
Security Games: Solution Concepts and Algorithms

by

Dmytro Korzhyk

Department of Computer Science
Duke University

Date:
Approved:

Vincent Conitzer, Supervisor

Ronald Parr

Kamesh Munagala

Milind Tambe

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DukeSpace

https://core.ac.uk/display/37749214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Security Games: Solution Concepts and Algorithms

by

Dmytro Korzhyk

Department of Computer Science
Duke University

Date:
Approved:

Vincent Conitzer, Supervisor

Ronald Parr

Kamesh Munagala

Milind Tambe

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2013

Copyright c© 2013 by Dmytro Korzhyk
All rights reserved

Abstract

Algorithms for finding game-theoretic solutions are now used in several real-world

security applications. These applications are based on different but related game-

theoretical models collectively known as security games. Much of the research in this

area has focused on the two-player setting in which the first player (leader, defender)

commits to a strategy, after which the second player (follower, attacker) observes

that strategy and responds to it. This is commonly known as the Stackelberg, or

leader-follower, model. In contrast, if none of the players can observe the actions

of the others then such a setting is called a simultaneous-move game. A common

solution concept in simultaneous-move games is that of Nash equilibrium (NE). In

the present dissertation, we contribute to this line of research in two ways.

First, we consider new ways of modeling commitment. We propose a new model

in which the leader can commit to a correlated strategy. We show that this model

is equivalent to the Stackelberg model in two-player games and is different from the

existing models in games with three or more players. We propose an algorithm for

computing a solution in this model in polynomial time. We also consider a leader-

follower setting in which the players are uncertain about whether the follower can

observe the leader’s strategy. We describe an iterative algorithm for solving such

games.

Second, we analyze the computational complexity of computing Stackelberg and

NE strategies in security games. We describe algorithms to solve some variants of

iv

a previously proposed model of security games in polynomial time and prove NP-

hardness of solving other variants of the model. We also extend the family of security

games by allowing the attacker to have multiple resources. We provide an algorithm

for computing an NE of such games in polynomial time, and we show that computing

a Stackelberg strategy is NP-hard.

v

Contents

Abstract iv

List of Tables ix

List of Figures x

List of Abbreviations and Symbols xii

Acknowledgements xiv

1 Introduction 1

1.1 Nash Equilibrium . 2

1.2 The Stackelberg Model . 4

1.3 The Multiple-LPs Approach to Computing a Stackelberg Strategy . . 5

1.4 The Dissertation Structure . 8

2 Commitment to Correlated Strategies 9

2.1 Review: Correlated Equilibrium and the LP to Compute It 11

2.2 A Single LP to Compute a Stackelberg Strategy 12

2.3 Game-theoretic Interpretation: Commitment to Correlated Strategies 14

2.4 Commitment to Correlated Strategies with More Players 16

2.5 Experiments . 18

3 Solving Stackelberg Games with Uncertain Observability 22

3.1 Review: Extensive-Form Game to Model Uncertainty about Observ-
ability . 23

vi

3.2 Equilibria May Require Randomizing over Distributions 26

3.3 The Algorithm . 28

3.3.1 Computing the Leader’s Best Response 31

3.3.2 An Example Run of the Algorithm 32

3.3.3 A Bound on the Number of Iterations 35

3.4 A Stronger Bound on the Leader’s Support Size 35

3.5 Experiments . 37

3.6 Discussion . 41

4 Complexity of Computing Optimal Stackelberg Strategies in Secu-
rity Resource Allocation Games 42

4.1 Security Games: Problem Description and Notation 43

4.2 Heterogeneous Resources, Singleton Schedules 45

4.2.1 Constructing a Strategy that Implements the LP Solution . . 46

4.3 Heterogeneous Resources, Schedules of Size 2, Bipartite Graph 49

4.4 Homogeneous Resources, Schedules of Size at Most 2, Bipartite Graph 53

4.4.1 Constructing a Strategy that Implements the LP Solution . . 54

4.5 Homogeneous Resources, Schedules of Size 2 56

4.6 Homogeneous Resources, Schedules of Size 3 59

4.7 Discussion . 60

5 Security Games with Multiple Attacker Resources 62

5.1 The Model . 63

5.2 Nash Equilibrium . 64

5.2.1 Detailed Example Run of the Algorithm 65

5.2.2 Algorithm, Correctness, Runtime 69

5.2.3 Interchangeability . 71

5.2.4 Experimental Results . 75

vii

5.3 NP-Hardness of Computing Stackelberg Strategies 76

6 Directions for Future Research 78

Bibliography 80

Biography 84

viii

List of Tables

2.1 Properties of the optimal correlated strategy to commit to, for differ-
ent number of players and GAMUT game classes. 21

ix

List of Figures

1.1 An example 2� 2 normal-form game. 2

2.1 Run time comparison of the multiple-LPs vs the single-LP method for
computing a Stackelberg strategy in GAMUT games. 20

3.1 The extensive-form game with uncertain observability. 24

3.2 An example normal-form game in which the solution in the case of
uncertain observability is different from any NE or Stackelberg strategies. 26

3.3 The algorithm for solving the model with uncertain observability. . . 29

3.4 Example run of the algorithm for the uncertain observability model:
Initialization. 33

3.5 Example run of the algorithm for the uncertain observability model:
First iteration. 34

3.6 Example run of the algorithm for the uncertain observability model:
Second iteration . 34

3.7 Experimental evaluation of the algorithm for the uncertain observabil-
ity model. 38

4.1 An example demonstrating how the Birkhoff-von Neumann is used in
the algorithm to compute a Stackelberg strategy in security games. . 47

4.2 An example in which the LP solution is not implementable in the case
of heterogeneous resources and bipartite schedules. 48

4.3 An example in which the LP solution is not implementable in the case
of homogeneous resources and schedules of size 2 that are not bipartite. 48

4.4 NP-hardness reduction for heterogeneous resources, schedules of size
2 constituting a bipartite graph. 51

x

4.5 An example in which the LP solution is not implementable in the case
of homogeneous resources and schedules of size 3. 56

4.6 Summary of the computational results for security games with a single
attacker resource. 61

5.1 An example run of the algorithm for computing an NE in a security
game with multiple attacker resources. 66

5.2 The algorithm for computing an NE in a security game with multiple
attacker resources. 68

5.3 Run time evaluation of the algorithm for computing an NE in a secu-
rity game with multiple attacker resources. 75

xi

List of Abbreviations and Symbols

General game-theoretic notation

The symbols in the following list are used to describe the various games throughout

the thesis.

Ai The set of actions of player i. We will denote the individual
actions by, for example, ai, a

1
i P Ai.

Si The set of mixed strategies of player i. Each si P Si is a distri-
bution over Ai.

ui The utility function of player i. For example, in two-player
games, player i’s utility for the outcome pa1, a2q is uipa1, a2q.

uips1, s2q The expected utility of player i when the players play the mixed
strategies s1, s2.

Security games notation

The symbols in the following list are used to describe the security games models in

Chapters 4 and 5.

T The set of targets. We will usually refer to the individual targets
using symbols such as t, t1, t1, t2.

Ω The set of resources.

Σ The set of schedules. Each schedule σ P Σ is a subset of targets
T .

H When the resources are heterogeneous, we denote the subset of
schedules to which resource ω can be assigned by Hpωq.

xii

ucdptq, u
u
dptq The utility that the defender receives if target t is attacked and is

covered by a resource (superscript c) / not covered by a resource
(superscript u).

ucaptq, u
u
aptq Similar to the above but for the attacker’s utility.

ct The probability that target t is covered by a resource.

cω,σ The probability that resource ω is assigned to schedule σ.

xiii

Acknowledgements

I would like to thank my wife Jun and my parents for their support during the

time of my studies at Duke. I also thank everybody with whom I collaborated on

research projects while at Duke, including Sayan Bhattacharya, Vincent Conitzer,

Melissa Dalis, Charles Isbell, Manish Jain, Christopher Kiekintveld, Joshua Letch-

ford, Liam MacDermed, Kamesh Munagala, Ronald Parr, Michal Pěchouček, Troels

Sørensen, Milind Tambe, Ondřej Vaněk, Zhengyu Yin. I would also like to thank the

participants of Duke CS-Econ seminar series, Duke Robotics Intelligence and Vision

seminar, Duke Algorithms seminar, and Duke Microeconomic Theory seminar, the

participants of the conferences in which I presented my work, and the reviewers of

my papers for their comments.

I would also like to acknowledge NSF CAREER 0953756 and IIS-0812113, ARO

Grant W911NF-09-1-0459, DARPA CSSG HR0011-06-1-0027, and a J.B. Duke fel-

lowship for support.

xiv

1

Introduction

When multiple self-interested agents interact in the same domain, game theory pro-

vides a framework for reasoning about how each agent should act. One use of game

theory is by an outside party that tries to predict the outcome of a strategic sit-

uation. For example, when we design a mechanism (e.g., an auction), we can use

game theory to evaluate whether any given design will lead to good outcomes when

the agents participating in it are strategic. Another use is by one of the agents in

the game that wants to determine how to play. For example, game theory is often

used to create poker-playing programs (Sandholm, 2010). Recently, algorithms for

computing game-theoretic solutions have also started to find applications in secu-

rity applications, where one of the players, the defender, tries to allocate limited

defensive resources in anticipation of an attack by an attacker. Real-world examples

include the placement of checkpoints and canine units at Los Angeles International

airport (Pita et al., 2009), the assignment of Federal Air Marshals to flights (Tsai

et al., 2009), scheduling of Coast Guard patrols (An et al., 2013), and scheduling

patrols of the Los Angeles Metro rail to deter fare evasion (Jiang et al., 2013).

1

1.1 Nash Equilibrium

Probably the best-known solution concept in game theory is that of Nash equilib-

rium (NE, Nash 1950). Before giving a formal definition, we will first show a Nash

equilibrium of the example game in Figure 1.1 and introduce some of the notation

that we will use throughout this thesis.

L R

U (1,1) (3,0)

D (0,0) (2,1)

Figure 1.1: An example 2� 2 normal-form game.

There are two players in this game. The row player’s set of actions (or pure

strategies) is A1 � tU,Du. The column player’s set of actions is A2 � tL,Ru.

Depending on the players’ choice of actions, there are four possible outcomes of the

game, each specified by a pair of actions pa1, a2q. The table representation shown in

Figure 1.1 is called the normal form of the game. In the normal form, the utilities for

each outcome are specified by an entry in the matrix. In this example, if the outcome

of the game is pa1 � U, a2 � Rq, then the row player gets a utility of u1pU,Rq � 3,

and the column player gets u2pU,Rq � 0.

Any game with a finite number of pure strategies for each player has a normal

form representation. In this thesis, we will use the normal form as well as other game

representations.

If the two players in the example are rational, we can compute the unique Nash

equilibrium using iterated strict dominance as follows. First, note that the row player

gets a higher utility from playing U than she would get from playing D no matter

which action the column player chooses. We say that the action U dominates the

action D for the row player, and we can thus remove the action D from the game.

2

Once the D row is removed from the game, the L action dominates the R action

for the column player, and we can remove the R column from the game. The only

outcome left, pU,Lq, is the unique pure-strategy Nash equilibrium of this game.

A pure-strategy Nash equilibrium is a profile of actions, one for each player,

such that no player can increase her utility by unilaterally changing her action.

Not every game has a pure-strategy Nash equilibrium. However, every normal-form

game has a Nash equilibrium in mixed strategies (Nash, 1950). A mixed strategy is a

probability distribution over a player’s action set. A mixed-strategy Nash equilibrium

is a profile of mixed strategies such that no player can increase her expected utility

by unilaterally changing her mixed strategy. In this thesis, when we talk about

a strategy, we will usually mean a mixed strategy, and when we talk about a Nash

equilibrium, we will mean a mixed-strategy Nash equilibrium, unless otherwise noted.

How can the players achieve a Nash equilibrium in a game? If the equilibrium is

unique, then each player can compute the equilibrium profile and play her strategy in

that profile. In some games with multiple equilibria, the players can always achieve

an equilibrium by each computing an arbitrary equilibrium profile and playing her

part of that profile, even if the players do not coordinate on the same equilibrium.

This property is called the interchange property. If the interchange property does

not hold, the players may not be able to achieve an equilibrium without using extra

communication: if they compute different equilibria, the result may not be an NE.

In such games, the players face the equilibrium selection problem.

Computing a Nash equilibrium of a normal-form game is PPAD-complete

(Daskalakis et al., 2009; Chen et al., 2009), and computing an (even approximately)

optimal Nash equilibrium is NP-hard for just about any reasonable definition of

optimality (Gilboa and Zemel, 1989; Conitzer and Sandholm, 2008).

Even though there is no known polynomial-time algorithm for computing a Nash

equilibrium of normal-form games, it may still be possible to find a polynomial-time

3

algorithm for computing an NE of games which have a special structure in the utility

function. On the other hand, for games which have more concise representations

than the normal form, it may be possible to prove NP-hardness in the size of the

concise representation, even when just computing any one equilibrium. We will

consider several games with concise representations (in Chapters 4 and 5) and provide

polynomial-time algorithms for computing an NE of some of those games and prove

NP-hardness of computing an NE in other games. We will also prove the interchange

property in certain games. But before we get to that, we will discuss another solution

concept, the (mixed) Stackelberg strategy, and the relationship between the NE and

the Stackelberg strategy.

1.2 The Stackelberg Model

Nash equilibrium is not the only solution concept in game theory. An alternative

solution concept (for two-player games) is the following. Suppose that player one (the

leader) is able to commit to a mixed strategy; then, player two (the follower) observes

this commitment, and chooses a response. Such a commitment model is known as

a Stackelberg model (von Stackelberg, 1934), and we will refer to an optimal mixed

strategy for player one to commit to as an (optimal) Stackelberg strategy.

It has long been well known in game theory that being able to commit to a

course of action before the other player(s) move(s)—often referred to as a Stackelberg

model (von Stackelberg, 1934)—can bestow significant advantages. Consider again

the example game in Figure 1.1. If player 1 can commit to a pure strategy before

player 2 moves, then player 1 is better off committing to D, thereby incentivizing

player 2 to play R, resulting in a utility of 2 for player 1. Even better for player 1 is to

commit to a mixed strategy of p.49U, .51Dq; this still incentivizes player 2 to play R

and results in an expected utility of .49 �3� .51 �2 � 2.49 for player 1. Of course, it is

even better to commit to p.499U, .501Dq, etc. In the limit case of p.5U, .5Dq, player

4

2 becomes indifferent between L and R; to guarantee the existence of an optimal

solution, it is generally assumed that player 2 breaks ties in player 1’s favor, so that

p.5U, .5Dq is the unique optimal mixed strategy for player 1 to commit to, resulting

in an expected utility of 2.5 for her. In two-player zero-sum games, Nash equilibrium

strategies and Stackelberg strategies both coincide with minimax strategies (and,

hence, with each other), due to von Neumann’s minimax theorem (von Neumann,

1928).

In recent years, the problem of computing an optimal strategy to commit to in

non-zero-sum games has started to receive a significant amount of attention, es-

pecially in the multiagent systems community. In the initial paper (Conitzer and

Sandholm, 2006), a number of variants were studied, including commitment to pure

and to mixed strategies, in normal-form and in Bayesian games. There have been

several other papers making progress on versions of the problem that concern stan-

dard game-theoretic representations, including Bayesian games (Paruchuri et al.,

2008; Letchford et al., 2009; Jain et al., 2011), extensive-form games (Letchford and

Conitzer, 2010), and stochastic games (Letchford et al., 2012). Perhaps the biggest

impulse to this line of research is due to the use of these techniques in several security

applications, which we mentioned earlier in this chapter. These developments have

inspired work on computing optimal mixed strategies to commit to in a specific class

of games called security games (Kiekintveld et al., 2009; Korzhyk et al., 2010).

We will first describe the standard algorithm for computing a Stackelberg strategy

in a normal-form game. We will use some of the ideas from this algorithm to design

new algorithms in this thesis.

1.3 The Multiple-LPs Approach to Computing a Stackelberg Strategy

For a two-player normal-form game (not necessarily zero-sum), the optimal Stack-

elberg strategy can be found in polynomial time, using a set of linear programs

5

(LP) (Conitzer and Sandholm, 2006; von Stengel and Zamir, 2010).1 Besides this

computational benefit over Nash equilibrium, with Stackelberg strategies there is

effectively no equilibrium selection problem.

We now describe the standard approach to computing an optimal mixed strategy

to commit to with two players. The idea is a very natural divide-and-conquer ap-

proach: because we can assume without loss of optimality that in the solution, player

2 will play a pure strategy, we can simply consider each pure strategy for player 2 in

turn. Let player i’s set of pure strategies be Ai. For each pure strategy a2 P A2 for

player 2, we solve for the optimal mixed strategy for player 1, under the constraint

that a2 is a best response for player 2.

Linear Program 1 (known).

max
°
a1PA1

pa1u1pa1, a2q

subject to:

p@a12 P A2q
°
a1PA1

pa1u2pa1, a
1
2q ¤

°
a1PA1

pa1u2pa1, a2q

°
a1PA1

pa1 � 1

p@a1 P A1q pa1 ¥ 0

(The first constraint says that player 2 should not be better off playing a12 instead of

a2.) There is one of these linear programs for every a2, and at least one of these must

have a feasible solution. We choose one with the highest optimal solution value; an

optimal solution to this linear program corresponds to an optimal mixed strategy to

commit to. Because linear programs can be solved in polynomial time, this gives a

polynomial-time algorithm for computing an optimal mixed strategy to commit to.

