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Abstract

The purpose this study was to examine the effects of caffeine ingestion on performance and energy expenditure (anaerobic
and aerobic contribution) during a 4-km cycling time trial (TT) performed after a carbohydrate (CHO) availability-lowering
exercise protocol. After preliminary and familiarization trials, seven amateur cyclists performed three 4-km cycling TT in a
double-blind, randomized and crossover design. The trials were performed either after no previous exercise (CON), or after a
CHO availability-lowering exercise protocol (DEP) performed in the previous evening, followed by either placebo (DEP-PLA)
or 5 mg.kg21 of caffeine intake (DEP-CAF) 1 hour before the trial. Performance was reduced (22.1%) in DEP-PLA vs CON
(421.0612.3 vs 412.469.7 s). However, performance was restored in DEP-CAF (404.6617.1 s) compared with DEP-PLA, while
no differences were found between DEP-CAF and CON. The anaerobic contribution was increased in DEP-CAF compared
with both DEP-PLA and CON (67.4614.91, 47. 3614.6 and 55.3614.0 W, respectively), and this was more pronounced in the
first 3 km of the trial. Similarly, total anaerobic work was higher in DEP-CAF than in the other conditions. The integrated
electromyographic activity, plasma lactate concentration, oxygen uptake, aerobic contribution and total aerobic work were
not different between the conditions. The reduction in performance associated with low CHO availability is reversed with
caffeine ingestion due to a higher anaerobic contribution, suggesting that caffeine could access an anaerobic ‘‘reserve’’ that
is not used under normal conditions.

Citation: Silva-Cavalcante MD, Correia-Oliveira CR, Santos RA, Lopes-Silva JP, Lima HM, et al. (2013) Caffeine Increases Anaerobic Work and Restores Cycling
Performance following a Protocol Designed to Lower Endogenous Carbohydrate Availability. PLoS ONE 8(8): e72025. doi:10.1371/journal.pone.0072025

Editor: Michael Müller, Wageningen University, The Netherlands

Received March 22, 2013; Accepted July 4, 2013; Published August 19, 2013

Copyright: � 2013 Silva-Cavalcante et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported by Coordination of Improvement of Personnel of Superior Level (CAPES-PRODOC, MEC/CAPES 29/2010). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: adrianosilva@usp.br

Introduction

The importance of endogenous carbohydrate (CHO) availabil-

ity for high-intensity exercise performance has been well described

in the literature [1–4]. Several studies [1–5] have shown that

performance during high-intensity exercise is impaired when

endogenous CHO availability (i.e., muscle and liver glycogen

stores) is reduced. For example, Langfort et al. [2] reported that

after three days of a low-CHO diet (, 5% CHO) the average

power output measured during a 30-s Wingate test in healthy men

not engaged in any competitive sport was significantly reduced

(from 58167 to 53367 W) when compared with a normal diet (,
50% CHO). According to these authors, the reduction in

performance (,9%) with low CHO availability was due to a

lower contribution of the anaerobic energy system. Similarly,

Miura et al. [5] found a reduction in the anaerobic work capacity

of healthy, non-athletic men when exercise was performed after a

muscle-glycogen-depletion protocol compared to a control condi-

tion (10.3362.41 vs 12.8362.21 kJ, respectively), suggesting that

low CHO availability can reduce the anaerobic contribution to

total energy expenditure during high-intensity exercise. In

addition, reduction in self-selected power output during high-

intensity interval training when performed with low endogenous

CHO availability has been also reported in well-trained subjects,

and it may be associated with a reduction in the anaerobic

contribution [6–8].

While low CHO availability seems to reduce the anaerobic

contribution and impair performance during high-intensity

exercise, acute ingestion of caffeine seems to have the opposite

effect [9,10]. Doherty [10] observed an increase of 10% and 14%

in the anaerobic energy supply (measured by maximum accumu-

lated oxygen deficit) and performance (time to exhaustion),

respectively, during high-intensity exercise performed at 125% of

the maximal oxygen uptake (VO2max) after caffeine ingestion

(5 mg.kg21). Using the same exercise intensity and caffeine dose,

Bell et al. [11] reported a 7–8% increase in total anaerobic energy

contribution and time to exhaustion. Recently, a similar increase

in the anaerobic contribution (6.5%) and time to exhaustion (14%)
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at 120% VO2peak was also found by Simmonds et al. [12] after

caffeine ingestion (5 mg.kg21). Although all of the aforementioned

studies have investigated the effects of caffeine on performance

during time-to-exhaustion tests, some studies have also found a

positive effect of caffeine on performance during time-trials [13–

15]; however, anaerobic contribution has not been measured in

these studies. Taken together, these findings suggest that acute

ingestion of caffeine may improve performance during high-

intensity exercise via an increase in the anaerobic contribution.

The mechanisms by which caffeine increases the anaerobic

contribution and performance during high-intensity exercise is not

fully understood, but it has been proposed that caffeine intake

would promote an inhibitory action on adenosine receptors, which

would increase the activity of the enzyme phosphofructokinase,

thereby increasing anaerobic glycolysis [12,16]. Alternatively,

caffeine may act on the central nervous system leading to an

increase in motivational drive and neuromuscular excitability,

which, in turn, results in a lowered rating of perceived exertion

(RPE) for a given workload [17] and improved neuromuscular

function, as measured via electromyography activity (EMG) [18].

