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Abstract

Strong coupling between light and matter has been demonstrated both in classical

cavity quantum electrodynamics (QED) systems and in more recent circuit-QED

experiments. This enables the generation of strong nonlinear photon-photon in-

teractions at the single-photon level, which is of great interest for the observation

of quantum nonlinear optical phenomena, the control of light quanta in quan-

tum information protocols such as quantum networking, as well as the study of

strongly correlated quantum many-body systems using light. Recently, strong

coupling has also been realized in a variety of one-dimensional (1D) waveguide-

QED experimental systems, which in turn makes them promising candidates for

quantum information processing. Compared to cavity-QED systems, there are

two new features in waveguide-QED: the existence of a continuum of states and

the restricted 1D phase space, which together bring in new physical effects. This

thesis consists of two parts: 1) understanding the fundamental interaction be-

tween local quantum objects, such as two-level systems and four-level systems,

and photons confined in the waveguide; 2) exploring its implications in quan-

tum information processing, in particular photonic quantum computation and

quantum key distribution.

First, I demonstrate that by coupling a two-level system (TLS) or three/four-

level system to a 1D continuum, strongly-correlated photons can be generated

inside the waveguide. Photon-photon bound states, which decay exponentially
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as a function of the relative coordinates of photons, appear in multiphoton scat-

tering processes. As a result, photon bunching and antibunching can be observed

in the photon-photon correlation function, and nonclassical light source can be

generated on demand. In the case of an N -type four-level system, I show that the

effective photon-photon interaction mediated by the four-level system, gives rise

to a variety of nonlinear optical phenomena, including photon blockade, photon-

induced tunneling, and creation of single-photon states and photon pairs with

a high degree of spectral entanglement, all in the absence of a cavity. How-

ever, to enable greater quantum networking potential using waveguide-QED, it

is important to study systems having more than just one TLS/qubit. I develop

a numerical Green function method to study cooperative effects in a system of

two qubits coupled to a 1D waveguide. Quantum beats emerge in photon-photon

correlations, and persist to much longer time scales because of non-Markovian

processes. In addition, this system can be used to generate a high-degree of long-

distance entanglement when one of the two qubits is driven by an on-resonance

laser, further paving the way toward waveguide-QED-based quantum networks.

Furthermore, based on our study of light-matter interactions in waveguide-

QED, I investigate its implications in quantum information processing. First, I

study quantum key distribution using the sub-Poissonian single photon source

obtained by scattering a coherent state off a two-level system. The rate for key

generation is found to be twice as large as for other sources. Second, I propose a

new scheme for quantum computation using flying qubits—propagating photons

in a one-dimensional waveguide—interacting with matter qubits. Photon-photon

interactions are mediated by the coupling to a three- or four-level system, based

on which photon-photon π-phase gates (Controlled-NOT) can be implemented

for universal quantum computation. It is shown that high gate fidelity is possible
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given recent dramatic experimental progress in superconducting circuits and

photonic-crystal waveguides. The proposed system can be an important building

block for future on-chip quantum networks.
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1

Introduction to Waveguide-QED

Understanding light-matter interaction is fundamental to quantum optics. Strong

interactions can be achieved by placing atoms inside confined optical cavities.

Cavity-based systems for quantum electrodynamics (QED) achieved the so-called

strong-coupling regime by having a small mode volume of photons [1, 2, 5, 6, 7, 8,

9, 10, 11, 12, 13]. This enables the generation of strong nonlinear photon-photon

interactions at the single-photon level, which is of great interest for the obser-

vation of quantum nonlinear optical phenomena [11, 14, 15, 16, 17], the control

of light quanta in quantum information protocols such as quantum networking

[18, 19], as well as the study of strongly correlated quantum many-body systems

using light [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. For example, electromag-

netically induced transparency (EIT) [16] and photon blockade [14, 31, 32] have

been observed in recent experiments with trapped atoms in an optical cavity

[33, 34, 35] and with superconducting qubits in a microwave resonator [36]. Co-

herent transfer of quantum states between light and stationary qubits has been

demonstrated in both cavity-QED [37] and circuit-QED [38, 39] systems.

1



Recently, an alternative waveguide-based QED system has emerged as a

promising candidate for achieving strong coupling between photons and atoms,

motivated by tremendous experimental progress [17, 40, 41, 42, 43, 44, 45, 46,

47, 48]. Waveguide-QED systems benefit from the strong confinement of light

field inside the one-dimensional (1D) waveguide, which couples to nearby atoms.

Compared to cavity-QED systems, the key physical element introduced in the

waveguide QED geometry is that the atom couples to a continuum of modes.

This relaxes the restriction of working with a narrow cavity bandwidth and

avoids the complex tuning to match the cavity and the atom resonances.

In this Chapter, I start by reviewing the fundamental light-matter interaction

in three-dimensional open space and then in cavity-QED systems, followed by

an introduction to waveguide-QED systems. Next, I cover a survey of the cur-

rent status of experimental progress in both cavity-QED and waveguide-QED

systems.

1.1 Light-Matter Interaction in Open Space

1.1.1 Field Quantization

We start with field quantization of quantum electrodynamics in 3D free space.

We assume an electromagnetic field confined inside a box of linear dimension

L. We can quantize the field in open space by imposing periodic boundary

conditions on the cubic of linear dimension L. The resulting vector potential

and the electric and magnetic fields under Coulomb gauge can be expressed in

2



terms of the creation and annhilation operators in k-space a†kλ and akλ as [1]

A(r, t) =
∑
kλ

êkλ

√
~

2ε0V ωk
[akλe

i(k·r−ωkt) + a†kλe
−i(k·r−ωkt)],

E(r, t) = −∂A(r, t)
∂t

= i
∑
kλ

êkλ

√
~ωk
2ε0V

[akλe
i(k·r−ωkt) − a†kλe

−i(k·r−ωkt)],

B(r, t) = ∇×A(r, t) = i
∑
kλ

k̂× êkλ

c

√
~ωk
2ε0V

[akλe
i(k·r−ωkt) − a†kλe

−i(k·r−ωkt)].(1.1)

where k̂ = k/k is the unit vector, ωk is the photon frequency with wave-vector

k, and êkλ is the unit polarization vector with λ = 1, 2. V = L3 is the volume of

the 3D box.

Because êkλ · êkλ′ = δλλ′ and
[
akλ, a

†
k′λ′

]
= δλλ′δkk′ , the energy of the field can

be written as

H =
1

2

∫
V

d3r
(
ε0E

2 + µ−1
0 B2

)
=

∑
kλ

~ωk
(
a†kλakλ +

1

2

)
. (1.2)

1.1.2 Hamiltonian of Dipole Interaction

We assume a simple two level system with ground state |g〉 and excited state

|e〉. When the size of the two level system is much smaller than the wavelength

corresponding to the transition frequency, we can apply the electric dipole ap-

proximation. Under the dipole approximation, the interaction between the two
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level system and a static electric field (at r = t = 0) is given by

V AF = −p · E = −i
∑
kλ

(p · êkλ)εk[akλ − a†kλ], (1.3)

where p is the atomic dipole moment and εk =
√

~ωk/2ε0V is the field strength

per photon of frequency ωk.

Now, let us quantize the interaction Hamiltonian of VAF in Eq. (1.3),

VAF = {|g〉〈g|+ |e〉〈e|}

{
−i
∑
kλ

(p · êkλ)εk[akλ − a†kλ]

}
{|g〉〈g|+ |e〉〈e|}

= −i
∑
kλ

[〈g|p · êkλ|e〉|g〉〈e|+ 〈e|p · êkλ|g〉|e〉〈g|]
[
εk

(
akλ − a†kλ

)]
. (1.4)

We can perform a rotation on akλ and a†kλ to absorb −i, and define the raising and

lowering atomic operators σ+ = |e〉〈g|, σ− = |g〉〈e|. Without loss of generality,

we assume the dipole matrix element d = 〈g|p · êkλ|e〉 = 〈e|p · êkλ|g〉 to be real.

Then the dipole interaction Hamiltonian can be rewritten as

HAF =
∑
kλ

εkd (σ− + σ+)
(
akλ + a†kλ

)
. (1.5)

Applying the rotating wave approximation1 and dropping the nonresonant terms

which do not conserve the energy, we end up with the dipole interaction Hamil-

tonian as

HAF =
∑
kλ

~g(k)
(
σ+akλ + σ−a

†
kλ

)
, (1.6)

1 It is valid when the decay rate of the two level system is much smaller than the energy
splitting ωeg , and is satisfied in most of current experiments.
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with the wave-vector dependent Rabi frequency g(k) defined as

g(k) = d

√
ωk

2ε0~V
(1.7)

With the quantized dipole interaction Hamiltonian, we can calculate the spon-

taneous decay rate in free space using Fermi’s golden rule,

Γe =
2π

~
∑
kλ

|〈i|HAF |fkλ〉|2δ(Ef − Ei)

=
2π

~2

∑
kλ

|~g(k)|2δ(ωf − ωi)

= 2πρ(ωeg)|g(keg)|2

=
d2ω3

eg

πε0~2c3
. (1.8)

where ρ(ω) =
V ω2

k

π2c3
is the density of states, |i〉 and |fkλ〉 are the initial and final

states, respectively. Note that there are at least two conditions which have to be

satisfied to validate the above calculation. First, the decay rate must be much

smaller than the energy diffference between the two states of the transition,

Γe � ωeg. This makes sure the initial and final states are well defined. Second,

the dependence of the matrix element and the density of states on frequency has

to smooth and slowly varying, at least in the vicinity of the resonance frequency

ωeg.

1.2 Fundamentals of Cavity-QED

1.2.1 Field Quantization

It is straightforward to apply the same technique as in the open space case to

quantize the electromagnetic field confined within a finite volume cavity. Specif-
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Figure 1.1: One-dimensional optical cavity of length L [1].

ically, let us consider a one-dimensional optical cavity with length L, as shown in

Fig. 1.1. We assume the cavity has perfectly reflecting walls. Hence, the bound-

ary condition is to require the electric field vanish on the walls. This will give

a discrete spectrum as the solution of Maxwell equations. Now we have stand-

ing instead of running waves. The expressions for the fields now simplify to

E(r, t) = êE(z, t) = x̂E(z, t), and B(r, t) = k̂× êB(z, t) = ŷB(z, t). Imposing

the boundary condition E(z = 0, t) = E(z = L, t) = 0, we find that the spa-

tial eigenmodes take the form of sin(kmz), where km = πm/L, m = 1, 2, 3, · · · ,

with the frequencies ωm = ckm. Now the quantized field in the km mode can be

written as

Em(z, t) =

√
~ωm
ε0V

[
ame

−iωmt + a†me
iωmt
]
sin(kmz),

Bm(z, t) =
−i
c

√
~ωm
ε0V

[
ame

−iωmt − a†meiωmt
]
cos(kmz), (1.9)

where V = SL is the mode volume with S being the transverse area. Again, the

energy stored in the cavity field can be calculated as:

H =
∑
m

∫
V

dSdz
1

2

(
ε0E

2
m + µ−1

0 B2
m

)
=
∑
m

~ωm(a†mam + 1/2). (1.10)

The integral
∫
dS
∫ L

0
sin2(kmz)dz = S · L

2
= V

2
is applied here.
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1.2.2 Jaynes-Cummings Model

Now, let us consider the dipole interaction between an atom and the quantized

field of a cavity. In particular, we assume that mode ωc is near resonant with

the frequency ωeg of the atomic transition. Typically, the level space of the cavity

modes is much larger than the width of the atomic level. Hence, the atom

effectively interacts only with ωc mode, while all the other modes are decoupled

from the atomic transition and can be safely neglected. With the dipole and

rotating wave approximations, the total Hamiltonian of the system is described

by the well-known Jaynes-Cummings model

HJC = HA +HF +HAF

HA =
1

2
~ωegσz

HF = ~ωca†a

HAF = ~g(σ+a+ a†σ−), (1.11a)

where g is the Rabi frequency defined in Eq. (1.7), and in this case is given by

g = d
√
ω/~ε0V sin(kz0), (1.12)

where d is the dipole matrix element, and z0 is the coordinate of the atom. From

Eq. (1.12), we can see that the Rabi frequency can be very large if we make the

cavity small enough or have a large dipole moment of the atom [2, 5].

With the losses taken into account, the system can be modeled by the follow-

ing effective non-Hermitian Hamiltonian [1],

Heff = HJC − i~
1

2
Γ′σ+σ− − i~

1

2
κa†a, (1.13)
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Figure 1.2: Dynamics of an initially excited two-level system coupled to a on-
resonance cavity [1] for (a) strong coupling regime, and (b) weak coupling
regime. Solid lines: probability of the atom to be in the excited state; Dashed
lines: probability for the cavity to contain a single photon. Time is measured in
units of Γ′−1

where the first term is defined in Eq. (1.11a), while the second and third terms

describe the atomic and photonic relaxation, respectively. If we assume that

initially the atom is excited and the cavity is in vacuum, as shown in Fig. 1.2(a)

in the so-called strong coupling regime g > Γ′, κ, the system undergoes damped

coherent Rabi oscillations between the states |e, 0〉 and |g, 1〉, both of which decay

to the state |g, 0〉 with rates Γ′ and κ, respectively. The total population of the

atom and the photon decays with the rate of 1
2
(Γ′ + κ). On the other hand, in

the weak coupling regime as shown in Fig. 1.2(b), g � Γ′, κ, the system is in the

overdamped regime and simply decays exponentially into |g, 0〉 without Rabi

oscillations.

1.3 Fundamentals of Waveguide-QED

1.3.1 Field Quantization

Now, let us consider a one-dimensional waveguide (for example, nanowire),

which supports quantized travelling modes along the waveguide, as shown in

Fig. 1.3. The transverse wave-vectors are discrete due to the boundary condition.
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Figure 1.3: 1D waveguide with length L. The field is confined within R to the
center in the transverse direction.

We choose one particular transverse mode k⊥. The travelling mode k‖ can be

written as 2πn
L
, n = 1, 2, 3, · · · , where L is the length of the waveguide. For

simplicity, we assume cylindrical geometry and the mode k⊥ is confined within

the radius of R from the center.

Therefore, the electric field strength of the mode can be estimated from

~ωk
4

=
1

2
ε0E

2 · Veff. (1.14)

where Veff = πR2L is the effective mode volume of k⊥. This gives rise to the field

strength as E =
√

~ωk/2ε0Veff. Therefore, the Rabi frequency can be estimated as

g(k) =
d · E

~
= d

√
ωk

2~ε0Veff
. (1.15)

Notice that this formula takes essentially the same form as the cavity case in Eq.

(1.12). However, in the cavity case, there is only one mode available; while in

the waveguide case, there is in principle an infinite number of modes k‖ = 2π
L
n,

in the limit of infinitely long waveguide, L → ∞. Because of the existence of a

continuum in the waveguide case, we can apply Fermi’s golden rule to estimate
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the decay rate into waveguide modes.

Γwg =
2π

~
|~g(ωeg)|2ρ(Eeg)

=
2π

~2
|~g(ωeg)|2ρ(ωeg)

= 2π|g(ωeg)|2ρ(ωeg)

= 2π|g(ωeg)|2(2L/2π)
dk

dωk

∣∣∣∣
ωeg

=
d2ωeg

πε0~vgR2
(1.16)

Here, vg is the group velocity of the travelling mode.

We can define the effective Purcell factor by comparing the decay rate into

the waveguide modes [Eq. (1.16)] and the decay rate into free space [Eq. (1.8)],

P ≡ Γwg
Γe

=
c3

ω2
egR

2vg
. (1.17)

This Purcell factor P quantifies how the atomic excitation decays: in the limit

P → ∞, all the excitation will decay into the waveguide modes. Replacing ωeg

by the corresponding wavelength, ωeg = 2πc
λ
, we obtain the following

P =
1

4π2

λ2c

R2vg
(1.18)

It is evident that a large Purcell factor is achievable via either subwavelength

confinement of waveguide modes, i.e. R ≤ λ, or a small group velocity, i.e.

vg � c.
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1.3.2 Hamiltonian in Waveguide

With the 3D open space modes replaced by the 1D waveguide modes, we can

write down the Hamiltonian corresponding to a two-level system dipole-coupled

to a 1D waveguide

Hwg = ~ωegσee +
∑
k

~ωka†kak +
∑
k

~g(k)
(
σ−a

†
k + σ+ak

)
, (1.19)

where σee = |e〉〈e|, σ− = |g〉〈e|, σ+ = |e〉〈g|, and we have set the ground state

energy as the reference energy, i.e. Eg = 0. g(k) is the Rabi frequency defined

in Eq. (1.15).

Next, we want to rewrite the above Hamiltonian in terms of integration in

k-space. The conversion from summation to integration can be done via the

following transformations

∑
k

→ L

2π

∫ ∞
−∞

dk,

a†k →
√

2π

L
a†(k),

δkk′ →
2π

L
δ(k − k′). (1.20)

Using Eq. (1.20), we may rewrite the Hamiltonian in Eq. (1.19) in the following

form

Hwg = ~ωegσee +

∫
dk~ωka†(k)a(k) +

∫
dk~g(k)

√
L

2π

[
σ−a

†(k) + σ+a(k)
]
. (1.21)

For the problem of a two-level system interacting with a continuum of waveg-

uide modes, only the states near the resonant energy ~ωeg are essential for the
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dynamics of the system, as shown in Fig. 1.4. In particular, the vacuum fluctua-

tion in the waveguide will give a radiative correction to the energy-level of the

excited state of the atom known as the Lamb shift [12]. That is the only allowed

renormalization process under the rotating wave approximation, which is valid

when the level width Γwg � ωeg. We absorb this frequency shift into ωeg in all

the following calculations. Therefore, we may use the following approximations

to simplify the above Hamiltonian:

• Linearize the spectrum over the relevant frequency range: ωk ≈ vg|k| (sim-

ilar to what has been done in 1D Tomonaga-Luttinger model [49]);

• Assume a frequency-independent coupling matrix element: g(k) ≡ g;

• Completely separate left- and right-moving photon fields with vanishing

commutators;

𝑘 

𝜔𝑘 

𝜔𝑒𝑔 Γ𝑤𝑔 

𝑘𝐿 𝑘𝑅 

Figure 1.4: Linearized dispersion relation in a 1D waveguide. Only the states
close to ωeg (within a width Γwg) are important for the dynamics of the system.
Both the left-moving (blue solid line) and the right-moving (red solid line) fields
are extended to negative energy range (blue dash and red dash lines).
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• Extend the range of the wave vector of left (right)-moving field kL (kR) from

[−∞, 0] ([0, ∞]) to [−∞, ∞]. In principle, this allows for the existence of

negative-energy modes, seeming to make the system ill-defined. However,

it is not important because we consider only the dynamics near-resonant

with the two-level system. It only affects the cutoff in the integral of the

Lamb shift, which is already absorbed into ωeg.

Under these approximations, the relevant terms in Eq. (1.21) are transformed

as

∫ ∞
−∞

dk~ωka†(k)a(k)→
∫ ∞
−∞

dk~vg|k|a†(k)a(k)

→
∫ ∞

0

dk~vgk
(
a†R(k)aR(k) + a†L(−k)aL(−k)

)
→
∫ ∞
−∞

dk~vgk
(
a†R(k)aR(k) + a†L(−k)aL(−k)

)
→
∫ ∞
−∞

dk~vgk
(
a†R(k)aR(k)− a†L(k)aL(k)

)
, (1.22)

∫ ∞
−∞

dk~g(k)

√
L

2π

(
σ−a

†(k) + σ+a(k)
)

→
∫ ∞

0

dk~g
√

L

2π

(
σ−

[
a†R(k) + a†L(−k)

]
+ σ+ [aR(k) + aL(−k)]

)

→
∫ ∞
−∞

dk~g
√

L

2π

(
σ−

[
a†R(k) + a†L(−k)

]
+ σ+ [aR(k) + aL(−k)]

)

→
∫ ∞
−∞

dk~g
√

L

2π

(
σ−

[
a†R(k) + a†L(k)

]
+ σ+ [aR(k) + aL(k)]

)
. (1.23)

Collecting all the pieces together, we have the following approximate Hamilto-
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nian for the 1D waveguide-QED system,

Hwg = ~ωegσee +

∫
dk~vg|k|a†(k)a(k) + ~g

√
L

2π

∫
dk
(
σ−a

†(k) + σ+a(k)
)

= ~ωegσee +

∫ ∞
−∞

dk~vgk
(
a†R(k)aR(k)− a†L(k)aL(k)

)
+~geff

∫
dk
(
σ−

[
a†R(k) + a†L(k)

]
+ h.c.

)
, (1.24)

where geff is given by,

geff = g

√
L

2π
=

√
L

2π
d

√
ωeg

2~ε0Veff

= d

√
ωeg

4π2ε0~R2
. (1.25)

Next, we want to transform the continuous model in k-space to real space

via Fourier transformtion,

aL/R(x) =
1√
2π

∫
dkeikxaL/R(k),

aL/R(k) =
1√
2π

∫
dxe−ikxaL/R(x). (1.26)

Using the above transformation, we end up with the real-space Hamiltonian

Hwg = ~ωegσee +

∫
dx~vg

[
a†R(x)

(
−i d
dx

)
aR(x)− a†L(x)

(
−i d
dx

)
aL(x)

]

+~Veff
∫
dxδ(x)

(
σ−

[
a†R(x) + a†L(x)

]
+ h.c.

)
, (1.27)

where Veff =
√

2πgeff is the coupling strength.
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1.3.3 Loss

Finally, we want to introduce loss into our Hamiltonian. A non-Hermitian term

(−i~Γ′/2)σee can be included to describe the decay of the excited state |e〉 at

a rate Γ′ into other channels. This was first introduced in a “quantum jump”

description of an open system [50].

Hwg = ~
(
ωeg −

iΓ′

2

)
σee +

∫
dx~vg(−i)

[
a†R(x)

daR(x)

dx
− a†L(x)

daL(x)

dx

]

+~Veff
∫
dxδ(x)

(
σ−

[
a†R(x) + a†L(x)

]
+ h.c.

)
. (1.28)

This Hamiltonian is a basis for all of our subsequent studies. In quantum optics,

the Γ′ term is called diagonal relaxation because it determines how fast the

diagonal term ρee of the atomic density operator decays. There is another term

Γphase not included here, which accounts for all other possible mechanisms (other

than Γ′) of coherent relaxation of the atom which do not affect the populations.

Together, the coherence relaxation rate can be expressed as γeg = Γ′

2
+ Γphase,

which is also called off-diagonal relaxation because it determines the decay of

the off-diagonal term ρeg of the atomic density operator. Often Γ′ is denoted by

1/T1 and γeg by 1/T2 , where T1 and T2 are the corresponding relaxation times

[1]. In principle, one could also include a non-Hermitian term −i~κa†(k)a(k) to

describe the loss of photons. Here, for simplicity, we assume that we have a

low-loss waveguide such that photonic loss can be neglected.

1.4 Survey of Experimental Systems

Recently, there has been tremendous experimental progress in both cavity-QED

(circuit-QED in particular) and waveguide-QED systems.
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Table 1.1: Cavity-QED experiments which have achieved the strong coupling
regime. g : Rabi frequency. κ : cavity photon loss rate. Γ′ : atom decay rate. κ
and Γ′ are in the same unit as g. Q : cavity quality factor. SC: superconduting;
QD: quantum dot; PC: photonic crystal; TL: transmission line.

Expt. (year) Cavity Atom g
2π

κ
2π

γ
2π

Q
[5] (′92) optical cavity Cs atom 3.2 MHz 2.5 0.9 8× 104

[53] (′96) SC cavity Rydberg atom 25 kHz NA NA 7× 107

[6] (′04) microcavity QD 140 µeV 100 1-10 8800
[54] (′04) optical cavity Cs atom 34 MHz 4.1 2.6 9× 107

[55] (′07) PC nanocavity QD 3 GHz 3.8 1.4 13300
[7] (′09) optical cavity Trapped ions 0.53 MHz 2.15 11.15 3000
[51] (′04) SC TL Cooper pair box 6 MHz 0.8 0.7 7500
[3] (′09) SC TL Transmon qubit 173 MHz 0.3 ~0.8 23000

1.4.1 Cavity-QED Experiments

As mentioned above, the interesting “strong coupling regime” of cavity QED is

achieved when the rate of absorption or emission of a single photon by the atom

is larger than any of the rates of loss, i.e., g > κ, γ. In this case, an excited atom

in an initially empty cavity will emit one photon, which will then be trapped and

reabsorbed again at rate 2g. This is know as vacuum Rabi oscillations. As shown

in Table 1.1, strong coupling has been demonstrated in a number of cavity-QED

experimental systems including natural atoms trapped in an optical cavity [5],

semiconductor quantum dots trapped in a microcavity [6], trapped ions [7], and

superconducting qubits coupled to a coplanar transmission line [2, 51, 52].

The signal of “strong coupling regime” is the emergence of vacuum Rabi

splitting in the transmission spectrum, as shown in Fig. 1.5. This is a circuit-

QED experiment with microwave photons in a superconducting transmission

line resonator, interacting with a superconducting transmon qubit [3]. In this

experiment, they achieved g/κ ≈ 576, and g/γ ≈ 216, deep into the strong cou-

pling regime. As a result, the transmission peaks from Rabi splitting can be
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Figure 1.5: Vacuum Rabi splitting in circuit-QED from Ref. [2, 3]. There are
clearly two resolved peaks in the cavity transmission spectrum. The inset shows
the Jaynes-Cummings ladder of the eigenspectrum.

clearly identified in the cavity tranmsission spetrum. This spectacular achieve-

ment of circuit-QED originates from two underlying reasons. First, the cavity is

a 1D transmission line with tight confinement of fields in the transverse direc-

tion, dramatically reducing the mode volume. Second, the transmon qubit is a

macroscopic object with orders of magnitude higher dipole moment than real

atoms.

1.4.2 Waveguide-QED Experiments

Recently, there has been great effort to reach the strong coupling regime in

1D waveguide systems, which means the effective Purcell factor P defined in

Eq. (1.17) is much larger than 1. Promising candidate systems include photonic

crystal waveguides [47], plasmonic nanowires [17], hollow core fibres [41], ta-

pered nanofibres [56], semiconductor or diamond nanowires [43, 45], and 1D

open superconduting transmission lines [44, 46, 48, 57, 58]. The pioneering

work was done in a plasmonic nanowire system [17]. Due to the subwave-

length confinement of the plasmonic field inside the wire, the decay rate into
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Table 1.2: Waveguide-QED Experiments. Purcell factor P is defined as P = Γwg
Γe
,

where Γwg and Γe are the atomic decay rates into the waveguide modes and other
modes, respectively. NV: nitrogen vacancy. QD: quantum dot. PCF: photonic-
crystal fiber. PC: photonic crystal. SC: superconducting.

Expt. (year) Waveguide Atom P

[17] (′07) silver nanowire CdSe QD 60%
40%

= 1.5

[42] (′10) diamond nanowire NV center ≥ 40%
60%
≈ 0.67

[41] (′09) hollow-core PCF Rb atoms 1%∼10%
[43] (′10) GaAs nanowire InAs QD 90%

10%
= 9

[44] (′10) transmission line SC flux qubit 3
[47] (′12) PC waveguide QD 5.7 ∼ 24
[46] (′11) SC transmission line SC transmon qubit ≥ 15

the nanowire is strongly enhanced. However, plasmonic wires are very lossy

due to the Ohmic loss during the plasmon propogation and this severely limits

the potential of plasmonic systems. Later on, Claudon et al. [43] used a low

loss photonic nanowire with the quantum dot enbedded inside the wire. As

a result, most of the spontaneous emission from the quantum dot is collected

inside the nanowire. They are able to achieve a Purcell factor of 9. Recently,

exciting progress has been made in photonic crystal waveguides [47] and 1D

open superconducting transmission line [46, 48]. A Purcell factor larger than

15 has been realized. As a summary, Table 1.2 is a non-exhaustive list of recent

waveguide-QED experiments.

The tremendous progress in waveguide-QED experiments makes the obser-

vations of several nonlinear quantum optical effects possible, as we will show

in the first part of this thesis. In Chapter 2, we study a two-level system (TLS)

coupled to a one-dimensional waveguide. Photon-photon bound states appear

in multi-photon scattering due to the coupling between TLS and the waveg-

uide. Such bound states cause several interesting effects: enhanced multiphoton

transmission, spectral entanglement, photon bunching and antibunching and
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generation of nonclassical light. In Chapter 3, we study the coupling of the

waveguide to a three-level or four-level system. Effective repulsive or attrac-

tive interaction between photons can be produced, giving rise to either sup-

pressed multiphoton transmission—photon blockade—or enhanced multiphoton

transmission—photon-induced tunneling. As a result, a sub-Poissonian single-

photon source can be generated on demand. In Chapter 4, we study the sys-

tem of a one-dimensional waveguide coupled to two qubits with an arbitrary

separation. This system is important because it is the minimal system toward

scalable quantum networks using waveguide-QED. We demonstrate that non-

Markovian processes give rise persistent quantum beats in photon correlation,

and long-distance entanglement between the two qubits, increasing the potential

of waveguide-QED systems for scalable quantum networks.