1 It is not known whether linear programs are solvable in strongly polynomial time, that is, with
no dependence on the sizes of the input numbers at all. Consequently, it is not known whether any
of the problems for which we propose LP-based solutions in this thesis can be solved in strongly
polynomial time.

6

We will now discuss several computational and modeling issues with the Stackel-

berg model and briefly describe how we address those issues in this thesis.

It is not clear how best to extend the Stackelberg model to games with three or

more players. Should there be a single leader who commits to a strategy and lets the

other players play a Nash equilibrium in the resulting subgame? In such a model, the

remaining players would face the equilibrium selection problem, and they would not

have a polynomial-time algorithm to compute their strategies. Should we then let all

the players commit in sequence? In that case, it may be not clear how to choose the

right sequence of players, especially if the number of players is large. In Chapter 2,

we propose another model, in which a single leader chooses a correlated strategy to

commit to. We will show that our proposed model coincides with the Stackelberg

model for games with two players and can be naturally extended to games with three

or more players. We also provide an algorithm for solving our model in polynomial

time.

In some practical applications, the players may be uncertain about whether the

follower can indeed observe the leader’s actions. Neither the Nash nor the Stackel-

berg model can be directly applied to such games. In Chapter 3, we consider one

way of modeling such uncertainty about observability. We design an algorithm for

computing an equilibrium of that model and provide experimental analysis of its run

time.

When a game has a concise representation such that the size of its normal form

is exponential in the size of the concise representation, the multiple-LPs approach

described above is inefficient. We will consider several such games in Chapters 4 and

5. We will provide polynomial-time algorithms for computing a Stackelberg strategy

in some of those games and prove that it is NP-hard to do in others.

7

1.4 The Dissertation Structure

In Chapter 2, we propose a new solution concept in which one of the players chooses a

correlated strategy to commit to. We show the relationship between this new concept

and Stackelberg strategies, and provide an algorithm for efficient computation of an

optimal correlated strategy to commit to. In Chapter 3, we consider a game model in

which the players are uncertain about whether the follower can observe the leader’s

strategy. We provide an algorithm for computing an NE in this extended game model

and demonstrate practical limitations of such a model. In Chapter 4, we shift our

attention to a class of games between a defender and an attacker known as security

games (Kiekintveld et al., 2009). In security games, the defender first allocates

resources to protect a set of targets, after which the attacker chooses a single target

to attack. We discuss why the known techniques for solving normal-form games

are inefficient when applied to security games and provide algorithms for efficiently

solving security games. Finally, in Chapter 5, we expand the security games model

by allowing simultaneous attacks. We discuss potential practical applications of the

proposed model, provide an algorithm for computing an NE of the expanded game,

and prove that computing a Stackelberg strategy is NP-hard.

8

2

Commitment to Correlated Strategies

In the introduction, we showed that in a two-player normal-form game, the optimal

mixed strategy to commit to can be found in polynomial time, by solving multiple

linear programs. Still, given the problem’s fundamental nature and importance, it

seems worthwhile to investigate it in more detail. Can we design other, possibly more

efficient algorithms? Can we relate this problem to other computational problems in

game theory?

With three or more players, it is not immediately clear how to define the optimal

mixed strategy to commit to for player 1. The reason is that, after player 1’s commit-

ment, the remaining players play a game among themselves, and we need to consider

according to which solution concept they will play. For example, to be consistent

with the tie-breaking assumption in the two-player case, we could assume that the

remaining players will play according to the Nash equilibrium of the remaining game

that is best for player 1. However, this optimization problem is already NP-hard by

itself, and in fact inapproximable unless P=NP (Gilboa and Zemel, 1989; Conitzer

and Sandholm, 2008), so there is little hope that this approach will lead to an ef-

ficient algorithm. Is there another natural solution concept that allows for a more

9

efficient solution with three or more players?

In this chapter, we make progress on these questions as follows. First, we show

how to formulate the problem in the two-player setting as a single linear program,1

and prove the correctness of this formulation by relating it to the existing multiple-

LPs formulation. We then show how this single LP can be interpreted as a formu-

lation for finding the optimal correlated strategy to commit to, giving an easy proof

of a known result by von Stengel and Zamir (2010) that the optimal mixed strategy

to commit to results in a utility for the leader that is at least as good as what she

would obtain in any correlated equilibrium. We then show how this formulation can

be extended to compute an optimal correlated strategy to commit to with three or

more players, and illustrate by example that this can result in a higher utility for

player 1 both compared to the best mixed strategy to commit to as well as com-

pared to the best correlated equilibrium for player 1. (Unlike in two-player games, in

games of three or more players, the notions of optimal mixed and correlated strate-

gies to commit to are truly distinct.) Finally, we present experiments that indicate

that, for 50� 50 games drawn from “most” distribution families, our formulation is

significantly faster than the multiple-LPs approach. We also investigate how often

the correlated strategy is a product distribution (so that correlation does not play a

role); as expected, with two players we always have a product distribution, but with

more players this depends extremely strongly on the distribution over games that is

used.

1 Earlier work has already produced formulations of ((pre-)Bayesian versions of) the problem that
involve only a single optimization (Paruchuri et al. 2008, extended version of Letchford, Conitzer,
and Munagala 2009). However, these existing formulations use integer variables (even when re-
stricted to the case of a single follower type).

10

2.1 Review: Correlated Equilibrium and the LP to Compute It

In a correlated equilibrium (Aumann, 1974), a third party known as a mediator draws

an outcome pa1, a2q, recommends to each player i to play ai without telling what the

recommendation to the other player is, and it is optimal for each player to follow the

recommendation. Every Nash equilibrium is also a correlated equilibrium. We can

describe the set of all correlated equilibria of a normal-form game with a set of linear

constraints. Consider the following linear feasibility formulation of the correlated

equilibrium problem.

Linear Program 2 (known).

(no objective required)

subject to:

p@a1, a
1
1 P A1q

°
a2PA2

ppa1,a2qu1pa
1
1, a2q ¤

°
a2PA2

ppa1,a2qu1pa1, a2q

p@a2, a
1
2 P A2q

°
a1PA1

ppa1,a2qu2pa1, a
1
2q ¤

°
a1PA1

ppa1,a2qu2pa1, a2q

°
a1PA1,a2PA2

ppa1,a2q � 1

p@a1 P A1, a2 P A2q ppa1,a2q ¥ 0

The variables ppa1,a2q are the probabilities that the mediator puts on each out-

come. The first set of constraints are the optimality constraints for player 1: for any

recommendation that player 1 may receive, following that recommendation must give

player 1 an expected utility at least as high as the expected utility from taking any

other action. The second set of constraints similarly describes optimality for player

2.

In the next section, we will show how a similar LP can be used to compute a

Stackelberg strategy.

11

2.2 A Single LP to Compute a Stackelberg Strategy

Instead of solving one separate linear program per pure strategy for player 2 as in

the multiple-LPs approach, we can solve the following single linear program:

Linear Program 3.

max
°
a1PA1,a2PA2

ppa1,a2qu1pa1, a2q

subject to:

p@a2, a
1
2 P A2q

°
a1PA1

ppa1,a2qu2pa1, a
1
2q ¤

°
a1PA1

ppa1,a2qu2pa1, a2q

°
a1PA1,a2PA2

ppa1,a2q � 1

p@a1 P A1, a2 P A2q ppa1,a2q ¥ 0

We now explain why this linear program computes a Stackelberg strategy. The

constraint matrix for Linear Program 3 has blocks along the diagonal: for each

a2 P A2, there is a set of constraints (one constraint for every a12 P A2) whose

only nonzero coefficients correspond to the variables ppa1,a2q (one variable for every

a1 P A1). The exception is the probability constraint which has nonzero coefficients

for all variables (cf. Dantzig-Wolfe decomposition, Dantzig and Wolfe 1960.) The

following proposition will help us to understand the relationship to the multiple-LPs

approach, and hence the correctness of Linear Program 3.

Proposition 1. Linear Program 3 always has an optimal solution in which only

a single block of variables takes nonzero values. That is, there exists an optimal

solution for which there is some a�2 P A2 such that for any a1 P A1, a2 P A2 where

a2 � a�2 , ppa1,a2q � 0.

Proof. Suppose for the sake of contradiction that all optimal solutions require nonzero

values for at least k blocks, where k ¥ 2. For an optimal solution p with exactly

12

k nonzero blocks, let a2, a
1
2 P A2, a2 � a12 be such that ta2 �

°
a1PA1

ppa1,a2q ¡

0 and ta12 �
°
a1PA1

ppa1,a12q ¡ 0. Let va2 �
°
a1PA1

ppa1,a2qu1pa1, a2q and va12 �
°
a1PA1

ppa1,a12qu1pa1, a
1
2q. Without loss of generality, suppose that va2{ta2 ¥ va12{ta12 .

Then consider the following modified solution p1:

• for all a1 P A1, p1pa1,a2q �
ta2�ta12
ta2

ppa1,a2q;

• for all a1 P A1, p1pa1,a12q
� 0;

• for all a22 R ta2, a
1
2u, p

1
pa1,a22q

� ppa1,a22q.

p1 has k � 1 blocks with nonzero values; we will show that p1 remains feasible and

has at least the same objective value as p, and must therefore be optimal, so that we

arrive at the desired contradiction.

To prove that p1 is still feasible, we first notice that any of the constraints cor-

responding to the unchanged blocks (for a22 R ta2, a
1
2u) must still hold because none

of the variables with nonzero coefficients in these constraints have changed value.

The constraints for the block corresponding to a12 hold trivially because all the

variables with nonzero coefficients are set to zero. The constraints for the block

corresponding to a2 still hold because all the variables with nonzero coefficients

have been multiplied by the same constant
ta2�ta12
ta2

. Finally, the probability con-

straint still holds because the total probability on the variables in the a2 block is

°
a1PA1

p1pa1,a2q �
°
a1PA1

ta2�ta12
ta2

ppa1,a2q �
ta2�ta12
ta2

ta2 � ta2 � ta12 , that is, we have sim-

ply shifted the probability mass from a12 to a2. (All the probabilities are also still

nonnegative, because
ta2�ta12
ta2

is positive.)

To prove that p1 is no worse than p, we note that the total objective value derived

under p1 from variables in the a2 block of variables is
°
a1PA1

p1pa1,a2qu1pa1, a2q �

°
a1PA1

ta2�ta12
ta2

ppa1,a2qu1pa1, a2q �
ta2�ta12
ta2

va2 ¥ va2 � va12 , where the inequality follows

13

from va2{ta2 ¥ va12{ta12 . On the other hand, the total objective value derived under

p1 from variables in the a12 block of variables is 0 because all these variables are set

to zero. In contrast, under the solution p, the total objective value from these two

blocks is va2 � va12 . Because p and p1 agree on the other blocks, it follows that p1

obtains at least as large an objective value as p, and we have a contradiction.

Proposition 1 suggests that one approach to solving Linear Program 3 is to force

all the variables to zero with the exception of a single block and solve the remaining

linear program; we try this for every block, and take the optimal solution overall.

However, this approach coincides exactly with the original multiple-LPs approach,

because:

Observation 1. In Linear Program 3, if for some a2, we force all the variables

ppa1,a12q for which a12 � a2 to zero, then the linear program that remains is identical

to Linear Program 1.

This also proves the correctness of Linear Program 3 (because the multiple-LPs

approach is correct).

2.3 Game-theoretic Interpretation: Commitment to Correlated Strate-
gies

Linear Program 3 can be interpreted as follows. Player 1 commits to a correlated

strategy. This entails that player 1 chooses a distribution ppa1,a2q over the outcomes,

and commits to acting as follows: she draws pa1, a2q according to the distribution,

recommends to player 2 that he should play a2, and plays a1 herself. The constraints

p@a2, a
1
2 P A2q°

a1PA1
ppa1,a2qu2pa1, a

1
2q ¤

°
a1PA1

ppa1,a2qu2pa1, a2q

in Linear Program 2 then mean that player 2 should always follow the recommenda-

tion a2 rather than take some alternative action a12. This is for the following reasons:

14

if for some a2,
°
a1PA1

ppa1,a2q � 0, then there will never be a recommendation to

player 2 to play a2, and indeed the constraint will hold trivially in this case. On the

other hand, if
°
a1PA1

ppa1,a2q ¡ 0, then player 2’s subjective probability that player 1

will play a1 given a recommendation of a2 is P pa1|a2q �
ppa1,a2q°

a11PA1
ppa11,a2q

. Hence player 2

will be incentivized to follow the recommendation of playing a2 rather than a12 if and

only if p@a2, a
1
2 P A2q

°
a1PA1

P pa1|a2qu2pa1, a
1
2q ¤

°
a1PA1

P pa1|a2qu2pa1, a2q which is

identical to the constraint in Linear Program 3 (by multiplying by
°
a11PA1

ppa11,a2q).

Proposition 1 entails that we can without loss of optimality restrict attention to

solutions where the recommendation to player 2 is always the same (so that there is

no information in the signal to player 2).

Given this interpretation of Linear Program 3, it is not surprising that it is very

similar to the linear feasibility formulation of the correlated equilibrium problem for

two players.

Linear Program 3 is identical to Linear Program 2, except that in Linear Program

3 we have dropped the incentive constraints for player 1, and added an objective of

maximizing player 1’s expected utility. If we add the incentive constraints for player

1 back in, then we obtain a linear program for finding the correlated equilibrium

that maximizes player 1’s utility. Because adding constraints cannot increase the

objective value of a maximization problem, we immediately obtain the following

corollary:

Corollary 1 (von Stengel and Zamir 2010). Player 1’s expected utility from optimally

committing to a mixed strategy is at least as high as her utility in any correlated

equilibrium of the simultaneous-move game.

15

2.4 Commitment to Correlated Strategies with More Players

We have already seen that committing to a correlated strategy in a two-player game

is in some sense not particularly interesting, because without loss of optimality player

2 will always get the same recommendation from player 1. However, the same is not

true for games with n ¥ 3 players, where player 1 commits to a correlated strategy

and sends recommendations to players 2, . . . , n, who then play simultaneously. We

can easily extend Linear Program 3 to this case of n players (just as it is well known

that Linear Program 2 can be extended to the case of n players):

Linear program 4.

max
°
a1PA1,...,snPSn

ppa1,...,snqu1pa1, . . . , snq

subject to:

p@i P t2, . . . , nuq p@si, s
1
i P Siq

¸
s�iPS�i

ppsi,s�iquips
1
i, s�iq ¤

¸
s�iPS�i

ppsi,s�iquipsi, s�iq

°
a1PA1,...,snPSn

ppa1,...,snq � 1

p@a1 P A1, . . . , sn P Snq ppa1,...,snq ¥ 0

(Here, we followed the standard game theory notation of using �i to refer to the

players other than i.) Again, Linear Program 4 is simply the standard linear feasi-

bility program for correlated equilibrium, with the constraints for player 1 omitted

and with an objective of maximizing player 1’s expected utility. This immediately

implies the following proposition:

Proposition 2. The optimal correlated strategy to commit to in an n-player normal-

form game can be found in time polynomial in the size of the input.

The following example illustrates that if there are three or more players, then com-

16

mitment to a correlated strategy can be strictly better for player 1 than commitment

to a mixed strategy (as well as any correlated equilibrium of the simultaneous-move

version of the game).

Example 1. Consider a three-player game between a wildlife refuge Manager (player

1, aka. M), a Lion (player 2, aka. L), and a wildlife Photographer (player 3, aka. P).

There are four locations in the game: A and B (two locations in the refuge that are out

in the open), C (a safe hiding place for the lion), and D (the wildlife photographer’s

home). Each player must choose a location: M can choose between A and B, L

between A, B, and C, and P between A, B, and D.

M wants L to come out into the open, and would prefer even more to be in the

same place as L in order to study him. Specifically, M gets utility 2 if she is in the

same location as L, 1 if L is at A or B but not at the same location as M, and 0

otherwise. L just wants to avoid contact with humans. Specifically, L gets utility

1 unless he is in the same location as another player, in which case he gets 0. P

wants to get a close-up shot of L, but would rather stay home than go out and be

unsuccessful. Specifically, P gets utility 2 for being in the same location as L, and

otherwise 1 for being at D, and 0 otherwise.

A correlated strategy specifies a probability for every outcome, that is, every feasi-

ble triplet of locations for the players. We will show that the unique optimal correlated

strategy for M to commit to is: ppA,B,Dq � 1{2, ppB,A,Dq � 1{2. That is, she flips a

coin to determine whether to go to A or B, signals to L to go to the other location

of the two, and always signals to P to stay home at D. This is not a correlated

equilibrium of the simultaneous-move game, because M would be better off going to

the same location as L. This does not pose a problem because M is committing to

the strategy. The other two players are best-responding by following the recommen-

17

dations: L is getting his maximum possible utility of 1; P (whose signal is always

D and thus carries no information) is getting 1 for staying home, and switching to

either A or B would still leave her with an expected utility of 1.

To see that M cannot do better, note that L can guarantee himself a utility of 1

by always choosing C, so there is no feasible solution where L has positive probability

of being in the same location as another player. Hence, in any feasible solution,

any outcome where M gets utility 2 has zero probability. All that remains to show is

that there is no other feasible solution in which M always gets utility 1. In any such

solution, L must always choose A or B. Also, in any feasible solution, P cannot play

A or B with positive probability, because she can never be in the same location as

L; hence, if she played A or B with positive probability, she would end up with an

expected utility strictly below 1, whereas she can guarantee herself 1 just by choosing

D. Because M also cannot be in the same location as L with positive probability, it

follows that only ppA,B,Dq and ppB,A,Dq can be set to positive values. If one of them

is set to a value greater than 1{2, then P would be better off choosing the location

where L is more than half the time. It follows that ppA,B,Dq � 1{2, ppB,A,Dq � 1{2 is

the unique optimal solution.