In addition, it has also been suggested that caffeine attenuates

muscle sensory signals to the brain and decreases the threshold of

activation of motor neurons [19]. All of these central alterations

could lead to an ability to produce more work anaerobically.

Although several studies have investigated the isolated effects of

both CHO availability and caffeine intake on anaerobic contri-

bution and performance [1–3,10–12], no study has examined

whether acute caffeine ingestion could counteract the negative

effects of low CHO availability on both the anaerobic contribution

and performance. This seems to be particularly important since

many athletes perform two training sessions in the same day, or

participate in multi-stage event races (e.g., tour de France), where the

time to replenish endogenous CHO stores between sessions or

races may not be sufficient. Furthermore, most studies with either

caffeine [10–12] or CHO availability [1–3] have focused on

investigating their effects during time-to-exhaustion tests. Howev-

er, time trials (TT) appear to be more reliable [20] and to have

greater external validity [21] compared to constant-workload tests

until exhaustion. Furthermore, during a high-intensity TT, where

athletes are free to vary power output, anaerobic metabolism

seems to exert a decisive effect on both performance [22] and the

distribution of work [23–25].

Therefore, the purpose of this study was to examine whether

caffeine ingestion promotes an increase in the anaerobic contri-

bution and performance during a 4-km cycling TT, when athletes

begin the trial after reduced endogenous CHO availability [26–

28]. We hypothesized that low CHO availability would reduce the

anaerobic contribution and performance during a 4-km cycling

TT; however, this reduction in the anaerobic contribution and

performance would be attenuated or even reversed with caffeine

supplementation.

Methods

Participants
Before beginning the study, participants answered a question-

naire on readiness for physical activity (PAR-Q) and performed a

cardiac screening test, including electrocardiogram. Seven ama-

teur cyclists (age 32.365.4 years, body mass 73.667.4 kg, height

173.165.3 cm, body fat 10.564.7%, peak power output [PPO]

227.8610.2 W, and VO2peak 58.166.3 mL.kg21.min21) partic-

ipated in this study. The participants had been training for at least

4 years, performed a weekly training volume of 12.164.3 h.wk21

(2506101.3 km.wk21) and competed regularly (,20 competitions

per year). The sample size required was estimated from the

equation n = 8e2/d2, as suggested by Hopkins [29], where n, e, and

d denote predicted sample size, coefficient of variation, and the

magnitude of the treatment effect, respectively. Coefficient of

variation was assumed to be 0.9% [20]. Expecting a magnitude of

effect for the treatment of 3.1% [13], detection of a very

conservative 1% difference as statistically significant would require

at least 6 participants. The participants were informed about the

risks associated with the study protocol and signed a consent form

agreeing to participate in the experiments. This investigation was

approved by the Ethics and Research Committee of the Federal

University of Alagoas.

Experimental Design
Each athlete visited the laboratory on seven different occasions.

On the first visit, athletes underwent an anthropometric assess-

ment and an incremental test. During the second visit (after

,48 h), athletes performed a 4-km cycling familiarization trial.

During the next visits, the athletes performed three 4-km cycling

TT in a randomized, double-blind and repeated-measures

crossover design, separated by 7 days for washout, under the

following conditions: 1) 12–14 h after a validated exercise-protocol

designed to reduce endogenous CHO availability, followed by

placebo (DEP-PLA) or caffeine (5 mg.kg21, DEP-CAF) ingestion

one hour before the trial and 2) 12–14 h after a full-rest, followed

by placebo ingestion one hour before the trial (CON). In the

evenings before DEP-PLA and DEP-CAF trials, two additional

visits were required and the athletes came to the laboratory to

perform a validated protocol for reducing the endogenous CHO

availability. All of the experimental trials were performed in the

morning to avoid the impact of circadian variation [30,31]. The

athletes were asked to refrain from vigorous physical activities,

caffeine and alcohol 24 h before each test. The temperature and

relative humidity during the trials were 23.261.5uC and

43.164.2%, respectively.

Incremental Test
The incremental test was performed on a cycle ergotrainer

(TacxTM T1680 Flow, Netherlands) and consisted of a 3-min

warm-up at a power output (PO) corresponding to 100 W,

followed by increments of 30 W every 3 min until voluntary

exhaustion or when the athletes were not able to maintain pedal

frequency between 80–90 rpm [32]. The ventilation (VE), VO2

and carbon dioxide production (VCO2) were measured breath-by-

breath throughout the test with a gas analyzer (Quark CPET,

Cosmed, Rome, Italy). The gas analyzer was calibrated before

each test in accordance with the manufacturer’s recommenda-

tions. The HRmax and VO2peak were taken as the highest value

reached in the last stage and as the mean value obtained during

the last 30 s of the test, respectively. The PPO was determinate as

highest PO maintained during a complete stage. When the last

stage was not completed, the PPO was determined in according

the methods of Kuipers et al. [33].

Familiarization Trial
Forty-eight hours after the incremental test, the athletes

performed a familiarization session with the TT procedures (cycle

ergotrainer, TacxTM T1680 Flow, Netherlands). The seat was fully

adjustable vertically and horizontally for each cyclist before the

TT, and cycling shoes were used to secure the feet to the pedals.

