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The habitual consumption of marine fish is largely associated to human mental health. Fish oil is particularly
rich in n-3 polyunsaturated fatty acids that are known to play a role in several neuronal and cognitive
functions. In parallel, the orange-pinkish carotenoid astaxanthin (ASTA) is found in salmon and displays
important antioxidant and anti-inflammatory properties. Many neuronal dysfunctions and anomalous
psychotic behavior (such as anxiety, depression, etc.) have been strongly related to the higher sensitivity of
cathecolaminergic brain regions to oxidative stress. Thus, the aim of this work was to study the combined
effect of ASTA and fish oil on the redox status in plasma and in the monoaminergic-rich anterior forebrain
region of Wistar rats with possible correlations with the anxiolytic behavior. Upon fish oil supplementation,
the downregulation of superoxide dismutase and catalase activities combined to increased “free” iron content
resulted in higher levels of lipid and protein oxidation in the anterior forebrain of animals. Such harmful
oxidative modifications were hindered by concomitant supplementation with ASTA despite ASTA-related
antioxidant protection was mainly observed in plasma. Although it is clear that ASTA properly crosses the
brain-blood barrier, our data also address a possible indirect role of ASTA in restoring basal oxidative
conditions in anterior forebrain of animals: by improving GSH-based antioxidant capacity of plasma.
Preliminary anxiolytic tests performed in the elevated plus maze are in alignment with our biochemical
observations.
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1. Introduction

The habitual consumption of marine fish has been long associated
to human mental health, even in an evolutionary scale (Broadhurst
et al., 2002). The mammalian brain is particularly rich in two omega-3
polyunsaturated fatty acids (n-3/PUFAs), docosahexaenoic acid
(DHA) and eicosapentaenoic acid (EPA). The n-3/PUFAs are known
to play a role in nervous system activity, cognitive development,
neuroplasticity of nerve membranes, synaptogenesis and synaptic
transmission (Bas et al., 2007). Consistent with this role, DHA has
been shown to limit oxidative damage of lipids and proteins in
developing and adult brains, with attenuation of neuron loss and
cognitive and locomotor deficits in animal models of ischemia-
reperfusion brain injury (Cao et al., 2004; Green et al., 2001).
Interestingly, dietary levels of DHA and EPA are 2.5- to 100-fold
higher in marine fish than in lean or fat terrestrial meats (Komprda
et al., 2005).

Apart of n-3/PUFAs, sustaining normal human brain function also
requires an adequate provision of dietary antioxidants, as the brain is
abnormally prone to oxidative stress for several reasons: (i) intense
mitochondrial activity in neurons generates high amounts of reactive
oxygen species (ROS); (ii) neuronal n-3/PUFA-rich membranes are
major targets for ROS; (iii) mammalian brain particularly accumulates
redox-active iron ions, which catalyze the conversion of freely
diffusible H2O2 into harmful HO• radicals (by Fenton reaction) and
the oxidation of neurotransmitters to neurotoxic metabolites; (iv)
some brain regions have high concentration of easily oxidizing
neurotransmitters, such as dopamine; and (v) lower activity of the
H2O2-removing enzyme catalase (CAT) in most brain regions
(Halliwell, 2006). Nevertheless, it is argued that moderate/controlled
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levels of oxidative modifications are necessary to provide the
hormetic central underpinning of neuroprotective responses, trig-
gered by a framework of redox signals including nitric oxide,
hydrogen peroxide and other mitochondrial metabolites (Calabrese
et al., 2010).

Astaxanthin (ASTA; Fig. 1) is an orange-pinkish carotenoid
extensively found in marine organisms, including algae, crustaceans
and salmonid fishes. Humans regularly obtain ASTA from their diet,
and health benefits of ASTA are suggestively attributed for its
antioxidant and anti-inflammatory activities (Otton et al., 2010;
Bolin et al., 2010). Different from many other dietary carotenoids,
ASTA is not provided with pro-vitamin A activity but alternatively
shows important UV-photoinhibitory effects (preventing skin le-
sions), and cardioprotective, antihypertensive and anti-tumorigenic
roles in humans (Guerin et al., 2003).