2.5 Experiments

While Linear Programs 3 and 4 are valuable from the viewpoint of improving our

conceptual understanding of commitment, it is also worthwhile to investigate them

as an algorithmic contribution. Linear Program 4 allows us to do something we

could not do before, namely, to compute an optimal correlated strategy to commit

to in games with more than two players. This cannot be said about the special case

of Linear Program 3, because we already had the multiple-LPs approach. But how

does Linear Program 3 compare to the multiple-LPs approach? At least, it provides

a slight implementation advantage, in the sense of not having to write code to iterate

18

through multiple LPs. More interestingly, what is the effect on runtime of using it

rather than the multiple-LPs approach? Of course, this depends on the LP solver.

Does the solver benefit from having the problem decomposed into multiple LPs? Or

does it benefit from seeing the whole problem at once?

To answer these questions, we evaluated our approach on GAMUT (Nudelman

et al., 2004), which generates games according to a variety of distributions. Focusing

on two-player games, we used CPLEX 10.010 both for the multiple-LPs approach

(LP1) and for Linear Program 3 (LP3). For each GAMUT game class, we generated

50 two-player games with 50 strategies per player and compared the time it takes to

find the optimal strategies to commit to in these games using LP1 and LP3. We show

the boxplots of the run times in Figure 2.1. Perhaps surprisingly, it turns out that

LP3 generally solves much faster. One possible explanation for this is as follows.

In the multiple-LPs approach, each block is solved to optimality separately. In

contrast, when presented with LP3, the solver sees the entire problem instance all at

once, which in principle could allow it to quickly prune some blocks as being clearly

suboptimal. The only distribution for which LP3 is slower is RandomZeroSum.

Unfortunately, preliminary experiments on random games indicate that LP3 does

not scale gracefully to larger games, and that perhaps LP1 scales a little better. We

conjecture that this is due to heavier memory requirements for LP3.

Table 2.1 shows how often the correlated strategy to commit to computed by

Linear Program 4 is a product distribution. We say that a distribution ppa1, . . . , snq

is a product distribution iff it satisfies the following condition.

@i P t1, . . . , nu

@ai P ta
2
i P Ai : ppa2i q ¡ 0u

@a1i P ta
2
i P Ai : ppa2i q ¡ 0u

@s�i P S�i : pps�i|aiq � pps�i|a
1
iq

19

●

●●●●

LP1 LP2

0.
00

0.
10

BidirectionalLEG

LP1 LP2

0.
00

0.
10

CovariantGame

●●●●●●●●●●●●●●●●●●●●●●●

LP1 LP2

0.
00

0.
10

DispersionGame

●●

LP1 LP2

0.
00

0.
08

GrabTheDollar

●●

LP1 LP2

0.
00

0.
08

GuessTwoThirdsAve

●●●●

LP1 LP2

0.
00

0.
08

LocationGame

●
●●●●

LP1 LP2

0.
00

0.
10

MajorityVoting

●●●●●●●●●●●●●●●●

LP1 LP2

0.
00

0.
10

MinimumEffortGame

LP1 LP2

0.
00

0.
10

PolymatrixGame

LP1 LP2

0.
00

0.
10

RandomGame
●

●●●
●
●

LP1 LP2

0.
0

0.
2

RandomGraphicalGame
●

●●●

LP1 LP2

0.
00

0.
15

RandomLEG

●●●

LP1 LP2

0.
0

0.
6

1.
2

RandomZeroSum
●

●●
●
●●●●●

LP1 LP2

0.
00

0.
10

TravelersDilemma
●

●●●●

LP1 LP2
0.

00
0.

10

UniformLEG
●

●●●●●●●●●●●●●

LP1 LP2

0.
00

0.
15

WarOfAttrition

Figure 2.1: Run time comparison of LP1 and LP3 on GAMUT games (seconds).

Low percentages here indicate that correlation plays a significant role. To compute

this data, we generated 50 payoff matrices with 10 strategies per player for each

combination of a GAMUT class and a number of players. In other words, if the

leader commits to a product distribution over the strategy profiles, then the recom-

mendation each of the followers gets from the correlated strategy does not give out

any information about the recommendations that the other players receive. In games

with two players, the correlated strategy computed by LP3 is always a product dis-

tribution, as expected by Proposition 1. For games with more than two players, in

some distributions correlation does not play a big role, and in others it does.

We say that a correlated strategy is a degenerate distribution if its support size

is 1. A degenerate distribution is a special case of a product distribution. As we can

see from Table 2.1, a large fraction of computed product distributions are actually

degenerate.

20

Table 2.1: For each game class and number of players, the two numbers shown are the
fractions of product distributions (P) and the fractions of degenerate distributions
(D) among the correlated strategies computed by LP4.

Game class \7 players 2 3 4
p d p d p d

BidirectionalLEG 1 .96 .9 .86 .84 .84
CovariantGame 1 .48 .64 .6 .68 .68
DispersionGame 1 1 1 1 1 1
GuessTwoThirdsAve 1 1 0 0 0 0
MajorityVoting 1 .88 1 1 1 1
MinimumEffortGame 1 1 1 1 1 1
RandomGame 1 .42 .16 .08 .02 .02
RandomGraphicalGame 1 .4 .22 .1 .02 .02
RandomLEG 1 1 .92 .92 .02 .02
TravelersDilemma 1 0 1 1 .02 .02
UniformLEG 1 .96 .88 .86 .02 .02

In the next chapter, we will consider another extension of the leader-follower

model. We will consider the case in which the players are uncertain about whether

the follower can observe the leader’s strategy.

21

3

Solving Stackelberg Games with Uncertain
Observability

Playing a Stackelberg strategy seems to make little sense without some argument as

to why the player should indeed be able to commit before her opponent moves. In

the real-world security applications mentioned in the introduction, where Stackelberg

strategies are indeed used, the argument is that the attacker (follower) can observe

the defender (leader)’s actions over time, and thereby reconstruct the distribution,

before attacking. This argument is not entirely uncontroversial: in many contexts,

it is not clear that the follower can indeed observe the leader’s mixed strategy. A

recent study shows that a large class of security games has the property that any

Stackelberg strategy is also a Nash equilibrium strategy, and moreover that there is

no equilibrium selection problem (Korzhyk et al., 2011). Nevertheless, this is known

to not be true for other types of security games.

How should the leader agent play when she is not sure about the follower’s ability

to observe her mixed strategy, as is often the case in practice? One model that

has been proposed in the paper by Korzhyk et al. (2011) for this is to consider

22

an extensive-form game where Nature makes a random move determining whether

the leader’s mixed strategy is observable or not, and then to find an equilibrium

of this larger game. We will discuss this model in detail in Section 3.1. In this

chapter, we study properties of this model, present the first algorithm for solving

these infinite-size extensive-form games, and evaluate it on random games. Our

algorithm calls subroutines for solving Nash and Stackelberg problems; it works for

any game representation (as long as the Nash and Stackelberg subroutines do).

3.1 Review: Extensive-Form Game to Model Uncertainty about Ob-
servability

There are two players in the original game (represented in normal form): the leader

and the follower. The leader’s set of pure actions is Al. The follower’s set of pure

actions is Af . If the outcome of the game is pal, af q, where al P Al is the leader’s

action and af P Af is the follower’s action, then the leader’s utility is ulpal, af q, and

the follower’s utility is uf pal, af q.

We now present the extensive-form game model introduced in the paper by Ko-

rzhyk et al. (2011) which is arguably the most straightforward way to introduce

uncertainty about the follower’s ability to observe the leader’s distribution over Al.

Let us first explain what is the extensive form. We have seen the normal-form

representation of games in the introduction. The extensive form is a more expressive

representation which can be used to describe general games. Each player is repre-

sented by one or more nodes at which the player can choose her actions. The actions

correspond to the edges connected to the player’s nodes. The sequence in which the

players choose their actions is specified by the path which starts at the root and

follows along the edges corresponding to the actions chosen by the players until a

leaf is reached. If several nodes of a player are in the same information set, then the

player cannot distinguish between those nodes. Some of the nodes may belong to

23

Nature, which chooses its actions at random.

The extensive-form game with uncertainty about observability shown in Fig-

ure 3.1 proceeds as follows. First, Nature decides whether the follower will ob-

serve the leader’s distribution or not. The probability that the follower observes

the leader’s distribution is pobs; correspondingly, the probability that the follower

does not observe it is 1 � pobs. Then, the leader, without knowing Nature’s choice,

chooses a distribution over Al. (Note that there are infinitely many distributions to

choose from—in particular, choosing a distribution is not the same as randomizing

over which action to choose here.) Next, the follower chooses a response af P Af ,

possibly after observing the distribution over Al chosen by the leader if Nature has

decided that the follower is able to observe.

(pobs) (1-pobs)

Nature

Leader

Follower

 (infinite
number of
 actions)

 (infinite
number of
 actions)

observed not observed

follower moves with knowledge
 of the leader's distribution

follower moves without knowledge
 of the leader's distribution

Figure 3.1: The extensive form of the game.

Nodes that are in the same information set are connected with dashed lines.

The two leader nodes are in the same information set because the leader does not

observe Nature’s decision. The follower’s nodes in the right subtree are in the same

information set, because the right subtree corresponds to the case where the follower

does not observe the distribution.

It is important to emphasize that a pure strategy for the leader in this extensive-

form game is a distribution over Al; a mixed strategy for the leader is a distribution

24

over such distributions. (In fact, we will show shortly that a distribution over dis-

tributions over Al cannot be simplified to a distribution over Al in this context.) A

pure strategy for the follower specifies one action in Af for every follower node on the

left-hand side of the tree, plus one additional action for the follower’s information

set on the right-hand side of the tree. In fact, it is possible to simplify the left-hand

side of the tree: we can take the follower’s best action at each of his nodes on the

left-hand side, and simply propagate the corresponding value up to that node as in

backward induction.1 (If there is a tie for the follower, he will break it in favor of

the leader, to stay consistent with the Stackelberg model.) Thus we can eliminate

the bottom level of the left-hand side of the tree, so that effectively a follower pure

strategy in the extensive form consists of only a single action in Af , corresponding

to his action in the information set on the right-hand side.

Since our goal is to solve an extensive-form game, a natural question is whether

off-the-shelf extensive-form game solvers are sufficient for this. As we have pointed

out, the leader’s strategy space is infinite, preventing the direct application of stan-

dard methods. One way to address this is to discretize the leader’s strategy space and

obtain an approximate solution. Because this strategy space is an p|Al|�1q-simplex,

discretizing it sufficiently finely is likely to lead to scalability issues. Our algorithm,

in contrast, generates pure strategies for the leader in an informed way that results

in an exact solution. Moreover, as we will see, experimentally our algorithm requires

the generation of only very few strategies, so that there can be little doubt that this

is preferable to the uninformed discretization approach.

1 Note that we are just doing this at a conceptual level; we never actually write down this (infinite-
sized) tree.

25

3.2 Equilibria May Require Randomizing over Distributions

Because pure strategies for the leader in the extensive-form game are distributions

over Al, it follows that mixed strategies for the leader are distributions over distri-

butions. However, one may be skeptical as to whether it is ever really necessary to

randomize over distributions, rather than just simplifying the strategy back down to

a single distribution. In this subsection, we show that for some games, randomizing

over distributions is in fact necessary, in the sense that there is no equilibrium of the

extensive-form game in which the leader plays a pure strategy.

EL L R ER
U 9,10 0,9 1,8 10,0
D 10,0 1,8 0,9 9,10

Figure 3.2: An example normal-form game.

Consider the example game in Figure 3.2. This game has no pure-strategy Nash

equilibrium. The unique mixed-strategy Nash equilibrium profile of this game is

xp0.5, 0.5q, p0, 0.5, 0.5, 0qy.2 The row player’s utility from playing this equilibrium is

0.5. In contrast, in the Stackelberg model, the row player can commit to playing U,

so that the column player best-responds with EL, which results in a utility of 9 for

the row player. The row player can achieve an even higher utility by committing to

a mixed strategy. If the row player commits to playing U with probability 8{9 � ε

and D with probability 1{9� ε, the column player’s best-response is still EL, and the

row player’s utility is approximately 9�1{9. The Stackelberg solution is the limit as

εÑ 0. (Note that there are symmetric solutions on the other side of the game where

2 The equilibrium is unique because of the following. If the row player plays U with probability ¿
0.5, then only EL and L can be best responses for the column player, but then U cannot be a best
response for the row player. By symmetry, the row player also cannot play D with probability ¿
0.5. Hence any equilibrium has the row player playing p0.5, 0.5q. Only L and R are best responses
to this for the column player, and the only way to put probability on these to keep the row player
indifferent between U and D is p0, 0.5, 0.5, 0q.

26

the row player puts most of the probability on D and the column player responds

with ER.)

Now consider the extensive-form variant of this game where the leader’s (row

player’s) distribution is observed with probability pobs � .99. Because the leader’s

distribution is almost always observed, it is suboptimal for the leader to put positive

probability on any distribution that has probability strictly between 1{9 and 8{9 on

U. This is because, when observed (which happens almost always), such distributions

would incentivize the follower to play L or R, whereas any more extreme distributions

will incentivize the follower to play EL or ER, leading to much higher utilities for

the leader. (We recall that, upon observing the distribution, the follower is assumed

to break ties in the leader’s favor for technical reasons, though this is not essential

for the example.)

It is also suboptimal to put positive probability on any distribution that puts

strictly more than 8{9 probability on U. This is because, as long as the probability

on U is at least 8{9, any unit of probability mass placed on D results in a utility of

10 rather than 9 in the .99 of cases where the follower observes; this outweighs any

benefit that placing this unit of probability elsewhere might have in the .01 of cases

where the follower does not observe. Similarly, putting positive probability on any

distribution that puts strictly less than 1{9 probability on U is suboptimal. Hence,

all of the leader’s mass is either on the distribution p8{9, 1{9q or on the distribution

p1{9, 8{9q.

If the leader places all her mass on the distribution p8{9, 1{9q, the follower is in-

centivized to play EL all the time. However, if this is so, the leader has an incentive

to deviate to p1{9, 8{9q. This is because this distribution will give her just as high a

utility as p8{9, 1{9q if it is observed (the follower will respond with ER); however, if it

is not observed, the follower will not know that the leader has deviated and still play

EL, and p1{9, 8{9q gives a higher utility against EL than p8{9, 1{9q. Hence there is

27

no equilibrium where the leader places all her mass on p8{9, 1{9q (and, by symmetry,

there is none where the leader places all her mass on p1{9, 8{9q). In fact, by similar

reasoning as that used to establish the uniqueness of the Nash equilibrium of the

original game, we can conclude that in equilibrium the leader must randomize uni-

formly between p8{9, 1{9q and p1{9, 8{9q; the follower must then respond accordingly

with EL or ER when he observes the distribution, and when he does not observe

the distribution he must randomize uniformly between L and R (to keep the leader

indifferent between her two distributions). Hence, this is the unique equilibrium.

3.3 The Algorithm

We now present our algorithm for solving for an equilibrium of the extensive-form

game (Figure 3.1). The intuition behind the algorithm is as follows. As we have

already pointed out, after applying backward induction to the left-hand side of the

extensive-form game, the follower’s pure strategy space in the extensive-form game

is simply Af (corresponding to the action he takes on the right-hand side), which is

manageable. What is not manageable is the space of all the leader pure strategies in

the extensive form: there is one for every distribution over Al, so there are infinitely

many. This prevents us from simply writing down the normal-form game correspond-

ing to the extensive-form game and solving that. (Note that this is not the same as

the original normal-form game that has no uncertainty about observability.)

To address this, we start with a limited set of leader distributions (for example,

the set of all |Al| degenerate distributions), and solve for a Nash equilibrium of this

restricted game. This will give us a mixed strategy for the follower; the next step

is to find the best leader pure strategy (distribution over Al) in response to this

follower mixed strategy. As we will see, technically, this corresponds to solving for

a Stackelberg solution of an appropriately modified normal-form game. We then

add the resulting distribution to the set of leader distributions, solve for a new

28

equilibrium, etc., until convergence.

This type of strategy generation approach has been applied to solve various games

where the strategy space is too large to write down (McMahan et al., 2003; Halvorson

et al., 2009; Jain et al., 2010). (It has a close relation to the notion of constraint

/ column generation in linear programming.) Usually, this is because the strategy

space is combinatorial—but it is finite, and hence the algorithm is guaranteed to

converge eventually. In our case, however, there is a continuum of leader strategies,

so we have to prove convergence, which we will do later.

Our algorithm for finding an equilibrium of the extensive-form game is shown in

Figure 3.3. In this algorithm, GpD,Af q is a normal-form game, more specifically it

is the normal-form game corresponding to the extensive-form game, except that the

leader can only choose from the distributions in D.

D Ð any finite non-empty set of distributions over Al
Loop:
G Ð GpD,Af q
xsGl , sfy Ð FIND-NEpGq
s1l Ð LEADER-BRpsf q
If uGl ps

1
l, sf q ¤ uGl ps

G
l , sf q Then

Return xsGl , sfy
Else
D Ð D Y ts1lu

Figure 3.3: The algorithm.

