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Abstract

There has been an unprecedented growth in both the amouatafdd the number of
users interested in different types of data. Users oftent wakeep track of the data
that match their interests over a period of time. A contirsiquery, once issued by a
user, maintains the matching results for the user as new(dataell as updates to the
existing data) continue to arrive in a stream. However, suppy potentially millions of
continuous queries is a huge challenge. This dissertatidreases the problem of scalably
processing a large number of continuous queries over a ane@network.

Conceptually, the task of supporting distributed contirsigueries can be divided into
two components—event processing (computing the set aftaffieusers for each data up-
date) and notification dissemination (notifying the setféé@ed users). The first part of
this dissertation focuses on event processing. Sinceartiag with large-scale data can
easily frustrate and overwhelm the users, togueries have attracted considerable inter-
est from the database community as they allow users to focukeotop-ranked results
only. However, it is nearly impossible to find a set of commam-tanked data that every-
one is interested in, therefore, users are allowed to sptwir interest in different forms
of preferences, such as personalized ranking function amger selection. This disserta-
tion presents geometric frameworks, data structures, lgidittams for answering several
types of preference queries efficiently. Experimental@sbns show that our approaches
outperform the previous ones by orders of magnitude.

The second part of the dissertation presents comprehessinrBons to the problem



of processing and notifying a large number of continuougeatop4 queries across a
wide-area network. Simple solutions include using a cantieimen network to notify all
continuous queries whose ranges contain the update (igntwp+), or using a server to
compute only the affected continuous queries and notifthiegn individually. The former
solution generates too much network traffic, while the fatteerwhelms the server. This
dissertation presents a geometric framework which alldwesset of affected continuous
gueries to be described succinctly with messages that caffitiently disseminated using
content-driven networks. Fast algorithms are also deeeldp reformulate each update
into a set of messages whose number is provably optimal, avithithout knowing all
continuous queries.

The final component of this dissertation is the design of a&vetea dissemination net-
work for continuous range queries. In particular, this elitstion addresses the problem of
assigning users to servers in a wide-area content-basdidlpabbscribe system. A good
assignment should consider both users’ interests anddosaiand balance multiple per-
formance criteria including bandwidth, delay, and loachbak. This dissertation presents
a Monte Carlo approximation algorithm as well as a simpledyedgorithm. The Monte
Carlo algorithm jointly considers multiple performanceeria to find a broker-subscriber
assignment and provides theoretical performance guasnidsing this algorithm as a
yardstick, the greedy algorithm is also concluded to worki weross a wide range of

workloads.
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1

Introduction

This is the age of data. We are witnessing the unprecedentedigin both the amount
of data and the number of users interested in different tgpesta. When users look for
data that are relevant to their interests, each of theirréaaests is generally expressed as
aqueryto a database. To process a query, the database performsemse@f operations
on the data and returns relevant answers to the query. Thdlgod data, however, brings
new challenges for efficient query processing.

The first challenge is to design algorithms that achieverésgionse time. At any point
in time, thousands of user queries can be posed against ahgriagf a large database
through interactive interfaces. With the sheer volume @iilable data, millions of data
may be relevant to each query. A naive approach may take esriatanswer each query,
but typically users want to receive the answers immediataly example, it was reported
that delay is one of the primiary sources of web users’ fatigtn [37] and thatt seconds is
all an average online shopper will wait for before potehtiabondoning a retail sitelf].
As another example, financial services need to providetm@alfinanical information to
their clients. Consider an investor who wants to identifyfipable trades in a stock mar-

ket. Since the market conditions can change in a matter ohsksg an investor may miss



buying/selling opportunities if stock tickers are not riged within seconds. Obtaining
answers to the queries in a timely manner is a critical chghefor efficient query pro-
cessing.

The second challenge for query processing is that in additidast response time, the
guery answers need to be of high quality. It is not enoughrpbi return all relevant an-
swers, because users would get overwhelmed by the sheeneaiiquery answers. This
often frustrates the users and deteriorates the query amsavéhe point of uselessness.
Fortunately, returningll relevant answers is unnecessary for most applicationss ase
only interested to know a limited set of top-ranked relexargwers. For example, Google
News prioritize the stories and cluster similar new artidiegether. This design allows
users to easily catch the news breaking stories and skimmghrthe top news of the day.
Undoubtedly, allowing users to focus on the top-rankedvegledata is key to ensuring
high quality of results.

As the number of users continues to increase at an astouraliegfinding a set of
common top-ranked data that everyone is interested in idyn@apossible. Since every
user has different interests and preferences for rankitegtdat match her interests, high-
quality query processing systems have to provide persmthliesults for user queries.
For example, a stock screener may list stocks with a widesrahgumeric attributes, e.g.,
market capitalization, trade volume, price-to-earnirigpratc. Representing different user
interests, user queries may have different range conditiOne user may be interested in a
stock only if its market capitalization is at le&90 million, while another user may specify
other range conditions on other attributes. In additioe dfocks that satisfy a user’s range
conditions are ranked according to her preference, whigem#s on whether the list of
stocks identifies buying or selling opportunities, and wéty according to ones personal
investing style and tolerance for risk. As another examplenline sports communities,
sport fans share their opinions on players’performancéls @ach other. Many of them
like to analyze players with respect to customized perfoiceametrics, e.g., for NBA

2



fans, a user query can be “Return topplayers with the highest true shooting percentage
(TS%) who have at leagtsteals and rebounds,” or “Return top9 players with the most
field goals whose field goal percentage is at |[dagt and defensive rating is at mosi2.”
Today, cameras hang in a handful of NBA arenas are able tk énary player on court
and record every movegb times per secondlP9. The improvement on optical tracking
techniques creates not only lots of data events, but als@fgterformance attributes, such
as speed/distance, passes made/received, individudlgsuetc 109. A big challenge

is to support queries on these high-dimensional data in laldeaway. Hypothetically
speaking, if a web-based NBA search engine allows millidrtt® NBA fans around the
world to query these high-dimensional data simultanerypasinore rigorous algorithmic

approach is needed for query processing in order to keep g growth of users.

Continuous query. Very often, users want to keep track of the data that matcin ithe
terests over a period of time. The answers to these contnuear queries continue
to be updated asvents(data insertion, deletion, and update) keep arriving inr@eash.
Traditionally, users poll sources for information. Howgvesers may miss important
events because those important events may arrive at anyipdime. In addition, fre-
guently polling for updates is hardly scalable for many agpions. Alternatively, the
publish/subscribe model, which pushes notifications tosusgh matching interests, ex-
pressed as subscriptiohsis better suited for ensuring scalability and timely detiv of
information. Even if events do not come at a very high ratecessing and pushing them
to the servers for affected queries at their published timgroves query response time,
because answers to the queries can be found by simply atyithe pre-computed results.
Furthermore, the quality of the answers is also improvea@bse a better, but more costly,
algorithm can be used to precompute the answers. Suppéotiegarge-scale set of sub-

scriptions is important in many application domains, iohg personal, commerical, and

L n this dissertation, we will use “continuous query” andWsaription” interchangeably.
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security, etc. For example,

Portfolio monitoring. Financial services provide financial updates such as stokérs

to their clients in real-time.

Web alerts. Instead of repeatedly querying a search engine with the satef search
terms, web monitoring systems such as Google Alerts autoafigtnotify users of
the latest relevant new contents (from web, blogs, new¥bafsed on users’ search
gueries. Users can use the alerts to follow a developing séovg, get the latest

news on a celebrity or their favorite sports teams, etc.

Web page recommendationsWeb search engines, such as Google, automatically detect
standing interests of their users from their search |dd$§|[ When new contents

match the users’ interests, they are presented to the usegs@nmendations.

Content delivery services.Content delivery services such as Akamai employ extensive
caching of database query results at their “edge servernsiipoove performance.

These caches need to be kept up-to-date when the centrbbdats updated.

Social annotation of news.Social updates, e.g. tweets, on news events often refleet pub
lic views of those events. They are nicely complementaryeiwsharticles written
by professional journalists. To automatically annotatimeyvs stories with social
updates at a news website, news stories are treated asiptibssrand tweets are

treated as data eventsJg.

Social networks. In social networking websites, such as Facebook, userssmestantly
updated list of recent activity of their friends. Here, eacler subscribes to events

from her friends who act as event publishers.

E-Commerce. Online aution and shopping sites such as eBay provides sptisorser-
vices for their customers to stay up-to-date with new andifieebmatching items.

4



Network security. Internet Service Providers monitor network traffic in réate at var-

ious routers to detect possible network attacks.

As in the case of snapshot queries, data is ranked based sompépreferences, and
subscriptions only receive top-ranked events that mateh thterests. For example, in
the case of portfolio monitoring, stock price updates maycma large number of sub-
scriptions. While many users may be interested in the sansk,stach user may specify
a unique set of contraints. One user may want to be notifiedstdek update only if its
price-to-earning ratio is at lea®® while another user may want to get a stock update only
if its debt-to-assets ratio is at masti. Since users want to be notified only when certain
customized conditions are met, the data needs are potgdifrent across users.

For applications that require low frequency of notificatiqnery results can be batched
after they have been gathered over a period of time. For ebeari@pogle Alerts collects
at least thousands of events that match a subscription degnjf all those events are sent
to a user’s email inbox at their occurring times, the usel mibst likely mark all those
messages as spams and unsubscribe to Google Alerts. Trieei@fmogle Alerts provide
options for users to choose the freqeuncy of receiving bashlts and to receive only the

best results in each batch.
1.1 Challenges

Supporting a large-scale set of subscriptions is challenfyir many reasons:

Diversity of interests and personal preferences. Given an event update, how can we quickly
find the (small) set of users that need to be notified, in thegiree of potentially millions
of subscriptions? A brute-force approach that scans thrtlugwhole set of subscriptions
does not scale. Second, every user has different intenedtpexsonal preferences. The

flexibility of user preferences together with the diversifyuser interests demand more



powerful event processing funtionalities, making the talS&vent processing much more
difficult. Atthe same time, for applications such as portf@honitoring, the stock updates
must reach relevant users in timely fashion. It is ineffitiensupport flexible user pref-

erences in two phrases—1) computing the set of matchingcepbens, and 2) testing

the notification conditions of each matching subscriptiodividually. It is because the
number of matching subscriptions can be significantly latgan the number of match-
ing subscriptions whose notification conditions are met, many matching subscriptions
need not to be notified. The challenge lies in finding a way tmpgrprocessing subscrip-

tions despite the diversity of interests and personal peefes.

Joint optimization of event processing and notification dissemination An even more chal-
lenging application setting is when a large number of usersozated across a wide-area
network. In this setting, each user maintains a list of tapked objects locally. For each
event updating the database, we must notify all subscniptichose lists are affected. No-
tification messages should carry enough information salteedffected subscriptions can
update their top-ranked lists accordingly.

A naive approach would be to use a central server to compaetésiof users who
needed to be notified and then unicast updates to each of thewever, the server could
become a bottleneck with processing and messaging cosgasitlinear in the number
of affected users. Alternatively, a publish/subscribaesyscan be leveraged as a means
for distributing the event updates to the users. A publidigsribe system typically em-
ploys a network obrokersthat serve as the middleware between the data providers and
users. Traditionally, subscriptions are stateless: tlaybe processed by only examin-
ing the incoming event itself. Personalized results, h@newoften require stateful sub-
scriptions: whether a subscription is affected dependsamwnthe updated objects ranks
against others that also satisfy the selection constratstraightforward solution is to

add post-processing logic and maintain additional infaromaon the user side, but one
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has to leverage both ranking and selection criteria in aimlezduce network traffic.

Need for a well-designed dissemination network. Last but not least, a well-designed pub-
lish/subscribe network is key to ensuring efficient evemicpssing and notification dis-
semination. A particular problem of interest is how to assigers to brokers, such that
event processing and notification dissemination are jiogtimized. Intuitively, it is
beneficial to assign subscriptions with similar interegtihe same broker, because events
delivered to the broker serve multiple subscriptions, padly saving communication.
On the other hand, we need to be careful in letting one bro&edle users that are far
away in terms of network distance, because doing so mayteidilivery latency require-
ments and increase communication costs. Balancing the tagidzrations—similarity of
interests in the event space and proximity of locations émbtwork space—is a hard op-
timization. The optimal trade-off between the two also deseon the amounts of events
matching shared versus disjoint interests. Thereforebésé solution for a given system

must take into account subscription interests and locatsnwell as event distributions.
1.2 Data Model and User Queries

Conceptually, all data of interest can be modeled as a rakdtaatabase. In this disser-
tation, we assume the data spdt¢o be ad-dimensional Euclidean spa@. We are
given a set) of n objects. Eaclobjecto € O hasd real-valued attributes and is modeled
as a point(vq,...,v,) € E. For example, one way to index text documents is based on
the vector space model of information retrieval. In this elp@ach attribute represents
an index term (resp. a concept if statistical model such abatnilistic latent semantic
analysis (PLSA) is applied to the collection of texts) angl $pace is referred to as a term
space (resp. semantic space). Each document (e.g., wepbneagge blogs) is represented
as a point(vy, vg, - - - ,v4) In the multi-dimensional term space (resp. semantic spéae)

the simplest case; is the number of occurence of terinin the document (resp. weight
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FIGURE 1.1: Example of a preference query. Playleranks first w.r.t. a user’s preference
(wq,ws) = (0.2,0.8); player B ranks first w.r.t. a user’s preferen@@5, 0.5).

of concept: in the document). In practice, the coordinateis rescaled based on the
importance of the document, inverse document frequenaosrofi, etc.

Eventsare modeled as modifications (insertions, deletions, oatg®) to the database.
User queries can bstatic or continuous Each snapshot query is a pak, k), where
* IS either a user preferengeor an objeci. For continuous queries, users express their
interests in terms of subscriptions. lsetlenote the set of subscriptions. Each subscription
s € Sis atriple(o, ¢, k), whereo C E is the data of interest, is a user preference, aid
is the number of top-ranked objects (w.r.t. prefereq)de track. Specifically, we consider

the following user queries:

Preference top4 query (q, k). A natural way of ranking objects is with an object scoring
function whose parameters are set according to a user'srprefe. A simple but
effective scoring functiog is a linear combination of the attribute values, where the
weight associated with each attribute reflects the usetey'ast in this attribute. For

example, a NBA fan may choose a scoring function
wy X # points+ wy X # reboundst w3 x # assists

for tracking all-around players, wherg, w,, andws are the attribute weights; see
Figure1l.1 As another example, an investor in a stock market may paerthe
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stock with
wp x max. swing during last 30 mis w, x 52w price change

Consider again the example of document retrieval. The sdaeocument w.r.t. a
query is a variant of the cosine similarity between the dosoidd and the query.

For example, the scoring function in the open-source Luéeearch engine is:
S s x idf (i) x ;% e,

whered; (resp. s;) is the frequency of termin document (resp. quen), idf (i)

is the inverse document frequency of teim; is a constant depending on 1) the
length and importance of documehand 2) the importance of terim This scoring
function is an instance of preference tbmtuery, where thé-th coordinate of an

objectisidf?(i) x v/d; x ¢; and thei-th attribute weight is; /1/>_, s?.

Reverse topk query (o, k). It was introduced by Vlachou et atLl15. Here, eachs € 8
has a different user preferenge For a new object ¢ O, we want to find which
subscriptiony would rank the new object in their top Reverse top: queries have
applications market researchld (e.g., what-if analysis of how much interest a

new product will generate).

Continuous preference topk query (E, ¢, k). The problem of scalably processing a large
number of continuous top-queries 85| can be thought of as a fully dynamic ver-
sion of the reverse top-query processing problem. Again, eack S has a differ-
ent user preferencg In addition to handling changes to the Saif subscriptions,
we need to maintain the top objects forS when objects are inserted, deleted, or

updated.

2 lucene.apache.org



Consider again the example of portfolio monitoring. An irteesn a stock market
needs to monitor the stock market in real time to identifyfiteible trades. Her top-

list of stocks must be maintained as the market moves. Inemmduch as stocks,
futures, and online auctions, both the volume of object tgsland the number of

preferences can be large, and the processing time requitesrdemanding.

Continuous range top+ query (o, ¢*, k). Consider a range top-query over a database
of objects (e.g. stocks). The query examines a subset oflijeets satisfying a
range condition (e.g., stocks with risk rating between medhigh and high), and
picks the topk objects within this subset by a scoring functign(e.g., stocks with
the k lowest price-to-earning ratios). Here, we consider theesaooring function
q* for every subscription € S, butg¢* needs not be linear. Similar to continuous
preference top query, when the set of objects or their attribute values ghaver

time, we keep the top-objects of the subscriptions up to date.

1.3 Contributions

This dissertation presents geometric frameworks andIslesdégorithms for answering the
top-k queries described above. By mapping data and users to agethetric space, the
set of affected subscriptions can be clustered more efdgtithey can be described using
basic geometric shapes. Consequently, notification mesgdgscriptions of the affected
subscriptions) can be effectively compressed, and tradfidoe reduced in a content-driven
network. This dissertation also presents solution forgtesg an efficient content-driven
network by joint optimizating event processing and nottfma dissemination. For more

details, below is a summary of each main chapter:

Scalable continuous query processing under user preferences Chapter3 presents a scal-

able solution for reverse top-queries and continuous preference fopueries, through

10



the use of geometric methods. This is the first work that arseveop4 query can be
answered in sublinear time using linear-size index giveadfitimensionalityl. For low
dimensionsd < 3), the query time i$)(log m+ k), which is optimal. For continuous pref-
erence topk queries, a dynamic hybrid approach is developed to updataftected topk
lists—driving through the individual preference or thrbuthe query response surface.
This chapter also defines an approximate version of the @nmolaind present a solution

significantly more efficient than the exact one with littledan accuracy.

Supporting user preferences in high dimensions. Supporting linear preference tdpgueries
and reverse top-queries are challenging for high dimensions. Existing allgms do not
scale well in the sense that either query time or space coitpls exponential ind.
Chapter4 presents an efficient algorithm based on a dimension-rexfutmework for
top-k and reverse top-queries in high dimensions. It is effective when most of thefp
erences are sparse—i.e., each of them specifies non-zegbte/&r only a small number
(say~ 2—o6) of attributes. They need not specify the same subset dbatess or similar
weights on attributes. Experiments show that for workloatiere preferences are often
sparse—a case that arises naturally in practice—the #igooffers a desirable trade-off
between speed and accuracy, which makes scalable prage$sop+ and reverse top-

gueries in high dimensions a reality.

Processing and notifying range topk subscriptions. Chapter5 considers how to support
a large number of users over a wide-area network whose st$eage characterized by
range topk continuous queries. Given an object update, users whosg tepults are
affected need to be notified. Simple solutions include usingpntent-driven network
to notify all users whose interest ranges contain the up@gt®ring top4), or using a
server to compute only the affected queries and notifyimgrtindividually. The former

solution generates too much network traffic, while the fatteerwhelms the server. In
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this chapter, by using a geometric framework, the set ofctdte queries is described
succinctly with messages that can be efficiently disserathéttrough a content-driven
network. Fast algorithms are given to reformulate each tgad#o a set of messages whose
number is provably optimal, with or without knowing all useterests. This chapter also
presents several extensions to the solution, includingpproaimate algorithm that trades
off between the cost of server-side reformulation and thaser-side post-processing, as

well as efficient techniques for batch updates.

Dissemination network design. Chapter6 studies how to assign subscriptions to brokers
such that the network cost is minimized. In most previouskwsubscribers are assigned
to brokers according to either the closest-broker straftggyor interest partitioning strat-
egy [b3]. Neither approach is attractive: The former may propagaery event to nearly
every broker and the latter one may assign a lot of subseriloeremote brokers. Some
previous work also assumes that subscribers are randosibnasl to brokers which sat-
isfy a set of constraint®[L, 92]. In contrary to previous approaches which can be classified
into either event space optimization or network space apétion, this chapter shows the
importance of jointly considering the correlation betwelea network and event spaces.
If one of the spaces is neglected, the strategy will perfoemy poorly on some of the
network metrics. Furthermore, this chapter presents a 0atlo algorithm and a simple
greedy algorithm for finding a broker-subscriber assignme&y simultaneously captur-
ing spatial coherence in the network space and subscriplitering in event space, the
Monte Carlo algorithm returns a broker-subscriber assignitiat meets a set of network
performance goals. Because of its theoretical propertids@ustness to workload vari-
ations, it can serve as a reasonable yardstick in evalulaés atgorithms. With its help,

the greedy algorithm is concluded to work well for the sulmarassignment problem.
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2

Preliminaries

This chapter first introduces a few geometric concepts, lwhidl be used in subsequent

chapters. Then it summarizes the basic concepts of pukllisbéribe systems.
2.1 Geometric concepts

This section introduces few geometric concepts—dualitgrajement, coreset, and range
searching. Duality will be used to map the input data andigedo another geometric
space, where events can be processed more efficiently. hethgeometric space, range
searching will be performed for each event update to compset of users whose tdp-
lists are changed. The arrangement of hyperplanes willlasgsed to explore opportuni-
ties to jointly process those affected users. Finally, gragimate solution is acceptable,
the coreset techniques will be applied to 1) obtain apprai@answers to the topgueries

and 2) maintain the approximate tégist for each user.

Duality. Theduality transform(see B2] for details) maps a poin® = (py,...,ps) € R?
to the hyperplane®* : z; = pix1 + ... + pa_1xq_1 — pq; @nd it maps a hyperplane

h:xy=aix; + ... 4+ ag_17r4 1 + a4 to the pointh* = (aq,...,aq_1,—ay4). It can be
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FIGURE 2.1: Duality transforma) Primal spaceb) Dual space.

verified that the dual oP* is P itself, i.e.,P** = P, and that ifP lies above (resp. below,
on) h, thenh* lies above (resp. below, oM)*. For a unit vectorw € S with w, # 0,
the set of hyperplanes normal g i.e., those of the forniz, w) = t wheret € R, map
to the vertical {4-axis parallel) rayw* = {(—w1/wg, ..., —wq_1/wg,t) | t € R}; w* is
oriented in(+z4)-direction (resp(—z,)-direction) ifw,; > 0 (resp.wy < 0).

Let? = {P, | 1 < i < n} be the set of points. Le?* = {P | 1 < i < n} be
the set of hyperplanes dual to the pointsAinFor a unit vecton, if (P,,w) > (P;,w),
then rayw* intersects?; beforeP;. Figure2.lillustrates this concept. In the primal space,
(1,a) > (2,a) > (4,a) and(3,b) > (2,b) > (1,b). In the dual space, hyperplangs 2*,
and4* (resp.3*, 2*, and1*) are the first three hyperplanes intersected by thetgyesp.
b*).

Arrangement. Let H be a set of hyperplanes R?. The arrangementof H, denoted
by A(H), is the decomposition dk? into facesinduced by, such that each face is the
maximal connected region @& that lies in the same subset Bf. A(H) is composed of
O(|H|?%) i-dimensional faces for = 0,...,d. See 1] for details. Thelevelof a point

p with respect toH, denoted by\(p, H), is the number of hyperplanes &f lying on or
belowp. Note that all points lying on the same facefH) have the same level. For

1 < k < |H|, thek-levelof A(H), denoted byA,(H), is the closure of facets oA(H)
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FIGURE 2.2: a) Original point setO; b) A coreset forO which approximates the direc-
tional width of O.

whose level is:. A, (H) is a piecewise-linear surface, and any line parallel tarfhaxis
intersectsA, (H) once; see Figurg.1(b). Arrangement will be used for ranking objects

in the new geometric space.

Coreset. LetO be a set of data objects. For many geometric problems, tkists a small
coresetC C O, such that the optimal solution féris an(1 + ¢)-approximate solution to
the original set9, i.e., || f(OPTy) — f(OPTe)|| < ef(OPTy), wheref is an objective
function ande > 0. An example of¢ is shown in Figure.2 One important property of
C is that its size does not depend on the number of objects isytbiem; it depends on
e. Therefore, even ifO| continues to increase at an astounding rate, the coresestdliz
remains small. To compute an approximate solution, thesebekis first computed and
then taken as input to the algorithm, which runs fast due tallsimput size. Thus, the
coreset technique can often be used to process a largedsdalefficiently.

The coreset technique will be used for different geometroblems in different chap-
ters. Chapter8 and4 involve the computation of directional width; the directa width

of a point set) w.r.t. directionw € S is defined asnax,co(w, 0) — min,cp(w, o). The
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FIGURE 2.3: Data structures for range searching.

directional width of coreset C O is guaranteed to approximate the directional width of
O within a factor of(1 + ¢). Chapter6 will solve a variant of the set covering problem:
Given a set) of hyper-rectangles and a setof points, we choose a subset®to cover

all points in P such that the sum of volumes of the rectangles in the coveirisnized
subject to a set of constraints. If we choose rectangles ftanstead ofO, the sum of
volumes of the rectangles in the cover is still guarantedsttaithin (1 + €) of the optimal

solution. More details will be provided later in those sews.

Range searching. For the range searching problem, a ®ebf n objects (e.g. points,
rectangles, polygons, etc.) is preprocessed such thabjbets ofO lying inside a query
range (e.g. halfspace, axis-aligned rectangles, singlidiscs, etc.) can be reported or
counted efficiently. Although there can Bé possible subsets d, possible answers
usually consist of only a small fraction of those subsetsr é&@mple, the number of
possible answers t&-dimensional axis-aligned rectangles:is Depending on the object
and range types, different data structures have been g@defor efficient range queries;
see survey4].

Let O be a set of points. Practical data structures that work feoadrange of queries

are trees based on some hierarchical spatial partitiowingrse, such as a kd-tree or quad-
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tree; see Figur2.3 A kd-tree is a binary search tree which stof&d ) points ofO at each
leaf. Each internal nodeis split by a hyperplane perpendicular to one ofdkgimensions
(which may simply be chosen in round robin fashion). Suppes&is is chosen as the
split dimension and, is the set of points at node All the points inO,, with z-coordinate
less than the mediarcoordinate of), are on one side of the splitting hyperplane and the
remaining points are on the other side. A quad-tree, on ther ¢tand, decomposes each
internal nodev into 2¢ children of equal size. LB, be the bounding box at node B,
containsO. For each child o, the side length of its bounding box is exactly half the side
length of B,. The space complexity can be reduced by compressing nodes\single
child.

A range query can be answered using a kd-tree or quad-trestraightforward top-
down manner: Given a query rangethe tree is searched top-down as follows. At a node
v with bounding boxB,, if B, does not interseck, the search algorithm does nothing;
otherwise, the algorithm recursively searches all childvév, or, if v is leaf, return all
points indexed by that lie insideR. In the worst case, kd-tree answerg-dimensional
range query in timé&(n'~'/? + ¢) usingO(dn) space, whereis the output size.

Since this dissertation is not focused on developing the pessible index for range
searching, @&d-tree is implemented for a static set of points; a quad-téch avoids the

balancing issue, is implemented for a dynamic set of points.
2.2 Publish/Subscribe Systems

Publish/subscribés a model of data dissemination, whenablishers(data providers) se-
lectively and aperiodically puskventgso subscriberqusers) according to their specified
interests. A publish/subscribe system typically consa$tsn overlay network obrokers
(servers). Publishers and subscribers are assigned ¢oattfforokers who are responsible

for routing events between publishers and subscribers.
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FIGURE 2.4: Publish/Subscribe.

The publish/subscribe model decouples publishers anctcsbbss in both time and
space. Publishers need not know the locations and intesesieir subscribers, who can
remain anonymous to each other. On the other hand, subscateenot required to know
the identity of publishers and the time of event notificasiolecause of the decoupled
communication between publishers and subscribers, thieshlgubscribe model is better

suited for ensuring scalability, flexibility, and managgiab

Topic-based vs. content-based. Traditionally, publish/subscribe systems topic-based89,
95], in which subscribers can subscribe only to a set of preddfiopics. Each event is
tagged with one or more topic names and it is disseminated swlascribers who have
subscribed to those topics by using routing table lookupsweév¥er, the topics are very
often too coarse-grained to fit the interests of subscriaetise individual level. In addi-
tion, if an event matches multiple topics, multiple copiéthe event may have to be sent
over the same link, potentially causing link congestionsie §rowing need for hetero-
geneity and expressiveness to avoid propagating excesgives has led to the growing
interests incontent basegublish/subscribe systems, in which events are not canstta
to belong to a specific topic. Instead, subscribers speledy tnterests as filters over the
event contents, and routing is based on the data being tid@dnmstead of specifying

destinations in notification messages. The two most pomalatent-based semantics are
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predicate-basedf] and XML-based $2, 53]. For the predicate-based semantics, each
event contains a list of attribute-value pairs and eachaigi®n is a Boolean predicate
against arbitrary attributes in an event. For instancepates in a stock update may in-
cludeSymboal Price, etc. A stock subscription may §8ymbol = “MSFT”, Price > 35).

For the XML-based semantics, events are constructed as Xddurdents, and subscrip-
tions are defined as XPath filtersd 94] or other variants on individual XML documents.
The additional flexibility of content-based semantics opressiveness comes at the ex-

pense of burdening the underlying system to perform syttsmni matching.

Network topologies. In the publish/subscribe model, brokers communicate wibhe
other to coorperatively distribute the subscription matgland event delivery tasks across
a wide-area network. The popular interconnection tope®gncludestar, hierarchical
tree, andgeneral graph Star is a centralized server topology, which assumes thesés
one single broker between publishers and subscribersatdtacal tree is a straightfoward
extension of a star topology. For content-based systemarempbroker only forwards an
received event to the subtrees which contain matching sphisos, therefore, unneces-
sary traffic would be filtered out by ancestral brokers andld/oever reach the low level
of the hierarchical tree. The drawback of this topology &t throkers high in the hier-
archical tree may be potentially overloaded. Furthermsirge there is only one single
path between every pair of brokers, every broker is a clipoat of failure for the entire
network. On the other hand, general graph provides redwydarthe topology as well
as more flexibility for configuring the broker network. Itsadmack is the need to avoid

cycles and choose the best paths.

Event dissemination. The common dissemination mechanisms for publish/sulesskib-
tems includeunicast broadcast multicast and content-based networkingA straight-

forward way for a server to notify a set of matching subserip is to unicast each of
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them individually. Alternatively, an event can be broadt¢ashe entire network whenever
a publisher issues the event. If the event matches a sutisuorithe subscriber will be
locally notified by its broker representative. These tworapphes have their own disad-
vantages: For unicast, when the number of matching sulhseripis huge, the server may
be overwhelmed by the outgoing traffic. For broadcast, ikstibers who share common
interests are clustered together in the network, a lot ook traffic is unnecessary. On
the other hand, multicast provides a good interface forcttygised publish/subscribe ser-
vices. For publish/subscribe systems, multicast is maenaupported at the application
level by using an overlay networld§, 100, 125, which implements a distributed hash
table (DHT) interface for addressing data in the netwd®1] 110.

For content-based publish/subscribe systems, a conteetrdchetwork L3, 35, 39 is
usually used to support filter subscriptions. In the conteiven network, each destina-
tion is specified as a set of predicates, so the flow of an eseiniven by the content of the
event. Event is disseminated in a multi-hop manner over anlay network of brokers.
Every broker maintains a forwarding table which stores jgads indicating the condi-
tions under which an event needs to be forwarded to a paatitubker neighbor. When
an event arrives at a broker, the broker 1) determines thef setxt-hop destinations by
matching the content of the event against the set of presdi¢atthe forwarding table and
2) updates the forward table. The network is responsibldifgeminating every event to
all the nodes that have predicates matching the event. Mastys/stems have been built

using DHTs [L, 61, 105.
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3

Continuous Preference TdpQueries

This chapter addresses the problem of scalably procesdargeanumber of continuous
preference tog: queries, through the use of geometric methods. It develahsamic
index for supporting thesverse topk query, which is of independent interest. Combining
this index with another one for top-queries, a scalable solution for processing many
continuous preference todpgueries is developed by exploiting the clusteredness in use
preferences. This chapter also defines an approximat®wueykthe problem and presents

a solution significantly more efficient than the exact ondnwitle loss in accuracy.
3.1 Introduction

In many applications, users are interested only in a smatlbar (sayfk) of “top” objects

from a large set. If the objects have multiple numeric atitels, how to rank these objects
depends on each user’s preference, oftentimes specifieztts wf weights that defines a
linear combination of the attribute values. The weight agged with an attribute reflects
the “importance” of that attribute to the user. For examplegal estate agency may list

houses for sale with attributes such as listing price, yadt, Isize of living area, lot size,
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etc. Each user is shown the highest ranked houses accorging her preference, i.e.,

those with the highest results for the linear combinationus&r who cares most about
the size of living area may assign the largest weight to thigate (assuming that values
of different attributes have been appropriately normalizgative to each other). On the
other hand, a user who enjoys a yard more than indoor spacegin&the lot size a larger

weight than the size of the living area. Because of the widgeaf applications, there

has been a lot of work on preference topueries #4, 49, 50, 67, 113.

Motivated by applications in business analysis, Vlachaal.ehtroduced the “reverse”
top-k£ query [L15. In this setting, a set of user preferences is given in &mdib the set
of objects of interest. For a new object, the goal is to findawhisers would rank the
new object in their togk; this information would allow a business analyst to asskss,
example, the impact of a new product (object) on customessr§) relative to existing
products.

Beyond the reverse top-query, application settings such as data stream monitoring
and publish/subscribe give rise to the problem of scalabbggssing a large number of
continuougtop-k queries 85|, which can be thought of as a fully dynamic version of the
reverse topk query processing problem. In addition to handling changéise set of user
preferences, a list of top-objects is maintained under each user preference whentgbjec
are inserted, deleted, or updated. Consider again the ezarhpdal estate listing. Houses
may come on and go off the market, and their information maydukated (such as lower-
ing the listing price); users need to be notified of the charfgeny) to their top: houses.

A new or updated house may make its way into some user’s tigt; while a deleted
or updated listing may remove a house from a kolist—in which case a replacement
k-th ranked house must be added to the list. As another examghsider an investor
who monitors the stock market in real time to identify prdileatrades. The stocks will
be ranked according to a wide range of numeric attributetuamng, for example, trade
volume and price change since market opening today, maxiswing during the last 30
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minutes, price-to-earning ratio, average analyst ratng, Ranking preferences depends
on whether the list identifies buying or selling opportuesti and will vary according to
one’s personal investing style and tolerance for risk. Bapk: list must be maintained
as the market moves. In markets such as stocks, futures, rdime& @uctions, both the
volume of object updates and the number of preferences clndes and the processing
time requirement is demanding.

Despite much related work under various settings, e4§,,95, 115, there still lacks
a scalable, comprehensive solution to the problem of psnegs large number of con-
tinuous topk queries. Earlier resultglp, 85, 115 rely heavily on heuristics, which have
worked for the problem sizes they were intended for. Howetaely have linear query time
or quadratic space in the worst case, unable to handle dgngidates efficiently, and are
difficult to scale up further. For example, Mouratidis et{8b] capped evaluation at 5,000
preferences; Vlachou et all15 tested up to 150,000 preferences, but the workloads did
not include object updates, which are expensive under #pgroach. This chapter aims

to scale to a million preferences with both object and pesfee updates.

Approach and contributions. This chapter approaches the problem of processing a large
number of continuous top-queries with a geometric framework. Preferencekapseries

are closely related to the conceptsanfangementand k-level[1]] in discrete geometry,

as previous work on ad hoc tdpgueries by Das et al4p] has identified. This chapter
offers an intuitive interpretation of thie-level as aquery response surface (QR®hich
geometrically represents theth ranked object over the space of all possible preference
vectors. Within this framework, three novel ideas are aapln the setting of scalable

continuous topk query processing:

e Connection to halfspacerange queries. This chapter draws the connection between
halfspace range querid®, 8, 38, 45 and reverse top-queries. This connection al-
lows us to leverage results in computational geometry ofspate range searching
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to devise an index for reverse tapgueries, which, in addition to being of indepen-
dentinterest, serves as a critical component of the soltdithe scalable continuous

top-k query processing problem.

e Combining preference- and QRS-driven processing: Sometimes multiple prefer-
ence topk queries need to be evaluated simultaneously. Specifiaghgting an
object may necessitate computing the riett ranked object for many preferences.
A preference-driverapproach runs these queries independently, which is sdbopt
mal for clusters of preferences that share commonktaopsults. AQRS-driven
approach identifies regions of the QRS within which togueries return the same
k-th ranked object, and evaluates a single query for all peefees in each such
region. However, the QRS, which depends only on the objettlalision, can be-
come very complex in high dimensions, with many regions @oinig few or no
preferences at all. This chapter proposes a hybrid appribatitombines the best
of both approaches—using preference-driven processmgdons with few or no

preferences, and using QRS-driven processing for densedus preferences.

e Approximation: Not all applications require exact answers. By approxintgg@RS
with a simpler surface, this chapter reduces its complesitg, in turn, improves
the efficiency of the algorithms to be presented in this arapSpecifically, the
notion of coresetswhich has been successfully used for geometric approiomat
algorithms p, 6], is used to maintain a small subset of objects that induc&k& Q
closely approximating the QRS induced by the entire set adaibj Surprisingly,
the size of the subset depends onlykaand the approximation error, and not on the

number of objects.
The framework and ideas to be presented in this chapter dethe following results:

e Leveraging the connection between reverseki@nd halfspace range queries, data
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structures for reverse top-queries are obtained with linear space and sublinear
guery time in any fixed dimension. Experiments show ordémsagnitude perfor-

mance improvement and better scalability over the prevsoligtion [L15.

e A scalable, comprehensive solution is provided for praogsa large number of
continuous topk queries. Our solution is fully dynamic in that it handlestbob-
ject and preference updates efficiently. Experiments shetvthe hybrid approach
achieves good performance by exploiting the clusterednesser preferences while

avoiding maintaining the full QRS.

e This chapter defines and solves a novel, approximate veasitre problem. Ex-
periments show that approximation significantly reduces@ssing costs with little

loss in accuracy, allowing the solution to scale to evendapgoblem sizes.

As we shall see in Sectiadh 7, our framework and solutions can apply to settings beyond
those targeted in this chapter, such as reverse neargstoeiqueries, and preferences

that are unknown or uncertain.

3.2 Preliminaries

3.2.1 Problem Statement

An objecthasd real-valued attributes and is represented as a goint..,v;) € R<.
A preferenceis represented as a unit vector, i.e., a pdint, ..., w,;) onS* !, the (d —
1)-dimensional unit sphere embeddedRA. Eachw; > 0 is the weight for the i-th
attribute. Thescoreof an object with respect to a preferencgs (g, 0) = >, ., wiv;.
A hyperplaneh normal to a preference vectgiis of the form(q, z) = ¢ for somet € R.
All objects lying onh have the same score with respecitmamelyt.

Let O = {o01,09,...,0,} C R?denote the set af objects of interest. For simplicity,

assume that no two objects have the same score for any preéecensidered. With a
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slight care, our framework and algorithms can be extendédnalle ties. For a preference
q, letm;(¢, O) denote the-th ranked objectn O with respect tay; i.e., there are exactly
i — 1 objectso’ € O with (¢,0") < (¢,0). Letn<;(¢,0) = {m;(¢,0) | 1 < j < i} denote
the top: objects inO with respect ta;. Geometrically, if the objects df are projected
onto a line parallel t@, thenm;(q, O) is thei-th farthest object on this line. Alternatively,
if a hyperplane normal tg is swept from+oo to —oo, i.e., varyingt from +oo to —oo for

a hyperplane of the forny, z) = ¢, thenm;(q, O) is thei-th object met by this hyperplane.
For example, in Figur@.1(a), 7<5(a, 0) = (1,2,4,3,5); m<5(b,0) = (3,2,1,5,4). The

following two queries are subjects of interest:
o (Preference) top-k query: Given a query preferenag returnm<, (g, O).

o Reverse(preference) top-k query: Given a set ofn preference® = {q1, 42, ..., ¢}
and a query objeat, find the subse, = {¢ € Q| 0 € m<x(¢, O U {0})}, i.e., all

preferences i for which o is one of the topk objects.

In the fully dynamic version of the problem, callschlable continuous (preference)
top-k query processing,! given a set9 of n objects and a se® of m preferences, the
top-k objects, 7, (¢, ), are maintained for aly € Q at all times under the following

operationg.

e ObjectinsertionGiven a new objeat, find the subsed, = {q € Q | 0 € T<x(q, OU
{0})} and add to O.

e Object deletionGiven an object € O to be deleted, find the subset of preferences
g such that € m<,(g, 0), computer,(q, O \ {o}) for each sucly, and remove

from O.

1“Scalable” highlights the emphasis on simultaneously essing a large number of preferences given as
Q. Contrast this problem to simply “continuous query progegswhich considers one continuous query.

2 In other words, a user with preferengwiill be able to maintainr< (g, ©) incrementally given the output
computed by our solution for the following operations. lotfahe solution by itself does not need to store
this list for every preference.
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e Preference insertionAdd a preference to Q. Find <4 (g, O).

e Preference deletiorRemove a preferencegfrom Q.

Note that updates of existing objects and preferences candukeled as deletions fol-
lowed by insertions. It is not difficult to extend the framewand algorithms to handle
updates directly, which would be more efficient than hamgdtilem as separate deletions
and insertions.

In some cases, users do not need to know the exack tipjects, as long as they
see a list sufficiently “close” to the exact one. dontinuous approximate (preference)
top-k query processing, given a user-specified error tolerance (0, 1), each user with
preference; maintains a sefr<;(q, ) of k& objects such that, at all times, for all
7<1(¢,0), (¢,0) > (g, m(q, 0)) —ed(q, 0), whered(q, 0) = max,eo(q, 0) —mineo(q, 0)
denotes theextentof the set of objects along the preference vector, i.e., tfierence
between the maximum and minimum scotdatuitively, all objects in approximate result

are guaranteed to score higher than or not far from the akttratanked object.
3.2.2 Duality and QRS

This section presents the duality transform and introdtivesiotion of aquery response

surface which will be useful to our algorithms.

Duality. This chapter applies the duality transform (see Chapyesn both© and 8.
Let O* = {of | 1 < i < n} be the set of hyperplanes dual to the object®inLet
Q" = {q¢f | 1 < i < m} be the set of vertical rays dual to the preferenceS.irFor a
preferencey, if o = m;(q, 0), theno* is thei-th hyperplane if0* intersected by the ray*.
Hence, the first hyperplanes 00* intersected by* are dual to the objects in-;(q, O);

see Figure.1(b).

3 ed(q,0) is used instead of(g, 71 (¢, O)) as the error measure because the former is independent of the
choice of origin and is smaller than the latter if all objetttibutes have non-negative values. See the last
remark in Sectior3.4.1for more discussion on an alternative formulation.
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Top-k query response surface. The following lemma establishes the connection between

the concept of:-level and topk queries.

Lemma 1. For a preferencey, letw, denote its weight for the last attribute. In the case of
wy > 0, if the intersection point of its dual ray with A;(0*) 4 lies on the hyperplane®,
theno = 7;(¢, 0). In the case ofv,; < 0, if the intersection point of its dual ray* with

An—i+1(0*) lies on the hyperplane®, theno = m;(q, O).

