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Abstract

Typical imaging systems rely on the interactions of matter with electromagnetic ra-

diation, which can lead to scattered waves that are radiated away from the imaging

area. The goal such an imaging device is to collect these radiated waves and focus

them onto a measurement detector that is sensitive to the wave’s properties such as

wavelength (or color) and intensity. The detector’s measurements of the scattered

fields are then used to reconstruct spatial information about the original matter such

as its shape or location. However, when a scattered wave is collected by the imaging

device, it diffracts and interferes with itself. The resulting interference pattern can

blur spatial information of the reconstructed image. This leads to a so-called diffrac-

tion limit, which describes the minimum sizes of spatial features on a scatterer that

can be resolved using conventional imaging techniques. The diffraction limit scales

with the wavelength λ of the illuminating field, where the limit for conventional

imaging with visible light is approximately 200 nm. Investigating subwavelength

objects (< λ) requires more advanced measurement techniques, and improving the

resolving capabilities of imaging devices continues to be an active area of research.

Here, I describe a new sensing technique for resolving the position of a subwave-

length scatterer (< λ) with vastly subwavelength resolution (<< λ). My approach

combines two separate fields of scientific inquiry: time-delayed nonlinear feedback

and wave chaos. In typical time-delayed nonlinear feedback systems, the output

of a nonlinear device is delayed and fed back to its input. In my experiment, the

output of a radio-frequency (λ ∼ 15 cm) nonlinear circuit is injected into a com-

plex scattering environment known as a wave-chaotic cavity. Inside the cavity, the

field interacts with a subwavelength dielectric object from all sides, and a portion

of the scattered waves are coupled out of the cavity, amplified, and fed back to the
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input of the nonlinear circuit. The resulting closed-feedback loop generates its own

radio-frequency illumination field (> 1 GHz), which contains multiple wavelengths

and is sensitive to location of the scattering object. Using the dynamical changes

in the illumination field, I demonstrate subwavelength position-sensing of the scat-

terer’s location in the cavity with a two-dimensional average resolution of 0.5 mm

(∼ λ/300) given by the RMS error of the position sensing and an upper bound on

the resolution given by the maximum observed error (2.1 mm ∼ λ/70).

This novel method demonstrates that the dynamical changes of a feedback os-

cillator can be exploited for resolving subwavelength spatial features. Unlike con-

ventional imaging techniques, it uses a single scalar measurement of the scattered

field and takes advantage of a complex scattering environment. Furthermore, this

work demonstrates the first application of quasiperiodic dynamics (oscillations with

incommensurate frequencies) from a nonlinear system. Using the key ingredients

from my radio-frequency system, I extend my method to an experiment that uses

optical frequencies (λ ∼ 1550 nm) to demonstrate subwavelength sensing in two

dimensions with a resolution of approximately 10 nm. Because this new sensing

technique can be adapted to multiple experiments over vastly different length scales,

it represents a potential platform for creating a new class subwavelength imaging

devices.
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Chapter 1

Introduction

This dissertation represents the cumulative results of my investigations into a

new method for sensing the position of a scatterer using electromagnetic radiation

as an illumination source. In particular, I have developed a novel experiment that

combines the dynamics of a time-delayed nonlinear feedback system with the com-

plex scattering environment of a wave-chaotic cavity. This combination provides a

new technique for resolving spatial information about a scatterer that is smaller than

the wavelength of the illuminating field. Unlike typical imaging systems, this exper-

iment exploits the sensitivity of a dynamical state in a time-evolving system. Over-

all, this unique subwavelength resolving system is the first step towards realizing a

new super-resolved microscope for imaging spatial information with a nanometer

resolution.

For decades, scientists have worked to create images of the world’s microscopic

phenomena to help our understanding of their underlying structures and functions.

What are the limitations on creating such images? One major constraint is diffrac-

tion, which can blur the spatial information in an image, limiting its resolution

based on the wavelength λ of the illumination source [1]. For example, images

formed from visible light (λ∼ 400−700 nm) are typically limited to a resolution of

approximately 200 nm [2]. Resolving spatial information below this limit requires

new techniques, and to this day, scientists continue to search for ways to circumvent

diffraction for imaging.

In this chapter, I first review the building blocks of a standard imaging system

and the limit of its resolution due to diffraction. Then, using two examples from the
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literature, I review specific imaging techniques that can resolve spatial information

below the diffraction limit. Following these examples, I introduce my new experi-

mental system and its sensing mode-of-operation for imaging the two-dimensional

(2D) position of a subwavelength scatterer (< λ) with vastly subwavelength reso-

lution (<< λ). Lastly, I give a brief summary of the main results for each of the

remaining chapters.

1.1 Imaging and the Diffraction Limit

The main components for constructing an image are: (i) an illumination source, (ii)

an object of interest that scatters light, (iii) an imaging system, and (iv) a detector

[3]. As illustrated in Fig. 1.1a, the illumination source radiates an electromagnetic

(EM) field that interacts with a scatterer through absorption or scattering from dif-

ferences in its index of refraction relative to free space. The scattered radiation

forms wavefronts (WF) that propagate to the imaging system, where a hole with a

diameter D, known as an aperture, contains a lens that focuses the collected radia-

tion onto an array detector comprised of light-sensitive pixels. Each pixel generates

a voltage that is proportional to the incident light intensity, and we can construct

an image of the scatterer through post-processing [1, 3].

However, because of the wave-like nature of the EM radiation, the light collected

through the aperture diffracts. For a distant point-like source or scatterer, this can

create a diffraction pattern on the detector, as illustrated in Fig. 1.1b. This diffrac-

tion pattern contains a primary intensity maxima with weaker secondary maxima

and the resulting image shows a circular diffraction pattern similar to the one shown

in Fig. 1.1b, where the width of the pattern depends on the relative sizes of λ and

D [3].

This diffraction pattern creates problems for resolving small scattering features.
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system

image

D
WF

(a) (b)

EM

λ

intesity 
profile

L

Figure 1.1: Typical imaging system (a) consisting of a (i) a source that produces
electromagnetic radiation of wavelength λ, (ii) a scatterer that reflects the incident
radiation as wavefronts (WF), (iii) an imaging system with a circular aperture of di-
ameter D and lens (L), and (iv) an array detector with light sensitive pixels. (b) For
a point-like scatterer, the intensity profile of the light on the detector shows oscil-
lations with primary and secondary maxima and the resulting image or (diffraction
pattern) is blurred with concentric rings.

As an example, consider the case of two distant point-like scatterers, shown in Fig.

1.2a, that are separated by a distance y and are a distance x >> λ from the imag-

ing system with a circular aperture. The ability to resolve both of these scatterers

depends on a criterion first established by Lord Rayleigh in 1871 that states: the

spatial features of a scatterer (or multiple scatterers) can only be resolved if the

angular separation θ between these features satisfies

sin(θmin)> 1.22
λ

D
, (1.1)

where the factor of 1.22 comes from the calculation of the light distribution for all

points of a wavefront at the circular aperture of the imaging system [1]. As shown in

Fig. 1.2b, for θ > θmin, the image shows diffraction patterns from the two scatterers

that are well resolved. However, for θ = θmin, the diffraction patterns begin to

overlap and for θ < θmin, the two patterns are no longer distinguishable from one
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Figure 1.2: Limitations of imaging due to diffraction. (a) The incident EM ra-
diation of wavelength λ from a source interacts with two point-light scatterers that
are separated by a distance y . An imaging system with a circular aperture of diam-
eter D (and lens L) and an array detector is placed a distance x from the scatterers,
forming a scattering angle defined by θ . (b) For θ > θmin, the diffraction patterns
of from the scatterers are well resolved, (c) for θ = θmin, the diffraction patterns are
partially resolved, and (d) for θ < θmin, the patterns are indistinguishable, where
θmin is defined by Eq. (1.1).

another [3]. Thus, the Rayleigh criterion summarizes the diffraction limit of optical

devices with circular apertures, such as microscopes, telescopes, and cameras.

As a of the consequence of Eq. (1.1), consider the following example. For an

camera with λ = 500 nm and a circular aperture with D = 25 mm, two point-like

spatial features that are placed near the focal point of the camera’s lens f = 50

mm can only be resolved if they are spaced approximately by a minimum distance

ymin = 1.2 µm. Therefore, in this example, nanometer-sized spatial features cannot

be resolved [4]. The Rayleigh criterion, which has now been known for over a
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century, is typically taught at universities in the introductory undergraduate physics

courses, giving students a foundation for understanding the resolving capabilities

of basic optical imaging devices [1, 3].

However, diffraction does not fundamentally limit our the ability to create im-

ages, and vastly subwavelength features can be resolved with the addition of more

advanced measurement techniques [5].

1.2 Resolving Subwavelength Features

One of the simplest imaging devices that resolves spatial features below the diffrac-

tion limit is an interferometer [6], shown in Fig. 1.3a. An interferometer uses a

monochromatic, coherent light source (the phase of the light is constant in time)

of wavelength λ that is split along two separate optical paths, an imaging and a

reference arm of lengths L1 and L2, respectively. At the end of the imaging arm is

a near flat scattering surface and at the end of the reference arm is a flat mirror.

The light from the surface and the mirror are reflected back and recombined along

a common path to form an interference-pattern on an array detector [7].

In the figure, a scattering angle θ defines the tilt of the scattering surface along

the imaging arm. For a scattering angle θ = θ1 6= 0, the interference pattern on the

detector is given by image-1 in Fig. 1.3b. At each point in the pattern, the brightness

is proportional to the incident intensity. The stripes of constant intensity are known

as interference fringes, where the parallel pattern is caused from the misalignment of

reflected waves from the scattering surface relative to the light from the reference

arm [7].

The separation between these fringes changes as a function of the scattering

angle θ [7, 8]. For example, given a scattering angle θ2 < θ1, the interference
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Figure 1.3: Resolving subwavelength features using interferometry. Coherent
light of wavelength λ from a laser-diode (LD) source is separated using a beam
splitter (BS) along two paths, an imaging arm of length L1 with a reflecting scatter-
ing surface and a reference arm of length L2 with a mirror. The reflected light from
each path is focused through the circular aperture of an imaging system and forms
an interference pattern on an array detector. (b) Interference patterns of image-1
and image-2 for the scattering angles θ1 and θ2, respectively. (c) Cross sections
of the interference patterns along the z direction give intensity profile-1 (red) and
intensity profile-2 (blue), which are fitted with periodic functions of frequencies f1
and f2 (black dashed-curves), respectively, where f1 > f2.

fringes shift further apart, as shown by the interference pattern in image-2 of Fig.

1.3b. This shift ∆θ = |θ2 − θ1| is representative of a subwavelength change (<

λ) to the features of the scattering surface, and by tracking the relative spacings

of the interferences fringes, near-flat surface topologies can be resolved below the

diffraction limit.

Experimentally, there are several ways to measure the spacings of these inter-

ference fringes. The simplest technique is to count the number of fringes in the

interference pattern, but this method is limited to a resolution of ∼ λ/4 [7]. An
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enhanced resolution can be achieved by examining the cross-section of the interfer-

ence pattern’s intensity profile. In Fig. 1.3c, the cross sections of the interference

patterns for image-1 and image-2 are plotted as intensity profile-1 and intensity

profile-2 as a function of z. Note that the intensity fluctuates due to experimen-

tal noise in the imaging system and detector. Using a numerical fit of a periodic

function to the data, the fringe spacing can be quantified by the frequency f of os-

cillation in the intensity profile. In addition, using a similar technique that tracks the

relative phase of the interference fringes, this type of interferometer can be used to

measure changes in the distance L1 relative to L2. However, the ability to quantify

vastly subwavelength features (<< λ) using these fringes depends on the system’s

signal-to-noise ratio (SNR), which will be discussed in detail in the next subsection.

There are also built-in limitations in an interferometer’s operation that such it

can only image relatively flat surfaces [7]. However, even with this limitation, this

type of interferometer, which appears in standard optics textbooks [6], is still con-

sidered to be a state-of-the art method for imaging surface profiles below the diffrac-

tion limit. For example, Agilent Technologies currently sells a high-resolution inter-

ferometer system (10716A) with a resolution of ∼ λ/2,000.

A more recent development in subwavelength imaging technique was published

in 2006, when researchers demonstrated a novel method for imaging nanoscale

biological structures using visible light [9]. This technique, known as stochastic op-

tical reconstruction microscopy (STORM), circumvents diffraction using fluorescent

molecules that blink [10–13]. As depicted in Fig. 1.4a, a nanoscale biological struc-

ture is stained with fluorescent photo-switching molecules. These particular green

fluorescent protein (GFP) molecules fluoresce green light (λ ∼ 500 nm) when ex-

cited and act as fluorescent tags along the structure, where a nearby imaging system

focuses the incident light onto an array detector.
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In this imaging modality, each fluorescent molecule serves as a point-like source

and scatterer. This can be an issue if two neighboring molecules, A and B in Fig.

1.4b, which are spaced by ∼ 10 nm [11], fluoresce simultaneously. In this case,

similar to Fig. 1.2b, the diffraction patterns of the collected light from both A and B

overlap and become difficult to distinguish from one another, as shown in Fig. 1.4c.

To overcome the diffraction limit, STORM uses an innovative measurement tech-

nique. Rather than excite all of the fluorescent molecules simultaneously, a weak

excitation is used such that each molecule blinks stochastically [11]. In this stochas-

tic mode-of-operation, the fluorescent tags blink on and off at random times, as

illustrated in Fig 1.4d. In the figure, the average light intensities from molecules

A and B are plotted as a function of time, and due to the stochastic nature of the

photo-switching [11], there are times when molecule A fluoresces and molecule B

does not (and vice versa). During these times, separate diffraction patterns for A

and B can be isolated, as shown in Figs. 1.4e-f. The centroids of these separated

diffraction patterns can be localized using a numerical fit of their respective inten-

sity profiles, where the SNR of each intensity profile determines the resolution of

the centroid localization (discussed in detail in the next subsection).

Using post-processing, the centroids of all the individual intensity profiles are

located in both the x and y directions to reconstruct the protein’s structure (see Fig.

1.4g) with a resolution ∼ 10 nm (λ/50) [11]. Based on the success of this method,

new types of photo-switching molecules are currently being developed [14]. Thus,

similar to interferometry, a specific type of intensity measurement combined with

a numerical fitting procedure enhances the resolving power of STORM well below

the diffraction limit.

However, STORM also has limitations. In particular, the photo-switching molecules

can only be used to tag certain biological structures, limiting the types of samples
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Figure 1.4: Stochastic optical reconstruction microscopy. (a) A structure labeled
with photo-switching tags emits light that is focused by an imaging system onto an
array detector. (b) Tags A and B, separated by ∼ 10 nm, fluoresce simultaneously.
(c) Image and intensity profile in the x direction from A and B when they fluoresce
at the same time. (d) Average intensities, IA and IB from A and B, respectively, as
a function of time. High intensity indicates an "on" state when the tag fluoresces,
and low intensity indicates an "off" state. Red dotted lines mark times when only
one of the two tags is "on". (e) Intensity profile of A (green) while B is "off" (black
dotted-line). (f) Intensity profile of B (green) while A is "off" (black dotted-line).
Numerical fits of the intensity profiles (black solid lines) give measures of the cen-
troids in each profile (red dots). (g) The centroids in the x and y directions are
used to reconstruct an image of the structure.
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that can be imaged. Another limitation is the acquisition time of STORM, which

can take several minutes to collect light from all of the fluorescent tags. Decreasing

the acquisition time means less collected light and, as a result, a smaller SNR [11].

1.2.1 Signal-to-Noise Ratio

This now begs the question: we know the imaging mechanisms of both interferom-

etry and STORM, but what limits their resolutions? Or, in other words, if diffraction

is no longer a factor in their imaging, why don’t these methods have perfect resolu-

tions? One answer lies in the ability to create a good numerical fit to the collected

data, which is determined by the data SNR. Fitting data with a high SNR means

that the information collected from the fit is more accurate. However, no signal has

an infinite SNR, and thus the data and its fit can only give approximations of the

scattering features.

A typical procedure for improving a system’s SNR is to collect repeated measure-

ments and average them together. The standard deviation of a noise level σnoise of

a repeated measurement scales as

σnoise ∝
1
p

N
, (1.2)

where N is the number of measurements. As an exmaple, for STORM, N represents

the number of photons collected in an intensity profile [15].

As mentioned earlier, for an interferometer, the SNR is determined by fluctua-

tions in the system such as the detector’s output voltages. Another example includes

fluctuations of the refractive index of air with temperature, which cause changes in

the reference and imaging arm lengths that can be larger than the detected changes

∆θ or ∆L1, limiting the system’s resolution [7]. This is especially true for a weak
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reflected signal from the scattering surface.

To combat these effects, there have been several techniques developed for im-

proving the SNR of an interferometer. For example, one method is known as phase

compensation interferometry, where a feedback mechanism is used between the

detector and a piezoelectric transducer that controls the reference arm length L2

(from Fig. 1.3a). This mechanism is used to keep the detected intensity profile

constant, and by doing so, the feedback signal becomes a very sensitive measure of

small changes along the imaging arm [7]. In addition, heterodyne interferometry

uses an acousto-optic modulator to shift the frequency of the light along the refer-

ence arm, introducing a beat-frequency into the interference pattern which can be

tracked with a lock-in detector to enhance the SNR a low amplitude reflected signal

[7].

For STORM, the main limiting factor in its resolving capabilities is the system’s

contrast (signal to background noise) between the photo-switching "on" and "off"

states [5]. Typically in experiments, the background noise can also influenced by

other extraneous light sources [6]. Collecting more photons from a single fluo-

rescent molecule can increase the SNR of the localization measurements [15]. In

addition, coupling STORM with other sub-diffraction imaging techniques can also

further enhance the system’s SNR [15].

STORM represents one of the new imaging modalities for circumventing diffrac-

tion, and, along with it, are several other techniques that continue to revolutionize

imaging capabilities. Before moving on to the next section, these other recently-

discovered sub-diffraction imaging techniques deserve mentioning. For example,

super-lenses made from negative-index media [16, 17] allow for the propagation

of a wave’s near field, which contains subwavelength scattering information but nor-

mally decays quickly, into its far-field, thus giving access to subwavelength features.
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In addition, super-oscillations [18], which are a subwavelength phenomenon of in-

terferences patterns, can give rise to enhanced subwavelength interference patterns

in the focal plane of imaging system. Other techniques for accessing subwavelength

information use nano-structures with surface plasmons for creating sub-diffraction

focused imaging spots [19, 20]. With only a handful of techniques for resolving

subwavelength information, each with its own advantages and limitations, the con-

tinued research of this field is important for the further development of imaging

science.

1.3 A New Approach: Overview of Thesis

In this thesis, I present a novel method for sensing changes in the position of sub-

wavelength scatterer with vastly subwavelength resolution. My technique, which

represents the first step towards realizing a new class of imaging devices, is unique

because:

• Its illuminating field, which contains multiple wavelengths, is self-generated

through a feedback mechanism and changes depending on the scatter’s loca-

tion.

• The system does not require an array detector with separate pixels to localize

the scatterer. Instead, a scalar measurement of the illuminating field, which

can be performed with a single pixel detector at an arbitrary location, is used

to resolve subwavelength position changes.

• For the first time, this sensing system combines two previously studied, sepa-

rate fields of science: time-delayed nonlinear feedback and wave chaos.
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• This method represents the first application of quasiperiodic dynamics (oscil-

lations with incommensurate frequencies) for sensing purposes.

• The mechanism for sensing subwavelength changes gives rise to an easily de-

tected signal, which can be measured without the need of a high-resolution

sampling device, keeping the cost of the system low with a small amount of

stored data.

The basic setup for my system is shown in Fig. 1.5a. An EM radiation source

is coupled into a 2D structure known as a wave-chaotic cavity. The boundary of

this structure is such that the EM radiation floods the cavity, filling it with scattered

waves. A more detailed explanation of wave-chaotic cavities is given in Ch. 2. Inside

the cavity is also a subwavelength dielectric scatterer that interacts with wavefronts

from nearly all directions due to the complex scattering pattern of the injected EM

waves. A portion of this radiation is then coupled out of the cavity to a detector that

both processes the signal and drives the EM source. Thus, my system circulates EM

energy through the cavity in a closed feedback loop.

Based on the nonlinear properties of the combined detector and source, this type

of energy-circulating device is known as a time-delayed nonlinear feedback system

(see Ch. 2 for more details). An interesting result of this nonlinear feedback is that

the circulated EM energy can have a time varying, oscillatory intensity. These os-

cillations are self-generated and stable; no other excitation source is necessary. An

example of the oscillatory field E(t) is given in Fig. 1.5a, where E(t) oscillates while

its intensity profile modulates slowly in time. Furthermore, due to the constant cir-

culation and finite propagation time of the EM radiation through the system, the

overall feedback loop stores a large amount of energy, allowing access to precise

measurements with a high SNR. The resulting intensity oscillations are also sensi-
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Figure 1.5: Time delayed nonlinear feedback through a wave-chaotic cavity.
(a) A source floods EM raditation into a wave-chaotic cavity, where it scatters and
diffracts off of a subwavelength object (∼λ/10), exits the cavity to a detector, and
recirculates through the feedback loop. (b) The measured EM radiation as a func-
tion of time. (c) The power spectral density of the detected field E(t) with primary
frequencies that shift as a function of scatterer position. (d) Calibration grid (black
dots) for interpolating and tracking the scatterer’s location (red curve) in a 2D plane
(x , y) with subwavelength resolution.

tive to the scatterer’s location and change as a function of its position. Thus, this

feedback system represents a new type of dynamically-sensitive illumination source.

This system’s design is tailored to determine the position of the subwavelength

scatterer inside of a 2D area of the cavity with a subwavelength resolution. The

localization is achieved through measurements of the frequency content of the os-

cillations that propagate through the feedback loop. As shown in Fig. 1.5c, a typ-
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ical frequency spectrum of the field shows several dominant frequencies fi for a

fixed scatterer position. As the scatterer moves, these frequencies shift by ∆ fi, and

calibrated measurements of these frequency shifts are mapped out in a grid with

subwavelength spacing (λ/300), as shown in Fig. 1.5d. In the figure, each black

dot represents a unique measurement of frequency shifts (∆ f1,∆ f2,∆ f3,∆ f4). Af-

ter the calibration, I measure the system’s frequency shifts as the scatterer moves

throughout the 2D grid along an arbitrary path and use the calibration points to

interpolate the scatterer’s movements and reconstruct its path with a 1D resolution

of ∼ λ/10,000 and a 2D resolution of ∼ λ/300.

Similar to interferometry and STORM, I use a numerical fit of the detected signal

in order to enhance the overall resolution of the system. The oscillations in Fig. 1.5b

are fit with the function

E(t) =
N
∑

i=1

cisin(2π fi t +φ), (1.3)

where ci and fi are constant fitting coefficients, φ is an offset phase, and N is the

total number of dominant frequencies. By tracking the changes to fi in each fit, I

am able to measure small frequency shifts ∆ fi << fi, yielding an enhanced sub-

wavelength sensitivity to the scatterer’s location. Lastly, I choose to observe E(t)

after a large accumulated φ such that small frequency shifts are easily detectable

with minimal data on a digital oscilloscope. The full details of these results and my

acquisition methods are presented in Ch. 3 and Appendix A.

This new imaging modality also has limitations. First and foremost, I have

only demonstrated a proof-of-concept for the application of this system using radio-

frequency (RF) EM radiation (λ ∼ 15 cm), and it is currently limited to imaging

the location of only a single, dielectric scatterer in a small 2D area. In addition, by
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flooding the wave-chaotic cavity with EM waves, the interference patterns of the

scattered radiation are extremely complex and sensitive. Thus, due to this sensitiv-

ity (which works as advantage for imaging), the scatterer’s properties (size, shape,

orientation, dielectric constant, etc.) must be fixed between the system’s calibration

and measurements; changing to a different scatterer requires a new calibration grid.

Even with these limitations, the system’s resolving capabilities are still promising for

future subwavelength microscopy applications.

I published the original concept and results for this imaging system in Physi-

cal Review Letters [21], where it is highlighted as an Editor’s Selection. Since its

publication, I have continued my investigations of the experimental results and dis-

covered the following: methods for modeling the dynamics of the system (Ch. 4),

new theories for interpreting the experimental results (Ch. 5), and new experiments

in both the RF and optical frequency domain that show the potential universality of

this work (Ch. 6-7).

1.3.1 Chapter Summaries and Main Results

Overall, the thesis is divided into two main sections: (i) an experimental section

made up of Chs. 2− 3, which details my apparatus, techniques, and observations,

and (ii) a theoretical section made up of Chs. 4−6 that investigates different mod-

els to explain the observed phenomena. In particular, from all my experimental

observations, I focus my modeling efforts on understanding the sensing mechanism

which uses quasiperiodic dynamics. This sensing mechanism has not previously

been investigated, and there is currently no theory to explain my observations.

Thus, modeling and understanding the quasiperiodic sensing mechanism is the pri-

mary topic discussed throughout the second half of this dissertation. Specifically, I
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provide a model with sufficient ingredients to reproduce qualitatively the dynam-

ics, a technique for predicting the quasiperiodic frequencies, and a simplified system

to understand how the quasiperiodic frequencies shift. As support of my theoret-

ical investigations, I also implement experimentally a simple system in Ch. 6 that

provides additional insight into the necessary ingredients quasiperiodic sensing.

More specifically, in Ch. 2, I detail the two main components of the sensing

system: a time-delayed nonlinear feedback system (Fig. 1.6a) and a wave-chaotic

cavity (Fig. 1.6b). The nonlinear feedback system uses a nonlinear circuit to cre-

ate an approximately piecewise-linear (and hence nonlinear) relationship between

its input and output voltages. In a closed feedback loop configuration, the circuit’s

output is amplified, delayed, and reinjected at its input, and this system can self-

oscillate at high frequencies (∼ 1 GHz) with dynamics that range from narrow-band

periodic oscillations to broad-band chaos. The second component of the imaging

system is a wave-chaotic cavity, which is an approximately 2D scattering environ-

ment with densely and irregularly spaced resonances over a broad frequency range

(10 MHz < f < 10 GHz). Based on the spacing of these resonances, the cavity is

classified as chaotic both with and without a dielectric scatterer. Using the pulse-

response of the cavity, which is a time-domain representation of the resonances, I

demonstrate a method for sensing the presence and position of the scatterer along

a path in 1D using a correlation measure between different pulse responses. The

subwavelength resolution of this 1D method (∼ λ/600) serves as a reference for

comparing the results of Ch. 3.

Chapter 3 focuses on the core results for subwavelength sensing in the full ex-

perimental setup, the cavity-feedback system, shown in Fig. 1.7a. By translating

the scatterer in the cavity-feedback system, I show that the dynamics of the illumi-

nating field can change depending on its location. These qualitative changes yield
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NLE v(t)

(a) time-delayed nonlinear feedback (b) wave-chaotic cavity

G scatterer

EM

Figure 1.6: Main components of the imaging system. (a) Time-delayed nonlin-
ear feedback system. The output of a nonlinear element (NLE) is amplified with
gain G and time-delayed by a fixed amount τ. The delayed signal is reinjected into
the NLE to form a closed feedback loop. In the experimental system, the NLE is
a transistor-based nonlinear circuit and the output of the system is measured as
a time varying voltage v(t). (b) Wave-chaotic cavity. The 2D structure is an alu-
minum, quarter-stadium shape with transmitting (TX) and receiving (RX) antennas
to couple EM radiation in and out of the cavity, respectively. The injected radiation
interacts with the scatterer inside the cavity through reflection and absorption.

an extremely sensitive and history-dependent method for detecting and reporting

changes in its position. Then, using different dynamical regimes (chaos, periodic-

ity, and quasiperiodicity), I illustrate the potential for detecting quantitatively the

position of the scatterer with subwavelength resolution. In the broad-band chaotic

regime, the oscillations surrounding large-amplitude spikes in the dynamics show

sensitivity to the scatterer’s position, which can be quantified to yield a 1D resolu-

tion of∼ λ/1,200. In the narrow-band periodic regime, the frequency of oscillation

shows a sensitivity to the scatterer’s position, which can be recorded and fitted with

a function to yield an improved 1D resolution of ∼ λ/20,000.

Lastly, in order to realize a 2D imaging method, I measure simultaneously the

multiple frequencies of the system’s quasiperiodic dynamics, shown in Fig. 1.7b,

as a function of scatterer’s position. The frequencies in the quasiperiodic spectrum,

shown in Fig. 1.7c, shift independently, thus providing a unique map to the scat-

terer’s 2D position (x , y). After an initial calibration, I test the quasiperiodic imaging
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Figure 1.7: Full experimental setup (a) showing the combination of the time-de-
layed nonlinear feedback system with the wave-chaotic cavity to form the cavi-
ty-feedback system. The propagation delays of a scattered signal in the cavity τi
through the cavity are the time delays of the nonlinear feedback system. The time-e-
volving voltage v(t) represents a measurement of the EM oscillations in the feedback
loop. The nonlinear element of the feedback loop is a nonlinear circuit (NLC) whose
input and output are amplified. (b) Experimental time series of the quasiperiodic
oscillations of v(t) while the scatterer’s position is fixed. (c) Experimental power
spectral density (PSD) of the quasiperiodicity with primary frequencies fH, fT, and
linear combinations fH ± fT.

system experimentally by tracking the scatterer’s position along a path in 2D. Over-

all, the quasiperiodicity provides an average 1D resolution of ∼ λ/10,000 and an

average 2D resolution of ∼ λ/300.

To better understand the details of the quasiperiodic dynamics of the cavity-

feedback system, I combine separate models for the nonlinear circuit and the wave-

chaotic cavity in Ch. 4. The modeling strategy is depicted in Fig. 1.8a. In the model,

the output of the nonlinear circuit is split into many paths, each with time-delay τi

and gain coefficient gi, which are then summed, amplified, and reinjected into the
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Figure 1.8: Cavity-feedback system model. (a) Pictorial representation of the
model. The output voltage of the nonlinear circuit passes through a band-pass filter
(BPF) with output v(t) that is amplified with gain G, split among (τi, gi), summed,
and reinjected into the NLC. (b) Simulated time series of the quasiperiodic oscil-
lations of v(t) while the scatterer’s position is fixed. (c) Simulated power spectral
density (PSD) of the quasiperiodicity with primary frequencies fH, fT, and linear
combinations fH ± fT.

nonlinear circuit to form the closed feedback loop. The model for the nonlinear

circuit includes non-ideal high-frequency effects and the model of the wave-chaotic

cavity is simulated as a convolution with the delay-gain distribution (τi, gi) of the

system (measured using the finite bandwidth pulse response of the cavity). In addi-

tion, a band-pass filter with gain is used to model the remaining components in the

feedback loop of the system. As shown in Figs. 1.8b-c, the resulting oscillations of

the full model are quasiperiodic with a comparable frequency distribution to that of

Figs. 1.7b-c. With the experimental dynamics as a comparison, I demonstrate that

the full model for the system is capable of reproducing numerically the approximate

quasiperiodic dynamics from the experiment.
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Figure 1.9: Closed-loop resonances (CLR) of the nonlinear feedback system with
a single time delay showing (a) the predicted values for fH ∼ 796 MHz and
fH − fT ∼ 766 MHz. The blue and red resonances are measured for specific con-
figurations of the nonlinear circuit based on the theory. (b) Power spectral density
(PSD) of the quasiperiodic signal with actual fH ∼ 797 MHz and fH− fT ∼ 767 MHz
labeled in blue and red, respectively.

In Ch. 5, I simplify the model of the cavity-feedback system to the general form

of a band-pass filter with time-delayed nonlinear feedback. This allows me to de-

rive analytical expressions to predict the numerical values of the quasiperiodic fre-

quencies in the dynamics. The results of these analytical expressions are also the

closed-loop transfer functions of the feedback system with linearized feedback. Us-

ing new methods that I developed for measuring these closed-loop transfer func-

tions, namely the resonance (R) method, the shifted-resonance (SR) method, and

the amplitude-modulation (AM) method, I show that the frequencies of quasiperi-

odicity can be predicted in simulations with randomly chosen delay-gain distribu-

tions. Furthermore, as shown in Fig. 1.9a, for specific parameter configurations

of the nonlinear circuit, the largest resonance peaks of closed-loop transfer func-

tions in the experimental system give estimations for the quasiperiodic frequency

spectrum shown in Fig. 1.9b. Therefore, using my derivations from the simplified

model yields new experimental measures that help to explain the origins of the

quasiperiodicity in the cavity-feedback system.
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In Ch. 6, I simplify my quasiperiodic sensing technique down to its most es-

sential components: a band-pass-filtered, time-delayed, nonlinear feedback system

with two independent feedback loops, as shown in Fig. 1.10. The goal of this chap-

ter is to study experimentally and analytically the frequency shifts of quasiperiod-

icity using known changes to the delay-gain distribution. These changes take the

form of time-delay shifts that are controlled using two separate variable delay-lines

in the dual-delay setup. In the experiment, I demonstrate that the quasiperiodic

frequency shifts of the two-delay system can also be used to form a unique map to

reconstruct the values of the time-delay shifts. This two-delay system therefore be-

haves similarly to the full cavity-feedback system. Using the simplified model for the

nonlinear feedback system, I derive analytical expressions for the frequency shifts

in the quasiperiodic dynamics as a function of small delay changes. The results of

these derivations also yield an expression that can be used to test for the existence

of a unique map between the quasiperiodic frequency shifts and the values of the

system’s delays. These theories are applied using simulations and experimental re-

sults. To conclude, I revisit the cavity-feedback system dynamics and discuss the

implications of these theories with respect to the original results from Ch. 3.

Finally, in Ch. 7, I summarize my contributions and discuss the future applica-

tions of my work. Using the ideas from Ch. 1-2, I also comment on the potential of

these results with respect to other types of nonlinear feedback systems and wave-

chaotic cavities. Specifically, I propose a future study in the quasiperiodic dynamics

of a semiconductor laser with time-delayed feedback for realizing a new, all-optical

2D subwavelength position sensor. Preliminary experimental analysis of this system

is conducted using the setup shown in Fig. 1.11 with nanometer-resolving capabil-

ities for sensing and imaging applications.
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Figure 1.10: Two-delay nonlinear feedback system with time delays τ1 and τ2.
The dual-delay nonlinear system uses a nonlinear circuit (NLC), power splitters
(PS), a variable attenuator (VA) with control voltage vc, amplifiers Ai, two variable
delay lines (VDLs), a band-pass filter (BPF), and a directional coupler (dir-c) in its
feedback, where the feedback signal is measured using an oscilloscope (osc). The
values of the time-delays τ1 and τ2 are adjusted using coaxial waveguides of tunable
lengths ∆x1 and ∆x2, respectively.
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Figure 1.11: Two-delay all-optical feedback system for subwavelength sensing.
The output of a laser diode (LD) passes through a collimating lens (L) in free space,
separates using a beam splitter (BS), is time-delayed along two separate paths with
propagation delays τ1 and τ2, and feeds back to itself. Mirrors M1 and M2 at the
end of these paths are attached to piezoelectric transducers PZT1 and PZT2 to make
small adjustments to τ1 and τ2 by changing the relative locations ∆x1 and ∆x2,
respectively. Using an attenuator (att) and a 90/10 coupler (C), the feedback gain
is controlled and the feedback signal is routed to a photodetector (det) and an
oscilloscope (osc).
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Chapter 2

Time-delayed Nonlinear Feedback Systems
and Wave-Chaotic Cavities

In this dissertation, I describe a a novel method for imaging the position and

relative movements of a subwavelength object with subwavelength resolution. This

new experiment combines concepts from two existing fields of scientific inquiry:

time-delayed nonlinear feedback systems and wave chaos. In this chapter, I first

briefly review time-delayed nonlinear feedback systems and demonstrate an exper-

imental example. Then, I introduce the concept of wave-chaos and illustrate the

characterization and properties of my experimental wave-chaotic cavity. Both sec-

tions include a brief literature review of the imaging applications for each topic.

This chapter provides a basic foundation for understanding the dynamical behav-

iors and properties associated with time-delayed nonlinear feedback systems and

wave-chaotic cavities as these two topics will be combined later to form my imag-

ing system.

The experimental and numerical results of this chapter were obtained with the

help of several individuals. The nonlinear circuit featured throughout this disser-

tation was designed by Zheng Gao based on Ref. [22]. Hugo Cavalcante helped

with the construction of wave-chaotic cavity and the design of the experimental

procedure for acquiring the pulse responses of the system. Furthermore, numerical

simulations were performed with the help of Damien Rontani. Lastly, the analysis

of my data benefited from discussions with Daniel Gauthier and Damien Rontani.
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2.1 Time-delayed Nonlinear Feedback Systems

The study of time-evolving systems is a research topic that branches out across vari-

ous areas of science including physics, chemistry, and biology [23–25]. Specifically,

research involving nonlinear systems, also known as nonlinear dynamics, has im-

proved our understanding of many of the world’s complex systems ranging from

weather patterns [26] to atomic interactions [27] and genetic networks [28]. In

addition, harnessing the dynamics of engineered nonlinear systems has led to tech-

nological advances including high-speed electronic [22] and opto-electronic oscil-

lators [29] and, in particular, new methods for using a laser for imaging [30]. Due

to the richness of phenomena observed in nonlinear dynamical systems, this field

continues to be an active area of research.

A subset of nonlinear dynamical systems are those with time-delayed feedback,

where information about the system in the past is coupled into the dynamics of the

present. They are encountered in nature [25, 28] and in man-made experiments

studied in laboratories [29]. In particular, time-delayed feedback can arise in high-

speed electronic and optical systems where the propagation delays of signals can

be comparable to the time scales of the dynamics [31]. A common time-delayed

nonlinear feedback system contains a nonlinear element whose output state variable

x(t) is amplified and coupled back to its input through a single feedback loop that

delays the signal by a fixed amount τ [32], as shown schematically in Fig. 2.1. The

time-evolution of this system can be represented typically by

ẋ(t) = F[x(t), x(t −τ)], (2.1)

where F is a nonlinear function. Thus, the temporal evolution of such a system is

determined by the value of x at time t as well as at time t −τ.
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NLE x(t)GGx(t-τ)

Figure 2.1: Time-delayed nonlinear feedback system. (a) General time-delayed
nonlinear feedback system with a nonlinear element (NLE), net time delay τ, gain
G, and state variable x(t).

For a dynamical system, the dimensionality M of the its phase space is equal to

the number of independent variables that defines its initial state (at time t = 0)

[33]. For non-delayed systems, the initial value of each independent variable is

necessary to predict the system’s dynamics. However, for Eq. (2.1), an infinite

number of initial values are necessary to specify the starting state of the system. As

time progresses from t = 0, the delayed variable x(t − τ) must be specified for all

values of t ∈ [−τ, 0]. Thus, for Eq. (2.1), the dimensionality of its phase space is,

surprisingly, infinite [33].

The dynamics of x(t)moves throughout phase space and converges to a attract-

ing set of trajectories known as an attractor. An attractor represents the trajectories

or solutions that initial system states asymptotically approach and remain once there

[34]. In other words, an attractor is a region of phase space with a flow that attracts

all other phase space points from within a certain distance or basin of attraction.

In time-delayed nonlinear feedback systems, the consequences of an infinite phase

space can lead to high-dimensional attractors and, as a result, the emergence of

complex dynamical behaviors [35].

As demonstrated in the next subsection, these dynamical behaviors include:

steady-state dynamics, periodic oscillations, quasiperiodicity, and chaos. In steady-

state, the system’s dynamics are constant in time, whereas, with periodic oscilla-
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tions, the system produces an oscillatory signal that repeats in time and is typically

characterized by one or more commensurate frequencies in its spectrum. On the

other hand, quasiperiodicity, which is also an oscillatory signal, does not repeat in

time due to the fact that its frequency content is comprised of several incommensu-

rate frequencies [23]. Lastly, time-delayed nonlinear feedback systems can generate

broadband signals with many different frequencies known as chaos.

Chaos, which was first discovered by Edward Lorenz in 1963 [26], is a determin-

istic, non-repeating signal that is characterized by a sensitivity to initial conditions,

leading to an exponential divergence of trajectories along the system’s attractor. For

a continuous-time system to produce chaotic dynamics, it must have a nonlinearity

and a phase space dimensionality M ≥ 3 [23, 34]. Though Eq. (2.1) is simple in its

form, it satisfies both of these criteria and can be used for generating many varieties

of dynamical behaviors including chaos [22, 36, 37].

Systems that obey Eq. (2.1) have been designed in the laboratory using optical

and electronic components. In the following subsection, I present a time-delayed

nonlinear feedback system using a specific nonlinear electronic circuit with a feed-

back loop to produce ultra-high-frequency dynamics (30 MHz − 3 GHz). This non-

linear circuit will be used later as an essential component in my subwavelength

imaging system.

2.1.1 Experimental Electronic System Using a Single Time-Delayed
Nonlinear Feedback Loop

The nonlinear circuit used in my experiments is based on a design that was first

introduced by Illing et al. [22]. This circuit, which lies at the heart of my time-

delayed nonlinear feedback system, is constructed on a printed circuit board using
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a high-speed transistor (BFP620) and several passive electronic components (resis-

tors, capacitors, inductors), as shown in Figs. 2.2a-b. The circuit board is made

of a dielectric material known as FR4 (ε ∼ 4.5) and copper to conduct voltages

throughout the circuit and serve as a ground plane. In the figure, the transistor,

which serves as the main nonlinear element (NLE) of the circuit, is circled to high-

light its location. The purpose of the nonlinear circuit (NLC) is to process or detect

a time-varying input voltage vin and to produce a a modified output voltage vout.

The circuit diagram for the NLC in Fig. 2.2c helps to illustrate its function. In

the schematic, a supply voltage VCC powers the transistor, where the resistor R2 and

inductor L2 help prevent high-frequency signals from coupling to the power supply.

For input voltages below the transistor’s operating threshold vT ∼ 0.7 V, the transis-

tor is non-conducting and the output current of the device is given by the voltage

drop across the resistor labeled RNL. For input voltages above vT, the transistor is

in an active state and the output current is the difference between the voltage drop

across RNL and the circuit’s current flowing through the transistor and resistor R1

to ground [22]. The output capacitor C2 blocks the direct current component of

the input signals and the supply voltage such that vout is an alternating current (ac)

coupled signal. Lastly, to raise low amplitude input voltages near the transistor’s

threshold, a bias voltage vb is added to vin such that the true input voltage of the

device is vin + vb. When powered and driven with an oscillatory signal, the nonlin-

ear circuit continuously switches the transistor on and off, performing effectively a

nonlinear operation on vin.

To demonstrate the basic functional operation of this nonlinear circuit, I charac-

terize the output voltage vout as a function of an input sinusoidal driving signal vin.

Using a driving signal at frequency f = 270 MHz and vb = 0.7 V, I plot the wave-

form vin versus vout in Fig. 2.2d. For voltages below vT, the nonlinear aspects of the
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Figure 2.2: Nonlinear circuit. (a) Photograph of the circuit board showing its
input and output connectors for voltages vin and vout, respectively. (b) Zoom of the
nonlinear circuit indicating the relative locations of the transistor, supply voltage
VCC = 1.6 V and the passive components: RNL = 30 Ω, C1 = 47 nF, L1 = 1 µH,
R1 = 5.1 Ω, R2 = 68 Ω, and C2 = 0.1 µF. The capacitor CT and inductor LT represent
the bias-T (grey dotted box) that adds the voltages vin and vb. In (a), (b), and
(c), the transistor is highlighted with a red-dotted circle. (d) Tent-like nonlinear
operation of the circuit between the voltages vin and vout, where vin is generated
using a signal generator (Agilent E8267D) and vout is measured on an oscilloscope
(DSO80804A with noise floor standard deviation σ ∼ 1.2 mV).

circuit remain inactive and the circuit produces a linear input-output relation. For

voltages above vT, the nonlinear circuit induces an anti-linear input-output relation.

Thus, this transistor-based circuit behaves like a piecewise-linear (PWL) function

FPWL(vin) = vout ∼











A0 + A1vin, if vin ≤ vT

B0 + B1vin, if vin > vT

, (2.2)
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where A0 and B0 are constant coefficients and A1 < 0 and B1 > 0 are slopes of

opposite signs. The tent-like shape between the NLC input and output voltages is

similar to circuit operation proposed in Ref. [22].

It is important to acknowledge that this characterization of the NLC is not ex-

haustive. In particular, there are several non-ideal filtering properties that are as-

sociated with its operation at high-frequencies ( f > 500 MHz) that are not shown

here. At this point, I simply want to establish that the circuit behaves in a determin-

istic, nonlinear fashion. This assumes that the non-ideal aspects of the circuit are

not essential for demonstrating its role in the dynamics of a time-delayed nonlinear

feedback system. For the full details of its higher-frequency mode-of-operation, see

Chapter 4, where an in-depth characterization is performed and a model is devel-

oped specifically to include these non-ideal effects. In addition, for a more compre-

hensive comparison of this particular NLC with the circuit from Ref. [22], refer to

Appendix B.

In a time-delayed feedback loop, the output of the NLC is delayed and injected

at its input using a coaxial cable. As shown in Fig. 2.3, several linear electronic

components are also included between its input and output. First, the output of the

nonlinear circuit vout passes through a variable attenuator (VA) that controls the

net gain of the entire feedback loop using a control voltage vc. Then, due to the

inherent losses as it propagates through the coaxial cable, vout is amplified by the

amplifier A1. Next, vout is band-pass filtered (BPF) so that a certain frequency band

( f (−) < f < f (+)) is selected and limits the overall system’s bandwidth, following

the design in Ref. [22]. The output voltage of the BPF v(t) is measured using a

directional coupler (dir-c) and a high-speed oscilloscope (osc). Lastly, prior to the

input of the nonlinear circuit, v(t) is amplifed again by A2 for additional gain and

then added to vB. Thus, the schematic in Fig. 2.3 represents a band-pass filtered
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Figure 2.3: Ultra-high-frequency system. The nonlinear circuit (NLC) drives a
variable attenuator (VA, Mini-Circuits ZX73-2500+) with a control voltage (vc), the
amplifier A1 (Mini-Circuits ZX60-3018G+), a band-pass filter (BPF, Mini-Circuits
ZBFV-925+), a directional coupler (dir-c, Mini-Circuits ZX30-9-4+), the amplifier A2
(comprised of two amplifiers in series: Mini-Circuits ZX60-3018G+ and Picosecond
Pulse Labs 5828-108), and a bias-T (Mini-Circuits ZFBT-6G+) with bias voltage vb.
Coaxial cables (coax) connect these components and act as a propagation delay.
The net time-delay of a signal through the feedback loop is τ.

system with time-delayed nonlinear feedback.

To demonstrate the various dynamical states of the system, I vary the net gain

G of the feedback loop using the control voltage vc of the VA [22]. For low (high)

values of the vc, the attenuation of the VA is high (low) and thus G is low (high). The

voltage vc, which is used to tune the feedback dynamics, is known as the system’s

bifurcation parameter.

Using this bifurcation parameter, I examine the dynamics of the system with in-

creasing values of vc. As shown in Fig. 4.17a, for vc < 2.6 V, the nonlinear feedback

system shows the steady-state dynamics v(t) ∼ 0 V. The frequency spectrum of the

steady-state is plotted in Fig. 4.17b, which shows the power spectral density (PSD)

of the noise-floor in the system (small narrow spikes in the spectrum are caused

by the internal electronics of our oscilloscope and ambient RF noise in the room).

A 2D projection of the phase-space representation of the steady-state dynamics is

plotted in Fig. 4.17c using a time-delayed embedding to reconstruct the system’s
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dynamical trajectories [38]. As shown in the figure, the steady-state is represented

by a single fixed-point in phase space.

For control voltages 2.6 V ≤ vc < 3.5 V, the output voltage v(t) changes to pe-

riodic oscillations (Fig. 4.17c) at a single frequency fH ∼ 797 MHz (Fig. 4.17e).