The second part of this thesis includes two applications of waveguide-QED

in quantum information processing. In Chapter 5, we investigate a decoy-state

quantum key distribution (QKD) scheme with a sub-Poissonian single-photon

source generated by scattering a coherent state off a two-level system in a one-

dimensional waveguide. We find that there is a substantial increase in the key

generation rate ompared to both weak coherent state and heralded single-photon

decoy-state QKD. Furthermore, the performance is robust against either param-

eter variation or loss in the system, making it a promising candidate for future

QKD systems. In Chapter 6, we propose a new scheme for photonic quantum

computation using flying qubits—propagating photons in a one-dimensional

waveguide interacting with matter qubits. We show that high gate fidelity is

possible given recent dramatic experimental progress in superconducting cir-

cuits and photonic-crystal waveguides. The proposed system can be an impor-

tant building block for future on-chip quantum networks.
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2

Photon-Photon Bound States in
Waveguide-QED and Scattering of Fock and

Coherent States off a Two-Level System

Summary: 1Strong coupling between a two-level system (TLS) and bosonic modes

produces dramatic quantum optics effects. We consider a one-dimensional con-

tinuum of bosons coupled to a single localized TLS, a system which may be

realized in a variety of plasmonic, photonic, or electronic contexts. We present

the exact many-body scattering eigenstate obtained by imposing open bound-

ary conditions. Photon-photon bound states appear in the scattering of two or

more photons due to the coupling between the photons and the TLS. Here, the

terminology “photon-photon bound states” was introduced for multi-photon cor-

related states that can not be described by plane waves: their amplitudes decay

exponentially as a function of relative coordinates of photons. They are different

1 Part of the text of this chapter has been adapted from the following previously published
article: Huaixiu Zheng, Daniel J. Gauthier, and Harold U. Baranger, “Waveguide QED: Many-
body bound-state effects in coherent and Fock-state scattering from a two-level system”, Phys.
Rev. A 82, 063816 (2010).
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from the “bound states” of a discrete energy spectrum, states in which parti-

cles are localized in a finite region and can not escape to infinity [59]. Such

photon-photon bound states are shown to have a large effect on scattering of

both Fock- and coherent-state wave packets. We compare the statistics of the

transmitted light with a coherent state having the same mean photon number:

as the interaction strength increases, the one-photon probability is suppressed

rapidly, and the two- and three-photon probabilities are greatly enhanced due

to the many-body bound states. This results in non-Poissonian light.

2.1 Introduction

Recently, there has been increasing interest in designing quantum optical ele-

ments based on the strong coupling between light and matter in waveguide-QED

[38, 46, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]. Several experimental sys-

tems have been proposed for realizing devices such as a single-photon transistor

[62, 66] or a quantum switch [64, 65, 73], including surface plasmons coupled

to a single two-level emitter [62], a superconducting transmission line resonator

coupled to a local superconducting charge qubit [64, 65], and propagating pho-

tons in a 1D waveguide coupled to a two-level system [74, 75]. Most of the

theoretical work in waveguide-QED focuses on a single-photon coupled to a lo-

cal quantum system modeled as a two-level system (TLS). The key property used

in the device proposals is that, if the energy of the incident photon is tuned to

be on resonance with the TLS, the system will block the transmission of photons

due to destructive interference between the directly transmitted photon and the

photon reemitted by the impurity [62, 64].

A more challenging task is to study the two or more photon scattering prob-

lem in such systems. The two or more photon problem has been addressed
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by using a generalized Bethe-ansatz [74, 75], an auxiliary-state method [76, 77],

an input-output formalism [78], Fock-state master equation [79], and a Green-

function approach [80, 81]. They showed that photon-photon bound states

emerge as the photons interact with the two-level system. It is worth to mention

that they are different from the “bound states” with a discrete energy spectrum,

states in which particles are localized in a finite region and can not escape to

infinity [59]. Effective attractive and repulsive interactions can be induced de-

pending on the energy of the photons [74]. Such effective interactions between

photons may provide new avenues for controlling photon entanglement [82].

However, the scattering eigenstates were not constructed explicitly in Ref. [75]:

the bound states were found by first constructing Bethe-type scattering eigen-

states and then deducing the bound states via the completeness of the basis. It is

difficult to generalize the method in Ref. [75] to solve the three-photon (or more)

scattering problem or scattering off systems with more complicated level struc-

ture in which we expect more complicated and interesting photon correlations.

We present a method to explicitly construct exact n-photon scattering eigen-

states and then use the eigenstates to analyze the scattering of Fock- and coherent-

state wavepackets. The system consists of a 1D bosonic continuum coupled to

a local two-level-system as shown in Fig. 2.1. First, we explicitly construct the

n-photon (n = 1 to 4) scattering eigenstates by imposing open boundary condi-

tions while requiring that the incoming wavefunctions consist entirely of plane

waves [83, 84]. In addition to two-photon bound states, three-photon bound

states appear in the three-photon scattering eigenstates, and likewise n-photon

bound states appear in the n-photon scattering eigenstates. Second, to show the

significance of these bound states in the scattering of practical light sources, we

study the scattering of one-, two-, and three-photon Fock state wavepackets. It
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Figure 2.1: Sketch of the structure considered: a 1D continuum of bosons cou-
pled to a two-level-system with ground state |g〉 and excited state |e〉.

is shown that the two- and three-photon bound states dramatically enhance the

transmission of two- and three-photon wavepackets, respectively. Thirdly, we

compute the spectral entanglement in the two-photon scattering, and show that

the photons in the transmitted field are spectrally entangled. Finally, we study

the scattering of coherent states to determine the impact of the bound states on

both the photon correlation and the statistics of the transmitted and reflected

photons. Strong bunching and antibunching effects appear, and the statistics are

non-Poissonian.

2.2 Model Hamiltonian

The system we study consists of a two-level system coupled to photons propagat-

ing in both directions in a one-dimensional waveguide [74, 75, 67]. The system

is modeled by the Hamiltonian [74]

H =

∫
dx

1

i

[
a†R(x)

d

dx
aR(x)− a†L(x)

d

dx
aL(x)

]

+
(
ε− iΓ′

2

)
|e〉〈e|+

∫
dxV δ(x)

{[
a†R(x) + a†L(x)

]
S− + h.c.

}
, (2.1)
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where a†R(x)/a†L(x) is the creation operator for a right-going/left-going photon

at position x, ε is the level splitting between the ground state |g〉 and the excited

state |e〉 of the two level system, Γ′ is the decay rate into channels other than

the 1D continuum, V is the frequncy-independent coupling strength, and S− =

|g 〉〈 e| is the atomic lowering operator. Throughout this chapter, we set the group

velocity c and Plank’s constant ~ to 1 for simplicity.

It is natural to transform to modes which are either even or odd about the

origin, a†e/o(x) ≡
[
a†R(x)±a†L(−x)

]
/
√

2. The Hamiltonian (2.1) is then decomposed

into two decoupled modes: H = He +Ho with

He =

∫
dx

1

i
a†e(x)

d

dx
ae(x) + (ε− iΓ′/2) |e〉〈e|+

∫
dx V̄ δ(x)

[
a†e(x)S− + h.c.

]
,

Ho =

∫
dx

1

i
a†o(x)

d

dx
ao(x), (2.2)

where the effective coupling strength becomes V̄ =
√

2V . Note that the odd

mode is free. The number operator for even bosons is ne =
∫
dx a†e(x)ae(x),

that for the odd bosons is no =
∫
dx a†o(x)ao(x), and the occupation number of

the two-level system is ntls = |e〉〈e|. Because H commutes with certain number

operators, [H, ne + ntls] = [H, no] = 0, the total number of excitations in both the

even and odd spaces are separately conserved. We will now focus on finding

the non-trivial even-mode solution and then transform back to the left/right

representation.
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2.3 Analytical Solution of Scattering Eigenstates

A n-excitation state (n = ne + ntls) is given by

|ψn 〉 =

∫
dx1 · · · dxn gn(x1, · · · , xn) a†e(x1) · · · a†e(xn)|0, g〉

+

∫
dx1 · · · dxn−1 en(x1, · · · , xn−1) a†e(x1) · · · a†e(xn−1)|0, e〉, (2.3)

where |0, g〉 is the zero photon state with the atom in the ground state. From

He|ψn 〉 = En|ψn 〉 , we obtain the Schrödinger equations[1

i
(∂1 + · · ·+ ∂n)− En

]
gn(x1, · · · , xn)

+
V̄

n

[
δ(x1)en(x2, · · · , xn) + · · ·+ δ(xn)en(x1, · · · , xn−1)

]
= 0,

[1

i
(∂1 + · · ·+ ∂n−1)− En + ε− iΓ′/2

]
en(x1, · · · , xn−1) + nV̄ gn(0, x1, · · · , xn−1) = 0,

(2.4)

where the eigenvalue En = k1 +k2 + · · · kn, and gn(x1, · · · , xn) is discontinuous at

xi = 0, i = 1, · · ·n. In all the following calculations, we set gn(0, x1, · · · , xn−1) =

[gn(0+, x1, · · · , xn−1) + gn(0−, x1, · · · , xn−1)]/2 [83, 84]. The scattering eigenstates

gn(x1, · · · , xn) and en(x1, · · · , xn−1) are constructed by imposing the boundary

condition that, in the incident region, gn(x1, · · · , xn) is free-bosonic plane wave.

That is to say, for x1, · · · , xn < 0,

gn(x1, · · · , xn) =
1

n!

∑
Q

hk1(xQ1) · · ·hkn(xQn), (2.5a)

hk(x) =
1√
2π
eikx . (2.5b)
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For n = 1, plane-wave solutions are sufficient to satisfy Eq. (2.4) with eigenen-

ergy E = k:

g1(x) = gk(x) = hk(x)[θ(−x) + t̄kθ(x)], (2.6a)

e1 =
i

2
√
πV

(t̄k − 1), (2.6b)

t̄k =
k − ε+ iΓ′/2− iΓ/2
k − ε+ iΓ′/2 + iΓ/2

, (2.6c)

where θ(x) is the step function and Γ = V̄ 2 = 2V 2 is the spontaneous emission

rate from the two-level-system to the 1D continuum. Note that t̄k is the transmis-

sion coefficient for the even problem; because the even mode is chiral, |t̄k| = 1

when Γ′ = 0.

For n = 2, plane-wave solutions are not sufficient to satisfy Eq. (2.4). As

discussed by Shen and Fan [74, 75], a two-photon bound state2 must be included

to guarantee the completeness of the basis. Here, instead of extracting the bound

state through a completeness check [74, 75], we construct the scattering eigenstate

explicitly and find a two-photon bound state contribution to the solution, as has

been done in the open interacting resonant-level model [83]. We require the

two-photon solution to satisfy Eq. (2.5a) in the region x1, x2 < 0 and solve for the

solution in other regions using Eq. (2.4). This method of constructing scattering

eigenstates can be generalized to three-, four-, and even more photon cases.

2 They are not the conventional “bound states” with a discrete energy spectrum that is not
degenerate with any continuum states. In traditional bounds states, particles subjected to a
potential are localized in a finite region and can not escape to infinity [59]. Here, our photon-
photon bound states are scattering states extending to infinity and they decay exponentially only
in the relative coordinate of the two photons.
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The equations of motion for the two-photon case read

[1

i
(∂1 + ∂2)− E2

]
g2(x1, x2) +

V̄

2

[
δ(x1)e2(x2) + δ(x2)e2(x1)

]
= 0, (2.7a)

[1

i

d

dx
− E2 + ε− iΓ′/2

]
e2(x) + 2V̄ g2(0, x) = 0, (2.7b)

which can be cast into the following set of equations

[1

i
(∂1 + ∂2)− E2

]
g2(x1, x2) = 0, (2.8a)

e2(x) =
2i

V̄
[g2(0+, x)− g2(0−, x)], (2.8b)

[1

i

d

dx
− E2 + ε− iΓ′/2

]
e2(x) + V̄ [g2(0+, x) + g2(0−, x)] = 0, (2.8c)

e2(0+) = e2(0−). (2.8d)

Here, g2(x1, x2) is discontinuous at x1 = 0, x2 = 0 and we set g2(x, 0) = [g2(x, 0+)+

g2(x, 0−)]/2. We eliminate e2(x) from the above equations and obtain

[1

i
(∂1 + ∂2)− E2

]
g2(x1, x2) = 0, (2.9a)

[1

i

d

dx
− E2 + ε− iΓ′/2− iΓ/2

]
g2(0+, x)

=
[1

i

d

dx
− E2 + ε− iΓ′/2 + iΓ/2

]
g2(0−, x), (2.9b)

g2(0+, 0+)− g2(0−, 0+) = g2(0−, 0+)− g2(0−, 0−). (2.9c)

Because of the bosonic symmetry, we can solve for g2(x1, x2) by first considering

the half space x1 ≤ x2 and then extending the result to the full sapce. In this

case, there are three quadrants in real space: 1© x1 ≤ x2 < 0; 2© x1 < 0 < x2; 3©
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0 < x1 ≤ x2. Eq. (2.9b) can be rewritten as two separate equations

[1

i

d

dx
− E2 + ε− iΓ′/2− iΓ/2

]
g 2©

2 (x, 0+) =

[1

i

d

dx
− E2 + ε− iΓ′/2 + iΓ/2

]
g 1©

2 (x, 0−), for x < 0, (2.10a)

[1

i

d

dx
− E2 + ε− iΓ′/2− iΓ/2

]
g 3©

2 (0+, x) =

[1

i

d

dx
− E2 + ε− iΓ′/2 + iΓ/2

]
g 2©

2 (0−, x), for x > 0. (2.10b)

Substituting g 1©
2 (x1, 0

−) [Eq. (2.5)] into Eq. (2.10a), we solve to find

g 2©
2 (x, 0+) =

1

2!

[
t̄k2

eik1x

2π
+ t̄k1

eik2x

2π

]
+ Ae[−(Γ+Γ′)/2+i(k1+k2−ε)]x, (2.11)

where A is a constant to be determined. Applying the constraint Eq. (2.9a) to

g 2©
2 (x, 0+), we obtain

g 2©
2 (x1, x2) =

1

2!

[
t̄k2

ei(k1x1+k2x2)

2π
+ t̄k1

ei(k2x1+k1x2)

2π

]
+ Ae[ Γ+Γ′

2
+iε](x2−x1)ei(k1+k2)x1 .(2.12)

From Eq. (2.12), we can identify A to be zero: otherwise, the solution is not

normalizable [e(Γ+Γ′)(x2−x1)/2 is divergent when x2 − x1 → ∞]. Hence, g2(x1, x2)

in region 2© is given by

g 2©
2 (x1, x2) =

1

2!

[
t̄k2

ei(k1x1+k2x2)

2π
+ t̄k1

ei(k2x1+k1x2)

2π

]
. (2.13)

Substituting Eq. (2.13) into Eq. (2.10b) yields

g 3©
2 (0+, x) =

1

2!
t̄k1 t̄k2

[eik2x

2π
+
eik1x

2π

]
+Be[−(Γ+Γ′)/2+i(k1+k2−ε)]x, (2.14)

where B is a constant to be determined. Again, applying the constraint Eq. (2.9a)
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to g 3©
2 (0+, x), we obtain

g 3©
2 (x1, x2) =

t̄k1 t̄k2

2!

[ei(k1x1+k2x2)

2π
+
ei(k1x2+k2x1)

2π

]
+Be(−Γ+Γ′

2
−iε)(x2−x1)ei(k1+k2)x2 .(2.15)

Finally, B is found by substituting Eq. (2.5), Eq. (2.13), and Eq. (2.15) into the

continuity condition Eq. (2.9c), yielding

B = −(t̄k1 − 1)(t̄k2 − 1)

2π
. (2.16)

Extending these solutions from the half space to the full space using the bosonic

symmetry gives rise to the two-photon scattering eigenstate with eigenenergy

E = k1 + k2

g2(x1, x2) = gk1,k2(x1, x2) =
1

2!

[∑
Q

gk1(xQ1)gk2(xQ2)

+
∑
PQ

B
(2)
kP1

,kP2
(xQ1 , xQ2)θ(xQ1)

]
, (2.17a)

e2(x) =

√
2i

V
[g2(0+, x)− g2(0−, x)], (2.17b)

B
(2)
kP1

,kP2
(xQ1 , xQ2) ≡ −(t̄kP1

− 1)(t̄kP2
− 1)hkP1

(xQ2)hkP2
(xQ2)

×e[−(Γ+Γ′)/2−iε]|xQ2−xQ1|θ(xQ2 − xQ1). (2.17c)

Here, P = (P1, P2) and Q = (Q1, Q2) are permutations of (1, 2) needed to account

for the bosonic symmetry of the wavefuntion. B(2)
kP1

,kP2
(xQ1, xQ2)θ(xQ1) is the two-

body bound-state term. The binding strength of the two photons depends on the

total spontaneous emission rate Γ+Γ′. Conceptually, two photons have two ways

of going through the TLS. One way is to pass by the TLS independently as plane

waves and gain a phase factor, which is described by the first term of g2(x1, x2).
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The other way is to bind together and form a bound state, which is described

by the second term. The formation of the bound state can be viewed as a result

of stimulated emission: the first photon excites the TLS and the passing of the

second photon stimulates emission of the first photon into the same right-going

state, hence producing the bound state. Such bound states are a manifestation of

the photon-photon correlation induced by having two or more photons interact

with the same atom: the TLS can only absorb one photon within the lifetime

(Γ + Γ′)−1.

For n = 3, a procedure similar to that used to solve the n = 2 case yields

g3(x1, x2, x3) = gk1,k2,k3(x1, x2, x3) =
1

3!

[∑
Q

gk1(xQ1)gk2(xQ2)gk3(xQ3)

+
∑
PQ

gkP1
(xQ1)B

(2)
kP2

,kP3
(xQ2 , xQ3)θ(xQ2) +

∑
PQ

B
(3)
kP1

,kP2
,kP3

(xQ1 , xQ2 , xQ3)θ(xQ1)
]
,

e3(x1, x2) =
3i√
2V

[g3(0+, x1, x2)− g3(0−, x1, x2)],

B
(3)
kP1

,kP2
,kP3

(xQ1 , xQ2 , xQ3) ≡ 2(t̄kP1
− 1)(t̄kP2

− 1)(t̄kP3
− 1)

×hkP1
(xQ2)hkP2

(xQ3)hkP3
(xQ3)e[−(Γ+Γ′)/2−iε]|xQ3

−xQ1
|θ(xQ32)θ(xQ21), (2.18)

where P = (P1, P2, P3) and Q = (Q1, Q2, Q3) are permutations of (1, 2, 3) and

θ(xQij) = θ(xQi) − θ(xQj) for short. In addition to the two-photon bound state,

there emerges a three-body bound state B
(3)
kP1

,kP2
,kP3

(xQ1 , xQ2 , xQ3)θ(xQ1) in the

region x1, x2, x3 > 0. Conceptually, there are three ways for the three photons to

pass by the atom: (i) all three photons propagate as independent plane waves;

(ii) two photons form a two-body bound state, while the other one propagates

independently as a plane wave; and (iii) all three photons bind together and

form a three-body bound state. These three processes are described by the first,
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second, and third terms of g3(x1, x2, x3), respectively.

This simple picture can be applied to a general n-photon scattering process.

For example, in the case of four-photon scattering, there are five ways for the four

photons to pass by the atom as illustrated in Figure 2.2: (i) all four propagate as

independent plane waves; (ii) two photons form a two-body bound state, while

the other two propagate independently as plane waves; (iii) three photons form

a three-body bound state, while the other one propagate independently as a

plane wave; (iv) four photons form two independent two-body bound states;

and (v) four photons form a four-body bound state. These five processes can be

identified as the five terms of g4(x1, x2, x3, x4) in the four-photon solution, which

Figure 2.2: Schematic of different processes in four-photon scattering by a two-
level system. The plane waves are represented by wiggly lines, while the many-
body bound states are represented by the ovals.
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is given by

g4(x1, x2, x3, x4) =
1

4!

[∑
Q

gk1(xQ1)gk2(xQ2)gk3(xQ3)gk4(xQ4)

+
∑
PQ

gkP1
(xQ1)gkP2

(xQ2)B
(2)
kP3

,kP4
(xQ3 , xQ4)θ(xQ3)

+
∑
PQ

gkP1
(xQ1)B

(3)
kP2

,kP3
,kP4

(xQ2 , xQ3 , xQ4)θ(xQ2)

+
∑
PQ

B
(2)
kP1

,kP2
(xQ1, xQ2)B

(2)
kP3

,kP4
(xQ3 , xQ4)θ(xQ1)θ(xQ3)

+
∑
PQ

B
(4)
kP1

,kP2
,kP3

,kP4
(xQ1 , xQ2 , xQ3 , xQ4)θ(xQ1)

]
,

e4(x1, x2, x3) =
4i√
2V

[g4(0+, x1, x2, x3)− g4(0−, x1, x2, x3)],

B
(4)
kP1

,kP2
,kP3

,kP4
(xQ1 , xQ2 , xQ3 , xQ4) ≡ −22(t̄kP1

− 1)(t̄kP2
− 1)(t̄kP3

− 1)(t̄kP4
− 1)

×hkP1
(xQ2)hkP2

(xQ3)hkP3
(xQ4)hkP4

(xQ4)

×e[−(Γ+Γ′)/2−iε]|xQ4
−xQ1

|θ(xQ4 − xQ3)θ(xQ3 − xQ2)θ(xQ2 − xQ1).(2.19)

The scattering eigenstates of a general n-photon problem can be constructed

recursively in a similar way: the only unknown term in gn(x1, · · · , xn) is the

n−photon bound state as all the other terms can be constructed from the solu-

tions of the 1, 2, · · · , (n − 1)-photon problems. We extrapolate from the results

of n = 2-4 that, for general n (≥ 2), the n-body bound state assumes the form

Bk1,...,kn(x1, . . . , xn) = −(−2)n−2

n∏
i=1

(t̄ki − 1)
n−1∏
i=1

θ(xi+1 − xi)

×hk1(xn)hk2(x2) · · ·hkn−1(xn−1)hkn(xn)e[−(Γ+Γ′)/2−iε]|xn−x1|. (2.20)
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We have verified this expression for n = 5. Thus we have given explicit formulas

for constructing the exact n-photon scattering eigenstates.

The exact scattering eigenstates can be used to construct the scattering matrix.

According to the Lippmann-Schwinger formalism [85], one can read off the “in”

state (before scattering) and the “out” state (after scattering) of a general n-

photon S-matrix from gn(x1, · · · , xn) in the input region (x1 < 0, · · · , xn < 0) and

in the output region (x1 > 0, · · · , xn > 0), respectively. The “in” and “out” states

of one and two photon scattering matrices are given by

|φ(1)
in 〉 e =

∫
dx hk(x)a†e(x)|0〉, (2.21a)

|φ(1)
out 〉 e =

∫
dx t̄khk(x)a†e(x)|0〉, (2.21b)

and

|φ(2)
in 〉 e =

∫
dx1dx2

1

2!

[∑
Q

hk1(xQ1)hk2(xQ2)
]
a†e(x1)a†e(x2)|0〉,

|φ(2)
out 〉 e =

∫
dx1dx2

1

2!

[∑
Q

t̄k1 t̄k2hk1(xQ1)hk2(xQ2)

+
∑
PQ

BkP1
,kP2

(xQ1 , xQ2)
]
a†e(x1)a†e(x2)|0〉, (2.22)

and similarly for three and four photons. The corresponding S-matrices are

S(n)
e =

∫
dk1 · · · dkn

1

n!
|φ(n)
out 〉 ee 〈φ

(n)
in |. (2.23)

Notice that the unitarity of the S-matrix is automatically satisfied since the in-

coming state |φ(n)
in 〉 e is a complete basis set in the even space [75, 85].

The S-matrix in the odd space is just the identity operator because the odd
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mode is free and decoupled from the impurity and the even mode,

S(n)
o =

∫
dk1 · · · dkn

1

n!
|φ(n)
in 〉o o〈φ

(n)
in |, (2.24a)

|φ(n)
in 〉o =

∫
dx1 · · · dxn

1

n!

∑
Q

n∏
i=1

hki(xQi)a
†
e(xi)|0〉 . (2.24b)

Finally, we wish to construct the scattering matrix in the right/left represen-

tation based on the S-matrices in the even/odd representation. For a general

n-photon scattering problem, the possible scattering channels are that i photons

undergo scattering in the even space and n− i photons undergo scattering in the

odd space, with i running from 0 to n. In addition, the even and odd spaces are

decoupled from each other. Therefore, the n-photon S-matrix is

S(n) =
n∑
i=0

S(i)
e ⊗ S(n−i)

o . (2.25)

We will use this S-matrix to study the scattering of Fock states and coherent state

wave packets in the right/left space in the subsequent sections.

2.4 Scattering of Fock State Wavepackets

In order to show the significance of the many-body bound states, we study the

scattering of a Fock state off of a two-level system. We assume that the incident

mode propagates to the right and the two level system is initially in the ground

state. We use the S-matrices defined in Eq. (2.25) to evaluate the transmission

and reflection coefficients. In practice, any state that contains a finite number of

photons must have the form of a wave-packet. Thus, we start with the definition

of the continuous-mode photon wave-packet creation operator in momentum
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space [12]

a†α =

∫
dk α(k)a†(k), (2.26)

with the normalization condition
∫
dk |α(k)|2 = 1. The corresponding continuous-

mode n-photon Fock state is

|nα〉 =
(a†α)n√
n!
|0〉 , (2.27)

and the output state after it scatters off the TLS is

|out(n)
α 〉 = S(n)|nα〉. (2.28)

To obtain the scattering probabilities of a Fock state from the S-matrix found

in Section II, we follow the following general procedure. (i) First, we write an

n-photon input Fock state traveling to the right in momentum space: |nα〉 =

(1/
√
n!)
∫
dk1 · · · dkn α(k1) · · ·α(kn)|k1, · · · , kn〉; (ii) Next, we apply the S-matrix on

the input state and find the output state |out(n)
α 〉 = S(n)|nα〉 = (1/

√
n!)
∫
dk1 · · · dkn

α(k1) · · ·α(kn)S(n)|k1, · · · , kn〉 in the even/odd basis; (iii) We transform back to the

right/left basis. Then we project the output state onto the n-photon (right/left-

going) momentum basis and take the absolute value square to obtain the prob-

abilities P (k1, · · · , kn) of finding the output state in |k1, · · · , kn〉; (iv) Finally, we

integrate P (k1, · · · , kn) over k1, · · · , kn to obtain the total transmission and reflec-

tion probabilities. Here, a right/left-going state is defined by a positive/negative

momentum, i.e., k1 > 0, · · · , kn > 0 for |k1, · · · , kn〉R and k1 < 0, · · · , kn < 0 for

|k1, · · · , kn〉L.

For convenience, we choose Gaussian type wavepackets with the spectral
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T 

R 

Figure 2.3: Single-photon transmission (P (1)
T ) and reflection (P (1)

R ) probabilities
as a function of the ratio between coupling strength Γ and σ. The incident photon
is on resonance with the two level system (k0 = ε) and we have considered the
lossless case Γ′ = 0.

amplitude

α(k) = (2πσ2)−1/4 exp
(
− (k − k0)2

4σ2

)
. (2.29)

For all of the numerical examples in this chapter, we choose k0 = ε: the central

frequency of the wavepacket is on resonance with the TLS, a condition which

makes the interaction between the photons and the TLS strongest. We take the

central momentum k0 � σ so that the narrow-band condition is satisfied. We

anticipate the effects of bound states are most prominent when σ ∼ Γ, i.e., the

pulse duration is on the order of the life time of the two level system.
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2.4.1 Single-Photon Fock State Scattering

The probabilities of transmission (P (1)
T ) and reflection (P (1)

R ) for a single-photon

Fock state are found as

P
(1)
T =

∫
k>0

dk |〈k|out(1)
α 〉|2 =

∫
k>0

dk α(k)2|tk|2, (2.30a)

P
(1)
R =

∫
k<0

dk |〈k|out(1)
α 〉|2 =

∫
k>0

dk α(k)2|rk|2, (2.30b)

where tk = (t̄k + 1)/2 and rk = (t̄k − 1)/2 and t̄k is the transmission coefficient

defined above for the even mode [Eq. (2.6c)].

Note that the propagation of a single-photon is strongly modulated by the

TLS as we turn on the coupling. In the strong-coupling limit, a single-photon is

perfectly reflected and the two-level atom acts as a mirror. This perfect reflection

is due to destructive interference between the directly transmitted state and the

state re-emitted from the TLS. A single-photon transistor [62] and a quantum

switch [64] have been proposed based on this perfect reflection.

2.4.2 Two-Photon Fock State Scattering

For two incident photons, following the general procedure above, we find that

the transmission and reflection probabilities are

P
(2)
TT =

∫
k1>0,k2>0

dk1dk2
1

2!
|〈k1, k2|out(2)

α 〉|2, (2.31a)

P
(2)
TR =

∫
k1>0,k2<0

dk1dk2 |〈k1, k2|out(2)
α 〉|2, (2.31b)

P
(2)
RR =

∫
k1<0,k2<0

dk1dk2
1

2!
|〈k1, k2|out(2)

α 〉|2, (2.31c)
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where P (2)
TT , P

(2)
TR and P (2)

RR are, respectively, the probability for two photons to be

transmitted (right-going), one transmitted and one reflected, and two photons

reflected (left-going).