Hence,A;(0*) encodes, for any preference witly > 0, the identity of itsi-th ranked
object; each facet ofl;(0*) corresponds to the set of preferences with> 0 sharing the
samei-th ranked object. Similarly4,,_,;,,(0*) encodes, for any preference withy < 0,
the identity of itsi-th ranked object. Thereforg,;(0*) andA,,_;.,(0*) are viewed as the
guery response surface (QRB) the query returning théth ranked object under a pref-

erence. OveralllJ 1 A;(0") encodesr<,(q, O) for any possible preference

i€[Lk]U[n—k+1,n

q.
3.2.3 Query Primitives

Our algorithms will use the following two primitives repedty.

Halfspace range query. The problem is to preprocess a gebof n points inR? so that
all points in P lying above a query hyperplariecan be reported quickly. In dual, this
problem corresponds to reporting all hyperplane#bfying below the point:*. Several
approaches have been proposed for this query.dFegr 3, a query can be answered in
O(logn + t) time, wheret is the output size, usin@(n) space 45, 2]. Ford > 4, given
a parameten < s < nl%?! a query can be answeredn(n/s"4/?1)logn + t) time
usingO(s'*<) space for any > 0 [83]. The known lower bound<2P] suggest that these
bounds are close to optimal. I/O-efficient indexing schefoehalfspace range queries

were given in B]; dynamic schemes were presenteddn38]; see also44.

4 The description of Arrangemertt can be found in Chapte:
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Since the focus of this chapter is not to develop the bestigessdex for halfspace
range searching, experiments in Sectdhsimply use a tree index oR based on some
hierarchical spatial partitioning scheme, such as a quesldr kd-tree, and answer halfs-
pace range queries as described in Chapt&his chapter assumes that a halfspace range
query can be answered (q(n) + ¢) time, and a point can be inserted or deleted in

O(u(n)) time.

Top-k query. There is a close relationship between halfspace rangeeguand topk
queries. Indeed, let be a query preference for which we wish to reperi.(¢, 0). Let
h be a hyperplane normal tpof the form (¢, ) = ¢, wheret € R. A halfspace range
query is performed oved with respect ta:. If it returns fewer thark objects, we decrease
the value oft and try again. If it attempts to report more thiapoints, we stop, increase
t, and then try again. Thus, by doing a binary search, we carafvalue oft such that
exactlyk objects are reported. This procedure tak€sq(n) + k) logn) time. Using the
index of [83], the running time can be improved ©@(q(n) + k). Conversely, an index
for top-k£ queries, in which a user can specify the valuecdas part of the query, can
be adapted to answer halfspace range queries. This chailiténus useO(q(n) + k)
to denote the query time for a tdpindex andO(u(n)) to denote the update time. In
the implementation, simply a quad-tree or kd-tree is useghB8wer topk queries with a
branch-and-bound method. It can be easily replaced by a sogigisticated one without
affecting the rest of our solution.

Note that we are sometimes interested only inktti ranked object (instead of all top
k objects). Wherk is small (i.e..k < q(n)), simply running a topk query and returning

only thek-th object works well.
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3.2.4 Summary of Results

First, this chapter shows that a reverse togdery can be formulated as a halfspace range
query and thus can be answeredifg(m)+t) time, wheren is the number of preferences
andt is the number of them affected by the query object. To the destir knowledge,
this is the first linear-size index that can answer this queisublinear time in any fixed
dimension. For < 3, the query time i) (log m + k), which is optimal. Experiments
show that our approach is much faster than the current stéte art [L15 116.

Second, this chapter presents a scalable solution for ggsomemany continuous top-
k queries, which maintains<,(q,O) for a setQ of preferences under both object and
preference updates. Secti8rB8.2starts by outlining two approaches—preference-driven
and QRS-driven—for finding the newth ranked object for each preference affected by an
object update. The preference-driven approach evaluatesuech query for each affected
preference; the QRS-driven approach evaluates one quezgdbrfacet ol (0*) (within
which all preferences have the sai¢h ranked object). SectioB.3.2adopts a hybrid
approach that uses the preference-driven one for sparsgmees and the QRS-driven
one for clustered preferences. Experiments show that yischapproach achieves good
performance by exploiting the clusteredness of prefeemddle avoiding maintaining
complex regions of the QRS with sparse preferences.

Third, Sectior3.4 shows that if approximate answers as described in Se8tibtare

acceptable, one can compute a suBset© of sizeO(k/c(4~1/2)), such thatq, 7<4(q, C)) >

(q,m(q, 0)) — ed(q, O) for all preference;. The setC can be maintained efficiently un-

der insertion and deletion of objects. Experiments showttiia approach significantly

reduces the complexity of QRS and improves running time \itifle loss of accuracy.
Finally, our results have a number of applications beyorm$ehfocused on by this

chapter; we discuss them in Secti®i7.
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FIGURE 3.1: lllustration of object insertion in dual. Objects (. ., 4) are shown as solid
lines and preferences,(, ..., h) are shown as vertical lines. Prior to inserting object
(shown as a hashed line), thdevel is shown as the thick polyline, and the cutoff points
are shown as white dots. Insertion®thanges the top-ists for preferences, ¢, andg,
whose cutoff points lie above the newly inserted dual line.

3.3 From Reverse Top+to Continuous Top: Queries

This section presents the solutions for answering revers tjueries and for processing
a large number of continuous tdpgueries. It starts with a static solution for reverse top-
queries, ignoring object or preference updates. It theordess a fully dynamic solution

that handles both object and preference updates.
3.3.1 A Static Solution for Reverse Thp-

Given a set) of objects, a sed of preferences, and a query object O, we wish to report
the subset of preferenc@&s = {¢ € Q | 0 € m<x(q, O U {0})}. Intuitively, a preference
g can be affected by only if o scores higher than the currénth ranked object fog. In

dual, this intuition translates into the following lemmaéhieh characterizes the s@j.
Lemma 2. For a query objecb, g € Q, iff ¢* N A,(0*) lies above the dual hyperplamne.

Proof. Let p = mx(q,0). By Lemmal, ¢* N A(O0*) = ¢* N p*. If the new object
belongs tor<x(q, O U {o}), thenp = m,11(¢, O U {0}). By Lemmal, ¢* intersects*

before intersecting*, implying thatg* N A, (O*) lies abover*; see Figure3.1 O
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In view of Lemma2, the point sef = {¢* N A(0*) | ¢ € Q} is indexed in the dual
space, i.e., intersection points between the verticaslin@* and thek-level. These points
are referred to as theutoff points. To create this indeX is computed by performing a
top-k query onO with each preferenceto find 74 (¢, O); an index ond supporting topk
queries is described in Secti@2.3° 0 is then preprocessed into an index for halfspace
range queries so that all points @flying above a query hyperplane can be reported. By
Lemma2, a reverse tog query can be answered (q(m) + t) time, wheret is the
output size.

Using the results ing, 83], discussed earlier in Sectidh2.3 the following result is
obtained for answering reverse tépgueries. As noted in Sectich2.3 simpler, more

practical methods can be used instead, but with weakergheakbounds.

Theorem 3. LetO be a set of objects inR¢ andQ a set ofin preferences. 1) Foi < 3, Q
can be preprocessed ((n + m) logn) time into an index of siz€&(m) so that a reverse
top-k query can be answered ®(log m + t) time, where is the output size. 2) Fof > 4
and for a parametern < s < ml%/?l there is an index of siz@(s'*¢) for anye > 0, so
that a reverse tog: query can be answered 0((m/s"/%?1) logm + t) time, wheret is

the output size.

Note that the above solution allows each user (preference)dose a different value

of k; the cutoff point of each user would be defined by the value sfiecific to the user.
3.3.2 A Fully Dynamic Solution

Building on the static solution for reverse tépgueries, this section shows how to process
a large number of continuous tdpgueries in a fully dynamic setting, with both object
and preference updates. Three approaches will be disgumsedhey are distinguished

primarily by their handling of preferences affected by abjepdates. This section starts

5 Instead of performing each tdpguery individually, they can be batched using, for examiie, QRS-
driven or hybrid approach in Secti@3.2
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by outlining two possible approaches with complementingrgths (and weaknesses),
and then describes the hybrid approach which combines tentajes of the first two
approaches. All three approaches employ an index on thd seblojectsO, which sup-
ports preference top-queries inO(q(n) + k) time and object insertions and deletions in

O(u(n)) time, as discussed in Secti8r2.3
3.3.2.1 Preference-Driven Approach

In addition to the index or) for top-k queries, this approach employs an index on the
setQ of cutoff points discussed in Secti@3.1 Inserting a preferencginvolves a topk
guery against the index af to initialize ¢’s list of top & objects. Then the cutoff point
is computed fory from its k-th ranked object and inserted into the index@nDeleting

a preference; simply entails deleting its cutoff point from the index éx Thus, the
insertion and deletion times aégu(m) + q(n) + k) andO(u(m)), respectively.

Now consider the insertion (or deletion) of an objectFirst, this approach issues a
halfspace range query with against the index of to find the set of affected preferences
Q, C 9, which correspond to the cutoff points lying above (or, fetadion ofo, on or
above)*, asin Sectior8.3.1 In addition, the index o is updated withv. Next, for each
affected preference € Q,, this approach issues a tépguery withq against the index on
O to find the newk-th ranked objecp, and then updates the index Gnwith the new cutoff
point for ¢, given byg* Np*. The list of topk objects forg can be easily maintained using
(or, for deletion ofo, 0 andp). The total update time ©(q(m) +u(n) +t(q(n) +u(m))),
wheret is the number of affected preferences.

This approach is referred to aseference-driverbecause it issues a separate top-
query for each affected subscription @, which can be expensive {3, is large, and
wasteful if many preferences share the sdntb ranked object. Intuitively, for “nearby”
preferences with the sanketh ranked object, we would like to use only one query, which

leads to the next approach.
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3.3.2.2 QRS-Driven Approach

An alternative approach will be to leverage the query respaurfaced,(0*). Recall
from Section3.2.2that each facet of this QRS corresponds to a set of prefershegeisg
the samek-th ranked object, giving us a natural way to process prata®in groups.

To this end, in addition to the index d@hfor top-k queries, th&QRS-driverapproach
maintains an index faf, (0*). If an object is inserted (or deleted), this approach updates
the index onO as well as the index fad,(O*), querying the index o) as needed. The
complexity of this operation does not depend on the numbereferences. Finally, for
each new facep on the updated QRS, Iptdenote the object whose dual hyperplane
containsp, and letQ,, denote the set of preferencgwhose dual lineg* intersecty.® Al
preferences i, havep as their newk-th ranked object, and their lists of tdpobjects
can be maintained using(resp.o andp).

Note that updating of the QRS is oblivious to the actual setefgrences. Indeed, the
QRS-driven approach effectively computes, without any Kedge ofQ, a description
(based on facets of;(0*)) of the set of affected preferences, together with the mere
tal changes to their lists of top-objects. This feature makes the QRS-driven approach
attractive for some applications (suchrasnochromatic reverse tapgueries in business
analysis 119), a point we shall come back to in Secti8rv.

There are two difficulties with this approach, however. tfritke QRS can be large
and complex to update, especially in higher dimensionsoi®tanany parts of the QRS
may have few or no preferences, so it would be a waste of dffomaintain the QRS
for these parts. These observations lead to the idea of camgihis approach with the

preference-driven approach earlier.

34



FIGURE 3.2: Leaves off. The QRS is shown as a thick polyline, and the dual lines of
preferences are shown as dotted lines. Solid lines showatigigning of the dual space
into leaves; for clarity here equi-distance partitioniagised, though in practice it need not
be the case. Black leaves are filled with a dark (green) shaeg:dgnse leaves are filled
with a medium (green) shade; grey-sparse leaves are fillddanight (yellow) shade;
white leaves are not shaded.

3.3.2.3 Hybrid Approach

For the preference-driven approach, the indexQonan be updated efficiently, but in-
dependently computing the newth ranked object for each affected preference can be
inefficient. For the QRS-driven approach, identically atéecpreferences are processed
efficiently as a group, but maintaining parts of the QRS with & no actual preferences

is wasteful. To get the best from both approaches, a hybpdoagh is adopted to intelli-
gently switch between the two processing modes.

In addition to the index oK for top-k queries, the hybrid approach maintains a search
treeTJ based on a hierarchical spatial partitioning of the duatega quad-tree is used in
the implementation). Each nodeof T is associated with a bounding bdk, C R?. Let
Q* C Q* denote the set of vertical lines {f stabbingB,, and letO} C O* denote the set
of hyperplanes i)* intersectingB,. The following three counters are stored at each node
v m, = |Qf|, n, = |0z], andbs, the number of hyperplanes o, that lie belows,,
wherep(v) is the parent of.. The number of hyperplanes & lying below B,, denoted

b,, can be computed by summing over each node on the path from the root to. At

6 This set can be either explicitly maintained for each faéé¢he QRS, or computed by searching another
data structure of.
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each leab of T, the setg); andQ; are also stored.
A leaf v can be one of the following types (wherg andr, are user-defined parame-

ters):

Whiteif b, > k; i.e., B, is strictly aboveA, (O0*).

Blackif b, + n, < k; i.e., B, is strictly belowA;(0*).

Grey-sparséf (b, < k < b, + n,) A (m, < 7p); i.€., B, intersectsA,(0*) and

contains few cutoff points.

Grey-denseéf (b, < k < b, + n,) A (my, > 7,) A (n, < 7,); I.€., B, intersects

Ar(0*) and likely contains many cutoff points, arg.(O*) is not very complex.

These leaf types are depicted in Fig@& A nodew satisfying none of the conditions
above passes the followirgplitting condition

(by <k <by,+mny)A(my > Tp) A (ny > 7).
In this casey is an interior node. Practically,, andr, are chosen to reflect 1) the “tipping
point” when one of the preference- and QRS-driven approalbeesmes more efficient

than the other, and 2) the granularity at which such a detisimmade.

Constructing T. Initially, 7 is a tree containing a single unvisited root node wWith, =
R%, Mroot = M, Mroot = 1, @NAby = broot = 0. The splitting condition is tested at
each unvisited node. If v passes the splitting condition becomes a non-leaf ar, is
partitioned among its children, each of which will be viditeOtherwisep is a leaf: Q}

andQ; are stored, and’s type is then determined.

Object insertion.  For the insertion of a new objeot T is first updated top-down. At a
nodew, n, is incremented by if o* intersectsB,, or increment? if o* lies belowB,,.

There are three cases:
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1. v was a non-leaflf now b, > k, the subtree rooted atis contracted into a single
white leaf and stop. Otherwise,remains a non-leaf and the same procedure is

repeated for each child of but skipping any child: whereo* lies aboveB,,.

2. v was a white or black leafThe only case requiring action is when a previously
blackv becomes grey or non-leaf because rigw- n,, = k. In this case, a subtree

rooted aw is constructed fo?, Q* using the construction procedure above.

3. v was a grey leaf.The only case requiring action is when a previously greysden
v turns into a non-leaf because now reaches,,. In that case, the construction

procedure is used to build a subtree rooted. at

After T has been updatef,is traversed to compute, for each grey leghe set of affected

preferences i;:

e If vis grey-dense, the QRS insidg must be simple because few dual hyperplanes
intersectB,,, so a QRS-driven approach is taken. The new facets of the QRI2 ins
B, (i.e., Ay, (0}) N B,) is computed. For each new faggtlet p denote the object
whose dual hyperplang containsy. All preferences whose dual lines intersect

havep as the new:-th ranked object.

o If v is grey-sparseQ; is small, so a preference-driven approach is taken, with one
top-k query issuing against the index Onfor each preference iQ. If O happens
to be small too, instead of using the index@ysimply the(k — b, )-th ranked object

in O} can be computed for each preference by scanfiing

Object deletion. For the deletion of object, againT is first updated top-down. At a node
v, n, is decremented by if o* intersectsB,, or decrement? if o* lies belowB,. There

are three cases:
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1. v was a non-leaflf b, + n, now drops below, the subtree rooted atis contracted
into a single black leaf. If,, drops belowr, but still b, +n, > k, the subtree rooted
atwv is contracted into a single grey-dense leaf. Otherwisemains a non-leaf and
the same procedure is repeated for each child, @ut skipping any child: where

o* lies aboveB,,.

2. v was a white or black leafThe only case requiring action is when a previously
white v becomes grey or non-leaf because rigw= k. In this case, a subtree rooted

atv is constructed using the construction procedure above.
3. v was a grey leafv becomes black i, + n, < k.

After T has been updated, the set of affected preferences and ¢heirtin ranked objects
are computed. As discussed in the case of object insertierygdate algorithm switches

between QRS- and preference-driven approaches as appeopria

Preference insertion. For the insertion of a new preferengea top£ query withgq is
issued against the index @ to find O, = 7<x(q,0). UsingQ,, ¢’s cutoff pointq is
calculated, and is searched for the grey leafsuch that; € B,. For every node:
along the path from the root tg m,, is incremented by. If v was grey-sparse and now
m, = T, v Wwould become grey-dense or non-leaf; in this case, a sulimted atv is

constructed using the construction procedure above.

Preference deletion. For the deletion of preferencg T is searched for the grey leaf
such thatB, contains the cutoff point of. For every node: along the path from the root
to v, m, is decremented by. If (and as soon as)., drops fromr,, to 7,,, — 1 for anyu
encountered during the search, the subtree rootedsatplaced with a single grey-sparse

leaf.
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FIGURE 3.3: a) lllustration of coreset fok = 2. Points are shown as black dots and
members of the coreset are circlea) ConvertingO into a fat point set using an affine
transform defined using anchor poidis), a;, as }. ¢) Constructing the coreset by finding
the k£ nearest neighbors if(O) (showing in the bounding box) of each grid pointS§n
(shown on the sphere).

3.4 Approximate Tope: Queries

As mentioned in Sectio8.1, it suffices for users of many applications to have approiema
lists of top+ objects under their preferences. This section shows th#tisncase the
index can be built on a small subset®f and the lists can be updated more efficiently.
Section3.4.1shows that such a small subgetalledcoresetcan be computed efficiently.
Section3.4.2describes how to update the coreset efficientlpahanges. Sectiod.4.3
further describes procedures for maintaining indexesas& as well as the top-lists

of all users. As we will see, maintaining them upon every deato C is unnecessary
and expensive—insertion or deletion of a single objeddisometimes causes multiple
changes ta®. Therefore, these procedures are designed to perform enainte lazily

only when necessary.
3.4.1 Computing a Coreset

For a unit vector; € S%!, theextentof O in directiong, denoted byi(q, ), is

d(Q? o) - rgleagc(q, O> - rglel(gl(q, 0>7

i.e., the difference between the maximum and the minimumescfor the preference
Given an integek > 1 and a parameter > 0, a subset C O is called a(k, ¢)-coreset
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(or simplycoreseffor brevity) if for all i < k andg € S,

(¢,mi(q, C)) > (g, mi(q,0)) — ed(q,0). (3.1)

This section shows that a coreset of i /<(?~1/2)) can be computed efficiently.
Before describing the algorithm, we need a property of coy@gach will be critical
for the algorithm. A linear transforml : R? — R? is called anaffinetransform if the

matrixI' is nonsingular—it includes translation, rotation, andisga

Lemma 4. Letk > 0 be an integers > 0 a parameter, and’ an affine transform. A

subse® C O is a(k,c)-coreset of) if and only if['(C) is a (k, ¢)-coreset of(O).

The proof of this lemma, a slight variant of the one givenli@g, is omitted here.

Converting O into a fat point set. For a constant > 0, O is calleda-fat if

max cZ(ql, O)/J(QQ, 0) < a.

q1,q2€S4-1

An affine transforni’ can be computed such thiato) is «,-fat for some constant, that
depends onl. To this end, the approximate minimum-volume bounding Bofor O is
first computed with the algorithm of Barequet and Har-Pel, [as follows. The se#l
of d anchorobjectsay, ..., aq IS picked, one by oneq, is chosen arbitrarily, and,_,

is chosen to be the farthest object frepan(ay, . . ., a;), i.e., the span of all previously
chosen anchors. The sétof anchor objects defines the bounding ®xq lies in the
center ofB; the vector fromu;,; to span(ay, . . ., a;) gives an direction orthogonal to the
directions defined byay, ..., a;} (see Figure8.3(b). Next, a transforni’ is computed,

such thaf(B) maps to—1, +1]¢. It can be checked th&{(0) is a,-fat for a constanty,

(see, e.g. 9)).

Constructing €. Given(, the affine transfornh' is first computed, as described above, so
thatT'(0) is fat andI’(0) c [—1,+1]%. Let S be the sphere of radiugd + 1 centered
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at the origin inR?. A set§ of grid pointsis constructed or$ as follows. Set parameter
§ = (/= for a sufficiently small constarit < 8 < 1. Aset§ C S of O(1/3%1) =
O(1/£9=1/2) points is chosen, so that for any point S there is a grid poinp € G such
that||z — p|| < 4.

Next, for each grid poinp € G, ox(p), the (¢/2)-approximatek nearest neighbors
of p in I'(0), is computed; see Figui@3(c) C is set tolJ,qox(p). By adapting the
methods for answering approximate nearest-neighboregig@)], the (/2)-approximate
k nearest neighbors of a query point can be computédiog n+ k /%) time. In practice,
a branch-and-bound algorithm (similar to the one used fswaning a topk query) can

be used.

Theorem 5. Given a set9 of n objects, an integet: > 0, and a parametee > 0, a

(k,e)-coreset of9 of sizeO(k/e4~1)/2) can be computed i®(n logn + k/e3%/2) time.

Proof. Since|G| = O(1/¢@=1/2) €| = O(k/<(?~1/2); the running time of the algorithm
follows from the query time of the approximatenearest neighbor data structure. It thus
suffices to prove that is a(k, ¢)-coreset.

For eachy € S ! and for alli < k, we show that3.1) holds. We prove this claim
by induction oni. Suppose this claim holds for up to- 1. Suppose = m;(q,0). Let
x € S be the intersection point &f with the ray emanating from in directiong. Refer
to Figure3.4. Letg € G be the closest grid pointte € S. If o is thei-th nearest
neighbor ofg, theno is included inC. Otherwise, theé-th nearest neighbor must lie in the

shaded (blue) region. The error is withjm — z||, which can be shown to be less than

|h — z| < (£/2)d(q, O), provided that3 is chosen sufficiently small; se&éZ2. Recall
that we computed thé& /2)-approximate:-nearest neighbors @f so we can argue that if

o is the(¢/2)-approximate-th nearest neighbor @f, then(q, 6) > (¢,0) — ed(q,0). O
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FIGURE 3.4: Correctness of the coreset construction algorithm.

Remarks. Note that® approximatesr<, (¢, ©) for all ¢ € S*~1. If we are interested in
preferenceg = (q¢i,...,qq) for which g, > 0 for all i < d, then we choose only those
points of§ that are within or not far from the first orthant (The implertaion uses those
with coordinates no less than0.3). The asymptotic bound on the size ®@fdoes not
change, but the constant changes.

Agarwal et al. ] define a coreset using a stronger definition of approximatrbich

ensures that
<q7 Wi(Qv e)> Z (1 - E) <q7 Wi(Q? O)> (32)

forall 1 < i < k and for all directions; € S?! if all attributes are non-negative. Using
a similar algorithm they show that a coreset of sixg /c(“~1)/2) can be computed under
this stronger definition. A result irf] shows that the coreset can be maintained efficiently
under insertion and deletion of objects. The definition @nésd in this section provides
a weaker theoretical guarantee because the error is boumtksuns of extent, which de-
pends on the position of highest ranked object. In particifldhe score ofr(q, ) is
much smaller thanr; (¢, ©), then the bound in3.1) could be large. However, the pre-
sented definition is chosen because in practice it also pesja very good approximation
of 7<% (g, O) for everyq, and updating under insertion or deletion of an object is consid-

erably simpler.
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3.4.2 Updating the Coreset

This section discusses how to maintain the cor@sender insertion and deletion of ob-
jects, i.e., maintain the set of anchor poiritsthe bounding box3, and the affine trans-
form I'. To help reduce the amortized cost of reconstructing thesatr the coreset is
maintained as the union of two sets, i.€.= € U C°", whereC°" is used to “buffer”

new objects that would otherwise trigger coreset recoostm immediately; details now

follow.

Object insertion. Suppose the new objeatis inside the bounding bo®. For each grid
pointg € G, if I'(0) is one ofg’s new (approximate} nearest neighbors amohgOU{o}),

o is inserted inta®™ and the oldk-th nearest neighbor afis removed fron™. Overall,

C does not change unlesbecomes one of the nearest neighbors of some grid point, in
which case is inserted ta2™ and one or more objects are deleted fréth

If the new objecb is outsideB, the naive approach would be to reconsti@itiecause
I" needs to be recomputed. To reduce the frequency of expermigset reconstructions,
o is simply buffered inC°"*, and coreset reconstruction is postponed yatil| = |C°"¢|.
Immediately following a reconstructio@®" = () andC = @™,

When reconstructing the coreset, the update algorithm ptteto reuse the objects in
the current coreset whenever possible. @ @&tenote the content éfbefore reconstruction.
Let O, be the set of new: nearest neighbors for a grid pointe §. For each object
o€ Oy \ €, if there exists an objeet < €'\ O, such that the distance fromto o' is
approximately the same as the distance frpmo o, theno is substituted witho’. This
technique reduces the number of changes in the coreset manheavhich in turn helps

reduce the cost of maintaining the data structures builhercoreset.

Object deletion. Suppose an object< O is deleted. lfo ¢ C, there is nothing to do. If

o € G o is simply deleted fron€°"t. Next, suppose € ™",
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If o is not an anchor point il defining the affine transformi, let G, denote the subset
of grid pointsg € G such thatl'(0) is one ofg’s approximatek nearest neighborso
is deleted from@™, and for eachy € G,, the approximaté:-th nearest neighbor of is
computed and added &".

If o happens to be an anchor pointin a new affine transform is needed. Thus, the
reconstruction of the coreset is triggered. Again, as dised in the case of object inser-
tion, the update algorithm attempts to reuse the objectearctirrent coreset whenever

possible.
3.4.3 Updating Indexes and Tdpkists

Recall from Sectior.3.2that a number of indexes is maintained for scalable proegssi
of continuous topk queries. For example, the preference-driven approachtaiagnan
index J of objects (for preference top-queries) and an indek of cutoff points. The
hybrid approach maintairfsand a search trég. With the coreset approach, these indexes
are now based ofi instead of0. WhenC changes, these indexes need to be updated as
well as the approximate topflists for all preferences. Naively, they can be simply updat
for every change t@, but this strategy is expensive because a single insertideletion
in O may sometimes translate to many change§,tas discussed in Secti@4.2 The
key observation is that it is unnecessary to carry out sordateg to the indexes and tép-
lists immediately. To illustrate, suppose that the insarf an objecb from O causes
another object’ to disappear fron®. There is no need to removéfrom the topk list
of a preference, becausthas not been deleted froth and the old list will continue to
serve correctly as an approximate tbfist. Likewise, there is no need to deletefrom
the indexes.

Therefore, following this intuition, a lazy approach is d¢e update the indexes and

the top# lists. Two buffers are maintained:

e Deletion bufferstores the seV/ of objects that have been deleted frahrbut not

44



from O; these objects are still present in the indeof objects and the tree structure

7.

¢ QRS bufferstores a se\ of objects that have been inserted iGtbecause of other
object updates (i.eq itself was already present il before it is inserted int®);
these objects are inserted irftandT, but they are not used to update the index{

cutoff points or the togk lists.

The ramainder of this section is devoted to describe thesphares for updating the indexes
and topk lists when an object is inserted or deleteddn The description covers the
maintenance of,, J, andT; in practice, only the subset of these indexes used by the

approach chosen from Secti8r8.2needs to be maintained.

Object insertion. Suppose a new objeetis inserted into®. Recall the coreset update
algorithm in Sectior8.4.2 If o does not affec€, there is nothing to do and the algorithm
stops. Ifo is added ta?, it is inserted intdl andT. The set of affected preferences is com-
puted as discussed in Secti®s3, and update their top-ists as well as their corresponding
cutoff points ing.

Furthermore, if the insertion af causes a sét~ of objects to be removed fro®, G~
is inserted into the deletion buff& and avoid updating andT.

Finally, if the insertion of9 causes a sét* of objects to be added t(which happens
when @ is reconstructed), eack € C* is processed as follows. #f € V, it is simply
removed fromV and nothing further needs to be done; otherwisés inserted intdl, T,

and the QRS buffed, without updatingJ or any top# lists.

Object deletion. Suppose an existing objeatis deleted fromO. If o is in neither the
current coreset nor the deletion buffer, the algorithm simply stops. Otherwise,is
deleted from there and frofhand7. The set of affected preferences is also computed, and
their top+ lists as well as their corresponding cutoff pointg/iare updated.
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Recall the coreset update algorithm in Secoh.2 If o was in theC and the coreset
is not reconstructed, then the deletionoafan cause insertion of a sét of objects into
C. As in the case of object insertion discussed above, for eachC™, if o’ € V, itis
simply removed fronV; otherwise ' is inserted intdl, T, and the QRS buffed, again
without updating] or any top# lists.

Finally, if C was reconstructed as the result of deletindet ¢* denote the set of
objects inserted int@ and letC~ denote the set of objects deleted fré@n Each object
of G~ is inserted into the deletion buff8f. The processing of* is more involved. Let
O = (€T \ V)UA. The objects ire™ \ V are inserted intd andJ, and delete those in
CT NV from V. By performing a reverse top-query for each object itd’, the setQ, of
preferences that need updating is identified. Theirkdipts as well as their corresponding

cutoff points inJ are updated. Further details are omitted.
3.5 Experimental Evaluation

Approaches compared. For static reverse top-queries, the approach based on halfspace
range queries (Sectich 3.1 has been implemented using a quad-tree as the underlying
index for cutoff points’, this algorithm is referred to @$SR for short. For comparison, the
RTOP-Gridalgorithm by Vlachou et al.]15 has been implemented, which is the most
recent and most relevant to the work presented in this chapte algorithm is referred to
asGRID for short.

For the problem of processing a large number of continuops:tqueries, all three
approaches discussed in Sect&hB.2have been implemented: preference-based, QRS-
based, and hybrid. They are not compared with GRID in this,daseause GRID does
not handle object updates efficiently, and is already sicpnifily outperformed by our

approach in the static case (as we will see in Se@iét).

7 Experiments have also been performed with a kd-tree impi¢ation, which showed comparable perfor-
mance: it works better than the quad-treedar 4 and worse fowl < 4. Since the choice does not change
any conclusion drawn in this section, results for the keé-fxee not shown in this chapter.
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For the three approaches, again quad-trees are used fondleeying indexes when
applicable. For the QRS-based approach, a quad-tree is astoré the QRS, stopping
when a node’s bounding boxB, is strictly above or below the QRS, or intersects fewer
thanr,, hyperplanes ii)*—analogous to the hybrid approach in Seco8.2.3with 7,, =
0 such that there are no grey-sparse nodes.

Finally, the coreset-based approach has been implemenrtdtefapproximate version

of the problem. All algorithms are implemented in C++.

Performance metrics. The following metrics are considered when evaluating cdinge

approaches:

e Time (per request): The wall-clock time for handling a request, be it a revergeito
guery in the static case, or an object or preference upd#te idynamic case (which

includes maintenance of data structures, processingexdtafl preferences, etc.).

e #calls. The number of calls to query primitives—halfspace rangep#tqueries—
discussed in Sectio®2.3 This metric allows performance to be measured indepen-

dent from particular implementations of the primitives.

e Approximation error (estimated): The relative error observed in the answers pro-
duced by the coreset-based approximation approach ino8e&xd. For a coreset

C C O, the error in the topg: answer for preferencgis measured as

{¢,7<i(q,©))

i€{l,....,k} <Q7 WSi(Qa O)>
This measure is more stringent than what is bounde8.i) for the presented def-
inition of approximation; it in fact corresponds to the siger definition of approx-
imation in 3.2) in Section3.4.1 To estimate the average error whens large or

unknown,1,000 preferences are randomly chosen and their average is cethput
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FIGURE 3.5: lllustration of object workloads.

Experiments were conducted on a Dell OptiPlex 990 Witt0GHz Intel Core i7-2600
CPU,8M cache, anddGB memory.

Workloads. A number of synthetic and real object workloads are used énetkperi-
ments. This section chooses to focus on the results for tht@stycannulus-uniform and
annulus-clustered, because they enable testing with a wide range of data dkasdics.
Obijects are drawn from the portion inside the positive ortlsdan annulus iiR? centered
at the origin with outer radius and inner radiuse € [0, 1]. For annulus-uniform, objects
are uniformly distributed inside the annulus. For annulusstered, objects are distributed
across a mixtures @) Gaussians (clipped to the annulus); parameters of the Gagss-
low further control of the clusteredness. For example, FE@ub(a)shows a set of objects

O from annulus-uniform withv = 0.9, and Figure3.5(b)illustrates a coreset fdd.

48



=
o
N

Query time (msec)
[y
o»—\

Query time (msec)

®GRID
10° 4 HSR o
1 4 16 64 256 1024 1 4 16 64 256 1024
# Preferences (x1000) #objects (x 1000)
(a) Varym (b) Varyn
. - |MGRID
E E
[ 2
é g 10
> 21
%10 g 10
(o4 04
10°
10 20 k30 40 50 2 3 q 4 5
(c) Vary k (d) Varyd

FIGURE 3.6: Comparison between HSR and GRID (previous approachjdbc severse
top-k queriesio = 0.9.

To generate an object update for the workload, either ilmgeadr deletion is first cho-
sen with equal probability. For insertion, a new object isvan from the same distribution
used to draw the initial object set. For deletion, an exgstibject is chosen at random
with equal probability.

Annulus-uniform and annulus-clustered are related to ynéhetic workloadsdorre-
lated anti-correlated anduniform) described in28]. Note thata gives us some control
over the “hardness” of the problem. Asapproaches td, more and more objects, particu-
larly those closer to the origin, do not participate in arg-tdists. The object distribution
becomes uniform inside the ball. It remains harder for theblam than uniform distri-
bution inside the unit box, for which only few objects closehie corners of the unit box
participate in any tog: lists. The distribution of objects for annulus-clustergdnerated
with one single Gaussian, resembles correlatedo Approaches, the objects lie on the

sphere, the distribution of objects becomes more antietated, and any object can appear
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FIGURE 3.7: Additional scalability comparison between HSR and GRID

in a top+ list; this is in some sense captures the worst-case behavior

In addition to synthetic object workloads, data fo874 stocks on NYSE and NAS-
DAQ from Yahoo! Finance were obtained. For each stock, tisxased earnings per stock
(EPS) and weekly historical quotes (opening, closing, kiwand highest prices and vol-
ume) in 2011 were collected. EPS can be used to convert eeehtpra price-to-earning
ratio (PER), which is a more normalized metric than raw primedomparing different
stocks. In the experiments onfydimensions are used: volume, and PER based on the
closing price (although PER can be generated from varioasadle prices, they would
be extremely similar). Figurg.5(c)shows the objects from this dataset, and Figu&fd)
shows its coreset. Note that the extreme points are welesepted in the coreset, while
the cluster near the origin requires few representatives.

Preferences are generated from one of the following twaibligtons. WithUniform,
preference is drawn uniformly at random from the unit spl$éré inside the positive or-
thant ofR?. With Clustered, preferences are distributed across a mixture¥ @aussians

over the sphere; parameters of the Gaussians allow furtimérat of the clusteredness.

3.5.1 Static Reverse TgpQueries

First, we compare HSR with GRILLY. Unless specified otherwisé = 3, m = 10,000,
n = 10,000, andk = 20 in this section. The objects are generated from annuluiumi

with o = 0.9 (unless specified otherwise). One thousand query objeztdrawn from the
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FIGURE 3.8: More comparison between HSR and GRID.

same distribution.

Figures3.6(a)and3.6(b)compare the average query timeragthe number of prefer-
ences) and (the number of objects) increase, respectively. HSR, whégs @& linear-size
data structure, performs one to two orders of magnitudebttan GRID. Results are not
shown for GRID whenn = 256,000 and 1,024,000, because it becomes too expensive.
HSR’s scalability advantage over GRID is reflected not onlyemmis of query time, but
also preprocessing time (Figu87(a) and space consumption (Figuser(b). Prepro-
cessing for GRID involves reordering of preferences and nraugrse top: computa-
tions for materialized views, and it takes more ti3amours form > 64,000. GRID also
consistently uses two orders of magnitude more space th&) MSe, the space of GRID
is measured by the number of preferences it materializestlan space of HSR by the
number of cutoff points it indexes, both of which akelimensional vectors.

Figure3.6(c)shows that wheh increases, the average query time increases for GRID
but remains almost the same for HSR. The reason is that the eruoftiop£ queries
made by GRID depends dn which becomes clear when we examine Figdu&a) Fig-
ure 3.8(a)shows the number of top-queries made by GRID far = 0.9 (the workload
used by Figure.6(c), and the number fotx = 0.1. Both exhibit growth linear irk, and
we see thatv = 0.9 is indeed “harder” tham = 0.1. On the other hand, HSR always is-

sues one halfspace range query per request (and there®n@itshown in Figur8.8(a),
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regardless ok anda.

Figure 3.6(d) shows how HSR and GRID perform as the dimensionality inciease
We see that the advantage of HSR over GRID is maintainetliasreases. Foil = 2,
HSR answers a reverse tépguery in0.38 milliseconds on average, which, if shown in
Figure 3.6(d) would have been below the horizontal axis (note the lodesicaertical
axis).

Figure 3.8(b) summarizes the comparison between HSR and GRID when vanying
the inner radius of the annulus. The query time generallsei®es as the annulus becomes
thinner (approaching a sphere), but HSR maintains its lsad®RID across alk values.

Figures3.9 shows the performance of HSR when the number of prefereruadsss
up to one million. GRID becomes too slow to run in this case. Buoves are shown
in Figure3.9(a) one fora = 0.1 and one fora = 0.9. Fora = 0.1, the algorithm
performs better when is bigger, because more objects actually lower the charateath
guery object becomes relevant to the preferences. FB9(b)shows the average query
time slightly increases aks increases. Compared with FiguBes(c) the average query
time increases by a factor @0 when the number of preferences increases by a factor of
100. The reason is that the size of the index for halfspace rangees depends on the

number of preferences.
3.5.2 Continuous Top-Queries

An object update is costly for GRID because a lot of materaliziews need to be recom-
puted for the object update. Many tépgueries are called as subroutines even if the object
update does not affect any preference’s kogsults. For annulus-uniform with = 0.8,

d = 2, m = 10,000, n = 1,000, andk = 10, the average update time of GRID 48
seconds. In comparison, HSR takes anlyl4 seconds per update. Since the performance
of HSR clearly dominates that of GRID for continuous togueries, GRID is omitted

in the remainder of this section. Unless specified= 0.8, £ = 10, d = 2, objects are
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FIGURE 3.10: Numbers of grey-sparse and grey-dense leavés in

drawn from annulus-uniform, and preferences generated fhe clustered distribution.
For hybrid approach, both, andr, are set td (recall Sectior8.3.2.3.

We first see how the hybrid approach automatically adaptsstolject and preference
workloads. Figure3.10(a)shows that as the number of preferences increases, more grey
sparse nodes ifi are converted into grey-dense nodes. Those preferencesyirdgnse
nodes are not processed individually, making hybrid apgraaore scalable to a large
number of preferences. FiguB10(b)shows the number of grey-sparse and grey-dense
leaves when varying the variance of the Gaussian distabstirom which preferences are
generated. When variance is small, many parts of the QRS hewerfao preferences,
so hybrid uses fewer grey-dense nodes and takes a prefetewnee approach for these
parts.

Next, we compare the preference-driven and hybrid appesaédr continuous top-
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FIGURE 3.12: Exact vs. coreset-based approximation.

k queries. The number of objects is setlt600, and the number of preferences varies
from 1,000 to one million. Figures3.11(a)and3.11(b)compare the performance of the
preference-driven (denoted HSR in figures) and hybrid aggres for annulus-clustered
and annulus-uniform, respectively; preferences are draam clustered and uniform,
respectively. The combinations of (annulus-clustereecisj uniform preferences) and
(annulus-uniform objects, clustered preferences) ardtednbecause they show similar
trends. For these workloads, when the ratio between the auoflpreferences and the
number of objects becomes large, the hybrid approach pesfsignificantly better than
the preference-driven one, as it avoids multiple compomatfor many preferences sharing

the samé:-th ranked object.
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3.5.3 Continuous Approximate TépQueries

In this section, the number of preferences is satta000; k£ = 20, d = 3, anda = 0.9.
Figure3.12shows the effect of the number of input objects on the cotiessed approx-
imation algorithm, in comparison with the exact one; hene,gize of the coreset is fixed
roughly at1,000. Figure3.12(a)shows the top: query time when the number of objects
varies from10,000 to one million. While the query time for the exact algorithrerieases,
it remains roughly the same for the coreset-based algoriiecause the size of the tap-
index is proportional t¢C| instead of O|. Since an insertion or deletion of a preference in-
volves a topk query, the coreset-based algorithm will be able to handiéepence updates
better than the exact one for a large set of objects. Figur2(b)shows the processing
time per object update when the number of objects varies t@a90 to one million. The
gap between the performances of the exact and coreset-appeakimation algorithms
widens as the number of objects increases, because 1)|@Whercomes large, most ob-
ject updates would not affect the coreset if an object updandomly chosen, and 2) the
top-k query can be answered more efficiently on a smaller coreset.
Figure3.13(a)shows how the size of the coreset affects the quality of tipecqima-
tion. As expected, the larger the coreset, the higher theracg. By choosing roughl§00
objects in the coreset, the estimated maximum and averages ere less thafd.05 and

0.01, respectively. Moreover, majority of the errors are snaalindicated by the closeness
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FIGURE 3.15: Preference-driven vs. hybrid: Yahoo! Finance data;10.

between the average error and error atithté percentile. Figur8.13(b)further plots the
distribution of errors over the preferencesdnPreferences at the boundary tend to have

slightly higher approximation errors.
3.5.4 Yahoo! Finance Data

Experiments in this section study the performance of theteakgorithms (preference-
based and hybrid) on the object (stock) data collected frafmo®! Finance. Since user
data are not disclosed to the public, synthetic preferegeesrated from clustered and
uniform are used in the experiments. While the distributibolpects and update workload
are considerably different from the synthetic ones (astitated in part by Figur8.5),
performance results are similar to those in Sec8dn?2

Figure3.14shows the average update timeidacreases. As expected, the number of

affected preferences increasesiancreases. For the preference-based approach, fa top-

56



query is called for each affected preference. For the hydpigioach, the complexity of
the k-level depends on the value bf and a largek: increases the size of the search tree
T. Figure3.15shows the average update time as the number of preferercesses.
Similar to the synthetic workloads (FiguBell), all curves exhibit growth proportional
to m, because the number of affected preferences increasesrageases. For a small
number (up to around a thousand) of preferences, the prefefgased approach may be
more attractive because of the overhead of hybrid’s flaigtaind the small workload size

in this case, but hybrid remains the better choice ik reasonably large.