The change to periodic dynamics from a steady-state is typically known as a Hopf

bifurcation, which always has an associated Hopf frequency fH [23]. A detailed de-

scription for this type of Hopf bifurcation is provided in Chapter 5. The phase space

projection of the periodic v(t) is plotted in Fig. 4.17f. In this case, the system’s

trajectories form a limit-cycle [23].

For control voltages 3.5 V ≤ vc < 4.3 V, the output voltage v(t) changes to

quasiperiodic oscillations (Fig. 4.17g) with the addition of a new frequency fT ∼ 30

MHz and the mixed frequencies fH ± k fT (Fig. 4.17h), where k represents an inte-

ger harmonic number. Similar to a Hopf bifurcation, the change to quasiperiodic

dynamics from a periodic state is typically known as a torus bifucation with an associ-

ated torus frequency fT [23]. A detailed description for this type of torus bifurcation

is also provided in Ch. 5. The torus bifurcation is named based on the phase space

representation of the resulting quasiperiodic dynamics. As shown in Fig. 4.17i, the

2D projection of the dynamical trajectories for this state forms a torus.

Lastly, for control voltages 4.3 V ≤ vc < 5.2 V, the output voltage v(t) changes

to a non-repeating oscillation (Fig. 4.17j) with a broadband frequency spectrum

(Fig. 4.17k). In addition, the phase-space projection (Fig. 4.17l) reveals a complex

structure with trajectories that fill more regions of phase space (as compared to

periodicity or quasiperiodicity). Thus, based on the complex characteristics of this

waveform, I conjecture that this dynamical state of v(t) is chaotic. To verify that

this type of dynamical behavior is not just due to electrical noise, I present a sim-

ple model of the dynamics in the next subsection to verify that similar chaotic-like
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Figure 2.4: Single-loop experimental dynamics. (a) Steady-state temporal evo-
lution, (b) Power spectral density (PSD), and (c) phase-space projection (PSP) of
v(t) for vc = 1.2 V. (a) Periodic temporal evolution, (b) PSD, and (c) PSP of v(t) for
vc = 3.0 V. (a) Quasiperiodic temporal evolution, (b) PSD, and (c) PSP of v(t) for
vc = 4.1 V. (a) Chaotic temporal evolution, (b) PSD, and (c) PSP of v(t) for vc = 5.2
V. Each PSP uses a delayed version v(t − TL) where TL = 10.5 ns is a lag time.

waveforms can be achieved in noise-free simulations.

Before moving on to the next subsection, I present a plot that summarizes the
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Figure 2.5: Single-loop bifurcation diagram. The local maxima vmax plotted as a
function of the control voltage vc. Vertical grey dashed lines separate steady-state
(SS), periodic (P), quasiperiodic (QP), and chaotic (C) regions of the dynamics. For
these measurements, the discretization error of vmax from the digital oscilloscope is
approximately 100 µV, the noise floor standard deviation is approximately 1.2 mV,
and the control voltage vc is varied in steps of 20± 2 mV.

dynamical behaviors of the nonlinear feedback system as a function of vc. This type

of plot, known as a bifurcation diagram, is shown in Fig. 2.5. In the figure, for each

value of vc, I plot the local maxima of v(t) and label the various dynamical regions

as steady-state (SS), periodic (P), quasiperiodic (QP), and chaotic (C). For the SS

region, the density of local maxima are concentrated at vmax ∼ 0. Once the region of

periodicity appears, vmax follows the amplitudes of the periodic oscillations, scaling

as vmax ∼
p

vc − v∗c, where v∗c is the critical value of the control voltage for which

the Hopf bifurcation occurs. This scaling of vmax is typical of a specific type of Hopf

bifurcation known as a super-critical Hopf bifurcation [23]. In the QP region, the

density of vmax spreads until the bifurcation to chaos, where the spread in the local

maxima is at its greatest.

In the next subsection, I present a simple model for the single-loop, time-delayed

nonlinear feedback system using the mathematical representations from Ref. [22].
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Though this model is not a complete description of our NLC, it serves as one of the

main building blocks for interpreting the dynamics of the full feedback system in

the chapters to come.

2.1.2 Simple Model

This subsection is divided into three main parts. First, I introduce a function that is

representative of the piecewise-linear operations performed by the nonlinear circuit.

Then, using a differential equation that describes a band-pass filter, I combine band-

pass filtered, time-delayed feedback and this nonlinear function to realize a simple

model for the single-loop system.

As an approximation for the input-output function of the nonlinear circuit, Illing

et al. use the function [22]

vout = F(vin) = vo −
q

F1(vin + vb)2 + a2
o, (2.3)

where vin and vout are the input and output voltages of the nonlinear circuit, respec-

tively, vb is the additive input bias voltage, ao is a constant that controls the sharp-

ness of the tent-like function, vT is the transistor threshold, and F1 is the piecewise-

linear function [22]

F1(vin + vb) =











AL(vin + vb − vT), if vin + vb ≤ vT

AR(vin + vb − vT), if vin + vb > vT

. (2.4)

For input voltages less than vT, the nonlinear function is approximately linear with

slope AL, and for input voltages greater than vT, the nonlinear function is approx-

imately anti-linear (negative slope) with slope AR. For non-zero values of ao, the

transition between these two regions in smooth and the maximum output of F(v)

35



(a)
0.1

0

-0.1
-0.4 0 0.4

vin (V)

v o
ut
 (

V
)

(b)

0 1 2
f (GHz)

0

-2

-4

-6

dB

(c)

vc (V)

G

2
3
4

2 3 4 5

1

5
6

-3 dB

Figure 2.6: Model parameters. (a) Numerical fitting of the nonlinear function F(v)
(red curve) to the experimental nonlinearity of the nonlinear circuit (blue curve).
(b) Bandwidth of experimental system (blue curve) used for determining the model
parameters f (+) and f (−) of the fitted transfer function magnitude |HBP( f )| (red
curve). The error bar indicates the accuracy of ±0.4 dB for the spectrum analyzer
(Agilent E4440A), and the resolution of the frequency sweep is approximately 4
MHz. (c) Linear fit (red curve) of the experimental gain G as a function the control
voltage vc. The error bars for each measurement of G represent the fluctuations in
the measured waveforms but do not extend beyond the data points, and the control
voltage vc is varied in steps of 100± 2 mV.

is determined by vo. But, the value of vo is arbitrary in this model because the

ac-coupled output of the nonlinear circuit will always have a time-average of 0 V.

Using this model function, I fit the experimentally measured nonlinearity of the cir-

cuit with Eqs. (2.3)-(2.4) using a least-square regression algorithm. The numerical

fit, shown in Fig. 2.6, yields the parameters AL = 0.76 ± 0.01, AR = 0.50 ± 0.01,

ao = 0.05±0.01 V, and vT = 0.71±0.01 V (these errors represent the 90% confidence

intervals of the parameters of the fit). Thus, Eqs. (2.3)- (2.4) display a qualitatively

similar piecewise-linear operation to the experimental nonlinear circuit.

In their original work, Illing et al. studied the dynamical behaviors of the non-

linear circuit in a band-pass filtered feedback system. In the frequency domain, the

net filtering of the feedback loop is approximated as a band-pass filter with transfer

function HBP( f ). To model the filtering effects of the feedback loop, Illing et al. use
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the transfer function for a two-pole band-pass filter

HBP( f ) =
1

1+ 2πi f /∆+ω2
o/(2πi f∆)

. (2.5)

where ∆ = 2π( f (+) − f (−)), ωo = 2π
Æ

f (+) f (−) , and f (+,−) are the upper and

lower cutoff frequencies of the band-pass filter (at a -3 dB power loss), respectively

[22]. Using the experimentally measured bandwidth of the feedback loop, shown

in Fig. 2.1, |HBP( f )| is fit to the data within a vertical window between −3 dB

< |HBP( f )| < 0 dB. The numerical fit yields the parameters f (−) = 647 ± 10 MHz

and f (+) = 989± 10 MHz (these errors represent the 90% confidence intervals of

the parameters of the fit, and the maximum difference between the bandwidth and

the fit within the 3 dB interval is ∼ 2 dB at f ∼ 67 MHz, which is one source

of error). Thus, the central frequency of the bandpass filter is ωo/(2π) ∼ 800

MHz. Fitting a larger window of the experimentally measured bandwidth, which

behaves differently from an ideal band-pass filter, skews the fitting parameters to

non-physical values.

In the time-domain, the band-pass filter with time-delayed nonlinear feedback

can be represented by the delay differential equation (DDE) [22]

v̇(t)
∆
+ v(t) +

ω2
o

∆

∫ t

−∞
v(t ′)dt ′ = F(Gv(t −τ) + vB), (2.6)

where G is the net gain of the feedback loop and τ is the feedback-loop delay. The

experimentally measured time delay is τ ∼ 14.5 ns. To match the range of gain

values used in the experiment, the net gain G of the experimental feedback loop is

plotted as a function of vc in Fig. 2.6c. For a given vc, the gain is measured using

a sinusoidal driving voltage at frequency f = 800 MHz (to avoid filtering from the
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band-pass filter) and computing G = Aout/Ain, where Ain and Aout are the amplitudes

of the input and output waveforms of the feedback loop, respectively. Note that this

measurement is made without the nonlinear circuit present in the feedback loop. In

Fig. 2.6c, the experimental values of G follow an approximately linear function of

vc, ranging from 1.2< G < 6 with a slope of 1.3 V−1±0.2 (within a 90% confidence

interval of the fit). Thus, a linear sweep of G in the model will approximate the

effect of tuning the bifurcation parameter vc.

Lastly, with this model, the ac-coupled output of the nonlinear circuit is not

modeled directly because the band-pass filter in the feedback loop, which includes

a high-pass cutoff frequency f (−) > 0, accounts for this effect. As I will show, for

the purposes of this numerical experiment, Eq. (6.3) is sufficient for describing

qualitatively the single-loop dynamics.

To simulate the system, I use an Adams-Bashforth algorithm to integrate numer-

ically Eq. (6.3) and solve for the temporal evolution of v(t) for increasing G values.

To demonstrate the qualitative similarities of these simulations to the experiment,

typical steady-state, periodic, quasiperiodic, and chaotic time series produced by

the model are plotted in Fig. 4.19. This figure mimics the format of Fig. 4.17 for

an easy comparison and shows that the model is also capable of producing similar

power spectral densities and phase-space projections. In particular, shown in Figs.

4.19e,h, the simulated values of the Hopf and torus frequencies, fH = 760 MHz and

fT = 36 MHz, show near agreement with the experimental frequencies (discrepan-

cies in the values of these frequencies can be attributed to the approximations made

in the model by assuming a simple function for the NLC and an ideal band-pass filter

for the bandwidth of the feedback loop).

Furthermore, using the local maxima vmax of the time series from the model,

I plot a simulated bifurcation diagram in Fig. 2.8. Comparing this figure to the
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Figure 2.7: Observed single-loop simulated dynamics. (a) Steady-state temporal
evolution, (b) Power spectral density (PSD), and (c) phase-space projection (PSP)
of v(t) for vc = 1.2 V. (a) Periodic temporal evolution, (b) PSD, and (c) PSP of v(t)
for vc = 3.0 V. (a) Quasiperiodic temporal evolution, (b) PSD, and (c) PSP of v(t) for
vc = 4.1 V. (a) Chaotic temporal evolution, (b) PSD, and (c) PSP of v(t) for vc = 5.2
V. Each PSS uses a delayed version v(t − TL) where TL = 9.7 ns is a lag time.

experimental bifurcation diagram, the simulated steady-state (SS), periodic (P),

quasiperiodic (QP), and chaotic (C) dynamics appear in similar succession with
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qualitatively similar values in the local maxima. Also, the initial scaling of the pe-

riodic amplitudes and the initial spreading of the quasiperiodic amplitudes match

those from the experiment. However, it is clear from the simulated bifurcation di-

agram that the region of periodicity in the simple model is larger than that of the

experiment. In addition, the simulated transition from quasiperiodicity to chaos

shows new structures. Thus, based on their bifurcation diagram, Eqs. (2.3)-(6.3)

represent a simple model for simulating a time-delayed nonlinear feedback system

that reproduces qualitative features from the single-loop experimental system.

The bifurcation diagrams from both the model and experiment also highlight the

sensitivity of the dynamics in this time-delayed nonlinear feedback system to the

feedback-loop gain G. As G changes continuously, the amplitude of v(t) can shift,

showing quantitative dynamical changes, or the state of v(t) can change, illustrating

qualitative dynamical changes.

In addition to the feedback loop gain, researchers have also shown that the dy-
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Figure 2.8: Simulated bifurcation diagram. The simulated local maxima vmax
plotted as a function of the feedback loop gain G. Vertical grey dashed lines separate
steady-state (SS), periodic (P), quasiperiodic (QP), and chaotic (C) regions of the
dynamics.
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namics of time-delayed nonlinear feedback systems are sensitive to changes in the

feedback time delay τ [22]. In this case, changes to τ can alter the frequencies of

oscillation in periodic and quasiperiodic dynamics ( fH and fT) [32, 39, 40] as well

as cause bifurcations [41]. The sensitivity to τ is discussed in more detail in Ch. 6.

Furthermore, changes to the dynamics based on perturbations to the feedback pa-

rameters have lead to interesting applications of time-delayed nonlinear feedback

systems in both imaging and sensing.

In the next subsection, I present a brief literature review of the applications of

time-delayed nonlinear feedback systems using the sensitivity of their dynamics to

perturbations in each of the system’s feedback parameters.

2.1.3 Applications of Time-Delayed Nonlinear Feedback Systems
in Subwavelength Imaging and Sensing

The sensitivity to feedback parameter changes in time-delayed nonlinear feed-

back systems has been used to create new sensor technologies. A well-known exam-

ple is the laser-feedback interferometer (LFI) [30] or optical-feedback interferome-

try (OFI), which is depicted in Fig. 2.9a. LFI uses a laser diode (LD) as the system’s

nonlinearity; the output light from the LD is reflected off of a surface and fed back

to the laser cavity [30]. Thus, the round trip propagation of an optical signal leav-

ing and entering the laser cavity represents a time-delayed nonlinear feedback loop

with time delay τ. Depending on the distance from the laser output to the scatter-

ing surface, the time delay of the feedback loop can change, causing a shift in the

steady-state optical intensity of the feedback system. The light emitted by the LD is

also monitored by a photodetector (PD), which generates a steady-state voltage vs

that is proportional to the laser intensity. As depicted in Fig. 2.9, by tracking the
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Figure 2.9: Time-delayed nonlinear feedback sensors. (a) Laser feedback in-
terferometry (LFI) system. The gain of the feedback loop G is determined by an
attenuator at the output of the LD. As the point of reflection on the surface scans
from A to B, the time-delay τ of the nonlinear feedback system changes such that vs
reveals the surface profile when plotted as a function of x . (b) Index of refraction
sensor using an opto-electronic oscillator (OEO) with a LD, interference modulator
(IM), and photodetector (PD). The gain of the feedback loop is determined by an
amplifier (G). As the index of refraction changes from n1 to n2, the net delay τ of the
nonlinear feedback loop decreases (n2 < n1) and thus the frequency of oscillation
in v(t) increases. The position x and time t are in arbitrary units.

dynamical shifts of the steady-state intensity while scanning the point of reflection

from A→ B, LFI can reconstruct the surface profile with a 5 nm resolution, which

is approximately ∼ λ/130 when λ= 1550 nm [42].

Another similar sensor has been demonstrated in a time-delayed nonlinear feed-

back system known as an opto-electronic oscillator (OEO). In this system, depicted

in Fig. 2.9b, the light emitted by a LD drives an interference modulator (IM), which

serves as the system’s nonlinearity. Placed in the optical path of the feedback, a

scatterer with refractive index n alters the τ and G of the feedback. The resulting

detected signal is amplified and fed back to the IM as a periodic oscillatory volt-

age v(t). It has been demonstrated that the frequency of the periodic v(t) shifts

due to changes in τ that are proportional to n [39]. As depicted in the example in

Fig. 2.9b, for n2 < n1, the net delay τ decreases and thus the relative frequency

of oscillation in v(t) increases [39]. These types of changes to n can be used for

subwavelength imaging because a change ∆n= |n2 − n1| is proportional to a time-
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delay shift ∆τ = ∆x/c, where ∆x << λ represents a (potential) subwavelength

distance change. Thus, similar to LFI, the OEO uses perturbations to the feedback

parameters for sensing. An advantage of both the LFI and OEO sensors is that the

changes to the system are easily detectable due to relatively simple dynamical states

(simple compared to quasiperiodicity and chaos).

In addition to steady-state and periodic dynamical states, chaos can also be used

for sensing purposes [43]. Using time series analysis, small changes to a chaotic at-

tractor have been used to detect small parameter perturbations in a nonlinear sys-

tem [44]. Applications include detecting damage to a structure that is embedded

in the chaotic nonlinear feedback system [45]. However, these methods involve

large data storage and have only been proven to work for low-dimensional chaotic

attractors, and it remains an interesting and open problem to find simple, robust

sensing applications of time-delayed nonlinear feedback systems that take advan-

tage of complex dynamical states other than periodic or steady-state dynamics.

As I will show later, my full-feedback imaging system demonstrates the first ap-

plication of quasiperiodic dynamics for imaging the position of a subwavelength

object in 2D. Similar to the above-mentioned applications of time-delayed nonlin-

ear feedback systems, my imaging system works by exploiting the sensitivity of its

dynamics to changes in its feedback parameters. However, my system differs from

these applications because of the addition of a wave-chaotic cavity in its feedback

loop. This additional component creates a 2D scattering environment that is em-

bedded in the feedback of the time-delay system. Furthermore, this scattering en-

vironment is tailored to exhibit a property known as wave chaos, which gives rise

to an enhanced complexity to the interference patterns inside of the cavity.
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2.2 Wave-Chaotic Cavities

In order to explain wave chaos in cavities, I will first review ray chaos in 2D billiards.

Ray chaos describes the trajectories of a two, identical, non-interacting particles

with similar initial conditions (position and momentum) that propagate inside of a

billiard and bounce off of the hard boundaries elastically, as shown in Figs. 2.10a-

b. For the billiard in Fig. 2.10a, the two particles’ trajectories remain close after

many bounces. However, for the billiard in Fig. 2.10b, the two particles’ trajecto-

ries diverge, demonstrating a sensitivity to initial conditions. This effect, which is

appears in certain billiard geometries, is known as ray chaos [46, 47]. Ray chaos

has been studied in many geometries ranging from deformed circular billiards [48]

to stadium [49] and quarter-stadium shaped billiards [50] like the one shown in

Fig. 2.10b. In addition to the sensitivity to initial conditions, a particle in a ray

chaotic billiard visits every possible position within the boundary from every pos-

sible direction, thus filling the position and momentum phase space of the system

ergodically [46, 51].

To explain wave chaos, consider the 2D billiards as the boundaries of 2D mi-

crowave cavities. The trajectories of the particles in Figs. 2.10a-b become the prop-

agation of waves that scatter and interfere, as depicted in Figs. 2.10c-d. The wave-

chaotic cavity in Fig. 2.10d contains a complex interference pattern and a large

number of irregularly spaced frequency resonances (as illustrated in Fig. 2.10f)

when compared to the interference pattern and resonances in Figs. 2.10c,e. In ad-

dition, similar to the ergodicity of ray chaotic systems, the interference patterns of

wave-chaotic cavities fill the cavity more densely when compared to regular (non-

chaotic) cavities [46]. The spatial modes of a regular cavity are less dense than

those of a wave-chaotic cavity. Also, the resonances of the regular cavity tend to be
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Figure 2.10: Ray and wave chaos. (a) Rectangular and (b) quarter-stadium (QS)
2D billiards with identical particles (red and blue) and their trajectories from initial
positions i1 and i2 to final positions f1 and f2. Illustrations of the interference pat-
terns from the (c) rectangular and (d) QS cavity. The rectangular cavity contains
large nodes or blind spots, indicated in white, when compared to the complex inter-
ference pattern in the QS cavity. (e)-(f) Typical frequency resonances of a rectangu-
lar and QS wave-chaotic cavities, respectively. The frequency is given in arbitrary
units (a. u.).

more symmetric and can cluster to the boundary of the cavity. This is one advantage

of a wave-chaotic cavity; the spatial modes cover more regions of the cavity’s inte-

rior. The complex standing-wave patterns of a wave-chaotic cavity can also change

dramatically due to perturbations to its boundary [51, 52] or interior [53, 54].

It should be noted that wave chaos is only truly defined for classical dynam-

ics with rays. Based on experimental observations over the past few decades, re-

searchers conjecture that there is a correlation between the nearest-neighbor-spacing

statistics (NNSS) of a cavity’s resonances and the level of wave chaos in the cavity
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[52, 55, 56]. Therefore, in this section, I present a foundation for understanding

the NNSS of a cavity and the types of statistics that are correlated with wave chaos.

These techniques will later be used to conjecture the presence of wave chaos in my

experimental cavity. As depicted in Fig. 2.10f, the resonances of the wave-chaotic

cavity are labeled Rn to help illustrate this procedure. For each pair of neighboring

resonances Rn and Rn+1, the normalized resonance spacing is calculated

sn =
Rn+1 − Rn

1
N

∑N−1
n=1 (Rn+1 − Rn)

, (2.7)

where N is the number of resonances and sn is the nth spacing [46, 52]. As it turns

out, the density of the resonances is the same for a regular and a wave-chaotic cavity

[46]. However, the NNSS of the resonances is different. It is conjectured that, for a

wave-chaotic cavity, the probability distribution of sn follows a Wigner distribution,

given by

Pw(s) =
π

2
se−πs2/4. (2.8)

For a regular cavity, the probability distribution of sn follows a Poisson distribution

that reads

Pp(s) = e−s. (2.9)

For a detailed explanation of the origin of these distributions, see Refs. [46, 57]. As

shown in Fig. 2.11a, the Poisson distribution Pp(s) has a maximum as s→ 0 while

the Wigner distribution Pw(s)→ 0 as s→ 0.

Though Pp(s) and Pw(s) are correct for characterizing wave chaos, the NNSS of

these distributions is dependent on a histogram bin size of sn [56]. Thus, it is more

useful to use a cumulative measure that is independent of the bin size. A cumulative

density function (CDF) for the Poisson and Wigner probability distributions can be
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represented as [52]

Ip,w(s) =

∫

Pp,w(s
′)ds′. (2.10)

Examples of these cumulative probability distributions Ip,w(s) are depicted in Fig.

2.11b. Thus, for a regular and wave-chaotic cavity, the cumulative resonance spac-

ing s follows Ip(s) and Iw(s), respectively.

However, it has been shown in both experiments and simulations that typical

resonance-spacing distributions are actually a superposition of both the Poisson and

Wigner distributions [56], demonstrating that a real-world cavity can have a mix-

ture of regularity and wave chaos. Thus, to measure the degree of chaos in the

cavity, or chaoticity, researchers use the Brody CDF to account for the balance be-

tween Poisson and Wigner distributions. This CDF is given by [56]

Ib(b, s) = (1− b)Ip(s)− bIw(s), (2.11)

where b is a fixed parameter that can range from 0 to 1. For b = 0, Ib(b, s)→ Ip(s),

which indicates that the cavity is purely regular, and for b = 1, Ib(b, s) → Iw(s),
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Figure 2.11: Probability distributions. (a) The Poisson (green curve, Pp(s)) and
Wigner (red dashed-curve, Pw(s)) probability distributions. (b) The cumulative Pois-
son (green curve, Ib(0, s) = Ip(s)), Wigner (red curve, Ib(1, s) = Iw(s)), and Brody
(black curve, Ib(0.5, s)) probability distributions.
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which indicates that the cavity is purely wave-chaotic. For a comparison to these

types of distributions, I also plot the Brody distribution Ib(0.5, s) in Fig. 2.11b. As

shown in the figure, Ib(0.5, s) is an average of Ib(0, s) and Ib(1, s). For distributions

with unknown values of b, Eq. (2.11) is used to analyze the data using a numerical

fit with b as a free fitting parameter. This method has been used recently to char-

acterize the transition from regularity to wave-chaos in a 2D simulation, where the

parameter b ranges from 0 to 0.85 as an increasing asymmetry is introduced into a

2D cavity’s boundary [58]. Furthermore, the Brody distribution has also been used

to characterize the experimental wave-chaos in both microwave [57] and optical

cavities [52, 56].

In the next subsection, I introduce and characterize my experimental wave-

chaotic cavity using the Brody CDF. Using a swept-frequency source, I measure and

characterize the cavity’s resonance spacings. In addition, I also examine the effects

of wave chaos in the experimental cavity with regards to a sensing application.

2.2.1 Experimental Wave-Chaotic Cavity

The design of my experimental cavity is based on the well-known quarter-stadium

wave-chaotic 2D structure [50, 57]. A photograph of the open cavity interior is

shown in Fig. 2.12a. Constructed using 2 mm thick aluminum sheet metal, the

cavity’s length and width are approximately L = 1.2 m and W = 0.6 m, respec-

tively. The height of the cavity is approximately H = 8 cm. Thus, for frequencies

f < c/(2H), which corresponds to approximately 2 GHz, the cavity can only sup-

port transverse magnetic (TM) modes [49]. This means that, for EM waves with

frequencies less than 2 GHz, the cavity can be regarded as approximately a 2D struc-

ture. Based on the dimensions of the cavity, I estimate that the number of spatial
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modes excited in the cavity is on the order of (at least) 50−100. This is calculated

by assuming a maximum frequency of 2 GHz (minimum wavelength of 15 cm) such

that at least 4 modes are excited along the cavity’s width and at least 8 modes are

exited along the cavity’s length. The additional asymmetric features of the cavity

give the potential for additional spatial modes. Though a 2D system is not crucial

for the operation of my imaging system (3D structures can show wave chaos [54]),

using an approximately 2D system will allow me to later simplify the interactions

between the scatterer and the internal EM radiation.

Inside the cavity is the scatterer: a small bottle filled with water with a 2D cross
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Figure 2.12: Wave-chaotic cavity. (a) Open interior of the cavity with the scat-
terer and rod labeled. The inset of the figure shows the cavity’s 2D dimensions. (b)
Closed exterior of the cavity with the TX and RX ports labeled. The inset of the
figure shows the dimensions of the scatterer’s cross-section. (c) Broadband copper
antenna on a printed circuit board. (d) Near-field bandwidth of identical transmit-
ting and receiving antennas, where errors indicate the accuracy of the spectrum
analyzer (±0.4 dBm).
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sectional area of approximately 2 cm × 4 cm, as shown in the inset of Fig. 2.12b;

the size of this water bottle is subwavelength when compared to the illuminating

fields of the system. In the frequency range of f ∼ 100 MHz −10 GHz, water has

an index of refraction n ∼ 10 [59], which means it will scatter the majority of any

incident EM radiation. The absorption coefficient of water in this frequency range

is α ∼ 0.1 − 1 cm−1 [59]. Thus, for example, any EM radiation at f = 1 GHz

that transmits through the scatterer will be attenuated by a factor of ∼ 0.75 in its

intensity (based on the 2 cm × 4 cm cross section). As will be demonstrated later

in this section, the addition of the scatterer in the cavity affects both the scattering

paths and absorption of EM waves.

The top of the scatter is glued to a position-controlled rod (that resides outside

of the cavity), and when the cavity is closed in Fig. 2.12b, the rod extends through

a small square hole of dimensions 3 cm × 3 cm in the cavity’s cover and is attached

to translation stages for positioning the scatterer in 2D (the square hole confines the

majority EM radiation for f < 10 GHz) The accuracy of the scatterer (water bot-

tle) placement in the cavity is dependent on the position accuracy of the translation

stages. In particular, the scatter placement at each 1D position (x) or 2D position

(x , y) is assumed to be the exact programmed positions of the translation stages

(the positions are programmed using LabVIEW, which requires a list of positions to

be loaded from files with manually entered data). However, because the transla-

tion stages are not perfectly accurate, there is position error associated with each

measurement in the system.

The position error of the translation stages is caused by the physical gears which

turn to pull or push the mounting stages of the scatterer. Because these gears in-

volve mechanical screws, there is a potential for backlash to occur when moving

them back and forth; backlash is a history dependent error in positioning due to
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approaching a position from different directions (for example, approaching from

either the positive x direction or the negative x direction. In such systems, repeti-

tive backlash can accumulate to create large errors. However, the translation stages

used in this experiment have a backlash correction programmed into them. For each

programmed position, the stages translate to the approximate location and then per-

form a small pivot about the position in order to correct for backlash. Thus, each

position is always approached from the same direction (for example, positive x and

positive y). With this backlash correction in both translation stages, it is assumed

that the scatterer’s position is accurate to within 5 µm (based on the manufacturers

data sheets for components Zaber Technologies TLSR150B and Thorlabs LTS150).

All measurements in the system are made when it is covered, and the input and

output ports of the cavity are also labeled as the TX and RX ports, respectively.

At these input and output ports are identical transmitting and receiving antennas,

respectively. These antennas are designed for a broadband frequency spectrum,

similar to the power spectral density (PSD) of the temporal chaos in Fig. 4.17k.

A photograph of one of these antennas is shown in Fig. 2.12b. A near-field mea-

surement of the antenna’s normalized transmitted bandwidth is given in Fig. 2.12c.

This measurement, which is performed in the open laboratory, tracks the transmit-

ted power between two identical versions of the antennas as a function of frequency.

Fig. 2.12d shows that the relative transmitted power is broadband over f = 0.8−2

GHz (based on a −10 dB cutoff) and that a resonance exists in the room at around

50 MHz. Because the antennas are confined in the cavity, this resonance will not

be present during the system’s imaging mode-of-operation (for a characterization

of the antenna far-field efficiency, see Appendix B).

Using these antennas to transmit and receive EM radiation, I measure the cavity’s

resonances to characterize its level of wave chaos with and without the scatterer.
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Figure 2.13: Measuring the experimental resonances of the cavity. (a) Experi-
ment setup for measuring the resonances (with and without the scatterer) using a
swept-frequency signal generator (SG) and a spectrum analyzer (SA). (b) The ex-
perimental resonances of the cavity with the scatterer as a function of frequency
f . A zoom of the boxed region shows an example of two resonances Rn and Rn+1.
Errors indicate the accuracy ±0.4 dBm of the SA. Resonances are located using
MATLAB’s findpeaks algorithm, which locates local maxima, where the parameters
of the algorithm are specified such that consecutive local maxima must be spaced
by at least 3 MHz (mean spacing between resonance peaks is 13.4 MHz) and must
be greater than −70 dBm (mean resonance peak height is −44 dBm).

The setup for this measurement is shown in Fig. 2.13a, where a signal generator

(SG) outputs a continuous wave signal with carrier frequency f to the cavity’s TX

antenna. The output of the cavity is measured at the RX antenna using a spectrum

analyzer (SA). The cavity’s resonances are measured by scanning f and measuring

the output power at each frequency. The resulting spectrum with the scatterer is

shown in Fig. 2.13b over a frequency sweep of f = 0− 4 GHz (for a comparison

of the resonances without the scatterer, see Fig. 2.15d). Based on the figure, the

cavity’s resonances are spaced irregularly with a decreasing spacing sn = Rn+1 − Rn

as f increases.

To fully characterize the cavity with and without the scatterer, these resonance

spacings are measured over a large range of frequencies ( f = 0 − 10 GHz) and

stored in each configuration. Over this frequency range, the normalized histograms
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of the sn distribution are plotted in Figs. 2.14a-b along with the Poisson and Wigner

distributions using Eqs. (2.9) and (2.8), respectively, for comparison (note: there

is no fit to the data for these reference curves). In each case (without and with

the scatterer), the level of wave chaos is quantified by fits to the experimental CDF

I(s), which yields the fitting parameters b = 0.68± 0.11 without the scatterer and

b = 0.75 ± 0.10 with the scatterer. In Figs. 2.14c-d, the experimental CDFs are

plotted along with their respective fits, and based on these results, the experimental

cavity demonstrates a non-zero level of wave chaos with and without the scatterer.

As demonstrated in Ref. [55], the a percentage of the resonances in an experi-

mental quarter-stadium billiard can overlap due to their finite width and hence be

missing from the statistics to conjecture the presence of wave chaos. The authors of

this work showed that, by cooling the cavity, its walls can become super-conducting

and the resonances become sharper, leading to fewer missed values. From their

work, they find that between 0.75 and 17.5 GHz, 162 out of 1060 resonances are

lost when the measurements are made at room temperature, which equates to ap-

proximately 18.4% (162/898) [55]. Based on their work, I approximate that my

experimental results for measuring cavity resonances may be missing up to ∼ 132

modes (out of 869) for f = 0− 10 GHz. This information is important to acknowl-

edge when evaluating the statistics of the resonance spacings. In summary, the

results of Fig. 2.14 are only approximations of the cavity’s resonance statistics.

Nevertheless, the well-know, wave-chaotic quarter-stadium shape gives rise to com-

plex scattering, and, as shown in Ch. 3, the subwavelength sensing results of this

dissertation are measured at room temperature.

For comparison, I also calculate the statistics for the wave chaos in the cavity

over smaller frequency ranges. As shown in Tab. 2.1, the fitting parameter b for

the CDFs (with and without the scatterer) are given for f = 0−3 GHz, f = 0−6.5
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Figure 2.14: Experimental distributions of sn (c) without and (d) with the scat-
terer. The bin size ∆s = 0.1, and the errors in the histogram height represent
changes to the histogram counts due to perturbations ∆s = 0.1± (5×10−3), where
more than 80% of the spacings in sn remain fixed for these perturbations. In (c)
and (d), Poisson (green curve) and Wigner (red curve) distributions are plotted for
reference. Cumulative distribution functions (e) without and (f) with the scatterer
of sn (blue dots) and fit (black curve) with the cumulative Poisson (green curve)
and Wigner (red curve) distributions for reference.

GHz, and f = 0− 10 GHz. In the table, b decreases for smaller frequency ranges,

but it is consistently larger with the scatterer in the cavity in each case. Therefore,

over these frequency ranges, the level of wave chaos in the cavity is increased by

including a subwavelength scatterer.

An additional technique for characterizing the cavity uses a measurement known

as the system’s pulse response [54]. For this measurement, a short pulse of EM en-

ergy rin(t) of length δt = 100 ps is applied to the TX antenna, as shown in Figs.

2.15a-b. The cavity’s output pulse response rout(t) is then measured on an oscil-
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Table 2.1: Fitting parameters of the cumulative distribution functions used to char-
acterize the wave-chaotic cavity.

frequency range (GHz) b, without scatterer b, with scatterer

0− 3 0.28± 0.22 0.46± 0.19
0− 6.5 0.59± 0.13 0.65± 0.12
0− 10 0.68± 0.11 0.75± 0.10

loscope that is connected to the RX antenna. As shown in Fig. 2.15c, rout(t) is a

complex oscillatory signal with an exponential decay in its amplitude. To accurately

measure the complexity of rout(t) with a high SNR, this measurement (as well as

all future measurements of rout(t)) are created using 100 averaged waveforms. The

baseline noise from our measurement oscilloscope is approximately ±3 mV with a

standard deviation of σnoise ∼ 0.3 mV. Using an averaged measure for rout(t), σnoise

is potentially reduced by a factor of 10. However, due to the discretization of the

measured signal on the digital oscilloscope, oscillations below 50 µV cannot be re-

solved).

In addition, the time of arrival of oscillations in rout(t) (relative to the injection

time of rin(t)) indicates a minimum time Tmin ∼ 4.5 ns for EM energy to propagate

through the cavity, which corresponds to a distance d ∼ cTmin that is approximately

twice the cavity width (∼ 1.2 m) and indicates a single reflection off of the cavity’s

boundary before exiting. Furthermore, the long term ringing of rout(t) demonstrates

an energy storage time T >> δt. Lastly, Using the integrated power of the input

pulse and output pulse responses,

Pin,out =
R

T

∫ T

0

rin,out(t
′)2 dt ′, (2.12)

where R= 50 Ω, I can approximate the normalized power-loss as EM energy prop-
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agates through the cavity: Pout/Pin ∼ 0.007. Note that this power loss also includes

the attenuating effects of the antennas. Thus, this pulse response provides addi-

tional information about the loss of the cavity system and demonstrates some of the

complex effects of its wave chaos in the time domain.

Also shown in Fig. 2.15c, rout(t) illustrates the detectable changes in the output

pulse response of the cavity when the scatterer is removed from the cavity. In the

figure, there are small visible shifts in the pulse response ringing when compared

to cavity with the scatter. Furthermore, the normalized power-loss of the cavity

without the scatter is lower Pout/Pin ∼ 0.008. These two changes show a clear

indication that the scatterer not only changes the scattering paths of radiation but

also absorbs a small amount of the EM energy.

In both cases, with and without the scatter, the Fourier transforms of the input

pulse and output pulse responses r̃in and r̃out, respectively, are used to approximate

the transfer function of the cavity system

Hcavity ∼
r̃in

r̃out
, (2.13)

where the magnitude of the transfer function |Hcavity( f )| as a function of frequency

f represents another measure of the cavity’s resonances. In Fig. 2.15d, I plot the

transfer function magnitudes |Hcavity( f )| for the cases with and without the scatterer.

In the figure, the spectra are similar but also demonstrate a detectable difference in

the location of the resonances when the scatterer is introduced into the cavity.

In summary, my experimental cavity exhibits a non-zero level wave chaos with

and without a subwavelength scatterer. Furthermore, I show that the addition of

the subwavelength scatterer is detectable using the pulse response of the cavity. In

the next subsection, I review briefly the recent published works on the applications
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Figure 2.15: Pulse response. (a) Experimental measurement of the pulse response
rout(t) of the cavity using a short EM pulse rin(t). (b) Input pulse rin(t) with full
width at half maximum of ∼ 100 ps (generated using the error performance ana-
lyzer Agilent 70843). (c) Pulse responses rout(t)with (red curve) and without (blue
curve) the scatterer. Error bars indicate the standard deviation of the noise floor (±1
mV) of the oscilloscope for each measurement. (d) Cavity spectra |Hcavity( f )| with
(red curve) and without (blue curve) the scatterer. In the zoom of (d), the hori-
zontal axis is from 0.2 GHz to 1.5 GHz. In (c) and (d), zooms of the waveforms
highlight some of the small quantitative changes in the system when the scatterer
is added.

of wave-chaotic cavities for sensing that serve as the inspiration for my work.

2.2.2 Applications of Wave-Chaotic Cavities for Sensing and Imag-
ing Scatterer Perturbations

Recently, researchers have shown that wave-chaotic cavities can be used for var-

ious sensor applications. For example, using short, acoustic pulses in an enclosed,
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wave-chaotic stairwell, Taddesse et al. demonstrated that wave chaos can be used

to detect the presence of an intruder, such as a person or a person-sized object

[60]. Their sensing scheme is as follows. First, the empty cavity’s pulse response

is recorded as a reference. Then, if an intruding object enters the cavity, the pulse

response is altered qualitatively and uniquely, depending on the size and location of

the object, and this change is detected by calculating a cross correlation coefficient

with the reference pulse response. This demonstrates that each unique perturbation

to the cavity’s interior gives rise to a unique pulse response (or set of resonances)

that can be exploited for sensing. Furthermore, this intrusion detection scheme is

incredibly useful because it exploits the complex scattering of a real-world, wave-

chaotic cavity (the stairwell).

In addition, using a database of pre-recorded pulse responses for reference in a

wave-chaotic cavity, Ing et al. have demonstrated that wave chaos can be used to

localize a perturbation in 2D [61]. This wave-chaotic sensing technique relies on

measuring changes to the pulse response and then using a correlation algorithm

to match these perturbations to one of the many pre-recorded reference pulse-

responses. This particular technique has a shown a sensitivity ∼ λ, where λ is

the mean wavelength of the injected pulse.

The work presented in this dissertation is inspired specifically by these scientific

achievements. Next, using a similar pulse-response sensing technique, I will show,

in a simple example, that my wave-chaotic cavity has a subwavelength sensitivity

to the location of the subwavelength scatterer along a 1D path.

2.2.3 Subwavelength 1D Position Imaging of a Subwavelength
Scatterer in a Wave-Chaotic Cavity

My 1D imaging scheme in a wave-chaotic cavity involves measuring the pulse
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response of the cavity with the scatterer at various locations along a 1D path. The

basic setup for this experiment is depicted in Fig. 2.16a. In the figure, the scatter

translates in the x direction along a 12 mm path in 20 µm steps using a translation

stage (the translation stage, Zaber Technologies (TLSR150B), has an error in its

relative position of ±5 µm). At each reference point xn (n ∈ [1, N]) along the

vertical 1D path, the position-dependent pulse response rout(xn, t) of the cavity is

measured and recorded. As an example of the changes to the pulse response of

the cavity from scatterer translations, I plot both rout(x1 = 0 mm, t) and rout(xN =

12mm, t) in Fig. 2.16b. Based on the figure, the difference between these two pulse

responses is small but detectable.

How can we use the changes in rout to deduce information about the scatterer

location? To answer this question, I measure an additional pulse response of the

system with the scatterer at a location x∗ somewhere along the 1D path. I choose x∗

such that xn < x∗ < xn+1, where rout(xn, t) and rout(xn+1, t) are successive reference

pulse responses that are separated by 20 µm. Thus, the pulse response at rout(x∗, t)

should not match perfectly with any one of the reference acquisitions. The goal is

then to use time series analysis and comparisons of rout(x∗, t) and rout(xn, t) (over

all n) to locate x∗.

Based on previous works [54], the cross-correlation coefficients C [38] and dif-

ference coefficients D defined respectively by

C(A(t), B(t)) =

∫ T

0
(A(t ′)− Ā(t ′))(B(t ′)− B̄(t ′))dt ′

Ç

∫ T

0
(A(t ′)− Ā(t ′))2 dt ′

Ç

∫ T

0
(B(t ′)− B̄(t ′))2 dt ′

, (2.14)
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Figure 2.16: 1D sensing with wave chaos (a) Setup for 1D sensing scheme. (b)
Pulse response of the cavity with the scatterer at x = 0 cm (red) and at x = 1.2 cm
(blue). Error bars indicate the standard deviation of the noise floor (±1 mV) of the
oscilloscope for each measurement. In each time series, the signal-to-noise ratio
is RMSS/RMSN ∼ 11, where RMSS (RMSN) is the root-mean-square of the signal
(noise). (c) Computed correlation coefficients C and (d) difference coefficients D
in blue. Fitting functions in (c) and (d) are given by the red curves Cfit(x) and
Dfit(x), respectively, where the extrema are labeled with black dots, indicating the
fitted values of x∗fit. The errors bars in (c) and (d) represent the standard deviations
of C and D for 50 consecutive pulse responses for a fixed scatterer position. The
position error in x is ±5 µm given by the translation stage (Zaber Technologies
TLSR150B).

where Ā is the mean value of A over the time of acquisition t ∈ [0, T] and

D(A(t), B(t)) =

∫ T

0
|A(t ′)− B(t ′)|dt ′
∫ T

0
|A(t ′)|dt ′

. (2.15)

The resulting C(rout(xn, t), rout(x∗, t)) and D(rout(xn, t), rout(x∗, t)) are plotted in

Figs. 2.16c-d. In the figure, the values of C and D never reach 1 or 0 due to noise
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and discretization errors in the waveforms. But, based on Eqs. (2.14)-(2.15), the

maximum of C(xn, x∗) and the minimum of D(xn, x∗) correspond to the position xn

that is closest to x∗.

Using these experimental extrema automatically limits our resolution to ∆x =

xn+1 − xn = 20 µm, and we know that x∗ lies between reference points. Similar

to the imaging methods discussed in Chapter 1, I use a numerical fitting of the

experimental data to yield an enhanced resolution. Thus, I fit C and D using the

continuous quadratic and piecewise-linear fitting functions

Cfit(x) = c1 + c2(x − x∗fit)
2, (2.16)

and

Dfit(x) = d1 + d2|(x − x∗fit)|, (2.17)

respectively (these fitting functions are chosen based on the visual form of the data

and different functions may yield different results). The functions Cfit(x) and Dfit(x)

are also plotted in Figs. 2.16c-d with values c1 = (9.98± 0.01)× 10−1, c2 = (2.2±

0.01)×10−4 mm−2, d1 = 0.04±0.01, and d2 = 0.02±0.01 mm−1 (errors represent

the 90% confidence intervals of the parameters of the fits). Also, the root-mean-

square (RMS) differences between the data and fits yields 1.2% and 2.4% errors for

the total ranges of C and D, respectively. For both fits, x∗fit = 5.93±0.01 mm, where

x∗ = 6.01 ± 0.05 mm. Thus, this 1D sensing scheme can localize the scatterer to

within ∼ 0.1 mm which is approximately λ/600, where λ = 6 cm is the average

wavelength of the injected EM pulse (calculated by assuming the average frequency

of a 100 ps pulse is ∼ 5 GHz). These 1D measurements serve as a benchmark for

comparing the results of my feedback imaging system in the next chapter.
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2.3 Summary

In summary, I examine both time-delayed nonlinear feedback systems and wave

chaotic cavities in this chapter. The first section is devoted to the introduction of

the dynamics in a time-delayed nonlinear feedback system. Using an experimental

nonlinear circuit, I show the existence of steady-state, periodic, quasiperiodic, and

chaotic dynamics of a single-loop, ultra-high-frequency system by tuning the net

gain of the feedback loop. I also demonstrate qualitatively similar results using a

simple numerical model for this time-delay system. Lastly, I give a few examples

of how changes to these dynamical states, which arise due to perturbations in the

feedback parameters, can be exploited for sensing applications.

In the second section, I provide a brief introduction to wave chaos and the some

of the mathematical concepts used to characterize a wave-chaotic cavity. Using the

resonances of an experimental cavity, I demonstrate the existence of wave chaos

in this component of my experiment. Then, based on previous applications that

use wave chaos for sensing, I demonstrate a 1D sensing technique for imaging the

position of a subwavelength scatterer with subwavelength resolution (λ/600).

In the next chapter, I combine my nonlinear circuit and wave-chaotic cavity to

form a new time-delayed nonlinear feedback system. This new cavity-feedback

system can image the position of the scatterer with an improved 1D resolution

(λ/10,000) and a 2D resolution (λ/300) using the system’s various dynamical

states. In addition, the cavity-feedback system does not require an external source,

which reduces the cost for this type of subwavelength position sensor. As a com-

parison, the error performance analyzer that produces 100 ps pulses for rin(t) is

∼ $60, 000, whereas the cost of the additional components in the self-oscillating,

cavity-feedback system are < $1, 000. Furthermore, the bandwidth of the cavity-
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feedback system is less than that of the pulse response, and therefore a lower tem-

poral resolution for measurements (sampling rate) with less recorded data are used

to produce vastly subwavelength position-sensing resolutions.
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Chapter 3

Subwavelength Sensing Using Nonlinear
Feedback in a Wave-Chaotic Cavity

This chapter presents the results of a new experiment for subwavelength sensing

that combines a time-delayed nonlinear feedback system with a wave-chaotic cavity

to resolve the position of a scatterer. Its content is divided into four sections. In the

first two sections, I present the conceptual overview and the detailed experimental

setup for the sensing system based on the results from the previous chapter. In the

last two sections, I examine the various dynamical states of the system: periodicity,

quasiperiodicity, and chaos. For each of these three dynamical states, I present

methods for sensing both qualitative and quantitative changes of the dynamics with

respect to the location of the scatterer. The goal of this chapter is to explore the

potential of this new type of time-delayed nonlinear feedback system to image the

position of the scatterer with subwavelength resolution.

The experimental system that is the focus of this chapter was constructed with

the help of Hugo Cavalcante. The resulting analysis of the dynamics was analyzed

with the help of Daniel Gauthier. Lastly, as mentioned in Ch. 1, I published the most

significant results of this chapter, the 2D position-sensing modality, in Ref. [21].

