0.6 0.8

Fraction of covered queries 98.9%78.2%56.4%32.0%7.90%

Recall thatCSI uses indexes in core subspaces for covered preferences, andthe full-

dimensional coreset for uncovered preferences. To better see their performance difference,

CSI∗ is used in this and following figures to show the average querytime for covered pref-

erences. When most preferences are non-sparse, they are handled by the full-dimensional

coreset, soCSI becomes as slow asscanandBB,2 which is expected in high dimensions.

This observation implies that using only the full-dimensional coreset (as well as other full-

dimensional approaches such as the layer-based ones mentioned in Section4.1) will not

work in high dimensions.

The error ofviews is acceptable when all preference are sparse. However, its error

quickly deteriorates as the fraction of non-sparse preference rises, because of the inher-

ent difficulty in capturing high-dimensional space with vector-based views. Although the

query-time plot shows an apparent advantage ofviewsoverCSIwhen the fraction of non-

sparse views is at least0.2, this advantage is not real—to make its error acceptable,views

would have to use a lot more views, driving the space and querytime higher thanCSI.

Figure 4.2 shows thatPCA+TA does not produce acceptable errors; thus, its query

time is not plotted. Also, error forscan, BB, andTAare not plotted because they are exact

methods.

Now that the effect of non-sparse preferences is well understood, this section will focus

on workloads where all preferences are sparse—extrapolation to the general case is easy,

andviewswill only be worse thanCSIwith more non-sparse preferences.

2 TA is slower with more non-sparse preferences, because each such preference requires processingd lists
and is thus more costly than a sparse one.
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FIGURE 4.2: Top-k queries when varying the fraction of non-sparse preferences;d = 80,
n = 100,000, k = 5.

Varying preference workloads. We now examine several different preference workloads.

In Figure 4.3, d = 20, and preferences (either for querying or for index construction)

are generated fromuniform generating subspaces; in Figure4.4, d = 80, and generating

subspaces areskewed. For both figures, the number of generating subspaces variesfrom 50

to 500. Other workload parameters remain the same as Figure4.2. The main observation

is that the exact methods run much slower than the approximate ones (note the logarithmic

scale of the query time axis).CSI andviewsand have comparable query time, butCSI

has smaller errors thanviews. PCA+TAagain produces much higher errors thanCSI and

views.

Going from Figure4.3 to Figure4.4, queries generally become slower with a higher

dimensionality, but as indicated byCSI∗, query times for covered preferences remain short,

and become much shorter thanviews. As majority of the queries are covered, they will

benefit from shorter-than-average query times. On the otherhand, the accuracy lead of

CSIoverviewsis consistent in both Figures4.3and4.4.

The number of generating subspaces has some effect on performance, though this ef-

fect is not strong enough to change any conclusion in our discussion above.

Varying dimensionality. Next, let’s consider the impact of dimensionality. Again,k = 5,

and100,000 objects are generated frombox-uniform. Preferences are drawn asuniform
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FIGURE 4.3: Top-k queries when varying the number ofuniform generating subspaces;
d = 20, n = 100,000, k = 5.
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FIGURE 4.4: Top-k queries when varying the number ofskewedgenerating subspaces;
d = 80, n = 100,000, k = 5.

preferencesfrom 100 uniform generating subspaceswith maximum dimensionalityτgen=

6. Figure4.5shows that asCSIconsistently delivers higher accuracy thanviewsacross all

dimensionalities, and its big lead overPCA+TAwidens asd increases. Whileviewsstarts

out to be faster thanCSI in low dimensions, the speed gap between quickly narrows in

higher dimensions. The exact methods are generally much slower CSIandviews. Finally,

looking atCSI∗, we see that covered queries remain extremely fast despite the increase

in d, meaning that core subspaces do a good job of protecting sparse preference query

performance from the curse of dimensionality.

Objects from low-dimensional algebraic surfaces. In this experiment, a varying number

of objects is drawn fromt-surface(a 3-dimensional bounded-degree algebraic surface to

be specific). Here,d = 100, and preference workloads are generated by drawing10,000
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FIGURE 4.5: Top-k queries when varyingd; n = 100,000, k = 5.

uniform preferencesfrom 100 uniform generating subspaceswith maximum dimension-

ality τgen = 6. Figure4.6 shows thatCSI’s query time (which accounts for uncovered

query preferences that will use the full-dimensional coreset) remains steady as the number

of objects increases. In fact, despite high dimensionality(d = 100), the size ofCSI’s

full-dimensional coreset is only around6,600 even whenn = 200,000, confirming the

effectiveness of the improvement to the coreset construction algorithm discussed in Sec-

tion 4.4.3. In comparison, the exact methods are much slower, and the gap widens asn

increases.Viewsis also slower thanCSI, but the gap does not widen thanks toCSI’s small

coreset size (recall that the space ofviewsis set to be the same as that ofCSI).

Figure4.6 also shows an approximate variant ofTA calledApproxTA, which simply

runsTA on the full-dimensional coreset used byCSI, for all query preferences. Between

ApproxTAandCSI, there is a clear tradeoff—ApproxTAhas better accuracy, whileCSIhas

faster speed. This comparison highlights the benefit of the improved corset construction

algorithm, as well as the ability for core subspace to further provide good accuracy/speed

trade-offs.

Sensitivity to changes in preference distribution. Section4.4.1argued thatCSI is more

robust thanviewswith respect to errors and changes in the distributions of attribute weight

values. This claim is now validated using the following experiment. Here,d = 80, k = 5,

and we use100,000 objects fromsector-select. Two preference workload distributionsW1
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FIGURE 4.6: Top-k queries for objects fromt-surface; d = 100, k = 5.

50 100 150
0

1

2

3

4

5

# subspaces

R
M

S
 a

pp
ro

xi
m

at
io

n 
er

ro
r

 

 

CSI
Views
CSI(baseline)
Views(baseline)

20 40 60 80 100 120 140

0.2

0.3

0.4

0.5

0.6

0.7

# subspaces
Q

ue
ry

 ti
m

e 
(m

se
c)

 

 

CSI
Views
CSI (baseline)
Views (baseline)

FIGURE 4.7: Sensitivity of top-k query performance to changes in preference distribution
within generating subspaces;d = 80, n = 100,000, k = 5.

andW2 are defined. Both useuniform generating subspaceswith maximum dimensional-

ity τgen = 3; we also use these subspaces to generate the sectors forsector-selectobjects.

W1 andW2 both drawclustered preferencesfrom each generating subspace, but they have

different set of cluster centers. To construct their indexes, bothCSI andviewsare given

10,000 preferences fromW1. Then, the performance ofCSIandviewsare compared when

given10,000 query preferences fromW1 (i.e., preference distribution isunchanged) and

when given query10,000 preferences fromW2 (i.e., preference distribution ischanged).

Figure4.7plots the results when varying the number of generating subspaces; results

for which the preference distribution is unchanged are shown as “baseline.” THe figure

shows that whileviewshas a very accurate baseline (because the preferences are highly

clustered), its accuracy simply becomes unacceptable whenthe preference distribution

changes. In contrast,CSI remains highly accurate despite the change.
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FIGURE 4.8: Top-k queries for document subscription workload;d = 20, k = 5.

0 0.5 1 2

0.4

0.6

0.8

1

1.2

h

R
M

S
 a

pp
ro

xi
m

at
io

n 
er

ro
r

0 0.5 1 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h
Q

ue
ry

 ti
m

e 
(m

se
c)

FIGURE 4.9: Top-k queries when varying incentive for multiple coverage.

Document subscription workload. Figures4.8 shows the results for the document sub-

scription workload when varying the number of documents. Once again, the results con-

firm the effectiveness ofCSI. Almost 100% of the query preferences can be handled by

core subspaces, and the average query time is much faster than the exact methods and com-

parable withviews. In comparison,viewshas bigger approximation errors, andPCA+HSR

is worse. In fact, underCSI, at most3% of the queries exceed the prescribed error al-

lowance (i.e., approximation error is greater than1). In contrast, up to8% and84% of

preferences have approximation errors greater than1 underviewsandPCA+HSR, respec-

tively.

Benefit of multiple coverage. Here, the effectiveness of multiple coverage is tested for the

box-uniform workload when varying incentive for multiple coverage. In the setting,d =

80, k = 5, and10,000 uniform preferencesfrom 200 uniform generating subspaceswith
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maximum dimensionalityτgen = 6. Recall that whenH is selected, for each preferenceq,

the presented algorithm reduces the weights of those attributes inq that are present inqH .

For single coverage,q ← q − qH . For multiple coverage,q ← q − ‖q̃H‖qH . In Figure4.9,

h indicates the incentive for multiple coverage, i.e.,q is updated usingq ← q − ‖q̃H‖hqH .

The figure shows that if we simply clearq of any weights of attributes inH (h = 0), the

approximation error is greater than1. As h increases, the error decreases but the query

time goes up. By settingh = 1, good balance is acheived between approximation error

and query time.

4.6.2 Reverse Top-k Query Performance

Varying dimensionality. We begin by studying the effect of dimensionality on reverse

top-k queries for various approaches. Here,k = 5. 2,000 objects are drawn frombox-

uniform, and100,000 uniform preferencesfrom 100 uniform generating subspaceswith

maximum dimensionalityτgen = 6. Query objects are also drawn frombox-uniform. Fig-

ure4.10shows the results. As with top-k queries, a similar pattern is found in accuracy:

CSI misses very few significantly affected preferences (no morethan about4%); views

misses18% to 45% asd increases;PCA+HSRmisses over90%. In terms of query time,

scanis the slowest, as expected.HSRis reasonably fast as an exact method in low di-

mensions; however, its lead overscannarrows quickly asd increases—a query halfspace

intersects more nodes of the underlying kd-tree, and the cost of determining whether a cut-

off point lies above a hyperplane grows proportionally. Among the approximate methods,

bothPCA+HSRandviewsare faster thanCSI, but they have poor accuracy. Keeping the

accuracy high,CSIstill manages to offer a significant speedup overscaneven atd = 200.

Recall that for each query,CSI also checks the full-dimensional index of uncovered

preferences, basically usingHSR. This cost component is reflected in the reported query

times, and depends on the fraction of the uncovered preferences. In the worst case, if

all preferences are non-sparse, many of them will not be covered, and the query time of
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FIGURE 4.10: Reverse top-k queries when varyingd; n = 2,000, m = 10,000, k = 5.

CSI will be similar to that ofHSR. Because it is easy to extrapolate the effect of varying

the fraction of non-sparse preferences, this fraction is set to 0 and do not vary it for the

synthetic workloads in this section.

Varying the number of generating subspaces. The same workload parameters are used

as in Figure4.10, but vary the number of generating subspaces while fixingd = 40.

Figure4.11shows the results. Again, a similar trade-off is shown as in Figure4.10: views

andPCA+HSRrun faster thanCSI, but offer much lower accuracy; the exact methods are

much slower.

Figure 4.11 shows that the number of generating subspaces has an impact on CSI.

More generating subspaces imply more diversity in preferences, which leads to more core

subspaces (16 core subspaces for50 generating subspaces vs.25 for 500), as well as a

larger number of imperfectly covered preferences. Hence, both false positive rate and

query time increase, although the effect is not strong enough to change any conclusion in

our discussion above.

Varying the number of preferences. Next, we study the effect of the number of prefer-

ences. The same preference workload parameters are used as in Figure4.10, but vary

the number of preferences up to500,000. This time, the2,000 objects are fromsphere-

uniform, and query objects are also drawn fromsphere-uniform. Figure4.12shows that
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FIGURE 4.11: Reverse top-k queries when varying the number of generating subspaces;
d = 40, n = 2,000, m = 100,000, k = 5.
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FIGURE 4.12: Reverse top-k queries when increasingm; d = 40, n = 2,000, k = 5.

the same trade-off identified in previous figures continues:CSI is slower thanviewsand

PCA+HSR, but is more accurate. The exact methods are much slower, while the fastest

approximate method,PCA+HSR, misses most of the answers.

Overall,CSI demonstrates good scalability in the number of preferences. With half a

million preferences,CSI’s false negative rate is merely1.4%, and average query time is

under35 milliseconds. A more detailed breakdown shows that it spends15.14ms querying

indexes for core subspaces, and16.15ms filtering false positives; it also spends2.89ms on

checking the full-dimensional index for19,678 uncovered preferences (out of500,000).

In comparison, the average query time ofviewsis about21 milliseconds,91% of which is

spent on filtering false positives.

NBA workload. Figures4.13 compares various approaches for the NBA workload as

the number of preferences increases.Uniform preferencesare drawn from100 uniform
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FIGURE 4.13: Reverse top-k queries for NBA workload;d = 17, n = 3,861, k = 5.

generating subspaceswith maximum dimensionalityτgen = 6. To ensure that the query

objects are “interesting” (i.e., likely affecting some preferences), the reverse top-k queries

are tested using Hall-of-Fame players as query objects. Figure4.13shows thatviewshas

the fastest query time across all tested workloads (beatingPCA+HSR), but CSI achieves

the lowest false negative rate among all approximate methods, while still delivering fast

query time with a large number of preferences.

Document subscription workload. For this workload,2,000 documents are used and the

number of preferences varies up to200,000. Figure4.14shows the results. As with the

NBA workload, bothviewsandCSIperform well; additionally, the exact methodHSRalso

has acceptable query time in this case.CSIoffers a nice middle ground betweenHSRand

views: on one hand,CSI is 2 times faster thanHSR; on the other hand, it is2 to 3 times

slower thanviews, but its false negative rate is30% to 50% lower thanviews. ForCSI, the

false negatives rate is less than1% across all tested workloads.

Benefit of multiple coverage. Figure4.15shows the results for the box-uniform workload

when varying incentive for multiple coverage. In the setting, d = 80, k = 5, and10,000

uniform preferencesfrom 200 uniform generating subspaceswith maximum dimensional-

ity τgen= 6. Again,h indicates the incentive for multiple coverage, i.e.,q is updated using

q ← q − ‖q̃H‖hqH . The figure shows that if we simply clearq of any weights of attributes
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FIGURE 4.14: Reverse top-k queries for document subscription workload;d = 20, n =
2,000, k = 5.
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FIGURE 4.15: Reverse top-k queries when varying incentive for multiple coverage.

in H (h = 0), the false negative rate is above 0.5. If we enourage additional coverage

for those weights, the false negative rate decreases but thequery time goes up. By setting

h = 1, the false negative rate is less close to0.

4.6.3 Algorithm parameters

Different choices of parameters forCSI have been experimented to verify the settings of

parameters.

Parameterβ. The smallest value forβ is estimated across different workloads s.t. most

preferences are within the prescribed error allowance if top-βk objects are retreived from

each core subspace in their preference covers. Here,ε = 0.08 andk = 5. Unless specified,

10,000 preferences are drawn from200 uniform generating subspaceswith maximum

dimensionalityτgen= 6.
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FIGURE 4.16: Parameterβ

The value ofβ is estimated as follows. A preference is said to coverΓq isβ-approximate

if maxi∈[1,k]
〈q,πi(q,O)〉−〈q,πi(q,O

′)〉

εd̄i(q,O)
≤ 1, whereO′ is the union of top-βk objects of all sub-

spacesH ∈ Γq. For each preferenceq, its coverΓq is first computed. Ifq can be covered

with at mostν core subspaces, i.e.,|Γq| ≤ ν, the smallest integerβ is computed s.t.Γq is

β-approximate.

Figure4.16(a)shows the cumulative distribution function (cdf) ofβ for thebox-uniform

workload, which contains100,000 objects withd = 20. The figure shows that80%

and90% of preference covers are3-approximate and4-approximate, respectively. Fig-

ure4.16(b)shows the cdf ofβ for 100,000 objects drawn from thesphere-uniformdistri-

bution withd = 80. Roughly90% and95% of preference covers are2-approximate and

3-approximate, respectively. For the NBA workload,d = 17 and|O| = 3861. As shown in

Fig. 4.16(c), roughly80% of preference covers are1-approximate. Figure4.16(d)shows

the results for the document subscription workload, which contains100,000 documents

and10,000 document subscriptions withd = 20. About90% of preference covers are1-

approximate, and almost all preference queries are within the prescribed error allowance
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FIGURE 4.17: Varyδ in Algorithm 1; θ = 0.5 in Algorithm 2.

whenβ is set to 2.

For eachq ∈ S, letH∗ ∈ ΓH denote the subspace inΓH that covers most weights ofq

among all subspacesH ∈ ΓH , i.e.,‖qH∗‖ ≥ ‖qH‖ for all H ∈ Γq. Recall that for a reverse

top-k queries, instead of defining the cutoff point using always the (βk)-th ranked object

w.r.t. qH , the cutoff condition can be tightened by defining it using the (β′k)-th ranked
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FIGURE 4.18: Varyθ in Algorithm 2; δ = 0.1 in Algorithm 1.
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FIGURE 4.19: Varyν in Algorithm 1; θ = 0.5 in Algorithm 2.

object, whereβ′ ∈ [1, β] is customized based on how close‖qH∗‖ is to q. Also, recall that

for a preference top-k query, top-κ objects are computed in each core-subspace, where

κ ∈ [k, βk] is customized based on how close‖qH∗‖ is to q. To test the effectiveness of

this customization heuristic, for each covered preferenceq, again the smallest integerβ is

computed s.t.Γq is β-approximate. Next, thoseβ values are partitioned into bins based on

the angle betweenq andqH∗ . More specifically, if the angle betweenq andqH∗ is θ◦, q’s

β is put into bin⌊θ/5⌋. For each bini, the value ofβ at the90-th percentile is chosen as

an estimatedβ for every preference whose angle is in within[5(i − 1)◦, 5i◦). Table4.6.3

shows that for thebox-uniformworkload, the smallest angle for33.56% of preferences is

between0◦ and5◦ and at least90% of those preferences is1-approximate. Similarly, the

smallest angle for5.18% of preferences is between5◦ and10◦ and at least90% of those

preferences is2-approximate. Table4.6.3shows the results forSphere-uniform.

Parameter δ (Algorithm 1) This paragraph shows the results on parameterδ (in Algo-

rithm 1). Here,d = 80, k = 5, and10,000 preferences are drawn from200 skewed
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Table 4.1: Box-uniform

Angle (degrees) [0, 5) [5, 10)
Fraction of preferences0.3356 0.0518

Estimatedβ 1 2

Table 4.2: Sphere-uniform

Angle (degrees) [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, 30)
Fraction of preferences0.3678 0.0320 .0405 0.0509 0.0516 0.0581

Estimatedβ 1 1 1 2 2 2

generating subspaceswith maximum dimensionalityτgen = 6. 100,000 objects are drawn

from thebox-uniformdistribution. Figures4.17(a)and4.17(b)show the number of core

subspaces and top-k query time when varyingδ, respectively. Whenδ = 0.1, |H| = 47

and query time is0.51 milli-seconds. Whenδ = 0.5, |H| decreases to9, but query time

increases to19.96 milli-seconds. This parameter allows users to control trade-offs be-

tween space consumption and query time. The reason for the increase in query time is

that asδ increases, the fraction of uncovered preferences also increases, as shown in Fig-

ure4.17(c). Whenδ = 0.1, the47 core-subspaces cover roughly93.4% of preferences; but

whenδ = 0.5, the9 core-subspaces cover roughly36% of preferences only. Those uncov-

ered preferences are much slower than the covered preferences because they are handled

in the 80-dimensional space. On the other hand, if fewer number of core-subspaces is

selected, imperfectly covered preferences will have bigger error. Thus, in Figure4.17(d),

the error deteriorates asδ increases from0 to 0.1. However, asδ continues to increase, the

error becomes significantly better because the top-k queries for uncovered preferences are

answered exactly.

Parameter θ (Algorithm 2) This paragraph shows the results on parameterθ (in Algo-

rithm 2). Again, d = 80, k = 5, and10,000 preferences are drawn from200 skewed

generating subspaceswith maximum dimensionalityτgen = 6. 100,000 objects are drawn
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from thebox-uniformdistribution. δ is also fixed to0.1. Figure4.18(a)shows that the

fraction of covered preferences increases from0.43 to 1 whenθ increases from0.1 to 0.9.

As a result, the average top-k query time drops from16.26 milli-seconds to0.36 milli-

seconds (Fig4.18(b)), and the approximation errors deteriorate (Fig4.18(c)and4.18(d))

because a preference cover may only cover a small fraction ofthe preference’s weight.

Parameter ν (Algorithm 2) This paragraph shows the results on parameterν in Algo-

rithm 2. Again,d = 80, k = 5, 10,000 preferences are drawn from200 skewedgenerating

subspaceswith maximum dimensionalityτgen= 6, and100,000 objects are drawn from the

box-uniformdistribution. Here,δ andθ are set to0.1 and0.5, respectively. Figure4.19(a)

shows that whenν increases from1 to 10, the fraction of covered preferences also in-

creases from0.621 to 0.99. In particular, more than85% of preferences find a cover when

ν is set to3. Note that ifν is large, a preference cover may only cover a small fraction

of the preference’s weight. Figure4.19(b)) shows that query time decreases from12.22

milli-seconds to0.85 milli-seconds asν increases. Figures4.19(c)and4.19(d)show that

the errors deteriorate asν increases.

4.7 Related Work

Preference top-kkk and reverse top-kkk queries. As already discussed in Section4.1, there has

been a lot of work on preference top-k queries [44, 67, 113, 85, 50, 49, 65, 66] and reverse

top-k queries [115]. This chapter builds on and compares with the solution presented in

the previous chapter, which applied the ideas of coreset andduality transform to the full-

dimensional space; this reference also provides additional discussion of and comparison

with other previous approaches to top-k and reverse top-k queries.

This chapter has compared the core-subspace solution extensively with the view-based

approach [68, 50]. As discussed, in some sense, the core subspaces can be seenas a

powerful generalization of views. This chapter also shows how to select such views, a
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problem that is not addressed in [50].

The layered-based approaches (e.g., [44]) are essentially the exact counterpart of core-

sets, and are subsumed by coresets because the latter provides more flexible accuracy/space

trade-offs. For this reason, this chapter does not compare directly with the layered-based

approach or the hybrid approach [65, 66] that builds on them; their difficulty with high

dimensions can be seen from the performance gap betweenCSIandCSI∗ in Section4.6.1.

Top-k queries can be seen as special case of rank aggregation [57], and the Threshold

Algorithm [58] is viable option for top-k queries; this chapter compares withTA exten-

sively in Section4.6.1.

Finding interesting subspaces. The task of identifying core subspace is related to the prob-

lems ofsubspace clustering(finding all clusters in all subspaces) andprojected clustering

(assigning points to clusters that exist in different subspaces). There has been a lot of work

on these problems (see [74] for a survey). In particular, if the subspaces are axis-parallel,

the problem is also related to the so-calledrow/column-subset selectionproblem [51, 62]:

given a matrix where rows are objects and columns are features, select a subset of features

that are dominant. However, the intended use of the core subspaces warrants the special-

ized algorithm in Section4.3, which accounts for the feature of multiple coverage, as well

as the fact that the distributions of preferences assigned to a subspace are less of a concern

than those of preferences across subspaces.

While core subspaces are chosen to be axis-parallel for reasons of simplicity and ro-

bustness against changes in attribute weight distributions, there are some situations for

which it may be beneficial to consider subspaces that are arbitrarily oriented. For exam-

ple, the preference workload may be known and stable. As another example, preferences

may not exhibit sparsity in the original space, but do so after some affine transformation.

In these situations, the problem of finding arbitrarily oriented subspaces is related tosub-

space segmentation, which seeks to model a set of data points using a union of affine

103



subspaces (see [15] for a survey). PCA can be seen as a very restrictive special case where

all points come from a single affine subspace; as shown in Section 4.6, it is less effective

than multiple axis-parallel subspaces. Considering multiple arbitrary core subspaces in the

solution remains an interesting problem for future work.

4.8 Conclusion

This chapter proposed a solution, based on the idea of core subspaces, for top-k and re-

verse top-k queries in high dimensions. The solution presented in this chapter exploits the

sparsity in preferences to identify core subspaces, and applies the techniques of coresets

and duality transform to index each core subspace as well as the full-dimensional space

effectively. As shown by the experimental evaluation, in high dimensions, exact meth-

ods are slow, while existing approximation methods suffer from either poor speed (e.g.,

when using only a single coreset in the full space) or poor accuracy (such as the PCA- and

view-based approaches). In contrast, for workloads where preferences are often sparse—a

case that arises naturally in practice—the solution presented in this chapter offers a desir-

able trade-off between speed and accuracy, which makes scalable processing of top-k and

reverse top-k queries in high dimensions a reality.
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5

Range Top-k Subscriptions

In the previous two chapters, we have discussed how to compute the set of affected sub-

scriptions for data updates. In this chapter, subscriptions are distributed across a wide-area

network, so the network aspect also needs to be taken into account. In particular, this

chapter considers how to support a large number of range top-k subscriptions for wide-

area publish/subscribe. Given an object update, subscriptions need to be notified if their

top-k results are changed. Simple solutions include using a content-driven network to no-

tify all subscriptions whose ranges contain the update (ignoring top-k), or using a server

to compute only the affected subscriptions and notifying them individually. The former

solution generates too much network traffic, while the latter overwhelms the server. This

chapter presents a geometric framework for the problem thatallows the set of affected

subscriptions to be described succinctly with messages that can be efficiently dissemi-

nated using content-driven networks. Fast algorithms willbe given to reformulate each

update into a set of messages whose number is provably optimal, with or without knowing

all subscriptions. This chapter also presents extensions to the solution, including an ap-

proximate algorithm that trades off between the cost of server-side reformulation and that
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of subscription-side post-processing, as well as efficienttechniques for batch updates.

5.1 Introduction

Consider a range top-k query over a database of objects (e.g. stocks). The query examines

a subset of the objects satisfying a range condition (e.g., stocks with risk rating between

medium high and high), and picks the topk objects within this subset by some ranking

criterion (e.g., stocks with thek lowest price-to-earning ratios). Over time, when the set of

objects or their attribute values change, the query result has to be kept up to date, as in the

standard view maintenance and continuous query processingsettings. This chapter studies

how to support hundreds of thousands or even millions of suchqueries simultaneously.

Representing different user interests, these queries may have different range conditions

and therefore different lists ofk objects as their answers.

A challenging application setting is when a large number of these queries, which is

referred to assubscriptions, are located across a wide-area network. For each event updat-

ing the database, all subscriptions whose results are affected must be notified. Notification

messages should carry enough information so that the affected subscriptions can update

their top-k lists accordingly. A naive approach would be to use a centralserver to maintain

all objects and subscriptions, compute the list of affectedsubscriptions for each event, and

notify each affected subscription with the change to its top-k list. Since an event may af-

fect many subscriptions, this approach can easily overloadthe server with processing and

messaging costs at least linear in the number of affected subscriptions.

A solution is to push some event processing and dissemination work into a more “in-

telligent” network, but at the cost of increasing system complexity. As demonstrated in

previous work [41, 40, 42], acontent-driven network(CN) offers a good trade-off between

functionality and complexity. CN is a class of overlay networks designed for efficient dis-

semination, with a clean message interface. Many off-the-shelf overlay networks are ex-
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amples of CN, e.g.,content-based networks[35] andcontent-addressable networks[99].1

For the purpose of this chapter, CN is regarded to as a black boxfor efficiently delivering a

message to all subscriptions whose query parameters satisfy a selection condition carried

by the message.2 Instead of enumerating affected subscriptions one by one, the server

would compute a compact description for the set of affected subscriptions, and then trans-

late this description into a series of condition-carrying messages to be sent through CN.

The number of such messages is usually far less than the number of affected subscriptions,

thereby relieving the server bottleneck.

Range top-k subscriptions are challenging for several reasons. It is straightforward

for CN to handle range subscriptions without top-k as in standardpublish/subscribe: a

message simply needs to list the updated object’s attributevalues, which can be interpreted

as a condition testing whether a subscription range contains the object. However, such a

message is not enough for range top-k subscriptions because they are “stateful”: whether a

subscription is affected depends on how the updated object ranks against others within the

subscription range. Furthermore, if the updated object drops out of a subscription’s top-k

list, the newk-th ranked object must be sent to the subscription. While previous work [41]

addresses the special case ofk = 1 (i.e., range min/max subscriptions), the general case

handled in this chapter is considerably more complex and hasmore practical applications.