The seat position was recorded and replicated during all

subsequent experimental sessions. The athletes were instructed

to perform the TT in the shortest possible time and to remain

seated throughout test. The gear ratio was standardized at the

Caffeine and Cycling Time Trial Performance
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beginning of each TT (53616). However, immediately after the

TT had started, participants were free to change the gear and

pedal frequency as desired. The athletes were instructed to record

all foods (type, amount and hour) consumed in the 48 hours before

the familiarization test [34].

Time-trials
The TT sequence began ,96 hours after the familiarization

test. Before each trial, the cycle ergotrainer was calibrated in

accordance with the manufacturer’s recommendations. The TT

was preceded by three maximal voluntary contractions (MVC) of

the quadriceps muscles and a 5-min warm-up at 100 W (90 rpm)

followed by a 5-min rest period (Figure 1). The distance and PO

were recorded at a frequency of 1 Hz (Tacx Trainer software 3.0,

Wassenaar, Netherlands). Feedback of the distance covered was

provided verbally every 200 m of the TT. The RPE was recorded

every 1 km using the Borg 15-point category scale [35]. The VO2,

respiratory exchange ratio (RER), HR, electromyographic activity

(EMG), aerobic and anaerobic mechanical power output (Paer

and Pan, respectively), work total (Wtot), total aerobic (Waer) and

anaerobic work (Wan) were determined every 200 m and pooled

for each 1 km. Blood samples (25 mL from an ear lobe) were

obtained before the warm-up (rest), immediately before (Pre-TT)

and 1 min after the TT (post-TT) to determine the plasma lactate

concentrations [La]. The blood samples were transferred into

micro-tubes containing sodium fluoride (NaF 1%) and then

centrifuged at 3000 rpm at 5uC for 10 minutes. Plasma [La] was

measured through enzymatic colorimetric reactions in a spectro-

photometer (model Q798U2V5, QuimisH, São Paulo, Brazil) using

commercial kits (kit Biotecnica, Varginha, Brazil).

Calculations of Aerobic and Anaerobic Mechanical Power
Output

The Pan and Paer were calculated from RER, VO2 and using

gross mechanical efficiency estimated during the warm up, in

accordance with Hettinga et al. [25]. Briefly, metabolic aerobic

power (Pmet) during the warm up and TT was calculated by

multiplying VO2 with the oxygen equivalent using the following

equation:

Pmet Wð Þ~VO2 L:min{1
� �

: 4940RERz16,040ð Þ=60ð Þ:

We assumed a RER equal to 1.00 during the time trials [25].

Gross mechanical efficiency was determined during the warm up,

by dividing external PO (i.e. 100 W) by calculated Pmet. Aerobic

mechanical power output (Paer) during the time trial was

calculated by multiplying Pmet by gross efficiency. Anaerobic

mechanical power output was calculated by subtracting the

calculated Paer from the total measured mechanical PO.

CHO-availability-lowering Exercise Protocol
Participants arrived at the laboratory at ,8:00 PM, at least two

hours after their last evening meal. The protocol employed for

reducing the endogenous CHO availability has previously been

validated and has been shown to reduce endogenous CHO

availability to ,30% of pre-exercise values [26–28]. The protocol

consisted of a constant PO exercise at an intensity corresponding

to 70% PPO (159.967.0 W) for 90 min. After 5 min of rest, the

athletes performed six 1-min exercise bouts at 125% PPO

(285.1613.0 W) interspersed with 1-min rest periods. During the

protocol, the pedal frequency was maintained between 80–

90 rpm.

Dietary Control
During the morning and afternoon of the CHO availability-

lowering exercise protocol, participants followed, up to the

beginning of the exercise, the same dietary pattern contained in

their food record. However, after the exercise protocol was

finished (, 10:00 PM), the athletes received a low-CHO diet (total

energy 710.4628 kcal, 12.760.1% CHO, 60.660.1% fat and

26.760.1% protein). Furthermore, the athletes received the same

standardized, low-CHO breakfast (total energy 710.4628 kcal,

12.760.1% CHO, 60.660.1% fat and 26.760.1% protein) one

hour before the trial in the next morning (, 8:00 AM). In the

CON trial, the athletes were asked to replicate the diet recorded

24 hours before the trial, and ate a standardized meal derived from

their diet record (total energy 737.06103.7 kcal, 55.8621.4%

CHO, 26.5614.7% fat and 17.767.8% protein). The breakfast

consumed an hour before the CON trial was also derived from the

diet recorded and consisted of 55.8621.4% CHO, 26.5614.7%

fat and 17.767.8% protein (total energy 737.06103.7 kcal).