3.1 Conceptual Overview

As shown in Ch. 2, a microwave wave-chaotic cavity allows for many different

scattering paths for the injected EM energy. After a short input pulse rin(t) is applied

to the cavity’s TX antenna, the output of the cavity shows a complex waveform

rout(t) at the RX antenna. Besides being the pulse response of the system, rout(t)
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can also be viewed as a set of propagation delays of times τi with gain coefficients

gi. In other words, each time τi at which the radiation arrives at the RX antenna

is a measure of the path length of one of the multiple paths of the input signal

through the cavity. As shown in Fig. 3.1a, the time axis of the pulse response

plot is τi and its amplitude is gi. The discrete index i indicates a discrete time

(an approximation) corresponding to each data point in the pulse response (τi, gi).

Thus, the wave-chaotic cavity is a distribution of delays and gains, as depicted in

Fig. 3.1b. In addition, in the previous chapter, the pulse response rout(t) is sensitive

to the scatterer’s presence and position in the wave-chaotic cavity. Consequently,

the joint delay-gain distribution (τi, gi) associated with the cavity depends on the

location of the scatterer.

In Ch. 2, I also introduce the basic ingredients of a time-delayed nonlinear feed-

back system comprising a nonlinear element, gain, and delay, as shown in Fig. 3.1c.

Specifically, I demonstrated an example of a time-delayed nonlinear feedback sys-

tem where the output of a nonlinear circuit is amplified with gain G and delayed

through a single time delay τ before being fed back to its input. This time delay

is realized using coaxial cables that serve as waveguides for the propagating volt-

ages v(t). The feedback parameters τ and G govern the dynamical state of the

system and small parameter variations can lead to measurable dynamical changes

for sensing applications.

To realize my subwavelength sensing system, I substitute the single-valued time

delay of the coaxial cables with the delay-gain distribution of the wave-chaotic cav-

ity, as illustrated in Fig. 3.1d. The amplified output of the nonlinear circuit v(t) is

injected directly into the wave-chaotic cavity through the TX antenna. The delay-

gain distribution of the cavity splits the injected EM energy in v(t) among many dif-

ferent propagation paths. At the RX antenna, the delayed and attenuated EM energy
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Figure 3.1: Conceptual overview of the subwavelength sensing system (a) De-
lay distribution of the wave-chaotic cavity with a zoom of the region between τi = 0
and τi = 20 ns. The data is collected using 100 averaged waveforms. The spacing
between data points (τi, gi) is∆τ= τi+1−τi = 0.025 ns. (b) The delays τi labeled
in a schematic representation of the wave-chaotic cavity. (c) A schematic represen-
tation of the basic ingredients for a time-delayed nonlinear feedback system. (d)
Schematic representation of the combined wave-chaotic cavity and time-delayed
nonlinear feedback system. The propagation delays τi of the delay distribution are
now the time delays of the nonlinear feedback loop.

is collected and amplified before being injected back to the input of the nonlinear

circuit. This forms a closed-loop, cavity-feedback system that circulates EM energy.

The resulting system self oscillates with dynamics that depends on the delay-gain
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distribution of the feedback, or in other words, the location of the scatterer.

In the next section, I give a detailed description of the experimental setup and

components in this cavity-feedback system.

3.2 Experimental Setup

The experimental setup for the cavity-feedback system uses similar electronic com-

ponents to the single-loop time-delayed nonlinear feedback system from Chapter

2. As shown in Fig. 3.2a, the output of the nonlinear circuit (NLC) vout passes first

through the amplifier A1. Different from the single-loop setup, after A1, vout is di-

rected through a low-pass filter (LPF) that cuts all frequencies above fmax ∼ 2 GHz

arising at the output of the NLC. As a result, this filter limits the minimum wave-

length in the cavity to λmin ∼ c/ fmax ∼ 15 cm, which gives some control over the

potential dynamical range of the illumination source and limits the EM radiation in

the cavity to TM modes, forcing only 2D interactions with the scatterer. After the

low-pass filter, a directional coupler (dir-c) directs a portion of the signal v(t) to a

broadband measurement oscilloscope.

Passing through the directional coupler, the voltage v(t) is also coupled directly

to the TX antenna of the wave-chaotic cavity where it radiates. The radiated EM

energy scatters and reflects off of the water scatterer with position (x , y) and the

boundary of the cavity before being partially collected by the RX antenna. After the

RX antenna, the collected EM radiation is amplified as a voltage through amplifier

A2. The output voltage of this amplifier vin passes through the bias-T that is asso-

ciated with the nonlinear circuit, adding the constant voltage vb. The sum (vin +

vb) is then injected at the input of the NLC. As an added measure for minimizing

the effects of external EM noise, the nonlinear circuit and bias-T are also placed in
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Figure 3.2: Cavity-feedback system comprised of a wave-chaotic cavity and an ex-
ternal nonlinear feedback loop (ENFL). (a) The nonlinear circuit (NLC) drives the
amplifier A1 (Mini-Circuits ZX60-3018G+), a low-pass filter (LPF, comprised of fil-
ters in series: Mini-Circuits ZBFV-925+ and Mini-Circuits ZBFV-925+), a directional
coupler (dir-c, Mini-Circuits ZX30-9-4+), the TX and RX antennas, the amplifier A2
(comprised of two amplifiers in series: Mini-Circuits ZX60-3018G+ and Picosecond
Pulse Labs 5828-108), and a bias-T (Mini-Circuits ZFBT-6G+) with bias voltage vb.
Coaxial cables (coax) connect these components and act as additional propagation
delays. The coupling port of the dir-c is measured with a 8-GHz-analog-bandwidth
40-GS/s oscilloscope (Agilent DSO80804B). (b) 3D rendering of the system. The
output v(t) of the ENFL interacts with the scatterer via TX and RX antennas. The
scatterer’s position is controlled by the translation stages TS1 (Zaber Technologies
TLSR150B) and TS2 (Thorlabs LTS150) in the x and y directions, respectively.
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a shielded aluminum box, but there is no active stabilization to control the thermal

or vibrational effects of the experimental environment.

In addition to the components in the 2D schematic shown in Fig. 3.2a, the scat-

ter position (x , y) is controlled using translation stages. To visualize the locations

and roles of these translation stages, a simplified 3D rendering of the experimental

system is shown in Fig. 3.2b. For the ease of the reader, all of the components of the

external nonlinear feedback loop (NLC, A1, A2, LPF, dir-c, bias-T) are represented

by a green box labeled as ENFL in the figure. Inside the cavity, the scatterer is posi-

tioned in the x and y directions by the computer controlled translation stages TS1

and TS2, respectively. Each of these two translation stages has a relative position-

ing resolution of ±5 µm (∼ λmin/30,000). Recall that this position error is does

not accumulate due to backlash correction that is programmed into the translation

stages.

When the system is switched on, it self oscillates and leads to the formation of

a complex interference pattern inside of the wave-chaotic cavity. This interference

pattern may undergo spatio-temporal variations depending on the frequency con-

tent and relative phases of the oscillatory dynamics. Furthermore, as the scatterer

moves in the wave-chaotic cavity, the modes of the cavity shift, thus affecting the

dynamical state of the system. As I will show throughout this chapter, the scalar

voltage v(t) alone provides enough information about the changes in the cavity-

feedback system to image the relative position of the scatterer with subwavelength

resolution. As mentioned briefly in Ch. 1, this is a surprising result and is quite

different from typical imaging systems that use array detectors with multiple mea-

surements to resolve spatial features.

In the next section, I begin by characterizing the dynamical diversity of the sys-

tem as a function of the scatterer’s location.
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3.3 Position-Dependent Dynamics

To demonstrate the qualitatively the sensing capabilities of the cavity-feedback sys-

tem, I first consider a displacement of the scatterer along a 1D path from relative

positions xrel = 0 mm to xrel = 12 mm in steps of 10 µm. At each position of the

scatterer, I record a single time series of v(t) to characterize the state of the system.

To start, for the scatterer at xrel = 0 mm, I switch the system on and tune vb in

the NLC such that v(t) exhibits periodic oscillations, as shown in Fig. 3.3a, with a

corresponding Hopf frequency fH ∼ 1.33 GHz shown in the PSD of Fig. 3.3b.

As the scatterer translates, I observe three bifurcations. The first is a torus bifur-

cation leading to the quasiperiodic oscillations, as shown in Fig. 3.3c, which demon-

strate an amplitude modulation at a frequency fT ∼ 34 MHz. In addition, due to

frequency mixing, the quasiperiodic PSD also shows frequencies fH− fT ∼ 1.30 GHz

and fH+ fT ∼ 1.36 GHz in Fig. 3.3d. The second bifurcation is from quasiperiodicity

to a chaotic state called chaotic breathers [62]. Shown in Fig. 3.3e, the amplitude

of oscillations takes on a complex form that periodically collapses to v(t) ∼ −0.25

V as if the dynamics are inhaling and exhaling (breathing). The result of this com-

plex amplitude modulation is a broadening of the PSD (see Fig. 3.3f). The third

bifurcation leads to a broadband chaotic state (see Fig. 3.3g) with highly irregular

oscillations that result in a relatively flat bandwidth from 20 MHz – 2 GHz (see Fig.

3.3h).

The locations of these bifurcations are marked on a bifurcation diagram shown in

Fig. 3.4a. In the figure, I plot the density of local maxima vmax of v(t) for each of the

recorded time series along the 1D path as a function of the bifurcation parameter

x . In the figure, I also label the regions of periodicity (P) from xrel = 0 mm –

1.4 mm, quasiperiodicity (QP) from xrel = 1.4 mm – 8 mm, and the two different
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Figure 3.3: Dynamics of the cavity-feedback system. (a), (c), (e), (g) Time series
v(t) and (b), (d), (f), (h) power spectral densities (PSDs) with the scatterer at the
relative positions x1 = 1 mm, x2 = 2 mm, x3 = 9.5 mm, and x4 = 11 mm. The
noise level in each time series is approximately σN = 1.2 mV, which is given by the
standard of the noise floor of the oscilloscope during the time series acquisition.

time-evolving chaotic states (C1 and C2) from xrel = 8 mm – 9.8 mm and xrel =

9.8 mm – 12 mm, respectively. In the periodic region, vmax is concentrated around
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Figure 3.4: Bifurcation diagrams. Density of local maxima vmax plotted as a func-
tion of scatterer position x for the (a) forward direction from xrel = 0 mm to
xrel = 12 mm and the (b) reverse direction from xrel = 12 mm to xrel = 0 mm.
The color bar indicates the density of points (d.o.p) with a minimum value of 0
µm−1 mV−1 indicated in white and the saturation value of 0.1 µm−1 mV−1 indicated
in black. The positions x1, x2, x3, and x4 are labeled to indicate the density of the
vmax for the dynamics presented in Fig. 3.3.

vmax ∼ 0.6 V, and the quasiperiodic region demonstrates a spreading in the density

of vmax about this line. In the chaotic-breather region, the density is spread further

with a concentrated region about vmax ∼ 0.7 V. Lastly in the chaotic state, the density

of local maxima is at its lowest, ranging between −0.5 V to 1.5 V.

This bifurcation diagram demonstrates qualitatively the changes in the cavity-

feedback system from scatterer movements. For a direct comparison of the results,

this is the same 12 mm path used in Chapter 2 to demonstrate 1D sensing using the

wave-chaotic cavity’s pulse response. But, when viewing these bifurcations over a

1D path, it is difficult to quantify a sensing resolution of the system. While in the

periodic region (P in Fig. 3.4), the density of vmax does not change, whereas in

the quasiperiodic region (QP), the spread in vmax grows as the scatterer translates.

In addition, from a single 10 µm change in the scatterer’s position (λmin/15,000)

at the boundaries of these behaviors, the dynamics can change drastically through
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bifurcations. Although it is easy to detect changes in the dynamics from specific

scatterer translations, the inverse problem of determining the scatterer’s position

from specific bifurcations does not have a well defined solution.

Furthermore, to analyze the history dependence of these dynamical changes, I

scan the scatterer’s location in the reverse direction from xrel = 12 mm to xrel = 0

mm. Starting with the system exhibiting the broadband chaos (C2), the time series

of v(t) are recorded along the reverse 1D path in 10 µm increments. Interestingly,

as shown in Fig. 3.4b, the system remains chaotic over the entire 12 mm path,

demonstrating the existence of multi-stability: Different dynamical states are acces-

sible with identical parameters (scatter positions). As a consequence, the dynamics

may not depend on the absolute position of the scatterer in the cavity, but rather

the paths through which the scatterer translates.

From a sensing point-of-view, the dynamical hysteresis from bifurcations can

yield both advantages and disadvantages. If the cavity-feedback system is being

used as an intrusion-detection device, then the multi-stability can be an advantage.

To see this, consider the situation when a hypothetical intruder enters and leaves

the scattering environment of the cavity; the dynamics of the system may change in

an irreversible way, thus indicating an intrusion. However, from an imaging point-

of-view, the hysteresis induced by multi-stability is a disadvantage. If the dynamics

of the imaging system are not repeatable, then quantitative changes in the scatterer

location cannot be resolved.

Thus, in next section, I tune the parameters of the system such that its dynami-

cal states remain stable and avoid bifurcations/multi-stability in order to establish

techniques for imaging the position of the scatterer with quantifiable resolutions.
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3.4 Dynamical Sensing

In this section, I show that each of the system’s dynamical states (periodic, quasiperi-

odic, and chaotic) can be used for imaging the scatterer’s position with subwave-

length resolution. In particular, I present the results of my experiments in chrono-

logical order to highlight the progression of my sensing techniques, beginning with

chaos, then changing to periodicity, and then finally quasiperiodicity.

3.4.1 Sensing with Chaotic Dynamics

My initial hypothesis for sensing in the cavity-feedback system is as follows: Be-

cause temporal chaos is known for its sensitivity to small perturbations, the EM

radiation from a chaotic dynamical state will give the best possible resolution for

sensing scatterer movements. Thus, I use the chaotic signal shown in Figs. 3.3g-h,

which is the most complex and hence broadband signal observed in the output of

the system (chaotic breathers are not as broadband and are more difficult to find

experimentally). When injected into the cavity, the broadband chaotic spectrum of

v(t) occupies the irregularly spaced resonances of the wave-chaotic cavity. As the

scatterer moves, the resonances of the cavity shift (see Ch. 2), resulting in changes

of the chaotic dynamics. The chaos is sensitive to the scatterer’s location, however,

detecting these changes can be a difficult problem.

To illustrate the limitations of using the chaotic dynamics for position sensing, I

examine two different chaotic time series from the system when the scatterer is at

the relative positions xrel = 0 mm and xrel = 5 mm. Shown in Figs. 3.5, the chaotic

time series at these scatter positions are both complex with broadband PSD’s. In

addition, the 2D phase-space projection of each chaotic time series demonstrates

that the chaotic attractors are qualitatively similar. Detecting all of the differences
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Figure 3.5: Broadband chaos for two different scatterer positions. (a) Chaotic
time series, (b) power spectral density (PSD), and (c) phase space projection (PSP)
when the scatterer is at position xrel = 0 mm. (d) Chaotic time series (d) PSD, and
(f) PSP when the scatterer is at position xrel = 5 mm. In the PSPs, the time lag
TL = 0.3 ns.

between these chaotic time series, if there are any, does not have an easy solution.

There are statistical measures for detecting changes in chaotic attractors, such as the

rate of trajectory divergence known as the Lyapunov exponent [63], the dimension

of the attractor [64], or even the use of a matched model to predict parameter

variations [65]. But, these methods may not be sensitive to small changes or robust

against experimental noise [43]. In addition most methods have only been proven

to work for low-dimensional, well-known chaotic systems.

Instead of trying to detect all of the changes between the chaotic dynamics in

Figs. 3.5a-c and in Figs. 3.5d-f, I instead focus on detecting a particular change to

its dynamical trajectories. Similar to the detection of large amplitude rogue waves

in laser systems with feedback [66], I locate the large-amplitude trajectories (LATs)

that flow through the outer regions of the phase space projections. Because of the

75



band-pass filtered nature of the system, the density of the attractor is high near

v(t) = v(t − TL) = 0, but, in the outer regions away from the origin, the density

of the trajectories along the chaotic attractor is much smaller. As I will show, these

LATs are caused by large-amplitude spikes in the temporal evolution of v(t), and

thus, by their own nature, they stand out when compared to the other complex

oscillations of the broadband chaos.

In the experimental system, I locate these LATs using the triggering feature of

our digital oscilloscope. Shown in Fig. 3.6a, I reacquire the time series for the

broadband chaos with the scatterer at position xrel = 0 mm. In this case, how-

ever, the trigger voltage vtrigger has been moved from vtrigger = 0 V (approximately

where it has been for all previous measurements) to approximately vtrigger = 1.6 V.

When the trigger is at this level, each chaotic time series is acquired only when a

large-amplitude spike crosses this threshold and triggers the oscilloscope acquisi-

tion. Once triggered, the oscilloscope records the time series surrounding the spike

at time t = 0. To visualize the actual LAT, the phase-space projection (PSP) of this

time series is plotted in Fig. 3.6b. Comparing this figure with PSPs in Figs. 3.5c,f,

there is a visible trajectory that leaves the dense attractor and briefly visits the outer

region of the phase space projection.

In order to understand how these LATs change with respect to scatterer move-

ments, I first characterize the LATs for a fixed scatterer position. To do so, I use

the averaging feature of the digital oscilloscope, which continuously averages the

acquired waveforms with a moving average function

v̄(t) =
1

100

n=100
∑

n=1

vn(t), (3.1)

where vn(t) is the nth time series in the moving average. Using a trigger level at
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Figure 3.6: Large-amplitude spike event and trajectory using a high level trig-
ger. (a) Chaotic time series v(t) acquired from the oscilloscope with vtrigger ∼ 1.6
V. (b) Phase space projection (PSP) of the high-level triggered chaos. (c) Averaged
time series and (d) PSP for v̄(t) with vtrigger ∼ 1.6 V. In the PSPs of (b) and (d), the
time lag TL = 0.3 ns and the large amplitude trajectories (LATs) are labeled with
arrows to indicate the direction of the flow.

approximately vtrigger = 1.6 V, the averaged chaotic waveform v̄(t) at xrel = 0 mm is

plotted in Fig. 3.6c. The figure, which shows the average of many different large-

amplitude spikes for a fixed scatterer position, reveals a steady underlying structure

that represents the correlated regions of the chaotic time series near the spikes [66].

In other words, on average, whenever there is a large-spike event, the temporal

evolutions of v(t) preceding the spike and slightly after the spike are approximately

repeated. Beyond this structure (approximately t < −125 ns and t > 100 ns), the

signal collapses to v̄(t) ∼ 0 V because the trajectories are no longer correlated. In

addition, the phase-space projection of the averaged v̄(t) is shown in Fig. 3.6d.

Comparing this with the non-averaged case in Fig. 3.6b, the averaged LAT is now

77



larger with respect to the system’s averaged attractor. The shape of the labeled LAT

is also slightly different because it takes into account the averaged trajectories of

the attractor during many large-spike events. Thus, the time series and phase-space

projections in Figs. 3.6c-d present a simple characterization of the LATs for a fixed

scatterer position.

Though a phase space projection is useful for visualizing the LATs, it is the under-

lying structures of v̄(t) near the averaged spike-events that change with respect to

the scatterer’s position. As a result, I focus on the time series for v̄(t) to demonstrate

the system’s chaos-based sensing. As an example of the changes to its underlying

structures, I plot v̄(t) for the system with the scatterer at relative positions xrel = 0

mm and xrel = 5 mm in Fig. 3.7a. As shown by the inset, the difference between

these two waveforms is small but detectable. The goal is to record these changes

as a function of the scatterer position and see if they can be used for tracking its

location.

Similar to the 1D sensing in Ch. 2, I acquire a set of reference time series

v̄(xn, t) (instead of pulse responses rout(xn, t)) along a 1D path in the x direction

at positions xn. In this case, the reference waveforms are taken from xrel = 0 to

xrel = 5 mm in 200 µm increments (∆xn = xn+1 − xn = 200 µm). In addition

to each v̄(xn, t), I acquire the waveform v̄(x∗, t) at an arbitrary position x∗, where

xn < x∗ < xn+1. Using a similar analysis to the 1D sensing technique in Ch. 2, I

calculate the cross-correlation coefficients C(v̄(xn, t), v̄(x∗, t)) and difference coef-

ficients D(v̄(xn, t), v̄(x∗, t)) for all xn using Eqs. (2.14) - (2.15). The results of these

calculations are shown in Figs. 3.7b-c. The global extrema for the correlation and

difference functions correspond to the v̄(xn, t) that is most similar to v̄(xn, t). Thus,

the positions of these extrema give a prediction for x∗ with a discretized resolution

∆xn.
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Using Eqs. (2.16) - (2.17) from Ch. 2, the cross-correlation and difference fit-

ting functions Cfit(x) and Dfit(x) can be used to achieve an enhanced resolution.

These fits are chosen based on the analysis in Ch. 2 and allow for a direct compari-

son between the performance levels of the chaotic dynamics in the feedback system

and the pulse responses of the cavity. These fitted functions, which are also plotted

in Figs. 3.7b-c yield the coefficients c1 = 0.997± (2× 10−3), c2 = 0.002± (10−4),

d1 = 0.073 ± 0.025, and d2 = 0.039 ± 0.025 (the errors represent the 90% confi-

dence intervals of the parameters of the fits). Also, the root-mean-square (RMS)

differences between the data and fits yields 8.7×10−4 and 1.12×10−2 for C and D,

respectively, which represent ∼6% and ∼10% errors of the total the respective ex-

perimental ranges. The fitted values for x∗ are x∗fit = 2.44±(2×10−3) mm for Cfit(x)

and x∗fit = 2.46±0.025 mm for Dfit(x). Averaging these values gives x̄∗fit = 2.45 mm

which should be compared to x∗ = 2.50 mm. Thus, this 1D chaos-based sensing

technique can image the position of the scatterer with a resolution of approximately

50 µm, which corresponds to λmin/3,000.

In conclusion, imaging the 1D position of a scatterer with broadband dynamical

chaos yields an improved resolution when compared to the sole use of wave chaos

with a resolution of λ/600. Using the oscilloscope’s triggering and averaging fea-

tures, I demonstrate that small changes to the chaotic attractor can be detected and

quantified. Furthermore, this method creates its own illuminating field and does

not require the assistance of an expensive pulse generator.

However, my chaos-based sensing technique exploits the underlying structures

of v̄(t), which are small-amplitude signals when compared to the chaos that circu-

lates through the feedback loop. In addition, in order to recover these structures

and create a simple sensing procedure, a large amount of information in the chaos

is discarded through averaging. Rather than try to develop statistical measures that
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Figure 3.7: 1D sensing with chaos. (a) Chaotic time series v̄(t) acquired from the
oscilloscope with a high level trigger and the scatterer at xrel = 0 mm (blue curve)
and xrel = 5 mm (red curve). The error bars represents the standard deviation of the
waveform ±20 mV for 50 consecutive measurements at a fixed scatterer location.
(b) Normalized cross-correlation coefficients C(v̄(xn, t), v̄(x∗, t)) as a function of x
(blue curve) with the curve Cfit(x) indicating the position of the fitted maximum of
the data (red curve). (c) Difference coefficients D(v̄(xn, t), v̄(x∗, t)) as a function of
x (blue curve) with the curve Dfit(x) indicating the position of the fitted minimum of
the data (red curve). The errors bars in (b) and (c) represent the standard deviations
of C and D for 50 consecutive measurements at fixed scatterer position. The position
error in x is ±5 µm given by the translation stage (Zaber Technologies TLSR150B).

use all of the changes to the entire chaotic waveform for imaging, I choose to use

a simpler dynamical state with easily detectable changes. Thus, in the next sub-

section, I demonstrate my results for imaging the position of the scatterer in the

cavity-feedback system using a periodic dynamical state.
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3.4.2 Sensing with Periodic Dynamics

As mentioned in Ch. 2, the dynamical changes in a periodic signal from a nonlinear

feedback system can be used for simple sensing applications. In the opto-electronic

sensor system, small changes to the net time delay of its feedback loop cause shifts

in the periodic frequency of oscillation. In the cavity-feedback system, under the

proper conditions, both the periodic signal’s amplitude and frequency can be sen-

sitive to the scatterer position. To operate the imaging system with periodic oscil-

lations, vb of the NLC is tuned such its dynamics are periodic without being near a

bifurcation point. As shown in Figs. 3.8a-b, the time series oscillates at fH ∼ 1.35

GHz with amplitude A∼ 0.76 V. Furthermore, in Fig. 3.8c the phase space projec-

tion of the periodic signal is a simple limit cycle. Using this dynamical state, I follow

the small changes in A and fH as a function of the scatterer position.

To observe small shifts in fH with high precision, I use a particular measurement

procedure. Typically, to observe a frequency with a resolution ∆ f using a digital

oscilloscope, a time series must be acquired with a minimum time-length ∆t =

(∆ f )−1. This criterion is based on the Fourier transform when converting from

the time domain to the frequency domain. However, this limit is only in place for

resolving absolute frequencies. If the starting frequency fH is known with high
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Figure 3.8: Periodic dynamics used for sensing. (a) Periodic time series, (b)
power spectral density, and (c) phase space projection with lag time TL = 1 ns.
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resolution and I am only interesting in the relative shifts about this value, then the

Fourier transform limit does not apply and a shift ∆ f can be resolved with much

less data.

Here is how: Measuring a small frequency shift can be accomplished experimen-

tally by changing the trigger timing of the waveform acquisition known as the trigger

skew. The trigger skew is the amount of time that the oscilloscope waits between

its initial triggering and the acquisition of a waveform (this principle is outlined in

Fig. 3.9). For example, using a trigger skew time ts = 10 µs means that after an

input voltage v(t) crosses the trigger threshold at time t = 0, the oscilloscope waits

10 µs before acquiring the waveform with high sampling rate (40 Gs/s).

For a periodic waveform v(t), a large trigger skew ts means that small frequency

shifts∆ fH can be observed as apparent phase shifts∆φ = 2π∆ fH(t− ts) across the

oscilloscope’s delayed acquisition window. In Fig. 3.9, a periodic waveform v(t)

triggers the oscilloscope at time t = 0. The oscilloscope then waits a time ts before

sampling a time series which is displayed on its delayed acquisition window (see

Fig. 3.9a). The observed waveform is a periodic signal of frequency fH with a

relative initial phase φo. In Fig. 3.9b, the signal v(t) again triggers the oscilloscope

at time t = 0, but this time, the frequency of oscillations has shifted to fH+∆ fH with

∆ fH << fH. At time ts, the oscilloscope acquisition window displays a waveform

with shifted relative phaseφo−∆φ. Therefore, by using the two data sets from both

acquisitions, the frequency shift∆ fH can be approximated using the fitting function

v(t) = A sin[2π( fH +∆ fH)(t − ts)], (3.2)

where A and ∆ fH are fitting parameters and fH is known beforehand with high

precision ( fH is measured prior to this procedure using a long time series). Using
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Figure 3.9: Trigger skew technique for measuring small frequency shifts. (a)
The periodic sine wave v(t)with frequency fH triggers the oscilloscope at the trigger
time t = 0, which then displays the observed waveform after a trigger skew time
ts in red on the acquisition window. (b) After a small frequency shift ∆ fH , the sine
wave triggers the oscilloscope and, within the acquisition window, there appears an
observed phase shift ∆φ that can be used with ts and fH recover the value of the
frequency shift ∆ fH with high precision.

an acquisition window time of only ∆t = 50 ns (which based on the Fourier limit

yields ∆ f = 1/∆t = 20 MHz) and a trigger skew of ts = 2.5 µs, this measurement

technique, when combined with averaging multiple waveforms, has shown a poten-

tial frequency resolution of ∆ f = ±3 kHz (see Appendix C). The limiting factor of

this frequency resolution is now set by the phase stability of the signal after many

oscillations between t = 0 and t = ts rather than the length of the recorded time

series.

Thus, the limit of these frequency shift measurements is actually set by the signal

∆ fH relative to the jitter of the waveform. To further enhance this limit, multiple

time series can be averaged together using Eq. (3.1) such that each acquisition of

the oscilloscope produces a v̄(t) with less jitter. The shift∆ fH is then determined in

the same procedure using a fit of v̄(t) with Eq. (3.2).
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Applying this method with an averaged periodic v̄(t) in the cavity-feedback sys-

tem, I can track the scatterer with subwavelength precision as it translates along a

1D path. The scatterer is moved from the relative position xrel = 0 mm to xrel = 10

mm in 10 µm steps such that the periodic dynamics remain stable and lead to de-

tectable∆ fH. For each position of the scatterer, the amplitude A and frequency shift

∆ fH are approximated using a fit to the data v̄(t) with Eq. 3.2, an oscilloscope trig-

ger skew ts = 10 µs, and an absolute frequency fH ∼ 1.35 GHz (at a frequency of

1.35 GHz, the cavity has a quality factor Q ∼ 130).

Examples of the experimental shifts and the resulting fits are shown in Figs.

3.10a-b for the scatterer at positions xrel = 0 mm and xrel = 1 mm. In the figures,

the time axes begin at time t = ts and a vertical line is used to mark the apparent

phase shift ∆φ of the waveform on the acquisition window as the scatterer moves.

The parameters of fitted functions also indicate a relative frequency shift between

these two scatterer positions of ∆ fH ∼ −50 kHz.

Using the fits, the amplitude A and frequency shift ∆ fH of v̄(t) are calculated

over the entire 10 mm range. In Fig. 3.10c, the amplitude A decreases on average

with respect to x with a standard deviation σA = 2.1 mV. However, in Fig. 3.10d,

the frequency shifts ∆ fH are monotonic with respect to x , covering a total range of

∼ 400 kHz, which demonstrates a fractional shift that is∆ fH/ fH ∼ 0.1% of system’s

original frequency. The high sensitivity and stability of ∆ fH with respect to x can

be observed through successive zooms of the data in Figs. 3.10e-f. In these figures,

the smooth characteristic of ∆ fH is shown to be preserved between the data points

down to a scale of ∼ 20 µm. Also, note that though the scatterer’s position contains

experimental errors from the translation stage accuracy (see Section 2.2.1), these

errors do not cause significant measurement errors for the frequency shifts. This

conclusion is based on calibration measurements of the system’s minimum observ-
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Figure 3.10: 1D sensing with periodic dynamics. Time series v̄(t) (blue curve)
with overlaid fitted function (red curve) at (a) xrel = 0 mm and (b) xrel = 1 mm.
The apparent phase shift∆φ (from the large trigger skew ts = 10 µs) on of the time
series is marked with dash lines. (c) Amplitude of the periodic signal as a function
of x . The error bar indicates the standard deviation σ = 2 mV of the noise floor of
the oscilloscope after 100 averages. (d)-(f) Successive zooms of the frequency shift
∆ fH . The mean of the overall shift has been subtracted from (d) for easier relative
comparisons. The erorr bars in (f) indicate the frequency measurement error of the
fitting method (∼ 3 kHz) and the translational stage position error (±5 µm).

able frequency shift ∼ 3 KHz as well as the experimental drift (temperature and

humidity changes) observed in the system (see Appendix B). Thus, the errors asso-

ciated with experimental drift of the system’s parameters over time contribute more

significantly than the experimental error associated with the scatter’s 2D position.

Though I am measuring two observables A and ∆ fH, I am only trying to resolve

a single piece of information, the position of the scatterer x . Thus, I only need one

of my measured observables, and based on the SNR of the frequency shifts when

compared to the amplitude shifts, I choose ∆ fH to track the scatterer. To quantify
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the system’s resolution for 1D sensing with periodicity, I fit the frequency shifts with

the quadratic function

∆ fH = ao + a1 x + a2 x2, (3.3)

where ao = 218.7± 0.9 kHz, a1 = −51.1± 0.9 kHz mm−1, and a2 = 1.1± 0.9 kHz

mm−2 (errors represent the 90% confidence intervals of the fits). The fitted function

represents a mapping between the observed frequency shifts and the position of the

scatterer. Therefore, inverting the map, which is just the solution to the quadratic

equation, yields the predicted positions x̂ based on the experimental data

x̂ =
−a1 −

Æ

a2
1 − 4a2(ao −∆ fH)

2a2
, (3.4)

where the root-mean-square difference between the actual x values and the pre-

dicted x̂ is xRMS = 10.6 µm. With frequency fH ∼ 1.35 GHz, the wavelength of the

EM radiation in the cavity is λ ∼ 22.2 cm; this means that the 1D resolution for

imaging the position of the scatterer is ∼ λ/20, 000. To help illustrate the perfor-

mance level of my method, I examine the predicted scatterer positions versus the

actual scatterer positions. In Fig. 3.11a, the data is aligned on a near straight line

with slope approximately equal to one and with errors that are smaller than the size

of the data points (see Fig. 3.11b for a plot of x − x̂).

Using periodic dynamics leads to a greater resolution for imaging a 1D posi-

tion when compared to chaotic dynamics. In addition, the sensing mechanism is

much simpler as it requires a single-valued observable (frequency shifts) that can

be tracked by a fitting function. Furthermore, this technique utilizes the frequency

shift of the entire waveform v(t), even though only a small portion of data is nec-

essary to measure it. In other words, the majority of the information contained in

v(t) is being used for imaging. The only discarded information is the changes in
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Figure 3.11: 1D predicted positions using periodicity. (a) Predicted position x̂
versus actual position x using the inverted map. (b) Errors (x − x̂) of the mapping
as a function of x .

the amplitude of oscillations. Based on Fig. 3.10b, the amplitude does shift with

scatterer position, but the measured shifts are on the same order of magnitude as

the noise floor of the oscilloscope (∼ 2 mV), which (if used) limit the resolution of

the system. As a consequence of using only the frequency shifts, the periodic data

can only provide one useful observable, and therefore it is limited to 1D sensing.

In order to eventually resolve the scatterer’s position in more than one dimension

with vastly subwavelength resolution, additional independent observables must be

extracted from v(t). Based on the success of using a single frequency shift for 1D

sensing, in the next subsection, I consider a quasiperiodic signal, which contains two

main frequency components ( fT , fH), as a candidate to perform 2D subwavelength

position sensing.

3.4.3 Sensing with Quasiperiodic Dynamics

To go beyond the 1D periodic sensing, I tune vb so that v(t) is in a quasiperiodic

dynamical state for a 2D area (5 mm × 5 mm) of scatterer positions. Example time

series, frequency spectra, and phase space projections of the quasiperiodicity for a
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fixed 2D object position (x , y) are shown in Figs. 3.12a-c, where the quasiperiodic

signal is typical from a torus bifurcation; the fast oscillations in v(t) are modulated

with a slow-varying, time-evolving amplitude (note that the SNR of this signal is a

factor of 10 times greater than the SNR of rout(t) in Ch. 2 used for 1D sensing). As

shown by the PSD, for this particular set of parameters and initial relative placement

of the scatterer (xrel = 0 mm, yrel = 0 mm), the frequencies from the Hopf and

torus bifurcations are fH ∼ 1.57 GHz and fT ∼ 0.21 GHz, respectively. The mixed

harmonics of these frequencies are ( fH− fT)∼ 1.36 GHz and ( fH+ fH)∼ 1.77 GHz. At

a frequency of 1.77 GHz (the highest frequency in the quasiperiodic oscillations),

the cavity has a quality factor Q ∼ 170. Furthermore, based on the time-scale

separation of fH and fT, the torus shape of the attractor is conveniently visualized

in the phase space projection (v(t), v(t − TL)).

In this subsection, I will show that the incommensurate frequencies fH and fT

can shift independently with respect to 2D scatterer translations. Imaging the scat-

terer’s position entails measuring shifts (∆ fH,∆ fT) in these quasiperiodic frequency

components. In this quasiperiodic mode-of-operation, I first demonstrate the capa-

bilities of the system for 1D sensing, which can be compared to the previous results

for periodic and chaos-based sensing. Then, moving beyond 1D position sensing,

I use a new mapping technique to resolve the scatterer in 2D with subwavelength

resolution.

Similar to the periodic sensing, to follow changes in the frequencies of v(t) with

high precision, I use a large ts for triggering the oscilloscope, and I also use its aver-

aging feature to increase the SNR using multiple waveforms. In addition, in order to

average over quasiperiodic waveforms, the trigger height vtrigger must also be tuned

to trigger only on the maxima of largest amplitudes. These maxima correspond

to regions of the quasiperiodic signal where the independent, incommensurate fre-
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Figure 3.12: Quasiperodic dynamics used for imaging. (a) Temporal evolu-
tion v(t) of a typical quasiperiodic state used for position sensing. In the time
series, the signal-to-noise ratio is RMSS/RMSN ∼ 150, where RMSS (RMSN) is the
root-mean-square of the signal (noise) (b) Power spectral density (PSD) of this sig-
nal with Hopf and torus frequencies labeled fH and fT , respectively, as well as the
harmonics fH ± fT (c) Phase space projection with time lag TL = 1.55 ns.

quencies add constructively and can be used as reference points for averaging mul-

tiple, successively triggered waveforms (in contrast, if vtrigger = 0 V, the non-periodic

nature of the quasiperiodic signal will cause the averaged waveforms to collapse to

zero).

With the averaged data from the delayed acquisition window of the oscilloscope,

I approximate the shifts to the system’s frequencies using a nonlinear least-squares-

regression to a model for a four-tone quasiperiodic signal [67]

v̄(t) =
i=4
∑

i=1

Ai sin[2π( fi +∆ fi)(t − ts)], (3.5)

where ts = 2.5 µs, f1 = fT, f2 = ( fH − fT), f3 = fH, and f4 = ( fH + fT), and where

Ai and ∆ fi are free fitting parameters. Two examples are shown in Figs. 3.13a-b,

where v̄(t) is acquired and fitted at relative scatterer positions xrel = 0 mm and

xrel = 2 mm for a constant relative position in the y direction. In the figure, a phase

shift ∆φ marks the relative shift in the amplitude-modulation phase. In the exper-

iment, the phase shift associated with the fast carrier frequency is difficult to see
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curves) and fitted function (red curves) for scatterer positions (a) xrel = 0 mm and
(b) xrel = 2 mm. The phase shift of the amplitude modulation is marked by ∆φ.

by eye but it is still captured with the fits. For a calibrated waveform with known

frequency shifts, this technique yields a ±3 kHz frequency resolution, which is ap-

proximately 0.5% of the total observed experimental frequency shifts (see Appendix

C).

1D Sensing

To demonstrate 1D position sensing, I translate the object along the path xrel = 0

mm - 5 mm while yrel = 2.5 mm. I then translate the object along an orthogonal

path yrel = 0 - 5 mm while xrel = 2.5 mm. All translations are made in 0.5 mm steps.

Shown in Figs. 3.14a-b, the measured frequency shifts ∆ fH, ∆ fT, ∆( fH − fT), and

∆( fH + fT) are plotted for the 1D paths along the orthogonal x and y directions,

respectively. Similar to the periodic case, along each of the paths, the quasiperiodic

frequencies shift monotonically. In addition, for the x and y directions, they shift by

different amounts and at different rates. Recall that the position errors of the motor

do not cause significant errors in the frequency shift measurements when compared

90



(c) (d)

0 1 2 3 4 5
x (mm)

0 1 2 3 4 5
y (mm)

(a) (b)

0 1 2 3 4 5

200

0

-200

x (mm)
0 1 2 3 4 5

y (mm)

-300

0

300

Δ
f (

kH
z)

Δ
f (

kH
z)

-300

0

300

Δ
f (

kH
z)

200

0

-200

Δ
f (

kH
z)

ΔfT

Δ(fH-fT)

Δ(fH+fT)

ΔfH

ΔfT

Δ(fH-fT)

Δ(fH+fT)

ΔfH

ΔfH

ΔfT

ΔfH

ΔfT

Figure 3.14: 1D sensing with quasiperiodicity. Frequency shifts ∆ fT (red
squares), ∆( fH − fT) (green triangles), ∆ fH (blue circles), and ∆( fH + fT) (black
diamonds) as a function of scatterer position in the (a) x and (b) y directions. The
mean of each frequency shift is removed for easier comparison. Averaged frequency
shifts∆ f̄T (red squares) and∆ f̄H (blue circles) as a function of (c) x direction, where
the fit from Eq. (3.8) yields a1 = 2.8 mm/kHz, a2 = −8.7 mm/kHz, c0 = 27,113.0
mm, c1 = −439.2 and c2 = 1.5 mm−1, and (d) along the y direction, where the fit
from Eq. (3.9) yields b1 = 0.8 mm/kHz, b2 = −0.5 mm/kHz, d0 = −73, 452.0 mm,
d1 = 242.0, and d2 = −2.0 mm−1. The error in the measurement of each frequency
is ∼ 3 kHz, which is smaller than the size of the data points.

to the experimental drift of the system.

Before using these dynamical changes to establish a 1D map, I first combine the

frequency shift data from the harmonics∆( fT± fH)with the primary modes∆ fH and

∆ fT. These additional measures lead to new observables∆ f̄T and∆ f̄H with reduced

statistical errors and increased SNR. The new observables are given respectively by

∆ f̄T =
1

3
[∆( fH − fT)−∆( fH + fT) +∆ fT], (3.6)
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and

∆ f̄H =
1

3
[∆( fH − fT) +∆( fH + fT) +∆ fH]. (3.7)

The frequency shifts ∆ f̄T and ∆ f̄H are used in the quasiperiodic imaging mode-of-

operation.

To create the mapping between these spectral shifts and 1D positions, I sepa-

rately fit ∆ f̄T and ∆ f̄H in the x and y directions with second order polynomials

a1∆ f̄T(x) + a2∆ f̄H(x) = c0 + c1 x + c2 x2, (3.8)

b1∆ f̄T(y) + b2∆ f̄H(y) = d0 + d1 y + d2 y2, (3.9)

where∆ f̄T(x) and∆ f̄H(x) refer to the observed shifts in the x direction and∆ f̄T(y)

and∆ f̄H(y) refer to the shifts in the y direction. I optimize the coefficients ai and ci

(bi and di) using a nonlinear least-squares-fit to a model for the scatterer position.

As a result, the root-mean-square (RMS) errors for the frequency shift map is 1.45

kHz (0.86 kHz) along x (y) direction. By inverting these maps, I calculate the pre-

dicted object positions x̂ and ŷ , and I plot the predicted versus actual positions in

Figs. 3.15a,c with the errors in Figs. 3.15b,d. The resulting RMS error between the

actual and predicted positions is 9.2 µm (23.7 µm) for x (y). This demonstrates

resolutions of λ/16, 000 and λ/6, 000 for the orthogonal x and y directions, re-

spectively (λmin ∼ 15 cm for the maximum possible frequency in the system fmax =

2 GHz). Thus, the average 2D resolution is ∼ λ/10, 000.

Thus, similar to the periodic sensing technique, the quasiperiodic signal v(t)

demonstrates a vastly subwavelength sensitivity to the scatterer’s position. How-

ever, in this case, the 1D resolution for imaging the y position is slightly degraded.

This could be a product of several different factors. For example, the experimental
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Figure 3.15: 1D predicted positions using quasiperiodicity. (a) Predicted posi-
tion x̂ versus actual position x using the inverted map. (b) Errors of the x̂ mapping
as a function of x . (c) Predicted position ŷ versus actual position y using the in-
verted map. (d) Errors of the ŷ mapping as a function of y .

parameters necessary for quasiperiodicity may not be as sensitive to changes in the

y direction. Regardless of its slightly degraded y resolution, I am primarily inter-

ested in the quasiperiodic signal for its potential to sense position information in

2D. Using the same measurement techniques from the 1D case, I now consider the

scatterer translations in both the x and y directions simultaneously.

2D Sensing

Imaging the scatterer’s position in both the x and y directions simultaneously re-

quires two independently changing observables. In the quasiperiodic case, these are

fT and fH. In the cavity-feedback system, I measured the averaged frequency shifts
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∆ f̄T(x , y) and∆ f̄H(x , y) which are now multivariate functions of (x , y). I measure

these frequency shifts along a 2D grid in the 5 mm × 5 mm sensing area. Recall

that for each position of the scatterer along the 2D calibration grid, the translation

stages use the backlash correction to minimize the positioning errors. This backlash

correction is also present during the test path of the scatterer within the calibration

grid. At each programmed position of the scatterer along the test path, the transla-

tions stages pivot before coming to a rest. Once at rest, the frequency shifts of the

system are measured. The resulting data is shown in Fig. 3.15, where the frequency

shifts are now represented as surfaces in 3D plots. To recover the scatterer position,

it remains to determine if exists an invertible mapping for (∆ f̄T(x , y), ∆ f̄H(x , y)).

Because the observed frequency shifts are small and near planar, I fit them in

the 5 mm × 5 mm area with plane equations

∆ f̄T(x , y) = α1 x + β1 y + ε1, (3.10)

∆ f̄H(x , y) = α2 x + β2 y + ε2. (3.11)

To check for an invertible map, it suffices to show that the fitted ∆ f̄T(x , y) and

∆ f̄H(x , y) are linearly independent. Thus, using Cramer’s rule, if the determinant

|α1β2 − α2β1| 6= 0, then the planes are linearly independent in this area and can

allow us to simultaneously measure x and y coordinates [68]. The planar fits from

Eqs. (3.10) and (3.11) yield α1 = −84.68 kHz/mm, α2 = −15.20 kHz/mm, β1

= −56.74 kHz/mm, β2 = −14.75 kHz/mm, ε1 = 11.72 MHz and ε2 = 2.43 MHz.

The measured determinant |α1β2 − α2β1| = 386 kHz2/mm2 with an error of 5.8

kHz2/mm2. Thus, the planar-like frequency shifts are approximately linearly inde-

pendent.

It remains to create the mapping: (∆ f̄T(x , y), ∆ f̄H(x , y))↔ (x , y). In the 1D
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case, I have the freedom to optimize the fitting parameters in Eqs. (3.8) and (3.9)

for x and y separately. In the 2-D case, all of the fitting parameters αi, βi, and εi

in Eqs. (3.10) and (3.11) are present in the solutions for both x and y . Thus, I

cannot optimize the fits in the x and y directions separately and instead I use these

fitted planes as the initial 2D mapping for imaging the position of the scatterer. This

constraint, combined with the system’s fluctuations and approximation that these

surfaces are planar, limits the 2D resolution. The planar fit of∆ f̄T(x , y) (∆ f̄H(x , y))

gives a RMS frequency error of 4.17 kHz (7.26 kHz).

Using the inverted equations of the planes in Eqs. (3.10) - (3.11), the continuous

mapping for an arbitrary position (x , y) is represented as

x̂ =
(∆ f̄T(x , y)− ε1)β2 − (∆ f̄H(x , y)− ε2)β1

α1β2 −α2β1
, (3.12)

ŷ =
(∆ f̄H(x , y)− ε2)α1 − (∆ f̄T(x , y)− ε1)α1

α1β2 −α2β1
. (3.13)

Using these equations, I first calculate the errors associated with the calibration grid.
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As an example of the reconstructed calibration grid using the planar mapping, see

Fig. 3.17a.

In the figure, the reconstructed calibration grid is distorted such that the recov-

ered x and y positions do not necessarily lie on the grid. To quantify these distor-

tions, I measure two different quantities. First, the reconstructed grid path shows

RMS position error of 340 µm (620 µm) for x (y), yielding an average 2D resolu-

tion of ∼ λ/300. As an additional figure of merit, the maximum errors (xmax, ymax)

observed in the 2D calibration grid are xmax = 0.72 mm and (∼ λ/200) ymax = 1.22

mm (∼ λ/120)). Again, these errors in the reconstruction of the calibration grid are

vastly subwavelength. However, because the calibration grid is distorted, all posi-

tion sensing measurements will also suffer from similar distortions. Before moving

on to such position sensing measurements, I first discuss and rule out the sources

of the errors (distortions) in the calibration grid path.