To show the significance of the bound state in the propagation of multi-

photon Fock states, we separate each of the probabilities P (2)
TT , P

(2)
TR and P

(2)
RR into

two parts. One part is the contribution from only the plane wave term (labeled

PW), which is the direct transmission or reflection. The other is the contribution

from all the other terms (labeled BS), including the bound state term as well as

the interference term between the plane wave and bound state. Notice that the

BS part vanishes in the absence of bound state, as in the case of single-photon

scattering. Therefore, it is a manifestation of the nonlinear effect caused by the

interaction between the TLS and two or more photons. As an example, P (2)
TT split

into PW and BS parts is

P
(2)
TT =

∫
k1>0,k2>0

dk1dk2|t(k1, k2) +B(k1, k2)|2 = (P
(2)
TT )PW + (P

(2)
TT )BS, (2.32a)

(P
(2)
TT )PW =

∫
k1>0,k2>0

dk1dk2|t(k1, k2)|2, (2.32b)

(P
(2)
TT )BS =

∫
k1>0,k2>0

dk1dk2

[
t∗(k1, k2)B(k1, k2)

+t(k1, k2)B∗(k1, k2) + |B(k1, k2)|2
]
, (2.32c)

t(k1, k2) = α(k1)α(k2)tk1tk2 , (2.32d)

B(k1, k2) =

[
−i/2π

k1 − ε+ i(Γ+Γ′)
2

+
−i/2π

k2 − ε+ i(Γ+Γ′)
2

]

×
∫
k′>0

dk
′
α(k

′
)α(k1 + k2 − k

′
)rk′rk1+k2−k′ . (2.32e)
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Figure 2.4 shows the three transmission probabilities P (2)
TT , P

(2)
TR, and P

(2)
RR for

our standard parameters, with the contributions from the plane wave and bound

state plotted separately in panels (a)-(c). Note that the presence of the bound state

has a very substantial effect on these transmission probabilities. As shown in panels

(a) and (b), P (2)
TT and P (2)

TR are enhanced by the formation of the bound state. This

is mainly due to constructive interference between the plane wave and bound

state. In contrast, panel (c) shows that P (2)
RR is strongly reduced in the presence of

the bound state because of destructive interference between the plane wave and

bound state (change from ∼ 0.8 to ∼ 0.4 at Γ/σ = 2.5). Therefore, the presence of

the bound state tends to increase the one-photon and two-photon transmission,

while suppressing the two-photon reflection.

A particularly interesting aspect of the results in Fig 2.4 is that the effect of

the bound state is most prominent in the intermediate coupling regime, not at

the strongest coupling. This is because, first, in the weak coupling limit, the

interaction is too weak to produce a pronounced bound state for two-photon

scattering, while, second, in the strong coupling limit, the TLS responds to the

first photon too quickly (in a duration of order 1/Γ with Γ = 2V 2) for the second

photon to produce a significant nonlinear effect. (The formation of the bound

state requires the presence of both photons at the two-level system.) The opti-

mal coupling strength Γm for producing nonlinear (bound state) effects lies at

intermediate coupling, when the spontaneous emission rate Γ is on the order of

the wavepacket width σ.
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Γ/σ Γ/σ 

Figure 2.4: Two-photon transmission and reflection probabilities as a function of
Γ/σ. (a) Probability that both photons are transmitted (and hence are right-going,
P

(2)
TT ). (b) Probability that one photon is transmitted and one reflected (right-left,
P

(2)
TR). (c) Probability that both photons are reflected (both left-going, P (2)

RR). (d)
The three processes on a single plot. The label PW refers to the contribution
from the plane-wave term only, while BS refers to all the other contributions
involving bound-state terms. The incident photons are on resonance with the
two-level system (k0 = ε), we consider the lossless case Γ′ = 0. Notice the large
effect of the bound state on these quantities.

2.4.3 Three-Photon Fock State Scattering

Following the general procedure for obtaining scattering probabilities, the trans-

mission and reflection probabilities for three-photon Fock state scattering are

defined as
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𝑃𝑇𝑇𝑇
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 𝑃𝑅𝑅𝑅
3

 𝑃 3  

Figure 2.5: Three-photon transmission and reflection probabilities as a function
of Γ/σ. (a) Probability of all three photons transmitted (P (3)

TTT ). (b) Probability of
two photons transmitted and one reflected (P (3)

TTR). (c) Probability of one photon
transmitted and two photons reflected (P (3)

TRR). (d) Probability of all three photons
reflected (P (3)

RRR). (e) P 3 all together. The label PW refers to the contribution from
only the plane wave term, while BS refers to all the other contributions, involving
bound state terms. The incident photons are on resonance with the two level
system (k0 = ε), we consider the lossless case Γ′ = 0.

P
(3)
TTT =

∫
k1>0,k2>0,k3>0

dk1dk2dk3
1

3!
|〈k1, k2, k3|out(3)

α 〉|2,

P
(3)
TTR =

∫
k1>0,k2>0,k3<0

dk1dk2dk3
1

2!
|〈k1, k2, k3|out(3)

α 〉|2,

P
(3)
TRR =

∫
k1>0,k2<0,k3<0

dk1dk2dk3
1

2!
|〈k1, k2, k3|out(3)

α 〉|2,

P
(3)
RRR =

∫
k1<0,k2<0,k3<0

dk1dk2dk3
1

3!
|〈k1, k2, k3|out(3)

α 〉|2, (2.33)

where P (3)
TTT , P

(3)
TTR, P

(3)
TRR, and P

(3)
RRR are the probabilities for three photons being

transmitted (all right-going), two transmitted and one reflected, one transmitted

and two reflected, and all three reflected (left-going), respectively. As in the

two-photon scattering case, we separate each probability into two parts: the

contribution of only the plane wave term (labeled PW) and the contribution

from all the other terms (labeled BS), including the bound states as well as the

interference between the plane wave and bound states. The probabilities and
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the decomposition into PW and BS parts are plotted in Figure 2.5 for our usual

parameters.

Figure 2.5 shows that the bound state contribution to the transmission prob-

abilities is, as for two photons, very substantial. In panels (a) and (b), the BS

parts of P (3)
TTT and P (3)

TRR are positive; thus, these probabilities are enhanced by the

bound states. Panel (d) shows that P (3)
RRR is suppressed by the bound state con-

tribution for arbitrary coupling strength. In contrast, as we increase the coupling

strength, P (3)
TRR is first suppressed and then enhanced by the BS part as shown in

Figure 2.5(c). Tuning the coupling strength changes the relative phase between

the plane wave and bound state parts; for P (3)
TRR, the interference between them

happens to change from destructive to constructive as the coupling strength in-

creases. Finally, as in the two-photon case, the most pronounced bound state

effects occur in the intermediate coupling regime instead of the strong coupling

limit.

2.5 Spectral Entanglement

It is evident the two-photon bound state in Eq. (2.32) is entangled in the momen-

tum (or equivalently frequency) degree of freedom, i.e. it can not be separated

into a product of single-photon states with definite momentum. To study the

spectral aspect of the two-photon entanglement, we rewrite the two-photon out-

put state [Eq. (2.31)] in momentum space as

|ψ(2)〉 =

∫
dk1dk2

[
fTT (k1, k2)a†R(k1)a†R(k2)

+fTR(k1, k2)a†R(k1)a†L(k2)

+fRR(k1, k2)a†L(k1)a†L(k2)
]
|∅〉, (2.34)
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where fTT (k1, k2), fTR(k1, k2), and fRR(k1, k2) are the two-photon amplitudes for

a transmitted pair, a pair of one transmitted and one reflected, and a reflected

pair, respectively. Explicitly, they take the following form

fTT (k1, k2) = t2(k1, k2) +B(k1, k2), (2.35a)

fTR(k1, k2) = 2[rt(k1, k2) +B(k1, k2)], (2.35b)

fRR(k1, k2) = r2(k1, k2) +B(k1, k2), (2.35c)

t2(k1, k2) = tk1tk2α(k1)α(k2), (2.35d)

rt(k1, k2) = tk1rk2α(k1)α(k2), (2.35e)

r2(k1, k2) = rk1rk2α(k1)α(k2), (2.35f)

where B(k1, k2) is given in Eq. (2.32). The first term in f(k1, k2) is the uncorrelated

contribution, while the second term signals photon correlation. From Eq. (2.35),

we define the joint spectral function of the two-photon states to be [86]

Fαβ=TT, TR,RR(k1, k2) = |fαβ(k1, k2)|2 . (2.36)

For the purpose of comparison, we also define the uncorrelated spectral function

of the two-photon states,

GTT (k1, k2) ≡ |t2(k1, k2)|2, (2.37a)

GTR(k1, k2) ≡ 4|rt(k1, k2)|2, (2.37b)

GRR(k1, k2) ≡ |r2(k1, k2)|2 . (2.37c)

Figure 2.6 shows the two-photon joint spectrum in all the three scattering

channels after sending the two-photon wavepacket with a narrow width (σ =

0.1Γ′). As expected, the uncorrelated spectral shown in Fig. (2.6)(a), (2.6)(c) and

(2.6)(e) have a circular shape in the 2D colormap of k1 and k2. Similar circular
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(g) 

Figure 2.6: Two-photon joint spectrum of the output states after scattering off a
2LS in the case of a spectrally narrow incident wavepacket. Panels (a), (c), (e)
show the uncorrelated spetra GTT (k1, k2), GTR(k1, k2), and GRR(k1, k2), respec-
tively. Panels (b), (d), (f) show the joint spectra of the two transmitted photons,
one transmitted and one reflected, and two reflected photons, respectively. Panel
(g) shows FTT along the line k1 + k2 = 2k0 [dash line in panel (b)] as a function
k2 − k1. System parameters: Γ = 9Γ′, σ = 0.1Γ′, and k0 = ε. The frequencies are
in units of Γ′.
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shape is observed in the TR (one transmitted and one reflected) and RR (both

reflected) channels, as shown in Fig. (2.6)(d) and (2.6)(f). This is simply because

the bound-state term is too weak in these two cases compared to the plane wave

term. Hence, the uncorrelated part still dominates the joint spectrum. However,

in the TT (both transmitted) channel, Fig. (2.6)(b) shows a clear signature of

correlation: the momentum of the photon pair is entangled along the line k1 +

k2 = 2k0 with an uncertainty given by the wavepacket width σ. In particular, as

shown in Fig. (2.6)(g), we notice that the joint spectrum in fact vanishes around

k1 = k2 = k0, which is due to the cancellation between the plane wave and bound

state terms in Eq. (2.35b). The width of FTT as a function of k2 − k1 along the

line k1 + k2 = 2k0 is given by Γ, which determines the bandwidth of spectral

entanglement.

2.6 Scattering of Coherent State Wavepackets

We now turn to studying the scattering of coherent states in order to show,

first, the strong photon-photon correlation induced by the the two-level system

and, second, the change in photon number statistics. The incident coherent state

wavepacket is defined by [12]

|α〉 = ea
†
α−n̄/2|0〉, (2.38)

with a†α =
∫
dk α(k)a†(k), and mean photon number n̄ =

∫
dk|α(k)|2. A Gaussian

type wavepacket is chosen

α(k) =

√
n̄

(2πσ2)1/4
exp

(
− (k − k0)2

4σ2

)
; (2.39)
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for numerical evaluations, we set, as before k0 = ε� σ. The output state |outα〉

is then

|outα〉 =
∑
n

S(n)|α〉 (2.40)

We assume the incident coherent state is right-going and the two-level system is

in the ground state initially. We present the analysis of second-order correlation

and photon number statistics in the transmitted field.

2.6.1 Second-Order Correlation Function

The second-order correlation function of the transmitted field is defined as [12]

g(2)(x2 − x1) =
〈outα|a†R(x1)a†R(x2)aR(x2)aR(x1)|outα〉

〈outα|a†R(x1)aR(x1)|outα〉2
. (2.41)

We consider the mean photon number n̄ ≤ 1.0. In this case, the probability to

find n ≥ 3 number states is much smaller than that of n = 2 number states.

Therefore, we neglect the contributions from n ≥ 3 number states. The second-

order correlation function simplifies to

g(2)(x2 − x1) =

∣∣ ∫ dk1dk2 α(k1)α(k2)(tk1tk2 − rk1rk2e
− (Γ+Γ′)(x2−x1)

2 )
∣∣2∣∣ ∫ dk1dk2 α(k1)α(k2)tk1tk2

∣∣2 . (2.42)

The contributions from the directly transmitted state and the bound state can

be identified as the first term and second term in the numerator of g(2)(x2 − x1)

in Eq. (2.42). In the absence of the bound state, g(2)(x2 − x1) is always equal

to unity. As we turn on the interaction, the interference between the directly

transmitted state and the bound state will give rise to interesting correlation

behavior. Figure 2.7 shows the second-order correlation as a function of Γ(x2−x1)

at various coupling strengths, Γ, to the 1D mode with Γ′ = σ. In the weak
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𝑎   Γ = 0.5σ 𝑏  Γ = 1.4σ 

𝑐  Γ = 2.3σ 
𝑑  Γ = 2.9σ 

𝑒  Γ = 3.2σ 𝑓  Γ = 4σ 

) 

Γ(𝑥2 − 𝑥1) 
Figure 2.7: Second-order correlation of the transmitted field given an incident
coherent state with n̄ ≤ 1 at various coupling strengths Γ to the 1D continuum.
(a) Γ = 0.5σ, (b) Γ = 1.4σ, (c) Γ = 2.3σ, (d) Γ = 2.9σ, (e) Γ = 3.2σ, (f) Γ = 4σ.
The spontaneous emission rate to channels other than the 1D continuum is set
to Γ′ = σ. Notice that the correlation behavior is very sensitive to the coupling
strength to 1D continuum, showing both bunching and antibunching.

coupling limit (Γ = 0.5σ) as shown in Figure 2.7(a), the directly transmitted state

dominates and g(2)(0) is slightly smaller than 1. We observe a slight initial

antibunching. As Γ increases [Figure 2.7(b)-(c)], g(2)(0) further decreases and

the initial antibunching gets stronger and becomes strongest at Γ = 2.3σ when

g(2)(0) = 0. Notice that the antibunching is getting weaker as one moves away

from the origin for Γ ≤ 2.3σ. Further increase of Γ starts to change the initial

antibunching [Γ = 2.9σ, g(2)(0) < 1] to bunching [Γ = 3.2σ, g(2)(0) > 1] as shown

in Figure 2.7(d)-(f). In this case, the bound state starts to dominate the correlation

behavior. It is remarkable that, for Γ > 2.3σ, the initial antibunching (Γ < 3.2σ)

or bunching (Γ > 3.2σ) is followed by a later antibunching g(2)(0) = 0, which is
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caused by the cancellation of the directly transmitted state and the bound state.

The formation of the bound state gives rise to a rich phenomenon of photon-

photon correlation, which is very sensitive to the coupling strength Γ to the 1D

mode. Effective attractive or repulsive interaction between photons is induced by the

presence of a single two-level system [74].

Our results agree with the theoretical findings obtained by Chang et al. [62]

using a very different approach. Recently, the experimental observations by

Hoi et al. [48] confirmed our findings of photon bunching shown in Fig. 2.7.

In the lossless Γ′ = 0 case, as we increase the coupling strength, the transmis-

sion for individual photons is reduced rapidly [see, for example, Figure 2.3 and

Figure 2.4(a)]. But the two-photon bound state can strongly enhance the trans-

mission. Therefore, we will observe a strong initial bunching followed by a later

antibunching, similar to Figure 2.7(f).

2.6.2 Number Statistics

Given the output state |outα〉, we measure the photon number distribution in

the transmitted field following the general procedure described in Sec. 2.4. The

total density matrix of the output field reads

ρ = |outα〉〈outα|. (2.43)

The reduced density matrix of the transmitted field can be obtained by tracing

out the reflected photons

ρT = TrR[ρ] =R 〈0|ρ|0〉R +

∫
dk R〈k|ρ|k〉R +

1

2!

∫
dk1dk2 RR〈k1k2|ρ|k1k2〉RR + . . . ,

(2.44)
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where |k〉R = a†L(k)|0〉 and |k1k2〉RR = a†L(k1)a†L(k2)|0〉. Then, we can measure

the number statistics of the transmitted field by projecting the reduced density

matrix onto various number states

P0 = T 〈0|ρT |0〉T ,

P1 =

∫
dk T 〈k|ρT |k〉T ,

P2 =
1

2!

∫
dk1dk2 TT 〈k1k2|ρT |k1k2〉TT ,

P3 =
1

3!

∫
dk1dk2dk3 TTT 〈k1k2k3|ρT |k1k2k3〉TTT , (2.45)

where |k〉T = a†R(k)|0〉 and |k1k2〉TT = a†R(k1)a†R(k2)|0〉.

We consider a mean photon number n̄ ≤ 1.0 in the incident coherent state.

In this case, the probability to find the four photon state is negligible (≤ 1.6%).

Hence, we truncate all the calculations in Eqs. (2.44) and (2.45) up to three-

photon. We compare the photon number distribution Pn of the output state

with (Pn)Poisson of a coherent state having the same mean photon number.

Figure 2.8 shows the ratio between (Pn)Poisson and Pn as a function of the

coupling strength Γ and the mean photon number n̄ of the incident coherent

state. The zero-photon probability does not deviate from that of a coherent state

much in the whole parameter region we considered. The one-photon probability

is smaller than the corresponding probability in a coherent state. In contrast, the

two- and three-photon probabilities are much larger than the ones in a coherent

state, especially in the strong coupling regime. This is to say, the interaction

between photons and the two-level system redistributes the probabilities among

different photon numbers. The one-photon probability is reduced and is redistributed

to the two- and three-photon probabilities. This is mainly because the bound states
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Figure 2.8: Photon number distribution of the transmitted field compared with
a coherent state. We considered the lossless case Γ′ = 0. The statistics is non-
Possonian with the 2 and 3 photon content enhanced.

enhance the transmission of multi-photon states as we have shown in Sec. 2.4.

In conclusion, we obtain a non-Poissonian light source after the scattering. It is

perhaps possible to use this strongly-correlated light source to perform decoy-

state quantum key distribution in order to raise the key generation rate [87, 88,

89, 90], as discussed later in Chapter 5.

2.7 Conclusion

In this chapter, we present a general method to construct the exact scattering

eigenstates for the problem of n-photons interacting with a two-level system.

Many-body bound states appear in the presence of the coupling between pho-
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tons and the two-level system. Furthermore, the scattering matrices are extracted

using the Lippmann-Schwinger formalism. We emphasize that the completeness

of the S-matrices is guaranteed by imposing open boundary conditions and re-

quiring the incident field to be free plane waves. Based on the S-matrices, we

study the scattering of the Fock states and coherent states. The bound states

are shown to enhance the transmission of multi-photon states and suppress the

transmission of single-photon states. We compute the spectral entanglement in

the two-photon scattering, and find that photons are entangled in frequency due

to the nonlinear interaction with the 2LS. In the transmitted field of coherent state

scattering, photons exhibit strong bunching or antibunching effects depending

on the coupling strength. This is a manifestation of the many-body bound states.

We determine the photon number distribution and find that the one-photon state

is transferred to two- and three-photon states. This results in a non-Poissonian

light source which have important applications in quantum information.
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3

Cavity-free Photon Blockade and
Photon-induced Tunneling

Summary: 1We study the generation of strongly-correlated photons and observa-

tion of cavity-free photon blockade and photon-induced tunneling by coupling

an atom to photonic quantum fields in a one-dimensional waveguide. Specifi-

cally, we consider a three-level or four-level system for the atom. Photon-photon

bound-states emerge as a manifestation of the strong photon-photon correla-

tion mediated by the atom. Effective repulsive or attractive interaction between

photons can be produced, causing either suppressed multiphoton transmision

(photon blockade) or enhanced multiphoton transmision (photon-induced tun-

neling). As a result, nonclassical light sources can be generated on demand

by sending coherent states into the proposed system. We calcuate the second-

order correlation function of the transmitted field and observe bunching and

1 Part of the text of this chapter has been adapted from the following previously published
articles: [a] Huaixiu Zheng, Daniel J. Gauthier, and Harold U. Baranger, “Cavity-Free Photon
Blockade Induced by Many-Body Bound States”, Phys. Rev. Lett. 107, 223601 (2011); [b] Huaixiu
Zheng, Daniel J. Gauthier, and Harold U. Baranger, “Strongly-correlated photons generated by
coupling a three- or four-level system to a waveguide”, Phys. Rev. A 85, 043832 (2012).
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anti-bunching caused by the bound-states. Furthermore, we demonstrate that

the proposed system can produce photon pairs with a high degree of spectral

entanglement, which have a large capacity for carrying information and are im-

portant for large-alphabet quantum communication.

3.1 Introduction

In this Chapter, we consider using a waveguide-QED system to generate strongly-

correlated photons through coupling to a three-level or four-level system (3LS

or 4LS). Such strongly-correlated photons can be used to study quantum opti-

cal phenomena, such as photon blockade and photon-induced tunneling, and

many-body physics [24] as well as to implement large-alphabet quantum com-

munication protocols [91, 92]. Specifically, to probe the strong photon-photon

correlation mediated by the 3LS or 4LS, we study photonic transport, second-

order correlation, and spectral entanglement of the correlated photon states. As

done previously in Chapter 2, we explicitly construct the scattering eigenstates

by imposing an open boundary condition and setting the incident state to be

a free plane wave. In the multiphoton solutions, photon-photon bound-states

emerge, which have significant impact on the transport, spectral entanglement,

and second-order correlation function. While single-photon transport exhibits

EIT, multiphoton transport shows photon-induced tunneling and photon block-

ade. A highly entangled photon pair in frequency is obtained by scattering a

two-photon state off the 4LS. Finally, we study the scattering of a coherent state

wavepacket, whose number statistics become non-Poissonian. Strong bunching

and anti-bunching appear in the second-order correlation function.

This Chapter is organized as follows. In Sec. 3.2, we introduce the model

Hamiltonian, identify relevant experimental systems, and solve for the scatter-
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ing eigenstates for one-, two- and three-photon states. With the scattering eigen-

states, the asymptotic output states from scattering Fock states off the 3LS or 4LS

are obtained in Sec. 3.3. In Sec. 3.5, we study the photonic transport of Fock states

and analyze the effect caused by the photon-photon bound-states. In Sec. 3.6, we

calculate the spectral entanglement for the two-photon case and demonstrate

that highly entangled photon pairs are obtained. In Sec. 3.7, the signatures of

photon correlation are revealed in the number statistics and second-order corre-

lation function after scattering a coherent state wavepacket. Finally, we conclude

in Sec. 3.8.

3.2 Model Hamiltonian

We consider the scattering problem of photons in a one-dimensional waveguide

side-coupled to a single atom, as shown in Figure 3.1. By “atom” we mean a

local emitter with discrete levels, which could be formed from natural atoms,

quantum dots, trapped ions, or superconducting qubits.

Here, two types of local emitter are considered: a driven Λ−type 3LS and

an N -type 4LS. The single-photon dynamics for the 3LS was previously studied

in Ref. [66] and a two-photon solution was found in Ref. [69] in the limit of

weak control field. Here, without assuming a weak control field, we solve the

scattering problem for both the 3LS and 4LS in the general case. We mainly

focus on the photon-photon correlation induced by the atom: physically, the

interesting physics originates from the interplay of quantum intereference in the

1D waveguide and interaction effects induced by the atom. Such interaction can

be understood by treating the atom as a bosonic site and the ground and excited

states as zero and one boson states, respectively. Unphysical multiple occupation

is removed by adding an infinitely large repulsive on-site interaction term [67],
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Figure 3.1: Sketch of the atom-waveguide system: (a) a Λ-type three-level system,
(b) an N -type four-level system, (c) photons (yellow) in a 1D waveguide coupled
to an atom (blue), which can be either the 3LS in (a) or the 4LS in (b). The
transitions |1〉 ↔ |2〉 and |3〉 ↔ |4〉 are coupled to the waveguide modes with
strength V . The transition |2〉 ↔ |3〉 is driven by a semiclassical control field
with Rabi frequency Ω and detuning ∆. Here, ωc is the frequency of the control
field.

which is the underlying mechanism responsible for the formation of photon-

photon bound states [69, 70, 74, 75, 93]. The proposed system could be realized

either in optical systems [17, 43, 45, 94, 95] or in microwave superconducting (SC)

circuits [40, 44, 96, 57, 97]. For the optical systems, the driven 3LS and 4LS have

been studied in both the trapped ion [98] and cavity systems [34, 35, 99, 100]. For

the microwave SC systems, the 3LS and 4LS have already been realized using

SC qubits [40, 46, 96, 97, 101, 102, 103, 104].

We start with the Hamiltonian in the rotating wave approximation, describing

a continuum photonic field in a 1D waveguide coupled to a single atom [66, 69,
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70, 74, 93]

H = Hwg +Hatom +Hc,

Hwg =

∫
dx(−i)~c

[
a†R(x)

d

dx
aR(x)− a†L(x)

d

dx
aL(x)

]
, (3.1)

where a†R,L(x) is the creation operator for a right- or left-going photon at position

x and c is the group velocity of photons. For the driven Λ−type 3LS,

H
(Λ)
atom =

∑
j=2,3

~
(
εj −

iΓj
2

)
|j〉〈j|+ ~Ω

2

(
|2〉〈3|+ h.c.

)
,

H(Λ)
c =

∫
dx~V δ(x)

{
[a†R(x) + a†L(x)]|1〉〈2|+ h.c.

}
. (3.2)

For the N -type 4LS,

H
(N)
atom =

4∑
j=2

~
(
εj −

iΓj
2

)
|j〉〈j|+ ~Ω

2

(
|2〉〈3|+ h.c.

)
,

H(N)
c =

∫
dx~V δ(x)

{
[a†R(x) + a†L(x)](|1〉〈2|+ |3〉〈4|) + h.c.

}
. (3.3)

Here, the energy reference is the energy of the ground state |1〉, and ε2 = ω21,

ε3 = ε2 −∆, and ε4 = ε3 + ω43, where ω21 and ω43 are the |1〉 ↔ |2〉, and |3〉 ↔ |4〉

transition frequencies, respectively. In the spirit of the quantum jump picture

[50], we include an imaginary term in the energy level to model the spontaneous

emission of the excited states at rate Γj to modes other than the waveguide

continuum.The spontaneous emission rate to the 1D waveguide continuum is

given by Γ = 2V 2/c (from Fermi’s golden rule). Notice that the use of the

rotating wave approximation is justified by the fact that ~Γ� ~ω21, which is the

case in current experiments [40, 43, 44, 45, 46].
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It is convenient to transform the right/left modes to even/odd modes: a†e(x) =

a†R(x)+a†L(−x)/
√

2 and a†o(x) = a†R(x)−a†L(−x)/
√

2. This decomposes the Hamil-

tonian into two decoupled modes. The even mode couples to the atom and the

odd mode is free: H = He +Ho with

He =

∫
dx(−i)~ca†e(x)

d

dx
ae(x) +Hatom +Hc, (3.4a)

Ho =

∫
dx(−i)~ca†o(x)

d

dx
ao(x). (3.4b)

The coupling Hamiltonian Hc is now

H(Λ)
c =

∫
dx~V δ(x)

{
a†e(x)|1〉〈2|+ h.c.

}
, (3.5a)

H(N)
c =

∫
dx~V δ(x)

{
a†e(x) (|1〉〈2|+ |3〉〈4|) + h.c.

}
, (3.5b)

where V =
√

2V .

3.3 Scattering Eigenstates

Hereafter, we will concentrate on solving for the scattering eigenstates in the

even space. Because [H, n̂e + n̂atom] = [H, n̂o] = 0 for the number operators

n̂e/o ≡
∫
dx â†e/o(x)âe/o(x) and the atomic excitation n̂atom, the total number of

excitations in both the even and odd spaces are separately conserved. Therefore,
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a general n-excitation state in the even space (n = ne + natom) is given by

|Ψ(Λ)
n 〉e =

[ ∫
dxn g(n)(x) â†e(x1) · · · â†e(xn)

+

∫
dxn−1

∑
j=2,3

f
(n)
j (x) S+

1j â
†
e(x1) · · · â†e(xn−1)

]
|∅, 1〉, (3.6a)

|Ψ(N)
n 〉e =

[ ∫
dxn g(n)(x) â†e(x1) · · · â†e(xn)

+

∫
dxn−1

∑
j=2,3

f
(n)
j (x) S+

1j â
†
e(x1) · · · â†e(xn−1)

+

∫
dxn−2f

(n)
4 (x) S+

14 â
†
e(x1) · · · â†e(xn−2)

]
|∅, 1〉, (3.6b)

where |∅, 1〉 is the zero-photon state with the atom in the ground state |1〉 and

S+
ij = |j〉〈i|.