Maximal Isometric Contraction Measurement
Before the MVC, participants performed a standardized warm-

up, in a chair with the trunk-thigh angle at 90u and the knee at 60u
from full leg extension (0u), consisting of four 5-s contractions of

the knee extensors, interspersed by 30-s rest periods, at intensities

corresponding to 50, 60, 70 and 80% of the maximum subjective

force [36]. Thereafter, participants performed three 5-s MVC (two

legs), each separated by 60-s intervals. The peak force produced by

the quadriceps muscles was recorded using a load cell (EMG

System of Brazil, São José dos Campos, Brazil). The athletes were

Figure 1. Experimental Protocol. [La]: plasma lactate concentrations; MVC: maximal voluntary contraction; EMG: electromyographic activity; VO2:
oxygen uptake; RER: respiratory exchange ratio; HR: heart rate; PPO: power output; Paer: aerobic mechanical power output; Pan: anaerobic
mechanical power output.
doi:10.1371/journal.pone.0072025.g001
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verbally encouraged during all MVCs to achieve their maximal

force.

Acquisition and Analysis of the Electromyographic Signal
During the MVC and time trials, EMG signals of the vastus

lateralis (VL) muscle of the right leg were recorded via bipolar Ag-

AgCl surface electrode (Hal, São Paulo, Brazil) at an interelectrode

distance of 20 mm. We chose the VL muscle because it has been

reported as the most appropriate to monitor EMG activity in the

lower limb during a 4-km cycling TT [24]. The reference

electrode was placed over the anterior surface of the tibia. The skin

preparation, placement and location of the electrodes were in

accordance with the recommendations of SENIAM [37]. To

prevent movement artifact, the electrode wires were taped to the

skin using adhesive tape (MicroporeTM 3 M, São Paulo, Brazil).

Five seconds of raw EMG signal was recorded each 200 m with a

sample rate of 2000 Hz (model 410c EMG System of Brazil Ltda,

São Paulo, Brazil). Raw EMG signals were full-wave rectified and

filtered with second-order Butterworth band-pass filters with cut-

off frequencies set at 10 and 400 Hz to remove external

interference noise and movement artifacts. Integrated EMG

(iEMG) obtained each 200 m during the TT was normalized by

dividing by the iEMG calculated at the point coinciding with peak

torque of the highest MVC. Data processing was performed using

MATLAB software.

Statistical Analysis
The data are presented as means 6 SD. Data distribution was

analyzed using the Shapiro-Wilk test. two-way ANOVA with

repeated-measures were used to verify the effect of condition and

distance on the PO, Pan and Paer response. When a significant

effect was found, the main effect was analyzed using the least

significant difference test for pairwise comparisons. The Effect size

(ES) and 95% confidence intervals (95% CI) were calculated to

evaluate differences between conditions for mean values of Wtot,

Waer, Wan, PO, Pan, Paer and time to cover the TT. The ES was

calculated by dividing the difference between mean values of the

conditions by the pooled SD [17]. ES of 0.2, 0.6 and 1.2 were

considered as small, moderate and large effects, respectively [38].

To make inferences about true (population) values of the effect of

caffeine on performance, the uncertainty in the effect was

expressed as likelihoods that the true value of the effect represents

substantial change (harm or benefit) [38]. The smallest standard-

ized change was assumed to be 0.20. For all analyses, significance

was accepted at P,0.05. All analyses were performed using SPSS

software (version 13.0; Chicago, IL).

Results

Performance Parameters
Mean and individual values for performance are shown in

Figure 2. Only one participant did not improve his performance

with caffeine intake (non-responder) compared to the DEP-PLA

condition. The mean time to complete the 4-km cycling TT was

moderately slower (Fig. 2) in the DEP-PLA (2.1%) than in the

CON (ES = 0.65, 95% CI = 0.09–1.22). However, compared with

DEP-PLA, caffeine ingestion (DEP-CAF) moderately reduced 4-

km completion time by 4.1% (ES = 0.94, 95% CI = 0.10–1.78).

The corresponding qualitative inference was 96.7% ‘benefit very

likely’. The effect of caffeine (DEP-CAF) compared to CON was

small (ES = 0.45, 95% CI = 20.19–1.09), although performance in

five of the seven participants was improved in DEP-CAF

compared to the CON condition. The corresponding qualitative

inference was 79% ‘benefit likely’.

Likewise, the mean PO was 7.0 and 10.8% lower (moderate

effect), respectively, in DEP-PLA than in CON and DEP-CAF

(ES = 0.77, 95% CI = 0.38–1.16and ES = 0.85, 95% CI = 0.09–

1.61, respectively). A small effect was found in mean PO between

DEP-CAF and CON (ES = 0.28, 95% CI = 20.19–0.76). The

Wtot (Fig. 3) performed in the trial was moderately lower in the

DEP-PLA (5.6% and 10.7, respectively) than in the CON

(ES = 0.93, 95% CI = 0.06–1.80) and DEP-CAF (ES = 1.18, 95%

CI = 0.22–2.14), and slightly higher (small effect) in DEP-CAF

than CON (ES = 0.53, 95% CI = 20.08–1.14).

When values were expressed every 1-km interval (Table 1), the

PO was significantly reduced (P,0.05) in the first kilometer for

DEP-PLA, compared with DEP-CAF and CON. In addition, PO

at the second kilometer was lower in the DEP-PLA than in the

DEP-CAF (P,0.05).

Anaerobic and Aerobic Contribution
Mean Pan during DEP-CAF was moderately greater than in

CON (ES = 0.72, 95% CI = 0.089–1.35) and DEP-PLA

(ES = 1.18, 95% CI = 0.56–1.78), and slightly lower (small effect)

in DEP-PLA than in CON (ES = 0.48, 95% CI = 20.022–0.990).