Several epidemiological studies have indicated that supplementa-
tion with n-3/PUFAs may reduce the risk for a variety of neurological/
psychiatric diseases (Emsley et al., 2008). Oxidative stress plays a role
in the development and progression of anxiety by increasing risk of
neurodegeneration in animal and human brains (Floyd, 1999).
However, controversial studies arose the hypothesis that unbalanced
n-3/PUFA provision could also affect physicochemical properties of
the neuronal membrane (fluidity, permeability, hydrophobicity, etc.),
thereby impacting on speed of signal transduction and effectiveness of
neurotransmission (Bas et al., 2007; King et al., 2006; Appleton et al.,
2008; Cunnane et al., 2009). Consequently, neuronal membrane
becomes more sensitive to oxidative injury if not properly counter-
balanced by antioxidant defenses that sustain the optimal dose–
response hormetic ratio (Calabrese et al., 2010). Thus, based on the
strong link between oxidative stress and neurological/psychiatric
diseases (e.g. anxiety), the aim of this work was to study the
combined effect of natural sources of the powerful antioxidant ASTA
(1 mg ASTA/kg) and n-3/PUFA-rich fish oil (providing 10 mg EPA/kg
and 7 mg DHA/kg) on the redox balance in the anterior forebrain and
plasma of supplemented Wistar rats with putative implications in the
anxiety behavior.

2. Materials and methods

2.1. Chemicals and natural products

All purified chemicals were purchased from Sigma-Aldrich
Chemical Company (St. Louis, MO, USA), except common laboratory
solutions and buffers, which were obtained from Labsynth (Diadema,
SP, Brazil). The biochemical kit for plasma/serum iron determination
was purchased from Doles Reagentes e Equipamentos para Labor-
atórios Ltda (Goiania, GO, Brazil). Fish oil capsules were purchased
from Pharmanostra (Sao Paulo, SP, Brazil). Each fish oil (FO) capsule of
500 μL contains 9 kcal (38 kJ), 2.0 mg of mixed tocopherols, and 1.0 g
of total fat, which 30% are from saturated fats, 20% from monounsat-
urated fats (mostly palmitoleic and oleic acids), and 50% of
polyunsaturated fatty acids (180 mg EPA and 120 mg DHA). Natural
ASTA supplements (AstaREAL A1010) were obtained as a donation
from the Swedish company BioReal AB (Gustavsberg, Sweden), part of
the pharmaceutical Group Fuji Chemical Industry CO (Japan).
Fig. 1. Chemical structure of the marin
AstaREAL A1010 is an astaxanthin-rich natural Haematococcus
pluvialis product that contains 5.2–5.8% of total carotenoids, whereas
5.0–5.6% are purely astaxanthin (3.9% as monoesters, 0.9% as diesters,
and 0.1% in free form), 0.02% lutein/zeaxanthin, 0.02% adonirubin,
0.02% cantaxanthin, 0.02% β-carotene, and 0.1% others.

2.2. Animals and supplementation protocols

Adult Wistar male rats, weighing (225.6±17.1) g at the beginning
of the study were provided by the Department of Psychobiology,
Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil. All
animal were housed in Plexiglas cage (4 rats/cage) under standard
laboratory conditions: 12 h light/dark cycle; lights on at 7:00 a.m.;
(22±1) °C; and ad libitum access to water and Purina rat chow. The
experiments were carried out in accordance with the scientific
procedure recommended for studies involving animals. The animals
used in this study were handled in accordance with guidelines of the
committee on care and use of laboratory animals resources. The Ethics
Committee for experimental animals from Universidade Federal de
São Paulo approved the experimental protocol (CEP/UNIFESP no.
1938/09). After room acclimation for 1 week, the animals were
treated with ASTA and/or fish oil by gavage, 5 days a week, for
45 days. A maximum volume of 400 μL was established for the gavage
treatment in order to avoid regurgitation or stomach discomfort of the
animals. Fish oil (FO) content of capsules was diluted in 10% Tween-
80 aqueous solution (v/v) to reach final n-3/PUFAs concentrations of
10 mg EPA/kg body weight (BW) and 7 mg DHA/kg BW. An identical
procedure was conducted for animal supplementation with 1 mg
ASTA/kg BW using AstaREAL A1010 as the carotenoid source (5.3% of
pure ASTA). For combined FO and ASTA treatments, both components
were diluted in the same stock 10% Tween-80 aqueous solution (v/v)
to reach previously described concentrations. Although additional
antioxidants as ascorbate, tocopherols and other carotenoids were
present in the both manufactured natural products, their contribution
in the total antioxidant capacity of gavage solutions is minor if
compared to the prevalent ASTA or n-3/PUFA components. Thus, four
experimental groups of 16 animals each were formed: (i) control, fed
with 400 μL of 10% Tween-80 aqueous solution (v/v); (ii) ASTA, fed
with 1 mg ASTA/kg; (iii) FO (fed for 10 mg EPA/kg and 7 mg DHA/kg);
and (iv) ASTA/FO, fed with 1 mg ASTA/kg, 10 mg EPA/kg and 7 mg
DHA/kg.