The scattering eigenstates are constructed by imposing the open boundary

condition that g(n)(x) is a free-bosonic plane wave in the incident region [83, 93,

70]. That is, for x1, · · · , xn < 0,

g(n)(x) =
1

n!

∑
Q

hk1(xQ1) · · ·hkn(xQn), hk(x) =
eikx√

2π
, (3.7)

where Q = (Q1, · · · , Qn) is a permutation of (1, · · · , n). Solving the Schrödinger

equation with this open boundary condition, we find the scattering eigenstates

for the systems we consider here (for a detailed derivation for a two-level sys-

tem, see Chapter 2 Sec. 2.3). Below, we present the one-, two-, and three-photon

scattering eigenstates, which have the same form for the 3LS and 4LS cases. In

the even space, the one-photon scattering eigenstate with eigenenergy E = ~ck
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is given by

g(1)(x) ≡ gk(x) = hk(x)
[
θ(−x) + tkθ(x)

]
, (3.8a)

tk =

[
ck − ε2 + ∆ + iΓ3/2

][
ck − ε2 + (iΓ2 − iΓ)/2

]
− Ω2/4[

ck − ε2 + ∆ + iΓ3/2
][
ck − ε2 + (iΓ2 + iΓ)/2

]
− Ω2/4

, (3.8b)

where θ(x) is the step function. The one-photon scattering eigenstate is exactly

the same for both the 3LS and 4LS because it takes at least two quanta to excite

level |4〉: for single-photon processes, the 3LS and 4LS cases are equivalent.

For two-photon scattering, we start with a free plane wave in the region

x1, x2 < 0, and use the Schrödinger equation to find the wave function first in

the region x1 < 0 < x2 and then for 0 < x1, x2 [93]. We arrive at the following

two-photon scattering eigenstate with eigenenergy E = ~c(k1 + k2):

g(2)(x1, x2) =
1

2!

[∑
Q

gk1(xQ1)gk2(xQ2) +
∑
PQ

B
(2)
kP1

,kP2
(xQ1 , xQ2)θ(xQ1)

]
, (3.9a)

B
(2)
kP1

,kP2
(xQ1 , xQ2) = eiExQ2

∑
j=1,2

Cje
−γj |x2−x1|θ(xQ21) , (3.9b)

where P = (P1, P2) and Q = (Q1, Q2) are permutations of (1, 2), θ(xQij) =

θ(xQi − xQj), and B(2) is a two-photon bound state2—Re[γ1,2] > 0. Our solution

applies for the general case of arbitrary strength of the control field. Taking

the weak control field limit for the 3LS case, we checked that one recovers the

two-photon solution found in Ref. [69].

Following the same procedure, we obtain the three-photon scattering eigen-

2 They are not the “bound states” with a discrete energy spectrum, states in which particles are
localized in a finite region and can not escape to infinity [59].
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state with eigenenergy E = ~c(k1 + k2 + k3):

g(3)(x1, x2, x3) =
1

3!

{∑
Q

gk1(xQ1)gk2(xQ2)gk3(xQ3)

+
∑
PQ

[
gkP1

(xQ1)B
(2)
kP2

,kP3
(xQ2 , xQ3) θ(xQ2)

+B
(3)
kP1

,kP2
,kP3

(xQ1 , xQ2 , xQ3) θ(xQ1)
]}

,

B
(3)
kP1

,kP2
,kP3

(xQ1 , xQ2 , xQ3) = ei
[
kP1

xQ2
+(kP2

+kP3
)xQ3

][ ∑
j=1,2

Dj e
−γj |xQ3

−xQ1
|

+D3 e
−γ1|xQ3

−xQ2
|−γ2|xQ2

−xQ1
|

+D4 e
−γ2|xQ3

−xQ2
|−γ1|xQ2

−xQ1
|
]
θ(xQ32)θ(xQ21), (3.10)

where B(3) is a three-photon bound state, P = (P1, P2, P3) and Q = (Q1, Q2, Q3)

are permutations of (1, 2, 3). The coefficients C1,2 and D1,2,3,4 in the bound states

depend on the system parameters and have different functional forms for the

3LS and 4LS. Expressions for γ1,2, C1,2, and D1,2,3,4 are given in AppendixA.

Notice that the bound states here have more structure than in the two-level

case [74, 75, 93]; for example, the two-photon bound state has two characteristic

binding strengths instead of one. This is due to the internal atomic structure:

for the 3LS or 4LS, the photonic field couples to the transitions from the ground

state to both of the eigenstates in the dressed state picture of levels |2〉 and |3〉,

giving rise to two binding strengths. Such bound states are a manifestation

of the photon-photon correlation induced by having more than two photons

interact with the same atom. For the 4LS case, this leads to strikingly different

multiphoton transport behavior compared to the single-photon transport [70].

From the scattering eigenstates, we construct n-photon (n = 1 to 3) scattering
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matrices (S matrices) using the Lippmann-Schwinger formalism [75, 85, 93]. The

output states are then obtained by applying the S matrices on the incident states

[93].

3.4 Output States of Fock State Scattering

In this section, we present the output states from scattering one-, two-, and three-

photon number states off of a 3LS or 4LS. We assume that the incident state

propagates to the right and the atom is initially in the ground state. Specifically,

we consider incident states in the form of a wavepacket for two reasons: (i) in

practice, any state that contains a finite number of photons is a wavepacket; (ii)

as we will show, sending in wavepackets with a finite width is crucial in order

to observe the bound state effects in the measurements. The continuous-mode

photon-wavepacket creation operator is given by [12]

a†α,R/L =

∫
dk α(k) a†R/L(k), (3.11)

where a†R/L(k) = (1/
√

2π)
∫
dx eikxa†R/L(x) and the amplitude α(k) satisfies the

normalization condition
∫
dk |α(k)|2 = 1. An incident right-going n-photon Fock

state is defined as

|nα〉R =
(a†α,R)n
√
n!
|∅〉. (3.12)

With the n-photon S matrices S(n), we are able to find the asymptotic output state

long after the scattering (t → +∞) [93]. Specifically, the single-photon output
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state is given by

|ψ(1)〉 =

∫
dkα(k)|φ(1)(k)〉, |φ(1)(k)〉 = tk|k〉R + rk|k〉L, (3.13a)

|k〉R/L = a†R/L(k)|∅〉, tk ≡ (tk + 1)/2, rk ≡ (tk − 1)/2. (3.13b)

The two-photon output state reads

|ψ(2)〉 =

∫
dk1dk2

1√
2
α(k1)α(k2)|φ(2)(k1, k2)〉, (3.14a)

|φ(2)(k1, k2)〉 =

∫
dx1dx2

[1

2
tk1,k2(x1, x2)a†R(x1)a†R(x2)

+rtk1,k2(x1,−x2)a†R(x1)a†L(x2)

+
1

2
rk1,k2(−x1,−x2)a†L(x1)a†L(x2)

]
|∅〉, (3.14b)

where

tk1,k2 ≡ tk1tk2hk1(x1)hk2(x2) +
1

4
B

(2)
k1,k2

(x1, x2) + k1 ↔ k2,

rtk1,k2 ≡ tk1rk2hk1(x1)hk2(x2) +
1

4
B

(2)
k1,k2

(x1, x2) + k1 ↔ k2,

rk1,k2 ≡ rk1rk2hk1(x1)hk2(x2) +
1

4
B

(2)
k1,k2

(x1, x2) + k1 ↔ k2,

B
(2)
k1,k2

(x1, x2) ≡ ei(k1+k2)x2

∑
j=1,2

Cje
−γj |x2−x1|θ(x21) + (x1 ↔ x2). (3.15)

In Eq. (3.14), the output state has three components tk1,k2 , rtk1,k2 (which is not

a product), and rk1,k2 , corresponding to two-photon transmission, one-photon

transmitted and one-photon reflected, and two-photon reflection, respectively.

The first term in each of these functions is the plane-wave term. The second

term is the bound-state term associated with the momentum-nonconserved (for
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individual photons) processes. The three-photon output state takes a similar

form and is shown in Appendix B.

With the output states, we can study induced photon-photon correlation by

applying various measurements on them. We present results for transport, spec-

tral entanglement, number statistics, and second-order correlation in the fol-

lowing three sections. Throughout this chapter, we choose incident Gaussian

wavepackets with the spectral amplitude

α(ω) =
1

(2πσ2)1/4
exp

[
− (ω − ω0)2

4σ2

]
, (3.16)

where σ is the width and ω0 is the central frequency. We assume that level |3〉

is metastable (Γ3=0) and levels |2〉 and |4〉 have the same loss rate: Γ2 = Γ4. In

addition, we assume that the transitions |1〉 ↔ |2〉 and |3〉 ↔ |4〉 are at the same

frequency, ω21 = ω43, and the detuning of the control field is zero, ∆ = 0. We set

the loss rate as our reference frequency unit: Γ2 = Γ4 = 1. The coupling strength

to the waveguide is characterized by the effective Purcell factor P = Γ/Γ2 = Γ.

Plasmonic waveguide systems have been predicted to have a large Purcell factor

[62] and a value of P = 1.5 has been demonstrated experimentally [17]. Slot

waveguides have been theoretically shown to have large values of P reaching 16.

Recently, by carefully tailoring the ends of photonic nanowires, J. Claudon et al.

achieved a value of P ≥ 9 in the experiment [43, 45]. Furthermore, 5.7 < P < 24

was demonstrated in a photonic crystal waveguide coupled to a quantum dot

[47]. In superconducting circuits with 1D open superconducting transmission

lines [40, 44, 46], even larger values of P have been achieved, exceeding 15 [46].
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3.5 Photonic Transport: Photon Blockade and Photon-induced Tun-
neling

In this section, we study single-photon and two-photon transport in the presence

of photon-photon bound states. Previously, cavity-QED systems have been used

to study various nonlinear quantum optical phenomena such as photon blockade

[33], which means photons tend to block each other during transmission, and

photon induced-tunneling [105], which means photons enhance the transmission

of each other. Here, we show that both photon blockade and photon-induced

tunneling emerge in the waveguide-QED system without the need of a cavity.
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Figure 3.2: Single-photon transmission T (solid), reflection R (dashed) and loss
(dotted) as a function of incident photon detuning, for the values of σ (the
wavepacket width) and Ω (the strength of the control field) shown. Here, the
effective Purcell factor is P = 9. Note the sharp EIT window, particularly in the
narrow wavepacket case.
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3.5.1 Single-Photon

With the output state in Eq. (3.13), the transmission (T ), and reflection (R) prob-

abilities for a single-photon are

T =

∫
dk |R〈k|ψ(1)〉|2 =

∫
dk α2(k)|tk|2, (3.17a)

R =

∫
dk |L〈k|ψ(1)〉|2 =

∫
dk α2(k)|rk|2, (3.17b)

which are the same for both the 3LS and 4LS cases. Figure 3.2 shows T , R, and

the loss (1−T −R) as a function of the detuning δω ≡ ω0−ω21 at P = 9. Clearly,

EIT appears in Fig. 3.2(b), when the control field is on. As one increases the

width of the wavepacket, as shown in Fig. 3.2(d), the EIT peak is suppressed as

σ becomes comparable with the width of EIT window (∼ Ω2/2Γ), see Eqs. (3.8)

and (3.13). In Fig. 3.2(a), and (c), we set Ω = 0, which means the control field is

off and the 3LS (4LS) becomes a reflective two-level system [62, 93, 70]. Notice

that the width of the reflective peak in the Ω = 0 case is ∼ Γ and hence is

insensitive to the increase of σ from 0.01 to 0.2.

3.5.2 Two-Photon

The two-photon transmission and reflection probabilities are given by

P
(2)
TT =

∫
dk1dk2

1

2
|TT 〈k1, k2|ψ(2)〉|2, (3.18a)

P
(2)
TR =

∫
dk1dk2|TR〈k1, k2|ψ(2)〉|2, (3.18b)

P
(2)
RR =

∫
dk1dk2

1

2
|RR〈k1, k2|ψ(2)〉|2, (3.18c)
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where P (2)
TT , P

(2)
TR, and P

(2)
RR are the probabilities to observe two transmitted pho-

tons, one transmitted and one reflected photons, and two reflected photons,

respectively. We separate the two-photon transmission and reflection probabili-

ties into two parts: (P (2))PW is the contribution from indepedent single-particle

transmission (denoted PW for “plane wave”), and (P (2))BS is the contribution

from both the bound-state term in Eq. (3.14) and the interference between the

plane wave and bound-state terms. As an example, P (2)
TT is split as follows

P
(2)
TT =

∫
dk1dk2|t̃2(k1, k2) + B̃(k1, k2)|2 = (P

(2)
TT )PW + (P

(2)
TT )BS, (3.19a)

(P
(2)
TT )PW =

∫
dk1dk2|t̃2(k1, k2)|2, (3.19b)

(P
(2)
TT )BS =

∫
dk1dk2

[
t̃∗2(k1, k2)B̃(k1, k2) + c.c.+ |B̃(k1, k2)|2

]
, (3.19c)

where

t̃2(k1, k2) = α(k1)α(k2)tk1tk2 ,

B̃(k1, k2) =
i

4c

∑
j=1,2

( 1

k1 + iγj
+

1

k2 + iγj

)

×
∫
dk α(k) α(k1 + k2 − k) Cj(k, k1 + k2 − k) . (3.20)

Figure 3.3 shows the two-photon transmission and reflection probabilities for

both the 3LS and 4LS cases, decomposed in this way. Because the PW term

is from the single-particle solution, it is the same for both the 3LS and 4LS.

However, (P (2))BS is quite different for the 3LS and 4LS. Figure 3.3(a)-(c) shows

P (2) as a function of incident photon detuning. Close to resonance, in the 3LS

case (P (2))BS enhances the two-photon transmission P (2)
TT while suppressing P (2)

TR.
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𝑇𝑇 𝑇𝑅 𝑅𝑅 

Figure 3.3: Two-photon transmission and reflection probabilities for the 3LS and
4LS cases. (a)-(c) As a function of incident photon detuning δω with P = 9 and
σ = 0.2. (a) Probability that both photons are transmitted (and hence are right-
going, P (2)

TT ). (b) Probability that one photon is transmitted and one reflected
(right-left, P (2)

TR). (c) Probability that both photons are reflected (both left-going,
P

(2)
RR). (d)-(f) As a function of P with δω = 0 and σ = 0.2. (g)-(i) As a function

of σ with P = 9 and δω = 0. The label PW refers to the contribution from the
plane-wave term only, while BS refers to all the other contributions involving
bound-state terms [Eq. (3.19)]. Here, we set Ω = 1.6. The bound state effect
enhances transparency in the 3LS case but blocks two-photon transmission past
a 4LS. Note that a non-zero σ is crucial to observe these effects.

In contrast, in the 4LS case (P (2))BS has exactly the opposite effect. This leads

to enhanced multiphoton EIT for the 3LS [69] and photon blockade for the 4LS [70].

Such enhanced EIT and photon blockade are caused by the interference between

the two multiphoton scattering pathways: passing by the atom as independent

particles or a composite particle in the form of bound states (for a detailed

analysis, see AppendixC).
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In Fig. 3.3(d)-(f), we plot P (2) as a function the effective Purcell factor P for

the on-resonance case, δω = 0. It is remarkable that, for P (2)
TT and P

(2)
TR, (P (2))BS

becomes comparable to (P (2))PW in the strong coupling regime. An important

implication is that the bound-state effect can be observed in photonic transport

experiments, given recent rapid experimental advances [40, 43, 44, 45, 46].

Fig. 3.3(g)-(i) shows P (2) as a function of the wavepacket width σ with P = 9

and the photons on resonance with the atom. There are several notable features.

First, as σ approaches zero, (P (2))BS shrinks to zero for both the 3LS and 4LS cases.

This further highlights that sending in a wavepacket with a finite width is crucial

to observe the bound state effect in photonic transport. Physically, this occurs

because, in the σ = 0 limit under EIT conditions, the atom is fully transparent

(T = 1) to the incoming photons and hence the atom-mediated photon-photon

interaction is absent, inhibiting any bound state effect. For the general case with-

out EIT conditions, the above conclusion still holds: as σ → 0, the bound state

effect vanishes in multiphoton transport. This is because the bound-state term in

Eq. (3.20) originates from the coincident photons at the atomic site: as σ → 0, the

wavepacket becomes infinitely long and the probability of coincidence vanishes.

Second, notice that while (P (2))BS approaches zero for P (2)
TT as σ increases, its

magnitude for P (2)
TR and P (2)

RR increases after an initial decrease. This is due to the

enhanced interference between the plane-wave and bound-state terms [Eq. (3.14)]

for P (2)
TR and P

(2)
RR.

The result for three photon scattering shows behavior similar to the two-

photon case. To avoid duplication, we do not present it here.
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3.5.3 Photon Blockade and Photon-induced Tunneling

To quantify the observed enhancement of EIT and photon blockade in Fig. 3.3,

we define the strength of photon blockade P21 for the two-photon case by the

conditional probability for transmitting a second photon given that the first pho-

ton has already been transmitted, normalized by the single-photon transmission

probability. For independent photons, there is no photon blockade and P21 = 1.

In the opposite limit of strong photon blockade, P21 is suppressed towards zero.
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Figure 3.4: Photon blockade and photon-induced tunneling in transmission. Pho-
ton blockade strengths P21 (solid line) and P31 (dashed line) as a function of
incident photon detuning δω, P and σ for (a)-(c) the 3LS case, and (d)-(f) the 4LS
case. Here, Ω = 1.6. The 3LS causes photon-induced tunneling while the 4LS
causes photon blockade.
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Similarly, we can define P31 for the three-photon case. We thus have

P21 ≡
P

(2)
TT

T 2
, P31 ≡

P
(3)
TTT

T 3
. (3.21)

As shown in Fig. 3.4(a)-(c), for the 3LS case, the single-photon EIT is enhanced

in two-photon and three-photon transmission by interaction with the 3LS. Pro-

nounced photon-induced tunneling [105] due to the strong correlations between

transmitted photons occurs in this case: P21, P31 > 1. In contrast, as shown

in Fig. 3.4(d) and (e), scattering from a 4LS exhibits a different behavior within

the EIT window, namely, photon blockade [70]: P21, P31 < 1. However, away

from the EIT window, P21 and P31 become larger than 1, signaling a new regime

of multi-photon transmission—photon-induced tunneling [105]. For increasing

coupling strength [Fig. 3.4(e)], P21 and P31 approach zero asymptotically when

the incident photons are on resonance with the 4LS. In addition, from Fig. 3.4(c)

and (f), we confirm that both photon blockade and photon-induced tunneling

go away in the zero-width limit (σ → 0).

3.6 Spectral Entanglement

It is clear that the two-photon bound state in Eq. (3.14) is entangled in the mo-

mentum (or equivalently frequency) degree of freedom. To probe this spectral

aspect of the two-photon entanglement, we rewrite the two-photon output state

[Eq. (3.14)] in frequency space as

|ψ(2)〉 =

∫
dω1dω2

[
fTT (ω1, ω2)a†R(ω1)a†R(ω2)

+fTR(ω1, ω2)a†R(ω1)a†L(ω2)

+fRR(ω1, ω2)a†L(ω1)a†L(ω2)
]
|∅〉, (3.22)
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where fTT (ω1, ω2), fTR(ω1, ω2), and fRR(ω1, ω2) are the two-photon amplitudes for

a transmitted pair, a pair of one transmitted and one reflected, and a reflected

pair, respectively. Explicitly, they take the following form

fTT (ω1, ω2) = t̃2(ω1, ω2) + B̃(ω1, ω2), (3.23a)

fTR(ω1, ω2) = 2[r̃t(ω1, ω2) + B̃(ω1, ω2)], (3.23b)

fRR(ω1, ω2) = r̃2(ω1, ω2) + B̃(ω1, ω2), (3.23c)

t̃2(ω1, ω2) = tω1tω2α(ω1)α(ω2), (3.23d)

r̃t(ω1, ω2) = tω1rω2α(ω1)α(ω2), (3.23e)

r̃2(ω1, ω2) = rω1rω2α(ω1)α(ω2), (3.23f)

where B̃(ω1, ω2) is given in Eq. (3.20). The first term in f(ω1, ω2) is the uncor-

related contribution, while the second term signals photon correlation. From

Eq. (3.23), we define the joint spectral function of the two-photon states to be

[86]

Fαβ=TT, TR,RR(ω1, ω2) = |fαβ(ω1, ω2)|2 . (3.24)

For the purpose of comparison, we also define the uncorrelated spectral function

of the two-photon states,

GTT (ω1, ω2) ≡ |t̃2(ω1, ω2)|2, (3.25a)

GTR(ω1, ω2) ≡ 4|r̃t(ω1, ω2)|2, (3.25b)

GRR(ω1, ω2) ≡ |r̃2(ω1, ω2)|2 . (3.25c)

Figure 3.5 shows the two-photon uncorrelated and joint spectra in the case

of on-resonance photons (δω = 0) and for a spectrally narrow wavepacket (σ =

0.01). With the chosen parameters, the EIT peak width is much larger than
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Figure 3.5: Two-photon joint spectrum of the output states after scattering off
a 3LS and 4LS in the case of a spectrally narrow incident wavepacket. Panels
(a)-(c) show the uncorrelated spectra GTT (ω1, ω2), GTR(ω1, ω2), and GRR(ω1, ω2),
respectively. Panels (d)-(f) show the joint spectra of the field after scattering off
a 3LS for two transmitted photons, for one transmitted and one reflected, and
for two reflected photons, respectively. Panels (g)-(i) show the joint spectra of
the fields after scattering off a 4LS. Strong spectral entanglement is indicated in
panel (i); this reflected field is essentially a pure two-photon bound state. System
paramters: P = 9, Ω = 1.6, δω = 0, σ = 0.01. We set the loss rate of level 2 as our
frequency unit: Γ2 = 1.

the wavepacket, ∼ Ω2/2Γ ∼= 0.14 � σ. Therefore, for the uncorrelated pair of

transmitted photons [GTT , Fig. 3.5(a)], there is only a sharp peak at ω1 = ω2 = ω0

caused by the Gaussian spectrum of the incident photons. For the uncorrelated

pair of one transmitted and one reflected photons (GTR), there are two peaks

resulting from the interplay of the spectrum of the incident photons and the

rapid increase of the reflection probability away from the EIT peak (see Fig. 3.2).

Accordingly, there are four peaks for the case of two reflected photons, as shown
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in Fig. 3.5(c).

Figure 3.5(d)-(f) shows the joint spectra for the case of 3LS scattering. It is

evident that the joint spectra of the pair of two transmitted photons (FTT ), and

the pair of one transmitted and one reflected photons (FTR), are dominated by

the uncorrelated transmission. The joint spectrum of the pair of two reflected

photons [Fig. 3.5(f)] is slightly modified from the uncorrelated spectrum along

the diagonal line. This is caused by the correlated bound state term B̃(ω1, ω2).

For the 3LS case with the chosen parameters, the correlation term B̃(ω1, ω2) is of

order 10−1 and hence is too weak to affect FTT and FTR.

In contrast, for the 4LS case [Fig. 3.5(g)-(i)], FTR and FRR are greatly mod-

ified by the correlation term, while FTT is still dominated by the uncorrelated

transmission. In particular, as shown in Fig. 3.5 (i), the joint spectrum of the

reflected pair is dominated by B̃(ω1, ω2). This pair is primarily made up of a pure

two-photon bound state: the frequencies of the photon pair are correlated along

the line ω1 + ω2 = 2ω0 with uncertainty σ. A similar correlated photon pair was

demonstrated in a two-level system shown in Fig. 2.6 as well as in a waveguide-

cavity system [106]. Notice that the bandwidth (along the line ω1 + ω2 = 2ω0)

of spectral entanglement is much narrower than that shown in Fig. 2.6. This is

because the bandwidth is given by Γ in the 2LS case (Fig. 2.6), while in the 4LS

case it is determined by the EIT peak width Ω2/2Γ.

The two-photon bound state is a composite object of photons with effective

attractive interaction; it displays strong bunching behavior in photon-photon cor-

relation measurements. Such a photon pair is highly entangled in frequency be-

cause measurement of the frequency of one photon unambiguously determines

that of the other. This strong spectral correlation provides more information per

photon pair and could be used to implement large-alphabet quantum commu-
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nication [92].

3.7 Photon-Photon Correlation

In this section, we study the scattering of a coherent state off a 3LS or 4LS. We

probe the strong photon-photon correlation in the transmitted field by studying

first the number statistics and then the second-order correlation function.

3.7.1 Non-Classical Light Source

We consider the case that the 3LS or 4LS is in its ground state initially and

there is an incident continuous-mode coherent state of mean photon number

Figure 3.6: Nonclassical light source. Photon number statistics quantified by
log10(Pn/Pn,Poisson), where Pn and Pn,Poisson are the n-photon probability in the
transmitted field and in a coherent state with the same mean photon number,
respectively. Panels (a)-(d) show the results of the transmitted field after scat-
tering off the 3LS for n = 0, 1, 2, 3, respectively. Panels (e)-(h) show the results
of the transmitted field after scattering off the 4LS for n = 0, 1, 2, 3, respectively.
The dashed line is a guide to the eye for equal probabilities, Pn/Pn,Poisson = 1.
The speckle in the plots is numerical noise, coming from numerical evaluation of
high-dimensional integrals in computing the transmission and reflection proba-
bilities. System paramters: δω = 0, σ = 0.2, and n = 1 in the incident coherent
state. Scattering off a 3LS enhances the multiphoton content of the pulse because
of multi-photon EIT; in contrast, the photon blockade in the 4LS case suppresses
essentially all multi-photon content, thus realizing a single-photon source.
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n = 1, spectral width σ = 0.2, and central frequency on resonance with the

atom, ω0 = ω21. In this case, the contribution from the four-photon state can

be neglected (∼ 1.6%). The photon-number statistics in the transmitted field is

obtained by first applying the Smatrices to the incident state and then measuring

the transmitted field, as described in Ref. [93].

We present the results for both the 3LS and 4LS cases in Fig. 3.6 by taking the

ratio of the photon-number distribution in the transmitted field Pn (n = 0, 1, 2, 3)

to that of a coherent state Pn,Poisson having the same mean photon number as

the transmitted field. From Fig. 3.6(a)-(d), it is clear that when the EIT condition

is satisfied, the 3LS induces strong photon-photon interactions, which in turn

reduce the one-photon probability and redistributes the weight to the two- and

three-photon probabilities. This comes about because the bound state in the 3LS

case enhances multiphoton EIT, as we have shown in Sec. 3.5.

Figure 3.7: Photon number statistics of the transmitted field compared to a Pois-
sonian field with the same mean photon number. Blue bar: input coherent state;
red bar: output from scattering off 4LS; green bar: Poissonian distribution. Sys-
tem parameters: P = 11, Ω = 1.4, δω = 0, σ = 0.2, and n = 1 in the incident
coherent state.
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In contrast, for the 4LS case shown in Fig. 3.6(e)-(h), in most of the parameter

space, we have enhanced single-photon probability while suppressed multipho-

ton content: P1 > P1,Poisson and P2(3) < P2(3),Poisson. For instance, in Fig. 3.7, we

show the specific case of P = 11 and Ω = 1.4. Clearly, the nonlinear interaction

between photons and 4LS leads to the photon number redistribution among dif-

ferent sectors: multiphoton contents are transferred to single photon sector. This

gives rise to a sub-Poissonian single-photon source [70], which comes about be-

cause, while EIT occurs in the single-photon transmission, multiphoton states ex-

perience photon blockade, as shown in Sec. 3.5. Therefore, we demonstrate that

the waveguide-atom system is capable of generating nonclassical light, which

may find applications distributed quantum networking [18, 19] or in quantum

cryptography [88, 89, 107, 108] as shown in Chapter 5.

3.7.2 Second-Order Correlation Function

To further probe the nonclassical character of the transmitted field, we calculate

the second-order correlation function g(2)(τ), which is often measured experi-

mentally. For a steady state, g(2) of the transmitted field is defined as

g(2)(τ) = lim
t→∞

〈a†R(x, t) a†R(x, t+ τ) aR(x, t+ τ) aR(x, t)〉
〈a†R(x, t) aR(x, t)〉〈a†R(x, t+ τ) aR(x, t+ τ)〉

. (3.26)

As shown in AppendixD, for our system, this definition is equivalent to follow-

ing expression in the Schrödinger picture,

g(2)(τ) =
〈ψ|a†R(x) a†R(x+ cτ) aR(x+ cτ) aR(x)|ψ〉

〈ψ|a†R(x) aR(x)|ψ〉〈ψ|a†R(x+ cτ) aR(x+ cτ)|ψ〉
, (3.27)

where |ψ〉 is the asymptotic output state. With a weak incident coherent state

(mean photon number n � 1), we consider only the contribution of the two-
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photon and one-photon states in the numerator and denominator in Eq. (3.27),

respectively. Substitution of the single-photon and two-photon transmission

wavefunctions from Eqs. (3.13) and (3.14) into Eq. (3.27) yields the explicit ex-

pression

g(2)(τ) =
|
∫
dk1dk2 α(k1) α(k2) [tk1tk2(e−ik1τ + e−ik2τ ) +B(τ)]|2

|
∫
dk1dk2 α(k1) α(k2) tk1tk2(e−ik1τ + e−ik2τ )|2

,

B(τ) = π(C1e
−γ1cτ + C2e

−γ2cτ ) . (3.28)

In the numerator, the first term and the second term B(τ) come from the plane

wave and bound state pieces, respectively, in Eq. (3.14).