The Pan in DEP-CAF for the first 3 km was significantly higher

(P,0.05) than for DEP-PLA, but it was not significantly different

from CON (Table 1). No effect was found in the mean Paer during

the 4-km cycling TT. However, mean Paer was slightly lower in

the last kilometer for DEP-PLA compared with CON (Table 1).

Total Waer (Fig. 3) generated during trials was similar between

the conditions (DEP-CAF vs CON: ES = 0.17, 95% CI = 20.74–

1.08; DEP-CAF vs DEP-PLA: ES = 0.03, 95% CI = 20.49–0.54

and CON vs DEP-PLA: ES = 0.19, 95% CI = 20.40–0.77),

whereas there was a moderate to large difference for total Wan

between DEP-CAF and CON (ES = 0.96, 95% CI = 0.19–1.73)

and DEP-PLA (ES = 1.33, 95% CI = 0.78–1.88), respectively, but

the effect was small between CON and DEP-PLA (ES = 0.40, 95%

CI = 20.12–0.93). The PO, Pan and Paer profiles are shown each

200-m interval in Figure 4. In general, caffeine ingestion increased

mainly PO and Pan compared to DEP-PLA (Fig. 4).

Perceptual, Physiological and Neuromuscular Responses
There was no difference in the RPE, iEMG or VO2 during the

4-km cycling TT between the conditions (Table 1 and 2).

However, the HR was significantly higher (P,0.05) in the DEP-

CAF than in the DEP-PLA in the first 3 km of the trial (Table 2).

No difference was found in HR between CON and DEP-CAF

(P.0.05). There was no significant (P.0.05) difference in the

resting and pos-TT [La] between conditions (Table 3). Neverthe-

less, the [La] Pos-TT were significantly (P,0.05) higher than in

the rest and Pre-TT in all conditions (Table 3).

Discussion

The main finding of the present study was that acute caffeine

ingestion reversed the impairment in time-trial performance

following a protocol designed to lower endogenous CHO

availability. Furthermore, the reestablishment of the performance

with caffeine ingestion was associated with an increase in the Pan

and total anaerobic work generated during the 4-km cycling TT,

indicating that caffeine allows access to an anaerobic ‘‘reserve’’

that is not normally used. The increase in the performance with

caffeine ingestion seems to be explained by a higher PO and

anaerobic contribution during the first 2–3 km of the trial.

Caffeine and Cycling Time Trial Performance
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Effect of Caffeine on 4-km Cycling TT Performance
Previous studies have reported an increase in high-intensity

exercise performance after caffeine ingestion [10–12]. Recently,

Wiles et al. [13], using the same caffeine dose as the present study

(5 mg.kg21), reported an improvement (3.1%) in 1-km cycling TT

performance compared to a placebo. This improvement was

accompanied by a 3.6% increase in the mean PO [13]. In the

present study, we observed a 7.0% reduction in mean PO and a

2.1% increase in the time to complete the trial when TT was

performed after an exercise protocol designed to reduce CHO

Figure 2. Time to complete the 4-km cycling TT for control (CON), low carbohydrate availability with placebo ingestion (DEP-PLA)
and low carbohydrate availability with caffeine ingestion (DEP-CAF). *Moderate effect of DEP-PLA compared to CON and DEP-CAF
(ES = 0.65 and 0.94, respectively). #Small effect of DEP-CAF compared to CON (ES = 0.45). Data are expressed as mean (N) and individual (#) values.
doi:10.1371/journal.pone.0072025.g002

Figure 3. Mean and SD for work total (Wtot), total aerobic (Waer) and anaerobic work (Wan) during the 4-km cycling TT for control
(CON), low carbohydrate availability with placebo ingestion (DEP-PLA) and low carbohydrate availability with caffeine ingestion
(DEP-CAF). *Moderate effect of DEP-PLA compared to CON (ES = 0.93). 1Small and moderate effect of DEP-CAF compared to CON and DEP-PLA
(ES = 0.53 and 1.18, respectively). {Small effect of DEP-PLA compared to CON (ES = 0.40). #Moderate and large effects of DEP-CAF compared to CON
and DEP-PLA (ES = 0.96 and 1.33, respectively).
doi:10.1371/journal.pone.0072025.g003
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availability, in comparison with CON. However, caffeine intake

increased mean PO by 10.8% and reduced the time to cover the 4-

km TT by 4.1%, when compared with DEP-PLA. When

compared with control, caffeine intake increased mean PO by

4.3% and reduced the time to complete the trial by 1.9%.

Qualitative inferences indicated that a benefit was ‘very likely’ and

‘likely’ when DEP-CAF was compared to DEP-PLA and CON,

respectively, suggesting that performance improvements of 4.1 and

1.9% are meaningful for our participants. Our study demonstrates

for the first time that, even with a reduced CHO availability,

caffeine intake restores time-trial performance to levels found

when endogenous CHO availability is normal.

Athletes adopted a more conservative starting pacing strategy

when CHO stores were depleted. It is not fully clear if this

conservative starting was caused by an intramuscular effect of the

muscle glycogen depletion and/or a psychological strategy.

