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Time Series Classification
with Representation Ensembles

Rafael Giusti(B), Diego F. Silva, and Gustavo E.A.P.A. Batista

Instituto de Ciências Matemáticas e de Computação, São Carlos, Brazil
{rgiusti,diegofsilva,gbatista}@icmc.usp.br

Abstract. Time series has attracted much attention in recent years,
with thousands of methods for diverse tasks such as classification, clus-
tering, prediction, and anomaly detection. Among all these tasks, clas-
sification is likely the most prominent task, accounting for most of the
applications and attention from the research community. However, in
spite of the huge number of methods available, there is a significant
body of empirical evidence indicating that the 1-nearest neighbor algo-
rithm (1-NN) in the time domain is “extremely difficult to beat”. In
this paper, we evaluate the use of different data representations in time
series classification. Our work is motivated by methods used in related
areas such as signal processing and music retrieval. In these areas, a
change of representation frequently reveals features that are not appar-
ent in the original data representation. Our approach consists of using
different representations such as frequency, wavelets, and autocorrelation
to transform the time series into alternative decision spaces. A classifier
is then used to provide a classification for each test time series in the
alternative domain. We investigate how features provided in different
domains can help in time series classification. We also experiment with
different ensembles to investigate if the data representations are a good
source of diversity for time series classification. Our extensive experimen-
tal evaluation approaches the issue of combining sets of representations
and ensemble strategies, resulting in over 300 ensemble configurations.

1 Introduction

Undoubtedly, analysis of time series data has attracted an enormous amount of
attention in recent years. Time-oriented data are present in several application
domains including medicine (e.g., electrocardiography and electroencephalogra-
phy), engineering (sensor data), entertainment (motion capture data in video
games), meteorology (climate data), etc. The research community has answered
to such demand with literally thousands of data analysis methods for diverse
tasks such as classification, clustering, prediction, and anomaly detection.
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Classification is likely the most prominent task in time series mining, account-
ing for most of the applications and attention from the research community. But
in spite of the huge number of methods available, there is a significant body of
empirical evidence indicating that the 1-nearest neighbor algorithm (1-NN) in
the time domain is “extremely difficult to beat” for classification tasks [8,18].

In this paper, we evaluate the use of different data representations in time
series classification. Our work is motivated by methods used in related areas such
as signal processing and music retrieval. In these areas, a change of representa-
tion, for instance, from time to frequency or cepstrum, often reveals features that
are not apparent in the original data representation. This approach consists of
using different representations to transform the time series into alternative deci-
sion spaces. A classifier is then used to provide a classification for each test time
series in the alternative domain.

Our goal is to investigate how features provided in different domains can
help in time series classification. We perform our experiments using the 1-nearest
neighbor classifier (1-NN), due to its simplicity and effectiveness in time series
classification. The use of a single classification model helps us to rule out the dif-
ferences in performance due to different classification algorithms. This way, any
difference of performance can be attributed on the change of data representation.
We also evaluate different ensembles of 1-NN classifiers to investigate if the data
representations are good sources of diversity for time series classification.

Although some recent research has addressed the classification of time series
using different representations [4,16], our paper is unique in the sense that
we evaluate representations irrespectively of classification models. Moreover, we
employ a more diverse set of representations and ensemble strategies. Our exten-
sive experimental evaluation approaches the issue of combining sets of represen-
tations and ensemble strategies, resulting in over 300 ensemble configurations.

The paper is organized as follows. In Sect. 2 we present an overview of time
series classification, time series (dis)similarity and transformation of time series.
In Sect. 3 we present notions of ensembles of classifiers and the ensemble con-
figurations used in this work. In Sect. 4 we present our experimental evaluation
and discuss our results. Finally, in Sect. 5 we present our conclusions and future
work.

2 Time Series Classification and Transformation

Let a time series of length m be an ordered set of values S = (s1, s2, . . . , sm),
st ∈ R for all t ∈ [1,m]. Each value st of S is an observation of the time series
at instant t and every pair of consecutive observations (st, st+1) is considered
equally spaced in time – i.e., the series is uniformly sampled or the sampling
rate can be otherwise disregarded.