Figure 3.8(a) shows g(2)(0), which is the same for the 3LS and 4LS cases. The

presence of level |4〉 does not contribute to g(2)(0): it takes two quanta to excite

|4〉, which then deexites in the form of cascade emission with zero probability

to emit two photons at the same time. In Fig. 3.8(a), there is rich bunching

and anti-bunching behavior, caused by the two-body bound state. At τ=0, the

amplitude of the bound state term in Eq. (3.28) is B(0) = −2rk1rk2 , where rk1(2)

is the single-photon reflection coefficient. Hence, in the numerator of g(2)(0), the

amplitudes of the plane-wave and bound-state terms are out of phase. When

P = 0, the bound state term is zero and g(2)(0) = 1. As P increases, the strength

of the bound state increases, causing g(2)(0) to decrease until the bound state

term cancels the plane wave term exactly, producing complete anti-bunching.

Further increase of P leads to a rise of g(2)(0) and eventually photon bunching.

By comparing Fig. 3.4(c)-(d) and Fig. 3.8(a), we find that photon anti-bunching

and photon blockade, and photon bunching and photon-induced tunneling do

not have a one-to-one correspondence. For example, in the whole parameter

regime of of Fig. 3.4(d), photon blockade is present; while in Fig. 3.8, there is a
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Figure 3.8: Bunching and anti-bunching. Second-order correlation function
g(2)(τ) of the transmitted field for a weak incident coherent state (n� 1) of width
σ = 0.2, resonant with the atom (δω = 0). (a) Color map plot of log10[g(2)(0)] as a
function of the strength of the classical control field, Ω, and the effective Purcell
factor P . The dashed line marks the border between bunching (g(2)(0) > 1) and
anti-bunching (g(2)(0) < 1) behavior. (b) g(2) as a function of time delay τ in four
cases (using Ω = 1.6). Inset: zoom at short time scales.

large region of parameter space where photon bunching [g(2)(0) > 1] instead of

photon anti-bunching [g(2)(0) < 1] is observed. This is because we are studying

a state of continuous modes and performing instantaneous measurements at

two space-time points (x, t) and (x, t + τ ). If one integrates over the time t

in the measurement [12], as done in many experiments in which the detector

integration time is much longer than the wavepacket duration, one finds a one-

to-one correspondence between photon anti-bunching and photon blockade, and
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photon bunching and photon-induced tunneling.

The time dependence of g(2)(τ) is shown in Fig. 3.8(b). There are two char-

acteristic time scales: τ1 = 1/Re[cγ1] and τ2 = 1/Re[cγ2]. Within the short

time scale, g(2) can display either bunching or anti-bunching for both the 3LS

and 4LS cases, depending on the system parameters, as shown in the inset

of Fig. 3.8. On the long time scale, for the 3LS case, g(2) shows bunching—

g(2)(τ) > 1—corresponding to the enhanced multiphoton transmission already

apparent from both the photon-induced tunneling [Fig. 3.4(c)] and the enhanced

multiphoton content in the number statistics [Fig. 3.6]. For the 4LS case, anti-

bunching [g(2)(τ) < 1] dominates at long times, corresponding to the pho-

ton blockade observed in Fig. 3.4(d) and the enhanced single-photon content

in Fig. 3.6. Hence, for our pulsed output state, g(2)(τ = 0) displays rich physics due to

the induced photon-photon correlation, but is not necessarily a good guide to the photon

statistics.

3.8 Conclusion

In summary, we present a waveguide-QED-based scheme to generate strongly-

correlated photons, of interest for both many-body physics and quantum in-

formation science. Photon bound-states appear in the scattering eigenstates as a

manifestation of the photon-photon correlation. As a result, while single photons

experience EIT in the proposed waveguide-atom system, multiphoton states can

display either photon blockade or photon-induced tunneling, depending on the

detailed structure of the “atom”. From either the photon blockade or photon-

induced tunneling that occurs, nonclassical light sources can be generated by

sending coherent states into the system. In the most interesting case, a 4LS re-

moves the multiphoton content from the coherent state, leaving a pulse with
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only zero or single photon content.

In addition, we find that the system can be used to produce highly entan-

gled photon pair states in frequency space, potentially of use for large alphabet

quantum communication. Finally, we show that rich bunching or anti-bunching

behavior is present in the second-order correlation function as a signature of

the strong photon-photon correlation mediated by the “atom”. Given the recent

rapid experimental advances in several realizations, the proposed waveguide-

QED system is emerging as a promising route to cavity-free open quantum networks,

which are crucial for both large-scale quantum computation and long-distance

quantum communication.
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4

Two-Qubit System: Persistent Quantum Beats
and Long-Distance Entanglement

Summary: 1We study photon-photon correlations and entanglement generation

in a one-dimensional waveguide coupled to two qubits with an arbitrary spatial

separation. To treat the combination of nonlinear elements and 1D continuum,

we develop a novel Green function method. The vacuum-mediated qubit-qubit

interactions cause quantum beats to appear in the second-order correlation func-

tion. We go beyond the Markovian regime and observe that such quantum beats

persist much longer than the qubit life time. A high degree of long-distance

entanglement can be generated, increasing the potential of waveguide-QED sys-

tems for scalable quantum networking.

1 Part of the text of this chapter has been adapted from the following previously published
article: Huaixiu Zheng, and Harold U. Baranger, “Persistent Quantum Beats and Long-Distance
Entanglement from Waveguide-Mediated Interactions”, Phys. Rev. Lett. 110, 113601 (2013).
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4.1 Introduction

One-dimensional (1D) waveguide-QED systems are emerging as promising can-

didates for quantum information processing [18, 61, 62, 64, 66, 67, 68, 69, 70,

74, 75, 93, 109, 110, 111], motivated by tremendous experimental progress in a

wide variety of systems [17, 41, 42, 43, 44, 45, 46, 47, 48, 71]. Over the past few

years, a single emitter strongly coupled to a 1D waveguide has been studied ex-

tensively [61, 62, 64, 66, 67, 68, 69, 70, 72, 74, 75, 93, 111]. Photon-photon bound

states [69, 70, 74] emerge as a result of nonlinear interactions between the emit-

ter and the 1D bosonic continuum, and single-photon switches [62, 66, 68] have

been proposed based on a single three-level emitter. Experimentally, a quantum

amplifier [71] and a single-photon router [46] have been demonstrated using

superconducting qubits coupled to open transmission lines. To enable greater

quantum networking potential using waveguide-QED [18], it is important to

study systems having more than just one qubit.

In this Chapter, we study cooperative effects of two qubits strongly coupled to

a 1D waveguide, finding the photon-photon correlations and qubit entanglement

beyond the well-studied Markovian regime [112, 113, 114, 115]. A key feature

is the combination of these two highly nonlinear quantum elements with the

1D continuum of states. In comparison to either linear elements coupled to a

waveguide [116, 117, 118, 119] or two qubits coupled to a single mode serving

as a bus [120], both of which have been studied previously, new physical effects

appear. To study these effects, we develop a numerical Green function method

to compute the photon correlation function for an arbitrary interqubit separation.

The strong quantum interference in 1D, in contrast to the three-dimensional

case [121], makes the vacuum-mediated qubit-qubit interaction [122] long-ranged.
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We find that quantum beats emerge in the photon-photon correlations, and per-

sist to much longer time scales in the non-Markovian regime. We show that such

persistent quantum beats arise from quantum interference between emission

from two subradiant states. Furthermore, we demonstrate that a high-degree

of long-distance entanglement can be generated, thus supporting waveguide-

QED-based open quantum networks.

4.2 Hamiltonian

As shown in Fig. 4.1(a), we consider two qubits with transition frequencies ω1

and ω2, separation L = `2 − `1, and dipole couplings to a 1D waveguide. The

Hamiltonian of the system is 2

H =
∑
j=1,2

~(ωj − iΓ′j/2)σ+
j σ
−
j +Hwg

+
∑
j=1,2

∑
α=R,L

∫
dx~Vjδ(x− `j)[a†α(x)σ−j + h.c.],

Hwg =

∫
dx

~c
i

[
a†R(x)

d

dx
aR(x)− a†L(x)

d

dx
aL(x)

]
, (4.1)

where a†R,L(x) is the creation operator for a right- or left-going photon at posi-

tion x and c is the group velocity of photons. σ+
j and σ−j are the qubit raising

and lowering operators, respectively. An imaginary term in the energy level is

included to model the spontaneous emission of the excited states at rate Γ′1,2 to

modes other than the waveguide continuum [50]. The decay rate to the waveg-

uide continuum is given by Γj = 2V 2
j /c.

2 Note that we adopt the rotating wave approximation (RWA) at the level of Hamiltonian. As
pointed out in [123], within the RWA causality in photon propagation is preserved by extending
the frequency integrals to minus infinity. We carry out this scheme in all of our numerical
calculations.
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(c) 𝜃/𝜋 (b) T 

(a) 

Figure 4.1: Schematic diagram of the waveguide system and single-photon trans-
mission. (a) Two qubits (separated by L) interacting with the waveguide contin-
uum. Panels (b) and (c) show colormaps of the single-photon transmission prob-
ability T and the phase shift θ, respectively, as a function of detuning δ = ck−ω0

and 2kL. Here, we consider the lossless case Γ′ = 0.

We first solve for the single-photon scattering eigenstates, and then tackle the

problem of multi-photon scattering using a numerical Green function method.

In particular, we map the model to a bosonic model and develop a numerical

approach to solve the interacting problem in the bosonic model.

4.3 Single-Photon: Phase Gate

4.3.1 Single-Photon Scattering Eigenstates

A general single-photon scattering eigenstate of the system described by Eq. (4.1)

reads

|φ1〉 =

∫
dx
[
φR(x)a†R(x) + φL(x)a†L(x) + e1σ

+
1 + e2σ

+
2

]
|0, g1g2〉, (4.2)
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where |0, g1g2〉 is the zero photon state with both qubits in the ground state. The

Schródinger equation H|φ1〉 = E|φ1〉 gives

[
−i~c d

dx
− E

]
φR(x) + ~V1δ(x− `1)e1 + ~V2δ(x− `2)e2 = 0,

[
i~c

d

dx
− E

]
φL(x) + ~V1δ(x− `1)e1 + ~V2δ(x− `2)e2 = 0,

(~ω1 − iΓ′1/2− E) e1 + ~V1 [φR(`1) + φL(`1)] = 0,

(~ω2 − iΓ′2/2− E) e2 + ~V2 [φR(`2) + φL(`2)] = 0. (4.3)

Assuming an incident right-going photon of wave vector k = E/c, the wave-

function takes the following form

φR(x) =
eikx√

2π
[θ(`1 − x) + t12θ(x− `1)θ(`2 − x) + tkθ(x− `2)] ,

φL(x) =
e−ikx√

2π
[rkθ(`1 − x) + r12θ(x− `1)θ(`2 − x)] , (4.4)

where θ(x) is the step function. Setting φR,L(`1,2) = [φR,L(`+
1,2) + φR,L(`−1,2)]/2 and

plugging Eq. (4.4) into Eq. (4.3), we obtain the following solution

t12 =
(ck − ω1 + iΓ′1/2) (ck − ω2 + iΓ′2/2 + iΓ2/2)

(ck − ω1 + iΓ′1/2 + iΓ1/2) (ck − ω2 + iΓ′2/2 + iΓ2/2) + Γ1Γ2e2ikL/4
,

r12 =
−iΓ2(ck − ω1 + iΓ′1/2)e2ik`2/2

(ck − ω1 + iΓ′1/2 + iΓ1/2) (ck − ω2 + iΓ′2/2 + iΓ2/2) + Γ1Γ2e2ikL/4
,

tk =
(ck − ω1 + iΓ′1/2) (ck − ω2 + iΓ′2/2)

(ck − ω1 + iΓ′1/2 + iΓ1/2) (ck − ω2 + iΓ′2/2 + iΓ2/2) + Γ1Γ2e2ikL/4
,

rk =
−iΓ2(ck − ω1 + iΓ′1/2− iΓ1/2)e2ik`2/2− iΓ1(ck − ω2 + iΓ′2/2 + iΓ2/2)e2ik`1/2

(ck − ω1 + iΓ′1/2 + iΓ1/2) (ck − ω2 + iΓ′2/2 + iΓ2/2) + Γ1Γ2e2ikL/4
,

e1 =

(
ic

√
2

Γ1

)
eik`1√

2π
(t12 − 1) , e2 =

(
ic

√
2

Γ2

)
eik`2√

2π
(tk − t12) . (4.5)
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Throughout this Chapter, we assume two identical qubits: Γ1 = Γ2 ≡ Γ,

ω1 = ω2 ≡ ω0 � Γ, and Γ′1 = Γ′2 ≡ Γ′. In this case, tk reduces to the following

expression.

tk ≡
√
Teiθ =

(ck − ω0 + iΓ′

2
)2

(ck − ω0 + iΓ+iΓ′

2
)2 + Γ2

4
e2ikL

. (4.6)

Similarly, we can solve for the single-photon scattering eigenstate for an inci-

dent right-going photon of wave vector k = E/c. We represent the wavefunction

with an incident right-going and left-going photon by |φ1(k)〉R and |φ1(k)〉L, re-

spectively.

4.3.2 Results

As shown in Fig. 4.1(b), there is a large window of perfect transmission: T ≈ 1,

even when the detuning (δ = ck − ω0) of the single photon is within the reso-

nance line width (∼Γ). This is in sharp contrast to the single-qubit case, where

perfect transmission is only possible for far off-resonance photons [62]. Such

perfect transmission occurs when the reflections from the two qubits interfere

destructively and cancel each other completely. Furthermore, Fig. 4.1(c) shows

that within the resonance line width, there is a considerable phase shift θ. This

feature of single-photon transmission can be used to implement a photon-atom

phase gate. For example, in the case of δ = −0.5Γ and kL = π/4, the single

photon passes through the system with unit probability and a π/2 phase shift.

Two successive passes will give rise to a photon-atom π-phase gate, which can

be further used to realize a photon-photon phase gate [124].
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4.4 Quantum Beats in Photon-Photon Correlation

To study the interaction effects, we develop a novel Green function method to

calculate the full interacting scattering eigenstates and so photon-photon corre-

lations.

4.4.1 Mapping to a Bosonic Model

We start with a reformulated Hamiltonian [67]

H = H0 + V, V =
∑
j=1,2

U

2
d†jdj(d

†
jdj − 1),

H0 =
∑
j=1,2

~(ωj − iΓ′j/2)d†jdj +Hwg

+
∑
j=1,2

∑
α=R,L

∫
dx~Vjδ(x− aj)[a†α(x)dj + h.c.], (4.7)

where d†j and dj are bosonic creation and annihilation operators on the qubit

sites. The qubit ground and excited states correspond to zero- and one-boson

states, respectively. Unphysical multiple occupation is removed by including a

large repulsive on-site interaction term U ; the Hamiltonians in Eqs. (4.1) and (4.7)

become equivalent in the limit U → ∞. The non-interacting scattering eigen-

states can be obtained easily from H0|φ〉 = E|φ〉. The full interacting scattering

eigenstates |ψ〉 are connected to |φ〉 through the Lippmann-Schwinger equation

[85, 110, 125]

|ψ〉 = |φ〉+GR(E)V |ψ〉, GR(E) =
1

E −H0 + i0+
. (4.8)
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4.4.2 Numerical Green Function Method

With the Lippmann-Schwinger equation (4.8), we can solve for the full interacting

solution. The non-interacting eigenstates are simply products of single-photon

states.

|φn(k1, · · · , kn)〉α1,··· ,αn = |φ1(k1)〉α1|φ1(k2)〉α2 · · · |φ1(kn)〉αn , αj = R, L, j = 1-n,

H0|φn(k1, · · · , kn)〉α1,··· ,αn = c(k1 + · · ·+ kn)|φn(k1, · · · , kn)〉α1,··· ,αn . (4.9)

For simplicity, we will focus on the two-particle solution from now on. Extending

the formalism to the many-particle solution is straightforward. The two-particle

identity in real-space can be written as

I2 = Ix2 ⊗ |∅〉〈∅|+ Ix1 ⊗
∑
i=1,2

|di〉〈di|+ Ix0 ⊗
∑
i≤j

|didj〉〈didj|,

Ixn =
∑

α1···αn=R,L

∫
dx1 · · · dxn|x1 · · ·xn〉α1···αn〈x1 · · ·xn|, (4.10)

where |∅〉 is the ground state of the two qubits (bosonic sites), |di〉 = d†i |∅〉,

|didi〉 =
(d†i )

2

√
2
|∅〉 and |d1d2〉 = d†1d

†
2|∅〉. Inserting the above identity into Eq. (4.8),

we obtain

|ψ2(k1, k2)〉α1,α2 = |φ2(k1, k2)〉α1,α2 +GR(E)V I2|ψ2(k1, k2)〉α1,α2

= |φ2(k1, k2)〉α1,α2 + UGR(E)
∑
i=1,2

|didi〉〈didi|ψ2(k1, k2)〉α1,α2 .(4.11)
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Projecting Eq. (E.6) onto 〈didi| yields

(
〈d1d1|ψ2(k1, k2)〉α1,α2

〈d2d2|ψ2(k1, k2)〉α1,α2

)
=

(
〈d1d1|φ2(k1, k2)〉α1,α2

〈d2d2|φ2(k1, k2)〉α1,α2

)

+U

[
G11 G12

G21 G22

](
〈d1d1|ψ2(k1, k2)〉α1,α2

〈d2d2|ψ2(k1, k2)〉α1,α2

)
, (4.12)

where we introduce the short-hand notation Gij = 〈didi|GR(E)|djdj〉. Solving Eq.

(4.12) gives rise to

(
〈d1d1|ψ2(k1, k2)〉α1,α2

〈d2d2|ψ2(k1, k2)〉α1,α2

)
=

(
I − U

[
G11 G12

G21 G22

])−1( 〈d1d1|φ2(k1, k2)〉α1,α2

〈d2d2|φ2(k1, k2)〉α1,α2

)
.

(4.13)

Projecting Eq. (E.6) onto a two-photon basis state 〈x1x2| and taking the U → ∞

limit, we obtain the full interacting two-photon solution

〈x1x2|ψ2(k1, k2)〉α1,α2 = 〈x1x2|φ2(k1, k2)〉α1,α2

+ U
(
G1(x1, x2) G2(x1, x2)

)( 〈d1d1|ψ2(k1, k2)〉α1,α2

〈d2d2|ψ2(k1, k2)〉α1,α2

)

= 〈x1x2|φ2(k1, k2)〉α1,α2 −GxdG
−1
dd

(
〈d1d1|φ2(k1, k2)〉α1,α2

〈d2d2|φ2(k1, k2)〉α1,α2

)
,

(4.14)

where Gi(x1, x2) = 〈x1x2|GR(E)|didi〉 and

Gxd ≡
(
G1(x1, x2) G2(x1, x2)

)
,

Gdd ≡
[
G11 G12

G21 G22

]
. (4.15)

Hence, the remaining task is to calculate all the Green functions in Eq. (4.14).

This can be done using the two-photon non-interacting scattering eigenstates,
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from which we can construct a two-particle identity in momentum space

I ′2 =
∑

α1,α2=R,L

∫
dk1dk2|φ2(k1, k2)〉α1,α2〈φ2(k1, k2)|. (4.16)

Using Eq. (4.9), the Green functions can be evaluated as

Gij = 〈didi|GR(E)I ′2|djdj〉

=
∑

α1,α2=R,L

∫
dk1dk2

〈didi|φ2(k1, k2)〉α1,α2〈φ2(k1, k2)|djdj〉
E − ck1 − ck2 + i0+

,

Gi(x1, x2) = 〈x1x2|GR(E)I ′2|didi〉

=
∑

α1,α2=R,L

∫
dk1dk2

〈x1x2|φ2(k1, k2)〉α1,α2〈φ2(k1, k2)|didi〉
E − ck1 − ck2 + i0+

. (4.17)

Doing the integrals numerically gives the full interacting two-particle solu-

tion. Assuming a weak continuous wave incident laser, with the interacting

solution in Eq. (4.14) we can calculate the second-order correlation function g2(t)

[12] for an arbitrary interqubit separation.

4.4.3 Markovian Regime

Figure 4.2 shows g2(t) for both the transmitted and reflected fields when the

probe laser is on resonance with the qubit: k = k0 (k0 ≡ ω0/c). When the two

qubits are colocated [109] (L = 0), g2(t) of the transmitted field shows strong

initial bunching followed by antibunching, while g2(t) of the reflected field shows

perfect antibunching at t = 0, g2(0) = 0. This behavior is similar to that in the

single qubit case [62, 93]. When the two qubits are spatially separated by L =

π/2k0, we observe in both the transmitted and reflected fields the development

of quantum beats (oscillations). Since these beats occur in g2(t), they necessarily
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Figure 4.2: Quantum beats in the Markovian regime. The second-order photon-
photon correlation function of both the transmitted (top) and reflected (bottom)
fields as a function of t for k0L = 0 (solid line) and k0L = π/2 (dashed line).
The incident weak coherent state is on resonance with the qubits: k = k0 = ω0/c.
(Parameters: ω0 = 100Γ and Γ′ = 0.1Γ.)

involve the nonlinearity of the qubits and do not occur for, e.g., waveguide-

coupled oscillators.

4.4.4 Non-Markovian Regime: Persistent Quantum Beats

As one increases the separation L, one may expect from the well-known 3D

result that the quantum beats disappear [126]. However, in our 1D system they

do not: Figure 4.3 shows g2(t) for two cases, k0L = 25.5π and 100.5π, from which

it is clear that the beats persist to long time. The 1D nature is key in producing

strong quantum interference effects and so long-range qubit-qubit interactions.
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To interpret these exact numerical results, we compare them with the solution

under the well-known Markov approximation. For small separations (k0L ≤ π),

the system is Markovian [126]: the causal propagation time of photons between

the two qubits can be neglected and so the qubits interact instantaneously. To

understand quantum beats in this limit, we use a master equation for the density

matrix ρ of the qubits in the Markov approximation. Integrating out the 1D

bosonic degrees of freedom yields [121]

∂ρ

∂t
=

i

~
[ρ,Hc]−

∑
i,j=1,2

Γij
2

(ρσ+
i σ
−
j + σ+

i σ
−
j ρ− 2σ−i ρσ

+
j ),

Hc = ~ω0

∑
i=1,2

σ+
i σ
−
i + ~Ω12(σ+

1 σ
−
2 + σ+

2 σ
−
1 ), (4.18)

where Γii ≡ Γ + Γ′ while Γ12 ≡ Γcos(ω0L/c) and Ω12 ≡ (Γ/2)sin(ω0L/c) are the

vacuum-mediated spontaneous and coherent couplings, respectively. Transform-

ing to symmetric and antisymmetric states |S,A〉 = (|g1e2〉 ± |e1g2〉)/
√

2 gives a

more transparent form:

∂ρ

∂t
=

i

~
[ρ,Hc]−

∑
β=S,A

Γβ
2

(ρσ+
β σ
−
β + σ+

β σ
−
β ρ− 2σ−β ρσ

+
β ),

Hc =
∑
β=S,A

~ωβσ+
β σ
−
β , (4.19)

where σ+
S,A ≡ (σ+

1 ±σ+
2 )/
√

2, ΓS,A ≡ Γ+Γ′±Γ12, and ωS,A ≡ ω0±Ω12. Note that |S〉

and |A〉 are decoupled from each other and have transition frequencies ωS,A and

decay rates ΓS,A which oscillate as a function of L. When L = 0, ΓS = 2Γ+Γ′ and

ΓA = Γ′. |S〉 is in the superradiant state, while |A〉 is subradiant. The waveguide

couples only to the superradiant state and so the photon-photon correlation

mimics that for a single-qubit. However, when k0L = π/2, ΓS = ΓA = Γ + Γ′,
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Figure 4.3: Persistent quantum beats in the non-Markovian regime. The second-
order correlation function of both the transmitted (top) and reflected (bottom)
fields is plotted as a function of t for k0L = 25.5π (solid line) and 100.5π (dashed
line). We set the incident coherent state on resonance with the qubits (k = k0),
ω0 = 100Γ and Γ′ = 0.1Γ.

ωS,A = ω0 ± Γ/2, and the waveguide couples to both |S〉 and |A〉. The quantum

interference between the transitions |S〉 → |g1g2〉 and |A〉 → |g1g2〉 gives rise to

quantum beats at frequency ωS − ωA = Γ, as shown in Fig. 4.2.

As one increases the separation L and goes beyond the Markovian regime,

Eq. (4.18) is not a valid description of the system because the causal propagation

time of photons (or retardation effect) has to be included. Comparing the results

in Figs. 4.2 and 4.3, we see that quantum beats are more visible in the non-

Markovian regime in both the transmitted and reflected fields and persist to a

much longer time scale, especially for the case k0L = 100.5π. This is surprising
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because while the characteristic time scale in the system is Γ−1 ∼ L/c, there

are still quantum beats for t > 40Γ−1 in Fig. 4.3. This means the photon-photon

correlation survives after even 40 round trips between the two qubits.

To better understand the persistent quantum beats, we extract the transi-

tion frequencies and decay rates of the two qubit system beyond the Markovian

regime. This is achieved by analyzing the poles of the Green function defined

in Eq. (4.8); they are given by

F (ω) =
[
ω − ω0 +

i(Γ + Γ′)

2

]2

+
Γ2

4
e2iωL/c = 0 . (4.20)

In the Markovian regime, one can safely replace ω by ω0 in the exponent, given

that ω0 � Γ and L� cΓ−1. Eq. (4.20) then yields ω± = ω0−i(Γ+Γ′)/2±iΓeiω0L/c/2.

The real and imaginary parts of ω± correspond to the transition frequencies and

decay rates, which are nothing but ωS,A and −ΓS,A/2 obtained using the Markov

approximation [Eq. (4.19)]. Beyond this Markovian regime, we solve Eq. (4.20)

iteratively by gradually increasing L.

Figure 4.4 shows that both ωS,A and ΓS,A deviate significantly from their

Markovian values as k0L becomes large [Figs. 4.4(c) and 4.4(d)]. The expanded

detail plots, Figs. 4.4(a) and 4.4(e), show that the Markov approximation works

well for k0L ∈ [0, 5π]. At large k0L, however, both the symmetric and antisym-

metric states become subradiant [ΓS,A � Γ, Fig. 4.4(f)]. This suppression of decay

comes about in the following way: after the initial excitation of and emission

from the first qubit, it can be reexcited by the pulse reflected from the second

qubit. From the excitation probability of the first qubit through many emission-

reexcitation cycles, an effective qubit life time can be defined: it is greatly length-

ened by the causal propagation of photons between the two qubits. ΓS,A charac-

94



0 20 40 60 80 100
0

2

4

6

Γ
S,

A
/Γ

 

 

S: Numerics
S: Markov
A: Numerics
A: Markov

0 5
0

1

2

k0L/ π

Γ
S,

A
/Γ

 

 

95 100
0

1

2

k0L/ π

 

 

0 20 40 60 80 100

−1

0

1

(ω
S,

A
-ω

0
)/

Γ

0 5
−1

0

1

(ω
S,

A
-ω

0
)/

Γ
95 100

−1

0

1

(e)

(d)

(c)

(a) (b)

(f)

Figure 4.4: Renormalized transition frequencies and decay rates of the symmetric
(S) and antisymmetric (A) states. Panels (a)-(c) show the transition frequencies
ωS (thin solid line) and ωA (thick solid line) obtained numerically from Eq. (4.20)
together with ωS (thin dashed line) and ωA (thick dashed line) given by the
Markov approximation. Panels (d)-(f) similarly show the decay rates ΓS and ΓA
obtained both numerically and in the Markov approximation. (ω0 = 100Γ and
Γ′=0.1Γ.)

terize the average long time decay quantitatively.
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4.4.5 Two-Pole Approximation

The nonlinear equation Eq. (4.20) gives rise, of course, to infinitely many poles for

L > 0. These poles represent collective states of two spatially separated qubits

with vacuum-mediated interactions. They are eigenmodes of the density matrix

of the two qubits. The “two-pole” approximation of retaining only the symmetric

and antisymmetric states is a good approximation because (ωS,A − ω0,ΓS,A) are

the two poles closest to the origin (0, 0). As we will shown below, |S〉 and

|A〉 have much smaller decay rates than all the other collective states. Therefore,

these two slowly decaying states dominate the long-time dynamics and quantum

interference between their spontaneous emissions is the physical origin of the

persistent quantum beats observed in Fig. 4.3.

Figure 4.5 plots the poles computed numerically in four different cases. For

small L, Figs. 4.5(a) and 4.5(b) show that there are only two poles corresponding

to |S〉and |A〉 states within a large range of frequency. At large L, however, both

the symmetric and antisymmetric states become subradiant [ΓS,A � Γ]. Fur-

thermore, as L increases, there are additional poles as shown in Figs. 4.5(c) and

4.5(d), corresponding to collective states generated in non-Markovian processes.