However, despite the subjects being aware that they were

depleted, they were not able to identify which capsule (caffeine

or placebo) had subsequently been ingested, and, even then,

adopted a more aggressive pacing strategy in DEP-CAF than

DEP-PLA. Both iEMG and RPE at the beginning of the DEP-

PLA trial were also similar to the DEP-CAF trial, even with a

lower PO, suggesting that any effect of manipulation may have

happened in the muscle. Furthermore, caffeine supplementation

restored the PO in the first two kilometers and it was not

associated with a reduced PO in the rest of the time trial.

In contrast to the results of the present study, Hettinga et al.

[24] reported that a higher PO in the first 2 km of a 4-km cycling

TT results in an impairment of the PO in the second half of the

trial. It should be noted however, that the pacing strategy during

the first 2 km in the Hettinga study was dictated by the

researchers, and the participants were ‘‘enforced’’ to perform a

constant PO at 105% above the mean PO until the end of the

second kilometer. This ‘‘enforced’’, constant-paced exercise during

the first 2 km may have induced a greater physiological strain than

self-paced exercise, and provoked a reduction in PO during the

second half of the trial [39,40]. Therefore, caffeine seems to

attenuate the decrement in power output observed early in CON

and DEP-PLA conditions, and preserves the ability to optimally

perform the second half of the trial.

Even though mean PO was higher in the first 2 km of DEP-

CAF compared with DEP-PLA, the RPE was not significantly

different between the conditions, suggesting that participants were

able to perform the first 2 km of a 4-km cycling TT with a higher

PO/RPE ratio when caffeine was ingested. This is in accordance

with previous results suggesting that, independent of the physio-

logical or metabolic status, athletes normally adopt a pattern of

increase in RPE proportional to the exercise distance completed

[41–43]. For example, positive (e.g. nutritional supplementation)

and negative (e.g. hypoxia) changes in the homeostatic status

throughout the TT have been reported to provoke an increase or

reduction in PO, respectively, in order to maintain the same RPE

template during exercise trials [42–44]. Caffeine may influence

RPE via a direct blockade of adenosine A2a receptors in the brain

[45], permitting more external work to be performed for a given

conscious perception. However, although any alteration in RPE

with caffeine should have increased motor drive and neuromus-

cular excitability [18], the iEMG was not altered in the present

study. Alternatively, caffeine may have had a peripheral effect on

increasing muscle function, which, in turn, would reduce muscle

sensory signals to the brain and consequently reduce RPE.

Effect of Caffeine on Anaerobic and Aerobic Contribution
According to some studies [2,5], endogenous CHO depletion

reduces the contribution of the anaerobic system, possibly due to a

limitation in the rates of glycogenolysis and glycolysis. In fact,

Blomstrand and Saltin [46], using a protocol to reduce endoge-

nous CHO availability in one leg, showed that the breakdown of

muscle glycogen during 60 minutes of exercise at 75% VO2max

was , 48% less in the leg that started the exercise with low muscle

glycogen (99618 mmol.kg dry wt21) than the leg that began with

normal muscle glycogen levels (207622 mmol.kg dry wt21). When

analyzing each km, we observed an increase in the Pan during the

first 3 km for DEP-CAF compared to the DEP-PLA. This large

anaerobic production early in the trial was accompanied by a

significant increase in the PO, supporting the idea that power

distribution during a TT appears to be regulated primarily by

changes in the anaerobic contribution [23,24]. In related results,

Hettinga el al. [24] reported that the Pan was higher during the

Table 1. Mean and SD for Power output (PO), aerobic
mechanical power output (Paer), anaerobic mechanical power
output (Pan), oxygen uptake (VO2), heart rate (HR), rating of
perceived exertion (RPE) and integrated electromyography
(iEMG) for each 1-km.

Distance

1-km 2-km 3-km 4-km

PO (W)

CON 245.5634.2* 217.9622.3 215.3627.8 245.6651.3

DEP-PLA 209.0619.0 207.5615.4 202.9616.7 240.3642.4

DEP-CAF 255.3650.5* 237.3631.3* 222.8625.5 248.8634.9

Paer (W)

CON 143.8611.3 182.2616.7 186.8619.8 190.1618.8*

DEP-PLA 140.965.0 173.465.6 176.766.5 179.5610.2

DEP-CAF 144.0615.3 180.5619.8 184.9621.8 185.4622.0

Pan (W)

CON 101.7640.4 35.7617.8 28.5613.2 55.4644.3

DEP-PLA 68.0615.8 34.1610.6 26.2611.6 60.9638.0

DEP-CAF 111.4639.0* 56.8621.1* 37.967.8* 63.4625.1

VO2 (L.min21)

CON 3.260.3 4.160.3 4.260.3 4.260.3

DEP-PLA 3.460.2 4.160.2 4.260.2 4.360.2

DEP-CAF 3.360.3 4.160.4 4.260.5 4.260.5

HR (bpm)

CON 154620 17162 17562 18062

DEP-PLA 149619 16862 17262 17863

DEP-CAF 156619* 17462* 17861* 18262

RPE (units)