Time series classification is an important problem that arises in many prac-
tical applications. It consists in assigning a class label Cx to a previously unseen
example x that is somehow related to the process that produced the time series
x. The problem of time series classification has attracted great interest from
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the scientific community. Several approaches are readily available to tackle this
problem. One may extract features from the temporal data and use these fea-
tures to train a classification model, such as the support vector machine [5].
In a different approach, representative segments – shapelets – of temporal data
may be extracted from a training data to construct a similarity-based decision
tree [19]. However, one of the most popular approaches consists of using the
original temporal data as attributes for the k-nearest neighbors classification
model.

The k-nearest neighbors classifier – k-NN – is an instance-based classifica-
tion model. It is built on the nearest-neighbors rule, which roughly translates to
the notion that similar instances belong to the same class with high probabil-
ity. Although simple, the 1-NN classifier with DTW (1-NN-DTW) is repeatedly
reported as the best classification model in the average case for time series clas-
sification, being considered to be “exceptionally difficult to beat” [8,18].

The concept of (dis)similarity between time series is often estimated with a
distance function. The Euclidean distance is a widely used function to estimate
the dissimilarity between two time series. A relevant issue of the Euclidean dis-
tance is the fact that it is very sensitive to non-linear variations in the time
axis known as warping [12]. The Dynamic Time Warping (DTW) is a local-
warping invariant of the Euclidean distance which minimizes the estimated dis-
tance between two time series by finding an optimal alignment between their
observations. This alignment promotes the matching of values observed at dif-
ferent relative times under the following constraints: (i) the observations must
be monotonically ordered with respect to time; (ii) the alignment should begin
in the first and end in the last observations of both time series; and (iii) each
value must belong to the optimal alignment – i.e., no value is skipped in any of
the time series.

The sampled observations of a time series are a description of how a measur-
able phenomenon changes with time. Such series is said to be represented in the
time domain. “Traditional” classification of time series with the 1-NN classifier
is performed in the time domain. However, it is possible to transform a time
series to an alternate domain of representation. We define a transformation of
time series as a mapping from the time domain to an alternate space of decision.
To classify instances with the 1-NN classifier in the transformed space, it suffices
to wrap the distance function so that each instance is transformed before being
compared. In this work, we transform the time series from the time domain to a
different decision space and perform the classification on this new decision space
using the 1-NN classifier normally. For certain domains of application, this allows
for great classification accuracy. We construct ensembles of the 1-NN classifier
for even better results.

There is a huge diversity of time series transformations in the scientific liter-
ature [18]. In this work, we attempted to choose transformations that actually
provide a distinct decision space that is not a summarization of the original tem-
poral data. Therefore, we have excluded some classical dimensionality reduction
techniques, such as Principal Component Analysis [10], SAX [13] and SAX-based
transforms [14].
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Power Spectrum: The Discrete Fourier Transform – DFT – decomposes a
time series as an ordered set of sinusoids of decreasing frequency. Each value
of the transformed series is a complex number that encodes both amplitude
and phase of a periodic component.
The DFT has been used for a long time as a strategy of dimensionality
reduction that allows for efficient indexing of time series [1].
We define the power spectrum representation of a time series as the plot of
the complex modulus of its Fourier components. The power spectrum gives
the “energy” of the time series in the frequency bands associated with the
Fourier components. Periodical trends in the time series may be exposed by
the power spectrum, even if the original time series contains noise.
For a detailed and the formal definition of Fourier transform, we refer the
reader to [2].

Discrete Wavelet Transform: The DFT concerns only about frequency, not
adding any information about when each frequency component is present in
a time series. In order to mitigate this problem, wavelet transform creates
a time-frequency representation with different resolutions. This is done by
calculating the spectrum with sliding windows of different sizes. Discrete
wavelet transform (DWT) is a discrete version of the wavelet transform for
numerical signals.
Another relevant difference between DWT and DFT is that the latter repre-
sents a composition of sinusoidal waves. In the other hand, DWT may work
with an infinite number of functions, called mother wavelets.
There is a plethora of works that use DWT in time series classification. A
particularly interesting application of this approach was made for matching
stock time series [7], in which the authors used the Haar’s mother wavelet [6].