3.6 Related Work

There is a large body of literature on tépguery processing (seé9] for a survey); much
of it concerns the linear preference tbgueries and variantg4, 67, 113 85, 50,49, 115
that are considered in this chapter. This section elab®matehree pieces of work that are
most related to the ones presented in this chapter.

Das et al. 49 considered the problem of supporting ad hoc (i.e., nortinaous)
top-k queries over streams. They also took a geometric approatidareloped a data
structure based on maintaining an arrangement of lineseiltial space. Their solution
uses halfspace range queries as a primitive, but not forutpope of solving reverse tap-
gueries as proposed in this chapter. Time and space corigdexie improved by pruning
the set of objects to a superset of thakyband, which is computed by partitioning the
arrangement into “strips” and using the tbpguery results for the borders of the strips
to prune dual lines from each strip. The query and updateatipes take linear time,
and heuristics are required in choosing the partitioninger€ was some discussion on
the case ofl > 2, but the solution was only evaluated fér= 2. In comparison, the
coreset-based approach to approximatingkttevel provides guarantees and generalizes

to higher dimensions.
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Mouratidis et al. 85] proposed thel MA algorithm (and the more specializ&MA
for supporting multiple continuous tap-queries over data streams. TMA partitions the
primal space into grids, and for each cell, stores an “inftedrst” of queries (those re-
turned by a reverse top-query with the cell’'s top-right corner). Given an object af&l
TMA identifies affected queries by searching for affecteldsda an order that minimizes
the number of cells visited. Since TMA materializes the topaswer for each query, it
requires more space than the approach of recording onlyutioé points. They also target
fewer number (thousands) of queries than the work presemtids chapter (hundreds of
thousands). A direct comparison with the work presentedhig ¢chapter is difficult be-
cause TMA and SMA also have features specific to the objecatepoattern under the
sliding-window semantics.

Most relevant to this chapter is the work by Vlachou et &L. Their monochro-
matic reverse topk algorithm can compute, without knowing the actual prefeesn a
description of the set of possible preferences that woulafieeted by a given object. The
algorithm works ford = 2, based on similar observationsrasked join indice$113. The
QRS-based framework and techniques can solve the same probl@gher dimensions
as well; see SectioB.7for more details. For theichromaticreverse topt problem, where
the set of preferences is given, two algorithms were praphd@®Aheuristically orders the
preferences to be processed based on similarity, to ireteashance that the tdpguery
result for the current preference can be reused for the mefnence RTOP-Griduses a
grid data structure for pruning. For each cell, a reversektgpery is run for the lower-
left and upper-right corners, and the result lists are gtorehe cell. These lists are used
to reduce the set of preferences to be further evaluated &5iA. RTOP-Grid provides
no theoretical performance guarantees, and object updedgsrticular expensive for the
grid data structure. The experimental evaluation in Se@&ié compares RTOP-Grid with

the solutions presented in this chapter.
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3.7 Conclusion and Other Applications

This chapter studied the problem of scalably processingge laumber of continuous top-
k queries, each with a different preference vector for ragkmulti-attribute objects. The
notion of QRS (query response surface) was proposed and liteoss were developed
within a geometric framework. By recognizing the connectmhalfspace range queries,
data structures were obtained for reverse kagueries with linear space and sublinear
guery time. Building on this result, a fully dynamic solutisras developed to support
both object and preference updates efficiently. This chaise defined and solved an ap-
proximate version of the problem, further improving effrag with little loss of accuracy.
Experimental evaluation confirmed the effectiveness optiesented ideas such as selec-
tive QRS-driven processing and coreset-based QRS simpbincathich helped advance
the presented solutions in both scalability and functidyal

In closing, we briefly discuss several settings beyond timsesed on by this chapter,
where the techniques presented in this chapter may be apldic

Reversé:-nearest-neighbor queries have been widely studied byataddse commu-
nity; see PQ] for an overview. Though these queries are not the focusisttimpter, they
can also be handled by the approach presented in this chies precisely, a sed of
points inR¢ can be mapped to a s6t of points inR4*! so that thek-nearest-neighbor
query for a pointy € R? can be formulated as the tdpguery for a preferencé ¢ S
more details will be provided in the generalization sectiro@hapters.5.

In some settings, the sét of preferences is not given explicitly. Instead, given an
object update, we are interested in obtaining (a descnipthe set of all possible pref-
erences affected by it. This query is ternmadnochromatic reverse topby [115, with
applications in business analysidp and in publish/subscribe systems usingrnhessage
reformulation paradignj41]. The concept of QRS and the QRS-driven approach in Sec-
tion 3.3.20ffer a solution that generalizes to high dimensions. Maimnhg the full QRS
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is expensive, however. When approximation is acceptaldecaheset-based approach in
Section3.4 can simplify the QRS, improve running time, and reduce thepdenrity in
describing the affected preferences.

Recently, there is growing interest in handling uncertaintpreference vectors and
assessing sensitivity in ranking to perturbations in pesfees 10§. The notion of QRS
provides a natural framework for these problems, and thesettbased approximation
can be readily applied to improve solution scalability. tRar investigation would be a
promising direction of future work.

Finally, preference topg-queries also have applications in information retrievaidve,
e.g., a multi-keyword search can be seen as a preferendedapry over documents in
a high-dimensional keyword vector space) and in infornmatigegration (where results
from multiple sources are merged and ranked according tefag@nce function). Recent
work [70] has studied how to share the work involved in processindipielsuch queries.

It would be interesting to investigate whether the techegjpresented in this chapter can

be applied help improve scalability in a complementary neann
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4

Top-k Preferences in High Dimensions

This chapter extends the solution in the previous chapteiciwis effective only in low
dimensions, to much high dimensions (in up to high tens). Jdiation presented in
this chapter is efficient if many preferences exhdparsity—i.e., each specifies non-zero
weights for only a handful (say-7) of attributes (though the subsets of such attributes
and their weights can vary greatly). The main idea is to cdlsefelect a set of low-
dimensionatore subspace® “cover” the sparse preferences in a workload. These spars
preferences can be indexed more effectively in these sabsplan in the full-dimensional
space. Being multi-dimensional, each subspace covers nossybte preferences; further-
more, multiple subspaces can jointly cover a preferenaeetly expanding the coverage
beyond the dimensionality of each subspace. Experimevailiation validates the effec-

tiveness of the solution presented in this chapter and viaraeges over previous solutions.
4.1 Introduction

Challenge: curse of dimensionality. Supporting linear preference tdpgueries and the

reverse topk queries becomes challenging for high dimensions {83y For preference
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top-k queries, the Threshold Algorithm (TA»§] is efficient if every topk object is ranked
high in at least one dimension. However, as the dimensignaljrows, there is a higher
chance that an object has a low rank even if it ranks high aboregdimension. The layer-
based approach, represented #4 [ indexes layers of convex hulls for the objects in the
full-dimensional space; computing a convex hull takks /2] + nlog(n)) time, and the
outer layers grow in size quickly witth. The view-based approach, 50] uses a set of
materialized topk views to compute tog-queries, but in high dimensions, a large number
of materialized views are required to provide adequate auippr queries. Recently, Heo
et al. [65] combined the layer-based technique with TA-style dimemsiise filtering for
top-k queries involving arbitrary subset of attributes. All wanlentioned above tested no
more thari7 dimensions.

For reverse top: queries, the approach of15 reduces a reverse tdpquery tom
top-k queries, wheren is the number of preferences in the worst case. Chdpteses
a duality approach to construct a linear-size index thatasmwer a reverse topquery
in sublinear time given fixed dimensionality For low dimensionsd < 3), the query
time isO(logm + k), which is optimal. Although the solution is scalable in thember
of preferences, support for reverse togrueries in high dimensions is still inadequate.
The duality approach reduces a reverseiapsery to halfspace reporting, whose tradeoff
between query time and space complexity has been stu88dIf the storage require-
ment is near-linear, say(npolylog(n)), then the query time of best known algorithms is
Q(n'~1/19/2] 1 1) [83], wheret is the number of results, and the hidden constant of propor-
tionality is exponential inl. Furthermore, these algorithms are too complex to implemen
For practical data structures such as quad-trees and &sl-tachalfspace query requires
Q(n) time in the worst case and roughty(n' =%/ + ¢) for uniformly distributed points.
Hence, for high-dimensional data, existing approachdswiloutperform a simple linear

scan.
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Opportunity: sparse preferences. In practice, even if data have high dimensionality, users
are usually interested in only a small subset of attributiesvusers are able to specify
preferences with non-zero weights for a large number oibates in a meaningful way.
Thus, there is an opportunity to develop techniques for iagnduch “sparse” preferences
differently from and more efficiently than the general cdmany preferences are sparse,
overall performance can be greatly improved by speedingp@gdmmon case.

This observation and the techniques to be presented intihster differ from the ex-
isting dimensionality reduction techniques, such as jgpadlccomponent analysis (PCA),
random projection, and low-distortion embedding techagjuvhich are usually applied to
the object set. It is arguable that reducing object dimeraity alone is neither a perfect
or a complete solution: While these methods are effectiveprojecting data to moderate
dimensions, say00’s to 10’s, using these methods to project objects dirto dimensions
can create significant error. Therefore, objects need tadjeqied on multiple subspaces
if we wish to work with low-dimensional spaces. Also, attriies in the reduced space are
harder for users to work with as they may no longer have imtitheanings. Although
preferences in the original space can be mapped to ones nedieed space, they may
become more difficult to handle because they may no longainréteir sparsity. The idea
of dimensionality reduction is, in fact, used in this chapbet objects and preferences are
jointly considered in a careful way to avoid these above lemols. Moreover, our tech-
nigues are still applicable even if the objects cannot beegltéd into low-dimensional

spaces.

Approach and contributions. This chapter presents efficient data structures and algo-
rithms for top4 and reverse top-queries in high dimensions. Our approach is effective
when most of the preferences are sparse—i.e., each of theaifisp non-zero weights
for only a small number (sa3-6) of attributes (but they do not need to specify the same

subset of attributes or similar weights on attributes). tBprk queries, in order to take ad-
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vantage of sparsity in query preferences, our approachsrteeassume the distribution of
whichattributes are specified by the preferences, but the appsidlovorks well without
accurate knowledge of the distributionwhat weightsre specified by the preferences for
these attributes.

Roughly speaking, this chapter follows a dimension-reductiamework, but objects
and preferences are not projected on a single low-dimeaksubspace. Instead, they are
projected on many subspaces. For each subspace, an indek aglka subset of objects.
To answer a top: or reverse top: query, only a small number of subspaces is chosen; a
low-dimensional query is performed on each of them and thein tesults are combined
to answer the overall query. In addition, approximationhods are used to reduce the
size of the index and to expedite the query procedure. Exgerial evaluation confirms
the effectiveness of our approach, which allows a desktoghme to handle hundreds of
thousands of objects or preferencegino 100 dimensions with speed and accuracy. To
the best of our knowledge, our approach is the first to dematesiis degree of scalability

in both problem size and dimensionality.

Outline of solution. In more detail, a seH of low-dimensional subspaces, calledre
subspacesis carefully chosen based on the given distribution of gnexices. For each
core subspacél € H, a small subset of objects that are “relevant” féris chosen and
projected onH. Let Oy denote the resulting projections. Building on the technsque
for handling low-dimensional preferences in Cha@ety is indexed for eaclH. To
answer a tope query with respect to a sparse prefereqca small subsdf, C H of core
subspaces, which “cover” the query preferencis chosen. For eacH < I', the topgk
ranked objects o ; are computed for a parameter> 1, with respect to the preference
q (or rather w.r.t. the projection af on H). Finally, the topk objects are returned among
the union of these objects.

To support reverse top-queries for a sed of objects and a s&t of preferences, each
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preference; € § is assigned to a small subsetlgf C H of core subspaces that cover
q. For each core subspaéé € H, let S5 denote the projections oA of preferences
assigned ta{. Sy is indexed to support reverse tgja- queries againsp, andsy. To
answer a reverse tapguery for a query objeact, the core subspaces that are “relevant”
for o are identified; a reverse tapk query witho is performed on each of them; all result

preferences are collected, and false positives are filauned

Technical challenges. There are several technical challenges that need to bessedi&o
complete this solution. First, how are the core subspaceset? A naive approach will be
to make any subspace that contains some preferences to be subspace. For example,
if preferences specify non-zero weights for attribute stb§l, 2}, {1, 3}, and{2, 3,4},
then they are selected as core subspaces and indexes afertibitm: 2-dim indexes for
{1,2} and{1, 3}, and3-dim for {2, 3, 4}. This approach is not practical, however, because
there are too many possible low-dimensional subspacesexaonple, if objects have)
attributes and each preference specifies at most three of, tiee might have to build
(%)) = 1,140 different indexes.

Another possibility is to cluster the preferences into alsmamber of clusters and
choose a representative preference, callea, from each cluster. This view-based ap-
proach B8, 50 works if preferences are tightly clustered, objects arelfwlistributed,”
and the weights of query preferences for fogueries follow the same distribution of
8. As we will see later, this approach does not always work vitause each view is
very “specific” and many more views will be needed as dimamaity grows. This chap-
ter shows how to overcome the limitations of this approadin wiulti-dimensional core
subspaces, each of which effectively serves as a “supewi-that subsumes an infinite
number of preference-based views lying in it. SecdoBdescribes this core-subspaces
approach.

Second, it will be too expensive to build an index on the ergt of objects for each
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core subspace, so Sectidrt.1describes a method, which builds on the results in Chap-
ter 3, for choosing a small set of objects to index. Analogouslis expensive to index

all preferences in each core subspace, so Sedt@introduces a method for assigning
each preference to a small number of core subspaces whelidiewmdexed. Then, using
the indexes described in Sectidr, Sectiond4.5shows how to answer top-and reverse
top-k queries.

Finally, we cannot assume that all preferences are spara# can be covered by
the selected core subspaces. Therefore, Se¢tthBshows how to build full-dimensional
indexes for uncovered preferences. In particular, SedtidrBdescribes an approximation
method similar to the one irv], but with an improvement: if input objects lie on a low-
dimensional surface, say of dimensiorthen one can choose a sub8etf objects whose
size is exponential only on, but polynomial ind, which provides top: query answers

that approximate those obtained by querying the entirefsstjects.
4.2 Preliminaries

Note that the algorithms for answering preference and sevapk queries! in a low-
dimensional space have been presented in Ch8ptkis chapter will use them as black-
boxes to solve the high-dimensional case. Note that Ch8méso formally defines the
coreset for answering approximate preferencektapseries. In addition to the geomet-
ric concepts (duality transform, arrangement, coreset,tap+ query response surface)
introduced in Chapterg and3.2.2 the following concepts will be used throughout this

chapter:

Span. Let the x;-axis represents theth attribute. Lete; denote the unit vector in di-
rectionz;, i.e., thei-th coordinate ot; is 1 and the rest ar@. A subset/ C [1,d] of at-

tributes defines an axis-parallel subspggeg ) of R? in which only the attributes of have

1 Both preference top-query and reverse preference toguery are formally defined in Chaptar
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non-zero values. Formall§p(l) = {>_,.; \je; | A; € R}. For two axis-parallel sub-
spacedd; = Sp(Il;) andHy = Sp(1,), letspan(H,, H,) denote the smallest axis-parallel
subspace that contains both and H,; equivalently,span(H,, Hy) = Sp(l, U I) =
{\z1 + Xoxy | X1 € Hy, 29 € Hy, andA, Ay € R},

Sparse preference. Recall that gpreferences represented as a unit vectorid. | i.e.,

a point(wy, ..., wy) onS¥1, the (d — 1)-dimensional unit sphere embeddedHf. In

this chapter, each; € [—1, 1] is theweightfor thei-th attribute (weights can be nega-
tive). For a preference, Sp(q) is defined to be the subspace spanned by the non-zero
attributes ofq. Note thatdim(Sp(q)) may be much smaller tha#. For example, if
q=(1/v2,1/v/2,0,...,0), thenSp(q) is the2-dimensionalr, z,-plane.

Projection on subspace. ¢ is (g,0) = >, ;. wiv;. For a pointr € R? and an axis-
parallel subspacé/, let x; denote the projection of on H. For example, ifr =

(x1,...,24) and H is spanned by attribute§l, 2,4}, thenzy = (z1,29,24). Recall
that thescoreof an objecto with respect to a preferenegs (q, 0) = Zlggd w;v;. Fora
preference; and an objecb, (q,0) = (qu,on) WhereH = Sp(q); in other words, when

computing the score af w.r.t. g, it suffices to do so for their projections on the subspace

Sp(q)-
4.3 ldentifying Core Subspaces

This section describes the algorithm for computing theéhisef core subspaces, which is
used to build low-dimensional indexes. For these indexdsetpractically efficient, the
maximum dimensionality of a core subspace is cappéd-ab.

Let S be a set of preferences. It can be a set of given preferencesvierse topk
qgueries, or a past workload of forward tépgqueries that can be used to inform index

construction.
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The algorithm works in three stages. The first stage idestifie initial sefkK of can-
didatesubspaces from the “sparse” preferences @he formal definition of “sparseness”
will follow shortly). If K is small, letH = K and the algorithm terminates. Otherwise,
the algorithm proceeds to the next stage, addirg tofew additional subspaces that span
multiple subspaces @& and are “popular” (roughly speaking, a popular subspacéefmn
“cover” many sparse preferences—the notion of “coverageituitive but will be made
more clear in Sectiod.4.2. The last stage chooses a subseKai cover most of the
sparse preferences &f The remainder of this section is devoted to describe eagesh

detail.

Initializing candidate subspaces. For the purpose of finding core subspaces, the algorithm
ignores insignificant attribute weights in preferences. sier each preferenge € 8.

The algorithm rounds off any attribute weightaf no greater thar®).01 (which would
decreasdyq||, the L,;-norm ofq, by no more than %), and rescales the resulting preference
so that it remains a unit vector.

Following this preprocessing, a preferencis said to ber-densef dim(Sp(q)) < 7
(i.e., ¢ has non-zero weights for at mostattributes). Since the algorithm is practically
limited to core subspaces with dimensionality uprte- 5, it focuses on the subs8t of
sparse preferencese., those that argr + Ar)-dense. Here/Ar is a small slack{\7 is
set to2) that reflects the ability of the core-subspace approachrdle denser preferences
using multiple core subspaces.

The setK of candidate core subspaces is computed from th& set sparse prefer-
ences as follows. First, any*dense preference gives us an axis-parallel candidate sub-
spaceK < {Sp(q) | ¢ € 8s andgq is 7-dense. Second, for each sparse prefereqpees,
that is notr-dense (but stil(7 + A)-dense), ali-dimensional axis-parallel subspaces of
Sp(q) are considered as candidat&s:— K U {Sp(/) | Sp(I) C Sp(¢) and|/| = 7}.

If the size ofK is small, the algorithm sefd to K and stops, otherwise, it proceeds to
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the next two stages. As mentioned in Sectdofy howeverK can be large. For example,

for d = 20,7 = 5, andA7 = 2, |K| can be as large &4 ,699.

Adding popular subspaces. To capture the notion of “popularity,” theeightof a subspace

H (with respect to the set of sparse preferer&@ss defined as

w(H) = llgu|®/(dim(H))", (4.1)
q€8s
wheregy denotes the projection gfon H, andu is a parameter (further explained below).
Intuitively, the weight function favors those subspaces timve low dimensionality but
preserve most information about preferences, in the séasgdy || is large.

lqr||? is chosen instead dfqy|| in this definition, because we wish to reward sub-
spaces that preserve most information about a preferere||Gy|| is close tol), and
penalize those that preserve little information about depeace (i.e. |qx| is close to
0). For example, given two preferences, consider 1) two satesg) where each contains
one preference (whose projection has nornh)dfut is orthogonal to the other preference
(whose projection has norfi), versus 2) two subspaces for which both preferences have
projections of normb.5. Intuitively, the two subspaces in the first case are betteabse
they provide “full coverage” for each of the two preferenaeiile the two subspaces in the
second case only provide “partial coverage” for both periees. The presented weight
definition captures this intuition with the use|pfy||?. Had||¢x || been used instead, these
subscriptions would have identical weights.

If all preferences irg; lie within H, thenw(H) = |8,|/(dim(H))", which is the max-
imum possible weight for subspaces with the same dimenigipnahe term(dim(H))*
penalizes high-dimensional subspaces because constyuratiexes for them is more ex-
pensive than for low-dimensional subspaces. The term alsesto “normalize” popular-

ity, because a high-dimensional subspace is expected told&secover more preferences.
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By adjusting the parameter, a trade-off is obtained between keeping the indexing costs
low and covering more preferencesis set to}l for experiments in Sectiof.6.

We are now ready to describe how to add popular subspadesSapposeéK has two
overlapping subspaces of significant weights. It might beenadficient to build a single
index forspan(H,, H,) rather than building two separate indexes—onefpand another
for H,. To enable this possibility, giveH, H, € K, H = span(H;, H>) is added tK if

all following conditions hold:
o dim(H) < dim(H,) + dim(H-); i.e., H, and H, overlap.

e w(Hy), w(Hy) > median{w(K) | K € K}, andw(H) > 0.8(w(H;) + w(H,));

i.e., the subspaces considered are sufficiently popular.

e dim H < 7, where7 is maximum dimensionality of a core subspace (introduced
at the beginning of this section); the algorithm does nosater adding subspaces

with higher dimensionality, because indexing them woulddzecostly.

The addition of popular subspaces is implemented by soKinmgdecreasing order of

weights.

Selecting core subspaces. Continuing with the seK of candidate subspaces, this stage
computes a smaller skt C K, ascore subspaceso cover most of the sparse preferences
in 8,. Note that the algorithm cannot simply choose the subspaiteghe top weights
because, together, they may overlap and end up coveringeaosiyall fraction of the
preferences.

Algorithm 1 gives the pseudo-code of this approach. In each step, tispacdé with
the highest weight is selected out frd& Importantly, every time som# is picked, the
set of preferences is “updated” in a way to reduce their dautions to subspace weights
for those preferences covered By Thus, subsequent selections will focus on covering

preferences that remain uncovered.
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Algorithm 1: SelectCoreSubspaces(K; ¢).

L H«0;
ms < |Ss|; remember the original value for eagle S, (denoted;);
while -3 s ¢/l > ¢ do
foreach K € K do computew(K) using Eq. 4.1);
H « argmax g w(K);
H+ HU{H}; K+ K\{H};
foreachq € 8¢ do

L ¢ < q—ldull - au;

if [lgl] < o then 8y < 85\ {q};

© 00 N o o b~ w N

return H,

=
o

If a preference; is contained inH, ¢ is fully covered byH. Otherwise,q is only
partially covered. In this casey, the projection of; on H, provides information about
some of the attributes af in the sense that the ranking of objects wq;t. gives some
information about ranking of objects w.r¢—for those attributes that are presentfn
the algorithm reduces the weights of those attributeg tinat are present iny, so that
subspaces the algorithm selects in the future will captueeinformation ofg w.r.t. the
attributes ofq not present in;. The simplest method will be to let « ¢ — qy; 1.e.,
the algorithm simply clearg of any weights of attributes /. However, this method is
suboptimal; for a concrete example, see Figude

Intuitively, for a partially covered preference, we wouttkally like to cover each of
its attributes with non-zero weights by multiple core swdrsgs. To this end; is updated
usingq < ¢ — ||qu|| - ¢u, Whereq denotes the original vector for the preference (while
g denotes the current vector, whose value changes over thgecotithe algorithm). The
multiplier || || ensures that if is partially covered by (i.e., ||Gx|| < 1), some residual
weights will remain for attributes it/ to encourage additional future coverage. On the
other hand, ifj is contained inf, the vector will become zero after the update, and there
is no need to consider further. Consider the same example in Figdrgé After H has

been selected, will become(0.2,0.06,0.1). Suppose{’ = (a1, a3) is chosen. As shown
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T T g :
(a) Subspacéus, as). ? (b) Subspacéa,,as).

FIGURE 4.1: lllustration of coverage. Here, = 3, £ = 2, ¢ = (0.2,0.3,0.5), and
O = {o1,...,05}, whereo, = (0,3,6), 0o = (0,10,5), o3 = (9,0,1), 04 = (8,1,1),
andos = (5,3,5). Thus,m<2(q,0) = {02,05}. Suppose = (as,as) is selected. Then
m<2(qu, On) = {02,01}, @s shown in Figurd.1(a) If the algorithm simply clears any
weights of attributes i, ¢ becomes(0.2,0,0) and the top2 projected objects w.r.t.
attributea; areosz andoy. In this case, the correct second-ranked objgawill not be
reported.

in Figure4.1(b) m<2(q}, O’;) = {05, 01}. Hence, the union of the tdpobjects inH and
H', {01, 09,05}, contains the exact top-objects,o, andos.

This idea of reducing weights slowly have been used in matfigrdnt contexts, e.g.,
computing set covers of smaller sizes (see the sur¥@y fhan the standard greedy al-
gorithm [30]. Section4.6 presents experimental results that validate the effentise of
multiple coverage in the context of this chapter.

In general, the algorithm stops covering a preference wiserorm has dropped below
a given significance threshobdd(e.g.,0.05). The algorithm stops selecting additional core
subspaces altogether once the average norm of all preé=renops below.

Remarkslf Algorithm 1 tries to select too many core subspaces, it can simply termi-
nate after reaching the desired number of core subspacéhisloase, the selected core
subspaces may not be able to cover all sparse preferenaesintovered preferences are
handled using full-dimensional indexes (discussed ini&edt4.3.

If |Ss| is large, instead of using the entire set to select core sudesp the algorithm
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can work with a subset d,. Specifically,S, is partitioned into buckets, such that within
the same bucket, all preferences are “close”; e.g., foranyteferencesg;, ¢; in the same
bucket,(¢;, ¢;) > cos(7/6). Then, a random sample is chosen from each bucket and work
with the samples to find core subspaces.

As mentioned in Sectiod.1, the approach presented in this chapter can be seen as a
generalization of the view-based approash, [68]. The indexes the algorithm builds for
each core subspadé can be seen as a “super’-view that effectively provides traes
power as materializing an infinite number of vector views sdwectors lie ind. On the
other hand, unlike vector views, the core subspaces argaxadlel. This restriction not
only makes the problem more tractable, but also the atggotain their meaning and
if Sp(q) is ak-dim, then it will be k-dimensional even after the projection—number of
non-zero attributes does not increase. It does not posesang for sparse preferences,
because a multi-dimensional core subspace subsumes @il véaws therein, including
those that are not axis-parallel. Such degrees of freedomdad by multi-dimensional
subspaces also make the core-subspace approach more—+alhils the choices of vector
views are susceptible to errors and changes in the distitmiof attribute weight values
in preferences, the core-subspace approach will still week as long as preferences
continue to specify non-zero weights, which can vary aaify, for the same subsets of

attributes.
4.4 Constructing Indexes

This section describes the indexes the presented algobthias. First, for each core
subspace i, an object index is built for to-queries (Sectiod.4.1) and a preference
index for reverse top- queries (Sectiod.4.2. The collection of these indexes for core
subspaces aims at handling most (if not all) sparse prefesemNext, to handle all prefer-

ences not covered by these indexes, object and prefereteeem are separately built for

73



the full-dimensional space (Sectid.3.
For reverse topg: queries, in addition to these indexes, the score ofktiie ranked

object is also stored for each preference.
4.4.1 Core Subspace Indexes for ToQueries

For each core subspaéé € H, a straightforward approach would to be projéconto

H, and build an index on théim(H )-dimensional projected points that, given a query
preferencey, return the togk: points with respect tg. This approach, however, has several
issues. First, unlessis contained in, there is a good chance that the some answers will
be missed by looking only at the tdpobjects forg in H, even when the algorithm looks
in multiple core subspaces partially coveripngSecond, indexing all points il for every
core subspace results would requiré:|H|) space, which is too much. Third, looking in
multiple core subspaces per query means that the index ébr @ae subspace must be
fast.

To address these issues, for each core subgpaaesmall subset of objects is carefully
chosen to build an index that supports t@p-queries inH. The index is small and fast,
but approximate—a sensible trade-off because the top asswea subspace in any case
only approximate those in the full-dimensional space. Hére 1 is a small constant to
increase the chance of catching a fopbject in the full-dimensional spacg.is set to3
in the experiments in Sectigh6; additional evaluation on the choice gfis presented in
Sectiorn4.6.3

In more detail, let0; denote the projection df, the set of input objects, off, and
let e > 0 be the error allowance. A5k, e)-coreset ofcy C Oy is constructed, as
defined in Sectior8.4.1 By definition, for any preferencgin H, and for any; < gk,

(¢, mi(q,Cm)) > (g, m;(q,0)) — ed,(q,0), i.e., the scores of topk objects ofCy are
roughly the same as those 6f In Chapter3, we described an algorithm for computing

coresets. Roughly speaking, it first applies an affine transftion to make9 4 lie inside

74



a unit sphere centered at origin, and then proceedsin+ 1 passes. In each pass the
algorithm carefully chooses a sHtof O(1/edm(H)=1)/2) points on a sphere of radius
2 centered at origin. For each poiate U, it computes are/2)-approximate nearest
neighbor ofu in Oy, sayp,. It adds the sefp, | u € U} to Cy, removes it fromOy,
and proceeds with the next iteration. The details of how thiatp inU are chosen can be
found in ChapteB. In the worst casdCy| = O(pk/edmH)=1/2) "but in practices the
size of Cy is much smaller.

Next, an index is built or€; such that for a query preferengan H andx > 1, it
returnsr<,(Cp, ¢). By the definition of coreset, for < Sk, the score ofr<,.(Cp, ¢) will
be roughly the same as thosemnof, (04, ¢). Many indexes are known for forward tdp-
gueries; some provide provable bounds on their performa®ioee this component is not
the main focus of this chapter, the implementation simpBsdsm (H ) sorted lists or€
and the TA algorithm for answering topgueries.

In the worst case, the total size of the index, summed ovecak subspaces, is
O(X" yyey Bk /e @m)=D/2) = Since the dimensionality of core subspaces is cappéd at
the size isO(Bk|H|/e(7~1/2),

Remarks.Note that a preference workload influences the object irglexdt in this
section only through the choice of core subspaces. With @ sabspacé/, the object
index is capable of handling any preferencédnThis property makes the core-subspace
approach more robust than the (vector) view-based appf&8c68] with respect to errors
and changes in the distributions of attribute weight valugserefore, the core-subspace
approach does not require a very detailed or accurate mbdgpected preference work-
load in order to support top-queries effectively. Sectiod.6 validate this observation

experimentally.
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4.4.2 Core Subspace Indexes for ReversekTop-

Let S be the set of preferences with respect to which we wish to enseverse top:
gueries. On a high level, a small number of “covering corespabes” is identified for each
q € 8. Then, the subset of preferences thatovers is indexed for each core subspace

H < H. Before describing the indexes, we first discuss how to copeeference.

Covering a preference with core subspaces. A cover of a preferencey, denotedl’,, is
a subset oftl, onto which the projections af are intended to preserve the information
aboutg, in the sense described in Sect#B. A coverl', is 5-perfectwith respect ta if
for any query object ¢ O ando € m<;(q, O U {0}), there exists a subspage= I';, such
thatoy € m<pi(qu, On U {on}). However, perfect covers are difficult to find. dflies
within a core subspace, then that subspace obviously-igeafect cover of;. However, if
none of the core subspaces contaijrigy itself, the best we can hope for is a small cover
that preserves as much @as possible.

A simple strategy would be to chooBgto be those core subspaces that “overlap” with
q (or more precisely, those on whigthas a non-zero projection). However, there may be
too many such subspace; picking them all would increasentihexispace and slow down
queries. The top subspaces could be picked based on the abgimprojections on them;
however, doing so does not guarantee that all non-zerbuatriveights of; are covered.
Alternatively, the top subspaces could be picked accortirtheir weights as defined in
Sectiond.3, however, weights are globally defined oweand not relevant for a particular
q.

To avoid these problems, a limitis set on the maximum number of core subspaces in
any cover, and use a greedy procedure (shown as Algo@jhmcoverq. The algorithm
is similar to Algorithm1 in spirit (though now only one is being covered). In each step,

the algorithm always pick the core subspdtdor which g5 has the largest norm. More
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Algorithm 2 : PreferenceCover(H, ¢; v, 0)
1 D0, ¢

, While ||¢|| > 6§ and|T'| < v do

3 H + argmaxpcy [|qull;

if ||¢zz|| = 0 then break;

P« TU{H};H«+H\{H};

q < q—|qnll - qu;

L if ||¢|| > 6 then return 0;

g return I

(o2 BN &2 I Y

importantly, the algorithm updatedor each step in a way that let subsequent picks focus
on uncovered dimensions, while still encouraging multggeerages for each dimensions
(as discussed in Secti@n3). This process is repeated untils “mostly covered,” i.e., the
residual norm is less than a given thresh@lar the cover size exceeds the limit The
choices ofv and# allow the trade-off between coverage completeness and e@stdd
are set ta3 and0.5 in the experiments in Sectich6, respectively; additional evaluation
on their choices is presented in Sectif.3

RemarksNot all preferences can be covered. AlgoritBmeturns{) if it cannot cover
a preference. It is even possible (though not very likelgt thome sparse preference
cannot be covered. On the other hand, it is also possiblevier @onon-sparse preference.
Preferences that cannot be covered will be handled sepabgtéull-dimensional object
and preference indexes (Sectibd.3. The hope is that in practice, most preferences are

sparse, can be covered, and will thus benefit from the cdyspsice approach.

Building the preference index. For each core subspadg, let 8 = {qy | H € T}
denote the subset of the preferences withn their covers (as chosen by Algorith®).
Given a query object ¢ O, the goal is to build an index for finding all preference §(*)
for which oy ranks among the topk objects inOy U {oy} for ¢gg. Assuming “near”
B-perfect covers for all preferences, as discussed abovegnters the tog: answer of

any preference, thenq will be returned by querying the preference index of some cor
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subspace it',.

To build this preference index f@ ), the algorithm considers, for each preference
q € 8 the score of thé3k)-th ranked object i) ; with respect tayy, i.e., (qu, 75 (qm, On))-
This score is called theutoff score Intuitively, it can be determined whether a query ob-
ject oy enters the togs answer ofgy simply by comparingqg, o) with gg’s cutoff
score. However, instead of working directly with;, which is big, the algorithm works
with Cy, the (5k, e)-coreset ofd i discussed in Sectiofh4.1, which is much smaller. By
definition, the score of thé3k)-th ranked object ir) ; with respect toyy is roughly the
same as that of thgik)-th ranked object irt ;.

LetSy = {qu | ¢ € 8} denote the projection &) onto H. Indexing preferences
in 8y and their cutoff scores it/ is easier in the dual space (recall SectB): the
dual of Cy; is a setC; of hyperplanes R4 ™) and each preferengg; € §;; maps to
a vertical raygj;. In the following, it is assumed that preferences have pesweights
for the last dimension off (i.e., ¢j; is oriented toward the positive direction); the case
of negative weights is analogous. L&tCy) be thegk-level of A(Cy), i.e., the query
response surface for topk query. If the rayg;, intersectsA(Cy) at a hyperplane, €
Cy;, thenoy = mee(qu, Cr). As discussed in Sectioh2, the intersection, denoted by
Xqn - 1S thecutoff pointof ¢;. For any query object & Cp, 2z € m<pp(qm, Cy U {z}) iff
the hyperplane dual telies belowy,,, .

Let =y = {xqs | ¢z € Su} denote the set of cutoff points for preferencessjn
An index is built for=y such that given a query hyperplaneit can report all points
of =y lying above~. As discussed in Sectioh.2 there are several known indexes for
this halfspace range query. The implementation is simpgetdan kd-tree, but with an
additional optimization. Each nodeof the index tre€l" is associated with a bounding
box B, and with=, = B, N Ex. In a standard kd-tree, as long [&5 | is above some
constant (node capacityy),is further split. The standard kd-tree construction akioniis
modified as follows. During construction, at each nedée algorithm considerS?, the
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subset of the hyperplanes @j, that intersecB,. If |C}| is small and all cutoff points in
=, lie within a small neighborhood, is not split even ifi=, | is still above node capacity.
Instead,» becomes a leaf and one cutoff point is chosen féénto represent all oE,.
Intuitively, in this case, if any query hyperplane lies abdoer below) the representative
cutoff point, then it will likely lie above (or below, respa)l other cutoff points oE,,. This
optimization reduces the index size for highly clusterezfgnences.

Remarks.For a preference ¢ 8\, the closel|qx| is to ||¢||, the more likely it is
for an object highly ranked w.r.tz; to also rank high w.r.tg. Thus, instead of defining
the cutoff point using always thglk)-th ranked object w.r.tyy, it can be defined using
the (5'k)-th ranked object, wherg’ € [1, §] is customized based on how clagg, || is to
lg||. This heuristic expedites reverse tbmueries by tightening the cutoff condition; see

Section4.6.3for more detailed discussion and evaluation.
4.4.3 Indexes for Uncovered Preferences

As discussed in Sectioh4.2 not all preferences are covered by the core subspaces. To
handle such preferences, an object index (for forwarditgperies) and a preference index

(for reverse topk queries) are built in the full spadge.

Full-dimensional index for top-k queries. To make the index smaller and faster, instead
of working with the entire set of object8, the algorithm works with a coreset (just
like in Section4.4.1, but now in the fulld-dimensional space). Ak, c)-coreset of size
O(k/e'%=1/2) can be computed using the algorithm described@jnBecause of the expo-
nential dependence ahthe coreset can be large even for moderate valués\hile it is
known that this size is required for the worst case §s shown below, if the input objects
lie on a low-dimensional algebraic surface of constant elegihen a smaller coreset can

be computed.

Theorem 6. Let O be a set of points ifR? that lie on at-dimensional algebraic surface
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of constant degree, far < (d — 1)/2. Then, a(k, £)-coreset of siz€((d*?/¢)!) can be

computed in im@®Mn + O((d%/2/¢)?).

Proof. The algorithm by Agarwal et al.7] is modified for computing dk, )-coreset.
Their algorithm works irk 4 1 phases, and in each phase computgs &)-coreset of size
O(1/£9=D/2) "using the technique ir5[ 6]. The following technique fromd, 6] computes
a(1,¢)-coreset of size of(1/c%): By applying an affine transform an and its bounding
box B, B is transformed to the hyperculfig 1]%, so W.L.O.G. assum& = [0, 1]*. Draw
ad-dimensional grid insidé3 so that the side length of each grid cell is at mgsyd. Let
C denote the set of resulting grid cell€. is induced byd families of hyperplanes, each
consisting of[v/d/c] hyperplanes. LeF be the set of thes@(d*/?/<) hyperplanes. For
each cellC € C, if C N O # (), choose one point af' N O. It was shown in] thatC is a
(1,e)-coreset of9. Obviously,|@| = O((v/d/e)4).

We prove an improved bound @6| for our setting. Let: be at-dimensional surface
of constant degree that contaifis That is,Y is the common zero set of a family @f— ¢
d-variate polynomials, each of constant degree. We claimhiatersectsO((d*/?/¢)*)
cells of C; the constant proportionally depends toas well as on the degree bf Note
thatX can intersect only)(1) cells without intersecting their boundaries, so it suffites
bound the number of cells & whose boundaries intersect We prove this bound by
induction ont.

Fort = 1, ¥ is a curve. It can intersect each hyperpland’ait O(1) points, and
therefore can interse@(|I'|) = O(d®?/¢) cells of C. Fort > 1, fix a hyperplaney € T.
The hyperplanes from the othér— 1 families of I' induce a(d — 1)-dimensional grid
C, on~. Furthermorey N X is a(t — 1)-dimensional algebraic surfaée, of constant
degree. By induction hypothesis, intersect)((d*?/¢)*~1) cells of C,. Note that each
(d — 1)-dimensional face of a cell it is a cell of C, for somey € I'. Hence, summing

over all hyperplanes df, 3 intersects)((d%/?/¢)*) cells of C. Therefore, ifS intersects
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the boundary of a cell of, there exists & € I' such that, intersects a grid cell of,.
Therefore, the size of the coresetd§(d*/?/<)*).

Itis hard to compute the smallest box containthdout as observed irb[ 6], it suffices
to compute a bounding box ¢fwhose volume is within a constant factor of the minimum
volume. Barequet and Har-Pel&#f] described a simpl@(dn) time algorithm to compute
such a box. We then repeat the above construction with this We omit some of the
technical details here and conclude tBatan be computed id”Vn + O((d*?/¢)?) time.

]

Full-dimensional index for reverse top% queries. After computing the coresét of O, an
index is built for the se$ C 8 of uncovered preferences (i.e., those for which Algorithm
returns()). The procedure is the same as that described in Sedtia for indexing
preferences for a core subspace, except that cutoff paiatdedined by thé-th ranked

object instead of thégk)-th.
4.5 Query Procedure

This section describes the procedure for answering:tapd reverse top-queries using

the indexes described in Sectidrl

Top-k query. Given a query preferengec S?—!, PreferenceCover(H, ¢) (Algorithm 2)

is first called to comput€,, a cover ofg by core subspaces. There are two cases.
First, if I, = 0 (i.e., a cover ofy cannot be found by), a query is issued to the

full-dimensional object index described in Sectd.3with ¢ and7<,(q, C) is returned.

SinceC is a coreset 00, the objects returned by the procedure approximaigq, O).
Otherwise,|I',| > 0 andgq is covered. For eacl < I',, gy, the projection of; on

H, is computed. A query is issued to the object indexfbdescribed in Sectiod.4.1in

order to obtain the set of objecis, € O corresponding tar<,.,, (¢, Cr), Whereky = k
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if llgu|l = 1, or ky = Bk otherwise. Thenr<y(q,Uycr, Su), i.€., the topk objects
among all returned objects, is computed by calculating thetual scores w.r.t.
Remarks.Note that more sophisticated methods for choosiraye possible (see re-
lated discussion on flexible definition of cutoff points iretremarks at the end of Sec-
tion 4.4.9. Intuitively, as||¢y|| increasesgy becomes more likg, and a smalleky
(closer tok) will be enough to include top-objects w.r.tg with all high probability. The
setting ofx = k when||¢y|| ~ 1 captures an important special case of this observation.

See Sectiod.6.3for additional discussion and evaluation.