CON 11.061.7 12.660.5 14.661.6 16.462.4

DEP-PLA 10.761.7 12.761.3 14.661.1 1761.7

DEP-CAF 10.361.5 12.461.3 14.961.5 17. 62

iEMG (%)

CON 47.266.8 52.0620.1 46.169.2 52.5612.6

DEP-PLA 45.569.0 44.766.6 45.269.3 51.7615.8

DEP-CAF 39.361.9 41.361.7 42.962.3 44.765.7

iEMG expressed as percentage of EMG value obtained during MVC. CON:
control condition; DEP-PLA: low carbohydrate availability with placebo
ingestion; DEP-CAF: low carbohydrate availability with caffeine ingestion.
*Significantly higher than DEP-PLA (P,0.05).
doi:10.1371/journal.pone.0072025.t001
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Figure 4. Mean and SD for power output (upper), anaerobic (middle) and aerobic (lower) mechanic power for each 200 m during
the 4-km cycling TT for control (CON), low carbohydrate availability with placebo ingestion (DEP-PLA) and low carbohydrate
availability with caffeine ingestion (DEP-CAF). *Significantly different between DEP-CAF and DEP-PLA (P,0.05); #Significantly different
between CON and DEP-PLA (P,0.05); {Significantly different between DEP-CAF and CON (P,0.05).
doi:10.1371/journal.pone.0072025.g004
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first 2 km of a 4-km cycling time trial when athletes were asked to

perform the first 2 km at a supra-mean PO intensity (105% of the

mean PO), but was significantly reduced in the second half of the

trial when the athletes were free to reduce the PO. These results

are consistent with those reported recently by Aisbett et al. [23]

who induced fast-, even-, and slow-starting during the first 25% of

a 5-min cycling time trial (approximating the duration of a 4000-m

cycling TT), and observed that the oxygen deficit (anaerobic

contribution) was greater in the first quarter and lower in the

second and third quarters of exercise in the fast-start trial,

compared with the two other pacing strategies. In contrast, we

found that despite a higher Pan in first 3 km after caffeine

ingestion, the Pan in the last km was not impaired when compared

with the other conditions, suggesting that caffeine maintained the

Pan throughout the trial and promoted an increase in the total

anaerobic contribution.

Several studies have suggested that the total amount of

anaerobic energy that can be produced during a TT is fixed

[23–25]. Indeed, Hettinga et al. [25] demonstrated that despite

inducing their participants to perform the first 750 m of a 1500-m

cycling TT at 105% (supra) and 95% (sub) of the mean PO

measured during the even-paced time trial, the total amount of

anaerobic work generated over the time trial remained un-

changed. Similarly, Aisbett et al. [23] also reported no difference

in the total energy provided by the anaerobic system when the

cyclists performed a 5-min cycling TT using different starting

strategies. These results suggested that the pattern of anaerobic

energy distribution can vary with pacing strategy, but that the total

anaerobic capacity remains fixed. On the other hand, it has been

reported that caffeine intake promotes an increase in the quantity

of anaerobic energy produced during high-intensity, time-to-

exhaustion exercise [10–12], although this has not been measured

during closed-loop exercise such as a TT.

In the present study, we found that the total amount of

anaerobic energy was higher in DEP-CAF than in both DEP-PLA

and CON, indicating that caffeine exerts a more potent effect on

the anaerobic contribution than low CHO availability. Further-

more, the greater Wan during the 4-km cycling TT after caffeine

ingestion indicates that the total amount of anaerobic energy

expenditure during TT exercise may not be fixed and that caffeine

allows access to an anaerobic ‘‘reserve’’ that is not used under

normal conditions. The existence of an anaerobic reserve has been

demonstrated recently by Corbett et al. [47], who reported that

the total anaerobic energy yield during a 2000-m cycling TT was

higher when the participants believed that they were competing

against another athlete of similar ability (head-to-head), than when

they exercised alone (time trial), suggesting that a motivational

stimulus promotes the use of a greater degree of the anaerobic

‘‘reserve’’. To the best of our knowledge, the present study is the

first to demonstrate that caffeine intake increases the total

anaerobic work produced during a middle-distance cycling TT,

even though the athletes started the trial with a low CHO

availability. In addition, although PO and Pan were increased at

the beginning and in the middle of the TT with caffeine ingestion,

when compared to the DEP-PLA condition, there were no

differences in the last 600 m between the conditions, and this was

accompanied by a similar [La] Post-TT, suggesting that CAF was

not able to increase the anaerobic contribution at the end of the

trial.

The mechanism by which caffeine ingestion exerts its effect on

the anaerobic contribution remains unclear. Simmonds et al. [12]

suggested that caffeine increases the anaerobic contribution

through its antagonistic action on the adenosine receptors, which

could unlock any inhibitory effect of adenosine on phosphofruc-

tokinase enzyme activity in skeletal muscle. Furthermore, Bridge

and colleagues [16] have suggested that caffeine ingestion results in

an increase in the release of calcium, facilitating the conversion of

the enzyme phosphorylase b to it more active form a, which would

lead to an acceleration of glycogenolysis. However, this last

mechanism seems unlikely in vivo, since a greater mobilization of

calcium from sarcoplasmic reticulum has been observed only at

high concentrations of caffeine that would be toxic to humans

[48].