Autocorrelation Function: The autocorrelation of a time series measures its
predictability at a specific instant from its previous observations. A highly
autocorrelated time series is indicative of a very deterministic process while
true white noise shows no autocorrelation for pairs of distinct observations.
The sample autocorrelation is typically used as an estimate of the auto-
correlation of the whole population. In this work, however, we employ the
autocorrelation function as a means to transform the time series into a dif-
ferent decision space [4].

3 Representation Ensembles

An ensemble of classifiers is a set of base classifiers whose individual decisions
are combined to classify new examples [15]. Each classifier is allowed to indepen-
dently observe the example and provide a tentative classification output, i.e., a
vote. The ensemble then combines the individual votes into a single class label.

The simplest sensible ensemble of classifiers is the majority ensemble. In a
majority ensemble, each of the base classifiers votes on a class label. The most
voted class label is the ensemble’s output.
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Well-crafted ensembles tend to be more precise than their base classifiers.
When designing ensembles, it is important that component classifiers be individ-
ually accurate and collectively diverse. Otherwise, if the classifiers are inaccurate,
then the composition of incorrect decisions will lead to incorrect decisions, while
base classifiers too similar one to another cause the ensemble to make decisions
similar to those of the base classifiers, thus failing to improve on them.

In time series classification, variations of the k-NN have been used to build
ensembles of classifiers. Lines and Bagnall [15] employed different distance mea-
sures combined into an ensemble of 1-NN classifiers. Previous work by Oates et
al. [16] used the SAX representation of time series to compose ensembles where
each base classifier was constructed with different parameters. More recently,
Lines et al. [4] proposed a “collective of ensembles” that is essentially an “ensem-
ble of ensembles”. The base classifiers include complex classification models such
as SVM, Rotation Forests, and variations of the k-NN classifier. These include
using different distance measures and representation ensembles using the auto-
correlation function, the power spectrum, and the shapelet representation.

In this work, we explore how different time series representation may be
composed into ensembles of classifiers. Additionally, we are also interested in
exploring different strategies of combining base ensembles. We start with the
majority ensemble. Then, we explore alternative strategies for weighing base
classifiers and composing votes. For clarity sake, we group these strategies into
weighted and ranking-based ensembles.

3.1 Weighted-Based Ensemble

One straightforward extension to the simple majority ensemble consists of assign-
ing weights to each base classifier. When deciding on a new example, the weighted
sum of the votes for each class Ci is considered, and the class label which receives
the highest sum of votes is the ensemble output.

This strategy will be referred to as weighted ensemble. In actuality, the
weighted ensemble is a family of ensembles that differ on the strategy adopted
to assign weights to base classifiers. The majority ensemble is itself a weighted
ensemble that uses equal weight to all base classifiers.

In this work, we have considered the following weighing strategies.

– Accuracy as weights: the weight of each base classifier is its estimated accu-
racy. In our experiments, the accuracy is estimated by means of 10-fold cross-
validation on the training data. This is the only ensemble strategy that uses
the same set of weights for every new example it is presented. Variations of
this ensemble may be easily achieved by imposing a “cut-point” on the weights
of the base classifiers. A “hard cut-point” of k implies assigning a weight of
0 (zero) to all but the k most accurate base classifiers. A “soft cut-point”
of δ implies assigning a weight of 0 (zero) to all base classifiers that are less
accurate than the most accurate base classifier by a value of δ;

– Distance as weights: the weight of each base classifier is the normalized dis-
tance from the new example x to its nearest neighbor znn. Formally, if the
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distance function used by the base classifier is f , then the normalized distance
is f ′(x, znn) = f(x,znn)

f(zα,zβ)
, where zα and zβ are instances from the training set

such that no other pair of training instances are further apart;
– Posterior probability as weight : the weight of each base classifier is the pos-

terior probability of the class given the example. Let Cj be the decision of
the j-th classifier. The posterior probability P (Cj |x) is the probability that
the true class of the new example x is, in fact, Cj . The most straightforward
approach to estimate the posterior probability is to count the frequency of Cj

in the neighborhood of x. This neighborhood is a parameter of the ensemble,
and it is usually larger than the neighborhood of the base classifier.