Reverse topk query. Given a query objeat € R?, we want to report all affected prefer-
ences, i.e., any preferengec 8 for which o is a top4 object inO U {o} w.r.t. ¢. First,
affected preferences among the uncovered preferéheess (i.e., those for which Al-
gorithm 2 returns()) are found by querying the full-dimensional preferencesion §
described in Sectiod.4.3

Next, affected preferences are found among the coveredrprefes$ \ S. For each
subspaceé! <€ H, we determine whetheris “relevant” to /, in the sense whether there
can be some preferengan H for which oy is potentially one of the top# objects of
Cy U{og} w.rt. q. The procedure for testing relevance is given in Chaptet takes
O(k/e@=1/2) time in the worst case. W is relevant tof, a query is issued to the prefer-
ence index witho for H described in Sectiof.4.2in order to find the affected preferences
in H with their cutoff points. For each such preferenctund, o’s actual score w.r.tg
in the full space is further calculated, aqds returned only ifo’s score is higher thag's
k-th score that is stored (as discussed at the beginning ab8ec4).

RemarksIn the worst case, a query objecinay be relevant to all core subspaces, but

in practice o is often relevant to only a few core subspaces, so the reteviast is useful.
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4.6 Experimental Evaluation

Approaches compared. This section compares the core-subspace approach, leeneaft
ferred to asCSl (for Core-Subspace-basethdexing, with a number of alternatives. All
approaches are implemented in C++.

For top+ queries, the following alternatives are considereétan is a brute-force
method that examines all objectBB indexes all objects in d-dim kd-tree and uses a
branch-and-bound algorithm to search for the&agbjects.TA, the Threshold Algorithm,
keeps a list of objects sorted by each attribute; to find the:tobjects give a query pref-
erencey, it uses the lists for attributes with non-zero weights #ptby . PCA+TA first
applies PCA (principal component analysis) to reduce thesdsionality of the objects,
and then use$A Views, the view-based approach, randomly selects as views a gattof
vectors from a given preference distribution, and mateealtheir top3k objects. Given
a query preference, it retrieves the topik objects fromv views most similar ta; and
computes the top among these objects.

For reverse topg: queries, all approaches store the score of:th@nked object for each
preference.Scan examines all preference$d SR, for halfspace range searclanswers
the query in the dual space usingl/alim kd-tree on the cutoff points, as described in
Sectiond.2 PCA+HSR first applies PCA and then uskESRin the reduced spac®iews
selects its views as described above, and assigns eachepiefdo views; given a query
objecto, it retrieves all preferences assigned to views for whiemters their togsk list,
and filters these preferences to find those affected by

SinceCSlis approximates is set t00.08 to be the error allowance, such that coresets
are sized to provide answers whose scores are witkimes the directional width of the
objects with respect to a query preference (recall Bd)). To ensure fair comparison
betweenCSlandviews the same settings ¢f = 3 andr = 3 are used, and the number of

views is chosen such that the total space consumptieieafsis the same as that &fSL

83



Performance metrics. For a given query workload, the average wall-clock time peary
over the workload is reported, as measured on a Dell Opti@¥xwith 3.40GHz Intel
Core i7-2600 CPUSMB cache, andGB memory.

For approximate approaches to tbpueries CSIL, PCA+TA andviews, the approxi-
mation error is measured for each query objeas follows. Lets; denote the-th ranked
object returned by an algorithm. The error is computethas;c|; % where
¢ Is the error allowance as set above. Thus, an errboofess is considered “acceptable.”
The RMS (root mean square) error over the query workload srte@. If RMS error isl
or higher, it is likely that a significant fraction of the ersare unacceptable.

For  approximate approaches  to reverse  kop- queries  CS|
PCA+HSR andviewsg, their approximate qualities are measured u$ahge negative rates
defined as follows. Given a query objecta preference is considered to bsignificantly
affected byo iff (g, 0) > (¢, m:(q, 0)) + di(q, ©); here, the samewe set earlier defines
the amount of acceptable slack. If a significantly affecjad missing from the result
query result, it is counted as a false negative. The totalbsurof false negatives is di-

vided by the total actual number of significantly affectedfprences over the entire query

workload, and this ratio is reported as the false negatitee ra

Synthetic object workloads. Objects are generated using a number of distributions. With
box-uniform, objects are distributed uniformly and randomaithin the unit box inR<.
With sphere-uniform, objects are distributed uniformly and randonoly the surface of
the unit sphere iR?. With sector-select, objects are drawn randomly from a spherical
cap inR“ with apex at the origin, and with radiusand cone anglé5°; furthermore, an
object is generated if it ranks high w.r.t. some preferendbe preference workload. With
t-surface, objects lie on @&-dimensional algebraic surface embedded in the origiredep
The surface is defined usingparameters. For each attribute, a multivariate polynomial

of constant degree is defined from th@arameters. To generate an object, values are
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first generated for theparameters and then the object coordinates are computeglthsi

polynomials.

Synthetic preference workloads. The preference workload generator uses a number of pa-
rameters to control workload characteristics. Givdraation of non-sparse preferences,
this fraction of the preferences is generated in the worklmapicking unit vectors ifi?
uniformly at random; assuming a sufficiently largesuch preferences are almost always
non-sparse. The remaining (sparse) preferences are gghéan a sets of “generating
subspaces,” wheté| = hgen, thenumber of generating subspaces, and for eactt € G,
dim(G) < 7gen themaximum generating density. G is picked in two ways: withuni-
form generating subspaces, every subspace with dimensionality no more thgn has

an equal probability of being picked; wittkewed generating subspaces, each attribute

is assigned a popularity, such that popular attributes ameriikely to be included in a
generating subspace. To generate a preference, a gegeatspacé: € G is selected at
random. Then, the preference is generated in two ways: umittor m preferences within
subspaces, a unit vector inG is uniformly drawn at random; witllustered preferences
within subspaces, preferences are drawn from a mixture distribution centen®und a

small number of randomly chosen unit vectorgin

NBA workload. The dataset containg career stats fo8,861 NBA players. Preferences

are still generated synthetically.

Document subscription workload. This workload is intended to approximate an applica-
tion scenario where users subscribe to documents of therrest. The set of objects is
generated to represent documents from the collection abappately300,000 NY Times
news articles19]. A singular value decomposition (SVD) is performed on tewmnents

to discover the underlying0 most relevant topics. Hence, each document is mapped a
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point in the20-dimensional space, where each attribute representsa topi

Next, the Yahoo! search query collectidiilp is used to extract the set of preferences
for this workload. This collection contains a random sanydl€,496 queries posted to
Yahoo!’s US search engine in January, 2009. The queriesrapeqeessed to discard stop
words and words that are not present in the document cafectrhen, using the same
SVD matrices, each query is mapped to a unit vector in2thdimensional space; if a
component of the vector is below a thresholdt is set to0. The table below shows,
for two differentt values, the density (number of non-zero components) ldigion of

resulting vectors (recall that= 20):

| density 0 [1]2[3[4][5]6]7]8]9]10[11[12]
# vectors { = 0.05)[|1558 0 | 0 | 3 |32[11334274986456720951 8
# vectors { = 0.1) [[15923381010108439080| 2 [ 0 [0 |0 | 0[0]0

In the experimentg,is setta).1. To get a larger set of preferences, they are generated from
the above set of “seed” vectors. Each word is associateditwithmost “probable” topics
(derived from the same SVD). Let two words be neighbors if thee associated with a
common topic. Starting from a seed vector, new prefereneegenerated by iteratively

replacing one of its words with a neighboring word.
4.6.1 Topk Query Performance

Varying the fraction of non-sparse preferences. We begin by studying the effect of the
fraction of non-sparse preferences on fogueries for various approaches. Hefe; 80,
k =5, and100,000 objects are generated framox-uniform The query workload consists
of 10,000 preferences; the sparse ones among thenu@iferm preferencedrawn from
200 uniform generating subspacesth maximum dimensionality,e, = 6. CSlandviews
are given10,000 preferences generated from the same distribution in agetsig their
indexes. In Figuret.2, the fraction of non-sparse preferences varies ffota 0.8. For

CS|, the RMS error is comfortably below at all times, but the overall average query
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time rises with more non-sparse preferences. The tablevtstows the fraction of query
preferences that are covered by core subspaces, which loaglay linear relationship

with the fraction of sparse preference:

|Fraction of non-sparse preferenge9.0 | 0.2 | 0.4 [ 0.6 | 0.8 |
| Fraction of covered queries [98.9%78.2%456.49432.0%47.90%

Recall thatCSlI uses indexes in core subspaces for covered preferenceshearidll-
dimensional coreset for uncovered preferences. To begetheir performance difference,
CSF is used in this and following figures to show the average qtierg for covered pref-
erences. When most preferences are non-sparse, they atechapdhe full-dimensional
coreset, sSCSl becomes as slow asanandBB,2 which is expected in high dimensions.
This observation implies that using only the full-dimems&bcoreset (as well as other full-
dimensional approaches such as the layer-based ones nezhtio Sectior#.1) will not
work in high dimensions.

The error ofviewsis acceptable when all preference are sparse. Howevernrds e
quickly deteriorates as the fraction of non-sparse praef&eises, because of the inher-
ent difficulty in capturing high-dimensional space with teeebased views. Although the
guery-time plot shows an apparent advantaga@fsover CSlwhen the fraction of non-
sparse views is at lea8t2, this advantage is not real—to make its error acceptaide;s
would have to use a lot more views, driving the space and dires/higher tharCSL

Figure 4.2 shows thatPCA+TA does not produce acceptable errors; thus, its query
time is not plotted. Also, error fascan BB, andTA are not plotted because they are exact
methods.

Now that the effect of non-sparse preferences is well utoleds this section will focus
on workloads where all preferences are sparse—extrapoladithe general case is easy,

andviewswill only be worse tharCSlwith more non-sparse preferences.

2 TAis slower with more non-sparse preferences, because eelelpseference requires processihtists
and is thus more costly than a sparse one.
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Varying preference workloads. We now examine several different preference workloads.
In Figure4.3, d = 20, and preferences (either for querying or for index consioag
are generated fromniform generating subspacéas Figure4.4, d = 80, and generating
subspaces askewed For both figures, the number of generating subspaces Veoia$0
to 500. Other workload parameters remain the same as Fij2relhe main observation
is that the exact methods run much slower than the approgioras (note the logarithmic
scale of the query time axis)CSI andviewsand have comparable query time, [ii§I
has smaller errors thanews PCA+TAagain produces much higher errors tia8l and
views

Going from Figured4.3to Figure4.4, queries generally become slower with a higher
dimensionality, but as indicated IS, query times for covered preferences remain short,
and become much shorter thail@ws As majority of the queries are covered, they will
benefit from shorter-than-average query times. On the dthed, the accuracy lead of
CSloverviewsis consistent in both Figures3and4.4.

The number of generating subspaces has some effect onrparfoe, though this ef-

fect is not strong enough to change any conclusion in ouudgon above.

Varying dimensionality. Next, let’s consider the impact of dimensionality. Again= 5,

and 100,000 objects are generated frobox-uniform Preferences are drawn asiform
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preference$rom 100 uniform generating subspacesth maximum dimensionalityge, =

6. Figure4.5shows that a€ Sl consistently delivers higher accuracy thaewsacross all
dimensionalities, and its big lead oie€A+TAwidens asi increases. Whil@iewsstarts

out to be faster tha@Sl in low dimensions, the speed gap between quickly narrows in
higher dimensions. The exact methods are generally mueres@SIandviews Finally,
looking atCSF, we see that covered queries remain extremely fast de$@tantrease

in d, meaning that core subspaces do a good job of protectingespaeference query

performance from the curse of dimensionality.

Objects from low-dimensional algebraic surfaces. In this experiment, a varying number
of objects is drawn from-surface(a 3-dimensional bounded-degree algebraic surface to

be specific). Hered = 100, and preference workloads are generated by drawing)0
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uniform preferencefrom 100 uniform generating subspacesth maximum dimension-
ality 7qen = 6. Figure 4.6 shows thatCSI's query time (which accounts for uncovered
guery preferences that will use the full-dimensional ceteemains steady as the number
of objects increases. In fact, despite high dimensionddity= 100), the size ofCSlIs
full-dimensional coreset is only arourtdo00 even whenn = 200,000, confirming the
effectiveness of the improvement to the coreset constmu@igorithm discussed in Sec-
tion 4.4.3 In comparison, the exact methods are much slower, and fhevgkens as
increasesViewsis also slower tha S|, but the gap does not widen thankgd8I's small
coreset size (recall that the spacevigwsis set to be the same as that@sl).

Figure4.6 also shows an approximate variantToA called ApproxTA which simply
runsTA on the full-dimensional coreset used G|, for all query preferences. Between
ApproxTAandCS], there is a clear tradeoffApproxTAhas better accuracy, whi@Sl has
faster speed. This comparison highlights the benefit oftigraved corset construction
algorithm, as well as the ability for core subspace to furfirevide good accuracy/speed

trade-offs.

Sensitivity to changes in preference distribution. Section4.4.1argued thaCSl is more
robust tharviewswith respect to errors and changes in the distributionstabate weight
values. This claim is now validated using the following evyment. Hered = 80, k = 5,

and we us& 00,000 objects fromsector-selectTwo preference workload distributiom;
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andlV, are defined. Both useéniform generating subspacesth maximum dimensional-
ity 7gen = 3; We also use these subspaces to generate the sectsexfor-selecbbjects.
W1 andW; both drawclustered preferencdsom each generating subspace, but they have
different set of cluster centers. To construct their indexmthCSI andviewsare given
10,000 preferences fromil/;. Then, the performance @fSlandviewsare compared when
given 10,000 query preferences from/; (i.e., preference distribution isnchangeyland
when given queryt 0,000 preferences fronil; (i.e., preference distribution changed.
Figure4.7 plots the results when varying the number of generatingmades; results
for which the preference distribution is unchanged are shas/“baseline.” THe figure
shows that whileviewshas a very accurate baseline (because the preferenceghbe hi
clustered), its accuracy simply becomes unacceptable wieepreference distribution

changes. In contrasf;SIremains highly accurate despite the change.
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Document subscription workload. Figures4.8 shows the results for the document sub-
scription workload when varying the number of documentscéagain, the results con-
firm the effectiveness oESI Almost 100% of the query preferences can be handled by
core subspaces, and the average query time is much fagtehthexact methods and com-
parable withviews In comparisonyiewshas bigger approximation errors, aA@A+HSR

is worse. In fact, unde€Sl|, at most3% of the queries exceed the prescribed error al-
lowance (i.e., approximation error is greater than In contrast, up t&% and84% of

preferences have approximation errors greater thamderviewsandPCA+HSR respec-

tively.

Benefit of multiple coverage. Here, the effectiveness of multiple coverage is testedhier t
box-uniform workload when varying incentive for multiplewxerage. In the setting, =

80, k = 5, and10,000 uniform preferencefrom 200 uniform generating subspacwsth
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maximum dimensionality,., = 6. Recall that wher is selected, for each preferenge

the presented algorithm reduces the weights of those @ttshng that are present igy.

For single coverage, < g — qy. For multiple coverage; < ¢ — ||Gu||qn- In Figure4.9,

h indicates the incentive for multiple coverage, igis updated using < ¢ — ||Gu||"qxu.

The figure shows that if we simply clearof any weights of attributes i&/ (h = 0), the
approximation error is greater than As & increases, the error decreases but the query
time goes up. By setting = 1, good balance is acheived between approximation error

and query time.
4.6.2 Reverse Top-Query Performance

Varying dimensionality. We begin by studying the effect of dimensionality on reverse
top-k queries for various approaches. Heke= 5. 2,000 objects are drawn frorbox-
uniform, and 100,000 uniform preferencefrom 100 uniform generating subspacesth
maximum dimensionalityye, = 6. Query objects are also drawn frdmx-uniform Fig-
ure4.10shows the results. As with top-queries, a similar pattern is found in accuracy:
CSlI misses very few significantly affected preferences (no nioaa aboutt%); views
missesl8% to 45% asd increasesPCA+HSRmisses ovef0%. In terms of query time,
scanis the slowest, as expectetHSRis reasonably fast as an exact method in low di-
mensions; however, its lead ov&rannarrows quickly asl increases—a query halfspace
intersects more nodes of the underlying kd-tree, and thieotdgtermining whether a cut-
off point lies above a hyperplane grows proportionally. Argahe approximate methods,
both PCA+HSRandviewsare faster thai€S|, but they have poor accuracy. Keeping the
accuracy highCSl still manages to offer a significant speedup as@aneven atd = 200.
Recall that for each querg Sl also checks the full-dimensional index of uncovered
preferences, basically usit$SR This cost component is reflected in the reported query
times, and depends on the fraction of the uncovered prefesenin the worst case, if

all preferences are non-sparse, many of them will not beredyeand the query time of
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CSlwill be similar to that ofHSR Because it is easy to extrapolate the effect of varying
the fraction of non-sparse preferences, this fraction tiscse and do not vary it for the

synthetic workloads in this section.

Varying the number of generating subspaces. The same workload parameters are used
as in Figure4.1Q but vary the number of generating subspaces while fixing 40.
Figure4.11shows the results. Again, a similar trade-off is shown agguie4.1Q views
andPCA+HSRrun faster tharCS|, but offer much lower accuracy; the exact methods are
much slower.

Figure 4.11 shows that the number of generating subspaces has an imp&$lo
More generating subspaces imply more diversity in prefeeywhich leads to more core
subspacesl( core subspaces faéi0) generating subspaces \&, for 500), as well as a
larger number of imperfectly covered preferences. Heno#h false positive rate and
guery time increase, although the effect is not strong elmdaghange any conclusion in

our discussion above.

Varying the number of preferences. Next, we study the effect of the number of prefer-
ences. The same preference workload parameters are used-agiie4.10 but vary
the number of preferences up 300,000. This time, the2,000 objects are fronsphere-

uniform and query objects are also drawn frephere-uniform Figure4.12 shows that
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the same trade-off identified in previous figures continieSl is slower tharviewsand
PCA+HSR but is more accurate. The exact methods are much slowele e fastest
approximate method®® CA+HSR misses most of the answers.

Overall, CSldemonstrates good scalability in the number of preferendéth half a
million preferencesCSls false negative rate is merely4%, and average query time is
under35 milliseconds. A more detailed breakdown shows that it spédd 4ms querying
indexes for core subspaces, artidl 5ms filtering false positives; it also spern2iI89ms on
checking the full-dimensional index fdi9,678 uncovered preferences (out @i0,000).

In comparison, the average query timevadwsis about21 milliseconds91% of which is

spent on filtering false positives.

NBA workload. Figures4.13 compares various approaches for the NBA workload as

the number of preferences increasémiform preferencesre drawn froml00 uniform
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generating subspacesgith maximum dimensionalityg, = 6. To ensure that the query
objects are “interesting” (i.e., likely affecting some far@nces), the reverse tdpgueries
are tested using Hall-of-Fame players as query objectair&#y13shows thawiewshas
the fastest query time across all tested workloads (be®CW+HSR, but CSl achieves
the lowest false negative rate among all approximate msthetile still delivering fast

guery time with a large number of preferences.

Document subscription workload. For this workload 2,000 documents are used and the
number of preferences varies up2@0,000. Figure4.14shows the results. As with the
NBA workload, bothviewsandCSl perform well; additionally, the exact methétbRalso
has acceptable query time in this ca€&l offers a nice middle ground betweetsRand
views on one handCSlis 2 times faster thaidSR on the other hand, it i8 to 3 times
slower tharviews but its false negative rate 9% to 50% lower thanviews ForCS|, the

false negatives rate is less thHi across all tested workloads.

Benefit of multiple coverage. Figure4.15shows the results for the box-uniform workload
when varying incentive for multiple coverage. In the seftith = 80, £ = 5, and 10,000
uniform preferencefom 200 uniform generating subspacesth maximum dimensional-
ity 7gen = 6. Again,  indicates the incentive for multiple coverage, ieis updated using

q <+ q — ||Gu||"qu. The figure shows that if we simply cleaof any weights of attributes
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in H (h = 0), the false negative rate is above 0.5. If we enourage additicoverage
for those weights, the false negative rate decreases bgu#rg time goes up. By setting

h = 1, the false negative rate is less closé®to
4.6.3 Algorithm parameters

Different choices of parameters fQSI have been experimented to verify the settings of

parameters.

Parameter 3. The smallest value fof is estimated across different workloads s.t. most
preferences are within the prescribed error allowancepH/tb objects are retreived from
each core subspace in their preference covers. Hetd).08 andk = 5. Unless specified,
10,000 preferences are drawn frog90 uniform generating subspacesith maximum

dimensionalityrge, = 6.
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The value of5 is estimated as follows. A preference is said to caygs 5-approximate

if max;ep i <q’7”(q’izz)izq%;”(q’ol” < 1, where®' is the union of top3k objects of all sub-

spaced? < I',. For each preferenag its coverl’, is first computed. If; can be covered

< v, the smallest intege? is computed s.t['; is

with at mostv core subspaces, i.¢[},
[-approximate.
Figure4.16(a)shows the cumulative distribution function (cdf)®for thebox-uniform
workload, which containd 00,000 objects withd = 20. The figure shows that0%
and90% of preference covers afeapproximate and-approximate, respectively. Fig-
ure4.16(b)shows the cdf off for 100,000 objects drawn from thephere-uniforndistri-
bution withd = 80. Roughly90% and95% of preference covers ateapproximate and
3-approximate, respectively. For the NBA worklo@dds- 17 and|O| = 3861. As shown in
Fig. 4.16(c) roughly80% of preference covers ateapproximate. Figurd.16(d)shows
the results for the document subscription workload, whightains100,000 documents
and 10,000 document subscriptions with = 20. About90% of preference covers aie

approximate, and almost all preference queries are witt@rptescribed error allowance
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wheng is set to 2.
For eachy € 8, let H* € I'; denote the subspacelih; that covers most weights of

> ||lqu|| for all H € T',. Recall that for a reverse

among all subspacés € I'y, i.e.,||ga-
top-k queries, instead of defining the cutoff point using always(thk)-th ranked object

w.r.t. ¢g, the cutoff condition can be tightened by defining it using th'k)-th ranked
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object, whereg?’ € [1, /5] is customized based on how clagg;- || is to g. Also, recall that

for a preference top-query, topx objects are computed in each core-subspace, where

k € [k, Bk] is customized based on how clogg;- || is to ¢. To test the effectiveness of

this customization heuristic, for each covered preferenegain the smallest integgris
computed s.tI', is S-approximate. Next, thoseévalues are partitioned into bins based on
the angle betweegqandqy-. More specifically, if the angle betwegrandqy- is 6°, ¢’s

g is put into bin|#/5|. For each bin, the value ofs at the90-th percentile is chosen as
an estimated for every preference whose angle is in witlfiiti — 1)°, 5:°). Table4.6.3
shows that for thdox-uniformworkload, the smallest angle f88.56% of preferences is
betweern)° and5° and at leas90% of those preferences isapproximate. Similarly, the
smallest angle fob.18% of preferences is betweéri and10° and at leas90% of those

preferences i2-approximate. Tabld.6.3shows the results fddphere-uniform

Parameter § (Algorithm 1) This paragraph shows the results on paramétgn Algo-

rithm 1). Here,d = 80, £k = 5, and 10,000 preferences are drawn frog0 skewed
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Table 4.1: Box-uniform

Angle (degrees) | [0,5) |[5,10)
Fraction of preference.3356/0.0518
Estimateds 1 2

Table 4.2: Sphere-uniform

Angle (degrees) | [0,5) |[5,10)|[10,15)|[15,20)|[20, 25)|[25, 30)
Fraction of preference®.3678|0.0320| .0405 [0.0509|0.0516 |0.0581
Estimateds 1 1 1 2 2 2

generating subspacegith maximum dimensionality,e, = 6. 100,000 objects are drawn
from thebox-uniformdistribution. Figuret.17(a)and4.17(b)show the number of core
subspaces and topquery time when varying, respectively. When = 0.1, |H| = 47
and query time i$).51 milli-seconds. Wher = 0.5, |H| decreases t6, but query time
increases td9.96 milli-seconds. This parameter allows users to controldrafis be-
tween space consumption and query time. The reason for theaise in query time is
that asd increases, the fraction of uncovered preferences alseases, as shown in Fig-
ure4.17(c) Whend = 0.1, the47 core-subspaces cover roughB4% of preferences; but
whend = 0.5, the9 core-subspaces cover roughBly’ of preferences only. Those uncov-
ered preferences are much slower than the covered pregsréecause they are handled
in the 80-dimensional space. On the other hand, if fewer number oé-sabspaces is
selected, imperfectly covered preferences will have higger. Thus, in Figurd.17(d)
the error deteriorates asncreases fron to 0.1. However, ag continues to increase, the
error becomes significantly better because theitgperies for uncovered preferences are

answered exactly.

Parameter 6 (Algorithm 2) This paragraph shows the results on paramét@n Algo-
rithm 2). Again,d = 80, £ = 5, and 10,000 preferences are drawn fro290 skewed

generating subspacegith maximum dimensionalityye, = 6. 100,000 objects are drawn
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from the box-uniformdistribution. ¢ is also fixed to0.1. Figure4.18(a)shows that the
fraction of covered preferences increases ffb#3 to 1 whend increases frond.1 to 0.9.
As a result, the average tdpguery time drops fron16.26 milli-seconds t00.36 milli-
seconds (Figt.18(b), and the approximation errors deteriorate (#iy8(c)and4.18(d)

because a preference cover may only cover a small fractiregireference’s weight.

Parameter v (Algorithm 2) This paragraph shows the results on parametar Algo-
rithm 2. Again,d = 80, k = 5, 10,000 preferences are drawn fro2A0 skewedgenerating
subspacewith maximum dimensionalityen, = 6, and100,000 objects are drawn from the
box-uniformdistribution. Herey and# are set td).1 and0.5, respectively. Figurd.19(a)
shows that whem increases from to 10, the fraction of covered preferences also in-
creases from.621 to 0.99. In particular, more thaf5% of preferences find a cover when
v is set to3. Note that ifv is large, a preference cover may only cover a small fraction
of the preference’s weight. Figure19(b) shows that query time decreases frop22
milli-seconds ta).85 milli-seconds a increases. Figure$.19(c)and4.19(d)show that

the errors deteriorate asincreases.

4.7 Related Work

Preference topk and reverse topk queries. As already discussed in Sectidri, there has
been a lot of work on preference tépgueries 44, 67, 113 85, 50, 49, 65, 66] and reverse
top-k queries 115. This chapter builds on and compares with the solutiongaresd in
the previous chapter, which applied the ideas of coresetlaatity transform to the full-
dimensional space; this reference also provides additaiseussion of and comparison
with other previous approaches to tb@nd reverse top-queries.

This chapter has compared the core-subspace solutiorsexnwith the view-based
approach 68, 50]. As discussed, in some sense, the core subspaces can bassaen

powerful generalization of views. This chapter also shoaw ko select such views, a
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problem that is not addressed B0J].

The layered-based approaches (ed4])[are essentially the exact counterpart of core-
sets, and are subsumed by coresets because the lattelggrmode flexible accuracy/space
trade-offs. For this reason, this chapter does not compeeetly with the layered-based
approach or the hybrid approad®s| 66] that builds on them; their difficulty with high
dimensions can be seen from the performance gap bet@®endCSI in Section4.6.1

Top-k queries can be seen as special case of rank aggregafipaund the Threshold
Algorithm [58] is viable option for topk queries; this chapter compares withA exten-

sively in Sectior4.6.1

Finding interesting subspaces. The task of identifying core subspace is related to the prob-
lems ofsubspace clusterin@inding all clusters in all subspaces) amjected clustering
(assigning points to clusters that exist in different salegs). There has been a lot of work
on these problems (se@4] for a survey). In particular, if the subspaces are axisipelr

the problem is also related to the so-calted/column-subset selectigmoblem p1, 62):
given a matrix where rows are objects and columns are fegtseéect a subset of features
that are dominant. However, the intended use of the corgagbs warrants the special-
ized algorithm in Sectiod.3, which accounts for the feature of multiple coverage, as wel
as the fact that the distributions of preferences assigmagtbspace are less of a concern
than those of preferences across subspaces.

While core subspaces are chosen to be axis-parallel formeagcimplicity and ro-
bustness against changes in attribute weight distribsifitlmere are some situations for
which it may be beneficial to consider subspaces that ar&aunity oriented. For exam-
ple, the preference workload may be known and stable. Advaneixample, preferences
may not exhibit sparsity in the original space, but do soraftene affine transformation.
In these situations, the problem of finding arbitrarily ated subspaces is relatedsiab-

space segmentatipnvhich seeks to model a set of data points using a union ofeaffin
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subspaces (se&f] for a survey). PCA can be seen as a very restrictive specalwhere
all points come from a single affine subspace; as shown indet, it is less effective
than multiple axis-parallel subspaces. Considering nialapbitrary core subspaces in the

solution remains an interesting problem for future work.

4.8 Conclusion

This chapter proposed a solution, based on the idea of cbspaunes, for tog-and re-
verse topk queries in high dimensions. The solution presented in thégpter exploits the
sparsity in preferences to identify core subspaces, anlieaghe techniques of coresets
and duality transform to index each core subspace as welleaiili-dimensional space
effectively. As shown by the experimental evaluation, ighhdimensions, exact meth-
ods are slow, while existing approximation methods suffemf either poor speed (e.g.,
when using only a single coreset in the full space) or pooui@ay (such as the PCA- and
view-based approaches). In contrast, for workloads whestegences are often sparse—a
case that arises naturally in practice—the solution prtesen this chapter offers a desir-
able trade-off between speed and accuracy, which makesbéearocessing of top-and

reverse topk queries in high dimensions a reality.
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5

Range Topk Subscriptions

In the previous two chapters, we have discussed how to capatset of affected sub-
scriptions for data updates. In this chapter, subscriptaoe distributed across a wide-area
network, so the network aspect also needs to be taken intwatc In particular, this
chapter considers how to support a large number of rangé wpascriptions for wide-
area publish/subscribe. Given an object update, subsggripheed to be notified if their
top-k results are changed. Simple solutions include using a ntdté/en network to no-
tify all subscriptions whose ranges contain the updateofigy top+), or using a server
to compute only the affected subscriptions and notifyirgnhndividually. The former
solution generates too much network traffic, while the fatteerwhelms the server. This
chapter presents a geometric framework for the problemathaws the set of affected
subscriptions to be described succinctly with messagdsctra be efficiently dissemi-
nated using content-driven networks. Fast algorithms bellgiven to reformulate each
update into a set of messages whose number is provably dpiittaor without knowing
all subscriptions. This chapter also presents extensmtiset solution, including an ap-

proximate algorithm that trades off between the cost ofeseside reformulation and that

105



of subscription-side post-processing, as well as effidieetiniques for batch updates.

5.1 Introduction

Consider a range top-query over a database of objects (e.g. stocks). The quenyiega

a subset of the objects satisfying a range condition (etacks with risk rating between
medium high and high), and picks the témbjects within this subset by some ranking
criterion (e.g., stocks with thelowest price-to-earning ratios). Over time, when the set of
objects or their attribute values change, the query ressltd be kept up to date, as in the
standard view maintenance and continuous query processitiggs. This chapter studies
how to support hundreds of thousands or even millions of sjuaries simultaneously.
Representing different user interests, these queries may diierent range conditions
and therefore different lists @f objects as their answers.

A challenging application setting is when a large numberhee queries, which is
referred to asubscriptionsare located across a wide-area network. For each event-upda
ing the database, all subscriptions whose results argaff@cust be notified. Notification
messages should carry enough information so that the edfesttbscriptions can update
their top+ lists accordingly. A naive approach would be to use a cesamaler to maintain
all objects and subscriptions, compute the list of affest@ascriptions for each event, and
notify each affected subscription with the change to itskdist. Since an event may af-
fect many subscriptions, this approach can easily overllo@aderver with processing and
messaging costs at least linear in the number of affectestsiphions.

A solution is to push some event processing and dissemmeatiok into a more “in-
telligent” network, but at the cost of increasing system ptaxity. As demonstrated in
previous work #1, 40, 42], acontent-driven networ{CN) offers a good trade-off between
functionality and complexity. CN is a class of overlay netkgdesigned for efficient dis-

semination, with a clean message interface. Many off-tref®verlay networks are ex-
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amples of CN, e.ggontent-based network85] and content-addressable networj@g].*
For the purpose of this chapter, CN is regarded to as a blactobefficiently delivering a
message to all subscriptions whose query parametersysatsgflection condition carried
by the message. Instead of enumerating affected subscriptions one by dreesérver
would compute a compact description for the set of affectbdsriptions, and then trans-
late this description into a series of condition-carryingssages to be sent through CN.
The number of such messages is usually far less than the mafrddféected subscriptions,
thereby relieving the server bottleneck.

Range topk subscriptions are challenging for several reasons. Itr&gsttforward
for CN to handle range subscriptions without toas in standargbublish/subscribe a
message simply needs to list the updated object’s attrfaltes, which can be interpreted
as a condition testing whether a subscription range contam object. However, such a
message is not enough for range fogpubscriptions because they are “stateful”: whether a
subscription is affected depends on how the updated olgeksragainst others within the
subscription range. Furthermore, if the updated objegbslout of a subscription’s top-
list, the newk-th ranked object must be sent to the subscription. Whileipuswork @1]
addresses the special caseiof 1 (i.e., range min/max subscriptions), the general case

handled in this chapter is considerably more complex andrtwae practical applications.

A geometric framework. This chapter develops a geometric framework to supportaang
top-k subscriptions. The geometric framework enables the pnoloegenerating notifi-
cation messages to be viewed intuitively as one of tiling @ pimally complex region of
affected subscriptions (in an appropriately defined sufpson space) using simple geo-

metric shapes. The set of tiles forms a compact descripfidineoregion. Each tile cor-

1 CN is named after these popular examples, which showtibe confused withcontent deliv-
ery/distribution network$32] that serve the different purpose of replicating populabWbjects.

2 An equivalent, dual view is that CN allows subscriptions sodelection conditions over message at-
tributes, and CN efficiently delivers a message to all supsons whose conditions are satisfied by the
message.
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responds to a CN message, whose condition selects all suiisesi covered by the tile.
While one could first compute the list of affected subscripggi@and then find the tiling,
this chapter develops algorithms (described below) thaidasomputing this potentially

long list in the first place.

New algorithms. New algorithms are proposed for message generation baskd rame-
work above. These algorithms are scalable—they run in tiepeeddent on the number of
messages they generate, not the number of affected sutfzstsifwhich could be substan-
tially larger). Experiments confirm that this property states into substantial savings in
both server running time and network dissemination costhéumore, the performance
lead over other approaches widens as the number of sulisospicreases.

This chapter starts with two algorithms. The first one, whgheferred to a®aint-
Densg is subscription-oblivious; it examines only the set ofaut¢. This feature is at-
tractive from both scalability and privacy perspectives;duse it alleviates the need for a
server to track a large number of subscriptioRaint-Densecomputes the optimal tiling
assuming no knowledge of the subscriptions. The secontweRaint-Sparseuses both
the set of objects and the set of subscriptions. IntuitiMélyroduces a tiling sensitive to
the subscription distribution; the size of the tilin@ispproximate and often much smaller
than that generated Baint-Dense

This chapter also considers the case of batch updates, wlsrescription needs to
be notified of the net change in its result at the end of a ba&imply processing this
batch one event at a time generates more traffic than negeksaitl be seen later that by
pre-processing the batch (coalescing and reordering epdaubscribers are guaranteed
to receive the minimum number of messages needed.

BesidesPaint-Denseand Paint-Sparsethis chapter provides approximate algorithms
that generate even fewer messages from the server at thesexpienore “false positives™—

notifications received by a subscription but not neededse~pbsitives are discarded by
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each subscription with simple local post-processing, sddpproximate” algorithms still
guarantee exact subscription results. Having fewer messagluces processing and mes-
saging loads on the server, but false positives bring hitgstrhop traffic and extra post-
processing. The trade-off can be adjusted using a parametei, while guaranteeing
that subscriptions miss no notifications and receive nooctdjanked belowl + ¢)k.

While the focus of this chapter is drd range topk subscriptions, this chapter also
sketches out how our framework and algorithms can be gepedab subscriptions whose
range conditions involve multiple dimensions and more gare®nstraints. As a concrete
illustration, this chapter also presents the detailedrélyn and experimental evaluation
for 1.5-d range topk subscriptionin the extension section.

The subscription type considered in this chapter—orthagmange topt—is a stan-
dard one in most subscription/query languages. While thdast & plethora of proposals
for other language features, little is known about how bestupport this standard sub-
scription type; this chapter will fill this void. Note thatghechniques presented in this
chapter apply to top-subscriptions with other types of conditions too. For exangon-
ditions comparing categorical attributes against corecdpwn from a hierarchy can be
mapped to range conditions with appropriate encoding ohtesarchy. For another ex-
ample, range conditions subsume near-neighbor conditiadsr thelL., norm, and in
low dimensions they can be effective as building blocks tguporting near-neighbor and
nearest-neighbor conditions under other distance metrics

This chapter focuses on application settings with many gggadgcally dispersed sub-
scriptions to a central database (e.g., news aggregatofgamcial information services).
However, the solution presented in this chapter can be @g&teto other settings, ranging
from simpler ones such as non-distributed continuous gsgstems with no need to de-

liver results over a network, to more complex ones such abghisubscribe systems with

3 An example of al.5-d range topk subscription would bek stocks that have the lowest price-to-earning
ratio among those with market capitalization ab&0ebillion US dollars and risk rating between medium
high and high.”
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multiple, distributed event publishers.

5.2 Overview

5.2.1 Problem Formulation

Consider a seb of n objects. For simplicity, assume each object has only twoearian
attributes:x is used in range conditions, whileis used for ranking objects in ascending
order of theiry-values. Sectiob.5discusses how to generalize the problem and the solu-
tions to higher dimensions. For each obje¢t < i < n), letz; € R denote itse-value
andy; € R denote itgy-value. Without loss of generality, all’s andy;’s are assumed to
be distinct.

There is a sef of m subscriptions over the network. Each subscriptip(l < j < m)
specifies ar-value range of interest, denoted = [¢;,r;] C R. For somek < n, S;
wishes to track the top objects (along their attribute values) dn, i.e., those with the
k smallesty-values. More preciselys; must maintain, at all times, the listp,(S;) =
{(i,vi) |zi € oy N{ | wir € 05 Ny < yi}| < K}

A (y-update) eventdenotedUpd(z;, 424 — yi°¥), changes objects y-value from

¥ to y"°v. Upon receiving an everft, all affectedsubscriptions must be notified. A
subscriptions; is affected bys iff § changestop,(S;); i.e., either the membership of
this list changes or thg-value of some object in this list is updated as a result. dbee
Figureb5.1(a)for an example. For simplicity of presentation, the discusiill be focused
on y-update events.

To notify all affected subscriptions, this chapter folloti® same overall approach

as @1]—first using a server toeformulatethe event into a sequence of messages, then

using CN todisseminatéhese messages to subscriptions, and finally having sphisas

4 Object insertion and deletion can be simply treatedyaspdate eventdJpd(z;,c0 — ;) and
Upd(z;,y; — 00), respectively. An update to objets z-value fromz$!d to 22V can be simulated by
a deletion of(z$'4, ;) followed by an insertion ofz1°", y;). Alternatively, it is straightforward to extend

the algorithms to handle these events directly.
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post-processeceived messages to maintain their folists. More specifically, the server
maintains the set of objecty and reformulates each event into a sequence of constant-si
CN messages of the formitsg(¢;,rr, Lo, ro, zi,yi), Where[l;,r] C (fo,r0) are two
nested ranges iR, and(z;, y;) represents some objecfwith its attribute values). Each
message is interpreted as a condition over subscripti@ngjas of interest: CN delivers
this message to subscriptidh iff [(;,7;] C o; C ({o,70) (See Figures.1(b). Each
subscriptionS; maintains its own tog list L,. Upon receiving a messagg; checks
whetherL; currently contains object(the one withz-value equal te;). If yes, S; simply
updates thg-value of this object tg,. Otherwise,S; updates its list; to contain the top
k objects inL; U {(x;, v;) }.

The goal of this chapter is to develop efficient algorithmsgenerating the sequence
of CN messages for each event, such that every affected gutimcwill have its top-
k list correctly updated by following the protocol above. &t performance measures
are considered in designing the algorithms: 1) the numberassages generated; 2) time
spent by the server in generating them; and 3) the numbersfages received by the sub-
scriptions® These measures present interesting trade-offs and mushis&ered jointly.
For instance, minimizing (3) alone would not be sufficiehg haive approach of enumer-
ating all affected subscriptions and unicasting to themtpnene achieves this objective,
but does poorly on the other criteria. A better goal is to k€pninimized and optimize
other criteria as much as possible; theactalgorithms presented in this chapter have this
goal. If the server becomes a bottleneck, (1) and (2) canttiesiureduced at the expense
of (3). In this case, an unaffected subscription is allowetéd notified; theapproximate
algorithms presented in this chapter take this approacésd hesults are discussed further

below.

5 For evaluation (SectioB.7), especially comparison with approaches that do not useti@Notal traffic
in the underlying IP network is also considered.
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FIGURE 5.1: O ands$ in E andS. (a) The shaded vertical strip is for subscriptién
Increasing objecd’s y-value as shown would causeo be replaced b$ in top,(5,), and
by 6 in top,(S3) andtop,(Ss), wherek = 3. (b) The shaded quadrant is for objéctA
CN message is shown with dashed outline.

5.2.2 Overview of Algorithms

Exact algorithms. With anexactalgorithm, the server generates messages for each event
such that only affected subscriptions are notified, and da&h receive only one message

(pery-update event). Two settings are considered:

e Subscription-obliviousFor the case where the server has no knowledge of the set
of subscriptions (because of either scalability or privaoycerns), an algorithm

Paint-Denseas developed with the following properties (TheorebhZsand 13):

— The algorithm is giver), but nots.

— It generates the minimum number of messages possible faaty algorithm
if S is dense that is, given the set of objecty for anyz-value ranger, there

exists some subscription interested in precisely the tbjgithino.

— Its running time depends on the number of messages gengboatawbt on|S|

or the number of affected subscriptions, which can be mugefa

e Subscription-aware.A set of subscriptions is callesparseif it is not dense. In

this casePaint-Densanay generate a message that does not reach any subscription,
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wasting both server processing and network disseminatiori® ThereforePaint-

Sparsds developed, with the following properties (Theorebéand17):

— The algorithm is given botld andS.

— It generates at most twice the minimum number of messagesop@$or any
exact algorithm, and it never generates any message tltite®ao subscrip-

tion.

— Its running time is sublinear ifO| and|8|, and depends on the number of
messages generated instead of the number of affected siloss, which can

be much larger.

Extensions. This chapter also considers the batched version of the gmgbin which
subscriptions only need to have their thpists correctly updated at the end of an event
sequencePaint-Batchis developed to pre-processes the event sequence befdyegpp
either algorithm above (with minor modifications) to eachr@vPaint-Batchoperates well
with the basic CN interface of Secti@n?2.1, and is able to guarantee that each subscriber
receives the minimum number of messages possible (Thedfemvhich is far less than

if all events are processed in the sequence in order.