At any point, D is the set of distributions for the leader that we have generated

so far. We find a mixed-strategy Nash equilibrium xsGl , sfy of a normal-form game G

in which the leader’s set of pure strategies is D, the follower’s set of pure strategies

29

is Af , and the players’ utilities for the outcome pd, af q are defined as follows.

uGl pd, af q � pobsEal�drulpal,FOLLOWER-BRobspdqqs

� p1� pobsqEal�drulpal, af qs (3.1)

uGf pd, af q � pobsEal�druf pal,FOLLOWER-BRobspdqqs

� p1� pobsqEal�druf pal, af qs (3.2)

Here d P D is a distribution over Al; al is the leader’s action drawn according to

d; and af P Af is the follower’s action. ul and uf correspond to the utilities in the

original normal-form game (that did not model uncertain observability). In each

of these formulas, the first summand corresponds to the case where the follower

observes the leader’s chosen distribution over Al, so that the follower best-responds

to that distribution; the second summand corresponds to the case where the follower

does not observe the leader’s distribution over Af , so that the follower will follow

his strategy af for the right-hand side of the extensive-form game. The follower’s

best-response is computed as follows.

FOLLOWER-BRobspdq P arg max
afPA

�
f

Eal�drulpal, af qs

A�
f � arg max

afPAf
Eal�druf pal, af qs

That is, the follower maximizes his expected utility, breaking the ties in favor of the

leader.3

We then check whether sGl is actually a best-response to sf if the leader considers

all possible distributions over Al (we only know for sure that it is a best response

among the restricted set D). To do that, we compute a best-response distribution

s1l over Al that maximizes the leader’s expected utility u1dps
1
l, sf q. If it turns out

3 This is a common assumption in Stackelberg games; without it, it may happen that no solution
exists. Specifically, if the original normal-form game is generic, then the follower breaks ties in
the leader’s favor in every subgame-perfect equilibrium of the regular Stackelberg extensive-form
game (von Stengel and Zamir, 2010).

30

that u1dps
1
l, sf q is equal to the leader’s utility in the computed Nash equilibrium of

the game, then it follows that sGl is a best response to sf , and because sf is also a

best response to sGl , we can return xsGl , sfy as an equilibrium of the extensive-form

game with uncertain observability. Otherwise, we add distribution s1l to D, and the

algorithm continues on to the next iteration, in which we construct a new game G,

compute its Nash equilibrium, and so on.

In Subsection 3.3.1, we show how to compute the leader’s best response

LEADER-BRpsf q efficiently using a set of linear programs (corresponding to a Stack-

elberg solve). In Subsection 3.3.2, we show how the algorithm solves the example

game in Figure 3.2 with pobs � .99. In Subsection 3.3.3, we show that the algorithm

converges in a finite number of iterations.

3.3.1 Computing the Leader’s Best Response

In this section, we describe an efficient way to compute a distribution s1l over the

leader’s actions Al such that the leader’s utility of playing s1l is maximized assuming

that the follower plays a given strategy sf . That is, s1l is the leader’s best response

to the follower’s mixed strategy sf , denoted by LEADER-BRpsf q in the algorithm

shown in Figure 3.3.

Our goal is to formulate LEADER-BR as a linear program. However, the leader’s

utility is not linear in s1l in the case where the follower observes the leader’s mixed

strategy, because the leader’s utility depends on the follower’s best response to this

observation, which can be different for different values of s1l. Hence, we use a trick that

is also used in computing Stackelberg strategies (with certain observability) (Conitzer

and Sandholm, 2006; von Stengel and Zamir, 2010): we write an LP that maximizes

the leader’s expected utility under the constraint that the follower’s best response in

the observed case is a fixed action a�f . To find the leader’s best response to sf overall,

we solve such an LP for each a�f P Af ; we obtain a best response for the leader by

31

choosing the optimal solution vector s1l for an LP with the highest objective value

(leader utility). Note that some of these LPs may be infeasible.

Specifically, given a�f , sf , we solve the following LP, whose variables are the p1al .

Maximize pobs

¸
alPAl

p1alulpal, a
�
f q

� p1� pobsq
¸
alPAl

¸
afPAf

p1alqafulpal, af q

Subject to

@af P Af :
¸
alPAl

p1aluf pal, a
�
f q ¥

¸
alPAl

p1aluf pal, af q

¸
alPAl

p1al � 1

@al P Al : p1al ¥ 0

This formulation is almost identical to the standard one for solving for a Stackel-

berg strategy (Conitzer and Sandholm, 2006; von Stengel and Zamir, 2010), except

the objective is different to account for the fact that the follower may not observe

the distribution. In fact, if we modify the leader’s utility function to u
sf
l pal, a

�
f q �

pobsulpal, a
�
f q � p1� pobsq

°
afPAf

sf paf qulpal, af q, then the objective simplifies to

°
alPAl

p1alu
sf
l pal, a

�
f q, and we obtain the standard Stackelberg formulation. Hence, we

are just doing a Stackelberg solve on a modified game.

3.3.2 An Example Run of the Algorithm

In this section, we demonstrate how the algorithm computes an equilibrium of the

uncertain-observability extensive-form game for the payoff matrix shown in Fig-

ure 3.2, with probability of observability pobs � 0.99. (We already solved for the

equilibrium of this game analytically in Section 3.2—the purpose here is to show

how the algorithm finds this equilibrium.) In this game, there are two actions in Al,

32

so each leader distribution is represented by a vector of two numbers summing to 1.

Initialization. We initialize the set of leader distributions with the two degenerate

distributions over Al: the distribution p1, 0q corresponds to the leader always playing

U, and the distribution p0, 1q corresponds to the leader always playing D. The normal-

form game for the current set of distributions D � tp1, 0q, p0, 1qu and the utilities

uGl , u
G
f computed according to Equations (3.1), (3.2) is shown in Figure 3.4. (Note

that the follower strategy has very little effect on the expected payoffs in this game;

this is because the follower strategy only concerns the “unobserved” part of the game,

which occurs very rarely in this game. The “observed” part has been preprocessed

with backward induction.)

EL L R ER
(1,0) 9,10 8.91, 9.99 8.92, 9.98 9.01, 9.9
(0,1) 9.01, 9.9 8.92, 9.98 8.91, 9.99 9,10

Figure 3.4: The normal-form game after the initialization.

Iteration 1. We first compute a Nash equilibrium of the normal-form game shown

in Figure 3.4, namely, xp.5, .5q, p0, .5, .5, 0qy. Next, we compute the leader’s best

response to the follower’s mixed strategy p0, .5, .5, 0q. This results in the distribution

s1, in which the leader plays U with probability 8{9 and D with probability 1{9, so

that the follower’s best response to s1 is EL.

s1 � p8{9qU � p1{9qD

It turns out that the leader’s utility from playing s1 against the follower’s mixed

strategy p0, .5, .5, 0q is higher than the leader’s utility in the current NE profile

xp.5, .5q, p0, .5, .5, 0qy. Thus, we add s1 to D. The resulting normal-form game is

shown in Figure 3.5.

Iteration 2. We compute a Nash equilibrium of the game shown in Figure 3.5,

namely, the pure-strategy Nash equilibrium xs1,Ly. The leader’s best response to

33

EL L R ER
(1,0) 9,10 8.91, 9.99 8.92, 9.98 9.01, 9.9
(0,1) 9.01, 9.9 8.92, 9.98 8.91, 9.99 9,10
s1 9.11, 8.89 9.02, 8.89 9.03, 8.88 9.12, 8.81

Figure 3.5: The normal-form game after the first iteration.

the follower’s strategy L is s2, where

s2 � p1{9qU � p8{9qD

The leader’s utility from playing s2 against L is higher than the leader’s utility from

playing s1 against L. Thus, we add s2 to the set D. The resulting normal-form game

is shown in Figure 3.6.

EL L R ER
(1,0) 9,10 8.91, 9.99 8.92, 9.98 9.01, 9.9
(0,1) 9.01, 9.9 8.92, 9.98 8.91, 9.99 9,10
s1 9.11, 8.89 9.02, 8.89 9.03, 8.88 9.12, 8.81
s2 9.12, 8.81 9.03, 8.88 9.02, 8.89 9.11, 8.89

Figure 3.6: The normal-form game after the second iteration.

Iteration 3. We compute a mixed-strategy Nash equilibrium of the normal-form

game shown in Figure 3.6, namely, xp0, 0, .5, .5q, p0, .5, .5, 0qy. When we compute the

leader’s best-response to the follower’s mixed strategy p0, .5, .5, 0q, it turns out that

there is no distribution that gives the leader a utility higher than the leader’s utility

in the computed NE profile. Thus we have found an equilibrium of the uncertain-

observability extensive-form game, in which the leader plays s1 with probability .5

and s2 with probability .5, while the follower plays L with probability .5 and R with

probability .5.

34

3.3.3 A Bound on the Number of Iterations

In this section, we prove that the algorithm is guaranteed to find an equilibrium of

the extensive-form game in a finite number of iterations. For each af , the set of

leader mixed strategies Saf to which af is a best response is a polytope in R|Al|.

Denote the number of vertices of Saf by vpSaf q. Typical linear program solvers will

return a vertex of the feasible region; we will assume that we use such a solver. Then,

the number of iterations of our algorithm can be bounded as follows.

Theorem 1. The algorithm finds an equilibrium of the extensive-form game modeling

uncertain observability in no more than 1�
°
afPAf

vpSaf q iterations.

Proof. LEADER-BR returns the optimal solution to one of the linear programs in

Subsection 3.3.1. The feasible region of each of these linear programs is one of

the regions Saf . Hence, by the assumption on our LP solver, LEADER-BR always

returns a vertex of such a region.

When we generate a vertex corresponding to a distribution that is already in D,

we have converged: this vertex cannot be a better response to sf than sl, because

sl is a best response to sf among distributions in D. Because there are at most
°
afPAf

vpSaf q distinct vertices to generate, the bound on the number of iterations

follows.

3.4 A Stronger Bound on the Leader’s Support Size

Theorem 1 implies that there always exists an equilibrium in which the leader ran-

domizes over at most 1�
¸

afPAf

vpSaf q distributions. This is still a rather loose bound.

The following theorem establishes a much tighter bound.

Theorem 2. In any uncertain-observability extensive-form game, there exists an

equilibrium in which the number of distributions on which the leader places positive

35

probability is at most |Al|.

Proof. Let sl denote a distribution over leader actions, where slpalq denotes the

probability sl places on leader action al P Al. Suppose there is an equilibrium of the

whole game with sGl pslq denoting the leader probability on distribution sl, and sf paf q

denoting the follower probability on follower action af (conditional on the follower

not being able to observe). Let πpalq �
°
sl
sGl pslqslpalq be the marginal probability

that the leader plays al. Finally, let usl pslq denote the utility that the leader would

get for committing to sl in a pure Stackelberg version of the game (corresponding to

the “observed” side of the game tree). Then, consider the following linear program

whose variables are p1sl (one for every distribution sl in the support of sGl). (This LP

is just for the purpose of analysis.)

Maximize
¸
sl

p1slu
s
l pslq

Subject to

p@alq
¸
sl

p1slslpalq � πpalq

p@slq p
1
sl
¥ 0

That is, this linear program tries to modify the leader’s equilibrium strategy to

maximize the leader’s overall Stackelberg utility (the utility on the “observed” side

of the game tree) under the constraint that the marginal probabilities do not change

(so that nothing changes on the “unobserved” side of the tree).

The original equilibrium strategy sGl must be an optimal solution to this LP,

because, if we suppose to the contrary that there is a better solution, then the leader

would want to switch to that better solution (it would not change her utility on the

“unobserved” side and it would improve it on the “observed” side), contradicting the

equilibrium assumption. In fact, any optimal solution to this linear program must

36

be an equilibrium when combined with the sf , because it will do just as well as sGl

for the leader, and the follower will still be best-responding (on the “unobserved”

side) because the marginal probabilities on the al remain the same. A linear program

with |Al| constraints (not counting the nonnegativity constraints for each variable)

must have an optimal solution with at most |Al| of its variables set to nonzero values

(which follows, for example, from the simplex algorithm). It follows that there

exists an equilibrium where the leader places positive probability on at most |Al|

distributions.

3.5 Experiments

The goal of our experiments is to study a number of properties of the proposed

algorithm and the solutions it generates. Since the bound on the number of iterations

given in Theorem 1 is quite loose, we want to measure the number of iterations and

the overall run time of the algorithm for different payoff matrices and values of pobs.

Another goal of the experiments is to measure the leader’s support size, that is, the

number of distributions played with positive probability in the leader’s equilibrium

strategy, which we showed to be bounded by the number of the leader’s actions

|Al| (Theorem 2). We also want to study the dependence of the leader’s equilibrium

utility on the probability of observability pobs. Finally, we want to find out how often

the leader’s equilibrium strategy in the extensive-form game is actually different from

Nash and Stackelberg strategies in the original normal-form game.

In our experimental results we consider 15 � 15 payoff matrices and vary pobs.

We used two different Nash equilibrium solvers, a MIP solver with different objec-

tives (Sandholm et al., 2005), and the Gambit (McKelvey et al., 2004) implemen-

tation of the Lemke-Howson algorithm (Lemke and Howson, 1964). For the MIP

solver, we used three different objective functions: no objective, minimizing the size

of the leader support, and maximizing the leader utility.

37

(a) Uniform

(b) Gamut

(c) Uniform

(d) Gamut

(e) Uniform

(f) Gamut

(g) Uniform

(h) Gamut

(i) Uniform

(j) Gamut

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

MIP no obj

MIP lead. support

MIP lead. util.

GAMBIT

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

MIP no obj
MIP lead. support
MIP lead. util.
GAMBIT

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

1

2

3

4

0 0.2 0.4 0.6 0.8 1

MIP no obj

MIP lead. support

MIP lead. util.

GAMBIT

1

2

3

4

0 0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

MIP no obj

MIP lead. support

MIP lead. util.

GAMBIT

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

Stackelberg
Nash
Both
None

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

Run time of the algorithm

(seconds)

Number of iterations

Leader support size

Leader equilibrium

utility

Percentage of games where the

leader’s equilibrium strategy

coincides with Stackelberg / Nash

Figure 3.7: Experimental results

38

We considered two distributions over games. The first distribution (uniform)

generated payoff matrices with individual payoffs drawn uniformly at random from

r0, 1s. The second (gamut) generated payoff matrices from the various game types

offered in GAMUT (Nudelman et al., 2004), with uniform weight given to each type.

Figures 3.7(a) and 3.7(b) show the run time of the different algorithms as a

function of pobs. One general trend is that the MIP solver that minimizes the leader

support is the fastest solver. One interesting difference is that run time generally

increases with pobs for the GAMUT distribution, but is fairly flat or decreasing for

uniform. The short run time is due to the low number of iterations, which we discuss

next.

Figures 3.7(c) and 3.7(d) show the number of iterations taken by the algorithm.

Each iteration corresponds to a complete pass through the loop in Figure 3.3, which

includes a Nash equilibrium computation in the extensive form game followed by a

LEADER-BR solve. The number of iterations generally tracks the run time fairly

closely. Two exceptions are GAMBIT and MIP with leader support minimization for

the GAMUT distribution. As we can see, the number of iterations is surprisingly low

compared to our theoretical bound of Theorem 1. We leave the question of whether

a tighter theoretical bound on the number of iterations can be obtained for future

research.

The support size (number of distributions over which the leader randomizes in

the equilibrium) is shown in Figures 3.7(e) and 3.7(f). The small support size is

explained in part by the low number of iterations. Since we initialize the algorithm

with |Al| pure strategies for the leader, the leader’s support size cannot be larger

than |Al| plus the number of iterations. However, it is significantly lower than that

bound.

Figures 3.7(g) and 3.7(h) show the leader’s expected utility in the equilibrium. As

expected, higher values of pobs lead to higher utility for the leader—this is the benefit

39

of commitment. Using the MIP that maximizes leader utility (within a single Nash

solve) tends to lead to high leader utilities in the final equilibrium, but intriguingly

the MIP with no objective surpasses it for the GAMUT games.

Finally, Figures 3.7(i) and 3.7(j) show how often the leader’s equilibrium strategy

coincided with Stackelberg (full observability) or Nash (no observability) strategies

of the game. The Nash subroutine that is used by the algorithm here is the MIP

formulation that minimizes the support size. Naturally, the higher the value of

pobs is, the more often the equilibrium strategy coincides with Stackelberg and the

less often it coincides with Nash. In general, it coincides with Nash very often

and with Stackelberg quite often. We can also see that the equilibrium strategy

concides with both Nash and Stackelberg at the same time in a high percentage

of GAMUT games. This indicates that in certain game families, simply playing a

Nash/Stackelberg strategy of the original normal-form game is also an equilibrium

strategy in the extensive-form game with uncertain observability across intervals of

pobs. However, this is not the case in games with uniformly random payoffs, which

suggests the need for an algorithm like the one we present in this paper.

The main lessons that we take away from this set of experiments are as follows.

First, our proposed algorithm is quite fast in practice, especially compared to the

loose theoretical bound on the number of iterations that we established in Theorem 1.

Second, there are games in which the defender’s equilibrium strategy is sensitive to

the value of pobs, which suggests that it is important to model the uncertainty about

the observability. Third, there are families of games in which the equilibrium does

not change across wide intervals of pobs—in such cases, playing Nash or Stackelberg

strategies of the original normal-form game may be “good enough”.