3.2 Ranking-Based Ensembles

While the 1-NN produces a single class label for each new instance x, it may be
easily extended to rank classes according to the likelihood that a class Ci is the
true class of x. This “extended 1-NN” may be used as the base classifier of an
ensemble, provided all other base classifiers also produce rankings as outputs.
In this work, this approach is referred to as “ranking ensemble”. When a new
example is presented to a ranking ensemble, each base classifier is used to produce
their own ranking. The ensemble then merges these rankings, much like a single
vote is produced from a set of votes in the weighted ensemble. The best-ranked
class is chosen as the ensemble decision.

Ranking ensembles differ by the strategy used to construct the rankings. In
this work, the merge procedure is the same for all ranking ensembles; namely,
it is the mean of ranks. If the classification space has m classes and the ensem-
ble is composed of n base classifiers, then each j-th base classifier votes on
a ranking Rj = {rj1, rj2, . . . , rjm}, where rji is the rank assigned to the i-th
class label. The final, merged ranking, is given by the partial order of the set
Rf = {r1, r2, . . . , rm}, where ri =

∑
j rji

n is the mean of the ranks assigned to
the i-th by the base classifiers.

Two different label ranking models were used in this work.

– Posterior probability : the posterior class probability of an example x, P (Cj |x),
is the probability that the example x in fact belongs to class Cj . It may be
considered a decent estimate of the classifier’s “confidence” that its decision
is correct. It may also be used in label ranking to score class labels.
One method to estimate the posterior class probability of x, proposed by
Atiya [3], associates a set of weights, {v1, v2, . . . , vk} such that vi ∈ [0, 1] and∑

vi = 1, to the nearest neighbors of x. Each weight vi reflects how important
is the i-th neighbor in estimating the posterior class probability. If v1 = 1 and
all other vi = 0, i �= 1, then only the class of the immediately nearest neighbor
should be considered in the estimate. If vi = 1

k for all k-nearest neighbors, then
every neighbor is equally important. A linear optimization model is used to to
find weights that are optimal according to a training data set. The probability
that an example x belongs to the class Ci is the sum of the weights associated
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to the neighbors of x that belong to this class. This is better explained with
an example. Assume that, for k = 5 and a given example x, the classes of its
nearest neighbors are C1, C2, C1, C3, and C2. The first and the third-nearest
neighbors are of class C1. Therefore, the probability that x belongs to C1 is
given by P (C1|x) = v1 + v3. The values of P (Cj |x) are subjected to a partial
order, where higher values are better, and a ranking is constructed. The ranks
associated with each class label are the base classifier’s vote.

– Simple-ranking based : the simple-ranking is an instance-ranking strategy
used in the anytime classification with the k-nearest neighbors classification
model [17]. Basically, the idea of the simple-ranking is to rank the training
instances according to their relevance to the classification of a new example.
The simple-ranking approach to calculating the importance of each train-
ing instance is similar to the leave-one-out validation procedure. Initially, it
assigns a score of zero to all training instances. Then, at every round, it
removes one training instance from the original data set and use the rest of
the training data to predict its class. In the original simple-ranking algorithm,
the classification model is the 1-nearest neighbor classifier. The nearest neigh-
bor is then deemed “friendly” or “enemy”, depending on whether its classes
matches or not the class of the held out instance. If the neighbor is “friendly”,
then its score is increased by 1. If the neighbor is “enemy”, then its score is
decreased by 2

m−1 , where m is the number of classes of the decision space.
The held out instance is put back into the training data set and the algorithm
proceeds to the next round. Finally, a ranking is produced from the scores
and the ranks are assigned to the training instances.
Once the training instances have been ranked, the label ranking of a new exam-
ple x is similar to the procedure of the posterior probability-based method.
Each nearest neighbor was previously assigned a simple-rank s1, s2, . . ., sk.
For each class Cj , a score is computed from the mean of the ranks of neigh-
bors that belong to class Cj . For instance, assume that k = 5 and the classes
of the nearest neighbors of x are C1, C2, C1, C3, and C2. The first and the
third-nearest neighbors belong to class C1. Therefore, the score assigned to
this class is S1 = s1+s3

2 . Similarly, the score assigned to C2 is S2 = s2+s5
2 and

the score assigned to C3 is S3 = s4. The scores S1, S2, and S3 are subjected
to a partial order, where lower values are better, and a ranking is constructed.
The ranks associated with each class label are the base classifier’s vote.