Due to the micron precision of these measurements, it is important to verify that

the experimental errors in the reconstructed calibration grid path are not due to

inaccurate scatterer positioning (it was hypothesized that the glue that holds the

scatterer to the translation stage may stretch and the scatterer may not be posi-

tioned correctly with respect to the translation stage to which it is attached). Thus,

the correlation of the scatterer displacement with respect to the programmed trans-

lation stage position is quantified using an additional experiment described in Ap-

pendix B. In this appendix, the relative scatterer displacement is directly measured

using a dial drop indicator that contacts the scatterer itself. Using several different

measurements, I quantify that the errors associated with the scatterer position is ap-

proximately 10 µm. This is on the same order of magnitude as the errors associated

with the translation stages and is orders of magnitude smaller than the observed

RMS and maximum errors. Therefore, the scatterer positioning errors (and transla-
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Figure 3.17: Reconstructed calibration grids (a) using a planar mapping and
(b) a fourth-order mapping between frequency shifts (∆ f̄T,∆ f̄H) and the scatterer
position (x , y). The reconstructed grids are shown in red and the actual path used
for the calibration grid is shown in black.

tion stage errors) do not play a large role in the experimental distortions observed

in the reconstructed grid path. Rather, the approximation that the frequency shifts

are planar as well as the frequency fluctuations and drift (also, see Appendix B) are

the main sources of error in the reconstruction of the calibration grid path for the

cavity-feedback system.

Lastly, I quantify an average dynamic range for sensing within calibration grid

to be ∼ 10 (5 mm/ 0.5 mm). This dynamic range is a lower bound on the potential

dynamic range of the system because the measurements are confined to a 2D area.

However, because quasiperiodicity can exist for a larger range of object positions

(without bifurcating to periodicity or chaos), the upper bound of the system’s dy-

namic range has the potential to be larger. For example, in separate experiments, I

have verified that quasiperiodicity can exist in over 1 cm distances in both the x and

y directions. This shows that there is a potential for the dynamics range to be 20 ∼

10 mm / 0.5 mm assuming that the position errors remain the same over this larger
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area. But, based on the bifurcation diagram, it is clear that, for certain parameter

values, the system can bifurcate from quasiperiodicity to chaos in less than in 1 cm.

In order to try to find the true upper bound of this experimental system, multiple

bifurcation diagrams must be collected in both the x and y directions for different

bias voltages of the nonlinear circuit input and different gain values for the feedback

loop to determine the largest and most sensitive windows of quasiperiodicity. Thus,

as a future direction of research (not explored here), it is of interest to determine

the upper bound on the dynamics range for a given cavity (see Ch. 7).

To test the system’s 2D sensing mode-of-operation, I use the frequency shifts in

Figs. 3.16a-b as a calibration grid for the scatterer’s shape and orientation at each

position in the 5 mm × 5 mm area. In the next and last subsection, the scatterer is

now moved through an arbitrary path in this 2D area, and I use the calibration grid

to reconstruct its movements with subwavelength resolution.

Sensing the position of the object along an arbitrary path

In the 2D area, the scatterer is moved through the discrete positions (xn, yn) for

n= 1 to n= 32, where only the starting position (x1, y1) lies on the calibration grid

from the previous section and serves as a reference point for the relative frequency

shifts. The path is plotted along with the calibration grid points in Fig. 3.18c. The

goal of this test is to then measure the frequency shifts (∆ f̄T(xn, yn), ∆ f̄H(xn, yn))

and use the 2D mapping of the calibration grid to reconstruct the successive scat-

terer positions. As shown in Figs. 3.18a-b, the observed frequency shifts along this

arbitrary path are plotted as a function of the index n. In the figures, the frequency

shifts∆ f̄T(xn, yn) and∆ f̄H(xn, yn) range over ±300 kHz and ±50 kHz, respectively,

and neither data set shows monotonic changes with increasing n.

To recover the positions (xn, yn), I use two different procedures. The first uses
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Figure 3.18: 2D predicted positions using quasiperiodicity. Frequency shifts (a)
∆ f̄T and (b) ∆ f̄H as a function of n different scatterer positions along (c) the 2D
arbitrary path (red curve) within the calibrated grid (black dots). Using the cali-
brated grid and the measured frequency shifts, the scatterer path is reconstructed
using (d) a planar first-order map and (e) a fourth-order map (red curves).

the planar mapping of the calibration frequency-shift surfaces to interpolate the

scatter locations. These inverted equations yield a predicted path of the scatterer

( x̂n, ŷn), as shown in Fig. 3.18d. The RMS errors between the predicted and actual

x and y positions are 550 µm and 850 µm, respectively (on average, ∼ λ/300).

In addition, the maximum observed errors are xmax = 0.75 mm and (∼ λ/200)

ymax = 2.11 mm (∼ λ/70). Thus, the resolution of reconstructing the scatter’s

position with the planar mapping is degraded when compared to the resolution

of the calibration grid. This most likely means that errors in the planar map are

compounded by the calibration and reconstruction procedure.

Furthermore, this implies that the resolution may be improved using higher or-

99



der mappings. As just one example, I fit the calibration data with fourth-order 2D

frequency shift maps

∆ f̄T(x , y) =
i=4
∑

i=1

�

ai x
i + bi y

i
�

+
j=3
∑

j=0

k=3
∑

k=0

A j,k x j yk, (3.14)

∆ f̄H(x , y) =
i=4
∑

i=1

�

ci x
i + di y

i
�

+
j=3
∑

j=0

k=3
∑

k=0

B j,k x j yk, (3.15)

where ai, bi, ci, di, A j,k, and B j,k are all free fitting parameters, and the values of the

fitted coefficients are listed in Appendix B. Such an increase to the map’s complexity

means that the frequency to position mapping is no longer analytically invertible.

Consequently, the predicted values x̂ and ŷ must be solved numerically.

The resulting fourth-order map yields RMS differences between the predicted

and actual x and y values of 200 µm and 350 µm, respectively (∼ λ/650) along

the 2D calibration grid. Using this mapping, the reconstructed calibration grid is

plotted in Fig. 3.17b. In the figure, there is a visible improvement over the recon-

struction of the calibration grid path shown in Fig. 3.17a. In addition, using the

fourth-order mappings, the maximum observed errors (xmax, ymax) in the 2D cali-

bration grid are xmax = 0.60 mm and (∼ λ/250) ymax = 1.12 mm (∼ λ/130). Thus,

when using a high-order fitting function, (RMSx, RMSy, xmax, ymax) is imporved by

∼ (41%, 51%,16%, 8%), respectively, where the percent improvement is defined as

the ratio in the decrease of the resolution relative to the original resolution using

the planar mapping. These percentages are representative of the amount of dis-

tortions that are caused by the approximating the frequency shifts as planes. The

remaining errors are most likely caused by drift in the frequency shifts and noise in

the electronics of the system.

In addition, the reconstruction of the scatterer’s path shows improvement in
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Fig. 3.18e with lower RMS errors of 600 µm and 410 µm for the x and y posi-

tions, respectively (∼ λ/400) and maximum observed errors xmax = 0.80 mm and

(∼ λ/190) ymax = 1.38 mm (∼ λ/110). These represent ∼ (0%,51%, 0%,35%)

improvements for (RMSx, RMSy, xmax, ymax), respectively. Interestingly, the errors

do not decrease in the x direction. This is most likely due to the shifts in the y di-

rection contain the most deviation from a planar surface. Thus, overall, my attempt

to increase the system’s resolution using a fourth-order mapping yields improved

2D resolving capabilities. I have verified that further increasing the complexity of

the mapping does not significantly reduce the errors of the reconstructed path. And

thus it must be drifts due to temperature/pressure of the enclose air and noise in the

detection system that limits the resolution of my imaging system. This concludes

the proof-of-concept tests using the cavity-feedback system for imaging the position

of the subwavelength scatterer.

3.5 Summary

In summary, this chapter demonstrates a new position-sensing system that combines

time-delayed nonlinear feedback and a wave-chaotic cavity. For different parame-

ters of the cavity-feedback system, the observed EM oscillations can range from

simple periodicity to broadband chaos. Specifically, the dynamics of the system de-

pend on small changes to the time delays and attenuation in its feedback, which are

manifested through scatterer translations in the cavity.

Through various experimental tests, I demonstrate techniques for exploiting

these changes to image the position of the scatterer with subwavelength resolution.

More specifically, chaos-based sensing shows a 1D resolution of λ/3, 000, periodic-

based sensing shows a 1D resolution of λ/20,000, and quasiperiodic-based sensing
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shows an average 1D resolution of ∼ λ/10,000 and an average 2D resolution of

∼ λ/300. For comparison, a scanning near-field microwave microscope uses RF fre-

quencies from a stable source to achieve subwavelength sensitivity (∼ λ/750,000)

of near planar surfaces [69]. In contrast, my system uses nonlinear feedback to in-

ternally generate multiple independent frequencies and measures multiple degrees-

of-freedom. Moreover, my method uses a stationary pair of antennas to extract 2D

spatial information of a 3D scatterer, making it free of mechanically-moving parts.

Due to the cavity’s height, there are no allowable TM modes in the cavity for

frequencies less than 2 GHz. Based on the low-pass filtering at the output of the

external nonlinear feedback loop, no EM radiation at frequencies above 2 GHz enter

into the cavity. Thus, EM radiation propagates in the cavity transversely and only

interacts with the scatterer from the x and y directions (as opposed to the vertical

z direction). This is the configuration chosen in other quarter-stadium systems in

order to evaluate the quasi-2D behavior of the scattering system [49]. Based on the

height restriction of the cavity and low-pass filtering of the injected waves, the EM

fields in the cavity are polarized such that only TE modes propagate. However, the

experiments shown throughout this chapter to do not demonstrate that TE modes

are necessary to observe subwavelength changes in the cavity. Because I have not

fully characterized the polarization of my antennas, I can only conclude that, given

the setup shown here, these experiments are sufficient for observing subwavelength

changes. As discussed in Ch. 2, 3D structures can show wave chaos and include both

TE and TM modes. Thus, as a future direction, one can explore the sensitivity of

subwavelength changes depending on the polarization of the injected EM radiation

(see Ch. 7).

This work also extends the Larsen effect, a phenomenon where positive audio-

feedback between a microphone and audio amplifier results in periodic acoustic
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oscillations [70]. The frequency of oscillation, known as the Larsen frequency, is

highly dependent on the propagation paths of the acoustic wave. A perturbation

to these propagation paths shifts the Larsen frequency [70]. Using a quasiperiodic

analog of the Larsen effect, I combine a nonlinear feedback oscillator with multiple

EM reflections in a scattering environment to exploit the inherent sensitivity of the

system. To the best of my knowledge, this approach is the first to measure multiple

spatial degrees of freedom on a subwavelength scale using a scalar signal. It also

demonstrates the first application of a quasiperiodic signal for sensing purposes,

adding an alternative to the short list of subwavelength imaging techniques.

To optimize the system, I see several options to improve the system’s resolution.

Currently, resolution limitations are based on the SNR of v(t). Increasing the num-

ber of frequency harmonics through nonlinear mixing gives additional measures of

the independent modes and improves the system’s SNR. Also, because the cavity

Q is proportional to the number of interactions between the subwavelength object

and the EM energy inside of the cavity, the resolution of this technique should also

scale with Q.

This system could find applications beyond position sensing. For example, the

scattering and absorption of a subwavelength object strongly depend on its geom-

etry, and this approach, which is sensitive to the shape, orientation, and character-

istics of the scatterer, can most likely quantitatively track these properties. Also,

similar to [70], analyzing dynamical states can monitor changes in the EM proper-

ties of materials in the cavity.

Lastly, I also conjecture that this method can be implemented using EM waves

in the optical domain. Semiconductor lasers with time-delayed optical feedback are

known to display complex dynamical behaviors in which the output intensity varies

in time, including quasiperiodicity [71–73]. Furthermore, optical wave-chaos has
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been demonstrated using optical cavities [48, 74]. Therefore, I envision a com-

pletely optical version of this technique where a laser receives feedback from a

wave-chaotic optical cavity. Such a system will be capable of imaging the posi-

tion of a scatterer on a 2D nanometer scale. Preliminary tests of an optical system

are presented in Ch. 7.

Based on the results of this chapter, there are many different topics for future

investigations. For example, chaos-based or periodic-based sensing could be further

developed and optimized using well-known extremely broadband [35] or extremely

narrow-band [75] nonlinear opto-electronic oscillators in a wave-chaotic cavity, re-

spectively. Moreover, other configurations of the cavity itself could be studied: Does

the level of wave chaos, allowable bandwidth, or antenna placement affect the dy-

namics/resolution? All of these questions are all valid and worthy of investigation.

However, due to the novelty of the quasiperiodic sensing technique, I choose to

focus the remaining chapters of this dissertation on the quasiperiodic dynamics in

the current configuration of the cavity-feedback system to further the development

of a general theory for quasiperiodic sensing in band-pass filtered, time-delayed

nonlinear feedback systems.
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Chapter 4

Modeling the Cavity-Feedback System

In this chapter, I derive a mathematical model for the cavity-feedback system

that reproduces qualitatively similar quasiperiodic dynamics in comparison to ex-

perimental observations. The quasiperiodic behavior is an essential component of

the two-dimensional, subwavelength position-sensing modality. The modeling of

the cavity-feedback system is divided into three main sections: (i) a detailed char-

acterization and modeling of the nonlinear circuit (NLC), (ii) a representation of

the wave-chaotic cavity in terms of a delay-gain distribution, and (iii) a full model

that combines (i) and (ii) and generates the quasiperiodic dynamics. The goal of

this chapter is to demonstrate that the cavity-feedback system, which uses both

time-delayed nonlinear feedback and a wave-chaotic cavity, can be represented by

a simple theoretical model. This model serves as a method of prediction for the

observed experimental phenomena and provides further evidence for the interpre-

tations of the cavity-feedback system in both past and future chapters.

The results for modeling the nonlinear circuit in this chapter are an extension of

the model created by Zheng Gao, who designed the specific transistor-based circuit

featured in this dissertation. Rather than model the NLC as an RLC circuit (Zheng

Gao’s model, see Appendix A), I take a different approach for modeling using a

combination of a nonlinear function and ideal filters. These results are also a con-

tinuation of the simple model from Ch. 2 for the original circuit design from Ref.

[22] (see Appendix A for the details of these differences). My model for the wave-

chaotic cavity and the cavity-feedback system also benefited from discussions with

Daniel Gauthier and Damien Rontani. The experimental procedure for acquiring the
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Figure 4.1: Review of circuit operation. (a) Input-output characteristics
of the experimental circuit measured at a driving frequency f = 270 MHz
with vb = 0.7 V and with its linear and anti-linear regimes labeled accord-
ingly. (b) Functional fit of the experimental data using the nonlinear function
F(vin) = vo −

Æ

A2(vin + vb − vT)2)− a2
o, where A = AL (slope of the linear regime),

if (vin + vb)≤ vT, and A= AR (the slope of the anti-linear regime) if (vin + vb)> vT.

pulse responses of the cavity was also designed with the help of Hugo Cavalcante.

4.1 Modeling the Nonlinear Circuit

The nonlinear circuit (NLC), which contains a transistor and other passive electronic

components, is characterized briefly in Ch. 2, where I demonstrate that the input-

output relationship of the circuit’s voltages (vin and vout) can be approximated by

a piecewise-linear function F(vin). As a reminder, the experimental data, the nu-

merical fit, and the general form of F(vin) are provided in Fig. 4.1. In Fig. 4.1a,

the input-output characteristics of the nonlinear circuit show a linear regime (a line

with positive slope) and an anti-linear regime (a line with negative slope) when

driven by a sinusoidal signal of frequency f = 270 MHz. As shown in Ch. 2, the fit

in Fig. 4.1b provides a simple nonlinear function to approximate the operations of

the NLC.

However, this characterization is not complete because at high-frequencies ( f >
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1 GHz), the simple tent-like shape of the nonlinear circuit’s input-output relation-

ship is distorted. These distortions cannot be modeled by a simple nonlinear func-

tion. Because the typical dynamics of the cavity-feedback system contain such high

frequencies (see Ch. 3), it is important to investigate these effects in order to build

a more realistic model for the cavity-feedback system. Therefore, in this section, I

first detail the distortions of the NLC and then use various modeling techniques to

reproduce approximately these behaviors.

It should be noted that the specific results from the characterization and mod-

eling of the circuit are not used outside of this chapter. They are presented here to

highlight the experimental non-idealities, but they are not essential to the mecha-

nisms that produce quasiperiodic dynamics. For those not interested in the details of

the circuit operation, I suggest advancing to Ch. 5, where a more general model of

the cavity-feedback system (and its nonlinearity) is used to predict analytically the

quasiperiodic frequencies. This general model is inspired by the characterization

and modeling of the NLC but does not include the details that follow here.

4.1.1 High-Frequency Distortions and Low-Pass Filtering Effects

To characterize the nonlinear circuit’s operation at high frequencies, I use several

different input signals vin with frequencies ranging from f = 500 MHz to f = 1.9

GHz. Similar to Fig. 4.1a, I monitor both vin and vout of the NLC on separate chan-

nels of a high-speed digital oscilloscope. As shown in Fig. 4.2, the nonlinear mode-

of-operation for the circuit is frequency dependent with distortions resulting in an

opening of the tent-like shape.

From this figure, there are several features of the distortions that can give a basic

insight into their general causes. For example, the amplitudes of vout decrease with
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Figure 4.2: Experimental high-frequency distortions. Experimental distortions
of vout for sinusoidal driving signals vin at frequencies(a) f = 500 MHz with
vb = 0.65 V, (b) f = 1.1 GHz with vb = 0.65 V, (c) f = 1.5 GHz with vb = 0.7
V, and (d) f = 1.9 GHz with vb = 0.74 V. The frequencies used to create Fig. 4.2 are
chosen to highlight the progression of these distortions for various bias voltages vb
In (a) and (b), the opening of the tent-like shape is labeled accordingly. For all mea-
surements, the paths to the oscilloscope for vin and vout are approximately balanced
with equal propagation times. The error of each voltage measurement is estimated
as ±2 mV based on the standard deviation of the oscilloscope noise floor.

input driving frequency, which is typical with a low-pass filter. As shown in Fig.

4.3a, an example transfer function of a first-order low-pass filter with cutoff fre-

quency fLP = 1 GHz (based on a −3 dB power drop) demonstrates that signals with

frequencies f > fLP are attenuated. The potential origins of this filtering (capacitive

effects of the transistor) are discussed in more detail in Appendix C.

Furthermore, in Fig. 4.2, the opening of the tent-like shape becomes wider and

more pronounced with increasing frequency, which can be attributed to an increase

in the propagation delay τpd through the nonlinear circuit. To illustrate this idea

conceptually, I use a numerical time series generated from the ideal nonlinear func-
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tion F(vin) with a sinusoidal input signal vin shown in Fig. 4.4. For a propagation

delay τpd = 0 ns (Fig. 4.4a), the tent-like shape of the nonlinearity is preserved.

However, as τpd increases, the tent-like shape between vin and vout begins to open

(Figs. 4.4b-c), displaying similar features to those in Figs. 4.2a-b. Though Fig.

4.4 uses a constant input driving frequency, it demonstrates (artificially) that an

increasing τpd through the circuit can result in open tent-like shapes.

Therefore, in the experiment, because the tent-like shape opens more for sig-

nals with higher frequencies, the propagation delay through the NLC is frequency

dependent: τpd( f ). This can also be understood as a frequency-dependent phase

shift∆φ( f )∼ 2πτp f ( f ) that changes with f . As shown by the phase characteristics

of the transfer function in Fig. 4.3b, this type of phase shift can also be attributed to

low-pass filter effects. These effects, which are non-ideal in the context of the NLC

design, require further investigation to characterize their properties.

4.1.2 Modeling the Filtering Effects of the Nonlinear Circuit

Rather than modeling the currents and voltages in the NLC from first principles

(see also Appendix C), my model for the filtering effects in the device uses two
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Figure 4.3: First-order low-pass filter. (a) Magnitude of the low-pass filter transfer
function HLP( f ) = ṽout/ṽin and (b) output phase φ of the filter with respect to input
frequency f .
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mathematical filters at the output of the nonlinear function F(vin). These additional

filters represent a simple solution for reproducing the observed distorted behaviors

that are reported in Fig. 4.2. In this section, I show that each of the two filters in

my model characterizes separately the filtering effects for the NLC in its linear (L)

and anti-linear (A) regimes.

First, the filtering effects of the NLC are measured in the linear and anti-linear
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regimes using low-amplitude input signals vin with a swept frequency f . To char-

acterize the circuit in the linear regime, I use a vb such that vb + vin ≤ vT, and, con-

versely, to characterize it in the anti-linear regime, I use vb such that vb+vin > vT. For

each of these regimes, a spectrum analyzer measures |HLP, (L,A)| = |ṽout/ṽin|, which

represents the magnitude of a low-pass filter transfer function through the circuit

in the linear (L) and anti-linear (A) regimes, respectively, where ṽin (ṽout) is the

Fourier transform of the input (output) voltage. The goal is to use these measure-

ments, which are shown in Fig. 4.5, to approximate the output of the NLC as F(vin)

with the addition of low-pass filter models.

In the figure, it is clear that the magnitudes of the transfer functions in each

regime are indeed low-pass filters, attenuating signals at high frequencies. How-

ever, it also apparent that the filtering effects have different frequency-dependent

characteristics in the linear and anti-linear regimes. In other words, the intrinsic
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Figure 4.5: Magnitudes of the transfer functions through the nonlinear circuit
in its (a) linear regime using vb = 0.65 V and vin with amplitude of 20 mV, and (b)
in its anti-linear regime using vb = 0.85 V and vin with amplitude of 20 mV. The
experimental data (blue curves) in (a) and (b) are fitted with the magnitudes of
the transfer functions HLP, L( f ) and HLP, A( f ) (red curves), respectively. The largest
discrepancies between the fits and the respective data occur at f = 3.0 GHz with a
difference of 2.3 dB for HLP, L( f ) and at f = 0.42 GHz with a difference of 0.8 dB
for HLP, A( f ), which present possible sources of error in the NLC model.
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filtering effects of the NLC change when the transistor switches from inactive (in

the linear regime) to active (in the anti-linear regime) and vice versa. Thus, when

the cavity-feedback system is oscillating, the bandwidth of the transistor is switch-

ing rapidly between the frequency responses shown in Fig. 4.5a and Fig 4.5b. As I

show at the end of this section, the model for the circuit must also switch its transfer

function in the two regimes to reproduce the distortions of the NLC.

In the linear regime, I model the filtering effects with a first-order low-pass filter,

whose transfer function magnitude reads

|HLP, L( f )|=
1

p

1+ ( f / fLP)2
, (4.1)

where fLP, L is the low-pass cutoff frequency. Using a least-squares regression be-

tween Eq. (4.1) and the experimental data in Fig. 4.5a with fLP, L as a free fitting

parameter yields fLP, L = 0.78± 0.02 GHz (the error represents the 90% confidence

interval of the fitting parameter). The resulting fit, which is also plotted in Fig.

4.5a, gives the RMS difference with the data of 0.8 dB, which is a ∼ 6% error of the

overall experimental range. Increasing the degree of the low-pass filter improves

the agreement of the fit, but, as I will show, this added complexity in the model is

not necessary to reproduce the experimental distortions.

In the time domain, the effect of the low-pass filter in the linear regime can be

modeled using an ordinary differential equation that reads

v̇LP, L(t) = 2π fLP, L[vF(t)− vLP, L(t)], (4.2)

where vF = F(vin) is the output of the ideal nonlinear function that drives the filter.

Thus, Eq. (4.2) represents a simple model for the NLC in its linear regime.
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In the anti-linear regime, however, a more complicated model is necessary re-

produce approximately the filtering effects shown in Fig. 4.5b. I use a fit of the

transfer function magnitude of a third-order Chebyshev low-pass filter that reads

|HLP, A( f )|=
1

Æ

1+ ε2[4( f / fLP,A)3 − 3( f / fLP,A)2]
, (4.3)

where ε = 0.51± 0.01 dB is known as the ripple factor that dictates the size of the

ripple (labeled in Fig. 4.5b) in the magnitude of the transfer function and fLP, A =

2.51± 0.01 GHz is the filter cutoff frequency [76, 77]. The fit of |HLP, A( f )| is also

plotted in Fig. 4.5b. In this case, the RMS difference between the fit and the data is

0.35 dB, which is a ∼ 7% error of the overall experimental range, and thus the fit

approximately captures the low-pass filtering in the anti-linear regime.

Written in the time domain, a third-order Chebyshev low-pass filter can be rep-

resented by a set of three first-order differential equations. These equations, which

represent the model for the output of the NLC in the anti-linear regime are


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



, (4.4)

with the conversion for the output voltage

vLP, A(t) = C3 x3(t), (4.5)

where x1, x2, x3 are auxiliary variables with units of volts (V), vF = F(vin), vLP, A

is the output of the Chebyshev low-pass filter, and A1,1 = −9.78 ± 0.03 rad/ns,

A2,1 = 15.78 ± 0.06 rad/ns, A2,2 = −9.79 ± 0.03 rad/ns, A2,3 = −16.81 ± 0.03
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rad/ns, A3,2 = 16.81±0.03 rad/ns, B1 = 15.78±0.06 rad/ns, and C3 = 0.66±0.01

(the errors represents the 90% confidence intervals of the fitting parameters). These

variables are calculated using the parameters fLP, A and ε. Thus, Eqs. (4.4) and (4.5)

represent approximately the filtering effects of the NLC in the anti-linear regime.

It remains to combine the filtering effects of the linear and anti-linear regimes

into a single model that can switch between the two different transfer functions. For

this, I use an approximately piecewise-linear approach inspired by a result I recently

published (see Ref. [78]). To model the approximately piecewise-linear switching,

I first consider the system to be an ideal switch that depends on the threshold vT

vs(t) =











vLP, L(t), if vin + vb ≤ vT

vLP, A(t), if vin + vb > vT

. (4.6)

The switching in Eq. (4.6) is infinitely fast and discontinuous and therefore non-

physical. Thus, similar to Ref. [78], I choose to model the switching in the system’s

transfer function as

vs(t) =

�

1− s(t)
2

�

vLP, L(t) +

�

1+ s(t)
2

�

vLP, A(t), (4.7)

where s(t) is a switching state modeled by

s(t) = tanh(M[vin(t) + vb − vT]), (4.8)

such that the hyperbolic tangent (tanh) serves as a continuous nonlinear switching

function and M is a constant that describes the rate of the switching. In order to

obtain an experimental value of M , I will use the data from Fig. 4.2 and perform a

least-squares fit with the full model for the NLC.
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Nonlinear Circuit Model
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dB
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Figure 4.6: Schematic representation of the NLC model. The input voltage
vin drives the nonlinear function F(vin) = vF and the low-pass filters HLP, L( f ) and
HLP, A( f ) in parallel. The continuous switching function s(t) switches vs between
the output voltages of these two filters (vLP, L and vLP, A), which is then high-pass fil-
tered (by transfer function HHP( f )) to yield the output voltage vout of the nonlinear
circuit. The various blue curves represent the input-output tent-like shape of the
nonlinear function F(vin) (with linear (L) and anti-linear (A) regimes labeled) as
well as the magnitudes of the different transfer functions as a function of frequency.

However, there is still one remaining component of the NLC model that is re-

quired to reproduce the ac-coupled effects of the circuit output (see Ch. 2: in the

design of the NLC, there is an output capacitor C2 that filters the direct-current

component of output signals). To model the ac-coupled effects of the NLC, I use the

filtering from a high-pass filter transfer function HHP( f ) to model the output voltage

vout, which is represented in the time domain as

v̇out(t) = v̇s(t)− 2π fHPvout(t), (4.9)

where vs(t) is calculated using Eqs. (4.7) - (4.8) and fHP = 10 MHz is a conser-

vative estimate of the high-pass filter cutoff frequency 1/(2πRC2), where C2 is the

output capacitor of the NLC (see Ch. 2) and R = 50 Ω. This is conservative esti-

mate ( fH > 1/(2πRC2)) helps eliminate transient dynamics in the simulations of

the circuit distortions.
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Figure 4.7: Simulated high-frequency distortions. Simulated vout plotted as a
function of vin using the full model of the NLC and the experimental input sinusoidal
signals vin at frequencies and bias voltages of (a) f = 500 MHz with vb = 0.65 V,
(b) f = 1.1 GHz with vb = 0.65 V, (c) f = 1.5 GHz with vb = 0.7 V, and (d)
f = 1.9 GHz with vb = 0.74 V. The RMS errors between the data at f = (0.5, 0.7,
1.1, 1.5) GHz and the respective fits are (12.3 ,18.5 ,10.4, 6.8) mV, which represent
(6.0,11.2, 6.3,18.4)% errors for the given experimental ranges.

Finally, the full NLC model is depicted with each of its separate components

in Fig. 4.6. In the first component, the voltage vin is processed by the nonlinear

function F(vin) = vF, which is represented by a tent-like shape. In the second stage,

vF is processed by the flow-pass filter transfer functions HLP, L and HLP, A in parallel,

and in the third stage, the continuous function s(t) switches (depending on the

value of vin) between the two low-pass filter outputs (vLP, L or vLP, A). Finally, in the

last stage, the outputs from the filters vs(t), which follow a common path, are high-

pass filtered to produce vout(t). All of these four stages represent Eqs. (4.7) - (4.9)

as the full model for the nonlinear circuit.

Using Eqs. (4.7) - (4.9), I perform a least-squares fit to the four data sets in
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Fig. 4.2 simultaneously with M as a free fitting parameter. The responses of the

model for the NLC are plotted in Fig. 4.7 with the fitted value M = 0.63 ± 0.03

V−1 (error represents the 90% confidence interval of the fitting parameter). The

format of this figure is similar to that in Fig. 4.2 for easy comparison. The per-

cent errors of the RMS differences between the data and the fits (see the caption of

Fig. 4.7 for details) range from 6% to 18.4% for f = 500 MHz and f = 1.9 GHz,

respectively. As illustrated by the simulated distortions, the model for the NLC re-

produces qualitatively the observed experimental distortions and filtering effects at

high-frequencies.

This concludes the section for modeling the nonlinear circuit. The results from

this section will be used later in this chapter when I combine them with a represen-

tation of the wave-chaotic cavity to create a model for the cavity-feedback system.

For now, I change topics and examine methods for modeling the wave-chaotic cavity.

4.2 Modeling the Wave-Chaotic Cavity

As mentioned briefly in the introduction of Ch. 3, the wave-chaotic cavity can be

understood as a distribution of time delays and gain coefficients. This delay-gain

distribution is measured using the cavity’s pulse response, where a short pulse rin(t)

(δt = 0.1 ns) is injected at the TX antenna (see Fig. 4.8a), and the output pulse

response rout(t) is measured at the RX antenna using an oscilloscope (see Fig. 4.8b).

The goal of this section is to examine how the delay-gain distribution (τi, gi), which

is acquired using rout(t), can be used to model the effects of the cavity on an arbitrary

input signal.

To do so, I first examine the cavity in the frequency domain, where its trans-

fer function can be applied to an arbitrary signal. Then, I switch to an equivalent
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Figure 4.8: Pulse response of the cavity. (a) Injected pulse rin(t) of width δt = 0.1
ns and (b) impulse response of the cavity rout(t). Zooms of the impulse response
for (c) 3 ns < t < 13 ns and (d) 195 ns < t < 200 ns. Note the vertical axis change
in (d). The error bars in (c) represents the approximate standard deviation of the
noise floor ±1 mV of the waveform for these measurements. As shown in (d), the
amplitude of rout at t = 200 ns is within the noise level. Also, note the vertical axis
change from (c) to (d).

time-domain representation of the cavity that is necessary because it will later be

combined with the nonlinear circuit model, which contains an inherent nonlinear

function and is also simulated in the time domain.

4.2.1 Frequency Domain Representation of the Cavity

In the frequency domain representation, the wave-chaotic cavity can be treated as a

filter [79]: The cavity is a linear system with an input and an output that attenuates

and blocks signals at certain frequencies and adds phase-delays. As with any linear

system, the impulse response of the cavity fully characterizes its filtering effects

[79]. Thus, using the pulse response, which is a finite-bandwidth representation
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Figure 4.9: Transfer function of the wave-chaotic cavity calculated using the
experimental data from rin(t) and rout(t). (a) Magnitude of the transfer function
Hcavity( f ) and (b) output phase φ of the cavity with respect to input frequency f .
The zoom shows φ for 1.5 GHz < f < 1.6 GHz.

of its impulse response (1/(δt) ∼ 10 GHz), I can reconstruct approximately the

cavity’s transfer function Hcavity( f ) (discussed briefly in Ch. 2) defined as

Hcavity( f ) = r̃out/r̃in, (4.10)

where r̃in and r̃in are the Fourier transforms of the input pulse and output pulse

response, respectively. The magnitude and phase of Hcavity( f ) are plotted in Fig. 4.9,

where the magnitude of Hcavity( f ) shows the resonances of the cavity and its phase

shows the complexity of the frequency-dependent phase delays through cavity.

To demonstrate how Hcavity( f ) can be used to simulate the cavity’s effects on an

arbitrary input signal, I use the modulated pulse min(t) shown in Fig. 4.10a, which is

created experimentally using our signal generator. The modulation frequency f = 1

GHz is used to create a test signal of width ∼ 15 ns with a frequency bandwidth

that can be transmitted and received by the cavity’s antennas (TX and RX). First,

I apply min(t) to the TX antenna and record the output mout(t) at the RX antenna

using the oscilloscope. The experimental output of the cavity, which is plotted in

Fig. 4.10b, shows a complex modulated response with a time duration >> 15 ns.
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Figure 4.10: Test signal to demonstrate the frequency domain model. Temporal
evolution of (a) the cavity input test signal min(t) (created using the signal generator
E8267D), (b) the experimental response of the cavity mout(t), and (c) the simulated
cavity output sout. In the figures, I have scaled the amplitudes of the waveforms by a
constant factor to normalize the power in min(t) to match that of rin(t). Also, note
the change of the horizontal scales between (a) and (b)-(c).

To simulate the cavity’s output, I apply the transfer function Hcavity( f ) to m̃in, the

Fourier transform of the input modulated signal min(t), such that

s̃out = Hcavity( f )m̃in, (4.11)

where s̃out is the Fourier transform of the simulated cavity output sout(t). The tempo-

ral evolution of sout(t) is then recovered using the inverse Fourier transform of s̃out.

To compare the experimental and simulated cavity outputs, I plot them together in

Fig. 4.10b-c. As shown in the figures, the simulated and experimental waveforms
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are quantitatively similar in frequency, phase, and overall envelope. The main dif-

ferences are found in the amplitude near t = 50 ns. The RMS difference between

the simulated cavity response and the data is ∼ 0.8 mV, which represents 2.2%

of the experimental range. To further quantify these comparisons, I calculate the

cross-correlation coefficient C(mout(t), sout(t)) = 0.96, which demonstrates that the

experimental pulse response of the system (recorded by the oscilloscope) can be

used to simulate the approximate effects of the wave-chaotic cavity.

The imperfect correlation value (C < 1) has several possible origins. For exam-

ple, measurement noise can influence the pulse response calibration measurement

rout. Even with averaging, the amplitudes of rout extend to the noise floor of the

oscilloscope. In addition, the measurements of min and mout also contain noise.

The degraded correlation may also be caused by the finite length of the time series

rout. The Fourier transform is intended for infinitely long time series, and the pulse

response is only measured until its amplitude decays to within the noise floor of

the oscilloscope. These effects can distort the measured transfer function for the

system.

Furthermore, before moving to the time-domain representation, I make one ad-

ditional approximation of the transfer function: Hcavity( f ) ∼ r̃out. Because the in-

put pulse rin(t) is approximately a delta function δ(t), its Fourier transform r̃in is

approximately a constant [79]. Therefore, dividing by r̃in in Eq. 4.10 is not nec-

essary to recover the transfer function of the cavity. I therefore reduce this equa-

tion to Hcavity = r̃out and use it to calculate again sout(t) from min(t). This second

simulation, which need not be plotted due to its similarities to Fig. 4.10, yields

C(mout(t), sout(t)) = 0.95. Thus, the simulation is approximately valid under the

assumption Hcavity ∼ r̃out, which will now be used to simulate the cavity output in

the time domain.
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4.2.2 Time-Domain Representation of the Cavity

In the time domain, the simulation of the output of the cavity is represented using

the convolution [79]

sout(t) =

∫ ∞

−∞
rout(t

′)min(t − t ′)dt ′. (4.12)

However, because the digital oscilloscope samples rout(t) with a discrete sampling

time ∆t = 0.025 ns, Eq. (4.12) is a actually a discrete sum and the variable t ′ is

replaced with the discrete times τi

sout(t) =
i=N
∑

i=1

rout(τi)min(t −τi), (4.13)

where min(t−τi) is the value of min(t) at a time t−τi in the past and N is the number

of discretely sampled times in rout. To help understand the operations performed

min(t)

τN, gN

τ4, g4

τ3, g3

τ2, g2

τ1, g1

Σgi min(t-τi) = sout(t)
i=1

N

delay-gain distribution (τi, gi)

TX RX

wave-chaotic cavity model

Figure 4.11: Representation of the cavity model in the time domain. The signal
min(t) is divided among the delay-gain distribution through paths with propagation
delays τi and gain coefficients gi = rout(τi). The result is summed at the output of
the cavity. The points representing the TX and RX antennas are labeled accordingly.
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Figure 4.12: Time domain simulations of the cavity. (a) Experimental output
mout(t) and (b) time-domain simulation of sout(t) using τmax = 200 ns.

by Eq. (4.13), a pictorial representation of the model is presented in Fig. 4.11. In

the figure, min(t) is injected at the input (the TX antenna in the experiment) of the

delay-gain distribution, where it is divided among multiple paths with propagation

delays τi and gain coefficients gi = rout(τi) before being summed at the output (the

RX antenna in the experiment) to recover sout(t).

Using Eq. (4.13), I recalculate the simulated cavity output in the time domain

using a time series for rout with N = 8000 points, or equivalently τmax = 200 ns,

where τmax is the maximum value of τi such that rout(τmax) from Fig. 4.8b is within

the noise floor of the oscilloscope (note: the value of N can also be decreased while

maintaining τmax = 200 ns if the waveform rout is resampled at a lower sampling-

rate that still satisfies the Nyquist sampling limit [76]). The resulting waveform

sout(t) is shown in Fig. 4.12a and is plotted below the experimental cavity response

mout(t) for comparison. Because the time and frequency representations are equiv-

alent [79], the cross-correlation coefficient between experimental output mout(t)

and the time-domain simulation sout is C(mout(t), sout(t)) = 0.95. As I will show in
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the next section, using the time domain representation of the cavity transfer func-

tion provides a model for the cavity-feedback system that is capable of reproducing

qualitatively similar results when compared to experimental quasiperiodic dynam-

ics.

4.3 Modeling the Cavity-Feedback System

As a reminder, a representation of the experimental system is depicted in Fig. 4.13a.

In the figure, the wave-chaotic cavity is highlighted in red with the graphical repre-

sentation of the cavity’s model. The external nonlinear feedback loop of the system

is comprised of amplifiers (A1 and A2), the nonlinear circuit (NLC), a low-pass filter

(LPF), a directional coupler (dir-c), and an added variable attenuator (VA) to con-

trol the gain of the system. At this point in Ch. 4, I have only presented a model

for the NLC, (highlighted in red in Fig. 4.13a with its graphical representation),

and not the remaining components in feedback loop. Thus, to begin this section, I

first propose a simple model for the remaining components A1, A2, LPF, dir-c, and

VA. Because of their linearity, I model these as a single component (also known as

a lumped element) with properties similar to each of the components in series, as

shown in Fig. 4.13b.

Similar to the feedback loop in Ch. 2, due to the limited bandwidth of these

lumped components, I choose to model them as a band-pass filter with gain. The

schematic representation of this simplified model is depicted in Fig. 4.13c. Using

a signal generator and spectrum analyzer, I measure the magnitude of the transfer

function for these components together over a typical frequency range of the dy-

namics (10 MHz < f < 2 GHz). As shown in Fig. 4.14, they attenuate low and

high frequencies, thus behaving similar to a two-pole bandpass filter with transfer
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Figure 4.13: Review of cavity-feedback system. (a) Experimental setup for the
cavity-feedback system with the cavity and nonlinear circuit (NLC) highlighted in
red and their corresponding graphical representations. In addition, a variable atten-
uator (VA) is added to the external feedback loop to control the gain of the system
for a fixed scatterer position. (b) All of the elements of the external feedback loop,
except for the NLC, can be modeled as a single lumped element with properties
similar to each of the components in series. (c) The lumped element in (b) can be
modeled as a band-pass filter (BPF) with gain G.

function magnitude |HBP( f )| (see Ch. 2). To determine the experimental values for

the low and high cutoff frequencies of the band-pass filter transfer function ( f (−)

and f (+), respectively), I fit |HBP( f )| to the experimental data with f (+) and f (−) as

the free fitting parameters at the -3 dB attenuation points of the bandwidth. The

fit yields f (+) = 1.57± 0.01 GHz and f (−) = 0.41± 0.01 GHz (the errors represents

the 90% confidence intervals of the fitting parameters) with a central frequency

fo =
Æ

f (+) f (−) ∼ 800 MHz. The RMS difference between the fit and the data is

0.23 dB, which is approximately 7.7% of the experimental range. Thus, using these

parameters, the external feedback loop can be modeled using a band-pass filter at
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the output of the NLC model.

Furthermore, I determine the net gain G of the entire feedback loop, which

includes the wave-chaotic cavity, as a function of the control voltage vc applied to

the VA. To measure G, I use the setup shown in Fig. 4.15a. I choose to measure G

this way because it eliminates issues when scaling the gain coefficients of the cavity

(discussed later). A signal generator with constant amplitude and frequency drives

the components VA, A1, LPF, dir-c, the wave-chaotic cavity, and then A2, where its

output is measured on an oscilloscope. While tuning vc, the amplitude of the output

waveform is measured and used to compute the feedback loop gain, as shown in Fig.

4.15b. Similar to Ch.2, the gain G is approximately linear (and monotonic) with

with respect to vc with a slope of ∼ 0.3± 0.2 (error indicates the 90% confidence

interval of the fitted slope).

Because this model of the net gain G includes the attenuation from the wave-

chaotic cavity, the model for the cavity must be normalized to account for this. In
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Figure 4.14: Magnitude of the transfer function for the components in the ex-
ternal feedback loop (blue curve) fitted with |HBP( f )| (red curve). The horizontal
dashed like indicates the −3 dB point of attenuation. The largest discrepancy be-
tween the fit and the data within the 3 dB interval occurs at f = 1.07 GHz with
a difference of 4.8 dB, which is a possible source of error in the cavity-feedback
model. The error bar in the figure represents the accuracy ±0.4 dB of the spectrum
analyzer (E4440A).
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other words, to avoid additional attenuation in this model, rout must be rescaled by

a factor P such that the total integrated power loss through the cavity is unity

1

P

∫ τmax

0

rout(τ)
2 dτ= 1. (4.14)

Using rout → rout/P simplifies the model for the gain coefficients gi = rout(τi) be-

cause they are now independent of the power from the injected pulse rin(t) and

instead represent the relative gains of each delay τi.

Finally, using the models for the NLC, the wave-chaotic cavity, the external feed-

back loop, and the net gain G, I assemble the model for the cavity-feedback system,

which is schematically represented in Fig. 4.16. In the figure, the input of the

delay-gain distribution (with normalized gi) is driven by the output voltage Gv(t)

of the NLC and BPF with gain and the output sum from the distribution drives the

NLC, forming a closed feedback loop. Using the measured external loop time delay,

τloop ∼ 12.5 ns, the minimum delay time through the entire cavity-feedback sys-

A1
dir-c

(a)

LPF

VA

vc

TX RX

A2 osc
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Figure 4.15: Measurements of the net gain of the feedback loop. (a) Experi-
mental setup for measuring the gain of the entire feedback loop. (b) The net gain G
as a function of vc, which is measured using a sinusoidal waveform with frequency
f = 1.35 GHz, the dominant frequency in the dynamics (see next subsection). The
error bars for each measurement of G represent the fluctuations in the measured
waveforms and the control voltage vc is varied in steps of 160± 2 mV.
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Figure 4.16: Pictorial representation of the cavity-feedback system model. The
model for the nonlinear circuit (NLC) drives the band-pass filter (BPF) model of the
external loop. The BPF output v(t) drives the delay-gain distribution (τi, gi), which
is summed at the input of the NLC.

tem model is approximately 17 ns ([τmin ∼ 4.5 ns] + [τloop ∼ 12.5 ns]) and the

maximum delay time through the entire feedback model is approximately 212.5

ns ([τmax = 200 ns] + [τloop ∼ 12.5 ns]), where τmin and τmax are approximately

the minimum and maximum time-delays in the model of the wave-chaotic cavity,

respectively.

The differential equations used to simulate the cavity-feedback system are listed

below. Absent from these equations, I have omitted the high-pass filter at the output

of the NLC because the band-pass filter in the external feedback loop accounts for

the ac-coupled output of the system (as done in Ref. [22]). Thus, the model for the

system is

vin(t) = G
i=N
∑

i=1

giv(t −τi), (4.15)

vF(t) = F(vin(t)) (4.16)

v̇LP, L(t) = 2π fLP, L[vF(t)− vLP, L(t)], (4.17)
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, (4.18)

vLP, A(t) = C3 x3(t) (4.19)

s(t) = tanh(M[vin(t) + vb − vT]), (4.20)

vs(t) =

�

1− s(t)
2

�

vLP, L(t) +

�

1+ s(t)
2

�

vLP, A(t), (4.21)

v̇(t)
∆
+ v(t) +

ω2
o

∆

∫ t

−∞
v(t ′)dt ′ = vs(t), (4.22)

where∆= 2π( f (+)− f (−)) andωo = 2π
Æ

f (+) f (−). Equations (4.15) - (4.22) repre-

sent the cumulative results of Ch. 4 thus far. It remains to examine the experimental

system from which the parameters of these equations are determined and the sub-

sequent dynamics and then compare the simulated results with the experimental

data.

4.3.1 Cavity-Feedback System Dynamics

In this subsection, a comparison is made between the quasiperiodic dynamics of the

experimental system and the model. The procedure for comparing the experiment

to the simulation involves three main steps. First, the gain of the experimental feed-

back loop is tuned so that the dynamics of the system bifurcate from steady state to

periodic and then to quasiperiodic. Using the gain, rather than the scatterer posi-

tion, as the system’s bifurcation parameter, gives control over the dynamics using a

scalar quantity G (as opposed to a changing delay-gain distribution). In addition,

because G is tuned slowly and in only one direction (increasing), the system does

not experience multi-stability.
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The second step involves switching the experimental system off and measuring

the pulse response of the cavity without disturbing it. The goal is to acquire a

waveform rout(t) that represents the exact delay-gain distribution that produced

the quasiperiodic dynamics. Lastly, the third step involves simulating Eqs. (4.15) -

(4.22) with the measured rout(t) using the gain G as its bifurcation parameter.

Experimental Dynamics

The experimental system exhibits steady-state dynamics v(t) ∼ 0 V for approxi-

mately G < 1. When G is then tuned successively from G ∼ 0.9 to G ∼ 2, the system

undergoes a Hopf and a torus bifurcation. As shown in Fig. 4.17, the temporal evo-

lutions of v(t) in the resulting periodic and quasiperiodic states are presented along

with their corresponding power spectral densities (PSDs). In Figs. 4.17a-b, the pe-

riodic time series for G ∼ 1.5 is sinusoidal at a Hopf frequency fH = 1.350± 10−3

GHz (error represents the resolution of the frequency spacing for the Fourier trans-

form magnitude). Interestingly, this frequency is far from the central frequency

fo = 0.8 GHz of the measured band-pass filter in the external feedback loop (in

typical band-pass filtered systems with time-delayed nonlinear feedback, the Hopf

frequency fH ∼ fo [29, 75, 78]). This means that the combination of the filtering

effects in the nonlinear circuit and from the various time-delays in the cavity cause

a large amount of frequency pulling, forcing the system to oscillate at a frequency

fH away from fo.