40

3.6 Discussion

We believe that our algorithm constitutes a useful addition to the toolbox of tech-

niques for computing game-theoretic solutions, especially in ambiguous real-world

domains. Strengths of the algorithm include that it can be applied to any game (as

opposed to, for instance, just security games), and it can also use as subroutines Nash

and Stackelberg solvers that are tailored to particular game families. The algorithm

is efficient in practice, and is guaranteed to produce a solution with support no larger

than the number of actions in the original game despite solving an extensive form

game with a potentially infinite branching factor.

A potential drawback to the overall framework, not the algorithm, is that it

requires us to determine the number pobs. This may not be an issue insofar as the so-

lution stays the same across a range of values of pobs, yet many open problems remain.

As pobs shrinks, we are more likely to encounter equilibrium selection problems—how

do we address these? What happens if we have some degree of control over pobs? Are

there other ways of addressing the problem of uncertainty about observability that

do not involve making the uncertainty explicit in the extensive form?

In the following chapters, we will consider the simpler models of simultaneous-

move games and Stackelberg games. We will focus on the computational complexity

of computing Nash equilibria and Stackelberg strategies in security games.

41

4

Complexity of Computing Optimal Stackelberg
Strategies in Security Resource Allocation Games

In this and the following chapters, we consider a class of two-player general-sum

games proposed by Kiekintveld et al. (2009). Security games have found a number

of applications related to homeland security. As was pointed out by Kiekintveld

et al. (2009), the applicability of the techniques for computing a Nash equilibrium

or a Stackelberg strategy based on the normal form of the game to security do-

mains is limited by the fact that the defender generally has exponentially many pure

strategies, so that it is not feasible to write out the entire normal form of the game.

Specifically, if there are m indistinguishable defensive resources, and n targets to

which they can be assigned (n ¡ m), then there are
�
n
m

�
pure strategies (allocations)

for the defender. Kiekintveld et al. point out that while the LAX application was

small enough to enumerate all strategies, this is not the case for new applications,

including the problem of assigning Federal Air Marshals to flights (Tsai et al., 2009).

They provide a nice framework for representing this type of problem; we follow this

framework in this chapter (and review it in the following section). However, their

42

paper leaves open the computational complexity of finding the optimal Stackelberg

strategy in their framework. In this chapter, we resolve the complexity of all the

major variants in their framework, in some cases giving polynomial-time algorithms,

and in other cases giving NP-hardness results.

4.1 Security Games: Problem Description and Notation

Following Kiekintveld et al. (2009), we consider the following two-player general-

sum game. Player one (the “leader” or “defender”) commits to a mixed strategy to

allocate a set of resources to defend a set of targets.1 Player two (the “follower” or

“attacker”) observes the commitment and then picks one of the targets to attack.

The utilities of the players depend on which target was attacked and whether that

target was defended.

We will consider several variants of this game. Resources of the leader can be

either homogeneous, or there can be several types of resources, each with different

limitations on what they can defend. It can either be the case that a resource can be

assigned to at most one target, or it can be the case that a resource can be assigned

to a subset of the targets (such a subset is called a schedule). As we will see, the

complexity depends on the size of these schedules.

We will use the following notation to describe different variants of the problem.

• Targets. Described by a set T (|T | � n). A target t is covered if there is a

resource assigned to t (in the case of no schedules), or if a resource is assigned

to a schedule that includes t.

• Schedules. Described by a collection of subsets of targets Σ � 2T . Here, σ P Σ

is a subset of targets that can be simultaneously covered by some resource. We

1 In this thesis, we assume that the set of resources is fixed, as is the case in practice in the short
term. For long-term planning, it may be useful to consider settings where additional resources can
be obtained at a cost (Bhattacharya et al., 2011; Letchford and Vorobeychik, 2012), but we will
not do so in this thesis.

43

assume that any subset of a schedule is also a schedule, that is, if σ1 � σ and

σ P Σ, then σ1 P Σ. When resources are assigned to individual targets, we

have (by a slight abuse of notation) Σ � T YtHu, where H corresponds to not

covering any target.

• Resources. Described by a set Ω (|Ω| � m). When the resources are hetero-

geneous, a function H : Ω Ñ 2Σ is given, where Hpωq is the set of schedules to

which resource ω can be assigned. We assume that if σ1 � σ and σ P Hpωq, then

σ1 P Hpωq—that is, if a resource can cover a set of targets simultaneously, then

it can also cover any subset of that set of targets simultaneously. If resources

are homogeneous, then we assume every resource can cover all schedules, that

is, Hpωq � Σ for all ω P Ω.

• Utility functions. If target t is attacked, the defender’s utility is ucdptq if t is

covered, or uudptq if t is not covered. The attacker’s utility is ucaptq if t is covered,

or uuaptq if t is not covered. We assume ucdptq ¥ uudptq and ucaptq ¤ uuaptq. We

note that it makes no difference to the players’ utilities whether a target is

covered by one resource or by more than one resource.

LP notation. We will use linear programs in all of our positive results (polynomial-

time algorithms). We now describe some of the variables used in these linear pro-

grams.

• ct is the probability of target t being covered.

• cs is the probability of schedule σ being covered.

• cω,s is the probability of resource ω being assigned to schedule σ.

Let c denote the vector of probabilities pc1, . . . , cnq. Then, the utilities of the leader

44

and the follower can be computed as follows, given c and the target t being attacked:

udpt, cq � ctu
c
dptq � p1� ctqu

u
dptq

uapt, cq � ctu
c
aptq � p1� ctqu

u
aptq

These equalities are implicit in all of our linear programs and, for brevity, are not

repeated.

4.2 Heterogeneous Resources, Singleton Schedules

We first consider the case in which schedules have size 1 or 0 (that is, resources are

assigned to individual targets or not at all, so that Σ � T Y tHu). We show that

here, we can find an optimal strategy for the leader in polynomial time. Kiekintveld

et al. (2009) gave a mixed-integer program formulation for this problem, and proved

that feasible solutions for this program correspond to mixed strategies in the game.

However, they did not show how to compute the mixed strategy in polynomial time.

Our linear program formulation is similar to their formulation, and we show how

to construct the mixed strategy from the solution, using the Birkhoff-von Neumann

theorem (Birkhoff, 1946).

To solve the problem, we actually solve multiple LPs: for each target t�, we solve

an LP that computes the best mixed strategy to commit to, under the constraint

that the attacker is incentivized to attack t�. We then solve all of these LPs, and

take the solution that maximizes the leader’s utility. This is similar to the set of

linear programs from Section 4.1, except those linear programs require a variable for

each pure strategy for the defender, so that these LPs have exponential size in our

domain. Instead, we will write a more compact LP to find the probability cω,t of

assigning resource ω to target t, for each ω and t P Hpωq. (If t R Hpωq, then there is

45

no variable cω,t.)

maximize udpt
�, cq

subject to

@ω P Ω, @t P Hpωq : 0 ¤ cω,t ¤ 1

@t P T : ct �
¸

ωPΩ:tPHpωq

cω,t ¤ 1

@ω P Ω :
¸

tPHpωq

cω,t ¤ 1

@t P T : uapt, cq ¤ uapt
�, cq

The advantage of this LP is that it is more compact than the one that considers all

pure strategies. The downside is that it is not immediately clear whether we can

actually implement the computed probabilities (that is, whether they correspond to

a probability distribution over allocations of resources to targets, and how this mixed

strategy can be found). Below we show that the obtained probabilities can, in fact,

be implemented.

4.2.1 Constructing a Strategy that Implements the LP Solution

We will make heavy use of the following theorem which we state in a somewhat more

general form than it is usually stated.

Theorem 3 (Birkhoff-von Neumann theorem, Birkhoff 1946). Consider an m � n

matrix M with real numbers aij P r0, 1s, such that for each 1 ¤ i ¤ m,
°n
j�1 aij ¤ 1,

and for each 1 ¤ j ¤ n,
°m
i�1 aij ¤ 1. Then, there exist matrices M1,M2, . . . ,M q,

and weights w1, w2, . . . , wq P p0, 1s, such that:

1.
°q
k�1w

k � 1;

2.
°q
k�1w

kMk �M ;

46

Figure 4.1: An example of how to apply the BvN theorem. Top Left: Resource
ω1 can cover targets t1, t2, t3; ω2 can cover t2, t3. Top Right: The LP returns the
marginal probabilities in the table. We must now obtain these marginal probabilities
as a probability mixture over pure strategies, in which every resource is assigned to
a separate target. Bottom: The BvN theorem decomposes the top right table into a
mixture over pure strategies. It first places probability .1 on the pure strategy on the
left, then .2 on the pure strategy to the right of that, and so on. It is easily checked
that with the resulting mixture over pure strategies, the marginal probabilities in
the top right table are obtained.

3. for each 1 ¤ k ¤ q, the elements of Mk are akij P t0, 1u;

4. for each 1 ¤ k ¤ q, we have: for each 1 ¤ i ¤ m,
°n
j�1 a

k
ij ¤ 1, and for each

1 ¤ j ¤ n,
°m
i�1 a

k
ij ¤ 1.

Moreover, q is Oppm � nq2q, and the Mk and wk can be found in Oppm � nq4.5q

time using Dulmage-Halperin algorithm (Dulmage and Halperin, 1955; Chang et al.,

2001).

We can use this theorem to convert the probabilities cω,t that we obtain from

our linear programming approach into a mixed strategy. This is because the cω,t

constitute an m�n matrix that satisfies the conditions of the Birkhoff-von Neumann

47

Figure 4.2: A counterexample that shows that with heterogeneous resources and
bipartite schedules, the linear program probabilities are not always implementable.
There are 4 targets (shown as circles), 4 schedules (solid edges), and 2 resources.
The resource ωh can be assigned to one of the horizontal edges and the resource ωd
can be assigned to one of the diagonal edges. In the optimal solution to the LP, the
probability of a resource being assigned to each edge is 0.5, so that it would seem
that the probability of each target being covered is 1. However, it is easy to see that
in reality, the two resources can cover at most 3 of the 4 targets simultaneously.

theorem. Each Mk that we obtain as a result of this application of the theorem

corresponds to a pure strategy in our domain: Mk consists of entries ckω,t P t0, 1u (by

3), which we can interpret to mean that ω is assigned to t if and only if ckω,t � 1,

because of the conditions on Mk (in 4). Then, because the weights sum to 1 (by

1), we can think of
°q
k�1w

kMk as a mixed strategy in our domain, which gives

us the right probabilities (by 2). According to the theorem, we can construct this

Figure 4.3: A counterexample that shows that with homogeneous resources and
schedules of size two that are not bipartite, the linear program probabilities are not
always implementable. The number of resources is m � 3. 6 targets are represented
by vertices, 6 schedules are represented by edges. In the optimal solution to the LP,
the probability of a resource being assigned to each edge is 0.5, so that it would seem
that the probability of each target being covered is 1. However, it is easy to see that
in reality, the three resources can cover at most 5 of the 6 targets simultaneously.

48

mixed strategy (represented as an explicit listing of the pure strategies in its support,

together with their probabilities) in polynomial time. An example is shown on Figure

4.1. From this analysis, the following theorem follows:

Theorem 4. When schedules have size 1 or 0, we can find an optimal Stackelberg

strategy in polynomial time, even with heterogeneous resources. This can be done by

solving a set of polynomial-sized linear programs and then applying the Birkhoff-von

Neumann theorem.

4.3 Heterogeneous Resources, Schedules of Size 2, Bipartite Graph

In this section, we consider schedules of size two. When schedules have size two,

they can be represented as a graph, whose vertices correspond to targets and whose

edges correspond to schedules. In this section, we consider the special case where

this graph is bipartite, and give an NP-hardness proof for it.

One may wonder why this special case is interesting. In fact, it corresponds to the

Federal Air Marshals domain studied by Kiekintveld et al. (2009). In this domain,

flights are targets. If a Federal Air Marshal is to be scheduled on one outgoing flight

from the U.S. (to, say, Europe), and will then return on an incoming flight, this is a

schedule that involves two targets; moreover, there cannot be a schedule consisting of

two outgoing flights or of two incoming flights, so that we have the requisite bipartite

structure.

It may seem that the natural approach is to use a generalization of the linear

program from the previous section (or, the mixed integer program by Kiekintveld

et al. (2009)) to compute the marginal probabilities cω,σ that resource ω is assigned

to schedule σ; and, subsequently, to convert this into a distribution over pure strate-

gies that gives those marginal probabilities. However, it turns out that it is, in

some cases, impossible to find such a distribution over pure strategies. That is, the

49

marginal probabilities from the linear program are not actually implementable. A

counterexample is shown in Figure 4.2. One may wonder if perhaps a different linear

program or other efficient algorithm can be given. We next show that this is unlikely,

because finding an optimal strategy for the leader in this case is actually NP-hard,

even in zero-sum games.

Theorem 5. When resources are heterogeneous, finding an optimal Stackelberg strat-

egy is NP-hard, even when schedules have size 2 and constitute a bipartite graph, and

the game is zero-sum.

Proof. We reduce an arbitrary satisfiability instance, given by variables V and clauses

C, and reduce it to a game of the form in the theorem. Figure 4.4 illustrates the

reduction. For each variable in V , we create a cyclic bipartite graph with 2|C|

vertices (where the vertices are targets and the edges are schedules). Also, for each

clause in C, we create another two vertices and an edge between these two vertices.

Finally, we create |C| �p|V |�1q additional “dummy” schedules, each consisting of two

targets with an edge between them. For each variable xi, we create 2|C| resources,

ω1
�xi
, . . . , ω

|C|
�xi (corresponding to �x1—these are |C| homogeneous resources) and

ω1
�xi
, . . . , ω

|C|
�xi (corresponding to �x1—again, these are |C| homogeneous resources).

Resource ω�xki (for any k) can be assigned to:

• any even (horizontal) edge in the cyclic bipartite graph corresponding to vari-

able xi;

• any edge corresponding to a clause that includes �xi; and

• any dummy edge.

Similarly, resource ω�xki (for any k) can be assigned to:

• any odd (diagonal) edge in the cyclic bipartite graph corresponding to variable

xi;

50

Figure 4.4: Illustration for the NP-hardness reduction for heterogeneous resources,
schedules of size 2 constituting a bipartite graph. The boolean formula is p�x1 _
�x2_�x3q^ p�x1_�x2_�x3q^ p�x1_�x2_�x3q. There are 36 targets (shown
as circles), 27 schedules (shown as solid edges), and 6 types of resources (shown as
triangles), of which there are 3 copies in each case. A dashed line from a resource
type to a schedule indicates that that resource can be assigned to that schedule.
The three cyclic bipartite graphs each correspond to a variable xi; the schedules σci
correspond to the three clauses in the formula.

• any edge corresponding to a clause that includes �xi; and

• any dummy edge.

Finally, let the utilities be: @t : ucdptq � 1, uudptq � 0, ucaptq � 0, uuaptq � 1, so that

we have a zero-sum game.

We now prove that the optimal utility for the leader in this game is 1 if and only

if the corresponding boolean formula is satisfiable.

51

The “if” case: Suppose there is an assignment of values t0, 1u to the variables

such that the formula evaluates to 1. Then we can assign the resources in the game

in the following way.

• For every clause in the boolean formula, choose one literal (�xi or �xi) that

evaluates to “true” in the assignment. Assign one of the corresponding re-

sources (ωk�xi or ωk�xi , for some k) to the schedule corresponding to the clause.

• For every xi � 0 (xi � 1), we assign all resources ωk�xi (ωk�xi) to cover the

entire cyclic bipartite graph corresponding to xi, using the horizontal (diagonal)

edges.

• Assign the remaining resources to cover all the “dummy” schedules.

The resulting assignment of resources covers all targets, so that if the defender plays

this pure strategy, the defender’s utility is 1 in the security game.

The “only if” case: Suppose there is a defender strategy σ that gives the

defender a utility of 1 in the Stackelberg game. Then, every target must be covered

with probability 1. That means that any pure strategy on which σ puts positive

probability must cover all the targets. So, without loss of generality, we can assume

σ is a pure strategy. We note that there are 2|C| � |V | resources and 4|C| � |V | targets

in the game. Since each schedule covers 2 targets, in σ, no two resources are assigned

to schedules that share a target. Thus, each cyclic bipartite graph corresponding to

a variable xi must have either all its horizontal edges covered (using all the ωk�xi), or

all its diagonal edges covered (using all the ωk�xi). If all the ωk�xi are used to cover

horizontal edges, we set xi to 1; if all the ωk�xi are used to cover diagonal edges,

we set xi to 0. Now, for every clause c P C, the corresponding schedule is covered

by some resource. If it is covered by some ωk�xi , then �xi P c, and because in that

case all the ωk�xi must be used to cover the cyclic bipartite graph corresponding to

52

xi (using the diagonal edges), it must be that xi � 1. Similarly, if it is covered by

some ωk�xi , then �xi P c, and it must be that xi � 0. Hence we have a satisfying

assignment.

If the resources are homogeneous, then it turns out that in the bipartite case,

we can solve for an optimal Stackelberg strategy in polynomial time, by using the

Birkhoff-von Neumann theorem in a slightly different way. We consider that case in

the following section.

4.4 Homogeneous Resources, Schedules of Size at Most 2, Bipartite
Graph

In this section, we restrict ourselves to homogeneous resources, but now we consider

schedules of size two. When schedules have size two, they can be represented as a

graph, whose vertices correspond to targets and whose edges correspond to schedules.

In this section, we consider the special case where this graph is bipartite, and give a

polynomial-time solution for it, again based on the Birkhoff-von Neumann theorem.