This chapter also relaxes the requirement that only affiestdscription may receive
messages. By allowing unaffected subscriptions to receimecessary messages,an
proximatealgorithm further reduces the number of messages gendratib@ server. Ap-
proximate algorithm$aint-Densé=) and Paint-Sparsé:) are developed with parameter
¢ < 1 controlling this trade-off. Compared with their exact carparts, they reduce
the number of messages by a factoebfwhile guaranteeing that unnecessarily received
objects are ranked withifl + )k (Theorem25). Furthermore, such objects are automat-
ically ignored by subscriptions following the same protdodSection5.2.1, so all results

remain accurate at all times.
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Both extensions above inherit the efficiencyRdint-Denseand Paint-Sparse with
running times dependent on the number of messages geneattied than subscriptions
affected.

This chapter will also briefly discuss how to extend the peabland framework to
higher dimensions, where a subscription’s range of intdvxesomes a-dimensional re-
gion. As a concrete illustration, algorithms will be pretehfor 1.5-dimensional range
subscriptions.

Last but not least, this chapter will also discuss how torexkthe problem and frame-

work to the distributed setting with multiple, distributedent publishers.

Data structures. For all algorithms presented in this chapter, the serventagsis a data
structure indexing the set of objecisby (z,y) as points inR2. This index supports the

following operations:
e Events that update objects(h

o firsty (o, yo, s): Here(zo, yo) € R? ands € {«+—, —}. If sis « (resp.—), then this
query finds the first objects inO in the southwest (resp. southeast) quadrant with
(x0,y0) as the apex when proceeding in thez)-direction (resp(+x)-direction)
from (xo, yo). If the quadrant contains fewer tharobjects, all of them are reported.
Only thex-values of the objects are reported finyst,, and they are reported in the

order encountered.

e min, (o, yo): Given anz-value ranger and ay-valuey,, this query returns the object

in O with the minimumy-value in the3-sided rectangle x (yg, ).

In this chapter{(n) (wheren = |O|) is used to denote the upper bounds on running times
of the operations above: object updates arid, all run inO(t(n)) time, whilefirst;, runs

in O(t(n) + k) time. If kd-tree is used for the index, then the index sizariedr and
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t(n) = /n. If O(nlogn) space is allowed for the index, then a data structure based on
dynamic range treef86] can be used to getn) = log” n.

Algorithms for sparse subscriptions also require a datactire indexing the set of
subscriptionss by (¢;,7;), the left and right endpoints of theirvalue ranges of interest,

as points ink?. This index supports the following operations:
¢ Insertion and deletion of subscriptionsdn

e snap(G): Given a rectanglé’ C R?, this query returns the smallest rectangle con-

taining all subscriptions insidB. If there are no such subscriptioffisis returned.

Using balanced binaries trees, insertion, deletionsand can all be processed M(log m)

time (wherem = |8|).
5.3 Geometric Framework

This section introduces a geometric framework essentildainderstanding of the prob-
lem. Section5.4 will reveal, with the help of this framework, the structurénerent in
the seemingly arbitrary subset of affected subscriptiomsgch allows the task of generat-
ing CN message to be viewed conveniently as one of tiling a é@megion using only

rectangles.

Event space. LetE = R? denote theevent spacewhere each objedtis represented as
a point(z;,y;) € R? (Figure5.1(a). Each subscriptior; is interested in objects that lie
in the vertical stripo; x R; top,(S;) returns thek lowest among them. For an object
and an integev > 0, let \,(i) (resp. o,(i)) denote ther-coordinate of the* rightmost
(resp. leftmost) object in the southwest (resp. southepgtiirant with apexx;, y;); if
the quadrant contains less tharobjects, it is set to-oco (resp. +oo). The procedure

first, (2, yi, <) returnsiy (i), Aa(2), - -+, Ay (2), andfirst, (x;, y;, —) returnsp; (i), o2(),
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ey 00(1). Setl(i) = (A, (i) | 1 < i < k)andR(i) = (0,(7) | 1 <@ < k). Theinfluence

interval of 7, denoted byi1(7), is defined to be
I1(7) = [Ax(7), 0x(3)]-
Lemma 7. For subscriptions;, if i € top,(S;), theno; C I1(37).

Proof. If i € top,(S;), thenz; € o; and at most objects lie in the rectangl®; =
o x [—o0, y;]. If the left endpoint ob; lies to the left of\, (i), thenR; contains more than
k objects. Similarly, if the left endpoint af; lies to the left ofg, (i), thenR; contains

more thank objects. Hencesy; C [\, (i), ok ()] O

However, there may be a subscriptidh such thatr; C II(:) buti ¢ top,(S). To
fully characterize which subscriptions contaim their top+ list, we introduce the notion

of subscription space and influence region.

Subscription space. Let S = R? denote thesubscription spacewhere each subscrip-
tion with range of interest = [¢,r] is mapped to the point* = (¢,r) € R? (Fig-
ure 5.1(b). Object: is mapped to the northwest quadr@ntwith apex at(z;, x;); i.e.,
0; = {({,r) | £ < x; < r}. Sjisinterested in objectonly if o7 € 0;. A CN message
Msg(4;, 71, 4o, T0, i, y;) corresponds to notifying, witliz;, v;), all subscriptions in the
rectangle with southeast and northwest cornefg;at;) and(¢p, o), respectively.

To further capture how the objectgvalues affect their ranking, I& = S x R denote
the lifted subscription spacewhere the third dimension correspondsytoalues and is
referred to as thg-axis. For subscriptioty;, let 5; be the vertical line passing through
o7, i.e.,0; = o; x R, oriented in the(+y)-direction. For an object, let 0; denote the
octantd; x [y;,00) = {(¢,r,y) | ¢ < x; <7 Ay; <y}, with apex alz;, z;, y;). A y-value
updateUpd(z;, y9'4 — yrev) corresponds to translatiry in the y-direction so that its

apex moves fronfx;, z;, y?'9) to (z;, z;, y*°¥). There is a bijection between the quadrant
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0; and the bottom facé; x {y;} of the octan®;. If 6, is thev' octant intersected by the
line &;, going in(+y)-direction, then is the ranks object among the objects in which
is interested. Thereforeop, (S;) is the list of objects corresponding to the fiksbctants
that lineg; intersects irf, going in thet-y direction.

Thelevelof a pointé € S, denoted by (¢), is the number of octants iff; | 1 <i <
|O|} that contair¢. For an object and an integev > 0, let#? C 6, be the set of points in

0; s.t. the level of the corresponding points on the bottom &cg is v. That is,
0; ={o €0, | A((o,y:)) = v}.

Setf:" = Uo<uso 0 It can be verified that ib; € 07, theni is the ranke object

among the objects in which is interested. Hence if; € 0=", theni € top,(S,).
Let©®, = {0; | y; < y;} be the set of quadrants corresponding to the objects whose
y-values are smaller than that ©f The quadrants in the se&}; partition the quadran;
into a family ©; of rectangles such that each rectangle lies in the sametsafti®e For
a pointo € 6;, we define/\;(o) to bel plus the number of quadrants ©f that contain
o. Note thatA\;(0) is the same for all points in (the interior of ) a rectandglec ©;
and we denote this value bf(R). Furthermore, ifA(R) = v, thenR C 6#?. Hence,
0" = |J{R € ©F | A(R) = v}. For any pointz € 6;, as we move in the north or the
west direction, the value of\;(¢) cannot increase because if a quadrant contajrisen
it also contains all points that lie in the northwest quativeith o as the apex. Hence, the

rectangles 0B} that lie ing? form a staircase, and the regi6f’ is a staircase.

Influence region. For an object, we define its influence region, denotedIii(:), to be
0=". The following lemma follows from the above discussion.
Lemma 8. For any subscriptiort;, i € top,(S;) if and only ifo; € TR(7).

In other words]R(:) characterizes the set of subscriptions that contain objacdheir
top-k lists. We next understand the structurdBf7).
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LetD(i) = {0; | z; € L(i) UR(7)}. We show thatl(i), R(7), andD(:) completely
definelR(i). LetIR" (i) be the partition of R(i) with rectangles induced by the quadrants
of D(z).

Lemma9. (i) IR(¢) does not intersect any quadrant©f\D(7).
(i) IR7(4) = IR(i) N OF, i.e. IR"(4) is the same as the partitic®} restricted toIR ().

Proof. (i) SupposdR(i) intersect a quadramt € ©,\D(7). Then\,(i) < x; < (7).
W.L.O.G., assume; < z;. Sincey; < y; and\(i) < x;, objectj is one of thek — 1
rightmost objects in the southwest quadrant with apexy;). Thus,z; € £(i). By
definition of D(7), 6§, € D(7), which is a contradiction.

(i) SinceIR(z) does not intersect any quadrant@f\D(:), the partition ofIR(z) in-
duced by the quadrants @, is the same as the partition Bt () induced by the quadrants
in D(i).

We next describe the geometric structuré®fs).

Lemma 10. Let¢; > 4y > --- > {; be the values iL(i) andr; < ry < --- < 14 be

the values inR(:). Setly, = ro = x;. ThenIR(7) is a staircase polygon with vertices

(ﬁk, 7”0)7 (gk, 7“1)7 (gk—h 7‘1)7 cee (51, Tk—1)7 (507 rk)u (507 Tk)-

Proof. For0 < u,v < k, a point in the rectanglg,,1.0.,) X [ry, 7,+1) lies inu quadrants
of D(4) that lie above);, so for0 < u < k, A;(&) = k for all points¢ € [€y, lu—1) X
[Tk Th—us1)- Hence,(Cy, rr—v), Ly, Th—us1), @NA(Ly_1, 75 11) are vertices ofR(z).

O

An example ofiR(7) is shown in Figuré.2, in which k£ = 5 and the numbers indicate
the level number of rectangles 6f. Given £(i) andR(i), IR(i) andIR"(i) can be
computed inO(k) andO(k?) time, respectively. Finally, we describe hd®(i) changes
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FIGURE 5.2: Tiling IR""(7) (shaded/ = 5) by CN messages (shown with thick out-
lines).

as we increase (or decrease) the valug;of Suppose we changg from 324 to yrev.

If the setD(i) does not change as we vagyfrom ¢ to y*¥, IR() does not change
(by Lemmas9 and10), and thus the top-list does not change for any subscription (by
Lemma8). The setD(:) changes whett (i) or R(i) changes, which happens whegn
becomes equal tg; for some objectj such thatr; € II(i). We say that the object
encounter®bjectj when this happens. Objegtis referred to as aexposedbject. We
describe howlR(i) andIR(j) change whern encountergj, i.e., wheny; changes from

Y =y, — etoyrv = y; + ¢ for some sufficiently smal such that no other objects has

its y-value in the intervaly?'d, yrev].
For an object, let K, = 6%. We defineD°4(;), R4(5), K (resp.Dmev (4), R™Y (i),

KPv) to beD(i), R(i), andK; for y; = v (resp.y; = yi°v). Similarly, we define these
sets for objecy. ThenD*" = D' U {;} andD}*™ = D'\ {i}.

Lemma 11. LetK = KP4 N 6;. ThenIR(:) = IR*(7)\K andIR™" (5) = IR*(j) UK.

Proof. For any pointt € TR°(i), A;(¢) remains the same far = y°'4 andy; = yrv if

¢ & 0; butitincreases by if £ € ;. Hence,A;(¢) becomes: + 1 for all ¢ € K and thus
¢ ¢ TIR™™(i). This proves thatR™*" (i) = IR (7)\ K.

On the other hand, for any pointe 6;, A;(n) remains the sameif ¢ ¢, but decreases
by 1if £ £ 0; (sinced; ¢ D"V (j)). Since they-value of no other object lies in the range
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FIGURE 5.3:IR(i), IR(j), andK are shown as the pink, blue, and double dashed regions,
respectively. Object (resp. j) ranksk-th w.r.t. all preferences in the dashed pink (resp.
blue) region. When obje¢tencounters objegt IR(z) shrinks andR(j) expands as shown

in the right figure.

[yo'd yrev], for a pointy € 6, N 6;, if a quadran®, € D°'(j) for s # i, j, contains; then
0, € D°(i) and vice-versa. Hencé);(n) = AY(n) + 1 andA;(n) = AfM(n) — 1 =
AP (n) = AF(n) — 1. In other words, ify € K, i.e. AY(n) = k, thenAX(n) = k

andn € IR""(j). ConsequenthiR™"(5) = IR*(j) UK. O

Figure5.3demonstrates howR(:) andIR(j) change as the value gf increases. By
Lemmall, IR™™ (i) @ IR”(i) = IR™(j) @ IR°M(j) = K. We note that giverC (i)
R(i), andK;, K can be computed i@ (k) time.

Finally, we note that the change in the influence region asabbjencounters object
j while we decrease thg-value ofi is similar—switch the role of and;. The influence
intervals ofi and; also change. Suppose > x;. Then\24(i) = AV (i) but oV (i) =

max{z;, A (1)} < 0f4(i), andgi™ (j) = ¢p'(7) andAi (i) = AR, (4).

Example. Referto Fig.5.1and5.4. All subscriptions other thaf; are interested in objeét In
S, the northwest quadrafit containso7, o3, 03, o, but notos. Supposé = 3. The influence re-
gion of object; is an axis-aligned subregion of the quadrant with vertiegszs), (¢3, z5), (¢3,71), (¢2,71),

(b2, 7r9), (€1,72), (£1,73), (x5, 73) in clockwise order, wheré,, /5, and/s (resp.ry, r2, r3) are the
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FIGURE 5.4: Partitioning of quadrarit (shaded) irb for object5. Rectangles are shown
with level numbers. Objects that do not contribute to thidipaning (because they have
largery-values than that of) are shown as circles and with dashed-line quadrants. The
influence region of, IR(5), for k = 3, is shown with thick outline.

z-values of objectd, 2, and1 (resp. objecty, 9, and10), respectively. Sinc&, andS3 rank
object5 at third,o% anda; lie in 63 C IR(5). Similarly, S, ranks objecb at second and; lies in

02 C IR(5). However,ot € 62 ¢ IR(5) becauses; ranks objecb at fourth and therefore, object

5 is not intop,(S1). When object’s y-value increases as shown, objéds replaced by object

3 in top,(S2), and by object in top,(S3) andtop;, (S4). CN messages (dashed rectangles) are

generated to notifys,, S3 andS;.

5.4 Exact Algorithms

5.4.1 Subscription-Oblivious

Consider an everpd(z;, y?'4 — »"*"), which moves the octar in the vertical direction from
positiony?'d to yrev. Let TR (i) (resp.IR™" (7)) denote the influence region of objedbefore
(resp. after) the update. There are two cagg$: > y!¥, which possibly raises obje¢s rank,

andy?'d < yhev, which possibly lowers objedts rank.

(2

Rank-raising update. This case is simple. It can be easily seen thagdif > y»°v, then
IR"¥ (i) 2 IR°M(i). Every subscriptios; in IR°(i) (i.e.,07 € IR°(i)) must receivéz;, y*v)
to update they-value of object in top,,(S;). Every subscriptiors; in TR™Y (4) \ TR°'(i) must
receive(z;, y;'°") as a new object inop,(.S;), which would displace some other object from

top(S;). In sum, it suffices to notify all subscriptionsiR"*" (¢) with (z;, y;'*"). Since each CN
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FIGURE 5.5: Effect onlR*(7) of encountering exposed objéctduring the sweep. Before
the encounter]R* (i) contains both darkly and lightly shaded rectangles (leuehibers
before the encounter are shown in FigGr8); after the encountefR? (i) contains only the
lightly shaded rectangles. The difference, which is gaimedl; asIR™" (h;) \ IR (h;),

is tiled by CN messages shown with thick outlines.
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width of the shaded area at= z corre- CN messages. Rectangles with the same
sponds td1*(:). Exposed objects are num- fill pattern are for the same exposed object.
bered in the order encountered.

message reaches a rectangl8,jmndIR"*" (i) has up tok “steps,” in the worst cask messages
are needed to tilBR"V (i), as illustrated in Figur®.2 The detailed algorithnRaint-Dense-IRis
presented in Algorithn3.1ts running time, dominated by the twirst;, calls to compute the new

IR(), is O(t(n) + k).

Rank-lowering update. This case is more complex. 4£'4 < yP%, thenIR™" (i) C TR°M(j).

First, all subscriptions iiR°!4 (i) are notified with(z;, y**") using no more thak messages, in

the same way aBR"“" (i) is tiled for a rank-raising update. These messages allow subscriptions
to update the-value of object in their top+# lists. For those ifR"*" (i), no more messages are
needed.

Next, for each subscription ilR°'4(7) \ IR™¥ (), it needs to further receive an object that will
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Algorithm 3: Paint-Densér;, y9'd, yrev)
begin

1

5 if Rank-Raising Updatthen

3 L« firstg (z;, y2v, «); R« firstg (x;, y?vV, —) ;
4 Paint-Dense-IRi, £, R) ;

5 else ifRank-Lowering Updatéhen

6 L+ firsty (x;, y219, <); R < fivsty (24, y9'd, —) ;
7 Paint-Dense-IRi, £, R) ;

8 I = conv(L UR); v+ yd;

9 while v < y*V do

10 hj <= min, (II, v) ;

11 Paint-Dense-Exposéd;, i, £, R) ;
12 if x,; < x;then

13 L%LU{(E}LJ},

14 if |[£] > kthen

15 | deleteLast(£) ;

16 else

17 fR(—RU{l’h_i};

18 if |R| > kthen

19 | deleteLast(R);

20 | 1I=conv(L UR); v < yp, ;

21 end

replacei in its top+ list.® As described in the previous section, such objects are exposed by the

ranking-lowering update, and clearly must have their influence regiqrenebed. The task then is
to notify the subscriptions ifR°'4(7) \ TR™" (i) with respective exposed objects.
Imagine that object’s y-value increases continuously froy@1d to y'°v, i.e., sweeping the

octantd; from its old position to its new position ifi. Let IR*(i) andII*(i) denote the influence

region and influence interval éfwhen itsy-value is set ta. By Lemmall, areas gradually “lost”

during the sweep byR?(i) (which starts out a&R°(i) and eventually shrinks tBR™*" (4)) are

“gained” by exposed objects’ influence regions, as shown in Figiiré-or each exposed objécf,
consider the point = y;,, — e right before crossing. Any subscriptighin ok N6, CIR*(i) N0,
is interested in both objectsandh;;, andi ranks thek-th in top,,(S). Whenz changes frony;,; —¢
to yn, + €, objectsi and h; swap their ranks, anél; would entertop,(S) as the result of the

update. On the other hand, for any unexposed olfjetthenz crossesgy;, during the sweep (if

6 Note that this subscription must receie;, y**) before receiving the replacement object; otherwise,
the replacement object would appear to be out of thekitbgt because of the stajevalue ofi.
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at all), IR*(i) N 6, = 0, implying that object ranks strictly lower than thé-th for subscriptions
interested in both andh; therefore, swappingandh’s ranks would not puk into any topk list.
The algorithm is now described in more detail. During the sweep, the algorithntaime the
list £* (resp.R?), which is initialized byfirsty (z;, y?'¢, ) (resp.firsty (z;, y9'4, —)) and always
contains ther-values of the firs& objects inO to the west (resp. east) af with y-values less

thanz, padded with—oco (resp.oo) if there are fewer thag such objects. By Lemm#0, £* and

(a) Initial influence region of (b) Reach the first exposed ob- (c) Reach the second exposed
objecti, IR(i). ject. object.

(d) Reach the third exposed ob- (e) Reach the fourth exposed (f) Reach the fifth exposed ob-
ject. object. ject.

(g) Reach the sixth exposed ob- (h) Reach the seventh exposed (i) Reach the eighth exposed
ject. object. object.

FIGURE 5.8: lllustration of the rank-lowering update shown in Hig&.6.
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R* allow us to readily obtaiiR*(7), II*(z), and the partitioningR% (¢) of IR*(7) as needed. The
next exposed object abovecorresponds to the object with the minimuvalue in the3-sided
rectangldI® x (z,00) in E, and can be found byin, (I1*(¢), z), as illustrated in Figuré.6.

Say the exposed object found/is. £ andR* are incrementally updated by adding; to the
appropriate list{? if z,; < x;, orR* otherwise), and removing from that list thevalue furthest
from z;. LemmalOtells us how this incremental updatedé andR* shrinksIR*(:). The area lost
fromIR?(i) is shaped as a series of upitoectangles along a diagonal in the northeast direction, as
illustrated in Figures.5. Specifically, the algorithm “paints” over the intersectiof (i) anddy,
(quadrant of the exposed object), incrementing the level numbets Rgctangles in the updated
IRZ(¢) with level greater tha should be removed froffR?*(i). By Lemmall, these rectangles
together formiR™" (h;) \ IR°'4(h;). Hence, one CN message is generated for each such rectangle

with the exposed object valug¢sy,;, vy, ). Figuresb.8illustrate the sweep procedureSn

Algorithm 4 : Paint-Dense-IR, £, R)

begin

1

5 M «+ {} Il Rectangles that only contain affected subscriptions ;
3 a+ |L]; b+ |R[;

4 if a+b < kthen

5 L M<_MU{Msg(xiaxia_ooaooaxiayi)} ;

6 else ifa = 0 then

7 L M<_MU{MSg(‘riaxia_oovrkvxiayi)} )

8 else

9 if b < k then

10 | M= MU {Msg(zi, 4, l—p, 00, T3, Yi) } 5

1 if @ < k then

12 | M MU{Msg(lo, i, —00, Tk—a, i, Yi) } 5
13 2+ k +1-— b,

14 while z < a do

15 M~ MUAMSY(L, 1,04, Lz, Thp1—2, Tis Yi) b
16 z4+—z+1;

17 GENERATEM sG(M) // Generate messages ;

18 end

When the sweep stops at= y!*%, TR°M(7) \ TR™*¥ (i) will have been completely tiled by
messages associated with exposed objects, as shown in biguide complete algorithnRaint-

Denseg is presented in Algorithn3.Processing each exposed objegttakesO(t(n) + u;) time
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Algorithm 5: Paint-Dense-Exposéh;, i, £, R);
begin

; M «+ {} /] Rectangles that only contain affected subscriptions ;
3 a < |Lf; b+ |R];

4 if z,, > x; then

5 if a+b < kthen

6 L M<_MU{Msg([xi7xhj]’[_m’oo}’(xhj’yhj))} ;

7 else ifa = 0 then

8 L M(_MU{Msg([mi7mh_7']’[_Oo7rk]’(xhj7yhj))} ;

9 else

10 if b < k then

11 | M MU {Msg([zi, zn,], [lk—s,00], (zn;, yn,))} ;
12 if @ < kthen

13 | M MU {Msg([la, zn,], [=00, Tr—al, (Zn;, yn;)) }
14 2 k+1-0

15 while z < a do

16 L M = MU{MSQ([l.—1,7k—2]; [Cos Thy1—2]s (Thy, Un,)) } s
17 Z24z+1;

18 else

19 L /I The “z;,; < x;” case is symmetric to ther,, > x;" case. ;
20 GENERATEM SG(M) // Generate messages ;
»1 end

wherep; < k is the number of messages generated:for Therefore, tilingIR®'(4) \ TR™Y (4)
takesO(vt(n)+3 ;< <, (1 +1log k)) ime, wherev is the number of exposed objects. Initializing
L7 andR? for the sweep and tilingR°'“ (7)) takeO(t(n)+k) time, so the overall time i€ (v(t(n)+

log k) + 1 + k), wherey is the total number of messages generated.

Discussion. Paint-Densés time complexity is summarized below.

Theorem 12. Paint-Denseuns in timeO(¢(n)+k) for a rank-raising update, an@ (vt (n)+u+k)
time for a rank-lowering update, whereis the number of messages generated:aigithe number

of objects exposed by a rank-lowering update. For a rank-lowerirdatgyr < u < (v + 1)k.

Proof. As shown in Algorithm3, a rank-raising update involves twist, calls, each of which
takesO(t(n) + k) time, and ondPaint-Dense-IRcall which takesD(u) time, wherey < k. Thus,
the running time of a rank-raising update($t(n) + k). For a rank-lowering update, initializing

£* and R for the sweep and tilingR°! (i) take O(t(n) + k) time. Processing each exposed
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objecth; takesO(t(n) + u;) time, wherep; < k is the number of messages generatedifor
The O(t(n)) term comes from onenin, call. The insertion or deletion of an element frofn
and R takesO(log k) time, which is dominated by(n). Thus, tilingTR®'4(;) \ TR™*¥ (i) takes
O(vt(n) + > 1<j<, 1;) time, wherev is the number of exposed objects. The overall time is
O(vt(n) + p + k), whereyp is the total number of messages generated. In additioq, u <

(v + 1)k. The first inequality follows from the fact that at least one message isrgtsd for

each exposed object and objedtself. The second inequality follows from the fact that at miost

messages is generated for objeahd each exposed object. O

If subscriptions are not allowed to receive false positifResnt-Densas optimal in the number

of messages that it generates for dense subscriptions.

Theorem 13. For dense subscriptions, the number of CN messages generateairityDenseas

the minimum possible for any exact algorithm.

Proof. Itis trivial to show that both Algorithm4 and5 generate the minimum number of messages
for any object. The theorem immediately follows from the fact that messagesnéy generated

for object: and the exposed objects. Ol

The next result reveals the inherent complexity in handling rangé sagscriptions. Although
the worst case for a rank-lowering update event can be quite badsjeg® (|O|) objects), it is

not expected to be common in practice, as stated by the following lemma:

Lemma 14. O(k) objects are injected into network if the object whose value is increasedseho

uniformly at random.

Proof. For an object, letn; be the number of objectssuch that increasing the value pto co
causes Algorithn3 to inject a message involving the objécThen the expected number of objects
injected by the rank-lowering update is bounded8¥_, n;/n. Moreover, if increasing the value
of j injects a message involvingtheny; < y; and the event expands the influence rediRf).
This happens only when; € £(i) U R(i) before the event but not after igsvalue has increased.

Since|L (i) UR(i)| < 2k, n; < 2k, and thus the expected number of objects inject&d(fs). [

In fact, as the following theorem shows, the expected number of mesisagely O (k?) if

objects to be updated are picked randomly.
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Theorem 15. For any exact algorithm given dense subscriptions, a rank-raisingatgoévent
requires© (k) CN messages and a rank-lowering update event req@ifes:) CN messages in the

worst case. If each rank-lowering update event chooses an dbjegdate uniformly at random,

the expected number of CN messages requiréxig).

Proof. Recall that Algorithmg} and5 generate at mogt messages for obje¢tand each exposed
object. Decreasing thgvalue of object injects only one object, namelytself. In the worst case,
increasing the value of an objects causesiabjects to be exposed. By Lemri4, the expected
number of objects injections (k). This completes the proof of the theorem.

2
i n-i-Ln-i-1

3
FIGURE 5.9: Lower bound constructiony-values are written along the diagonal line;
number inside each rectangle is the level of object

Finally, Figure5.9shows that if the value dfis increased from to n+2, Q2(nk) messages need
to be injected into the network, namely, one for each rectangle in the figlme.sdme example

also shows the bound on the expected number of messages is also tight. Ol

5.4.2 Subscription-Aware

If the server is given the knowledge about the distribution of subscrigtittre humber of CN

messages generated by the server can be reduced. In particuldgatighm can avoid sending
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FIGURE 5.10: Reducing the number of FIGURE 5.11: Finding the next interesting

rectangles covering. Subscriptions il  exposed object. The staircase is the current

are shown as circles while those 8n\ P IR*(i). Circles represent subscriptions in-

are shown as dots. Rectanglegiti*® are  sideIR*(i), and are enclosed by the dashed

shaded; rectangles in the optimal coveringquadrant with apex at¢*,r*). Object?/,

are shown with thick outlines. with the darkly shaded quadrant, is an ex-
ample of an exposed, but inessential object.

messages whose corresponding rectangl8sontain no subscriptions, and can combine multiple
messages into one as long as their bounding rectangles contain no ex$raonéscriptions and
they carry the same object values.

The general problem can be formulated as a geometric optimization proBieem a subset of
subscriptionsP C § (to notify with the same object values), find a set of rectan@lesS such that
every point ofP lies in exactly one rectangle §fand no point of8 \ P lies in any rectangle o§.
The goal is to minimize the number of rectangle§.ifrigure5.10illustrates this problem. A brute-
force approach is to compute the §&and then solve the standard rectangular covering problem
on P. However, doing so requires us to enumerate potentially large sets ofeaffeubscriptions,
which we would like to avoid, and this problem is NP-complete in gend@l [

A better approach would be to take a list of (at mestectanglede™s® produced byPaint-
Dense(corresponding to a list of messages with the same object values) as acta@peription
of P = gdense 0 8 and then solve the problem §i°"s¢ with the knowledge 08. A simple solu-
tion is to go through each rectanglec G4"¢ and setG to snap(G) on§; if snap(G) = 0 (i.e.,

G contains no subscriptions), simply discaid However, this solution misses the opportunity
to combine multiple rectangles into one without introducing false positives, agaled in Fig-
ure5.1Q Furthermore, it is possible that the ent#&"s® produced byPaint-Denséor an exposed

object contains no subscriptions, in which case we would like to avoid exagnihisa exposed

object and generatinge"s¢ in the first place.
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Algorithm Paint-Sparseachieves both goals above. To achieve the first goal of being able to
merge rectangles, a greedy approach is taken. Recall from Séctidithat Paint-Densegen-
erates either a list of south-north rectangles forming staircase (for deteg object’s influence
region) or a list of rectangle forming a diagonal chain (for an expo$gelcts gain in influence
region). In either case, the given rectangl€&™® = {G1, G, ...} are ordered from west to east.
Gj’s are processed in order to produce the outpug&&t?Y. If G; can be accommodated by en-
larging the rectangl€' that was last produced &%y without introducing false positives (i.e.,

MEB(G, snap(G;)) N (8 \ §4ems¢) = (), whereMEB denotes minimum enclosing boxJ, is re-

placed byMEB(G, snap(G;)). Otherwisesnap(G;) (if it is not () is added t@&**%. Thanks to
the special properties of rectangle sets produceBdigt-Denseit can be shown that this greedy
approach, anéaint-Sparseas a whole, is within a factor &f optimal in the number of messages

generated for any exact algorithm (without assuming dense subscsiption

Theorem 16. Given any set of subscriptions, the number of CN messages genbralaint-

Sparsés at most twice the minimum possible for any exact algorithm.

Proof. Let Gems¢ = {G, Gy, ...} andP = Gdnse N §. LetP, = PN G,. If arectangleG € GoPt
contains points ofP, and®, for 1 < a < b < k, thenG also coversP,1,...,Py_1. This
property implies that the greedy algorithm2isapproximate because ea€his covered by one or
two rectangles generated Baint-Sparse By construction Paint-Sparseskips all uninteresting
exposed objects. Therefore, the number of messages generaBathbypparsds at most twice

the minimum possible for any exact algorithm. O

The cost of each greedy step is dominated by the test of whétlhan accommodaté’;. This

test can be done by evaluating a small constant numbergfqueries’ Since|gdems¢| < k, Paint-
Sparsespend€)(k log m) time to generate messages for the updated object and for each exposed
object.

An exposed object is said to banterestingif the gain ink’s influence region contains some
subscription irS; i.e., some message(s) must be generated Mstlialues. To achieve the second
goal above of skipping inessential exposed objects without enumerdtegpased objectRaint-

Sparsemodifies the method of finding the next exposed object as follows. Suppesaveep is

" Specifically, the regioMEB(G, snap(G;)) \ G \ snap(G;) is covered with at mosi rectangles, and
check whethegnap returnsf) for all of them.

130



currently at positiorz, where the updated objets y-value is set to:. Recall thatlR?*(i) and
1% (i) denote the influence region and influence interval af this point. With the knowledge of
8, letl* = min{l | (¢,7) € SNIR*(i)} andr® = max{r | (¢,7) € SNIR*(i)};i.e.,(¢*,r?)is the
apex of the smallest southeast quadi@htC S enclosing all subscriptions iR (), as illustrated
in Figure5.11 Paint-Densefinds the next exposed objektto process ag = min, (I1I*(7), 2)
in E. However,h is interesting only if its quadrart, intersects with quadrar®* containing
actual subscriptions. Hence, the next exposed oljeotprocess is found &s = min,, (I1*(7) N
[0%,r%], z) = min, ([¢*, r?], z) in E, allowing Paint-Sparseo skip inessential exposed objects.
Note that given{* andR* (see Sectiorb.4.]), ¢* andr* can be computed from the answers
of up tok snap calls in8, one for each south-north rectangle coveriRg(:). Thus, compared
with Paint-Dense Paint-Sparsespends an extr@(k log m) time for finding each interesting ex-
posed object, and as discussed above, an éxttdog m ) time to merge messages for the updated

object and for each interesting exposed object. The overall time compldxRgint-Sparsds

summarized below.

Theorem 17. Paint-Sparseuns in timeO(¢(n)+k log m) for a rank-raising update, an@ (o (t(n)+
klogm)) time for a rank-lowering update, wheres the number of interesting exposed objects (to
distinguish it fromv in Theoreml2, the number of exposed objects). For a rank-lowering update,

v < i < (v+ 1)k, wheref is the number of messages generate®aint-Sparse

Proof. For each exposed obje®aint-Sparselso performs sna@ (k) queries on the set of sub-
scriptions besides min, query on the set of objects. Therefore, a rank-lowering updateresqu
an additionalD(k log m) cost for each interesting exposed object. The remaining part of thé proo

follows from the same argument as in the proof of Theoi@mn Ol

Remark. If the entireS is too expensive to maintain for the server, it can maintain a small sketch

of 8, e.g., acover o$ by B rectangles it for a parameteB, and use this cover insteaditself in

Paint-SparseThis approach would provide a continuous trade-off between thetastintaining

and utilizing information about subscriptions and the number of CN messagesaged.
Paint-Sparsis optimization of merging multiple messages, while reducing the number of mes-

sages, increases the areas of rectanglsorresponding to messages. Larger areas may, for some

CN implementations, imply higher dissemination costs. Nonetheless, note thagmessaying
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FIGURE 5.12: a) Subscription space. Each halfplane is shown in blue colgop8se the
halfplane with red line correspond to objeciand the ones with dashed lines are ranked
lower thani. ThenIR(i) is the yellow region whert = 2. The numbers indicate the
rank of object: for all subscriptions in the cells defined by the solid linds). Lifted
subscription spaced; is the second halfplane intersected by any lin@assing through
the yellow regions iny)-direction.

in Paint-Sparseés done in a careful way to avoid false positives, so these larger aveast deach
any more subscriptions and traffic to subscriptions remains minimized. Fwmdherreducing the
number of messages is effective in relieving the bottleneck at the serslemassage injection

point.

5.5 Generalization

The geometric framework presented in this chapter is quite general amdisxtehigh dimensions

as well as different types of ranges and user preferences. Fiusgrainterest needs not be an

axis-aligned rectangles; it can be a disk, halfplane, etc. Sedndn be generalized toR?; o
of the d attributes are used faelectionby subscriptions. Although the objects are ranked w.r.t.
a common attribut&” in this chapter, additionab parameters can be specified for the ranking

function. For example, in ChapteBsand4, a user preference is defined as a linear combination
of d attribute weights, and = d — 1. In this generalized setting, andS becomesk®*# and

Ro+8+1 respectively.

5.5.1 Halfplane query

This section shows how to handle selection ranges which are specifiedasdonstraints. For ex-

ample, if a real estate buyer is looking for houses whose carpet-tdkatgaa ratio is at lea80%,
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FIGURE 5.13: Influence rectilinear polygolP(i) C E for & = 3. a) Only the ob-
jects which are ranked higher than objeare displayed. The number next to each ob-
ject indicates the number of objects in the rar(gein{z\", z\"'}, max{z{", 2{"'}) x

K3 K3

(—o0, max{x§2), x§?>}>. b) PartitioningIP(7) into rectangles.
her selection range can be expressed as the linear constraiptt area — 0.8 x saleable area >

0. This range query is also known ashalfplane querywhenE = R2. To maintain topk ob-

jects for the case of halfplane, each subscriptign: 32 > a}l)x(l) + a§-2) is mapped to a

1)

point oy = (ag. ,a§2)) in the subscription spac& and each object is mapped to a halfplane

0, : x? < —xl(l)x(l) + x§2> in S. To rank the set of objects for each subscription, each halfplane

0; is further mapped té; x [y;, co) in the lifted subscription spac® It can be verified that; is

interested in iff o7 € 6;. Figure5.12shows an example of the influence regli(i) C 0, for the

case of halfplane. By triangulating an arrangement of halfpldig$) can always be partitioned
into a set of triangles, each of which can be described usifig-size. When thej-value of ob-
jectq is updated, triangle messages (instead of rectangle ones) are ge@dhiaderted into the

network.

5.5.2 1.5-dimensional range subscriptions

As a concrete illustration of how the framework is generalized to a higher dioreal case, this
section presents algorithms far5-dimensional range subscriptions = R3. Two numeric
attributes{ X, X} are used for selection by subscriptions, and an additional numeric attribate

(2)

used for ranking (in ascending order). Each objeetO is modeled as a poir@h:ﬁl), z;”,y;) € E.

Each subscriptios; € & specifies a region of interest, = [(El),r§1)] X (—oo,rj(?)] C R2. An
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Algorithm 6 : ComputelanuenceRectiIinearPong(mﬁ), x§2), Yi)
begin
t < 0; up :c(-z);

K2

L)+ ﬁrstk(x(-l) x(2),yi, ) Ry ﬁrstk(zgl) x(-Q),yi,%) :

II; = conv (L URy); by <= miny (2 (Ht,mgz), Yi)
while h; # () do
(Lt+1,th+1) < UpdateLiS(Lt,Rt,xgl), "Egl?)),

IIt+1 = COHV(LH_l ] iRt_._l); Uty < ;Lgi),

hj < min, (I:[t+17ut+17y?ew) ;
t—1t+1;

return (L., R, u.,IL)L_;

© 00 N o 0o b~ W N PP

iy
o

end

=
=

example is shown in Figure.13(a)
Recall that for the single dimensional range subscriptions, the influeteah of objecti,
I1(¢), containso; if i € top,(S;). For1.5-dimensional range subscriptiorid(i) is generalized
to be aninfluence (rectilinear) polygoiP(i) C E. More preciselyIP(i) is defined by the left
and right X,-monotone boundary chains, as shown in Fighuk3(a) For any point(h(1), h(2)
1

on the left boundary chain dP (i), h(!) is the same as, ', wherei' is thek-th rightmost object

in O in the orthant{(z"), 2 y) € B | () < x,gl),:c(z) < max{xgz),h(z)},y < y;}. The
right boundary chain can be defined similarily. As in the casél@f), object: is contained in
subscriptionS;’s top-k list only if o; C IP(4). For instance, in Figurg.13(a) object: ranks below
k for subscriptioro; aso; is not contained idP ().

Algorithm 6 shows the sweep plane algorithm for compufiRgi). A plane is swept across the

(2)

input objects from:® = z? to 22 = oo in E. For eachz®-valueu € [z”, o0), £ maintains

the first objects in® in the orthant{(z(), 2?) y) € E | 2 < 2V 2® < u,y < y;} when
proceeding in the ¢()-direction. Similarly,R maintains the first: objects in© in the orthant
{zM,2®) ) e E | 2™ > x§1)7x(2) < u,y < y;} when proceeding in ther(!)-direction.
One key observation is thdt or R is changed only if the plane crosses an objeet IP (i) which
is ranked higher than object i.e., ys < y;. ThereforeIP(:) can be presented in the form of
(L,,R.,u,)t _, by partitioning it into a set of rectangles, as shown in Figud8(b) Let £, and

R. be the current lists. When the sweep plane crosses abjéloe lists are updated and stored as
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L.p1andR;y1; u.41 is settox,”.

The subscription spacgis generalized t&®3, where each subscriptio$i; is mapped to the

1),7“](-2)). Objecti is mapped to the orthant i with apex at(:z:l(l),xgl),:n(?)), ie.,

(D, @ ¢®) ¢ B | O < 2 @ > W ¢® > 2y subscriptions; is interested

in objects iff (Egl),r](.l),rj(?)) is contained in the orthant with apex (at§1>,x§1>,x§2>). For 1.5-
dimensional range subscriptions, the influence regioh B (i) C S, is a rectilinear polyhedron
whose vertices are determined by the objects who are ranked higheiithi{:); see Figurd.14

Given(£L.,R,,u;)._,, a set of tiles can be computed to precisely desdiit{e); see Figuré.15

5.5.2.1 Rank-raising update

Recall that for the single dimensional range subscriptions, given areasikg update of ob-
jecti, the two lists£™*™ and R™Y are computed byirsty (z;, yV, <) andfirsty (x;, yv, —).
Given £V and R, the influence regiodR"*¥ (i) can then be computed in time linear in
the number of vertices ofR"*"(i). Now for 1.5-dimensional range subscriptions, the sweep
line algorithm returng £1eW, Ruew quew)t = as discussed above. For eacke {0,1,---,t},
messages are generated in the same way as the cdsdiroensional range subscriptions, ex-
cept that each rectangle messagé-dimensional (the extra side (%, u.+1]). These rectan-
gles together contains all and only the set of affected subscriptionsewf®svalue is between

(uz,u.41]. Note that messages generated at differerdglues may be compatible with each other,
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FIGURE 5.16: The new exposed objeef  Figure 5.17: Subscriptions in the shaded

is shown as a circle. The influence rec-regions need to be notified df,. The

tilinear polygon is shrunk by pruning the tyo messages at the bottom can be further

shaded region. merged with the two messages in the mid-
dle.

i.e., MEB(Msg,,Msg,) = Msg, U Msg,. They can be further merged to reduce the number of

messages to tile the influence regidti*" (7).