A geometric framework. This chapter develops a geometric framework to support range

top-k subscriptions. The geometric framework enables the problem of generating notifi-

cation messages to be viewed intuitively as one of tiling a potentially complex region of

affected subscriptions (in an appropriately defined subscription space) using simple geo-

metric shapes. The set of tiles forms a compact description of the region. Each tile cor-

1 CN is named after these popular examples, which shouldnot be confused withcontent deliv-
ery/distribution networks[32] that serve the different purpose of replicating popular Web objects.

2 An equivalent, dual view is that CN allows subscriptions to be selection conditions over message at-
tributes, and CN efficiently delivers a message to all subscriptions whose conditions are satisfied by the
message.
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responds to a CN message, whose condition selects all subscriptions covered by the tile.

While one could first compute the list of affected subscriptions and then find the tiling,

this chapter develops algorithms (described below) that avoid computing this potentially

long list in the first place.

New algorithms. New algorithms are proposed for message generation based onthe frame-

work above. These algorithms are scalable—they run in time dependent on the number of

messages they generate, not the number of affected subscriptions (which could be substan-

tially larger). Experiments confirm that this property translates into substantial savings in

both server running time and network dissemination cost; furthermore, the performance

lead over other approaches widens as the number of subscriptions increases.

This chapter starts with two algorithms. The first one, whichis referred to asPaint-

Dense, is subscription-oblivious; it examines only the set of objects. This feature is at-

tractive from both scalability and privacy perspectives, because it alleviates the need for a

server to track a large number of subscriptions.Paint-Densecomputes the optimal tiling

assuming no knowledge of the subscriptions. The second version, Paint-Sparse, uses both

the set of objects and the set of subscriptions. Intuitively, it produces a tiling sensitive to

the subscription distribution; the size of the tiling is2-approximate and often much smaller

than that generated byPaint-Dense.

This chapter also considers the case of batch updates, wherea subscription needs to

be notified of the net change in its result at the end of a batch.Simply processing this

batch one event at a time generates more traffic than necessary. It will be seen later that by

pre-processing the batch (coalescing and reordering updates), subscribers are guaranteed

to receive the minimum number of messages needed.

BesidesPaint-DenseandPaint-Sparse, this chapter provides approximate algorithms

that generate even fewer messages from the server at the expense of more “false positives”—

notifications received by a subscription but not needed. False positives are discarded by
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each subscription with simple local post-processing, so the “approximate” algorithms still

guarantee exact subscription results. Having fewer messages reduces processing and mes-

saging loads on the server, but false positives bring higherlast-hop traffic and extra post-

processing. The trade-off can be adjusted using a parameterε ≤ 1, while guaranteeing

that subscriptions miss no notifications and receive no objects ranked below(1 + ε)k.

While the focus of this chapter is on1-d range top-k subscriptions, this chapter also

sketches out how our framework and algorithms can be generalized to subscriptions whose

range conditions involve multiple dimensions and more general constraints. As a concrete

illustration, this chapter also presents the detailed algorithm and experimental evaluation

for 1.5-d range top-k subscriptions3 in the extension section.

The subscription type considered in this chapter—orthogonal range top-k—is a stan-

dard one in most subscription/query languages. While there exist a plethora of proposals

for other language features, little is known about how best to support this standard sub-

scription type; this chapter will fill this void. Note that the techniques presented in this

chapter apply to top-k subscriptions with other types of conditions too. For example, con-

ditions comparing categorical attributes against concepts drawn from a hierarchy can be

mapped to range conditions with appropriate encoding of thehierarchy. For another ex-

ample, range conditions subsume near-neighbor conditionsunder theL∞ norm, and in

low dimensions they can be effective as building blocks for supporting near-neighbor and

nearest-neighbor conditions under other distance metrics.

This chapter focuses on application settings with many geographically dispersed sub-

scriptions to a central database (e.g., news aggregators and financial information services).

However, the solution presented in this chapter can be extended to other settings, ranging

from simpler ones such as non-distributed continuous querysystems with no need to de-

liver results over a network, to more complex ones such as publish/subscribe systems with

3 An example of a1.5-d range top-k subscription would be “k stocks that have the lowest price-to-earning
ratio among those with market capitalization above50 billion US dollars and risk rating between medium
high and high.”
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multiple, distributed event publishers.

5.2 Overview

5.2.1 Problem Formulation

Consider a setO of n objects. For simplicity, assume each object has only two numeric

attributes:x is used in range conditions, whiley is used for ranking objects in ascending

order of theiry-values. Section5.5discusses how to generalize the problem and the solu-

tions to higher dimensions. For each objecti (1 ≤ i ≤ n), let xi ∈ R denote itsx-value

andyi ∈ R denote itsy-value. Without loss of generality, allxi’s andyi’s are assumed to

be distinct.

There is a setS ofm subscriptions over the network. Each subscriptionSj (1 ≤ j ≤ m)

specifies anx-value range of interest, denotedσj = [ℓj, rj ] ⊆ R. For somek ≪ n, Sj

wishes to track the topk objects (along their attribute values) inσj, i.e., those with the

k smallesty-values. More precisely,Sj must maintain, at all times, the listtopk(Sj) =

{(xi, yi) | xi ∈ σj ∧ |{i′ | xi′ ∈ σj ∧ yi′ < yi}| < k}.

A (y-update) event, denotedUpd(xi, y
old
i → ynewi ), changes objecti’s y-value from

yoldi to ynewi . Upon receiving an eventδ, all affectedsubscriptions must be notified. A

subscriptionSj is affected byδ iff δ changestopk(Sj); i.e., either the membership of

this list changes or they-value of some object in this list is updated as a result ofδ. See

Figure5.1(a)for an example. For simplicity of presentation, the discussion will be focused

ony-update events.4

To notify all affected subscriptions, this chapter followsthe same overall approach

as [41]—first using a server toreformulatethe event into a sequence of messages, then

using CN todisseminatethese messages to subscriptions, and finally having subscriptions

4 Object insertion and deletion can be simply treated asy-update eventsUpd(xi,∞ → yi) and
Upd(xi, yi → ∞), respectively. An update to objecti’s x-value fromxold

i to xnew
i can be simulated by

a deletion of(xold
i , yi) followed by an insertion of(xnew

i , yi). Alternatively, it is straightforward to extend
the algorithms to handle these events directly.
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post-processreceived messages to maintain their top-k lists. More specifically, the server

maintains the set of objectsO, and reformulates each event into a sequence of constant-size

CN messages of the formatMsg(ℓI , rI , ℓO, rO, xi, yi), where[ℓI , rI ] ⊆ (ℓO, rO) are two

nested ranges inR, and(xi, yi) represents some objecti (with its attribute values). Each

message is interpreted as a condition over subscriptions’ ranges of interest: CN delivers

this message to subscriptionSj iff [ℓI , rI ] ⊆ σj ⊆ (ℓO, rO) (see Figure5.1(b)). Each

subscriptionSj maintains its own top-k list Lj. Upon receiving a message,Sj checks

whetherLj currently contains objecti (the one withx-value equal toxi). If yes,Sj simply

updates they-value of this object toyi. Otherwise,Sj updates its listLj to contain the top

k objects inLj ∪ {(xi, yi)}.

The goal of this chapter is to develop efficient algorithms for generating the sequence

of CN messages for each event, such that every affected subscription will have its top-

k list correctly updated by following the protocol above. Several performance measures

are considered in designing the algorithms: 1) the number ofmessages generated; 2) time

spent by the server in generating them; and 3) the number of messages received by the sub-

scriptions.5 These measures present interesting trade-offs and must be considered jointly.

For instance, minimizing (3) alone would not be sufficient; the naive approach of enumer-

ating all affected subscriptions and unicasting to them oneby one achieves this objective,

but does poorly on the other criteria. A better goal is to keep(3) minimized and optimize

other criteria as much as possible; theexactalgorithms presented in this chapter have this

goal. If the server becomes a bottleneck, (1) and (2) can be further reduced at the expense

of (3). In this case, an unaffected subscription is allowed to be notified; theapproximate

algorithms presented in this chapter take this approach. These results are discussed further

below.

5 For evaluation (Section5.7), especially comparison with approaches that do not use CN,the total traffic
in the underlying IP network is also considered.
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FIGURE 5.1: O andS in E andS. (a) The shaded vertical strip is for subscriptionS3.
Increasing object5’s y-value as shown would cause5 to be replaced by3 in topk(S2), and
by 6 in topk(S3) andtopk(S4), wherek = 3. (b) The shaded quadrant is for object5. A
CN message is shown with dashed outline.

5.2.2 Overview of Algorithms

Exact algorithms. With anexactalgorithm, the server generates messages for each event

such that only affected subscriptions are notified, and theyeach receive only one message

(pery-update event). Two settings are considered:

• Subscription-oblivious.For the case where the server has no knowledge of the set

of subscriptions (because of either scalability or privacyconcerns), an algorithm

Paint-Denseis developed with the following properties (Theorems12and 13):

– The algorithm is givenO, but notS.

– It generates the minimum number of messages possible for anyexact algorithm

if S is dense: that is, given the set of objectsO, for anyx-value rangeσ, there

exists some subscription interested in precisely the objects withinσ.

– Its running time depends on the number of messages generated, but not on|S|

or the number of affected subscriptions, which can be much larger.

• Subscription-aware.A set of subscriptions is calledsparseif it is not dense. In

this case,Paint-Densemay generate a message that does not reach any subscription,
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wasting both server processing and network dissemination efforts. Therefore,Paint-

Sparseis developed, with the following properties (Theorems16and17):

– The algorithm is given bothO andS.

– It generates at most twice the minimum number of messages possible for any

exact algorithm, and it never generates any message that reaches no subscrip-

tion.

– Its running time is sublinear in|O| and |S|, and depends on the number of

messages generated instead of the number of affected subscriptions, which can

be much larger.

Extensions. This chapter also considers the batched version of the problem, in which

subscriptions only need to have their top-k lists correctly updated at the end of an event

sequence.Paint-Batchis developed to pre-processes the event sequence before applying

either algorithm above (with minor modifications) to each event.Paint-Batchoperates well

with the basic CN interface of Section5.2.1, and is able to guarantee that each subscriber

receives the minimum number of messages possible (Theorem24), which is far less than

if all events are processed in the sequence in order.

This chapter also relaxes the requirement that only affected subscription may receive

messages. By allowing unaffected subscriptions to receive unnecessary messages, anap-

proximatealgorithm further reduces the number of messages generatedby the server. Ap-

proximate algorithmsPaint-Dense(ε) andPaint-Sparse(ε) are developed with parameter

ε ≤ 1 controlling this trade-off. Compared with their exact counterparts, they reduce

the number of messages by a factor ofεk while guaranteeing that unnecessarily received

objects are ranked within(1± ε)k (Theorem25). Furthermore, such objects are automat-

ically ignored by subscriptions following the same protocol in Section5.2.1, so all results

remain accurate at all times.
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Both extensions above inherit the efficiency ofPaint-Denseand Paint-Sparse, with

running times dependent on the number of messages generatedrather than subscriptions

affected.

This chapter will also briefly discuss how to extend the problem and framework to

higher dimensions, where a subscription’s range of interest becomes ad-dimensional re-

gion. As a concrete illustration, algorithms will be presented for 1.5-dimensional range

subscriptions.

Last but not least, this chapter will also discuss how to extend the problem and frame-

work to the distributed setting with multiple, distributedevent publishers.

Data structures. For all algorithms presented in this chapter, the server maintains a data

structure indexing the set of objectsO by (x, y) as points inR2. This index supports the

following operations:

• Events that update objects inO.

• firstk(x0, y0, s): Here(x0, y0) ∈ R
2 ands ∈ {←,→}. If s is← (resp.→), then this

query finds the firstk objects inO in the southwest (resp. southeast) quadrant with

(x0, y0) as the apex when proceeding in the(−x)-direction (resp.(+x)-direction)

from (x0, y0). If the quadrant contains fewer thank objects, all of them are reported.

Only thex-values of the objects are reported byfirstk, and they are reported in the

order encountered.

• miny(σ, y0): Given anx-value rangeσ and ay-valuey0, this query returns the object

in O with the minimumy-value in the3-sided rectangleσ × (y0,∞).

In this chapter,t(n) (wheren = |O|) is used to denote the upper bounds on running times

of the operations above: object updates andminy all run inO(t(n)) time, whilefirstk runs

in O(t(n) + k) time. If kd-tree is used for the index, then the index size is linear and
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t(n) =
√
n. If O(n log n) space is allowed for the index, then a data structure based on

dynamic range trees[86] can be used to gett(n) = log2 n.

Algorithms for sparse subscriptions also require a data structure indexing the set of

subscriptionsS by (ℓj, rj), the left and right endpoints of theirx-value ranges of interest,

as points inR2. This index supports the following operations:

• Insertion and deletion of subscriptions inS.

• snap(G): Given a rectangleG ⊆ R
2, this query returns the smallest rectangle con-

taining all subscriptions insideR. If there are no such subscriptions,∅ is returned.

Using balanced binaries trees, insertion, deletion, andsnap can all be processed inO(logm)

time (wherem = |S|).

5.3 Geometric Framework

This section introduces a geometric framework essential tothe understanding of the prob-

lem. Section5.4 will reveal, with the help of this framework, the structure inherent in

the seemingly arbitrary subset of affected subscriptions,which allows the task of generat-

ing CN message to be viewed conveniently as one of tiling a complex region using only

rectangles.

Event space. Let E = R
2 denote theevent space, where each objecti is represented as

a point(xi, yi) ∈ R
2 (Figure5.1(a)). Each subscriptionSj is interested in objects that lie

in the vertical stripσj × R; topk(Sj) returns thek lowest among them. For an objecti

and an integerv > 0, let λv(i) (resp.̺v(i)) denote thex-coordinate of thevth rightmost

(resp. leftmost) object in the southwest (resp. southeast)quadrant with apex(xi, yi); if

the quadrant contains less thanv objects, it is set to−∞ (resp. +∞). The procedure

firstv(xi, yi,←) returnsλ1(i), λ2(i), · · · , λv(i), andfirstv(xi, yi,→) returns̺1(i), ̺2(i),
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· · · , ̺v(i). SetL(i) = 〈λv(i) | 1 ≤ i ≤ k〉 andR(i) = 〈̺v(i) | 1 ≤ i ≤ k〉. Theinfluence

intervalof i, denoted byII(i), is defined to be

II(i) = [λk(i), ̺k(i)].

Lemma 7. For subscriptionSj, if i ∈ topk(Sj), thenσj ⊆ II(i).

Proof. If i ∈ topk(Sj), thenxi ∈ σj and at mostk objects lie in the rectangleRj =

σ× [−∞, yi]. If the left endpoint ofσj lies to the left ofλk(i), thenRj contains more than

k objects. Similarly, if the left endpoint ofσj lies to the left of̺k(i), thenRj contains

more thank objects. Hence,σj ⊆ [λk(i), ̺k(i)].

However, there may be a subscriptionSj such thatσj ⊆ II(i) but i 6∈ topk(S). To

fully characterize which subscriptions containi in their top-k list, we introduce the notion

of subscription space and influence region.

Subscription space. Let S = R
2 denote thesubscription space, where each subscrip-

tion with range of interestσ = [ℓ, r] is mapped to the pointσ∗ = (ℓ, r) ∈ R
2 (Fig-

ure 5.1(b)). Objecti is mapped to the northwest quadrantθi with apex at(xi, xi); i.e.,

θi = {(ℓ, r) | ℓ ≤ xi ≤ r}. Sj is interested in objecti only if σ∗
j ∈ θi. A CN message

Msg(ℓI , rI , ℓO, rO, xi, yi) corresponds to notifying, with(xi, yi), all subscriptions in the

rectangle with southeast and northwest corners at(ℓI , rI) and(ℓO, rO), respectively.

To further capture how the objects’y-values affect their ranking, let̃S = S×R denote

the lifted subscription space, where the third dimension corresponds toy-values and is

referred to as they-axis. For subscriptionSj, let σ̃j be the vertical line passing through

σ∗
j ; i.e., σ̃j = σ∗

j × R, oriented in the(+y)-direction. For an objecti, let θ̃i denote the

octantθi × [yi,∞) = {(ℓ, r, y) | ℓ ≤ xi ≤ r ∧ yi ≤ y}, with apex at(xi, xi, yi). A y-value

updateUpd(xi, y
old
i → ynewi ) corresponds to translating̃θi in the y-direction so that its

apex moves from(xi, xi, y
old
i ) to (xi, xi, y

new
i ). There is a bijection between the quadrant
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θi and the bottom faceθi × {yi} of the octant̃θi. If θ̃i is thevth octant intersected by the

line σ̃i, going in(+y)-direction, theni is the rank-v object among the objects in whichSj

is interested. Therefore,topk(Sj) is the list of objects corresponding to the firstk octants

that lineσ̃j intersects iñS, going in the+y direction.

The levelof a pointξ ∈ S̃, denoted by△(ξ), is the number of octants in{θ̃i | 1 ≤ i ≤

|O|} that containξ. For an objecti and an integerv > 0, let θvi ⊆ θi be the set of points in

θi s.t. the level of the corresponding points on the bottom faceof θi is v. That is,

θvi = {σ ∈ θi | △((σ, yi)) = v}.

Setθ≤v
i =

⋃
0<u≤v θ

u
i . It can be verified that ifσ∗

j ∈ θvi , theni is the rank-v object

among the objects in whichSj is interested. Hence ifσ∗
j ∈ θ≤v

i , theni ∈ topv(Sj).

Let Θi = {θj | yj < yi} be the set of quadrants corresponding to the objects whose

y-values are smaller than that ofi. The quadrants in the setΘi partition the quadrantθi

into a familyΘ✷

i of rectangles such that each rectangle lies in the same subset of Θi. For

a pointσ ∈ θi, we define△i(σ) to be1 plus the number of quadrants ofΘi that contain

σ. Note that△i(σ) is the same for all points in (the interior of ) a rectangleR ∈ Θ✷

i

and we denote this value by△(R). Furthermore, if△(R) = v , thenR ⊆ θvi . Hence,

θ
(v)
i =

⋃{R ∈ Θ✷

i | △(R) = v}. For any pointσ ∈ θi, as we move in the north or the

west direction, the value of△i(σ) cannot increase because if a quadrant containsσ, then

it also contains all points that lie in the northwest quadrant with σ as the apex. Hence, the

rectangles ofΘ✷

i that lie inθvi form a staircase, and the regionθ≤v
i is a staircase.

Influence region. For an objecti, we define its influence region, denoted byIR(i), to be

θ≤k
i . The following lemma follows from the above discussion.

Lemma 8. For any subscriptionSj, i ∈ topk(Sj) if and only ifσ∗
j ∈ IR(i).

In other words,IR(i) characterizes the set of subscriptions that contain objecti in their

top-k lists. We next understand the structure ofIR(i).
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Let D(i) = {θj | xj ∈ L(i) ∪ R(i)}. We show thatL(i), R(i), andD(i) completely

defineIR(i). Let IR✷(i) be the partition ofIR(i) with rectangles induced by the quadrants

of D(i).

Lemma 9. (i) IR(i) does not intersect any quadrant ofΘi\D(i).

(ii) IR✷(i) = IR(i) ∩Θ✷

i , i.e. IR✷(i) is the same as the partitionΘ✷

i restricted toIR(i).

Proof. (i) SupposeIR(i) intersect a quadrantθj ∈ Θi\D(i). Thenλk(i) < xj < ̺k(i).

W.L.O.G., assumexj < xi. Sinceyj < yi andλk(i) < xj, objectj is one of thek − 1

rightmost objects in the southwest quadrant with apex(xi, yi). Thus,xj ∈ L(i). By

definition ofD(i), θj ∈ D(i), which is a contradiction.

(ii) Since IR(i) does not intersect any quadrant ofΘi\D(i), the partition ofIR(i) in-

duced by the quadrants inΘi is the same as the partition ofIR(i) induced by the quadrants

in D(i).

We next describe the geometric structure ofIR(i).

Lemma 10. Let ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓk be the values inL(i) and r1 ≤ r2 ≤ · · · ≤ rk be

the values inR(i). Setℓ0 = r0 = xi. ThenIR(i) is a staircase polygon with vertices

(ℓk, r0), (ℓk, r1), (ℓk−1, r1), . . . , (ℓ1, rk−1), (ℓ0, rk), (ℓ0, rk).

Proof. For0 < u, v < k, a point in the rectangle[ℓu+1.ℓu)× [rv, rv+1) lies inu quadrants

of D(i) that lie aboveθi, so for0 < u ≤ k, △i(ξ) = k for all pointsξ ∈ [ℓu, ℓu−1) ×

[rk−u, rk−u+1). Hence,(ℓu, rk−u), (ℓu, rk−u+1), and(ℓu−1, rk−u+1) are vertices ofIR(i).

An example ofIR(i) is shown in Figure5.2, in whichk = 5 and the numbers indicate

the level number of rectangles ofΘ✷

i . GivenL(i) andR(i), IR(i) and IR✷(i) can be

computed inO(k) andO(k2) time, respectively. Finally, we describe howIR(i) changes
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FIGURE 5.2: Tiling IRnew(i) (shaded,k = 5) by CN messages (shown with thick out-
lines).

as we increase (or decrease) the value ofyi. Suppose we changeyi from yoldi to ynewi .

If the setD(i) does not change as we varyyi from yoldi to ynewi , IR(i) does not change

(by Lemmas9 and10), and thus the top-k list does not change for any subscription (by

Lemma8). The setD(i) changes whenL(i) or R(i) changes, which happens whenyi

becomes equal toyj for some objectj such thatxj ∈ II(i). We say that the objecti

encountersobjectj when this happens. Objectj is referred to as anexposedobject. We

describe howIR(i) and IR(j) change wheni encountersj, i.e., whenyi changes from

yoldi = yj − ǫ to ynewi = yj + ǫ for some sufficiently smallǫ such that no other objects has

its y-value in the interval[yoldi , ynewi ].

For an objects, letKs = θks . We defineDold(i), Rold(i), Kold
i (resp.Dnew(i), Rnew(i),

Knew
i ) to beD(i), R(i), andKi for yi = yoldi (resp.yi = ynewi ). Similarly, we define these

sets for objectj. ThenDnew
i = D

old
i ∪ {j} andDnew

j = D
old
j \{i}.

Lemma 11. LetK = Kold
i ∩ θj. ThenIR(i) = IRold(i)\K andIRnew(j) = IRold(j) ∪K.

Proof. For any pointξ ∈ IRold(i),△i(ξ) remains the same foryi = yoldi andyi = ynewi if

ξ 6∈ θj but it increases by1 if ξ ∈ θj. Hence,△i(ξ) becomesk + 1 for all ξ ∈ K and thus

ξ 6∈ IRnew(i). This proves thatIRnew(i) = IRold(i)\K.

On the other hand, for any pointη ∈ θj,△j(η) remains the same ifη 6∈ θi but decreases

by 1 if ξ 6∈ θi (sinceθi 6∈ D
new(j)). Since they-value of no other object lies in the range
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IRold(j) IRnew(j)

IRnew(i)IRold(i)

K K

Kold
i

Kold
j

FIGURE 5.3: IR(i), IR(j), andK are shown as the pink, blue, and double dashed regions,
respectively. Objecti (resp. j) ranksk-th w.r.t. all preferences in the dashed pink (resp.
blue) region. When objecti encounters objectj, IR(i) shrinks andIR(j) expands as shown
in the right figure.

[yoldi , ynewi ], for a pointη ∈ θj ∩ θi, if a quadrantθs ∈ D
old(j) for s 6= i, j, containsη then

θs ∈ D
old(i) and vice-versa. Hence,△j(η) = △old

i (η) + 1 and△j(η) = △old
j (η) − 1 =

△old
i (η) = △new

i (η) − 1. In other words, ifη ∈ K, i.e. △old
i (η) = k, then△new

j (η) = k

andη ∈ IRnew(j). Consequently,IRnew(j) = IRold(j) ∪K.

Figure5.3demonstrates howIR(i) andIR(j) change as the value ofyi increases. By

Lemma11, IRnew(i) ⊕ IRold(i) = IRnew(j) ⊕ IRold(j) = K. We note that givenL(i)

,R(i), andKi, K can be computed inO(k) time.

Finally, we note that the change in the influence region as object i encounters object

j while we decrease they-value ofi is similar—switch the role ofi andj. The influence

intervals ofi andj also change. Supposexj > xi. Thenλold
k (i) = λnew

k (i) but ̺newk (i) =

max{xj, λ
old
k−1(i)} < ̺oldk (i), and̺newk (j) = ̺oldk (j) andλnew

k (i) = λold
k+1(i).

Example. Refer to Fig.5.1and5.4. All subscriptions other thanS5 are interested in object5. In

S, the northwest quadrantθ5 containsσ∗
1, σ∗

2, σ∗
3, σ∗

4, but notσ∗
5. Supposek = 3. The influence re-

gion of object5 is an axis-aligned subregion of the quadrant with vertices(x5, x5), (ℓ3, x5), (ℓ3, r1), (ℓ2, r1),

(ℓ2, r2), (ℓ1, r2), (ℓ1, r3), (x5, r3) in clockwise order, whereℓ1, ℓ2, andℓ3 (resp.r1, r2, r3) are the
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FIGURE 5.4: Partitioning of quadrantθ5 (shaded) inS for object5. Rectangles are shown
with level numbers. Objects that do not contribute to this partitioning (because they have
largery-values than that of5) are shown as circles and with dashed-line quadrants. The
influence region of5, IR(5), for k = 3, is shown with thick outline.

x-values of objects4, 2, and1 (resp. objects7, 9, and10), respectively. SinceS2 andS3 rank

object5 at third,σ∗
2 andσ∗

3 lie in θ35 ⊂ IR(5). Similarly,S4 ranks object5 at second andσ∗
4 lies in

θ25 ⊂ IR(5). However,σ∗
1 ∈ θ45 6⊂ IR(5) becauseS1 ranks object5 at fourth and therefore, object

5 is not in topk(S1). When object5’s y-value increases as shown, object5 is replaced by object

3 in topk(S2), and by object6 in topk(S3) andtopk(S4). CN messages (dashed rectangles) are

generated to notifyS2, S3 andS4.

5.4 Exact Algorithms

5.4.1 Subscription-Oblivious

Consider an eventUpd(xi, yoldi → ynewi ), which moves the octant̃θi in the vertical direction from

positionyoldi to ynewi . Let IRold(i) (resp.IRnew(i)) denote the influence region of objecti before

(resp. after) the update. There are two cases:yoldi > ynewi , which possibly raises objecti’s rank,

andyoldi < ynewi , which possibly lowers objecti’s rank.

Rank-raising update. This case is simple. It can be easily seen that ifyoldi > ynewi , then

IRnew(i) ⊇ IRold(i). Every subscriptionSj in IRold(i) (i.e.,σ∗
j ∈ IRold(i)) must receive(xi, ynewi )

to update they-value of objecti in topk(Sj). Every subscriptionSj in IRnew(i) \ IRold(i) must

receive(xi, ynewi ) as a new object intopk(Sj), which would displace some other object from

topk(Sj). In sum, it suffices to notify all subscriptions inIRnew(i) with (xi, y
new
i ). Since each CN
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FIGURE 5.5: Effect onIRz(i) of encountering exposed objecthj during the sweep. Before
the encounter,IRz(i) contains both darkly and lightly shaded rectangles (level numbers
before the encounter are shown in Figure5.2); after the encounter,IRz(i) contains only the
lightly shaded rectangles. The difference, which is gainedby hj asIRnew(hj) \ IRold(hj),
is tiled by CN messages shown with thick outlines.
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3 4 5
6 7
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IIz(i)
z

FIGURE 5.6: Sweep inE (k = 3). The
width of the shaded area aty = z corre-
sponds toIIz(i). Exposed objects are num-
bered in the order encountered.
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FIGURE 5.7: Tiling IRold(i) \ IRnew(i) by
CN messages. Rectangles with the same
fill pattern are for the same exposed object.

message reaches a rectangle inS, andIRnew(i) has up tok “steps,” in the worst casek messages

are needed to tileIRnew(i), as illustrated in Figure5.2. The detailed algorithm,Paint-Dense-IR, is

presented in Algorithm3.Its running time, dominated by the twofirstk calls to compute the new

IR(i), isO(t(n) + k).