One may wonder why this special case is interesting. In fact, it corresponds to the

Federal Air Marshals domain studied by Kiekintveld et al. (2009). In this domain,

flights are targets. If a Federal Air Marshal is to be scheduled on one outgoing flight

from the U.S. (to, say, Europe), and will then return on an incoming flight, this is a

schedule that involves two targets; moreover, there cannot be a schedule consisting of

two outgoing flights or of two incoming flights, so that we have the requisite bipartite

structure.

We will use the following linear program to compute, for each schedule, the

probability that one of the (homogeneous) resources is assigned to that schedule.

53

(Again, we need to solve n of these linear programs, one for each value of t�.)

maximize udpt
�, cq

subject to

@σ P Σ : cσ ¤ 1

@t P T : ct �
¸

σPΣ:tPσ

cσ ¤ 1

¸
σPΣ

cσ ¤ m

@t P T : uapt, cq ¤ uapt
�, cq

We note that nothing about this program specifically corresponds to the bipartite-

schedules-of-size-two case. Indeed, it is very similar to the mixed integer program

for the general case presented by Kiekintveld et al. (2009). However, in the general

case, the solutions returned by both this linear program and the known mixed integer

program do not always correspond to implementable mixed strategies (we will give

counterexamples shortly). The contribution of this section is to show that in the

bipartite-schedules-of-size-two case, the solutions are in fact implementable.

4.4.1 Constructing a Strategy that Implements the LP Solution

Again, we will use the Birkhoff-von Neumann theorem to show this. Actually, we

will use a slightly stronger version of the theorem (which is not difficult to prove

using the basic version, Theorem 3), as follows:

Theorem 6 (Strengthening of BvN). If the matrix M in Theorem 3 additionally

satisfies
°m
i�1

°n
j�1 aij ¤ p, where p is an integer, then we can obtain matrices Mk

that additionally have the property that for each 1 ¤ k ¤ q,
°m
i�1

°n
j�1 a

k
ij ¤ p.

Again, we will construct a matrix of probabilities M , where the probabilities in

each row and the probabilities in each column sum to at most 1. Because the graph

54

is bipartite, the targets partition into T1, T2, with no edges inside T1 or inside T2.

The substochastic matrix M is constructed as follows.

M �

�
Ms MT1

MT2 0|T2|�|T1|

Here, 0|T2|�|T1| is a matrix of size |T2| � |T1|, consisting of only zeroes. The rows of

the submatrix Ms correspond to the targets in T1, and the columns of Ms correspond

to the targets in T2. Each entry of the matrix Ms is the probability ctt1,t2u that the

schedule tt1, t2u is covered.

To represent the schedules of size 1, we use two square diagonal submatrices MT1

and MT2 . For y P t1, 2u, element pi, iq of matrix MTy is equal to the probability cttiu

of a resource being assigned to cover target ti P Ty by itself; all the entries off the

diagonal are 0.

By applying the strengthened Birkhoff-von Neumann theorem, we can decompose

M into a convex combination of 0-1 matrices Mk, such that M �
°q
k�1w

kMk. Every

row and every column of each matrix Mk contains no more than one element equal

to 1, and the total number of 1s in Mk is no more than m. Each Mk corresponds to a

pure strategy for the defender. The pure strategy corresponding to 0-1 matrix Mk is

to place a defensive resource on every schedule of size two for which the corresponding

cell of the submatrix Ms is equal to 1, and to place a resource on every schedule of size

one for which the corresponding cell of the diagonal submatrix MT1 or MT2 is equal

to 1. No target is covered twice in any one of these pure strategies, because for each

t P T1 (t P T2), there is at most one 1 in the row (column) corresponding to that t.

The mixed strategy is to play the pure strategy corresponding to Mk with probability

wk, for 1 ¤ k ¤ q. By doing so, the probability of covering target t P T1 is indeed

cttu �
°
tPT2

ctt1,t2u � ct (and similarly for t P T2). Hence, the marginal probabilities

obtained from the linear program correspond to an implementable strategy.

55

Figure 4.5: A counterexample that shows that with homogeneous resources and
schedules of size three, the linear program probabilities are not always implementable.
The number of resources is m � 2. 6 targets are represented by round nodes,
6 schedules are represented by square nodes with connections to the targets that
they include. In the optimal solution to the LP, the probability of a resource being
assigned to each schedule is 0.5, so that it would seem that the probability of each
target being covered is 1. However, it is easy to see that in reality, the two resources
can cover at most 5 of the 6 targets simultaneously.

Theorem 7. When resources are homogeneous and schedules have size at most 2,

and constitute a bipartite graph, we can find an optimal Stackelberg strategy in poly-

nomial time. This can be done by solving a set of polynomial-sized linear programs

and then applying the Birkhoff-von Neumann theorem.

4.5 Homogeneous Resources, Schedules of Size 2

We now return to the case where resources are homogeneous and schedules have

size 2, but now we no longer assume that the graph is bipartite. It turns out that

if we use the linear program approach, the resulting marginal probabilities cs are

in general not implementable, that is, there is no mixed strategy that attains these

marginal probabilities. A counterexample is shown in Figure 4.3. This would appear

to put us in a position similar to that in the previous section. However, it turns out

that here we can actually solve the problem in polynomial time, using a different

approach. Our approach here is to use the standard linear programming approach

from Section 4.1. The downside of using such approach is that there are exponentially

56

many variables. In contrast, the dual linear program has only n � 1 variables, but

exponentially many constraints. One approach to solving a linear program with

exponentially many constraints is the following: start with only a small subset of

the constraints, and solve the resulting reduced linear program. Then, using some

other method, check whether the solution is feasible for the full (original) linear

program; and if not, find a violated constraint. If we have a violated constraint, we

add it to the set of constraints, and repeat. Otherwise, we have found an optimal

solution. This process is known as constraint generation. Moreover, if a violated

constraint can be found in polynomial time, then the original linear program can

be solved in polynomial time using the ellipsoid algorithm. As we will show, in the

case of homogeneous resources and schedules of size two, we can efficiently generate

constraints in the dual linear program by solving a weighted matching problem.

While this solution is less appealing than our earlier solutions based on the Birkhoff-

von Neumann theorem, it still results in a polynomial-time algorithm. The dual

linear program follows.

minimize y

subject to

@α :
¸
tPT

ytpuapα, tq � uapα, t
�qq � y ¥ udpα, t

�q

y P R

Now, we consider the constraint generation problem for the dual LP. Given a (not

necessarily feasible) solution yt, y to the dual, we need to find the most violated

constraint, or verify that the solution is in fact feasible. Our goal is to find, given

the candidate solution yt, y,

α P arg max
α

udpα, t
�q �

¸
tPT

ytpuapα, tq � uapα, t
�qq � y

57

We introduce an indicator function Iαptq which is equal to 1 if t is covered by α, and

0 otherwise. Then

uapα, tq � uuaptq � Iαptqpu
c
aptq � uuaptqq

udpα, tq � uudptq � Iαptqpu
c
dptq � uudptqq

Then, we can rearrange the optimization problem as follows.

α P arg max
α

uudpt
�q � Iαpt

�qpucdpt
�q � uudpt

�qq

� y �
¸
tPT

ytpu
u
aptq � Iαptqpu

c
aptq � uuaptqqq

�
¸
tPT

ytpu
u
apt

�q � Iαpt
�qpucapt

�q � uuapt
�qqq

� uudpt
�q � y �

¸
tPT

ytpu
u
aptq � uuapt

�qq

�
¸
tPT

Iαptqytpu
u
aptq � uuaptqq

� Iαpt
�qpuuapt

�q � ucapt
�qq
¸
tPT

yt

We define a weight function on the targets as follows:

wptq � ytpu
u
aptq � ucaptqq for t � t�

wpt�q � �puuapt
�q � ucapt

�qq
¸

tPT,t�t�

yt

We then rearrange the optimization problem as follows:

α P arg max
α

wpαq � uudpt
�q �

¸
tPT

ytpu
u
aptq � uuapt

�qq � y

where wpαq is the total weight of the targets covered by the pure strategy α: wpαq �
°
tPYsPαs

wptq. The only part of the objective that depends on α is wpαq, so we can

focus on finding an α that maximizes wpαq. A pure strategy α is a collection of

58

edges (schedules consisting of pairs of targets). Therefore, the problem of finding

an α with maximum weight is a maximum weighted 2-cover problem, which can be

solved in polynomial time (for example, using a modification of the algorithm for

finding a maximal weighted matching in general graphs (Galil et al., 1986)). So,

we can solve the constraint generation problem, and hence the whole problem, in

polynomial time. From this analysis, the following theorem follows:

Theorem 8. When resources are homogeneous and schedules have size at most 2,

we can find an optimal Stackelberg strategy in polynomial time. This can be done

by solving the standard Stackelberg linear programs (Conitzer and Sandholm, 2006;

von Stengel and Zamir, 2010): these programs have exponentially many variables,

but the constraint generation problem for the dual can be solved in polynomial time

in this case.

4.6 Homogeneous Resources, Schedules of Size 3

We now move on to the case of homogeneous resources with schedules of size 3. Once

again, it turns out that if we use the linear program approach, the resulting marginal

probabilities cs are in general not implementable; that is, there is no mixed strategy

that attains these marginal probabilities. A counterexample is shown in Figure 4.5.

We now show that finding an optimal strategy for the leader in this case is actually

NP-hard, even in zero-sum games.

Theorem 9. When schedules have size 3, finding an optimal Stackelberg strategy is

NP-hard, even when resources are homogeneous and the game is zero-sum.

Proof. We reduce an arbitrary 3-cover problem instance—in which we are given a

universe U , a family S of subsets of U , such that each subset contains 3 elements,

and we are asked whether we can (exactly) cover all of U using |U |{3 elements of

S—to a game with homogeneous resources and schedules of size 3. We create one

59

target for each element of U , and one schedule for each element of S, which covers

the targets in it. We also create |U |{3 homogeneous resources that each can cover

any schedule. The utilities are @t : ucdptq � uuaptq � 1, uudptq � ucaptq � 0.

First, we will show that the answer is “yes” in the set cover problem instance

if there is defender strategy that gives the defender the utility of 1. Suppose there

is defender strategy C that gives the defender the utility of 1 in the Stackelberg

setting. Since the game is zero sum, the attacker’s utility must be 0. It must be that

uapt, Cq � 0 for each t P T . That implies ct � 1 for all t. Then each target must be

covered in each pure strategy over which the defender is mixing in C. Thus there

exists a pure strategy that covers each target with no more than k resources. The

set of schedules covered in that strategy corresponds to the subfamily C of size no

more than k such that the union of subsets in C is exactly U .

Next, we will show that if there exists a subfamily C of size no more than k,

then there is defender strategy that gives the defender utility of 1 in the Stackelberg

game. Consider a pure strategy in which the defender assigns a resource to each

schedule that corresponds to a subset in C. Such pure strategy covers every target.

If the defender plays this pure strategy, attacker’s utility from attacking any target

is equal to 0. Since the game is zero sum, the defender’s utility is 1.

We have shown that the answer to the 3-Set Cover problem is positive if and only

if the leader’s utility in the corresponding resource allocation game is 1.

4.7 Discussion

In this chapter, we characterized in which security games the problem of computing a

Stackelberg strategy is solvable in polynomial time and in which cases it is NP-hard.

We summarize thre results in Figure 4.7.

Our results are perhaps made more interesting by the paper by Korzhyk et al.

(2011), which shows that for all of the security games that we studied, an optimal

60

Schedules
Hetero-
geneous
resources

size 1 size
¤ 2,
bipartite

size ¤
2

size ¥
3

No P P P NP-
hard

Yes P NP-
hard

NP-
hard

NP-
hard

Figure 4.6: Summary of the computational results. All of the hardness results hold
even for zero-sum games.

Stackelberg strategy is guaranteed to also be a Nash equilibrium strategy in the

version of the game where commitment is not possible. (The converse does not hold,

that is, there can be Nash equilibrium strategies that are not Stackelberg strategies.)

Thus, our polynomial-time algorithm results also allow us to find a Nash equilibrium

strategy for the defender in polynomial time. Conversely, for the cases where we prove

a hardness result, finding a Nash equilibrium strategy is also NP-hard, because our

hardness results hold even for zero-sum games.

In the next chapter, we consider an extended security games model in which the

attacker may choose multiple targets for a simultaneous attack.

61

5

Security Games with Multiple Attacker Resources

The security games model by Kiekintveld et al. (2009) discussed in the previous

chapter was further extended by Korzhyk et al. (2011) to allow multiple attacker

resources; that is, the attacker can simultaneously attack up to na different targets.

This extension is motivated by the fact that terrorist attacks are often performed at

multiple locations simultaneously (for example, the 9/11 attacks or the 2008 Mumbai

attacks).

In the case of a single attacker resource, Kiekintveld et al. give a simple algo-

rithm called ORIGAMI for the single attacker resource case. It computes a defender

strategy that is both a Stackelberg and a Nash strategy (the latter follows from the

work of Korzhyk et al. (2011)). The main observation used in ORIGAMI is that any

Stackelberg strategy for the defender minimizes the attacker’s best-response utility.

Using this observation, ORIGAMI computes the defender’s Nash/Stackelberg strat-

egy by gradually decreasing the attacker’s best-response utility, keeping track of the

number of defender resources required to bring the attacker’s best-response utility

down to this level, until the number of required defender resources reaches the limit.

62

However, in games with multiple attacker resources, the defender’s minimax strategy

is not necessarily a Nash or Stackelberg strategy. Consider the following example

(by Korzhyk et al. (2011)). Suppose there are two targets, and the attacker has

two resources, so that both targets will be attacked no matter what strategy the

defender chooses. If the defender has only one resource, then the defender is better

off allocating that resource in such a way that the defender’s utility increases the

most. However, in the defender’s minimax strategy, the defender would allocate the

resource so that the attacker’s utility is reduced the most. Thus the defender’s Nash

and Stackelberg strategies can differ from the minimax strategy in this example.

In this chapter, we give a polynomial-time algorithm for finding a Nash equilib-

rium in the case of multiple attacker resources. This algorithm can be thought of as

a generalization of ORIGAMI in the sense that it also keeps track of the smallest

utility that the attacker is going to get from any of his targets, and this utility grad-

ually decreases over the course of the algorithm. However, our algorithm is far more

complicated compared to ORIGAMI. Furthermore, we show that Nash equilibria

in security games with multiple attacker resources possess the interchange property,

which states that as long as each player plays some equilibrium strategy, the resulting

strategy profile must be a Nash equilibrium, thus resolving the problem of equilib-

rium selection for both players. On the other hand, we show that, with multiple

attacker resources, computing a defender Stackelberg strategy is actually NP-hard.

5.1 The Model

In the security games that we study, there is a set of targets, T . The defender has

nd resources and the attacker has na resources. A pure strategy for the defender

(attacker) consists of a subset ad � T with |ad| � nd (aa � T with |aa| � na),

corresponding to the targets she defends (he attacks). Targets that are not attacked

do not affect either player’s utility. Each player’s utility is additive over attacked

63

targets. For a target t, the defender receives utility uudptq if the target is attacked but

not defended (uncovered), and ucdptq if the target is attacked and defended (covered).

Similarly, the attacker’s utility for an attacked target t is uuaptq in the uncovered

case and ucaptq in the covered case. (We require ∆udptq � ucdptq � uudptq ¡ 0 and

∆uaptq � uuaptq � ucaptq ¡ 0.) Hence, the defender’s overall utility is
°
tPaaXad

ucdptq �°
tPaazad

uudptq, and the attacker’s overall utility is
°
tPaaXad

ucaptq �
°
tPaazad

uuaptq.

Because of the additive nature of the utility function, the players’ expected utili-

ties depend only on the marginal probability that each target is attacked/defended.

Hence, a defender mixed strategy can be represented as a vector

sd � psdpt1q, . . . , sdpt|T |qq with
°
tPT sdptq � nd, where sdptq P r0, 1s is the prob-

ability that target t obtains a defensive resource, and similarly for the attacker

sa � psapt1q, . . . , sapt|T |qq with
°
tPT saptq � na, saptq P r0, 1s. (Note that it does

not help to have more than one resource on one target. This assumption was intro-

duced in the security game model by Kiekintveld et al. (2009).)

We will use the following shorthand: uapt, sdptqq � sdptqu
c
aptq � p1� sdptqqu

u
aptq is

the attacker’s expected utility for attacking target t, and υdpt, saptqq � saptq∆udptq

is the marginal expected utility that the defender gets from defending t.

5.2 Nash Equilibrium

We now consider how to compute a Nash equilibrium of a security game with multiple

attacker resources. Because of the additive nature of the utility functions, best-

responding simply means defending (attacking) the nd (na) targets with the highest

utility for the defender (attacker). If there is a tie for the ndth (nath) place, then it is

possible to randomize over the corresponding targets. Therefore, sd is a best response

to sa iff there exists some threshold marginal utility θd such that υdpt, saptqq θd ñ

sdptq � 0 and υdpt, saptqq ¡ θd ñ sdptq � 1. Similarly, sa is a best response to sd

iff there exists some threshold utility θa such that uapt, sdptqq θa ñ saptq � 0 and

64

uapt, sdptqq ¡ θa ñ saptq � 1. Hence, we have a Nash equilibrium iff both these

conditions are satisfied. Note that the defender’s (and, similarly, the attacker’s)

strategy can be mixed (randomized), because any target t such that υdpt, saptqq � θd

can be defended with a fractional probability sdptq P r0, 1s. Similarly, the attacker’s

strategy can also be mixed.