2.3. Anxiety behavioral scores

After 45 days of supplementation, the animals were tested for
anxiety behavior by measuring exploratory activity in an elevated
plus-maze apparatus (Pellow and File, 1986). The used plus-mazewas
built of wood and consisted of two open arms (50×10 cm) and two
closed arms (50×10×40 cm). The arms extended from a central
platform (10×10 cm) raised 50 cm above the floor. Each animal was
placed at the center of the maze facing a closed arm and was allowed
to explore the maze for 5 min. Total time in open arms and the time of
exploratory activity in open arms (time spent in each entrance) were
calculated to address the anxiety behavior of experimental animals in
the plus-maze.
e carotenoid astaxanthin (ASTA).
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2.4. Biochemical analyses

2.4.1. Plasma antioxidant capacity
In the very next day of behavioral tests, the animals were killed by

decapitation between 08:00 a.m. and 11:00 a.m. and plasma was
isolated from EDTA-treated blood by centrifugation at 2.5g (10 min,
4 °C). Plasma samples were immediately frozen in dry ice and stocked
in freezer −80 °C for further analysis. The antioxidant capacity of
animal plasma was tested by two distinct methods: (i) Trolox-
equivalent antioxidant capacity (TEAC), with modifications described
by Van den Berg et al. (1999); and (ii) ferric-reducing activity in
plasma (FRAP; Benzie and Strain, 1996). Briefly, the reactant mixture
for FRAP assay contains 10 mM of the stoichiometric iron-chelating
agent 2,3-bis(2-pyridyl)-pyrazine (DPP) in 40 mM HCl (Brewer et al.,
1987) and 20 mM FeCl3 in 0.30 M acetate buffer (pH 3.6). To 200 μL of
FRAP reactant mixture, 10–20 μL sample is added together with 40–
30 μL distilled water (total volume, 250 μL). Absorbance at 593 nm
was recorded for 4 min in a microplate reader SpectraMax M5,
Molecular Devices (Silicon Valley, CA, USA) to determine the rate of
Fe2+–DPP complex formation as compared to a Fe(NH4)2(SO4)2.6H2O
standard curve. The same technique was applied in cleared brain
homogenates, but referred in the work as ferric-reducing capacity
(FRC). Due to the key participation of Fe2+/3+ ions in triggering
oxidative stress, total iron content in plasma was also measured by
biochemical kits based on the ferrozine method (detection at 560 nm;
Goodwin and Murphy, 1966; Stookey, 1970).

Total glutathione content in plasma (Total GSH) was measured by
previous reduction of oxidized glutathione molecules (GSSG) by the
glutathione reductase recycling system (GR:NADPH), as described by
Rahman et al. (2006). Then, total GSH molecules (original GSH plus
previously reduced GSSG) react with 5,5′-diothiobis-2 nitrobenzoic
acid (DTNB) to form 5-thio-2-nitrobenzoic acid (TNB), which is
accurately detected by spectrophotometry at 412 nm. The GR:NADPH
recycling system was not used for measurements of the proper GSH
content in samples. The GSH and GSSG concentrations in samples
were calculated from standard curves (prepared with pure GSH and
GSSG), and expressed as the GSH/GSSG ratios to indicate the reducing
power in plasma of experimental animals.