Rank-lowering update. This case is more complex. Ifyoldi < ynewi , thenIRnew(i) ⊆ IRold(i).

First, all subscriptions inIRold(i) are notified with(xi, ynewi ) using no more thank messages, in

the same way asIRnew(i) is tiled for a rank-raising update. These messages allow subscriptions

to update they-value of objecti in their top-k lists. For those inIRnew(i), no more messages are

needed.

Next, for each subscription inIRold(i)\ IRnew(i), it needs to further receive an object that will
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Algorithm 3 : Paint-Dense(xi, yoldi , ynewi )
begin1

if Rank-Raising Updatethen2
L← firstk(xi, y

new
i ,←); R← firstk(xi, y

new
i ,→) ;3

Paint-Dense-IR(i,L,R) ;4

else ifRank-Lowering Updatethen5
L← firstk(xi, y

old
i ,←); R← firstk(xi, y

old
i ,→) ;6

Paint-Dense-IR(i,L,R) ;7
II = conv(L ∪ R); v ← yoldi ;8
while v < ynewi do9

hj ← miny(II, v) ;10
Paint-Dense-Exposed(hj , i,L,R) ;11
if xhj

< xi then12
L← L ∪ {xhj

} ;13
if |L| > k then14

deleteLast(L) ;15

else16
R← R ∪ {xhj

};17
if |R| > k then18

deleteLast(R);19

II = conv(L ∪ R); v ← yhj
;20

end21

replacei in its top-k list.6 As described in the previous section, such objects are exposed by the

ranking-lowering update, and clearly must have their influence regions expanded. The task then is

to notify the subscriptions inIRold(i) \ IRnew(i) with respective exposed objects.

Imagine that objecti’s y-value increases continuously fromyoldi to ynewi , i.e., sweeping the

octantθ̃i from its old position to its new position iñS. Let IRz(i) andIIz(i) denote the influence

region and influence interval ofi when itsy-value is set toz. By Lemma11, areas gradually “lost”

during the sweep byIRz(i) (which starts out asIRold(i) and eventually shrinks toIRnew(i)) are

“gained” by exposed objects’ influence regions, as shown in Figure5.5. For each exposed objecthj ,

consider the pointz = yhj
−ǫ right before crossing. Any subscriptionS in θki ∩θhj

⊆ IRz(i)∩θhj

is interested in both objectsi andhj , andi ranks thek-th in topk(S). Whenz changes fromyhj
−ǫ

to yhj
+ ǫ, objectsi andhj swap their ranks, andhj would entertopk(S) as the result of the

update. On the other hand, for any unexposed objecth, whenz crossesyh during the sweep (if

6 Note that this subscription must receive(xi, y
new
i ) before receiving the replacement object; otherwise,

the replacement object would appear to be out of the top-k list because of the staley-value ofi.
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at all), IRz(i) ∩ θh = ∅, implying that objecti ranks strictly lower than thek-th for subscriptions

interested in bothi andh; therefore, swappingi andh’s ranks would not puth into any top-k list.

The algorithm is now described in more detail. During the sweep, the algorithm maintains the

list Lz (resp.Rz), which is initialized byfirstk(xi, yoldi ,←) (resp.firstk(xi, yoldi ,→)) and always

contains thex-values of the firstk objects inO to the west (resp. east) ofxi with y-values less

thanz, padded with−∞ (resp.∞) if there are fewer thank such objects. By Lemma10, Lz and

(a) Initial influence region of
objecti, IR(i).

1

(b) Reach the first exposed ob-
ject.

1

2

(c) Reach the second exposed
object.

1

2

3

(d) Reach the third exposed ob-
ject.

1

2

3

4

(e) Reach the fourth exposed
object.

1

2

3

4

5

(f) Reach the fifth exposed ob-
ject.

1

2

3

4

5

6

(g) Reach the sixth exposed ob-
ject.

1

2

3

4

5

6

7

(h) Reach the seventh exposed
object.

1

2

3

4

5

6

7

8

(i) Reach the eighth exposed
object.

FIGURE 5.8: Illustration of the rank-lowering update shown in Figure5.6.
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Rz allow us to readily obtainIRz(i), IIz(i), and the partitioningIRz
✷
(i) of IRz(i) as needed. The

next exposed object abovez corresponds to the object with the minimumy-value in the3-sided

rectangleIIz × (z,∞) in E, and can be found byminy(II
z(i), z), as illustrated in Figure5.6.

Say the exposed object found ishj . Lz andRz are incrementally updated by addingxhj
to the

appropriate list (Lz if xhj
< xi, orRz otherwise), and removing from that list thex-value furthest

fromxi. Lemma10tells us how this incremental update toLz andRz shrinksIRz(i). The area lost

from IRz(i) is shaped as a series of up tok rectangles along a diagonal in the northeast direction, as

illustrated in Figure5.5. Specifically, the algorithm “paints” over the intersection ofIRz(i) andθhj

(quadrant of the exposed object), incrementing the level numbers by1. Rectangles in the updated

IRz
✷
(i) with level greater thank should be removed fromIRz(i). By Lemma11, these rectangles

together formIRnew(hj)\ IRold(hj). Hence, one CN message is generated for each such rectangle

with the exposed object values(xhj
, yhj

). Figures5.8 illustrate the sweep procedure inS.

Algorithm 4 : Paint-Dense-IR(i, L, R)
begin1

M← {} // Rectangles that only contain affected subscriptions ;2
a← |L|; b← |R|;3
if a+ b < k then4

M←M ∪ {Msg(xi, xi,−∞,∞, xi, yi)} ;5

else ifa = 0 then6
M←M ∪ {Msg(xi, xi,−∞, rk, xi, yi)} ;7

else8
if b < k then9

M←M ∪ {Msg(xi, xi, ℓk−b,∞, xi, yi)} ;10

if a < k then11
M←M ∪ {Msg(ℓa, xi,−∞, rk−a, xi, yi)} ;12

z ← k + 1− b;13
while z ≤ a do14

M←M ∪ {Msg(ℓz−1, xi, ℓz, rk+1−z, xi, yi)} ;15
z ← z + 1 ;16

GENERATEMSG(M) // Generate messages ;17
end18

When the sweep stops atz = ynewi , IRold(i) \ IRnew(i) will have been completely tiled by

messages associated with exposed objects, as shown in Figure5.7. The complete algorithm,Paint-

Dense, is presented in Algorithm3.Processing each exposed objecthj takesO(t(n) + µj) time
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Algorithm 5 : Paint-Dense-Exposed(hj, i, L, R);
begin1

M← {} // Rectangles that only contain affected subscriptions ;2
a← |L|; b← |R|;3
if xhj

> xi then4
if a+ b < k then5

M←M ∪ {Msg([xi, xhj
], [−∞,∞], (xhj

, yhj
))} ;6

else ifa = 0 then7
M←M ∪ {Msg([xi, xhj

], [−∞, rk], (xhj
, yhj

))} ;8

else9
if b < k then10

M←M ∪ {Msg([xi, xhj
], [ℓk−b,∞], (xhj

, yhj
))} ;11

if a < k then12
M←M ∪ {Msg([ℓa, xhj

], [−∞, rk−a], (xhj
, yhj

))} ;13

z ← k + 1− b;14
while z ≤ a do15

M←M ∪ {Msg([ℓz−1, rk−z], [ℓz, rk+1−z], (xhj
, yhj

))} ;16
z ← z + 1 ;17

else18
// The “xhj

< xi” case is symmetric to the “xhj
> xi” case. ;19

GENERATEMSG(M) // Generate messages ;20
end21

whereµj ≤ k is the number of messages generated forhj . Therefore, tilingIRold(i) \ IRnew(i)

takesO(νt(n)+
∑

1≤j≤ν(µj+log k)) time, whereν is the number of exposed objects. Initializing

Lz andRz for the sweep and tilingIRold(i) takeO(t(n)+k) time, so the overall time isO(ν(t(n)+

log k) + µ+ k), whereµ is the total number of messages generated.

Discussion. Paint-Dense’s time complexity is summarized below.

Theorem 12.Paint-Denseruns in timeO(t(n)+k) for a rank-raising update, andO(νt(n)+µ+k)

time for a rank-lowering update, whereµ is the number of messages generated andν is the number

of objects exposed by a rank-lowering update. For a rank-lowering update,ν < µ ≤ (ν + 1)k.

Proof. As shown in Algorithm3, a rank-raising update involves twofirstk calls, each of which

takesO(t(n) + k) time, and onePaint-Dense-IRcall which takesO(µ) time, whereµ ≤ k. Thus,

the running time of a rank-raising update isO(t(n) + k). For a rank-lowering update, initializing

Lz andRz for the sweep and tilingIRold(i) takeO(t(n) + k) time. Processing each exposed
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objecthj takesO(t(n) + µj) time, whereµj ≤ k is the number of messages generated forhj .

TheO(t(n)) term comes from oneminy call. The insertion or deletion of an element fromLz

andRz takesO(log k) time, which is dominated byt(n). Thus, tilingIRold(i) \ IRnew(i) takes

O(νt(n) +
∑

1≤j≤ν µj) time, whereν is the number of exposed objects. The overall time is

O(νt(n) + µ + k), whereµ is the total number of messages generated. In addition,ν < µ ≤
(ν + 1)k. The first inequality follows from the fact that at least one message is generated for

each exposed object and objecti itself. The second inequality follows from the fact that at mostk

messages is generated for objecti and each exposed object.

If subscriptions are not allowed to receive false positives,Paint-Denseis optimal in the number

of messages that it generates for dense subscriptions.

Theorem 13. For dense subscriptions, the number of CN messages generated byPaint-Denseis

the minimum possible for any exact algorithm.

Proof. It is trivial to show that both Algorithms4 and5 generate the minimum number of messages

for any object. The theorem immediately follows from the fact that messages are only generated

for objecti and the exposed objects.

The next result reveals the inherent complexity in handling range top-k subscriptions. Although

the worst case for a rank-lowering update event can be quite bad (exposingΘ(|O|) objects), it is

not expected to be common in practice, as stated by the following lemma:

Lemma 14. O(k) objects are injected into network if the object whose value is increased is chosen

uniformly at random.

Proof. For an objecti, let ηi be the number of objectsj such that increasing the value ofj to∞
causes Algorithm3 to inject a message involving the objecti. Then the expected number of objects

injected by the rank-lowering update is bounded by
∑n

i=1 ηi/n. Moreover, if increasing the value

of j injects a message involvingi, thenyj < yi and the event expands the influence regionIR(i).

This happens only whenxj ∈ L(i) ∪ R(i) before the event but not after itsy-value has increased.

Since|L(i) ∪ R(i)| ≤ 2k, ηi ≤ 2k, and thus the expected number of objects injected isO(k).

In fact, as the following theorem shows, the expected number of messagesis only Θ(k2) if

objects to be updated are picked randomly.
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Theorem 15. For any exact algorithm given dense subscriptions, a rank-raising update event

requiresΘ(k) CN messages and a rank-lowering update event requiresΘ(nk) CN messages in the

worst case. If each rank-lowering update event chooses an objectto update uniformly at random,

the expected number of CN messages required isΘ(k2).

Proof. Recall that Algorithms4 and5 generate at mostk messages for objecti and each exposed

object. Decreasing they-value of objecti injects only one object, namelyi itself. In the worst case,

increasing the value of an objects causes alln objects to be exposed. By Lemma14, the expected

number of objects injections isO(k). This completes the proof of the theorem.
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FIGURE 5.9: Lower bound construction:y-values are written along the diagonal line;
number inside each rectangle is the level of objecti.

Finally, Figure5.9shows that if the value ofi is increased from1 ton+2,Ω(nk) messages need

to be injected into the network, namely, one for each rectangle in the figure. The same example

also shows the bound on the expected number of messages is also tight.

5.4.2 Subscription-Aware

If the server is given the knowledge about the distribution of subscriptions, the number of CN

messages generated by the server can be reduced. In particular, the algorithm can avoid sending
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FIGURE 5.10: Reducing the number of
rectangles coveringP. Subscriptions inP
are shown as circles while those inS \ P
are shown as dots. Rectangles inGdense are
shaded; rectangles in the optimal covering
are shown with thick outlines.
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FIGURE 5.11: Finding the next interesting
exposed object. The staircase is the current
IRz(i). Circles represent subscriptions in-
sideIRz(i), and are enclosed by the dashed
quadrant with apex at(ℓz, rz). Objecth′,
with the darkly shaded quadrant, is an ex-
ample of an exposed, but inessential object.

messages whose corresponding rectangles inS contain no subscriptions, and can combine multiple

messages into one as long as their bounding rectangles contain no extraneous subscriptions and

they carry the same object values.

The general problem can be formulated as a geometric optimization problem:Given a subset of

subscriptionsP ⊆ S (to notify with the same object values), find a set of rectanglesG in S such that

every point ofP lies in exactly one rectangle ofG and no point ofS \ P lies in any rectangle ofG.

The goal is to minimize the number of rectangles inG. Figure5.10illustrates this problem. A brute-

force approach is to compute the setP and then solve the standard rectangular covering problem

onP. However, doing so requires us to enumerate potentially large sets of affected subscriptions,

which we would like to avoid, and this problem is NP-complete in general [12].

A better approach would be to take a list of (at mostk) rectanglesGdense produced byPaint-

Dense(corresponding to a list of messages with the same object values) as a compact description

of P = Gdense ∩ S, and then solve the problem onGdense with the knowledge ofS. A simple solu-

tion is to go through each rectangleG ∈ Gdense and setG to snap(G) onS; if snap(G) = ∅ (i.e.,

G contains no subscriptions), simply discardG. However, this solution misses the opportunity

to combine multiple rectangles into one without introducing false positives, as illustrated in Fig-

ure5.10. Furthermore, it is possible that the entireGdense produced byPaint-Densefor an exposed

object contains no subscriptions, in which case we would like to avoid examining this exposed

object and generatingGdense in the first place.
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Algorithm Paint-Sparseachieves both goals above. To achieve the first goal of being able to

merge rectangles, a greedy approach is taken. Recall from Section5.4.1 that Paint-Densegen-

erates either a list of south-north rectangles forming staircase (for an updated object’s influence

region) or a list of rectangle forming a diagonal chain (for an exposed object’s gain in influence

region). In either case, the given rectanglesGdense = {G1, G2, . . .} are ordered from west to east.

Gj ’s are processed in order to produce the output setGgreedy. If Gj can be accommodated by en-

larging the rectangleG that was last produced inGgreedy without introducing false positives (i.e.,

MEB(G, snap(Gj)) ∩ (S \ Gdense) = ∅, whereMEB denotes minimum enclosing box),G is re-

placed byMEB(G, snap(Gj)). Otherwise,snap(Gj) (if it is not ∅) is added toGgreedy. Thanks to

the special properties of rectangle sets produced byPaint-Dense, it can be shown that this greedy

approach, andPaint-Sparseas a whole, is within a factor of2 optimal in the number of messages

generated for any exact algorithm (without assuming dense subscriptions).

Theorem 16. Given any set of subscriptions, the number of CN messages generatedby Paint-

Sparseis at most twice the minimum possible for any exact algorithm.

Proof. Let Gdense = {G1, G2, . . .} andP = Gdense ∩ S. LetPa = P∩Ga. If a rectangleG ∈ Gopt

contains points ofPa andPb for 1 ≤ a < b ≤ k, thenG also coversPa+1, . . . ,Pb−1. This

property implies that the greedy algorithm is2-approximate because eachG is covered by one or

two rectangles generated byPaint-Sparse. By construction,Paint-Sparseskips all uninteresting

exposed objects. Therefore, the number of messages generated byPaint-Sparseis at most twice

the minimum possible for any exact algorithm.

The cost of each greedy step is dominated by the test of whetherG can accommodateGj . This

test can be done by evaluating a small constant number ofsnap queries.7 Since|Gdense| ≤ k, Paint-

SparsespendsO(k logm) time to generate messages for the updated object and for each exposed

object.

An exposed objecth is said to beinterestingif the gain inh’s influence region contains some

subscription inS; i.e., some message(s) must be generated withh’s values. To achieve the second

goal above of skipping inessential exposed objects without enumerating all exposed objects,Paint-

Sparsemodifies the method of finding the next exposed object as follows. Supposethe sweep is

7 Specifically, the regionMEB(G, snap(Gj)) \ G \ snap(Gj) is covered with at most3 rectangles, and
check whethersnap returns∅ for all of them.
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currently at positionz, where the updated objecti’s y-value is set toz. Recall thatIRz(i) and

IIz(i) denote the influence region and influence interval ofi at this point. With the knowledge of

S, let ℓz = min{ℓ | (ℓ, r) ∈ S∩ IRz(i)} andrz = max{r | (ℓ, r) ∈ S∩ IRz(i)}; i.e.,(ℓz, rz) is the

apex of the smallest southeast quadrantQz ⊆ S enclosing all subscriptions inIRz(i), as illustrated

in Figure5.11. Paint-Densefinds the next exposed objecth to process ash = miny(II
z(i), z)

in E. However,h is interesting only if its quadrantθh intersects with quadrantQz containing

actual subscriptions. Hence, the next exposed objecth to process is found ash = miny(II
z(i) ∩

[ℓz, rz], z) = miny([ℓ
z, rz], z) in E, allowingPaint-Sparseto skip inessential exposed objects.

Note that givenLz andRz (see Section5.4.1), ℓz andrz can be computed from the answers

of up tok snap calls inS, one for each south-north rectangle coveringIRz(i). Thus, compared

with Paint-Dense, Paint-Sparsespends an extraO(k logm) time for finding each interesting ex-

posed object, and as discussed above, an extraO(k logm) time to merge messages for the updated

object and for each interesting exposed object. The overall time complexity of Paint-Sparseis

summarized below.

Theorem 17.Paint-Sparseruns in timeO(t(n)+k logm) for a rank-raising update, andO(ν̌(t(n)+

k logm)) time for a rank-lowering update, wherěν is the number of interesting exposed objects (to

distinguish it fromν in Theorem12, the number of exposed objects). For a rank-lowering update,

ν̌ < µ̌ ≤ (ν̌ + 1)k, whereµ̌ is the number of messages generated byPaint-Sparse.

Proof. For each exposed object,Paint-Sparsealso performs snapO(k) queries on the set of sub-

scriptions besides aminy query on the set of objects. Therefore, a rank-lowering update requires

an additionalO(k logm) cost for each interesting exposed object. The remaining part of the proof

follows from the same argument as in the proof of Theorem12.

Remark. If the entireS is too expensive to maintain for the server, it can maintain a small sketch

of S, e.g., a cover ofS byB rectangles inS for a parameterB, and use this cover instead ofS itself in

Paint-Sparse. This approach would provide a continuous trade-off between the costof maintaining

and utilizing information about subscriptions and the number of CN messages generated.

Paint-Sparse’s optimization of merging multiple messages, while reducing the number of mes-

sages, increases the areas of rectangles inS corresponding to messages. Larger areas may, for some

CN implementations, imply higher dissemination costs. Nonetheless, note that message merging
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2 2
3

(a) (b)

FIGURE 5.12:a) Subscription space. Each halfplane is shown in blue color. Suppose the
halfplane with red line correspond to objecti, and the ones with dashed lines are ranked
lower thani. ThenIR(i) is the yellow region whenk = 2. The numbers indicate the
rank of objecti for all subscriptions in the cells defined by the solid lines.b) Lifted
subscription space.̃θi is the second halfplane intersected by any lineσ̃i passing through
the yellow regions in (+y)-direction.

in Paint-Sparseis done in a careful way to avoid false positives, so these larger areas do not reach

any more subscriptions and traffic to subscriptions remains minimized. Furthermore, reducing the

number of messages is effective in relieving the bottleneck at the server and message injection

point.

5.5 Generalization

The geometric framework presented in this chapter is quite general and extends to high dimensions

as well as different types of ranges and user preferences. First, auser interest needs not be an

axis-aligned rectangles; it can be a disk, halfplane, etc. Second,E can be generalized to aRd; α

of thed attributes are used forselectionby subscriptions. Although the objects are ranked w.r.t.

a common attributeY in this chapter, additionalβ parameters can be specified for the ranking

function. For example, in Chapters3 and4, a user preference is defined as a linear combination

of d attribute weights, andβ = d − 1. In this generalized setting,S and S̃ becomesRα+β and

R
α+β+1, respectively.

5.5.1 Halfplane query

This section shows how to handle selection ranges which are specified as linear constraints. For ex-

ample, if a real estate buyer is looking for houses whose carpet-to-saleable area ratio is at least80%,
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FIGURE 5.13: Influence rectilinear polygonIP(i) ⊂ E for k = 3. a) Only the ob-
jects which are ranked higher than objecti are displayed. The number next to each ob-
ject i′ indicates the number of objects in the range(min{x(1)

i , x
(1)
i′ },max{x(1)

i , x
(1)
i′ }) ×

(−∞,max{x(2)
i , x

(2)
i′ }). b) PartitioningIP(i) into rectangles.

her selection range can be expressed as the linear constraint:carpet area−0.8∗ saleable area >

0. This range query is also known as ahalfplane querywhenE = R
2. To maintain top-k ob-

jects for the case of halfplane, each subscriptionσj : x(2) ≥ a
(1)
j x(1) + a

(2)
j is mapped to a

point σ∗
j = (a

(1)
j , a

(2)
j ) in the subscription spaceS; and each objecti is mapped to a halfplane

θi : χ
(2) ≤ −x(1)i χ(1) + x

(2)
i in S. To rank the set of objects for each subscription, each halfplane

θi is further mapped toθi × [yi,∞) in the lifted subscription spacẽS. It can be verified thatSj is

interested ini iff σ∗
j ∈ θi. Figure5.12shows an example of the influence regionIR(i) ⊆ θi for the

case of halfplane. By triangulating an arrangement of halfplanes,IR(i) can always be partitioned

into a set of triangles, each of which can be described usingO(1)-size. When they-value of ob-

ject i is updated, triangle messages (instead of rectangle ones) are generatedand inserted into the

network.

5.5.2 1.5-dimensional range subscriptions

As a concrete illustration of how the framework is generalized to a higher dimensional case, this

section presents algorithms for1.5-dimensional range subscriptions inE = R
3. Two numeric

attributes{X1, X2} are used for selection by subscriptions, and an additional numeric attributeY is

used for ranking (in ascending order). Each objecti ∈ O is modeled as a point(x(1)i , x
(2)
i , yi) ∈ E.

Each subscriptionSj ∈ S specifies a region of interestσj = [ℓ
(1)
j , r

(1)
j ] × (−∞, r

(2)
j ] ⊆ R

2. An

133



Algorithm 6 : ComputeInfluenceRectilinearPolygon(x(1)
i , x(2)

i , yi)
begin1

t← 0; ut ← x
(2)
i ;2

Lt ← firstk(x
(1)
i , x

(2)
i , yi,←); Rt ← firstk(x

(1)
i , x

(2)
i , yi,→) ;3

IIt = conv(Lt ∪ Rt); hj ← minX(2)(IIt, x
(2)
i , yi) ;4

while hj 6= ∅ do5
(Lt+1,Rt+1)← UpdateList(Lt,Rt, x

(1)
i , x

(1)
hj

);6

IIt+1 = conv(Lt+1 ∪ Rt+1); ut+1 ← x
(2)
hj

;7
hj ← minx(2)(IIt+1, ut+1, y

new
i ) ;8

t← t+ 1;9

return (Lz,Rz, uz, IIz)
t
z=0;10

end11

example is shown in Figure5.13(a).

Recall that for the single dimensional range subscriptions, the influence interval of objecti,

II(i), containsσj if i ∈ topk(Sj). For 1.5-dimensional range subscriptions,II(i) is generalized

to be aninfluence (rectilinear) polygonIP(i) ⊂ E. More precisely,IP(i) is defined by the left

and rightX2-monotone boundary chains, as shown in Figure5.13(a). For any point(h(1), h(2))

on the left boundary chain ofIP(i), h(1) is the same asx(1)i′ , wherei′ is thek-th rightmost object

in O in the orthant{(x(1), x(2), y) ∈ E | x(1) ≤ x
(1)
i , x(2) ≤ max{x(2)i , h(2)}, y ≤ yi}. The

right boundary chain can be defined similarily. As in the case ofII(i), objecti is contained in

subscriptionSj ’s top-k list only if σj ⊆ IP(i). For instance, in Figure5.13(a), objecti ranks below

k for subscriptionσj asσj is not contained inIP(i).

Algorithm 6 shows the sweep plane algorithm for computingIP(i). A plane is swept across the

input objects fromx(2) = x
(2)
i to x(2) = ∞ in E. For eachx(2)-valueu ∈ [x

(2)
i ,∞), L maintains

the firstk objects inO in the orthant{(x(1), x(2), y) ∈ E | x(1) ≤ x
(1)
i , x(2) ≤ u, y ≤ yi} when

proceeding in the (-x(1))-direction. Similarly,R maintains the firstk objects inO in the orthant

{(x(1), x(2), y) ∈ E | x(1) ≥ x
(1)
i , x(2) ≤ u, y ≤ yi} when proceeding in the (x(1))-direction.

One key observation is thatL or R is changed only if the plane crosses an objecti′ ∈ IP(i) which

is ranked higher than objecti, i.e., yi′ < yi. Therefore,IP(i) can be presented in the form of

(Lz,Rz, uz)
t
z=0 by partitioning it into a set of rectangles, as shown in Figure5.13(b). LetLz and

Rz be the current lists. When the sweep plane crosses objecti′, the lists are updated and stored as
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FIGURE 5.14: Influence region inS; k =
3.
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FIGURE 5.15: Computing the influence re-
gion inS.

Lz+1 andRz+1; uz+1 is set tox(2)i′ .

The subscription spaceS is generalized toR3, where each subscriptionSj is mapped to the

point (ℓ(1)j , r
(1)
j , r

(2)
j ). Objecti is mapped to the orthant inS with apex at(x(1)i , x

(1)
i , x

(2)
i ), i.e.,

{(ξ(1), ξ(2), ξ(3)) ∈ E | ξ(1) ≤ x
(1)
i , ξ(2) ≥ x

(1)
i , ξ(3) ≥ x

(2)
i }. SubscriptionSj is interested

in object i iff (ℓ
(1)
j , r

(1)
j , r

(2)
j ) is contained in the orthant with apex at(x

(1)
i , x

(1)
i , x

(2)
i ). For 1.5-

dimensional range subscriptions, the influence region ofi, IR(i) ⊂ S, is a rectilinear polyhedron

whose vertices are determined by the objects who are ranked higher thani in IP(i); see Figure5.14.

Given(Lz,Rz, uz)
t
z=0, a set of tiles can be computed to precisely describeIR(i); see Figure5.15.

5.5.2.1 Rank-raising update

Recall that for the single dimensional range subscriptions, given a rank-raising update of ob-

ject i, the two listsLnew andRnew are computed byfirstk(xi, ynewi ,←) andfirstk(xi, ynewi ,→).

Given Lnew andRnew, the influence regionIRnew(i) can then be computed in time linear in

the number of vertices ofIRnew(i). Now for 1.5-dimensional range subscriptions, the sweep

line algorithm returns(Lnew
z ,Rnew

z , unewz )tz=0, as discussed above. For eachz ∈ {0, 1, · · · , t},
messages are generated in the same way as the case of1-dimensional range subscriptions, ex-

cept that each rectangle message is3-dimensional (the extra side is(uz, uz+1]). These rectan-

gles together contains all and only the set of affected subscriptions whose x(2)-value is between

(uz, uz+1]. Note that messages generated at differentz values may be compatible with each other,
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FIGURE 5.16: The new exposed objecthj

is shown as a circle. The influence rec-
tilinear polygon is shrunk by pruning the
shaded region.

x
(2)
hj

∞

u5

u5

u4

u4

FIGURE 5.17: Subscriptions in the shaded
regions need to be notified ofhj. The
two messages at the bottom can be further
merged with the two messages in the mid-
dle.

i.e.,MEB(Msg1,Msg2) = Msg1 ∪ Msg2. They can be further merged to reduce the number of

messages to tile the influence regionIRnew(i).