The high-level idea of our algorithm for computing a Nash equilibrium is as

follows. We start with a modified game where the defender has no resources at

all, for which it is straightforward to compute an equilibrium, and then we gradually

increase the number of defender resources (not necessarily to integral amounts), while

maintaining an equilibrium of the game as it is changing—until we arrive at the

actual number of defender resources. The algorithm transitions among phases that

correspond to phases of qualitatively different behavior in the process of increasing

the number of defender resources. The change resulting from a single phase can be

computed through a simple calculation.

5.2.1 Detailed Example Run of the Algorithm

Before we present the algorithm for computing a Nash equilibrium, we first give a

detailed example of how it solves a particular game. This example demonstrates the

different phases of the algorithm. During these phases, each target will be considered

to be in one of 6 possible states: Untouched (U), Newly Attacked (NA), Pending (P),

Active (A), Defender Saturated (DS), and Done (D). We will informally introduce

every state in this example (precise definitions can be found in the algorithm in

Figure 5.2). The target states depend on the values of the thresholds θa, θd, which are

computed at the beginning and gradually decrease during the course of the algorithm.

Example 1. Consider a game with |T | � 4 targets, nd � 3 defender resources, and

na � 2 attacker resources. The utilities are as follows:

65

 t1 [P] t2[P] t3[NA] t4[U] t1[P] t2[A] t3[NA] t4[U] t1[P] t2[A] t3[A] t4[U] t1[P] t2[A] t3[A] t4[NA]

dti 0 0 0 0 0 1/3 0 0 0 1/3 0 0 0 2/3 1/3 0

ati 1 1 0 0 1 1 0 0 1 3/5 2/5 0 1 3/5 2/5 0

ua(ti,c) 5 4 3 2 5 3 3 2 5 3 3 2 5 2 2 2

υd(ti,a) 1 2 0 0 1 2 0 0 1 6/5 6/5 0 1 6/5 6/5 0

 (a) Initialize. θd=2, θa=3 (b) IMOP. θd=2, θa=3 (c) MMNA. θd=6/5, θa=3 (d) IMOA. θd=6/5, θa=2

 t1[P] t2[A] t3[A] t4[NA] t1[A] t2[A] t3[A] t4[NA] t1[A] t2[A] t3[A] t4[P] t1[A] t2[DS] t3[A] t4[P]

dti 0 2/3 1/3 0 3/5 2/3 1/3 0 3/5 2/3 1/3 0 4/5 1 2/3 0

ati 1 1/2 1/3 1/6 1 1/2 1/3 1/6 6/11 3/11 2/11 1 6/11 3/11 2/11 1

ua(ti,c) 5 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2

υd(ti,a) 1 1 1 1/12 1 1 1 1/12 6/11 6/11 6/11 1/2 6/11 6/11 6/11 1/2

 (e) MMNA. θd=1, θa=2 (f) IMOP. θd=1, θa=2 (g) MMNA. θd=6/11, θa=2 (h) IMOA. θd=6/11, θa=1

 t1[A] t2[DS] t3[A] t4[P] t1[A] t2[DS] t3[A] t4[A] t1[A] t2[D] t3[A] t4[A] t1 t2 t3 t4

dti 4/5 1 2/3 0 4/5 1 2/3 1/2 4/5 1 2/3 1/2 ≈.806 1 ≈.677 ≈.516

ati 1/2 1/3 1/6 1 1/2 1/3 1/6 1 3/10 1 1/10 3/5 3/10 1 1/10 3/5

ua(ti,c) 1 1 1 2 1 1 1 1 1 1 1 1 ≈.968 1 ≈.968 ≈.968

υd(ti,a) 1/2 2/3 1/2 1/2 1/2 2/3 1/2 1/2 3/10 2 3/10 3/10 3/10 2 3/10 3/10

 (i) MMDS. θd=1/2, θa=1 (j) IMOP. θd=1/2, θa=1 (k) MMDS. θd=3/10, θa=1 (l) IMOA. θd=3/10, θa≈.968

Figure 5.1: The example run of the algorithm. Each subfigure shows the current
equilibrium, threshold values, and target states at the end of the corresponding phase.

t1 t2 t3 t4
uua 5 4 3 2
uca 0 1 0 0

∆ud 1 2 3 .5

Figure 5.1 shows the sequence of equilibria for different amounts of defender resources

computed by the algorithm. We start with the equilibrium for 0 defender resources.

The attacker attacks the two targets that give him the highest utility, namely, t1 and

t2 (Fig. 5.1(a)). Since these two targets are attacked with probability 1, they are likely

to get defended as the number of defender resources increases. Thus, these targets

are both in the Pending (P) state. Target t4 is in the Untouched (U) state, because

uapt4q θa, and thus it is neither attacked nor defended.

Increase Defender Mass on Pending (IMOP) phase: We increase the number of

defender resources and allocate them to the Pending target t2, which is currently the

most appealing to the defender. We cannot put more than 1{3 defender probability

on t2 without breaking the attacker’s equilibrium condition, so the phase ends at

that point. The new equilibrium strategies and updated target states are shown in

Figure 5.1(b).

66

Move Attacker Mass to Newly Attacked (MMNA) phase: At the beginning of

this phase, target t2 is in the Active (A) state, because both players’ utilities for

defending/attacking this targets are at the corresponding threshold values. Target t3

is in the Newly Attacked (NA) state, because it is currently at the attacker threshold

and would start to be attacked if the defender put more probability on t2. In this

phase, we move 2{5 of the attacker’s probability mass from t2 to t3. As a result, both

t2 and t3 now have the highest marginal defender utility (Fig. 5.1(c)).

Increase Defender Mass on Active (IMOA) phase: We increase the defender prob-

ability on Active targets t2 and t3. Since ∆uapt2q � ∆uapt3q, we have to add the same

amount of probability to each of these targets; otherwise, the attacker’s best-response

condition would be broken. We can add up to 1{3 defender probability to these targets,

until the attacker’s utility for attacking t4 becomes equal to the utility for attacking

t2 and t3 (Fig. 5.1(d)).

MMNA phase: We now move attacker mass from Active targets t2 and t3 to the

Newly Attacked t4. To maintain the defender’s best-response condition, we need to

take mass from t2 and t3 proportionally to 1{∆udptq. We stop when the defender

becomes indifferent between t2, t3, and the Pending target t1 (Fig. 5.1(e)).

IMOP phase: We add 3{5 defender mass to t1, after which the attacker becomes

indifferent between all targets (Fig. 5.1(f)).

MMNA phase: The defender cannot add any mass to her optimal targets t1,

t2, and t3, because that would make t4 strictly preferred for the attacker, and the

attacker’s best-response condition would be broken. Therefore, we move attacker

mass from t1, t2, t3 to t4 in the right proportions, until the probability on t4 reaches 1

(Fig. 5.1(g)).

IMOA phase: We can now add defender mass to t1, t2, t3. That will make t4

strictly preferred for the attacker. However, as long as we add mass in the right pro-

portions, the attacker will still be best-responding, because t4 is attacked with probabil-

67

MainRoutine

Initialize

Repeat:

 If (no defender mass is left), return

 UpdateTargetStates

If (for all t, at > 0 implies dt = 1),

 distribute the remaining defender

 resources arbitrarily and return

Else if (exists t in P s.t. υd(t, at) = θd), IMOP

Else if (), IMOA

Else if (), MMNA

Else if (), MMDS

Else DDT

Initialize

Order the targets by decreasing
 ,

 breaking ties arbitrarily

 for the first na targets; for the rest

UpdateTargetStates

IMOP (Increase Defender Mass on Pending)

Choose s.t.

Increase dt* until one of the following:

 (1) ua(t*, dt*) = θa

 (2) dt* = 1
 (3) No defender mass is left

IMOA (Increase Defender Mass on Active)

Simultaneously for all , increase dt, and decrease
θa, at relative rates that maintain

ua(t, dt) = θa for all t in A, until one of the following:

 (1) For some ,

 (2) For some ,
 (3) No defender mass is left

MMNA (Move Attacker Mass to NA)

Choose

Simultaneously move attacker mass from

all to t*, and decrease θd, at relative

rates that maintain υd(t, at) = θd for all ,
until one of the following:

 (1) For some , υd(t, at) = θd
 (2) υd(t*, at*) = θd

 (3) at* = 1

MMDS (Move Attacker Mass to DS)

Choose
Simultaneously move attacker mass from

all to t*, and decrease θd, at relative

rates that maintain υd(t, at) = θd for all ,

until one of the following:

 (1) For some , υd(t, at) = θd

 (2) For some (in fact, all) , at = 0
 (3) at* = 1

DDT (Decrease the Defender’s Threshold)

Decrease θd until

Figure 5.2: The algorithm for computing a Nash equilibrium.

ity 1. We stop when the defender probability on t2 becomes 1 and target t2 transitions

to the Defender Saturated (DS) phase (Fig. 5.1(h)).

Move Attacker Mass to Defender Saturated (MMDS) phase: We move attacker

mass from t1 and t3 to t2. This does not violate the defender’s best-response condition

because t2 is already fully defended. We stop when the defender becomes indifferent

between t1, t3, and t4 (Fig. 5.1(i)).

IMOP phase: We increase the defender mass on t4, until the attacker becomes

indifferent between all targets (Fig. 5.1(j)).

MMDS phase: We move attacker mass from Active targets t1, t3, t4 to DS target t2

in the proportions that keep the defender indifferent between the three Active targets,

until t2 becomes attacked with probability 1 (Fig. 5.1(k)).

IMOA phase: We add defender mass to t1, t3, t4, until all defender mass is al-

located. After the end of this phase, the algorithm terminates, and the resulting

equilibrium profile is an equilibrium of the game with 3 defender resources and 2

attacker resources (Fig. 5.1(l)).

68

5.2.2 Algorithm, Correctness, Runtime

We present the pseudocode for the algorithm in Figure 5.2. The pseudocode contains

the exact definitions of the target states. For proof convenience, we will split the

Pending target state into two states: P1 � tt P P : υdpt, saptqq θdu, P2 � tt P P :

υdpt, saptqq � θdu.

Theorem 10. Throughout the algorithm, the following holds.

• UpdateTargetStates always assigns each target to exactly one of the states

U,A, P1, P2, NA,DS,D.

• At the end of each phase, if the algorithm does not terminate, then at least one

target changes its state.

• Each phase terminates.

Proof sketch. It follows from the state definitions that no target can be in two states

at the same time. To prove the theorem, we will first show that each target is

assigned a state after the initialization phase, and then we will show which targets

change states at the end of each phase.

At the beginning of the algorithm, each target is assigned to exactly one state.

The na targets for which saptq � 1 are assigned to the P state, except that targets

with saptq � 1, uuaptq � θa, if any, are assigned to the A state. The other |T | � na

targets are assigned to the U state, except that targets with saptq � 0, uuaptq � θa, if

any, are assigned to the NA state.

Next, we specify all target state changes for each phase and for each termination

criterion within each phase.

Next, for each phase, we list, for every termination criterion of that phase, which

targets change states (always a nonempty set, unless the algorithm terminates). It

is straightforward to check that one of these criteria will always apply.

69

IMOP phase: (1) t� becomes A. (2) t� becomes D. (3) The algorithm terminates.

IMOA: (1) Every t P U s.t. uuaptq � θa becomes A. (2) Every t P A s.t. sdptq � 1

becomes either DS (if saptq 1) or D (if saptq � 1). (3) The algorithm terminates.

MMNA: (1) Every t P P s.t. υdpt, saptqq � θd transitions from P1 to P2. (2) Every

t P NA s.t. υdpt, saptqq � θd becomes A. (3) t� transitions from NA to P1.

MMDS: (1) Every t P P s.t. υdpt, saptqq � θd transitions from P1 to P2. (2) If

this condition happens, then θd � 0, thus saptq � 0 for all t P P . Also, saptq � 0 for

all t P A, and NA is empty. The algorithm will terminate after this phase because

saptq ¡ 0 implies sdptq � 1. (3) t� transitions to D.

DDT: Every t P NA s.t. υdpt, saptqq � θd transitions to A. Every t P P s.t. υdpt, saptqq �

θd transitions from P1 to P2.

To complete the proof, we also need to show that no target can change state

before the phase is over. This can be done in a straightforward way by carefully

checking all state definitions.

Theorem 11. Throughout the algorithm, the current strategies xsd, say constitute a

Nash equilibrium for the current number of defender resources.

Proof. This follows immediately from the following facts: (1) each target is always

in one of the states (Theorem 10), and (2) each state definition implies that the

equilibrium condition with respect to the thresholds (beginning of Section 5.2) is

satisfied for such a state.

Theorem 12. The algorithm terminates after at most 6|T | phases, and each phase

requires Op|T |q time.

Proof. We can order the 7 possible states as follows: U NA P1 P2 A

DS D. As we can see from the proof of Theorem 10, after each phase (except

the last one), some target changes its state to a later state. Thus the algorithm

70

terminates after at most 6|T | phases. In each phase, we can calculate directly at

what point the phase will terminate, though this in general requires examining all

|T | targets.

5.2.3 Interchangeability

While we have shown how to compute a Nash equilibrium efficiently, a defender may

still be unconvinced about whether she actually wants to play her corresponding

strategy. For example, if she has a commitment advantage where the attacker ob-

serves her distribution before acting, she would prefer to play a Stackelberg strategy;

we will return to this in Section 5.3. However, even if the attacker cannot observe

her distribution, she may worry that she is playing her strategy from the “wrong”

equilibrium: in general games, if one player plays according to one equilibrium and

the other according to another, the result may be disastrous for both (see the game

of chicken). In this section, we alleviate this latter concern, by showing that the

security games in this chapter satisfy the interchange property: any combination of

equilibrium strategies is, in fact, itself an equilibrium. (This was previously shown

for a large class of security games with a single attacker resource (Korzhyk et al.,

2011).)

Suppose σ � xsd, say and σ1 � xs1d, s
1
ay are two NE profiles in a security game

with multiple attacker resources. We need to show that xs1d, say and xsd, s
1
ay are also

NE profiles of the same game. We first prove that for any target, either the defender

probability on that target is the same in all equilibrium profiles, or the attacker

probability is the same in all equilibrium profiles, or both.

Lemma 13. If σ � xsd, say and σ1 � xs1d, s
1
ay are two NE profiles, then there is no

target t for which both (1) the defender probabilities are different in the two profiles

and (2) the attacker probabilities are different in the two profiles. In other words, for

any target t, at least one of equalities sdptq � sdptq
1, saptq � s1aptq must hold.

71

Proof. The proof is by contradiction. Suppose that there is a target t for which

sdptq � sdptq
1 and saptq � s1aptq. We show that the following four cases must all hold

even though two are contradictory.

Case “��”: There exists a target t1 such that sdpt1q
1 sdpt1q and s1apt1q

sapt1q. In profile σ, the attacker’s utility uapt1, sdpt1qq must be greater than or equal

to the threshold value θa, because sapt1q ¡ 0. Similarly, in profile σ1, the attacker’s

utility uapt1, sdpt1q
1qmust be less than or equal to the threshold θ1a, because s1apt1q 1.

At the same time, the attacker’s utility for attacking t1 is higher in profile σ1 than in

profile σ, because sdpt1q
1 sdpt1q. Thus, the following three inequalities must hold.

θa ¤ uapt1, sdpt1qq

uapt1, sdpt1qq uapt1, sdpt1q
1q

uapt1, sdpt1q
1q ¤ θ1a

It follows from these three inequalities that θ1a ¡ θa. Because
°
t saptq �

°
t s

1
aptq

and s1apt1q sapt1q, there must exist a target t2 such that s1apt2q ¡ sapt2q. Since

s1apt2q ¡ 0, it must be the case that uapt2, s
1
dpt2qq ¥ θ1a. Similarly, because sapt2q 1,

it must be the case that uapt2, dt2q ¤ θa. Using the last two inequalities and the fact

that θ1a ¡ θa, it follows that uapt2, dt2q uapt2, s
1
dpt2qq, which implies s1dpt2q dt2 .

By considering the target t2, it follows that the case “��” must also hold.

Case “��”: There is a target t1 such that s1dpt1q sdpt1q and s1apt1q ¡ sapt1q.

The defender’s marginal utility for defending target t1 must be at or above the

threshold θd in profile σ (because sdpt1q ¡ 0) and at or below the threshold θ1d in

profile σ1 (because s1dpt1q 1). At the same time, since t1 is attacked with a higher

probability in σ1 than in σ, it must be that υdpt1, s
1
apt1qq ¡ υdpt1, sapt1qq. Thus we

have θ1d ¥ υdpt1, s
1
apt1qq ¡ υdpt1, sapt1qq ¥ θd. Because

°
t sdptq �

°
t sdptq

1 � nd and

s1dpt1q sdpt1q, there must be a target t2 such that s1dpt2q ¡ dt2 . The defender’s

marginal utility for defending t2 must be at or above the threshold θ1d in profile σ1

72

(because s1dpt2q ¡ 0) and at or below the threshold θd in profile σ (because dt2 1).

Since θ1d ¡ θd, it follows that υpt2, s
1
apt2qq ¥ θ1d ¡ θd ¥ υpt2, sapt2qq, which implies

s1apt2q ¡ sapt2q. By considering the target t2, it follows that the case “��” must also

hold.

We can also prove the following two implications similarly to the two cases de-

scribed above, by reversing the roles of equilibria σ and σ1:

Case “��”: There is a target t1 such that s1dpt1q ¡ sdpt1q and s1apt1q ¡ sapt1q.