Because the initial Hopf frequency is pulled away from the center of the band-

pass filter, the torus frequencies are also shifted. As shown in Figs. 4.17c-d, the

quasiperiodic dynamics and PSD are plotted for G ∼ 2. The dynamics oscillate with

an amplitude modulation frequency fT = 0.293 ± 10−3 MHz and the PSD shows

prominent peaks at fT, fH and the mixing frequencies fH − fT = 1.055± 10−3 GHz
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Figure 4.17: Experimental cavity-feedback system dynamics. (a) Periodic time
series and (b) power spectral density (PSD) of v(t) for G ∼ 1.5. (c) Quasiperi-
odic time series and (d) PSD for G ∼ 2 In the experiment, the bias voltage in the
nonlinear circuit is vb = 0.9 V.

and fH + fT = 1.642± 10−3 GHz (errors represents the resolution of the frequency

spacing for the Fourier transform magnitude). This distribution of quasiperiodic

frequencies is qualitatively similar to the dynamics used for 2D position sensing in

Ch. 3.

Delay-Gain Distribution

With the quasiperiodic dynamics measured, the system is switched off and the pulse

response of the cavity is acquired for this configuration of the system (position of

the scatterer, temperature of the room, humidity of the room, etc.). The plot of the

measured rout(τi) = gi is shown in Fig. 4.18 for τ1 = 0 ns to τN = τmax = 200 ns.

Thus, it remains to simulate the cavity-feedback system with rout as the delay-gain

distribution of the model.
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Figure 4.18: Delay-gain distribution of the cavity-feedback system. The pulse
response gi = rout(τi) with τmax = 200 ns.

Simulated Dynamics

Beginning with G = 0.9 in Eqs. (4.15) - (4.21) of the model system, time series

are generated (using an Adams-Bashforth numerical integrator algorithm) as G is

increased to G = 2 such that the dynamics also exhibits Hopf and torus bifurcations.

The temporal evolutions and PSDs of the periodic simulated dynamics are shown

in Figs. 4.19a-b for G = 1.5. Similar to the experimental dynamics, the periodic

state is nearly sinusoidal and the Hopf frequency is fH = 1.36 GHz. The presence

of such large frequency pulling in the model is a good indication that the individual

models for the nonlinear circuit and delay-gain distribution correctly approximate

the experimental system.

Furthermore, the quasiperiodic state and PSD from the simulation are plotted

in Figs. 4.19c-d for G = 2. The temporal evolution of the dynamics is qualitatively

similar to the experiment and the PSD shows a torus frequency at fT = 292 MHz

with frequency mixing at fH − fT = 1.07 GHz and fH + fT = 1.65 GHz. These

frequencies represent the primary peaks of the simulated PSD (there are other peaks

that correspond to linear combinations of fT and fH). Thus, this distribution of

quasiperiodic frequencies is qualitatively similar to the experimental dynamics.

One possible reason for the differences between the simulated and experimen-
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Figure 4.19: Simulated cavity-feedback system dynamics. (a) Periodic time se-
ries and (b) power spectral density (PSD) of v(t) for G = 1.5. (c) Quasiperiodic
time series and (d) PSD for G = 2. The bias voltage in the model for the nonlinear
circuit is vb = 0.9 V.

tal quasiperiodic data can be attributed to the order of the filters in the model. As

shown in the simulated quasiperiodic time series and PSD, there are harmonics (of

fH and fT) that are not present in the experimental dynamics. Thus, the experimen-

tal system attenuates more frequencies than the simulation. Increasing the order

of the first-order low-pass filter in the nonlinear circuit model as well as the order

of the two-pole bandpass filter in the feedback loop is one option to try improv-

ing the model. However, higher-order filters add additional differential equations

to the simulations and may not necessarily be enough of an improvement to yield

more quantitative agreement. Rather than incease the model’s complexity to obtain

better agreement, I will show in the next chapter that a decrease in the model’s com-

plexity can provide a deeper insight into the origins of the system’s quasiperiodic

frequencies.
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4.4 Summary

In conclusion, the cavity-feedback system can be simulated using separately devel-

oped models: (i) a nonlinear circuit model comprised of a nonlinear function that

switches its output transfer function between two different low-pass filters, (ii) a

wave-chaotic cavity model comprised of set of time-delays with relative gain coef-

ficients, and (iii) an external feedback loop model comprised of a band-pass filter

with gain. Each of these three models contains parameters that are obtained from

experimental measurements. The main two components of the cavity-feedback sys-

tem model, (i) and (ii), are summarized separately below.

Summary of Modeling the Nonlinear Circuit

In this chapter, I examine the nonlinear circuit’s input-characteristics as a function

of the input driving frequency. For high enough input amplitudes, the circuit cre-

ates a tent-like nonlinear function between its input and output voltages. But, as

f increases (beyond ∼ 500 MHz), the amplitudes of the output signals decrease

and the phase delay through the circuit increases. Both of these characteristics are

typical of low-pass filtering effects at the output of the nonlinear circuit.

Then, in order to model these filtering effects, I measure separately the trans-

fer functions of the nonlinear circuit in its linear and anti-linear regimes. Using the

transfer function magnitudes of a first-order low-pass filter and a third-order Cheby-

shev filter, I fit these measurements and use the time-domain representations of the

transfer functions to create an approximately piecewise-linear model. Lastly, using

a model for a continuous switch and a high-pass filter to simulate the ac-coupled

output of the circuit, I fit the model’s output to the experimental high-frequency

distortions.
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Summary of Modeling the Wave-Chaotic Cavity

The wave-chaotic cavity can be modeled using a distribution of time-delays and

gain coefficients that are obtained using the pulse response of the cavity rout(t).

In the frequency domain, this representation of the model is a multiplication of the

cavity’s transfer function, and in the time domain, this is equivalent to a convolution

with rout(t). Due to the discrete nature of the digital sampling oscilloscope, this

convolution is actually a discrete sum.

Concluding Remarks

Overall, this chapter represents a methodology for deconstructing a complex ex-

perimental system into its essential components. The nonlinear circuit is the main

component of the system and therefore its model uses the most detail. Although it

is a transistor-based circuit, its main effects on the dynamics (including distortions)

can be approximated with a nonlinear function and filtering. In addition, because

the experimental system has a finite bandwidth associated with its electronics, the

effects of the wave-chaotic cavity can be approximated with a finite pulse response

as opposed to an infinitely sharp delta function. Lastly, each of the electronic com-

ponents in the external feedback loop are all approximately linear and therefore

can be treated as a lumped element in the model. The results of combining these

models demonstrate that the quasiperiodic dynamics of the experiment can be nu-

merically predicted (approximately) using a simulation. In the next chapter, rather

than continue with numerical modeling, I focus on the mathematical representation

of a simplified model for the cavity-feedback system to derive analytical expressions

for estimating the quasiperiodic frequencies fH and fT.
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Chapter 5

Predicting the Quasiperiodic Frequencies of
the Cavity-Feedback System

The goal for this chapter is to gain insight into the mechanisms that lead to the

quasiperiodic dynamics of cavity-feedback system. To do so, I develop a general

theory for its quasiperiodicity using a simplified, though representative, model of

the experimental setup. I simplify the full model of the cavity-feedback system from

Ch. 5 by replacing the nonlinear circuit (NLC) with a cubic nonlinear function and

by using a band-pass filter to describe the overall bandwidth of the system. Using

this simplified model, I apply a linear-stability analysis and use the separation of the

time scales to derive expressions for the frequencies at the onset of the Hopf and

torus bifurcations.

In addition, I derive new methods for estimating these frequencies without hav-

ing to access the quasiperiodic dynamics through simulations or experiments. These

new methods are investigated to provide: (i) an intuitive approach for understand-

ing the origins of the quasiperiodic frequencies and (ii) an approximation of the

frequency distribution for determining the required bandwidth of measurement de-

vices. As I will show in this chapter, my prediction methods can estimate the experi-

mental quasiperiodic frequencies in the cavity-feedback system to within ±20 MHz,

which is small in comparison to range of frequencies that are observed in Chs. 3-4

(0.2 GHz < f < 1.8 GHz).

However, the resolution of the quasiperiodic frequency predictions cannot pro-

vide estimates of the frequency shifts ∆ fT,H (∼ kHz changes) as the scatterer trans-

lates (investigated in Ch. 6). Although my 2D position-sensing method uses ∆ fT,H
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for imaging, the acquisition method for measuring these frequency shifts still re-

quires the initial values of fT,H as parameters of the numerical fit of the data (see

Ch. 3 and Appendix B). Thus, the results from this chapter also provide estimates

for the initial fitting parameters of the quasiperiodic data.

In order to help with the theory in this chapter, I switch my notation for the

frequency f to the angular frequency ω = 2π f and change from quasiperiodicity

frequencies fT and fH to the angular frequencies ΩT = 2π fT and ΩH = 2π fH. This

change accounts for the factors of 2π that arise throughout my derivations.

Lastly, several people contributed to the results that follow. Illing et al.’s work

on band-pass filters with time-delayed nonlinear feedback [32] and Chembo et al.’s

work on instabilities in OEOs [75] form the foundations for my linear stability anal-

ysis of the Hopf and torus bifurcations, respectively. Furthermore, communications

with Thomas Erneux provided insight into the separation of time scales analysis,

and Damien Rontani’s numerical simulations allowed for well-resolved bifurcation

diagrams to find the correct system parameters at the onset of quasiperiodicity and

for a fast implementation of the frequency estimation methods. Finally, my experi-

mental and theoretical results presented in this chapter are part of an investigation

that is currently ongoing.

5.1 Simplified Model of the Cavity-Feedback System

In Ch. 4, I demonstrate that quasiperiodicity in the cavity-feedback system can be

recovered using a model with three main components: (i) a nonlinear function with

low-pass filters (with transfer functions HLP, A,L( f )) to represent the NLC, (ii) a joint

delay-gain distribution (τi, gi)where i ∈ [1, N] for the wave-chaotic cavity, and (iii)

a band-pass filter (with transfer function HBP( f )) and gain to represent the exter-

137



nal feedback loop. To simplify this model, I choose to combine the net effects of

the low-pass filters from the NLC with the band-pass filter from the external feed-

back loop to create a unique band-pass-filter model that describes approximately

the bandwidth of the entire cavity-feedback system, where the new bandpass-filter

transfer function H ′BP reads

H ′BP(ω)∼ HLP, L,A(ω)HBP(ω). (5.1)

This assumes that the overall bandwidth of the feedback loop is approximately a

band-pass filter and that the changes in the NLC bandwidth from switching be-

tween HLP, L(ω) and HLP, A(ω) are not significant for predicting the quasiperiodic

frequencies of the system (see Appendix C for more details of this approximation).

Furthermore, to simplify the analytics in this chapter, I also approximate the

nonlinear function F(vin) with a third-order polynomial

F(vin) = α1(vin + vb)− [α2(vin + vb)]
3, (5.2)

where α1, and α2 are constant coefficients and where vb is a constant used to tune

the operating point of the nonlinearity (see Appendix C). Though these simplifica-

tions neglect aspects of the detailed model from Ch. 4, I show that the results from

this simplified model can be used to approximate the frequencies ΩT and ΩH in the

experimental system.

This simplified model is represented in Fig. 5.1a, where a band-pass filter out-

puts a time-evolving signal v(t) that is amplified by a gain G and split into N differ-

ent paths, each of which has a propagation delay τi and gain coefficient gi. All of

the outputs from the feedback loops are then summed before driving the nonlinear
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Figure 5.1: Band-pass filter with nonlinear feedback. (a) The output of a band–
pass filter v(t) is split among N time-delays, each with propagation delay τi and
gain coefficient gi. The delayed outputs of each feedback loop are summed and
amplified with linear gain G before passing through a nonlinearity (NL). The out-
put of the NL drives the band-pass filter, forming a closed loop feedback system. (b)
Cubic nonlinearity using the third-degree polynomial F(vin) with α1 = 1, α2 = 0.5
and vb = 0.

function, shown in Fig. 5.1b, to form the closed-loop feedback system.

The simplified model for the cavity-feedback system is described by the delay

differential equation (DDE) for a band-pass filter with nonlinear feedback [80] and

N time delays

v̇(t)
∆
+ v(t) +

ω2
o

∆

∫ t

−∞
v(t ′)dt ′ = F

�

G
N
∑

i=1

giv(t −τi)

�

, (5.3)

where∆=ω(+)−ω(−),ωo =
p

ω(+)ω(−), andω(+) (ω(−)) is the upper (lower) cutoff

frequency of the new band-pass filter. The sum over all delayed terms v(t−τi) with

gain coefficients gi allows for the interference of waves propagating through the

feedback. Though the model for the cavity feedback is more complicated when

compared to typical nonlinear feedback systems, it can easily be reduced to the

systems shown in Refs. [22, 81, 82] for the N = 1− 3 cases. Lastly, because each
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gi represents the loss of a path through the cavity, I limit the values of gi to the

physical case of −1< gi < 1 and
∑N

i=1 |gi| ≤ 1.

The typical approach to predict the dynamics of Eq. (5.3) involves measuring

the experimental parameters (ω(+), ω(−), G, gi, and τi) and then implementing a

numeric model, similar to the methods in Ch. 4. Rather than repeating such a

numerical analysis, I will instead use Eq. (5.3) as a starting point to predict ana-

lytically the frequencies ΩH and ΩT in the simplified model. Then, I will connect

my theoretical analysis to a measurement based on a closed-loop transfer function

derived from linear control theory [76] and demonstrate experimental methods for

obtaining parameters needed to evaluate the predictions. As I will show, because

this closed-loop transfer function is independent of the number of time delays in

the feedback loop, this approach is applicable to the cavity-feedback system which,

in reality, contains a continuum of time delays.

In the remainder of this chapter, I first discuss how I develop a method for pre-

dicting the Hopf bifurcation frequency ΩH and test it with simulations of the sim-

plified model with up to N = 10 time delays. There has already been extensive

research on the Hopf bifurcation in band-pass filtered systems with a single time

delay [32], and therefore a portion of this section reviews the literature on that

subject. Then, I examine the frequency ΩT of the torus bifurcation, which has only

been studied for the cases of one [83], two [84], and three [75] time-delays in opto-

electronic oscillators (OEOs). The analytical methods used in these references yield

equations that must be solved numerically. Instead of following this approach, I

provide new techniques for obtaining approximate predictions for ΩT and test them

with simulations of the simplified model with up to N = 10 time delays. Finally, I

apply my methods experimentally in systems with N = 1 and N = 2 time delays

as well as in the cavity-feedback system (N >> 10) to demonstrate the predictive
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power of my approach on real systems.

5.2 Predicting the Frequency of the Hopf Bifurcation

5.2.1 Linear Stability Analysis

The initial Hopf bifurcation for a band-pass filter with nonlinear feedback results

from an instability about its steady state, which gives rise to a limit cycle [32].

For the purposes of this analysis and without loss of generality, I set vb = 0 in the

cubic nonlinearity. Typically, predicting the frequency ΩH requires a linear stability

analysis of Eq. (5.3) about its steady state vs = 0 [32]. The linearized equation that

describes the evolution of a small perturbation δv about vs reads

δv̇(t)
∆
+δv(t) +

(ωo)2

∆

∫ t

−∞
δv(t ′)dt ′ = G

N
∑

i=1

biδv(t −τi), (5.4)

where bi = gi
dF
dv
|vs
= F ′(0)gi. In the next step, I assume a solution of the form

δv(t) = AeiΩH t , where A is a constant amplitude and ΩH is the frequency of the Hopf

bifurcation (for an illustration of this type of this type of Hopf bifurcation in a phase

space representation, see Appendix C). This simplifies Eq. (5.4) to

iΩH

∆
+ 1+

ω2
o

iΩH∆
− G

N
∑

i=1

bie
−iΩHτi = 0. (5.5)

To solve for ΩH, references such as [32] and [35] separate the real and imaginary

parts of Eq. (5.5) to yield coupled transcendental equations

G
N
∑

i=1

bicos(ΩHτi) = 1, (5.6)
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G
N
∑

i=1

bisin(ΩHτi) =
ω2

o −Ω
2
H

ΩH∆
. (5.7)

Because
∑N

i=1 |gi| ≤ 1, the condition |GF ′(0)| ≥ 1 must hold in order for Eq. (5.6)

to be satisfied. This will be important for later discussions. Given (τi, gi) as well as

∆ and ωo, Eqs. (5.6) and (5.7) can be solved numerically to predict the value of

ΩH at the initial Hopf bifurcation.

5.2.2 New Approach: Closed-Loop Transfer Function

Rather than taking this approach, which involves precise measurements of the sys-

tem’s parameters, I develop a new method to estimate ΩH that can be used in the

experimental system without having to measure (τi, gi) and implementing a nu-

merical computation. First, I focus on Eq. (5.5) and note that it is still valid if I take

the magnitude of both sides

�

�

�

�

�

iΩH

∆
+ 1+

ω2
o

iΩH∆
− G

N
∑

i=1

bie
−iΩHτi

�

�

�

�

�

= 0. (5.8)

Instead of solving the condition for which the left-hand-side of Eq. (5.8) is zero, I

am interested in solving when its inverse diverges

1

|iΩH/∆+ 1+ω2
o/(iΩH∆)− G

∑N
i=1 bie−iΩHτi |

→∞. (5.9)

Interestingly, Eq. (5.9) is equivalent to the magnitude of a closed-loop transfer

function that can be measured approximately in an experiment, where a closed-

loop transfer function Hclosed(ω) describes the frequency response of a system that

contains a closed feedback loop. In Fig. 5.2, I illustrate the differences between

a device with an open-loop and a closed-loop transfer function, each containing
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Figure 5.2: Measuring open-loop and closed-loop transfer functions of a band–
pass filter using a swept source and spectrum analyzer (SA). (a) Open-loop config-
uration for measuring (b) |Hopen(ω)| and (c) closed-loop configuration with time
delay τ and gain coefficient g = 0.3 for measuring (d) |Hclosed(ω)|.

a band-pass filter. In Figs. 5.2a-b, the magnitude of the open-loop transfer func-

tion |Hopen(ω)| is measured between its input and output using a sinusoidal signal

generator with automatic frequency sweep (swept source) and a spectrum analyzer.

In Fig. 5.2c, the band-pass filter output is fed back to its input. The closed-

loop transfer function of this system is only valid in the linear regime of the system

where the dynamics do not self-oscillate. For this example, the gain coefficient

g = 0.3 is chosen as the gain of the feedback loop (net loss is greater than net gain).

The closed-loop transfer function magnitude |Hclosed(ω)| in Fig. 5.2d now contains

resonant peaks that are spaced by approximately 1/τ, where τ is the time delay

of the closed loop. This type of closed-loop transfer function has been previously

measured to predict the side-mode resonant peaks of an OEO with two time delays

[81]. I will show that, in the cavity-feedback system, the resonances of the closed-

loop transfer function can be used to predict approximately ΩH and ΩT.
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Resonance Method for Predicting the Hopf Frequency

The general setup for the measurement of Eq. (5.9) is shown in Fig. 5.3a. Similar

to Fig. 5.2b, it uses a swept source that drives the feedback loop and a spectrum

analyzer to locate the closed-loop resonances. I refer to this prediction technique

as the resonance (R) method in the rest of this dissertation. The amplitude of the

injected signal vinj is small such that it probes the linear regime of F(vin) near F(0)

with an approximate linear gain equal to ∼ F ′(0). The ratio HR(ω) = ṽ/ṽinj is

equal to the closed-loop transfer function of the system, where ṽinj and ṽ are the

Fourier transforms of vinj and v, respectively. In a previously published work, I

have verified that this technique can predict the multimode spectrum of a band-pass

filtered nonlinear feedback system with a single time delay [85]. The magnitude of

HR(ω) from Fig. 5.3a is given by

|HR(ω)|=

�

�

�

�

�

ṽ

ṽin j

�

�

�

�

�

=
1

|iω/∆+ 1+ω2
o/(iω∆)− G

∑N
i=1 bie−iωτi |

, (5.10)

which is equivalent the left-hand-side of Eq. (5.9) for ω→ ΩH.

As mentioned earlier, this closed-loop transfer function is only valid where the

dynamics do not self-oscillate. I previously noted that the condition |GF ′(0)| ≥ 1 is

required in order for the system to exhibit a Hopf bifurcation. To suppress the limit

cycle, I can always tune G to a value such that |GF ′(0)|< 1. Thus, when measuring

|HR(ω)|, the system never self-oscillates and always relaxes back to its stable fixed

point at v= vs = 0.

However, because this technique can only be applied when |GF ′(0)| < 1, ΩH,R

yields only an approximation for ΩH. To illustrate this issue, I present a typical

simulated bifurcation diagram of the dynamics with the Hopf and torus bifurcations
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Figure 5.3: Implementing the resonance method. (a) General setup for mea-
suring the magnitude of HR(ω). (b) Bifurcation diagram illustrating the Hopf and
torus bifurcation points with respect to the gain G. (c) HR(ω) for G = 0.9 (red),
G = 0.95 (green), and G = 0.99 (blue). In each of these three cases, the global
maximum occurs at approximately the same frequency labeled by ΩH,R.

of the simplified model with N = 1 time delays in Fig. 5.3b (similar to Figs. 2.5 and

2.8). In this case F ′(0) = 1 and the bifurcation tuning parameter is G. As shown

in the figure, the Hopf bifurcation point occurs for |G| > 1. Beyond this point, the

system self-oscillates. To implement the resonance method, the closed-loop transfer
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function magnitude |HR(ω)| of the system is measured for G = 0.9 in Fig. 5.3c. The

largest peak in |HR(ω)| is labeled as ΩH, R, which is an estimation of the solution

for ΩH in Eq. (5.8). The assumption of this method is that this peak remains a

global maximum as G is tuned up to and beyond the Hopf bifurcation point. To

support this assumption, I also plot |HR(ω)| when the gain is tuned to G = 0.95 and

G = 0.99 in Fig 5.3c. In both additional cases, the heights of the transfer function

peaks scale together and the global maximum remains the same. As I will now show,

this approximation can estimate ΩH for most cases (there are a few cases where this

assumption is not true and the global maximum changes when G is arbitrarily close

to the bifurcation point and these cases are discussed in detail later).

To illustrate how this measurement can estimate ΩH, I first examine two simple

numerical examples. In Figs. 5.4a-b, I plot |HR(ω)| for a given (τi, gi) in the N =

1 and N = 2 cases, respectively. In Figs. 5.4a-b, resonant peaks are spaced by

approximately 1/τmax, where τmax = max(τi) for i ∈ [1, N] (experimentally, I note

that, as τmax becomes large, the resolution of the resonance sweep is a limiting factor

in this method). Typically, as the gain of the feedback is increased, the heights of

these peaks grow, and, when the system bifurcates, the frequency resonance with

the highest gain is equal toΩH. Subsequently, in each plot, the location of the largest

peak is labeled as the estimate ΩH,R.

To test the predictions made using |HR(ω)|, I integrate numerically the solutions

of Eq. (6.3) and increase G until the first Hopf bifurcation. In Figs. 5.4c-d, I plot

the PSDs of the N = 1 and N = 2 cases after the Hopf bifurcation, respectively,

labeling ΩH as the largest peak in each spectrum. For the N = 1 (N = 2) the

predicted ΩH,R = 8.872 (8.891) rad/ns for ΩH = 8.870 (8.884) rad/ns. Thus, the

R method yields predictions with agreement to within ±10−2 rad/ns in these two

simple examples.
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Figure 5.4: Predicting the first Hopf bifurcation frequency using the resonance
method. (a) Simulated |HR(ω)| for the simplest case of N = 1 with parameters
ω(+) = 10.7 rad/ns, ω(−) = 8.2 rad/ns, G = 0.9, g1 = 1, and τ1 = 5 ns. (b)
Simulated |HR(ω)| for the case of N = 2 with parameters ω(+) = 10.7 rad/ns,
ω(−) = 8.2 rad/ns, G = 0.9, g1 = 0.2, g2 = 0.3, τ1 = 5 ns, and τ2 = 12 ns. Power
spectral density (PSD) of the periodic solutions to Eq. (6.3) when the gain is tuned
up to G = 1.45 for the (c) N=1 case and G = 2.6 for the (d) N = 2 case.

To test the R method in more complicated examples (N > 2), I perform sys-

tematic analyses for N ranging from 2 to 10. For each N , I simulate the system’s

bifurcation diagram 5 times, each with different (τi, gi). For each case, I determine

ΩH and ΩH,R (using G = 0.95), and in Fig. 5.5, I plot the mean µ(N) and standard

deviation σ(N) of the difference (ΩH − ΩH,R) as a function of N . Based on these

simulations, I observe that |µ(N)|< 0.5 rad/ns and |σ(N)|< 1 rad/ns for all N .

For the N = 4 cases, σ(N = 4) and µ(N = 4) are larger in comparison to all

other cases. This is because my calculations assume that the global maximum of

|ΩH,R| with G = 0.95 remains the global maximum as G is tuned beyond the Hopf

bifurcation point. However, as detailed in Appendix C, this assumption can be false

such that a nearby local maxima rises above my estimation when G is tuned slightly
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Figure 5.5: Resonance sweep method for dynamical systems with multiple
time-delays. For each simulation with N = 2 to N = 10 feedback loops, τi
and gi are sampled from uniform distributions such that 5 ns < τi <50 ns and
−1 < gi < 1. Once the gains are chosen, they are the renormalized using the
condition

∑N
i=1 |gi| = 1. The bandwidth parameters are chosen to be ω(+) = 9.4

and ω(−) = 6.3. When implementing the R method, G = 0.95. The predictions
are tested by calculating the mean µ(N) (blue dots) and standard deviation σ(N)
(error bars) of (ΩH −ΩH,R) for each N .

above 0.95 while still below the Hopf bifurcation point. Thus, the limitations on the

predictive power of this method are demonstrated by the N = 4 cases. However,

even with this special case, Fig.5.5 demonstrates that the resonance method can be

used to estimate ΩH.

Lastly, I note that band-pass filtered systems with time-delayed nonlinear feed-

back can experience multi-stability and that this method is developed for predicting

approximately ΩH as G is increased monotonically. In the next section, I develop

and use a similar technique for predicting the frequencies of the subsequent torus

bifurcation.

5.3 Predicting the Frequency of the Torus Bifurcation

Recently, Chembo et al. [75] developed an analytical theory for predicting the in-

stability of a microwave OEO in its periodic regime. Their results show that, for an

148



OEO with one time delay τ, a torus bifurcation occurs for large enough feedback

gain G. The torus frequencyΩT is mixed with the original Hopf frequencyΩH so that

the quasiperiodic frequencies present in the dynamics of v(t) are ΩH, ΩH+ΩT, and

ΩH −ΩT. Using their theory for an OEO with N = 1, ΩT is predicted to be ∼ π/τ.

Their analytical theory serves as the primary motivation of my methods to predict

ΩT in a feedback system with N time delays and gains (τi, gi).

In Ref. [75], an equation is derived to describe the slowly modulated amplitude

of the periodic oscillations. This so-called amplitude equation governs the dynamics

of the amplitude and can be used to perform an additional linear stability analysis to

solve for the conditions of the torus bifurcation. In this section, I introduce a similar

amplitude equation for my system with N time delays and analyze its steady-state

properties. Then, with a linear stability analysis of that equation, I repeat the steps

from the previous section for finding the conditions of the bifurcation and estimating

the frequency ΩT.

5.3.1 The Amplitude Equation

As shown in the previous section, after the initial Hopf bifurcation, the periodic

dynamics of the system can be approximately modeled by v(t) = 1
2
A(eiΩH t + e−iΩH t),

where A is the amplitude of oscillations. As the gain of the feedback is increased,

a second Hopf bifurcation occurs in the amplitude A, and the dynamical state of

the system takes on the form v(t) ∼ 1
2
A(t)(eiΩH t + e−iΩH t), where A(t) is the slowly

varying amplitude. To simplify the analysis, I assume that ΩH ∼ωo, similar to Ref.

[75]. Then, using a separation of time-scales between A(t) and e±iωo t and assuming
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ωo >∆, the dynamical equation for A(t) can be approximated by

Ȧ(t) =
∆

2

�

F

�

G
N
∑

i=1

giA(t −τi)

�

− A(t)

�

, (5.11)

which is the system’s amplitude equation (the details of its derivation and a simple

example of the amplitude dynamics can be found in Appendix C). I note that Eq.

(5.11) models a low-pass filter with time-delayed nonlinear feedback, similar to the

well-known Ikeda system [36]. The low-pass cutoff frequency for the amplitude

equation is ∆/2, which is half of the bandwidth of the band-pass filter used in Eq.

(5.3).

Using the amplitude equation, the torus bifurcation can be approximated as a

second Hopf bifurcation of the amplitude A (see Appendix C). To analyze the Hopf

bifurcation in the amplitude A(t) (to quasiperiodicity in v(t)), I perform a linear

stability analysis on the amplitude equation about its steady state As that satisfies

F(ḠAs) = As, (5.12)

where Ḡ = G
∑N

i=1 gi. Given the simplified form of F(vin) with α1 = 1, α2 = 1/2,

and vb = 0, the solution for the steady state amplitude as a function of Ḡ reduces

to the analytical form

As = ±

p

Ḡ − 1

(1
2
Ḡ)3/2

, (5.13)

which is consistent with the scaling of a supercritical Hopf bifurcation [23]. To help

visualize the solution As, I plot in Fig. 5.6 the functions y1 = F(ḠA) as well as y2 = A,

where F(ḠA) is plotted for two different values of Ḡ. For |Ḡ|< 1, the only solution

is As = 0, however, for large enough |Ḡ|, a new solution appears; it represents the

steady state amplitude As of the limit cycle after the first Hopf bifurcation. The value
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Figure 5.6: Steady-state solutions of the amplitude equation. (a) Intersections
of the curve y1 = F(ḠA) (blue for Ḡ = 0.9 and green for Ḡ = 1.5) and y2 = A
(dotted line) give the steady state solution As for a stable limit cycle of the system.

of As with regards to the nonlinearity F(ḠAs) is important for my methods and will

be used in subsequent sections.

5.3.2 Linear Stability Analysis

The linearization of the amplitude equation about A= As yields the dynamical equa-

tion for a perturbation δA

δȦ(t) =
∆

2

�

G
N
∑

i=1

diδA(t −τi)−δA(t)

�

, (5.14)

where di = F ′(ḠAs)gi are constants (see Appendix C for the derivation of Eq. (5.14)).

To investigate the stability of the amplitude equation and solve for ΩT, I assume a

solution of the form δA(t) = BeiΩT t (for an illustration of this type of this type of

torus bifurcation in a phase space representation, see Appendix C) and simplify Eq.
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(5.14) to
2iΩT

∆
+ 1+ G

N
∑

i=1

die
−iΩTτi = 0. (5.15)

Similar to Eq. (5.5), this equation is solved by separating its real and imaginary

parts to find the transcendental equations based on G, di, τi, and ∆

G
N
∑

i=1

dicos(ΩTτi) = 1, (5.16)

G
N
∑

i=1

disin(ΩTτi) =
2ΩT

∆
. (5.17)

In order for Eq. (5.16) to be satisfied, the condition |GF ′[ḠA∗s]| ≥ 1 is necessary,

where A∗s is the critical amplitude at the onset of the torus bifurcation. Typically,

using such constraints, ΩT is obtained by solving numerically Eqs. (5.16) and (5.17)

given the system’s parameters [32].

5.3.3 Closed-Loop Transfer Function

Instead, I repeat the procedure from Section 5.2 and construct a transfer function

HA(ω) whose magnitude diverges at the solutions to Eq. (5.15)

|HA(ω)|=
1

|2iω/∆+ 1− G
∑N

i=1 die−iωτi |
. (5.18)

Note that this transfer function is similar to Eq. (5.10), except that now the de-

pendence on ωo has been removed. This shifts the resonances of |HA(ω)| near the

base-band frequencies of the system (ω ∼ 0). The value of ΩT is estimated using

the frequency of the global maxima of |HA(ω)|. To test this method, I examine the

two cases of a band-pass filter with time-delayed nonlinear feedback with N = 1
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and N = 2 delays and gains discussed in the previous section, where I tune G such

that the conditions |GF ′(0)| < 1 and |GF ′(ḠA∗s)| < 1 are satisfied and the system

does not self oscillate.

Similar to |HR(ω)|, the global maxima of |HA(ω)| represents an estimation for

the ΩT in Eq. (5.15). However, this estimation is different because the torus bifur-

cation point is located beyond the Hopf bifurcation point, as demonstrated in Fig.

5.3b. Therefore, |HA(ω)| is always measured at a gain G ∼ 0.9 that is far away from

the torus bifurcation point (as opposed to the |HR(ω)|, which can be measured ar-

bitrarily close to the Hopf bifurcation point). In addition, using |HA(ω)| to estimate

ΩT assumes that its global maximum at G ∼ 0.9 remains a global maximum for G

tuned to the torus bifurcation. To support this assumption, I plot |HA(ω)| as G is

tuned to higher values in Fig. 5.7. The location of global maximum in the figure

stays at approximately the same frequency (labeled ΩT,A) for 0.9 < G < 0.99, and

beyond this value I assume that continues to scale in a similar fashion (similar to

the resonance method, this assumption can fail and is discussed in detail later).
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Figure 5.7: Scaling of the closed-loop transfer function magnitude for the am-
plitude equation. (a) HA(ω) for G = 0.9 (blue), G = 0.95 (green), and G = 0.99
(black). In each of these three cases, the global maximum occurs at approximately
the same frequency labeled by ΩT,A.
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Figure 5.8: Predicting the torus bifurcation frequencies using the closed-loop
transfer function of the amplitude equation. (a) Simulated |HA(ω)| for the case of
N = 1 with parametersω(+) = 10.7 rad /ns,ω(−) = 8.2 rad/ns, G = 0.9, g1 = 1, and
τ1 = 5. (b) Simulated |HA(ω)| for the case of N = 2 with parameters ω(+) = 10.7
rad/ns, ω(−) = 8.2 rad/ns, G = 0.9, g1 = 0.2, g2 = 0.3, and τ1 = 5, and τ2 = 12.
PSD of the quasiperiodic solutions to Eq. (6.3) when the gain is tuned up to G = 2.4
for the (c) N = 1 case and G = 4.8 for the (d) N = 2 case.

To test this new closed-loop transfer function, I examine |HA(ω)| for the N = 1

and N = 2 cases. In Figs. 5.8a-b, I label the frequency at which |HA(ω)| is a

maximum as ΩT,A. In Figs. 5.8c-d, I also plot the PSDs of v(t) after the system

has undergone a torus bifurcation and label the corresponding frequencies ΩH and

ΩH ±ΩT. In the N = 1 (N = 2) case, the predicted torus frequency is ΩT,A = 0.547

(0.528) rad/ns and the observed torus frequency is ΩT = 0.542 (0.534) rad/ns.

Thus, in these cases, |HA(ω)| can be used to estimate ΩT to within ±0.006 rad/ns.

However, from an experimental point-of-view, it is difficult to measure directly

|HA(ω)| because it is the closed-loop transfer function for a low-pass filter that de-

scribes the spectrum of the amplitude equation; this low-pass filter does not actually

exist in the experiment. However, I have developed two methods for recovering the
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key parameters in |HA(ω)|.

Method I: Amplitude Modulation

The first method for recovering |HA(ω)| is similar to that in Fig. 5.3a except that

the swept source that produces vinj must be exchanged for an amplitude modulated

waveform, as shown in Fig. 5.9a. The modulated waveform with carrier frequency

ΩH and modulation frequency ω reads

vout =
1

2
(Ao +min)(e

iΩH t + e−iΩH t), (5.19)

with

minj = Bin(e
iωt + e−iωt). (5.20)

Similar to Fig. 5.3a, the signal vin drives the closed loop to produce an output signal

v∼
1

2
(Ao +mout)(e

iΩH t + e−iΩH t), (5.21)

with

mout = Bout(e
iωt + e−iωt). (5.22)

Example plots of the amplitude modulations for vinj and v are shown in Fig. 5.9b.

Based on the addition of the amplitude modulation source, I refer to this technique

as the amplitude modulation (AM) method.

Similar to the R method, the AM method works only if the system does not

self-oscillate, and therefore the constraints |GF ′(0)| < 1 and |F ′(ḠA∗s)| < 1 must

be both satisfied. In addition, to access the part of F(vin) that is associated with

A∗s, the condition F ′(ḠA∗s) < 0 must also be satisfied. However, without precise
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Figure 5.9: Amplitude modulation method for predicting the torus frequencies.
(a) AM source produces an amplitude modulated waveform vinj at carrier frequency
ΩH and tunable modulation frequency ω. (b) Typical modulation amplitudes in vinj
and v from the system with linearized feedback about Ao. The modulation ampli-
tudes Binj and Bout are labeled with vertical bars. Closed-loop transfer functions for
the amplitude equation using Ao = 2, Binj = 0.05, G = 0.9 for the previous (c) N = 1
and (d) N = 2 cases. Note that each point in these plots is the result of a separate
simulation.
0.0

measurements of (τi, gi), I can only estimate A∗s using a constant Ao in its place.

Thus, in order to probe the closed-loop transfer function of the amplitude equation,

I choose G = 0.9 and Ao = 2 such that these constraints are satisfied.

Continuing with the derivation of the AM method, an approximation to |HA(ω)|

is given by

|HAM(ω)|= |Bout|/|Binj|, (5.23)

where Binj and Bout are the injected and output modulation amplitudes, respectively.

Plots of |HAM(ω)| used in the simple examples for the N = 1 and N = 2 cases are
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shown Figs. 5.9d-e. There are visible similarities between the plots of |HAM(ω)| and

|HA(ω)| in 5.9d-e in Figs. 5.8a-b. The frequency at which |HAM(ω)| has a maximum

is labeled as ΩT, AM = 0.534 (0.534) rad/ns for the N = 1 (N = 2) case, which is

within ±0.008 rad/ns of the observed value. For the application of this method in

more complicated examples (N > 2), refer to the end of this section.

Method II: Shifted Resonances

The second method for approximating |HA(ω)| also uses a similar setup to the one

shown in Fig. 5.3a except that vb tuned to a value ∼ ḠAo. In this configuration,

I measure the resonances of the feedback system when the nonlinearity is biased

such that now the linear gain is now dictated by F ′(ḠAo) (as opposed to F ′(0)). As

a result, I substitute bi = F ′(0)gi for ci = F ′(ḠAo)gi in the transfer function HR(ω),

which causes the resonances shift because bi and ci are of opposite sign. Therefore,

I refer to this technique as the shifted resonance method (SR method).

The magnitude of the SR closed-loop transfer function is

|HSR(ω)| ∼
1

|iω/∆+ 1+ω2
o/(iω∆)− G

∑N
i=1 cie

−iωτ
i |

. (5.24)

The magnitude of |HSR(ω)| peaks at either ω = ΩH − ΩT or ω = ΩH + ΩT. Simi-

lar to the AM method, given the value of ΩH either from observation of the Hopf

bifurcation or from a prior prediction, I can predict the approximate value of ΩT.

To demonstrate simple examples, the shifted resonances of |HSR(ω)| are plotted

in Figs. 5.10a-b for N = 1 and N = 2 cases, respectively. The frequency at which

|HSR(ω)| has a maximum is labeled as either ΩH−ΩT,SR or ΩH+ΩT,SR depending on

its location relative to ΩH. To test these estimates, I plot the PSDs for v(t) after the

torus bifurcation in Figs. 5.10c-d. As demonstrated by these two examples, the SR
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Figure 5.10: Shifted resonance method for predicting the torus frequencies.
(a) Simulated |HSR(ω)| for the case of N = 1 with parameters ω(+) = 10.7 rad/ns,
ω(−) = 8.2 rad/ns, G = 0.9, g1 = 1, and τ1 = 5. (b) Simulated |HSR(ω)| for the
case of N = 2 with parameters ω(+) = 10.7 rad/ns, ω(−) = 8.2 rad/ns, G = 0.9,
g1 = 0.2, g2 = 0.3, τ1 = 5 ns, and τ2 = 12 ns. (c)-(d) Repeat of Figs. 5.8c-d.

method predicts ΩT,SR = 0.542 (0.533) rad/ns for N = 1 (N = 2) which is within

±0.001 rad/ns of the observed value.

To understand the predictive power of the SR method, I examine

|HSR(ω±ΩH)|=
1

|i(ω±ΩH)/∆+ 1+ω2
o/(i(ω±ΩH)∆)− G

∑N
i=1 cie−i(ω±ΩH)τi |

.

(5.25)

First, I note that |HR(ω)| has a global maximum at ω= ΩH, which is the frequency

at which the denominator of Eq. (5.10) is minimum. Thus, I approximate ΩHτi ∼

2Miπ, where Mi is an integer, and simplify e−i(ω±ΩH)τi ∼ e−iωτi . Next, I note that the

transformationω→ω±ΩH shifts all of the relevant peaks of |HSR(ω±ΩH)| near the

baseband of the amplitude equation (ω∼ 0). Therefore, to simplify |HSR(ω±ΩH)|,

I Taylor-series expand the term ω2
o/(i(ω±ΩH)∆) in the denominator of Eq. (5.25)
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about ω= 0, keeping only the first-order terms in ω

ω2
o

i(ω±ΩH)∆
∼
ω2

o

i∆

�

±1

ΩH
−
ω

Ω2
H

�

. (5.26)

I substitute this approximation into |HSR(ω±ΩH)| along with the approximations

that ΩH ∼ωo and ci ∼ di and simplify Eq. (5.25) to

|HSR(ω±ΩH)| ∼
1

|2iω/∆+ 1− G
∑N

i=1 die−iωτi |
, (5.27)

which is equal to the definition for |HA(ω)|. Therefore, due to the symmetry of

|HA(ω)| about ω = 0, |HSR(ω ± ΩH)| has a global maxima at either ω = ΩT or

ω = −ΩT. Or, in other words, |HSR(ω)| has a global maxima at ω = ΩH + ΩT or

ω= ΩH −ΩT.

AM and SR methods for N > 2

Similar to the previous section, I now test the AM and SR methods for more com-

plicated examples (N > 2). I perform multiple simulations for a given N with ran-

domly assigned τi and gi. In Figs. 5.11, I show the results of the two methods for

N = 2 to N = 10. For each N , I simulate the system’s bifurcation diagram 5 times,

each with different (τi, gi). For each case, I calculate ΩT, ΩT,AM, and ΩT,SR. In the

figures, I plot the mean µ and standard deviation σ of the differences (ΩT −ΩT,AM)

and (ΩT − ΩT,SR) as a function of N . Based on these simulations, I observe that

|µ(N)| < 0.55 rad/ns and |σ(N)| < 1.1 rad/ns for all N . Similar to the N = 4 case

in Fig. 5.5, for the N = 10 case in Fig. 5.11, σ(N = 10) and µ(N = 10) are larger

in comparison to all other cases. Details of this case are provided in Appendix C.

However, even with this special case, Fig.5.11 demonstrates that these two method

159



(r
ad

/n
s)

Ω
T
 -

 Ω
T

,A
M

Ω
T
 -

 Ω
T

,S
R

0

1

-1

(r
ad

/n
s)

0

1

-1

N
2 6 10

(a)

(b)

4 8

Figure 5.11: Amplitude modulation and shifted resonance methods for deter-
mining the torus frequency in cases with multiple delays. For each simulation
with N = 2 to N = 10 feedback loops, τi and gi are sampled from uniform distri-
butions such that 5 ns < τi < 50 ns and −1 < gi < 1. The chosen gains gi are
the renormalized using the condition

∑N
i=1 |gi|= 1. The bandwidth parameters are

chosen to beω(+) = 9.4 rad/ns andω(−) = 6.3 rad/ns. The predictions are tested by
calculating the torus frequency ΩT from the simulated dynamics. The results from
the AM method are shown in (a) using G = 0.95, Ao = 2 and Binj = 0.05, and the
results from the SR method are shown in (b) using G = 0.95. The predictions are
tested by calculating the mean µ(N) (blue dots) and standard deviationσ(N) (error
bars) of (ΩT−ΩT,AM) and (ΩT−ΩT,SR) for each N . Note that AM and SR methods use
ΩH in the predictions of ΩT,AM and ΩT,SR. Using ΩH,R increases the prediction errors.

can be used to estimate ΩT.

In summary, I have shown that the frequencies associated with torus bifurcations

can be estimated using the AM and SR methods, where the results demonstrate that

the two methods have similar errors. From an experimental point-of-view, the SR

method is easier to implement because it requires fewer signal sources. In addition,

the AM method requires a signal that folds through the nonlinearity, which requires

the signal sources produce a signal with a large enough amplitude Ao, whereas the

SR can be implemented with relatively small amplitudes. However, regardless of

the required equipment, both methods are valid for experimental testing.
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5.4 Experimental Tests of the Prediction Methods

In this section, I test experimentally the R, AM, and SR methods for predicting the

frequencies associated with the Hopf and torus bifurcations. First, I apply methods

to band-pass filtered systems with time-delayed nonlinear feedback with N = 1 and

N = 2 delays, and then I use a similar experimental setup from Ch. 4 to test these

methods in the cavity-feedback system.

The setup for each experimental configuration is shown in Fig. 5.12, where a

power splitter (PS) allows for the swept source (SS) to inject vinj in the the feedback

loops and the output v is measured on a spectrum analyzer via a directional coupler.

In Fig. 5.12a, the experimental setup is similar to the feedback system presented in

Ch. 2. In Fig. 5.12b, a new experimental setup is introduced that uses a additional

powers splitters and amplifiers to split the output of the system between two distinct

feedback loops before recombining them with a second power splitter.

The results of the R, SR, and AM predictions for the N = 1 and N = 2 cases

are shown in Fig. 5.13a and Fig. 5.13b, respectively. For the N = 1 case in

Fig. 5.13a, the R and SR methods predict that ΩH,R = 5.001 ± 0.025 rad/ns and

ΩT,SR = 0.189±0.025 rad/ns (errors for the H and SR methods represent the resolu-

tion of the experimental frequency sweeps), which is calculated using the predicted

valueΩH,R. These two methods are plotted together to highlight the shifts in the res-

onances. In Fig. 5.13b, the AM method predicts that ΩT,AM = 0.160± 0.002 rad/ns

(errors for the AM method represents the resolution of the experimental frequency

sweep). As shown in Fig. 5.13c, the N = 1 dynamics exhibit quasiperiodic frequen-

cies at ΩH = 5.006±0.003 rad/ns and ΩT = 0.198±0.003 rad/ns (errors represent

the frequency resolution of the Fourier transform of the quasiperiodic time series).

For the N = 2 case, the results of the R and SR closed-loop transfer predict
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Figure 5.12: Experimental setups for measuring the closed-loop transfer func-
tions in the (a) single-loop feedback system (N = 1), (b) dual loop feedback system
(N = 2), and (c) cavity-feedback system (N > 10). In the setups, the following com-
ponents are used: band-pass filter (BPF, Mini-Circuits ZBFV-925+), low-pass filter
(LPF, Mini-Circuits ZBFV-925+ and Mini-Circuits ZBFV-925+), amplifier A1 (Mini–
Circuits ZX60-3016E+), amplifier A2 ( Mini-Circuits ZX60-3016E+), amplifier A3
(Mini-Circuits ZX60-4018G+ and Picosecond Pulse Labs 5828-108), directional
coupler (dir-c, Mini-Circuits ZX30-9-4+), power splitters PS1 and PS2 (PS, Picosec-
ond Pulse Labs 5331-104), power splitter PS2 (Mini-Circuits ZFRSC-42+), variable
attenuator (VA, Mini-Circuits ZX73-2500+), swept source (SS, Agilent E8267D),
and a spectrum analyzer (SA, Agilent E4440A). In the AM method, a second source
(Tektronix AFG 3251) and a mixer (Mini-Circuits ADEX-10L) is used for the modu-
lation.
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Figure 5.13: Experimental tests of the prediction methods in systems with one
and two feedback loops. The N = 1 and N = 2 cases for (a) the resonance (R) and
shifted resonance (SR) method, (b) the amplitude modulation (AM) method, and
(c) the quasiperiodic frequency spectra of the experiments for the N = 1 and N = 2
cases after their respective Torus bifurcations. In all of the plots, the relevant ΩH,
ΩT, and linear combinations are labeled. The frequency resolution in (a) is 0.025
rad/ns for N =1 and 0.016 rad/ns for N =2, in (b) is 0.002 rad/ns for N=1 and
0.003 rad/ns for N= 2, and in (c) is 0.003 rad/ns for N=1 and N=2. The error bars
in (a) indicate the accuracy ±0.4 dBm of the spectrum analyzer and in (b) indicate
the standard deviation in |HAM(ω)| for a given ω.
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that ΩH,R = 5.186 ± 0.016 rad/ns and ΩT,SR = 0.156 ± 0.016 rad/ns, and the AM

method predicts that ΩT,AM = 0.145± 0.003 rad/ns. To compare these results, the

quasiperiodic frequency spectrum for the N=2 case shows that ΩH = 5.155±0.003

rad/ns and ΩT = 0.133± 0.003 rad/ns. Therefore, in the N=1 and N=2 cases, the

R, SR, and AM methods can predict ΩH to within ∼ 0.03 rad/ns and ΩT to within

∼ 0.04 rad/ns.