Effects of Caffeine on Neuromuscular Responses
It has been hypothesized that caffeine intake improves

performance during high-intensity exercise through an increase

in electromyography activity [18]. An increase in both EMG

activity and performance during short-duration, maximal-dynam-

ic contractions has been demonstrated after caffeine ingestion

[18]. In the present study however, although the PO was greater

with caffeine intake, there was no difference in iEMG between

conditions. These conflicting results could possibly be explained by

the different protocols adopted and the muscles analyzed. While

we used a cycling time-trial test, and measured the EMG of the

vastus lateralis muscle, Bazzucchi et al. [18] assessed elbow flexion

torque with an isokinetic dynamometer and EMG was recorded

from the biceps brachii. On the other hand, our results are

consistent with findings from other studies [49,50] that observed

no significant differences in the EMG recorded from the vastus

lateralis muscle during isometric contractions after caffeine

ingestion. However, the measurement and interpretation of

EMG during dynamic exercise is difficult and may not be

sufficiently sensitive to measure small changes in muscle activation

[49]. Therefore, conclusions about the effects of caffeine on iEMG

during dynamic exercise have to be interpreted with caution.

Nevertheless, in the absence of other methods to quantify muscle

activation levels during dynamic exercise, changes in iEMG

Table 2. Mean and SD for rating of perceived exertion (RPE),
integrated electromyography (iEMG), average oxygen uptake
(VO2) and heart rate (HR) during the 4-km cycling TT.

Variables CON DEP-PLA DEP-CAF

RPE (units) 13.660.7 13.860.4 13.861.1

iEMG (%) 49.169.4 46.867.3 42.166.9

VO2 (L.min21) 3.960.3 4.060.2 4.060.4

HR (bpm) 171613 168614 173614

iEMG expressed as percentage of EMG value obtained during MVC. CON:
control; DEP-PLA: low carbohydrate availability with placebo ingestion; DEP-
CAF: low carbohydrate availability with caffeine ingestion.
doi:10.1371/journal.pone.0072025.t002

Table 3. Mean and SD for lactate concentration at rest, and
pre and post the 4-km cycling TT.

Rest Pre-TT Post-TT

CON 1.060.6 1.060.6 9.162.9*

DEP-PLA 1.160.6 0.760.2 7.961.2*

DEP-CAF 1.060.3 0.960.2 8.861.8*

Data are expressed in mmol.L21.
*Significantly higher than Rest and Pre-TT (P,0.05).
doi:10.1371/journal.pone.0072025.t003
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amplitude are the only way to indirectly measure muscle activation

levels during a cycling time trial. Thus, while we interpret our

iEMG data with caution, our findings indicate that iEMG activity

did not change with caffeine intake.

A potential limitation is that we did not include a control session

(without CHO depletion) with caffeine ingestion. Despite the fact

that this could have provided a more complete knowledge about

the effects of caffeine on pacing strategy and TT performance with

different levels of endogenous CHO availability, the inclusion of

more experimental sessions had the potential to reduce the

motivation of participants to participate in so many trials,

potentially affecting our performance results. Thus, we focused

the present study on verifying if caffeine could reverse the

deleterious effect of low CHO availability on performance. In

addition, the standardisation of the starting gear and the prevision

of verbal instead visual distance feedback should also be

acknowledged. However, the hard gear ratio as the used in the

present study (53616) has been described in the literature and

justified due the high-intensity, fast-start nature of the 4-km cycling

TT [20]. Verbal instead of visual distance feedback has also been

used in previous research [20]. Finally, we were unable to blind

the participants to the reduced CHO availability and this may

have influenced pacing in the trials. While blinding the

participants to the CHO availability in the diet is practically

impossible, we cannot fully discard the possibility of any conscious

alteration in pacing due to awareness of being in a low-CHO state.

However, this could be expected to affect pacing equally in both

CHO-depletion conditions, but the participants paced themselves

faster in DEP-CAF than DEP-PLA, while iEMG signal was not

altered, suggesting that pacing modifications during depleted-

CHO condition may have not been ‘‘consciously’’ determined.

Conclusions
In conclusion, the results from the present study have shown

that acute ingestion of caffeine induced a higher mean PO and

anaerobic contribution during the first 2–3 km of the 4-km time

trial. Furthermore, caffeine seems to attenuate the decrement in

power output observed early in CON and DEP-PLA conditions,

and preserves the ability to optimally perform the second half of

the trial. In addition, caffeine ingestion reversed the impairment in

time-trial performance caused by low CHO availability to levels

found when endogenous CHO availability is normal. This

improvement in performance was associated with a greater total

anaerobic energy contribution with caffeine ingestion compared to

both DEP-PLA and CON, indicating that caffeine exerts a more

potent effect on the anaerobic contribution than low CHO

availability. Therefore, we suggest that the total amount of

anaerobic energy expenditure during TT exercise may not be

fixed and that caffeine ingestion (even following a protocol to

reduce endogenous CHO availability) allows access an anaerobic

‘‘reserve’’ that is not accessed under normal conditions. Our

results suggest that caffeine may have an effect on intramuscular

metabolism, i.e. increase on anaerobic contribution and total

anaerobic work, rather than any significant effect on muscle

recruitment.
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