5.5.2.2 Rank-lowering update

Given the rank-lowering update of objeitthe algorithm first computes the influence region
IR (7). All the subscriptions in the influence region are notified of objechew y-value. In
order to compute the newrth ranked objects for the set of affected subscriptions, the algorithm

needs to sweep thgvalue ofi continuously fromy;?ld to y*V to find the set of exposed objects
(as in the case of the single dimensional range subscriptions). That ialgivéthm nestedly
sweeps along two dimensions:2) andy. When sweeping frongg’ld to y*V, if an exposed ob-
ject h; is found inIP(7), the algorithm updateR(7) in E andIR (%) in S by sweeping the plane
along thez(?)-dimension. Figure$.16and5.17 illustrate the updates at critical timg = Yn, -

The plane is swept from® = xf]) to 2@ = ¢, whereq is the minimumz(?-value such that
1) ; : : L (1) (2 . 2) A g

T, # conv(L U R). That is, if a ray is shot through the pm(xthj T, »Yn;) in 29 direc

tion, it hits the boundary ofP (i) at z(2) = ¢. The algorithm generates messages only for those

subscriptions that must receive the objegt
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5.5.3 Range Conditions in Higher Dimensions

For simplicity, only one attribut&” is used for ranking for now; this constraint will be removed

later. The event spack is now R4t (o« = d), and each objeci is represented as a point

(a:z(»l),a:Z@), . ,xgd),yi) € E. Each subscriptiors; specifies a regiowr; C R¢, which can be

ad-dimensional box, halfspace, ball, or simplex, or any other shape,@ndins the top: objects

among the ones in which it is interested. Each subscription is mapped to apaind each object

i to a regiory; in the subscription spac@so thatS; is interested in objectiff o7 € 6;. The exact

mapping depends on the shape of subscriptions. If easkad-dimensional boﬂ;f:l [Egh), rgh)],

thenS = R*, oF = (Eg-l),rj(-l),--- ,ng),r§d)), and; is the orthant{¢ € R? | ¢Zi-1) <

2, €3 > 2,1 < i < d}. If eacho; is a halfplane:(® > a§-1)$(1)+' : ‘+a§d*1)x(d‘1)+a§d), then

S =R¢, o= (agl), e ,agd)), andd; is a halfspace(® < —1:1(1)5(1) - -—:Bgd_l)ﬁ(d_l)—l—:z:l(d). If

d = 2 and eacl; is a disk of radius; centered ata;, b;), thenS = R?, 0% = (a;, bj, af +b5 —r7)
andy; is the halfspace® < 2z ¢® +22P¢@ V2 it can be verified that, in each case,
Sj is interested in'iff o7 € ¢;. The notion of influence regiolR (i) C 6; can be extended to high

dimensions. When thg-value of an object is updatedJR (i) is updated froniR° (i) \ TR (i)

(if y; is increased) into constant-size regions, and sendqi¢-size message for each such re-
gion. Computing the decomposition !4 (i) \ IR™*" () or IR™*" (i) becomes more challenging
and the number of regions increases, typically exponentially in the wosst @dath dimension.
However, many of these regions are emptyPamt-Sparsds more effective in high dimensions.
In many cases, it is possible to analyze the number of messages gengrétiecalgorithm. The

theorem below gives such a result for the case of rectangles.

Theorem 18. If the input objects are i.i.d. iiR? with their attributes being independent and each

subscription is an axis-aligned rectangle, theaint-Densgenerates) ((kIn?~1 n)4*1) expected

number of CN messages to process an update event.

Proof. Let H C E be the hyperplane normal to thi"* dimension ofE. let i’ be the projection
of objecti onto H. An object;j is dominated by another obje&twith respect to object iff

k' € MEB(j',i) € H andk ranks higher thari. Let U denote the set of objects dominatediy
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(a) (b)

FIGURE 5.18: Lifting transform fork nearest neighbor query iR?. a) The blue query
object is closer to object 1 than object 21ih a) Object hyperplanes are lifted i
They are tangent to an upside-down paraboloid. The querhitaynyperplane 1 before
hyperplane 2 in{£¢+D)-direction.

objects with respect to objettIn S, the influence region af IR (i), is defined by thé:-skyband
with respect ta.

The average size of the skyline for a set of i.i.d. point(ia?~! n/(d — 1)!) if attributes are
uncorrelated31]. Under the same assumptidi (i) is covered byd (k In?~! n/(d—1)!) orthants.
The authors in72] prove that if the number of "octants” to cover an influence regioR# is z,
then the total number of rectangles for partitioning the influence region wilf firethe worst case.

Hence,IR(i) can be partitioned int®((kIn? ' n/(d — 1)!)%) rectangle messages. Thus,
O((kIn?1n/(d — 1)) rectangle messages are needed for a modified objet each exposed
object.

The influence region of, IR(:), is a rectilinear polyhedron ifi whose vertices are defined by
the objects iri4 (7).

Using the same argument in the proof of Lemidathe expected number of objects injected

by the rank-lowering update is at md#tin?—! n/(d —1)!). This completes the proof for the upper

bound. The lower bound construction in Fig&® can be extended for high dimension. O

8 The k-skyband is the set of objects dominated by at niasbjects.
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5.5.4 Combination of range conditions and user preferences

Each user may specify her preference usiqmarameters. For example, a preference function can
be defined as a linear combination/®ft 1 attributes, as defined in Chapt&sand4. As another
example, when searching for a gas station, a preference functiore@nriearest neighbor query

in RA. By a standard lifting argumen$], each objec(ygl), yZ@), e ,yfﬁ)) can be mapped to the

dual plane

B+ — legl)g(l) 1oy Pe@ oy PeB) [(Z/Z(I))Q + P4 (yi(ﬁ))Q]’

) ) 7

as shown in Figur®.18 The k nearest neighbors i to a query objec(yfl),y(z), e ,yZ(’B))

i

correspond to the firgt dual hyperplanes intersected by the Ii{r(@z(l),yl.@), e ,ylw),t) |t € R}

in (—&(@+)-direction.
Supposex attributes are used for selection by subscriptions. (tré]t),x?), o ,x§“> be the

coordinates of object for those attributes. By combining range conditions and user prefesence

each object has+3 parameter$x(.1), xZ(Q), e ,xl(o‘) , y,§”, yZ@), e yl.(ﬁ)}. Itis mapped to aregion

6, in the subscription spac&= R**”. Each subscription is mapped to a point in the subscription
spaceS = R**A. Again, the lifted subscription spaSe= S x R can be used to capture the ranking

of objects.

5.6 Extensions
5.6.1 Batch Processing

For some applications, events can be batched; subscriptions only neadetdhieir topk lists
correctly updated at the end of the batch. Processing events in batdigehse one at a time
would be an overkill: enough messages would be sent such that eastriptibn S; can con-
struct all intermediate states ofp, (S;) during €. Given that only the final state abp,(S;) is
needed at the end df, we want to minimize the number of messages delivered to the subscrip-
tions. An algorithmPaint-Batchis developed to achieve this goal within the problem setting of
Section5.2.1without assuming new dissemination interfaces or capabilities. To procegslirad

eventsPaint-Batchcan use any algorithid (eitherPaint-Denseor Paint-Sparsig with only minor

139



modifications. Paint-Batchitself does not assume the knowledgeSofthough the version using
Paint-Sparseisess indirectly).

The key idea is to pre-proce8sin a way such that event-at-time processing/bfwith some
modifications) will minimize the number of messages subscriptions receivelRCEY(i) (resp.
IR"Y(4)) denote the influence region of objedbefore (resp. aftery. Paint-Sparseproceeds in

four steps:

1. Pre-process. First, if multiple events inS update the same object, they are coalesced into
(0)

one. More precisely, i contains the sequentipd(z;,y; ~ — y§1>), ..., Upd(z;, yi(c_l) —

yfc)), they are replaced with a singlépd(x;, y(o) — y§C>). Next, the se€ is split into two,

i

et andéT, wheregt (resp.€") contains all events that decrease (resp. increasajue.

2. Apply & to O. Let T denote the data structure that is maintainedfofJ is updated with

using events ir€+. No message is generated in this step.

3. Generate messages for &' and apply €T to ©. Events are processed &t (all of which
are rank-lowering) in descending order of the new values udingut with the following
modifications. 1) IfA generates messages for an exposed object that is updagédin
will be later updated i€+, such messages are discarded and would not be sentA2sf
processing a ranking-lowering update for an objewhose messages have been discarded
earlier, instead of notifying the regidik°'4(7) with i's updated values aé would normally
do, the algorithm notifies the regidR"" () UIRP™ (), wherelRP™ (i) denoteg’s influence
region right before the algorithm starts processifig To implement these modifications,
there is no need to remember BHRP™(7)’s, which would require®(nk) space. It turns out
that it is sufficient to maintain af (n)-space data structure so thBf™(:) can be computed
on demand, without increasing the time complexitylofMore specifically, besides the data
structureJ normally maintained fot), an additional data structut® is maintained to index
the set of objects updated &i. 97 is initially empty before the algorithm starts processing
&T. When processintgpd(z;, y¢'4 — y*V) € €' in the current iteration, in addition to
updating they-value of object in T to y}**V, (x;, yfld) is inserted intd”. While computing

IR (i) usesT, computingIR"*" (i) U IRP™(7) usesT andJ".
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4. Generate messages for £+. For each object updated in€+, the regionlR™*¥ (7) is notified
with i's new value. The algorithm simply followd to compute the messages by querying
T.

Below gives some intuition behind the desigrRafint-Batch

¢ Why does the algorithm generate message fofStep 4) afte€’ (Step 2)?Suppose that an
objecti is unchanged by, andi € top,(S;) both before and aftef for some subscription
S;; in this case, we do not want to notify; with <. However, some objects updateddh
may temporarily lower the rank éto belowk, before some other objects updated iraise
the rank ofi to within k& again. Sending messages generated fdnefore& would cause
S; to dropi, forcing us to notifyS; with i later when processing'. Deferring messages for

all rank-raising updates avoids this problem.

Also, if &t is processed befor&', an update to objedtin &+ would enlargdR (i), and up-
dates to other objects &' might further enlargéR (4 ); therefore, the algorithm would need
to generate messages involvingvery timei is exposed ir€T. Although doing so would not
cause subscriptions to receive unnecessary messages, it leads tmesseges compared

with the presented approach, which guarantees that for each updaesdip messages

involving i are only generated once (when the algorithm processes the evetingpjla

e Why are the modifications td necessary when processifi§ (Step 3)?Suppose the algo-
rithm is currently processing an update that exposes obj@etusing it to entetop,,(.S;)
for some subscriptior; at this point. Ifi will be later updated ir€", it is possible that
will leave top,(.S;) at that point. Without the modifications); would be notified with:

unnecessarily.

On the other hand, ifis updated ir€+, then the gains ifiR(4) during the processing &f'

should be ignored, because they will coveredRy°" (i) when: is processed in Step 4.

e Why does the algorithm proceg&$ in sorted order (Step 3)Processing’ in descending
order of the new values means that once the algorithm processes amgdating object
in &T, ¢ will never be exposed again. With this property, for each updated objerssages

involving it are only generated once (when its update event is proges$¥ithout this
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property, the algorithm may need to generate messages invalargry time when is
exposed after it is updated. Although doing so would not cause sutisnsgo receive

unnecessary messages, it may lead to more messages compared withethite dregsproach.

e Why does the algorithm need to apglyto O (Step 2) before processirg? Without ap-
plying &* to O, the algorithm would essentially proce&sfollowed by £V, It is possible for
&' to expose an objeat causing it to temporarily entebp, (S;) for some subscriptions;
however,&+ may subsequently makileavetop,,(S;). Notifying S; with 7 would be un-
necessary. Applying* to O before processing’ (in conjunction with way the algorithm

processe€ ') ensures that when processing each upda'jrevery object exposed by

this update will remain in the finabp, (S;) for everyS; that receives.

The remainder of this subsection is devoted to prove that each subsetdedres the minimum

number of messages possible unBaint-Batch

Lemma 19. When an event about objeicis processed[ R (;) (IRP*®(4)) is the minimum set

of subscriptions ifR°'(7) that must be notified in order to produce the correct final tolists for

those subscriptions if the event is a rank-raising update (rank-lowerpuate) for object.

Proof. If the event is a rank-raising update for objécimessages are generated after all events
in & have been processed. Hence, the union of the messages for olsj@xtactlyIR"*¥ (i), in
which every subscription needs to be notified. If the event is a rankriogvepdate for object,
processing:* first guarantees that all events that can shiiRki) have been processed, therefore,
all the subscriptions idiRP™ (i) must be notified about the update of objécto matter how the

events in€ is ordered. O

Lemma 20. If an objecti topi‘nal(Sj), i is never forced out af;’s top-k list because of space

constraint.

Proof. First, when a message about objeit generated, all the other objects whose old and new
values are larger and smaller than objeshew value must have been processed. Hence, if object
i belongs toS;’s final top+£ list, it must be higher thak-th in S;’s ranking. Second, during a
rank-lowering update for objeét a message about objecis first sent to every subscriptios);

that hasi in its top+£ list. Thus, if a message about an exposed object is also séht tbject:
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must have dropped te-th in S;’s ranking. No other objects if;’s list are forced to be removed
because of the arrival of the exposed object. Third, since messagasrank-raising updates are
generated at the end of the batch process, any object that is replaaettty arrived objeat must
satisfy one of the following two conditions: 1) it ranks lower than objeict the final top# list
and 2) its value will later become lower than the value of the k-th item in the:thgt-due to a

rank-raising update and it will re-enter the final thist. O

Lemma 21. Let £ and £’ be the lists returned bfrsty (z;, y?'4, <) onT andJ’, respectively. Let
R and R’ be the lists returned bfirsty (z;, y?'¢, —) on T and J’, respectively. LeL* = {/; >
ly > -+ > [} contain the first values in{ U £’ (padded with—oo if |[£| < k). letR* = {r; <
ro < --- < 11} contain the firsk values inRU®R’ (padded withxo if |R| < k). IRP™(4) is an axis-
aligned subregion of the quadraét, with verticeS(x;, z;), (¢y, z;), (by,71), (Ly—1,71), (by—1,72),
coeys (B1ymu—1), (01, 1), (24,7,) in clockwise order, ignoring degenerate vertices witho or co

coordinates.

Proof. Let £Pr® = {/™, /5™ ... [ }andRPe = {1, 5™ ...} be the lists returned byrst(z;,
v, ) andfirsty(x;, y?'¢, —) right before we start processigg. Let £ = {¢1,¢s,---,} and
R = {r1,r2,---, } be the lists returned biyrst(z;, y?', +-) andfirsty (z;, y?'¢, —) for the current
event. If£ = LP™ andR = RP', we are done. Otherwise, all objectsdi™\ L and RP**\R
must have been modified because no other objects’ ranking is raisededtiose objects out df
andR® during £T. Hence, all objects P\ £ andRP™\ R must be indexed by’ using their old

y-values, and they can be retreived by tiivet;, calls onJ”. Ol
Lemma 22. No subscription receives more than one message for the same object

Proof. The coalescing step guarantees that no two events update the same.ckjecalgorithm

also guarantees that no message for an objadt be generated if the value afwill be updated

later in the sequence. Messages generated for the updateoaipletely packR(:) such that
every subscription ifiR (i) receives one messsage for objedhfter the value of object has been
updated]IR(z) will never be shrunk since all the remaining events are the rank-lowepdgtas

for other objects. Additional messages are generated for abgady if the rank-lowering update

for other events further expad® (7). However, these messages only cover the expanded part of

IR (7). Therefore, no subscription receives more than one message famtigeabject. Ol
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Lemma 23. If a subscriptionS; receives a message for an objeeind (z;, y;) ¢ top,(S;) before

the start of batched processing, then, y;) € top,(S;) at the end of batched processing.

Proof. AssumeS; receives an update for an objeécand (x;, y;) ¢ top,(S;) before the start of
batch processing. The only possible way that objewill not be in top,(S;) by the end of batch
processing is thdR(:) will later be shrunk such that it will not contai$y. There are two cases, in
whichIR(7) can be shrunk: thg-value of object has increased, or thevalue of another object

[ has decreased. The first case cannot happen since the algoritematogenerate a message
for objects if its y-value will be updated later in the sequence. For the second case Esiige
processed beforé', the current update must be a rank-raising update for ohjétdwever, ast

is sorted in ascending order of the new valugs$)’ < y;°V, so decreasing thgvalue ofl has no

effect on the rank of for ;. O

Theorem 24. Paint-Batchminimizes the number of messages each subscriber receives. Given an
event sequencg, Paint-Batchhased orPaint-Denseuns inO(|€|log |€| + vt(n) + 1) time, and
Paint-Batchbased orPaint-Sparseuns inO(|€|log |€| 4+ (t(n) + klogm)) time, wherei is the

number of messages generatedPaynt-Batchand 7 is the number of objects in these messages.

Proof. Lemmal9, 22 and23together imply thaPaint-Batchminimizes the number of messages
each subscriber receive®aint-Batchrequires sorting that take3(|E|log |€]) time. The other
parts of the running times fd?aint-Batchfollow from the same argument as in the proof of Theo-

reml2andl7. O

5.6.2 Approximate Algorithms

To further alleviate the potential message injection bottleneck, more reducttbe imumber of
CN messages generated by the server is possible with approximate algoritheysallow sub-
scriptions to receive unnecessary messages containing false popiiges to togk lists, which
are discarded by post-processing at the subscriptions. The basis idesimplify the boundaries
of regions to notify by judiciously including some additional subscriptionsaAgmple example,
Figure5.19a) shows that instead of tiling a staircase-shdpgd) with multiple messages, a single
message with rectangEB(IR (7)) can be used. Although subscriptionsMEB (IR (7)) \ IR (%)

would get object as a false positive, it can be shown thatould still rank within top2% for these
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(a) (b)
FIGURE 5.19: Covering regions (shown with dark shade) using fewetargles (shown
with thick outlines) by allowing false positives. (a) CovegiR (i) (a staircase) with = 1;
(b) coveringIR**¥ (i) \ IR*(i) (a diagonal chain) witl = 1.

subscriptions, becau3éEB(IR(i)) C 9;2’“, thanks to the special structuresifs established in

Section5.3

The approximate algorithms, based Baint-Denseand Paint-Sparsegeneralize this simple
but effective idea. They are parameterizecthy {1+, .25, ..., 3, 1}, which controls the degree
of approximation. Consider the task of notifying an ordereddi§t*® of no more thark rectangles
(as defined in Sectiob.4.2, whereGd™s¢ C IR (i) for some updated or exposed objecgderse
can be divided into no more than'e sublists, such that each sublist contains no more fhan
adjacent rectangles. The rectangles in each sublist are covereditmithienum enclosing box.

Figure 5.19b) shows an example of covering a diagonal chain (representing tharngaome
exposed object’s influence region) witlrectanglesd = %).

Paint-Densecan be made approximate by post-processing €4&t° as above to generate
messages.Paint-Sparsecan be made approximate by processgig*s® before subjecting it to
greedy message merging. The resulting approximate algorithms are PallgeDensé¢=) and
Paint-Spars¢s), respectively. Each subscriptidi) follows the same protocol in Secti@n2.1for
maintainingtop, (S;). S; may receive an object that should not entep, (S;), or one that is
already intop,,(S;) and has not changed value. Such false positives are automaticallydgmore
the protocol, and objects in these messages are limited to those ranked gr®ki+itl, as shown

by the theorem below. This theorem also shows the reduction in the numbersshges and the

running times of the approximate algorithms.

Theorem 25. With the approximate algorithms, a subscriptiéh will receive a message with
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objecti only if 1) ranks betweelil — ¢)k and(1 + <)k, or 2)i is already in the tog1 + <)k but
its value has changed.

For approximate algorithms, a rank-raising update generates no mame tfic messages; a
rank-lowering update generaté€s(n/c) messages, with no more thane per expose object for
Paint-Densg) and no more thari /e per interesting expose object f&aint-Sparse). If each
rank-lowering update chooses an object to update uniformly at randoenexpected number of
messages generated(gk/<).

Paint-Densgs) runs in timeO(t(n) + k) for a rank-raising update, an@®(vt(n) + i + k)
time for a rank-lowering update, whereis the number of exposed objects ani the number of
messages generated Bgint-Densg:). Paint-Sparsg) runs in timeO(t(n) + k + logm/e) for a
rank-raising update, an® (v (t(n) + k + logm/e)) time for a rank-lowering update, wheteis

the number of interesting exposed objects.

Proof. By construction, the top-left and bottom right vertices of each messaggrajed for each
exposed object have rafik+ ¢)k and(1 — €)k, respectively. Hence, any subscription in a message
ranks betweelll — ¢)k and(1 + ¢)k. Similarly, the top-left vertex of a message also rafiks ¢)k

for a modified objeci. The proof for the number of messages and the running time follows from
the fact thatO(1/¢) messages are generated for objesmid each expose object and from the same

argument as in the proof of Theorei@ and17. Ol

5.6.3 Distributing the database

The central server can be replaced with multiple servers, which togethietamathe database
of objects in a distributed manner. Recall that objects are mapped to gtsaditmapex on the
diagonal of the subcription spac®, Suppose there argservers. The diagonal is partitioned into
[ zones, and one server is assigned to each zone for maintaining all objgszone. Each zone
owner maintains pointers to its two immediate (left and right) neighboring zonerswaieng the

diagonal. Since objects are distributed across multiple servers, the dgjeofsoreturned by the
first;, andmin, queries may be located at different servers. Consider an &\@htr;, y2'¢ —
yP°V). The event is first routed to the server that maintains the objehen the two queries
firsty (x;, yP°v, «) andfirsty, (z;, y;*", —) are answered in a distributed manner: Iffiet;, query

returnst < k objects on the left (resp. right) side of objéctve traverse to the left (resp. right)
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zone-owner and retrieve the remainihg- ¢ objects with a seconfirst;, query. This procedure

is repeated until eithet objects have been retrieved or all the objects on the left (right) side of
have been examined. Similarly, the set of objects reportediby queries, i.e., the set of objects
exposed during a ranking-lowering update, can also be computed by e tiaversals along the
diagonal: Lets’ = [¢', '] be the range of objects maintained by the server.olLet (¢, ) be the
qguery range. The server computes the object with the minimualue in the3-sided rectangle
oNa’ x (yo,0). If £ < ¢ (resp.r > '), we traverse to the left (resp. right) zone owner and repeat
the same procedure. The minimum among the returned objects is the answendtimjhguery.

Algorithms7 and8 give the pseudo-code for thiest, andmin, queries.

Algorithm 7 : firsty(z;, yV, ¢)

begin

1
2 if ¢ =¢+«'then
3 L firsty (x;, yi v, <);
4 if |IL| < kthen
5 | £« £ U getFirstkFromLeftNeighbditz;, y°, <, k — |L|);
6 | return £;
else
8 R firsty(xs, yiv, —);
9 if |R| < kthen
10 | R+ RU getFirstkFromRightNeighbd;, 3, —, k — |R|);
11 | return R;
12 end

Algorithm 8 : min, (o, yo)

1 begin

2 hj < miny (o N o, yo);

3 if £ <, then

4 h; < getMinYFromLeftNeighbds, yo);
5 | if A < hjthenh; < h;

6 if r > r, then

- h; < getMinYFromRightNeighbos, yo);
8 | if By < hjthenh; < hy;

9 return hj;

10 €nd
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FIGURE 5.20: Length of traversal (0 servers, 00,000 objects).

Suppose each of the servers maintaingn /3] objects. If the input objects are i.i.d. &>
with their attributes being independent, the expected number of serveesstdvfor afirst; or
min, query is roughly2k/n. Figure5.20shows the empirical results on the average length of a

traversal ovei 0,000 queries whem = 100,000 and/ = 100.

5.7 Evaluation

Network setup. A CN based orMeghdoo{61] and thecontent addressable netwdi®9] is used
for message dissemination. This CN uses a networkrokersto deliver CN messages of the
format described in Sectidn2.1 It partitions the subscription spaSénto zoneseach owned by
a broker responsible for all subscriptions within this zone; this brokealisathegatewaybroker
of these subscriptions. Each zone can forward messages to its adjanest so messages may
travel over multiple hops to their destinations. INEI3[is used to generate 20,000-node IP
network, and randomly pick,000 nodes as brokers. Subscriptions are located randomly within
the network, and object update events also originate from random logation

For the approaches presented in this chapter, the broker whose @ars the center df
is designated as the server, which maintains the database of all objebtsthe case of sparse
subscriptions, the server additionally maintains the database of all sutmswsid (but not how
they are assigned to brokers). Events are first routed to the sehane they are reformulated into

a sequence of CN messages.

Approaches compared. The presented approaches all use CN for message dissemination and

only differ in their message generation algorithms. Hence, the names ofaigesghms are used
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to refer to these approaches: exact ones incRalat-Denseand Paint-Sparseand approximate
ones includéaint-Densé:) andPaint-Sparsé:) with differente settings. They are compared with

the following approaches, which sample the space of less sophisticatethties:

e Unicast An event is first sent to the server, which in this case tracks all objalttsyb-
scriptions, and how subscriptions are assigned to gateway brokersefver computes the
set of affected subscriptions. For each affected subscrigtjothe server unicasts t8;’s
gateway broker the ig and the change twp,.(.S;) (which can be captured by one object).

This approach is exact in that it notifies only affected subscriptions.

For comparison, the following algorithm is considered for computing unicestsages,

which uses some but not all insights from the presented algorith@igenUpd (z;, ' —

(2
yPev), the server first computdd®'d(i) U 1" (4) = (¢,r), and finds all subscriptions in

(¢,z;] x [z5,7) € S. Next, the server processes each such subscrigtian turn. For a
rank-lowering update, the exposed object haslue betweerjyg’ld andy°", and can be

found bymin, (o}, y9'd).

7

e CN-Relax:This approach uses the same CN as the presented approaches shuitdoeed

a server. An everltlpd (z;, y9'4 — yrev) directly enters the CN as
Msg(z;, x;, —o0, 00, z;, yi*V), which reaches all subscriptions whose ranges inclydin
effect, CN-Relaxtreats each range tapsubscription simply as a range subscription. Each
subscription must maintain all objects within its range at all times, from which thk tam

be computed. This approach is approximate in that it may notify unaffectetigptions.

Metrics. The following metrics are considered in evaluation:

e Outgoing traffic from the serveMeasured by the total number of bytes sent by the server.

A larger number means higher network stress at the server.

9 Alternatively, Paint-Densemay simply be used to obtain the list of affected tilesSinand then look
up affected subscriptions within these tiles. In this célse,server processing cost becomes thaaift-
Denseplus a term linear in the number affected subscriptionschvie strictly (much) less efficient than
Paint-Denseand does not offer an interesting comparison.
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e Traffic in the broker networkMeasured by the total number of bytes sent across network
hops, excluding those from gateway brokers to their subscriptions (vanéchccounted for
by theredundancymetric discussed below). Depending on what is considered as a “hop,”
there are two metricsverlay traffictreats each overlay link (i.e., a link between two brokers
without going through other brokers) as a hop, whbetraffic treats each underlying IP
link as a hop. IP traffic better reflects physical reality but it dependsilyean the CN
implementation; overlay traffic better reflects how the CN is used (as a blagk Wd¢ell-
designed CNs try to make overlay routes as efficient as IP routes, wligh tiose the gap

between these two metrics.

e Redundancy in messages received by subscriptideasured bW/N — 1, whereN de-
notes the number of messages received by subscriptiond atehotes the number of mes-
sages received by subscriptions under an exact approach. Adadymdancy means higher

last-hop traffic and more work for subscriptions. Exact approacaesthredundancy.

e Server processing casiMeasured by the number of calls (by type, as discussed in Sec-
tion 5.2.2 against the underlying data structures when generating messagemedsare-
ment is chosen because the running time depends on the choice of dataresucrhe
implementation uses data structures that are easier to implement and efficieatting)

but not asymptotically optimal.

Workloads. Most results in this section use synthetic workloads, which allow us to vany the
characteristics. Unless specified otherwise, therel@@0 objects, whose:-values follow one
of two distributions: 1)Uniform: The z-values are uniformly distributed over the possiblgalue

range. 2)Clustered The z-values lie in10 clusters, whose centers partition the possiblalue
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range intol1 segments of lengtlv. Each cluster get$0% of the objects. For each object in a
cluster, the distance between:tsalue and the cluster center follows a Gaussian distribution with
standard deviation /8.

To generate an event, an object is picked to update uniformly at randogavatse is increased
or decreased, each with5 probability. The newy-value is then chosen uniformly random from
the possible range af-values.

Unless specified otherwise, the number of subscriptio@smglion. The following subscrip-

tion distributions are considered:

e Uniform: The subscriptions are uniformly distributedSn

e Clustered Most subscriptions lie iri0 clusters inS. Let P be a set 0fl0,000 x 10,000
grid points. A setC' of 10 centers is first randomly picked & and use a mixture model
to assign probability to each poipte P. A parameter\ controls the standard deviation

of each cluster; € C. Leto be (max — min)A /4, wheremax andmin are the maximum
and minimum values in the domain. For each pgint P, F(p) = .., Fi(p), where

F;(p) = exp(—0.5||c; — p||/o?). The probabilities are then normalized such that they sum
to 1.

e Correlated(to clustered object distribution): Subscriptions are generated frorm0tickis-
ters of the clustered object distribution. For each subscription in a clubtewlistance
between its endpoints from the cluster center follows a Gaussian distribuitioistandard

deviationw/8.

e Anti-correlated(to clustered object distribution): As with the correlated case above, sub-
scriptions are generated using the clusters of the clustered object distribiHowever,
each cluster center is shifted ky/2 and ignore the last cluster, such that each subscrip-
tion cluster center is located midway between two consecutive object clesitrs for the

object distribution.

In addition to synthetic workloads, information @ro31 stocks have been obtained from Ya-
hoo! Finance. For each stock, its earnings per stock (EPS), thegaveseommendation (RECO,
which varies froml, strong buy, td, strong sell, over the past month), as well as the open and

close prices oves0 days, are collected. EPS is then used to convert each price to prieeriog
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ratios (PER). Thus, there is a trace of events, each being an updd&Rafith a RECO constant.
400,000 subscriptions are generated and each requestsltveest PER over a RECO range.

5.7.1 Main results

This section will first present results for the uniform object distributiod aniform subscription

distribution.

Outgoing traffic from server. Figure5.21shows the outgoing traffic from the server per event,
averaged over all events in the workload, when varyimgnd the number of subscriptions). For
clarity, only two approaches are compared per plot. Note@NsRelaxis not compared because
it is a serverless approach. Figigr21(a)shows thaPaint-Densé& outgoing traffic is invariant to
m, butUnicasts outgoing traffic is not scalable im andk. Whenm = 5,000,000 andk = 20,
Unicastand Paint-Densegenerate316,158 and 3,501 bytes, resp. Figur&.21(b)shows that by
taking into accoun$, Paint-Sparsencurs even lower outgoing traffic th&aint-Densethe gap is
wider with fewer (sparser) subscriptions. Fig&r21(c)shows that approximation further relieves
any potential message injection bottleneck at the server.

Figure5.22(a)provides more details on the outgoing traffic produced by differentcgues.
Although outgoing traffic increases for all approaches:ascreases, the approaches presented
in this chapter clearly outperfortdnicast Paint-Densegenerated.5 orders of magnitude less
outgoing traffic thanUnicast whereasPaint-Sparse Paint-Densél), and Paint-Sparsél) gen-
erate betweer and2.5 orders of magnitude less. Since the number of messages generated by
Paint-DenseandPaint-Densél ) is invariant tom, their lead ovetJnicastcan widen arbitrarily as
subscription density increases. The same trend holdBdimt-Sparseand Paint-Sparsél ); they
always produce no more messages tRaimt-DenseandPaint-Densél ), resp.

For approximation algorithms, Figuf22(b)shows that increasing effectively decreases
server outgoing traffic.

Figures above only show average outgoing traffic. When we look at tlk@maen amount of
outgoing traffic from the server per event (which reveals bottlenecttertidan the average) in
Figure5.23(a) we see an even bigger (multiple orders of magnitude) advantage of thenped
approaches ovednicast For Unicast the maximum ongoing traffic is proportional ta, but
remains the same whénvaries because the number of affected subscriptions does not depend

k in the worst case (e.g., when the most popular objeetalue is dramatically changed). When
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m = 5,000,000, Unicasts maximum outgoing traffic i$9,998,000 bytes, compared with only
31,752 bytes forPaint-Sparsdwith & = 20).

Traffic in broker network. Figures5.24(a)and5.24(b) show the amounts of overlay and IP
traffic (resp.) incurred per event in the broker network, averaged all events in the workload.
Trends in these two figures are consistedhicastperforms worst among all approaches for all
values ofk tested and thaPaint-SparsdeadsUnicastby an order of magnitude. Furthermore,
approximation is effective for reducing in-network traffic, as evidenog Paint-Sparsél). CN-
Relaxgenerates the same amount of in-network traffic fok &lecause it ignores ranking. While it
may appear here th&N-Relaxs attractive whert > 10 (largely becaus€N-Relaxneeds not be
concerned with exposed objects), bear in mind th&&N)Relaxrequires subscriptions to maintain
all objects within their ranges, which is expensive; ancCR)}Relaxgenerates excessive last-hop

traffic, as we will see next.

Redundancy in messages received by subscriptionsTable5.1shows the total number of mes-
sages received by subscriptions per event (averaged over théoaay for Paint-Sparsgor any

exact algorithm). Tabl&.2 shows the overall redundancy in messages received by subscriptions
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Table 5.1: Total number of messages received by subscrgger event.

[k 1 ] 2 [ 5 [ 10 [ 15 [ 2 |
[ Paint-Sparse]| 444.141] 939.76] 2211.14] 4190.21] 6082.94] 7904.26|

(averaged over the workload) for the approximate approaches. Natelthexact approaches
would have0 redundancy, and an approximate approach would effectively be gxat: > k.
Clearly, CN-Relaxsends a lot of unnecessary messages to subscriptions, negating dhtagds

in its serverless approach and its relatively lower broker network traffien . > 10. For the
approximate approaches, asncreases, their reduction in traffic from the server and within the
broker network comes at the expense of higher redundancy. Still, ffexyaospectrum of user-
controllable trade-offs that are more attractive than the two extremeg: agadthms on one hand

andCN-Relaxon the other.

Server processing cost. Figure5.23(b)gives a high-level view of the average number of calls per
event to the underlying data structures madeJojcastandPaint-Sparse Tables5.3 (varying k)
and5.4 (varyingm, the number of subscriptions) offer a more detailed breakdown and cizopa
As k or m increases, botRaint-SparseandUnicastmake more calls, bufinicastmakes orders of
magnitude more thaRaint-Sparse

Table5.4 shows that the number ofin, calls byUnicastis linear inm andPaint-Denses
invariant tom. ForPaint-Sparsewhenm increases, there are fewer inessential exposed objects,
so Paint-Sparsaneeds to examine more exposed objects during a rank-lowering updatevetp
our experiments show that the number of calls is increased only by a fdctaughly 2 even with

dense subscriptions; therefore, our approach is much more scalable.
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Table 5.2: Redundancy in messages received by subscriptions

| Approaches [[k=1] 2 | 5 [ 10 [ 15 | 20 |
Paint-Sparsé 125) 0 0 0 0.015 | 0.0234| 0.034
Paint-Sparsé 25) 0 0 0.027 | 0.061 | 0.070 | 0.080
Paint-Sparsé5) 0 0 0.11 0.14 0.16 | 0.17
Paint-Sparsél) 0 0.16 0.29 0.30 0.32 0.34
CN-Relax 1440.2| 680.14 | 288.49| 151.76| 104.23| 79.98

Table 5.3: Average number of calls per event; increasing

Paint-* || Paint-Dense|| Paint-Sparse| Paint-Sparse|| Unicast

K # firsty #min, # min, # snap # min,

1 2 1.12 0.72744 1.2284 444.141
2 2 1.73 1.08988 2.95254 1086.44
5 2 3.57 2.59596 12.06538 2846.1

10 2 6.60 5.5568 40.69192 || 5453.64
15 2 9.63 8.57692 84.65234 | 8032.39
20 2 12.63 11.58048 143.20416 || 10587.4

Table 5.4: Average number of calls per event; increasing

m (x10°) || #min #firsty, | #snap
y

2 352 2 29.87 [ m (x10°) || #min, |
8 4.84 2 37.34 2 545.23
40 5.94188 2 42.0509 8 2181.49
100 6.26988 2 42.86982 40 10906.4
Dense 6.60 2 43.36 100 27267.5
Paint-Sparse Unicast;k = 10

Batch processing. Next, the effectiveness of the batch processing algoritbaimt-Batch is eval-

uated by comparing it witlonling which simply processes the batched event sequence one event at
a time, andCoalescewhich coalesces events updating the same object into one beforegingces

but does not sort or group them inf® and&. The sequence contaifi§,000 events, and: varies

from 1 to 20. Figure5.26(a)compares the total number of messages generated over the sequence;
Figure5.26(b)compares the total number of messages received by all subscriptions 5-.26(c)
compares the total number ofin, calls. In all figures,Paint-Batch with both coalescing and
sorting optimizations, dominates the other approaches. The savings priwiderting (between
Paint-Batchand Coalesce especially in the number of messages received by subscriptions) are

significant, though they are dwarfed by the savings provided by caagesc

Trends across synthetic workloads. Results for other workloads are similar, and exhibit trends

that confirm intuition. Figur&.25(a)shows the ratio between the number of messages generated
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FIGURE 5.26: Batch processing approaches.

by Paint-Sparseand Paint-Densefor various workloads. With knowledge &f Paint-Sparsgas

well asPaint-Sparsée), which is not shown here) generates less traffic with more clustered sub-
scriptions, because of more opportunities for skipping empty regiofis The ratio isl with ten
million uniformly distributed subscriptions, which are basically dense. Furtbes,Paint-Sparse
skips a greater number of inessential exposed objects for the antiatedr@orkload than for the

correlated one.
In practice,y-values of objects rarely change in a completely random fashion. Tomee h

this observation impacts the performance of the presented algorithms, in$igaabsing newy-
values uniformly at random, the difference between the new ang-gldues follows a Gaussian
distribution with standard deviation setd¢s times the length of the range of possiplealues. A
smallerc means changes are less volatile. Fighu2b(b)shows the traffic from the server for two
settings ofc. It is evident thatPaint-Densegenerates fewer messages wilrda smaller because
fewer objects are exposed by less volatile value (and hence ranlgesharhe traffic under Unicast

is approximately the same for bath= 1 andc = 1/8.

Yahoo! Finance data. Results for Yahoo! Finance workload are largely consistent with other

results presented in this section, so some samples are shown here corRparirgparsePaint-
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Table 5.5: Redundancy in messages received; Yahoo! workload

| Approaches [ k=1] 2 | 5 | 10 [ 15 | 20 |
Paint-Sparsél ) 0 0.19 0.25 | 0.35 | 0.39 | 0.38
CN-Relax || 706.51| 361.22] 147.13| 72.67 | 48.38] 36.11

Table 5.6: Average number of calls per event; Yahoo! worttloa

| k [ #min, | #firsty, | #snap | | k ]| #min, |

1 0.5 2 1 1 || 176.01

2 0.5 2 2 2 || 409.44
Paint-Sparse 5 0.51 2 5.05 Unicast| 5 || 1050.48
10 | 0.54 2 10.35 10 || 2278.27

15 || 0.57 2 16.02 15 || 3510.16

20 || 0.61 2 22.18 20 || 4614.24

Sparsél), CN-Relax andUnicast In terms of outgoing traffic from the server, this workload
allows Paint-Sparseand Paint-Sparsél) to inject a significantly fewer number of messages into
CN than other workloads, because th#alues (price-to-earning ratios) only change slightly for
most events; consequently, most rank-lowering updates expose avyabfects. In terms of traf-
fic in the broker network, Figures27(a)and5.27(b)show thatPaint-SparsexindPaint-Sparsél )
generate two orders of magnitude less traffic tbacast While CN-Relaxagain seems attractive
aroundk = 10, it does poorly with the next metric, redundancy in messages receiveddsgrip-
tions, shown in Tabl®.5. Here,CN-Relaxresults in far more unnecessary traffic to subscriptions
with double- and triple-digit redundancy, compared with less tharfor Paint-Sparsél) (and0

for Paint-Sparsébecause it is exact). Finally, in terms of server processing cost, babhows
thatPaint-Sparsenakes few calls. On the other hand, the numbenof, calls remains huge for
Unicast because it still checks all subscriptions(iz;] x [z;,7) C S even though the majority

of events affect no subscriptions.
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FIGURE 5.28: (a) Average outgoing traffic from server per eventMximum outgoing
traffic from server per event.

Table 5.7: Number ofnin queries.

] Approaches l[k=1] 2 | 5 [ 10 | 15 |
Paint-Dense 6.35 | 11.31| 26.13| 50.48 | 74.40
Paint-Sparséataset#1| 5.68 | 9.88 | 23.07 | 45.85| 68.826
Paint-Sparsdataset#2|| 5.40 | 8.97 | 19.45| 36.97 | 54.67
Paint-Sparsédataset#3/| 5.51 | 9.36 | 21.12| 41.13| 61.07

5.7.2 1.5-dimensional range subscriptions

There arel0,000 objects, whose:(!-values andz(?)-values are uniformly distributed over the

possiblez(M-value and:(?)-value ranges. The number of subscriptiong(8,000 subscriptions.

The following subscription distributions are considered:

e Dataset #1:Uniformly pick two random numbers in thé!)-value range/() andr() are

set to be the smaller and larger ones, respectivélyis uniformly chosen in the (2 -value

range.

e Dataset #2: /() is uniformly chosen in the:(")-value range.r(!) — ¢(1) is set to be the

minimum width that covers,000 objects.r() is uniformly chosen in the®-value range.

e Dataset #3:Same as Dataset #2, except thdt — ¢(1) is set to be the minimum width that

coversl100 objects.

Figuresb.28(a)and5.28(b)shows the average and maximum outgoing traffic (in bytes) from the

server per event update. Tab®3 and5.8 show the number of calls per event.
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Table 5.8: Number ofnap queries.

] Approaches [k=1] 2 | 5 | 10 [ 15 |
Paint-Sparséataset#1|| 4.55 | 13.86| 88.43 | 473.43| 1361.90
Paint-Sparséataset#2|| 4.08 | 10.92 | 51.44 | 213.40| 561.45
Paint-Sparsédataset#3| 4.29 | 12.28| 70.69 | 360.45| 1022.86

5.8 Related Work

Much work on scalable processing and notification of subscriptions hers dhene in the con-
text of publish/subscribe systems (e.@.3,[34, 93]), but traditionally they consider only selection
gueries over message attributes. Recent work seek to extend them totsuppe complex sub-
scriptions (e.g.,93, 41, 40, 42)), or use them for scalable implementation of distributed stream
processing 124] and query result cachindg$]. The work most relevant to this chapter 1],
which discusses scalable processing and dissemination of randestdyscriptions. This chapter
builds on their approach of leveraging CN for efficient dissemination. é¥ew as demonstrated
in this chapter, the case &f> 1 is considerably more complex and requires new algorithms data
structures; this chapter also considers batch updates and approxifétaso

Other recent work on publish/subscribe has also addressed rablingith various different
subscription semantics; little is known about how best to support standage topk subscrip-
tions. Drosou et al.g5] consider ranking events by relevance and diversity. Machanalajita
al. [79] consider the reverse problem—finding most relevant subscriptiors pablished event.
In the sliding window model, Pripuzic et alR§] maintains a buffer to store relevant events that
have a high probability of entering a tdpresult in the future, and Haghani et @3] continuously
monitor top4 queries over incomplete data streams. Lu et78] €onsider an approximate tdp-
real-time publish/subscribe model, in which each subscriber approximatsives thek most
relevant publications before a deadline.

Range topk querying is well studied in the database literature, both in terms of accessdmetho
design (e.g.,111]), and integration with relational query processing and optimization (&.9). [
The key difference is that this chapter focuses on a different dimep$iscalability here: instead
of making a single range top-query scale over a large dataset, this chapter considers how to scale
over a large number of ongoing range toptueries.