2.4.2. Brain homogenates
The rat brains were quickly removed after decapitation and

washed briefly in 0.1 M phosphate buffer, pH 7.4. Regarding
anxiety-related segments and catecholaminergic innervations in
animal brains (Sienkiewicz-Jarosz et al., 2003), the anterior forebrain
section including frontal cortex, nucleus accumbens, and hippocam-
pus was carefully excised (Paxinos and Watson, 2008). Animal brain
sections were homogenized with 3 mL of 0.1 M phosphate buffer, pH
7.4, in a tissue grinder under ice-water bath for 5 min. The crude
homogenates were centrifuged at 2.5g for 10 min (4 °C) for debris
removal. The cleared supernatants were kept in ice-water bath and
used for further biochemical analyses.

2.4.3. Antioxidant capacity of brain homogenates
The antioxidant capacities of brain samples were also tested by

TEAC and FRAP methods, as described before. Accordingly, total iron
content was also measured in the anterior forebrain section, but using
an alternative method based on the formation of a Fe2+:bipyridyl
complex (Mattei et al., 2001).

2.4.4. Antioxidant enzyme activities
Catalase (CAT), superoxide dismutase isoforms (mitochondrial

MnSOD, and cytosolic/extracellular CuZnSOD), glutathione peroxi-
dase (GPX), and glutathione reductase (GR) activities were deter-
mined in brain samples by spectrophotometry techniques adapted for
the microplate reader SpectraMax M5, Molecular Devices (Silicon
Valley, CA, USA). Enzyme activity of CAT was measured by direct
decomposition of H2O2 at 240 nm (Aebi, 1984). Total SOD activity in
samples was measured at 540 nm by monitoring the linear first-order
reduction of O2

•− radicals by nitroblue tetrazolium (NBT) for 3 min
(Ewing and Janero, 1995). In order to discriminate MnSOD and
CuZnSOD activities, cytosolic/extracellular CuZnSODs were blocked in
samples by adding 3 mM KCN in the reaction system. Both GPX
(Mannervik, 1985) and GR (Carlberg and Mannervik, 1985) were
measured based on the oxidation of β-NADPH triggered by 10 mM
tert-butyl hydroperoxide addition in the reaction system
(λ=340 nm, molar extinction coefficient of 6.2×103 M−1 cm−1).

2.4.5. Indexes of oxidative injury
Protein fractions were isolated from homogenates by precipitation

in 10% trichloroacetic acid in ice-water bath. After washing once with
0.30 M HClO4, 5.0 mM EDTA and 0.06% 2,2′-bipyridine (w/v) solution,
and twice with an organic mixture (1:1 ethyl acetate:ethanol; v/v),
the protein pellet was dried in vacuum and then subsequently
dissolved in 6.0 M guanidine.HCl. Reduced protein thiol groups in the
guanidine-soluble fraction were detected at 412 nm by the formation
of colored adducts after reaction with 4.0 mM 5,5′-dithio-bis(2-
nitrobenzoic acid) solution (DTNB). Blanks were prepared by
preliminary treatment with 10 mM N-ethylmaleimide solution (a
specific thiol-blocking compound). The reduced thiol content was
calculated using purified glutathione (GSH) as a standard (Murphy
and Kehrer, 1989).

The extension of lipid peroxidation in brain samples was evaluated
by the thiobarbituric acid reactive substances assay (TBARS; Fraga
et al., 1988). Butylated hydroxytoluene (4% BHT in ethanol) was
added to stop ongoing oxidation reactions in lipid-rich samples. The
colored TBARS adducts were quantified at 535 nm after reaction with
0.25% thiobarbituric acid in 0.25 MHCl and 1% Triton X-100, at 100 °C,
for 15 min (blanks lack thiobarbituric acid). Malondialdehyde
prepared by acid hydrolysis of 1,1′,2,2′-tetraethoxypropane (TEP)
was used as a standard.

2.5. Statistics

All data are presented as themean values of at least triplicates with
their standard errors (MEAN±SE). Data from anxiety-behavior were
analyzed using two-way ANOVA for treatment as between-subject
factor (n=16), and were plotted using an exclusion criterion for
outlier pointsN1.5*IQR, where IQR=interval between quartiles.
Biochemical assays were conducted with 6 or more animals per
group (n≥6), and data were analyzed by one-way ANOVA followed
by Tukey's post-test. The software Origin 6.1 (v6.1052/B232;
OriginLab Corporation, Northampton, MA, USA) was used for
statistical analyses and graph preparation.