In the N = 1 and N = 2 experimental tests, the errors of the methods for es-

timating ΩH and ΩT are on the same orders of magnitude (∼ 0.03 rad/ns). This

is different from the simulated cases for N = 1 and N = 2, where the errors of

the methods scale with the estimated frequencies (simulated ΩH errors are ∼ 10−2

rad/ns and simulated are ΩT errors ∼ 10−3 rad/ns for the N=1 and N=2 cases).

Thus, experimental noise limits the predictive power of these methods in real sys-

tems such that the errors are∼ 5% of the meanΩH, and becauseΩT < ΩH, the errors

are ∼ 25% of the mean ΩT. Increasing the SNR of the system using more shielding

and more resolved frequency sweeps may help to match the error scaling of the

experiment with that of the simulation. In addition, Agilent Technologies recently

introduced a nonlinear network analyzer (N5241A, cost ∼ $80,000), which can

analyze the frequencies generated by a nonlinear circuit using a frequency sweep,

and this analyzer may improve the accuracy of the AM method.

Lastly, I test the frequency prediction methods using the cavity-feedback system

for a fixed scatterer position. As shown in Fig. 5.12c, an additional power splitter is

placed in the external feedback loop to allow for vinj from the swept source. Similar

to the N = 1 and N = 2 cases, the output voltage v is measured on a spectrum

analyzer using a directional coupler.

The results of the predictions and experimental quasiperiodic spectrum of the

cavity-feedback system are shown in Fig. 5.14. In Fig. 5.14a, the R and SR methods
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Figure 5.14: Experimental tests of the prediction methods in the cavity-feed-
back system. (a) The resonance (R) and shifted resonance (SR) methods, (b) the
amplitude modulation (AM) method, and (c) the frequency spectrum of the exper-
iment after the Torus bifurcation. In all of the plots, the relevant ΩH, ΩT, predic-
tions, and linear combinations are labeled. The frequency resolution in (a) is 0.018
rad/ns, in (b) is 0.002 rad/ns, and in (c) is 0.002 rad/ns. The error bars in (a)
indicate the accuracy ±0.4 dBm of the spectrum analyzer and in (b) indicate the
standard deviation in |HAM(ω)| for a given ω.
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predict that ΩH,R = 1.837± 0.018 rad/ns and ΩT,SR = 0.070± 0.018 rad/ns, and in

Fig. 5.14b, the AM method predicts that ΩT,AM = 0.112±0.002 rad/ns. As shown in

Fig. 5.14c, the quasiperiodic dynamics show frequenciesΩH = 1.850±0.002 rad/ns

and ΩT = 0.103 ± 0.002 rad/ns. Therefore, for this scatterer position, the R, SR,

and AM methods can predict the Hopf frequency to within ∼ 0.013 rad/ns (∼ 1%

of ΩH) and the torus frequency to within ∼ 0.033 rad/ns (∼ 30% of ΩT, which is

consistent with the N = 1 and N = 2 results for the experimental cases).

5.5 Summary

Throughout this chapter, I apply three frequency-estimation techniques: (i) the

resonance (R) method, (ii) the amplitude modulation (AM) method, and (iii) the

shifted resonance (SR) method in both simulations and experiments. Using simu-

lations with up to N = 10 feedback loops, these methods estimate, on average, ΩH

to within ∼ 0.05 rad/ns and ΩT to within ∼ 0.11 rad/ns, where the bandwidth of

the simulated system is approximately 3 rad/ns. In addition, I apply these methods

experimentally using single and dual-loop systems and the cavity-feedback system,

demonstrating average predictions of ΩH to within ±0.02 rad/ns and ΩT to within

∼ 0.04 rad/ns, where the experimental bandwidths range between approximately 1

rad/ns and 6 rad/ns depending on the configuration. These experiments, which are

only approximations to true band-pass filtered systems, highlight the flexibility of

my prediction methods and confirm the validity of my original approximations. To

the best of my knowledge, these are the first methods for estimating the frequencies

of quasiperiodicity using closed-loop transfer functions. In principle, the derivations

for these methods should be applicable to any number of feedback loops.

Furthermore, it is important to acknowledge that many experimental systems
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can be classified as band-pass filters with nonlinear feedback, particularly OEOs

[29]. Therefore, the results using my simplified model can be applied to OEOs

with a similar nonlinearity. Because my methods are independent of most of the

system parameters, I conjecture that they will help to improve the growing field

of OEO applications, particularly in OEO systems with fiber Bragg gratings [86]

or microresonators [87]. These results may also be useful for developing other

applications that exploit quasiperiodic frequencies for sensing and imaging [21].

The results of this chapter show that, using certain experimental measures, it is

possible to estimate the initial values of the frequencies ΩH and ΩT, which originate

from the resonant peaks of the closed-loop transfer functions of the system. How-

ever, additional theory is necessary to understand the properties of the quasiperiodic

dynamics with respect to changes in the scatterer’s position. Thus, it remains to in-

vestigate in Ch. 6 the shifts of the frequencies ∆ΩH and ∆ΩT due to changes in the

values of the system’s delay-gain distribution.
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Chapter 6

Quasiperiodic Frequency Shifts in a
Two-Delay Feedback System

In this chapter, I examine the quasiperiodic dynamics of a time-delayed nonlin-

ear feedback system with two time-delays. This two-delay feedback system is an

example of a simplification of the cavity-feedback system. As shown in Fig. 6.1a,

I approximate the cavity as a set of only two relevant propagation paths with time

delays τ1 and τ2. These paths are chosen such that a small shift in the scatterer’s

position (∆x ,∆y) results in a small shift to the time delays (∆τ1,∆τ2), respec-

tively. The purpose of this simplification is to investigate a system with only two

changing degrees-of-freedom in its feedback. Thus, this simplification can be rep-

resented schematically by the dual-feedback system shown in Fig. 6.1b. As I will

show, the simplification still allows for 2D subwavelength sensing.

First, using the two-delay experimental system from Ch. 5, I demonstrate ex-

perimentally a simplified form of the quasiperiodic sensing technique by changing

the feedback’s delay distribution. Then, using the simplified model from Ch. 5 to

represent the two-delay experimental system, I derive analytical expressions for the

quasiperiodic frequency shifts and necessary conditions for the shifts to be inde-

pendent with respect to changes in the values of the two time delays. I verify my

theoretical results using a simulation and also compare them with the experimental

data. As a result, I establish an understanding of the origins of a 2D quasiperiodic

frequency-shift map, similar to the one used to reconstruct the subwavelength scat-

terer’s 2D position (see Ch. 3). Finally, I examine the implications of this new theory

for the full cavity-feedback system with many time delays.
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Figure 6.1: Two-delay simplification of the cavity-feedback system. (a) The
cavity is approximated as having only two relevant propagation paths with time
delays τ1 and τ2. In this case, consider that the scatterer’s position in x and y
determines τ1 and τ2, respectively. (b) Schematic representation of a two-delay
cavity-feedback system with feedback delays τ1 and τ2.

Similar to Ch. 5., the results in this chapter benefit from the analyses of Ref. [32]

and Ref. [75] for understanding Hopf and torus bifurcations in band-pass filtered

systems, repsectively. The two-delay experimental system was constructed with the

help of Andrés Aragoneses Aguado. Lastly, my experimental and theoretical results

presented in this chapter are part of an investigation that is currently ongoing.

6.1 Experimental Two-Delay System

The experimental realization of the two-delay system is shown in Fig. 6.2. Similar to

the cavity-feedback system, the two-delay system uses the nonlinear circuit (NLC)

discussed in previous chapters. The output of the NLC drives a band-pass filter

(BPF) and variable attenuator (VA), where it is then divided using a power splitter

(PS) that splits the voltage evenly between two separate paths. Along each path,

the signals passes through an amplifier (A1 or A2) and a variable delay line (VDL1

or VDL2). Both VDL1 and VDL2 are coaxial waveguides with a tunable lengths (∆x1

and ∆x2, respectively) that are attached to computer-controlled translation stages

to vary the net time-delays τ1 ∼ 19.3 ns and τ2 ∼ 23.0 ns, respectively. After
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Figure 6.2: Two-delay experimental feedback system. The output of the nonlin-
ear circuit (NLC) drives a band-pass filter (BPF, Mini-Circuits ZBFV-925+), a variable
attenuator (VA, Mini-Circuits ZX73-2500+), a power splitter (PS, Picosecond Pulse
Labs 5331-104), amplifiers A1 and A2 (both are Mini-Circuits ZX60-3016E+), vari-
able delay-lines VDL1 and VDL2, a second PS, a third amplifier A3 (Mini-Circuits
ZX60-4018G+ and Picosecond Pulse Labs 5828-108), a directional coupler (dir-c,
Mini-Circuits ZX30-9-4+), and the input of the NLC. The VDLs are comprised of
coaxial waveguides known as line stretchers (Microlab/FXR SR-05B) that are at-
tached to linear translation stages (each are Zaber Technologies TLSR150B) with
relative length changes∆x i. A portion of the signal in the feedback loop is measured
as the voltage v(t) on the oscilloscope (osc).

each VDL, the signals are combined using a second PS and a third amplifier (A3),

which drive a directional coupler (dir-c) and the input of the NLC, forming a closed

feedback system.

Using the control voltage vc of the variable attenuator, I tune the net gain of the

total feedback such that the system’s dynamics are in a quasiperiodic state (using

a bias voltage vb = 0.85 V). A typical quasiperiodic time series and its associated

power spectral density (PSD) are plotted in Figs. 6.3a-b. In the figure, I label the

main frequencies of the quasiperiodic state as fT = 22.2±0.2 MHz, fH− fT = 0.800±

(2×10−4) GHz, fH = 0.822± (2×10−4) GHz, and fH+ fT = 0.844± (2×10−4) GHz,

where fH and fT are the frequencies associated with the system’s Hopf bifurcation

and torus bifurcations, respectively.
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Figure 6.3: Two-delay experimental quasiperiodic dynamics. (a) Temporal evo-
lution and (b) power spectral density (PSD) of typical quasiperiodic dynamics. In
the time series, the signal-to-noise ratio is RMSS/RMSN ∼ 80, where RMSS (RMSN)
is the root-mean-square of the signal (noise). See Ch. 3 for a comparison of this
value. In the PSD, the angular frequencies associated with the Hopf and Torus bi-
furcations and their linear combinations are labeled accordingly.

To understand how the frequencies ( fT, fT) shift with changes in the values of

(τ1,τ2), similar to the 2D grid of scatterer positions (x , y), I scan values of τ1 and τ2

in a grid of time-delays by translating VDL1 and VDL2 by∆x1 and∆x2, respectively.

The grid of relative positions is defined by 0 mm<∆x1 < 2 mm and 0 mm<∆x2 <

2 mm (recall the relative error in the translation stage positioning is ±5 µm with

backlash correction). Using the approximate speed of an electromagnetic wave in a

coaxial cable (1.974×108 m/s ∼ 2/3c for 50 Ω impedance [88]), this is equivalent

to shifting the relative values of the the time delays such that 0 <∆τ1 < 10 ps and

0 < ∆τ2 < 10 ps. At each relative position (∆x1,∆x2), I monitor the shifts to the

quasiperiodic frequencies ∆ f̄T and ∆ f̄H (defined by Eqs. (3.6)-(3.7)). This leads to

near-planar 2D calibration surfaces (see Figs. 6.4a-b).

To test the sensing from this calibration, I first fit the experimental data to create

a map between (∆ f̄T,∆ f̄H) and (∆x1,∆x2). Based on the near planar surfaces in
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Figure 6.4: Two-delay experimental quasiperiodic frequency shifts. Frequency
shifts (a) ∆ f̄T and (b) ∆ f̄H as a function of (∆x1,∆x2). (c) Calibration grid of
(∆x1,∆x2) and (d) reconstructed calibration grid (red curve). (e) Test path of
(∆x1,∆x2) (red curve) in the 2D grid of points (black dots). (f) Reconstructed
path of (∆x1,∆x2) (red curve) using the numerical map in the 2D grid of points
(black dots).
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Figs. 6.4a-b, I use the first-order multivariate functions

∆ f̄T(x1, x2) = c1 +α1∆x1 + β1∆x2, (6.1)

∆ f̄H(x1, x2) = c2 +α2∆x1 + β2∆x2, (6.2)

where c1 = −1.84±0.14 kHz, α1 = −8.00±0.12 kHz mm−1, and β1 = 10.17±0.20

kHz mm−1, and where c2 = −32.55 ± 2.40 kHz, α2 = −60.40 ± 2.20 kHz mm−1,

and β2 = 104.31± 3.61 kHz mm−1 (errors represent the 90% confidence intervals

of the fitting parameters). Similar to Ch. 3, these first-order functions are inverted

to illustrate the errors associated with the planar mapping.

In Fig. 6.4c, the actual calibration grid path is shown and in Fig. 6.4d, the re-

constructed grid is shown. The 2D reconstruction yields RMS errors of 0.48 mm

(∼ λ/500) and 0.12 mm (∼ λ/2, 000) for ∆x1 and ∆x2, respectively, for all posi-

tions in the 2D calibration grid. λ ∼ 23.7 cm based on fmax ∼ ( fH + fT). Higher

harmonics are present in the dynamics but with less power. The average RMS er-

rors between the predicted and actual shifts is ∆xRMS = 0.3 mm, and the two-delay

system can, on average, sense a 2D change to the lengths of a feedback loop to

within ∼ λ/800. This represents a lower bound on the average dynamic range of

2 mm / 0.3 mm ∼ 7 (Similar to Ch. 3, this represents only a lower bound on the

potential dynamic range of the system. To find the upper bound on the dynamic

range, one would need to perform parameter sweeps for the bias voltage of the

nonlinear circuit and gain of the feedback loop to find the configuration that yields

the largest and most sensitive windows of quasiperiodicity). Interestingly, in this

system, the calibration grid path is reconstructed with less distortion using a planar

surface when compared to Fig. 3.17a. This is most likely due to the fact that the

signals in the feedback loop are not propagating through a large cavity that is sen-
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sitivity to humidity and temperature fluctuations. Lastly, the maximum observed

errors of the shifts (x1,max, x2,max) give the lower bounds on the resolution in this

particular experiment, where x1,max = 0.73 mm (∼ λ/320) and x2,max = 0.28 mm

(∼ λ/800). Overall, this experiment demonstrates a 2D subwavelength sensitivity

to subwavelength changes.

It should be noted that these errors are still an order of magnitude larger than

the errors associated with the translation stage positioning that control the lengths

of the coaxial waveguides. Thus, I approximate that the errors associated with the

reconstruction of the calibration grid path are primarily due to drift in the system

and the approximation that the surfaces in Figs. 6.4a-b are planar. Similar to Ch. 3,

higher-order surfaces may reduce these errors, but for the purposes of this chapter, a

first-order mapping will be useful for understanding how quasiperiodic frequencies

shift in the theory to following section.

Before moving on to the theory, I test this 2D sensing resolution using an arbi-

trary path of time-delay shifts (∆x1,n,∆x2,n)within the calibration grid. As shown in

Fig. 6.4e, none of the points along the actual path lie on the calibration grid except

for the first and last point for reference. Using the frequency shifts (∆ fT,n,∆ fH,n)

acquired at each of the n = 33 test points, I use the inverted maps from Eqs. (6.1)

- (6.2) to reconstruct the time-delay shifts. The reconstructed path is shown in

Fig. 6.4f, and the RMS errors between the actual and reconstructed delay shifts are

0.26 mm and 0.09 mm for x1 and x2 respectively, which, for this particular test,

yields an improved average 2D length-sensing resolution of approximately λ/1200.

In addition, the maximum observed errors are x1,max = 0.52 mm (∼ λ/450) and

x2,max = 0.17 mm (∼ λ/1, 400). These errors are on the same order of magnitude

as those from the reconstruction of the calibration grid path and demonstrate less

distortion in the shape of the path when compared to Fig. 3.18d. Again, this im-
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provement is most likely due to less drift in the system because the cavity has been

removed. Therefore, the two-delay feedback system is a simplified version of the

cavity-feedback system, where there is no wave chaos (discussed in detail in Ch.

7) and the quasiperiodic sensing technique can be used to simultaneously detect

time-delay shifts of (or changes in the lengths of) the feedback loops.

In the next section, I examine a simplified model of this dual-delay system that

consists of a band-pass filter with two-delay nonlinear feedback. Using this simpli-

fied model and the results from Ch. 5, I derive an analytical expressions for the

frequencies at the onset of the Hopf and torus bifurcations as a function of the sys-

tem’s time delays. For the purposes of this derivation, I use the notation of the

angular frequencies ω = 2π f , ΩT = 2π fT, and ΩH = 2π fH due to the factors of 2π

that arise throughout my calculations.

6.2 Model of the Two-Delay Feedback System

The simplified model for the two-delay feedback system is described by the delay

differential equation (DDE) for a band-pass filter with nonlinear feedback [80] and

N = 2 time delays

v̇(t)
∆
+ v(t) +

ω2
o

∆

∫ t

−∞
v(t ′)dt ′ = F

�

G
N=2
∑

i=1

giv(t −τi)

�

, (6.3)

where gi are the relative gain of the two feedback loops, G is the net gain of the

overall feedback, ∆ = ω(+) −ω(−) is the system’s bandwidth, ωo =
p

ω(+)ω(−) is

the central frequency of the band-pass filter, and ω(+) and ω(−) are the upper and

lower cutoff frequencies of the band-pass filter, respectively. Similar to Ch. 5, I
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approximate the effect of the NLC by a cubic nonlinear function that reads

F(vin) = α1(vin + vb)− [α2(vin + vb)]
3, (6.4)

where vb represents a bias voltage that tunes the operating point of the nonlinearity

and α1 = 1 and α2 = 0.5 are positive constants for the purposes of this analysis.

Without loss of generality, I also assume vb = 0.

Hopf Bifurcation in the Two-Delay Feedback System

The initial Hopf bifurcation result from an instability of the system about the steady

state of v(t) = vs = 0. Consider a small perturbation δv about the steady state; this

leads to
δv̇(t)
∆
+δv(t) +

ω2
o

∆

∫ t

−∞
δv(t ′)dt ′ = G

N=2
∑

i=1

biδv(t −τi), (6.5)

where bi = gi
dF
dv
|vs

. To examine its stability, I assume solution of the form δv(t) =

Aeλt , where A is a real amplitude and λ is a complex eigenvalue.

The Hopf bifurcation arises when λ is a pure imaginary number. I denote λ =

iΩH with ΩH a real frequency, and I solve for the conditions that this assumption

holds. Substituting v(t) = AeiΩH t into the linearized Eq. 6.5 gives

iΩH

∆
+ 1+

ω2
o

iΩH∆
− G

N=2
∑

i=1

bie
−iΩHτi = 0. (6.6)

Separating Eq. (6.6) into its real and imaginary parts yields a pair of coupled tran-

scendental equations

G
N=2
∑

i=1

bicos(ΩHτi) = 1, (6.7)
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G
N=2
∑

i=1

bisin(ΩHτi) =
ω2

o −Ω
2
H

ΩH∆
. (6.8)

To have a stable limit cycle at frequency ΩH, these equations must be satisfied.

Typically, these equations are solved numerically and for high enough G, the Hopf

bifurcation emerges with ΩH ∼ωo [81]. For now, I pause in this analysis and briefly

analyze the conditions of the torus bifurcation in the two-delay feedback system.

Torus Bifurcation in the Two-Delay Feedback System

The analysis of the torus bifurcation is based on the amplitude equation (see Ch. 5)

and serves as the motivation of the analysis of ΩT in a system with a set of N = 2

time delays its the feedback. I examine the stability of the limit cycle’s amplitude

by assuming that the dynamics can be approximated as v(t) = 1
2
A(t)(eiΩH t + e−iΩH t)

once the system bifurcates to a torus, where A(t) is slow varying amplitude. Then,

using a separation of time-scales between A(t) and e±iΩH t , the dynamical equation

for A(t) can be approximated as

Ȧ(t) =
∆

2

�

F

�

G
N=2
∑

i=1

giA(t −τi)

�

− A(t)

�

, (6.9)

which is the amplitude equation from the Ch. 5 with N = 2 (see Appendix C for

the full derivation). I consider a solution of the form A(t) = As + δA and linearize

the amplitude equation about As, the steady state that satisfies F
�

ḠAs

�

= As with

Ḡ ≡ G
∑ j=2

j=1 g j. The result of the linearization is

δȦ(t) =
∆

2

�

G
N=2
∑

i=1

diδA(t −τi)−δA(t))

�

, (6.10)
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with di = gi F
′
�

ḠAs

�

(see also Appendix C for the derivation of Eq. (6.10) from the

amplitude equation).

Because the torus bifurcation appears as a Hopf bifurcation in the amplitude

equation [75], I propose the solution δA(t) = BeiΩT t and substitute it into Eq.

(6.10). This gives
2iΩT

∆
+ 1+ G

N
∑

i=1

die
−iΩTτi = 0. (6.11)

Similar to Eqs. (6.7) - (6.8), I separate Eq. (6.11) into its the real and imaginary

parts as follows

G
N
∑

i=1

dicos(ΩTτi) = 1, (6.12)

G
N
∑

i=1

disin(ΩTτi) =
2ΩT

∆
. (6.13)

To have a torus bifurcation with frequency ΩT, these equations must be satisfied.

In the next subsection, I use conditions from Eqs. (6.7) - (6.8) and Eqs. (6.12) -

(6.13) to analyze the shifts on the values of ΩH and ΩT with respect to changes in

the time delays τ1 and τ2.

6.2.1 Quasiperiodic Frequency Shifts

The goal of this subsection is to derive an equation to predict approximately how the

frequencies (ΩH,ΩT) shift due to small perturbations in the time delays (τ1,τ2). To

do so, I perturb the values of the individual time delays in Eqs. (6.7) and (6.12) and

assume small shifts in ΩH,T. For simplicity, I also assume that the frequencies at the

onset of the Hopf and torus bifurcations can be used to describe the shifts to ΩH,T

beyond these bifurcation points. Following these derivations, I use experimental

data and numerical simulations to support these assumptions.
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I begin by examining ΩH and assume that τ2 is fixed and there is a small pertur-

bation to τ1 such that τ1 → τ1 + p1 with p1 << τ1. I assume this induces a small

shift in ΩH such that ΩH→ ΩH + εH,1 with εH,1 << ΩH. I substitute these perturbed

variables into Eq. (6.7) such that

b1cos([ΩH + εH,1][τ1 + p1]) + b2cos([ΩH + εH,1]τ2) =
1

G′
, (6.14)

where G′ = G + Gε and Gε is the perturbation of the system’s gain to reach the bi-

furcation point. Neglecting higher-order terms
�

O(ε2
H,1), O(εH,1p1)

�

, I approximate

Eq. (6.14) as

b1cos(ΩHτ1 +ΩHp1 + εH,1τ1) + b2cos(ΩHτ2 + εH,1τ2) =
1

G′
. (6.15)

To simplify this expression, I rewrite it as

b1cos(x + h) + b2cos(y + q) =
1

G′
, (6.16)

where x = ΩHτ1, h= ΩHp1 + εH,1τ1, y = ΩHτ2, and q = εH,1τ2. I note that h<< x

and q << y and Taylor expand terms on the right-hand-side of Eq. (6.16) about x

and y such that Eq. (6.15) becomes

b1cos(ΩHτ1)− b1sin(ΩHτ1)(ΩHp1 + εH,1τ1)

+ b2cos(ΩHτ2)− b2εH,1τ2sin(ΩHτ2) =
1

G′
. (6.17)

I then approximate G′ ∼ G such that Eq. (6.7) is still valid and Eq. (6.17) reduces

to

−b1sin(ΩHτ1)(ΩHp1 + εH,1τ1)≈ b2εH,1τ2sin(ΩHτ2). (6.18)
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Solving for εH,1 as a function of p1 finally gives

εH,1(p1) = −
p1ΩH b1sin(ΩHτ1)
∑N=2

i=1 biτisin(ΩHτi)
. (6.19)

By an analog of reasoning for τ2 → τ2 + p2 with p2 << τ2 and τ1 fixed, I deduce

that the Hopf frequency will shift ΩH→ ΩH + εH,2 with εH,2 << ΩH, such that

εH,2(p2) = −
p2ΩH b2sin(ΩHτ2)
∑N=2

i=1 biτisin(ΩHτi)
. (6.20)

Due to the linearized equations of the derivation, the total shift in εH = εH,1 + εH,2

due to shifts p1 and p2 is

εH(p1, p2) = −
ΩH

∑N=2
i=1 pi bisin(ΩHτi)

∑N=2
i=1 biτisin(ΩHτi)

. (6.21)

As shown by this equation, εH depends on the initial value of ΩH, both values of

the time delays τ1 and τ2, and is proportional to the gain coefficient gi along each

feedback path (bi ∝ gi). I also note that, although ωo and ∆ do not appear directly

in Eq. (6.21), they are implicitly present in the value of ΩH (see Eqs. (6.7) - (6.8)).

I now pause briefly to check the scaling of εH(p1, p2) in a simple case. Consider

εH(p1, p2) for the N = 1 case of a single-delay system, where τ1 = τ2, b1 = b2, and

p1 = p2 such that

εH(p1)→−
ΩHp1

τ1
. (6.22)

This scaling is comparable to that of the Hopf bifurcation analysis from Ref. [32],

where, for a single time-delay system with band-pass filtered nonlinear feedback,
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the frequency of the initial Hopf bifurcation scales as

ΩH ≈
2πM

τ1
, (6.23)

where M is an integer or half-integer (depending on the sign of the gain). ΩH is

the M th harmonic of the frequency 1/τ1 [32]. By perturbing the value of the time

delay τ1→ τ1 + p1 in Eq. (6.23) and Taylor expanding, I obtain

ΩH + εH =
2πM

τ1 + p1
≈

2πM

τ1
−

2πM p1

τ2
1

= ΩH −
ΩHp1

τ1
. (6.24)

Simplifying this expression yields

εH ≈ −
ΩHp1

τ1
, (6.25)

which is equivalent to Eq. (6.22). Thus, εH(p1, p2) reduces to the correct scaling in

the N = 1 case.

Next, I the examine the frequency shift of the torus frequency ΩT. Using Eq.

(6.12), I let τ1 → τ1 + p1 and τ2 → τ2 + p2 to induce a net frequency shift on the

torus frequency ΩT → ΩT + εT with εT << ΩT. Based on the analog between Eq.

(6.7) and Eq. (6.12), it follows that

εT(p1, p2) = −
ΩT

∑N=2
i=1 pidisin(ΩTτi)

∑N=2
i=1 diτisin(ΩTτi)

. (6.26)

Similar to εH, the value of εT depends directly on ΩT, τi, pi, and di. In addition, the

dependence of εT on ∆ is contained implicitly in the calculation of ΩT (using Eqs.

(6.12) - (6.13)).

Similar to the previous subsection, I check the scaling of εT for the N = 1 case

181



such that

εT(p1)→−
ΩTp1

τ1
. (6.27)

This is consistent with the scaling found by Chembo et al. in Ref. [75] for a single-

delay OEO, where

ΩT ≈
2π

2τ1
, (6.28)

such that, when Taylor expanding about a delay shift p1, it reads

ΩT + εT ≈
2π

2(τ1 + p1)
∼

2π

2τ1
−

2πp1

2τ2
1

+O(p2
1), (6.29)

and therefore

εT ≈ −
ΩTp1

τ1
. (6.30)

The derived expressions for linearized frequency shifts εH(p1, p2) and εT(p1, p2) rep-

resent planes in the (p1, p2) phase space. It remains to examine these planes to-

gether.

6.2.2 Linear Independence

In this subsection, I determine the conditions for which shifts in ΩH and ΩT are

independent during changes in τ1 and τ2. Because I assume small and subsequently

linear frequency shifts, it is sufficient to check if εH and εT are linearly independent.

This represents the condition for which there exists a unique mapping between

(εH,εT) and (p1, p2). To do so, I rewrite the expressions for εH and εT in Eqs. (6.21)

and (6.26) as ~ε= M~p using the matrix notation





εH

εT



=





−b1ΩHsin(ΩHτ1)/B −b2ΩHsin(ΩHτ2)/B

−d1ΩTsin(ΩTτ1)/D −d2ΩTsin(ΩTτ2)/D









p1

p2



 , (6.31)
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with B ≡
∑N=2

i=1 biτisin(ΩHτi) and D ≡
∑N=2

i=1 diτisin(ΩTτi). For εH and εT to be

linearly independent, the determinant of X must be nonzero

�

�

�

�

�

�

−b1ΩHsin(ΩHτ1)/B −b2ΩHsin(ΩHτ2)/B

−d1ΩTsin(ΩTτ1)/D −d2ΩTsin(ΩTτ2)/D

�

�

�

�

�

�

6= 0. (6.32)

This is equivalent to

b1d2sin(ΩHτ1)sin(ΩTτ2) 6= b2d1sin(ΩHτ2)sin(ΩTτ1). (6.33)

With b1d2 = b2d1, based on the definitions bi = gi F
′(0) and di = gi F

′(ḠAs), Eq.

(6.33) reduces to

sin(ΩHτ1)sin(ΩTτ2) 6= sin(ΩHτ2)sin(ΩTτ1). (6.34)

Because it is not clear that all of the terms in Eq. (6.34) are nonzero, I cannot isolate

the ΩH and ΩT terms on either side of the equation. Therefore, given the initial

Hopf and torus frequencies ΩH and ΩT for an initial set of time delays τ1 and τ2,

Eq. (6.34) represents the condition for linear independence between the frequency

shifts given changes to values of the time delays. In general, for an arbitrary (ΩT,ΩH)

and (τ1,τ2) in the dual-delay system, Eq. (6.34) must be verified numerically.

However, Eq. (6.34) does demonstrate that there is a particular constraint on

the time-delays in order to form unique map: For τ1 = τ2, Eq. (6.34) is violated,

regardless of the values for ΩH and ΩT (even with different gain coefficients g1 6=

g2). This illustrates that sensing with quasiperiodic frequency shifts requires an

asymmetry in the delay-gain distribution.
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6.3 Applications of the Quasiperiodic Frequency-Shift
Theory

In this section, I test my derivations for the first-order map between the quasiperi-

odic frequency shifts and the values of the time delays, (εH,εT)↔ (p1, p2) in two-

delay feedback systems. First, I use numerical simulations of the simplified two-

delay feedback model to show that Eq. (6.31) can describe approximately the fre-

quency shifts in the system. Then, I compare the analytical shifts predicted by Eq.

(6.31) with the experimental data in Figs. 6.4a-b.

6.3.1 Numerical Simulation

I integrate Eq. (6.3) with parameters ω(+)/(2π) = 1.6 GHz and ω(−)/(2π) = 1.4

GHz and time-delays τ1 = 7 ns and τ2 = 12 ns. Using gain coefficients g1 = g2 =

0.5, I tune the external gain of the model to G = 3.5 such that the system exhibits

stable quasiperiodic dynamics with ΩH/(2π) = fH = 1.56 GHz and ΩT/(2π) = fT =

0.052 GHz, as shown in Figs. 6.5a-b. Then, using time delay shifts p1 = 0 − 15

ps and p2 = 0− 15 ps in steps of 5 ps, I calculate the spectral shifts (∆ fH,∆ fT) for

each set of time delays in the model. The results are shown in Fig. 6.5c, where the

spectral shifts are approximately planar in the (p1, p2) parameter space (note: the

observed frequency shifts are large in comparison to the experimental shifts in Fig.

6.4, and this will be discussed at the end of this chapter).

Using the system parameters ( fH, fT) and (τ1,τ2), I compare these results to the

analytical predictions for (εH,εT) from Eq. (6.31) over the values of (p1, p2). Shown

in Fig. 6.5d, the analytically-predicted planar shifts show agreement with the sim-

ulated shifts, where the average RMS differences between the simulated shifts ∆ fT

and ∆ fH and the analytically-predicted frequency shifts εT and εH are 258 kHz and

82 kHz, which represents 11.5% and 15.0% of the overall simulated shifts in fH
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Figure 6.5: Simulated and predicted spectral shifts in a two-delay system. (a)
Typical quasiperiodic time series for v(t) from integrating the simplified model. (b)
Power spectral density of the simulated v(t) with fH and fH± fT labeled accordingly.
(c) Simulated spectral shifts ∆ fT (blue dots) and ∆ fH (red squares) for the delay
shifts (∆τ1,∆τ2) associated with the delays τ1 = 7 ns and τ2 = 12 ns. (d) Ana-
lytically-predicted values of the planar spectral shifts εH/(2π) (blue) and εT/(2π)
(red) calculated using Eq. (6.31) for the delay shifts (p1, p2).

and fT, respectively. I have verified using higher-order expansions of Eqs. (6.14)

and (6.17) that these discrepancies between the analytics and the simulations are

not caused from neglecting the higher-order terms
�

O(ε2
H,1),O(εH,1p1)

�

. This is dis-

cussed more at the end of this subsection.

These analytical maps are invertible because Eq. (6.34) is satisfied, where the

value of the determinant from Eq. (6.32) is nonzero (approximately 0.1 rad2 ns−4).
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Therefore, the frequency shifts are linearly independent and can be used to recon-

struct the values of the time-delay shifts. Considering the inverse of the planar

mapping, the average RMS errors between the simulated and predicted time-delay

shifts are 4.5 ps and 8.5 ps for∆τ1 and∆τ2, respectively. Therefore, assuming that

fmax = fT + fH and that the feedback loops use coaxial cables (signal propagation

speed is 1.974×108 m/s ∼ (2/3)c), then the average dual-delay sensing resolution

of the model system is approximately 1.3 mm ∼ λ/100, where λ = 12.4 cm. Note

that this resolution represents the accuracy of the analytical predictions; there is no

fit to the data. This is different from all previous cases that use fitted functions to

perform the 2D mapping.

The discrepancies between the numerical simulations and the analytical predic-

tions demonstrate that the approximations made while deriving Eq. (6.31) limit

the predictive power of the theory. In particular, the theory is derived only for the

frequencies at the onset of the Hopf and torus bifurcations, but the quasiperiodic

frequency shifts are measured for dynamics beyond the torus bifurcation point. To

approximate the magnitude of this effect, I perform separate simulations with the

same parameters except with the G tuned higher and hence farther away from the

torus bifurcation point (G ∼ 3.48). For G = 3.7, the RMS differences between the

analytically predicted frequency shifts and the simulated frequencies shifts increase

to 268 kHz and 154 kHz for fH and fT, respectively, which are 11.9% and 17.1%

errors of the observed ranges. Furthermore, for G = 3.9, the RMS differences in-

crease to 288 kHz and 483 kHz for fH and fH, respectively, which are 12.6% and

21.0% errors of the observed ranges. Thus tuning the gain farther away from the

bifurcation point causes a larger discrepancy between the simulations and theory.

In addition to this effect, there are also several other factors that limit the predic-

tive power of the theory. For example, the amplitude equation is derived on several
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assumptions (see Appendix C) such as ΩH = ωo. Also, εT and εH are derived us-

ing small shifts in order simplify the model to a set of linearized equations. Because

these assumptions are not fully satisfied in the simulation, the analytical derivations

can only predict approximately the frequency shifts of the quasiperiodic spectrum.

6.3.2 Experimental Data

Similar to the simulated data, I now compare the analytical predictions of the

quasiperiodic frequency shifts from Eq. (6.31) to the observed experimental data

in Figs. 6.4a-b. For convenience, the experimental shifts are replotted in Fig. 6.6a.

Using Eq. (6.31), I calculate (εT,εH) for a set of time delay shifts (p1, p2), where

pi = [1.974 × 108]−1∆x i. For a total translation of ∆x i = 2 mm, the time-delays

shift by pi = 10 ps. The analytically-predicted values for (εT/(2π),εH/(2π)) as a

function of (∆x1,∆x2) are shown in Fig. 6.6b.

The predictions approximately match the experimental frequency shifts, where

the orders of magnitude and relative shifts for both ∆ fH and ∆ fT are predicted ap-

proximately by the analytical derivations for εT and εH, respectively. The average

RMS differences between the experimental shifts∆ f̄T and∆ f̄H and the analytically-

predicted frequency shifts εT and εH are 2.4 kHz and 46.2 kHz, which represent

approximately 12.3% and 22.0% of the overall observed shifts in f̄T and f̄H, respec-

tively.

Note that this comparison assumes that an electromagnetic wave propagates

through a coaxial cable (with 50 Ω impedance) with a speed equal to 2/3 the speed

of light c (1.974× 108 m/s). Because I have not directly measured the change to

the propagation delay of a signal through the coaxial wave-guide with respect to

small changes in the tunable feedback loop lengths, this approximation can lead
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Figure 6.6: Experimental and predicted spectral shifts in a two-delay system.
(a) Experimental spectral shifts∆ fT (blue dots) and∆ fH (red squares) for the feed-
back loop translations (∆x1,∆x2) associated with the delays τ1 = 19.3 ns and
τ2 = 23.0 ns and frequencies fT ∼ 0.02 GHz and fH ∼ 0.82 GHz. (b) Analytical-
ly-predicted values of the planar spectral shifts εH/(2π) (blue) and εT/(2π) (red)
calculated using Eq. (6.31) with ∆x i = [(2/3)c]pi.

to an overall skew factor in the results of Fig. 6.6b. This represents a source of

error in the differences between the analytically predicted and the experimentally

observed frequency shifts. For example, a small adjustment to the theoretical speed

of an electromagnetic wave in the coaxial waveguide (rather than 1.974×108 m/s,

the speed is adjusted to (1.974 + 0.1) × 108 m/s, which is a 5% correction in the

wave speed) could account for approximately 2% of the observed differences (with

this adjustment, the RMS differences between the experimental shifts∆ f̄T and∆ f̄H

and the analytically-predicted frequency shifts εT and εH are 2.3 kHz and 42.8 kHz,

which now represent approximately 12.7% and 20.3% of the experimentally ob-

served ranges of frequency shifts).

In addition, using the analytically predicted shifts to describe a mapping, Eq.

(6.34) is satisfied (the determinant of Eq. (6.32) is approximately (−3±2.2)×10−4
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rad2 ns−4) such that εT and εH are linearly independent. Thus, using the analytical

derivation as the 2D map, the RMS error between the experimental and predicted

translations is 6.8 mm and 7.7 mm for ∆x1 and ∆x2, respectively. Therefore, the

average 2D sensing resolution of the experiment with the analytical map is approx-

imately 7.2 mm ∼ λ/30, where λ = 23.4 cm. Again, note that this resolution

represents the quantitative agreement of the analytical predictions without an op-

timal fit to the data. Even though the resolution is worse when compared to the

fit at the beginning of this chapter, this demonstrates that the analytically predicted

frequency shifts scale correctly to match approximately those in the experiment and

still ensure a subwavelength 2D resolution.

This quantitative agreement is interesting because the analytical derivations,

which are approximations of the already-simplified model, do not take into account

any of the experimental imperfections or any details of the nonlinear circuit’s oper-

ation. Similar to Ch. 5, which showed that the simplified model of Eq. (6.3) can

predict the approximate origins of fH and fT, this demonstrates that it also contains

ingredients for mapping the approximate shifts of the experimental quasiperiodic

frequencies. Although Eq. (6.31) is derived with many assumptions, it can still give

insight into the physical phenomenon of complex nonlinear feedback experiments.

Furthermore, this analysis also shows that the quasiperiodic frequency shifts in

this system are inherently sensitive to subwavelength changes. Even with all of my

approximations, the simplified model shows a unique mapping for quasiperiodic

frequency shifts with respect to time-delay changes. However, this analysis also

shows that the vastly subwavelength resolutions observed at the beginning of this

chapter and in Ch. 3 are achieved only by the numerical fits of the experimental

data. Thus, the resolutions of this system (and the cavity-feedback system) depend

on the ability to achieve good numerical fits, which rely on the experimental signal-
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to-noise ratio (see Ch. 1 for details).

Using the results of this subsection as motivation, in the next section, I generalize

the derivation of Eq. (6.31) in the context of the cavity-feedback system.

6.4 Extensions to the Cavity-Feedback System

In this final section, I generalize the derivations for Eq. (6.31) to a band-pass filtered

nonlinear feedback system with N >> 1 time-delayed feedback loops. The main

objective is to examine the implications of my previous derivations with regards to

the cavity-feedback system and results of Ch. 3. To begin, I rewrite the Eqs (5.6)

and (5.16) from Ch. 5 that read

G
N
∑

i=1

bicos(ΩHτi) = 1, (6.35)

G
N
∑

i=1

dicos(ΩTτi) = 1. (6.36)

Again, I can perform a perturbation analysis where ΩT,H → ΩT,H + εT,H with

εT,H << ΩT,H, due to shifts in the time delays τi → τi + pi such that the total lin-

earized frequency shifts are now described by

εH(p1, p2, ..., pN) = −
ΩH

∑N
i=1 pi bisin(ΩHτi)

∑N
i=1 bisin(ΩHτi)τi

, (6.37)

εT(p1, p2, ..., pN) = −
ΩT

∑N
i=1 pidisin(ΩTτi)

∑N
i=1 disin(ΩTτi)τi

. (6.38)

Equations (6.37) and (6.38) can be expressed together in the matrix notation ~ε =
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M~p as





εH

εT



=





−b1ΩHsin(ΩHτ1)/BN . . . −bNΩHsin(ΩHτN)/BN

−d1ΩTsin(ΩTτ1)/DN . . . −dNΩTsin(ΩTτN)/DN















p1

...

pN











,

(6.39)

where M is now a matrix of size (2 × N), ~p is a column vector of size (N × 1),

BN ≡
∑N

i=1 biτisin(ΩHτi), and DN ≡
∑N

i=1 diτisin(ΩTτi). From here, not much else

can be deduced for the general case of N feedback loops without more information

regarding ~p. Since there are N possible time delay shifts and only two observed

frequency changes, a unique mapping between (εH ,εT )↔ (p1, .., pN) is not possible

in general.

However, Eq. (6.39) can help in providing further insight into the results of Ch.

3. In the cavity-feedback system, the scatterer’s position is moved inside of a 2D

area, which induces a change of the N time delays of the cavity feedback. The 2D

displacements of the scatterer in the x and y directions led to a unique mapping

between the frequency shifts ~ε = (εH,εT) and (x , y), where x and y represent

relative changes to the scatterer’s position, such that

~ε=





εH

εT



=





α1 β1

α2 β2









x

y



 , (6.40)

where αi and βi are constants and the determinant |α1β2 − α2β1| 6= 0. This ex-

perimental mapping served as the initial calibration for the subwavelength position

sensing system.

Now, suppose as the scatterer moves in the x and y directions, it perturbs the

time delays by ~px and ~py , respectively, where ~px and ~py are vectors of size (N × 1)
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such that

~px =











xqx1

...

xqxN











, ~py =











yqy1

...

yqyN











, (6.41)

where qx i
and qyi

are fixed delay shifts per unit of displacement, and where the total

delay shift vector as ~p = ~px + ~py , such that

~p =











xqx1
+ yqy1

...

xqxN
+ yqyN











. (6.42)

Thus for x = 0, ~p → ~py and for y = 0, ~p → ~px . I acknowledge that Eq. (6.42)

approximates each delay shift as a linear function with respect to x and y . However,

for small enough displacements, I can always Taylor expand any nonlinear delay

shifts as a function of x and y so that this approximation is valid.

By substituting Eq. (6.42) into Eq. (6.39) and using the equality of ~ε to Eq.

(6.40), I obtain the following

εH = α1 x + β1 y = (xqx1
+ yqy1

)(
−b1ΩH

BN
sin(ΩHτ1))

+ (xqx2
+ yqy2

)(
−b2ΩH

BN
sin(ΩHτ2))

+ ...+ (xqxN
+ yqyN

)(−
bNΩH

BN
sin(ΩHτN)), (6.43)
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εT = α2 x + β2 y = (xqx1
+ yqy1

)(
−d1ΩT

DN
sin(ΩTτ1))

+ (xqx2
+ yqy2

)(
−d2ΩT

DN
sin(ΩTτ2))

+ ...+ (xqxN
+ yqyN

)(
−dNΩT

DN
sin(ΩTτN)), (6.44)

By equating the coefficients of x and y on the left and right-hand-sides of Eqs.

(6.43) and (6.44), I solve for αi and βi as

α1 = −
ΩH

BN

N
∑

i=1

qx i
bisin(ΩHτi), (6.45)

α2 = −
ΩT

DN

N
∑

i=1

qx i
disin(ΩTτi), (6.46)

β1 = −
ΩH

BN

N
∑

i=1

qyi
bisin(ΩHτi), (6.47)

β2 = −
ΩT

DN

N
∑

i=1

qyi
disin(ΩTτi). (6.48)

Under these assumptions, I can also rewrite the determinant |α1β2 −α2β1| 6= 0 as

N
∑

i=1

qx i
bisin(ΩHτi)

N
∑

j=1

qy j
d jsin(ΩTτ j)−

N
∑

k=1

qxk
dksin(ΩHτk)

N
∑

m=1

qym
bmsin(ΩTτm) 6= 0. (6.49)

Equations (6.45) - (6.49) are an analytical interpretation of the fitting parameters αi

and βi for the original experimental 2D mapping in Ch. 3. These parameters, which

represent the planar frequency shifts of the cavity-feedback system, depend on the

quasiperiodic frequenciesΩH andΩT, the relative gains gi along each of the feedback
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paths of time-delay τi, and the linearized delay shifts per unit of translation x i and

yi. Without more knowledge about the time-delay changes in the cavity-feedback

system, an analytical approach to predicting the frequency shifts is not feasible, and

even with knowledge of such time-delay changes, it is not practical for improving

the system’s resolution beyond that of the numerical fit.

6.5 Summary

In this chapter, I present the foundation for realizing a dual-delay sensing system us-

ing a band-pass filter with time-delayed nonlinear feedback. This two-delay system

represents a simplification of the cavity-feedback system. Using an experimental

system with two feedback loops, I demonstrate that the quasiperiodic dynamics

form a map between the frequency shifts and the changes to the values of the time-

delays of (or the translations of) the feedback loops. Furthermore, using a simplified

model for the two-delay system and linear stability analysis, I derive the necessary

conditions for the quasiperiodic frequency shifts to be linearly independent with

respect to time-delay changes. I also demonstrate numerically that this analysis

is approximately valid beyond the Hopf and torus bifurcation points and that the

analytical theories can approximate the simulated frequency shifts. Furthermore, I

show that the analytically-predicted frequencies can also approximate the experi-

mental frequency shifts. Lastly, by extending the two-delay theories to a system with

N feedback loops, I connect the frequency-shift derivations to the subwavelength

position-sensing results of Ch. 3.

Earlier in the chapter, I also noted that the order of magnitudes for the experi-

mental and analytically-predicted frequency shifts ∆ fH in Fig. 6.6 is different than

those in Figs. 6.5c-d, even though the delay shifts are approximately the same order
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of magnitude ∆τi ∼ 10 ps. This demonstrates the sensitivity of the quasiperiodic

frequency shifts to the values of τ1, τ2, fT, and fH. For each set of parameters in

the nonlinear feedback system, the quasiperiodic frequency-shift map can vary by

orders of magnitude. Further study of this phenomenon may help to optimize a

frequency-shift map for a given system.