4 Experimental Evaluation

The main goal of this work is to explore different forms of ensemble composi-
tion with representation diversity. To achieve that goal, we designed a set of
experiments to evaluate all ensemble strategies presented in Sect. 3 using dif-
ferent subsets of base classifiers. Because some ensemble strategies and some
transformations have parameters, we also cross-validated the training data.

The base classifiers employed in our experiments were the 1-NN, the 1-NN-
DTW, the 1-NN-DTW with Sakoe-Chiba window, and the 1-NN transformed to
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the representations discussed in Sect. 2. The width of the Sakoe-Chiba window
was individually assigned to each data set. Additionally, one base classifier using
only the first iteration of the Haar transform was used, alongside with another
base classifier using only the approximation coefficients of the first iteration of
the Haar transform. This configuration of base classifiers will be referred to as
“full set”.

For some configurations, we also experimented with limited sets of base clas-
sifiers. That is, instead of using the “full set” as base classifiers, we experimented
different combinations. These combinations and the difference of accuracy pro-
vided by them will be presented and discussed in the next subsection.

The results from these experiments shed light on how the choice of an ensem-
ble configuration and how adding or removing base classifiers affect the classifi-
cation accuracy. Based on these results, we then devised a set of 6 base classifiers
using 4 time series representations, namely 1-NN, 1-NN-DTW, 1-NN-DTW with
Sakoe-Chiba window, and 1-NN transformed to Power Spectrum, Haar coeffi-
cients, and autocorrelation coefficients. The same ensemble configurations were
used. We refer to this set of base classifiers as the “reduced set”.

All experiments were conducted in 45 data sets from the UCR time series
repository [11]. The UCR repository is arguably the largest source of time series
data for classification and clustering, spanning diverse domains of applications
such as agronomy, human movements, medicine, and astronomy. One charac-
teristic of the UCR repository is that data sets are shipped with a predefined
partitioning of training and test data. As it is commonplace in the scientific
community, we keep that partitioning to promote reproducibility.

4.1 Discussion of Results

We evaluated hundreds of ensemble configurations on 45 labeled data sets. This
yielded over 17 thousand data points, the totality of which may be found in the
accompanying website of this paper [9].

Comparing ensembles with different sets of base classifiers, our results showed
that fewer base classifiers tend to provide better results than the “full set”. In
Table 1, four sets of base classifiers are compared against the “full set”. Each
column stands for a subset of base classifiers: Time domain, DTW (with Sakoe-
Chiba window), Power spectrum, Autocorrelation, and Haar. The values are
the frequency of victories and ties assigned to the column ensemble against the
respective “full set”.

Most configurations produced better results with fewer base classifiers. This
led us to repeat the experiments for all configurations with the six base classifiers
presented in Sect. 4. In Table 2 we present a summary of ensemble configurations
that we deemed representative. The totality of our results may be found in [9].

From Table 2, it is possible to notice that no configuration is better than all
other configurations. For instance, though the strategy of weighing base classi-
fiers by their cross-validation accuracy is at least as good as the majority ensem-
ble 86.67% of the time, it is worse than the strategy of weighing by distance
44.44% of the time.
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Table 1. Comparison of ensembles with reduced sets of base classifiers against the
“full set”. Letters denote base classifiers: (T)ime-domain with Euclidean distance and
(D)TW, (A)utocorrelation domain, (P)ower spectrum domain, and (H)AAR wavelets

TDPA TDPH TDAH TDPAH

Majority 73.68 % 34.21 % 47.37 % 76.32 %

Posterior (NN) 63.16 % 31.58 % 26.32 % 60.53 %

Accuracy 81.58 % 76.32 % 78.95 % 89.47 %

Distance 94.74 % 94.74 % 97.37 % 97.37 %

Table 2. Comparison of ensemble configurations. Each value is the frequency of vic-
tories and ties obtained by the column ensemble against the row ensemble. In the
columns, P.P. stands for “posterior probability”.