3. Results

3.1. Plasma indexes

Table 1 presents biomarkers of the antioxidant capacity in plasma
of experimental animals. As expected, the long-term supplementation
with ASTA improved the antioxidant capacity of plasma (35% in terms
of Trolox-equivalents as shown by TEAC results), whereas no
difference was observed in respect to fish oil treatment. Combined
supplementation with ASTA/Fish oil also induced higher antioxidant
capacity in plasma (42%; Table 1), sustaining the antioxidant role of
ASTA in the mixture. Similar trends were also observed in respect to
total iron content and FRAP scores in plasma. However, distinctively
from TEAC results, ASTA/Fish oil group showed 35% less iron content
in plasma than ASTA-fed animals. Regarding GSH metabolism, both
ASTA and fish oil treatments significantly increased total GSH content
(GSH+GSSG) and GSH/GSSG ratios in plasma of animals, revealing
their antioxidant properties. Noteworthy, a synergistic effect of



Table 1
Biomarkers of antioxidant capacity in plasma of Wistar rats treated by gavage with 1 mg ASTA/kg and/or Fish oil (based on 10 mg EPA/kg and 7 mg DHA/kg) for 45 days. Both lipid-
soluble substances were diluted in 10% Tween-80 aqueous solution (v/v), which was also used in control group.

Biomarker Control ASTA Fish oil ASTA/fish oil

Total irona 0.58±0.32 1.48±0.63# 0.70±0.29 0.97±0.20
FRAPb 33.5±4.1 87.4±20.5* 36.6±5.5 56.8±7.5#
TEACc 5.08±1.66 6.85±0.84# 5.81±1.08 7.21±0.93#
Total GSHd 0.082±0.008 0.119±0.013* 0.120±0.011# 0.158±0.014§
Ratio GSH/GSSGe 1.11±0.07 1.45±0.13* 1.95±0.13§ 6.93±0.43§

Values are MEAN±SE (n≥6). Statistical analysis: *pb0.05, #pb0.01, §pb0.001, compared to the control group.
a Expressed as (μg mL−1) (parameter unit).
b Expressed as (nmol Fe2+ min−1 mL−1) (parameter unit).
c Expressed as (μmol eq. Trolox mL−1) (parameter unit).
d Expressed as (mM mg protein−1) (parameter unit).
e Dimensionless index.
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combined ASTA and Fish oil was apparently detected in respect to
plasma GSH/GSSG ratio.

3.2. Oxidative stress parameters in anterior forebrain

Fig. 2A and B illustrates the significant decrease of both total- and
Mn-dependent SOD activities in the anterior forebrain of Fish oil-fed
animals (respectively 30% and 50%). Single ASTA treatment did not
result in statistically significant variations. Combined supplementa-
tion with ASTA/Fish oil reproduced the observed lower activities of
mitochondrial MnSOD as in Fish oil-fed rat brains, but not for total
SOD activities (which accounts for both cytosolic/extracellular
CuZnSODs and mitochondrial MnSOD together). The absolute total
SOD activity values found here are in agreement to those extensively
described in the literature (2.8±0.6 U/mg prot in rat brains; Peeters-
Joris et al., 1975). Peroxisomal CAT activity perfectly matched the
variation trend of total SOD in forebrains of all experimental animals,
confirming the adequate (and well-documented) balance between
those frontline antioxidant enzymes in several biological systems. As
observed for total SOD activities, CAT activities in brain homogenates
of Fish oil- and ASTA/Fish oil-treated animals were approximately 35%
Fig. 2. Activities of antioxidant enzymes in the anterior forebrain region ofWistar rats treated
protein−1); (B) MnSOD activity (expressed in USOD mg protein−1); (C) catalase activity (CAT
expressed in μmol NADPH.min−1 mg protein−1). §pb0.005; #pb0.01; *pb0.05 (n≥6).
and 30% lower than in control group (Fig. 2C). Finally, the GR activity
in the forebrain homogenates of ASTA/Fish oil group was almost 30%
higher than control, whereas no other group showed significant
variations (Fig. 2D).