Although my analysis was originally motivated by a specific electronic exper-

iment, this methodology could be extended to other nonlinear feedback systems

that exhibit quasiperiodicity, such as OEOs with a nearly identical set of dynamical

equations. Using the frequency stability of such devices in the quasiperiodic regime

may lead to exciting applications in areas of multi-parametric sensing, where inde-

pendent measures can give more information about a system. Another example is

the semiconductor laser with dual time-delayed feedback, which has been shown

numerically to exhibit quasiperiodic dynamics [89]. Using an asymmetric feedback

configuration, an all-optical feedback system has the potential for multi-parametric

sensing on an optical wavelength scale. This future direction of research will be

highlighted in Ch. 7.

195



Chapter 7

Conclusions and Future Directions

Throughout this thesis, I first presented my experimental methods for construct-

ing a new type of system that uses nonlinear feedback in a wave-chaotic cavity.

As shown in Ch. 3, this novel setup exhibits the potential for subwavelength po-

sition sensing of a subwavelength scatterer using various dynamical states. Us-

ing quasiperiodic frequencies shifts to map out position changes of the scatterer,

I demonstrate a 2D subwavelength sensing resolution of λ/300. This mechanism

relies on the ability to measure the quasiperiodic frequencies and for the frequency

shifts to be independent. This particular phenomenon has never before been in-

vestigated. Thus, in Ch. 4, I show that that a numerical model can reproduce the

frequencies, in Ch. 5, I provide analytical techniques for predicting the frequen-

cies locations, and in Ch. 6, I investigate a simple system with similar behaviors to

gain insight into the independence of the quasiperiodic frequency shifts. Overall,

these chapters demonstrate a new understanding of quasiperiodicity frequencies in

the context of sensing perturbation. In this final chapter, I summarize my main

scientific contributions and discuss future directions.

7.1 Summary of the Main Scientific Results

The major contributions of this dissertation are (1) the first implementation of a

wave-chaotic system with time-delayed nonlinear feedback for subwavelength sens-

ing and (2) the development of a new 2D sensing technique that uses only scalar

measurements of time-varying scattered fields. In particular, these scalar measure-

ments map the frequencies of the quasiperiodic dynamics in the nonlinear feedback
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system to the scatterer’s relative location, which can be measured without the need

for costly, high-resolution detectors. In addition, both of these contributions utilize

an inexpensive electronic device and concepts from wave chaos, nonlinear dynam-

ics, and subwavelength imaging.

In the previous chapters, using various experiments, models, and simulations, I

narrow down the essential ingredients of this subwavelength sensing technique (a

summary of each of the main reslults from Ch. 2 - Ch. 6 are presented at the end

of Ch. 1). These ingredients include:

• a single-input, single-output nonlinear element (NLE) to create complex os-

cillations

• EM radiation (with average wavelength λ)

• feedback with a delay-gain distribution (τi, gi) that varies with scatterer posi-

tion

• dynamics with independent observables

These four ingredients give rise to a dynamically sensitive illuminating field that

can localize an object in a complex scattering environment, such as a wave-chaotic

cavity. The simplicity of these ingredients also offers many opportunities for future

investigations.

Lastly, before moving on future directions, it is important to acknowledge that

acoustic waves could also be used in a similar configuration. Such a system would

broadcast acoustic waves from a speaker into a complex scattering medium and

couple a portion of the scattered waves into a feedback loop using a microphone.

This type of acoustic feedback system has been previously reported by Weaver et al.

in Ref. [67] using periodic waves to sense qualitative changes in drying concrete.
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Weaver et al. use the saturation of an amplifier as the system’s nonlinearity, the con-

crete as the gain-delay distribution, and a periodic frequency shift to detect changes

in the system. As mentioned briefly in Ch. 3, their work is an example of qualitative

sensing technique that capitalizes on the Larsen effect, whereas my work creates a

quantitative sensing method that uses a so-called quasiperiodic Larsen effect.

7.2 Future Directions

I acknowledge that, in the previous section, my list of ingredients to observe the

quasiperiodic sensing mechanism does not explicitly include wave chaos. This is

because wave chaos is not a necessary ingredient for multi-parametric sensing with

quasiperiodicity (measuring multiple independent parameters simultaneously). Re-

call that the two-delay feedback system uses the simplest delay-gain distribution to

demonstrate the 2D sensing. Therefore, although the original experiment to dis-

cover this sensing mechanism used a wave-chaotic cavity, it can be observed without

the wave chaos.

Thus, as an interesting future direction of research, subwavelength sensing in a

regular cavity (as opposed to a wave-chaotic cavity) can be investigated. Based on

my list of ingredients, the quasiperiodic sensing mechanism should still be able to

be observed in a regular cavity. However, it is unknown if wave chaos is essential for

coupling the perturbations of the cavity’s delay-gain distribution to the position of

a subwavelength scatterer. I conjecture that the wave chaos enhances the system’s

sensitivity with regards to a subwavelength perturbation, but further investigation

is necessary to confirm this. More specifically, one could quantify the resolution of

the subwavelength sensing based on the level of wave chaos in the cavity, where

the level of wave chaos is varied based on the degree of asymmetry in the cavity’s
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boundary.

However, one complication of this experimental investigation is that it is not

clear how one would create a regular cavity with a scatterer; regular cavity’s typi-

cally require a high degree of symmetry. In addition, the level of wave chaos may

change with the scatterer’s position, which could complicate making comparisons

of the system’s resolution in different configurations. Nonetheless, further inves-

tigation to understand the necessary (or sufficient) roles that wave chaos plays in

subwavelength position sensing of a single scatterer is one of future interest. There

has already been extensive research into different geometries for 2D wave-chaotic

systems [48, 49, 51, 90], and applying nonlinear feedback to each of these systems

with RX and TX antennas can give insight into their effects on the position-sensing

resolution of a cavity-feedback system. Expanding the scattering and feedback to a

3D wave-chaotic cavity [54] may also affect the system’s resolution.

Implementing 3D wave-chaotic cavities also opens up an additional future di-

rection of research: 3D position sensing. However, in order to study 3D position

sensing, an additional independent observable must also be introduced into the dy-

namics of the cavity-feedback system to resolve three degrees-of-freedom (x , y, z).

My results suggest that one can resolve 3D positions using a quasiperiodic state with

three independent frequencies. Complex quasiperiodic dynamical states are possi-

ble in time-delayed nonlinear feedback systems [22], but further study is required

to create a three-tone quasiperiodic state that is stable in a cavity-feedback system

for a 3D volume of interest. In addition, as mentioned in Ch. 3, altering the dimen-

sions of the cavity can change the allowable polarization of the EM fields which as

a result could alter the potential resolution of the system.

Interestingly, it has been proven in the literature that the existence of a sys-

tem that exhibits dynamics with period three implies that dynamical chaos is also
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possible in such a system. More specifically, in Ref. [91], it has been shown that

controlled perturbations of a three-frequency torus can always give rise to chaos.

This could present a potential problem for 3D position sensing: if a three-frequency

quasiperiodic state always collapses to chaos, how can it be used to sense small per-

turbations such as changes to a scatterer’s location? Because I have not explored

three-frequency quasiperiodicity in my systems, I can only conjecture that such a

problem would not allow for 3D position sensing.

However, I can instead propose a method for creating an artificial three-frequency

quasiperiodic signal using band-limited channels that do not allow for cross talk. In

this configuration, each frequency of the quasiperiodic signal is generated using a

separate channel of the feedback loop. The nonlinearity of the feedback loops is

just the saturation of amplifiers (similar to Ref. [67]). Thus, in each band-limited

channel, only a periodic signal is created, and periodic signals from three different

channels can be summed to create a pseudo-quasiperiodic signal with three inde-

pendent frequencies. The advantage of this system is that it would not collapse

to chaos. Lastly, although dynamical chaos was originally disregarded due to its

complexity, the broadband nature and sensitivity of chaotic dynamics may have the

potential for 3D sensing, given a more detailed, statistical analysis of the chaotic

attractor and its changes with respect to a 3D scatterer position.

With additional independent observables in the feedback dynamics, there is also

the potential for future research on sensing the position of multiple scatterers simul-

taneously. For additional scatterers, more degrees of freedom must be monitored

simultaneously in order to resolve their positions. Investigating multiple scatterers

also allows for studying the effects of shadowing. If each scatterer is illuminated

from nearly all sides, there should be no shadows or blind spots while position sens-

ing. Proving that the positions of multiple scatterers can be imaged simultaneously
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represents another step towards realizing a practical imaging system.

As mentioned in Ch. 3 and 6, another future direction for this type of work is to

map out regions of quasiperiodicity with respect to the system’s parameters (delay

offsets, bias voltage of the nonlinear circuit, gain of the feedback loop, bandwidth

of the electronics, etc.). A better understanding of the windows of quasiperiodicity

and the sensitivity for each of these windows will help to understand and maximize

the potential dynamic range of the system.

As additional examples of future directions, wave chaos and nonlinear dynam-

ics have recently been combined by another research group to explore their po-

tential for secure communications applications [92]. This research group, which

developed many of the original wave-chaos sensing-techniques that inspired my re-

search, demonstrates the first study of adding a nonlinear device to the interior of a

wave-chaotic cavity as the system’s scatterer. In their paper, they credit my work as

an "exciting new direction of research" for "adding objects with complex nonlinear

dynamics to linear wave-chaotic systems" [92]. A future direction of Ref. [92] in-

cludes sensing the position of a nonlinear scatterer (as opposed to linear dielectric

scatterer) with linear delayed feedback.

Furthermore, as mentioned briefly in Ch. 3, a natural extension of this work is

wave chaos and nonlinear dynamics in the optical domain. This particular direction

of research was recently highlighted in Ref. [93], a review article that discusses the

future applications of sensing using the dynamics of nonlinear feedback systems.

In the article, the authors acknowledge that the "combination of nonlinear-delayed

feedback systems and wave-chaotic cavities gives rise to high sensitivity and sub-

wavelength accuracy, overcoming even the diffraction limit" and "so far, the effect

was demonstrated with radio-frequency waves, with a clear potential to be extended

into the photonics domain" [93]. Therefore, as one of the immediate future direc-
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tions of my work, I outline below the concept for an experimental setup for studying

a new type of the cavity-feedback system using optical wave chaos and a semicon-

ductor laser with time-delayed nonlinear feedback. Then, as a proof-of concept,

I also demonstrate experimentally that the quasiperiodicity in a two-delay optical

feedback system can already be used to yield subwavelength sensing results using

my technique.

7.3 All-Optical Subwavelength Position Sensing Us-
ing Nonlinear Feedback in a Wave-Chaotic Cavity

In this section, I outline the main steps to create an all-optical version of the

radio-frequency cavity-feedback system in order to image the position of a scatterer

on a nanometer scale. In particular, I review the semiconductor laser feedback sys-

tem with an external optical cavity. As shown in Tab. 7.1, the laser is the component

that replaces the nonlinear circuit, now the central wavelength of the EM field is

λ∼ 1550 nm, which is orders of magnitude smaller than the radio-frequency wave-

lengths (∼ 15 cm). I also discuss some of the recent developments of wave chaos in

2D optical cavities that are several hundred micrometers in length and width. These

optical microcavities represent the optical version of the microwave wave-chaotic

cavity. Similar to the RF domain, the independent observables of the optical sys-

tem are the quasiperiodic frequency shifts of the dynamics. Lastly, using a similar

conceptual overview to that presented in Ch. 3, I give an example design of an all-

optical subwavelength position-sensing system using the dynamics of the nonlinear

laser system and the wave chaos of the optical microcavity.

For several decades, time-delayed nonlinear feedback has been studied in semi-

conductor laser systems [94]. A typical setup consists of a laser diode with optical
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Table 7.1: Radio-frequency analogs of the proposed all-optical system for subwave-
length position sensing using nonlinear feedback in a wave-chaotic cavity.

Ingredient RF Optical

λ 15 cm 1550 nm

NLE
transistor-based
NLC

semiconductor
laser-diode

(τi, gi)
wave-chaotic
cavity

chaotic optical
microcavity

independent
observables

quasiperiodic
frequency shifts

quasiperiodic
frequency shifts

feedback so that the light emitted by the laser is reflected off of a mirror and then

coupled back into the laser cavity, as shown in Fig. 7.1a. The overall propagation of

the optical signal leads to a feedback delay time of τ with an associated gain coeffi-

cient g. Due to the nonlinear interactions of photons inside of the laser cavity, this

type of optical feedback can induce oscillations in the amplitude of the laser light

[94]. In Fig. 7.1a, the intensity of the laser is monitored using a photo-detector,

which converts the time-varying intensity of the optical signal into a voltage v(t)

to be recorded on an oscilloscope. Depending on the values of the parameters of

the feedback, for example (τ, g), the voltage v(t) can show steady-state, periodic,

quasiperiodic, and chaotic dynamics [94]. The observed quasiperiodicity typically

contains frequencies at several gigahertz [94]. Thus, similar to the electronic time-

delayed nonlinear feedback system, a laser with optical feedback represents one of

the main component of the imaging device.

The second component is an optical microcavity, which is comprises of a dielec-

tric material in a certain geometry that can trap photons for extended periods of time

[95]. Wave chaos has been observed in chaotic optical microcavities built using sil-

icon structures [96] and in the cavities of vertical cavity emitting lasers (VCSELS)

[52], where the resonances of the optical microcavities are used to characterize the
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level wave chaos. In order to measure the resonances, light can be coupled into

an optical microcavity through the evanescent field of a fiber-coupled laser diode

that can sweep its frequency or wavelength, as shown in Fig. 7.1b. For a certain

wavelength λ, the spatial modes of an optical cavity can be densely distributed in

the cavity [52] and sensitive to the perturbations of subwavelength scatterers, such

as that caused by the tip of a tapered optical fiber [17]. These perturbations can be

detected as resonance shifts on a detector that records the net output power of the

laser and the optical microcavity as a function of input wavelength [17]. In this type

of open-loop system, nanometer-sized perturbations can be detected [17, 97–99].

Using a cavity-feedback configuration, the sensitivity offered by an optical mi-

crocavity can be combined with the dynamical sensitivity of a nonlinear feedback

system. Hence, as shown in Fig. 7.1c, an all-optical version of the cavity-feedback

system can be realized using a laser dioide with time-delayed optical feedback that

is coupled into and out of a chaotic optical microcavity. In the time domain, this type

of cavity can be characterized as a delay-gain distribution (τi, gi), similar to pulse

response in the microwave wave-chaotic cavity. Thus, the output of the laser is split

along many paths through the cavity and the light that is coupled back into the laser

cavity is delayed by time-delays τi with gain coefficients gi. Due to the feedback, the

laser intensity oscillates in time and the parameters of the system are adjusted such

that v(t) is quasiperiodic. As a tapered optical fiber perturbs the evanescent field

of the optical microcavity, the delay-gain distribution (τi, gi) is perturbed and the

frequencies of the quasiperiodicity shift. Using a calibration grid, these frequency

shifts can be mapped out with respect to the fiber’s position (x , y). Scaling the 2D

position-sensing resolution of the radio-frequency cavity-feedback system (λ/300)

to the optical domain, a laser diode that outputs a wavelength λ ∼ 1550 nm is ex-

pected to image the position of the subwavelength fiber to within approximately 5
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Figure 7.1: Conceptual overview of the all-optical cavity-feedback system. (a)
Time-delayed nonlinear feedback in a semiconductor laser diode (LD). The output
of LD is reflected by a mirror (M) and fed back to the laser cavity. A portion of the
output power drives a coupler (C) for detection (det), which is then recorded as the
voltage v(t) on an oscilloscope (osc). (b) The output of LD is coupled to a chaotic
optical microcavity (COM). The wavelength of the laser λ is varied using a swept
source (SS) while the output power is detected and recorded. The resonances of the
cavity can be used to detect the presence of a tapered optical fiber (TOF). (c) The
emitted light of LD is coupled into COM, reflected by a mirror and fed back to itself.
The LD output also passes through a coupler (C) to a detector and oscilloscope,
where it is recorded as a time-varying voltage v(t). The quasiperiodic frequency
content of v(t) is used to reconstruct the position (x , y) of TOF.

nm. The proposed all-optical device would extend the main results of this thesis to

create a new imaging system with nanometer precision.

In the next subsection, I use a two-delay setup to demonstrate an experimental

proof-of-concept for nanometer position-sensing in an all-optical feedback system.

7.3.1 Proof-of-Concept: Two-Delay Sensing Using Quasiperiod-
icity in an All-Optical System

Though the work presented in this section shows a new experimental result, it
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is still preliminary with regards to subwavelength sensing. Overall, the goal of this

section is to demonstrate an experiment with quasiperiodic frequency shifts in an

all optical feedback system that can sense multiple spatial degrees-of-freedom si-

multaneously. However, in order to claim the my subwavelength sensing system

can be scaled to optical wavelengths, a full experimental system with a chaotic op-

tical microcavity must be investigated. Thus, the two-delay optical feedback system

illustrates a preliminary proof-of-concept for 2D subwavelength position sensing of

a subwavelength scatterer.

Similar to the dual-loop configuration discussed in Ch. 6, this proof-of-concept

system uses two independent variable time delays to map the frequency shifts in

the quasiperiodic dynamics of an all-optical feedback system. The results presented

here are preliminary and confirm that the frequency shifts of a nonlinear optical

system can be used to sense simultaneous position changes on a nanometer scale.

Thus, the two-delay optical feedback system represents a first step towards realiz-

ing the all-optical cavity-feedback system described in Fig. 7.1c. For each of the

experimental measurements, Andrés Aragoneses Aguado aided in the experimental

setup, data collection, and analysis. Lastly, these results are part of an investigation

that is currently ongoing.

The experimental setup for the two-delay device is shown in Fig. 7.2 using a

laser diode with λ ∼ 1550 nm. The emitted light is attenuated and collimated

using a lens. In free space, a beam splitter (BS) separates the optical field along two

different paths with mirrors (M1 and M2) that reflect light back to the lens and into

the laser cavity. The propagation distances along each path result in two different

time-delays, τ1 ∼ 55.5 ns and τ2 ∼ 55.6 ns, with feedback strengths (gains g1 and

g2) approximately equal. The relative values of the time-delays are controlled using

piezoelectric transducers (PZT1 and PZT2) that move the positions of the mirrors
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on a nanometer scale (see Appendix D for the calibration of the PZTs). Lastly, the

output of the laser diode is also coupled to a detector and an oscilloscope (using a

90/10 coupler (C), where 90% of the optical power is transmitted to free space and

10% of the optical power is directed to the detector).

By adjusting the optical feedback strength, I tune the dynamics of the experi-

mental system such that v(t) is quasiperiodic. As shown in Fig. 7.3a, the temporal

evolution of v(t) shows a fast oscillatory signal with a modulated amplitude, and

in Fig. 7.3b, the power spectral density (PSD) shows clusters of frequency peaks

that range from 1 GHz to 7 GHz. Of the peaks in these four clusters, I quantify

changes to the frequencies f1 = 1.1 GHz, f2 = 2.1 GHz, f3 = 5.4 GHz, and f4 = 6.5

GHz. The origins of the these frequencies are currently being investigated by our

collaborators Andrés Aragoneses Aguado and Cristina Masoller at the Polytechnic

LD 

det

M2

90/10 BS

τ1

τ2

osc

M1

att

PZT1

PZT2

L
Δx1

Δx2

C

v(t)

Figure 7.2: Two-delay all-optical feedback system for subwavelength sensing.
The output of a laser diode (LD, Sumitomo SLT4416-DP) passes through a colli-
mating lens (L) in free space, separates using a beam splitter (BS), is time-delayed
along two separate paths with propagation delays τ1 and τ2, and feeds back to
itself. Mirrors M1 and M2 at the end of these paths are attached to piezoelectric
transducers (PZT1 and PZT2, Burleigh PZO-015) to make small adjustments to τ1
and τ2, respectively. Using an attenuator (att) and a 90/10 coupler (C), the feed-
back gain is controlled and the feedback signal is routed to a photodetector (det,
New Focus 1544-B) and a high-speed oscilloscope (osc, DSO90804A).
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Figure 7.3: Quasiperiodic dynamics of the two-delay optical feedback system.
(a) Temporal evolution of v(t), which represents the laser intensity oscillations:
v(t)∝ I(t) = |E(t)|2, where I(t) is the intensity of the electric field with amplitude
E(t). (b) Power spectral density (PSD) of the oscillations.

University of Catalonia in Spain.

In the experimental system, I track the frequencies of the quasiperiodicity as τ1

and τ2 are adjusted simultaneously. To perform these adjustments, the positions

of M1 and M2 are changed using computer-controlled, high-voltage power supplies

to translate the PZTs. PZT1 and PZT2 are translated through a two-dimensional

grid (∼ 100 nm × 100 nm) of relative position changes (∆x1,∆x2), respectively, so

that ∆x1 = 2∆τ1 and ∆x2 = 2∆τ2 (the factors of 2 result from the optical signal

propagating in both directions along the feedback paths). At each location of the

PZTs, the quasiperiodic frequency shifts (∆ f1,∆ f2,∆ f3,∆ f4) are measured using

the large trigger-skew method on the digital oscilloscope (see Ch.3).

As an example of two of the quasiperiodic frequency shifts, I plot ∆ f2 and ∆ f4

as a function of (∆x1,∆x2) in Figs. 7.4a-b. Unlike the near-planar frequency

shifts observed in the radio-frequency system, the two-delay optical system pro-

duces quasiperiodic frequency shifts that take the form of surfaces with curvature

(I hypothesize that smaller time delay changes in the optical system would also re-

sult in near planar surfaces). Using second-degree multivariate functions, I create
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a map of these surfaces with respect to ∆x1 and ∆x2

∆ f2(∆x1,∆x2) =
i=2
∑

i=1

�

ai∆x i
1 + bi∆x i

2

�

+
j=1
∑

j=0

A j∆x j
1∆x j

2, (7.1)

∆ f4(∆x1,∆x2) =
i=2
∑

i=1

�

ci∆x i
1 + di∆x i

2

�

+
j=1
∑

j=0

B j∆x j
1∆x j

2, (7.2)

where the fitted coefficients ai, bi, ci, di, Ai, j, and Bi, j are listed in Appendix D. Using

these maps, I numerically solve for the predicted values ∆ x̂1 and ∆ x̂2.

The resulting predictions are first used to reconstruct the calibration grid path

of the delay shifts. Figure 7.4c shows the actual calibration grid path and Fig. 7.4d

shows the second-order grid reconstruction. In Fig. 7.4d, the reconstructed cal-

ibration grid shows distortions and hence errors in the predicted positions (∆x1,

∆x2). The reconstructed grid yields RMS differences between the predicted and

actual ∆x1 and ∆x2 values of 12.3 nm and 6.8 nm, respectively, which is an aver-

age resolution of ∼ λ/160. Lastly, the maximum observed errors are x1,max = 27.5

nm (∼ λ/60) and x2,max = 22.7 nm (∼ λ/70), which sets a bound on the resolution,

but nevertheless demonstrates subwavelength sensitivity over a 2D area.

Based on the results from Ch. 3, there are several potential sources of error

that cause these distortions. The first source of error is from the approximation

that the frequency shifts are second-order multivariate surfaces. Small fluctuations

in the actual frequency shifts about the fitted surfaces can project to large fluctu-

ations in the predicted positions. Similar to Ch. 3, to determine the contribution

of this effect, higher-order fittings can be performed along with measurements of

the system’s drift and frequency fluctuations. Due to the sensitivity of the system, I

conjecture that temperature fluctuations in the room are the main source of errors

in the frequency measurements. Further investigation in temperature controlled
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environments can help to eliminate this source of error.

In addition, changes to the mirror positions M1 and M2 that control the distances

(∆x1,∆x2), are assumed to be linear with respect to the applied voltages and with-

out hysteresis (see Appendix D). This approximation can contribute to the system’s

distortions if there are errors in the programmed grid positions. Based on the re-

sults from Appendix D, this is most likely not the case, but further investigation into

this all-optical system with more precise nano-controlled stages will answer this

question more definitively. Nevertheless, the reconstructed calibration grid projects

approximately onto the original grid with subwavelength dimensions (∼ 100 nm ×

60 nm).

Finally, using Eqs. (7.1) - (7.2) for ∆ f2 and ∆ f4 as a calibration mapping, I test

the dual position-sensing capabilities of the optical-feedback system using an arbi-

trary set of successive relative positions∆x1,n and∆x2,n within the calibration grid,

where n is the index of test locations (see Ch. 3 and Ch. 6 for similar experimental

tests). The test path of (∆x1, ∆x2) in plotted in Fig. 7.4e, where only the first

and last points of the path lie on the calibration grid for reference. For each point

along the test path (n = 33 total points), the frequency shifts (∆ f2,∆ f4) are mea-

sured, and when using the functional form of the calibrated maps, the predicted

path (∆ x̂1,n,∆ x̂2,n) is reconstructed numerically and shown in Fig. 7.4f.

Similar to the reconstructed calibration grid path, this reconstructed path is dis-

torted. The overall shape of the path is qualitatively similar (preserving the "S"

shape), but because the calibration grid is distorted in certain areas, the part of the

path that lies in this area is distorted such that it extends beyond the grid. Quantita-

tive comparisons reveal that the RMS differences between the predicted and actual

∆ x̂1,n and ∆ x̂2,n is 12.1 nm and 9.3 nm, respectively, yielding an average 2D reso-

lution of ∼ λ/150. The maximum observed errors are x1,max = 28.7 nm (∼ λ/50)
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Figure 7.4: Quasiperiodic frequency shifts used for subwavelength sensing.
Observed frequency shifts (a)∆ f2 and (b)∆ f4 as a function of the relative positions
∆x1 and ∆x2. (c) Calibration grid path (black curve) and (d) reconstructed grid
path (red curve). (e) Actual path (red curve) of (∆x1,n,∆x2,n) positions to test the
2D grid (black dots) of the frequency shifts. (f) Reconstructed path (red curve) of
the relative length shifts using the 2D grid (black dots).
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and x2,max = 19.5 nm (∼ λ/80). Potential sources of these errors come from the

approximation that the calibration grid is a second-order surface, errors mirror po-

sitions, and the potential for thermal fluctuations to cause frequency drift in the

system. Further investigation of this optical system can help to understand and

eliminate these sources of error. However, similar to the 2D sensing results from

Ch. 3, even with these distortions in the reconstructed path, the average resolution

given by the RMS errors and the maximum observed errors are still vastly subwave-

length. Overall, these results demonstrate that independent position observables

can indeed be reconstructed on a subwavelength scale using only a scalar optical

signal and quasiperiodic frequency shifts.

Similar to Chs. 3 and 6, a lower bound on the system’s average dynamics range

is ∼ 10 (100 nm / 10 nm). This is again only a lower bound and further inves-

tigation is required to measure the upper bound on the dynamic range. Based on

the results from Ref. [89], quasiperiodicity in a two-delay optical feedback system

can persist for external cavity length changes of up to 5 mm. Thus, based on this

work, I estimate a potential upper bound for this system’s 2D dynamic range as 105

(5 mm /8 nm). Of course, this range assumes that the PZTs also can move with

nanometer precision over a 5 mm range and that noise and fluctuations in the sys-

tem do not cause bifurcations. Thus, this all optical system shows great potential

for new directions of exploration with regards to both sensing and dynamical sys-

tems. This concludes the proof-of-concept experimental test for 2D subwavelength

position-sensing in an all-optical feedback system.

7.3.2 Concluding Remarks

The results of this two-delay optical feedback system combined with the results

of the radio-frequency cavity-feedback system demonstrate a well-defined research
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path for realizing a new device with nanometer imaging resolutions. Because lasers

with optical feedback have been studied for decades, they present a solid founda-

tion for creating a new dynamical system that is coupled to an optical microcavity.

Based on the interest in these results thus far, other research group are beginning

to explore the properties of nonlinear dynamics and wave chaos [92].

In conclusion, this dissertation demonstrates a new sensing modality using non-

linear dynamics. Using a wave-chaotic cavity as a complex scattering environment,

I show that this modality can sense a subwavelength scatterer’s position with vastly

subwavelength resolution. I also implement this method in two different experi-

ments with average wavelengths that differ by orders of magnitude and show that

it can sense multiple degrees-of-freedom simultaneously.

In the future, because this technique is relatively inexpensive and simple, I hope

that there are further investigations into the imaging capabilities of chaotic cavities

with nonlinear feedback. To summarize, I believe that this new type of system can

provide a simple method for tracking nano-sized scatterers. Ultimately, I would

like to see the dynamics of a cavity-feedback system used to sense the position of

nano-particle tags in biological systems to reconstruct images of cellular structures.
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Appendix A

Nonlinear Circuit: Background and
Discussion

This appendix serves as an added description of the nonlinear circuit (NLC) used

in the various time-delayed feedback systems that are presented in this dissertation.

In the first section, I present a brief explanation of the type of transistor used in

the NLC, its operating characteristics, and a potential origin of the circuit’s low-

pass filtering effects at high frequencies. In the second section, I present a similar,

lower-bandwidth nonlinear circuit described in Ref. [22] to compare to the high-

frequency capabilities of my NLC. Lastly, using a simple model for the transistor in

the NLC, I present equations for modeling the nonlinear circuit from first principles.

A.1 Bipolar Junction Transistors and Low-pass Filter-
ing Effects

The transistor used in my experiments is an NPN Silicon Germanium RF tran-

sistor (Infinium Technologies BFP620), where the NPN junction classifies the de-

vice as a bipolar-junction-transistor (BJT) [100]. The bipolar junction refers to the

connections between two types of semiconductors in a BJT, as shown by the NPN

configuration in Fig. A.1, where one of the semiconductors is N-type with an excess

of free electrons, and the other is a P-type semiconductor with a deficit of electrons.

In the figure, the two junctions are the points of contact between the N and P semi-

conductors. On the surfaces of these semiconductors are metal contacts, labeled

as the collector (C), the base (B) and the emitter (E), that allow for voltages to be

applied to the N and P semiconductors, creating electric fields across the emitter-
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base junction and the collector-base junction. Based on the values of the applied

voltages vC, vB, and vE (applied to the collector, base, and emitter, respectively),

these electric fields can either block or allow currents to flow through the device.

The circuit representation for the transistor (T) with these three voltages is shown

in Fig. A.1b.

As an example, a simple circuit with a BJT transistor is depicted in Fig. A.1c. In

the figure, a constant voltage vin is applied to the base of the device. The collector

is connected to a positive voltage VCC with some resistance and to the output of the

system vout. Lastly, the emitter is connected to the ground. In this configuration, for

vin = 0 V, the voltage vout is constant. However, for large enough vin, current flows

from the collector to the emitter and a proportional voltage drop is induced at vout.

This device is one of the building blocks of the NLC in Fig. A.1d.

To realize the tent-like shape for the input and output voltages of the NLC, the

transistor T1 is configured such that the supply voltage Vcc is connected directly to

the collector, vin drives the base, and the emitter is connected to the ground. For vin

below the threshold of the device, the current does not flow between the collector

and emitter, but vin can bypass the BJT through RNL to the output, thus giving a

linear relationship between input and output voltages. For vin above the transistor

threshold, there is a voltage drop on vout that is proportional to vin, thus yielding

an anti-linear behavior. Together, the linear and anti-linear regimes produce the

tent-like shape of the NLC.

There are various models for a BJT, each with a different level of complexity

[100]. The choice of the model’s complexity depends on the characteristics of the

transistor that need to be reproduced in a simulation. For example, one of the

simpler models for a BJT is known as the Ebers-Moll model, which is primarily

used to model the output of the transistor for constant input voltages [100]. In the
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Figure A.1: Bipolar junction transistor in the nonlinear circuit. (a) Bipolar junc-
tion transistor with NPN junctions. The base (B), emitter (E), and collector (C)
plates each have applied voltages vB, vE, and vC, respectively. (b) The circuit symbol
for a transistor (T) with the corresponding voltages labeled. (c) Transistor circuit
illustrating how the output voltage vout can change as a function of the input voltage
vin. (d) Circuit schematic for the NLC with the transistor T1 highlighted by the red
dotted circle (see Ch. 2 for details). The capacitor CT and inductor LT represent the
bias-T (grey dotted box) that adds the voltages vin and vb

Ebers-Moll model, the transistor is treated as two different PN junctions such that

the current across each junction can be calculated separately and then summed to

give the currents at the collector, base, and emitter [100].

However, in reality, a transistor can be a dynamic device with time-evolving

voltages. One of the issues with the non-static behavior of a transistor is the charge

storage that can occur in the layers between the PN junctions [100]. As one ex-

ample of a dynamical model that captures this effect, charge storage depletion can

be included in the transistor model as a capacitive effect. As shown in Fig. A.2,

the schematic of the transistor now includes intrinsic capacitances CBE, between
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Figure A.2: Schematic of a transistor with capacitive and resistive effects to
simulate charge storage in the junctions.

the base and emitter, and CBC, between the collector and the base. In addition,

the schematic also includes the intrinsic resistances that are associated with the

collector, base, and emitter (RC, RB, and RE, respectively). These cause frequency

filtering of the voltages across the junctions. More complicated models can also

include voltage-dependent capacitances that can change depending on the voltages

across the junctions [100]. Thus, as the transistor switches from non-conducting to

conducting (or vice versa), the filtering effects in the device change.

These types of intrinsic, voltage-dependent capacitances contribute to the low-

pass filtering effects in the NLC. The particular BJT used in the NLC is chosen for

the approximate values CBE = 98.4 fF and CBC = 55.9 fF, which are provided by

manufacturers on the transistor’s data sheet. These values should be compared to

the values CBE = 1 pF and CBC = 0.6 pF in the original transistor-based circuit of Ref.

[22] (NPN transistor: BFG520). With smaller intrinsic capacitances in the updated

design, the filtering effects occur at higher frequencies in the NLC. To highlight this

change, in the next section, I revisit the original circuit from Ref. [22] and show

that its filtering effects, which are qualitatively similar to those in the NLC, occur at

a lower range of frequencies (50 MHz < f < 800 MHz).
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A.2 Previous Circuit Design

Because the original circuit from Ref. [22] was first created in our lab, I am able to

characterize the nonlinear aspects of the device myself. This particular nonlinear

circuit is a modified test board (ERA-SM) from Mini-Circuits, shown in Fig. A.3a,

where the original intent of these boards is for testing linear amplifiers. The main

modification to the board is the replacement the Mini-Circuit’s ERA-amplifier with

the NPN wideband transistor BFG520 [22]. The circuit diagram for these modifica-

tions is reproduced in Fig. A.3b. Based on the schematic, for input voltages below

the transistor threshold vT ∼ 0.7 V, the output current of the device is given by the

voltage drop across RN. For input voltages above vT, the output current is the differ-

ence between the voltage drop across RN and the collector current flowing through

the transistor to ground.

To demonstrate the relationship between the circuit’s input and output voltages,

I reproduce a figure from Ref. [22] that characterizes the output voltages vout of the

circuit with respect to a sinusoidal driving signal vin. Prior to the input of the circuit,

a bias voltage of vb is added to vin to access the circuit’s nonlinear regime. Using a

CT

Vcc

vout 

L1

C2

R1

RN C1(b)(a)

R1

T1vin

vin+vb

vb

LT

bias-T

Figure A.3: Illing et al. nonlinear circuit. (a) Photograph of the previous circuit
(from Ref. [22]), where the transistor is highlighted in the red dotted circle. (b)
Circuit diagram of the original nonlinear circuit with transistor T1, where RN = 68
Ω, R1 = 4.75 Ω, R2 = 47 Ω, C1 = 47 nF, C2 = 0.39 µF, and L1 is a radio-frequency
choke (MCL Model AdcH-80A). The capacitor CT and inductor LT represent the
bias-T (grey dotted box) that adds the voltages vin and vb.
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Figure A.4: Illing et al. circuit characterization. Characterization of vout for a
given vin at 13 MHz with vb = 0.7 V. In addition to the tent-like properties of vout, the
output voltage of the previous circuit is ac-coupled and therefore centered around
vout = 0 V.

driving signal at frequency f = 13 MHz and vb = 0.7 V, I plot the waveform vin versus

vout in Fig. A.4. For voltages below vT, the transistor remains non-conducting and

the circuit produces an approximately linear input-output relation (with positive

slope). For voltages above vT, the transistor allows current to flow through R1 to

ground, inducing an anti-linear input-output relation (with negative slope). Thus,

based on the results for a 13 MHz input waveform, the original circuit performs a

similar input-output, tent-like nonlinear function.

However, for higher frequency inputs, the circuit exhibits distortions similar to

those observed in the NLC in Ch. 4. These distortions are demonstrated with a

sinusoidal vin at frequencies ranging from 50 MHz - 1 GHz in Fig. A.5. It is clear

that the distortions become increasingly complex at higher frequencies and Illing

et al. hypothesize in Ref. [22] that this is due to low-pass filtering in the circuit.

However, this non-ideal behavior did not play a role in the work of Ref. [22] because

the circuit operated in a lower range of frequencies (≤ 500 MHz).

In their original work, Illing et al. studied the dynamical behaviors of the NLC

in a time-delayed feedback system. The basic setup for their feedback experiment

is that in Ch. 2, where coaxial cables form the system’s time delay τ. Similar to this
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Figure A.5: Distortions from the Illing et al. circuit. Input voltages vin versus
output voltages vout in the circuit from Ref. [22] for sinusoidal driving waveforms
at frequencies (a) f = 50 MHz, (b) f = 100 MHz, (c) f = 500 MHz, and (d)
f = 800 MHz. The opening of the tent-like function is highlighted in (b).

design, the net filtering of feedback components can be approximated as a band-

pass filter with parameters f (−) = 110 MHz and f (+) = 502 MHz. Using the gain G

of the feedback loop as a bifurcation tuning parameter, Illing et al. demonstrated

that, for high enough gain, the system experiences a Hopf bifurcation to periodic

oscillations. Further increasing G, they showed that the nonlinear feedback device

can also exhibit both quasiperiodic dynamics and chaos. The observed dynamics

contained frequencies up to approximately 500 MHz, which classifies the circuit as

an ultra-high-frequency device [22].

The NLC in the cavity-feedback system also demonstrates tent-like input-output

characteristics that are qualitatively similar to the Illing et al. circuit. The previous

(BFG520) and updated (BFP620) transistors show significant distortions in the out-

put of the nonlinear circuits for f > 500 MHz and for f > 1 GHz, respectively. As
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mentioned earlier, a potential cause of these filtering effects is the resulting capaci-

tive effects from charge storage depletion between the semiconductor junctions of

the transistors. In order to demonstrate how these capacitances can play a role in

the distortions of the output voltages from the circuits, I present a model for the

NLC design that includes capacitive effects in the next section.

A.3 Nonlinear Circuit Model with Capacitive Effects

Here, I present a model that uses resistors (R), inductors (L), and capacitances (C)

to represent the NLC. The model also includes capacitances to represent the charge

storage of the BJT transistor [101]. For the simplicity of this demonstration, I assign

constant capacitances that do not depend on the voltages through the transistor. In

addition to these RLC equations, I model the currents in the transistor with a simple

piecewise-linear function following Ref. [102]. The schematic of the RLC model is

depicted in Fig. A.6 with the corresponding voltages (v), currents (I), capacitances

(C), resistances (R), and inductances (L) labeled. As shown in the figure, there are

added depletion capacitances CBE and CBC between the base and the emitter and the

base and the collector of the transistor T1, respectively. The purpose of this model is

to demonstrate that the values of these capacitances across the transistor junctions

can increase or decrease the level of distortions in the output voltages (away from

the ideal tent-like shape) for a given input frequency range.

The RLC model is derived using the values of the changing voltages and currents

in the circuit. First, I briefly derive these equations to give insight to their origins.

In this model, the voltages vBE and vBC are defined as

vBE = vB − vE, (A.1)
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Figure A.6: Circuit schematic of an RLC model for the NLC with depletion ca-
pacitances. For simplicity, rather than including the bias-T components from Fig.
A.1d, the bias voltage vb is added directly to vin. Arrows indicate the directions of
positive voltage changes and positive current flows. An input resistance Rin and
output resistance Rout model the impendances of the experimental signal generator
(SG) and oscilloscope (osc). The transistor T1 is highlighted by the red dotted circle.

vBC = vB − vC, (A.2)

where vB, vC, and vE are the voltages applied to the transistor’s base, collector, and

emitter, respectively. The equations that describe the rate of change of voltages and

currents across the system’s capacitors and inductors are

C1v̇NL = I1, (A.3)

C2v̇2 = Iout, (A.4)

L1 İL = −vRF, (A.5)

CBEv̇BE = IBE, (A.6)

CBCv̇BC = IBC. (A.7)
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Therefore, the state variables of this model are vNL, v2, IL, vBE, and vBC. Summing

the currents at the points of intersection in Fig. A.6 leads to

IL = I1 + Iout + IC − IBC, (A.8)

Iin = IB − I1 + IBC + IBE, (A.9)

IBE + IB + IC = vE/R1, (A.10)

and following the various paths of voltages in the circuit leads to

vin − RinIin − vBE − vE = 0, (A.11)

VCC − R2IL + vRF − v2 − IoutRL = 0, (A.12)

IoutRL + v2 + vBC − vE = 0, (A.13)

−vNL + I1RNL − vBC = 0. (A.14)

It remains to express Eqs. (A.3) - (A.7) in terms of the state variables of the system.

After extensive algebra, these equations can be rewritten as

v̇NL =
−(vBC + vNL)

C1RNL
, (A.15)

v̇2 = G1/(C2G2), (A.16)

İL =
−(RLG1/G2 + ILR2 + v2 − VCC)

L1
, (A.17)

v̇BE =
−IBG2 − ICG2 + ILRinRL + Rin(v2 + vBC + vBE) + RL(vin − vBE)

CBEG2
, (A.18)

v̇BC = [IC + G1/G2 − IL − (vBC + vNL)/RN]/CBC, (A.19)
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where

G1 = ILR1Rin − R1(v2 + vBC − vin)− Rin(v2 + vBC − vBE), (A.20)

and

G2 = R1(Rin + RL) + RinRL, (A.21)

are commonly occurring terms in Eqs. (A.15) - (A.19). Lastly, I model the currents

IB and IC through the transistor T1 as a piecewise-linear model [102] that reads

IB =











0, if vBE ≤ vT

(vBE − vT)/Ron, if vBE > vT

, (A.22)

where Ron is the intrinsic resistance when the transistor is conducting and IC = β IB,

where β is a constant [102]. Lastly, the output voltage of the model is

vout = IoutRout = C2v̇2Rout. (A.23)

Therefore, Eqs. A.15 - A.23 represent a model for the transistor-based nonlinear

circuit with constant depletion capacitances.

To test this model, I first verify that it produces a tent-like nonlinear behavior

between input and output voltages for low-frequency input voltages vin. As shown

in Fig. A.7, for a given set of circuit parameters and an input sinusoidal signal

at frequency f = 270 MHz, the model produces a qualitatively similar tent-like

nonlinear operation. The parameters chosen for this simulation are obtained from

typical experimental values in the NLC and the values CBE = 500 fF and CBC = 500

fF are chosen such that the tent-like shape is preserved at f = 270 MHz.

Next, I demonstrate that this model can show distortions when driven by sinu-

soidal waveforms at higher frequencies. In Fig. A.8, the model parameters are kept
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Figure A.7: Input versus output voltages of the RLC model. The output voltage
vout plotted as a function of vin for a input driving frequency of f = 270 MHz with
vb = 0.65 V, vT = 0.72 V and VCC = 1.3 V. The parameters of the model are Rin = 50
Ω, RNL = 30 Ω, R1 = 5.1 Ω, R2 = 68 Ω, RL = 50 Ω, Ron = 500 Ω, C1 = 47 nF,
C2 = 100 nF, L1 = 4 nH, and β = 60 with the depletion capacitances CBE = 500 fF
and CBC = 500 fF.

the same and the input of the model is now driven with sinusoidal signals at fre-

quencies ranging from f = 500 MHz to f = 1.9 GHz. Similar to the experimental

NLC, for higher input driving frequencies, the tent-like shape shows an opening, as

highlighted in Fig. A.8d. This opening is due to a frequency-dependent phase-shift

through the NLC model.

Lastly, I demonstrate that the capaciatances CBE and CBC play significant roles

in determining the frequency range over which these types of distortions occur. To

compare with the distortions in Fig. A.8, I increase the values of the depletion capic-

itances to CBE = 5 pF and CBC = 5 pF and simulate the RLC model for input driving

signals over a frequency range f = 100 MHz to f = 700 MHz. The resulting input-

output voltage relations are plotted in Fig. A.9, where the tent-like nonlinearity

shows increased distortions at lower frequencies. For example, the opening of the

tent-like nonlinear operation is more pronounced in Fig. A.9b for f = 500 MHz

(with CBE = CBC = 0.5 pF) than in Fig. A.8b for f = 1.9 GHz (with CBE = CBC = 500

fF).
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Figure A.8: Distortions in the RLC model for low depletion capacitances. Input
voltages vin versus output voltages vout in the RLC circuit model for sinusoidal driv-
ing signals at frequencies (a) f = 500 MHz, (b) f = 1.1 GHz, (c) f = 1.5 GHz, and
(d) f = 1.9 GHz with the depletion capacitances CBE = 500 fF and CBC = 500 fF.

Therefore, using a simple RLC model for the NLC, I have shown that the distor-

tions in the output voltages of the nonlinear circuit can be reproduced qualitatively

using depletion capacitances to model charge storage in the BJT transistor. Further-

more, using two different sets of constant capacitances for CBE and CBC, the model

demonstrates that the distortions depend on the amount of charge storage between

the junctions of the transistor. These two sets of capacitances represent qualitatively

the change from the transistor BFG520 in Ref. [22] (with relatively high depletion

capacitances) to the transistor BFP620 in the NLC of the cavity-feedback system

(with relatively low depletion capacitances). The result of the change causes the

distortions in the output of the NLC to occur for a higher range of frequencies.

Though the RLC model can demonstrate this behavior qualitatively, it is not used

in the model for the cavity-feedback system for two primary reasons. First, the

RLC model does not capture quantitatively the subtle distortions in the output of
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Figure A.9: Distortions in the RLC model with high depletion capacitances.
Input voltages vin versus output voltages vout in the RLC circuit model for sinusoidal
driving signals at frequencies (a) f = 100 MHz, (b) f = 300 MHz, (c) f = 500 MHz,
and (d) f = 700 MHz with the depletion capacitances CBE = 5 pF and CBC = 5 pF.

experimental circuit. In order to build an RLC model that does capture these effects,

additional features must be introduced such as nonlinear capacitances and a more

accurate description of the transistor’s currents. Each of these added complexities

must then be matched to the experimental parameters. Rather than try to measure

and model the nonlinear capacitances of the transistor, I use a "black box" approach,

where the input and output of the unknown system or "black box" are measured and

the simplest model is used to reproduce the observed effects. In the experimental

nonlinear circuit, this approach leads to the model presented in Ch. 4.

The second reason for not using the RLC model for the NLC is to be consistent

with the rest of the model for the cavity-feedback system. For example, the external

feedback loop of the cavity-feedback system is modeled as a lumped-element band-

pass filter. In principle, each element in the external feedback loop could be modeled

from first principles based on its components. However, because the band-pass filter
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is simpler and it captures the desired effects, there is no need to pursue a more

complicated model. Thus, using a filter approach for modeling the NLC matches

conceptually with the modeling approach for the rest of the cavity-feedback system.

A.4 Summary

In summary, the operating characteristics of the NLC are explained based on the

properties of a BJT transistor. In addition, the frequency-dependent distortions can

be attributed to charge storage in the BJT device. Using the original NLC from

Ref. [22], I demonstrate that the previous circuit’s input-output tent-like function

and distortions are qualitatively similar to the circuit in the cavity-feedback system.

Lastly, using RLC equations to model the device, I show that changing the values of

the transistor’s intrinsic capacitances can alter the frequency range for which these

distortions arise, thus qualitatively representing the change from the Illing et al.

circuit design to the NLC of the cavity-feedback system.
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Appendix B

Calibration of Frequency Tracking

This appendix provides additional details of how I measure experimentally the fre-

quency shifts of the periodic and quasiperiodic dynamics discussed in Ch. 3. In

particular, I present the experimental calibration method for tracking frequencies

and their drift. I also provide the antenna far-field efficiency and the coefficients of

the fitted multivariate functions used for mapping the 2D position of the scatterer.