Against Reference ensemble

Majority Accuracy Distance P.P. (rank) P.P. (weight) SimpleRank

Majority — 86.67% 71.11% 55.56% 77.78% 37.78%

Accuracy 20.00% — 53.33% 26.67% 48.89% 17.78%

Distance 35.56% 55.56% — 35.56% 53.33% 35.56%

Posterior (rank) 48.89% 77.78% 68.89% — 75.56% 37.78%

Posterior (weight) 28.89% 60.00% 51.11% 28.89% — 26.67%

SimpleRank 62.22% 82.22% 64.44% 64.44% 75.56% —

Surprisingly, more complex strategies based on ranking ensembles, such as
the simple-ranking and the posterior probability method, did not yield good
results. At first, we suspected this might be caused by overfitting on the training
data. However, what we actually observed was an overall superior accuracy of
those methods on the test data set, suggesting that these ensembles generalize
relatively well from the training data. As an example, Fig. 1 (left) compares the
accuracy on the test data against the accuracy on the training set for the pos-
terior ranking ensemble – with neighborhood of size 5. Figure 1 (right) presents
a similar analysis for the simple rank ensemble – with neighborhood of size 3.

These results seem to make a good case for composing ensembles of 1-NN
on different domains of representation. However, the natural question is: how do
these ensembles compare with the state-of-the-art? Considering the overwhelm-
ing adoption of the 1-NN-DTW, we did compare our ensemble configurations
against it. In Fig. 2 we graphically present two such comparisons. In Fig. 2 (left),
the accuracy-weighted ensemble – with “soft cut-point” of 0.1 – is compared
against 1-NN-DTW. In Fig. 2 (right), the simple rank ensemble – with neigh-
borhood size 3 – is compared against 1-NN-DTW.

There is a sensible reason for choosing these particular ensembles for compar-
ison against 1-NN-DTW. That particular configuration of the accuracy ensem-
ble was able to beat or tie with 1-NN-DTW in more data sets than most other
ensembles. Conversely, that particular configuration of the simple rank ensemble
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Fig. 1. Comparison of ranking ensembles on the test data against training data, sug-
gesting generalization of the classification models.
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Fig. 2. Comparison of two different ensemble strategies against the 1-NN-DTW.

was defeated by the 1-NN-DTW in more data sets than most other ensembles.
Figure 2 therefore gives a glimpse of the range of accuracies of our results when
compared with the 1-NN-DTW. The accuracy ensemble won against 1-NN-DTW
in 28 data sets, tied in 12, and lost in 5.

Finally, we address the issue of reproducibility. Along this section, we pre-
sented several results that we considered representative or interesting. The total-
ity of this analysis is based on evaluations performed with the test data, which
is usually not available in “real” situations.

We address this question by performing a data-driven selection of ensem-
bles. Every ensemble configuration was evaluated both on the test data and,
with cross-validation, on the training data sets. For each data set, the “dynamic
ensemble” chooses the ensemble with the highest accuracy on the training data
and evaluates it on the test data. When more than one ensemble configuration
yields the highest training accuracy, we apply them all on the test data and
give as its accuracy the mean of their test accuracies. This equates to finding
the expected value of the “dynamic ensemble” accuracy when equally efficient
ensemble configurations are randomly selected with uniform distribution.
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Fig. 3. (left) The best ensemble using the “full set” of base classifiers against 1-NN-
DTW; (right) accuracy a data-driven selection of ensemble for each data set comparaed
with 1-NN-DTW

In Fig. 3 we present the “dynamic ensemble” against the 1-NN (left) and the
1-NN-DTW (right). This particular “dynamic ensemble” was produced using the
six base classifiers presented in Sect. 4. This result shows that it is possible to
construct ensembles of classifiers that are competitive against the 1-NN-DTW
from a purely data-drive approach.

5 Conclusion and Future Work

In this paper, we have evaluated the use of different data representations in time
series classification and ensemble composition. We employed 5 different time
series transformations and 6 ensemble strategies. We performed experiments
with over 300 ensemble configurations on 45 data sets. Our extensive experi-
mental analysis makes a strong case for the use of representation diversity in
ensemble composition. Some ensemble configurations displayed excellent accu-
racy performance, being competitive with the 1-NN-DTW. Moreover, because
we conducted several experiments with cross-validation on the training data,
we have strong evidence that data-driven selection of ensemble configuration is
possible, and as shown in Sect. 4.1, capable of yielding good results.

As future work, we intend to analyze more time series representations and
ensemble strategies. We suspect that some meta-learning techniques would allow
for better selection of base classifiers and ensemble configurations.
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