Regarding the oxidative stress parameters in the encephalic tissue,
it is worthy to note that Fish oil supplementation (either alone or in
the presence of ASTA) increased total iron content in anterior
forebrain homogenates by around 45–50% (Table 2). Although not
statistically significant for Fish oil group (p=0.361), ferric-reducing
capacities (FRC) were properly increased in ASTA/Fish oil samples,
probably to counteract iron content increase. In addition, TEAC
capacity in brains only varied in ASTA/Fish oil-fed animals (around
20%; Table 2). Furthermore, it is clearly observed in Table 2 that single
Fish oil treatment imposed higher oxidative challenge to lipids (33%
higher indexes of the oxidized lipid products TBARS) and proteins
(35% lower reduced thiol content). Unexpectedly, GPX activities in
rat forebrains were not significantly altered in any experimental
group: (1.56±0.22), (1.71±0.10), (1.56±0.25), and (1.83±0.25)
μmol NADPH/min/mg protein for control, ASTA (p=0.531), Fish
oil (p=0.998), or ASTA/Fish oil groups (p=0.432), respectively
(Table 2).
by gavage with astaxanthin and/or fish oil. (A) total SOD activity (expressed in USODmg
, expressed in μmol H2O2 min−1 mg protein−1); (D) glutathione reductase activity (GR,

image of Fig.�2


Table 2
Parameters of oxidative stress in the anterior forebrain section of Wistar rats treated by gavage with 1 mg ASTA/kg and/or Fish oil (based on 10 mg EPA/kg and 7 mg DHA/kg) for
45 days. Both lipid-soluble substances were diluted in 10% Tween-80 aqueous solution (v/v), which was also used in control group.

Parameter Control ASTA Fish oil ASTA/fish oil

Total irona 0.161±0.012 0.190±0.026 0.233±0.009¶ 0.245±0.017§

Ferric-reducing capacityb 1.97±0.57 1.66±0.39 2.52±0.29 3.41±0.56
TEACc 0.152±0.011 0.165±0.011 0.164±0.008 0.186±0.008*
(MnSOD)/(totalSOD)d 0.511±0.07 0.519±0.07 0.371±0.06§ 0.297±0.03§

CuZnSODe 0.924±0.13 0.804±0.11 0.813±0.13 1.08±0.11*
GPXf 1.56±0.22 1.71±0.10 1.56±0.25 1.83±0.24
TBARSg 0.626±0.027 0.536±0.027* 0.832±0.084* 0.426±0.016
Protein thiolsh 1.436±0.044 1.035±0.006# 0.945±0.014# 1.407±0.216

Values are MEAN±SE. Statistical analysis: ¶pb0.001; §pb0.005; #pb0.01; *pb0.05, compared to the control group (n≥6).
a Expressed as (μg mL−1) (parameter unit).
b Expressed as (nmol Fe2+ min−1 mL−1) (parameter unit).
c Expressed as (μmol eq. Trolox mL−1) (parameter unit).
d Dimensionless index.
e Expressed as (USOD mg protein−1) (parameter unit).
f Expressed as (μmol NADPH min−1 mg protein−1) (parameter unit).
g Expressed as (nmol MDA mg protein−1) (parameter unit).
h Expressed as (nmol–SH mg protein−1) (parameter unit).
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3.3. Preliminary anxiety-behavior tests