5.5.2.2 Rank-lowering update

Given the rank-lowering update of objecti, the algorithm first computes the influence region

IRold(i). All the subscriptions in the influence region are notified of objecti’s new y-value. In

order to compute the newk-th ranked objects for the set of affected subscriptions, the algorithm

needs to sweep they-value ofi continuously fromyoldi to ynewi to find the set of exposed objects

(as in the case of the single dimensional range subscriptions). That is, thealgorithm nestedly

sweeps along two dimensions—x(2) andy. When sweeping fromyoldi to ynewi , if an exposed ob-

ject hj is found inIP(i), the algorithm updatesIP(i) in E andIR(i) in S by sweeping the plane

along thex(2)-dimension. Figures5.16 and5.17 illustrate the updates at critical timey = yhj
.

The plane is swept fromx(2) = x
(2)
hj

to x(2) = q, whereq is the minimumx(2)-value such that

x
(1)
hj
6= conv(L ∪ R). That is, if a ray is shot through the point(x(1)hj

, x
(2)
hj

, yhj
) in x(2) direc-

tion, it hits the boundary ofIP(i) at x(2) = q. The algorithm generates messages only for those

subscriptions that must receive the objecthj .
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5.5.3 Range Conditions in Higher Dimensions

For simplicity, only one attributeY is used for ranking for now; this constraint will be removed

later. The event spaceE is now R
d+1 (α = d), and each objecti is represented as a point

(x
(1)
i , x

(2)
i , . . . , x

(d)
i , yi) ∈ E. Each subscriptionSj specifies a regionσj ⊆ R

d, which can be

ad-dimensional box, halfspace, ball, or simplex, or any other shape, and contains the top-k objects

among the ones in which it is interested. Each subscription is mapped to a pointσ∗
j and each object

i to a regionθi in the subscription spaceS so thatSj is interested in objecti iff σ∗
j ∈ θi. The exact

mapping depends on the shape of subscriptions. If eachσ is ad-dimensional box
∏d

h=1[ℓ
(h)
j , r

(h)
j ],

then S = R
2d, σ∗

j = (ℓ
(1)
j , r

(1)
j , · · · , ℓ(d)j , r

(d)
j ), and θi is the orthant{ξ ∈ R

2d | ξ(2i−1) ≤

xi, ξ
(2i) ≥ xi, 1 ≤ i ≤ d}. If eachσj is a halfplanex(d) ≥ a

(1)
j x(1)+· · ·+a

(d−1)
j x(d−1)+a

(d)
j , then

S = R
d, σ∗

j = (a
(1)
j , . . . , a

(d)
j ), andθi is a halfspaceξ(d) ≤ −x(1)i ξ(1)−· · ·−x(d−1)

i ξ(d−1)+x
(d)
i . If

d = 2 and eachσj is a disk of radiusrj centered at(aj , bj), thenS = R
3, σ∗

j = (aj , bj , a
2
j+b2j−r2j )

andθj is the halfspaceξ(3) ≤ 2x
(1)
i ξ(1)+2x

(2)
i ξ(2)−x(1)i −x

(2)
i . It can be verified that, in each case,

Sj is interested ini iff σ∗
j ∈ θi. The notion of influence regionIR(i) ⊆ θi can be extended to high

dimensions. When they-value of an objecti is updated,IR(i) is updated fromIRold(i) \ IRnew(i)

(if yi is increased) into constant-size regions, and send oneO(1)-size message for each such re-

gion. Computing the decomposition ofIRold(i) \ IRnew(i) or IRnew(i) becomes more challenging

and the number of regions increases, typically exponentially in the worst case, with dimension.

However, many of these regions are empty, soPaint-Sparseis more effective in high dimensions.

In many cases, it is possible to analyze the number of messages generated by the algorithm. The

theorem below gives such a result for the case of rectangles.

Theorem 18. If the input objects are i.i.d. inRd with their attributes being independent and each

subscription is an axis-aligned rectangle, thenPaint-DensegeneratesO((k lnd−1 n)d+1) expected

number of CN messages to process an update event.

Proof. Let H ⊂ E be the hyperplane normal to thedth dimension ofE. let i′ be the projection

of object i onto H. An object j is dominated by another objectk with respect to objecti iff

k′ ∈ MEB(j′, i′) ∈ H andk ranks higher thanj. LetU denote the set of objects dominated byk
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(a) (b)
FIGURE 5.18: Lifting transform fork nearest neighbor query inR2. a) The blue query
object is closer to object 1 than object 2 inE. a) Object hyperplanes are lifted iñS.
They are tangent to an upside-down paraboloid. The query rayhits hyperplane 1 before
hyperplane 2 in (−ξ(d+1))-direction.

objects with respect to objecti. In S, the influence region ofi, IR(i), is defined by thek-skyband8

with respect toi.

The average size of the skyline for a set of i.i.d. points isθ(lnd−1 n/(d − 1)!) if attributes are

uncorrelated [31]. Under the same assumption,IR(i) is covered byΘ(k lnd−1 n/(d−1)!) orthants.

The authors in [72] prove that if the number of ”octants” to cover an influence region inR
2d is z,

then the total number of rectangles for partitioning the influence region will bezd in the worst case.

Hence,IR(i) can be partitioned intoΘ((k lnd−1 n/(d − 1)!)d) rectangle messages. Thus,

Θ((k lnd−1 n/(d− 1)!)d) rectangle messages are needed for a modified objecti and each exposed

object.

The influence region ofi, IR(i), is a rectilinear polyhedron inS whose vertices are defined by

the objects inUk(i).
Using the same argument in the proof of Lemma14, the expected number of objects injected

by the rank-lowering update is at most(k lnd−1 n/(d−1)!). This completes the proof for the upper

bound. The lower bound construction in Figure5.9can be extended for high dimension.

8 Thek-skyband is the set of objects dominated by at mostk objects.
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5.5.4 Combination of range conditions and user preferences

Each user may specify her preference usingβ parameters. For example, a preference function can

be defined as a linear combination ofβ + 1 attributes, as defined in Chapters3 and4. As another

example, when searching for a gas station, a preference function can be ak nearest neighbor query

in R
β . By a standard lifting argument [56], each object(y(1)i , y

(2)
i , · · · , y(β)i ) can be mapped to the

dual plane

ξ(β+1) = 2y
(1)
i ξ(1) + 2y

(2)
i ξ(2) + · · ·+ 2y

(β)
i ξ(β) − [(y

(1)
i )2 + (y

(2)
i )2 + · · · (y(β)i )2],

as shown in Figure5.18. The k nearest neighbors inO to a query object(y(1)i , y
(2)
i , · · · , y(β)i )

correspond to the firstk dual hyperplanes intersected by the line{(y(1)i , y
(2)
i , · · · , y(β)i , t) | t ∈ R}

in (−ξ(d+1))-direction.

Supposeα attributes are used for selection by subscriptions. Let(x
(1)
i , x

(2)
i , . . . , x

(α)
i be the

coordinates of objecti for those attributes. By combining range conditions and user preferences,

each object hasα+β parameters{x(1)i , x
(2)
i , . . . , x

(α)
i , y

(1)
i , y

(2)
i , . . . , y

(β)
i }. It is mapped to a region

θi in the subscription spaceS = R
α+β . Each subscription is mapped to a point in the subscription

spaceS = R
α+β . Again, the lifted subscription spaceS̃ = S×R can be used to capture the ranking

of objects.

5.6 Extensions

5.6.1 Batch Processing

For some applications, events can be batched; subscriptions only need to have their top-k lists

correctly updated at the end of the batch. Processing events in batched sequenceE one at a time

would be an overkill: enough messages would be sent such that each subscriptionSj can con-

struct all intermediate states oftopk(Sj) duringE. Given that only the final state oftopk(Sj) is

needed at the end ofE, we want to minimize the number of messages delivered to the subscrip-

tions. An algorithmPaint-Batchis developed to achieve this goal within the problem setting of

Section5.2.1without assuming new dissemination interfaces or capabilities. To process individual

events,Paint-Batchcan use any algorithmA (eitherPaint-Denseor Paint-Sparse), with only minor
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modifications.Paint-Batchitself does not assume the knowledge ofS (though the version using

Paint-SparseusesS indirectly).

The key idea is to pre-processE in a way such that event-at-time processing byA (with some

modifications) will minimize the number of messages subscriptions receive. LetIRold(i) (resp.

IRnew(i)) denote the influence region of objecti before (resp. after)E. Paint-Sparseproceeds in

four steps:

1. Pre-process. First, if multiple events inE update the same object, they are coalesced into

one. More precisely, ifE contains the sequenceUpd(xi, y
(0)
i → y

(1)
i ), . . . ,Upd(xi, y

(c−1)
i →

y
(c)
i ), they are replaced with a singleUpd(xi, y

(0)
i → y

(c)
i ). Next, the setE is split into two,

E↓ andE↑, whereE↓ (resp.E↑) contains all events that decrease (resp. increase)y-value.

2. Apply E↓ to O. Let T denote the data structure that is maintained forO. T is updated with

using events inE↓. No message is generated in this step.

3. Generate messages for E↑ and apply E↑ to O. Events are processed inE↓ (all of which

are rank-lowering) in descending order of the new values usingA, but with the following

modifications. 1) IfA generates messages for an exposed object that is updated inE↑ or

will be later updated inE↓, such messages are discarded and would not be sent. 2) IfA is

processing a ranking-lowering update for an objecti whose messages have been discarded

earlier, instead of notifying the regionIRold(i) with i’s updated values asA would normally

do, the algorithm notifies the regionIRnew(i)∪IRpre(i), whereIRpre(i) denotesi’s influence

region right before the algorithm starts processingE↑. To implement these modifications,

there is no need to remember allIRpre(i)’s, which would requireΘ(nk) space. It turns out

that it is sufficient to maintain anO(n)-space data structure so thatIRpre(i) can be computed

on demand, without increasing the time complexity ofA. More specifically, besides the data

structureT normally maintained forO, an additional data structureT′ is maintained to index

the set of objects updated inE↑. T′ is initially empty before the algorithm starts processing

E↑. When processingUpd(xi, yoldi → ynewi ) ∈ E↑ in the current iteration, in addition to

updating they-value of objecti in T to ynewi , (xi, yoldi ) is inserted intoT′. While computing

IRnew(i) usesT, computingIRnew(i) ∪ IRpre(i) usesT andT′.
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4. Generate messages for E↓. For each objecti updated inE↓, the regionIRnew(i) is notified

with i’s new value. The algorithm simply followsA to compute the messages by querying

T.

Below gives some intuition behind the design ofPaint-Batch.

• Why does the algorithm generate message forE↓ (Step 4) afterE↑ (Step 2)?Suppose that an

objecti is unchanged byE, andi ∈ topk(Sj) both before and afterE for some subscription

Sj ; in this case, we do not want to notifySj with i. However, some objects updated inE↓

may temporarily lower the rank ofi to belowk, before some other objects updated inE↑ raise

the rank ofi to within k again. Sending messages generated forE↓ beforeE↑ would cause

Sj to dropi, forcing us to notifySj with i later when processingE↑. Deferring messages for

all rank-raising updates avoids this problem.

Also, if E↓ is processed beforeE↑, an update to objecti in E↓ would enlargeIR(i), and up-

dates to other objects inE↑ might further enlargeIR(i); therefore, the algorithm would need

to generate messages involvingi every timei is exposed inE↑. Although doing so would not

cause subscriptions to receive unnecessary messages, it leads to moremessages compared

with the presented approach, which guarantees that for each updated object i, messages

involving i are only generated once (when the algorithm processes the event updating i).

• Why are the modifications toA necessary when processingE↑ (Step 3)?Suppose the algo-

rithm is currently processing an update that exposes objecti, causing it to entertopk(Sj)

for some subscriptionSj at this point. Ifi will be later updated inE↑, it is possible thati

will leave topk(Sj) at that point. Without the modifications,Sj would be notified withi

unnecessarily.

On the other hand, ifi is updated inE↓, then the gains inIR(i) during the processing ofE↑

should be ignored, because they will covered byIRnew(i) wheni is processed in Step 4.

• Why does the algorithm processE↑ in sorted order (Step 3)?ProcessingE↑ in descending

order of the new values means that once the algorithm processes an event updating objecti

in E↑, i will never be exposed again. With this property, for each updated objecti, messages

involving it are only generated once (when its update event is processed). Without this
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property, the algorithm may need to generate messages involvingi every time wheni is

exposed after it is updated. Although doing so would not cause subscriptions to receive

unnecessary messages, it may lead to more messages compared with the presented approach.

• Why does the algorithm need to applyE↓ to O (Step 2) before processingE↑? Without ap-

plyingE↓ toO, the algorithm would essentially processE↑ followed byE↓. It is possible for

E↑ to expose an objecti, causing it to temporarily entertopk(Sj) for some subscriptions;

however,E↓ may subsequently makei leavetopk(Sj). Notifying Sj with i would be un-

necessary. ApplyingE↓ to O before processingE↑ (in conjunction with way the algorithm

processesE↑) ensures that when processing each update inE↑, every objecti exposed by

this update will remain in the finaltopk(Sj) for everySj that receivesi.

The remainder of this subsection is devoted to prove that each subscriberreceives the minimum

number of messages possible underPaint-Batch.

Lemma 19. When an event about objecti is processed,IRcurrent(i) (IRpre(i)) is the minimum set

of subscriptions inIRold(i) that must be notified in order to produce the correct final top-k lists for

those subscriptions if the event is a rank-raising update (rank-loweringupdate) for objecti.

Proof. If the event is a rank-raising update for objecti, messages are generated after all events

in E have been processed. Hence, the union of the messages for objecti is exactlyIRnew(i), in

which every subscription needs to be notified. If the event is a rank-lowering update for objecti,

processingE↓ first guarantees that all events that can shrinkIR(i) have been processed, therefore,

all the subscriptions inIRpre(i) must be notified about the update of objecti no matter how the

events inE is ordered.

Lemma 20. If an objecti ∈ topfinalk (Sj), i is never forced out ofSj ’s top-k list because of space

constraint.

Proof. First, when a message about objecti is generated, all the other objects whose old and new

values are larger and smaller than objecti’s new value must have been processed. Hence, if object

i belongs toSj ’s final top-k list, it must be higher thank-th in Sj ’s ranking. Second, during a

rank-lowering update for objecti, a message about objecti is first sent to every subscriptionSj

that hasi in its top-k list. Thus, if a message about an exposed object is also sent toSj , objecti
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must have dropped tok-th in Sj ’s ranking. No other objects inSj ’s list are forced to be removed

because of the arrival of the exposed object. Third, since messages for all rank-raising updates are

generated at the end of the batch process, any object that is replaced by a new arrived objecti must

satisfy one of the following two conditions: 1) it ranks lower than objecti in the final top-k list

and 2) its value will later become lower than the value of the k-th item in the top-k list due to a

rank-raising update and it will re-enter the final top-k list.

Lemma 21. LetL andL′ be the lists returned byfirstk(xi, yoldi ,←) onT andT′, respectively. Let

R andR′ be the lists returned byfirstk(xi, yoldi ,→) on T andT′, respectively. LetL∗ = {ℓ1 >

ℓ2 > · · · > ℓk} contain the firstk values inL ∪ L′ (padded with−∞ if |L| < k). letR∗ = {r1 <

r2 < · · · < rk} contain the firstk values inR∪R′ (padded with∞ if |R| < k). IRpre(i) is an axis-

aligned subregion of the quadrantθi, with vertices(xi, xi), (ℓv, xi), (ℓv, r1), (ℓv−1, r1), (ℓv−1, r2),

. . . , (ℓ1, rv−1), (ℓ1, rv), (xi, rv) in clockwise order, ignoring degenerate vertices with−∞ or ∞
coordinates.

Proof. LetLpre = {ℓpre1 , ℓpre2 , · · · , } andRpre = {rpre1 , rpre2 , · · · , } be the lists returned byfirst(xi,

yoldi ,←) andfirstk(xi, yoldi ,→) right before we start processingE↑. Let L = {ℓ1, ℓ2, · · · , } and

R = {r1, r2, · · · , } be the lists returned byfirst(xi, yoldi ,←) andfirstk(xi, yoldi ,→) for the current

event. IfL = Lpre andR = Rpre, we are done. Otherwise, all objects inLpre\L andRpre\R
must have been modified because no other objects’ ranking is raised to force those objects out ofL

andR duringE↑. Hence, all objects inLpre\L andRpre\R must be indexed byT′ using their old

y-values, and they can be retreived by twofirstk calls onT′.

Lemma 22. No subscription receives more than one message for the same objecti.

Proof. The coalescing step guarantees that no two events update the same objecti. The algorithm

also guarantees that no message for an objecti will be generated if the value ofi will be updated

later in the sequence. Messages generated for the update ofi completely packIR(i) such that

every subscription inIR(i) receives one messsage for objecti. After the value of objecti has been

updated,IR(i) will never be shrunk since all the remaining events are the rank-lowering updates

for other objects. Additional messages are generated for objecti only if the rank-lowering update

for other events further expandIR(i). However, these messages only cover the expanded part of

IR(i). Therefore, no subscription receives more than one message for the same object.
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Lemma 23. If a subscriptionSj receives a message for an objecti and(xi, yi) /∈ topk(Sj) before

the start of batched processing, then(xi, yi) ∈ topk(Sj) at the end of batched processing.

Proof. AssumeSj receives an update for an objecti and(xi, yi) /∈ topk(Sj) before the start of

batch processing. The only possible way that objecti will not be in topk(Sj) by the end of batch

processing is thatIR(i) will later be shrunk such that it will not containSj . There are two cases, in

which IR(i) can be shrunk: they-value of objecti has increased, or they-value of another object

l has decreased. The first case cannot happen since the algorithm does not generate a message

for objecti if its y-value will be updated later in the sequence. For the second case, sinceE↓ is

processed beforeE↑, the current update must be a rank-raising update for objecti. However, asE↓

is sorted in ascending order of the new values,ynewi < ynewl , so decreasing they-value ofl has no

effect on the rank ofi for Sj .

Theorem 24. Paint-Batchminimizes the number of messages each subscriber receives. Given an

event sequenceE, Paint-Batchbased onPaint-Denseruns inO(|E| log |E|+ ν̄t(n) + µ̄) time, and

Paint-Batchbased onPaint-Sparseruns inO(|E| log |E|+ ν̄(t(n) + k logm)) time, wherēµ is the

number of messages generated byPaint-Batchand ν̄ is the number of objects in these messages.

Proof. Lemma19, 22 and23 together imply thatPaint-Batchminimizes the number of messages

each subscriber receives.Paint-Batchrequires sorting that takesO(|E| log |E|) time. The other

parts of the running times forPaint-Batchfollow from the same argument as in the proof of Theo-

rem12and17.

5.6.2 Approximate Algorithms

To further alleviate the potential message injection bottleneck, more reduction inthe number of

CN messages generated by the server is possible with approximate algorithms.They allow sub-

scriptions to receive unnecessary messages containing false positive updates to top-k lists, which

are discarded by post-processing at the subscriptions. The basic ideais to simplify the boundaries

of regions to notify by judiciously including some additional subscriptions. Asa simple example,

Figure5.19(a) shows that instead of tiling a staircase-shapedIR(i) with multiple messages, a single

message with rectangleMEB(IR(i)) can be used. Although subscriptions inMEB(IR(i)) \ IR(i)
would get objecti as a false positive, it can be shown thati would still rank within top2k for these
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FIGURE 5.19: Covering regions (shown with dark shade) using fewer rectangles (shown
with thick outlines) by allowing false positives. (a) CoveringIR(i) (a staircase) withε = 1;
(b) coveringIRnew(i) \ IRold(i) (a diagonal chain) withε = 1

3
.

subscriptions, becauseMEB(IR(i)) ⊆ θ≤2k
i , thanks to the special structures ofθvi ’s established in

Section5.3.

The approximate algorithms, based onPaint-DenseandPaint-Sparse, generalize this simple

but effective idea. They are parameterized byε ∈ { 1
k−1 ,

1
k−2 , . . . ,

1
2 , 1}, which controls the degree

of approximation. Consider the task of notifying an ordered listGdense of no more thank rectangles

(as defined in Section5.4.2), whereGdense ⊆ IR✷(i) for some updated or exposed objecti. Gdense

can be divided into no more than1/ε sublists, such that each sublist contains no more than⌈εk⌉
adjacent rectangles. The rectangles in each sublist are covered by their minimum enclosing box.

Figure 5.19(b) shows an example of covering a diagonal chain (representing the gain in some

exposed object’s influence region) with3 rectangles (ε = 1
3 ).

Paint-Densecan be made approximate by post-processing eachGdense as above to generate

messages.Paint-Sparsecan be made approximate by processingGdense before subjecting it to

greedy message merging. The resulting approximate algorithms are calledPaint-Dense(ε) and

Paint-Sparse(ε), respectively. Each subscriptionSj follows the same protocol in Section5.2.1for

maintainingtopk(Sj). Sj may receive an object that should not entertopk(Sj), or one that is

already intopk(Sj) and has not changed value. Such false positives are automatically ignored by

the protocol, and objects in these messages are limited to those ranked aroundthek-th, as shown

by the theorem below. This theorem also shows the reduction in the number ofmessages and the

running times of the approximate algorithms.

Theorem 25. With the approximate algorithms, a subscriptionSj will receive a message with
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objecti only if 1) i ranks between(1− ε)k and(1 + ε)k, or 2) i is already in the top(1 + ε)k but

its value has changed.

For approximate algorithms, a rank-raising update generates no more than 1/ε messages; a

rank-lowering update generatesO(n/ε) messages, with no more than1/ε per expose object for

Paint-Dense(ε) and no more than1/ε per interesting expose object forPaint-Sparse(ε). If each

rank-lowering update chooses an object to update uniformly at random,the expected number of

messages generated isO(k/ε).

Paint-Dense(ε) runs in timeO(t(n) + k) for a rank-raising update, andO(νt(n) + µ̂ + k)

time for a rank-lowering update, whereν is the number of exposed objects andµ̂ is the number of

messages generated byPaint-Dense(ε). Paint-Sparse(ε) runs in timeO(t(n) + k+ logm/ε) for a

rank-raising update, andO(ν̌(t(n) + k + logm/ε)) time for a rank-lowering update, wherěν is

the number of interesting exposed objects.

Proof. By construction, the top-left and bottom right vertices of each message generated for each

exposed object have rank(1+ ǫ)k and(1− ǫ)k, respectively. Hence, any subscription in a message

ranks between(1− ǫ)k and(1+ ǫ)k. Similarly, the top-left vertex of a message also ranks(1+ ǫ)k

for a modified objecti. The proof for the number of messages and the running time follows from

the fact thatO(1/ǫ) messages are generated for objecti and each expose object and from the same

argument as in the proof of Theorem12and17.

5.6.3 Distributing the database

The central server can be replaced with multiple servers, which together maintain the database

of objects in a distributed manner. Recall that objects are mapped to quadrants with apex on the

diagonal of the subcription space,S. Suppose there areβ servers. The diagonal is partitioned into

β zones, and one server is assigned to each zone for maintaining all objectsin the zone. Each zone

owner maintains pointers to its two immediate (left and right) neighboring zone owners along the

diagonal. Since objects are distributed across multiple servers, the set of objects returned by the

firstk andminy queries may be located at different servers. Consider an eventUpd(xi, yoldi →

ynewi ). The event is first routed to the server that maintains the objecti. Then the two queries

firstk(xi, y
new
i ,←) andfirstk(xi, ynewi ,→) are answered in a distributed manner: If thefirstk query

returnst < k objects on the left (resp. right) side of objecti, we traverse to the left (resp. right)
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zone-owner and retrieve the remainingk − t objects with a secondfirstk query. This procedure

is repeated until eitherk objects have been retrieved or all the objects on the left (right) side ofi

have been examined. Similarly, the set of objects reported byminy queries, i.e., the set of objects

exposed during a ranking-lowering update, can also be computed by two linear traversals along the

diagonal: Letσ′ = [ℓ′, r′] be the range of objects maintained by the server. Letσ = (ℓ, r) be the

query range. The server computes the object with the minimumy-value in the3-sided rectangle

σ∩σ′× (y0,∞). If ℓ < ℓ′ (resp.r > r′), we traverse to the left (resp. right) zone owner and repeat

the same procedure. The minimum among the returned objects is the answer to theminy query.

Algorithms7 and8 give the pseudo-code for thefirstk andminy queries.

Algorithm 7 : firstk(xi, ynewi , c)

begin1
if c = ‘←′ then2

L← firstk(xi, y
new
i ,←);3

if |L| < k then4
L← L ∪ getFirstKFromLeftNeighbor(xi, ynewi ,←, k − |L|);5

return L;6

else7
R← firstk(xi, y

new
i ,→);8

if |R| < k then9
R← R ∪ getFirstKFromRightNeighbor(xi, ynewi ,→, k − |R|);10

return R;11

end12

Algorithm 8 : miny(σ, y0)

begin1
hj ← miny(σ ∩ σs, y0);2
if ℓ < ℓs then3

h′j ← getMinYFromLeftNeighbor(σ, y0);4
if h′j < hj then hj ← h′j ;5

if r > rs then6
h′j ← getMinYFromRightNeighbor(σ, y0);7
if h′j < hj then hj ← h′j ;8

return hj ;9

end10

147



10
0

10
1

10
2

10
3

1

2

3

4

5

6

7

8

k

Le
ng

th
 o

f t
ra

ve
rs

al

FIGURE 5.20: Length of traversal (100 servers,100,000 objects).

Suppose each of theβ servers maintains⌈n/β⌉ objects. If the input objects are i.i.d. inR2

with their attributes being independent, the expected number of servers traversed for afirstk or

miny query is roughly2kβ/n. Figure5.20shows the empirical results on the average length of a

traversal over10,000 queries whenn = 100,000 andβ = 100.

5.7 Evaluation

Network setup. A CN based onMeghdoot[61] and thecontent addressable network[99] is used

for message dissemination. This CN uses a network ofbrokers to deliver CN messages of the

format described in Section5.2.1. It partitions the subscription spaceS into zones, each owned by

a broker responsible for all subscriptions within this zone; this broker is called thegatewaybroker

of these subscriptions. Each zone can forward messages to its adjacentzones, so messages may

travel over multiple hops to their destinations. INET [43] is used to generate a20,000-node IP

network, and randomly pick1,000 nodes as brokers. Subscriptions are located randomly within

the network, and object update events also originate from random locations.

For the approaches presented in this chapter, the broker whose zone covers the center ofS

is designated as the server, which maintains the database of all objectsO. In the case of sparse

subscriptions, the server additionally maintains the database of all subscriptions S (but not how

they are assigned to brokers). Events are first routed to the server, where they are reformulated into

a sequence of CN messages.

Approaches compared. The presented approaches all use CN for message dissemination and

only differ in their message generation algorithms. Hence, the names of thesealgorithms are used
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to refer to these approaches: exact ones includePaint-DenseandPaint-Sparse, and approximate

ones includePaint-Dense(ε) andPaint-Sparse(ε) with differentε settings. They are compared with

the following approaches, which sample the space of less sophisticated alternatives:

• Unicast: An event is first sent to the server, which in this case tracks all objects,all sub-

scriptions, and how subscriptions are assigned to gateway brokers. The server computes the

set of affected subscriptions. For each affected subscriptionSj , the server unicasts toSj ’s

gateway broker the idj and the change totopk(Sj) (which can be captured by one object).

This approach is exact in that it notifies only affected subscriptions.