This chapter is related to incremental maintenance of materialized Wgws. [120 handles

the challenge that an object “escaping” from the fopequires obtaining the new-th ranked
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object. The idea is to reduce the expected amortized maintenance cost ovby timantaining

a top%’ view wherek’ > k is allowed to vary. This approach (which optimizes across time)
complements ours (which optimizes across subscriptions), and will be itmerés explore in
conjunction with the approximate algorithms.

The problem studied in this chapter is related to thateokrse topk queries[115, where,
given a data update, affected queries are identified and their resulipdaig=d. Their definition
of top k is different from ours, however: queries do not specify rangalitmms but instead vec-
tors of weights that customize relative importance of different rankingraitélso, the issue of
efficiently notifying affected queries over a network is not considered.

There also has been much research onktgpecessing in a distributed setting, e.@Q]f [33],
[81], [87]. Most previous work focuses on computing or monitoring the result feingle top#
query over a set of distributed sources, where each source psaitther individual object scores
or partial scores that must be aggregated across sources beafayeibed for ranking. Processing
can be pushed inside the network to reduce communication, 831(7. Compared with the
work above, the problem setting of this chapter is inverted—instead ofdnavie query over many
distributed objects, there are many distributed subscriptions over onenstifeabject updates,
which call for different techniques. Nonetheless, some ideas fronitdittd tops monitoring RO,
107]) may be interesting to explore as future work. Namely, some solutions fibdited topk
monitoring involve installing conditions at the sources that trigger reportirtgjtively, lowly-
ranked objects with little chance of entering the kogre associated with loose reporting conditions
with reduced monitoring costs. The question of applying this approach tettiegsof this chapter,

however, is whether a large number of reporting conditiens)(can be handled.

5.9 Conclusion

This chapter has tackled the problem of supporting a large number a&f tapg subscriptions in a
wide-area network. The dual challenges of subscription processihgaification dissemination
are addressed by carefully separating and interfacing these tasksai that achieves efficiency
with off-the-shelf dissemination networks and without increasing systemplexity. The tech-
niques presented in this chapter are based on a geometric framewdskngne to characterize
the subset of subscriptions affected by an event as a region in anpaigpely defined space, and

solve the problem of notifying affected subscriptions as one of tiling thiemegith basic shapes.
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The array of techniques that have been developed—ranging frora thas use the knowledge
of subscriptions to those that do not, from event-at-time to batch procedsing exact to ap-
proximate, and from one-dimensional to multi-dimensional ranges—speale tpoiluer of this
framework. Theoretical analysis and empirical evaluation show that #s=pted approach holds
substantial advantages over less sophisticated ones.

As mentioned in Sectiob.1, the techniques presented in this chapter can be applied to other
application settings. In essence, this chapter has devised an effeafive divide the problem of
supporting a large number of stateful subscriptions into two tasks: onedhgiutes a compact
description of the changes, and one that further uses this descriptiguabeuaffected subscrip-
tions. The first task is shielded from the complexity of handling subscriptishiée the second is
shielded from the complexity of handling objects. This division allows eadhttabe scaled up
independently. This chapter uses CN to scale up dissemination for thedstastn but there are
more possibilities. 1) In settings where result updates do not need to kerddliover a network,
the second task of updating subscriptions can be scaled up in an erslmgyisaparallel fashion,
without duplicating the effort of the first task or requiring each proogssode to maintain the set
of objects. 2) Instead of using a single server to perform the firsttiaskiatabase of objects can be
distributed across multiple nodes, which process incoming events ancgggeaaetgoing messages

in a distributed fashion. Details are available in Secéd®h3 This extension allows us to handle
the general publish/subscribe setting where events originate from muliigtiehated publishers.
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6

Dissemination Network Design

This chapter studies the problem of assigning subscribers to brokemsideaarea content-based
publish/subscribe system. A good assignment should consider bothibebgtterests in the event
space and subscriber locations in the network space, and balance mdtiplerance criteria in-
cluding bandwidth, delay, and load balance. The resulting optimization pnakI®&P-complete,
so systems have turned to heuristics and/or simpler algorithms that ignore sdim@nance cri-
teria. Evaluating these approaches has been challenging because eptutiahs remain elusive
for realistic problem sizes. In this chapter, a Monte Carlo approximatiomitiigowith good the-
oretical properties and robustness to workload variations is develomathbie proper evaluation.
The algorithm combines the ideas of linear programming, randomized royndirgset, and itera-
tive reweighted sampling to make the problem computationally feasible. Bechits¢heoretical
properties and robustness to workload variations, it can serve asanedae yardstick to evaluate
other algorithms. In the evaluation section, we will see that with its help, a simgéelgalgorithm
works well for a number of workloads, including one generated frobliply available statistics
on Google Groups. The hope is that the presented algorithms are notsefily im their own right,
but the presented principled approach toward evaluation will also balusétiture evaluation of

solutions to similar problems in content-based publish/subscribe.
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6.1 Introduction

A wide-area publish/subscribe system typically consists of an overlayonetV brokers Events
originate frompublishers and are delivered by the brokers to interestaldscribers Traditional
publish/subscribe itopic-basedwhere subscribers subscribe to a set of predefined topics such as
“Apple news” or “American Idol.” Content-basegbublish/subscribe, on the other hand, allows a
subscriber to express an interest as a Boolean predicate against oBht&ibutes inside events.

For example, a subscriber may subscribe to eBay antique auctions withragherhigher than

90% and starting bid between $100 and $200. Only events matching thegteadilt be delivered

to the subscriber. Content-based publish/subscribe is of interest to &thage and networking
communities 13, 53, 93, 98], because it must address the dual challenges of subscription matching
in an event space and event dissemination in the network space.

An important problem in content-based publish/subscrilseiscriber assignmenEach sub-
scriber needs to be assigned a broker responsible for forwardin@imgevents to this subscriber.
Intuitively, we would like to assign subscribers with similar interests to the saokehrso that an
event delivered to the broker could serve many subscribers. Ifladcsilbers assigned to the broker
have similar interests, only a subset of all possible events needs to gglhtimibroker. At the
same time, we may not want to assign a subscriber to a broker located fairatie network,
because doing so increases delivery latency and communication codlly, Fiesshould not assign
too many subscribers to one broker because it could create a perfmrbatileneck and delays
event delivery. Balancing these considerations—similarity of interests ievidnigt space, proxim-
ity of locations in the network space, and balance of load across brekeesdifficult optimization

problem.

The Need for a Yardstick. There is a good amount of previous work on subscriber assignment
and related problems; see Sect®rfor details. Most approaches ignore some aspects of the prob-
lem or employ heuristic algorithms. For example, Aguilera etE] pssign subscribers to their

closest brokers in the network, ignoring subscriber interests. On tlee lo#imd, Diao et al.53]
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make assignment based on similarity of interests, without considering nelatericy. Papaem-
manouil et al. 1] present a general optimization framework that considers multiple perfarena
criteria, but relies on an iterative method to explore the solution space thtocg adjustments of
dissemination trees.

It is understandable and often necessary to employ heuristics forrfadrsassignment, be-
cause the problem in general is NP-complete. Evaluating these heuristiesyér, is frustratingly
difficult. How close are their solutions to the optimal? How well do they work ogdarealistic
workloads? Because of the problem’s inherent complexity, optimal solubomealistic problem
sizes are computationally elusive and often unavailable for comparisomat ¥Wtuld be a good
yardstick then? Could yardsticks be solutions to simpler problems that igaore gerformance

constraints, since they are easier to compute and can act as lower lhauthgsoptimal solution?

Contributions. A main goal of this chapter is to find a better yardstick for evaluating the perfo
mance of various algorithms for the subscriber assignment problem. AritaigaalledSLP, a
shorthand forSubscriber Assignment hyinear Programming is proposed in this chapteSLP
jointly considers both subscriber interests in the event space andigosocations in the network
space, and balances multiple performance criteria including bandwidth, deldyoad balance.
While SLP’s solution is not guaranteed to be optimal, it has provable properties thatibrakbust
to workload variations, and reasonable as a yardstick for evaluating @timithms. Moreover,
a by-product of runningLP (the LP fractional solution) gives us another useful indicator of how
close a solution is to the optimal.

This chapter also presen®&™, a simple offline greedy algorithm for subscriber assignment
that presorts the subscribers in a particular way before assigning theltnycone SLP is used as
a yardstick to evaluatér* and a number of other algorithms. With the helBafP, this chapter is
able to conclude, with confidence, ti@at* works very well for most (but not all) of the workloads
tested. The evaluation also reveals that simpler algorithms that ignore doenpaance criterion or
another are poor yardsticks, because their solution cannot offelimgéarbounds on what can be

realistically achieved when considering all constraints.
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Another major obstacle for evaluation is the lack of publicly available, realisti&kivads for
content-based publish/subscribe. Information about subscriberse@tgeand locations) is rarely
disclosed because of privacy concerns and commercial interestsobatdely deployed systems
with powerful subscription languages also contributes to the difficultysTiasearchers have often
resorted to synthesized workloads. However, simplistic workload gemsrran the risk of missing
interesting patterns of clustering and overlap among subscriber intexedtsorrelations between
subscriber interests and locations, which may influence the evaluatiorbsérther assignment
algorithms. Therefore, beyond simple synthetic workloads used forati@huby previous work,
The algorithms are also evaluated using workloads generated from publailgble statistics on
Google Groups21], which is believed to be closer to (at least one) reality.

SLP is computationally feasible on realistic problem sizes; it has been run orloadkcon-
sisting of hundreds of brokers and a million subscribe8EP is made scalable by combining a
suite of techniques, including randomized rounding, coreset, and ienativeighted sampling.
While SLP is slower than the simpler algorithms, its solution quality makes it well worthwhile
in some settings, such as initial subscriber assignment, periodical re-opiimjznd especially

comparison with and evaluation of other algorithms.
6.2 Problem Statement

Let N denote thenetwork spaceFor simplicity,N is assumed to be a multi-dimensional Euclidean
space, obtained by standard Internet embedding technig8g6, 88]; Euclidean distance be-
tween two points approximates the network latency between themP LetN be thepublisher
and8 = {S1,---,Sn} € N be a set ofn subscribers

P publishesventseach of which is represented as a point ingient spac&. E is assumed to
be thed-dimensional Euclidean spaf. Each subscribe$; has arinterests;, which is assumed
to be ad-dimensional rectangle .1 S; receives an evenrte E if e € s;.

Events are disseminated to subscribers using &8set{B;,--- , B,} C N of n brokers P

1 without loss of generality, each subscriber is assumedie bae interest; an individual with multiple
interests can be modeled as multiple subscribers locatbeé aame point iiN.
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andB form adissemination networkwvhich is assumed to be a tr8erooted atP. A leaf of T is
called aleaf broker A subscriber assignment : § — Be2ves connects each subscriber to a leaf

broker.

Filters. Each brokemB; is associated with fiter f; C |E such that if a brokeB; (resp. subscriber
S;) is a descendant db;, thenf; C f; (resp.s; C f;). This condition is referred to as timesting
condition An evente is passed to a brokds; if e € f;. To ensure simplicity and efficiency in
implementing this forwarding logicf; is required to be the union of at mast rectangles, for a
user-defined small constant which is calledfilter complexity That is, f; = (., I, whereF;

is a set of rectangles I8 and|F;| < «;. In the special case af; = 1 for all brokersB;, T U X
becomes a bounding box hierarchy like an R-tree. Howevgis allowed to bel. Figure6.1
shows an example of, for o = 1 and2; the red points (events) are the false positive since they do

not hit the filters ofB;’s children—3;, By, B3, andBj.

FIGURE 6.1: An example of filterf; with complexity1 and2.

Bandwidth. We are interested in minimizin@(7), the expected total bandwidth consumption
(or bandwidthfor short) of 7. Q(T) = > s Q(B:), whereQ(B;) is the expected bandwidth
into broker B;. The bandwidth required for leaf brokers to deliver events to sulasrib ignored
because the total does not depend on the subscriber assignmenttsfanecsuniformly distributed,
Q(B;) is defined as the volume ¢f, Vol(f;). Our approach can be extended to a non-uniform

event distributionr, in which case)(B;) = ffi w(e)de.
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Choosingo; > 1 can reduce bandwidth into a broker, as multiple rectangles summarize child
filters or subscriber interests more precisely than a single rectanglet the eost of increasing

storage and processing overhead at the broker.

Latency. We want to bound the latency of delivering events to each subsc$ipeA natural
requirement is made in this chapter: for a subscriber assignmtmnbe valid, the network latency
of the path inT U X from the publisher to each subscrib&r must not exceed the user-defined
maximum allowable latenay; for S;. Here, the path latency is the sum of distance ivetween
consecutive points on the path.

The approach to be presented in this chapter can be extended to hawrdloothof latency
constraints, such as one that bounds only the last-hop latency to eadrilsab(from the broker
it is assigned to). More sophisticated constraints that account for ipoéeessing delays can be

enforced by additionally imposing load balance constraints described.below

Load Balance. We also want to ensure that not too many subscribers are assigned lieabne
broker, otherwise, the processing cost of a broker (matching incommg®against subscribers
and notifying the interested subscribers) would become too expensitteouMoss of generality,
assume thaBy, - - - , B; are thel leaf brokers inB. Each leaf brokeiB; is associated with a user-
definedcapacity fractions; € [0, 1], such thatZﬁA:1 k; = 1. Perfect load balance happens when
eachB; is assigned;m subscribers, but it is unnecessary and often undesirable as it nréficeac

other performance measures. et be the number of subscribers assigned to leaf brékgthe

load balance factolIbf) of the assignment be defined @sx; <<, :Lm The user is allowed to

cap the Ibf a3,,.x and specify alesired Ibfj3, whereB,,.x > 3 > 1. We try to find an assignment
with Ibf within j; failing that, we try to find an assignment with Ibf withit,.,. and as close t@

as possible. The paii3, Smax) allows the user to encourage load balance towards the desired level

without rewarding assignments that “over-balance.”
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The Problem. The subscriber assignment proble(8A is defined as follows: Giver, B,
Bleaves C B, 8, 7, filter complexitiesae = {a, ..., o}, maximum allowable latencie =
{61,...,6m}, leaf broker capacity fractions = {x1,...,x;}, as well as parametefsand Bpax,
compute an assignmeht: § — BLeaves and filters for all brokers, such that the filter nesting con-
dition and complexity constraint are satisfied by all filters, the latency consisaatisfied at each
subscriber, and the load balance factor is no more thér as close t@ as possible and no more
than Bnax). The assignment with the minimum expected total bandwdgitt) will be returned.

By reducing the standard set cover proble4] to SA, it can be shown that SA is NP-complete.
Theorem 26. The decision version of the broker-subscriber assignment probldiRisomplete.

Proof. First, the geometric set cover problem, which is well-known to be NP-compdatepe
reduced to the subscriber assignment problem. The geometric set emigod problem is for-
mulated as follows: Given a s8tof m points inR?, a setB of n points inR?, and an integek;,
does there exist a s& C B of sizek, such thainaxges minges || S — B [|< 1?

Let 8 be the subscriber set aritibe the leaf broker set. Subscriber interess set to|0, 1]?
for1 < i < m, and desired Ibf is set ton. The dissemination tre is constructed as follows:
Choose publisheP to be the centroid of3 in R?. Connect each leaf brokd? € B to P by a
separate path consisting ®edges, such that the total length of the path is max; || P — B, ||.

It can be checked that there exists a set cover of sifethere is a valid subscriber assignment
of bandwidth@(T) < 2k. Since the subscriber assignment problem generalizes the geometric set
cover problem, it is NP-hard. Finally, the subscriber assignment proldémNP because the

resulting filter and subscriber assignments can be verified in polynomial time. O

An Example of SA. Refer to Figures.2 Both the event space and network space, shown as the
horizontal and vertical axes (resp.), are one-dimensional in this simplepdsa The horizontal

thin red line segments represent subscriber interests. The horizontafytieien lines represent
filters. The filter complexities for broker8;, By, and Bs are2, 1, and1, respectively.Smax IS

set to1.5, so at most three subscribers can be assigned to each broker. cBh@vih arrows)
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FIGURE 6.2: An example illustrating the problenEdefinition in lowr@nsions.

indicate the assignment of subscribers to brokers, as well as the tiomnigom brokers to the
publisher. Although assigning subscrilfgy to broker B, can further reduce bandwidtii; will
become overloaded. Assigniitj to Bs can also reduce bandwidth, but the latency constraint for

S1 will be violated.

6.3 Two Greedy Algorithms

This section presents two simple greedy algorithms for SA, both aimed at minimiamayidth

while meeting the latency and the load-balance constraints.

Online Greedy (Gr) This algorithm assigns subscribers sequentially to leaf brokers. It need
not know the set of subscribers from the start. It considers thetedféacorporating the new
subscriber into existing filters in the event space, in a way similar to R-tree gplitéaristics.
For each subscribes; € 8, thecostof assignings; to a leaf brokerB; is defined to be the sum
of least volume enlargement of filters over the patlTifrom the publisher taB;, such that the
nesting condition is preserved. More specifically, fiets g, R be the current filter of broker
B;. If S; is assigned td3;, one of the rectangles iR; needs to be enlarged to contain subscriber
interests;. The least volume enlargement ffcan be computed by finding the rectangle whose
expansion results in the least increment of the expected band®idsh). Gr identifies a set of
candidate brokergdefined below) foiS;, and then greedily assig$§ to the candidate broker with
the minimum cost. It breaks a tie by choosing the least loaded broker (i.ewitmthe minimum
HL\& wherem; is the number of subscribers already assigned to it).
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B; is acandidate brokeffor S; if the following conditions are met: 1) Assigning; to B;

satisfies the user-defined latency constraintzz2will not be overloaded by this assignment; i.e.,

m;+1
ki8]

is no more than a user-specified Ibf. (This Ibf can be set initiallg;tid can be increased if

no feasible solution is found, eventually £g,.x.)

Offline Greedy (Gr*) This algorithm is an offline and more expensive varianGof Each sub-
scriber is processed in the exact same wagasHowever,Gr* first sorts and then processes the
set of subscribers in ascending order of the cardinality of their catedinleker sets. Intuitively, by
deferring the processing of subscribers with more choices, it redheashance thaBr* will be
forced into a costly decision due to lack of choices. Note that the assigmheatlier subscribers
may restrict the choices available to later subscribers; h&rajpdates the ordering of remaining
subscribers whenever a broker becomes fully loaded. As we will seecitio86.6, Gr* not only

consumes lower bandwidth th&r but also produces more balanced loads tBan
6.4 One-Level SA

We now turn to a more sophisticated algorith®h,P. This section describeSLP,, an algorithm
for solving the one-level version of SA, in which all brokers are directignected to the publisher
in 7. Section6.5extends the solution to a multi-lev&l For a better flow of the chapter, all proofs
in this section are presented at the end of the chapter.

Although SA can be written as an integer programming problem, solving it directgm-
putationally intractable even for the one-level version. Realistic workloaddving hundreds of
thousands of subscribers easily overwhelm the most sophisticatedssolvetame complexity,
a carefully simplified problem is first solved to obtain a preliminary, but naietis good, as-
signment of filters to brokers; it is then used to derive the final solution tduthproblem. The

three-step strategy, illustrated in Figu&, is as follows.

1. Preliminary filter assignment.The heart ofSLP, this step produces a preliminary filter
assignmen® = {¢1,..., v, } Where brokerB; is assigned filterp;. This step considers

all factors simultaneously in optimization—bandwidth, latency, and load batansig LP
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FIGURE 6.3: Overview ofSLP;.

relaxation and randomized rounding. To keep the LP size manageabladin$solving LP
on all subscribers and all possible filters, LP is iteratively run on smallfsigeesentative

sets (coresets) of subscribers and candidate filters.

2. Subscriber assignmenBiven a preliminary filter assignmefit, this step considers the full
set of subscribers and computes the subscriber assigiineht— BLeaves  Since the filters
are already given, this step focuses on load balancing while meeting latensyraints,

using a max-flow algorithm.

3. Filter adjustment.Given® andy, this step further refines the filters and enforces the max-
imum filter complexity. Let¥ = {f1,---, f,} be the resulting set of filters. The algorithm

returnsy andJ.

6.4.1 Preliminary Filter Assignment

This section presents the first stegBafP;, FilterAssign(BLeaves| 8) (Algorithm 9). Sectior6.4.1.1

describes PRelax, a subroutine for computing a filter assignment using LP relaxation. Calling this
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Algorithm 9: Preliminary filter assignment algorithm.
FilterAssign(BLeaves 8) begin

1
5 g+ 4;

3 while g < |8| do

4 foreach S € S dow(S) « 1;

5 q < 10g1n g;

6 for i «+— 1to4gIn(|8|/g) do

2 repeat

8 Q + Random(8, w, q);

9 ® « FilterAssignHelper(Q, Bleaves 8);
10 if ® = L thenreturn L;

" if Violate((1 + ¢)®, Bleaves §) = () then
12 | return (1+¢)®;

13 V « Violate(®, BLeaves g):;

14 until 3= gey w(S) < (1/8) Cges w(S)

15 | foreach S € V. dow(S) « 2w(9);

16 | 9 29

17 return L;

1g €nd

19 FilterAssignHelper(Q, BLeaves 8) begin

20 for j < 0toln|§| do

”n 8, «+ Random(8, 1, 10| BLeaves|);

- 8a <+ QU Sy,

23 R « FilterGen(8,);

” ® + LPRelax(BLeaves R S, 8,):;

o5 if ® # 1 then return ®;

2 return L;

-7 end

subroutine with all subscribers and all possible filters is impractical. Thergih Sectior6.4.1.2
iterative reweighted sampling is used to obtain a coreset of subscribenslt®Relax with. Sec-
tion 6.4.1.3presents a method for choosing a good subset of candidate filters tosidered by

LPRelax.
6.4.1.1 LP Relaxation

First, the algorithmLPRelax(Be> R, §,,8;) is described. It assigns each brogre Bleaves

a filter consisting of rectangles i drawn from a given seR = {R;,--- , R,}. 8, denotes the
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subset ofS considered byLPRelax; 8, C 8, denotes the subset for whid¢lPRelax enforces
the load balance constraint (see (C3) below). Intuitively, we woulddike= §;, = S and letR
contain the minimum enclosing box of each non-empty subset of the sulysotérests, but doing
so would make the algorithm quite expensive in practice. Therefore,seelpC S is carefully
chosen so that a filter assignment with respe@,tds also good with respect to the entire Set
and choose a subsgf C §,, to facilitate load balancing. Later, Sectiér.1.2will address how to
chooseS,, ands; (and why to distinguish them), and Secti®4.1.3will address how to choosR.

For each subscribes; € §,, let B; C BlLeaves ha the subset of brokers that satisfy the user-
defined latency constraint fc; if .S; is assigned to them; |6, = {R;, € R | s; C Ry}, i.e., the
subset of given rectangles that contéirs interest.

SAis formulated as a mixed integer program. Two sets of Boolean variafles;, € {0,1}
are introduced fof € [1,n], j € {j | S; € 8.}, andk € [1,u], wherex;; = 1 iff subscribersS) is
assigned to brokeB;, andy;;, = 1 iff rectangle R}, is assigned td; as part of its filter.

Recall from Sectiorb.2 that we want to minimizeZBiegLeaves Q(B;), but whena; > 1,
usingQ(B;) = Vol(f;) = Vol(Uger, R) (i-€., volume of the union) makes optimization diffi-
cult. Therefore, for this steg)(B;) is defined a9 per, Vol(R) (i.e., the sum of volumes) and

Y B, cBLeaves Q(Bi) is minimized, instead. This objective function is more tractable, and the op-

timal solution under) (B;) approximates the optimal solution und@¢B;) within a factor ofc;.
This objective function also discourages choosing overlapping rdewfay filters. In other words,
we minimize

>_B,eBreaves ek YOk )Yik,

subject to the following constraints:

(C1) [Filter complexity] Each brokeB; is assigned a filter consisting of at mestrectangles:

ZRkEfR yir <o VB; € P Leaves

(C2) [Assignment and latency] Each subscriber is assigned to at leastroker meeting the la-
tency constraint:
ZBiEBJ’ Tij >1 VSj € 8,.
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(C3) [Load balance] The load balance factor is at nibst

Zsjesb zij < Bri|Sy| VB; € Bheaves,

(C4) [Nesting] A subscriber can only be assigned to a broker whoseditgains it:

ZRkERj Yik > Tij VS] € SG,VBZ‘ S Bj.

By relaxing the values of Boolean variables to be real numbers#j;ey;, € [0, 1]), the above
mixed integer program can be reduced to an LP. Using an LP algorithm, tmeabgractional
solution is computed, and then randomized rounditity] is applied to construct a solution to
the filter-assignment problem. Specifically, for eagh supposej;. is its value in the optional
fractional solutiony;;, is set tol with probability1 — (1 — ;)™ %], or 0 otherwise. The resulting
filter assignment i® = {y1,..., ¢, }, wherep; = {Ry. | yir = 1}.

Before returning® as a preliminary filter assignmentPRelax further verifies whethed
covers$,. More precisely, a subscribéf; is said to becoveredby a filter assignmeng if there
exists a broker3; with assigned filterp; such thatS;'s interests; is contained in one of the
rectangles ofp;, and the assignment &f; to B; satisfies the latency constraint f85. A set of
subscribers isoveredby a filter assignment if every subscriber in the set is covered. If itéapp
that® does not coves,, randomized rounding is simply performed again forghes to generate
a new®. Each round of randomized rounding producesk eoverings, with probability at least

exp(—1) (see Theorer27 presented later).

Remark Because of roundingy; may have more than,; rectangles; this violation is fine for
now—recall from the beginning of Sectidh4 that the goal of this first step is not tlieal filter
assignment, but a good, preliminary assignment for the remaining stepisinSge4.3will fix such
violations.

Note that randomized rounding could also be applied;}ts and obtain a subscriber assign-
ment for§,,, but the resulting assignment may violate constraints due to rounding, ambittise

goal of this step of the algorithm.
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FIGURE 6.5: lllustration of candidate filter generation.

6.4.1.2 Subscriber Sampling

If all subscribers are inputted &g ands; to LPRelax, the size of LP in Sectiof.4.1.1will be
too large even for a moderate number of subscribers. Thereforegtitiers presents a method to

reduce the number of subscribers to input RRRelax. This method combines two ideas:

e Coreset For a wide range of geometric optimization problems, there exists a smalltsubse
(corese} of the input objects such that the solution for this subset is a good appatan
of the solution for the entire inpu6]. This chapter shows that for filter assignment, a small

coreset o exists and can be computed quickly.

o |terative reweighted samplingThis idea has been previously used for problems such as

linear programming47], set cover 0], and computing coreset&(]. This chapter applies

it to coreset computation for filter assignment.

We begin with a few definitions. For a rectangke = Hle[li, h;], the e-expansionof R,

denoted by(1 + ¢) R, is Hle[li —e(hi —1;)/2, hi + <(h; — 1;)/2]. Similarly, thec-expansiorof
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(©)
FIGURE 6.6: Three steps of iterative reweighted sampling: The itedfeach subscriber
is initially one (see (a)). Choose a subSgfthick rectangles); find a filter assignmenof
8q; If the expansion ofb (dotted rectangles) covefs(see case (c)), retuh. Otherwise,
double the weight of alb € S not covered by the expansion &f(see case (b)).

afitero = {R1,...,Ra}is(1+e)p ={(1+¢)R1,....,(1 +e)R.}. Letd = {p1,--- , o}
be a filter assignment tBLe2ves | with v; being the filter associated with;, and let(1 + ¢)® =
{(1+¢e)p1,...,(L+¢e)p,}. AcoreseQ C § is called are-certificateif, for any filter assignment
® that coversQ, (1 + ¢)® coverss (recall the definition of “cover” from Sectiof.4.1.). The
notion of coreset is illustrated in FiguBed. Lemma28in Section6.4.4shows that there is always
ane-certificate whose size is independent®f (although the worst case bound is exponential in
|BLeaves|) The size of an-certificate is likely to be much smaller in practice—as evident from the
empirical results.

The remainder of this section is devoted to descHbierAssign(Bleaves §) (Algorithm 9),
for computing a preliminary filter assignment using these ideas. If there afstscertificate
of sizeg, an iterative reweighted sampling scheme can computecatificate of sizeD(gIn g)
in O(gIn|8|) iterations (Lemma30 at the end of the chapter). Without knowiggn advance,
FilterAssign performs an exponential search grrunningO(g In |§|) iterations for a fixed value
of g and then doubling it.

Each stage of the search targets a spegiiced consists of multiplealid iterations? FilterAssign
maintains a weight for each subscribeSininitialized to1 at the beginning of the stage. Each it-

eration chooses a random sub8et. § of sizeO(g1n g), where each subscriber is chosen with

2 This validity condition is needed to establish the ternioratondition of an iteration (Lind4 of Al-
gorithm9). A valid iteration is one where the ratio of the total weight of uncedesubscribers to that of
all subscribers is no more thari8. By random sampling theory (Lemn®l at the end of the chapter), an
iteration is valid with probability at leadt/2, so an iteration can simply be re-done until it is valid.
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probability proportional to its weight. A filter assignment f@ris computed using a helper pro-
cedureFilterAssignHelper described below. If the procedure finds an assignnde(iiy calling
LPRelax), FilterAssign checks whethefl + ¢)® covers the entir&. If yes, FilterAssign stops
and returng1 + ¢)®. Otherwise FilterAssign doubles the weight of each subscriber not covered
by @, and begin a new iteration. An example is shown in Fighu@ If the number of valid it-
erations for the stage exceetigln(|S|/g), FilterAssign concludes that the-certificate has size
larger thary (by Lemma30), andFilterAssign moves on to the next stage.

FilterAssignHelper, invoked byFilterAssign’s inner loop, further prepares the input fd?Relax
and calls it. The-certificateQ that we look for inFilterAssign is intended for the problem of cov-
ering8, but sinceLPRelax considers coverage and load balance joirflgerAssignHelper must
ensure that the input tbPRelax properly reflects the properties 8frelevant to load balancing.
To this end FilterAssignHelper chooses a random subs$gtC § of size proportional tgBLeaves|
(in the experiments]0|BLeaves| is used for the practical sizes ®f-°v*s). FilterAssignHelper
calls LPRelax with 8§, = Q U §;, andR = FilterGen(S,), whereFilterGen is the candidate
filter generation procedure to be described in Sedfighl.3 To guard against the small possi-
bility that a random choice a$, makes the otherwise feasible optimization problem infeasible,
FilterAssignHelper repeats with a new choice 8f (up to a few times) iLPRelax fails to find a

feasible solution.
6.4.1.3 Candidate Filter Generation.

This section describes the procedtitterGen for constructing the seR of rectangles to be used
by LPRelax to form filters. Without loss of generality, I& = {S1,--- ,S,,} denote the set of
subscribers given as input kalterGen (in reality, a subset may be given instead), andjelenote
S;'s interest (a rectangle iR%). Each rectangle iRk is intended to contain a subset®fThere are

Q(m??) rectangles, each of which contains a distinct substdwever, this many rectangles make

3 This lower bound is tight. In the case @f= 1, each interest is an interval. Any intervatontaining a
subset of then intervals can be shrunk so that the endpointg cdincide with the endpoints of some of the
m intervals. Hence, there at@(m?) candidate intervals. Generalizing this argument to higl@ensions,
O(m?*?) candidate rectangles can be generate®.in
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LPRelax impractical.

FilterGen takes two steps (see Figuéed) to ensure thafR is small yet provides good cov-
erage. The first step replaces the input subscriber interests withz set{{;,--- , &} of k
super-interestswherek is proportional to the number of brokers (In the experimehts, set to
5|BLeaves|) These super-interests are obtained by partitio§ingo &

clusters and choosing the minimum enclosing belB) of the subscriber interests in each
cluster. This clustering is done in a joint network-event space for twsorea 1) It captures the
correlation between geographical and topical concentration of inteP@stsmpared to a two-stage
clustering (clustering first in one space and then consider anothes)sfids easier to control the
size of R under a single-stage clustering. In the second step, instead of geg&vétitf) rectan-
gles, a hierarchical procedure is used to generate fewer rectaiglesntuition is that if latency
and load balancing constraints are not too tight, there is flexibility in assignimgcsbers to bro-
kers and each broker would handle subscribers with similar interestshigtschical procedure
aims at generating filters for the clusters of interests on various levelswtigrity. Now the two
steps are described in more detail.

For clustering, a subscribér with coordinate(z1, . .., x;) in the network spac® = R! and
interestl_[f:1 [1;, h;] in the event spacE = R can be mapped to a point

(X1, oyl e oy layhay ooy hy)
in R4, Let = {s7 | j € [1,m]} be the resulting set of. points inR**2?. P is partitioned into
k clusters using thé-means algorithm. LePy, ..., P, be the clusters returned by the algorithm.
For eachP;, let¢; C E be theMEB of subscriber interests corresponding to the pointB;inThe
desired set of super-interestsds= {&1, ..., &}

In the second step, for each dimensios [1,d], FilterGen constructs a sef; of intervals
lying on thex;-axis. R is set to be the Cartesian product of these setsR.es,{J; x --- x Jg |
Vi € [1,d] : J; € J;}. It thus remains to describe the constructiorgpf Let J; be the set ok
intervals that are the projection &fonto thex;-axis. LetA be the length of the smallest interval
containingJ;, and letd be the length of the smallest intervaldn Forl < j < [logy(A/d)], let

¢; = 276. (If A/é§is large,FilterGen choosed;’s more carefully.) For each, letJ;; C J; be the
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FIGURE 6.7: Two main ideas for the rectangle generation step: (a)siden only
log,(A/¢) different lengths, (b) No two intervals of lengthoverlap by more than; /2.

B

set of intervals of length at mogéf/2. FilterGen generates a set of interveds; of length at most
¢; such that every interval df; is contained by some interval ff;, and no two intervals id;;
overlap by more than/; (In the experiments; is set tol /2). Figure6.7illustrates the idea.

To avoid two intervals irf;; overlapping by more than/;, let £ be the set of left endpoints
of intervals inJ;;, sorted in increasing ordet is scanned from left to right and do the following.
The first point, say, of £ is taken, and all the points froi that are within distancel — n)¢;
from p are removed. Ley be the interval of lengtld; with p as its left endpoint./ is shrunk to
the smallest possible interval such that it still contains the same subset gélateJ;;. ThenJ is
added tdJ;; and the above step is repeated, utibecomes empty, at which poifif; is added to
d; and move on to the neyt In the worst casdd;| = O(klogy, A/J), butin practice it is expected
to be closer taD (k) or even smaller. Hence, the size of the filter candidate set(ks), but it
can be further reduced by working in high dimension directly if the dimenstgra E is large.
FilterGen shrinks each rectangle € R to the MEB of subscriber interests contained Byand

returns® to FilterAssignHelper.
6.4.2 Subscription Assignment

The second step &LP; takes as input the preliminary filter assignmémiroduced byFilterAssign
in Section6.4.1, and computes the subscriber assignment§ — BLeaves for the entire set of
subscribers. Since the filters are already given, minimizing bandwidth is cat@ern here; in-

stead, the focus is concentrated on load balance while ensuring thetisaltsare only assigned to
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brokers thatoverthem (recall the definition of “cover” from Secti@4.1.1 which considers both
nesting and latency constraints). Also, recall from Sedsi@that3 and .« are user-defined de-
sired and maximum load balance factors (Ibfs), resp.; the goal is to fihd/aose Ibf is no more
than/3, or else, close t@ and no more thag,ax.

The computation oE is formulated as a max-flow problem. A bipartite gragh= (V, E) is
constructed, whert’ = § U Bleaves {5 ¢}, B = E1 U Eo U E3, By = {(s, B) | B € Bleaves},
E, = {(S,t) | S € 8}, andEs = {(B;,S;) | B; coversS;}. The capacity of every edge in
E, U E3 is set tol, and the capacity of an edde, B;) in E; to |Bx;|8|]. Initially, 3 = 3, but it
may increase over time 0y,,.

The maximum flow is computed fromto ¢. Letf be the value of the maximum flow. If
f = |8, then every subscriber $iis assigned to a broker, which can be identified by the edge into
the subscriber with flow of. The resulting subscriber assignment, which by construction has a Ibf
of no more tharp, is returned. If < || andf = fmax, & conclusion is drawn that the load balance
constraint is too tight, an8LP; stops. Iff < |S§| andf < Smax, the value of is increased by a
small factor, update the capacity of the edge&inand recompute the maximum flow frosmio ¢.
Depending on the maximum flow algorithm employed, as an optimization, the télowrcan be

reused as the starting flow for the increased value [o13).
6.4.3 Filter Adjustment

The third and last step &LP; further adjusts the preliminary filter assignmént= {1, ..., o}
made byFilterAssign. Based on the subscriber assignmentS — Blavs made by the second
step, this step opportunistically tightens the filters, and enforces the filterlexitgpconstraint
(that eachp; consists of no more tham; rectangles). Consider each brok&y with preliminary
filter ;. Let§; C 8 be the set of subscribers assigned3o We want to replace; by F;, a set
of no more thamy; rectangles, such thilly s s; S Ugep, R andQ(B;) = Vol(Ugep, B) is
minimized. The problem is NP-har@T] in general, so the following simple heuristic is used.
The subscriber interests associated \8itlare partitioned intay; groups, using the same clus-

tering technique as super-interest generation in Se@idri.3but ignoring the network space.
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This partitioning gives us a filter with; rectangles, each of which is théEB of the interests in a
group.

If »; has no more than; rectanglesy; is also adjusted as follows. Each subscribe$;ims
assigned to a rectangle i containing its interest (if there are multiple rectangles, one is chosen
arbitrarily). Then, each rectangle i is replaced by th&IEB of the interests of the subscribers
assigned to it. The resulting volume of often decreases. Betweenand the filter generated by
the clustering technique above, the one with the smaller volume is choserf}o be

After processing all filtersy and3 = {Ugcp, B, - -, Ugrer, 12} are returned as the final

result. This completes the descriptionSifP; .
6.4.4 Solution Quality

We begin with a discussion of the solution qualityFalterAssign, the first step oSLP;. Recall
the mixed integer program described in Secohl.1 Let OPTyp(BMeaves R §,, 8,) denote the
value of the objective functio( 5 _preaves Q(B;)) for the optimal LP factional solution to this
program (by allowing the values of Boolean variables to be real). Theawitptheorem bounds

the quality of the solution produced hyPRelax (Section6.4.1.] in terms ofOP T p.

Theorem 27 (Solution quality of LPRelax). LPRelax(BLeaves,
R, 84, 8p) returns a filter assignment with the following properties. i) The expectede\afithe
objective function is at most [S,|OPTLp (B2 R, 8,,8;). ii) The expected filter complexity
of B; is no more tharin |8, |a;. Furthermore, with probablity at least/e, a subscriber assign-
ment can be found such that: iii) it satisfies the nesting constraint with re$pdbe returned
filter assignment; iv) it satisfies the latency constraint; and v) its expecteditthf respect to the

subscribers ir§;, is at mostn |8, | 3.

From Theoren27 above, we see that fdtPRelax’s solution, its expected quality can be a
factor ofIn |S,| worse thanOPTp, and its expected filter complexity can exceed the maximum
allowed by a factor ofn |S,| as well. Fortunately, as the following lemma shows, the size of an

e-certificate is independent ¢$|; therefore,

84| is likely much smaller thaiS|, so the blow-up

factor is closer to a small constant—as evident from the empirical results.
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Lemma 28 (Size of coreset for filter assignmenfyhere exists ar-certificateQ C § of size
O((n1n(A/e))?dnmax(@)) whereA is proportional to the ratio of the volume &EB(S) to the

volume of the smallest subscriber interest.

OPTLp(Bleaves R 8,,8;) provides a lower bound for the value of the objective function for
the optimal solution to the mixed integer problem with the same inputs. Furtherniace,the
optimal filter assignment fa$ is also a filter assignment 8, C 8, OPTp, optimal with respect
to 8,, must be a lower bound for the optimal solution with respe@.té¢lowever, restricting the
set of rectanglef to be considered for filters, as done in Sect®4.1.3 can increas®PTyp
and make it no longer a lower bound. Note that the two steps in candidate &herajion are
orthogonal. Given the set of super-interests provided by the first stegpruning of filters in the
second step only degradé®T1p by a constant factor because, as the following lemma shows,
for any rectangle? excluded from the candidate sBf there exists?’ € R such that? C R’ and

Vol(R) ~ Vol(R).

Lemma 29 (Goodness of candidate filters)et R* be the set ob)(k2?) rectangles, where each
rectangle is the minimum enclosing box of a subset okteebscriber interests. L&t be the set
of candidate rectangles returned IByiterGen. For each rectanglekR € R* \ R, there exists a

rectangleR’ € R, such that? ¢ R’ andVol(R') < 49 Vol(R).

However, the blow-up cannot be bounded due to the super-interegtrihg step; it is a nec-
essary trade-off between complexity of the algorithm and optimality of its solublmmetheless,
if this first step of candidate filter generation is skipped (i.e. every sillgsdnterest is a super-
interest) and only the second is applied, tli&RTp obtained with the resulting still matches
the lower bound for the optimal solution up to a small constant factor.

In sum, FilterAssign produces a preliminary filter assignment that has provably good band-
width and bounded filter complexity (by (i) and (ii) in Theor&hand discussion above) and can
lead to a good subscriber assignment (by (iii), (iv) and (v) in Thed@&mn

Given this preliminary filter assignment, the subscriber assignment steptiorsgd.2further

optimizes load balancing. The entiseis considered for load balancing by this step (as opposed
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to only §;, by FilterAssign). The max-flow algorithm is guaranteed to find the most load-balanced
subscriber assignment possible.

Finally, the filter adjustment step in Sectiérdl.3enforces the filter complexity of each broker,
now using@(B;) (volume of union, as introduced in Secti6rR) instead on(BZ-) (sum of vol-
umes, as introduced in Sectiém.1.] in the objective function. When divided by the maximum
filter complexity, a lower bound for the optimal solution undg(B;) serves as a lower bound for

the optimal solution unde(B;).
6.5 Multi-Level SA

This section describes an algorithm for SA cal®d® when the broker tre@ has multiple levels
of brokers. One possible approach is to first run the one-level algo&hP, (Section6.4) over

all leaf brokers, and then compute the filters at the interior nod&sroa bottom-up manner. This
approach has two drawbacks. First, sibling broker§ imay be assigned subscribers with very
different interests, forcing a large filter at their parent which conswaresof bandwidth. Second,
solving SLP; on a large set of brokers is computationally expensive. In practic&ebitoees
often follow the topology of the underlying network, so a top-down hidriaed approach will be
effective.

The multi-level algorithmSLP works by recursively applying the one-level algoritt8hP,
to subtrees il in a top-down manner. At each non-leaf brok@rof T, SLP; is invoked to
distribute the subscribers amoms children, deciding in which subtree &f each subscriber will
be assignedSLP then recursively processes each child with the set of subscribégaeddo the
corresponding subtree.