Despite complementary behavioral experiments could be recom-
mended to confirm our hypothesis—i.e. locomotor activity (crossing,
rearing and central squares), number of fecal pellets in a central arena,
marble burying behavior—a preliminary anxiety-behavior test was
performed by evaluating the exploratory activity of treated animals
versus control in the elevated plus maze. As shown in Fig. 3A, neither
ASTA nor Fish oil (alone or combined) resulted in significantly
different scores of total time spent in open arms, probably due to very
incongruent data point distribution in supplementation groups
(p=0.265; p=0.767; p=0.574 for ASTA-, Fish oil-, and ASTA/Fish
oil-fed rats versus control, respectively). On the other hand, when
anxiety behavior was approached by time spent in exploratory
activity during each entrance in open arms, more congruency was
observed in our data points (Fig. 3B). Both Fig. 3A and B adopted the
exclusion criterion for outlier points (N1.5*IQR, interval between
quartiles). Despite no difference was observed between control and
ASTA supplementation in rats, both Fish oil and combined ASTA/Fish
oil groups showed similar significant anxiolytic properties (p=0.294
between them).
Fig. 3. Exploratory activity, as a parameter for anxiety-behavior, of astaxanthin (ASTA)- and/o
spent in open arms, in seconds; and (B) time spent during each entrance in open arms, in
(n=16). Exclusion of outlier pointsN1.5*IQR, where IQR=interval between quartiles. *pb
4. Discussion

In order to hinder neurodegenerative processes and sustain
cognitive capacities in humans, the consumption of marine n-3/
PUFA-rich products has been long recommended by several medical
authorities worldwide (Cunnane et al., 2009). A balanced proportion
between EPA and DHA (3:2, regularly found in natural fish oils) is
apparently the key factor for such health benefits, whereas many
other PUFAs—such as the pro-inflammatory arachidonic acid—can, in
fact, trigger harmful effects by massive ROS production from activated
immune cells (Gorjão et al., 2009). In fact, a currently accepted
hormesis principle sustains that every biological system (cells, tissues,
etc.) adequately performs under a specific functional ratio of pro-/
antioxidant events, which then depicts its optimal redox balance
(Calabrese et al., 2010). Following the hormesis principle, neuronal
cells adequately function under high oxidative pressure which is
probably a different environment faced by erythrocytes or other cells.
So, the presumption that minor oxidative modifications in brain
regions necessarily culminate in neurological disturbs or neurode-
generative processes is not fully correct (obviously, depending on
their extension). Herewith, the hormesis concept could be adequately
r fish oil (FO)-fed animals in the elevated plus maze, measured for 5 min. (A) Total time
seconds. Star symbols (★) represent the average value of the data point distribution

0.01; #pb0.05.

image of Fig.�3
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applied to explain why such a powerful antioxidant compound as
ASTA (Barros et al., 2001), only showed moderate changes in the
anterior forebrain region (Table 2) whereas huge antioxidant
increment was observed in plasma of the same animals (Table 1).

Fish oil supplementation caused the downregulation of the major
antioxidant enzymes total SOD and CAT (Fig. 2) in the anterior
forebrain of experimental animals, with special contribution from
mitochondrial MnSOD (Table 2). Lower MnSOD/totalSOD ratio
obtained in both Fish oil (30% lower, pb0.005) and ASTA/Fish oil-
fed animals (40% lower, pb0.005)—but not in ASTA group (Table 2)—
is an evidence of a mitochondrial-centered action of fish oil
components, in agreement to previous evidence from other groups
(Calabrese et al., 2001). Many authors attribute the antioxidant effects
of n-3/PUFAs to their energy-uncoupling (thermogenic?) properties
in mitochondria, which would lower the oxidative pressure on the
electron-transport chain and, thus, damp down O2

•−/H2O2 production
(Davis et al., 2008). Impaired mitochondrial energy-supply could, at
some extension, deplete ATP levels and change NAD(P)+/NAD(P)H
ratio, which are biochemical events tightly associated to neurotoxicity
(Binienda et al., 2006). Such a secondary effect on NAD(P)+/NAD(P)H
ratio could explain the observed unresponsiveness of NADPH-
dependent GR activity observed here (Fig. 2).

As a result of diminished intracellular antioxidant enzyme
defenses and 45% higher concentrations of free iron, exacerbated
levels of lipid (33% higher TBARS) and protein oxidation (34%
less thiol groups) were measured in the anterior forebrain of fish oil-
fed rats without a proportional increment of antioxidant systems
(checked by FRC and TEAC in Table 2). Iron homeostasis is crucial in
keeping brain function, since “free” iron ions can accelerate the
formation of aggressive HO• radicals (by Fenton-reaction) and also
the oxidation of catecholamines (Park et al., 2011). Despite anxiety-
related catecholaminergic innervated regions are renowned as
highly susceptible to oxidative stress than the remaining brain
regions (Homi et al., 2002; Shelton and Brown, 2001), the rebalance
of pro-/antioxidant processes in the anterior forebrain of fish oil-fed
animals was apparently able to sustain putative anxiolytic effects, as
preliminarily determined by increased time of open-arm exploration
in the elevated plus-maze (Fig. 3B).