For comparison, the following algorithm is considered for computing unicastmessages,

which uses some but not all insights from the presented algorithms.9 GivenUpd(xi, yoldi →

ynewi ), the server first computesIIold(i) ∪ IInew(i) = (ℓ, r), and finds all subscriptions in

(ℓ, xi] × [xi, r) ⊆ S. Next, the server processes each such subscriptionSj in turn. For a

rank-lowering update, the exposed object hasy-value betweenyoldi andynewi , and can be

found byminy(σj , y
old
i ).

• CN-Relax:This approach uses the same CN as the presented approaches, but does not need

a server. An eventUpd(xi, yoldi → ynewi ) directly enters the CN as

Msg(xi, xi,−∞,∞, xi, y
new
i ), which reaches all subscriptions whose ranges includexi. In

effect,CN-Relaxtreats each range top-k subscription simply as a range subscription. Each

subscription must maintain all objects within its range at all times, from which the topk can

be computed. This approach is approximate in that it may notify unaffected subscriptions.

Metrics. The following metrics are considered in evaluation:

• Outgoing traffic from the server: Measured by the total number of bytes sent by the server.

A larger number means higher network stress at the server.

9 Alternatively, Paint-Densemay simply be used to obtain the list of affected tiles inS, and then look
up affected subscriptions within these tiles. In this case,the server processing cost becomes that ofPaint-
Denseplus a term linear in the number affected subscriptions, which is strictly (much) less efficient than
Paint-Denseand does not offer an interesting comparison.
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(a) Unicast (top) vs. Paint-Dense
(bottom)

(b) Paint-Dense(top) vs. Paint-
Sparse(bottom)

(c) Paint-Sparse(top) vs. Paint-
Sparse(1) (bottom)

FIGURE 5.21: Average outgoing traffic (# bytes) from server per event.

• Traffic in the broker network: Measured by the total number of bytes sent across network

hops, excluding those from gateway brokers to their subscriptions (whichare accounted for

by theredundancymetric discussed below). Depending on what is considered as a “hop,”

there are two metrics:overlay traffictreats each overlay link (i.e., a link between two brokers

without going through other brokers) as a hop, whileIP traffic treats each underlying IP

link as a hop. IP traffic better reflects physical reality but it depends heavily on the CN

implementation; overlay traffic better reflects how the CN is used (as a black box). Well-

designed CNs try to make overlay routes as efficient as IP routes, which helps close the gap

between these two metrics.

• Redundancy in messages received by subscriptions: Measured byN̂/N − 1, whereN̂ de-

notes the number of messages received by subscriptions andN denotes the number of mes-

sages received by subscriptions under an exact approach. A larger redundancy means higher

last-hop traffic and more work for subscriptions. Exact approaches have0 redundancy.

• Server processing cost: Measured by the number of calls (by type, as discussed in Sec-

tion 5.2.2) against the underlying data structures when generating messages. Thismeasure-

ment is chosen because the running time depends on the choice of data structures. The

implementation uses data structures that are easier to implement and efficient in practice,

but not asymptotically optimal.

Workloads. Most results in this section use synthetic workloads, which allow us to vary their

characteristics. Unless specified otherwise, there are10,000 objects, whosex-values follow one

of two distributions: 1)Uniform: Thex-values are uniformly distributed over the possiblex-value

range. 2)Clustered: Thex-values lie in10 clusters, whose centers partition the possiblex-value

150



range into11 segments of lengthw. Each cluster gets10% of the objects. For each object in a

cluster, the distance between itsx-value and the cluster center follows a Gaussian distribution with

standard deviationw/8.

To generate an event, an object is picked to update uniformly at random. Itsy-value is increased

or decreased, each with0.5 probability. The newy-value is then chosen uniformly random from

the possible range ofy-values.

Unless specified otherwise, the number of subscriptions is2 million. The following subscrip-

tion distributions are considered:

• Uniform: The subscriptions are uniformly distributed inS.

• Clustered: Most subscriptions lie in10 clusters inS. Let P be a set of10,000 × 10,000

grid points. A setC of 10 centers is first randomly picked inS and use a mixture model

to assign probability to each pointp ∈ P . A parameter△ controls the standard deviation

of each clusterci ∈ C. Let σ be(max−min)△/4, wheremax andmin are the maximum

and minimum values in the domain. For each pointp ∈ P , F (p) =
∑10

i=1 Fi(p), where

Fi(p) = exp(−0.5‖ci − p‖/σ2). The probabilities are then normalized such that they sum

to 1.

• Correlated(to clustered object distribution): Subscriptions are generated from the10 clus-

ters of the clustered object distribution. For each subscription in a cluster,the distance

between its endpoints from the cluster center follows a Gaussian distribution with standard

deviationw/8.

• Anti-correlated(to clustered object distribution): As with the correlated case above, sub-

scriptions are generated using the clusters of the clustered object distribution. However,

each cluster center is shifted byw/2 and ignore the last cluster, such that each subscrip-

tion cluster center is located midway between two consecutive object cluster centers for the

object distribution.

In addition to synthetic workloads, information on2,031 stocks have been obtained from Ya-

hoo! Finance. For each stock, its earnings per stock (EPS), the average recommendation (RECO,

which varies from1, strong buy, to5, strong sell, over the past month), as well as the open and

close prices over30 days, are collected. EPS is then used to convert each price to price-to-earning
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ratios (PER). Thus, there is a trace of events, each being an update of PER with a RECO constant.

400,000 subscriptions are generated and each requests thek lowest PER over a RECO range.

5.7.1 Main results

This section will first present results for the uniform object distribution and uniform subscription

distribution.

Outgoing traffic from server. Figure5.21shows the outgoing traffic from the server per event,

averaged over all events in the workload, when varyingk and the number of subscriptions (m). For

clarity, only two approaches are compared per plot. Note thatCN-Relaxis not compared because

it is a serverless approach. Figure5.21(a)shows thatPaint-Dense’s outgoing traffic is invariant to

m, but Unicast’s outgoing traffic is not scalable inm andk. Whenm = 5,000,000 andk = 20,

UnicastandPaint-Densegenerate316,158 and3,501 bytes, resp. Figure5.21(b)shows that by

taking into accountS, Paint-Sparseincurs even lower outgoing traffic thanPaint-Dense; the gap is

wider with fewer (sparser) subscriptions. Figure5.21(c)shows that approximation further relieves

any potential message injection bottleneck at the server.

Figure5.22(a)provides more details on the outgoing traffic produced by different approaches.

Although outgoing traffic increases for all approaches ask increases, the approaches presented

in this chapter clearly outperformUnicast. Paint-Densegenerates1.5 orders of magnitude less

outgoing traffic thanUnicast, whereasPaint-Sparse, Paint-Dense(1), andPaint-Sparse(1) gen-

erate between2 and2.5 orders of magnitude less. Since the number of messages generated by

Paint-DenseandPaint-Dense(1) is invariant tom, their lead overUnicastcan widen arbitrarily as

subscription density increases. The same trend holds forPaint-SparseandPaint-Sparse(1); they

always produce no more messages thanPaint-DenseandPaint-Dense(1), resp.

For approximation algorithms, Figure5.22(b)shows that increasingε effectively decreases

server outgoing traffic.

Figures above only show average outgoing traffic. When we look at the maximum amount of

outgoing traffic from the server per event (which reveals bottlenecks better than the average) in

Figure5.23(a), we see an even bigger (multiple orders of magnitude) advantage of the presented

approaches overUnicast. For Unicast, the maximum ongoing traffic is proportional tom, but

remains the same whenk varies because the number of affected subscriptions does not dependon

k in the worst case (e.g., when the most popular object’sy-value is dramatically changed). When
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(a) Various approaches (b) Varyingε for Paint-Dense(ε)

FIGURE 5.22: Average outgoing traffic (# bytes) from server per event.

FIGURE 5.23: Unicast (top) vs. Paint-Sparse(bottom). (a) Maximum outgoing traffic
from server for an event. (b) Number of calls per event.

m = 5,000,000, Unicast’s maximum outgoing traffic is39,998,000 bytes, compared with only

31,752 bytes forPaint-Sparse(with k = 20).

Traffic in broker network. Figures5.24(a)and 5.24(b)show the amounts of overlay and IP

traffic (resp.) incurred per event in the broker network, averaged over all events in the workload.

Trends in these two figures are consistent.Unicastperforms worst among all approaches for all

values ofk tested and thatPaint-SparseleadsUnicast by an order of magnitude. Furthermore,

approximation is effective for reducing in-network traffic, as evidenced by Paint-Sparse(1). CN-

Relaxgenerates the same amount of in-network traffic for allk because it ignores ranking. While it

may appear here thatCN-Relaxis attractive whenk > 10 (largely becauseCN-Relaxneeds not be

concerned with exposed objects), bear in mind that 1)CN-Relaxrequires subscriptions to maintain

all objects within their ranges, which is expensive; and 2)CN-Relaxgenerates excessive last-hop

traffic, as we will see next.

Redundancy in messages received by subscriptions.Table5.1shows the total number of mes-

sages received by subscriptions per event (averaged over the workload) for Paint-Sparse(or any

exact algorithm). Table5.2 shows the overall redundancy in messages received by subscriptions
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(a) Overlay (b) IP

FIGURE 5.24: Traffic in broker network per event.

Table 5.1: Total number of messages received by subscriptions per event.

k 1 2 5 10 15 20

Paint-Sparse 444.141 939.76 2211.14 4190.21 6082.94 7904.26

(averaged over the workload) for the approximate approaches. Note that all exact approaches

would have0 redundancy, and an approximate approach would effectively be exact if 1/ε ≥ k.

Clearly,CN-Relaxsends a lot of unnecessary messages to subscriptions, negating the advantages

in its serverless approach and its relatively lower broker network trafficwhenk > 10. For the

approximate approaches, asε increases, their reduction in traffic from the server and within the

broker network comes at the expense of higher redundancy. Still, they offer a spectrum of user-

controllable trade-offs that are more attractive than the two extremes: exact algorithms on one hand

andCN-Relaxon the other.

Server processing cost. Figure5.23(b)gives a high-level view of the average number of calls per

event to the underlying data structures made byUnicastandPaint-Sparse. Tables5.3 (varyingk)

and5.4(varyingm, the number of subscriptions) offer a more detailed breakdown and comparison.

As k orm increases, bothPaint-SparseandUnicastmake more calls, butUnicastmakes orders of

magnitude more thanPaint-Sparse.

Table5.4 shows that the number ofminy calls byUnicast is linear inm andPaint-Denseis

invariant tom. For Paint-Sparse, whenm increases, there are fewer inessential exposed objects,

soPaint-Sparseneeds to examine more exposed objects during a rank-lowering update. However,

our experiments show that the number of calls is increased only by a factor of roughly2 even with

dense subscriptions; therefore, our approach is much more scalable.
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Table 5.2: Redundancy in messages received by subscriptions.

Approaches k = 1 2 5 10 15 20

Paint-Sparse(.125) 0 0 0 0.015 0.0234 0.034
Paint-Sparse(.25) 0 0 0.027 0.061 0.070 0.080
Paint-Sparse(.5) 0 0 0.11 0.14 0.16 0.17
Paint-Sparse(1) 0 0.16 0.29 0.30 0.32 0.34

CN-Relax 1440.2 680.14 288.49 151.76 104.23 79.98

Table 5.3: Average number of calls per event; increasingk.

k
Paint-* Paint-Dense Paint-Sparse Paint-Sparse Unicast
# firstk #miny #miny # snap # miny

1 2 1.12 0.72744 1.2284 444.141
2 2 1.73 1.08988 2.95254 1086.44
5 2 3.57 2.59596 12.06538 2846.1
10 2 6.60 5.5568 40.69192 5453.64
15 2 9.63 8.57692 84.65234 8032.39
20 2 12.63 11.58048 143.20416 10587.4

Table 5.4: Average number of calls per event; increasingm.

m (×105) #miny # firstk # snap

2 3.52 2 29.87
8 4.84 2 37.34
40 5.94188 2 42.0509
100 6.26988 2 42.86982

Dense 6.60 2 43.36
Paint-Sparse

m (×105) #miny

2 545.23
8 2181.49
40 10906.4
100 27267.5
Unicast;k = 10

Batch processing. Next, the effectiveness of the batch processing algorithm,Paint-Batch, is eval-

uated by comparing it withOnline, which simply processes the batched event sequence one event at

a time, andCoalesce, which coalesces events updating the same object into one before processing,

but does not sort or group them intoE↓ andE↑. The sequence contains50,000 events, andk varies

from 1 to 20. Figure5.26(a)compares the total number of messages generated over the sequence;

Figure5.26(b)compares the total number of messages received by all subscriptions; Figure5.26(c)

compares the total number ofminy calls. In all figures,Paint-Batch, with both coalescing and

sorting optimizations, dominates the other approaches. The savings provided by sorting (between

Paint-BatchandCoalesce, especially in the number of messages received by subscriptions) are

significant, though they are dwarfed by the savings provided by coalescing.

Trends across synthetic workloads. Results for other workloads are similar, and exhibit trends

that confirm intuition. Figure5.25(a)shows the ratio between the number of messages generated
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FIGURE 5.25: (a)Paint-Sparsevs. Paint-Densefor various workloads, with # objects =
1,000. (b) Average outgoing traffic from server per event, withy-value changes following
a Gaussian distribution.

(a) Total number of messages gen-
erated

(b) Total number of messages re-
ceived by subscriptions

(c) Total number ofminy calls

FIGURE 5.26: Batch processing approaches.

by Paint-SparseandPaint-Densefor various workloads. With knowledge ofS, Paint-Sparse(as

well asPaint-Sparse(ǫ), which is not shown here) generates less traffic with more clustered sub-

scriptions, because of more opportunities for skipping empty regions inS. The ratio is1 with ten

million uniformly distributed subscriptions, which are basically dense. Furthermore,Paint-Sparse

skips a greater number of inessential exposed objects for the anti-correlated workload than for the

correlated one.

In practice,y-values of objects rarely change in a completely random fashion. To see how

this observation impacts the performance of the presented algorithms, insteadof choosing newy-

values uniformly at random, the difference between the new and oldy-values follows a Gaussian

distribution with standard deviation set toc/8 times the length of the range of possibley-values. A

smallerc means changes are less volatile. Figure5.25(b)shows the traffic from the server for two

settings ofc. It is evident thatPaint-Densegenerates fewer messages whenc is smaller because

fewer objects are exposed by less volatile value (and hence rank) changes. The traffic under Unicast

is approximately the same for bothc = 1 andc = 1/8.

Yahoo! Finance data. Results for Yahoo! Finance workload are largely consistent with other

results presented in this section, so some samples are shown here comparingPaint-Sparse, Paint-
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(a) Overlay (b) IP

FIGURE 5.27: Traffic in broker network per event; Yahoo! workload.

Table 5.5: Redundancy in messages received; Yahoo! workload.

Approaches k = 1 2 5 10 15 20

Paint-Sparse(1) 0 0.19 0.25 0.35 0.39 0.38
CN-Relax 706.51 361.22 147.13 72.67 48.38 36.11

Table 5.6: Average number of calls per event; Yahoo! workload.

Paint-Sparse

k #miny # firstk # snap

1 0.5 2 1
2 0.5 2 2
5 0.51 2 5.05
10 0.54 2 10.35
15 0.57 2 16.02
20 0.61 2 22.18

Unicast

k # miny

1 176.01
2 409.44
5 1050.48
10 2278.27
15 3510.16
20 4614.24

Sparse(1), CN-Relax, andUnicast. In terms of outgoing traffic from the server, this workload

allows Paint-SparseandPaint-Sparse(1) to inject a significantly fewer number of messages into

CN than other workloads, because they-values (price-to-earning ratios) only change slightly for

most events; consequently, most rank-lowering updates expose only a few objects. In terms of traf-

fic in the broker network, Figures5.27(a)and5.27(b)show thatPaint-SparseandPaint-Sparse(1)

generate two orders of magnitude less traffic thanUnicast. While CN-Relaxagain seems attractive

aroundk = 10, it does poorly with the next metric, redundancy in messages received bysubscrip-

tions, shown in Table5.5. Here,CN-Relaxresults in far more unnecessary traffic to subscriptions

with double- and triple-digit redundancy, compared with less than0.4 for Paint-Sparse(1) (and0

for Paint-Sparsebecause it is exact). Finally, in terms of server processing cost, Table5.6 shows

thatPaint-Sparsemakes few calls. On the other hand, the number ofminy calls remains huge for

Unicast, because it still checks all subscriptions in(ℓ, xi] × [xi, r) ⊆ S even though the majority

of events affect no subscriptions.
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FIGURE 5.28: (a) Average outgoing traffic from server per event; (b)Maximum outgoing
traffic from server per event.

Table 5.7: Number ofmin queries.

Approaches k = 1 2 5 10 15

Paint-Dense 6.35 11.31 26.13 50.48 74.40
Paint-SparseDataset#1 5.68 9.88 23.07 45.85 68.826
Paint-SparseDataset#2 5.40 8.97 19.45 36.97 54.67
Paint-SparseDataset#3 5.51 9.36 21.12 41.13 61.07

5.7.2 1.5-dimensional range subscriptions

There are10,000 objects, whosex(1)-values andx(2)-values are uniformly distributed over the

possiblex(1)-value andx(2)-value ranges. The number of subscriptions is400,000 subscriptions.

The following subscription distributions are considered:

• Dataset #1:Uniformly pick two random numbers in thex(1)-value range.ℓ(1) andr(1) are

set to be the smaller and larger ones, respectively.r(2) is uniformly chosen in thex(2)-value

range.

• Dataset #2:ℓ(1) is uniformly chosen in thex(1)-value range.r(1) − ℓ(1) is set to be the

minimum width that covers1,000 objects.r(2) is uniformly chosen in thex(2)-value range.

• Dataset #3:Same as Dataset #2, except thatr(1) − ℓ(1) is set to be the minimum width that

covers100 objects.

Figures5.28(a)and5.28(b)shows the average and maximum outgoing traffic (in bytes) from the

server per event update. Tables5.7and5.8show the number of calls per event.
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Table 5.8: Number ofsnap queries.

Approaches k = 1 2 5 10 15

Paint-SparseDataset#1 4.55 13.86 88.43 473.43 1361.90
Paint-SparseDataset#2 4.08 10.92 51.44 213.40 561.45
Paint-SparseDataset#3 4.29 12.28 70.69 360.45 1022.86

5.8 Related Work

Much work on scalable processing and notification of subscriptions has been done in the con-

text of publish/subscribe systems (e.g., [23, 34, 93]), but traditionally they consider only selection

queries over message attributes. Recent work seek to extend them to support more complex sub-

scriptions (e.g., [53, 41, 40, 42]), or use them for scalable implementation of distributed stream

processing [124] and query result caching [59]. The work most relevant to this chapter is [41],

which discusses scalable processing and dissemination of range top-1 subscriptions. This chapter

builds on their approach of leveraging CN for efficient dissemination. However, as demonstrated

in this chapter, the case ofk > 1 is considerably more complex and requires new algorithms data

structures; this chapter also considers batch updates and approximate solutions.

Other recent work on publish/subscribe has also addressed ranking,but with various different

subscription semantics; little is known about how best to support standard range top-k subscrip-

tions. Drosou et al. [55] consider ranking events by relevance and diversity. Machanavajjhala et

al. [79] consider the reverse problem—finding most relevant subscriptions fora published event.

In the sliding window model, Pripuzic et al. [96] maintains a buffer to store relevant events that

have a high probability of entering a top-k result in the future, and Haghani et al. [63] continuously

monitor top-k queries over incomplete data streams. Lu et al. [78] consider an approximate top-k

real-time publish/subscribe model, in which each subscriber approximately receives thek most

relevant publications before a deadline.

Range top-k querying is well studied in the database literature, both in terms of access method

design (e.g., [111]), and integration with relational query processing and optimization (e.g., [77]).

The key difference is that this chapter focuses on a different dimensionof scalability here: instead

of making a single range top-k query scale over a large dataset, this chapter considers how to scale

over a large number of ongoing range top-k queries.

This chapter is related to incremental maintenance of materialized top-k views. [120] handles

the challenge that an object “escaping” from the topk requires obtaining the newk-th ranked
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object. The idea is to reduce the expected amortized maintenance cost over timeby maintaining

a top-k′ view wherek′ ≥ k is allowed to vary. This approach (which optimizes across time)

complements ours (which optimizes across subscriptions), and will be interesting to explore in

conjunction with the approximate algorithms.

The problem studied in this chapter is related to that ofreverse top-k queries[115], where,

given a data update, affected queries are identified and their results areupdated. Their definition

of top k is different from ours, however: queries do not specify range conditions but instead vec-

tors of weights that customize relative importance of different ranking criteria. Also, the issue of

efficiently notifying affected queries over a network is not considered.

There also has been much research on top-k processing in a distributed setting, e.g., [20], [33],

[81], [87]. Most previous work focuses on computing or monitoring the result for asingle top-k

query over a set of distributed sources, where each source provides either individual object scores

or partial scores that must be aggregated across sources before being used for ranking. Processing

can be pushed inside the network to reduce communication, e.g., [80, 107]. Compared with the

work above, the problem setting of this chapter is inverted—instead of having one query over many

distributed objects, there are many distributed subscriptions over one stream of object updates,

which call for different techniques. Nonetheless, some ideas from distributed top-k monitoring [20,

107]) may be interesting to explore as future work. Namely, some solutions for distributed top-k

monitoring involve installing conditions at the sources that trigger reporting; intuitively, lowly-

ranked objects with little chance of entering the topk are associated with loose reporting conditions

with reduced monitoring costs. The question of applying this approach to the setting of this chapter,

however, is whether a large number of reporting conditions (mn) can be handled.

5.9 Conclusion

This chapter has tackled the problem of supporting a large number of range top-k subscriptions in a

wide-area network. The dual challenges of subscription processing and notification dissemination

are addressed by carefully separating and interfacing these tasks in a way that achieves efficiency

with off-the-shelf dissemination networks and without increasing system complexity. The tech-

niques presented in this chapter are based on a geometric framework, enabling us to characterize

the subset of subscriptions affected by an event as a region in an appropriately defined space, and

solve the problem of notifying affected subscriptions as one of tiling the region with basic shapes.
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The array of techniques that have been developed—ranging from those that use the knowledge

of subscriptions to those that do not, from event-at-time to batch processing, from exact to ap-

proximate, and from one-dimensional to multi-dimensional ranges—speak to the power of this

framework. Theoretical analysis and empirical evaluation show that the presented approach holds

substantial advantages over less sophisticated ones.

As mentioned in Section5.1, the techniques presented in this chapter can be applied to other

application settings. In essence, this chapter has devised an effective way to divide the problem of

supporting a large number of stateful subscriptions into two tasks: one thatcomputes a compact

description of the changes, and one that further uses this description to update affected subscrip-

tions. The first task is shielded from the complexity of handling subscriptions, while the second is

shielded from the complexity of handling objects. This division allows each task to be scaled up

independently. This chapter uses CN to scale up dissemination for the second task, but there are

more possibilities. 1) In settings where result updates do not need to be delivered over a network,

the second task of updating subscriptions can be scaled up in an embarrassingly parallel fashion,

without duplicating the effort of the first task or requiring each processing node to maintain the set

of objects. 2) Instead of using a single server to perform the first task,the database of objects can be

distributed across multiple nodes, which process incoming events and generate outgoing messages

in a distributed fashion. Details are available in Section5.6.3. This extension allows us to handle

the general publish/subscribe setting where events originate from multiple, distributed publishers.
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6

Dissemination Network Design

This chapter studies the problem of assigning subscribers to brokers in awide-area content-based

publish/subscribe system. A good assignment should consider both subscriber interests in the event

space and subscriber locations in the network space, and balance multiple performance criteria in-

cluding bandwidth, delay, and load balance. The resulting optimization problem is NP-complete,

so systems have turned to heuristics and/or simpler algorithms that ignore some performance cri-

teria. Evaluating these approaches has been challenging because optimalsolutions remain elusive

for realistic problem sizes. In this chapter, a Monte Carlo approximation algorithm with good the-

oretical properties and robustness to workload variations is developed toenable proper evaluation.

The algorithm combines the ideas of linear programming, randomized rounding, coreset, and itera-

tive reweighted sampling to make the problem computationally feasible. Becauseof its theoretical

properties and robustness to workload variations, it can serve as a reasonable yardstick to evaluate

other algorithms. In the evaluation section, we will see that with its help, a simple greedy algorithm

works well for a number of workloads, including one generated from publicly available statistics

on Google Groups. The hope is that the presented algorithms are not only useful in their own right,

but the presented principled approach toward evaluation will also be useful in future evaluation of

solutions to similar problems in content-based publish/subscribe.
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6.1 Introduction

A wide-area publish/subscribe system typically consists of an overlay network of brokers. Events

originate frompublishers, and are delivered by the brokers to interestedsubscribers. Traditional

publish/subscribe istopic-based, where subscribers subscribe to a set of predefined topics such as

“Apple news” or “American Idol.” Content-basedpublish/subscribe, on the other hand, allows a

subscriber to express an interest as a Boolean predicate against values of attributes inside events.

For example, a subscriber may subscribe to eBay antique auctions with sellerrating higher than

90% and starting bid between $100 and $200. Only events matching the predicate will be delivered

to the subscriber. Content-based publish/subscribe is of interest to both database and networking

communities [13, 53, 93, 98], because it must address the dual challenges of subscription matching

in an event space and event dissemination in the network space.

An important problem in content-based publish/subscribe issubscriber assignment. Each sub-

scriber needs to be assigned a broker responsible for forwarding matching events to this subscriber.

Intuitively, we would like to assign subscribers with similar interests to the same broker, so that an

event delivered to the broker could serve many subscribers. If all subscribers assigned to the broker

have similar interests, only a subset of all possible events needs to go through the broker. At the

same time, we may not want to assign a subscriber to a broker located far away in the network,

because doing so increases delivery latency and communication cost. Finally, we should not assign

too many subscribers to one broker because it could create a performance bottleneck and delays

event delivery. Balancing these considerations—similarity of interests in theevent space, proxim-

ity of locations in the network space, and balance of load across brokers—is a difficult optimization

problem.

The Need for a Yardstick. There is a good amount of previous work on subscriber assignment

and related problems; see Section6.7for details. Most approaches ignore some aspects of the prob-

lem or employ heuristic algorithms. For example, Aguilera et al. [13] assign subscribers to their

closest brokers in the network, ignoring subscriber interests. On the other hand, Diao et al. [53]
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make assignment based on similarity of interests, without considering networklatency. Papaem-

manouil et al. [91] present a general optimization framework that considers multiple performance

criteria, but relies on an iterative method to explore the solution space through local adjustments of

dissemination trees.

It is understandable and often necessary to employ heuristics for subscriber assignment, be-

cause the problem in general is NP-complete. Evaluating these heuristics, however, is frustratingly

difficult. How close are their solutions to the optimal? How well do they work on large, realistic

workloads? Because of the problem’s inherent complexity, optimal solutionsfor realistic problem

sizes are computationally elusive and often unavailable for comparison. What would be a good

yardstick then? Could yardsticks be solutions to simpler problems that ignore some performance

constraints, since they are easier to compute and can act as lower boundsfor the optimal solution?

Contributions. A main goal of this chapter is to find a better yardstick for evaluating the perfor-

mance of various algorithms for the subscriber assignment problem. An algorithm calledSLP, a

shorthand forSubscriber Assignment byLinear Programming, is proposed in this chapter.SLP

jointly considers both subscriber interests in the event space and subscriber locations in the network

space, and balances multiple performance criteria including bandwidth, delay, and load balance.

While SLP’s solution is not guaranteed to be optimal, it has provable properties that make it robust

to workload variations, and reasonable as a yardstick for evaluating other algorithms. Moreover,

a by-product of runningSLP (the LP fractional solution) gives us another useful indicator of how

close a solution is to the optimal.