If this case holds, then the case “��” must also hold. This can be proven similarly

to the implication “��” ñ “��”, by reversing the roles of equilibria σ and σ1.

Case “��”: There is a target t1 such that s1dpt1q ¡ sdpt1q and s1apt1q sapt1q.

If this case holds, then the case “��” must also hold. This can be proven similarly

to the implication “��” ñ “��”, by reversing the roles of equilibria σ and σ1.

It follows that if at least one of the cases “��”, “��”, “��”, “��” holds, then

all of them must hold. But if both “��” and “��” hold, then both inequalities

θ1a ¡ θa and θa ¡ θ1a must hold, which is impossible. Hence, none of the four cases

can hold.

We now show that in an equilibrium the defender obtains the same marginal

utility from all targets that have different defender probabilities in a different equi-

librium.

Lemma 14. Suppose that σ and σ1 are two NE profiles, and t1, t2 are two targets

such that sdpt1q � s1dpt1q and dt2 � s1dpt2q. Then υdpt1, sapt1qq � υdpt2, sapt2qq �

υdpt1, s
1
apt1qq � υdpt2, s

1
apt2qq.

Proof. Because
°
t sdptq �

°
t sdptq

1 � nd, it is enough to show that υdpt1, sapt1qq �

υdpt2, sapt2qq holds for any pair of targets t1, t2 such that sdpt1q s1dpt1q and dt2 ¡

s1dpt2q. (This is because if (say) sdpt1q s1dpt1q and dt2 s1dpt2q, there must ex-

73

ist a third target t3 with dt3 ¡ d1t3 , so that we can then conclude υdpt1, sapt1qq �

υdpt3, at3q � υdpt2, sapt2qq.)

In profile σ, the defender can shift her probability from t2 to t1, because dt2 ¡ 0

and sdpt1q 1. Since σ is an equilibrium profile, the defender must not benefit

from such a shift of probability. Thus υdpt1, sapt1qq ¤ υdpt2, sapt2qq. Using a similar

argument for profile σ1, we get υdpt1, s
1
apt1qq ¥ υdpt2, s

1
apt2qq. It also follows from

Lemma 13 that sapt1q � s1apt1q and sapt2q � s1apt2q. Hence, we have υdpt1, sapt1qq ¤

υdpt2, sapt2qq � υdpt2, s
1
apt2qq ¤ υdpt1, s

1
apt1qq � υdpt1, sapt1qq, so it follows that these

four quantities are all the same.

In the following lemma, we show that any defender’s NE strategy is a best-

response to any attacker’s NE strategy.

Lemma 15. If σ � xsd, say and σ1 � xs1d, s
1
ay are two NE profiles, then s1d is a

best-response to sa.

Proof. We will show that the defender’s utility for playing strategy s1d against sa

is the same as the defender’s utility for playing sd against sa. First, note that

udps
1
d, saq � udpsd, saq �

°
t:sdptq1�sdptq

rsdptq
1 � sdptqs υdpt, saptqq. Consider any target

t� such that dt� � d1t� . Using Lemma 14, we can rewrite the difference in the utilities

as follows: udps
1
d, saq � udpsd, saq � υdpt1, sapt1qq

°
t:s1dptq�sdptq

rs1dptq � sdptqs � 0. The

last summation is equal to zero because
°
t sdptq �

°
t s

1
dptq.

The following lemma can be proven similarly to Lemma 15, by switching from

the defender’s to the attacker’s perspective.

Lemma 16. If σ � xsd, say and σ1 � xs1d, s
1
ay are two NE profiles, then s1a is a

best-response to sd.

The interchange property follows from Lemmas 15 and 16.

74

0

0.2

0.4

0.6

0.8

0 100 200 300

ti
m

e
(s

)

|T|

Figure 5.3: Solid lines: time to compute NE as a function of |T |, for na � nd �
10, . . . , 70. Dashed line: time to compute the normal-form of the game with na �
nd � 10.

Theorem 17. If σ � xsd, say and σ1 � xs1d, s
1
ay are two NE profiles in a security

game with multiple attacker resources, then xs1d, say and xsd, s
1
ay are also NE profiles

in that game.

5.2.4 Experimental Results

We now show experimental results for our implementation of the algorithm (Fig-

ure 5.3). For given |T |, nd, na, we randomly draw uua and ucd from t1, . . . , 100u, and

then we randomly draw uca from t0, . . . , uua � 1u and uud from t0, . . . , ucd � 1u. Each

data point averages over 20 games. As a sanity check, our implementation verified

that the strategies computed for each game did constitute a Nash equilibrium. The

quadratic runtime of the algorithm is reflected in the experimental results. We note

that the numbers of pure strategies for the players are
�
|T |
nd

�
and

�
|T |
na

�
, so any alterna-

tive algorithm that is based on writing out the normal form is doomed to exponential

space (and hence, time) requirements. The time to compute the
�
|T |
nd

�
�
�
|T |
na

�
utility

matrix of the normal-form game for nd � na � 10 is shown in Figure 5.3 with a

dashed line. We can see that our algorithm scales well in the number of targets and

attacker resources.

75

5.3 NP-Hardness of Computing Stackelberg Strategies

We now turn to the problem of computing a defender Stackelberg strategy. Consider

the following theorem.

Theorem 18. In security games with multiple attacker resources, finding an optimal

defender Stackelberg strategy is weakly NP-hard. This holds even when the defender

has only one resource, and the defender’s utility for a target does not depend on

whether she has a resource there (that is, ucdptq � uudptq for all t).1

Proof sketch. We reduce an arbitrary knapsack problem instance—given by k items,

where each item j is defined by a pair pwj, vjq, and we are asked if there is a subset

S of the items with
°
jPS wj ¤ 1 and

°
jPS vj ¥ V—to the following game. We

construct a game with 2k targets, in which the defender has one resource and the

attacker has k resources. Targets t1, . . . , tk correspond to the items in the knapsack,

and the utilities are set up as follows for 1 ¤ i ¤ k.

uuaptiq � wi

ucaptiq � wi � 1

ucdptiq � uudptiq � �vi

Targets tk�1, . . . , t2k are “dummy” targets, so that for k � 1 ¤ i ¤ 2k: uuaptiq �

ucaptiq � ucdptiq � uudptiq � 0.

Let the vector sd represent the defender’s strategy, so that sdptiq is the probability

of target ti being covered. If sdptiq ¥ wi for 1 ¤ i ¤ k, the attacker attacks a dummy

target instead of ti, thus increasing the defender’s utility by vi.

There exists an attacker pure-strategy best-response to the defender’s Stackelberg

strategy (with ties broken in the defender’s favor) such that the optimal subset S of

1 We have also found a pseudopolynomial-time algorithm (not presented here) for the special case
where ucdptq � uudptq for all t. Note that this violates the assumption that ucdptq ¡ uudptq. It is easy
to modify the utilities by ε so that this property holds again and the reduction still works.

76

the items in the knapsack corresponds to the targets ti with 1 ¤ i ¤ k and ati � 0.

It can be shown that the defender can get a utility of at least V �
°k
i�1 vi if and only

if the knapsack instance has a solution (with value at least V).

77

6

Directions for Future Research

There are a number of directions for future research on the topics discussed in Chap-

ters 2-5.

Regarding the computation of an optimal correlated strategy to commit to, one

direction is to try to extend the methodology to game representations other than the

normal form. Significant results on the efficient computation of correlated equilibria

in succinctly represented games have been obtained, though optimizing over the

space of correlated equilibria (which is close to what we do in this thesis) poses more

challenges (Papadimitriou and Roughgarden, 2008; Jiang and Leyton-Brown, 2013).

In security games, an important direction for future research is to address the

cases in which computing a Stackelberg strategy is NP-hard. Can we find algorithms

that, although they require exponential time in the worst case, solve typical instances

fast? Can we identify additional restrictions on the game so that the problem be-

comes polynomial-time solvable (Letchford and Conitzer, 2013)? Are there good

polynomial-time approximation algorithms, or anytime algorithms that find a rea-

sonably good solution fast (Jain et al., 2013)? Another direction for future research

is to consider security games with incomplete information (Bayesian games) or mul-

78

tiple time periods (extensive-form of stochastic games). In unrestricted games, these

aspects can lead to additional complexity (Conitzer and Sandholm, 2006; von Sten-

gel and Zamir, 2010; Letchford et al., 2009; Letchford and Conitzer, 2010; Letchford

et al., 2012).

As for security games with multiple attacker resources, one natural question is

whether the algorithm that we presented in this thesis can be generalized to richer

settings. For example, is it possible to compute Nash equilibria efficiently in cases

where either defender resources or attacker resources (or both) are heterogeneous?

Can we efficiently compute them in (restricted) settings with schedules?

79

Bibliography

An, B., Shieh, E., Yang, R., and Tambe, M. (2013), “PROTECT - A Deployed
Game Theoretic System for Strategic Security Allocation for the United States
Coast Guard,” AI Magazine.

Aumann, R. (1974), “Subjectivity and Correlation in Randomized Strategies,” Jour-
nal of Mathematical Economics, 1, 67–96.

Bhattacharya, S., Conitzer, V., and Munagala, K. (2011), “Approximation algorithm
for security games with costly resources,” in Workshop on Internet and Network
Economics, pp. 13–24, Singapore.

Birkhoff, G. (1946), “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucumn
Rev, Ser. A, no. 5, pp. 147–151.

Chang, C.-S., Chen, W.-J., and Huang, H.-Y. (2001), “Coherent Cooperation Among
Communicating Problem Solvers,” IEEE Transactions on Communications, 49,
1145–1147.

Chen, X., Deng, X., and Teng, S.-H. (2009), “Settling the complexity of computing
two-player Nash equilibria,” Journal of the ACM, 56.

Conitzer, V. and Sandholm, T. (2006), “Computing the Optimal Strategy to Commit
to,” in Proceedings of the ACM Conference on Electronic Commerce (EC), pp. 82–
90, Ann Arbor, MI, USA.

Conitzer, V. and Sandholm, T. (2008), “New Complexity Results about Nash Equi-
libria,” Games and Economic Behavior, 63, 621–641.

Dantzig, G. B. and Wolfe, P. (1960), “Decomposition principle for linear programs,”
Operations research, 8, 101–111.

Daskalakis, C., Goldberg, P., and Papadimitriou, C. H. (2009), “The Complexity of
Computing a Nash Equilibrium,” SIAM Journal on Computing, 39, 195–259.

Dulmage, L. and Halperin, I. (1955), “On a theorem of Frobenius-Konig and J. von
Neumann’s game of hide and seek,” Trans. Roy. Soc. Canada III, 49, 23–29.

80

Galil, Z., Micali, S., and Gabow, H. (1986), “An OpEV log V q Algorithm for Finding
a Maximal Weighted Matching in General Graphs,” SIAM J. Comput., 15, 120–
130.

Gilboa, I. and Zemel, E. (1989), “Nash and correlated equilibria: Some complexity
considerations,” Games and Economic Behavior, 1, 80–93.

Halvorson, E., Conitzer, V., and Parr, R. (2009), “Multi-step Multi-sensor Hider-
Seeker Games,” in Proceedings of the Twenty-First International Joint Conference
on Artificial Intelligence (IJCAI), pp. 159–166, Pasadena, CA, USA.

Jain, M., Kardes, E., Kiekintveld, C., Ordóñez, F., and Tambe, M. (2010), “Security
Games with Arbitrary Schedules: A Branch and Price Approach,” in Proceedings
of the National Conference on Artificial Intelligence (AAAI), pp. 792–797, Atlanta,
GA, USA.

Jain, M., Kiekintveld, C., and Tambe, M. (2011), “Quality-bounded Solutions for
Finite Bayesian Stackelberg Games: Scaling up,” in Proceedings of the Tenth Inter-
national Joint Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS), pp. 997–1004, Taipei, Taiwan.

Jain, M., Conitzer, V., and Tambe, M. (2013), “Security Scheduling for Real-world
Networks,” in AAMAS, Saint Paul, Minnesota, USA.

Jiang, A. X. and Leyton-Brown, K. (2013), “Polynomial-time Computation of Exact
Correlated Equilibrium in Compact Games,” Games and Economic Behavior.

Jiang, A. X., Yin, Z., Zhang, C., Tambe, M., and Kraus, S. (2013), “Game-theoretic
Randomization for Security Patrolling with Dynamic Execution Uncertainty,” in
Proceedings of the Twelfth International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Saint Paul, Minnesota, USA.

Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., and Tambe, M. (2009),
“Computing Optimal Randomized Resource Allocations for Massive Security
Games,” in Proceedings of the Eighth International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), pp. 689–696, Budapest,
Hungary.

Korzhyk, D., Conitzer, V., and Parr, R. (2010), “Complexity of Computing Optimal
Stackelberg Strategies in Security Resource Allocation Games,” in Proceedings of
the National Conference on Artificial Intelligence (AAAI), pp. 805–810, Atlanta,
GA, USA.

Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., and Tambe, M. (2011), “Stackel-
berg vs. Nash in Security Games: An Extended Investigation of Interchangeability,
Equivalence, and Uniqueness,” Journal of Artificial Intelligence Research, 41, 297–
327.

81

Lemke, C. and Howson, J. (1964), “Equilibrium points of bimatrix games,” Journal
of the Society of Industrial and Applied Mathematics, 12, 413–423.

Letchford, J. and Conitzer, V. (2010), “Computing Optimal Strategies to Commit to
in Extensive-Form Games,” in Proceedings of the ACM Conference on Electronic
Commerce (EC), pp. 83–92, Cambridge, MA, USA.

Letchford, J. and Conitzer, V. (2013), “Solving Security Games on Graphs via
Marginal Probabilities,” in Proceedings of the Twenty-Seventh AAAI Conference
on Artificial Intelligence, Bellevue, WA, USA.

Letchford, J. and Vorobeychik, Y. (2012), “Computing Optimal Security Strategies
for Interdependent Assets,” in Uncertainty in Artificial Intelligence, Catalina Is-
land, CA.

Letchford, J., Conitzer, V., and Munagala, K. (2009), “Learning and Approximating
the Optimal Strategy to Commit to,” in Proceedings of the Second Symposium on
Algorithmic Game Theory (SAGT-09), pp. 250–262, Paphos, Cyprus.

Letchford, J., MacDermed, L., Conitzer, V., Parr, R., and Isbell, C. (2012), “Com-
puting Optimal Strategies to Commit to in Stochastic Games,” in Proceedings of
the National Conference on Artificial Intelligence (AAAI), pp. 1380–1386, Toronto,
ON, Canada.

McKelvey, R. D., McLennan, A. M., and Turocy, T. L. (2004), “Gambit: Software
Tools for Game Theory, Version 0.97.1.5,” .

McMahan, H. B., Gordon, G. J., and Blum, A. (2003), “Planning in the Presence
of Cost Functions Controlled by an Adversary,” in International Conference on
Machine Learning (ICML), pp. 536–543, Washington, DC, USA.

Nash, J. (1950), “Equilibrium points in N-person games,” Proceedings of the National
Academy of Sciences, 36, 48–49.

Nudelman, E., Wortman, J., Leyton-Brown, K., and Shoham, Y. (2004), “Run
the GAMUT: A Comprehensive Approach to Evaluating Game-Theoretic Algo-
rithms,” in Proceedings of the International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), pp. 880–887, New York, NY, USA.

Papadimitriou, C. H. and Roughgarden, T. (2008), “Computing Correlated Equilib-
ria in Multi-Player Games,” Journal of the ACM, 55.

Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordóñez, F., and Kraus,
S. (2008), “Playing games for security: An efficient exact algorithm for solving
Bayesian Stackelberg games,” in Proceedings of the Seventh International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 895–
902, Estoril, Portugal.

82

Pita, J., Jain, M., Ordóñez, F., Portway, C., Tambe, M., and Western, C. (2009),
“Using game theory for Los Angeles airport security,” AI Magazine, 30, 43–57.

Sandholm, T. (2010), “The State of Solving Large Incomplete-Information Games,
and Application to Poker,” AI Magazine, 31, 13–32, Special Issue on Algorithmic
Game Theory.

Sandholm, T., Gilpin, A., and Conitzer, V. (2005), “Mixed-Integer Programming
Methods for Finding Nash Equilibria,” in Proceedings of the National Conference
on Artificial Intelligence (AAAI), pp. 495–501, Pittsburgh, PA, USA.

Tsai, J., Rathi, S., Kiekintveld, C., Ordonez, F., and Tambe, M. (2009), “IRIS - A
Tool for Strategic Security Allocation in Transportation Networks,” in Proceedings
of the Eighth International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 37–44, Budapest, Hungary.

von Neumann, J. (1928), “Zur Theorie der Gesellschaftsspiele,” Mathematische An-
nalen, 100, 295–320.

von Stackelberg, H. (1934), Marktform und Gleichgewicht, pp. 58–70, Springer, Vi-
enna.

von Stengel, B. and Zamir, S. (2010), “Leadership Games with Convex Strategy
Sets,” Games and Economic Behavior, 69, 446–457.

83

Biography

Dmytro Korzhyk was born on February 3, 1986 in Severodonetsk, Ukraine. He grew

up in Vinnytsia, Ukraine. He obtained his Bachelors degree in 2006 and his Masters

degree in 2007, both in Computer Science from Vinnytsia National Technical Uni-

versity. He enrolled in the Ph.D. program in Computer Science at Duke University

in 2008.

84