Astaxanthin (ASTA) possesses powerful antioxidant activity both in
vitro and in vivo (Barros et al., 2001; Palozza and Krinsky, 1992; Stahl
and Sies, 2005). Several authors have properly demonstrated that ASTA
directly crosses the brain-blood barrier (BBB) to reach different
mammalian brain regions (Choi et al., 2011; Lee et al., 2011; Lu et al.,
2010; Liu and Osawa, 2009), although we still cannot confirm if ASTA
particularly accumulated in the anterior forebrain of rats following our
supplementation protocols. Nevertheless, ASTA supplementation alone
did not profoundly alter adaptive responses in anterior forebrain of rats
(enzymatic, FRC, TEAC, or iron content in brain homogenates, Fig. 2 and
Table 2), but indeed resulted in significant antioxidant protection to
lipid content in rat brains (TBARS levels in Table 2). Thereby, the
improvement of GSH-based antioxidant capacity and FRAP/TEAC scores
in plasma of ASTA/Fish oil-fed animals (Table 1) could represent an
auxiliary mechanism by which ASTA limited oxidative insults in the
anterior forebrain of experimental animals. However, it is worthy to
note the key contribution of fish oil in the process, since ASTA
supplementation alone only provided protective role in terms of
oxidative modifications in such brain region (Table 2).

In summary, combined ASTA/Fish oil vs. fish oil supplementation
resulted in: (i) substantial increase of antioxidant capacity inplasma(by
total GSH, GSH/GSSG ratio, TEAC and FRAP) to counteract augmented
“free” iron (Table 1); (ii) attenuation of the damping effect on O2

•−/H2O2

production, suggested by partial recovery of totalSOD and CAT activities
(Fig. 2A and C); (iii) 25% and 18% higher activities of GR and CuZnSOD,
respectively (GPX only showed a slight tendency to increase, p=0.432;
Fig. 2); (iv) increased FRC and TEAC capacities in brain homogenates
(not evidenced in Fish oil group; Table 2); and (v) lower indexes of lipid
peroxidation and restoration of basal scores of protein oxidation in
anterior forebrain of animals (Table 2).

Based on the hormesis principle, neuronal cells regularly function
under high oxidative pressure (Calabrese et al., 2010). Thus, it is
tempting to suggest that minor changes of the redox status in
neuronal cells—such as those provoked by ASTA co-supplementation
with fish oil—were not enough to grossly affect (more complex)
behavioral aspects as a short-term event. However, the long-term
preservation of neuronal lipid and protein fractions by combined
ASTA/Fish oil supplementation could indeed represent a chronically
relevant mechanism in preventing progressive neurodegenerative
processes and cognitive dysfunctions. Thus, independent to the
proper mechanism by which ASTA exerts its antioxidant effects in
the anterior forebrain of fish oil-fed animals, the combination of such
powerful ROS scavenger (ASTA) with the neuroprotective properties
of fish oil not only protected such an oxidative stress-susceptible brain
region against higher oxidative modifications in lipids and proteins
but also sustained its hypothetical anxiolytic effects.

4.1. Future perspectives

Pharmacological modulation of cellular stress responses has
emerging implications for the treatment of neurodegenerative
disorders. Several clinical trials produced intriguing data suggesting
that the beneficial effects of n-3/PUFAs supplementation may depend
on the stage of neurological disease (different redox statuses?) and
other dietary mediators, especially antioxidants (Jicha and Markesbery,
2010). A critical key to successful medical intervention is getting the
dose right, since human inter-individual variation, and additional
factors such as age, gender, diet, exercise, genetic profile and health
status apparently reflects distinct redox statuses for each biological
system. The hormetic dose–response principle may, thus, represent the
proper pharmacological strategy to group all these relevant factors into
a single drug formulation for pre-clinical studies, clinical trials and
further disease cures.
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