This chapter also presentsGr⋆, a simple offline greedy algorithm for subscriber assignment

that presorts the subscribers in a particular way before assigning them one by one.SLP is used as

a yardstick to evaluateGr⋆ and a number of other algorithms. With the help ofSLP, this chapter is

able to conclude, with confidence, thatGr⋆ works very well for most (but not all) of the workloads

tested. The evaluation also reveals that simpler algorithms that ignore one performance criterion or

another are poor yardsticks, because their solution cannot offer meaningful bounds on what can be

realistically achieved when considering all constraints.
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Another major obstacle for evaluation is the lack of publicly available, realistic workloads for

content-based publish/subscribe. Information about subscribers (interests and locations) is rarely

disclosed because of privacy concerns and commercial interests. Lack of widely deployed systems

with powerful subscription languages also contributes to the difficulty. Thus, researchers have often

resorted to synthesized workloads. However, simplistic workload generators run the risk of missing

interesting patterns of clustering and overlap among subscriber interests,and correlations between

subscriber interests and locations, which may influence the evaluation of subscriber assignment

algorithms. Therefore, beyond simple synthetic workloads used for evaluation by previous work,

The algorithms are also evaluated using workloads generated from publiclyavailable statistics on

Google Groups [121], which is believed to be closer to (at least one) reality.

SLP is computationally feasible on realistic problem sizes; it has been run on workloads con-

sisting of hundreds of brokers and a million subscribers.SLP is made scalable by combining a

suite of techniques, including randomized rounding, coreset, and iterative reweighted sampling.

While SLP is slower than the simpler algorithms, its solution quality makes it well worthwhile

in some settings, such as initial subscriber assignment, periodical re-optimization, and especially

comparison with and evaluation of other algorithms.

6.2 Problem Statement

LetN denote thenetwork space. For simplicity,N is assumed to be a multi-dimensional Euclidean

space, obtained by standard Internet embedding techniques [48, 76, 88]; Euclidean distance be-

tween two points approximates the network latency between them. LetP ∈ N be thepublisher

andS = {S1, · · · , Sm} ⊆ N be a set ofm subscribers.

P publishesevents, each of which is represented as a point in theevent spaceE. E is assumed to

be thed-dimensional Euclidean spaceRd. Each subscriberSi has aninterestsi, which is assumed

to be ad-dimensional rectangle inE.1 Si receives an evente ∈ E if e ∈ si.

Events are disseminated to subscribers using a setB = {B1, · · · , Bn} ⊆ N of n brokers. P

1 Without loss of generality, each subscriber is assumed to have one interest; an individual with multiple
interests can be modeled as multiple subscribers located atthe same point inN.
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andB form adissemination network, which is assumed to be a treeT rooted atP . A leaf of T is

called aleaf broker. A subscriber assignmentΣ : S → BLeaves connects each subscriber to a leaf

broker.

Filters. Each brokerBi is associated with afilter fi ⊆ E such that if a brokerBj (resp. subscriber

Sj) is a descendant ofBi, thenfj ⊆ fi (resp.sj ⊆ fi). This condition is referred to as thenesting

condition. An evente is passed to a brokerBi if e ∈ fi. To ensure simplicity and efficiency in

implementing this forwarding logic,fi is required to be the union of at mostαi rectangles, for a

user-defined small constantαi which is calledfilter complexity. That is,fi =
⋃

R∈Fi
R, whereFi

is a set of rectangles inE and|Fi| ≤ αi. In the special case ofαi = 1 for all brokersBi, T ∪ Σ

becomes a bounding box hierarchy like an R-tree. However,αi is allowed to be1. Figure6.1

shows an example offi for α = 1 and2; the red points (events) are the false positive since they do

not hit the filters ofBi’s children—B1, B2, B3, andB4.

fi

f1

f2

f3

f4

fi

f1

f2

f3

f4

FIGURE 6.1: An example of filterfi with complexity1 and2.

Bandwidth. We are interested in minimizingQ(T), theexpected total bandwidth consumption

(or bandwidthfor short) ofT. Q(T) =
∑

Bi∈B
Q(Bi), whereQ(Bi) is the expected bandwidth

into brokerBi. The bandwidth required for leaf brokers to deliver events to subscribers is ignored

because the total does not depend on the subscriber assignment. If events are uniformly distributed,

Q(Bi) is defined as the volume offi, Vol(fi). Our approach can be extended to a non-uniform

event distributionπ, in which caseQ(Bi) =
∫
fi
π(e)de.
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Choosingαi > 1 can reduce bandwidth into a broker, as multiple rectangles summarize child

filters or subscriber interests more precisely than a single rectangle, but at the cost of increasing

storage and processing overhead at the broker.

Latency. We want to bound the latency of delivering events to each subscriberSj . A natural

requirement is made in this chapter: for a subscriber assignmentΣ to be valid, the network latency

of the path inT ∪ Σ from the publisher to each subscriberSj must not exceed the user-defined

maximum allowable latencyδj for Sj . Here, the path latency is the sum of distances inN between

consecutive points on the path.

The approach to be presented in this chapter can be extended to handle other form of latency

constraints, such as one that bounds only the last-hop latency to each subscriber (from the broker

it is assigned to). More sophisticated constraints that account for broker processing delays can be

enforced by additionally imposing load balance constraints described below.

Load Balance. We also want to ensure that not too many subscribers are assigned to oneleaf

broker, otherwise, the processing cost of a broker (matching incoming events against subscribers

and notifying the interested subscribers) would become too expensive. Without loss of generality,

assume thatB1, · · · , Bl are thel leaf brokers inB. Each leaf brokerBi is associated with a user-

definedcapacity fractionκi ∈ [0, 1], such that
∑l

i=1 κi = 1. Perfect load balance happens when

eachBi is assignedκim subscribers, but it is unnecessary and often undesirable as it may sacrifice

other performance measures. Letmi be the number of subscribers assigned to leaf brokerBi; the

load balance factor(lbf ) of the assignment be defined asmax1≤i≤l
mi

κim
. The user is allowed to

cap the lbf atβmax and specify adesired lbfβ, whereβmax > β > 1. We try to find an assignment

with lbf within β; failing that, we try to find an assignment with lbf withinβmax and as close toβ

as possible. The pair(β, βmax) allows the user to encourage load balance towards the desired level

without rewarding assignments that “over-balance.”
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The Problem. The subscriber assignment problem(SA) is defined as follows: GivenP , B,

BLeaves ⊆ B, S, T, filter complexitiesα = {α1, . . . , αm}, maximum allowable latenciesδ =

{δ1, . . . , δm}, leaf broker capacity fractionsκ = {κ1, . . . , κl}, as well as parametersβ andβmax,

compute an assignmentΣ : S→ BLeaves and filters for all brokers, such that the filter nesting con-

dition and complexity constraint are satisfied by all filters, the latency constraint is satisfied at each

subscriber, and the load balance factor is no more thanβ (or as close toβ as possible and no more

thanβmax). The assignment with the minimum expected total bandwidthQ(T) will be returned.

By reducing the standard set cover problem [114] to SA, it can be shown that SA is NP-complete.

Theorem 26. The decision version of the broker-subscriber assignment problem isNP-complete.

Proof. First, the geometric set cover problem, which is well-known to be NP-complete,can be

reduced to the subscriber assignment problem. The geometric set cover decision problem is for-

mulated as follows: Given a setS of m points inR2, a setB of n points inR2, and an integerk,

does there exist a setB′ ⊆ B of sizek, such thatmaxS∈SminB∈B′ ‖ S −B ‖≤ 1?

Let S be the subscriber set andB be the leaf broker set. Subscriber interestsi is set to[0, 1]2

for 1 ≤ i ≤ m, and desired lbfβ is set ton. The dissemination treeT is constructed as follows:

Choose publisherP to be the centroid ofB in R
2. Connect each leaf brokerB ∈ B to P by a

separate path consisting of2 edges, such that the total length of the path isβ ≥ maxj ‖ P −Bj ‖.

It can be checked that there exists a set cover of sizek iff there is a valid subscriber assignment

of bandwidthQ(T) ≤ 2k. Since the subscriber assignment problem generalizes the geometric set

cover problem, it is NP-hard. Finally, the subscriber assignment problemis in NP because the

resulting filter and subscriber assignments can be verified in polynomial time.

An Example of SA. Refer to Figure6.2. Both the event space and network space, shown as the

horizontal and vertical axes (resp.), are one-dimensional in this simple example. The horizontal

thin red line segments represent subscriber interests. The horizontal thick green lines represent

filters. The filter complexities for brokersB1, B2, andB3 are2, 1, and1, respectively.βmax is

set to1.5, so at most three subscribers can be assigned to each broker. The arcs (with arrows)
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FIGURE 6.2: An example illustrating the problem definition in low dimensions.

indicate the assignment of subscribers to brokers, as well as the connection from brokers to the

publisher. Although assigning subscriberS5 to brokerB1 can further reduce bandwidth,B1 will

become overloaded. AssigningS1 to B3 can also reduce bandwidth, but the latency constraint for

S1 will be violated.

6.3 Two Greedy Algorithms

This section presents two simple greedy algorithms for SA, both aimed at minimizing bandwidth

while meeting the latency and the load-balance constraints.

Online Greedy (Gr) This algorithm assigns subscribers sequentially to leaf brokers. It need

not know the set of subscribers from the start. It considers the effect of incorporating the new

subscriber into existing filters in the event space, in a way similar to R-tree splitting heuristics.

For each subscriberSj ∈ S, thecostof assigningSj to a leaf brokerBi is defined to be the sum

of least volume enlargement of filters over the path inT from the publisher toBi, such that the

nesting condition is preserved. More specifically, letfi =
⋃

R∈Fi
R be the current filter of broker

Bi. If Sj is assigned toBi, one of the rectangles inFi needs to be enlarged to contain subscriber

interestsj . The least volume enlargement offi can be computed by finding the rectangle whose

expansion results in the least increment of the expected bandwidthQ(Bi). Gr identifies a set of

candidate brokers(defined below) forSj , and then greedily assignsSj to the candidate broker with

the minimum cost. It breaks a tie by choosing the least loaded broker (i.e., onewith the minimum

mi

κi|S|
, wheremi is the number of subscribers already assigned to it).

169



Bi is a candidate brokerfor Sj if the following conditions are met: 1) AssigningSj to Bi

satisfies the user-defined latency constraint; 2)Bj will not be overloaded by this assignment; i.e.,

mi+1
κi|S|

is no more than a user-specified lbf. (This lbf can be set initially toβ; it can be increased if

no feasible solution is found, eventually toβmax.)

Offline Greedy (Gr⋆) This algorithm is an offline and more expensive variant ofGr. Each sub-

scriber is processed in the exact same way asGr. However,Gr⋆ first sorts and then processes the

set of subscribers in ascending order of the cardinality of their candidate broker sets. Intuitively, by

deferring the processing of subscribers with more choices, it reducesthe chance thatGr⋆ will be

forced into a costly decision due to lack of choices. Note that the assignmentof earlier subscribers

may restrict the choices available to later subscribers; hence,Gr⋆ updates the ordering of remaining

subscribers whenever a broker becomes fully loaded. As we will see in Section6.6, Gr⋆ not only

consumes lower bandwidth thanGr but also produces more balanced loads thanGr.

6.4 One-Level SA

We now turn to a more sophisticated algorithm,SLP. This section describesSLP1, an algorithm

for solving the one-level version of SA, in which all brokers are directlyconnected to the publisher

in T. Section6.5extends the solution to a multi-levelT. For a better flow of the chapter, all proofs

in this section are presented at the end of the chapter.

Although SA can be written as an integer programming problem, solving it directlyis com-

putationally intractable even for the one-level version. Realistic workloadsinvolving hundreds of

thousands of subscribers easily overwhelm the most sophisticated solvers. To tame complexity,

a carefully simplified problem is first solved to obtain a preliminary, but nonetheless good, as-

signment of filters to brokers; it is then used to derive the final solution to thefull problem. The

three-step strategy, illustrated in Figure6.3, is as follows.

1. Preliminary filter assignment.The heart ofSLP1, this step produces a preliminary filter

assignmentΦ = {ϕ1, . . . , ϕm} where brokerBi is assigned filterϕi. This step considers

all factors simultaneously in optimization—bandwidth, latency, and load balance—using LP
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1) Prelim. filter assignment

2) Subscriber assignment
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Input subscribers

Candidate filters
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Preliminary filter for each broker (Φ)

Preliminary filter for each broker (Φ)

Subscriber assignment
(Σ) Final filter for each broker (F)

Subscriber sampling (6.4.1.2)

Candidate filter generation (6.4.1.3)

LP relaxation (6.4.1.1)

Filter adjustment (6.4.3)

Assigning subscribers with max-flow (6.4.2)

FIGURE 6.3: Overview ofSLP1.

relaxation and randomized rounding. To keep the LP size manageable, instead of solving LP

on all subscribers and all possible filters, LP is iteratively run on small-sizerepresentative

sets (coresets) of subscribers and candidate filters.

2. Subscriber assignment.Given a preliminary filter assignmentΦ, this step considers the full

set of subscribers and computes the subscriber assignmentΣ : S→ BLeaves. Since the filters

are already given, this step focuses on load balancing while meeting latencyconstraints,

using a max-flow algorithm.

3. Filter adjustment.GivenΦ andΣ, this step further refines the filters and enforces the max-

imum filter complexity. LetF = {f1, · · · , fn} be the resulting set of filters. The algorithm

returnsΣ andF.

6.4.1 Preliminary Filter Assignment

This section presents the first step ofSLP1, FilterAssign(BLeaves, S) (Algorithm9). Section6.4.1.1

describesLPRelax, a subroutine for computing a filter assignment using LP relaxation. Calling this
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Algorithm 9 : Preliminary filter assignment algorithm.

FilterAssign(BLeaves, S) begin1
g ← 4;2
while g ≤ |S| do3

foreachS ∈ S dow(S)← 1;4
q ← 10g ln g;5

for i← 1 to 4g ln(|S|/g) do6
repeat7

Q← Random(S, w, q);8

Φ← FilterAssignHelper(Q,BLeaves, S);9

if Φ = ⊥ then return ⊥;10

if Violate((1 + ε)Φ,BLeaves, S) = ∅ then11
return (1 + ε)Φ;12

V← Violate(Φ,BLeaves, S);13

until
∑

S∈Vw(S) ≤ (1/8)
∑

S∈Sw(S) ;14
foreachS ∈ V dow(S)← 2w(S);15

g ← 2g;16

return ⊥;17
end18

FilterAssignHelper(Q,BLeaves, S) begin19
for j ← 0 to ln |S| do20

Sb ← Random(S,1, 10|BLeaves|);21
Sa ← Q ∪ Sb;22
R← FilterGen(Sa);23

Φ← LPRelax(BLeaves,R, Sa, Sb);24
if Φ 6= ⊥ then return Φ;25

return ⊥;26

end27

subroutine with all subscribers and all possible filters is impractical. Therefore, in Section6.4.1.2,

iterative reweighted sampling is used to obtain a coreset of subscribers to run LPRelax with. Sec-

tion 6.4.1.3presents a method for choosing a good subset of candidate filters to be considered by

LPRelax.

6.4.1.1 LP Relaxation

First, the algorithmLPRelax(BLeaves,R, Sa, Sb) is described. It assigns each brokerBi ∈ BLeaves

a filter consisting of rectangles inE drawn from a given setR = {R1, · · · , Ru}. Sa denotes the
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subset ofS considered byLPRelax; Sb ⊆ Sa denotes the subset for whichLPRelax enforces

the load balance constraint (see (C3) below). Intuitively, we would likeSa = Sb = S and letR

contain the minimum enclosing box of each non-empty subset of the subscriber interests, but doing

so would make the algorithm quite expensive in practice. Therefore, a subsetSa ⊆ S is carefully

chosen so that a filter assignment with respect toSa is also good with respect to the entire setS,

and choose a subsetSb ⊆ Sa to facilitate load balancing. Later, Section6.4.1.2will address how to

chooseSa andSb (and why to distinguish them), and Section6.4.1.3will address how to chooseR.

For each subscriberSj ∈ Sa, let Bj ⊆ BLeaves be the subset of brokers that satisfy the user-

defined latency constraint forSj if Sj is assigned to them; letRj = {Rk ∈ R | sj ⊆ Rk}, i.e., the

subset of given rectangles that containSj ’s interest.

SA is formulated as a mixed integer program. Two sets of Boolean variablesxij , yik ∈ {0, 1}

are introduced fori ∈ [1, n], j ∈ {j | Sj ∈ Sa}, andk ∈ [1, u], wherexij = 1 iff subscriberSj is

assigned to brokerBi, andyik = 1 iff rectangleRk is assigned toBi as part of its filter.

Recall from Section6.2 that we want to minimize
∑

Bi∈BLeaves Q(Bi), but whenαi > 1,

usingQ(Bi) = Vol(fi) = Vol(
⋃

R∈Fi
R) (i.e., volume of the union) makes optimization diffi-

cult. Therefore, for this step,̂Q(Bi) is defined as
∑

R∈Fi
Vol(R) (i.e., the sum of volumes) and

∑
Bi∈BLeaves Q̂(Bi) is minimized, instead. This objective function is more tractable, and the op-

timal solution under̂Q(Bi) approximates the optimal solution underQ(Bi) within a factor ofαi.

This objective function also discourages choosing overlapping rectangles for filters. In other words,

we minimize
∑

Bi∈BLeaves,Rk∈R
Vol(Rk)yik,

subject to the following constraints:

(C1) [Filter complexity] Each brokerBi is assigned a filter consisting of at mostαi rectangles:
∑

Rk∈R
yik ≤ αi ∀Bi ∈ BLeaves.

(C2) [Assignment and latency] Each subscriber is assigned to at least one broker meeting the la-

tency constraint:
∑

Bi∈Bj
xij ≥ 1 ∀Sj ∈ Sa.
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(C3) [Load balance] The load balance factor is at mostβ:
∑

Sj∈Sb
xij ≤ βκi|Sb| ∀Bi ∈ BLeaves.

(C4) [Nesting] A subscriber can only be assigned to a broker whose filter contains it:
∑

Rk∈Rj
yik ≥ xij ∀Sj ∈ Sa, ∀Bi ∈ Bj .

By relaxing the values of Boolean variables to be real numbers (i.e.,xij , yik ∈ [0, 1]), the above

mixed integer program can be reduced to an LP. Using an LP algorithm, the optimal fractional

solution is computed, and then randomized rounding [114] is applied to construct a solution to

the filter-assignment problem. Specifically, for eachyik, supposêyik is its value in the optional

fractional solution.yik is set to1 with probability1− (1− ŷik)
ln |Sa|, or 0 otherwise. The resulting

filter assignment isΦ = {ϕ1, . . . , ϕn}, whereϕi = {Rk | yik = 1}.

Before returningΦ as a preliminary filter assignment,LPRelax further verifies whetherΦ

coversSa. More precisely, a subscriberSj is said to becoveredby a filter assignmentΦ if there

exists a brokerBi with assigned filterϕi such thatSj ’s interestsj is contained in one of the

rectangles ofϕi, and the assignment ofSj to Bi satisfies the latency constraint forSj . A set of

subscribers iscoveredby a filter assignment if every subscriber in the set is covered. If it happens

thatΦ does not coverSa, randomized rounding is simply performed again for theyik’s to generate

a newΦ. Each round of randomized rounding produces aΦ coveringSa with probability at least

exp(−1) (see Theorem27presented later).

Remark Because of rounding,ϕi may have more thanαi rectangles; this violation is fine for

now—recall from the beginning of Section6.4 that the goal of this first step is not thefinal filter

assignment, but a good, preliminary assignment for the remaining steps; Section 6.4.3will fix such

violations.

Note that randomized rounding could also be applied toxij ’s and obtain a subscriber assign-

ment forSa, but the resulting assignment may violate constraints due to rounding, and it isnot the

goal of this step of the algorithm.
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(a) (b)

FIGURE 6.4: (a) Coreset members are drawn with thick outlines; (b) filters covering the
coreset (thick rectangles) areε-expanded (dotted lines) to cover all subscribers.

(a) Super-interests (b) Rectangle generation

FIGURE 6.5: Illustration of candidate filter generation.

6.4.1.2 Subscriber Sampling

If all subscribers are inputted asSa andSb to LPRelax, the size of LP in Section6.4.1.1will be

too large even for a moderate number of subscribers. Therefore, this section presents a method to

reduce the number of subscribers to input toLPRelax. This method combines two ideas:

• Coreset: For a wide range of geometric optimization problems, there exists a small subset

(coreset) of the input objects such that the solution for this subset is a good approximation

of the solution for the entire input [6]. This chapter shows that for filter assignment, a small

coreset ofS exists and can be computed quickly.

• Iterative reweighted sampling: This idea has been previously used for problems such as

linear programming [47], set cover [30], and computing coresets [10]. This chapter applies

it to coreset computation for filter assignment.

We begin with a few definitions. For a rectangleR =
∏d

i=1[li, hi], the ε-expansionof R,

denoted by(1 + ε)R, is
∏d

i=1[li − ε(hi − li)/2, hi + ε(hi − li)/2]. Similarly, theε-expansionof
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(a) (b) (c)

FIGURE 6.6: Three steps of iterative reweighted sampling: The weight of each subscriber
is initially one (see (a)). Choose a subsetSa (thick rectangles); find a filter assignmentΦ of
Sa; If the expansion ofΦ (dotted rectangles) coversS (see case (c)), returnΦ. Otherwise,
double the weight of allS ∈ S not covered by the expansion ofΦ (see case (b)).

a filterϕ = {R1, . . . , Rα} is (1 + ε)ϕ = {(1 + ε)R1, . . . , (1 + ε)Rα}. Let Φ = {ϕ1, · · · , ϕn}

be a filter assignment toBLeaves, with ϕi being the filter associated withBi, and let(1 + ε)Φ =

{(1 + ε)ϕ1, . . . , (1 + ε)ϕn}. A coresetQ ⊆ S is called anε-certificateif, for any filter assignment

Φ that coversQ, (1 + ε)Φ coversS (recall the definition of “cover” from Section6.4.1.1). The

notion of coreset is illustrated in Figure6.4. Lemma28 in Section6.4.4shows that there is always

anε-certificate whose size is independent of|S| (although the worst case bound is exponential in

|BLeaves|). The size of anε-certificate is likely to be much smaller in practice—as evident from the

empirical results.

The remainder of this section is devoted to describeFilterAssign(BLeaves, S) (Algorithm 9),

for computing a preliminary filter assignment using these ideas. If there existsan ε-certificate

of sizeg, an iterative reweighted sampling scheme can compute anε-certificate of sizeO(g ln g)

in O(g ln |S|) iterations (Lemma30 at the end of the chapter). Without knowingg in advance,

FilterAssign performs an exponential search ong, runningO(g ln |S|) iterations for a fixed value

of g and then doubling it.

Each stage of the search targets a specificg and consists of multiplevalid iterations.2 FilterAssign

maintains a weight for each subscriber inS, initialized to1 at the beginning of the stage. Each it-

eration chooses a random subsetQ ⊆ S of sizeO(g ln g), where each subscriber is chosen with

2 This validity condition is needed to establish the termination condition of an iteration (Line14 of Al-
gorithm9). A valid iteration is one where the ratio of the total weight of uncovered subscribers to that of
all subscribers is no more than1/8. By random sampling theory (Lemma31 at the end of the chapter), an
iteration is valid with probability at least1/2, so an iteration can simply be re-done until it is valid.
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probability proportional to its weight. A filter assignment forQ is computed using a helper pro-

cedureFilterAssignHelper described below. If the procedure finds an assignmentΦ (by calling

LPRelax), FilterAssign checks whether(1 + ε)Φ covers the entireS. If yes,FilterAssign stops

and returns(1 + ε)Φ. Otherwise,FilterAssign doubles the weight of each subscriber not covered

by Φ, and begin a new iteration. An example is shown in Figure6.6. If the number of valid it-

erations for the stage exceeds4g ln(|S|/g), FilterAssign concludes that theε-certificate has size

larger thang (by Lemma30), andFilterAssign moves on to the next stage.

FilterAssignHelper, invoked byFilterAssign’s inner loop, further prepares the input forLPRelax

and calls it. Theε-certificateQ that we look for inFilterAssign is intended for the problem of cov-

eringS, but sinceLPRelax considers coverage and load balance jointly,FilterAssignHelper must

ensure that the input toLPRelax properly reflects the properties ofS relevant to load balancing.

To this end,FilterAssignHelper chooses a random subsetSb ⊆ S of size proportional to|BLeaves|

(in the experiments,10|BLeaves| is used for the practical sizes ofBLeaves). FilterAssignHelper

calls LPRelax with Sa = Q ∪ Sb, andR = FilterGen(Sa), whereFilterGen is the candidate

filter generation procedure to be described in Section6.4.1.3. To guard against the small possi-

bility that a random choice ofSb makes the otherwise feasible optimization problem infeasible,

FilterAssignHelper repeats with a new choice ofSb (up to a few times) ifLPRelax fails to find a

feasible solution.

6.4.1.3 Candidate Filter Generation.

This section describes the procedureFilterGen for constructing the setR of rectangles to be used

by LPRelax to form filters. Without loss of generality, letS = {S1, · · · , Sm} denote the set of

subscribers given as input toFilterGen (in reality, a subset may be given instead), and letsi denote

Si’s interest (a rectangle inRd). Each rectangle inR is intended to contain a subset ofS. There are

Ω(m2d) rectangles, each of which contains a distinct subset.3 However, this many rectangles make

3 This lower bound is tight. In the case ofd = 1, each interest is an interval. Any intervalI containing a
subset of them intervals can be shrunk so that the endpoints ofI coincide with the endpoints of some of the
m intervals. Hence, there areO(m2) candidate intervals. Generalizing this argument to higherdimensions,
O(m2d) candidate rectangles can be generated inR.
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LPRelax impractical.

FilterGen takes two steps (see Figure6.5) to ensure thatR is small yet provides good cov-

erage. The first step replaces the input subscriber interests with a setΞ = {ξ1, · · · , ξk} of k

super-interests, wherek is proportional to the number of brokers (In the experiments,k is set to

5|BLeaves|). These super-interests are obtained by partitioningS into k

clusters and choosing the minimum enclosing box (MEB) of the subscriber interests in each

cluster. This clustering is done in a joint network-event space for two reasons: 1) It captures the

correlation between geographical and topical concentration of interests; 2) compared to a two-stage

clustering (clustering first in one space and then consider another space), it is easier to control the

size ofR under a single-stage clustering. In the second step, instead of generating O(k2d) rectan-

gles, a hierarchical procedure is used to generate fewer rectangles.The intuition is that if latency

and load balancing constraints are not too tight, there is flexibility in assigning subscribers to bro-

kers and each broker would handle subscribers with similar interests. Thehierarchical procedure

aims at generating filters for the clusters of interests on various levels of granularity. Now the two

steps are described in more detail.

For clustering, a subscriberS with coordinate(x1, . . . , xt) in the network spaceN = R
t and

interest
∏d

i=1[li, hi] in the event spaceE = R
d can be mapped to a point

(x1, . . . , xt, l1, . . . , ld, h1, . . . , hd)

in R
t+2d. LetP = {s∗j | j ∈ [1,m]} be the resulting set ofm points inRt+2d. P is partitioned into

k clusters using thek-means algorithm. LetP1, . . . ,Pk be the clusters returned by the algorithm.

For eachPj , let ξj ⊆ E be theMEB of subscriber interests corresponding to the points inPj . The

desired set of super-interests isΞ = {ξ1, . . . , ξk}.

In the second step, for each dimensioni ∈ [1, d], FilterGen constructs a setJi of intervals

lying on thexi-axis. R is set to be the Cartesian product of these sets, i.e.,R = {J1 × · · · × Jd |

∀i ∈ [1, d] : Ji ∈ Ji}. It thus remains to describe the construction ofJi. Let Ii be the set ofk

intervals that are the projection ofΞ onto thexi-axis. Let∆ be the length of the smallest interval

containingIi, and letδ be the length of the smallest interval inIi. For1 ≤ j ≤ ⌈log2(∆/δ)⌉, let

ℓj = 2jδ. (If ∆/δ is large,FilterGen choosesℓj ’s more carefully.) For eachj, let Iij ⊆ Ii be the
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FIGURE 6.7: Two main ideas for the rectangle generation step: (a) Consider only
log2(∆/δ) different lengths, (b) No two intervals of lengthℓj overlap by more thanℓj/2.

set of intervals of length at mostℓj/2. FilterGen generates a set of intervalsJij of length at most

ℓj such that every interval ofIij is contained by some interval inJij , and no two intervals inJij

overlap by more thanηℓj (In the experiments,η is set to1/2). Figure6.7 illustrates the idea.