To invoke SLP; over a set of non-leaf sibling brokers, still need to address the isfues o
determining appropriate latency and load balance constraints for assysimgscriber to these
brokers—recall from Sectiof.2 that the actual latency to a subscriber depends on its leaf bro-
ker assignment, which has not been made yet because of top-dovesgirgg; the load balance

constraints have only been defined for leaf brokers. These two iaseiesldressed below.
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Determining Latency Constraints. Suppose the multi-level algorith®LP has passed a sub-
scriberS; to the subtree rooted at a non-leaf broker For the purpose of runnin§LP; over
B's children,SLP needs to determine, for each child brok&rof B, whether assigning; to B’
satisfies the latency constraint. Consitleaves(B’), the set of leaf brokers in the subtree rooted
atB'. Letv;(B’) € [0, 1] denote the fraction of leaf brokers ireaves(B’) that would satisfy
the latency constraint fof; if S; is eventually assigned to them. A threshalds set such that
v;(B’) > 7 if and only if assigningS; to B’ satisfies the latency constraint when runn8igP,
over B’s children. The choice of the threshold reflects a trade-off: A Rigbuld severely limit the
choices of subtrees to whidy can be assigned, making it difficult to distribute subscribers evenly
among the subtrees. A lof on the other hand, means tigtcould be assigned to a subtree with
few leaf brokers satisfying the latency constraint$gr making it difficult to distribute subscribers
evenly within the subtreey is set tol /2 to balance these two concerns.

In the event thaty;(B’) < 7 for every childB’ of B, 7 is lowered by a factor of two and try
again, untily;(B’) > 7 for at least one3’. This procedure ensures thgt can be assigned to a

subtree even under stringent latency constraints.

Determining Load Balance Constraints. First, for each child brokeB’ of brokerB, «(B’), the
capacity fraction of3’, is set to bel((B') /K (B), whereK (B) = > g ¢ caves(p) K IS the sum
of capacity fractions of leaf brokers in the subtree roote@ att is easy to see that the capacity
fractions of B’s children sum up to exactly. If B is passedn(B) subscribers to handle, the
locally perfectly balanced loatbr child B’ would bex(B’) - m(B).

Some care is required for determinidg3) and Bumax(B), the desired and maximum Ibfs
(resp.) for runningsLP; over B’s children. Setting these Ibfs to their user-specified global coun-
terparts, i.e.3(B) = B andBnax(B) = Bmax, does not work. The reason is that, for a path of
length/ to a leaf brokerB;, if the multi-level algorithmSLP allows the number of subscribers
passed to every broker to exceed its locally perfectly balanced load dwta of 5, then the to-
tal excess along the path would accumulate to a factg¥ aiver «;|S|. Therefore, the following

method is used instead to assig(B) and Bm.x(B). Note that if the load is perfectly balanced
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globally, B should have been pass&d B) - || subscribers. Suppose(B) is the actual number of

subscribers given t& by SLP. 3(B) is set to(3/ K%ﬂ)& )Y andBmax(B) = (Bmax/ KTé])B-\)SI e,
wherel is the path length fron® to leaf brokerg: Effectively, this method adjusts the Ibfs dynam-
ically asSLP recurses dow¥, accounting for the variable amount of excess load generated by

each step.

Remark SLP targets dissemination trees with large fan-out values but few number dg.ldf/e
the height of a dissemination tree is large, solving subscriber assignmehbielevel is not a

right approach.
6.6 Evaluation

Other Algorithms Tested. Other algorithms are also considered for comparison BithGr*,
SLP,, andSLP. The first one is a variant d&r that ignores latency. (Note that it is less sensible
to ignore load balance, because there would be a strong incentive to egsiy subscriber to the

same broker.)

e Online Greedy without Latency Consideration (Gr_)). This algorithm works exactly like
Gr, except that it drops the latency constraint in defining candidate bsster The an-
swer produced br_; is useful in understanding how latency constraints affect attainable

bandwidth.

Other algorithms that ignore bandwidth and instead focus on some otherrparfce metrics, are
considered additionally. As we will see, lik&r_,, these algorithms do poorly on the metrics they
ignore, but they help illustrate the importance of considering multiple metrics jointptimiza-

tion.

e Closest Broker without Load Balance (Closest ). This algorithm resembles the one
in [13]. It assigns each subscriber to its closest leaf broker in the netwartesfhence

minimizing last-hop latency). Ties are broken arbitrarily.

4 For simplicity of presentation, this setting assumes fhist height-balanced:; i.e., all leaves are an equal
number of hops away from the root. Generalization to the lamgad case is straightforward.
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e Closest Broker (Closest). Like Closest_y, this algorithm assigns each subscriber to its
closest leaf broker. However, once a broker has already beigmadshe maximum number
of subscribers allowed by the user-specified maximumglhf,, Closest drops it from

further consideration.

e Best Load-Balanced Assignment (Balance). This algorithm finds the assignment with the
best possible Ibf (possibly less than the user-specified desirgt) hyf solving a max-flow

problem. The graph construction is a variant of the one in Se6tib:2

Workloads. The above algorithms are evaluated using three sets of workloads. Asskstin
Section6.], it is important to base evaluation on realistic workloads, but they have diffeult

to find. This issue is addressed i2[l] by developing a workload generator based on publicly
available statistics on Google Groups. Extrapolating from these statisticsgiieeagor produces

a baseline workload consistent with them, and can generate additiondbadskhat deviate in
meaningful ways from the baseline. Multiple workloads produced by thigmor (collectively
referred to asvorkload set #1) are used for evaluation. The network locations are mapped to points
in N = R, and the subscriber interests are rectangl@&+nR2. Two workload factors—-+S, inter-

est skewness in terms of popularity, &id number of broad interests (i.e., large rectangles)—vary
between the settings of L(ow) and H(igh). The baseline workload fromgl@oGroups resembles
(IS:H, BI:L). The distribution of subscribers across Asia, North Ameraal Europe id : 1 : 4.

The distribution of brokers across the network space is set to be rotlghlsame as that of the
subscribers.

The workload generatorlP1] uses data extracted from PlanetLab, which consists of 1019
nodes and 484 sites. The inter-node latency relationship is embed in a lowsitimal Euclidean
space using{6]. The generator assumes that interest topics form a partially orderéposet).
First, the100 hottest topics are removed, because they correspond to extremely rpioperests
that are better handled by separate dissemination mechanisms such aastrd&dinterest skew-
ness) is changed hinterest diffusior{121], which adjusts the popularities of topics in the poset

in a top-down fashion by balancing the popularities across subtopicsuog¢heir variance by a
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FIGURE 6.8: Interest distributions it for (IS:H, BI:H).

user-specified factor. IS:L uses a facto6f% while 1IS:H makes no adjustment. Bl (broad inter-
est) is adjusted binterest generalizatiof121], which increases the popularities of more general
topics in the poset in a bottom-up fashion by propagating a fraction of thadguites of subtopics
up. BI:L sets this fraction ta% while BI:H sets it to10%. For (IS:H, BI:H), Figure6.8illustrates
the interest distributions in the event space by subscribers’ geognagiins.

Workload set #2 is designed to reproduce those used for evaluatio®m92, 91], is based
on observations of the RSS feed popularity. A totabofdifferent interests are generated and
their popularity follows a Zipf distribution with exponets. Each interest is mapped to a random
unit square irE. Given an interest, subscriber locations are drawn uniformly at rarfdmm 10
locations inN. In this workload set, the subscriber interests are essentially topic;basédo
notion of “proximity” is captured in either the event space or the networkespa

Workload set #3 is designed to mimic those used in ranked content-based publish/subZé&tibe [
and peer-to-peer overlay for content-based publish/subscibg 26]. The event space is parti-

tioned into100 grid cells. The center of an interest is mapped to the center of one of the cells
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To create hot spots iR, the cells are ranked in random order; the probability of picking a cell as
an interest center follows a Zipf distribution with exponérit. There is also a set of predefined
interest widths. For each dimension, the width of an interest is chosentffiisreet according to

a Zipf distribution with exponend.5. Each subscriber is randomly located at one of the network

locations inN; therefore, subscriber interests and locations are independent.

Problem Settings. Unless otherwise specified, the following settings are used for the SA prob-
lem, and the section shows how the parameters affect the results later. ¢itiglegity « is set to

3 for all brokers. Latency constraints are specified usingaaimum delapf 0.3; the delayexpe-
rienced by a subscribef under a subscriber assignmenis defined to bey/A — 1, whereJ is

the latency of the path iff U 3 from the publisher t&, andA is latency of the shortest path from
the publisher taS through7. For load balance constraints, all leaf brokers have equal capacity
fractions. For workload set #1, the desired and maximum load balantesag and Bayx, are

1.5 and 1.8, respectively. For workload set #2, since the subscribers of aresitare restricted

to a few network locations only, subscriber distribution is skeweH itue to interest skewness.
Therefore 3 and ., are set to relatively relaxed valueso$ and2.5, respectively. For workload

set #3, since subscriber locations are completely randoamd 3,,,.« are tightened td.3 and1.5,
respectively.

The two greedy algorithms in Secti@3 are compared with the algorithms described earlier
in this section together witBLP; (for one-level broker networks) @LP (for multi-level broker
networks). The quality of a solution is measured in terms of total bandwidbscsiber delays,
and broker loads (i.e., number of subscribers assigned to each ore@enon-deterministic algo-
rithms, the average (when applicable) of five runs is reported; deviatitgsints has been found

to be insignificant.
6.6.1 Solution Quality for a One-Level Broker Network
In the following, there ard 00,000 subscribers to assign @0 brokers attached directly to the

publisher.
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Overall Comparison: Figures6.9. To get a quick overview, the result quality of each algorithm
on workload set #1 is plotted as a triangle whose vertices correspondltbaothvidth, root mean
square (RMS) of delay across subscribers, and standard devigi®@E({) of broker loads. The
numbers reported are averaged over four workloads: (I1S:L, B{t§)H, BI:L), (IS:L, BI:H), and
(IS:H, BI:H).

The figure on the left shows th&t.P; andGr* do well in minimizing bandwidth while bound-
ing delay and load balancé&r is worse: not only it incurs higher bandwidth, but it also produces
very unbalanced loads (whifP; andGr* stay right within the maximum Ibf). In fact, for all four
workloads,Gr fails to find a feasible solution that satisfies the load balance constraintstheen
less, the best-effort solutions found By are reported. Variants @r are also tried: whenever the
greedy algorithm cannot assign a subscri§e(because all its candidate brokers are fully loaded),
it randomly removes some subscribers from these brokers to make rosi nd either reassign
the removed subscribers next, or append them to the list of subscrilierptocessed later. These
variants still failed to find feasible solutions, even when given longer timertélranSLP; .

The figure on the right shows that algorithms that ignore one perforn@itegon or another
do poorly. By failing to consider subscriber interests in the event s@dosest_, Closest, and
Balance incur huge bandwidth. By ignoring latency constraints in the network sfiaice pro-
duces unacceptable delay@losest_;, has okay load balance in this case only because the broker
and subscriber distributions are similar; in gen&hisest_,’s load imbalance can be arbitrarily

bad.
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Similar results are observed for workload sets #2 and #3, as shown ireE& 0 and6.11,

respectively.
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One question that is set out to answer with these experiments is whetheacticer the so-
lution could be used to a more tractable optimization problem that ignores sorstaiors as a
(lower-bound) yardstick for gauging the quality of the solution to the futirojzation problem.

Here it is clear thaGr_, is not a good yardstick—compared with the other algorithms, its band-
width is just too low and too unrealistic to serve as a meaningful yardstick.

But then, how could a conclusion be obtained that a solution is “good &feith respect to
the optimal? The solution &LP, though not guaranteed to be optimal, serves as a reasonable
indicator because @LP’s theoretical properties. Next, we will see how a by-product of rugnin

SLP;, namely the LP fractional solution (Sectié.4, can further help.
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Table 6.1: Bandwidth comparison (workload set #1).

Workload | Fractional solution| SLP; Grr Gr
(IS:L, BI:L) 3.09E9 7.12E9| 6.53E9| 9.50E9
(IS:H, BI:L) 1.2E9 1.86E9| 1.53E9| 2.09E9
(IS:L, BI:H) 3.81E9 8.48E9| 7.79E9| 1.05E10
(IS:H, BI:H) 1.29E9 2.13E9| 2.39E9| 2.78E9
Table 6.2: Bandwidth comparison (other workload sets).
Workload set| Fractional solution SLP; Gr* Gr_
#2 1.01E7 1.37E7| 8.5E6 220
#3 2.48E10 5.4E10| 5.3E10| 5.09E10

Bandwidth: Figure 6.12(a) Tables6.1and 6.2 Figure6.12(a)takes a closer look at total band-
width consumption across workload set #1. The relative ordering ofgloeibams is fairly consis-
tent. SLP; andGr* are good and comparabl@r is consistently worse (not to mention its solutions
also violate load balance constraints). Algorithms that ignore the everd apathe worst. Again,
Gr_, (barely visible in the figure) is just too good to be true or useful to the coisgar

Table 6.1 additionally shows the total bandwidth of the LP fractional solution obtained by
runningSLP. Recall from Sectiol.4.4that this solution provides a lower bound for the attainable
bandwidth (modulo the choice of candidate filters) and the optimal bandwidthaugmall constant
factor (if subscriber interests are not first clustered into super-st&reT he table shows that such
solutions give much more meaningful lower bounds tBan. The fact thaSLP; andGr* perform
within small factors (betweenh3 and2.7) from the fractional solution is a good indication that they
perform very well with respect to the optimal.

Table6.2 further shows the comparison for workload sets #2 and #3. Here, ttosdths of
the LP fractional solutions indicate th@r™ performs well in both data sets. For workload set #2,
the fact that the bandwidth @&r* is smaller than the LP fractional solution automatically implies

that the bandwidth achieved I&r* matches the lower bound (within a small constant factor).

Delays: Figure6.12(b) Figure6.12(b)shows scatter plots of delay versus shortest path latency
for selected algorithms for (IS:H, BI:H); the results are similar for otherkieoads in workload set

#1 and for other workload sets. Bo8LP; andGr* are able to bound delay at3 as required.
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Closest_y, is expected to do well on delay, because it focuses exclusively on thenkespace.
However, sinceGr_ ignores the network space, it has trouble satisfying the latency constraints
subscribers near the publisher are especially vulnerable as they mssidpesal to faraway brokers

that blow up delays significantly.

Broker Loads: Figures 6.12(c)and 6.12(d) Figure6.12(c)shows the boxplot of broker loads
for each algorithm for (IS:H, BI:H); the results are similar for other woakls in workload set
#1. The two dashed horizontal lines show the maximum and desired load$ooresponding to
Bmax and B, respectively. As expecte@alance is the bestClosest also does well because the
broker distributions roughly follow the subscriber distributions in the testediwads;Closest_,

is similar toClosest but some brokers may still be overloaded becallssest_, does not enforce
load balance constraints. Keep in mind, however, that these algorithmseagdoied load balance

at the expense of huge bandwidth (Fig6r#2(a). Other algorithms exhibit wider range of loads.
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As mentioned earlieGr is unable to satisfy the load balance constraintsSuR;, Gr*, andGr_,
do, with SLP; achieving a Ibf close to the desired setting.

To have a closer look at the load distributions, the cumulative distributiontitm¢CDF)
is plotted for selected algorithms in Figuel2(d) Gr, despite its best attempt at enforcing all
constraints, overloads more thabf% of the brokers.

The results are also similar for the other two workload sets. The maximum ldadefceeds

Bmax BY 39% and58% for workload sets #2 and #3, respectively.
6.6.2 Solution Quality for a Multi-Level Broker Network

In the following, workload set #1 is tested and there Hi@,000 subscribers to assign to a multi-
level network of200 brokers, where each internal broker has a maximum out-degrég dfhe
constraints are also adjusted to see how well different algorithms cope \eith. thn thetight
latencysetting, the maximum delay is set@®; to compensate, the desired and maximum Ibfs are
set to7 and8 (the minimum possible Ibf is arour). In theloose latencysetting, the maximum

delay is set td, and the desired and maximum Ibfsit@ and1.5.

Overall Comparison: Figures 6.13(a)and 6.13(b) Similar to the results for a one-level net-
work, algorithms that ignore the event spaCéogest_,, Closest, andBalance) incur high band-
width, while the algorithm that ignores the network spaGe_{) produces long delays. Again,
Gr_,'s bandwidth is too unrealistic to serve as a meaningful yardstick for otietiens. There-
fore, these algorithms are omitted in subsequent comparisons.

Under the loose latency settinr andGr* are comparable t8LP, andGr* actually achieves
slightly lower bandwidth tharsLP. Under the tight latency setting, however, b&@h and Gr*
fail to produce a feasible solution that satisfies the load balance consfi&iatshat happened to
Gr for the one-level network). Since the solution qualityGf* dominates that o6r, Gr is also

omitted in subsequent comparisons.

Bandwidth: Figures 6.14(a) Interestingly, for all but one of the eight workload3l.P under-

performsGr*. One explanation is that subscribers have too few choices of brokdes the tight
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latency setting, and too many choices under the loose setting; in eitheStdsaas little advan-
tage overGr*. However, note that the comparison under the tight latency setting is misleading
becausesr* is unable to satisfy the load balance constraints, wBil® does. Under the loose

latency setting, two algorithms actually have more similar performance.

Broker Loads: Figures 6.14(b) These figures show the results on (IS:L, BI:H). Regardless of
the latency settingSLP satisfies all constraints. On the other ha@dl}, despite its best effort,
cannot enforce all load balance constraints under the tight latency seftimtpser look at the
broker load distribution (not shown here) would reveal that more g4 of the brokers are

overloaded.
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6.6.3 Running Time @LP.

The wall-clock time of runningLP is measured on a Dell OptiPlex 960 desktop with Intel Core2
Duo CPU E8500 a8.16GHz, 6144KB of cache, andGB of memory. The LP solver is CPLEX
Version 10. A run with one million subscribers am@0 brokers in a single-level network takes
about23 hours. A run with one million subscribers ard0 brokers in a multi-level network
takes aboutt hours (faster because each callSbP, here involves far fewer thah00 brokers).
Figure6.6.3shows how the number of subscribers impacts the running tirseBf

In sum, for realistic problem sizeSLP has manageable running time on mid-range hardware.
While SLP is by no means fast, its solution quality makes it well worthwhile, especially as a

yardstick to gauge other algorithms.
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Table 6.3: Ibf; varying broker distribution.
Broker distri. | (44,12,44) [ (66,12,22) | (22,12,66) | (33,34,33) | (47,6,47) | (22,56, 22)
Balance 1.062 1.674 1.674 1.062 1.974 1.062
Closest_, 4.464 4.222 7.016 4.464 2.927 7.016

6.6.4 Effect of Problem Parameters.

This section considers the impact of various input parameters on the iproble

Effect of Filter Complexity. Figure 6.6.3shows the effect of the filter complexityv) on the
total bandwidth of solutions bgLP, Gr, andGr*. The workload is (I1S:H, BI:H), with a one-level
network. As discussed in Sectién2, a largera may reduce bandwidth, because multiple rectan-
gles can summarize a set of interests more precisely than a single rectahglefféct is clear
and similar for all three algorithms. At the lowestsettings ofl and2, SLP; is more vulnerable
thanGr andGr*: a filter may consist of multiple faraway rectangles after rounding of thotifnaal
solution; covering them with just one or two MEB may increase the filter voluraendtically.
Overall, « = 3 is a reasonable choice for all algorithms; a largewill increase storage and

processing overhead at a broker and its parent, and has diminishect@ffbandwidth.

Effect of maximum delay. Figure6.17(a)shows how the cardinality of a candidate broker sets is
affected by the parameter maximum delay. When the maximum delay is®&8t &ach subscriber
has roughlyl 7% brokers in its candidate broker set in average. This gives suffioents for the

optimization of bandwidth as shown in Figusel7(b)
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Varying Broker Distribution in N. Table 6.3 shows how broker distribution affects the load
balance factor of the solutionBalance aims to optimize load balancing, a@osest_, assigns
subscribers to brokers without consideration of load balance. Thé BEB must lie in between
the Ibfs ofBalance andClosest_,. The subscriber distribution i : 1 : 4. When the broker
distribution is similar to the subscriber distributionl) the Ibf of Balance is approximately one.
Its Ibf becomes larger as the distributions start deviating from one andilien the case where
more brokers are located near the publisher, load balancing is alway®veapas subscribers have
larger candidate broker sets. On the other h@iosest_,’s load imbalance can be arbitrarily bad.
Hence, the maximum Ibf is capped to be the IbBaflance times1.5, which provides rooms for

SLP to minimize bandwidth while satisfying other constraints.
6.6.5 Algorithm Parameters.

Experiments with different choices of parametersSaP have also been run to verify the settings

of parameters.

Size of8;, on Load Balance (Sectior6.4.1.9. The load balance of the assignment depends on
the number of random subscribers drawn from a uniform distributionftectehe properties of
relevant to load balancing. As shown in Fig#.&8 uniformly sampling around0|B| subscribers

is sufficient to ensure load balangg £ 1.5 and 3.« = 1.8) for a one-level network. For a multi-
level network, uniformly sampling arourtd) times the out-degree of an internal broker returns an

assignment with the load balance factor betwgea 1.3 and S« = 1.5.

Size of= on Bandwidth (Section6.4.1.3. Figure6.19shows how the number of super-interests
affects the quality of the candidate filter §eby setting it to be different multiples ¢B|. As shown
in the figure, whenZ=| is increased, bandwidth is gradually decreased for a one-level rietwor
but it is only slightly improved for a multi-level network. When the out-degréea droker is
small, brokers at a higher level of the tree tend to have large filters eves ¢ulity of the filter

candidate set is further improved, and the bandwidth into those brokemnsales the bandwidth
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of 7. Figure6.20shows the influence of the number of super-interests on the cardinalite of th

filter candidate set.
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Threshold 7 for the Multi-level Algorithm (Section 6.5). Recall that for a multi-level tree,
we determine that assignir§; to B’ satisfies the latency constraint if and onlyyif(B") > 7.
Figures6.21show how the thresholgl affects delay and load balance. The distribution of brokers
across Asia, North America, and Europe(#s: 1 : 2), (4 : 1 : 4), and(2 : 1 : 8) for broker
distributions # 1, # 2, and # 3, respectively. The subscriber distributiph:id : 4) and publisher
is located in Europe.

Since the dissemination trees follow the topology of the underlying netwosigrasg every

subscriber to a subtree with most leaf brokers satisfying its latency caristeisults in smaller
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latency from the publisher to the subscriber. As expected, both low ahdlnigsholds disallow

subscribers to be distributed evenly and the actual load balance factat ferthoth cases.

6.6.6 Discussion.

One take-way point from these experiments is tAgtworks well on many (though not all) work-

loads, including fairly realistic ones generated from statistics on GooglapgsroWwhat is more

important, however, is what allows us to draw this conclusion. Solutions @utdip algorithms

that ignore any performance criterion are not helpful—not only do theytiefare terribly on crite-

ria they ignore, but they also cannot offer meaningful bounds on edrabe realistically achieved.

On the other hand, the LP-based approach is a better yardstick foatngldifferent algorithms.

While we cannot guarantee the optimalitySifP,, we have more assurance of its solution quality

(Section6.4.4 across problem instances. Furthermore, the fractional solution itipesdyives us
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another indicator of optimality that is far more useful than, say, v@raf offers.

One might wonder ifar* works well in general. It does not. We have already seen that it has
trouble with load balance constraints under the tight latency setting. Furtherthe next section
will show how to construct concrete problem instance for witch performs orders of magnitude
worse tharSLP. This example further illustrates the importance of developing better yarsistick

for evaluating algorithms for SA.
6.6.7 A Difficult Workload foGr*.

Gr* works well for most cases studied, but a counterexample can be ottestieasily.Gr* per-
forms poorly on the counterexample because it is forced to make a costjpmsst for subscribers
appeared late in the assignment sequence. Alth@rgliefers the processing of subscribers with
more choices, the choices available to those subscribers can become lincdeddeost brokers
become fully loaded or simply because of tight latency, in which case alcsbbss have few
choices. HowevelGr* is expected to perform well as long as the capacity and latency constraints
are not too tight.

Given filter complexitya, the idea is to construct a sorted sequence of subscribers such that
Gr* will assigna + 1 well separated rectangles to each broker; merging any pair of the géetan
will create a large rectangle. The workloadefsubscribers and brokers is constructed as follow.
(a+1)n interests are created, each of which is a unit square centered at apthietiiney = x in
E = R?. Each interest hasm /n subscribers. Lefy, I, - - -, I(a41), be the sequence of interests
in ascending order of the-axis. For alli < (a + 1)n, let the distance between the centers of
interests/; and ;1 be 1ptimoda)+1./5 = An example of interests fax = 3 andn = 3 is shown
in Figure6.22 Next, for each subscribe¥;, we define a subset of brokers to whish can be
assigned without violating latency constraints. Every subscibehat has interest id; can be

assigned to any brokerif> an, otherwise,S; can only be assigned ©; =

{Bli/(a+1))+1> Bamodn)+1}  if [i/(a+1)] # i modn,
{Bli/(a+1)]+1> B modn) } otherwise.

An example of feasible broker sets for= 3 andn = 3 is shown in Tableé.4.
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LetI; — I; denote that all the subscribers who are interestdgane in front of those who are
interested in/; in the sequence. Subscribers are initially sorted in ascending orderazritiaality
of their candidate broker setdy — Io — -+ = Ion—1 = lan = Liag1)n = Lat)n—1 —
o+ = Innio — Iani1. Though the ordering of the remaining subscribers is always updatéd,
attaches the subscribers with interekts;_ 1, to the same brokeB;, wherej € {1,2,--- ,n}
andk € {0,1,--- ,a}. The subscriber assignment for= 3 andn = 3 is shown in Figures.24
In order to satisfy the filter complexity, two interests are forced to be cdveyehe same huge
rectangle’ The bandwith consumption is roughy 105, which is10* times worse than the result
of SLP. As shown in Figure.23 SLP minimizes bandwidth consumption by attaching the
subscribers with interests;, I;;11, 1;;j+2, andl;; 3 to the same brokeB;, for j € {1,2,3}. The
cost is roughiyB00. In fact, this is the optimal solution.

Table 6.4: An example far = 3 andn = 3.

Subscribers interested inlnitial set of candidate brokers
11,12,14,15,17,0r18 {Bl,BQ}
I3 or Iy {B1, B3}
I {B27 B3}

Lo, 111, or I {B1, B2, B3}
S
/./
"
FIGURE 6.22: Interests ink FIGURE 6.23: Filters gener-
with a = 3 andn = 3. ated bySLP.

5 As the gap between the values ®fand ,,., is increased, some filters will not have a huge rectangle
because subscribers for thé interest may be assigned to other brokers. However, onencaease data
skewness (ex: increase the number of subscribers fot‘theterest) such that the performance @f*
remains orders of magnitude worse than thabbP.
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(a) Interest-broker mapping (b) The best possible clustering

FIGURE 6.24: Filters generated bgr*. Interests with the same color are handled by the
same broker.

6.7 Related work

Dissemination network design for publish/subscribe has received muchiaiténthe past few
years. As discussed in Sectiénl, some previous work considers either interest similarity in
the event space (e.g53]) or subscriber location in the network spade][while ignoring the
other aspect. Other performance objectives and constraints havecatem$idered in subscriber
assignment. Shah et all}4 maximize data fidelity. Tariq et al1fLZ] maximize the number of
subscribers whose latency constraints are satisfied without violatingvmdthaconstraints.

Another line of research focuses on self-organizing, distributed ighges that dynamically
reconfigure the network topology to optimize specific measures. Baldahi [2] minimize the
number of hops and let subscribers be uniformly spread among brakeeger et al.71] mini-
mize total processing and communication costs (excluding last-hop latentieseinebrokers and
subscribers). The distribution of subscribers to brokers is chossrapilistically according to
a random load value. Papaemmanouil et @1] jpresent a general optimization framework that
iteratively improves performance, starting by randomly attaching subssribea node. Under-
standing the robustness and global optimality of such algorithms has bdengiry. The work
presented in this chapter complements this line of research by offeringlstigarfor evaluation
that is computationally feasible over more realistic problem sizes.

Distributed stream processing is also related to the work presented in thierctHstream pro-

cessing systems process and aggregate data over a network of maahthese key issue is how
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to optimally place query operators onto the set of machines @Eddr overview and 123 92
for more recent development). However, the number of queries invaivibeé operator placement
problem is orders of magnitude smaller than the number of subscribers uidtberber assignment
problem.

There is a vast body of literature on network design in general. The mininteimes tree
problem R5 and the weighted steiner tree packing probldé@] fesemble the publish/subscribe
network overlay construction problem if steiner points are viewed asebsoland terminals are
viewed as publishers and subscribers. The minimum steiner tree probld?Xihard R5]. Migli-
avacca and Cugola#l] have studied the optimal content-based routing problem, which is to find
a minimal subtree that connects all subscribers who share the same irgaoésthat the total
communication and processing costs are minimized.

Finally, researchers have studied network design in the area of cdiggiiiution networks$4,
22]. While a content distribution network is not a pure dissemination system big af@ hybrid

between push and client pull, it faces similar issues such as balancingilddsbanding latency.

6.8 Conclusion and Future Work

This chapter has present8tP, a LP-based algorithm for SA, the subscriber assignment problem
for wide-area content-based publish/subscriBeP considers the subscriber distribution in both
event and network spaces to minimize bandwidth while satisfying latency add&dance con-
straints. To ensure its scalability to realistic problem si&$? employs a suite of techniques,
including LP relaxation, randomized rounding, coreset, sampling, andflmaxto carefully re-
duce its complexity.

As a solution to the offline SA problengLP can be used for initial subscriber assignment
and periodical re-optimization. More importantly, with better theoretical pitmseand robust-
ness to workload variation§LP serves as a reasonable yardstick for evaluating simpler heuristic
algorithms across realistic workloads in both online and offline settings. Ulkisgardstick, it
is shown that an efficient greedy algorith@r*, works well for a number of workloads. Com-

pared with previous work, this chapter has pushed the sophisticatiorcaled$ evaluation to new
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heights.

There are two immediate directions for future work. First, a principled ambras still much
needed for the dynamic version of the subscriber assignment problesre sibscribers come and
go. Second, it would be good to drop the assumption that a broker treeeis igi advance, and

jointly optimize subscriber assignment, broker placement, as well as the dissieminetwork

topology.
6.9 Theorems and Proofs

Proof of Lemma&8. For the sake of readability, we bound the size ot-aertificate ford = 2 and
the maximum filter complexity equal to one. The proof can be extended to ayhiraensions
and arbitrary filter complexities analogously.

If there is only one single broker, there are two cases: (1) If the brekenot satisfy all user-
specified latency constraints, no certificate exists @mreturned; (2) otherwise, ancertificate
consists of subscribers whose interests are the leftmost, rightmost, upamabbsipttom-most if.

For|B| > 1, we pick an arbitrary subscribél; € 8. Let its interests; be [¢1, hi] X [l2, ha].
We place an exponential grid centered‘at | %). Letw; g = (hi —£:)(2°(1+ae/2)—1).
The grid consists of vertical linefr = ¢; — wi 34,2 = hi1 + wy 5,4} and horizontal lines
{y="»ly —wapq,y=ho+wrpa}, Wwherea € [1,2,3,--- [2/e]]andf € [0,1,2,--- ,logy A],
as shown in Figuré.25 Let R; be the set of rectangles whose lower-left corners are (brown) grid
points in the southwest quadrant of po(dt, /2) and whose upper-right corners are (blue) grid
points in the northeast quadrant of pofht, ko). Let B; be the subset of brokers that satisfy the
user-specified latency constraint {85 if S; is assigned to them. For ead) € B; and each
rectangleR € R;, let 8 be the set of subscribers that are not coveredpif filter f; = R; we
find ane-certificateQ” for B\{B;} and8\{8F}. An e-certificate forB ands is:

Q = Ugex, B3, Q.
Without loss of generality, say; is assigned td3;. Let R € R; be the smallest rectangle con-
taining filter f;. By construction, am-expansion off; would containR, so every subscriber i

is covered by(1 + €) ;. SinceQ also includes an-certificate forB\{B;} and8\ {8}, Q is an
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FIGURE 6.25: Two levels § = {0, 1}) of exponential grid withe set tol /2.

e-certificate forS andB.
The cardinalities ofR; andB; are O((logy A/€)*) andO(n), resp. Since one broker is re-
moved fromB; for eachQl?, the size of ar-certificate is easily verified to b@((n(log, A/€))*"

by solving the recursive functiog(n) = n(logy A/e)*g(n — 1). O

Proof of Lemma&9. The lemma directly follows from the fact that for each dimension, an interval

of length betweerd; /4 and/; /2 is contained by at least one intervaldy}. O

Lemma 30(Number of iterations)If no certificate is found aftetg log,(|8|/g) iterations, the size

of a certificate must be greater thgn

Proof. The analysis is similar to4, 30]. Let w(X), whereX is a set of subscribers, be a shorthand
for Y gy w(S). LetQ be a certificate witly subscriber interests and suppose we have not found
any coreset afteriterations. For every round, there must be at least one interésthiat is not
covered by the-expansion ofP (otherwise, by coverin@, we would have found a certificate),
and its weight is doubled. Hence(Q) > ¢ - 2/9 after! iterations. On the other hand, the validity
condition (Line14 of Algorithm 9) ensures that the total weight of the interests not covered by
the e-expansion ofb is always at mostv(8)/8, so doubling the weights of those interests cannot
increasew(8) by more than a factor ofl + 1/8). Therefore,w(8) < |8|(1 + 1/8)" after
iterations. Fromy - 21/9 < w(Q) < w(8) < [8|(1+1/8)! < [8]e/(29) < |8|-231/(49), we conclude

that! < 4glogy(|S|/9). O
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Lemma 31 (Probability of valid round) Let Q be a random sample of sizg In g, wherec is a
constant, andb be the set of filters assigned®oto coverQ. Let8’ C § be a set of subscribers not

covered byd. The probability thatV (8') > W (8) is at most 1/2.

Proof. Recall that subscribe¥; can be assigned to broké; only if 1) its interests; is contained
by filter f; in E, and 2) the network coordinate §f is within §; — A; units away from that of3; in
N, whered; is the maximum allowable latency fof; and.; is the path latency from the publisher
to brokerB; in T. Consider thel,, norm. InN, let p; be a rectangle of widtRj; centered at
S; andp; be a rectangle of width)\; centered af3;. The second condition is equivalent to; ‘is
contained byp; in N.”

Let X = R%* be the combined space BfandN. For simplicity, each of the: brokers has
a rectangle filter. The argument can be extended for higher filter complé&ety-" (S, R™) be a
range space, where a ran§ec R" is defined as the compliment of the unioniofectangles in
X. Since the range is defined by combinationst@f + ¢)n linear inequalitiesyVC-dim(X") =
O((d+t)?>nIn((d + t)n). Since the VC-dimension of the range space is finite, the lemma follows
from the theory ofe-nets B4] by choosing the constantlarger than the VC dimension, which

depends ow, ¢, andn. O

Proof of Theoren27. The proof consists of four components: bandwidth, filter complexity, la-
tency and nesting, and load balance:

(i) [Bandwidth] ED p,en.r e VOl(Bk)yik] =

ZBieB,Rkeﬂz Vol(Rg)E[yix] < ZBieB,RkeR Vol(Ry) In [84|ix= (In[84])OPTLp.

(ii) [Filter complexity] E[> ", cx Yik] = D_p,ex Eli] = 2 _g, ex(In[8a)yir < (In[S4])av.

(iii) [latency and nesting] Here, we show that there exists a roundingiselfier variables:;;, such
that the latency and nesting constraints can be enforced with probabilitgstt Je. We round

variablesr;;’s as follows:

1—|Sq |~ i .
i n lf yk 2 1,
Priz;j =1]y| = 1_HRkeij(1_yik)l I8al ZRk'GWJ i
0 otherwise.
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This ensures that a subscrilfgris assigned to brokes; only if B; coversS;. Also,Pr[z;; = 1| y]
is always betweefl and1 since constraints (C4) ensures t@hk@j Yik > x5, Which implies
1~ [8a] 7 < 1 [8q| &P ¥ <1 - [Tk, e, (1= yir)™ Bl

Recall thatPr[y;, = 1] = 1 — (1 — ;)™ |, The probability that brokeB; coverssS; is

PI[ZRkeﬂzj Yik = ” =1- Pr[ZRkeRj Yik = 0] =1- HRkGRj(l - Qik)lnwa‘- The probability

that subscriberS; is assigned to brokeB; is equal to the sum dPr[z;; = 1 | ZRkER]- Yik >
1] - Pr[szGRj yir, > 1] andPrz;; = 1 | ZRkeRj Yir = 0] 'Pr[ZRkeij vir. = 0]. A straight
forward calculation will givePr[z;; = 1] = 1 — |8,| 2.

The probability that a subscribé; is not assigned to any brokeris|[Np,es,{z;; = 0}] =
[I5,cn, Pri{zi; = 0}] = [1p,es, [8al " = \SQ]ZBZ'GBJ' ~ < 18,|~". Hence, the probability
of every subscriber assigned to a broker is at Iﬂa§jt€5a Pr[UBi@j{xU =1} = Hsjesa(l -
Pr[Np,es, {2 = 0}]) = [1g;es, (1 = 18al™") = (1 — (84|71l > 1/e.

(iv) [Load balance] Using the above rounding schenﬁzsjesb zij] = Zsjesb Elzi;]

=2 5,es, (I [8al)zi; < (In[Sa])Bri[S]. O

207



7

Conclusion and Future Work

7.1 Conclusion

This dissertation has examined the problem of answering various typeseofjueries in vari-
ous settings. The problem was modeled using a geometric framework. Byrapfechniques
such as dual transform, coreset, sampling and dimensionality reducficigergfalgorithms were
developed for both query processing and notification dissemination.

Chapter3 addressed the problem of supporting a large number of continuousemeé topk
gueries. The chapter proposed the notion of QRS (query respariaesdiand developed solutions
within a geometric framework. Recognizing the connection to halfspace iquneyies, data struc-
tures were obtained for reverse top-k queries with linear space atidearxguery time. Building
on this result, a fully dynamic solution was presented to scale the solution to a milééergnces
with both object and preference updates. The presented duality-bppedach enabled effec-
tive subscription clustering; for regions where subscriptions wereilgedustered, queries were
jointly processed to acheive better performance. This chapter alsedeifird solved the approx-
imate preference top-queries. The presented coreset-based approach significantly irdpheve
qguery time of the algorithms with only little loss in accuracy. Experimental evaluatofirmed

the effectiveness of our ideas such as selective QRS-drivengsiageand coreset-based QRS
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simplification, which helped advance our solutions in both scalability and furadtty.

Chapted presented efficient data structures and algorithms foktape reverse tog-queries
in high dimensions. Our solution was based on the idea of core subsjizeqspited the sparsity
in preferences to identify core subspaces, and applied the technigem®sets and duality trans-
form to index each core subspace as well as the full-dimensional sfiacavely. Experimental
evaluation showed that in high dimensions, exact methods were slow, wisteng>approxima-
tion methods suffered from either poor speed (e.g., when using only k siageset in the full
space) or poor accuracy (such as the PCA- and view-based apps)aln contrast, for workloads
where preferences were often sparse, our solution offered abiesirade-off between speed and
accuracy, which made scalable processing of preferencé top reverse tog-queries in high
dimensions a reality.

Chapter5 tackled the problem of supporting a large number of rangektspbscriptions in a
wide-area network. The chapter addressed the dual challengessafigtion processing and no-
tification dissemination, by carefully separating and interfacing these taskaay that achieved
efficiency with off-the-shelf dissemination networks and without increpsiystem complexity.
Our techniques were based on a geometric framework, enabling us ectwhare the subset of
subscriptions affected by an event as a region in an appropriatedisfiaee, and solved the prob-
lem of notifying affected subscriptions as one of tiling the region with basiorgdric shapes. The
array of techniques this chapter had developed—ranging from thosadéd the knowledge of
subscriptions to those that did not, from event-at-time to batch processngekact to approx-
imate, and from one-dimensional to multi-dimensional ranges—spoke to ther pdwhis frame-
work. Theoretical analysis and empirical evaluation showed that ouoapip and techniques held
substantial advantages over less sophisticated ones.

Chapter6 studied how to design an efficient dissemination network for range quehies
particular, the subscriber assignment (SA) problem was solved foravieke content-based pub-
lish/subscribe. This chapter presented a LP-based algorithm &lllBgd which considered the
subscriber distribution in both event and network spaces to minimize bandwidlia satisfying

latency and load balance constraints. To ensure its scalability to realistieprsizes, SLP em-
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ployed a suite of techniques, including LP relaxation, randomized roundorgset, sampling,
and max-flow, to carefully reduce its complexity. As a solution to the offline 8khlem,SLP
could be used for initial subscriber assignment and periodical reoptimmzatiore importantly,
because of its better theoretical properties and robustness to worlddations,SLP served as a
reasonable yardstick for evaluating simpler heuristic algorithms acrossticeaorkloads in both
online and offline settings. Using this yardstick, this chapter concluded tsiatple and efficient

greedy algorithmGr*, worked well for a number of workloads.

7.2 Future work

This section provides several directions for future research thatekte work of this dissertation:

Top-k subscriptions. In addition to object ranking, users can also be ranked from publishers
perspective: instead of disseminating updates to all affected userdliaheun will find ¢ most
relevant users to the update and only notify thosesers of the updates. Recently, Sadoghi and
Jacobsen]02 103 presented data structures for supporting tapatching subscriptions, where
each subscription specifies both range condition and customized saamictgph. Their solution is
based on a two-phase space-cutting technigsgaee partitioningvhich chooses the best splitting
attribute andspace clusteringvhich clusters users based on their subscription ranges in the splitting
attribute. However, supporting tapmatching subscriptions remains an open problem when each

subscription is a continuous preference fognge query.

Continuous top-k queries under uncertainty. Another future direction is to explore different
ways of modeling user interests in order to handle uncertainty in prefekeotors. Users may not
explicitly know the combination of weights that reflect their interests. Oneilpibgsis to model

a user preference as a set of possible vectors or a cone insteagl ‘pirecise” vector.

Spatial-temporal top-k preferences Another future direction is to consider both space and time

in ranking. User preferences may be location-based; users may onlgbested in updates within
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their local neighborhood. For example, Nextddar private social network, maintains thousands
of neighborhoods and supports notification dissemination of local updatek as break-in and
missing pets. Sectidb.5has generalized the framework to hankiaearest-neighbor queries, but
still the ranking of objects may depend on their publication time as well; their rgakitay drop
over time gradually. For example, a news story about a robbery thatredctoday may rank
higher than another news story about a robbery that occurred a ageekAs another example,
Facebook uses EdgeRank, which takes time decay into consideratiomkttheastories in the

news feed.

Yhttp://nextdoor.com
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