For L� cΓ−1, the two-pole approximation breaks down as the additional poles

of collective states become close enough to |S〉and |A〉 states.

Here, we want to analyze the case k0L = 100.5π [Fig. 4.5(d)], where L ∼ cΓ−1

and the two-pole approximation is still valid as we will show below. With a driv-

ing laser on resonance with the qubits and a Rabi frequency Ω, the probability

to excite a state |y〉 (ωy, Γy) is

Py =
1

2 +
(ωy−ω0

Ω

)2
+
(

Γy
2Ω

)2 . (4.21)
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Figure 4.5: The poles of the Green functions for (a) k0L = 0, (b) k0L = π
2
, (c)

k0L = 25.5π, and (d) k0L = 100.5π. Both the real and imaginary parts of the poles
are in units of Γ. We show all the poles with real part within [ω0−4Γ, ω0+4Γ]. The
poles corresponding to the |S〉 and |A〉 states are labeled as S and A, respectively.
In case (d), there are four additional poles (C1-C4) within the plotted range.

Using this formula, we can calculate the probability of exciting the states cor-

responding to S (ω0 + 0.32Γ, 0.12Γ), A (ω0 − 0.32Γ, 0.12Γ), C1 (ω0 + 1.08Γ, 0.52Γ)

, C2 (ω0 + 2.01Γ, 0.90Γ), C3 (ω0 + 2.98Γ, 1.12Γ) and C4 (ω0 + 3.97Γ, 1.32Γ). In the

limit of weak driving laser, Ω→ 0, we have

PC1 = 8.6%PS, PC2 = 2.5%PS,

PC3 = 1.1%PS, PC4 = 0.7%PS. (4.22)

Hence, compared to states C1-C4, S and A states are well populated and domi-

nate the qubit-qubit interactions for the parameter regime considered.
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Figure 4.6: Long-distance qubit-qubit entanglement. (a) Schematic of setup: the
first qubit is driven by a on resonance laser with Rabi frequency Ω1. The steady
state concurrence is plotted as a function of k0L for (b) 0 ≤ k0L ≤ 5π, and (c)
95π ≤ k0L ≤ 100π. The Rabi frequencies are Ω1 = 0.1Γ, Ω2 = 0. The driving laser
is on resonance with the qubits. (ω0 = 100Γ and Γ′ = 0.1Γ.)

4.5 Qubit-Qubit Entanglement

With the “two-pole” approximation, we study qubit-qubit entanglement using

the master equation Eq. (4.19) with ωS,A and ΓS,A replaced by the renormalized

values obtained from Eq. (4.20). We focus on the steady state case by including

a continuous weak driving laser on resonance with the first qubit as shown in

Fig. 4.6(a): HL = ~Ω1(σ+
1 + σ−1 ) [114, 115]. The entanglement is characterized

by the concurrence [127]; Figure 4.6 shows its steady state value for the Rabi
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frequency Ω1 = 0.1Γ. It is worth mentioning that the maximum concurrence

we obtained is ≤ 0.5 rather than 1. This is because when the first qubit decays,

half of the excitation will propagate to the left, and hence only the other half

excitation will propagate to the second qubit to entangle them. For small sepa-

ration [Fig. 4.6(b)], the concurrence agrees with that obtained using the Markov

approximation [114]: C reaches its maximum when the maximally-entangled

two-qubit subradiant state (either |S〉 or |A〉) has a minimal decay rate and is

well populated [115]. Between two peaks, C vanishes because the symmetric

and antisymmetric states are now barely populated and the usual decay rate,

Γ + Γ′ � Ω1, holds 3.

In contrast, Fig. 4.6(c) shows that the Markovian predictions break down: we

observe enhanced entanglement for an arbitrary interqubit separation. Such

enhancement is due to non-Markovian processes: both |S〉 and |A〉 become sub-

radiant (Fig. 4.4) with decay rates much smaller than Γ and hence are well pop-

ulated. Thus, long-range entanglement is possible due to non-Markovian pro-

cesses, making 1D waveguide-QED systems promising candidates for scalable

quantum networking.

4.6 Loss and Possible Experimental Systems

Accessing the non-Markovian regime requires a large (effective) distance between

the qubits and hence low loss in the waveguide. Here, we have included the loss

of the qubit by using an effective Purcell factor of 10 (i.e. ∼ 10% loss). Because

waveguide loss has the same effect on system performance as qubit loss (both

lead to photon leakage), we expect that the observed persistent quantum beats

3 The population of an excited state with detuning ∆, decay rate Γ, and Rabi frequency Ω is
given by 1/[2 + (∆/Ω)2 + (Γ/2Ω)2].
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and long-distance entanglement are robust against waveguide loss on this same

level, namely ∼ 10%. While some waveguides in current experimental systems

are very lossy (such as plasmonic nanowires [17]), we can circumvent this diffi-

culty by using either a hybrid optical fiber systems or slow-light superconducting

systems. In the first case, low-loss optical fibers are used to transmit light over a

long distance. The transmission length we are considering is of order 100 wave-

lengths, thus of order 100 microns for typical quantum dots or atoms. Loss over

such a distance in state of the art fiber is very small: taking a 4dB/km fiber, the

loss will be on the order of 1 ppm. In the second case, the actual transmission

length is very short, but due to the reduced speed of light one can still reach

the non-Markovian regime. Below are three plausible experimental settings: (a)

and (b) belong to the first case and (c) illustrates the second case.

4.6.1 (a) Hybrid Fiber-Plasmonic Waveguide-QED System

Figure 4.7(a) shows an integrated fiber-plasmonic waveguide-QED system. The

idea of hybrid plasmonic systems was first proposed by Chang et al. [62].

Since then, there has been extensive experimental [128, 129], and theoretical

[130, 131, 132] work along this line. In the schematic, the optical fiber is coupled

to two tapered plasmonic nanowires. Due to the subwavelength confinement

[62], the plasmonic field in the nanowires couples strongly to the local qubits,

e.g. quantum dots [17]. Coupling the nanowires to a dielectric waveguide en-

sures that the quantum state can be transmitted over long distance without being

dissipated in the nanowires.
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Figure 4.7: Three possible setups for long-distance entanglement in waveguide-
QED. (a) Hybrid plasmonic system. The dielectric waveguide (light blue) is
phase-matched with the plasmonic nanowires (yellow) so that efficient plasmon
transfer between them can be realized. The nanowires are strongly coupled to
the quantum dots (blue) in the tapered regions. Note that the length of the di-
electric waveguide between the nanowires can be very long (indicated by breaks).
(b) Tapered nanofiber system. An optical fiber (green) is tapered into narrow
nanofibers in two regions. Two atomic ensembles (red) are trapped by and
strongly coupled to the nanofibers. (c) Slow-light superconducting system. Two
superconducting qubits (blue) couple strongly to the slow-light superconducting
waveguide (red dashed box).

4.6.2 (b) Integrated Nanofiber-Trapped Atomic Ensemble System

In the second example, a long optical fiber is tapered into a narrow nanofiber

in two regions. Then, two atomic ensembles are trapped by the evanescent field

surrounding the nanofibers. Strong coupling is achieved between the propagat-

ing photons in the nanofiber and the atomic ensembles [133]. Such a setting is

a clear extension of the experimental systems demonstrated by several groups

[56, 133].
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4.6.3 (c) Slow-light Superconducting Waveguide-QED System

In the third example, a 1D open superconducting transmission line is coupled to

two superconducting qubits. It has been experimentally demonstrated that this

system is deep in the strong coupling regime [46]. However, the typical length of

the transmission line is on the order of the wavelength of propagating microwave

photons. Hence, the separation of the two qubits is limited to the photon wave-

length. To reach the non-Markovian regime, we can make the effective distance

between the two qubits large by the slow-light scheme first proposed by Shen

and Fan [134]. The idea is to couple the transmission line to an additional peri-

odic array of unit cells made of two qubits. Flat photonic bands can be generated

to slow down the microwave photons. While not true long-distance propagation,

this could be an effective way to experimentally probe non-Markovian effects.

In addition to the slow-light superconducting circuit syste, very recently experi-

mentalists in Sweden have demonstrated strong coupling of quantum circuits to

surface accoustic wave (SAW) [135] in the quantum regime with a group velocity

3 orders of magnitude lower than the speed of light. The coupled SAW-double-

qubit system should be able to access the non-Markovian physics in the near

future.

4.7 Conclusion

In summary, we develop a novel Green function method to study cooperative

effects of two qubits coupled to a 1D waveguide. Both the nonlinear effects of the

qubits and the continuum of modes in the waveguide are included. We find that

long-range qubit-qubit interactions are generated by non-Markovian processes,

which in turn give rise to persistent quantum beats in the photon correlations
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and a high degree of long-distance entanglement. Several potential experimental

setups are identified to realize the proposed system.
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5

Decoy-state Quantum Key Distribution with
Nonclassical Light

Summary: 1Based on our understanding of light-matter interactions in waveguide-

QED, we study the applications in quantum information processing, in particular

quantum key distribution. We investigate a decoy-state quantum key distribu-

tion (QKD) scheme with a sub-Poissonian single-photon source, which is gener-

ated on demand by scattering a coherent state off a two-level system in a one-

dimensional waveguide. We show that, compared to coherent state decoy-state

QKD, there is a two-fold increase of the key generation rate. Furthermore, the

performance is shown to be robust against various imperfections of the system.

1 Part of the text of this chapter has been adapted from the following previously published
article: Huaixiu Zheng, Daniel J. Gauthier, and Harold U. Baranger, “Decoy-state quantum key
distribution with nonclassical light generated in a one-dimensional waveguide”, Opt. Lett. 38,
622 (2013).
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5.1 Introduction

Quantum physics has brought revolutionary changes to the way we think about

the world and has led to the birth of a new field: quantum communication.

Quantum communication is the art of transfering information encoded in quan-

tum states from one place to another. The best known example is quantum

key distribution (QKD) [4], which is the first commercially available applica-

tion of quantum information science. The general settings of QKD are shown

in Fig. 5.1. Quantum key distribution allows two distant users, Alice and Bob,

to share a secret key with unconditional security (independent of the power of

the eavesdropper Eve) guaranteed by principles of quantum physics: any action

by which Eve tries to extract information from the transfered quantum state is

a generic form of quantum measurement, which unavoidably will modify the

quantum state and hence will be caught by Alice and Bob. The first QKD pro-

tocol was proposed by Bennett and Brassard in 1984 and hence was called BB84

later on [136]. It assumes the use of an ideal single-photon source: Alice holds

a source of single photons and encodes information in the polarization degree

of freedom. In particular, the bits are coded in either the horizontal or vertical

(+) basis, or the complimentary basis, i.e. +45/− 45 (×): |H〉 for 0+; |V 〉 for 1+;

|+ 45〉 for 0×; | − 45〉 for 1×.

Given the coding scheme, the BB84 protocol works in the following way [4]:

1. Alice prepares a single photon in one of the four basis states and sends it to

Bob via the quantum channel. Bob measures it in either the + or the × basis.

This procedure is repeated N times, giving both Alice and Bob a list of N bits.

2. Alice and Bob communicate through the classical channel, compare the basis

of each photon and discard the cases in which they have chosen different bases.
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Figure 5.1: Schematic of QKD [4]: Alice sends quantum states (Ψ) to Bob through
a quantum channel. Eve can tap into the quantum channel without any restric-
tion except the laws of quantum physics. Alice and Bob can also communicate
via the classical channel (labeled C), into which Eve can only listen.

At the end, they have a list of about N/2 bits, which is the so-called raw key.

3. Alice and Bob reveal a random sample of some bits of the raw key, and

estimate the error rate and hence the information about eveasdropping by Eve.

In the absence of errors, the raw key is the same for Alice and Bob and then

it is already the secret key. However, if there are errors, Alice and Bob have to

correct them and get rid of the information Eve has obtained.

In reality, however, a single-photon source is still beyond the current tech-

nology despite tremendous experimental effort worldwide. Hence, most QKD

experiments use weak coherent states (WCS) from attenuated lasers as a photon

source [4, 137]. Two drawbacks come with the WCS: the multiphoton and the

vacuum components. The vacuum content limits Bob’s detection rate, and hence

leads to a shorter maximal distance. The multiphoton component makes QKD

vulnerable to the photon number splitting attack, where the eavesdropper (Eve)

can suppress single-photon signals and split multiphoton signals, keeping one

copy and sending one copy to Bob. This way, Eve obtains the full information

without being detected, and the unconditional security breaks down. The decoy

state method was proposed to beat such attacks [87, 88, 89]. Alice prepares a
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set of additional states—decoy states—in addition to the standard BB84 signal

states. The decoy states are used only for the purpose of detecting eavesdrop-

ping, while the BB84 signal states are used only to generate secret keys between

Alice and Bob. The only difference between the decoy states and the signal states

is their photon numbr statistics. Hence, there is no way for Eve to distinguish

a decoy state from a signal state. This way, Alice and Bob will have a better

idea of the attack situation in the quantum channel, and hence can dramatically

improve the performance of key generation.

In this Chapter, we combine the decoy-state method with a sub-Poissonian

single-photon source generated on demand by scattering in a waveguide. We

find that there is a substantial increase in the key generation rate and maximal

transmission distance compared to both WCS and heralded single-photon decoy-

state QKD. Furthermore, the performance is robust against either parameter

variation or loss in the system, making it a promising candidate for future QKD

systems.

5.2 Nonclassical Light Source

5.2.1 Model System

As shown in Chapter 2, it is possible to generate nonclassical light [48, 93] by

sending a coherent state into a 1D waveguide which is side-coupled to a quantum

nonlinear element, such as a two-level system (2LS) [62, 74]. Figure 5.2 shows

the schematic of the system we use to generate nonclassical light for QKD in this

Chapter. The nonlinearity of the quantum element (2LS) leads to a distinct differ-

ence between multiphoton and single-photon scattering. For example, when two

photons interact with a 2LS simultaneously, the 2LS will only be able to absorb

one photon and hence the pair will have a high transmission probability, leading
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Figure 5.2: Schematic of the model sytem. The incoming coherent state pulse has
a spectral width σ. The excited state of the 2LS decays into waveguide modes
and free space modes with rate Γ and Γ′, respectively. Here, we focus on the
number statistics of the reflected field.

to photon bunching and super-Poissonian photon statistics [48, 93]. The model

we use is presented in detail in Chapter 2 (and Ref. [93]). It includes absorption

of photons by the 2LS and subsequent spontaneous emission into the waveg-

uide mode at rate Γ. In addition, a loss rate Γ′ models subsequent emission

into modes other than the waveguide mode (as well as possible non-radiative

processes) [62, 93]. The input coherent state has mean photon number n̄ = 1. We

take a Gaussian wave-packet with central frequency on resonance with the 2LS

and root-mean-square spectral width σ. The loss rate Γ′ decreases the number of

photons in the waveguide, thus changing the number statistics. When Γ′ is small

compared to σ and Γ, multi-photon loss is negligible: the loss from an n-photon

pulse appears as an n − 1 photon pulse, for which we then naturally use the

n − 1 photon transmission and reflection to distribute the probability between

the transmitted and reflected fields. Now we show the details of correcting the

contribution of loss to the number statistics in the reflected field on which we

mainly focus in this Chapter.
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5.2.2 Corrections of Loss

After including a non-zero loss rate Γ′ of the 2LS, the total probabilities of all

photon sectors (Pn) do not sum up to 1. That is because photons can leak out

through the excited 2LS with rate Γ′. Here, we present an analysis of the loss

contribution to the number statistics and correct the corresponding Pn so that

they do sum up to 1 at the end. However, it is worth mentioning that the

corrected number statistics is very close to the one without correcting for loss.

As shown in Chapter 2 (and Ref. [93]), there are three different scattering

channels after sending an incoming photon state into the coupled waveguide-

2LS system: 1) transmission channel in the waveguide in which the photon-state

gets transmitted; 2) reflection channel in the waveguide in which the photon-state

gets reflected; 3) loss channel out of the waveguide in which the photon-state was

first absorbed by the 2LS and then decays into free-space modes. Notice that the

loss channel is present once a non-zero loss rate Γ′ is used. In our calculation, we

are able to compute the properties of the transmission and reflection channels,

from which we can infer the property of loss channel. Below, we present analysis

for n = 1, 2, 3 Fock state scattering.

1–photon Fock-State Scattering

Injecting an incoming 1–photon state from the left, we know there are three

possible outcomes (channels): this single-photon can get transmitted to the right

of the 2LS, or get reflected back to the left of the 2LS, or get lost during the period

the 2LS is excited. We define the 1–photon transmission, reflection and loss

probabilities as P1T , P1R and P1loss, respectively (T denotes transmission and R

denotes reflection.) We calculated P1T and P1R from the scattering solution [93],

and then from the conservation of probability, we know that P1loss = 1−P1T−P1R.
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The loss probability P1loss contributes to the n = 0 (vacuum) sector. If we measure

the number statistics in the reflected field, P1T and P1R contribute to the n = 0

and n = 1 sectors, respectively.

2–photon Fock-State Scattering

Injecting an incoming 2–photon state from the left, we know there are six

possible outcomes (channels): both photons get transmitted, one transmitted

and one reflected, both reflected, one transmitted and one lost, one reflected and

one lost, and both lost. We define the corresponding probabilities as P2TT , P2TR,

P2RR, P1T+1loss, P1R+1loss, and P2loss. Because the 2LS can only absorb one photon

at a time, the events in which two photons are lost are very rare for the low-loss

case. The condition for low loss is P � 1; if one has only P & 1, then we require

in addition σ & Γ′ so that the 2LS is not re-excited after a loss event. Therefore,

we neglect the two photon loss probability P2loss → 0.

What we actually calculated from our scattering solution are P2TT , P2TR and

P2RR, and again from the conservation of probability, we know that P1T+1loss +

P1R+1loss = 1 − P2TT − P2TR − P2RR. Furthermore, we make the assumption that

that after one of the two photons is lost, the other one scatters as if it was the

only photon. According to this argument, we can separate P1T+1loss from P1R+1loss

using our knowledge of single-photon scattering:

P1T+1loss = [1− P2TT − P2TR − P2RR]
P1T

P1T + P1T

,

P1R+1loss = [1− P2TT − P2TR − P2RR]
P1R

P1T + P1T

. (5.1)

Regarding the number statistics in the reflected field, P2TT , P2TR and P2RR

will contribute to n = 0, n = 1 and n = 2 sectors, respectively. P1T+1loss and

P1R+1loss will contribute to n = 0 and n = 1 sectors, respectively.
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3–photon Fock-State Scattering

Now, we consider injecting an incoming 3–photon state from the left. Again,

we neglect events of two or more photons getting lost. There are seven possible

outcomes (channels): three photons all get transmitted, two transmitted and

one reflected, one transmitted and two reflected, all three get reflected, two

transmitted and one lost, one transmitted and one reflected and one lost, and two

reflected and one lost. The corresponding probabilities are P3TTT , P3TTR, P3TRR,

P3RRR, P2TT+1loss, P2TR+1loss and P2RR+1loss. From the calculated P3TTT , P3TTR,

P3TRR, P3RRR and the conservation of probability, we know that P2TT+1loss +

P2TR+1loss + P2RR+1loss = 1 − P3TTT − P3TTR − P3TRR − P3RRR. Furthermore, we

assume that after one of the three photons is lost, the other two scatter as if

there were only two photons. Based on this argument and our knowledge of

two-photon scattering, we can separate P2TT+1loss, P2TR+1loss and P2RR+1loss:

P2TT+1loss = [1− P3TTT − P3TTR − P3TRR − P3RRR]
P2TT

P2TT + P2TR + P2RR

,

P2TR+1loss = [1− P3TTT − P3TTR − P3TRR − P3RRR]
P2TR

P2TT + P2TR + P2RR

,

P2RR+1loss = [1− P3TTT − P3TTR − P3TRR − P3RRR]
P2RR

P2TT + P2TR + P2RR

.(5.2)

For the number statistics in the reflected field, P3TTT and P2TT+1loss, P3TTR

and P2TR+1loss , P3TRR and P2RR+1loss, and P3RRR will contribute to n = 0, n = 1,

n = 2 and n = 3 sectors, respectively.

Coherent-State Scattering

Given an incoming coherent state with probability pi of i−photon state, we

can calculate the number statistics in the reflected field from the above discussion

of Fock-state scattering. Choosing a mean photon number n̄ = 1,we consider up
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to 3−photon scattering. With the contribution from the loss included, we obtain

the probability Pi of having an i−photon state in the reflected field as follows:

P0 = p0 + p1 [P1T + P1loss] + p2 [P2TT + P1T+1loss] + p3 [P3TTT + P2TT+1loss] + · · · ,

P1 = p1P1R + p2 [P2TR + P1R+1loss] + p3 [P3TTR + P2TR+1loss] + · · · ,

P2 = p2P2RR + p3 [P3TRR + P2RR+1loss] + · · · ,

P3 = p3P3RRR + · · · . (5.3)

This is the final result with the loss contribution corrected. Pi=0−3 gives rise to

the number statistics of the reflected field.

5.2.3 Number Statistics of the Reflected Field

Here, we show that the reflected field has sub-Poissonian statistics after cor-

recting for the contribution of loss as shown in Sec. 5.2.2. Figure 5.3 shows the

probabilities Pn to measure n-photon states in the reflected field after scattering

a coherent state off the 2LS. We will call such a photon source the “2LS source”.

We set the effective Purcell factor P = Γ/Γ′ = 20 [47] for now, and return to the

effect of loss later. For comparison, we also show Pn (dashed line) of a coherent

state with the same mean photon number as the reflected field. It is remarkable

that, for the full parameter range, the reflected field has higher single-photon

and lower vacuum and multiphoton content than the coherent state. In the in-

sert of Fig. 5.3, we show that the multiphoton content is strongly suppressed

at σ = Γ/2. This is in agreement with the observed antibunching behavior of

microwave photons [48], and is the key to increasing the key generation rate.
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Figure 5.3: Nonclassical light source. The number statistics Pn of the 2LS source
(2LSS, solid), and a coherent state (CS, dashed) of the same mean photon number
as a function of Γ/σ. Inset: Pn at σ = Γ/2. Here, we set P = Γ/Γ′ = 20. For
comparison, 2LSS without loss is shown in gray lines.

5.3 Model for Decoy-State Quantum Key Distribution

Now, we discuss the decoy-state method with light sources, including weak

coherent states, a heralded single-photon source (HSPS), and the 2LS source

(2LSS). The secure key generation rate (per signal pulse emitted by Alice) is

given by [138]

R ≥ q{−Qsf(Es)H2(Es) +Q1[1−H2(e1)]}, (5.4)

where the efficiency q is 1/2 for the Bennett-Brassard 1984 (BB84) protocol, f(Es)

is the error correction efficiency (we use f = 1.22 [139]), Qs and Es are the overall

gain and error rate of signal states, respectively, Q1 and e1 are the gain and

error rate of single-photon states, respectively, and H2(x) is the binary Shannon

information function: H2(x) = −xlog2(x)− (1− x)log2(1− x).

In Eq. (5.4), while Qs and Es are measurable quantities in experiments, Q1
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and e1 are unknown variables. Qs and Es are given by

Qs =
∞∑
n=0

psnYn, Es =
1

Qs

∞∑
n=0

psnYnen, (5.5)

where psn is the n-photon probability of signal states, en is the error rate of an

n-photon state, and Yn is the n-photon yield, i.e., the conditional probability of

a click on Bob’s side given that Alice has sent an n-photon state.

To generate a lower bound on the key generation rate, we have to estimate

a lower bound of Q1 (or equivalently Y1 as Q1 = ps1Y1) and an upper bound

of e1. Estimating the lower bound Y l
1 and the upper bound eu1 based solely on

Eq. (5.5) unavoidably underestimates the secure key generation rate due to the

lack of enough information about the transmission channel. The decoy-state idea

[87, 88, 89] is a clever way to obtain additional channel information by sending

in additional decoy states. The decoy states are used to detect eavesdropping,

but not for key generation. By measuring the transmission of the decoy states,

Alice and Bob have another set of constraints

Qd =
∞∑
n=0

pdnYn, Ed =
1

Qd

∞∑
n=0

pdnYnen, (5.6)

where Qd and Ed are the measured overall gain and error rate of decoy states,

respectively. Because Eve has no way to distinguish an n-photon decoy state

from an n-photon signal state, the yield Yn and the error rate en are the same for

both the decoy and signal states.

For our numerical simulation, we use the channel model in Ref. [140] to cal-

culate the experimental parameters Qs, Es, Qd, and Ed. In this model, the yield

is Yn = 1 − (1 − Y0)(1 − η)n, where Y0 is the background rate and η is the over-
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all transmittance given by η = tABηBob, where tAB = 10−α`/10 is the channel

transmittance and ηBob is the detection efficiency on Bob’s side. Here, α is the

loss coefficient and ` is the transmission distance. The error rate is given by

en = [e0Y0 + ed(Yn − Y0)]/Yn, where ed is the probability that a photon hits the

wrong detector and e0 is the error rate of the background. We use the exper-

imental parameters in Ref. [141]: α = 0.21dB/km, ed = 3.3%, Y0 = 1.7 × 10−6,

e0 = 0.5, and ηBob = 0.045.

We apply the linear programming method [142] to estimate Y l
1 and eu1 from

Eqs. (5.5) and (5.6). This method is applicable to light sources with general

number statistics. We use two decoy states—the vacuum and a weak decoy

state. For the weak coherent states, the key generation rate is optimized in terms

of the mean photon number in both the signal and decoy states [140]. For the

heralded single-photons, we use the number statistics from Ref. [143]. For the

2LS source, the signal and decoy states are generated by scattering coherent

states of n̄ = 1 and n̄ = 0.02, respectively. We choose σ = Γ/2.

5.4 Key Generation Rate

Figure 5.4 shows the resulting decoy-state scheme key generation rate as a func-

tion of the transmission distance. The key generation rate is cut off when it falls

below the error rate in the channel. The cut-off distance sets the maximal trans-

mission distance `max. With the same experimental parameters and estimation

technique, our scheme using the 2LS source obtains a two-fold increasing of key

generation rate compared to the case of using a weak coherent state instead. The

maximal transmission distance `max is increased as well. In addition, our scheme

also outperforms the heralded single-photon source scheme [143]. Such a per-

formance enhancement is due to the reduced vacuum and multiphoton contents,
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Figure 5.4: Key generation rate with different light sources: weak coherent state
(WCS), heralded single-photon source (HSPS), and 2LS source (2LSS) with σ =
Γ/2 and P = 20.

as shown in Fig. 5.3.

Next, we investigate the robustness of our scheme with respect to the varia-

tion of system parameter Γ/σ. As shown in Fig. 5.5(a), the key generation rate

gradually converges as Γ/σ increases. In particular, the insert shows that the

maximal transmission distance (`max) has little change for Γ/σ ≥ 1.

The effect of loss on the system performance is shown in Figure 5.5(b). We fix

σ = Γ/2 and choose different loss rates Γ′ of the 2LS. In Fig. 5.5(b), we observe

that, as P increases, the key generation rate increases and converges. It is evident

that, for P ≥ 10, the performance is very reliable against loss as shown in the

insert. Given that values of P as large as 20 have already been achieved in

recent experiments [47, 48], our scheme can be practically useful for quantum

key distribution.
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Figure 5.5: Key generation rate of 2LS sources with parameter variation and loss:
(a) σ = 5Γ, 2Γ,Γ, 0.5Γ. Inset: maximal transmission distance (`max) as a function
Γ/σ. P = Γ/Γ′ = 20; (b) P = 2, 5, 10, 20. Inset: `max as a function of P . σ = Γ/2.

5.5 Conclusion

We demonstrate a practical method for decoy-state QKD with a nonclassical

light source generated using waveguide-QED. The nonlinear 2LS leads to dis-

tinct processes in single-photon and multiphoton scattering. As a result, the

number statistics of the reflected field is sub-Possonian with more single-photon

content and less multi-photon content compared to Possonian light sources.
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The loss effect of the 2LS on the number statistics is taken into account in our

channel model. We use a linear programming approach to estimate the lower

bound of key generation rate. The resulting performance of our scheme out-

performs decoy-state QKD with both weak coherent states and the heralded

single-photons. Finally, we show that our scheme is reliable against various ex-

perimental imperfections such as variation of pulse width and loss due to the

2LS.
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6

Waveguide-QED-Based Photonic Quantum
Computation

Summary: 1We propose a new scheme for photonic quantum computation using

flying qubits—propagating photons in a one-dimensional waveguide interacting

with matter qubits. Photon-photon interactions are mediated by the coupling

to a three-level or four-level system, based on which photon-photon π-phase

gates (Controlled-NOT) can be implemented for universal quantum computation.

We show that high gate fidelity is possible given recent dramatic experimental

progress in superconducting circuits and photonic-crystal waveguides. The pro-

posed system can be an important building block for future on-chip quantum

networks.
1 Part of the text of this chapter has been adapted from the following preprint submitted to Phys.