To avoid two intervals inJij overlapping by more thanηℓj , let L be the set of left endpoints

of intervals inIij , sorted in increasing order.L is scanned from left to right and do the following.

The first point, sayp, of L is taken, and all the points fromL that are within distance(1 − η)ℓj

from p are removed. LetJ be the interval of lengthℓj with p as its left endpoint.J is shrunk to

the smallest possible interval such that it still contains the same subset of intervals inIij . ThenJ is

added toJij and the above step is repeated, untilL becomes empty, at which pointJij is added to

Ji and move on to the nextj. In the worst case,|Ji| = O(k log2∆/δ), but in practice it is expected

to be closer toO(k) or even smaller. Hence, the size of the filter candidate set isO(kd), but it

can be further reduced by working in high dimension directly if the dimensionality of E is large.

FilterGen shrinks each rectangleR ∈ R to theMEB of subscriber interests contained byR and

returnsR to FilterAssignHelper.

6.4.2 Subscription Assignment

The second step ofSLP1 takes as input the preliminary filter assignmentΦ produced byFilterAssign

in Section6.4.1, and computes the subscriber assignmentΣ : S → BLeaves, for the entire set of

subscribers. Since the filters are already given, minimizing bandwidth is not aconcern here; in-

stead, the focus is concentrated on load balance while ensuring that subscribers are only assigned to
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brokers thatcoverthem (recall the definition of “cover” from Section6.4.1.1, which considers both

nesting and latency constraints). Also, recall from Section6.2thatβ andβmax are user-defined de-

sired and maximum load balance factors (lbfs), resp.; the goal is to find aΣ whose lbf is no more

thanβ, or else, close toβ and no more thanβmax.

The computation ofΣ is formulated as a max-flow problem. A bipartite graphG = (V,E) is

constructed, whereV = S ∪BLeaves ∪ {s, t}, E = E1 ∪ E2 ∪ E3, E1 = {(s,B) | B ∈ BLeaves},

E2 = {(S, t) | S ∈ S}, andE3 = {(Bi, Sj) | Bi coversSj}. The capacity of every edge in

E2 ∪ E3 is set to1, and the capacity of an edge(s,Bi) in E1 to ⌊βκi|S|⌋. Initially, β = β, but it

may increase over time toβmax.

The maximum flow is computed froms to t. Let f be the value of the maximum flow. If

f = |S|, then every subscriber inS is assigned to a broker, which can be identified by the edge into

the subscriber with flow of1. The resulting subscriber assignment, which by construction has a lbf

of no more thanβ, is returned. Iff < |S| andβ = βmax, a conclusion is drawn that the load balance

constraint is too tight, andSLP1 stops. Iff < |S| andβ < βmax, the value ofβ is increased by a

small factor, update the capacity of the edges inE1, and recompute the maximum flow froms to t.

Depending on the maximum flow algorithm employed, as an optimization, the current flow can be

reused as the starting flow for the increased value ofβ [73].

6.4.3 Filter Adjustment

The third and last step ofSLP1 further adjusts the preliminary filter assignmentΦ = {ϕ1, . . . , ϕn}

made byFilterAssign. Based on the subscriber assignmentΣ : S → BLeaves made by the second

step, this step opportunistically tightens the filters, and enforces the filter complexity constraint

(that eachϕi consists of no more thanαi rectangles). Consider each brokerBi with preliminary

filter ϕi. Let Si ⊆ S be the set of subscribers assigned toBi. We want to replaceϕi by Fi, a set

of no more thanαi rectangles, such that
⋃

Sj∈Si
sj ⊆

⋃
R∈Fi

R andQ(Bi) = Vol(
⋃

R∈Fi
R) is

minimized. The problem is NP-hard [27] in general, so the following simple heuristic is used.

The subscriber interests associated withSi are partitioned intoαi groups, using the same clus-

tering technique as super-interest generation in Section6.4.1.3but ignoring the network space.
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This partitioning gives us a filter withαi rectangles, each of which is theMEB of the interests in a

group.

If ϕi has no more thanαi rectangles,ϕi is also adjusted as follows. Each subscriber inSi is

assigned to a rectangle inϕi containing its interest (if there are multiple rectangles, one is chosen

arbitrarily). Then, each rectangle inϕi is replaced by theMEB of the interests of the subscribers

assigned to it. The resulting volume ofϕi often decreases. Betweenϕi and the filter generated by

the clustering technique above, the one with the smaller volume is chosen to beFi.

After processing all filters,Σ andF = {⋃R∈F1
R, . . . ,

⋃
R∈Fn

R} are returned as the final

result. This completes the description ofSLP1.

6.4.4 Solution Quality

We begin with a discussion of the solution quality ofFilterAssign, the first step ofSLP1. Recall

the mixed integer program described in Section6.4.1.1. LetOPTLP(B
Leaves,R, Sa, Sb) denote the

value of the objective function (
∑

Bi∈BLeaves Q̂(Bi)) for the optimal LP factional solution to this

program (by allowing the values of Boolean variables to be real). The following theorem bounds

the quality of the solution produced byLPRelax (Section6.4.1.1) in terms ofOPTLP.

Theorem 27 (Solution quality of LPRelax). LPRelax(BLeaves,

R, Sa, Sb) returns a filter assignment with the following properties. i) The expected value of the

objective function is at mostln |Sa|OPTLP(B
Leaves,R, Sa, Sb). ii) The expected filter complexity

of Bi is no more thanln |Sa|αi. Furthermore, with probablity at least1/e, a subscriber assign-

ment can be found such that: iii) it satisfies the nesting constraint with respect to the returned

filter assignment; iv) it satisfies the latency constraint; and v) its expected lbf, with respect to the

subscribers inSb, is at mostln |Sa|β.

From Theorem27 above, we see that forLPRelax’s solution, its expected quality can be a

factor of ln |Sa| worse thanOPTLP, and its expected filter complexity can exceed the maximum

allowed by a factor ofln |Sa| as well. Fortunately, as the following lemma shows, the size of an

ε-certificate is independent of|S|; therefore,|Sa| is likely much smaller than|S|, so the blow-up

factor is closer to a small constant—as evident from the empirical results.
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Lemma 28 (Size of coreset for filter assignment). There exists anǫ-certificateQ ⊆ S of size

O((n ln(∆/ǫ))2dnmax(α)), where∆ is proportional to the ratio of the volume ofMEB(S) to the

volume of the smallest subscriber interest.

OPTLP(B
Leaves,R, Sa, Sb) provides a lower bound for the value of the objective function for

the optimal solution to the mixed integer problem with the same inputs. Furthermore, since the

optimal filter assignment forS is also a filter assignment forSa ⊆ S, OPTLP, optimal with respect

to Sa, must be a lower bound for the optimal solution with respect toS. However, restricting the

set of rectanglesR to be considered for filters, as done in Section6.4.1.3, can increaseOPTLP

and make it no longer a lower bound. Note that the two steps in candidate filter generation are

orthogonal. Given the set of super-interests provided by the first step, the pruning of filters in the

second step only degradesOPTLP by a constant factor because, as the following lemma shows,

for any rectangleR excluded from the candidate setR, there existsR′ ∈ R such thatR ⊆ R′ and

Vol(R) ≈ Vol(R′).

Lemma 29 (Goodness of candidate filters). Let R∗ be the set ofO(k2d) rectangles, where each

rectangle is the minimum enclosing box of a subset of thek subscriber interests. LetR be the set

of candidate rectangles returned byFilterGen. For each rectangleR ∈ R∗ \ R, there exists a

rectangleR′ ∈ R, such thatR ⊂ R′ andVol(R′) ≤ 4dVol(R).

However, the blow-up cannot be bounded due to the super-interest clustering step; it is a nec-

essary trade-off between complexity of the algorithm and optimality of its solution. Nonetheless,

if this first step of candidate filter generation is skipped (i.e. every subscriber interest is a super-

interest) and only the second is applied, thenOPTLP obtained with the resultingR still matches

the lower bound for the optimal solution up to a small constant factor.

In sum,FilterAssign produces a preliminary filter assignment that has provably good band-

width and bounded filter complexity (by (i) and (ii) in Theorem27 and discussion above) and can

lead to a good subscriber assignment (by (iii), (iv) and (v) in Theorem27).

Given this preliminary filter assignment, the subscriber assignment step in Section 6.4.2further

optimizes load balancing. The entireS is considered for load balancing by this step (as opposed
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to onlySb by FilterAssign). The max-flow algorithm is guaranteed to find the most load-balanced

subscriber assignment possible.

Finally, the filter adjustment step in Section6.4.3enforces the filter complexity of each broker,

now usingQ(Bi) (volume of union, as introduced in Section6.2) instead ofQ̂(Bi) (sum of vol-

umes, as introduced in Section6.4.1.1) in the objective function. When divided by the maximum

filter complexity, a lower bound for the optimal solution underQ̂(Bi) serves as a lower bound for

the optimal solution underQ(Bi).

6.5 Multi-Level SA

This section describes an algorithm for SA calledSLP when the broker treeT has multiple levels

of brokers. One possible approach is to first run the one-level algorithm SLP1 (Section6.4) over

all leaf brokers, and then compute the filters at the interior nodes ofT in a bottom-up manner. This

approach has two drawbacks. First, sibling brokers inT may be assigned subscribers with very

different interests, forcing a large filter at their parent which consumesa lot of bandwidth. Second,

solving SLP1 on a large set of brokers is computationally expensive. In practice, broker trees

often follow the topology of the underlying network, so a top-down hierarchical approach will be

effective.

The multi-level algorithmSLP works by recursively applying the one-level algorithmSLP1

to subtrees inT in a top-down manner. At each non-leaf brokerB of T, SLP1 is invoked to

distribute the subscribers amongB’s children, deciding in which subtree ofB each subscriber will

be assigned.SLP then recursively processes each child with the set of subscribers assigned to the

corresponding subtree.

To invoke SLP1 over a set of non-leaf sibling brokers, still need to address the issues of

determining appropriate latency and load balance constraints for assigninga subscriber to these

brokers—recall from Section6.2 that the actual latency to a subscriber depends on its leaf bro-

ker assignment, which has not been made yet because of top-down processing; the load balance

constraints have only been defined for leaf brokers. These two issuesare addressed below.
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Determining Latency Constraints. Suppose the multi-level algorithmSLP has passed a sub-

scriberSj to the subtree rooted at a non-leaf brokerB. For the purpose of runningSLP1 over

B’s children,SLP needs to determine, for each child brokerB′ of B, whether assigningSj to B′

satisfies the latency constraint. ConsiderLeaves(B′), the set of leaf brokers in the subtree rooted

at B′. Let γj(B′) ∈ [0, 1] denote the fraction of leaf brokers inLeaves(B′) that would satisfy

the latency constraint forSj if Sj is eventually assigned to them. A thresholdγ is set such that

γj(B
′) ≥ γ if and only if assigningSj to B′ satisfies the latency constraint when runningSLP1

overB’s children. The choice of the threshold reflects a trade-off: A highγ could severely limit the

choices of subtrees to whichSj can be assigned, making it difficult to distribute subscribers evenly

among the subtrees. A lowγ, on the other hand, means thatSj could be assigned to a subtree with

few leaf brokers satisfying the latency constraint forSj , making it difficult to distribute subscribers

evenly within the subtree.γ is set to1/2 to balance these two concerns.

In the event thatγj(B′) < γ for every childB′ of B, γ is lowered by a factor of two and try

again, untilγj(B′) ≥ γ for at least oneB′. This procedure ensures thatSj can be assigned to a

subtree even under stringent latency constraints.

Determining Load Balance Constraints. First, for each child brokerB′ of brokerB, κ(B′), the

capacity fraction ofB′, is set to beK(B′)/K(B), whereK(B) =
∑

Bi∈Leaves(B) κi is the sum

of capacity fractions of leaf brokers in the subtree rooted atB. It is easy to see that the capacity

fractions ofB’s children sum up to exactly1. If B is passedm(B) subscribers to handle, the

locally perfectly balanced loadfor childB′ would beκ(B′) ·m(B).

Some care is required for determiningβ(B) andβmax(B), the desired and maximum lbfs

(resp.) for runningSLP1 overB’s children. Setting these lbfs to their user-specified global coun-

terparts, i.e.,β(B) = β andβmax(B) = βmax, does not work. The reason is that, for a path of

lengthℓ to a leaf brokerBi, if the multi-level algorithmSLP allows the number of subscribers

passed to every broker to exceed its locally perfectly balanced load by a factor ofβ, then the to-

tal excess along the path would accumulate to a factor ofβℓ overκi|S|. Therefore, the following

method is used instead to assignβ(B) andβmax(B). Note that if the load is perfectly balanced
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globally,B should have been passedK(B) · |S| subscribers. Supposem(B) is the actual number of

subscribers given toB by SLP. β(B) is set to(β/ m(B)
K(B)·|S|)

1/ℓ andβmax(B) = (βmax/
m(B)

K(B)·|S|)
1/ℓ,

whereℓ is the path length fromB to leaf brokers.4 Effectively, this method adjusts the lbfs dynam-

ically asSLP recurses downT, accounting for the variable amount of excess load generated by

each step.

Remark SLP targets dissemination trees with large fan-out values but few number of levels. If

the height of a dissemination tree is large, solving subscriber assignment level-by-level is not a

right approach.

6.6 Evaluation

Other Algorithms Tested. Other algorithms are also considered for comparison withGr, Gr⋆,

SLP1, andSLP. The first one is a variant ofGr that ignores latency. (Note that it is less sensible

to ignore load balance, because there would be a strong incentive to assign every subscriber to the

same broker.)

• Online Greedy without Latency Consideration (Gr¬l). This algorithm works exactly like

Gr, except that it drops the latency constraint in defining candidate brokersets. The an-

swer produced byGr¬l is useful in understanding how latency constraints affect attainable

bandwidth.

Other algorithms that ignore bandwidth and instead focus on some other performance metrics, are

considered additionally. As we will see, likeGr¬l, these algorithms do poorly on the metrics they

ignore, but they help illustrate the importance of considering multiple metrics jointly inoptimiza-

tion.

• Closest Broker without Load Balance (Closest¬b). This algorithm resembles the one

in [13]. It assigns each subscriber to its closest leaf broker in the network space (hence

minimizing last-hop latency). Ties are broken arbitrarily.

4 For simplicity of presentation, this setting assumes thatT is height-balanced; i.e., all leaves are an equal
number of hops away from the root. Generalization to the unbalanced case is straightforward.
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• Closest Broker (Closest). Like Closest¬b, this algorithm assigns each subscriber to its

closest leaf broker. However, once a broker has already been assigned the maximum number

of subscribers allowed by the user-specified maximum lbfβmax, Closest drops it from

further consideration.

• Best Load-Balanced Assignment (Balance). This algorithm finds the assignment with the

best possible lbf (possibly less than the user-specified desired lbfβ) by solving a max-flow

problem. The graph construction is a variant of the one in Section6.4.2.

Workloads. The above algorithms are evaluated using three sets of workloads. As discussed in

Section6.1, it is important to base evaluation on realistic workloads, but they have beendifficult

to find. This issue is addressed in [121] by developing a workload generator based on publicly

available statistics on Google Groups. Extrapolating from these statistics, the generator produces

a baseline workload consistent with them, and can generate additional workloads that deviate in

meaningful ways from the baseline. Multiple workloads produced by this generator (collectively

referred to asworkload set #1) are used for evaluation. The network locations are mapped to points

in N = R
5, and the subscriber interests are rectangles inE = R

2. Two workload factors—IS, inter-

est skewness in terms of popularity, andBI, number of broad interests (i.e., large rectangles)—vary

between the settings of L(ow) and H(igh). The baseline workload from Google Groups resembles

(IS:H, BI:L). The distribution of subscribers across Asia, North America, and Europe is4 : 1 : 4.

The distribution of brokers across the network space is set to be roughlythe same as that of the

subscribers.

The workload generator [121] uses data extracted from PlanetLab, which consists of 1019

nodes and 484 sites. The inter-node latency relationship is embed in a low-dimensional Euclidean

space using [76]. The generator assumes that interest topics form a partially ordered set (poset).

First, the100 hottest topics are removed, because they correspond to extremely popular interests

that are better handled by separate dissemination mechanisms such as broadcast. IS (interest skew-

ness) is changed byinterest diffusion[121], which adjusts the popularities of topics in the poset

in a top-down fashion by balancing the popularities across subtopics to reduce their variance by a
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(a) All regions (b) Asia

(c) North America (d) Europe

FIGURE 6.8: Interest distributions inE for (IS:H, BI:H).

user-specified factor. IS:L uses a factor of55% while IS:H makes no adjustment. BI (broad inter-

est) is adjusted byinterest generalization[121], which increases the popularities of more general

topics in the poset in a bottom-up fashion by propagating a fraction of the popularities of subtopics

up. BI:L sets this fraction to1% while BI:H sets it to10%. For (IS:H, BI:H), Figure6.8 illustrates

the interest distributions in the event space by subscribers’ geographicregions.

Workload set #2 is designed to reproduce those used for evaluation in [97, 92, 91], is based

on observations of the RSS feed popularity. A total of50 different interests are generated and

their popularity follows a Zipf distribution with exponent0.5. Each interest is mapped to a random

unit square inE. Given an interest, subscriber locations are drawn uniformly at randomfrom 10

locations inN. In this workload set, the subscriber interests are essentially topic-based, and no

notion of “proximity” is captured in either the event space or the network space.

Workload set #3 is designed to mimic those used in ranked content-based publish/subscribe [79]

and peer-to-peer overlay for content-based publish/subscribe [117, 26]. The event space is parti-

tioned into100 grid cells. The center of an interest is mapped to the center of one of the cells.
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To create hot spots inE, the cells are ranked in random order; the probability of picking a cell as

an interest center follows a Zipf distribution with exponent0.5. There is also a set of predefined

interest widths. For each dimension, the width of an interest is chosen fromthis set according to

a Zipf distribution with exponent0.5. Each subscriber is randomly located at one of the network

locations inN; therefore, subscriber interests and locations are independent.

Problem Settings. Unless otherwise specified, the following settings are used for the SA prob-

lem, and the section shows how the parameters affect the results later. Filter complexityα is set to

3 for all brokers. Latency constraints are specified using amaximum delayof 0.3; thedelayexpe-

rienced by a subscriberS under a subscriber assignmentΣ is defined to beδ/∆ − 1, whereδ is

the latency of the path inT ∪Σ from the publisher toS, and∆ is latency of the shortest path from

the publisher toS throughT. For load balance constraints, all leaf brokers have equal capacity

fractions. For workload set #1, the desired and maximum load balance factors,β andβmax, are

1.5 and1.8, respectively. For workload set #2, since the subscribers of an interest are restricted

to a few network locations only, subscriber distribution is skewed inN due to interest skewness.

Therefore,β andβmax are set to relatively relaxed values of2.3 and2.5, respectively. For workload

set #3, since subscriber locations are completely random,β andβmax are tightened to1.3 and1.5,

respectively.

The two greedy algorithms in Section6.3 are compared with the algorithms described earlier

in this section together withSLP1 (for one-level broker networks) orSLP (for multi-level broker

networks). The quality of a solution is measured in terms of total bandwidth, subscriber delays,

and broker loads (i.e., number of subscribers assigned to each broker). For non-deterministic algo-

rithms, the average (when applicable) of five runs is reported; deviation inresults has been found

to be insignificant.

6.6.1 Solution Quality for a One-Level Broker Network

In the following, there are100,000 subscribers to assign to100 brokers attached directly to the

publisher.
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FIGURE 6.9: Overall comparison (one-level network, workload set #1).

Overall Comparison: Figures6.9. To get a quick overview, the result quality of each algorithm

on workload set #1 is plotted as a triangle whose vertices correspond to total bandwidth, root mean

square (RMS) of delay across subscribers, and standard deviation (STDEV) of broker loads. The

numbers reported are averaged over four workloads: (IS:L, BI:L),(IS:H, BI:L), (IS:L, BI:H), and

(IS:H, BI:H).

The figure on the left shows thatSLP1 andGr⋆ do well in minimizing bandwidth while bound-

ing delay and load balance.Gr is worse: not only it incurs higher bandwidth, but it also produces

very unbalanced loads (whileSLP1 andGr⋆ stay right within the maximum lbf). In fact, for all four

workloads,Gr fails to find a feasible solution that satisfies the load balance constraints; nonethe-

less, the best-effort solutions found byGr are reported. Variants ofGr are also tried: whenever the

greedy algorithm cannot assign a subscriberSj (because all its candidate brokers are fully loaded),

it randomly removes some subscribers from these brokers to make room for Sj , and either reassign

the removed subscribers next, or append them to the list of subscribers tobe processed later. These

variants still failed to find feasible solutions, even when given longer time to run thanSLP1.

The figure on the right shows that algorithms that ignore one performancecriterion or another

do poorly. By failing to consider subscriber interests in the event space,Closest¬b, Closest, and

Balance incur huge bandwidth. By ignoring latency constraints in the network space, Gr¬l pro-

duces unacceptable delays.Closest¬b has okay load balance in this case only because the broker

and subscriber distributions are similar; in generalClosest¬b’s load imbalance can be arbitrarily

bad.
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Similar results are observed for workload sets #2 and #3, as shown in Figures6.10, and6.11,

respectively.
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FIGURE 6.10: Overall comparison (one-level network, workload set#2).
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FIGURE 6.11: Overall comparison (one-level network, workload set#3).

One question that is set out to answer with these experiments is whether, in practice, the so-

lution could be used to a more tractable optimization problem that ignores some constraints as a

(lower-bound) yardstick for gauging the quality of the solution to the full optimization problem.

Here it is clear thatGr¬l is not a good yardstick—compared with the other algorithms, its band-

width is just too low and too unrealistic to serve as a meaningful yardstick.

But then, how could a conclusion be obtained that a solution is “good enough” with respect to

the optimal? The solution ofSLP1, though not guaranteed to be optimal, serves as a reasonable

indicator because ofSLP1’s theoretical properties. Next, we will see how a by-product of running

SLP1, namely the LP fractional solution (Section6.4.4), can further help.
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Table 6.1: Bandwidth comparison (workload set #1).
Workload Fractional solution SLP1 Gr⋆ Gr

(IS:L, BI:L) 3.09E9 7.12E9 6.53E9 9.50E9
(IS:H, BI:L) 1.2E9 1.86E9 1.53E9 2.09E9
(IS:L, BI:H) 3.81E9 8.48E9 7.79E9 1.05E10
(IS:H, BI:H) 1.29E9 2.13E9 2.39E9 2.78E9

Table 6.2: Bandwidth comparison (other workload sets).
Workload set Fractional solution SLP1 Gr⋆ Gr¬l

#2 1.01E7 1.37E7 8.5E6 220
#3 2.48E10 5.4E10 5.3E10 5.09E10

Bandwidth: Figure 6.12(a), Tables6.1and 6.2. Figure6.12(a)takes a closer look at total band-

width consumption across workload set #1. The relative ordering of the algorithms is fairly consis-

tent.SLP1 andGr⋆ are good and comparable.Gr is consistently worse (not to mention its solutions

also violate load balance constraints). Algorithms that ignore the event space are the worst. Again,

Gr¬l (barely visible in the figure) is just too good to be true or useful to the comparison.

Table 6.1 additionally shows the total bandwidth of the LP fractional solution obtained by

runningSLP1. Recall from Section6.4.4that this solution provides a lower bound for the attainable

bandwidth (modulo the choice of candidate filters) and the optimal bandwidth upto a small constant

factor (if subscriber interests are not first clustered into super-interests). The table shows that such

solutions give much more meaningful lower bounds thanGr¬l. The fact thatSLP1 andGr⋆ perform

within small factors (between1.3 and2.7) from the fractional solution is a good indication that they

perform very well with respect to the optimal.

Table6.2 further shows the comparison for workload sets #2 and #3. Here, the bandwidths of

the LP fractional solutions indicate thatGr⋆ performs well in both data sets. For workload set #2,

the fact that the bandwidth ofGr⋆ is smaller than the LP fractional solution automatically implies

that the bandwidth achieved byGr⋆ matches the lower bound (within a small constant factor).

Delays: Figure6.12(b). Figure6.12(b)shows scatter plots of delay versus shortest path latency

for selected algorithms for (IS:H, BI:H); the results are similar for other workloads in workload set

#1 and for other workload sets. BothSLP1 andGr⋆ are able to bound delay at0.3 as required.
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FIGURE 6.12: Detailed comparison (one-level network, workload set #1).

Closest¬b is expected to do well on delay, because it focuses exclusively on the network space.

However, sinceGr¬l ignores the network space, it has trouble satisfying the latency constraints;

subscribers near the publisher are especially vulnerable as they may be assigned to faraway brokers

that blow up delays significantly.

Broker Loads: Figures 6.12(c)and 6.12(d). Figure6.12(c)shows the boxplot of broker loads

for each algorithm for (IS:H, BI:H); the results are similar for other workloads in workload set

#1. The two dashed horizontal lines show the maximum and desired load bounds corresponding to

βmax andβ, respectively. As expected,Balance is the best;Closest also does well because the

broker distributions roughly follow the subscriber distributions in the tested workloads;Closest¬b

is similar toClosest but some brokers may still be overloaded becauseClosest¬b does not enforce

load balance constraints. Keep in mind, however, that these algorithms achieve good load balance

at the expense of huge bandwidth (Figure6.12(a)). Other algorithms exhibit wider range of loads.
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As mentioned earlier,Gr is unable to satisfy the load balance constraints, butSLP1, Gr⋆, andGr¬l

do, withSLP1 achieving a lbf close to the desired setting.

To have a closer look at the load distributions, the cumulative distribution function (CDF)

is plotted for selected algorithms in Figure6.12(d). Gr, despite its best attempt at enforcing all

constraints, overloads more than10% of the brokers.

The results are also similar for the other two workload sets. The maximum load ofGr exceeds

βmax by 39% and58% for workload sets #2 and #3, respectively.

6.6.2 Solution Quality for a Multi-Level Broker Network

In the following, workload set #1 is tested and there are100,000 subscribers to assign to a multi-

level network of200 brokers, where each internal broker has a maximum out-degree of15. The

constraints are also adjusted to see how well different algorithms cope with them. In thetight

latencysetting, the maximum delay is set to0.2; to compensate, the desired and maximum lbfs are

set to7 and8 (the minimum possible lbf is around6). In the loose latencysetting, the maximum

delay is set to1, and the desired and maximum lbfs to1.3 and1.5.

Overall Comparison: Figures 6.13(a)and 6.13(b). Similar to the results for a one-level net-

work, algorithms that ignore the event space (Closest¬b, Closest, andBalance) incur high band-

width, while the algorithm that ignores the network space (Gr¬l) produces long delays. Again,

Gr¬l’s bandwidth is too unrealistic to serve as a meaningful yardstick for other solutions. There-

fore, these algorithms are omitted in subsequent comparisons.

Under the loose latency setting,Gr andGr⋆ are comparable toSLP, andGr⋆ actually achieves

slightly lower bandwidth thanSLP. Under the tight latency setting, however, bothGr andGr⋆

fail to produce a feasible solution that satisfies the load balance constraints(like what happened to

Gr for the one-level network). Since the solution quality ofGr⋆ dominates that ofGr, Gr is also

omitted in subsequent comparisons.

Bandwidth: Figures 6.14(a). Interestingly, for all but one of the eight workloads,SLP under-

performsGr⋆. One explanation is that subscribers have too few choices of brokers under the tight
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FIGURE 6.13: Overall (multi-level network, workload set #1);tight andlooserefer to the
tight and loose latency settings, resp.

latency setting, and too many choices under the loose setting; in either case,SLP has little advan-

tage overGr⋆. However, note that the comparison under the tight latency setting is misleading,

becauseGr⋆ is unable to satisfy the load balance constraints, whileSLP does. Under the loose

latency setting, two algorithms actually have more similar performance.