B.1 Frequency-Shift Measurements and Calibration

For each set of frequency measurements, a time series containing the relevant fre-

quency information is acquired from a digital oscilloscope and transferred to a com-

puter for analysis. I use an experimental technique with minimal data that is de-

signed to measure small frequency shifts of a periodic or quasiperiodic signal with

a known finite number of prominent frequency peaks.

Prior to measuring the frequency shifts, a 12.5 µs time series is saved as a refer-

ence. For a quasiperiodic signal, I calculate the Fourier Transform of the waveform

and measure its four most prominent frequency peaks, where the waveform is long

enough to guarantee sufficient resolution to distinguish these peaks from one an-

other. A typical quasiperiodic time series and frequency spectrum is shown in Figs.

B.1a-b. The locations of these peaks are recorded for later use as the seed parame-
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Figure B.1: Typical quasiperiodicity in the experimental system. (a) Tempo-
ral evolution of v(t) and (b) its power spectral density (PSD) with the prominent
frequency peaks labeled fT , fH , fH − fT , and fH + fT .

ters of the fitting function

v̄(t) =
i=4
∑

i=1

Ai sin[2π( fi +∆ fi)(t − ts)], (B.1)

with the trigger skew time ts = 2.5 µs, f1 = fT, f2 = ( fH− fT), f3 = fH, and f4 = ( fH+

fT), and where Ai and ∆ fi are free fitting parameters determined through a least-

square regression. For each subsequent fit, the seed frequencies of the regression

algorithm are taken to be equal to the prior set of fit frequencies. In doing so, I am

assuming the relative shifts in the frequencies are small between consecutive fits,

as described next.

The value of the trigger skew time ts must be large to maximize the observable

shift of the waveform in the acquisition window (see Chapter 3 for details). How-

ever, if the relative phase of the waveform changes by more than ∼ π/4 from one

object position to the next, the fitted values of the frequencies can jump by a large

amount, which is not representative of the actual frequency shifts. Once the data

has been analyzed over a region of the scatterer positions, each frequency shift ∆ fi

is then centered about zero by subtracting its average.
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Figure B.2: Calibration setup and signal generated for quantifying the mea-
surement errors of frequency shifts. (a) The frequency f1 is generated by signal
source 1 (SS1), a Hewlett Packard network analyzer (8753E), and the frequency
f2 is generated by signal source 2 (SS2), an Agilent Technologies signal genera-
tor (E8267D). I use the same low-pass filter (cascaded Mini-Circuits LFCN-1400,
LFCN-2000) at the output of a mixer (Mini-Circuits ZFM-2000) that cuts all frequen-
cies above 2 GHz and appears in the feedback loop of the cavity-feedback system.
The resulting output voltage is (b) an artificially-generated quasiperiodic signal and
with (b) power spectral density (PSD) that contains four prominent frequencies f1,
f2, f2 − f1, and f2 + f1.

To quantify the error associated with this type of measurement method, I mea-

sure the frequency shifts of an engineered two-tone quasiperiodic signal generated

with known frequencies. To create this signal, I mix the outputs of two independent

signal sources with controllable frequencies f1 and f2, as shown in Fig. B.2a. The

resulting waveforms and their corresponding frequency spectra are qualitatively

similar to those observed in the nonlinear feedback loop, as shown in Figs. B.2b-c.

Using ts = 2.5 µs, I reproduce the experimental data acquisition for two differ-
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ent calibration measurements. First, I fix the values of f1 and f2 and collect a set

of 200 different times series from the output. Using the initial seed frequencies ob-

tained from the programmed values of f1 and f2 and their linear combinations, I fit

individually each time series using Eq. (B.1); consecutive fits are seeded with the

previous set of fitted frequencies. I compare the values of the programmed values of

f1 and f2 and their linear combinations with the 200 different fitted-frequency mea-

sures. Examples of the measured data for ∆ f̄1 and ∆ f̄2 are plotted in Figs. B.3a-b,

where the averaged frequencies

∆ f̄1 = [∆( f2 − f1) +∆ f1 −∆( f2 + f1)]/3, (B.2)

∆ f̄2 = [−∆( f2 − f1) +∆ f2 +∆( f2 + f1)]/3. (B.3)

are similar to ∆ f̄T and ∆ f̄H (see Ch. 3). The root mean square (RMS) frequency

differences between the measured values of ∆ f̄1 and ∆ f̄2 and the actual shifts are

3.3 kHz and 0.2 kHz, respectively. These values should be compared to the 1 Hz

frequency resolution of the Hewlet Packard (8753E) signal source and the 1 mHz

frequency resolution of the Agilent Technologies (E8267D) signal source.

In addition, I test the measurement technique with a calibrated frequency shift

∆ f2. I collect 100 artificially-generated quasiperiodic time series where f2 is in-

creased by 10 kHz between each consecutive acquisition (+1 MHz total), and then

collect 100 quasiperiodic time series where f2 is decreased by 10 kHz between each

consecutive acquisition (-1 MHz total). Using the initial values of f1 and f2 and

their linear combinations as the initial seed frequencies, I fit the time series using

Eq. (B.1). I compare the values of the known curves ∆ f̄1 and ∆ f̄2 with the fitted

measures. Examples of the measured shifts for ∆ f̄1 and ∆ f̄2 are plotted in Figs.

B.3c-d. The RMS frequency difference between the actual and measured ∆ f̄1 is 2.5
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Figure B.3: Calibration of the frequency shift-measurement technique using
the artificially-generated quasiperiodic signal. In the first test, both frequencies
f1 and f2 are held constant such that (a) ∆ f1 and (b) ∆ f2 are approximately zero.
In the second test, (a) f1 is held constant such that ∆ f̄1 is approximately zero and
(b) f2 is increased such that ∆ f̄2 shifts.

kHz, and the average RMS frequency difference between ∆ f̄2 is 3.5 kHz. I com-

pare the frequency differences from our calibration tests to the maximum observed

frequency shift in the quasiperiodic signal of the nonlinear feedback loop (∼ 500

kHz). Thus, the errors represent approximately 0.7% of the observed changes.

In summary, this measurement technique detects small shifts in the primary fre-

quency components of a periodic or quasiperiodic signal with kilohertz resolution.

In the next section, I show how parameter drift in the cavity-feedback system can

lead to frequency drift in the dynamics.
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B.2 Frequency Drift in the Cavity-Feedback System

As an example of the frequency drift in the experimental cavity-feedback system,

I collect 500 measurements of ∆ f̄T and ∆ f̄H (see Chapter 3, Eqs. (3.6) - (3.7)) for

fixed parameters of the feedback. The purpose of this measurement is to demon-

strate that temperature and humidity fluctuations change the density of air in the

wave-chaotic cavity and can affect the frequencies of oscillation. As shown in Figs.

B.4a-b, the values of ∆ f̄T and ∆ f̄H, which should be constant over time, can drift

due to parameter fluctuations of the cavity-feedback system. Based on this experi-

mental test, ∆ f̄T can drift with a standard deviation of σT = 3.3 kHz and ∆ f̄H can

drift with a standard deviation of σH = 7.5 kHz over 500 waveform acquisitions.

These drifts are within the same orders of magnitude as those observed during the

calibration measurements of the frequency shifts using commercial signal sources

in the previous section. Also, it should be noted that the correlation between the

observed drifts ∆ f̄T and ∆ f̄H is approximately 60%, which means that, on average,

the fluctuations in the system affect each frequency measure in a similar manner.

For the data of the 2D subwavelength position sensing in Chapter 3, there are

121 waveform acquisitions in the calibration grid and 32 waveform acquisitions in
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Figure B.4: Frequency drift in the cavity-feedback system for (a) ∆ f̄T and (b)
∆ f̄H where all parameters are held constant over 200 waveform acquisitions.
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the test path. Across these measurements, the average frequency shifts for ∆ f̄T and

∆ f̄H between acquisitions is 41.5 kHz and 7.7 kHz, respectively. Therefore, it is

possible for the drift to affect measurements of the frequency shifts, thus degrading

the subwavelength resolution performance. To keep the influences of drift from be-

coming detrimental to the sensing mechanism, the cavity-feedback system is always

switched on and given 30 minutes to stabilize its temperature before collecting data.

In addition, data is collected at a time when the temperature is most stable in the

laboratory (at night) and test data sets are acquired in succession to estimate the

relative level of drift present in the system at that time.

B.3 Antenna Far-Field Efficiency

In order to further characterize my broadband antennas, I brought my TX antenna

to a commercial facility (The Wireless Research Center of North Carolina). In this

facility, they measure the far-field patterns and power efficiency of antennas using

an anechoic chamber to remove reflections from the room. Using a sinusoidal driv-

ing signal with a swept frequency, they measured the power efficiency Pout/Pin of the

antenna, where Pin is the injected power to the antenna and Pout is the total power

of the emitted radiation. The experimental efficiency of the antenna’s far-field pat-

tern in shown in Fig. B.5. Based on these results, the antenna shows an average

efficiency of ∼ 75% for 0.6 GHz < f < 2 GHz.

B.4 Scatterer Displacement Measurements

As mentioned in Ch. 3, the relative position of the scatterer with respect to the

programmed translation stage position must be measured in order to quantify the

correlation between these positions. The reason for quantifying this correlation is
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Figure B.5: Antenna far-field efficiency calculated by measuring Pout/Pin.

to determine the role of scatterer positioning errors in the distortions of the recon-

structed calibration grid path in the 2D quasiperiodic sensing of the cavity-feedback

system. The procedure for directly measuring the scatterer position follows (as

mentioned in Ch. 3, it was hypothesized that the glue that holds the scatterer to the

translation stage may stretch and the scatterer may not be positioned correctly).

The scatterers position is measured using a device known as a dial drop indicator.

A picture of this device is shown in Fig. B.6a, where a dial indicator gives the

relative position change of a contact stem. The contact stem makes contact with the

scatterer as it is displaced in 1D using the translation stages. Each tick mark in the

dial indicator is representative of a 25 µm displacement. In order to help remove

ambiguities from reading the indicator in these measurements, the programmed

displacements of the scatterer are all larger than 25 µm. All measurements are

consecutive and repeated multiple times to avoid errors from thermal expansion of

the materials are the temperature in the room fluctuates. In addition, a position

of the scatterer was fixed and monitored for over 1 hour, showing no observable

change from such fluctuations.

It should be noted that these measurements include the errors associated with

the translation stage positioning. Based on the manufacturer’s calibration of the

236



measured displacement (μm)
0

0

p
ro

g
ra

m
m

e
d

 

d
is

p
la

c
e

m
e

n
t 
(μ

m
)

100 200 300

100

200

300

400

500
(b)

(a)

stem

dial

400 500
measured displacement (μm)

0

0

p
ro

g
ra

m
m

e
d

 

d
is

p
la

c
e

m
e

n
t 
(μ

m
)

100 200 300

100

200

300

400

500
(c)

400 500

0

positive direction negative direction

Figure B.6: Scatterer displacement measurements. (a) Dial drop indicator. (b)
Measurmenets of the scatterer displacements in the positive direction and (c) the
negative direction as a function of the programmed positions of the translation
stage.

translation stages, they have relative positioning errors of approximately 5 µm. As

mentioned in Ch. 3, these errors can be caused by backlash in the mechanical

screws of the stages, and an automated backlash correction is in place in order to

minimize such errors. During all measurements of the scatterer displacement using

the dial indicator, there is backlash correction and the translation stage error should

be ∼ ±5 µm.

Based on the calibration grid spacing of 0.5 mm (see Fig. 3.17), I choose to

measure the position of the scatterer with the dial indicator over a 1D displacement

of 0.5 mm at 50 µm steps. The measurements for the scatterer displacements in the

positive x (or y) direction are shown in Fig. B.6b and in the negative x (or y) di-

rection are shown in Fig. B.6c. In each figure, the measured scatterer displacement

237



is plotted versus the programmed translation stage position. In the positive (neg-

ative) direction, the RMS error of the scatterer position is 5.5± 2.5 µm (5.7± 2.0

µm) and the maximum observed error is ∼ 12.0±2.5 µm (∼ 11.0±2.0 µm). Error

bars represent the standard deviation of measurements, and visually the two curve

look nearly identical because these error bars are small in comparison to the 500

µm scale. Note that the maximum errors are approximately one half of a tick mark

on the dial’s indicator. As mentioned above, these errors are on the same order of

magnitude as the relative positioning errors of the translation stage itself. There-

fore, based on these results, I estimate that the positioning error due to the glue

that holds the scatterer is on the order of 5 µm. Because this positioning error is

orders of magnitude smaller than the 2D position errors in the reconstruction of

the calibration grid path, they are not the main source of the distortions of Figs.

3.17a-b or Figs. 3.18c-d. This concludes the direct measurements of the scatterer

displacement.

B.5 Coefficients of the Frequency-Shift Fits: 2D Pos-
tition Sensing

In Ch. 3, I fit the calibration grid data of the frequency shifts (∆ f̄T,∆ f̄H) with

respect to the scatterer position (x , y) using the fourth-order multivariate functions

∆ f̄T(x , y) =
i=4
∑

i=1

�

ai x
i + bi y

i
�

+
j=3
∑

j=0

k=3
∑

k=0

A j,k x j yk, (B.4)

∆ f̄H(x , y) =
i=4
∑

i=1

�

ci x
i + di y

i
�

+
j=3
∑

j=0

k=3
∑

k=0

B j,k x j yk, (B.5)
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where the fitted parameters for ∆ f̄T,H(x , y) are listed in Table B.1 (errors in the

parameters represent the standard deviations of the regression coefficients).
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Table B.1: Coefficients of the 2D position-sensing frequency-shift fits

Coefficient Fitted Value

a1 (−4.22± 3.99)× 105 kHz mm−1

a2 (3.68± 6.15)× 103 kHz mm−2

a3 −16.0± 43.2 kHz mm−3

a4 0.0304± 0.11 kHz mm−4

b1 (−5.73± 2.54)× 105 kHz mm−1

b2 (6.49± 4.14)× 103 kHz mm−2

b3 −34.1± 34.8 kHz mm−3

b4 0.071± 0.12 kHz mm−4

A0,0 (1.96± 1.11)× 107 kHz
A1,1 (8.74± 3.67)× 103 kHz mm−2

A1,2 −63.0± 26.6 kHz mm−3

A2,1 −46.6± 29.3 kHz mm−3

A2,2 0.16± 0.092 kHz mm−4

A1,3 0.16± 0.10 kHz mm−4

A3,1 0.086± 0.096 kHz mm−4

c1 (−3.47± 1.24)× 105 kHz mm−1

c2 (3.70± 1.89)× 103 kHz mm−2

c3 −17.3± 13.4 kHz mm−3

c4 0.03± 0.04 kHz mm−4

d1 (−7.89± 7.85)× 104 kHz mm−1

d2 (−1.68± 1.28)× 103 kHz mm−2

d3 26.3± 10.8 kHz mm−3

d4 −0.11± 0.04 kHz mm−4

B0,0 (9.25± 3.43)× 106 kHz
B1,1 (5.25± 1.14)× 103 kHz mm−2

B1,2 −24.9± 8.2 kHz mm−3

B2,1 −38.2± 9.1 kHz mm−3

B2,2 0.09± 0.03 kHz mm−4

B1,3 0.04± 0.03 kHz mm−4

B3,1 0.09± 0.03 kHz mm−4
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Appendix C

Details of the Simplified Model, Bifurcations,
Amplitude Equation, and Prediction Methods

In this appendix, I first detail the approximations that lead to the simplified

model from Chs. 5-6. Second, I provide illustrations for the Hopf and the torus

bifurcations in phase-space representations. Third, I derive the amplitude equation

and its linearization for a band-pass filter with nonlinear feedback (Eq. 5.11 and

Eq. 5.14) used in Chs. 5-6. Then, in order to demonstrate the properties of these

derivations, I provide a simple numerical example of the amplitude equation in an

open-loop configuration. Lastly, I show special cases of the closed-loop transfer

functions from Ch. 5, which are derived from the amplitude equation and used to

predict the quasiperiodic frequencies. The presented results are atypical (from a

small subset of my data) and highlight the potential limitations in the predictive

power of my new methods for estimating ΩH and ΩT.

C.1 Simplified Model Details

C.1.1 Bandwidth of the Simplified Model

The simplified model, which is first introduced in Ch. 5, uses a band-pass filter to

approximate the net filtering effects of the nonlinear circuit (NLC) and the external

feedback loop. This approximation is stated in Eq. 5.1 as the product of the transfer

functions

H ′BP( f )∼ HLP, L,A(ω)HBP( f ), (C.1)
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where HLP, L,A is the transfer function that models the low-pass filtering effects of

the NLC, HBP is a transfer function that models the external feedback loop filtering,

and H ′BP is new transfer function that approximates the net filtering as a band-pass

filter (also note that the change in notation from the angular frequency ω to the

frequency f does not change this approximation).

In this section, I first demonstrate that the product HLP, L,AHBP behaves similarly

to a band-pass filter using the experimental parameters of the transfer functions that

are given in Ch. 4. As a reminder to the reader, in the linear regime, the transfer

function HLP, L( f ) contains the single fitting parameter fLP, L = 0.78±0.02 GHz. Using

this parameter, the theoretical magnitude |HLP, A| is shown in Fig. C.1a. In the anti-

linear regime, the transfer function HLP, A( f ) contains the fitting parameters ε =

0.51±0.01 dB and fLP, A = 2.51±0.01 GHz, and the resulting theoretical |HLP, A( f )|

is also shown in Fig. C.1a. Finally, HBP( f ) contains the fitting parameters for the

upper and lower frequency cutoffs, f (+) = 1.57± 0.01 GHz and f (−) = 0.41± 0.01

GHz, and its theoretical magnitude is shown in Fig. C.1a.

Using the analytical expressions for the transfer functions HLP, L, HLP, A, and HBP, I

compute |HLP, LHBP| and |HLP, AHBP|, which are shown in Fig. C.1b. The resulting net

magnitudes both resemble that of a band-pass filter. As a quantitative comparison of

the differences between the two magnitudes, their RMS difference for f = 0−2 GHz

is 1.7 dB (3.4% of the observed range). As a comparison to the transfer function for

a true band-pass filter, I fit |HLP, LHBP| and |HLP, AHBP| simultaneously using |H ′BP( f )|

for f = 0 − 2 GHz. The resulting fit is shown in Fig. C.1d, and the (new) band-

pass filter fitting parameters are f ′(+) = 1.2 ± 0.01 GHz and f ′(−) = 0.34 ± 0.004

(errors represent the 90% confidence intervals of the fitting parameters). The RMS

errors between the fitted |H ′BP| and |HLP, LHBP| ( |HLP, AHBP|) is 1.7 dB (1.5 dB) in the

2 GHz window, which represents 3.4% (3.0%) of the observed range. However,
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Figure C.1: Transfer function magnitudes (a) log|HLP, L( f )| (blue), log|HLP, A( f )|
(green), and log|HBP( f )| (red). (d) Net transfer function magnitudes
log|HLP, L( f )HBP( f )| (blue), log|HLP, A( f )HBP( f )| (green), and fitted transfer function
magnitude log|H ′BP( f )| (red).

the experimental feedback systems displays a wide range of frequencies, and any

discrepancies with the simplified model’s transfer function and that of the experi-

mental systems can lead to be sources of error for estimating fT and fH in Ch. 5 and

∆ fT and ∆ fH in Ch. 6.

C.1.2 Nonlinearity of the Simplified Model

Furthermore, to simplify the analytics in Ch. 5, I also approximate the nonlinear

function F(vin) with a third-order polynomial

F(vin) = α1(vin + vb)− [α2(vin + vb)]
3, (C.2)

where α1, and α2 are constant coefficients and where vb is a constant used to tune

the operating point of the nonlinearity. To demonstrate that this function can ap-

proximate the nonlinear operation associated with the NLC, I fit Eq. (C.2) to the

experimental data from Fig. 4.1, and the resulting fit is shown in Fig. C.2. The

parameters of the fit are α1 = −0.43 ± 0.01, α2 = −1.3 ± 0.01 V−2, and where
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Figure C.2: Simplified model of the system’s nonlinearity. Experimental data
from the NLC (blue) where vin is a sinusoidal driving signal at frequency f = 260
MHz with the numerical fit (red) of Eq. (C.2).

vb = −1.0± 0.01 V, and the RMS error of the fit is 0.11 V, which is 6.34% the

experimental range. Though this fit can approximate the nonlinearity, the fitting

parameters are not used in the derivations. Thus, without loss of generality, the

coefficients can be arbitrary as long as the overall shape of the nonlinearity is pre-

served, particularly that F(vin) is approximately piecewise-linear and that F ′(vin)

changes signs as vin crosses a threshold (from the linear regime to the anti-linear

regime).

C.2 Phase-Space Representations of Bifurcations

In this section, I provide illustrations of the Hopf and torus bifurcations using a

phase-space representation. The purpose of these illustrations is to provide ad-

ditional insight into my reasoning during the derivations of the two bifurcation

points in Ch. 5. For example, for the Hopf bifurcation, the dynamical state tran-

sitions abruptly from a steady-state voltage v(t) = vs = 0 to an oscillatory state

v(t) ∼ AeiΩH t . In phase space, this transition is represented as a fixed point that

bifurcates to a limit cycle with radius A that revolves at an angular frequency ΩH,
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Figure C.3: Phase-space illustrations of Hopf and torus bifurcations. (a) Rep-
resentation of a super-critical Hopf bifurcation to a limit cycle with Hopf frequency
ΩH and amplitude A. (b) Representation of a torus bifurcation with torus freqency
ΩT and amplitude B with (c) the resulting torus.

as shown in Fig. C.3a.

For the torus bifurcation, the amplitude A of the periodic dynamics begins to os-

cillate slowly such that A(t) ∼ BeiΩT t . In phase space, this transition is represented

as a second limit cycle with radius B that appears along the exterior the Hopf limit

cycle and revolves at an angular frequency ΩT, as shown in Fig. C.3b. This second

limit cycle travels around the Hopf limit cycle and thus the resulting trajectories

follow the torus Fig. C.3c. However, I note that this representation of the torus is

misleading because, in all torus bifurcations shown in this dissertation, ΩT << ΩH.

Thus, the Hopf limit cycle repeats many times before torus limit cycle makes one

revolution (this is difficult to illustrate). Regardless, for all Hopf and torus bifurca-

tions shown in this dissertation, Figs. C.3a-b illustrate the approximate phase-space

representations.

C.3 Deriving the Amplitude Equation

The amplitude equation is a dynamical model that approximates the describes evo-

lution of slowly-evolving dynamics in the amplitude (or envelope) of Eq. (6.3). This
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derivation is based on the work from Ref. [75], where Chembo et al. derive the am-

plitude equation for a specific nonlinearity for N = 1 time delays in the feedback

loop. Here, I generalize their derivation to a system with N time delays. For my

derivation, I reprint Eq. (6.3) here

v̇(t)
∆
+ v(t) +

ω2
o

∆

∫ t

−∞
v(t ′)dt ′ = y(t), (C.3)

where y(t) = F
�

G
∑N

i=1 giv(t −τi)
�

is the input to the band-pass filter. In addition,

for the purposes of this analysis, I temporarily simplify Eq. (C.3) by taking the

derivative with respect to time on both sides

v̈(t)
∆
+ v̇(t) +

ω2
o

∆
v(t) = ẏ(t). (C.4)

Following Eq. (C.4), there are two main assumptions that go into the derivation of

the amplitude equation. The first assumption is that, after the initial Hopf bifurca-

tion, the solution of Eq. (C.3) takes on the form

v(t)∼
1

2
A(t)(eiωo t + e−iωo t), (C.5)

where A(t) is a slowly evolving amplitude. Based on my previous analysis, I know

that ΩT << ΩH, where ΩT is torus frequency that appears as an oscillation in A(t).

In addition, I know that ΩH tends to be near the center of the (net) band-pass filter,

and therefore ΩH ∼ωo in this approximation.

The second assumption is that bandwidth of the band-pass filter∆ is small rela-

tive to the frequency of oscillation, which in this case is the band-pass filter ωo. In

the experiment, the combined bandwidth of the external feedback loop, the non-

linear circuit, and the wave-chaotic cavity is ∆ ∼ 5.4 rad/ns, while the frequency
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of oscillation ωo ∼ 4.0 rad/ns (see previous section). In this case, ∆/ωo ∼ 1.35

rad/ns. However, the experimental system (with the antennas and cavity) tends to

oscillate at frequencies ΩH > 2π rad/ns, and thus ∆/ωo < 1 (assuming ΩH ∼ωo).

With these two assumptions, I rewrite Eq. (C.4) in terms of the small parameter

ε ≡∆/ωo

v̈(t) + εωov̇(t) +ω2
ov(t) = εωo ẏ(t). (C.6)

I now perform a separation of timescales analysis on Eq. (C.6). Using the two

different times scales in the carrier and modulation frequencies in v(t), I approxi-

mate it as

v(t)∼ vo(To, T1) + εv1(To, T1) +O(ε2), (C.7)

where To = t is a fast time and T1 = εt is a slow time. In addition, since y(t) is a

function of v(t), I also approximate it as

y(t)∼ yo(To, T1) + ε y1(To, T1) +O(ε2). (C.8)

The separation of timescales must also be applied to any derivatives in t such

that
d

d t
∼ Do + εD1 +O(ε2), (C.9)

where Dj =
∂

∂ T j
are partial derivatives. It follows that

d2

d t2 ∼ (Do + εD1)
2 ∼ D2

o + 2εDoD1 +O(ε2). (C.10)

It now remains to substitute Eqs. (C.8) - (C.10) into Eq. (C.6) and examine

separately the terms of O(ε0) and O(ε1). Collecting the terms of O(ε0) yields to
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dynamical equation

D2
o vo +ω

2vo = 0, (C.11)

which is the equation for a simple harmonic oscillator with resonance at ωo. The

solution

vo(To, T1) =
1

2
A(T1)(e

iωoTo + e−iωoTo), (C.12)

is consistent with my previous assumptions. Factorizing the terms of O(ε1) yields a

second dynamical equation

D2
o v1 +ω

2v1 = −2DoD1vo −ωoDovo +ωoDo yo. (C.13)

Note that all of the terms on the right-hand-side of Eq. (C.13) oscillate with

frequencyωo. Therefore, if I consider v1 as the dynamical variable of the left-hand-

side, then Eq. (C.13) is a driven harmonic oscillator with resonance at ωo that is

driven on resonance. This will cause the solution of vo to diverge unless all of the

resonant terms in ωo on the right-hand-side cancel [75]. In other words,

2DoD1vo = −ωoDovo +ωoDo yo. (C.14)

Because all of the terms in Eq. (C.14) contain the partial derivative Do, I can inte-

grate it with respect to To on both sides, which yields

2D1vo = −ωovo +ωo yo. (C.15)

I substitute in the solution for vo in Eq. (C.15) and get

2D1

A(T1)
2
(eiωoTo + e−iωoTo) = −ωo

A(T1)
2
(eiωoTo + e−iωoTo) +ωo yo, (C.16)
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with

yo = F

�

G
N
∑

i=1

giA(T1 − ετi)

�

eiωo(To−τi) + e−iωo(To−τi)

2

�

�

. (C.17)

I approximate the expression in Eq. (C.17) by assuming that the solution is pe-

riodic in time with an integer or half-integer number of wavelengths in the system’s

net feedback loop, corresponding to the phase condition e±iωoτi ∼ 1. This results in

N
∑

i=1

giA(T1 − ετi)e
±iωo(To−τi) ∼

N
∑

i=1

giA(T1 − ετi)e
±iωoTo. (C.18)

Therefore, using this approximation, I rewrite yo as

yo ∼ F

�

G
N
∑

i=1

giA(T1 − ετi)

�

eiωoTo + e−iωoTo

2

�

�

. (C.19)

Before substituting this approximation for yo into Eq. (C.16), I make one last ap-

proximation that

yo ∼ F

�

G
N
∑

i=1

giA(T1 − ετi)

�

�

eiωoTo + e−iωoTo

2

�

. (C.20)

Typically, for a general nonlinearity, this approximation is not valid. However, for

nonlinearities of the form F(v) = v−αv3, I can show that this approximation is valid

in band-pass filtered systems. Consider the following general case:

F

�

β

�

eiωo t + e−iωo t

2

��

= β

�

eiωo t + e−iωo t

2

�

−αβ3

�

eiωo t + e−iωo t

2

�3

. (C.21)

Expanding the third order term gives

αβ3

�

eiωo t + e−iωo t

2

�3

= α
β3

8
[3(eiωo t + e−iωo t) + (e3iωo t + e−3iωo t)]. (C.22)
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Becauseωo is the central frequency of the band-pass filter and∆<ωo, I can assume

that terms of frequency ω = 3ωo lie outside of the bandwidth of this dynamical

system. Therefore, I approximate that these terms are negligible such that

αβ3

�

eiωo t + e−iωo t

2

�3

∼ αβ3

�

3(eiωo t + e−iωo t)
8

�

, (C.23)

and therefore

F

�

β

�

eiωo t + e−iωo t

2

��

∼ β
�

eiωo t + e−iωo t

2

�

−αβ3

�

3(eiωo t + e−iωo t)
8

�

. (C.24)

I now compare Eq. (C.24) to

F[β]

�

eiωo t + e−iωo t

2

�

= β

�

eiωo t + e−iωo t

2

�

−αβ3

�

eiωo t + e−iωo t

2

�

, (C.25)

and note that the difference between equations (C.24) and (C.25) is approximately

αβ3 (e
iωo t + e−iωo t)

8
. (C.26)

Because β = 1 and α= 0.5 in the simulations of this system (experimentally, I also

approximate β ∼ α ∼ 1), (C.26) is relatively small compared to β . Thus, I use the

following approximation

F

�

β

�

eiωo t + e−iωo t

2

��

∼ F[β]

�

eiωo t + e−iωo t

2

�

. (C.27)

This final approximation allows me to justify the simplified form of Eq. (C.20).

Finally, I substitute Eq. (C.19) into Eq. (C.16) and cancel the oscillatory terms
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in ωo, which leads to

2D1A(T1) =ωo

�

F

�

G
N
∑

i=1

giA(T1 − ετi)

�

− A(T1)

�

. (C.28)

I rescale time by 1/ε and substituting εωo by ∆, and Eq. (C.28) becomes the am-

plitude equation

Ȧ(t) =
∆

2

�

F

�

G
N
∑

i=1

giA(t −τi)

�

− A(t)

�

. (C.29)

Though many approximations are made to generate this amplitude equation, I show

in Chs. 5 - 6 that it is a powerful tool to estimate the origins and shifts to the torus

bifurcation frequency ΩT.

C.4 Linearized Amplitude Equation about the Steady
State Amplitude

In order to derive Eq. (5.2), I linearize the amplitude equation about the steady

state amplitude As. Recall that As satisfies the equation F
�

G
∑N

i=1 giAs

�

= F
�

ḠAs

�

=

As. I first assume that the solution to the amplitude equation takes on the form

A(t) = As +δA(t) and substitute this into Eq.(C.29) where

d

d t
(As +δA(t)) =

d

d t
δA(t), (C.30)

such that

δȦ(t) =
∆

2

�

F

�

G
N
∑

i=1

gi(As +δAτi
)

�

− (As +δA(t))

�

, (C.31)

where δAτi
= δA(t −τi).
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To linearize this equation, I Taylor expand the nonlinear function about δA= 0

such that

F

�

G
N
∑

i=1

giA(t)

�

∼ F
�

ḠAs

�

+ GF ′
�

ḠAs

�

N
∑

i=1

giδAτi
. (C.32)

Substituting this back into Eq. (C.31) and canceling the equivalent terms F[ḠAs]

and As yields

δȦ(t) =
∆

2

�

G
N
∑

i=1

diδA(t −τi)−δA(t))

�

, (C.33)

where di = F ′
�

ḠAs

�

gi. This concludes the derivation of the linearized amplitude

equation.

C.5 Open-Loop Amplitude Equation Dynamics

In this section, I demonstrate the dynamics of the amplitude equation using sim-

ple examples of a band-pass filter and a low-pass filter in open-loop configurations

using numerical simulations. As a reminder of the differences between open-loop

and closed-loop configurations, see Fig. 5.2. The goal of this section is to verify

that changes to an oscillatory amplitude through a linear band-pass filter can be

approximated using a linear low-pass filter amplitude equation.

The equation for an open-loop linear band-pass filter is

v̇(t)
∆
+ v(t) +

ω2
o

∆

∫ t

−∞
v(t ′)dt ′ = vin(t), (C.34)

where vin(t) is an input driving signal at frequency ω = ωo (the central frequency

of the band-pass filter) and v(t) is the filtered output. As a reminder, ∆ is the

bandwidth of the band-pass filter. Alternatively, the equation for an open-loop linear

low-pass filter is

Ȧ(t) =
∆

2

�

Ain(t)− A(t)
�

, (C.35)
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where Ain(t) is a input driving signal at a frequencyω<<ωo and A(t) is the filtered

output. For this particular low-pass filter, the bandwidth is ∆/2, which is half that

of the band-pass filter in Eq. C.34. Note that Eq. C.35 is equal to Eq. C.29 with the

nonlinear feedback removed.

In this section, I simulate Eq. (C.34) and Eq. (C.35) using driving signals vin(t)

and Ain(t), where Ain(t) describes the approximate envelope of oscillations in vin(t).

For example, consider the driving signals vin(t) and Ain(t) shown in Figs. C.4a-b. In

this case, vin(t) = sin(ωo t) and thus I use Ain(t) = 1 (constant in time) to describe

the envelope of oscillations (local maxima) in vin(t). Using these driving signals, I

separately integrate Eqs. (C.34) and (C.35) to simulate each filter output, as shown

by v(t) and A(t) in Figs. C.4a-b. The results of these simulations show that the

output amplitudes of v(t) and A(t) are constant. Thus, in this simple case, the

dynamics of the envelope of v(t) can be modeled as the output of a low-pass filter

driven by a waveform that follows the envelope of vin(t).

Next, I consider a more interesting example where a rectangular function de-

scribes the envelope of oscillations in vin(t) and thus Ain(t) is a square wave, as

shown in Figs. C.4c-d. Note that the duration ∆T of the square wave is chosen

such that ∆T > 2π/ωo to guarantee a separation in time scales between the fast

and slow variations in vin(t) and Ain(t), respectively. Using these two input driving

signals, the outputs v(t) and A(t) of Eqs. (C.34) - (C.35) are shown in Figs. C.4c-d,

respectively. In Fig. C.4c, the envelope of oscillations in v(t) is no longer a square

wave, but rather a slowly ramped function. This ramped function is is similar to the

low-pass filter response of the square wave, as demonstrated by the output A(t) in

Fig. C.4d.

For this case, I quantify the similarities between A(t) and the envelope of v(t).

To do so, I first sample A(t) at the times tn where v(tn) are the local maxima of v(t).
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Figure C.4: Example of the dynamics from the amplitude equation in an
open-loop configuration. (a) The oscillatory waveform vin(t) with constant am-
plitude drives an open-loop band-pass filter (Eq. C.34) with parameters ω(−) = 8.2
rad/ns,ω(+) = 9.4 rad/ns and central frequencyωo = 8.8 rad/ns. The output of the
band-pass filter shows an oscillatory v(t) with a constant amplitude. (b) A constant
input waveform Ain(t) drives an open loop low-pass filter (Eq. C.35) with band-
width ∆/2, where ∆=ω(+)−ω(−) = 1.3 rad/ns to produce a constant output A(t).
(c) Input waveform vin(t) drives the band-pass filter with a square wave amplitude
(of width ∆T) to produce the response v(t). (d) The square wave Ain(t) drives the
low-pass filter to produce the response A(t). The local maxima in vin(t) and v(t)
are labeled with red dots.

The sampled points v(tn) and A(tn) are shown in Fig. C.5a, and the differences

(v(tn)−A(tn)) are shown in Fig. C.5b. As shown in the figures, the two waveforms

differ most near the times that the amplitudes change. The spread in the differ-
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Figure C.5: Comparison of band-pass filter and low-pass filter outputs. (a)
Sampled points v(tn) (blue) and A(tn) (red) at times tn, where v(tn) are the local
maxima of v(t). (b) The differences (v(tn)−A(tn)) at each of the times tn. Note the
vertical axis change from (a) to (b).

ences in Fig. C.5b is approximately ±0.025 V, which is ∼7% of the observed range

in v(tn). Furthermore, the cross-correlation coefficient C(v(tn), A(tn)) = 0.99 (cal-

culated using Eq. (2.14)). Thus, this example shows that, when a slowly modulated

waveform with a carrier frequency ωo drives a band-pass filter with bandwidth ∆

and central frequency ωo, the output amplitude dynamics of the filter is governed

approximately by a low-pass filter with bandwidth ∆/2.

C.6 Special Cases of the Prediction Methods

In this last section, I examine frequency estimations from Ch. 5 which deviate from

the simulated quasiperiodic frequencies. More specifically, I show example plots

of the closed-loop transfer function magnitudes |HR(ω)|, |HAM(ω)|, and |HSR(ω)|

(associated with the R, AM, and SR methods) where the global maxima for G = 0.95

do not correspond to ΩH, ΩT, or ΩH±ΩT, respectively. These cases represent points

with large fluctuations for N = 4 time delays in Fig. 5.5 and N = 10 time delays in

the Fig. 5.11.

In these three special cases, the global maxima of the transfer function magni-

tudes do correspond to the correct frequencies. As shown in Fig. C.6a, the transfer
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Figure C.6: Special cases of the frequency estimation methods. (a) |HR(ω)| for
N = 4 and G = 0.95 where ΩH,R ∼ 7.6 rad/ns and ΩH = 8.6 rad/ns. (b) |HR(ω)| for
N = 4 and G = 1.15 where ΩH,R ∼ ΩH ∼ 8.6 rad/ns. (c) |HAM(ω)| for N = 10 and
G = 0.95 where ΩT,AM ∼ 0.1 rad/ns and ΩT ∼ 1.4 rad/ns. (c) |HSR(ω)| for N = 10
and G = 0.95 where ΩH +ΩT,SR ∼ 7.7 rad/ns and ΩH +ΩT ∼ 9.0 rad/ns.

function magnitude |HR(ω)| is plotted for an N = 4 case with G = 0.95. The fre-

quency produced by the simulation of the N = 4 simplified model is labeled by

ΩH, whereas the global maximum of the closed-loop transfer function is labeled by

ΩH,R. This discrepancy is caused by the assumption that the global maximum does

not move significantly with respect toω as G is tuned to the Hopf bifurcation point.

In order to correct for this false assumption, I calculate numerically the solution to

Eq. (5.5) for this case to obtain G ∼ 1.2 as the correct gain for the Hopf bifurca-

tion. Thus, I replot |HR(ω)| for the N = 4 in Fig. C.6b case but now with G tuned

closer to the bifurcation point (G = 1.15). In the figure, the global maximum (the

estimation ΩH,R) now corresponds approximately to the correct value of ΩH . This

example demonstrates the limitations of the resonance method.
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Similar cases are shown for |HAM(ω)| and |HSR(ω)| in Figs. C.6c-d for a case

with N = 10. However, In these two cases, I cannot verify that the frequencies of

the global maxima (ΩT,AM and ΩT,SR) change near the torus bifurcation point. As

mentioned in Ch. 5, this is because the torus bifurcation point is beyond the Hopf

bifurcation point. Thus G cannot be tuned arbitrary close to the torus bifurcation

without the system self-oscillating and, as a result, exhibiting nonlinear dynamics

(violating the assumptions of the linear transfer function).

The cases shown in Fig. C.6 demonstrate that it is possible to select delay-gain

distributions (τi, gi) from a uniform distribution such that simulations oscillate at

different frequencies from the predictions made using my methods. Further theory

is necessary to establish strict conditions on the delay-gain distribution such that the

variation in the predictive power is removed. However, based on the experimen-

tal results, the delay-gain distributions in the single-feedback, dual-feedback, and

cavity-feedback system allow for the resonance, shifted-resonance, and amplitude

modulation methods to predict approximately the quasiperiodic frequencies with

errors below the observed variations in the simulated cases.
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Appendix D

Laser-Feedback System: Calibration and
Details

This appendix provides details of the two-delay optical feedback system pre-

sented in Ch. 7. In particular, the polarization of the feedback is shown to be

coherent (matching the polarization of the laser), the experimental calibration of

the piezoelectric transducers with respect to applied voltages is shown, and the co-

efficients of the numerical fits for the quasiperiodic frequency shifts are provided.

D.1 Laser Feedback Polarization

A semiconductor laser outputs an optical field with a polarization. In a feedback

configuration, the components of the feedback loop, such as optical fibers and at-

tenuators, can alter the polarization of the light such that the input and output po-

larizations of the laser cavity are mismatched. Depending on the type of polarization

in the feedback, there are different effects on the dynamics in the feedback system.

One of the most famous models for studying semiconductors with optical feedback

is the Lang-Kobayashi model, which describes a laser subject to coherent optical

feedback with matched input and output polarizations [94]. The Lang-Kobayashi

model has also been shown to exhibit quasiperiodicity in a simulated two-delay

configuration [89]. Therefore, in order to study (eventually) the laser system in

a numerical model and search for quasiperiodicity in the experiment, I choose to

use coherent optical feedback with a matched polarization in the two-delay optical

system of Ch. 7.

In the experiment, there are several different techniques to measure the polariza-
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Figure D.1: Laser threshold with coherent feedback. Output intensity of the
laser as a function of input current near the laser threshold with (green curve) and
without (blue curve) coherent feedback.

tion of an optical field. One of the simplest experiments to verify that the feedback

polarization is aligned involves measuring the laser threshold as a function of the

applied current of the laser diode’s power source. The laser threshold represents

the point where the output power from the laser is no longer approximately zero.

As shown in Fig. D.1, when there is no feedback to the laser, the lasing threshold of

the diode occurs at around 8.05 mA (blue curve). However, when there is feedback

to the laser cavity, the laser threshold occurs at a lower value of 7.95 mA. This shift

is consistent with a feedback that is coherent such that its polarization matches the

output polarization of the laser [94]. For incoherent feedback (unaligned polariza-

tion), the laser threshold occurs for larger current values [94].

Therefore, in the two-delay optical feedback experiment, the optical field fed

back to the laser cavity is of a coherent polarization, and based on the results of Ch.

7, quasiperiodicity is achieved in this configuration.
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Figure D.2: Interferometer for calibrating the piezoelectric transducers.The
output of the laser diode (LD) is fed through a unidirectional isolator (iso) that
prevents feedback to the laser cavity. The optical signal is coupled to free space
where it is directed along two paths via a beam splitter (BS), where it is reflected
of of mirrors (M1 and M2) that are attached to the piezoelectric transducers (PZT1
and PZT2). The reflected signals interfere along a common path and are coupled
(C) to a detector (det), where the voltage vs is measured on an oscilloscope (osc).

D.2 Piezoelectric Transducers

To approximate the distances traveled by the piezoelectric transducers (PZTs) as a

function of the applied voltages, I perform an experiment using an interferometer to

calibrate them. Using the setup shown in Fig. D.2, the output power of a Michelson

interferometer is measured as a function of the applied voltage to each PZT. In

the figure, the output of a laser diode (of average wavelength λ∼ 1550 nm) is fed

through an isolator that prevents the optical signals from feeding back into the laser

cavity. Thus, in this configuration, the system can only exhibit a constant (steady-

state) intensity. Similar to the setup in Fig. 7.2, the optical signal is coupled to free

space where it is split using a beam-splitter (BS) along two separate paths of lengths

L1 and L2 and then reflected off of mirrors M1 and M2 that are connected to PZT1

and PZT2, respectively. The reflected signals recombine along a common path and

interfere. Using a coupler (C), the interfering signals are measured on a detector,

which reports a voltage vs that is proportional to the resulting interference intensity.
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Based on the interference of the optical signals along the interferometer arms,

the intensity measured on the detector follows from [6]

I = I1 + I2 +
p

2I1I2cos(2πD/λ), (D.1)

where I1 and I2 are the intensities of the light along each path λ ∼ 1550 nm is the

wavelength of the light, and D = 2∆L, where ∆L = |L1 − L2| is the path length

difference of interferometer’s arms. In the calibration of PZT1, an applied voltage

ranging from 0 V to 25 V is applied while PZT2 is held at a fixed position (and

vice versa for the calibration of PZT2). As shown in Figs. D.3a-b, the measured

intensities on the detector for each PZT calibration is fitted with the function

I = C1 + C2cos(C3(V + C4)), (D.2)

where Ci are the free parameters of the fit and V is the applied voltage to the PZT. In

the calibration for PZT1 (Fig. D.3a), the fitted coefficients are C1 = 0.0186±0.0003,

C2 = 0.2365±0.00028, C3 = 0.2479±0.0003, and C4 = −4.3132±0.1367, and in

the calibration of PZT2 (Fig. D.3b), the fitted coefficients are C1 = 0.0179±0.0002,

C2 = 0.3713 ± 0.0013, C3 = 0.2435 ± 0.001, and C4 = −0.0173 ± 0.053 (errors

represents the 90% confidence intervals of the fitting parameters). To calculate the

total translation of the PZTs, I use the following conversion

∆L =
λC3

4π
(Vmax + C4), (D.3)

where Vmax = 25 V now ∆L represents the total distance covered by PZTs. Lastly,

I create the conversion factor K = ∆L/Vmax for each of the two PZTs. This factor

allows me to convert between an applied voltage to the PZT and a translation of the
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Figure D.3: Piezoelectric transducer calibration. (a) Output intensity of the in-
terferometer (a) for a fixed PZT2 while a voltage is applied to PZT1 and (b) for a
fixed PZT1 while a voltage is applied to PZT2. The experimental data (blue dots)
are fitted (red curves) to yield conversion factors of K1 = 29.2±0.1 nm/V for PZT1
and K2 = 45.8± 0.2 nm/V for PZT2.

respective mirrors. For PZT1 and PZT2, the conversion factors are K1 = 29.2± 0.1

nm/V and K2 = 45.8 ± 0.2 nm/V, respectively. Thus, using K1 and K2, I calculate

the quantities ∆x1 and ∆x2 in the axes of Fig. 7.4.

I note that this calibration does not include the hysteresis of the PZTs under

applied voltages and it also assumes a linear relationship between translations of

the PZTs and the applied voltages. Therefore this calibration just provides the order

of magnitude for translations of the PZTs in order to approximate the resolution of

the all-optical dual-delay sensing system.

D.3 Coefficients of the Frequency-Shift Fits

In order to create a of map between (∆ f2,∆ f4) and (∆x1, ∆x2), I fit the experi-

mental data in Figs. 7.4a-b with the multivariate functions

∆ f2(∆x1,∆x2) =
i=2
∑

i=1

�

ai∆x i
1 + bi∆x i

2

�

+
j=1
∑

j=0

A j∆x j
1∆x j

2, (D.4)
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∆ f4(∆x1,∆x2) =
i=2
∑

i=1

�

ci∆x i
1 + di∆x i

2

�

+
j=1
∑

j=0

B j∆x j
1∆x j

2, (D.5)

where the fitted coefficients are listed in Table D.1.

Table D.1: Coefficients of the optical frequency-shift fits

Coefficient Fitted Value

a1 1.2458± 0.0562 kHz nm−1

a2 −0.0095± 0.0009 kHz nm−2

b1 −0.0691± 0.0358 kHz nm−1

b2 −0.0041± 0.0003 kHz nm−2

Ao −17.3784± 1.0834 kHz
A1 0.0058± 0.0005 kHz nm−2

c1 1.8789± 0.1694 kHz nm−1

c2 −0.0140± 0.0026 kHz nm−2

d1 1.2050± 0.1079 kHz nm−1

d2 −0.0127± 0.0010 kHz nm−2

Bo −67.7941± 3.2683 kHz
B1 0.0093± 0.0014 kHz nm−2
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