Rev. Lett.: Huaixiu Zheng, Daniel J. Gauthier, and Harold U. Baranger, “Waveguide-QED-Based
Photonic Quantum Computation”, arXiv:1211.1711 (2012).
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6.1 Introduction

Quantum computers hold great promise for outperforming any classical com-

puter in solving certain problems such as integer factorization [144], as well as

in efficiently simulating quantum many-body systems [145, 146]. While quan-

tum computation schemes often encode information in stationary qubits such

as atoms, trapped ions, quantum dots and superconducting qubits [147], flying

qubits—photons—have several appealing features as carriers of quantum infor-

mation [147, 148]. Most importantly, photons have long coherence times because

they rarely interact, and yet can be readily manipulated at the single photon

level using linear optics. Furthermore, photonic quantum computation is poten-

tially scalable [148] in view of the recent controlled generation of single-photon

pulses [43, 47, 57, 149, 150] and demonstration of stable quantum memories

[151, 152]. However, weak photon-photon interaction makes it very challeng-

ing to realize the two-qubit gates necessary for universal computation between

single-photons. Several schemes have been proposed to circumvent this diffi-

culty. The linear optics scheme [153] uses quantum interference between qubit

photons and auxiliary photons to generate an effective nonlinear interaction be-

tween qubit photons. Other approaches include employing trapped atoms in a

cavity [124, 154] or Rydberg atoms [155, 156] to realize two-qubit gates.

In this Chapter, we propose an alternative scheme for photonic quantum

computation: using strong coupling between local emitters and photons in a

one-dimensional (1D) waveguide. Because of recent tremendous experimental

progress [17, 41, 42, 43, 44, 45, 46, 47, 57, 71], 1D waveguide systems are be-

coming promising candidates for quantum information processing. A variety of

capabilities have been proposed [62, 64, 66, 67, 68, 69, 70, 74, 111], particularly at
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the single photon level, yet protocols compatible with current waveguide setups

for some important tasks, notably two-qubit gates, have rarely been investigated

[157]. In our proposal, we construct photonic two-qubit gates solely based on

scattering in a waveguide system that is accessible in current experiments. The

photonic qubits are initialized by and returned to quantum memories [151, 152]

in order to realize long-term storage. Compared with the cavity approach, our

setup is simplified and avoids the complexity of stabilizing the resonance be-

tween the cavity modes and the atom. The gate has a wide bandwidth, and

its operation time is determined solely by the coupling strength. Combining

the simplicity of the system and the scalability of photons, our waveguide-QED-

based scheme opens a new avenue towards scalable quantum computation and

distributed quantum networks [18] in a cavity-free setting.

We present a π-phase gate scheme based on a four-level system (4LS) and a

three-level system (3LS) in Sec. 6.2 and Sec. 6.3, respectively. In Sec. 6.4 we give

an example of a photon-qubit quantum memory from an extension of the 4LS

scheme. Finally, we conclude in Sec. 6.5.

6.2 π-Phase Gate: 4LS Scheme

6.2.1 Photonic Qubits

The photonic qubits are encoded in the frequency degree of freedom, |ω0〉 and

|ω1〉, for simplicity. Single photons can be generated from the emission of quan-

tum dots [43, 45, 47] or using circuit-QED systems [57], and single-qubit rotations

can be realized using a Mach-Zehnder interferometer [158, 159]. Hence, we fo-

cus on two-qubit gates and, in particular, a π-phase (Controlled-NOT) gate. We

consider a semi-infinite 1D waveguide side-coupled to a four-level system that is

located a distance a from the end (Fig. 6.1). Such a setup can be realized in a va-
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riety of experimental systems using superconducting transmission lines [44, 71],

diamond nanowires coupled to NV centers [42], photonic-crystal waveguides

coupled to quantum dots [47], hollow fibers with trapped cold atoms [41], or

plasmonic nanowires [17]. We now show that a π-phase gate between two pho-

tons A and B can be realized by reflecting them from the end of the waveguide.

Generalization of our scheme to polarization-encoded qubits is straightfor-

ward. The key to this generalization is to choose a four-level system such that

both the transitions 1→ 2 and 3→ 4 are polarization selective, i.e., they interact

with, for example, only π-polarized photons but not σ-polarized photons. In

this case, we can define our photonic polarization-qubit to be |0〉 = |ω0〉σ and

|1〉 = |ω1〉π. Since information is stored in the polarization degree of freedom,

single-qubit operations can be performed via polarization rotations. Then all the

discussions of two-qubit gates follow easily with the newly defined polarization

qubits.

6.2.2 Model Hamiltonian

The Hamiltonian of the system (Fig. 6.1) is given by

H = Hwg +
4∑
i=2

~(Ωi − iΓ′i/2)σii

+
∑
α=R,L

∫
dx ~V δ(x)[a†α(x)(σ12 + σ32 + σ34) + h.c.],

Hwg =

∫
dx

~c
i

[
a†R(x)

d

dx
aR(x)− a†L(x)

d

dx
aL(x)

]
, (6.1)

where aR,L(x) are the propagation modes along the x axis of the waveguide, σij ≡

|i〉〈j|, and we use the energy level of ground state |1〉 as the energy reference.

An imaginary term models the loss of the excited state at rate Γ′i. The decay
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rate to the waveguide continuum is Γ = 2V 2/c, where c is the group velocity

of photons. For our gate operation, we require that the transitions 1→ 2 and

3→ 4 have the same frequency Ω12 = Ω34 (where Ωij ≡ Ωj − Ωi); in contrast,

the frequency of the 3→ 2 transition should be distinctly different, satisfying

|Ω32 − Ω12| � Γ. In addition, for simplicity, we assume that (i) transitions 1→2,

3→ 2, and 3→ 4 have the same coupling strength Γ to the waveguide modes,

(ii) state 3 is metastable with loss rate Γ′3 = 0, and (iii) states 2 and 4 have the

same loss rate Γ′ ≡ Γ′2 = Γ′4. None of these additional assumptions are essential.

Here, we set ~ = c = 1.

The photon qubit consists of two distinct frequencies. Frequency ω1 is chosen

to be on resonance with the transitions 1 → 2 and 3 → 4, i.e. ω1 = Ω12. In

contrast, ω0 is far off resonance from all of the atomic transitions—an ω0 photon

does not interact with the four-level system (4LS). The 4LS is initialized in |1〉.

Here, we assume that we have quantum memories [151, 152] available, one for

qubit photon A and another for B, and we give an example in Sec. 6.4.

6.2.3 Gate Operation

As illustrated in Fig. 6.1, a π-phase gate between photon pulses A and B can

be realized via the following steps. (1) Trapping: photon A (of frequency ωA)

is sent into the system. If A is in state |ω1〉, it is trapped, an auxiliary photon

C of frequency Ω32 is emitted, and the 4LS is put into |3〉. Otherwise, A will

come out without interacting with the 4LS. We call the output the A′ photon.

(2) π-phase: a second qubit photon B (of frequency ωB) is sent into the system;

it gains a π-phase if both ωB = ω1 and the 4LS is in state |3〉. Otherwise, B

will either pass through without any change if ωB = ω0, or be trapped followed

by the emission of a C ′-photon of frequency Ω32 if ωB = ω1 and the 4LS is in
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Figure 6.1: Gate operation: 1) trapping; 2) π-phase; 3) retrieval. The gate se-
quences here illustrate the case of both photons A and B being in state |ω1〉.
For this case, step 4) does not cause any change and hence is not shown here.
The left and right sides show the initial and final states, respectively. Inactive
transitions in each step are gray-colored.

state |1〉. (3) Retrieval of A: by time reversal arguments, sending in the output

photon A′ retrieves photon A, which is further directed to and stored in quantum

memory A. (4) Retrieval of B: in the case of ωA = ω0 and ωB = ω1, photon B

will be trapped by the 4LS in step 2—we retrieve it by simply sending in the

auxiliary photon C. In all the other cases, photon C simply passes through the

4LS without any change. Photon B from either step 2 or 4 is directed to and

stored in quantum memory B. Therefore, only when ωA = ωB = ω1 is a π-phase

generated by their interaction with the 4LS. We now analyze each of these steps.
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Step 1—Trapping. For an incoming single photon A in mode |ωA〉 and initial

state |1〉 of the 4LS, the output state of the system, obtained by imposing wave-

function matching [70, 111] and hard-wall boundary condition at the end of the

waveguide [157], is

|φout
1 (ωA)〉 = r11(ωA)|ωA〉 ⊗ |1〉+ r13(ωA)|ω̃A〉 ⊗ |3〉, (6.2)

where

ω̃ = ω − Ω13,

r11(ω) = e2iωa −Ω12 + iΓ′

2
+ ω − iΓ

2
[e2iω̃a − e−2iωa]

Ω12 − iΓ′

2
− ω + iΓ

2
[e2iω̃a + e2iωa − 2]

,

r13(ω) =
(iΓ/2)(e2iωa − 1)[e2iω̃a − 1]

Ω12 − iΓ′

2
− ω + iΓ

2
[e2iω̃a + e2iωa − 2]

. (6.3)

The detailed derivation is given in Appendix E. We first illustrate the operation

principle for the lossless case Γ′ = 0 and then later analyze the effect of loss in

detail. We assume that the key condition 2(Ω12 + Ω32)a = 2n1π is satisfied; in

addition, we can make the trivial choice 2ω0a = (2n0 + 1)π (n0, n1 are integers).

Then, if the incoming qubit photon-A is in mode |ω0〉, r11(ω0) = 1 and r13(ω0) = 0

because ω0 is far off resonance from all the transitions. Hence, it will reflect from

the system without change, leaving the 4LS in |1〉. On the other hand, if photon-

A is in mode |ω1〉, the on-resonance interaction with the 1 → 2 transition gives

r11(ω1) = 0 and r13(ω1) = −1. As a result, it will be trapped and stored in level

|3〉 of the 4LS, emitting an auxiliary C-photon at frequency ω1 − Ω13 = Ω32.

Step 2—π-phase. Now send in the second qubit, photon-B in mode |ωB〉. The
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output state after scattering reads

|φout
2 (ωA, ωB)〉 = r11(ωA)|ωA〉 ⊗ |φout

1 (ωB)〉

+ r13(ωA)R3(ωB)|ω̃A〉|ωB〉 ⊗ |3〉, (6.4)

where

R3(ω) =
−(Ω12 − iΓ′

2
− ω)e2iωa + iΓ

2
(1− e2iωa)

Ω12 − iΓ′

2
− ω − iΓ

2
(1− e2iωa)

. (6.5)

Here, we neglect the transition 3 → 2 because ω0,1 is chosen to be far detuned

from Ω32. If photon-B is in mode |ω0〉, it is far off resonance from the transitions,

and, using the same value of a as above, r11(ω0) = R3(ω0) = 1 while r13(ω0) = 0.

Hence, the output state in this case is |φout
1 (ωA)〉 ⊗ |ωB〉—photon-B is unaffected.

However, if photon-B is in |ω1〉, the state after scattering is

|φout
2 (ωA, ωB = ω1)〉 = r13(ωA)R3(ωB)|ω̃A〉|ωB〉|3〉

+ r11(ωA)r13(ωB)|ωA〉|ω̃B〉|3〉. (6.6)

Two possible outcomes exist: (i) if the 4LS is in state |1〉 after step 1, photon-B

will be trapped, but (ii) if the 4LS is in state |3〉, photon-B is on resonance with

transition 3→ 4 and gains a π-phase [R3(ω1) = eiπ]. The 4LS being in state |3〉

is, of course, conditioned upon photon-A in step 1 being in |ω1〉. Notice that the

π-phase shift is independent of coupling strength Γ which only determines the

operation bandwidth of photon pulses (for details, see the following discussions

on fidelity). Such a robust π-phase shift of the reflected photon is a result of

Fano resonances [62, 160, 161]: complete destructive intereference occurs in the

transmssion between the two paths—photons can either pass through the 4LS

or skip it.
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Step 3—Retrieval of A. By sending in the output photon from step 1, we re-

trieve photon-A. This process is the time-reversal of photon trapping. The full

wavefunction that results is increasingly complicated; accordingly, we focus on

the specific case needed—using the two conditions 2(Ω12 + Ω32)a = 2n1π and

2ω0a = (2n0 + 1)π introduced in step 1—and relegate the full wavefunction,

useful for other cases, to Appendix E. The state after this step reads

|φout
3 (ωA, ωB)〉 = r11(ωA)r11(ωB)|ωB〉 ⊗ r11(ωA)|ωA〉|1〉

+r11(ωA)r13(ωB)|ω̃B〉 ⊗R3(ωA)|ωA〉|3〉

+r13(ωA)R3(ωB)|ωB〉 ⊗ r31(ωA)|ωA〉|1〉 (6.7)

with

r31(ω) =
(iΓ/2)(e2iω̃a − 1)[e2iωa − 1]

Ω32 − iΓ′

2
− ω̃ + iΓ

2
[e2iωa + e2iω̃a − 2]

. (6.8)

In our case, all of the factors rij and R3 are either 0 or ±1. The first line of

Eq. (6.7) corresponds to input qubits in the 00 state, line two is for 01, and the

last line covers both 10 and 11.

Step 4—Retrieval of B. In the case ωA = ω0 and ωB = ω1, photon B is trapped

in the 4LS in step 2. Time reversal arguments imply that sending in a C photon

of frequency Ω32 will release photon B in this case but will simply pass through

the system without interacting in the other cases. The final state after all four

steps is

|φout
4 〉 = f1(ωA, ωB)|ωA〉|ωB〉|ωC〉|1〉

− f2(ωA, ωB)|ωA〉|ω̃B〉|ω′C〉|1〉 (6.9)
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where

f1(ωA, ωB) = r2
11(ωA)r11(ωB) + r13(ωA)r31(ωA)R3(ωB),

f2(ωA, ωB) = r11(ωA)R3(ωA)r13(ωB). (6.10)

The second line in Eq. (6.9) corresponds to the case of the input ωA = ω0 and

ωB = ω1; the state |ω′C〉 signifies that the frequency of the C photon is now ω1—

it is the retrieved B photon. By filtering out the frequency Ω32 and relabeling

|ω′C〉 as |ωB〉, we obtain the final state |φf (ωA=ωi, ωB =ωj) = (−1)ij|ωi〉|ωj〉 ⊗ |1〉,

i, j = 0 or 1. Thus we see that the above steps give rise to the desired π-phase

gate:

UAB = exp
{
iπ|ω1〉A〈ω1| ⊗ |ω1〉B〈ω1|

}
. (6.11)

Here, we assume the use of quantum memories and direct photon A from step 3

to quantum memory A. Photon B from either step 2 or 4 is directed to quantum

memory B after filtering out frequency ωC .

6.2.4 Fidelity and Loss

We now analyze the gate performance by considering photon pulses with a finite

spectral width σ and including atomic loss (Γ′ > 0). In particular, we consider

Gaussian input pulses A, B, and C centered at frequencies ω1, ω1, and Ω32,

respectively:

|φA,B〉 =

∫
dωA,Bgσ(ωA,B − ω1)|ωA,B〉,

|φC〉 =

∫
dωCgσ(ωC − Ω32)|ωC〉, gσ(ω) ∝ e−

ω2

2σ2 . (6.12)

The corresponding temporal width is ∆T = 1/(2σ). After the scattering, the final

state of the system is |φf〉 =
∫
dωAdωBdωCgσ(ωA)gσ(ωB)gσ(ωC)|φout

4 (ωA, ωB, ωC)〉.
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The fidelity of the photon-atom gate is given by

F ≡ |〈ψ|φf〉|2, (6.13)

where |ψ〉 = −|φA〉|φB〉|φC〉 ⊗ |1〉 is the target state.

The atomic loss is characterized by introducing the effective Purcell factor

P = Γ/Γ′. We note that large values of P (> 20) have been demonstrated in

recent experiments using either superconducting circuits [46], photonic-crystal

waveguides [47], or semiconductor nanowires. To quantify the effect of loss, we

define the probability of leakage, P`, to be the probability of losing the photon

during the operation through spontaneous emission

P` ≡ 1− |〈φf |φf〉|2. (6.14)

Figure 6.2(a) shows the fidelity of our scheme as a function of the pulse width

∆T . For a short pulse, the spectral width is large, and so the fidelity is limited

by the large frequency variation. As ∆T increases to 10Γ−1, the fidelity starts

to saturate and is only limited by the atomic loss. A fidelity of 86% and 94%

can be achieved for P = 20 and P = 40, respectively. Figure 6.2(b) shows that

the leakage error decays rapidly as P increases and can be as small as a few

percent for P approaching 100, which is feasible in the near future given the

rapid experimental advances in 1D waveguide systems. Such a leakage error is

acceptable, especially since it can be efficiently corrected by concatenated coding

[124, 144].

We now make a rough estimate of the gate operation time. Since the gate

fidelity is insensitive to the pulse width variation once ∆T is sufficiently large

[Fig. 6.2(a)], we choose ∆T = 10Γ−1 for practical estimation. Using a super-

conducting circuit as an example, we estimate the duration of our photon-
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Figure 6.2: Fidelity and leakage error of the photon-photon π-phase gate. (a) Fi-
delity F as a function of the pulse width ∆T (in units of Γ−1) for P = 10, 20, 40,∞.
(b) The leakage probability P` as a function P with ∆T = 10Γ−1.

photon π-phase gate to be 30Γ−1 ∼ 300ns for a superconducting qubit with

Γ = 2π×100MHz [46]. Such an operation time is compatible with current qubit

coherence times, which are on the order of 1µs 2.

6.3 π-Phase Gate: 3LS Scheme

An alternative π-phase gate using only a three level system (3LS) is possible by

adapting the cavity-based proposal of Ref. [124]. First, one constructs a π-phase

2 Recently, even higher coherence times (10-20µs [162] and ∼0.1ms [163]) have been achieved
by placing the qubit in a 3D cavity.
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gate between a photon qubit and the local qubit (3LS). Then, using the photon-

atom π-phase gate as a building block, a π-phase gate between two photons A

and B can be implemented by sending them into the system successively. This

proposal has the additional advantage of naturally realizing a photon-atom π-

phase gate, which can be used to entangle distant quantum nodes in a large

quantum network [19].

6.3.1 Model Hamiltonian

In this realization (Fig. 6.3), we consider a semi-infinite 1D waveguide side-

coupled to a 3LS, which is located a distance a from the end. Such a system

could be realized in a variety of experimental systems [17, 41, 44, 47, 71]. A

π-phase gate between two photons A and B is realized by reflecting them from

the end of the waveguide.

The Hamiltonian of the system is given by

H1 = Hwg +Hee +
∑
α=R,L

∫
dx~V δ(x)[a†α(x)σge + h.c.],

Hwg =

∫
dx

~c
i

[
a†R(x)

d

dx
aR(x)− a†L(x)

d

dx
aL(x)

]
, (6.15)

where Hee = ~(Ωeg − iΓ′/2)σee and σij ≡ |i〉〈j|. The transition from the ground

state |g〉 to the excited state |e〉 couples to the waveguide modes (aR,L); an imag-

inary term models the loss of the excited state at rate Γ′. The decay rate to the

waveguide continuum is Γ = 2V 2/c, where c is the group velocity of photons.

Note that the metastable state |s〉 does not appear in the Hamiltonian as it is

decoupled from the waveguide; however, its presence is essential since |g〉 and

|s〉 form the atomic qubit. As in Sec. 6.2, we consider a photonic qubit coded in

the frequency domain.
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Figure 6.3: Schematic diagram of the operation sequence of the π-phase gate
between two photons A and B. The three-level system (3LS) is located a distance
a from the end of the semi-infinite waveguide and is initialized in an equal
superposition of the g and s states. A and B are reflected successively from the
semi-infinite waveguide coupled to the 3LS. Between the reflections, single-qubit
rotation pulses (green rectangles) are applied to the atomic qubit made of states
|g〉 and |s〉.

6.3.2 Photon-Atom and Photon-Photon π-Phase Gates

Our first step is to realize a photon-atom π-phase gate. Consider a single incom-

ing photon with frequency ω. In the case that the three-level system is in |g〉, we

obtain the output state by imposing a hard-wall boundary condition at the end

of the waveguide, thus giving

|φout
g (ω)〉 = rg(ω)|ω〉L,

rg(ω) =
−(∆− iΓ′

2
)e2iωa + iΓ

2
(1− e2iωa)

∆− iΓ′

2
− iΓ

2
(1− e2iωa)

, (6.16)

where ∆ = Ωeg − ω is the detuning. We first illustrate the operation principle

for the lossless case Γ′ = 0 and then later analyze the effect of loss in detail. In

the lossless case, we always have perfect reflection—|rg(ω)|2 = 1—because the

waveguide is semi-infinite. Choosing two frequencies ω1 = Ωeg and |ω0−Ωeg| �

Γ, we have rg(ω1) = −1 and rg(ω0) = −e2iω0a. On the other hand, if the qubit is

in |s〉, the photon gains a trivial phase shift rs(ω) = −e2iωa. Therefore, under the

conditions 2ω0a = (2n0 + 1)π and 2Ωega = (2n1 + 1)π with n0, n1 ∈ Z, we realize

a π-phase gate between the photonic qubit (|ω0〉, |ω1〉) and the atomic qubit (|g〉,
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|s〉):

rg(ω0) = rs(ω0) = rs(ω1) = −rg(ω1) = 1,

Uphoton-atom = exp
{
iπ|ω1〉〈ω1| ⊗ |g〉〈g|

}
. (6.17)

Using the photon-atom π-phase gate as a building block, we can implement

a π-phase gate between two photons A and B as in the cavity-based proposal of

Ref. [124]. First, initialize the atom in the state |φa〉 = (|g〉 + |s〉)/
√

2. Next, send

in photon-A followed by a π/2 rotation on the atom. Third, send in photon-B

followed by a −π/2 rotation on the atom. Finally, send in photon-A again. This

procedure produces a π-phase gate

UAB = exp
{
iπ|ω1〉A〈ω1| ⊗ |ω1〉B〈ω1|

}
. (6.18)

Our scheme closely resembles the cavity-based proposal [124], but we rely on a

different mechanism to generate the π-phase shift in a cavity-free setting. As for

the 4LS scheme in Sec. 6.2, this phase gate requires fine tuning so that, as noted

above, 2Ωega = (2n1 + 1)π; this is possible using superconducting qubits, for

instance, for which the transition frequencies can be easily tuned using external

magnetic flux [164].

6.3.3 Fidelity and Loss

To analyze the gate performance in this scheme, we consider photon pulses with

a finite spectral width σ and include atomic loss (Γ′ > 0). In particular, we

consider a Gaussian input pulse centered at frequency ω1:

|φi〉 =

∫
dωgσ(ω)|ω〉 ⊗ |φa〉 , (6.19)

gσ(ω) ∝ exp{−(ω − ω1)2/2σ2}. (6.20)
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The temporal width is ∆T = 1/(2σ). After the scattering, the final state of the

system is

|φf〉 =

∫
dωgσ(ω)×

{
rg(ω)|ω〉 ⊗ |g〉+ rs(ω)|ω〉 ⊗ |s〉

}
/
√

2.

The fidelity of the photon-atom gate is given by

F ≡ |〈ψ|φf〉|2 =
∣∣∣1
2

∫
dωg2

σ(ω)[rg(ω)− rs(ω)]
∣∣∣2, (6.21)

where |ψ〉 = |ω1〉⊗(−|g〉+ |s〉)/
√

2 is the target state. The atomic loss is character-

ized by introducing the effective Purcell factor P = Γ/Γ′. To measure the effect

of loss quantitatively, we define the probability of leakage, P`, as the probability

of losing the photon during the operation through spontaneous emission:

P` ≡ 1− |〈φf |φf〉|2 = 1−
∣∣∣ ∫ dωg2

σ(ω)
[|rg(ω)|2 + 1]

2

∣∣∣2. (6.22)

Figure 6.4(a) shows the fidelity F as a function of pulse temporal width ∆T .

For a short pulse, the spectral width is large, and so the fidelity is limited by

the large frequency variation of the conditional phase rg(ω). As ∆T increases

to 10Γ−1, the fidelity starts to saturate and is only limited by the atomic loss.

A high fidelity (≥ 95%) can be achieved for a practical value of P ≥ 20. Figure

6.4(b) shows that the leakage probability decreases quickly as one increases P

and is on the order of a few percent for P ≥ 20. Further improvement in both

fidelity and loss can be expected from the rapidly development of 1D waveguide

technology and schemes using off-resonance mechanisms to reduce the loss.
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Figure 6.4: Fidelity and leakage error of the photon-atom gate in the 3LS scheme.
(a) Fidelity F as a function of the pulse width ∆T (in units of Γ−1) for four
different cases. (b) The leakage probability P` as a function of the effective
Purcell factor P with a pulse width ∆T = 10Γ−1.

6.4 Photon-Qubit Quantum Memory

We extend the 4LS scheme presented in Sec. 6.2 to an M-type five-level system

(5LS) to construct a quantum memory of the qubit photons, as shown in Fig. (6.5).

The 5LS is chosen so that the transition energies of the ground state |s〉 to

the two excited states |e0〉 and e1〉 match the photon-qubit frequencies ω0 and ω1,

respectively. Because ω0 and ω1 are well separated in frequency (|ω0−ω1| >> Γ),

the |ω0〉 (|ω1〉) photon only interacts with the g → e0 (g → e1) transition. In
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Figure 6.5: Schematic diagram of an M -type five-level system as a quantum
memory of qubit photons. The top and bottom panels show the initial and final
states of mapping a qubit-photon state to a matter-qubit state. An arbitrary
superposition of ω0-photon (green pulse) and ω1-photon (yellow pulse) is store
in the matter-qubit states |s0〉 and |s1〉. Meanwhile, an anxiliary photon-C (blue
pulse) is emitted after the mapping.

addition, the s0 → e0 and s1 → e1 transitions have the transition energy ωes.

According to our calculations in the trapping step in Sec. 6.2, the output state of

an incoming |ω0〉 photon with the 5LS initialized in ground state |g〉 reads

|φ0〉 = |ωes〉 ⊗ |s0〉. (6.23)

Similarly, the output state of an incoming |ω1〉 photon is

|φ1〉 = |ωes〉 ⊗ |s1〉. (6.24)

Hence, the output state after scattering an arbitrary photon-qubit state α|ω0〉 +

β|ω1〉 reads

|φout〉 = (α|s0〉+ β|s1〉)⊗ |ωes〉. (6.25)
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Therefore, the photon-qubit is mapping into a matter-qubit made of two metastable

states |s0〉 and |s1〉; at the same time, an anxiliary photon-C of frequency ωes is

emitted. Retrieval of the photon-qubit can be done simply by sending in the

anxiliary photon-C. Similarly, the generalization of this quantum memory to

polarization-encoded photon qubits is straightforward: we choose the 5LS such

that the transitions g → e0 and g → e1 only interact with π-polarized and σ-

polarized photons respectively. Defining the σ-polarized (π-polarized) photons

as the logic 0 (logic 1) qubit states, the above scheme will work as a quantum

memory of the polarization-encoded photonic qubits.

6.5 Conclusion

In summary, we demonstrate that two-qubit gates for photonic quantum com-

putation can be designed in 1D waveguide-QED systems. Our waveguide-based

proposal has several potential advantages over quantum computation based on

cavity photons or stationary qubits. The operation time here is limited only by

the coupling strength, while in the cavity case the cavity line width is the bot-

tleneck. Also, our scheme does not require fine tuning of the interaction time,

which is often a significant source of error. Overall, the system proposed here

can be an important building block for future on-chip quantum networks: taking

superconducting circuits as an example, we can envision such a network with

(i) single photons generated using microwave resonators [57], (ii) qubit photons

stored in quantum memories formed from the M -level scheme, (iii) photon flow

regulated by single-photon routers [46], and (iv) two-photon operations realized

by our 4LS-waveguide system.
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7

Conclusions and Outlook

In this last Chapter, I summarize the main findings presented in this thesis.

Then, I will discuss about open questions and possible future directions.

7.1 Conclusions

In the first part of this thesis (Chapters 2-4), we study light-matter interactions in

one-dimensional (1D) waveguide-QED systems, which are becoming a promising

platform for quantum information processing. This field is motivated by recent

tremendous experimental progress in a variety of systems, including plasmonic

wires [17], photonic wires [42, 43, 45], photonic crystal waveguides [47], tapered

nanofibers [41, 56], superconducting transmission lines [40, 44, 46, 48] and so

on. Compared to the conventional cavity-QED systems, waveguide-QED sys-

tems have a new feature: the existence of a continuum in the 1D phase space.

As a result, a wide range of quantum optical phenomena such as photon-photon

bound state appear in such systems. Based on our understanding of the funda-

mental interaction mechanism, in the second part of this thesis (Chapters 5-6),
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we propose and investigate in detail potential applications of waveguide-QED

in quantum science such as quantum key distribution and photonic quantum

computation.

In Chapter 2, we study the simplest waveguide-QED system, i.e. a two-level

system (TLS) coupled to a one-dimensional waveguide. This system has been

studied experimentally in different contexts, including plasmonic system [17],

photonic crystal waveguide [47] and superconducting circuits [40, 44, 46, 48] etc.