Broker Loads: Figures 6.14(b). These figures show the results on (IS:L, BI:H). Regardless of

the latency setting,SLP satisfies all constraints. On the other hand,Gr⋆, despite its best effort,

cannot enforce all load balance constraints under the tight latency setting. A closer look at the

broker load distribution (not shown here) would reveal that more than10% of the brokers are

overloaded.
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6.6.3 Running Time ofSLP.

The wall-clock time of runningSLP is measured on a Dell OptiPlex 960 desktop with Intel Core2

Duo CPU E8500 at3.16GHz, 6144KB of cache, and8GB of memory. The LP solver is CPLEX

Version 10. A run with one million subscribers and100 brokers in a single-level network takes

about23 hours. A run with one million subscribers and200 brokers in a multi-level network

takes about4 hours (faster because each call toSLP1 here involves far fewer than100 brokers).

Figure6.6.3shows how the number of subscribers impacts the running time ofSLP.

In sum, for realistic problem sizes,SLP has manageable running time on mid-range hardware.

While SLP is by no means fast, its solution quality makes it well worthwhile, especially as a

yardstick to gauge other algorithms.
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(a) Cardinality of candidate broker set. (b) Bandwidth.

FIGURE 6.17: Effect of maximum delay.

Table 6.3: lbf; varying broker distribution.
Broker distri. (44, 12, 44) (66, 12, 22) (22, 12, 66) (33, 34, 33) (47, 6, 47) (22, 56, 22)

Balance 1.062 1.674 1.674 1.062 1.974 1.062
Closest¬b 4.464 4.222 7.016 4.464 2.927 7.016

6.6.4 Effect of Problem Parameters.

This section considers the impact of various input parameters on the problem.

Effect of Filter Complexity. Figure6.6.3shows the effect of the filter complexity (α) on the

total bandwidth of solutions bySLP, Gr, andGr⋆. The workload is (IS:H, BI:H), with a one-level

network. As discussed in Section6.2, a largerα may reduce bandwidth, because multiple rectan-

gles can summarize a set of interests more precisely than a single rectangle. This effect is clear

and similar for all three algorithms. At the lowestα settings of1 and2, SLP1 is more vulnerable

thanGr andGr⋆: a filter may consist of multiple faraway rectangles after rounding of the fractional

solution; covering them with just one or two MEB may increase the filter volume dramatically.

Overall, α = 3 is a reasonable choice for all algorithms; a largerα will increase storage and

processing overhead at a broker and its parent, and has diminishing effect on bandwidth.

Effect of maximum delay. Figure6.17(a)shows how the cardinality of a candidate broker sets is

affected by the parameter maximum delay. When the maximum delay is set to0.3, each subscriber

has roughly17% brokers in its candidate broker set in average. This gives sufficient rooms for the

optimization of bandwidth as shown in Figure6.17(b).
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Varying Broker Distribution in N. Table 6.3 shows how broker distribution affects the load

balance factor of the solutions.Balance aims to optimize load balancing, andClosest¬b assigns

subscribers to brokers without consideration of load balance. The lbf of SLP must lie in between

the lbfs ofBalance andClosest¬b. The subscriber distribution is4 : 1 : 4. When the broker

distribution is similar to the subscriber distribution inN, the lbf ofBalance is approximately one.

Its lbf becomes larger as the distributions start deviating from one another,but in the case where

more brokers are located near the publisher, load balancing is always improved as subscribers have

larger candidate broker sets. On the other hand,Closest¬b’s load imbalance can be arbitrarily bad.

Hence, the maximum lbf is capped to be the lbf ofBalance times1.5, which provides rooms for

SLP to minimize bandwidth while satisfying other constraints.

6.6.5 Algorithm Parameters.

Experiments with different choices of parameters forSLP have also been run to verify the settings

of parameters.

Size ofSb on Load Balance (Section6.4.1.2). The load balance of the assignment depends on

the number of random subscribers drawn from a uniform distribution to reflect the properties ofS

relevant to load balancing. As shown in Figure6.18, uniformly sampling around10|B| subscribers

is sufficient to ensure load balance (β = 1.5 andβmax = 1.8) for a one-level network. For a multi-

level network, uniformly sampling around20 times the out-degree of an internal broker returns an

assignment with the load balance factor betweenβ = 1.3 andβmax = 1.5.

Size ofΞ on Bandwidth (Section6.4.1.3). Figure6.19shows how the number of super-interests

affects the quality of the candidate filter setR by setting it to be different multiples of|B|. As shown

in the figure, when|Ξ| is increased, bandwidth is gradually decreased for a one-level network,

but it is only slightly improved for a multi-level network. When the out-degree of a broker is

small, brokers at a higher level of the tree tend to have large filters even if the quality of the filter

candidate set is further improved, and the bandwidth into those brokers dominates the bandwidth
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of T. Figure6.20shows the influence of the number of super-interests on the cardinality of the

filter candidate set.

(a) One-level network (|B| = 100) (b) Multi-level network (with out-
degree15)

FIGURE 6.18: Actual Load balance factor vs.|Sb|.

(a) One-level network (b) Multi-level network

FIGURE 6.19: Bandwidth consumption vs.|Ξ|.

Threshold γ for the Multi-level Algorithm (Section 6.5). Recall that for a multi-level tree,

we determine that assigningSj to B′ satisfies the latency constraint if and only ifγj(B
′) ≥ γ.

Figures6.21show how the thresholdγ affects delay and load balance. The distribution of brokers

across Asia, North America, and Europe is(8 : 1 : 2), (4 : 1 : 4), and(2 : 1 : 8) for broker

distributions # 1, # 2, and # 3, respectively. The subscriber distribution is(4 : 1 : 4) and publisher

is located in Europe.

Since the dissemination trees follow the topology of the underlying network, assigning every

subscriber to a subtree with most leaf brokers satisfying its latency constriant results in smaller
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(a) One-level network (b) Multi-level network

FIGURE 6.20: Cardinality of filter set vs.|Ξ|.

(a) Actual load balance factor vs.γ. (b) Delay vs.γ

FIGURE 6.21: Thresholdγ for the multi-level algorithm.

latency from the publisher to the subscriber. As expected, both low and high thresholds disallow

subscribers to be distributed evenly and the actual load balance factor is bad for both cases.

6.6.6 Discussion.

One take-way point from these experiments is thatGr⋆ works well on many (though not all) work-

loads, including fairly realistic ones generated from statistics on Google Groups. What is more

important, however, is what allows us to draw this conclusion. Solutions obtained by algorithms

that ignore any performance criterion are not helpful—not only do they tend to fare terribly on crite-

ria they ignore, but they also cannot offer meaningful bounds on whatcan be realistically achieved.

On the other hand, the LP-based approach is a better yardstick for evaluating different algorithms.

While we cannot guarantee the optimality ofSLP1, we have more assurance of its solution quality

(Section6.4.4) across problem instances. Furthermore, the fractional solution it produces gives us
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another indicator of optimality that is far more useful than, say, whatGr¬l offers.

One might wonder ifGr⋆ works well in general. It does not. We have already seen that it has

trouble with load balance constraints under the tight latency setting. Furthermore, the next section

will show how to construct concrete problem instance for whichGr⋆ performs orders of magnitude

worse thanSLP. This example further illustrates the importance of developing better yardsticks

for evaluating algorithms for SA.

6.6.7 A Difficult Workload forGr⋆.

Gr⋆ works well for most cases studied, but a counterexample can be constructed easily.Gr⋆ per-

forms poorly on the counterexample because it is forced to make a costly assignment for subscribers

appeared late in the assignment sequence. AlthoughGr⋆ defers the processing of subscribers with

more choices, the choices available to those subscribers can become limited because most brokers

become fully loaded or simply because of tight latency, in which case all subscribers have few

choices. However,Gr⋆ is expected to perform well as long as the capacity and latency constraints

are not too tight.

Given filter complexityα, the idea is to construct a sorted sequence of subscribers such that

Gr⋆ will assignα+ 1 well separated rectangles to each broker; merging any pair of the rectangles

will create a large rectangle. The workload ofm subscribers andn brokers is constructed as follow.

(α+1)n interests are created, each of which is a unit square centered at a pointon the liney = x in

E = R
2. Each interest hasβm/n subscribers. LetI1, I2, · · · , I(α+1)n be the sequence of interests

in ascending order of thex-axis. For alli < (α + 1)n, let the distance between the centers of

interestsIi andIi+1 be10(i modα)+1
√
2. An example of interests forα = 3 andn = 3 is shown

in Figure6.22. Next, for each subscriberSj , we define a subset of brokers to whichSj can be

assigned without violating latency constraints. Every subscriberSj that has interest inIi can be

assigned to any broker ifi > αn, otherwise,Sj can only be assigned toBj =

{
{B⌊i/(α+1)⌋+1, B(i modn)+1} if ⌊i/(α+ 1)⌋ 6≡ i modn,

{B⌊i/(α+1)⌋+1, B(i modn)} otherwise.

An example of feasible broker sets forα = 3 andn = 3 is shown in Table6.4.
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Let Ii → Ij denote that all the subscribers who are interested inIi are in front of those who are

interested inIj in the sequence. Subscribers are initially sorted in ascending order of thecardinality

of their candidate broker sets:I1 → I2 → · · · → Iαn−1 → Iαn → I(α+1)n → I(α+1)n−1 →

· · · → Iαn+2 → Iαn+1. Though the ordering of the remaining subscribers is always updated,Gr⋆

attaches the subscribers with interestsIi+j−1+kn to the same brokerBj , wherej ∈ {1, 2, · · · , n}

andk ∈ {0, 1, · · · , α}. The subscriber assignment forα = 3 andn = 3 is shown in Figure6.24.

In order to satisfy the filter complexity, two interests are forced to be covered by the same huge

rectangle.5 The bandwith consumption is roughly3 ∗ 106, which is104 times worse than the result

of SLP. As shown in Figure6.23, SLP minimizes bandwidth consumption by attaching the

subscribers with interestsIij , Iij+1, Iij+2, andIij+3 to the same brokerBj , for j ∈ {1, 2, 3}. The

cost is roughly300. In fact, this is the optimal solution.

Table 6.4: An example forα = 3 andn = 3.
Subscribers interested inInitial set of candidate brokers
I1, I2, I4, I5, I7, or I8 {B1, B2}

I3 or I9 {B1, B3}
I6 {B2, B3}

I10, I11, or I12 {B1, B2, B3}

FIGURE 6.22: Interests inE
with α = 3 andn = 3.

FIGURE 6.23: Filters gener-
ated bySLP.

5 As the gap between the values ofβ andβmax is increased, some filters will not have a huge rectangle
because subscribers for the4th interest may be assigned to other brokers. However, one can increase data
skewness (ex: increase the number of subscribers for the4th interest) such that the performance ofGr⋆

remains orders of magnitude worse than that ofSLP.
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(a) Interest-broker mapping (b) The best possible clustering

FIGURE 6.24: Filters generated byGr⋆. Interests with the same color are handled by the
same broker.

6.7 Related work

Dissemination network design for publish/subscribe has received much attention in the past few

years. As discussed in Section6.1, some previous work considers either interest similarity in

the event space (e.g., [53]) or subscriber location in the network space [13] while ignoring the

other aspect. Other performance objectives and constraints have also be considered in subscriber

assignment. Shah et al. [104] maximize data fidelity. Tariq et al. [112] maximize the number of

subscribers whose latency constraints are satisfied without violating bandwidth constraints.

Another line of research focuses on self-organizing, distributed algorithms that dynamically

reconfigure the network topology to optimize specific measures. Baldoni etal. [21] minimize the

number of hops and let subscribers be uniformly spread among brokers. Jaeger et al. [71] mini-

mize total processing and communication costs (excluding last-hop latencies between brokers and

subscribers). The distribution of subscribers to brokers is chosen probabilistically according to

a random load value. Papaemmanouil et al. [91] present a general optimization framework that

iteratively improves performance, starting by randomly attaching subscribers to a node. Under-

standing the robustness and global optimality of such algorithms has been challenging. The work

presented in this chapter complements this line of research by offering a yardstick for evaluation

that is computationally feasible over more realistic problem sizes.

Distributed stream processing is also related to the work presented in this chapter. Stream pro-

cessing systems process and aggregate data over a network of machines, and one key issue is how
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to optimally place query operators onto the set of machines (see [75] for overview and [123, 92]

for more recent development). However, the number of queries involvedin the operator placement

problem is orders of magnitude smaller than the number of subscribers in the subscriber assignment

problem.

There is a vast body of literature on network design in general. The minimum steiner tree

problem [25] and the weighted steiner tree packing problem [60] resemble the publish/subscribe

network overlay construction problem if steiner points are viewed as brokers, and terminals are

viewed as publishers and subscribers. The minimum steiner tree problem is APX-hard [25]. Migli-

avacca and Cugola [84] have studied the optimal content-based routing problem, which is to find

a minimal subtree that connects all subscribers who share the same interest,such that the total

communication and processing costs are minimized.

Finally, researchers have studied network design in the area of contentdistribution networks [54,

22]. While a content distribution network is not a pure dissemination system but more of a hybrid

between push and client pull, it faces similar issues such as balancing load and bounding latency.

6.8 Conclusion and Future Work

This chapter has presentedSLP, a LP-based algorithm for SA, the subscriber assignment problem

for wide-area content-based publish/subscribe.SLP considers the subscriber distribution in both

event and network spaces to minimize bandwidth while satisfying latency and load balance con-

straints. To ensure its scalability to realistic problem sizes,SLP employs a suite of techniques,

including LP relaxation, randomized rounding, coreset, sampling, and max-flow, to carefully re-

duce its complexity.

As a solution to the offline SA problem,SLP can be used for initial subscriber assignment

and periodical re-optimization. More importantly, with better theoretical properties and robust-

ness to workload variations,SLP serves as a reasonable yardstick for evaluating simpler heuristic

algorithms across realistic workloads in both online and offline settings. Usingthis yardstick, it

is shown that an efficient greedy algorithm,Gr⋆, works well for a number of workloads. Com-

pared with previous work, this chapter has pushed the sophistication and scale of evaluation to new
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heights.

There are two immediate directions for future work. First, a principled approach is still much

needed for the dynamic version of the subscriber assignment problem, where subscribers come and

go. Second, it would be good to drop the assumption that a broker tree is given in advance, and

jointly optimize subscriber assignment, broker placement, as well as the dissemination network

topology.

6.9 Theorems and Proofs

Proof of Lemma28. For the sake of readability, we bound the size of anǫ-certificate ford = 2 and

the maximum filter complexity equal to one. The proof can be extended to arbitrary dimensions

and arbitrary filter complexities analogously.

If there is only one single broker, there are two cases: (1) If the broker cannot satisfy all user-

specified latency constraints, no certificate exists and∅ is returned; (2) otherwise, anǫ-certificate

consists of subscribers whose interests are the leftmost, rightmost, up-most,and bottom-most inE.

For |B| > 1, we pick an arbitrary subscriberSj ∈ S. Let its interestsj be [ℓ1, h1] × [ℓ2, h2].

We place an exponential grid centered at( ℓ1+h1
2 , ℓ2+h2

2 ). Letwi,β,α = (hi−ℓi)(2
β(1+αǫ/2)−1).

The grid consists of vertical lines{x = ℓ1 − w1,β,α, x = h1 + w1,β,α} and horizontal lines

{y = ℓ2 −w2,β,α, y = h2 +w2,β,α}, whereα ∈ [1, 2, 3, · · · , ⌊2/ǫ⌋] andβ ∈ [0, 1, 2, · · · , log2∆],

as shown in Figure6.25. LetRj be the set of rectangles whose lower-left corners are (brown) grid

points in the southwest quadrant of point(ℓ1, ℓ2) and whose upper-right corners are (blue) grid

points in the northeast quadrant of point(h1, h2). Let Bj be the subset of brokers that satisfy the

user-specified latency constraint forSj if Sj is assigned to them. For eachBi ∈ Bj and each

rectangleR ∈ Rj , let SRi be the set of subscribers that are not covered byBi if filter fi = R; we

find anǫ-certificateQR
i for B\{Bi} andS\{SRi }. An ǫ-certificate forB andS is:

Q =
⋃

R∈Rj ,Bi∈Bj
QR
i .

Without loss of generality, saySj is assigned toBi. Let R ∈ Rj be the smallest rectangle con-

taining filterfi. By construction, anǫ-expansion offi would containR, so every subscriber inSRi

is covered by(1 + ǫ)fi. SinceQ also includes anǫ-certificate forB\{Bi} andS\{SRi }, Q is an
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FIGURE 6.25: Two levels (β = {0, 1}) of exponential grid withǫ set to1/2.

ǫ-certificate forS andB.

The cardinalities ofRj andBj areO((log2∆/ǫ)4) andO(n), resp. Since one broker is re-

moved fromBj for eachQR
i , the size of anǫ-certificate is easily verified to beO((n(log2∆/ǫ))4n

by solving the recursive functiong(n) = n(log2∆/ǫ)4g(n− 1).

Proof of Lemma29. The lemma directly follows from the fact that for each dimension, an interval

of length betweenℓj/4 andℓj/2 is contained by at least one interval inJij .

Lemma 30(Number of iterations). If no certificate is found after4g log2(|S|/g) iterations, the size

of a certificate must be greater thang.

Proof. The analysis is similar to [46, 30]. Letw(X), whereX is a set of subscribers, be a shorthand

for
∑

S∈Xw(S). LetQ be a certificate withg subscriber interests and suppose we have not found

any coreset afterl iterations. For every round, there must be at least one interest inQ that is not

covered by theε-expansion ofΦ (otherwise, by coveringQ, we would have found a certificate),

and its weight is doubled. Hence,w(Q) ≥ g · 2l/g afterl iterations. On the other hand, the validity

condition (Line14 of Algorithm 9) ensures that the total weight of the interests not covered by

theε-expansion ofΦ is always at mostw(S)/8, so doubling the weights of those interests cannot

increasew(S) by more than a factor of(1 + 1/8). Therefore,w(S) ≤ |S|(1 + 1/8)l after l

iterations. Fromg · 2l/g ≤ w(Q) ≤ w(S) ≤ |S|(1+1/8)l < |S|el/(2g) < |S| · 23l/(4g), we conclude

thatl < 4g log2(|S|/g).
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Lemma 31 (Probability of valid round). Let Q be a random sample of sizecg ln g, wherec is a

constant, andΦ be the set of filters assigned toB to coverQ. LetS′ ⊆ S be a set of subscribers not

covered byΦ. The probability thatW (S′) > ǫW (S) is at most 1/2.

Proof. Recall that subscriberSj can be assigned to brokerBi only if 1) its interestsj is contained

by filter fi in E, and 2) the network coordinate ofSj is within δj −λi units away from that ofBi in

N, whereδj is the maximum allowable latency forSj andλi is the path latency from the publisher

to brokerBi in T. Consider theL∞ norm. InN, let ϕj be a rectangle of width2δj centered at

Sj and̺i be a rectangle of width2λi centered atBi. The second condition is equivalent to “̺i is

contained byϕj in N.”

Let X = R
d+t be the combined space ofE andN. For simplicity, each of then brokers has

a rectangle filter. The argument can be extended for higher filter complexity. Let Σn(S, Rn) be a

range space, where a rangeX ∈ Rn is defined as the compliment of the union ofn rectangles in

X. Since the range is defined by combinations of4(d + t)n linear inequalities,VC-dim(Σn) =

O((d+ t)2n ln((d+ t)n). Since the VC-dimension of the range space is finite, the lemma follows

from the theory ofǫ-nets [64] by choosing the constantc larger than the VC dimension, which

depends ond, t, andn.

Proof of Theorem27. The proof consists of four components: bandwidth, filter complexity, la-

tency and nesting, and load balance:

(i) [Bandwidth] E[
∑

Bi∈B,Rk∈R
Vol(Rk)yik] =

∑
Bi∈B,Rk∈R

Vol(Rk)E[yik] ≤
∑

Bi∈B,Rk∈R
Vol(Rk) ln |Sa|ŷik= (ln |Sa|)OPTLP.

(ii) [Filter complexity] E[
∑

Rk∈R
yik] =

∑
Rk∈R

E[yik] =
∑

Rk∈R
(ln |Sa|)yik ≤ (ln |Sa|)α.

(iii) [latency and nesting] Here, we show that there exists a rounding scheme for variablesxij , such

that the latency and nesting constraints can be enforced with probability at least1/e. We round

variablesxij ’s as follows:

Pr[xij = 1 | y] =





1−|Sa|
−x̂ij

1−
∏

Rk∈Rj
(1−ŷik)ln |Sa| if

∑
Rk∈Rj

yik ≥ 1,

0 otherwise.
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This ensures that a subscriberSj is assigned to brokerBi only if Bi coversSj . Also,Pr[xij = 1 | y]

is always between0 and1 since constraints (C4) ensures that
∑

Rk∈Rj
yik ≥ xij , which implies

1− |Sa|−x̂ij ≤ 1− |Sa|−
∑

Rk∈Rj
yik ≤ 1−∏

Rk∈Rj
(1− yik)

ln |Sa|.

Recall thatPr[yik = 1] = 1 − (1 − ŷik)
ln |Sa|. The probability that brokerBi coversSj is

Pr[
∑

Rk∈Rj
yik ≥ 1] = 1 − Pr[

∑
Rk∈Rj

yik = 0] = 1 −∏
Rk∈Rj

(1 − ŷik)
ln |Sa|. The probability

that subscriberSj is assigned to brokerBi is equal to the sum ofPr[xij = 1 | ∑Rk∈Rj
yik ≥

1] · Pr[∑Rk∈Rj
yik ≥ 1] andPr[xij = 1 | ∑Rk∈Rj

yik = 0] · Pr[∑Rk∈Rj
yik = 0]. A straight

forward calculation will givePr[xij = 1] = 1− |Sa|−x̂ij .

The probability that a subscriberSj is not assigned to any broker isPr[∩Bi∈Bj
{xij = 0}] =

∏
Bi∈Bj

Pr[{xij = 0}] = ∏
Bi∈Bj

|Sa|−x̂ij = |Sa|
∑

Bi∈Bj
−x̂ij ≤ |Sa|−1. Hence, the probability

of every subscriber assigned to a broker is at least
∏

Sj∈Sa
Pr[

⋃
Bi∈Bj

{xij = 1}] = ∏
Sj∈Sa

(1 −

Pr[
⋂

Bi∈Bj
{xij = 0}]) ≥∏

Sj∈Sa
(1− |Sa|−1) = (1− |Sa|−1)|Sa| ≥ 1/e.

(iv) [Load balance] Using the above rounding scheme,E[
∑

Sj∈Sb
xij ] =

∑
Sj∈Sb

E[xij ]

=
∑

Sj∈Sb
(ln |Sa|)xij ≤ (ln |Sa|)βκi|Sb|.
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7

Conclusion and Future Work

7.1 Conclusion

This dissertation has examined the problem of answering various types of user queries in vari-

ous settings. The problem was modeled using a geometric framework. By applying techniques

such as dual transform, coreset, sampling and dimensionality reduction, efficient algorithms were

developed for both query processing and notification dissemination.

Chapter3 addressed the problem of supporting a large number of continuous preference top-k

queries. The chapter proposed the notion of QRS (query response surface) and developed solutions

within a geometric framework. Recognizing the connection to halfspace range queries, data struc-

tures were obtained for reverse top-k queries with linear space and sublinear query time. Building

on this result, a fully dynamic solution was presented to scale the solution to a million preferences

with both object and preference updates. The presented duality-basedapproach enabled effec-

tive subscription clustering; for regions where subscriptions were heavily clustered, queries were

jointly processed to acheive better performance. This chapter also defined and solved the approx-

imate preference top-k queries. The presented coreset-based approach significantly improved the

query time of the algorithms with only little loss in accuracy. Experimental evaluationconfirmed

the effectiveness of our ideas such as selective QRS-driven processing and coreset-based QRS
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simplification, which helped advance our solutions in both scalability and functionality.

Chapter4 presented efficient data structures and algorithms for top-k and reverse top-k queries

in high dimensions. Our solution was based on the idea of core subspaces:It exploited the sparsity

in preferences to identify core subspaces, and applied the techniques of coresets and duality trans-

form to index each core subspace as well as the full-dimensional space effectively. Experimental

evaluation showed that in high dimensions, exact methods were slow, while existing approxima-

tion methods suffered from either poor speed (e.g., when using only a single coreset in the full

space) or poor accuracy (such as the PCA- and view-based approaches). In contrast, for workloads

where preferences were often sparse, our solution offered a desirable trade-off between speed and

accuracy, which made scalable processing of preference top-k and reverse top-k queries in high

dimensions a reality.

Chapter5 tackled the problem of supporting a large number of range top-k subscriptions in a

wide-area network. The chapter addressed the dual challenges of subscription processing and no-

tification dissemination, by carefully separating and interfacing these tasks ina way that achieved

efficiency with off-the-shelf dissemination networks and without increasing system complexity.

Our techniques were based on a geometric framework, enabling us to characterize the subset of

subscriptions affected by an event as a region in an appropriate defined space, and solved the prob-

lem of notifying affected subscriptions as one of tiling the region with basic geometric shapes. The

array of techniques this chapter had developed—ranging from those that used the knowledge of

subscriptions to those that did not, from event-at-time to batch processing, from exact to approx-

imate, and from one-dimensional to multi-dimensional ranges—spoke to the power of this frame-

work. Theoretical analysis and empirical evaluation showed that our approach and techniques held

substantial advantages over less sophisticated ones.

Chapter6 studied how to design an efficient dissemination network for range queries. In

particular, the subscriber assignment (SA) problem was solved for wide-area content-based pub-

lish/subscribe. This chapter presented a LP-based algorithm calledSLP, which considered the

subscriber distribution in both event and network spaces to minimize bandwidthwhile satisfying

latency and load balance constraints. To ensure its scalability to realistic problem sizes, SLP em-
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ployed a suite of techniques, including LP relaxation, randomized rounding, coreset, sampling,

and max-flow, to carefully reduce its complexity. As a solution to the offline SA problem,SLP

could be used for initial subscriber assignment and periodical reoptimization. More importantly,

because of its better theoretical properties and robustness to workload variations,SLP served as a

reasonable yardstick for evaluating simpler heuristic algorithms across realistic workloads in both

online and offline settings. Using this yardstick, this chapter concluded thata simple and efficient

greedy algorithm,Gr⋆, worked well for a number of workloads.

7.2 Future work

This section provides several directions for future research that extend the work of this dissertation:

Top-k subscriptions. In addition to object ranking, users can also be ranked from publishers’

perspective: instead of disseminating updates to all affected users, a publisher will find t most

relevant users to the update and only notify thoset users of the updates. Recently, Sadoghi and

Jacobsen [102, 103] presented data structures for supporting top-t matching subscriptions, where

each subscription specifies both range condition and customized scoring function. Their solution is

based on a two-phase space-cutting technique—space partitioningwhich chooses the best splitting

attribute andspace clusteringwhich clusters users based on their subscription ranges in the splitting

attribute. However, supporting top-t matching subscriptions remains an open problem when each

subscription is a continuous preference top-k range query.

Continuous top-k queries under uncertainty. Another future direction is to explore different

ways of modeling user interests in order to handle uncertainty in preference vectors. Users may not

explicitly know the combination of weights that reflect their interests. One possibility is to model

a user preference as a set of possible vectors or a cone instead of one “precise” vector.

Spatial-temporal top-k preferences Another future direction is to consider both space and time

in ranking. User preferences may be location-based; users may only beinterested in updates within
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their local neighborhood. For example, Nextdoor,1 a private social network, maintains thousands

of neighborhoods and supports notification dissemination of local updates, such as break-in and

missing pets. Section5.5has generalized the framework to handlek-nearest-neighbor queries, but

still the ranking of objects may depend on their publication time as well; their rankings may drop

over time gradually. For example, a news story about a robbery that occurred today may rank

higher than another news story about a robbery that occurred a weekago. As another example,

Facebook uses EdgeRank, which takes time decay into consideration, to rank the stories in the

news feed.

1 http://nextdoor.com
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