We solve for the exact scattering eigenstates by using an open boundary con-

dition. Photon-photon bound states appear in multi-photon scattering due to

the coupling between TLS and the waveguide. Such bound states cause several

interesting effects. For example, multi-photon tranmission is enhanced when the

photons are on resonance with the TLS. Pronounced spectral entanglement is

generated among initially uncorrelated photons in the transmitted field. Rich

bunching and antibunching behavior is observed in the second-order correla-

tion function. In addition, non-Poissonian light can be generated by sending in

coherent states.

In Chapter 3, we study the coupling of the waveguide to a three-level or four-

level system. Effective repulsive or attractive interaction between photons can be

produced, giving rise to either suppressed multiphoton transmission—photon

blockade—or enhanced multiphoton transmission—photon-induced tunneling.

As a result, a sub-Poissonian single-photon source can be generated on demand

when the incoming coherent state is on resonance with the 4LS. This comes about

because single photons experience eletromagnetically-induced transparency (EIT),

while multiphotons experience photon blockade. Furthermore, we show that the

proposed system can produce photon pairs with a high degree of spectral entan-

glement, which have a large capacity for carrying information and are important
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for large-alphabet quantum communication.

In Chapter 4, we study the system of a one-dimensional waveguide coupled

to two qubits with an arbitrary separation. This system is important because it is

the minimal system toward scalable quantum networks using waveguide-QED.

On the other hand, it was rarely studied partially because no analytical solution

exists for the general case of arbitrary inter-qubit separation. To overcome this

difficulty, we develop a novel numerical Green function method, enabling us to

treat the combination of nonlinear elements (TLS) and 1D continuum for the

general case. We find that the vacuum-mediated qubit-qubit interactions cause

quantum beats to appear in the second-order correlation function. For the first

time, we go beyond the Markovian regime, i.e. small separation of two qubits,

and observe that quantum beats persist much longer than the qubit life time

when the two qubits are far apart. A quantitative picture of subradiance is

developed to explain such persistent quantum beats. Finally, we demonstrate

that a high-degree of long-distance entanglement between the two qubits can

be generated, increasing the potential of waveguide-QED systems for scalable

quantum networks.

The second part of this thesis includes two applications of waveguide-QED

in quantum information processing. In Chapter 5, we investigate a decoy-state

quantum key distribution (QKD) scheme with a sub-Poissonian single-photon

source. As shown in Chapter 2, this light source is generated on demand by

scattering a coherent state off a two-level system in a one-dimensional waveguide.

We find that there is a substantial increase in the key generation rate and maximal

transmission distance compared to both weak coherent state and heralded single-

photon decoy-state QKD. Furthermore, the performance is robust against either

parameter variation or loss in the system, making it a promising candidate for
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future QKD systems.

In Chapter 6, we propose a new scheme for photonic quantum computation

using flying qubits—propagating photons in a one-dimensional waveguide in-

teracting with matter qubits. Photon-photon interactions are mediated by the

coupling to a three-level or four-level system, based on which photon-photon π-

phase gates (Controlled-NOT) can be implemented for universal quantum com-

putation. We show that high gate fidelity is possible given recent dramatic exper-

imental progress in superconducting circuits and photonic-crystal waveguides.

Furthermore, our waveguide-based proposal has several potential advantages

over quantum computation based on cavity photons or stationary qubits. The

operation time is limited only by the coupling strength, while in the cavity case

the cavity line width is the bottleneck. Also, our scheme does not require fine

tuning of the interaction time, which is often a significant source of error. Over-

all, the proposed system can be an important building block for future on-chip

quantum networks.

7.2 Outlook

The field of waveguide-QED is a young field starting to explode in the past few

years, mainly because of a series of beautiful experiments reaching the strong-

coupling regime. The rapid development of the field in turn also exposes us

to a lot of open questions from the theoretical perspective. Current theoreti-

cal research in the field has been mostly focused on the problem of a single

local quantum emitter coupled to a 1D waveguide within the rotating wave ap-

proximation (RWA) [62, 66, 67, 68, 69, 70, 72, 74, 75, 93, 111], which means the

coupling strength is much smaller than the transition frequencies. However, it is

crucial to study systems of more than one quantum emitter in order to transfer
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quantum information and generate long-distance entanglement in a quantum

network [18].

In addition, even though most current waveguide-QED experiments are well

described by the rotating wave approximation, it has been shown both experi-

mentally and theoretically that the ultrastrong coupling regime is within reach

in the near future [165, 166]. Realizing ultrastrong coupling between light and

matter would bring in a whole spectrum of new physics, such as Kondo effects in

bosonic systems [167, 168], superradiant quantum phase transitions [169] and so

on. Furthermore, in Chapter 4 we studied the two-qubit waveguide-QED system

and uncovered rich physics due to non-Markovian processes in such a relatively

simple system. We believe there is much more non-Markovian physics to dis-

cover in more complicated setups, such as systems having many-qubits or more

than one waveguide.

In light of open questions mentioned above, I propose and outline the fol-

lowing possible future directions as extensions of this thesis:

1. Is it possible to generated more exotic and strongly-correlated photons or

photonic phases in a dense system? Under the rotating wave approxima-

tion, the problem of scattering photons off a single quantum emitter has

been extensively studied in the past, partially because there is an exact

solution to the problem after performing the even/odd transformation of

the photonic field with respect to the quantum emitter as shown in Chap-

ter 2 and Chapter 3. However, once we introduce more than one quantum

emitter, this analytical technique stops working and alternative methods

are required.

As shown in Chapter 4, we developed a novel numerical Green function
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method to study cooperative effects in a system of two qubits strongly cou-

pled to a 1D waveguide. This numerical approach enables us to compute

the second-order correlation function of photons and qubit-qubit entan-

glement in the steady state scenario, beyond the well-studied Markovian

regime. A straightforward extension of our current Green function method

should be able to tackle the problem of a dense system of multiple quan-

tum emitters interacting with a finite density of photons in the waveguide.

In particular, the correlation between photons is expected to be largely en-

hanced due to the frequent light-matter interactions. This would lead to

a novel way of creating more exotic strongly-interacting photons, which

potentially can reveal striking 1D many-body physics (such as power law

decay) and even undergo fermionization under certain conditions [25]. On

the other hand, better understanding of interactions in a large system would

be beneficial for both designing waveguide-QED-based entanglement and

computing schemes [68, 170] and evaluating the potential of waveguide

systems to scale up in an open quantum network.

2. How can we simulate Kondo-type models using photons? Going beyond

the rotating wave approximation is technically challenging, because the

conservation of excitation number is broken after including the counter-

rotating terms. To study the ground state properties, a renormalization

group method can be developed to identify the fixed points and the phase

diagram qualitatively. To probe the effects of counter-rotating terms on

the photon scattering spectrum and second-order correlation function, a

Keldysh Green function method is necessary for such non-equilibrium pro-

cesses [168]. Physically, the counter-rotating terms closely resemble the
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spin-flip operators, which are known to give rise to exotic correlation ef-

fects in Kondo and spin-boson models.

Indeed, previous study has shown that using the rapidly developing super-

conducting technology, one can engineer a device with two superconduct-

ing transmission lines and a double-island charge qubit so that the system

is well described by the spin-boson model. Recently, Goldstein et al. shows

that Kondo physics can be revealed in the inelastic scattering spectrum of

microwave photons off a quantum impurity in Josephson-junction array

[168]. This opens up a new avenue of studying Kondo effects with opti-

cal/microwave tools not available in traditional condensed matter physics.

Further extension of the single-impurity model will lead to realizations of

other Kondo-type models, such as the two-impurity Kondo model, two-

channel Kondo model, Kondo-lattice, where qualitatively new and exotic

physics is still not well studied in fermionic systems due to lack of effective

ways to probe the underlying correlation effects. Therefore, a lot of research

remains to be done to design such models using current waveguide-QED

systems, and to develop appropriate theoretical tools such as renormal-

ization group and Keldysh methods to investigate the strong-correlation

physics.

3. What kind of non-Markovian effects can we expect in multi-qubit systems?

The non-Markovian effects discussed in Chapter 4 are probably only the

tip of the iceberg to be uncovered. First, we can extend the Green function

technique in a straightforward manner for multi-qubit systems. We should

expect richer non-Markovian physics. For instance, what kind of correlation

can be generated due to non-Markovian processes in a multi-qubit system?
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And how does the correlation change as one changes the number of qubits,

i.e., does it become stronger or weaker as the system becomes denser?

From the perspective of qubits, will one be able to generate long-distance

entanglement among qubits as we observed in Chapter 4? If yes, how

does it depend on the separation of the two qubits or the position of the

driven qubits (one can drive the qubit in the middle or on the edge of qubit

chain)? Second, we can think of going beyond the Green function technique

developed in Chapter 4, which is applicable for weak laser fields. It is a

challenging but interesting task to develop new methods to include both

non-Markovian behavior and strong driving fields. Physically, one could

ask whether there is new non-Markovian physics beyond the weak-driving

limit.

In a nutshell, there are a lot of exciting opportunities on the theory side of

waveguide-QED research. New theoretical techniques are to be developed to

tackle many of the interesting yet challenging open questions. New ideas are

in need to utilize the current or near-future waveguide-QED systems to either

study fundamental physics at the interface of quantum optics and condensed

matter physics, or build a platform for novel applications in quantum information

processing.
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Appendix A

Expressions for γ1, 2, C1, 2 and D1, 2, 3, 4

In this Appendix, we give explicit expressions for the constants γ1, 2, C1, 2, and

D1, 2, 3, 4 that appear in Eqs. (3.9) and (3.10) in Chapter 3 for both the 3LS and 4LS

scattering eigenstates. γ1,2 is the same for both cases and is given by

cγ1,2 =
Γ + Γ2 + Γ3

4
+ ξ ± i

(
± ∆

2
+ ε2 + η

)
, (A.1a)

ξ =

√
2

4

(√
χ2 + 4∆2Γ′2 − χ

)1/2

, η =

√
2

4

(√
χ2 + 4∆2Γ′2 + χ

)1/2

, (A.1b)

Γ′ =
Γ + Γ2 − Γ3

2
, χ = ∆2 + Ω2 − Γ′2. (A.1c)
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For the Λ-type 3LS and N -type 4LS cases, C1, 2 and D1, 2, 3, 4 take the same form

C
(Λ, N)
1,2 (k1, k2) =

±β(Λ, N)(k1, k2)− α(k1, k2)λ2,1

λ1 − λ2

,

D
(Λ, N)
1 (k1, k2, k3) =

β
(Λ, N)
13 (k1)− α13(k1)λ2

λ1 − λ2

C
(Λ, N)
1 (k2, k3),

D
(Λ, N)
2 (k1, k2, k3) =

−β(Λ, N)
24 (k1) + α24(k1)λ1

λ1 − λ2

C
(Λ, N)
2 (k2, k3),

D
(Λ, N)
3 (k1, k2, k3) =

−β(Λ, N)
13 (k1) + α13(k1)λ1

λ1 − λ2

C
(Λ, N)
1 (k2, k3),

D
(Λ, N)
4 (k1, k2, k3) =

β
(Λ, N)
24 (k1)− α24(k1)λ2

λ1 − λ2

C
(Λ, N)
2 (k2, k3),

λ1,2 =
Γ + Γ2 − Γ3

4
± ξ + i

(
∆

2
± η
)
, (A.2)

where the superscript Λ stands for the 3LS and N for the 4LS. α’s and β’s in the

above equation read

α(k1, k2) = −(tk1 − 1)(tk2 − 1)

2π
, (A.3a)

β(k1, k2)(Λ) =
ΓΩ2

16π

[
tk1 − 1

ρk2

+
tk2 − 1

ρk1

]
, (A.3b)

β(k1, k2)(N) =
ΓΩ2

16π

[
tk1 − ν(k1, k2)

ρk2

+
tk2 − ν(k1, k2)

ρk1

]
, (A.3c)

ν(k1, k2) =
ε4 − E − (iΓ4 − iΓ)/2

ε4 − E − (iΓ4 + iΓ)/2
, (A.3d)

ρk =

(
ck − ε2 + ∆ +

iΓ3

2

)(
ck − ε2 +

iΓ2 + iΓ

2

)
− Ω2

4
, (A.3e)
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where tk is given in Eq. (3.8b) in Chapter 3. α13, α24, β13 and β24 are given by

α13(k) = α24(k) = −2(tk − 1)√
2π

,

β13(k)(Λ) =
1√
2π

[
ΓΩ2

4ρk
−
(
tk − 1

)
λ1

]
, β13(k)(N) =

1√
2π

{
ΓΩ2

4ρk
−
[
tk − µ1(k)

]
λ1

}
,

β24(k)(Λ) =
1√
2π

[
ΓΩ2

4ρk
−
(
tk − 1

)
λ2

]
, β24(k)(N) =

1√
2π

{
ΓΩ2

4ρk
−
[
tk − µ2(k)

]
λ2

}
,

µ1,2(k) =
ε4 − iΓ4/2− ck + iΓ/2 + icγ1,2

ε4 − iΓ4/2− ck − iΓ/2 + icγ1,2

. (A.4)
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Appendix B

Three-photon asymptotic output state from
3LS and 4LS scattering

In this Appendix, we present the asymptotic output state after scattering a three-

photon right-going Fock state off a 3LS or 4LS in Chapter 3. The form of the wave

functions is

|ψ(3)〉 =

∫
dk1dk2dk3

1√
3!
α(k1)α(k2)α(k3)|φ(3)(k1, k2, k3)〉,

|φ(3)(k1, k2, k3)〉 =

∫
dx1dx2dx3

[ 1

3!
tttk1,k2,k3(x1, x2, x3)a†R(x1)a†R(x2)a†R(x3)

+
1

2!
ttrk1,k2,k3(x1, x2,−x3)a†R(x1)a†R(x2)a†L(x3)

+
1

2!
trrk1,k2,k3(x1,−x2,−x3)a†R(x1)a†L(x2)a†L(x3)

+
1

3!
rrrk1,k2,k3(−x1,−x2,−x3)a†L(x1)a†L(x2)a†L(x3)

]
|∅〉 . (B.1)

Here, tttk1,k2,k3(x1, x2, x3), ttrk1,k2,k3(x1, x2, x3), trrk1,k2,k3(x1, x2, x3), and

rrrk1,k2,k3(x1, x2, x3) are the terms representing three-photons being transmitted,
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two being transmitted and one reflected, one being transmitted and two reflected,

and all three being reflected, respectively. They take the following general form

(α, β, γ = t or r)

αβγk1,k2,k3(x1, x2, x3) =
∑
Q

αkQ1
βkQ2

γkQ3
hkQ1

(x1)hkQ2
(x2)hkQ3

(x3)

+
1

4

∑
Q

[
αkQ1

hkQ1
(x1)B

(2)
kQ2

,kQ3
(x2, x3) + βkQ1

hkQ1
(x2)B

(2)
kQ2

,kQ3
(x1, x3)

+γkQ1
hkQ1

(x3)B
(2)
kQ2

,kQ3
(x1, x2)

]
+

1

8

∑
PQ

B
(3)
kP1

,kP2
,kP3

(xQ1 , xQ2 , xQ3). (B.2)

where tk and rk are the single-photon transmission and reflection probabilities

given in Eq. (3.13c), B(2)
k1,k2

(x1, x2) is given in Eq. (3.15), and B
(3)
k1,k2,k3

(x1, x2, x3) is

given in Eq. (3.10). In Eq. (B.2), the first term comes from the process of three-

photons passing by the atom as independent particles. The second term corre-

sponds to the process of one-photon passing through as an independent particle

while the other two photons form a composite particle in a two-photon bound-

state (with three possible combinations). The third term originates from the

three-photon bound-state process.

150



Appendix C

Phase Analysis of Photon Blockade and
Photon-Induced Tunneling

In Fig. 3.3 of Chapter 3, we show that the observed photon blockade and photon-

induced tunneling orignate from destructive and constructive interference effects,

respectively. In this section, we present a detailed analysis of the relative phase

between the plane-wave and bound-state terms. The two-photon transmission

probability T2 for the two-photon scattering is given by

T2 =

∫
dk1dk2|T (k1, k2) +B(k1, k2)|2, (C.1)

where k1 and k2 are the momenta of the two photons in the wavepacket. The

plane-wave term T (k1, k2) and the bound-state term B(k1, k2) take the form

T (k1, k2) = α(k1)α(k2)tk1tk2 ,

B(k1, k2) =
∑
i,j=1,2

√
Γ/8

ki − iγj

∫
dk′α(k′)α(k1 + k2 − k′)Cj(k′, k1 + k2 − k′), (C.2)
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where α(k) is the amplitude of a Gaussian wavepacket with central frequency

ω0 and width σ. In momentum space, the central momentum is k0 = ω0/c and

the width is σ/c, where c is the group velocity of photons in the waveguide. By

defining the phase difference θ(k1, k2) between T (k1, k2) and B(k1, k2), T2 can be

written as

T2 =

∫
dk1dk2|T (k1, k2)|2 +

∫
dk1dk2|B(k1, k2)|2

+

∫
dk1dk22|T (k1, k2)B(k1, k2)|cosθ(k1, k2), (C.3)

where the first term is the plane-wave term, the second term is the interference

between the plane-wave and bound-state terms, and the third term is the con-

tribution from the bound-state term. In the main text, the first term is denoted

Figure C.1: The integrand function TB(k1, k2) of the interference term as a func-
tion of k1and k2. (a) δ = 0.0. (b) δ = 2.0. Here, Γ = 6, Ω = 1.6.
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(T2)PW and the second and third terms together are called (T2)BS. Denote the

intergrand function of the interference term as,

TB(k1, k2) = 2|T (k1, k2)B(k1, k2)|cosθ(k1, k2). (C.4)

The phase θ(k1, k2), or specifically, the sign of cosθ(k1, k2), determines whether

the interference is constructive or destructive.

We numerically evaluate TB(k1, k2) in two cases: δ = ω0 − ω21 = 0.0 and

δ = ω0 − ω21 = 2.0. Here, the unit of detuning δ is set by the loss rate Γ2.

FigureC.1 shows TB(k1, k2) as a function of k1− k0 and k2− k0. As expected for

a Gaussian packet, the value of TB(k1, k2) is centered at k1 = k2 = k0 in both

cases. However, the sign of the peaks in the two cases differs. For δ = 0.0, a

negative peak indicates destructive interference, giving rise to photon blockade

when the incident photons are on resonane with the 4LS. For δ = 2.0, a positive

peak indicates constructive interference, producing photon-induced tunneling

when the photons are far off resonance.
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Appendix D

Second-Order Correlation Function in the
Schrödinger Picture

In this Appendix, we demonstrate the equivalence between Eq. (3.26) and Eq. (3.27)

in Sec. 3.7. Typically, the second-order correlation function is defined in the

Heisenberg picture as,

g(2)(x1, t1;x2, t2) =
〈ψ0|â†(x1, t1)â†(x2, t2)â(x2, t2)â(x1, t1)|ψ0〉

〈ψ0|â†(x1, t1)â(x1, t1)|ψ0〉〈ψ0|â†(x2, t2)â(x2, t2)|ψ0〉
(D.1)

where |ψ0〉 is the state in the Heisenberg picture, or equivalently, the initial state

in the Schrödinger picture and â†(x, t) is the operator in the Heisenberg picture.

â†(x, t) can be expressed in terms of the operator in the Schrödinger picture as

â†(x, t) = eiHt/~ â†(x) e−iHt/~. (D.2)

Taking x1 = x2 = x in Eq. (D.1), we obtain the two-time correlation function

g(2)(x, t1;x, t2) =
〈ψ0|â†(x, t1)â†(x, t2)â(x, t2)â(x, t1)|ψ0〉

〈ψ0|â†(x, t1)â(x, t1)|ψ0〉〈ψ0|â†(x, t2)â(x, t2)|ψ0〉
. (D.3)
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If the field operator satisfies the following relation

â†(x, t) = â†(x− ct), (D.4)

g(2)(x, t1;x, t2) is then the same as g(2)(x, t1;x′, t1) with x′ = x − c(t2 − t1). Using

Eqs. (D.2) and (D.4), we can rewrite (D.3) in the Schrödinger picture as

g(2)(x, t1;x′, t1) =
〈ψ(t1)|â†(x)â†(x′)â(x′)â(x)|ψ(t1)〉

〈ψ(t1)|â†(x)â(x)|ψ(t1)〉〈ψ(t1)|â†(x′)â(x′)|ψ(t1)〉
, (D.5)

where |ψ(t1)〉 is the state at t = t1 evolving from the initial state |ψ0〉 under the

Hamiltonian H . Therefore, as long as Eq. (D.4) holds, the definition of g(2) in the

Heisenberg picture Eq. (D.3) is equivalent to Eq. (D.5) defined in the Schrödinger

picture. Physically, this means that measuring the two-time correlation at the

same spatial position is equivalent to measuring the spatial correlation at the

same time for a non-dispersive field.

In our problem, it is straightforward to show that Eq. (D.4) is satisfied by the

right-going field. With the Hamiltonian defined in Eq. (3.1) in the main text, the

equation of motion for the right-going field in the 4LS case is

(
∂

∂x
+

1

c

∂

∂t

)
â†R(x, t) =

iV

c

[
S+

12(t) + S+
34(t)

]
δ(x). (D.6)

Formally, the above equation can be integrated to yield

â†R(x, t) = â†R,free(x− ct) +
iV

c

[
S+

12(t− x/c) + S+
34(t− x/c)

]
θ(x). (D.7)

A similar expression can be obtained in the 3LS case. Hence, Eq. (D.4) holds,

and we use Eq. (D.5) to evaluate the second-order correlation function of the

transmitted field with |ψ(t1)〉 being our final output state.
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Appendix E

Derivation of the Output States in the 4LS
Scheme of Photonic π-phase Gate

Here, we present a detailed derivation of the output states in Eqs. (6.2)-(6.9) in

Chapter 6 Sec. 6.2.3. For an incoming left-going photon of frequency ωA and

initialized 4LS in state |1〉, the single-photon scattering eigenstate can be written

as

|ψ1〉 =

∫
dx[φ1R(x)a†R(x) + φ1L(x)a†L(x)]|1, ∅〉+ e2|2, ∅〉

+

∫
dx[φ3R(x)a†R(x) + φ3L(x)a†L(x)]|3, ∅〉, (E.1)
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where |i, ∅〉 is the vacuum state of photons with the 4LS in state |i〉. The

Schrödinger equation H|ψ1〉 = ~ωA|ψ1〉 gives

(−i d
dx
− ωA)φ1R(x) + V δ(x)e2 = 0, (E.2a)

(i
d

dx
− ωA)φ1L(x) + V δ(x)e2 = 0, (E.2b)

(−i d
dx

+ Ω3 − ωA)φ3R(x) + V δ(x)e2 = 0, (E.2c)

(i
d

dx
+ Ω3 − ωA)φ3L(x) + V δ(x)e2 = 0, (E.2d)

(Ω2 −
iΓ′

2
− ωA)e2 + V

∑
i=1,3

[φiR(0) + φiL(0)] = 0. (E.2e)

We assume the following solution ansatz

φ1R(x) = eik1x[θ(−x) + β1Rθ(x)], (E.3a)

φ1L(x) = e−ik1x[α1Lθ(−x) + β1Lθ(x)], (E.3b)

φ3R(x) = eik3xβ3Rθ(x), (E.3c)

φ3L(x) = e−ik3x[α3Lθ(−x) + β3Lθ(x)], (E.3d)

where k1 = ωA and k3 = ωA − Ω3 (we set c = 1). Substituting Eq. (E.3) into

Eq. (E.2), setting φiR/L(0) = [φiR/L(0+)+φiR/L(0−)]/2, and imposing the hard-wall

boundary condition at the end of the waveguide

φ1R(a) + φ1L(a) = φ3R(a) + φ3L(a) = 0, (E.4)
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we obtain the following solution

α1L = e2iωAa
−Ω2 + iΓ′

2
+ ωA − iΓ

2
[e2iω̃Aa − e−2iωAa]

Ω2 − iΓ′

2
− ωA + iΓ

2
[e2iω̃Aa + e2iωAa − 2]

,

α3L =
(iΓ/2)(e2iωAa − 1)[e2iω̃Aa − 1]

Ω2 − iΓ′

2
− ωA + iΓ

2
[e2iω̃Aa + e2iωAa − 2]

, (E.5)

where ω̃A = ωA − Ω3. According to the Lippmann-Schwinger formalism [85, 75,

93], we read off the “out” state after scattering from the scattering eigenstate in

Eq. (E.1). The resulting asymptotic output state |φout
1 (ωA)〉 of photon A is then

given in Eq. (6.2) in Chapter 6 with r11 and r13 corresponding to α1L and α3L,

respectively.

Next, in Step 2 we send in the second photon B of frequency ωB. If the 4LS

is in state |1〉, then photon-B will scatter in the same way as the first photon

and the output state is |φout
1 (ωB)〉. If the 4LS is in state |3〉 and we neglect the

transition 3→ 2 since photon-B is far off resonance from it, then photon-B will

interact with the transition 3 → 4 only. The single-photon scattering eigenstate

takes the form

|ψ2〉 =

∫
dx[φR(x)a†R(x) + φL(x)a†L(x)]|3, ∅〉+ e4|4, ∅〉. (E.6)

From the Schödinger equation H|ψ2〉 = ~ωB|ψ2〉, we have

(−i d
dx
− ωB)φR(x) + V δ(x)e4 = 0, (E.7a)

(i
d

dx
− ωB)φL(x) + V δ(x)e4 = 0, (E.7b)

(Ω34 −
iΓ′

2
− ωB)e4 + V [φR(0) + φL(0)] = 0. (E.7c)
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Again, we assume the following ansatz

φR(x) = eik4x[θ(−x) + βRθ(x)], (E.8a)

φL(x) = e−ik4x[αLθ(−x) + βLθ(x)], (E.8b)

where k4 = ωB. Using the hard-wall boundary condition φR(a) + φL(a) = 0, it is

straightforward to obtain the following solution

βR = −e−2iωBaβL =
Ω34 − iΓ′

2
− ωB

Ω34 − iΓ′

2
− ωB − iΓ

2
(1− e2iωBa)

,

αL =
−(Ω34 − iΓ′

2
− ωB)e2iωBa + iΓ

2
(1− e2iωBa)

Ω34 − iΓ′

2
− ωB − iΓ

2
(1− e2iωBa)

. (E.9)

Again, we read off the output state of photon-B for the case 4LS in state |3〉 as

R3(ωB)|ωB〉⊗|3〉 with R3 corresponding to αL. Combining the output states from

both cases 4LS in states |1〉 and |3〉, we obtain the general output state after Step

2 in Eq. (6.4) in Chapter 6.

Finally, in steps 3 and 4 we send in the output A′ photon from Step 1 and the

auxiliary photon-C with frequency ωC = Ω32. By sending in the output photon-

A′ from step 1, we retrieve photon-A. This is the time-reversal process of photon

trapping. The state after this step reads

|φout
3 (ωA, ωB)〉 = r11(ωA)r11(ωB)|ωB〉 ⊗ |φout

1 (ωA)〉

+ r11(ωA)r13(ωB)|ω̃B〉 ⊗ [R3(ωA)|ωA〉|3〉]

+ r13(ωA)R3(ωB)|ωB〉 ⊗ |φ3(ω̃A)〉, (E.10)

where |φout
1 (ωA)〉 is given in Eq. (6.2) in Chapter 6 and

|φ3(ω)〉 = r33(ω)|ω〉 ⊗ |3〉+ r31(ω)|ω̄〉 ⊗ |1〉, (E.11)
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with

ω̄ = ω + Ω13,

r33(ω) = e2iωa −Ω32 + iΓ′

2
+ ω − iΓ

2
[e2iω̄a − e−2iωa]

Ω32 − iΓ′

2
− ω + iΓ

2
[e2iω̄a + e2iωa − 2]

,

r31(ω) =
(iΓ/2)(e2iωa − 1)[e2iω̄a − 1]

Ω32 − iΓ′

2
− ω + iΓ

2
[e2iω̄a + e2iωa − 2]

. (E.12)

In case of ωA = ω0 and ωB = ω1, photon B will be trapped in the 4LS in step

(2). To retrieve the trapped photon B, we send in photon of frequency ωC in step

4. According to time reversal argument, sending in a C photon of frequency Ω32

will release photon B. The final state after all four steps reads

|φout
4 (ωA, ωB, ωC)〉 = f1(ωA, ωB)|ωA〉|ωB〉|ωC〉|1〉

+[f2(ωA, ωB)|ω̃A〉|ωB〉

+f3(ωA, ωB)|ωA〉|ω̃B〉]|φ3(ωC)〉. (E.13)

where

f1(ωA, ωB) = r2
11(ωA)r11(ωB) + r13(ωA)r31(ω̃A)R3(ωB)],

f2(ωA, ωB) = r11(ωA)r13(ωA)r11(ωB)

+ r13(ωA)r33(ω̃A)R3(ωB),

f3(ωA, ωB) = r11(ωA)R3(ωA)r13(ωB). (E.14)
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